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Objectives: 

The objectives of this research are to develop a comprehensive understanding of extreme floods and to 
dramatically improve the capability to model and forecast these events. We examine the potential 
improvements in flood characterization and forecasting that can result from use of high-resolution radar rainfall 
estimates and distributed hydrologic models. 

Approach: 

Hydrologic and hydraulic modeling studies of large floods using WSR-88D (Weather Surveillance Radar- 
1988 Doppler) radar rainfall estimates in a range of "flood environments" have formed the core methodology of 
the project (Morrison and Smith [2001], Giannoni et al. [2003], Zhang et al. [2001 and 2003], and Tumer- 
Gillespie et al. [2003]). Hydrologic modeling studies have utilized a simpUfied version of CASC2D, denoted 
the Network Model.   The model, which has been coded in JAVA, is designed for fast run times, platform 
portability, efficient utilization of high-resolution radar rainfall estimates, and the capability for readily 
examining different representations of the drainage network. Hydrologic modeling studies of large floods have 
utilized a wide range of land use - land cover (LULC) data sets, derived from both aerial photographs and 
satellite imagery. 

Hydraulic studies of flood wave attenuation have utilized the 2-D open channel flow code RMA-2V. The 
Network Model and RMA-2V have been coupled to provide a modeling system for examining hydrologic and 
hydraulic controls of flood response in a 10 km channel reach in an urban stream in Charlotte, North Carolina 
(Tumer-Gillespie et al. [2003]). 

High-resolution radar rainfall estimates play a central role in hydrologic modeling studies. Particular attention 
has been given to estimation of extreme, flood-producing rainfall from weather radar (Smith et al. [2001 and 
2002], Krajewski and Smith [2002], Zhang et al. [2001 and 2003], and Uijlenhoet et al. [2003 a and b]). 

Results: 

Hydrologic modeling studies of large floods have been performed for a high-gradient, forested watershed in the 
Blue Ridge of Virginia (see Giannoni et al. [2003] and Sturdevant-Rees et al. [2001], urbanizing drainage 
basins in Chariotte NC (Smith et al. [2002] and Tumer-Gillespie et al. [2003]) and Milwaukee WI (Zhang and 
Smith [2003]), a high-gradient tropical rainforest catchment in Puerto Rico (Smith et al [2004]) and a low- 
gradient agricultural basin in the Great Plains (Zhang et al. [2001]). The storms responsible for these floods 
have included tropical storms, mesoscale convective systems (organized systems of thunderstorms) and 
orographic convective systems (organized systems of thunderstorms in mountainous terrain).   Modeling 
analyses for all storms were based on radar rainfall estimates (at 5-minute time scale and 1 km horizontal 
resolution) derived from WSR-88D radars from the operational NWS radar network. 
Analyses have provided fundamental insights into the hydrology of extreme floods, especially as they relate to 
the distribution of extreme floods (Morrison and Smith [2001 and 2002], Sturdevant-Rees et al. [2001], Smith et 
al [2002] and Zhang et al. [2003]). 



An important conclusion from our analyses is that radar rainfall estimates for these extreme rainstorms are 
generally of very high quality and well suited to distributed hydrologic modeling.   Furthermore, distributed 
hydrologic modeling in the CASC2D model environment can capture extreme flood response over a wide range 
of "flood environments".   High-resolution LULC data sets will play an important role in implementation of 
distributed hydrologic models. Of particular utility are representations of impervious cover in urban and 
suburban environments. 

Hydraulic modeling using RMA-2V has been used to examine flood wave attenuation in urban stream channels 
(Tumer-Gillespie et al. [2002]). hi the Charlotte, North Carolina metropolitan region, particular interest focuses 
on whether flood wave attenuation results from man-made alterations to the channel and floodplain system. For 
the Charlotte region it has been shown that geologic controls of longitudinal profile and valley bottom width are 
dominant controls of flood wave attenuation. The relative roles of channel and hillslope processes in 
determining flood response have been examined by coupling the Network Model with RMA-2V. In this coupled 
model, high-resolution radar rainfall estimates and the Network Model are used to provide tributary boundary 
conditions for RMA-2V. 

A compendium of the papers published under support by this project has been assembled and included as a 
contribution to this report. 
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Abstract 

High resolution radar rainfall fields and a distributed hydrologic model are combined for analysis and monitoring of extreme 
floods. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel 
flow. Model analyses are used to examine the hydrology and hydrometeorology of the 27 June 1995 Rapidan River flood which 
produced a measured peak discharge of 3000 m' s""' at a drainage area of 295 km^ The unit discharge of 10.2 m^ s"' km"^ is the 
largest for the US east of the Mississippi River for basins larger than 100 km^ Rainfall estimates at 1 km horizontal scale and 5 min 
time scale are used to reconstruct flood response to the Rapidan storm at basin scales ranging from 1 to 295 km^ Peak storm total 
rainfall accumulations for the 27 June 1995 storm exceeded 600 mm in a time period of approximately 6 h. Scale dependent flood 
response is related to the structure and motion of the Rapidan storm and the drainage network structure of the Rapidan River basin. 
The envelope curve of peak discharge for the Rapidan flood at basin scales less than 295 km^ derived from model analyses, is 
compared with envelope curves, based on extensive indirect discharge measurements, from the 19 July 1942 Smethport, Pennsyl- 
vania flood and the 18-19 August 1969 Nelson County, Virginia flood. These three events largely define the envelope curve of flood 
peaks for the US east of the Mississippi River at basin scales less than 1000 km^ Analyses illustrate how radar rainfall estimates can 
be combined with conventional stream gaging and indirect discharge measurements to enhance monitoring of extreme floods. 
© 2002 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

The Rapidan River flood of 27 June 1995 ([14,17, 
20,22,26]; see Fig. 1 for location map) produced the 
largest unit discharge flood peak at drainage areas 
greater than 100 km^ for the United States east of the 
Mississippi River ([20]; see also [3,11]). Comparable 
flood events for drainage areas less than 1000 km^ oc- 
curred 19 July 1942 near Smethport, Pennsylvania [6] 
and 19-20 August 1969 in Nelson County Virginia 
([2,15,19]. Hydrologic and hydrometeorological analyses 
of the Smethport and Nelson County flood events have 
been grounded in "bucket survey" rainfall measure- 
ments and extensive indirect discharge measurements 
(Fig. 2; see [4,7,13] for similar analyses of scale-depen- 
dent flood response and a historical perspective on de- 
velopment of procedures for extreme flood analysis). 

* Corresponding author. Address: Department of Civil and Envi- 
ronmental Engineering, Princeton University, Princeton, NJ 08544, 
USA. 

E-mail address: jsmith@princeton.edu (J.A. Smith). 

For the Rapidan River flood, time series of stage at 
the US Geological Survey (USGS) gaging station at 
Ruckersville, Virginia and an indirect discharge mea- 
surement of the peak are combined to produce a flood 
hydrograph at 295 km^ scale (Fig. 3). Radar rainfall 
observations [20] provide high temporal (5 min) and 
spatial (1 km^) representation of rainfall from the 
Rapidan storm (Figs. 3 and 4). Peak storm total rainfall 
accumulation exceeded 600 mm (Fig. 4) in a time period 
of approximately 6 h and rainfall rates exceeded 300 
mmh-' [20]. 

Extensive surveys of flood peaks from indirect dis- 
charge measurements were not carried out for the 
Rapidan flood, so it is difficult to directly characterize 
the spatial variability of peak flood response in the 
Rapidan River basin (as in Fig. 2). Numerous questions 
arise concerning the spatial distribution of flooding in 
the Rapidan River basin. How large were unit discharge 
flood peaks in the area of heaviest rainfall (Fig. 4)? How 
does the envelope curve of flood peaks for the Rapidan 
flood compare with those of the Smethport and Nelson 
County floods (Fig. 2)? How did the spatial and tem- 
poral distribution of rainfall from the Rapidan storm 
interact with drainage basin structure to determine 

0309-1708/03/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. 
PH: S0309-1708(02)00091-X 
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Fig,   1. Location map for the Rapidan River basin. The basin boundary is outlined in black and the stream gaging station is located at 78 V West and 
38.V North. 
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Fig. 2. Observed peak discharge values for the 19 July 1942 Smeth- 

port. PA flood (diamonds) and the 18 19 August 1969 Nel.son County. 
Virginia flood (filled circles). Discharge is expressed as a unit discharge 

(m's ' km -), that is peak discharge divided by drainage area. Data 

and discussion of the Smcthport data are given in [6]: see [2] for Nelson 
County data and discussion. 

scale-dependent response of the Rapidan flood'.' In this 
paper, we combine high-resolution rainfall estimates 
derived from the Sterling. Virginia WSR-88D (Weather 

Fig. 3. Time series of basin-averaged rainfall rate (mmh"'; solid line 

with sold dots) and discharge (m's '; solid line with open circles) for 
the Rapidan River basin from 6 UTC 27 July 1995 to 6 UTC 28 July 
199.5. Rainfall rate estimates are derived from WSR-88D reflectivity 
observations and have a time resolution of .5 min. 

Surveillance Radar—1988 Doppler) radar with a distri- 
buted hydrologic model to examine these questions. Of 
particular interest is an enhanced understanding of the 
hydrology of extreme floods and improved assessments 
of flood hazards and their relation to morphologic 
properties of drainage basins and  land  management 
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Longitude 

Fig. 4. Storm total rainfall accumulation (cm) for the Rapidan storm. 
The track of the storm, as represented through the 3-D center of mass 
projected to the surface, is shown by open circles connected by solid 
lines (see [20] for additional analyses). Times (UTC) for selected pe- 
riods are shown. The boundary of the Rapidan basin is outlined by 
filled circles (see Fig. 1). 

practices (see [14] for discussion of hazards issues in the 
context of the Rapidan storm). 

Hydrologic modeling is based on a Hortonian infil- 
tration model (the Green-Ampt model with moisture 
redistribution; see [16]) and a drainage network based 
representation of hillslope and channel response [12]. 
The principal objective of model analyses is to charac- 
terize the elements of space-time rainfall distribution 
and drainage network structure which control extreme 
flood response. An implicit assumption is that space- 
tune rainfall distribution and drainage network struc- 
ture provide the most important controls of extreme 
flood response for events like the Rapidan flood. 

In this paper we illustrate new methodologies for 
monitoring and analysis of extreme floods (see [9] for 
recent developments). The scientific, engineering and 
management problems for which these methods can be 
applied are diverse, as reflected in the range of problems 
that have been examined surrounding the Rapidan 
storm and flood [14,17,20,22,26]. 

2. Methodology 

The network model [12] is a distributed hydrologic 
model, which is used in this study to analyze spatially 
varying flood response in the Rapidan River basin. 

Discharge at any location along the drainage network is 
represented as: 

do{x)    d\{x ew = / M\t 
Vo Vl 

,x ] dx 0) 

where A is the domain of the drainage basin above the 
specified location, x is an arbitrary location in A, M{t,x) 
is the runoff rate (mmh"') at time t and location x, dQ{x) 
denotes the distance from x to the closest stream channel 
and di [x) denotes the channel flow distance from x to the 
outlet of the basin specified by the region A. The total 
flow distance from x to the basin outlet is d(,{x) + d\ {x). 
The runoff rate M{t,x) is computed from the rainfall rate 
R{t,x) (obtained from Eq. (2) below) using the Green- 
Ampt infiltration model with moisture redistribution 
(see [16] for algorithm details). Runoff is assumed to 
move over hillslopes at a uniform velocity UQ and 
through the channel system at velocity v\ (see [18] for 
discussion of similar models). In subsequent sections we 
use (1) to compute discharge at numerous locations 
upstream of the USGS stream gaging station on the 
Rapidan River. 

Two methods of drainage network extraction are 
used, the area-threshold method and a slope-area 
threshold method (see [24] for discussion). In the area- 
threshold method, stream channels are identified based 
on exceedance of a specified upstream drainage area 
threshold, \A\. In the slope-area method, the smallest 
channel segments are identified based on the product 
\A\S'' exceeding a specified threshold, where S is the local 
terrain slope and k is an extraction parameter. For both 
methods, we use drainage density as the central pa- 
rameter for network extraction. An area threshold ex- 
traction of the Rapidan drainage network is illustrated 
in Fig. 5. Drainage density for the network in Fig. 5 is 
0.6 kmkrn"^. 

Radar rainfall estimation is based on a power law Z- 
R relationship and raingage-based bias correction (see 
[1,20]), with the estimation equation formulated as fol- 
lows: 

R{t,x) =BaZ{t,x)'' (2) 

where R{t,x) is rainfall rate (nunh"') at time t and 
spatial location x, Z{t,x) is the radar reflectivity factor 
(mm* m"') at time t and location x, a and b are Z-R 
parameters and B is the multiplicative bias. The default 
WSR-88D Z-R relationship [8] is used with a = 0.017 
and b = 0.71. A 55 dBZ cap is applied to reflectivity 
observations to mitigate the influence of hail contami- 
nation. For the Rapidan storm the hail cap did not play 
a significant role in rainfall analyses. The multiplicative 
bias B is estimated as the ratio of total rainfall from rain 
gage and bucket survey observations to total rainfall 
from radar bins containing rain gages [20] and takes the 
value 2.5. Bias correction is a component of operational 
National Weather  Service  radar  rainfall  estimation 
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Basin Outlet 
Fig. 5. The extracted drainage network of the Rapidan River basin 
(see Fig. 1). Solid circles show the locations used for model analyses of 
flood response (see Figs. 6 and 7). The circles represent the outlets of 
the three main tributary' basins (from top to bottom, the mainstem 
Rapidan River, the Middle River and the South River). The bottom 
circle is at the location of the Ruckersville stream gaging station 
(denoted '"basin outlet", which has an upstream area of 295 km^ 

algorithms ([8]; see [1.8] for discussion of bias estimates 
for "warm rain" events, like the Rapidan storm). 

The storm total rainfall field derived from these ob- 
servations (Fig. 4) has a maximum rainfall accumulation 
of 670 mm with areas of 300 mm accumulations cover- 
ing the central portions of the Rapidan basin. Springer 
et al. [22] have reported rainfall measurements which 
exceeded 750 mm and are near the rainfall peak in Fig. 
4. The total runoff from the Rapidan storm of 296 mm, 
computed by integrating the measured discharge over 
the duration of the event and dividing by drainage area, 
is approximately the same as the storm total rainfall 
[20]. The pattern of storm total rainfall distribution 
corresponds well with the spatial distribution of land- 
slides and debris flows [26], These and other observa- 
tions from prior research indicate that the radar rainfall 
estimates accurately reflect the spatial and temporal 
distribution of flood-producing rainfall. 

The storm total rainfall distribution strongly reflected 
the size and track of the storm (Fig. 4). During the 4 h 
period from 14:30 UTC to 18:30 UTC, the storm cent- 
roid moved from the east-central boundary of the 
Rapidan basin to the center of the basin. The storm was 
multicellular and consisted of 2-3 component cells 
during much of its life cycle, including the period from 
14:30 to 18:30 UTC. Storm motion resulted principally 

from feeder cells merging with the parent storm and 
developing into the dominant cell of the storm (see [20] 
for additional discussion of terrain controls of storm 
motion and evolution). The size of storm cells resulted in 
a characteristic horizontal dimension for the storm of 
approximately 8 km. As illustrated below, storm motion 
and structure played an important role in extreme flood 
response for the event. 

3. Analyses of the rapidan flood 

The network model, which was implemented with a 
grid resolution of 90 m and drainage density of 1.1 
kmkm \ reproduces peak discharge and the time of 
peak discharge (Fig. 6) for the Rapidan flood with 
overland flow velocity I'o = 0.13 ms^' and channel flow 
velocity t), =2.1 ms"' (the saturated hydraulic con- 
ductivity for the Green-Ampt model was 5 mmh~'). An 
important feature of the model hydrograph is that it 
captures the extended period (45-60 min) of near-peak 
discharge. The model does not capture recession char- 
acteristics of the flood or the basin response to the 
morning storm (Fig. 6; see also Fig. 3). These short- 
comings are due to inadequate representation of ante- 
cedent soil moisture (for the morning storm), the 
hydraulics of open channel flow in the transition from 
overbank to valley bottom full flow and non-Hortonian 
runoff production mechanisms. The model does, how- 
ever, provide a good representation of extreme flood 
response for the 4 h period centered on the peak dis- 
charge. 

Model analyses indicate that the 45-60 min period of 
near-peak discharge resulted from differences in the 
relative timing of contributions from the mainstem 
Rapidan, Middle River and South River (Fig. 7; see Fig. 
5 for locations). The peak discharge of the mainstem 
Rapidan River of 2000 m's"' (Fig. 7) occurred at 18:18 
UTC;  for the  Middle River the peak discharge of 

Fig. 6. Observed (solid black line with solid diamonds) and model 
(solid red line) hydrographs for the Rapidan flood from 27 June 1995 6 
UT0 28 June 1995 12 UTC. Tic marks are at 6 h time steps. 



F. Giannoni et al. I Advances in Water Resources 26 (2003) 195-203 199 

37/06,^512,00 27A16ra5 18 00 28/06/95 0 00 

Tlmt 

Fig. 7. Observed and model hydrographs for the Rapidan River (as in 
Fig. 6) with model hydrographs from the three major tributary basins 
(see Fig. 5 for locations). The solid red line is for the mainstem Rap- 
idan River. The solid, dark blue line represents the Middle River and 
the solid, purple line is used for the South River. 

approximately 1000 m's"' occurred at 19:48 UTC; for 
the South River the peak discharge of approximately 
500 m' S-' occurred at 20:00 UTC. The initial model 
peak is principally determined by the mainstem Rapidan 
with contributions from the Middle River. For the 
sharp, rising Umb of the hydrograph from 14 to 17 UTC, 
the model discharge at the downstream location is just a 
lagged version of the discharge from the mainstem 
Rapidan River (Fig. 7). The second model peak is 
controlled by the Middle River but includes the receding 
contributions of the mainstem Rapidan and the rising 
limb contributions from the South River that result 
from the late period of rainfall in the lower portion of 
the South River basin (note the relatively close prox- 
imity of the South River to the basin outlet; Fig. 5). 
These results highUght the importance of storm motion 
and its control of the timing of rainfall contributions to 
the watershed (see Fig. 4 and additional discussion be- 
low). 

The observed peak discharge for the Rapidan River 
at 295 km^, expressed as a unit discharge, was 10.2 
m's"'km"^. The 2000 m^s"' peak discharge of the 
mainstem Rapidan River from model analyses yields a 
unit discharge of 20 m' s"' km"^^ at 100 km^. An enve- 
lope curve of peak discharge was derived from model 
analyses (Fig. 8). Unit discharge for the model-derived 
envelope curve decreases from 50 m^ s"' km"^ at 1 km^ 
to a 20 m^ s"' km^^ plateau for 10-100 km^ The de- 
crease in unit discharge from 100 to 300 km^ results 
from the non-synchronous contributions of the three 
main tributary basins. 

Model analyses suggest that the envelope curve of the 
Rapidan flood is slightly larger than the Smethport en- 
velope curve (Fig. 2) at small basin scales (< 10 km^) and 
sUghtly larger than the Nelson County envelope curve 

k 
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Fig. 8. Peak discharge values throughout the Rapidan basin derived 
from network model analyses. The open circles represent analyses 
using drainage network derived using the area-threshold method. The 
filled circles represent analyses using drainage network derived using 
the area-slope method (see text for additional details). 

(Fig. 2) at large scales (100-300 km^). At small scales the 
Rapidan envelope curve is much larger than the Nelson 
County envelope curve and at large scales it is much 
larger than the Smethport envelope curve. 

Peak discharge from small basins is closely linked 
with peak rainfall rates. Smith et al. [20] concluded from 
analyses of radar and rain gage observations of the 
Rapidan storm that peak rainfall rates in both the 
mainstem Rapidan and Middle River basins exceeded 
300 mmh~'. The Smethport storm produced the world 
record rainfall rate of 185 mmh"' at 4.25 h time scale 
[6]. Much larger rainfall rates for time intervals less than 
1 h were reported in [6] and in correspondence sur- 
rounding development of the Eisenlohr report. The ex- 
treme magnitudes of rainfall rates for the Rapidan 
storm have played an important role in interpretation of 
the spatial frequency and intensity of debris flows pro- 
duced by the Rapidan storm [14,26,22]. 

The smaller unit discharge flood peaks from the 
Nelson County flood at small basin scales are possibly 
due to smaUer short-term rainfall rates from the 19-20 
August 1969 storm. It is also possible that areas of peak 
unit discharge were not sampled for the Nelson County 
flood [15]. The bucket survey observations for the storm 
[2] provide an ambiguous representation of the 1-10 
km^ region with largest storm total rainfall [15] and no 
information on short-term rainfall rates. 

Peak discharge at basin scales between 100 and 300 
km^ for the Rapidan and Nelson County floods reflect a 
combination of large rainfall rates and extreme rainfafl 
accumulations. For the Rapidan storm, extreme accu- 
mulations were linked to terrain controls of storm mo- 
tion [20]. The Nelson County storm, like the Rapidan 
storm, occurred on the east slope of the Virginia Blue 
Ridge in a region of similar terrain to that of the Rap- 
idan River basin. Small net storm motion during the 6 h 
period of peak rainfall played a key role in extreme 
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rainfall accumulations for the Rapidan Storm. Similar 
orographic mechanisms are plausible for the Nelson 
County storm. 

During the 4 h period from 14:30 to 18:30 UTC, the 
Rapidan storm had a net storm motion of approxi- 
mately 20 km (Fig. 4), which is little more than twice the 
characteristic horizontal scale of the storm (see below). 
Storm structure and motion resulted in contrasting 
temporal patterns of rainfall distribution, which are 
characterized for the three main tributary basins of the 
Rapidan River by the mean basin-averaged rainfall and 
fractional coverage of heavy rainfall (rainfall rates ex- 
ceeding 25 mmh"'; Fig. 9). The peak basin-averaged 
rainfall rate of 90 mmh"' for the mainstem Rapidan 
River basin occurred at 16:30 UTC (Fig. 9). The peak 
for the Middle River basin, also approximately 90 
mmh"', occurred 1.5 h later (Fig. 9). Fractional areal 
coverage of heavy rainfall (Fig. 9) for the mainstem 
Rapidan ranged from 60% to 80% (approximately 60-80 
km^) from 14:30 to 17 UTC. From 17 to 19 UTC, 
fractional coverage of heavy rainfall in the Middle River 
basin exceeded 60%. 

The spatial scale of heavy rainfall for the Rapidan 
River basin, as represented by the area of rainfall rates 
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Fig. 9. Time series of mean rainfall (mmh"') for the mainstem ("+") 
and Middle River {"x") basins (top) and fractional basin coverage by 
rainfall rates exceeding 25 mmh'' (bottom). Drainage network for 
mainstem Rapidan and Middle River basins are shown in Fig. 5 (see 
also Fig. 1 for location map). 

exceeding 25 mmh"' (Fig. 9), ranged from approxi- 
mately 60-100 km^ Model analyses of hydrologic re- 
sponse (Fig. 10a) for the Rapidan storm are most 
sensitive to spatial averaging of rainfall rates at the 8 km 
scale, which is approximately the characteristic scale of 
organization of heavy rainfall. The model peak dis- 
charge only decreases to 95% of the observed peak with 
4 km averaging of rainfall rates. For rainfall rates av- 
eraged over 8 km horizontal scale, the model peak de- 
creases to 87%) of the observed peak and the extended 
period of near-peak response has been lost. With 16 km 
horizontal averaging of rainfall rate, peak discharge 
decreases to 67% of the observed peak. 

Model results for the Rapidan storm are relatively 
insensitive to temporal averaging up to 60 min time scale 
(Fig. 10b). The double peak structure of flood response 
is retained up to 15 min time averaging. The peak dis- 
charge for time averaging of 60 min is quite close to the 
observed peak, but the double peak structure has been 
lost. Peak discharge for 3 h averages of rainfall fields is 

Fig. 10. (a) Model results with spatial averaging of rainfall rate fields 
at 1, 2, 4, 8 and 16 km ("*") resolution (see legend for color scheme) 
The observed discharge is given as solid black line with squares, (b) As 
in (a), but for time averaging of 5, 15 (note that 5 and 15 min results 
are indistinguishable), 60, and 180 min (see legend for color scheme). 
Results for 4 km spatial averaging and hourly time averaging are also 
shown. 
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only 75% of the observed peak. Also shown in Fig. 10b 
are results for 1 h time averaging and 4 km spatial av- 
eraging of rainfall rates. The model peak discharge de- 
creases to 95% of the observed peak. These results are of 
particular importance, because they represent the space 
and tune scales of operational WSR-88D rainfall prod- 
ucts [8]. Similar results would not necessarily hold for 
rapidly propagating convective systems (see [21]). 

4. Network structure and extreme flood response 

In this section we examine the controls of drainage 
network .structure, and the interaction of drainage net- 
work structure and rainfall distribution, on extreme 
flood response. An important aspect of the drainage 
network is that it partitions the drainage basin into fast 
response (channels) and slow response (hillslopes) com- 
ponents. We begin the section with sensitivity analyses 
of model response to hillslope and channel velocity pa- 
rameters. 

The model hydrograph for the Rapidan flood chan- 
ges in magnitude and form with changes in the hillslope 
velocity VQ (Fig. lib). Peak discharge increases from 
93% of the observed peak to 105% of the observed peak 
with an increase in VQ from 0.09 to 0.17 ms"'. The peak 
discharge changes from the mainstem Rapidan contri- 
bution (first peak) to the Middle River tributary con- 
tribution (second peak) as VQ increases from 0.09 to 0.17 
ms"^ 

Dependence of model results on the channel velocity 
parameter, vu is also characterized by changes in the 
discharge magnitude and hydrograph form (Fig. 11a). 
The channel velocity plays a fundamental role in 
determining the timing of flood response. The time of 
peak discharge increases from 19:00 to 20:30 UTC as vi 
decreases from 2.5 to 1.7 ms'^ Decreasing channel 
velocities also change the form of the hydrograph from 
one with extended near-peak discharge to a single peak 
hydrograph. 

The network model representation of extreme flood 
response depends strongly on drainage network prop- 
erties. Decreasing drainage density from 1.1 to 0.60 
kmkm"^, but holding vo and vi constant at 0.13 and 2.1 
ms"' (Fig. 12) results in a 12% decrease in peak dis- 
charge, a 30 min delay in the model peak and a change 
in the form of the hydrograph (the twin-peak structure 
has been lost). 

These results do not imply that the 1.1 kmkm"^ 
drainage density provides a more accurate physical 
representation of the drainage system than the 0.60 
kmkm-^ drainage density. What is clearly implied is 
that model parameters vo and vi depend on the model 
drainage density. With the 0.60 kmkm"^ network, 
comparable model results (Fig. 13) to those for the 
1.1 kmkm"^ network are obtained by increasing vo to 
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Fig. 11. (a) Model results for changing channel velocity. Time of peak 
discharge increase with increasing velocity from 1.7 to 2.5 ms"^ The 
solid line is for model results in Fig. 6. (b) Model results for changing 
hillslope velocity. Model peaks decrease with increasing velocity from 
0.09 to 0.17 ms"^ The solid hne is for model results in Fig. 6. 
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Fig. 12. Model results for changing drainage density (blue line for 
drainage density of 0.58 kmkm ^ dashed purple line for drainage 
density of 1.1 kmkm"^). 

0.2 ms"' and increasing vi to 2.3 ms"'. Decreasmg 
drainage density leads to longer hillslope flow paths. To 
maintain the timing of basin response, hillslope and 
channel velocities must be increased to accommodate 
the larger mean flow lengths on hillslopes. The results 
imply that there is a range of drainage densities over 
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Fig. 13. Model results for drainage density of 0.6 km km"-, L„ 

ms ' and ^ 2.3 ms 
= 0.2 

which the channel and hillslope velocities can be chosen 
to produce essentially the same Geomorphological In- 
stantaneous Unit Hydrograph (GIUH; see [18]). Physi- 
cal interpretation of model parameters can be based 
more readily on derived properties, like the GIUH, than 
on the parameter values themselves. 

The problem of specification of the drainage network 
is not unique to the model used for the present analyses, 
but is a fundamental issue for implementation and in- 
terpretation of any distributed hydrologic model (see 
[5,23] for recent physical advances in measuring and 
interpreting drainage density). For the present analyses 
model results were not sensitive to drainage density over 
the range from 0.6 to 1.1 km km"-, provided that ve- 
locity parameters were adjusted to reflect the partition- 
ing of hydrologic response between channel and 
hillslope response. 

From the perspective of flood response, the aggregate 
drainage density of the basin is only one aspect of the 
drainage network structure and organization. The dis- 
trihution of drainage density (see [25]) within the drain- 
age basin can also play an important role in flood 
response. A drainage network for the Rapidan with 1.1 
km km~' drainage density was extracted using the area- 
slope algorithm (see Section 2). The principal diff'erence 
in the two methods is that the area-slope method places 
higher drainage density in the high gradient regions of 
the basin, which typically have longer travel distances to 
the basin outlet. 

Model results for the area-slope network are com- 
parable to those for the area-threshold network. Hills- 
lope and channel velocities increase slightly to 
accommodate the longer channel flow distances (Fig. 
14). There are, however, important differences in model 
flood response between area-slope and area-threshold 
networks, but they are not reflected in the flood re- 
sponse at 295 km- scale. The envelope curve of model 
flood peaks from the area-slope method has larger flood 

Fig. 14. Model results for drainage network extracted using the area- 
slope method (density of 1.1 kmkm--), IQ = 0.13 ms"' and f, = 2.1 
ms"'. Observed discharge is shown in black line with squares. 

peaks at small areas than the area-threshold method 
(Fig. 8). 

5. Summary and conclusions 

There are five principal observations from our work: 

1. Extreme flood response to the 27 June 1995 storm in 
the Rapidan River basin can be reproduced with high 
resolution radar rainfall estimates from the Sterling, 
Virginia WSR-88D and a distributed hydrologic 
model. Storm structure and motion play an impor- 
tant role in determining the timing of rainfall contri- 
butions to the Rapidan River basin, which in turn is 
of primary importance in determining extreme flood 
response. 

2. The envelope curve of the Rapidan flood from model 
analyses shows a decrease in unit discharge from 50 
m's~'km-- at 1 km- to a plateau between 20 and 
30 m's"'km"- at basin scales between 10 and 100 
km-. Unit discharge decreases to 10 m^s-'km"- at 
295 km-. This decrease is due to the asynchronous 
contributions of the three major tributaries to dis- 
charge at the basin outlet. The model envelope curve 
of the Rapidan flood is slighter larger than that for 
the July 1942 Smethport, Pennsylvania flood at small 
scales (<10 km^) and slightly larger than that for the 
18-19 August 1969 Nelson County, Virginia flood at 
larger scales (100-300 km-). 

3. The Rapidan storm was a multicell thunderstorm 
with a characteristic horizontal scale of approxi- 
mately 8-10 km. Model results are most sensitive to 
spatial averaging of rainfall at approximately the 8 
km scale of organization of heavy rainfall. For the 
1 h, 4 km scale, which is the space and time scale of 
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operational WSR-88D radar rainfall products, model 
results are good. 

4. Model results for the Rapidan flood are not sensitive 
to drainage density, provided that hillslope and chan- 
nel velocity parameters are adjusted with changing 
drainage density. The problem of channel/hillslope 
partitioning is important for all distributed hydro- 
logic models. 

5. Model analyses show little diiference in extreme flood 
response between area-threshold and area-slope net- 
works at 295 km^ scale. There are, however, signifi- 
cant diiTerences in envelope curves at small basin 
scales. The larger distribution of drainage density in 
high gradient regions with the area slope method sig- 
nificantly increases the envelope curve for drainage 
areas <10 km^. 

The combination of high-resolution radar rainfall 
estimates and distributed hydrologic models is of great 
potential utility for flood forecasting. Realizing this 
potential requires advances in both radar rainfall esti- 
mation and hydrologic modeling. Two problems of 
particular importance for radar rainfall estimation (see 
also [10]) are: (1) improving rainfall rate estimates for 
extreme rain rates (roughly speaking, rainfall rates ex- 
ceeding 50 mmh"') and (2) improving the quantitative 
characterization of the error structure of radar rainfall 
estimates (again with special emphasis on extreme 
rainfall rates). The dominant hdyrologic and hydraulic 
processes associated with extreme floods can differ 
markedly from those associated with lesser floods. The 
response to the Rapidan storm during the late morning 
and afternoon of 27 June 1995, for example, difiered 
significantly from the response to the early morning 
storm of 27 June 1995. Formulation and verification of 
hydrologic models used for flood forecasting should be 
examined from the perspective of extreme floods. 
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ABSTRACT 

The hydrometeorological processes that control flash flooding are examined through analyses of space-time 
rainfall variability and flood response in the Milwaukee metropolitan region. The analyses focus on four flood 
events in the Menomonee River basin that occurred 21 June 1997, 2 July 1997, 6 August 1998, and 21 July 
1999. The June 1997 and August 1998 flood events produced record flood peaks in the Menomonee River and 
its tributaries. Rainfall analyses, which are based on WSR-88D radar reflectivity observations and rainfall 
measurements from a dense network of rain gauges maintained by the city of Milwaukee, provide rainfall fields 
for each event at 1-km spatial resolution and 5-min timescale. The June 1997 and August 1998 storms exhibited 
striking contrasts in storm structure, evolution, and motion. Analyses of the structure and evolution of these 
storms are presented in conjunction with scaling analyses of the rainfall fields. The contrasting storm-scale 
properties of the June 1997 and August 1998 events resulted in sharp contrasts in extreme flood response between 
the two events. The regional flood response of the Menomonee River basin is examined in terms of space-time 
rainfall variability and heterogeneous land surface properties. Analyses are based on radar rainfall fields and 
15-min discharge observations from stream gauging stations, with drainage area ranging from 47 to 319 km' 
for the four flood events. Extreme flood response is examined in terms of flood peak magnitudes, peak response 
times, and event water balance. A distributed hydrologic model, which includes a Hortonian infiltration model 
and a network-based representation of hillslope and channel response, plays a central role in examining the 
regional flood response. 

1. Introduction 

The Menomonee River, which drains much of the 
Milwaukee metropolitan region (Fig. 1), experienced 
record flooding 21 June 1997 and 6 August 1998. Sam- 
ple flood frequency distributions (Fig. 2) for the Me- 
nomonee River at Wauwautosa [319 km^; U.S. Geo- 
logical Survey (USGS) gauge number 04087120] and 
its tributaries Underwood Creek (47 km^; USGS gauge 
number 04087088) and the Menomonee River at Me- 
nomonee Falls (90 km2; USGS gauge number 
04087030) illustrate the magnitudes of flood peaks for 
the two events and the contrasting flood response be- 
tween the urbanized lower basin (Underwood Creek) 
and the agricultural upper basin (Menomonee River 
above Menomonee Falls). 

The hydrograph of the Menomonee River at Wau- 
wautosa for the 21 June 1997 flood (Fig. 3) exhibited 
three peaks in response to multiple pulses of heavy rain- 
fall over the basin. The form of flood response in the 
Menomonee River basin is tied to both storm properties 
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and laiid surface properties. In this paper, we examine 
the hydrometeorological processes that control extreme 
flood response in the Menomonee River basin. The 21 
June 1997 and 6 August 1998 events in the Menomonee 
River basin provide the principal targets of opportunity 
for study of space-time variability of rainfall and ex- 
treme flood response. Analyses of flood events on 2 July 
1997 and 21 July 1999 are used to further examine flood 
response properties of the Menomonee River basin. 

Our approach to extreme flood analysis is by necessity 
event-based and opportunistic as opposed to driven by 
observations from carefully designed field campaigns 
in experimental watersheds. Extreme, flood-producing 
storms are spatially and temporally rare and are seldom 
represented in the observations from experimental wa- 
tersheds. In this study, our experimental base consists 
of two contrasting storms that produced record floods 
within the 319 km^ Menomonee River basin (21 June 
1997 and 6 August 1998), a short-duration, extreme 
rainfall rate storm (2 July 1997) that is used to examine 
the "unit response" of the Menomonee River basin, and 
a storm (21 July 1999) consisting of multiple pulses of 
heavy rainfall, like the 21 June 1997 storm, but with 
somewhat smaller storm total accumulation than the 21 
June 1997 storm. 

© 2003 American Meteorological Society 
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Extreme flood response in the Menomonee River ba- 
sin is examined in terms of flood peak magnitudes, peak 
response times, and event water balance for the four 
flood events. Discharge observations at 15-min time- 
scale from the three stream gauging stations (see Figs. 
1-3) and radar rainfall fields with 1-km horizontal scale 
and 5-min timescale are used for diagnostic and hydro- 
logic model analyses of peak response and event water 
balance. The distributed hydrologic model used in this 
study (see Morrison and Smith 2001; and Giannoni et 
al. 2003) consists of a Hortonian infiltration model (the 
Green-Ampt model with moisture redistribution; .see 
Ogden and Saghafian 1997) and a network-based hill- 
slope and channel response model (see also Rodriguez- 
Iturbe and Rinaldo 1997; Vieux and Bedient 1998). 

The Menomonee River basin has a wide range of land 
use and land cover properties (Fig. 1). resulting in a 
heterogeneous mix of hydrologic response properties. 
The basin consists of wetlands, agricultural land, im- 
pervious regions distributed throughout the urban por- 
tions of the basin, and residential regions, some with 
and some without detention basins. Storm sewers are 
found throughout the nonagricultural areas of the basin. 
Our knowledge of hydrologic response is strongest in 
homogeneous drainage basins, yet many of the scien- 
tific, engineering, and resource management problems 
concerning flood response are focused on heterogeneous 
catchments with land surface properties that are chang- 
ing over time (see. e.g.. Potter 1991). Urbanizing re- 
gions arc especially important in terms of engineering 
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FIG. 2. Quantile plots of annual flood peaks for Menomonee River 
at Menomonee Falls (USGS ID: 04087030; 25-yr record), Menom- 
onee River at Wauwatosa (USGS ID: 04087120; 39-yr record) and 
Underwood Creek (USGS ID: 04087088; 22-yr record). Flood peaks 
on 21 Jun 1997 and 6 Aug 1998 are highlighted 97 and 98, respec- 
tively. Peak discharge is represented as a unit discharge (m' s"' 
km-2), i.e., discharge divided by drainage area of the basin. 

and management problems, but the regional flood re- 
sponse of urbanizing basins is poorly understood (see 
Leopold 1968; Graf 1977; Smith et al. 2002). In this 
study, our objective is to examine the regional flood 
response of the Menomonee River basin and identify 
land surface and rainfall properties that are dominant 
controls of extreme flood response. 

Space-time variability of rainfall is examined through 
analyses of rainfall fields derived from Weather Sur- 
veillance Radar-1988 Doppler (WSR-88D) volume scan 
reflectivity observations. Particular attention is given in 
section 2 to the contrasting structure, motion, and rain- 
fall rates from the 21 June 1997 and 6 August 1998 
storms (for related analyses, see Dos well et al. 1996; 
Smith et al. 1996, 2001, and 2002; Ogden et al. 2000; 
Sturdevant-Rees et al. 2001; Zhang et al. 2001). In sec- 
tion 3 these contrasting storm elements are revisited in 
light of extreme flood response. 

2. Hydrometeorology of the 21 June 1997 and 6 
August 1998 storms 

In this section, we examine the spatial and temporal 
variability of rainfall for the 21 June 1997 and 6 August 
1998 storms in the Milwaukee metropolitan region. 
Analyses are based on high-resolution (1-km horizontal 
scale; 5-min timescale) rainfall estimates derived from 
volume scan WSR-88D reflectivity observations and 
rain gauge observations from an urban mesonet main- 
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FIG. 3. Basin-averaged rainfall rate and discharge for the Menom- 
onee River at Wauwatosa, 0600 UTC 21 Jun-0600 UTC 22 Jun 1997. 
Rainfall rate time series are averaged to 15-min time interval. 

tained by the city of Milwaukee. Supplemental analyses 
utilize Geostationary Operational Environmental Sat- 
ellite (GOES) IR observations and cloud-to-ground 
(CG) lightning observations from the National Light- 
ning Detection Network (see Orville and Silver 1997). 
Particular attention is given to contrasts in storm struc- 
ture, evolution, and motion between the June 1997 and 
August 1998 storms. 

Radar rainfall estimation is based on a power-law Z- 
R relationship and bias correction based on rain gauge 
observations (see Fulton et al. 1998; Baeck and Smith 
1998), with the estimation equation formulated as fol- 
lows: 

R = BaZ", (1) 

where R is rainfall rate (mm h"'), Z is the radar reflec- 
tivity factor (mm<* m'^), a and b are Z-R parameters, 
and B is the multiplicative bias. The default WSR-88D 
Z-R relationship is used with a = 0.017 and Z; = 0.71. 
A 55-dBZ cap is applied to reflectivity observations to 
mitigate the influence of hail contamination. For the four 
events analyzed in this study the hail cap did not play 
a significant role in the rainfall analyses. The multipli- 
cative bias B is estimated for each event as the ratio of 
total rainfall from the rain gauge network and total rain- 
fall from radar bins containing rain gauges. Rainfall 
estimates are developed at 1-km horizontal resolution 
and 5-min timescale. 

Flooding in the Menomonee River basin on 21 June 
1997 resulted from a series of storms that passed over 
the basin from 0630 until 1330 UTC. At 0700 UTC 
(Fig. 4a), a small area of convection was developing 
between a decaying mesoscale convective system 
(MCS) centered over Michigan and a large MCS over 
Iowa (see also Roebber and Else 2001). The MCS de- 
veloping over Milwaukee intensified and remained near- 
ly stationary until 1100 UTC (Figs. 4b,c). The western 
MCS passed over the Milwaukee region at 1300 UTC 
(Fig. 4d) ending the period of heavy rainfall in the Me- 
nomonee River basin. 

The large-scale evolution of weather systems on 21 
June (Fig. 4) was linked with storm-scale evolution over 
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Ihe Milwaukee region (Fig. 5). At 0717 VTi' (1-ig. 5a). 
con\eeli\e elements were orientetl along an east-west 
boundarx. A north-south oriented outflow boundary 
(apparent in Fig. 5a as a retleetivity //;/;; line west oV 
the Menonionee River basin) moving from east to west 
sei'\ed as a t'oeusing nieehanism for eon\eeli\e deseF 
opnient and intensitication. Heavy rainfall in the Me- 
nonionee Ri\er basin was coneentrated in the center and 
lower portion of the basin (Fig. 5a). [•roni this time until 
the arri\al of the western MCS. eonveetive elements 
tracked repeatedly over the Milwaukee region [see 
Chappell ( mS9) for discussion of c/iKisi-simidiuiry be- 
havior of storm systems]. Intensitication of the Mil- 
waukee MCS (Fig. 5b) resulted in an organized region 
ol convection extending along an east-west axis through 
the upper half of the Menonionee basin at 0946 UTC. 
During the decaying phase of the Milwaukee MC\S (Fig. 
5c; I 126 UTC I. a north-south-oriented line of convec- 
tion co\ered much of the Menonionee River basin below 
Menonionee F-alls. Passage of the weslern MCS over 
the Milwaukee Region (Fig. 4d) was associated with a 

rapidly mo\'ing arc of convection (Fig. 5d). Time lapse 
imagery of radar rellectivity fields (not show n) illustrate 
Ihe rotation of the band of convection about the center 
of the Mrs circulation, which at l.ilO VJC was located 
close to the Milwaukee radar. 

Ciauge-radar inlercomparisons for the 21 June 1997 
storm (Figs. 6 and 7a and discussion below; rain gauee 
locations are shown in Fig. 7a) illustrate Ihe capability 
ol radar rainfall estimates to represent the temporal and 
spatial variability of extreme storm rainfall. The esti- 
niatetl nndliplicatixe bias. /I for the e\ent is I.I 1. re- 
llecting an I \^/< untleresiimalion of rainfall with the de- 
fault Z-R relationship. The root-mean-square error 
(rmse) of 15-min rainfall estimates of 1 1.5 mm h ' is 
66',; of the mean 15-min rainfall rate (for I5-niin pe- 
riods with positive rainfall rates). The rmse of rainfall 
rate estimates at 60-niin timescale. 5.4 mm h '.is 42Cf 
ol the mean 6()-min rainfall rate (for hours with positi\e 
rainfall). The storm total RNFSIi of 14.3 mm is 12',; of 
mean storm total rainfall of ]()?•< mm. ,.\ significant con- 
tribution to rmse. especiallv at shorter timescales. arises 
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from the sampling difference.s between radar and rain 
gauges (see Ciach and Krajewski 1999: Anagnostou et 
al. r999). 

The storm total rainfall map (Fig. 7a) for the period 
0600-1400 UTC reflects the structure and motion of 

Radar 
Gages 

^! t.    n I \ ^ V.           15 

/ 
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6 7 8 9 10 11 12 13 14 15 

Time (UTC) 

FIG. 6. Time series of radar and rain gauge rainfall eslimates al 
15-min timeseale. Gauge analyses are averaged for IS rain gauges 
in Milwaukee urban rain gauge network. Radar analyses are for the 
18 1-km bins that contain the rain gauges. 

Storm elements over the region [see Chappell (1989) for 
additional discussion], with an elongated rainfall max- 
imum greater than 100 mm extending from 20 km west 
of the basin to 30 km east of the basin. The 100-mm 
contour encloses most of the Menomonee River basin. 

The synoptic-scale environment of the 6 August 1998 
storm included a cold front extending from southwest 
of the Rio Grande River in Mexico to northern Illinois, 
and a warm front oriented from southwest to northeast 
through Milwaukee (National Oceanic and Atmospheric 
Admhiistration Daily Weather Maps; figures not 
shown). Wide.spread convection developed ahead of the 
cold front and wrapped around the upper-level low. The 
flood-producing storms over the Milwaukee region 
tracked along the warm front from 1800 to 2400 UTC 
on August 6. During this period, storms formed south- 
west of Underwood Creek along the frontal boundary 
and were steered over Underwood Creek and the center 
of the Menomonee River basin (Fig. 8). 

The storm total rainfall distribution for the 6 August 
1998 storm (Fig. 7b) reflects storm .structure and motion, 
as controlled by the frontal boundary and steering winds 
aloft. Of particular importance for flooding in Under- 
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wood Creek was the 2,5-h period beginning of 2030 
UTC (Fig. 8) during which persi.stent high rainfall rates 
occurred over Underwood Creek. As with the 21 June 
1997 storm, there was good agreement (not shown) be- 
tween radar rainfall estimates and rain gauge observa- 
tions. Four rain gauges were located within the 140-mm 
storm total contour (Fig. 7b). Storm total accumulations 
for these gauges ranged from 160 to 200 mm. 

Scaling analyses of rainfall fields (Figs. 9 and 10) 
illustrate contrasting temporal evolution and spatial 
structure of the 21 June 1997 and 6 August 1998 storms 
[see Perica and Foufoula-Gcorgiou (1996) and refer- 
ences therein for related analyses]. Analyses were car- 
ried out for rainfall fields averaged over length scales 
of 1. 4. and 16 km. The domain used for scaling analyses 
is a 128 km by 128 km region centered on the Menom- 
onee River basin. A rainfall threshold of I mm h ' was 
used to distinguish rain-no rain areas at 1-km resolution 
(results are similar in form over a range of rain-rate 
thresholds. 0.25-2.5 mm h '. commonly used for rain- 
no rain analyses: sec Baeck and Smith 1995) Analyses 
of fractional coverage, mean rainfall (for positive bins), 
and coefficient of variation (mean divided by standard 
deviation) of rainfall rate (for positive bins) were per- 

formed for rainfall rate fields averaged over the 1-. 4-. 
and 16-km grids. 

Scaling analyses highlight the contrasting temporal 
evolution of two storms that exhibit '"quasistationary" 
(Chappel 1989) behavior. For the June 1997 storm there 
was a sharp increase in fractional rain area with evo- 
lution of the Milwaukee MCS and arrival of the western 
MCS (Fig. 9). At 0700 UTC. fractional coverage of 
rainfall was 257^ at 1-km resolution. 40*;^ at 4-km res- 
olution, and 709r at 16-km resolution. Fractional cov- 
erage increased sharply at 0900 UTC with explosive 
growth of the Milwaukee MCS (Figs. 4 and 5). By 1.300 
UTC. fractional coverage was 959? at 16-km resolution. 
909; at 4-km resolution, and 107r at 1-km resolution. 
The 6 August 1998 storm, by contrast, exhibited rela- 

tively minor changes in storm properties with time (Fig. 

10). Fractional coverage of rainfall for the 6 August 

1998 storm increased gradually during the period of 

peak rainfall. From 1930 to 2300 UTC^ fractional cov- 
erage increased from \07r to 209/ at 1-km resolution. 

The uniform temporal features (and spatial structures: 

see Fig. 8) of the 6 August 1998 storm are likely due 
to the role of the frontal boundary in organizing the 
evolution of convection during the 4-h period of peak 
rainfall. 

There were also contrasts in variability of rainfall rate 
between the June 1997 and August 1998 storms. For 
the June 1997 storm, the coefficient of variation of rain- 
fall rate fluctuated around 1.3 for 1- and 4-km analyses 
and 1.0 for 16-km analyses. For the August 1998 storm, 
the coefficient of variation fluctuated between 1.5 and 
2.0 at all scales from 2000 to 2300 UTC. The August 
1998 storm was composed of small cores with high 
rainfall rates grading to low rainfall rates over short 
distances. Rainfall rate observations from the Milwau- 
kee rain gauge network at 5-min timescale exceeded 
140 mm h ' during the August 1998 storm. Peak rainfall 
rates from the 21 June 1997 storm were 100 mm h   ', 

The storm microphysical and dynamical processes 
that control the spatial and temporal distribution of ex- 
treme rainfall rates are poorly understood, espcciallv at 
space-time scales relevant to flood production in urban 
basins, like Underwood Creek. During the period of 
peak rainfall intensity over Underwood Creek, the Au- 
gust 1998 storm is discernible in GOES IR imagery 
(figure not shown) only as a small cloud streak with 
relatively warm cloud-top temperatures (-50"C. as 
compared with -80T for the 21 June 1997 storms: see 
Fig. 4). In this respect, the August 1998 storm is similar 
to storms like the 28 July 1997 Fort Collins. Colorado, 
storm in which extreme rainfall rates were linked to 
efficient warm rain precipitation processes (Petersen et 

al. 1999: see also Maddoxetal. 1978: Smith etal. 1996). 
Unlike the Fort Collins storm, the August 1998 Mil- 
waukee storm produced large storm total cloud-to- 
ground lightning flash densities (as did the June 1997 
storm; see Fig. 11). For the August 1998 storm, peak 
flash densities were on the northeast ("downstream"") 
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end of the region of peak rainfall and followed the pe- 
riod of extreme rainfall production. For the June 1997 
storm, peak flash densities were concentrated to the west 
(•■upstream") of the largest rainfall accumulations (Fig. 
11) and preceded production of peak rainfall rates. Ad- 
vances in understanding microphysical and dynamical 
processes controlling extreme rainfall rales are needed 
both for characterizing space-lime structure of flood- 
producing rainfall and for improving remote sensing 
procedures used for estimating rainfall rate. 

3. Flood respon.se of the Menomonee River basin 

In this section we examine flood response of the Me- 
nomonee River basin with particular emphasis on con- 
trasting response of the lower basin and the upper basin 
(Fig. 1). Analyses focus on Underwood Creek (in the 
lower basin) and the Menomonee River above Menom- 
onee Falls (in the upper basin: see Figs. 1 and 2). Land 
use in the upper basin is dominated by a mix of agri- 
cultural and residential regions, with a core of urban 
development in the lower portion of the basin (Fig. 1). 
Residential and urban land use categories dominate the 
Underwood Creek basin. Differences in flood response 

are examined in terms of the spatial and temporal var- 
iability of rainfall forcing. In addition to the 21 June 
1997 and 6 August 1998 events, we examine flood re- 
sponse to smaller events on 2 July 1997 and 21-22 July 
1999. 

The 2 July 1997 storm produced rainfall accumula- 
tions ranging from 15 to 40 mm over the Memomonee 
River basin during the 45-min period beginning 0800 
UTC. The storm was a rapidly moving, long-lived thun- 
derstorm system, which produced large hail, damaging 
winds, and lightning, in addition to extreme rainfall rates 
over the Milwaukee region. The storm entered the west- 
ern edge of the Milwaukee WSR-88D area of coverage 
at 0424 UTC and reached the western margin of the 
Menomonee River basin at 07.54 UTC for an average 
speed of 71 km h '. The storm exhibited the hook echo 
signature of a supereell thunderstorm at the western 
margin of the radar area of coverage and produced peak 
reflectivity values between 65 and 70 dBZ [compare 
with the storms described in Smith et al. (2001 )J. Re- 
ports of damaging winds, large hail, and lightning were 
concentrated in the area west of the Menomonee River 
basin. Peak rainfall rates from the Milwaukee rain gauge 
network exceeded 150 mm h   ' at 5-min timescale. At 
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efficient of variation of nonzero rain rates on 6 Aiig 1998. 

any location within the Menomonec River basin, vir- 
tually all of the storm total rainfall was delivered during 
a time period of less than 20 min. Rainfall accumula" 
tions in the Menomonee Falls basin ranged from less 
than 5 mm in the upper basin to 30 inm near the basin 
outlet. Rainfall accumulations in Underwood Creek 
ranged from 20 to 40 mm. 

The 21 July 1999 storm was a multicellular thun- 
derstorm that produced rainfall accumulations in the 
Menomonee River basin ranging from 60 to 110 mm 
during a 4-h period beginning 0400 UTC. Although the 
storm produced lightning and there were reports of dam- 
aging winds, the most significant impacts of the storm 
centered on flash flooding throughout southern Wiscon- 
sin. Like the 21 June 1997 storm, large rainfall accu- 
mulations resulted from multiple .storm elements track- 
ing over the region from west to east. Peak rainfall rates 
from the Milwaukee rain gauge network exceeded 100 
mm h ' at 5-min timescale. Rainfall accuinulations 
above Menomonee Falls ranged from 80 to 110 mm. 
For Underwood Creek, rainfall accumulations ranged 
from 50 to 80 mm. 

Unit Values discharge observations at 15-min time 

interval from the USGS gauging stations at Menomonee 
Falls and Underwood Creek were used in conjunction 
with radar rainfall fields to construct water budgets for 
the 2] June 1997, 2 July 1997, 6 August 1998. and 21 
July 1999 flood events (Tables 1 and 2). Storm total 
runoff (in mm) was computed by integrating discharge 
over the duration of the flood and scaling by the basin 
area. 

There are large contrasts in runoff volumes and flood 
peak magnitudes between Underwood Creek and the 
Menomonee River above Menomonee Falls (Tables 1 
and 2). Runoff ratios for Menomonee Falls range from 
less than 10% to a maximum of 24%, with litde cor- 
respondence to rainfall totals. For Underwood Creek, 
runoff ratio ranged from 30% for low rainfall totals to 
70% for the largest rain event. Unit discharge flood 
peaks ranged from 0.13 m'' s 'km = to 0,47" m' s"' 
km = for Menomonee Falls, For Underwood Creek unit 
discharge peaks ranged from 1,02 m' s"' km"= to 4.20 
m' s ' km'-. The differences in peak unit discharge 
between Underwood Creek and Menomonee Falls for 
the four flood events reflect the long-term flood fre- 
quency contra.sts between the two basins (Fig, 2). 

The June 1997 and August 1998 floods in Underwood 
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a) TABl-n I. Summary ol' flood events in the Menonomonee River 
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FIG. 11. Storm total eloud-to-ground (CG) lightning strikes (CG 

strikes km =) tor (a) the 21 Jun 1997 and (b) the 6 Aiig 1998 storms. 
Contours are are 5 CG strikes km -) interval. Color scale ranges from 
less than 1 CG strikes km ' (orange). 5-10 CG strikes km ' (green 
to blue). 10-15 CG strikes km ' (dark blue to purple) and greater 
than 15 CG strikes km  - (white). 

Creek resulted from comparable storm total rainfall ac- 
cumulations, 131 mm for the June 1997 event and 113 
mm for the August 1998 event. The flood peak mag- 
nitudes and runoff volumes (Table 2) for the two events, 
however, were quite different, 62 mm of runoff (runoff 
ratio of 56%) for the June 1997 event versus 93 mm of 
runoff (runoff ratio of 70%) for the Augu.st 1998 event, 
and peak discharge values of 130 m' s' for the June 
1997 event versus 212 m' s ' for the August 1998 event. 
The August 1998 storm produced higher basin-averaged 
rainfall rates and a continuous 3-h period (2030-2330 
UTC) of heavy rainfall over much of the basin. The 
June 1997 storm was characterized by multiple pulses 
of heavy rainfall separated by periods of low rainfall 

Peak unit 
Total Total Peak discharge 

rainfall runoff Runoff discharge (m' s ■ 
Event (inm) (mm) ratio (m' s 1) km -) 

21-22 Jun 1997 103 NA NA 42 0.47 

2-.^ Jul 1997 IS 4.5 0.24 11 0.1.-^ 

6-7 Aua 1998 28 2.6 0.09 12 0.14 

21-22 Jul 1999 96 7.5 0.08 25 0.28 

rate (Figs. 5 and 6). The August 1998 storm exhibited 
larger gradients in storm total rainfall distribution, from 
80 mm at the northwest border of the basin to 210 mm 
in the central core to 80 mm at the southeastern bound- 
ary. 

A distributed hydrologic model is used to further ex- 
amine contrasting hydrologic response associated with 
space-time rainfall variability and heterogeneous land 
surface properties. The Network Model (Morrison and 
Smith 2001: Giannoni et al. 2003) combines a grid- 
based Hortonian infiltration model and network-based 
hillslope and channel response model. Discharge in the 
Network Model can be represented as follows: 

Qit) = \A\~ I M d„(x)      ^M) 
t , .V dx,     (2) 

where A is the domain of the drainage basin above the 
specified location. M(t, x) is the runoff rate (mm h ') 
at time t and location .v (e A), ^i,(.v) denotes the distance 
from -v to the closest stream channel, and d,(x) denotes 
the channel distance from x to the outlet of the basin 
specified by the region A. The total flow distance from 
.V to the basin outlet is (lu(x) + d^ix). The drainage 
network for the Menomonee River basin was extracted 
from a 30-m Digital Elevation Models data using an 
area threshold criterion; the aggregate drainage density 
of the extracted drainage network is 1.7 km km -. The 
runoff rate M{t, x) is computed from the rainfall rate 
R(t, x) (mm h ') using the Green-Ampt infiltration mod- 
el with moisture redistribution [see Ogden and Saghaf- 
ian (1997) for algorithm details]. Runoff is assumed to 
move over hillslopes at a uniform velocity v„ and 
through the channel system at velocity u, [see Rodri- 
guez-Iturbe and Rinaldo (1997) for discussion of similar 
models]. Giannoni et al. (2003) present sensitivity anal- 

TABI.K 2. Summary of flood events in Underv\'ood Creek. 

Peak unit 
Total Total Peak discharge 

rainfall runoff Runoff discharge (m' s ' 
Event (mm) (mm) ratio (m' s ') km -) 

21-22 Jun 1997 111 62 0.56 130 2.56 
2-3 Jul 1997 33 10 0.30 56 1.10 
6-7 AuL' 1998 131 93 0.70 212 4.16 

21-22 Jul 1999 60 24 0.40 92 1.82 
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yses of model results to spatial and temporal averaging 
of rainfall fields. 

The 2 July 1997 flood reflects basin response to a 
unit pulse of rainfall. Model results for Underwood 
Creek reproduced the flood peak magnitude and timing, 
as well as the structure of the rising and falling limbs 
of the hydrograph (Fig. 12b). For Menomonee Falls, it 
is possible to reproduce the peak magnitude and time 
to peak, but not the receding portion of the hydrograph 
(Fig. 12a). The results for Menomonee Falls arc con- 
sistent with a rapid, Hortonian response in the small, 
urbanized portion of the basin near the basin outlet (note 
also water balance analyses in Tables 1 and 2 and dis- 
cussion below). The slow, attenuated response at Me- 
nomonee Falls is due to a combination of non-Hortonian 
runoff production mechanisms from agricultural and 
residential portions of the basin and the response of 
detention basins in the residential areas of the basin. 

The July 1999 storm provides a more complex re- 
sponse to several pulses of rainfall in both basins. The 
Underwood Creek hydrograph can be accurately repro- 
duced but the Menomonee Falls hydrograph cannot 
(Fig. 13). The model response for Menomonee Falls 
reproduces the peak discharge and time to peak, but 
severely underestimates preceding peaks and is unable 
to capture the falling limb of the hydrograph. The ob- 

served hydrograph .shows a sharp peak associated with 
each of the pulses of rainfall. The inability of the model 
to capture all of the hydrograph peaks is likely due to 
an inadequate representation of the area producing the 
peak response. 

A notable feature of the Menomonee Falls response 
is that the lag-to-peak (time difference between peak 
discharge and time centroid of rainfall) is shorter than 
for Underwood Creek (recall that the drainage area for 
Menomonee Falls is 90 km^ for Underwood Creek the 
drainage area is 47 km"). These results support the con- 
clusion presented above that peak response at Menom- 
onee Falls is determined by urbanized portions of the 
lower watershed (Fig. 1). Runoff production for the re- 
mainder of the basin is dominated by non-Hortonian 
mechanisms and is characterized by a highly attenuated 
response, relative to the impervious portion of the basin. 
As noted above, detention basins in areas of residential 
land use also play a significant role in the attenuated 
response of the basin. Sensitivity to temporal and spatial 
variability of rainfall is highest in the small, impervious 
portion of the Menomonee Falls basin. In regions dom- 
inated by non-Hortonian runoff production mechanisms, 
sensitivity of flood response to spatial and temporal var- 
iability is greatly reduced. Storm total rainfall plays a 
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FIG. 14. Modeled and observed hydrographs for Underwood Creek 
6-7 Aug 1998. Solid line represents basin-averaged rain rate. 

far greater role in determining flood response in these 
portions of the basin. 

For Underwood Creek, the contrasts in flood response 
between the June 1997 and August 1998 storms are tied 
to spatial and temporal variability of rainfall rate over 
the basin, and not basin-averaged storm total rainfall. 
Structure and motion of the August 1998 storms resulted 
in a single peak hydrograph (Fig. 14), in which the 
principal storm elements contributed to peak response 
[see Smith et al. (2000,2001, and 2002) and Sturdevant- 
Rees et al. (2001) for additional discussion of the role 
of storm structure and motion for extreme flood re- 
sponse]. 

Flood response in the Menomonee River basin to the 
21 June 1997 storm (see Fig. 3) represents a complex 
interplay of space-time rainfall variability and hetero- 
geneous land surface response. The multipeak structure 
of the flood hydrograph reflects the quasistationary or- 
ganization of storm elements and contrasts in runoff 
production mechanisms over the basin. The peak dis- 
charge is primarily associated with Hortonian runoff 
production in the lower, urbanized portion of the wa- 
tershed. The final peak, which is characteristic in timing 
and structure of flood response for other events, results 
from non-Hortonian mechanisms in the upper basin. 
Heterogeneous land surface response accentuates the 
role of space-time variabiUty of rainfall for extreme 
flood response. 

4. Summary and observations 

The 21 June 1997 and 6 August 1998 storms were 
organized systems of thunderstorms that produced re- 
cord flooding in the Menomonee River basin and its 
tributaries. The storms exhibited contrasts in structure, 
motion, and magnitudes of rainfall rates. Scaling anal- 
yses based on 1 km, 5-min radar rainfall fields illustrate 
the contrasting structure and evolution of rainfall for 
the two events. 

Contrasting storm properties between the June 1997 
and August 1998 storms resulted in differences in ex- 
treme flood response, especially in the most urbanized 

area of the Menomonee River basin. Although storm 
total rainfall in Underwood Creek ranged only from 111 
to 131 mm for the events, timing and magnitude of flood 
peaks differed markedly for the events. The mode of 
convective organization plays an important role in flood 
response, especially for small urban watersheds. Micro- 
physical controls of extreme rainfall rates from con- 
vective systems also play an important role in extreme 
flood response of small urban watersheds. 

There are large contrasts in flood response in the Me- 
nomonee River basin between regions of contrasting 
land use and cover. Unit discharge flood peaks in Un- 
derwood Creek are 5-10 times larger than those in the 
upper basin. Flood response for the upper basin is char- 
acterized by a fast-responding peak, which is generated 
from a small impervious region close to the basin outlet. 
For the Menomonee River above Menomonee Falls run- 
off processes controlling flood peaks are largely decou- 
pled from processes controlling flood volume. Regional 
flood response of the Menomonee River basin to ex- 
treme rainfall is strongly dependent on both space-time 
variability of rainfall rate and heterogeneities of runoff 
production. 
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Abstract 

The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing 
trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined 
through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream- 
downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks 
and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. 
Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of 
the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive 
igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km 
valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave 
velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, 
expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two- 
dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km 
stream reach of Briar Creek, with drainage area ranging from 13 km^ at the upstream end of the reach to 49 km^ at the downstream 
end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley 
bottoms. 
© 2003 Published by Elsevier Science Ltd. 

1. Introduction 

Urbanization has altered the timing and magnitude 
of flood peaks in the Charlotte, North Carolina metro- 
politan region ([10,24,26]; see Fig. 1 for location map). 
Hydrologic analyses for the most intensely urbanized 
portion of the region (Little Sugar Creek above gaging 
station 1; see Figs. 1 and 2) suggest more than a 
doubling of flood peak magnitudes due to urbanization 
effects for a short duration (2-4 h) moderate intensity 
(50 mmh"' peak 5-min rain rates; 50 mm storm total 
accumulation) storm on 9 April 1998 [24,26]. For the 
same event, flood peak magnitudes in the lower portion 
of Little Sugar Creek (between gages 4 and 5 in Fig. 2) 
decreased by approximately a factor of two (Fig. 3). In 
this paper we examine the regional flood response of 

Corresponding author. 
E-mail address: jsniith@princeton.edu (J.A. Smith). 

Little Sugar Creek and surrounding basins in terms of 
changing hydrologic response associated with urban- 
ization and geologic controls of flood wave attenuation. 

The importance of flood wave attenuation has been 
recognized for many years. FoUowing the Ohio River 
flood of March 1913, Arthur Morgan observed that "the 
Miami River, like many other streams, is proportioned 
not for carrying excessive flood water... In case of even 
moderate floods, that occur every 1 or 2 years, lowlands 
lying along the river are overflowed" [19]. The flood 
control plan developed by Morgan for the Miami River 
basin reflected, and built upon, an intuitive under- 
standing of the role of floodplains. Floodplain storage, 
variations in channel and floodplain roughness, and 
channel and valley bottom morphology all contributed 
to the comprehensive flood control plan for the Miami 
River. Morgan's intuitive understanding of flood wave 
propagation through a valley bottom reach has been 
supplemented by more rigorous scientific advances (see, 
for example, [1,3,13,18]). Flood wave attenuation has 

0309-1708/03/$ - see front matter © 2003 Published by Elsevier Science Ltd. 
doi;10.1016/S0309-1708(03)00017-4 
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been exlen.sively examined in terms of energy losses re- 
sulting from boundary friction, secondary flow, turbu- 
lence and constriction-expansion of the flow field (see 
[25]; for a review). Despite these advances, it remains a 
difficult problem to characterize attenuating valley bot- 
tom reaches [27,28]. especially for settings like the Little 
Sugar Creek basin in which the regional flood response 
reflects a complex interplay of valley bottom attenuation 
effects and heterogeneous hydrologic response due to 
urbanization. 

The Little Sugar Creek basin (Figs. 1 and 2) is located 
within the Piedmont physiographic province. It is 
bounded on the west by Sugar Creek and on the east by 
McAlpine Creek (Figs. I and 2). The river downstream 
of the confluence of these three tributaries is named 
Sugar Creek and we use "Sugar Creek" both for the 
western tributary basin and the larger basin comprising 
Little Sugar, McAlpine and Sugar Creek. The region has 
low relief consisting of rounded ridges and valleys un- 
derlain by intrusive igneous rock with zones of meta- 
morphic rock [8]. Regional studies in the North 
Carolina   Piedmont   and   Blue   Ridge   provinces   have 

demonstrated   profound   bedrock   controls   of stream 
longitudinal profiles [9] and depth of soil weathering [5], 

Analyses focus on two stream reaches within the 
Little Sugar Creek basin. The "Archdale-Pineville" 
reach comprises an 8..^ km section between the Archdale 
(USGS ID 02146507) and Pineville (USGS ID 
02146530) stream gaging stations (gages 4 and 5. re- 
spectively, in Fig. 2). The drainage area is 111 km- 
above the Archdale gage and 128 km- above the Pine- 
ville gage. The intervening drainage area between the 
two gaging stations is relatively small, implying that 
channel-floodplain processes will typically play a dom- 
inant role in determining differences in flood response 
properties between the Archdale and Pineville gaging 
stations. Analyses of 15-min discharge data from both 
stations for 96 flood events are used to characterize 
flood wave attenuation in the Archdale-Pineville reach. 

The Briar Creek reach is 10.1 km in length and 
bounded at the upper end by the Shamrock eaeine 
station (USGS ID 0214642825: gage 6 in Fig. 2) and on 
the lower end by the Colonv Road gasine station 
(USGS   ID  0214645fJ22;   gage  2   in   Figs.^ 2^ and   3). 
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additional details). 

Drainage area ranges from 13 km- above the Shamrock 
gage to 49 km- for the basin above Colony Road. The 
discharge at Colony Road for the 9 April 1998 flood 
(Fig. 3) peaked several hours after the downstream 
Archdale gaging station suggesting that attenuation 
may play an important role in flood response for Briar 
Creek. 

To analyze flood response in the Briar Creek reach, a 
two-dimensional depth-averaged hydrodynamic model 
of the channel-floodplain system (RMA-2; see [3,7,18]) 
has been coupled with a distributed hydrologic model 
for tributary inflow [21,26]. The coupled modeling sys- 
tem provides a useful tool for analyses of the integrated 
effects of hydrologic and hydraulic processes on flood- 
wave attenuation. Coupled models of this type are of 
potential utility for regional design of urban flood con- 
trol systems and for short-term (0-12 h) forecasting of 
flood inundation (see, for example, developments in 
[14,15,17]). 

2. Analyses of flood wave attenuation 

Flood events on lower Little Sugar Creek between the 
Archdale and Pineville gages (gages 4 and 5, respec- 
tively, in Figs. 2 and 3) were analyzed for the period 
June 1997 until June 2000 using 15-min discharge data 
from the two gaging stations. During this period 96 
flood events had peak discharge values greater than 14 
m^'s ' at the upstream gage. For each event, the peak 
discharge at both stations and the time between peak 
discharge at the two stations, or lag time, were com- 
puted. For multiple peak events, where the hydrographs 
were not separable, only the largest peak was consid- 
ered. Runoff volumes for the two basins were computed 
for each event and used as a quality control check on the 
discharge measurements. 

There is a reversal in the lag time—discharge rela- 
tionship in the lower Little Sugar Creek which occurs 
at approximately the bankfull discharge of 80 m^ s"' 
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(Fig. 4a). Determination of bank full discharge wa.s 
based on analyses of width, depth and velocity obser- 
vations from direct discharge measurements at the 
Archdale gaging station and field siir\eys. The 8(1 m' s ' 
value lor bankfuli di.scharge corresponds to a slope 
break in the width discharge relationship. When dis- 
charge is less than bankfuli. the lag time generally de- 
creases with inci-easing discharge. Lag time increases 
with discharge for values greater than bankfuli condi- 
tions up to the ma.ximum discharge in the data set. 
These results are consistent with theoretical analyses of 
Knight and Shiono [16]. in which it is concluded that 
wave speed peaks between 2/3 bankfuli depth and the 
bankfuli depth. Wave speed is at a minimum at some 
shallow overbank depth where momentum exchange 
between main channel and floodplain is at a maximum 
and acts as an energy loss mechanism to slow the flow. 

Knight and Shiono [16] also show that at very large 
stage the channel and floodplain begin to act as a single 
unit, dominated by floodplain flow, and the wave speed 
again begins to increase. This feature was not observed 
for the lag time analyses, which include events with re- 
turn intervals less than 25 years. 

Lag time analyses can be con\erted to analyses of 
wave celerity by dividing the measured flow distance by 
the lag time. Wave celerity for the largest event on the 
lower Little Sugar Creek was approximately 0.6 ms '. 
Flood wave celeritv at bankfuli stace is approximately 
1.3 ms'. 

The ratio between the upstream and downstream 
discharge generally increases for events that exceed 
bankfuli discharge (Fig. 4b). The peak di.scharge ratios 
between the downstream and upstream gages for the 
three largest events with discharge hydrographs at both 

stations are 0.58 (23 January 1999). 0.65 (27 Julv 1998). 
and 0.54 (9 April 1998). The 27 July 1998 flood, which 
had a peak discharge of 250 m's ' (Fig. 4). had some- 
what less peak attenuation and shorter lag time than the 
other two events. The relatively large downstream dis- 
charge (and short lag time; Fig. 4a) for the July 1998 
flood resulted from anomalous storm motion that con- 
centrated heavy rainfall in the lower basin between the 
two stream gaging stations [24]. 

The record flood in the Little Sugar Creek basin oc- 
curred 23 July 1997 and had a measured peak discharge 
at Pineville (317 m-s~') that was 82;;. of the measured 
peak discharge at Archdale (385 m's ': return interval 
for the Archdale peak discharge exceeded 100 years; see 
[23.24]). The Pineville peak discharge estimate was de- 
rived from an indirect discharge measurement, which 
was based on surveyed high-water marks and hydraulic 
computations using Manning's equation [23], The rela- 
tively   large   Pineville Archdale   peak   discharge   ratio 
suggests that  flood wave attenuation is markedly di- 
minished as Archdale discharge increa.ses from 300 to 
400 m's  '. This conclusion is consistent with Knight 
and Shiono's [16] analysis and places the transition zone 
between maximum energy loss (due to momentum ex- 
change between channel and floodplain) and increasing 
wave speed at stages corresponding to discharges be- 
tween 300 and 400 nV s ' at Archdale. These peak dis- 
charges have i-eturn intervals between 10 and 100 years. 

Flood wave attenuation is a prominent feature of 
flood response throughout the Charlotte metropolitan 
region. Stream gaging stations in Sugar Creek to the 
west of Little Sugar Creek (Figs.  1  and 2) are not as 
ideally positioned  as  the Archdale Pineville  pair for 
characterizing   attenuation,   but   the   importance   of 
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attenuation can be readily identified for discharge ob- 
servations (Fig. 5). For the 23 July 1997 flood, the peak 
discharge of 330 m' s"' in the Sugar Creek basin at 80 
km- (Irwin Creek [gage 9]; Fig. 2) was 20% larger than 
the peak discharge at 170 km- (Sugar Creek at Pineville 
[gage 10]; Fig. 2). This corresponds to a decrease in unit 
discharge from 4.1 m's"' km^- at the upstream station 
to 1.6 m^ s~' km~- at the downstream station. In Turner- 
Gillespie [26], the spatial patterns of attenuating stream 
reaches are examined in terms of geologic controls of 
valley bottom form and morphology. We examine these 
issues below for Little Sugar Creek and Briar Creek. 

Hack [9] used observations from the Piedmont and 
Blue Ridge physiographic provinces, including the 
Charlotte metropolitan region, to demonstrate the 
controls of bedrock geology and differential uplift on 
longitudinal profiles of rivers. At the smaller scale of the 

Sugar Creek basin, bedrock geology exerts strong con- 
trols on both longitudinal profile and valley bottom 
morphology of streams (Figs. 1 and 2). Furthermore, 
these features are linked with observed patterns of 
floodwave attenuation. 

The elevation profile of the channel and the width of 
the valley bottom were calculated along streams in the 
Sugar Creek basin and related to bedrock geology. A 10- 
m resolution digital elevation model (DEM) was created 
via linear rubber-sheeting from elevation data provided 
by Mecklenburg County, North Carolina. The valley 
bottom width is based on the Federal Emergency 
Management Agency's (FEMA) 100-year floodplain. 
The drainage network was derived from the Mecklen- 
burg County DEM using an area-threshold algorithm. 

In general, the reaches through metagabbro and 
metavolcanic rocks have a higher valley bottom width 
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than adjacent reaches (Table 1 and Fig. 6a d). Reaches 
through granodiorite have areas of high slope resulting 
in a "stair-step"' profile and are typically narrower than 
adjacent reaches. Reaches with pronounced attenuation, 
including lower Little Sugar Creek, lower Sugar Creek. 
McAlpine Creek, and Briar Creek {.see Sectio'n .^). have 
geologically controlled areas of wide valley bottom and 
low steam slope (Figs. 2 and 6). 

For the lower Little Sugar Creek reach between 
Archdale and Pineville (gages 4 and 5. respectively, in 
Figs. ^ and 6a). the valley bottom widens from 80 to 4.^0 
m as the stream crosses a contact between granodiorite 
and metagrahbo. The slope of the reach between the 
Medical Center (1) and the Archdale (4) gages is 0.0023. 
The slope between the Archdale and Pineville (5) gages 
is 0.0010. Two hundred meters below the Archdale gage 
there is a sharp 2 m drop in the channel profile. Field 
reconnaissance indicates that the channel is bedrock- 
controlled at this location with extensive outcrops in the 
channel and floodplain. 

Bedrock geology also e.xerts strong control on the 
valley bottom morphology of Briar CVeek (Fig. 6b). As 
the stream flous from metavolcanic rocks into grandi- 

Table  I 

Valle\- bottom (lOn-ycar noodplain) width and slope for Briar Creek. 
Mc.AIpine Creek and Little Sugar Creek (see F'ig. 2 for geologic divi- 
sions! 

Creek name with rock type A\eraL'e A\era<ie 
slope (m/m) width (111) 

Bricu- Crcek 

.Meta\olcanic (1.0(114 26.^ 
Granodiorite 0.0026 127 

McAlpine Creek 

.\1eta%oleanic O.OdOX .32 S 
Ciranite 0.0011 19.S 

Lirric Sui;ar Creek 

Metamorphosed quart/ diiirite 0.0029 164 
Granodiorite 0.002.^ 122 

orite. the valley bottom width decreases from 350 to 50 
m over 3 km. The slope of the channel upstream of the 
grandiorite-metavolcanic contact is 0.0011 while 
downstream it is 0.0025. Much of Briar Creek between 
the Colony and Shamrock gages (gages 2 and 6, re- 
spectively. Figs. 2 and 6b) flows along the contact of 
metavolcanic rocks and gradiodiorite (in the lower 
portion) and metamorpho.sed quartz diorite (in the 
upper portion: see Fig. 2). As the river crosses the region 
between these two zones there is a 3.2 m drop in ele- 
vation of the channel (labeled -*■" in Fie. 6b). 

3. Modeling studies of flood response 

In this section, we examine the efl^ects of channel and 
valley  bottom  morphology and  sub-basin  hydrologic 
response on flood peak attenuation using a two-dimen- 
sional hydraulic model of the channel and floodplain 
and a distributed hydrologic model. The study reach is 
the 10.1 km section of Briar Creek between the stream 
gage at Shamrock Road (gage 6 in Fig. 2) and the gage 
at Colony Road (gage 2 in Fig. 2). Hydraulic and hyd- 
rologic modeling are carried out for the 23 September 
2000 flood event. The peak discharge at the Shamrock 
gage was 88 m's ' (5.7 m-'s' knv- unit discharge). At 
the downstream gage the peak discharge was 63"m''s~' 
(1.3 m's"' km - unit di.scharge). The peak discharge at 
the downstream gage was the fourth largest in a 6-year 
record. At the upstream gage, the peak discharge was 
the largest in a 3-year record. Unlike the lower re^ach of 
Little Sugar Creek (see Section 2). timing and magnitude 
of tributary contributions play a major role in deter- 
mining the flood response of the 10.1 km channel reach. 

The Briar Creek floodplain reflects a diverse land use 
and cover with approximately 4S'.'n forest.  30':.;, resi- 
dential. 9'/n high-intensity development. 12Vn grassland, 
and V'A: ponds. Development of the floodplain is as.so- 
ciated with reduction in the hydraulic roughness. Width 
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Fig 6 Channel elevation profile (thin line) and valley bottom width (thick line) in relation to bedrock geology (summarized along horizontal axis: 
see also Fie ^) for- (a) Little Sugar Creek, (b) Briar Creek, (c) Sugar Creek and (d) McAlpine Creek. Black dots and reference numbers correspond to 
gage locations shown in Fig. 2. The * in (b) marks the location on Briar Creek where upstream the channel flows along the boundary of metavolcanic 
rock and metamorphosed quartz diorite while downstream of this point along metavolcanic rock and gramodiorite (see Fig. 2). 

of the floodplain between Shamrock and Colony Road 
varies from a maximum of 350 m to a minimum of 50 m 
in constricted reaches. As discussed in the previous 
section, the channel slope and valley bottom width are 
closely related to the bedrock geology. 

The flood response of Briar Creek was investigated 
using RMA-2, a two-dimensional, depth-averaged, finite 
element hydrodynamic model (see [3,7,29] for similar 
applications of RMA-2). The governing equations are 

,du    ,  8M    ,  ew    h /„ s-«        e-M 
er dx dy    p \     dx- Ov- 

, 8t-     ,   SL^     ,   8f     h (^   d-v d-v 
h-^ + hu^r + h^'^ "I t-y-x^ + '^n-Q^ 

(1) 

6/ av dy 

da     dh\   , gvn~{ir + r-) ''" 
+ ^^(> + e^' + 

e/2     e/7    dh     , / 8" , 8f 
8/       dx       dy \dx    cy 

where 

t time (s) 
X, V        horizontal coordinates (m) 

(2) 

(3) 

u, V 

P 
E 

g 
a 
n 

depth-averaged velocity in x- and v-directions. 
respectively (ms~') 
flow depth (m) 
density of fluid (kgm"') 
eddy viscosity coefiicient 
for XX = normal direction on .v-axis surface 
for VT = normal direction on I'-axis surface 
for .XV' and yx = shear direction on each surface 
gravitational acceleration (9.8 ms -) 
elevation of bottom (m) 
Manning's roughness coefficient 

Elevation data from Mecklenburg County, the 
FEMA 100-year floodplain map, and digital orthophoto 
quads were used as guides in mesh generation. The mesh 
(Fig. 7) consists of 5880 nodes and 1845 elements. The 
channel is represented as a trapezoid with a flat bottom 
and sloping sides. The longitudinal lines of the elements 
tended to be parallel to the channel, so that floodwater 
advances and retreats smoothly. The RMA-2 marsh 
porosity option was utilized to cope with wetting and 
drying of elements (see [4,6] for discussion). A spatially 
constant eddy viscosity value of 1440 Nsm"- was used. 
Roughness coefficients were initially set at 0.030 for the 
channel and 0.055 for the floodplain (based on [2]). 

A transient upstream boundary condition, using ob- 
served discharge data, was implemented. The down- 
stream boundary was located 600 m downstream of the 
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Fig.  7. Finite elomcnl mesh u-ed for RMA-2 mialyses. The hackgmund map illustrates loposiiaphv of the domain. Insets shou tuo of four trib- 
utaries modeled alonti the reach. 

Colony stream gaging station. The mesh below the 
Colony gaging station was extended smoothly to the 
downstream boundary. A fi.xed head condition was im- 
plemented at the downstream boundary and had no 
significant impact on the model results at the Colony 
gaging station 600 m upstream. Discharge boundary 
conditions were implemented at major tributaries within 
the reach (Fig. 7) using model-derived hydrographs (as 
discussed below). 

Tributaries located between the Shamrock and Col- 
ony caging stations contributed 357., of the total runoff 
at the downstream gage (from 70% of the basin). The 
hydrographs of the intervening tributaries were gener- 
ated using a distributed hydrologic model, the Network 
Model [20.21]. Discharge at the outlet of a drainage 
basin is represented as: 

Qit) M   t 
duix)     ciiix) 

dv (4) 

where Qti] denotes discharge (m's ') at time i{s). A is 
the domain of the drainage basin, .v is a point within A. 
d,,{x] is the distance (m) from x to the closest stream 
channel, r,, is the overland flow velocity (ms '). d\(.\) is 
the distance (m) along the channel from .v to the basin 
outlet. !-| is the channel flow velocity and A/(7..v) is the 
runoff rate (ms"') at time i and location ,v. The total 
flow distance from .v to the basin outlet is duix) + d^(x), 
the sum of the overland flow distance and the channel 
flow distance. 

The Network Model partitions the drainage basin 
into hillslope and channel components. The drainage 
network for Briar Creek represented both natural and 
constructed elements of the drainage system (digital 
representations of the stormwater drainage s\stem were 
obtained from the City of Charlotte). 

The runoff rate A/(/..v) (mmh ') at time i and lo- 
cation .Y was computed from the rainfall rate Rii.x) and 
a Hortonian infiltration model (the Green-.Ampt 
model with moisture redistribution [22]). The rainfall 
forcing R{t.x) for the 2.3 September 2000 events was 
represented as a spatially uniform, temporally varving 
field. The rainfall time .series was cornputed as the 
average of two rain gages in the intervening drainage 
between the upstream and downstream stream gaging 
stations. The temporal resolution of rainfall observa- 
tions is 5 min. 

Soil properties were considered homogeneous except 
for the distinction between pervious and impervious 
regions. Saturated hydraulic conductivity values for the 
impervious region, which was computed from plani- 
mctric data provided by Mecklenburg County, were 
taken to be 0. The saturated hydraulic conductivity for 
the pervious portion of the basin was estimated to 
maintain the water balance of the reach. The hillslope 
and channel velocity parameters were taken to be 0.07 
and 5\) ms '. ba.scd on detailed analyses of hydrologic 
response in the upper portion of Little Sugar Creek [26]. 
The large channel velocity parameter is an artifact 
of representations of channel flow distances (channel 
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Fio   8  Observed and model hvdrographs for the Briar Creek reach are shown for the 23 September 2000 flood event. The observed upstream 
(denoted 6 in Fig. 2) hydrograph is denoted by filled diamonds and the observed dov^nstream (denoted 2 m Fig. 2) hydrograph by filled squares. 

velocities in the model are computed as flow distances 
along the channel network in a unit time: see [26]). 

The coupled hydrologic and hydraulic model is able 
to reproduce many of the observed features of the 
hydrograph at the downstream gage (Fig. 8). including 
rise, recession and peak properties of the first peak and 
rise and recession properties of the main peak. The 
model does not reflect the extended period (more than 2 
h) of constant discharge around the peak discharge from 
the stream gaging record. The differences in model peak 
response and observed peak response may be due to one 
or more of the following: (1) errors in representing the 
valley bottom topography, especially in the margins of 
the floodplain (see, for example, [17]) (2) roughness el- 

ements associated with structures and vegetation (see, 
for example, [12]) and (3) errors in discharge measure- 
ment (see, for example. Potter and Walker [30]). 

The coupled model is sensitive to changes in the ve- 
locity parameters of the hydrologic model (Fig. 9). De- 
creasing channel velocity from 5 ms~' (Parameter Set 1 
in Fig. 9) to 2 ms"' (Parameter Set 2) and 0.7 ms"' 
(Parameter Set 3) leads to large changes in the structure 
of model response for the first peak and in the rise to 
peak for the main flood peak A somewhat surprising 
result is that parameter sets representing less urbanized 
conditions result in higher peak discharges at the 
downstream location. Peak discharge increases by more 
than 10% (8.9 m'' s ') as channel velocity decreases from 
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5.0 to 0.7 ms '. Parameter set 3 was derived to repro- 
duce peak discharge at the upstream (Shamrock) gaging 
station and reflects the least urbanized basin conditions. 
Parameter set 2 represents intermediate conditions. The 
general conclusion of these analyses is that fast response 
times in the reach between Shamrock and Colony Road 
result in the upper Briar Creek basin (above Shamrock) 
and the lower basin (between Shamrock and Colony 
Road) contributing "■out-of-phase." 

Model analyses indicate that without tributary input, 
the flood ua\'e from the upstream gage would be con- 
\eyed thi-ough the reach with a 17'/n decrease (16 m' s ') 
in the peak magnitude (Fig. 10). A decrease in the 
floodplain roughness from O.O.S.S to 0.047 resulted in a 
1.4 m\s ' increase in peak discharge and a decrease in 
lag time of 12 min (Fig. 11). Conversely, with a higher 

value of floodplain roughness. 0.070. the peak discharge 
decreased by 23 m' s ' and the lag time increased by 12 
min. Changing from a constant floodplain roughness of 
0.055 to variable roughness dependent on land cover 
(0.065 for forest and 0.045 for residential urban and 
grassland) resulted in a .slight decrease in the peak dis- 
charge (Fig. 12), In this case, the average roughness over 
the floodplain is 0.055. the constant floodplain rough- 
ness of the base analyses. The spatially variable rough- 
ness results in a slightly lower peak discharge. 

Flood response in the 10.2 km reach of Briar Creek 
reflects the complex interplay of hydrologic and hy- 
draulic processes on hillslopes and valley bottoms. In 
the lower portion of Little Sugar Creek, valley bottom 
hydraulic processes dominate flood respon.se. For 
stream reaches like Briar Creek, the relative timine of 
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local and upstream contributions to flood response play 
a critical role in determining the cumulative flood re- 
sponse of the reach. 

4. Conclusions 

The principal observations of this work are the fol- 
lowing. 

• Paired discharge analyses for an 8.3 km stream reach 
in Little Sugar Creek demonstrate pronounced flood- 
wave attenuation. The magnitude of attenuation is 
dependent on the peak discharge. For in-channel 
events, the magnitude of flood peak attenuation gen- 
erally decreases with discharge up to the bankfull dis- 
charge. For overbank floods, the magnitude of peak 
attenuation increases with discharge up to the maxi- 
mum discharge for which upstream-downstream 
hydrographs are available. For flood events ap- 
proaching valley bottom full conditions, there is evi- 
dence that the magnitude of peak attenuation 
decreases. The observed dependence of floodwave at- 
tenuation (and floodwave celerity) on flow depth, rel- 
ative to bankfull depth, is consistent with theoretical 
analyses of Knight and Shiono [16]. 

• Attenuating reaches are characterized by geologically 
controlled regions of wide valley bottoms and low 
stream slope. Pronounced changes in morphology 
of the fluvial system occur at or near boundaries be- 
tween intrusive igneous and metamorphic rocks. 

• A distributed hydrologic model and 2-D depth- 
averaged hydrodynamic model of the channel flood- 
plain system are coupled to analyze flood response 
for a 10.1 km reach of Briar Creek. The coupled mod- 
eling system reproduces flood response for a major 

flood event on 23 September 2000. The magnitude 
of flood peak attenuation, independent of tributary 
contributions, was approximately M%. 
Peak flood response for the Briar Creek stream reach 
is quite sensitive to changing tributary response times 
associated with urbanization. A surprising aspect of 
model analyses is that increasing response times in 
tributary basins between the upstream and down- 
stream gaging stations would result in larger flood 
peaks at the downstream gaging station. 
The model peak discharge increased by little more 
than 1% with a decrease in floodplain roughness from 
0.055 to 0.047. The decrease in peak discharge was 
approximately 3% for an increase in floodplain 
roughness from 0.055 to 0.070. Representation of 
the spatial variation in roughness with land cover re- 
sulted in little change in flood response properties 
over the reach. 
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ABSTRACT 

The intrastorm variability of raindrop size distributions as a source of uncertainty in single-parameter and 
dual-parameter radar rainfall estimates is studied using time series analyses of disdrometer observations. Two 
rain-rate (R) estimators are considered: the traditional single-parameter estimator using only the radar reflectivity 
factor (Z) and a dual-polarization estimator using a combination of radar reflectivity at horizontal polarization 
(Z„) and differential reflectivity (ZDR). A case study for a squall-line system passing over the Goodwin Creek 
experimental watershed in northern Mississippi is presented. Microphysically, the leading convective line is 
characterized by large raindrop concentrations (>500 drops per cubic meter), large mean raindrop sizes (>1 
mm), and wide raindrop size distributions (standard deviations >0.5 mm), as compared to the transition region 
and the trailing stratiform rain. The transition and stratiform phases have similar raindrop concentrations and 
mean raindrop sizes. Their main difference is that the distributions are wider in the latter. A scaling-law analysis 
reveals that the shapes of the scaled spectra are bent downward for small raindrop sizes in the leading convective 
line, slightly bent upward in the transition zone, and strongly bent upward in the trailing stratiform rain. The 
exponents of the resulting Z-R relationships are roughly the same for the leading convective line and the trailing 
stratiform rain (-1.4) and slightly larger for the transition region (=1.5), with prefactors increasing in this order: 
transition (==200), convective (=300), stratiform (=450). In terms of rainfall estimation bias, the best-fit mean 
RiZ„, ZDR) relationship outperforms the best-fit mean «(Z) relationship, both for each storm phase separately 
and for the event as a whole. 

1, Introduction 

A fundamental step in the hydrometeorological ap- 
plication of single-parameter weather radar is the con- 
version of radar-measured reflectivities aloft to esti- 
mates of the spatial and temporal distribution of rainfall 
at the ground. Although many different sources of error 
and uncertainty affect this conversion (e.g., Wilson and 
Brandes 1979; Zawadzki 1984; Joss and Waldvogel 
1990; Steiner et al. 1999; Sanchez-Diezma et al. 2001), 
a key issue is the limited spatial and temporal repre- 
sentativeness of radar reflectivity-rain rate (Z-R) rela- 
tionships. Fixed Z-R relationships will inevitably lead 
to errors in radar rainfall estimates, because raindrop 
size distributions exhibit an appreciable amount of spa- 
tial and temporal variability (e.g., Dingle and Hardy 
1962; Waldvogel 1974; Carbone and Nelson 1978; 
Smith 1993; Smith and De Veaux 1994). Although the 
storm-to-storm (i.e., interstoTui) variability of Z-R re- 
lationships is relatively well established (e.g., Fujiwara 
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1965; Battan 1973; Smith and Krajewski 1993; Steiner 
and Smith 2000), the variability within storms (i.e., in- 
frastorm variability) has received less attention until 
recently (e.g., Waldvogel 1974; Carbone and Nelson 
1978). Yet, there exist appreciable spatial variations in 
microphysical environments within a storm at any given 
time and corresponding temporal variations through the 
course of a storm at any given place within that storm 
(e.g., Steiner et al. 1995; Houze 1997; Petersen et al. 
1999). Since the coefficients of Z-R relationships are 
closely related to the microphysical structure of rainfall 
(e.g., Marshall and Palmer 1948; Battan 1973; Wald- 
vogel 1974; Jameson and Kostinski 2001a), the intra- 
storm variability of Z-R relationships is inevitably a 
source of uncertainty in radar rainfall estimates. 

We present a case study of the variability of raindrop 
size distributions for a squall line passing over a small 
watershed in northern Mississippi. Because of its par- 
ticular mesoscale structure, consisting of three different 
regions with distinctly different microphysical regimes, 
namely initial convection, transition, and trailing strat- 
iform precipitation (Houze 1977, 1993; Leary and 
Houze 1979; Smull and Houze 1987; Biggerstaff and 
Houze 1991, 1993; Brown and Houze 1994; Maki et al. 
2001; Bringi et al. 2002), the squall line represents an 
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ideal model for analyzing the variability of raindrop size 
distributions and associated uncertainties in radar rain- 
fall estimates. In particular, the fact that the squall line 
combines stratiform and convective rainfall in one sin- 
gle (mesoscale) event will allow a comparison of the 
results of our analyses with the many approaches toward 
distinguishing stratiform from convective rainfall that 
have recently appeared in the literature (e.g., Steiner et 
al. 1995; Tokay and Short 1996; Houze 1997; Steiner 
and Smith, 1998; Tokay et al. 1999; Atlas and Ulbrich 
2000; Atlas et al. 2000; Sempere Torres et al. 2000; Rao 
et al. 2001). Such a distinction is important from a radar 
hydrometeorological perspective (e.g., Smith et al. 
1996, 2000, 2001), because different types of rainfall 
are associated with different Z-R relationships. 

The raindrop size distributions, collected with a Joss- 
Waldvogel disdrometer (Joss and Waldvogel 1967), are 
analyzed using both established moment methods for 
the study of the variability of raindrop size distributions 
(e.g., Waldvogel 1974; Tokay and Short 1996) and a 
method describing the raindrop size distribution as a 
scaling law (Sempere Torres et al. 1994, 1998; Uijlen- 
hoet 1999). The results of these analyses provide us 
with explanations for the intrastorm variations of the 
coefficients of Z-R relationships and the associated un- 
certainties in reflectivity-based rainfall estimates. In ad- 
dition, we provide an evaluation of the potential of po- 
larimetric weather radar for rainfall estimation in which 
we limit ourselves to a measurable that is highly relevant 
from an operational perspective, namely differential re- 
flectivity. The extra measurable provided by such radar 
systems in principle allows the estimation of an addi- 
tional parameter of the raindrop size distribution [see 
Bringi et al. (2002) for a recent application of polari- 
metric radar for the estimation of gamma drop size dis- 
tribution parameters]. This should lead to improved 
rain-rate estimates as compared to single-parameter 
weather radar, especially in highly variable environ- 
ments. This is particularly relevant since the U.S. Na- 
tional Weather Service is considering upgrading the ra- 
dars in the Next Generation Weather Radar (NEXRAD) 
network to polarimetric systems (Zrnic and Ryzhkov 
1999). 

2. Methodology 

a. Data 

The data selected for our analysis consist of a 2.5-h 
time series of 1-min raindrop size distributions collected 
with a Joss-Waldvogel disdrometer (Joss and Waldvogel 

1967) during a squall line that passed over the Goodwin 
Creek experimental watershed in northern Mississippi 
on 27 May 1997. The disdrometer is located at the cli- 
mate station in the center of the 21.4-km^ watershed. 
Alonso and Bingner (2000) provide further details about 
the catchment. The total rainfall accumulation for the 
event exceeds 35 mm, and the peak rain rate associated 
with the leading convective line as derived from the 
disdrometer observations approaches 140 mm h"' 
(Steiner et al. 1999). 

The Joss-Waldvogel disdrometer is a momentum 
transducer, receiving raindrops on a 50-cm^ styrofoam 
cone, determining their size and classifying them into 
20 diameter intervals ranging from 0.3 to 5.5 mm (Joss 
and Waldvogel 1967). The 1-min histograms of drop 
counts obtained in this manner represent samples of 
raindrop size distributions. The limited representative- 
ness of such samples has been discussed by Joss and 
Waldvogel (1969), Gertzman and Atlas (1977), Smith 
et al. (1993), Porra et al. (1998), and Jameson and Kos- 
tinski (2001b). It should be noted that the so-called 
deadtime correction (e.g., Sauvageot and Lacaux 1995) 
was not applied in obtaining the results reported in this 
paper, in accordance with Tokay and Short (1996) and 
J. Joss (2000, personal communication). Calculations 
(not reproduced here) demonstrate that, although there 
is definitely an effect, apphcation of this correction does 
not qualitatively alter the conclusions of this paper. Ad- 
ditional details concerning the measurement process and 
the associated data analysis are provided by Steiner and 
Smith (2000). The data for the 27 May 1997 squall line 
are part of a larger dataset of 30 events that has been 
studied to assess the effects of radar bias adjustment 
and rain gauge data quality control on radar rainfall 
estimation (Steiner et al. 1999). 

Steiner et al. (1999) show that the 27 May 1997 squall 
line was associated with the development of a mesoscale 
convective complex (MCC) the previous night over 
eastern Oklahoma. Initially, a series of intense storms 
started to move rapidly in an easterly direction. Within 
6 h, these scattered storms had evolved into a well- 
organized squall line. Figure 1 shows radar imagery 
[based on level 2 reflectivity data of the Memphis 
Weather Surveillance Radar-1988 Doppler (WSR-88D)] 
of the movement of the squall line as it passes over 
northern Mississippi and the bordering regions of Ar- 
kansas and Tennessee. Figure la shows a horizontal 
cross section [constant altitude plan position indicator 
(CAPPI)] image of the storm at 500 m above the ground. 
The image corresponds to a time around 1015 UTC, just 

FIG. 1. Horizontal cross section (CAPPI) at 0.5 km of the 27 May 1997 squall line at (a) 1015 UTC, based on level 2 reflectivity data 
from the Memphis WSR-88D, when leading convective line passes over the Goodwin Creek watershed (delineated in black); (b) 1040 UTC, 
when transition region reaches the Goodwin Creek watershed; (c) 1126 UTC, when trailing stratiform rain reaches the Goodwin Creek 
watershed; and (d) 1223 UTC, which marks end of trailing stratiform rain passing over the Goodwin Creek watershed, (e) Vertical cross 
section (RHI), corresponding to dashed line in (a), showing typical squall-line structure (Houze 1977, 1993). 
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after the squall line has reached the Goodwin Creek 
watershed (which is delineated in black). Figure le 
shows a vertical cross section [range height indicator 
(RHI)] image along the dashed line in Fig. la, cutting 
through the squall line and over the Goodwin Creek 
watershed. These images show a typical squall-line 
structure with a leading convective line, an intermediate 
or transition region, and a trailing region with stratiform 
rain (e.g., Houze 1977, 1993). Note the high reflectiv- 
ities (>50 dBZ) in the leading convective line, the low 
reflectivities (<30 dBZ) in the transition region, and the 
intermediate reflectivities (==35 dBZ) in the trailing 
stratiform region (Fig. la). Also note the distinct dif- 
ferences in vertical structure among the three regions, 
with high reflectivities towering up to 16 km in the 
leading convective line (180-220 km, Fig. le), the vir- 
tual absence of vertical structure in the transition region 
(150-180 km), and the radar bright band at 3-4 km in 
the stratiform region (40-150 km). These distinctly dif- 
ferent vertical reflectivity profiles are indicators of 
strongly contrasting microphysical environments and 
associated differences in the mechanisms of precipita- 
tion production (e.g., Houze 1977, 1993). In section 3 
we will investigate the "footprints" of these different 
production mechanisms as we analyze the time series 
of raindrop size spectra collected in the Goodwin Creek 
watershed during the overpass of the squall line. Figures 
la-d mark the beginning and end of each of these re- 
gions as they pass over the watershed. The actual event 
lasted longer, but the additional rainfall after 1230 UTC 
will not be considered here. After this moment, the event 
lost the distinct brightband structure that characterized 
the previous stratiform period (Fig. le). In addition, 
rainfall rates dropped dramatically after 1230 UTC (Fig 
2a). 

b. Definitions 

1) RAINDROP SIZE DISTRIBUTION AND 

CHARACTERISTIC DIAMETERS 

If N^iD) (mm-' m-'), the subscript V standing for 
"volume," represents the raindrop size distribution, 
then N^{D)dD (m"') is the mean number of raindrops 
with (equivalent spherical) diameters between D and D 
+ dD (mm) present per unit volume of air. A widely 
used parameterization for the raindrop size distribution 
is the gamma form (e.g., Ulbrich 1983; Tokay and Short 
1996; Ulbrich and Atlas 1998) 

Ny(D) = A^oD" exp(-AD), (1) 

which reduces to the exponential form (e.g., Marshall 
and Palmer 1948; Waldvogel 1974; Carbone and Nelson 
1978; Joss and Gori 1978) for ^ = 0. 

Under certain conditions, the raindrop size distribu- 
tion can be interpreted probabilistically as the product 
of the expected (mean) raindrop concentration A^^(m ') 
and the probability density function /„(£)) (mm~i) of 
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FIG. 2. Temporal evolution of (a) rain rate, (b) radar reflectivity 
factor, and (c) differential reflectivity during the three phases of the 
27 May 1997 squall line, derived from I-min Joss-Waldvogel dis- 
drometer observations at the Goodwin Creek climate station (Fig. 3), 
where C, T, and S indicate convective, transition, and stratiform phas- 
es, respectively, and dashed venical lines show their boundaries 
(1040, 1125, and 1225 UTC). Circles in (a) indicate measurements 
from nearby tipping-bucket rain gauge. Circles in (b) indicate base 
scan reflectivity measurements from the Memphis WSR-88D (closest 
radial pixel to disdrometer). 

the stochastic diameter of raindrops present in a volume 
of air; that is. 

N,(D) = NrfdD) (2) 
(Uijienhoet and Strieker 1999). Such a product repre- 
sentation of the raindrop size distribution was first ex- 
plicitly considered by Chandrasekar and Bringi (1987), 
for the special case of gamma raindrop size distribu- 
tions. For the general case of any parametric form for 
the raindrop size distribution, it was discussed by Sem- 
pere Torres et al. (1998. appendix). Jameson and Kos- 
tinski (2001a) stress the importance of Eq. (2) for the 
physical interpretation of empirical Z-R relationships in 
radar meteorology. Porra et al. (1998) and Uijienhoet 
(1999) discuss in detail the implicit hypotheses on which 
this product representation is based. The most important 
of these is the assumption that it is not necessary to 
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know exactly the multivariate statistical properties (e.g., 
size, speed, and position) of the entire raindrop popu- 
lation in the sample volume (including the interdrop 
dependencies), but sufficient to have a measure for the 
average raindrop size properties in the air, as defined 
by the univariate probability density function of rain- 
drop sizes /D(D). 

The raindrop concentration Nj (m~^) is the moment 
of order zero of the raindrop size distribution, that is, 
the total integral over the raindrop size distribution. 

Jo 
NyiD) dD. (3) 

The effects of truncation of the raindrop size distribution 
(Ulbrich 1985) have been disregarded. Truncation at the 
large-diameter eiid of the spectrum mainly affects high- 
order moments. Even then, mainly the prefactors of 
power-law relationships between rainfall integral vari- 
ables will be affected, and the exponents much less. 

The first two moments of the probability density func- 
tion foiD) are the mean raindrop diameter in a volume 
of air /i-o (mm). 

A^D =  I   DhiD) dD = Af?' 
Jo Jo 

DNy{D) dD,     (4) 

and the variance of the corresponding raindrop diam- 
eters o-^ (mm^). 

o-l=       D^U 
Jo 

= Nj'       D- 
Jo 

(D) dD - fij, 

Ny(D) dD - III, (5) 

where (T^ (mm) is the standard deviation. Note that 
MD + o-o. that is, the integral in Eq. (5), is proportional 
to the mean raindrop surface area. A widely used char- 
acteristic raindrop diameter is the median-volume di- 
ameter Do (mm), which in combination with /i^ ^d CTO 

provides information about the skewness (i.e., asym- 
metry) of Ny{D), and is defined as the 50th percentile 
of the normalized distribution of liquid rain water con- 
tent [Eq. (7)] over all drop diameters. 

Dm^iD) dD =       DWv 
Jo JDO 

= 0.5       D 
Jo 

(D) dD 

■NyiD) dD     (6) 

(Atlas 1953). In an entirely analogous manner, other 
percentiles can be defined. 

2) RAINFALL INTEGRAL VARIABLES 

The liquid rain water content W (mg m"') is related 
to the raindrop size distribution according to 

W = 10- 
6   Jo 

^Ny(,D) dD, 
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(7) 

where p„ (kg m"') is the density of water, which for 
all practical putposes can be taken as 1000 kg m"^. If 
the effects of wind (notably updrafts and downdrafts), 
turbulence, and raindrop interaction are neglected, the 
(stationary) rain rate R (mm h"') is related to the rain- 
drop size distribution NyiD) according to 

R = STTX 10- D^v^ 
Jo 

(D)Ny{D) dD, (8) 

where v{b) represents the functional relationship be- 
tween the raindrop terniinal fall speed in still air v (m 
s"') and the equivalent spherical raindrop diameter D 
(mm). The simplest arid most widely used form of the 
v(D) rektionship is the power law 

v(D) = cDy (9) 

Atlas and Ulbrich (1977) demonstrate that Eq. (9), with 
c = 3.778 (if V is expressed in irieters per second and 
D in miUimeters) and y = 0.67, provides a close fit to 
the data of Gunn and Kinzer (1949) in the range 0.5 ^ 
D s 5.0 mm (the diameter interval contributing most 
to rain rate). Although more sophisticated relationships 
have been proposed in the literature (e.g., Best 1950; 
Atlas et al. 1973; Beard 1976), the power-law form for 
the v{D) relationship is the only functional form that is 
consistent with power-law relationships between rain- 
fall-related variables, notably between Z and R (Sempere 
Torres et al. 1994; Uijlenhoet 1999, 2001). 

The central variable of most operational rainfall re- 
trieval algorithms is the radar reflectivity factor Z (mm« 
m-^), defined as (e.g., Battan 1973) 

Jo 
Ny{D) dD, (10) 

which is sometimes expressed in dBZ using the trans- 
formation 10 logZ. This definition of the radar reflec- 
tivity factor implicitly assumes Rayleigh scattering and 
spherical particles (Battan 1973). In case of nonspher- 
ical particles, polarization effects need to be taken into 
account. The copolar linear reflectivity factors at hori- 
zontal and vertical polarization Z[,,v (mm* m"^) are de- 
fined as (e.g., Seliga and Bringi 1976; Balakrishnan et 
al. 1989; Doviak and Zmic 1993) 

^H.V 
TT'\K\- Jo 

(D)Ny{P)dD,        (11) 

where Z„y is a short notation for "Z„ or Zy," A (mm) 
is the wavelength of the transmitted signal, \K\'^ (-) 
is a coefficient related to the dielectric constant of water 
(=0.93), and (T„y{D) (mm^) are the copolar linear back- 
scattering cross sections at horizontal and vertical po- 
larization, respectively. In our calculations, we use the 
backscattering cross sections provided by Goddard and 
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Cherry (1984). The differential reflectivity Z^R is de- 
fined as (e.g., Seliga and Bringi 1976; Balakrishnan et 
al. 1989; Doviak and Zrnic 1993) 

A)R •^H'A'i (12) 

which is generally expressed in dB using the transfor- 
mation 10 logZcR. 

c. Scaling-law formalism 

Sempere Torres et al. (1994, 1998) have demonstrated 
that many previously proposed parameterizations for the 
raindrop size distribution are special cases of a general 
formulation, which takes the form of a scaling law. In 
this formulation, the raindrop size distribution depends 
both on the raindrop diameter (D) and on the value of 
a so-called reference variable, commonly taken to be 
the rain rate (/?). The generality of this formulation 
stems from the fact that it is no longer necessary to 
impose an a priori functional form for the raindrop size 
distribution, as opposed to the normalization approaches 
recently proposed by Testud et al. (2001) and Illing- 
worth and Blackman (2002), which are both based on 
the gamma parameterization. Moreover, it naturally 
leads to the ubiquitous power-law relationships between 
rainfall integral parameters, notably that between the 
radar reflectivity factor (Z) and R. A major advantage 
over previous scaling approaches (e.g., Sekhon and Sri- 
vastava 1971; Willis 1984; Willis and Tattelman 1989) 
is that this approach explicitly considers the issue of the 
internal consistency of parameterizations for the rain- 
drop size distribution (e.g., Bennett et al. 1984; Delrieu 
et al. 1991; Uijlenhoet 1999, 2001; Uijienhoet and 
Strieker 1999). 

According to the scaling-law formalism, raindrop size 
distributions can be parameterized as (Sempere Torres 
et al. 1994, 1998) 

Ny(D, R) = RxgiR-PD), (13) 

where N^,(D, R) (mm"' m-^) is the raindrop size dis- 
tribution as a function of rain rate R (mm h ')> « and 
/3 are (dimensionless) scaling exponents, and g(x) is the 
general raindrop size distribution as a function of scaled 
raindrop diameter x = Ri^ D. Substitution of /? = 1 
mm h"' in Eq. (13) shows that N^(D, 1) = g{D\ in 
other words that g{x) represents the equivalent (i.e., 
scaled) raindrop size distribution at a rain rate of 1 mm 
h-' (Uijlenhoet 1999). In agreement with common prac- 
tice, ;? is used as the reference variable in Eq. (13), 
although any other rainfall integral variable could serve 
as such (notably Z). According to this formulation, the 
values of a and /3 and the form and dimensions of g{x) 
depend on the choice of the reference variable but do 
not bear any functional dependence on its value. The 
values of the scaling exponents indicate whether it is 
the variability of the raindrop sizes or the variability of 
the raindrop concentration (or some combination there- 
of) that controls the variability of the raindrop size dis- 

tribution. In general, the closer /3 is to zero, the more 
pronounced is the relative contribution of number-con- 
trolled variability (Uijlenhoet 1999; Uijlenhoet et al 
2003, hereafter USS). 

The importance of the scaling-law formalism for radar 
hydrometeorology stems from the fact that it allows an 
interpretation of the coefficients of Z-/? relationships in 
terms of the values of the scaling exponents and the 
shape of the general raindrop size distribution. Substi- 
tuting the scaling law for the raindrop size distribution 
[Eq. (13)] into the definition of Z [Eq. (10)] leads to 
the power law 

Z = aR\ (14) 

with 

a =       x^'gix) dx,    and (15) 
Jo 

b= a + ip (16) 

(Uijlenhoet 1999, 2001). Hence, the pre/actor of a pow- 
er-law Z-R relationship is entirely determined by the 
shape of the general raindrop size distribution (its sixth 
moment), whereas a linear combination of the values of 
the scaling exponents completely determines the ex- 
ponent of such a power-law Z-R relationship. This ap- 
proach for determining power-law relationships com- 
plements the traditional regression-based methods (e.g., 
Steiner and Smith 2000). It has the advantage that it 
guarantees consistency between the coefficients of pow- 
er-law relationships and the parameters of the corre- 
sponding parameterization for the raindrop size distri- 
bution. 

Substituting Eqs. (13) and (9) into the definition of 
R in terms of the raindrop size distribution [Eq. (8)] 
leads to the self-consistency constraints 

6TT X lO-V 
Jo 

ygix) dx = 1    and      (17) 

a + (4 -I- y)j8 = 1 (18) 

(Sempere Torres et al. 1994). Hence, g{x) must satisfy 
an integral equation (which reduces its degrees of free- 
dom by one), and there is only one free scaling expo- 
nent. These self-consistency constraints guarantee that 
substitution of the parameterization for the raindrop size 
distribution [Eq. (13)] into the defining expression for 
R [Eq. (8)], leads to R = R. 

For the purpose of this paper, consider a gamma pa- 
rameterization for the general raindrop size distribution. 

g{x) = KX" exp(-Aj:), (19) 

which for ^i = 0 reduces to an exponential parameter- 
ization. In this general form, g(x) is not an admissible 
description of the general raindrop size distribution, be- 
cause it does not satisfy the self-consistency constraint 
on g{x) [Eq. (17)]. Substitution of Eq. (19) into (17) 
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yields, for a given value of the parameter /A, a power- 
law relationship of K in terms of A, 

K = [67r X 10-''cr(4 + y + /i,)]-'A''+^+'^.   (20) 

This is an explicit form of the self-consistency constraint 
on g{x) for the case of a gamma parameterization. For 
the applied units, with c = 3.11^ and y = 0.67 (Atlas 
and Ulbrich 1977), Eq. (20) reduces to K = 9.50A''«' 
for the special case of an exponential parameterization 
for g(x) (M = 0). 

It is of considerable interest to establish a link be- 
tween the scaling-Iaw formalism and the traditional an- 
alytical parameterizations for the raindrop size distri- 
bution. For the case of the gamma raindrop size distri- 
bution, this can be achieved through substituting Eq. 
(19) into (13). This yields 

Ny{D, R) = KR-'-'^I'D'' exp(-Ai?-^Z)).       (21) 

Equation (21) reduces to the classical gamma parame- 
terization for the raindrop size distribution [Eq. (1)] if 
No and A depend on R according to the power laws 

A^o = KR"^''^   and 

A = XR-f". 

(22) 

(23) 

For the special case of an exponential parameterization 
for the raindrop size distribution of the form initially 
proposed by Marshall and Palmer (1948), that is, Eq. 
(1) with IX = 0, Eq. (22) reduces to A^o = KR". Recall 
that the self-consistency of Eq. (21) requires that a and 
/3 be related to each other via Eq. (18), and K and A via 
Eq. (20). 

Sempere Torres et al. (1994) have demonstrated that 
the scaling exponents a and j8 may be estimated as the 
intercept and slope of a plot of the exponents y^ (of 
power laws between the moments of order m and R) 
versus the order of the moment m + 1. In general, the 
lower-order moments, which mainly depend on the 
counts in the smallest raindrop bins, are very sensitive 
to instrumental limitations (Uijlenhoet 1999). The high- 
er-order moments, on the other hand, depending strong- 
ly on the counts in the larger raindrop bins, are more 
sensitive to sampling fluctuations (e.g.. Smith et al. 
1993). Therefore, as a general rule, we only estimate 
the values of the scaling exponents on the basis of mo- 
ments of orders between two and six (2 < w < 6). In 
fact, to guarantee self-consistency, we only estimate j8 
in this manner and subsequently invoke the constraint 
on the scaling exponents [Eq. (18)] to estimate a. Fi- 
nally, we employ a moment method developed by 
Uijlenhoet (1999) to estimate self-consistent values of 
the parameters of the scaled raindrop size distribution 
g{x). Effectively, this method uses the moments of or- 
ders 4 -I- y and 5 -I- y (with y = 0.67) of g(j«;) to estimate 
A and /x. This corresponds closely to the moment orders 
(i.e., central in the range 0-6) that are commonly used 
to estimate the parameters of the gamma raindrop size 
distribution (e.g., Tokay and Short 1996; Ulbrich and 

Atlas 1998). The corresponding self-consistent value of 
K is subsequently estimated using Eq. (20). USS provide 
a more detailed discussion of this scaling analysis 
(which is applied to our disdrometer data in section 3b). 

3. Results and discussion 

a. Time series analyses 

1) RAINFALL INTEGRAL VARIABLES 

Figure 2 shows the time traces of rain rate R [Eq. 
(8)], radar reflectivity factor Z [Eq. (10)], and differ- 
ential reflectivity Z^R [Eq. (12)] during the three phases 
of the 27 May 1997 squall line, as derived from the 1- 
min Joss-Waldvogel disdrometer observations at the cli- 
mate station in the Goodwin Creek watershed. The 
dashed vertical lines separate the three phases of the 
squall line: convective (C), transition (T), and stratiform 
(S). These times closely correspond to the times asso- 
ciated with Figs. Ib-d. The classification into C, T, and 
S is a subjective one, based on raindrop size distribu- 
tions and radar imagery. A comparison with data from 
a nearby tipping bucket rain gauge (Fig. 2a) shows that, 
although the overall correspondence between both rain- 
rate traces is acceptable, die peak rain rates from the 
tipping bucket gauge (circles) are significantly larger 
than those derived from the spectra (bold line). Note 
that the volume of the employed bucket corresponds to 
a rainfall depth of 0.01 in. (0.254 mm) and that the 
gauge data were available as numbers of tips per 30 s. 
The resulting quantization effect is clearly visible in Fig. 
2a, particularly for high rain rates (i.e., from 1000 to 
1030 UTC). There are two readings from the tipping 
bucket gauge (one shortly before 1100 UTC, the other 
around 1140 UTC), however, that seem to be in error 
by almost an order of magnitude [see Steiner et al. 
(1999) for a discussion of rain gauge data quality con- 
trol]. 

A comparison between the reflectivity trace derived 
from the spectra (Fig. 2b, bold line) and base scan re- 
flectivity data from the Memphis WSR-88D (circles) 
shows a good correspondence. The deviations during 
the convective and transition phases are likely due to 
differences in sampling characteristics between both de- 
vices. The correspondence during the stratiform phase 
is striking. This comparison demonstrates that a 50-cm^ 
disdrometer collecting 1-min rainfall samples at the 
ground can be quite representative for a weather radar 
with a sample volume aloft of the order of cubic kilo- 
meters. 

Concentrating on the values derived from the spectra 
(bold lines), all three rainfall integral variables in Fig. 
2 show a similar behavior, namely high values during 
the leading convective line, low values in the transition 
region, and intermediate values in the trailing stratiform 
rain (similar to the reflectivity values in Fig. 1). The 
noisy appearance of the differential reflectivity trace, 
particularly during the stratiform phase of the squall- 
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FIG. 3. Temporal evolution of 1-min raindrop size distributions 
measured with Joss-Waldvogel disdrometer at the climate station in 
the Goodwin Creek watershed during three phases of the 27 May 
1997 squall line. Gray.scale indicates number of raindrops in size 
interval (arbitrary units). Bold solid line indicates median-volume 
diameter Do (mm), thin solid lines indicate 10th and 90th percentiles 
of distribution of normalized liquid rain water content over raindrop 
diameters (by definition, D„ is 50th percentilc). 

line system, is attinbuted to sampling fluctuations. Figure 
2c shows that at the transition-stratiform boundary Z^^ 
increases from values close to zero, indicating spherical 
(i.e., small) drops, to values in excess of 1 dB, indicating 
quite oblate (i.e., large) drops. The value of Z^R effec- 
tively serves as a characteristic raindrop size for the tail 
of the raindrop size distribution. It would be interesting 
to verify whether polarimetric radars are able to capture 
the convective-transition and transition-stratiform 
boundaries in squall lines as well as the remarkable data 
in Fig. 2c suggest. 

Figure 3 shows the time evolution of the raindrop 
size distributions themselves. This figure demonstrates 
that the convective phase produces wide spectra (large 
drops), the transition phase narrow spectra (small 
drops), and the stratiform phase intermediate spectra 
(average-sized drops). This is consistent with the mi- 
crophysical processes that take place in a squall-line 
system (Houze 1977, 1993): growth associated with 
convection tends to produce a wide array of raindrop 
sizes; the transition phase is characterized by a fallout 
of smaller particles (as the larger ones have already 
disappeared); and the stratiform phase is associated with 
new growth as a result of diffusion and aggregation in 
weak mesoscale updrafts, hence larger particles and a 
wider distribution. However, this analysis does not 
prove that the raindrop size distributions are funda- 
mentally different in the three regions considered, be- 
cause a significant part of the variations observed in 
Fig. 3 will be due to variations in the rain rate (Fig. 
2a). The scaling analysis in section 3b filters the effects 

of rain-rate variations and therefore leads to more con- 
clusive results. 

To indicate which parts of the raindrop size distri- 
butions most significantly contribute to the liquid rain 
water content, a quantity of core hydrometeorological 
interest, we have included in Fig. 3 time traces of the 
10th, 50th (i.e.. Do), and 90th percentiles (all in mm) 
of the normalized distribution of the liquid water content 
W over raindrop size D [see Eqs. (6) and (7)]. The 
difference between the 90th and the 10th percentiles is 
the range of raindrop diameters that corresponds to the 
central 80% of the liquid water content (excluding the 
10% of W caused by the smallest drops and the 10% of 
W caused by the largest drops). As such, this difference 
is also a measure of the width of raindrop size distri- 
butions, an alternative to a^ perhaps better suited to 
skewed distributions. Cleady, the main contribution to 
the liquid water content comes from significantly larger 
drops than does the main contribution to the number 
concentration. The behavior of DQ in the convective 
phase also indicates that there seem to exist different 
regimes within the convection. A similar observation, 
although less pronounced, can be made for the differ- 
ential reflectivity (Fig. 2c). The 90th percentile (Fig. 3) 
is seen to be strongly prone to sampling fluctuations, 
particulariy during the stratiform phase. Nevertheless, 
there exist significant differences between the percentile 
values in each of the three regions considered. 

Figure 4 shows the time evolution of the raindrop 
concentration A^^ [Eq. (3)], the mean raindrop diameter 
Mi) [Eq- (4)], and the standard deviation of the raindrop 
diameters a^ [Eq. (5)] during the event. There is a clear 
contrast between the first two of those and the corre- 
sponding time series for R, Z, and Z^R (Fig. 2). First of 
all, there is hardly any difference between the raindrop 
concentration in the transition region and that in the 
stratiform region. In contrast to the abrupt increase in 
R, Z, and ZpR at the transition-stratiform boundary (Fig. 
2), the mean raindrop concentration even decreases 
slightly. This reduction could have been caused by ag- 
gregation, which reduces the number of particles, On 
the other hand, the change is very gradual and the dif- 
ference may not be significant given the relatively large 
statistical fluctuations. The only feature of the raindrop 
concentration time series that is present in Fig. 2 as well 
is the increase during the leading convective line. How- 
ever, this increase is less pronounced for A^j. (by roughly 
a factor of 2) than it is for R, Z, and Z^R. Moreover, the 
reduction of N^ shortly after 1020 UTC is much more 
pronounced than that of R and, particularly, that of Z. 

The increases in R, Z, and Z^R during the leading 
convective line (Fig. 2) have been caused by combined 
increases in the raindrop concentration (Fig. 4a), the 
mean raindrop diameter (Fig. 4b), and the standard de- 
viation (Fig. 4c). What remains to be solved is the prob- 
lem of explaining the sudden increases in R, Z, and Z^R 

at the transition-stratiform boundary (Fig. 2, 1125 
UTC). Neither the raindrop concentration nor the mean 
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FIG. 4. Temporal evolution of (a) raindrop concentration, (b) mean 
raindrop diameter, and (c) standard deviation of raindrop diameters 
during tlie three phases of the 27 May 1997 squall line, derived from 
1-min Joss-Waldvogel disdrometer observations (Fig. 3). 

raindrop diameter (Figs. 4a,b) changes enough during 
this phase to explain the observed increases in R, Z, and 
ZoR. The answer is provided by the temporal structure 
of the standard deviation of the raindrop diameters (Fig. 
4c). Where the raindrop concentration and the mean 
raindrop diameter remain unaffected at the transition- 
stratiform boundary, the standard deviation shows a sud- 
den increase. In general, if the standard deviation of a 
distribution, which is a measure for its spread, changes 
while its mean stays the same, the relative proportions 
of small and large drops must have changed. Figure 3 
shows how this happened in this case. Comparing the 
transition and stratiform regions, we observe 1) an in- 
crease in the number of small raindrops (D < 0.5 mm), 
2) a decrease in the number of intermediate drops (0.5 
< D < 1.0 mm), and 3) an increase in the number of 
large drops (D > 1.0 mm). In this particular case, where 
the total raindrop concentration approximately remains 
the same as well, the absolute number of small and large 
drops together must have increased by roughly the same 
amount as the decrease in the number of intermediate 
drops. The behavior at the large-drop end of the spec- 

11:00 11:30 
time, ((UTC) 

FIG. 5. Temporal evolution of (a) intercept and (b) slope parameters 
of exponential fit to raindrop size distributions according to Wald- 
vogel's (1974) method during the three phases of the 27 May 1997 
squall line. 

trum can be explained microphysically by the aggre- 
gation of ice particles above the melting layer, which 
upon melting produces larger raindrops at the expense 
of intermediate ones. 

2) EQUIVALENT EXPONENTIAL AND GAMMA 
DISTRIBUTIONS 

In his study of the temporal variability of raindrop 
size distributions and the associated Z-R relationships, 
Waldvogel (1974) proposes to adjust to each empirical 
raindrop size distribution an "equivalent" exponential 
distribution of the form A^o exp(-AD), that is, Eq. (1) 
with ^i = 0, with the same liquid rain water content 
and radar reflectivity as the empirical distribution. We 
have applied Waldvogel's procedure to the values of W 
[Eq. (7)] and Z [Eq. (10)] derived from the spectra. 
Figure 5 shows the resulting time series of the intercept 
parameter Ng (mm"' m"') and the slope parameter A 
(mm"') of the equivalent exponential raindrop size dis- 
tributions. Waldvogel reports 'WQ jumps," that is, sud- 
den increases of A^o while the rain rate remained ap- 
proximately constant, which he related to the disap- 
pearance of the radar bright band and the associated 
presence of convective activity (showers or thunder- 
storms). According to Waldvogel, large values of A^o ^^ 
associated with "small-drop spectra" (at a given rain 
rate) and small Z-J? prefactors, whereas small values of 
A^o are associated with "large-drop spectra" (at the same 
rain rate) and large Z-R prefactors. This interpretation 
is consistent with the results of our previous analysis 
of the variability of rainfall integral variables during the 
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passage of the squall line. Note, however, that during 
the event analyzed here the rain rate was not constant 
(Fig. 2a). 

Moving "against nature" from right to left in Fig. 
5a, that is, from stratiform via transition to convcctive, 
the occurrence of an A^o jump is evident at the strati- 
form-transition boundary (1125 UTC), corresponding 
to the disappearance of the radar bright band (Fig. le). 
During the transition phase A^^ is seen to remain rela- 
tively constant, whereas during the convcctive phase 
there is a sudden drop and a new jump, after which A^,, 
reaches an even larger value than during the transition 
phase. A similar drop during convection is present in R 
(Fig. 2a), whereas Z remains fairly constant during this 
period (Fig. 2b). On the other hand, the "N^ drop" 
corresponds to peaks in both Z^R (Fig. 2c) and Dg (Fig. 
3). In Fig. 4, we see that this drop is related to a sudden 
decrease of the raindrop concentration (Fig. 4a), a slight 
decrease of the mean raindrop diameter (Fig. 4b), and 
a peak in the standard deviation of the raindrop diam- 
eters (Fig. 4c). This points again toward a sequence of 
contrasting regimes within the convective phase of the 
squall-line system. 

In accordance with Waldvogel's (1974) results, the 
temporal structure of A (Fig. 5b) follows that of A^o to 
a large extent, including what may be called "A jumps," 
which indicates that A^o and A are not independent var- 
iables. In fact, although the A jumps (Fig. 5b) may be 
less dramatic in magnitude than those in A^„ (Fig. 5a), 
the values of A within each of the three considered 
phases of the squall line seem to be much more stable. 
For instance, the Ng drop between 1020 and 1025 UTC 
is completely absent in the temporal structure of A, 
resulting in a remarkably constant slope parameter dur- 
ing the convective phase. The increased numbers of 
small and intermediate size raindrops and the disap- 
pearance of the large drops during the transition phase 
(Fig. 3) produce, besides decreasing values of the in- 
tegral variables (Fig. 2), a higher intercept (Fig. 5a) and 
a steeper slope (Fig. 5b) of the fitted exponential drop 
size distribution. When large drops reappear during the 
stratiform phase, the intercept decreases again and the 
slope becomes less steep (with corresponding increases 
in the integral variables). 

Although for exponential raindrop size distributions 
of the form Af„ exp(-AD) the inverse of A should the- 
oretically equal the mean raindrop diameter, that is, /i,„ 
= A-' (Uijlenhoet and Strieker 1999), such an inter- 
pretation is not warranted here. According to Waldvo- 
gel's procedure, A is calculated from the values of W 
and Z for each spectrum, not from a direct exponential 
adjustment. As a result, A looses its physical meaning 
as the inverse mean raindrop diameter. On the other 
hand, fi^ is affected by instrumental limitations at the 
small-drop end of the spectrum (as is evident in Fig. 3 
around 1015 UTC). It is therefore not surprising that 
MD (Fig. 4b) and A (Fig. 5b) are not, as theory predicts, 
the inverse of each other. In fact, the inverse relationship 

5-27-1997: 150 raindrop size spectra 
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Fio. 6. Temporal evolution of (a) "intercept," (b) "slope." and 
(c) shape parameters of gamma fit to raindrop size distributions ac- 
cording to Tokay and Short's (1996) method during the three phases 
of the 27 May 1997 squall line (note: "intercept" and "slope" are 
used because gamma distribution does not really have intercept or 
slope, as opposed to exponential distribution; see Fig. 5). 

between D^ (Fig. 3) and A, also predicted by theory 
(e.g., Uijlenhoet and Strieker 1999), is a lot tighter (ex- 
cept between 1020 and 1025 UTC). This is because D^ 
does not depend as strongly on small raindrops as does 

Tokay and Short (1996) employ the method of mo- 
ments (using moments of orders 3, 4, and 6) to fit a 
gamma parameterization of the form of Eq. (1) to their 
empirical raindrop size distributions. Figure 6 provides 
the time series of the parameters A',,, A, and jti, adjusted 
using Tokay and Short's procedure for the 27 May 1997 
squall line. The general behavior of the three time series 
is rather similar, with minimum values occurring in the 
convective and stratiform regions, and maxima in the 
transition region. In case of /tt, it is not clear if these 
differences are significant, given the large statistical 
fluctuations. In addition, the physical interpretation of 
the parameter A^o is hampered by the fact that its units 
depend on the value of the parameter /JL,. This may in- 
troduce spurious correlations between A'o and fi (e.g., 
Chandrasekar and Bringi 1987; Uijlenhoet 1999). The 
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FIG. 7. Empirical relationship between the "intercept" parameter 
of gamma fit (Fig. 6a) and rain rate (Fig. 2a) for the 27 May 1997 
squall line. Triangles indicate raindrop size distributions collected 
during the leading convective phase, circles show distributions col- 
lected during the transition phase, and asterisks indicate distributions 
collected during the trailing stratiform phase. The solid line indicates 
the separator between tropical convective (above) and tropical strat- 
iform (below) rain proposed by Tokay and Short (1996). (b) Same 
as (a) but for the "slope" parameter of gamma fit (Fig. 6b). 

temporal evolution of the parameter A (Fig. 6b) is rea- 
sonably close to that of the A parameter estimated using 
Waldvogel's (1974) procedure (Fig. 5b). The mean value 
of fi during the 27 May 1997 storm is about 5. This 
closely corresponds to the mode of the empirical /A dis- 
tribution reported by Tokay and Short (1996) for tropical 
rainfall and to /i, = 6 found by Steiner (1991) for rainfall 
in Switzerland. 

Tokay and Short (1996) propose a stratiform-con- 
vective classification based on the adjusted parameter 
values. Figure 7 provides scatterplots of No versus R 
(Fig. 7a) and A versus R (Fig. 7b) for the three rainfall 
types considered. Also included are curves (straight 
lines in log-log space) proposed by Tokay and Short 
(1996) to discriminate between convective (above) and 
stratiform precipitation (below), ATQ = 4 X 10'/?""' and 

A = 17^?"°'', respectively. Evidently, this algorithm is 
not successful in correctly classifying the convective 
and the stratiform distributions. This may be due to the 
fact that Tokay and Short derived their results for "trop- 
ical oceanic" rainfall, whereas the 27 May 1997 squall 
line could be classified as "midlatitude continental." 

Motivated by a lack of detailed microphysical and 
dynamic information in space and time, precipitation 
type classification schemes generally rely upon integral 
parameters such as radar reflectivity or rain rate (e.g., 
Steiner et al. 1995). Figures 7 and 1 la (section 3c) show 
that a simple approach such as thresholding the rain rate 
(e.g., Ciach et al. 1997) or radar reflectivity will be 
reasonably successful in separating convective (^10 
mm h"' or >40 dBZ) from stratiform (<10 mm h~' or 
<40 dBZ) rainfall, except for the onset of convection. 
This approach will work reasonably well for organized 
storm systems but not necessarily otherwise. Tokay and 
Short's (1996) method of classifying precipitation types 
on the basis of fitted raindrop size distribution param- 
eters does not appear to be very robust (Fig. 7). Based 
on the analyses presented above, the mean raindrop di- 
ameter and the width of the raindrop size distribution 
(i.e., the standard deviation of the drop diameters), if 
available, seem to be more suitable parameters to assist 
in the classification. Figure 4 shows that the leading 
convective line exhibits mean drop diameters /AQ S 1 
mm and standard deviations a^, ^ 0.5 mm. The tran- 
sition phase has very narrow raindrop spectra with fjb^ 
< 1 mm and a^ < 0.5 nun. For the trailing stratiform 
region, /ID < 1 mm and a^ & 0.5 mm. Thus, the mean 
drop diameter separates the convective phase from the 
rest of the storm system, while the width of the raindrop 
size distribution assists in the more subtle distinction 
between transition and stratiform rainfall. 

b. Scaling analysis 

To reveal the typical shapes of the raindrop size dis- 
tributions during the passage of the squall-line system, 
we have applied the scaling-law analysis outlined in 
section 2c to the spectra from each of the three storm 
phases. We have only considered spectra associated with 
rain rates exceeding 1 mm h"'. 

In Fig. 8a the exponents y„ of power-law relation- 
ships between the mth order moment of the raindrop 
size distribution (for 0 < m < 6) and the reference 
variable R are plotted against the corresponding moment 
orders w + 1 for the 38 convective spectra considered. 
The power-law relationships have been adjusted using 
linear regression on the logarithmic values, using logR 
as the independent variable. The error bars indicate 68% 
confidence limits, estimated from 1000 bootstrap sam- 
ples (Efron and Tibshirani 1993). According to the scal- 
ing-law theory (Sempere Torres et al. 1994), a plot like 
Fig. 8a should yield a straight line with intercept a and 
slope /3. The dashed line indicates a linear regression 
between y„ and m + 1 for 2 < m s 6. The straight- 
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(-) of the Z^R relationship and of coefficient of determination r' 
(-) of the regression line are indicated as well, (b) Application of 
exponents to scale spectra and infer general raindrop size distribution 
(dots) and adjustment of theoretical parameterizations for g(x), with 
corresponding parameter values, prefactors a (-) of Z-R relation- 
ships, and coefficients of determination r' (-): exponential param- 
eterization (dashed line) and gamma parameterization (solid line). 

line behavior predicted by the scaling-law formalism 
holds reasonably well over a large part of the range of 
moment orders from 0 to 6. This is confirmed by the 
high value of the coefficient of determination r' (com- 
puted as the square of the correlation coefficient between 
y„ and m + 1 for 2 < m < 6). 

As explained in section 2c, in order to guarantee self- 
consistency, the value of /3 has been determined as the 
slope of the dashed line in Fig. 8a, and the value of a 
from the self-consistency constraint on the scaling ex- 
ponents [Eq. (18)], although the difference with the in- 
tercept of the da.shed line is small. The indicated value 
of b is the exponent of the corresponding Z-R relation- 
ship implied by the scaling-law formalism [Eq. (16)]. 

Note that this value is very close to the exponent of the 
standard NEXRAD Z-R relationship Z = SOO/?'" (Ful- 
ton et al. 1998). As we have shown in section 2c, the 
estimated value of b is independent of any assumption 
regarding the shape of the (scaled) raindrop size distri- 
bution. 

In Fig. 8b the inferred values for the scaling expo- 
nents are used to identify the shape of the corresponding 
general raindrop size distribution g(x). The scaling anal- 
ysis is successful in the sense that it eliminates a large 
part of the rain-rate-induced variability, as predicted by 
the scaling-law formalism. The fact that not all dots fall 
perfectly on one single curve indicates that one refer- 
ence variable (in this case the rain rate R) is apparently 
not able to explain all observed variability (which is a 
lot during the convective phase; see Fig. 3). Two dif- 
ferent analytical parameterizations have been fitted to 
the empirical general raindrop size distribution indicated 
by the dots: an exponential parameterization (bold 
dashed line) and a gamma parameterization (bold solid 
line). Equations (19) and (20) explain the meaning of 
the parameter values indicated in Fig. 8b (recall that fi 
= 0 for the exponential parameterization). The indicated 
values of a are the values for the prefactors of the cor- 
responding Z-R relationships implied by the scaling- 
law formalism [Eq. (15)] for the two parameterizations. 
These values are just a little bit less than that of the 
standard NEXRAD Z-R relationship. 

Also shown are the corresponding values of the co- 
efficient of determination (or model efficiency) r^ (-). 
This goodness-of-fit statistic indicates the fraction of the 
observed variance explained by the model: r^ = 1 in- 
dicates a perfect agreement between model and obser- 
vations, r^ = 0 indicates that the model does not perform 
better than the mean of the observations, and r^ < 0 
indicates a serious lack of agreement (e.g.. Mood et al. 
1974). In terms of the computed value of /•\ the gamma 
parameterization provides a better fit to the data than 
does the exponential parameterization. This is mainly 
due to a closer agreement for values of the scaled rain- 
drop diameter x smaller than 0.5. 

Similar scaling analyses have been carried out for the 
transition (Fig. 9) and the stratiform (Fig. 10) phases of 
the squall-line system. These analyses reveal that the 
shapes of the scaled spectra are wide and bent downward 
for small raindrop sizes in the leading convective line, 
narrow and slightly bent upward in the transition zone, 
and wide and strongly bent upward in the trailing strat- 
iform rain. Although the fits are reasonable (see r' val- 
ues in Figs. 9 and 10), the scaled distributions during 
the transition and stratiform phases display shapes that 
the gamma parameterization for the raindrop size dis- 
tribution is not able to accommodate very well. With 
regard to the shapes during the different phases, our 
results differ somewhat from those obtained by Sempere 
Torres et al. (2000), which may be due to the fact that 
they employed an optical spectropluviometer instead of 
a Joss-Waldvogel disdrometer (with the associated 
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deadtime problem affecting the small-drop end of the 
scaled spectra). Nevertheless, in terms of the width of 
the distributions, this is consistent with the resuhs from 
the time series analyses presented in section 3a. The 
dispersion among the scaled spectra (i.e., the scatter of 
the data points about the fitted curve) during the tran- 
sition and stratiform phases is significantly smaller than 
during the convective phase. The exponents of the re- 
sulting Z-R relationships are roughly the same for the 
leading convective line and the trailing stratiform rain 
(—1.4) and slightly larger for the transition region 
(=1.5), with prefactors increasing in this order: tran- 
sition («200), convective (=300), stratiform (=450). 
Table 1 summarizes the inferred parameter values and 
their associated uncertainties. Note the difference be- 
tween the fx values in Table 1 and those in Fig. 6c. 

c. Implications for rainfall estimation 

In this section we investigate the implications of the 
variability of the raindrop size distributions reported in 
sections 3a and 3b for single-parameter and dual-pa- 
rameter radar rainfall estimates. Figure 11a is a scat- 

terplot of the values of the radar reflectivity factor Z 
and the rain rate R shown before in Figs. 2a,b. The three 
phases of the squall line occupy distinct regions in the 
Z-R phase space. There is hardly any overlap (Steiner 
et al. 1999). To show the time dependence of the Z-R 
relation during the convective phase of the storm, the 
data points have been connected. The separate regimes 
within the convective phase that were discussed pre- 
viously are clearly distinguishable in Fig. 11a. 

We have derived power-law Z-/? relationships based 
on linear regression of logZ on logi? for each of the 
three storm phases separately and for three combinations 
(Table 2). The motivation for studying these combina- 
tions is the observation that classification schemes pro- 
posed in the literature (e.g., Steiner et al. 1995; Tokay 
and Short 1996; Ciach et al. 1997) only distinguish be- 
tween convective and stratiform precipitation. It is 
therefore important to assess the effect of classification 
of a transition phase (as a separate category, or incor- 
porated either in the convective or stratiform category) 
on the radar rainfall estimates. The coefficients obtained 
via regression are close to the ones obtained in section 
3b using the scaling-law formalism, notwithstanding 
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TABLE 1. Means and 6H7c confidence limits (obtained using 1000 
bootstrap samples) of the following parameters for the convcctivc. 
transition, and stratiform phases of the 27 May 1997 squall line: 
scaling exponents (a, P) and corresponding exponent h of the Z-H 
relationship; intercept K, (semilogarithmic) slope A of exponential fit 
to general raindrop size distribution g(x). and corresponding prcfactor 
a of the Z-R relationship; parameters K. A, and ix of gamma param- 
eterization for general raindrop size distribution g(x). and correspond- 
ing prefactor a of the Z~R relationship. 
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0.121 
1.28 

2.17 X 10' 
3.20 

209 
1.19 X 10' 

4.82 
1.73 

192 

0.186 
0.174 
1.41 

5.47 X 10' 
3.90 

287 
3.73 X 10^ 

5.66 
2.11 

264 

0.436 
0.211 
1.49 

1.03 X 10' 
4.47 

455 
1.06 X 10' 

6.60 
2.73 

413 

Transition phase (45 spectra; 2.35 mm) 
-0.197 

0.204 
1.47 

1.05 X 10" 
4.49 

180 
1.32 X 10' 

8.97 
4.57 

155 

-0.061 
0.227 
1.53 

1.19 X 10- 
4.61 

195 
2.40 X 10'' 

9.54 
5.00 

169 

0.048 
0.256 
1.60 

1.40 X 10- 
4.77 

207 
5.54 X 10' 

10.3 
5.54 

180 

Stratiform phase (60 spectra; 5.00 mm) 

a 

b 
K 

A 
a 
K 

A 

-0.015 
0.130 
1.30 

1.51 X 10' 
2.96 

389 
6.18 X 10' 

4.35 
2.00 

356 

0.199 
0.171 
1.40 

2.09 X 10' 
3.17 

464 
9.67 X 10' 

4.65 
2.17 

425 

0.395 
0.217 
1.51 

2.98 X 10' 
3.42 

545 
1.66 X 10' 

5.05 
2.39 

498 

their radically different method.s of derivation. In this 
section we employ the regression-based coefficients 
rather than the scaling-based ones to allow a direct com- 
parison with polarimetric rainfall estimators, which are 
also derived using regression (Table 3). The Z~R rela- 
tionships for the three phases separately and the mean 
relationship for the entire event are shown in Fig. 11a. 
The convective relationship and the mean event rela- 
tionship differ only a little. Also indicated in Table 2 
are the 68% confidence limits associated with the es- 
timated coefficients obtained using 1000 bootstrap sam- 
ples (Efron and Tibshirani 1993) and the associated co- 
efficients of determination in logarithmic space (i.e., 
squares of the correlation coefficients between logZ and 
log/?). High values of r', indicating that the data points 
closely follow a power-law relationship, correspond to 
narrow confidence limits. It should be noted that the 

rain rate, R (mm h   ) 

5-27-1997: dual-parameter rainfall estimation 

22 24 26 28 30 32 34 36 38 
horizontal reflectivity / rain rate, ZJR (dB) 

FIG. 11. (a) Empirical radar reflectivity-rain rate relationship for 
the 27 May 1997 squall line. Triangles indicate raindrop size distri- 
butions collected during the leading convective phase (connected with 
thin solid lines to show time dependence), circles indicate distribu- 
tions collected during the transition phase, and asterisks indicate dis- 
tributions collected during the trailing stratiform phase. The bold 
dashed line indicates the best-fit Z-R relationship for the entire event, 
the thin solid line shows the best-fit relationship for the convective 
phase, the thin dashed line is the best-fit relation.ship for the transition 
phase, and the thin dash-dotted line indicates the best-fit relationship 
for the stratiform phase (see Table 2 for corresponding values of 
prefactors, exponents, and coefficients of determination), (b) Same 
as (a) but for the empirical relationship between differential reflec- 
tivity and the (horizontal) reflectivity-rain rate ratio (see Table 3 for 
corresponding values of prefactors, exponents, and coefficients of 
determination). 

confidence limits for the prefactors and those for the 
exponents are not independent of each other. 

Figure lib shows the corresponding empirical rela- 
tionships between Z^R and Z„/R (i.e., the ratio of Z„ to 
R) for the three storm phases. Note the significantly 
reduced .scatter as compared to the empirical Z-R re- 
lationships in Fig. 11a. Except for a few outliers, all 
data points roughly follow a single curve. Interestingly, 
this curve seems to consist of two more or less straight 
lines, one with a gentle slope (corresponding to the tran- 
sition phase) and one with a steep slope (corresponding 
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TABLE 2. Means and 68% confidence limits (obtained using 1000 
bootstrap samples) of prefactors a and exponents b of the Z-/f re- 
lationship (obtained using linear regression of logZ on logff) for the 
convective (C), transition (T), and stratiform (S) phases (and com- 
binations thereof) of the 27 May 1997 squall line, and corresponding 
coefficients of determination (-). 

TABLE 3. Means and 68% confidence limits (obtained using 1000 
bootstrap samples) of prefactors c and exponents d of the R(Z„, ZJ,R) 
relationships [obtained using linear regression of logZ^R on log(Z^ 
R)} for the convective (C), transition (T), and stratiform (S) phases 
(and combinations thereof) of the 27 May 1997 squall line, and 
corresponding coefficients of determination (—). 

a in Z = aR" b'mZ = aR" cinR = 
7   - 

dinR = 
7     -"^ C   A "        ^H u     z.„ 

Phase 16% Mean 85% 16% Mean 85% J.2 

C 
T 

232 
158 

315 
178 

529 
198 

1 24 1 38 1 46 0 897 
Phase 16% Mean 85% 16% Mean 85% r^ 

1.44 1.52 1.62 0.932 C 3.06 4.29 5.25 4.53 5.44 6.01 0.919 

S 381 463 565 1.28 1.40 1.52 0.667 T 5.36 5.62 5.97 6.81 7.49 8.40 0.769 

C + T 177 189 200 1.48 1.51 1.55 0.972 S 2.84 3.06 3.28 4.25 4.54 4.81 0.884 

T + S 126 144 163 1.93 2.00 2.10 0.829 C + T 4.64 4.81 5.01 5.61 5.77 5.96 0.960 
C + T + S 273 299 323 1.40 1.43 1.47 0.917 T + S 

C + T + S 
4.67 
4.42 

4.83 
4.60 

4.99 
4.79 

5.94 
5.62 

6.12 
5.79 

6.31 
5.95 

0.930 
0.940 

to both the convective and the stratiform phases). Recall 
that transition represents a decay phase, whereas the 
convective and stratiform phases include growth. Table 
3 provides the corresponding estimated coefficients of 
the /?(Z„, ZDR) relationships, the associated 68% con- 
fidence limits obtained using 1000 bootstrap samples, 
and the corresponding coefficients of determination. The 
latter pertain to the linear regression of Z^R on ZJR in 
logarithmic space, employed to infer the reported co- 
efficients. As would be expected based on the data (Fig. 
lib), the RiZf,, ZDR) relationships for the entire event 
and for the convective and stratiform phases are quite 
similar. They are also reasonably close to a relationship 
reported by Doviak and Zrnic (1993). Only the rela- 
tionship for the transition phase deviates significantly. 
However, rain rates during that phase are very low any- 
way (Fig. 2a), so this does not seem to be a major 
obstacle for the successful application of a mean R(Z„, 
ZDR) relationship. 

Tables 4 and 5 provide the biases in the simulated 
radar rainfall estimates obtained using the derived sin- 
gle-parameter Z-R algorithms (Table 2) and dual-pa- 
rameter polarimetric algorithms (Table 3) for each of 
the storm phases and combinations thereof. The rows 
in Tables 4 and 5 correspond to the mean relationships 
presented in Tables 2 and 3, respectively. The columns 
in Tables 4 and 5 correspond to the phases of the squall 
line to which these relationships are applied. Thus, the 
entries on the diagonals of Tables 4 and 5 are the biases 
associated with the regressions presented in Tables 2 
and 3. Although these biases are small, they are gen- 
erally not zero, demonstrating the fact that (uncon- 
strained) linear regression on logarithmic values leads 
to biased estimators (e.g., Steiner and Smith 2000). 

The best Z-R algorithm in terms of overall bias is 
actually the best-fit relationship for the convective phase 
of the squall line. It outperforms both the best-fit re- 
lationship for the entire event and the "optimal" com- 
bination of three dedicated relationships for each of the 
three storm phases. It is not surprising that the "con- 
vective" Z-R algorithm performs as well as it does, 
because almost 80% of the total rainfall (27.75 out of 
35.10 mm) is produced during the convective phase of 

the squall-line system. The fact that it even performs 
better than a combination of three separate relationships 
for each of the storm phases is a result of underesti- 
mations during the convective and transition phases that 
are compensated by an overestimation during the strat- 
iform phase. 

With regard to the polarimetric algorithms, the atten- 
tion should be focused entirely on the best-fit relation- 
ship for the entire event because of its potential oper- 
ational applicability. Its bias is negligible, both for each 
of the storm phases separately and for the event as a 
whole. This is also evident from the comparison with 
the best-fit Z-R relationship for the entire event in Figs. 
12a,b. Note the close correspondence between the rain- 
fall accumulations derived from the best-fit R{Zu, Z^^) 
relationship for the entire event (circles) and those de- 
rived directly from the raindrop size spectra (bold solid 
line), as compared to those derived from the best-fit/?(Z) 
relationship (thin solid line). Although this is a prom- 
ising result, it should be realized that 1) simulating radar 
rainfall estimates from disdrometer measurements 
"does not consider radar errors and the needed dwell 
times to make the measurements" (Doviak and Zrnic 
1993), and 2) the result obtained here needs to be re- 
peatable in order to have operational significance (a re- 
mark that applies in fact not only to the polarimetric 
algorithm but to all analyses presented in this paper). 
With regard to the latter, we are currently investigating 
the potential of polarimetric algorithms on several dozen 
other severe storms. We are particularly interested in 
the interevent variability of the coefficients of the po- 
larimetric estimator. If we want this to be a robust es- 
timator, the variability of its coefficients should be small. 

The major advantage of a polarimetric algorithm over 
the traditional single-parameter Z-R algorithm in situ- 
ations of appreciable intrastorm variability of raindrop 
size distributions (such as during the 27 May 1997 squall 
line) is that it accounts for most variability using one 
single mean relationship. In case of a single-parameter 
algorithm, one would have to resort to using different 
Z-R relationships for different microphysical condi- 
tions, such as, in the case of a squall line, different 
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TABLE 4. Biases (mm) associated with single-parameter rain-rate estimates, obtained from reflectivities alone using best-fit R(Z) relationships 
(Table 2) for the convective (C), transition (T), and stratiform (S) phases (and combinations thereof) of the 27 May 1997 squall line For 
comparison, rainfall accumulations obtained from raindrop size distributions are 27.75 mm (C), 2.35 mm (T), and 5 00 mm (S) 

Bias (mm) 
R(Z) C T S C -t- T T + S C -)- T -r S 

C -0.94 -0,56 1.93 -1.51 1.37 0.42 T -0.94 0.02 3.36 -0.92 3.38 2.44 S -8.68 -1.02 0.10 -9.70 -0.92 -9 60 C -1- T -1.36 -0.05 3.15 -1.42 3.10 1 73 T -1 S -16.11 -0.39 0.53 -16.50 0.15 -15 97 
C + T -H S -3.69 -0.56 1.69 -4.25 L13 -2.56 

relationships for each of the three storm phases. The 
latter, however, would be difficult to implement in an 
operational setting because it would require a classifi- 
cation of precipitation types. A single polarimetric rain- 
fall estimation algorithm, independent of precipitation 
type, would alleviate this problem. 

4. Summary and conclusions 

The intrastorm variability of raindrop size distribu- 
tions as a source of uncertainty in single-parameter and 
dual-parameter radar rainfall estimates has been studied 
using time series analyses of disdrometer observations. 
Two rain-rate (R) estimators have been considered: the 
traditional single-parameter estimator using only the ra- 
dar reflectivity factor (Z) and a dual-polarization esti- 
mator using a combination of radar reflectivity at hor- 
izontal polarization (Z„) and differential reflectivity 
(ZDR). A case study for a squall-line system passing over 
the Goodwin Creek experimental watershed in northern 
Mississippi has been presented. The main conclusions 
of this work can be summarized as follows. 

1) The mesoscale features of the 27 May 1997 squall 
line, as observed using the Memphis WSR-88D, and 
its microphysical characteristics, as observed using 
a Joss-Waldvogel disdrometer, correspond closely. 

2) Microphysically, the leading convective line is char- 
acterized by large raindrop concentrations (>500 
drops per cubic meter), large mean raindrop sizes 
(>] mm), and wide raindrop size distributions (stan- 

dard deviations >0.5 mm), as compared to the tran- 
sition region and the trailing stratiform rain. 

3) The transition and stratiform phases have similar 
raindrop concentrations (200-500 drops per cubic 
meter) and mean raindrop sizes (0,6-0.9 mm). Their 
main difference is that the distributions are wider in 
the latter (standard deviations >0.5 mm), 

4) Fits of equivalent exponential and gamma raindrop 
size distributions according to Waldvogel's (1974) 
and Tokay and Short's (1996) methods support the 
idea of narrow (small size) spectra in the transition 
region, wider (intermediate size) spectra in the trail- 
ing stratiform rain, and even wider (large size) spec- 
tra in the leading convective line. 

5) Tokay and Short's (1996) scheme to distinguish be- 
tween tropical oceanic convective and stratiform 
rainfall docs not to apply to the midlatitude conti- 
nental squall line studied here, 

6) A scaling-law analysis (Sempere Torres et al. 1994, 
1998; Uijlenhoet 1999) reveals that the shapes of the 
scaled spectra are bent downward for small raindrop 
sizes in the leading convective line, slightly bent 
upward in the transition zone, and strongly bent up- 
ward in the trailing stratiform rain. However, these 
results should be interpreted with care, given the (yet 
unknown) sensitivity of this type of analysis to sam- 
pling fluctuations, 

7) The exponents of the resulting Z~R relationships are 
roughly the same for the leading convective line and 
the trailing stratiform rain (=1,4) and slightly larger 

^.1"^^'^. ^: ^i^'" ^""^^ associated with dual-parameter rain-rate estimates, obtained from combination of (horizontal) reflectivities and 
differential reflectivities using best-fit R(Z„. Z„„) relationships (Table 3) for the convective (C), transition (T), and stratiform (S) phases (and 
combinations thereof) of the 27 May 1997 squall line. For comparison, rainfall accumulations obtained from raindrop size distributions are 
27.75 mm (C), 2.35 mm (T), and 5.00 mm (S). 

ZOR) 

Bias (mm) 

«(Z„. c T S C -F T T -t- S C -1- T -f- S 
c 1.60 -0.06 0.53 1.54 0.47 2.08 T -9.12 0.10 -0.82 -9.02 -0.71 -9.84 S 1.24 -0.56 0.05 0.67 -0.51 0 72 C -H T 1.46 0.14 0.67 1,60 0.80 2 27 T + S -1.91 0.06 0.17 -1,85 0.22 -1 69 C + T + s 0.03 0.02 0.39 0.05 0.42 0.44 
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5-27-1997:150 raindrop size spectra 

11:00 11:30 
time,((UTC) 

5-27-1997:150 raindrop size spectra 

10:30 11:00 11:30 
tiine,((UTC) 

FIG. 12. (a) Comparison of single-parameter rain-rate estimates, 
obtained from reflectivities alone using the best-fit R(Z) relationship 
for the entire event (thin solid line), and dual-parameter rain-rate 
estimates, obtained from combination of (horizontal) reflectivities and 
differential reflectivities using the best-fit R(Z„, Z^^) relationship for 
the entire event (circles), with those computed directly from raindrop 
size distributions for the 27 May 1997 squall line (bold solid line), 
(b) Same as (a) but for rainfall accumulations. 

for the transition region (= 1.5), with prefactors in- 
creasing in this order: transition (—200), convective 
(=300), stratiform (=450). 

8) In terms of rainfall estimation bias, the best-fit mean 
RiZu, Z^g) relationship outperforms the best-fit mean 
R{Z) relationship, both for each storm phase sepa- 
rately and for the event as a whole. Further inves- 
tigations are necessary to test the performance of 
these algorithms on independent data. 

9) Ignoring transition rain as a category will not sig- 
nificantly affect rainfall estimates because rain rates 
and associated accumulations in that category are 
typically small. However, for the purpose of fitting 
Z-R relations, one should make sure that transition 
rain does not "contaminate" the convective and 
stratiform rain categories to avoid significantly bi- 
ased Z-R coefficients. 
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ABSTRACT 

The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar 
reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size 
distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in 
the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of 
the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. 
A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h"', 
collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that 
extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution 
is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in 
properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concen- 
trations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional 
to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and 
has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting 
extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain 
rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured 
and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law 
radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, 
but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate rela- 
tionship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). 
It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements 
in extreme rainfall. 

1. Introduction 

Appreciable effort has been devoted to modeling and 
observing the storm-scale structure of extreme precip- 
itation phenomena; however, their microphysical struc- 
ture has received relatively little attention (e.g., Hudson 
1963; Blanchard and Spencer 1970; Shiotsuki 1976; 
Willis and Tattelman 1989). The spatiotemporal vari- 
ability of its hydrometeor size spectra can provide us 
with more information about the physical processes 
causing extreme precipitation. As an example, consider 
the world record 1-min rainfall rate of 1872 mm h~' 
(i.e., >30 mm in 1 min), measured with a rain gauge 
in Unionville, Maryland, on 4 July 1956 (Willis and 
Tattelman 1989). What are the factors controlling the 
shapes of raindrop size distributions corresponding to 
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such extraordinary fluxes of water, and what are the 
microphysical environments that are able to produce 
them? In this paper, we provide a framework for ana- 
lyzing raindrop size distributions in extreme rainfall that 
allows us to make a first step toward tackling these 
issues. In addition, we present the results of detailed 
case studies where we apply this framework. 

An improved understanding of the microphysical 
structure of extreme precipitation is not only interesting 
in its own right. It is crucial in developing improved 
techniques for the remote measurement of extreme pre- 
cipitation as well (e.g., Baeck and Smith 1998; Tokay 
et al. 1999; Atlas et al. 2000). Since accurate measure- 
ment is the basis for any reliable prediction, this is a 
particularly relevant issue in hydrometeorological ap- 
plications (see Steiner et al. 1999; Smith et al. 1996, 
2000, 2001 for antecedents of the present study). Two 
major problems when using single-parameter radar in 
combination with a standard (fixed) relationship be- 
tween radar reflectivity (Z) and rain rate {R) for rainfall 
estimation are the overestimation of extreme "cold pro- 

' 2003 American Meteorological Society 
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cess" rain (associated with hail contamination; e.g.. 
Smith et al. 2001) and the underestimation of extreme 
"warm process" rain (associated with equilibrium rain- 
drop size distributions and the associated linearity of 
the Z-R relationship; e.g.. Smith et al. 1996; Petersen 
et al. 1999; American Meteorological Society 2000; At- 
las and Ulbrich 2000). 

The purpose of this paper is to learn more about the 
microphysical structure of extreme precipitation through 
an analysis of measured raindrop size distributions at 
the ground in extreme rainfall using an extension of a 
recently developed technique for the analysis of rain- 
drop size spectra and their properties. Section 2 presents 
a review of previous work concerning raindrop size dis- 
tributions associated with extreme rainfall conditions. 
In section 3, a formulation for the raindrop size distri- 
bution in terms of a scaling law (Sempere Torres et al. 
1994, 1998; Uijlenhoet 1999) will be extended to pro- 
vide a general framework that allows an evaluation of 
1) hypotheses regarding the shapes and variability of 
raindrop size distributions in extreme rainfall and 2) 
implications for the radar remote measurement of ex- 
treme rainfall. This framework will be applied in section 
4 to analyze ground-based raindrop size distributions 
for which the maximum rain rate approaches 500 mm 
h"', collected during the 1950s with the Illinois State 
Water Survey raindrop camera in Miami, Florida 
(Mueller 1962; Fujiwara 1965; Stout and Mueller 1968; 
Smith and de Veaux 1994). Particular attention will be 
paid to the hypothesis that the underestimation of ex- 
treme warm-process rain may be associated with rain- 
drop spectra evolving to (multimodal) equilibrium dis- 
tributions and the resulting proportionality between Z 
and R (e.g.. List 1988; Zawadzki and de Agostinho An- 
tonio 1988; Uijlenhoet 1999; Atlas and Ulbrich 2000; 
Jameson and Kostinski 2001a,b). Finally, section 5 pre- 
sents the conclusions of this work. 

2. Raindrop size distributions in extreme rainfall 

Hudson (1963) presents one of the first experiments 
designed to measure and parameterize raindrop size dis- 
tributions in high intensity storms. One of the aims of 
Hudson's study was to extend the previously reported 
analyses of Laws and Parsons (1943), already covering 
rain rates up to 150 mm h~', to even higher rain rates 
(up to 225 mm h"')- The main conclusion of his anal- 
yses is that up to rain rates of about 100 mm h' both 
the modal and the median raindrop size increased with 
increasing rain rates, whereas at higher rain rates "the 
results show a previously unreported phenomenon with 
both modal and median drop sizes decreasing [with in- 
creasing rain rates]." A closer inspection of Hudson's 
data, however, reveals that in the rain-rate range between 
50 and 150 mm h"', these characteristic raindrop sizes 
remain approximately constant. 

Blanchard and Spencer (1970), hypothesizing about 
the microphysical processes that generate raindrop size 

distributions, argue that because in "light rains" (which 
they define as events with rain rates less than 25 mm 
h ') drops are relatively sparse and most of them are 
small, both spontaneous and collisional breakup are 
probably of little importance in shaping raindrop size 
distributions. The microphysical processes that initiate 
rainfall must then be the main factor controlling the 
shape of raindrop size distributions. In heavy rain (with 
rain rates exceeding 100 mm h"'), on the other hand, 
where the spatial distribution of drops is relatively dense 
and there are larger drops, "there is a possibility that 
the drop size distribution here is determined mainly by 
raindrop breakup and very little by the microphysical 
processes that initiate the rainfall." Blanchard and Spen- 
cer provide empirical evidence for this hypothesis, both 
from their own artificial rain column experiments and 
from previously published experimental data (among 
others, those of Hudson). They find that, in the range 
of rain rates between roughly 100 and 700 mm h"', the 
median volume diameter remains relatively constant. 
They argue that "for a given intensity in heavy rain, 
we might find a steady state drop size distribution, where 
drop growth is balanced by drop breakup, that is the 
same whether it originates from marine shower clouds 
or continental thunderstorms." Mueller (1966), Srivas- 
tava (1971), Pasqualucci (1982), and Hodson (1986) 
provide additional evidence for (approximately) con- 
stant characteristic raindrop sizes during episodes of 
high rain rates. 

Blanchard and Spencer's hypothesis is supported by 
List's (1988) finding that, as a result of the compensating 
effects in the competing microphysical processes shap- 
ing raindrop size distributions, "any raindrop size dis- 
tribution will develop with time into an equilibrium dis- 
tribution regardless of the initial spectrum." On the ba- 
sis of the stationary form of the stochastic collection 
equation, List et al. (1987) show analytically that equi- 
librium raindrop size distributions are by definition the 
product of the rain rate R (or any other rainfall integral 
variable, such as Z) and a generic shape function, im- 
plying that during equilibrium conditions 1) all moments 
of the raindrop size distribution must be proportional to 
each other and 2) all characteristic raindrop sizes must 
be constant. List (1988), Zawadzki and de Agostinho 
Antonio (1988), and Atlas and Ulbrich (2000) provide 
experimental evidence for such a proportionality in per- 
sistent tropical rain. Jameson and Kostinski (2001a,b) 
interpret this linearity as evidence for what they call 
"statistically homogeneous rain." 

With regard to the shape of equilibrium distributions, 
computer simulations of the temporal evolution of rain- 
drop size distributions in both zero-dimensional (box) 
and one-dimensional (shaft) models have demonstrated 
that raindrop size distributions evolve with time to mul- 
timodal equilibrium distributions (e.g., List et al. 1987; 
Hu and Srivastava 1995). The higher the rain rate, the 
faster equilibrium is reached (Srivastava 1971; List et 
al. 1987; McFarquhar and List 1991). Empirical evi- 
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dence for multiple peaks in raindrop size distributions 
associated with extreme rain rates has been provided by 
Shiotsuki (1976), Zawadzki and de Agostinho Antonio 
(1988), and Willis and Tattelman (1989). Recently, Sau- 
vageot and Koffi (2000) have provided new (statistical) 
evidence for the occurrence of persistent multimodal 
raindrop size distributions and a conceptual model to 
explain their ("synthetic") shapes as resulting from 
overlapping rain shafts. Sheppard (1990) argues that 
some of the reported empirical evidence for multimodal 
raindrop size distributions may be due to instrumental 
artifacts associated with the Joss-Waldvogel disdro- 
meter (see also Steiner and Waldvogel 1987; Mc- 
Farquhar and List 1993). 

In summary, there is both theoretical and empirical 
support for the hypothesis that in extreme rainfall, rain- 
drop size distributions evolve toward an equilibrium- 
like state in which 1) the characteristic raindrop sizes 
(such as the median volume diameter DQ) are constants, 
independent of R (although, as we will see later, they 
may still exhibit storm-to-storm variability, resulting in 
prefactors of power-law relationships that may vary be- 
tween storms); 2) the moments of the raindrop size dis- 
tribution (such as Z and R) are proportional to each other 
(implying that the exponents of power-law relationships 
between such moments are unity); and 3) the shapes of 
the distributions may display a tendency toward mul- 
timodality (although the support for this last aspect is 
less convincing than that for the other two). If we want 
to test this hypothesis and assess its practical implica- 
tions using empirical raindrop size distributions at the 
ground, we need a methodology to extract meaningful 
information about the intrinsic shape of raindrop size 
distributions and their variability from the empirical data 
without imposing an a priori functional form, as has 
been the common approach since Marshall and Palmer's 
(1948) work [see e.g., Martinez and Gori (1999) for a 
recent example of this approach]. The next section will 
present such a methodology. 

3. Scaling-law framework for analyzing raindrop 
size distributions 

a. Scaling-law formalism 

Sempere Torres et al. (1994,1998) have demonstrated 
that many previously proposed parameterizations for the 
raindrop size distribution are special cases of a general 
formulation, which takes the form of a scaling law. In 
this formulation, the raindrop size distribution depends 
both on the raindrop diameter (D) and on the value of 
a so-called reference variable, commonly taken to be 
the rain rate (R). The generality of this formulation 
stems from the fact that it is no longer necessary to 
impose an a priori functional form for the raindrop size 
distribution. Moreover, it naturally leads to the ubiq- 
uitous power-law relationships between rainfall integral 
parameters, notably that between the radar reflectivity 

factor (Z) and R. A major advantage over previous scal- 
ing approaches (e.g., Sekhon and Srivastava 1971; Wil- 
lis 1984; Willis and Tattelman 1989) is that this ap- 
proach explicitly considers the issue of the internal con- 
sistency of parameterizations for the raindrop size dis- 
tribution (e.g., Bennett et al. 1984; Dekieu et al. 1991; 
Uijlenhoet 1999, 2001; Uijlenhoet and Strieker 1999). 

According to the scaling-law formaUsm, raindrop size 
distributions can be parameterized as (Sempere Torres 
et al. 1994, 1998; Porra et al. 1998) 

Ny{D, R) = R''g(R-^D), (1) 

where NyiD, R)dD (per cubic meter), the subscript V 
standing for volume, represents the mean number of 
raindrops with (equivalent spherical) diameters between 
D and D -^ dD (in millimeters) present per unit volume 
of air as a function of the rain rate R (in millimeters 
per hour), a and j8 are (dimensionless) scaling expo- 
nents, and g{x) is a scaled raindrop size distribution as 
a function of the scaled raindrop diameter x = R^D. 
Note that g{x) has been referred to as the "general rain- 
drop size distribution" in earlier studies dealing with 
the scaling-law formalism (Sempere Torres et al. 1994, 
1998; Porra et al. 1998; Uijlenhoet 1999, 2001; Uijlen- 
hoet et al. 2003). According to this formulation, the 
values of a and j8 and the form and dimensions of g{x) 
depend on the choice of the reference variable, but do 
not bear any functional dependence on its value. Substi- 
tution of /? = 1 mm h"' in Eq. (1) shows that Ny{D, 1) 
= g{D), in other words that g{x) represents the equiv- 
alent (i.e., scaled) raindrop size distribution at a rain 
rate of 1 mm h"' (Uijlenhoet 1999). Note that g{x) is 
not a probability density function [which will be derived 
later, see Eq. (20)]. In agreement with common practice, 
R is used as the reference variable in Eq. (1), although 
any other rainfall integral variable could serve as such 
(notably Z). The main difference between Eq. (1) and 
the normalization approaches recently proposed by Tes- 
tud et al. (2001) and Illingworth and Blackman (2002), 
is that the latter use two reference variables instead of 
only one. 

The importance of the scaling-law formalism for radar 
meteorology stems from the fact that it allows an in- 
terpretation of the coefficients of power-law Z-R rela- 
tionships in terms of the values of the scaling exponents 
and the shape of the scaled raindrop size distribution. 
By definition, Z is related to the size distribution of the 
raindrops in the radar sample volume according to 

-i D^NyiD, R) dD (2) 

(e.g., Battan 1973). Substituting the scaling law for the 
raindrop size distribution [Eq. (1)] into Eq. (2) leads to 
the power law 
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Z = aR'',    with 

r a =  I    x^g{x) dx,    and 
Jo 

b = a + ip 

(3) 

(4) 

(5) 

(Uijlenhoet 1999, 2001). Hence, the pre/ac/or of a pow- 
er-law Z-R relationship is entirely determined by the 
shape of the scaled raindrop size distribution (its sixth 
moment), whereas a linear combination of the values of 
the scaling exponents completely determines the ex- 
ponent of such a power-law Z-R relationship. Any phys- 
ical interpretation of the scaling exponents and of the 
scaled raindrop size distribution will therefore directly 
lead to a physical interpretation of the coefficients of 
power-law Z-R relationships. 

In a similar manner, the scaling-Iaw formalism leads 
to power-law relationships between any other pair of 
rainfall integral variables. In particular, the rain rate R 
(in millimeters per hour) is defined in terms of the rain- 
drop size distribution Ny{D, R) according to 

R = 6TrX 10" 
Jo 

{D)Ny{D, R) dD.      (6) 

where v(D) represents the functional relationship be- 
tween the raindrop terminal fall speed in still air v (in 
meters per second) and the equivalent spherical raindrop 
diameter D (in millimeters). The simplest and most 
widely used form of the v(D) relationship is the power 
law 

v{D) = cD\ (7) 

Atlas and Ulbrich (1977) demonstrate that Eq. (7) with 
c = 3.778 and y = 0.67 (if v is expressed in meters 
per second and D in millimeters) provides a close fit to 
the data of Gunn and Kinzer (1949) in the range 0.5 < 
D < 5.0 mm (the diameter interval contributing most 
to rain rate). Although more sophisticated relationships 
have been proposed in the literature (e.g.. Best 1950; 
Atlas et al. 1973; Beard 1976), the power-law form for 
the v{D) relationship is the only functional form that is 
consistent with power-law relationships between rain- 
fall-related variables, notably between Z and R (Sempere 
Torres et al. 1994; Uijlenhoet 1999, 2001). 

Substituting Eqs. (1) and (7) into the definition of R 
in terms of the raindrop size distribution [Eq. (6)] leads 
to the self-consistency constraints 

I 67rX10''c       x"yg{x)dx=\    and       (8) 

a + (4 + y)/3 = 1 (9) 

(Sempere Torres et al. 1994). Hence, g(x) must satisfy 
an integral equation (which reduces its degrees of free- 
dom by one) and there is only one free scaling exponent. 
These self-consistency constraints guarantee that sub- 
stitution of the parameterization for the raindrop size 

0.2 0.4 0.6 
scaling exponent, a (-) 

FIG. 1. Theoretical self-consistency relation.ship between scalina 
exponents a (-) and ;3 (-), ^ = (1 - a)/(4 + y), and coircsponding 
values of exponent b (-) of Z-R relationship, for three differen't 
values of exponent y (-) of power-law relationship between raindrop 
terminal fall speed and equivalent spherical raindrop diameter (bold 
solid line: y = 0.67; thin dashed line: y = 0.5; thin dash-dotted line: 
y = 0.8). The circle at the point with coordinates (a, fi) = (-0.273, 
0.273) corresponds to raindrop size-controlled rainfall; the plus at the 
point with coordinates (a. P) = (0, 0.214) and associated thin dotted 
lines corresponds to Marshall and Palmer's (1948) exponential rain- 
drop size distribution; the dot at the point with coordinates (a. P) = 
(1,0) corresponds to equilibrium rainfall (i.e., raindrop concentration 
controlled) conditions (adapted from Uijlenhoet 1999). 

distribution [Eq. (1)] into the defining expression for R 
[Eq. (6)] leads lo R = R. Figure 1 provides a graphical 
representation of the self-consistency constraint on the 
scaling exponents [Eq. (9)J for different values of y 
(Spilhaus 1948; Sekhon and Srivastava 1971; Atlas and 
Ulbrich 1977). Apparently, the sensitivity to different 
forms of the power-law v(D) relationship is not dra- 
matic. 

Substitution of the self-consistency constraint on the 
scaling exponents [Eq. (9)] for y = 0.67 (Atlas and 
Ulbrich 1977) into the definition of b in terms of those 
scaling exponents [Eq. (5)] yields b = 1.50 - 0.50a, 
or equivalently b = \ -\- 2.33/3 (Uijlenhoet 2001). 
Hence, the exponents of power-law Z-R relationships 
can be expressed explicitly in terms of both scaling 
exponents [which are related to each other via the self- 
consistency constraint Eq. (9)], independent of any as- 
sumption regarding the shape of the scaled raindrop size 
distribution (see the right y axis in Fig. 1). 

b. Gamma scaled raindrop size distribution 

For the purpose of this paper, consider a gamma pa- 
rameterization for the scaled raindrop size distribution: 

gix) = /a-" exp(-Aji), (10) 

which, for /x = 0, reduces to an exponential parame- 
terization. In this general form, g(x) is not an admissible 
description of the scaled raindrop size distribution, be- 
cause it does not necessarily satisfy the self-consistency 
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constraint ong(x) [Eq. (8)]. Substitution of Eq. (10) into 
(8) yields, for a given value of the parameter fi, a power- 
law relationship of K in terms of A: 

K = [671- X 10-''cr(4 + y + /j.)]-'A''*^+''.   (11) 

This is an explicit form of the self-consistency constraint 
on g(x) for the case of a gamma parameterization. For 
the applied units, with c = 3.778 and y = 0.67 (Atlas 
and Ulbrich 1977), Eq. (11) reduces to K = g.SOA"" 
for the special case of an exponential parameterization 
for gix) iij. = 0) (Uijlenhoet 2001). 

A self-consistent expression for the prefactor of a 
power-law Z-R relationship for the case of a gamma 
parameterization for g{x) can now be obtained by sub- 
stituting Eqs. (10) and (11) into (4). For the applied 
units, with c = 3.778 and y = 0.67 (Atlas and Ulbrich 
1977), this yields a = 2.10 X 10" K^'"" or, equivalently, 
a = 6.84 X 10' A~-" for the special case of an ex- 
ponential parameterization for g(x) {JJL = 0) (Uijlenhoet 
2001). The scaling-law approach for determining power- 
law relationships complements the traditional regres- 
sion-based methods (e.g., Steiner and Smith 2000). It 
has the advantage that it guarantees consistency between 
the coefficients of power-law relationships and the pa- 
rameters of the corresponding parameterization for the 
raindrop size distribution. 

It is of considerable interest to establish a link be- 
tween the scaling-law formalism and the traditional an- 
alytical parameterizations for the raindrop size distri- 
bution. For the case of the gamma raindrop size distri- 
bution, this can be achieved through substituting Eq. 
(10) into (1). This yields 

Ny(D, R) = KR"-''I>D>' exp(-A«-sD).       (12) 

Equation (12) reduces to the classical gamma parame- 
terization for the raindrop size distribution: 

Ny(D) = A^oiD" exp(-AD) (13) 

(Ulbrich 1983; Chandrasekar and Bringi 1987; Tokay 
and Short 1996; Ulbrich and Atlas 1998), if A',, and A 
depend on R according to the power laws 

A^n K-/?""""    and 

A = \R' 

(14) 

(15) 

Recall that the self-consistency of Eq. (12) requires that 
a and j3 be related to each other via Eq. (9), and K and 
A via Eq. (11). For the special case of an exponential 
parameterization for the raindrop size distribution—that 
is, Eq. (13) with ix = 0—Eq. (14) reduces to N^ = KR". 

In Marshall and Palmer's (1948) parameterization, A^„ 
= 8.00 X 10' mm"' m~\ independent of/?. This implies 
K = No = 8.00 X \0\ a = 0, A = 4.23 [Eq. (11)], 
and p = 0.214 [Eq. (9)]. The corresponding self-con- 
sistent values of Of and b are 237 [Eq. (4)] and 1.50 [Eq. 
(5)], respectively (see the bold plus and the dotted lines 
in Fig. 1). 

c. Controls on the variability of raindrop size 
distributions 

What can be said about the shape of g{x) and the 
values of the scaling exponents (and hence the coeffi- 
cients of Z-R relationships) under equilibrium condi- 
tions? It has already been mentioned in section 2 that, 
on the basis of the stationary form of the stochastic 
collection equation, Xist et al. (1987) have shown an- 
alytically that equilibrium raindrop size distributions are 
the product of the rain rate R (or any other rainfall 
integral variable, e.g., Z) and a generic shape function. 
This implies that equilibrium raindrop size distributions 
are a family of curves defined by 

NA.D. R) = Rg(D). (16) 

Comparison with Eq. (1) shows immediately that Eq. 
(16) is in fact a limiting case of the scaling law, obtained 
for Q: = 1 and j8 = 0. Equivalently, it may be stated 
that the scaling law is a generalization of Eq. (16) for 
nonequilibrium conditions. Because these values of a 
and /S satisfy the constraint imposed by Eq. (9), they 
form a self-consistent pair (indicated by the bold dot in 
Fig. 1), As such, Eq. (16) is an admitted form of the 
scaling law. Because in equilibrium a = I and /3 = 0 
independent of y, the three theoretical self-consistency 
relationships presented in Fig. 1 meet in the equilibrium 
point. Substituting a = 1 and /3 = 0 into Eq. (5) yields 
b = 1 (Fig. 1, right y axis), implying that, under equi- 
librium conditions, Z and R are proportional to each 
other; that is, Z-R relationships become linear. This has 
been noted earlier by Hodson (1986) and has been dis- 
cussed in a more formal way by List (1988). The anal- 
ysis presented here shows that this linearity is also con- 
sistent with the scaling-law formalism. 

At this point, it is useful to express the raindrop size 
distribution Ny(D, R) (in mm"' m') as the product of 
the mean (expected) raindrop concentration A'^^. (per cu- 
bic meter) and the probability density function /D(A 

R) (per millimeter) of the (stochastic) diameters of rain- 
drops present in a volume of air; that is. 

My(D. R) = Nrf,AD, R). (17) 

Such a probabilistic interpretation of the raindrop size 
distribution has been considered previously by Chan- 
drasekar and Bringi (1987), Porra et al. (1998), Sempere 
Torres et al. (1998, their appendix), Kostinski and Ja- 
meson (1999), and Uijlenhoet (1999). Jameson and Kos- 
tinski (2001a) stress its importance for the physical in- 
terpretation of empirical Z-R relationships in radar me- 
teorology. Note that, in accordance with the definition 
of the scaling law [Eq. (1)], we have retained the explicit 
dependence on the reference variable R in Eq. (17). 

The raindrop concentration A'^,- (per cubic meter) is 
by definition equal to the total integral over the raindrop 
size distribution: 

Nr r Ny(D, R) dD. (18) 
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TABLE 1. Three special cases of controls on variability of raindrop size distributions, with associated values of scaling exponents a (-) 
and yS (-), and exponents of power-law relationships between raindrop concentration A'^ and rain rate R (a + P), and between mth order 
moment of raindrop size distribution n„ and ram rate R [y,„ not to be confused with y, exponent of power-law relationship between raindrop 
terminal fall speed and diameter; Eq. (7)]: 1) raindrop size-controlled rainfall; 2) intermediate case with equal proportions of size-controlled 
and number-controlled rainfall (Marshall-Palmer rainfall); 3) raindrop concentration-controlled— that is, number-controlled—rainfall (equi- 
librium rainfall). Note that radar reflectivity factor Z is a special case of (!„, for m = 6 (adapted from Uijienhoet 1999). 

Case a(-) Pi-) « + /3(-) y„ (-) 

Size-controlled rainfall 
Intermediate 
Number-controlled rainfall 

-(3 + y)-' 
0 

1 

(3 + y)-' 
(4 + y)-' 

0 

0 
(4 + y)-' 

1 

m(3 + y)-' 
(m + l)(4 + y)-' 

1 

Substituting the scaling law for the raindrop size dis- 
tribution [Eq. (1)] into Eq. (18) leads to the power law 

Nr = gix) dx 
Jo 

R"*!". (19) 

Substituting Eqs. (1) and (19) into (17), and rearranging 
leads to 

fr,{D. R) = R-»g'(R-^D), (20) 

where g'{x) is the normalized (density) forni of g{x), 
that is, 

g'ix) = g{x) dx g{x). (21) 

Equation (20) represents a scaling law for the proba- 
bility density function of the diameters of raindrops pre- 
sent in a volume of air. These equations will allow us 
to investigate different types of control on the variability 
of raindrop size distributions. 

We have seen that under equilibrium conditions a = 
1 and yS = 0 (the bold dot in Fig. 1), as noted before 
by Sempere Torres et al. (1994). Substituting these val- 
ues into Eqs. (19) and (20) shows that this corresponds 
to a situation where the raindrop concentration TV-, is 
proportional to R and where the probability density 
function of the raindrop diameters in a volume of air 
satisfies /D(A R) = g'{D), independent of ^. The latter 
implies that under equilibrium conditions all character- 
istic raindrop sizes must be constants, independent of 
Z or R or any other moment of the raindrop size dis- 
tribution. If characteristic raindrop sizes are constants, 
then any change in Z or i? during equilibrium must be 
caused by changes in the raindrop concentration. This 
is also evident from the functional form of Eq. (16), 
which shows that raindrop size distributions for different 
rain rates are multiples of each other in equilibrium. 
Equilibrium conditions represent a limiting case, where 
all variability of the shape of the raindrop size distri- 
bution is controlled by variations in the raindrop con- 
centration, that is, where the variability is number con- 
trolled. As we have seen in section 2, this constancy of 
characteristic raindrop sizes is a property of raindrop 
size distributions that has been observed by many pre- 
vious authors during extreme rainfall conditions. As 

such, these observations suggest that extreme rain rates 
often correspond to equilibrium-like conditions. 

It follows from Eq. (19) that the other limiting case, 
that is, where all variability is controlled by variations 
in the characteristic raindrop sizes, that is, where the 
variability is size controlled, occurs if a + )3 = 0. In 
this situation, the raindrop concentration A'^,. (per cubic 
meter) is a constant independent oi R [Eq. (19)]. The 
corresponding values of the scaling exponents are a = 
-jB = -0.273 [Eq. (9)] and that of the Z-R exponent 
is 1.63 (Fig. 1, bold circle). For intermediate values of 
p, we have a combination of number and size control, 
as in Marshall and Palmer's (1948) exponential param- 
eterization for the raindrop size distribution, for which 
a = 0 as we have seen before (the bold plus and the 
dotted lines in Fig. 1). Table 1 summarizes the three 
special cases we have identified. 

d.  Estimation of scaling exponents and scaled 
raindrop size distribution parameters 

The scaling exponents a and /3 can be estimated from 
empirical raindrop size distributions using regression- 
based power-law relationships between moments of dif- 
ferent orders and the reference variable R. The moment 
of order m is defined as 

Cl„ = D"'Ny(D, R) dD. (22) 

Note that the raindrop concentration TVj- [Eq. (19)] and 
the radar reflectivity Z [Eq. (2)] are special cases of n,„ 
for w = 0 and m = 6, respectively. Similarly, the rain 
rate R [Eq. (6)] is proportional to il„ for m = 3 + y, 
if we assume a power-law v{D) relationship [Eq. (7)]. 
Substituting the scaling law for the raindrop size dis- 
tribution [Eq. (1)] into Eq. (22) leads to the power law 

Cl„. = f x'"g{x) dx jf(a+tm+t)f! (23) 

(Sempere Torres et al. 1994). Hence, the scaling ex- 
ponents a and /3 may be estimated as the intercept and 
slope of a plot of the exponent y„, = a + (m + l)j3 of 
this power law versus the order of the moment m + 1 
for different values of w (Sempere Torres et al. 1994). 
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In general, the lower-order moments, which mainly de- 
pend on the counts in the first few raindrop size bins 
(associated with the smallest drops), are very sensitive 
to instrumental limitations (Uijlenhoet 1999). The high- 
er-order moments, on the other hand, depending strong- 
ly on the counts in the larger raindrop bins, are more 
sensitive to sampling fluctuations (e.g.. Smith et al. 
1993; Uijlenhoet et al. 2002, manuscript submitted to 
J. Atmos. Set). Therefore, as a general rule, we only 
estimate the values of the scaling exponents on the basis 
of moments of orders between two and six (2 ^ m ^ 
6). In fact, to guarantee self-consistency, we only es- 
timate /3 in this manner and subsequently invoke the 
constraint on the scaling exponents [Eq. (9)] to estimate 
a. 

We employ a moment method developed by Uijlen- 
hoet (1999) to estimate self-consistent values of the pa- 
rameters of the scaled raindrop size distribution g{x). 
Effectively, this method uses the moments of orders 4 
-I- y and 5 + y (with y = 0.67) of g{x) to estimate A 
and /A. This corresponds closely to the moment orders 
(i.e., central in the range 0-6) that are conraionly used 
to estimate the parameters of the gamma raindrop size 
distribution (e.g., Tokay and Short 1996; Ulbrich and 
Atlas 1998). The corresponding self-consistent value of 
K is subsequently estimated using Eq. (11). 

In summary, the scaling-law formalism allows a sep- 
aration of the effects of the variability of rainfall integral 
variables from changes in the form of an intrinsic rain- 
drop size distribution. In other words, it separates the 
effects of changes in the scale of the raindrop size dis- 
tribution from those in its shape. The parameters con- 
trolling the scale and the shape of the scaled raindrop 
size distribution are directly related to the microphysical 
processes producing extreme precipitation. All effects 
of the variability of rainfall integral variables are en- 
tirely contained in the values of the scaling exponents. 
The values of these exponents determine whether it is 
the variability of the raindrop sizes or the variability of 
the raindrop concentration (or some combination there- 
of), which controls the variability of the raindrop size 
distribution. In general, the closer jS is to zero (i.e., the 
closer b is to one), the more pronounced is the relative 
contribution of number-controlled variability (Fig. 1). 
In other words, the values of P and b are measures of 
how far the raindrop size distributions under consid- 
eration are away from equilibrium (Uijlenhoet 1999). 
The remaining challenge is now to try to relate the 
values of the scaling exponents and those of the param- 
eters of the scaled raindrop size distribution to the (mi- 
cro) physical processes shaping raindrop spectra during 
conditions of extreme rainfall. Although tackling this 
ambitious issue is beyond the scope of this paper, a first 
step toward understanding the variability of ground- 
based raindrop size distributions in extreme rainfall will 
be taken in the case studies presented in the next section. 

4. Scaling analysis of Miami ISWS raindrop 
camera data 

In this section, scaling analyses of raindrop size dis- 
tributions corresponding to maximum rain rates reach- 
ing almost 500 mm h"' are presented. The data have 
been collected in Miami, Florida, from 20 August 1957 
through 14 August 1958, using the IlUnois State Water 
Survey (ISWS) raindrop camera. This instrument pro- 
vides 1-min information about the numbers of drops in 
75 diameter intervals of 0.1-mm width, from 0.5 to 7.9 
mm, in an approximately 1-m^ sample volume [see 
Jones (1992) for a more detailed description of the work- 
ings of the raindrop camera]. Note that wind sorting 
may be a source of error for the ISWS raindrop camera, 
with the effect of reducing the number of drops being 
sampled (Rinehart 1983). The Miami dataset comprises 
a total of 2506 1-min spectra (Mueller 1962; 1966), that 
is, almost 42 h of rainfall. Previous analyses involving 
this dataset include the ones presented by Fujiwara 
(1965), Stout and Mueller (1968), and Smith (1993). 

a. Global analysis 

Figures 2-5 present the results of a global analysis 
of the data, that is, a climatological analysis of the da- 
taset as a whole, without regard to its internal temporal 
structure. To investigate the possible emergence of equi- 
librium-like conditions as rain rates increase toward ex- 
treme values, the rain-rate dependence of the scaling 
exponents and the parameters of the scaled raindrop size 
distribution has been determined. Concretely, the scal- 
ing methodology presented in section 3 has been applied 
to those spectra in the Miami ISWS raindrop camera 
dataset for which rain rates exceed given thresholds of 
1, 10, and 100 mm h"' (Figs. 2, 3, and 4, respectively). 

1) GENERAL OBSERVATIONS 

In Figs. 2a, 3a, and 4a the exponents y„ of power- 
law relationships between the mth order moment of the 
raindrop size distribution (for 0 ^ /n ^ 6, in steps of 
0.5) and the reference variable R are plotted against m 
+ 1 for the three rain-rate thresholds considered. The 
power-law relationships have been adjusted using linear 
regression on the logarithmic values, using logi? as the 
independent variable. The error bars indicate 68% con- 
fidence limits associated with the inferred values of y„, 
estimated from 100 bootstrap samples (Efron and Tib- 
shirani 1993). If the sampling distributions of y„ would 
be normal (Gaussian), then the 68% confidence limits 
would correspond to an interval from minus to plus one 
standard deviation about the mean. The sampling un- 
certainties associated with Figs. 2a and 3a are negligible 
compared to those associated with Fig. 4a. This is be- 
cause the number of data points involved in estimating 
the power-law exponents in Fig. 4a is significantly less 
than those in Figs. 2a and 3a (139 versus 2341 and 1131, 
respectively). 
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FIG. 2. Global scaling analysis for Miami ISWS raindrop camera 
data for rain-rate threshold of 1 mm h '. (a) Estimation of scaling 
exponents (a, /3) as intercept and slope of plot of exponents y„ (of 
power laws with /?) vs order of moment m + 1 for 2 s m £ 6 (error 
bars indicate 68% confidence limits obtained using bootstrap method). 
Corresponding values of exponent fe (-) of Z-R relationship and of 
coefficient of determination r' (- ) of regression line are indicated 
as well, (b) Application of exponents to scale spectra and to infer 
scaled raindrop size distribution (dots) and adjustment of theoretical 
parameterizations for gi,x). with corresponding parameter values, pre- 
factors a (-) of Z-R relationships, and coefficients of determination 
r' (-): exponential parameterization (dash-dotted line) and gamma 
parameterization (dashed line). For comparison. List's (1988) param- 
eterization for three-peak equilibrium distribution (solid line) is 
shown as well. 

According to the scaling-law theory (Sempere Torres 
et al. 1994), plots like Figs. 2a, 3a, and 4a should yield 
straight lines with intercepts a and slopes /3 [Eq. (23)J. 
The dashed lines indicate linear regressions between 7„, 
and m + 1 for 2 < W2 < 6. As explained in section 3d, 
in order to guarantee self-consistency, the values of /3 
have been estimated as the slopes of these regression 
lines and the values of a from the self-consistency con- 
straint on the scaling exponents |Eq. (9)]. The indicated 
values of h are the exponents of the corresponding Z- 
R relationships implied by the scaling-law formalism 
[Eq. (5)]. The straight-line behavior predicted by the 

B 
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%^ ^10' 
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0        0.5 1 1.5        2        2.5        3        3.5        4        4.5        5 
X = 0/RP 

FIG. 3. Same as Fig. 2, but for rain-rate threshold of 10 mm h"'. 

scaling-law formalism holds reasonably well, in partic- 
ular for wj + 1 > 3. This is confirmed by the high values 
of the coefficient of determination r- (computed as the 
square of the correlation coefficient between y„ and m 
+ 1 for 2 < /n ^ 6). The curvature of the plots in Figs. 
2a-4a may be indicating that one single-scaling expo- 
nent does not suffice to explain all variability of the 
moments of the Miami raindrop size distributions. In 
addition, there may be an instrumental effect at the 
small-diameter end of the spectra associated with the 
manual analysis of the drop camera data and wind ef- 
fects on the samples collected. 

In Figs. 2b, 3b, and 4b the inferred values for the 
scaling exponents are used to identify the shapes of the 
corresponding scaled raindrop size distributions g{x). 
The fact that not all data points fall perfectly on one 
single curve indicates that one reference variable (in 
this case the rain rate R) is not able to explain all ob- 
served variability. However, the appreciable amount of 
scatter present in Fig. 2b, for instance, should not be 
regarded as surprising, because what we try to do here 
is explain all variability present in over 2000 individual 
raindrop size spectra using only one single explanatory 
variable (/?). 
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FIG. 4. Same as Figs. 2 and 3, but for rain-rate threshold of 100 
mm h"'. 

The "streaky" nature of the empirical scaled raindrop 
size distributions is an artifact of the data analysis. The 
streaks correspond to single count raindrop size bins 
that reappear for spectra with widely varying rain rates. 
The amount of curvature of the streaks is related to the 
combined scaling of the x axis and the y axis and is 
therefore determined by the values of the scaling ex- 
ponents. Compare for instance the direction of the 
streaks in Figs. 2b and 3b with those in Fig. 4b, for 
which the scaling of the x axis is almost absent because 
/3 = 0 (Fig. 4a). The scattered, streaky appearance of 
these figures is entirely consistent with previously pub- 
lished results of scaling analyses (e.g., Sempere Torres 
et al. 1994, 1998). 

Two different analytical parameterizations have been 
fitted to the empirical scaled raindrop size distributions 
indicated by the data points in Figs. 2b-4b (following 
the procedure outlined in section 3d): an exponential 
parameterization (bold dash-dotted line) and a gamma 
parameterization (bold dashed line). Equations (10) and 
(12) explain the meaning of the indicated parameter 
values (recall that /A = 0 for the exponential parame- 
terization). The indicated values of a are the prefactors 

of the corresponding Z-i? relationships implied by the 
scaling-law formalism [Eq. (4)] for the two parameter- 
izations. Note that these differ by more than 10% de- 
pending on whether one assumes an exponential or a 
gamma functional form for g{x). For comparison, List's 
(1988) approximation to the three-peak equilibrium dis- 
tribution as the sum of three gamma distributions is 
included in Figs. 2b-4b as well. Also shown are the 
corresponding values of the coefficient of determination 
(or model efficiency) r^ (-). This goodness-of-fit sta- 
tistic indicates the fraction of the observed variance ex- 
plained by the model: r^ = 1 indicates a perfect agree- 
ment between model and observations, r^ = 0 indicates 
that the model does not perform better than the mean 
of the observations, and r^ < 0 indicates a serious lack 
of agreement (e.g.. Mood et al. 1974). 

2) SCALING EXPONENTS AND SCALED RAINDROP 

SIZE DISTRIBUTIONS 

The difference between employing a threshold of 1 
mm h~' or one of 10 mm h"' in the scaling analysis is 
not very pronounced, either in terms of the inferred 
scaling exponents (Figs. 2a and 3a), or in terms of the 
identified scaled raindrop size distributions (Figs. 2b and 
3b). However, as the rain-rate threshold increases from 
10 to 100 mm h"', the value of the scaling exponent )3 
decreases roughly from 0.1 to 0 (Fig. 4a). This indicates 
a change from a combination of size- and number-con- 
trolled variability to a situation where the rainfall var- 
iability is almost purely number controlled, consistent 
with equilibrium conditions (Fig. 1). Figure 4a shows 
that in this situation all moments of the raindrop size 
distribution are approximately proportional to each oth- 
er. Hence, their relationships are linear, consistent with 
the equilibrium hypothesis (section 3c). 

The shape of the scaled raindrop size distribution re- 
flects a similar behavior (Figs. 2b-4b). It also changes 
relatively little when the rain-rate threshold is increased 
from 1 to 10 mm h"-', while it changes much more 
markedly when the threshold is increased from 10 to 
100 mm h"'. Table 2 summarizes the identified scaling 
exponents and parameters of exponential and gamma 
fits to the empirical scaled raindrop size distributions 
and their associated uncertainties for the three rain-rate 
thresholds. Note how the uncertainties increase as the 
rain-rate threshold increases and the number of spectra 
in the sample decreases. Of the different parameters 
listed in Table 2, the "normalization" parameter K 
seems to be the most sensitive to sampling errors. 

Figure 5 provides a direct graphical representation of 
the effect of increasing the rain-rate threshold on the 
values of the scaling exponents (top left-hand side) and 
the parameters of exponential (top right-hand side) and 
gamma (bottom four panels) fits to the empirical scaled 
raindrop size distributions. The rain-rate threshold is 
increased in 5 mm h"' steps from 0 to 100 mm h~'. 
The error bars again indicate 68% confidence limits 
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FIG. 5. Dependence of values of scaling exponent /3 {-), parameters of exponential (top right) 
and gamma parameterizations (bottom four panels) for scaled raindrop size distribution g(x) 
and corresponding coefficients of Z-R relationships on value of rain-rate threshold for Miami 
ISWS ramdrop camera data (error bars indicate 68% confidence limits obtained using bootstrap 
method). In the top panels * is the Z-R exponent and a is the Z-R prefactor. 

based on 100 bootstrap samples, increasing gradually 
for all parameters as the rain-rate threshold increases 
and the sample size decreases. The "curves" in Fig. 5 
should not be interpreted as functional relationships. 
They demonstrate the change in estimated parameter 
values as the rain-rate threshold increases, that is, if the 
analysis is limited to those raindrop size spectra that 
correspond to rain rates exceeding a given threshold. 

The scaling exponent ^ is seen to increase as the rain- 
rate threshold increases from 0 to 10 mm h"', and sub- 

sequently decreases steadily to almost its equilibrium 
value of zero (actually 0.009, see Fig. 4a) for a rain- 
rate threshold of 100 mm h ' (Fig. 5, top left-hand side). 
Because Eq. (15) with /3 = 0 implies A « A, the semi- 
logarithmic slope of an exponential fit to the Miami data 
[i.e., A in Eq. (13), with fi = 0] nearly becomes a 
constant, independent of rain rate, for rain rates ex- 
ceeding 100 mm h ' (actually A = A = 1.73 mm '; 
see Fig. 4b). This is consistent with Mueller's (1966) 
finding, for the same dataset, that "at Miami the slope 
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TABLE 2. Means and 68% confidence limits (obtained using boot- 
strap method) of the following parameters for rain-rate thresholds of 
1, 10, and 100 mm h"' applied to Miami ISWS raindrop camera data: 
scaling exponents (a, ;8) and corresponding exponents b of Z-R re- 
lationship; intercept K and (semilogarithmic) slope A of exponential 
fit to scaled raindrop size distribution gix); corresponding prefactor 
a of Z-R relationship (with /A = 0); parameters K, A, and /A of gamma 
parameterization for scaled raindrop size distribution g(x); corre- 
sponding prefactor a of Z-R relationship. 

Parameter 16% Mean 85% 

R> 1 mm h-' (2341 spectra) 

General a 0.504 0.517 0.531 
P 0.100 0.103 0.106 
b 1.23 1.24 1.25 

Exponential K 1.22 X 10' 1.26 X 10' 1.33 X 10' 
A 2.83 2.85 2.88 
a 582 596 607 

Gamma K 9.33 X 10= 1.12 X 10" 1.37 X 10" 
A 4.93 5.12 5.31 

M 3.46 3.72 3.98 
a 514 527 538 

R> K mm h-' (1131 spectra) 

General a 0.385 0.409 0.444 
J3 0.119 0.127 0.132 
b 1.28 1.29 1.31 

Exponential K 1.68 X 10' 1.90 X 10' 2.06 X 10' 
A 3.03 3.11 3.16 
a 467 487 517 

Gamma K 7.25 X 10' 1.03 X 10" 1.34 X 10" 
A 4.45 4.76 5.01 

M 2.16 2.49 2.79 
a 422 443 470 

R > 100 mm h"' (139 spectra) 

General a 0.817 0.960 1.13 
P -0.028 0.009 0.039 
b 0.94 1.02 1.09 

Exponential K 50 122 260 
A 1.43 1.73 2.03 
a 1.31 X 10' 1.91 X 10' 2.98 X 10' 

Gamma K 39 152 471 
A 2.11 2.58 3.07 

M 2.04 2.31 2.62 
a 1.20 X 10' 1.75 X 10' 2.71 X 10' 

remains constant or even increases slightly with large 
values of R" Note that the Marshall-Palmer value for 
)3 is 0.214 (section 3b, Fig. 1). Recall that /S determines 
a via the self-consistency constraint on the scaling ex- 
ponents [Eq. (9), Fig. 1]. All values in Fig. 5 correspond 
to the strongly number-controlled convective regime 
(Sempere Torres et al. 1998). 

The parameter A of the exponential parameterization 
for g{x) follows a similar behavior as )8 (Fig. 5, top 
right-hand side), with increasing values for rain-rate 
thresholds between 0 and 10 mm h"' and decreasing 
values for thresholds between 10 and 100 mm h"'. Re- 
call that A determines K via the self-consistency con- 
straint Eq. (11), with ^t = 0. One should be careful 
when trying to find a physical interpretation for the 
correspondence between j8 and A. Their relationship is 
strongly influenced by the fact that the units of A depend 

on the value of j8 [Eq. (15)], causing spurious corre- 
lations (Mood et al. 1974). Note that, for the units em- 
ployed here, the Marshall-Palmer value for A is 4.23 
(section 3b). The values in Fig. 5 are all significantly 
smaller, indicating wider raindrop size distributions and 
larger mean raindrop diameters at a given rain rate than 
what would result from the Marshall-Palmer parame- 
terization, which is generally considered typical for 
stratiform conditions. This is consistent with the pre- 
vious "convective" interpretation of ;8. 

Specifically, for a rain-rate threshold of 100 mm h^^ 
(when /3 « 0), A « A = 1.73 mm"' (independent of 
rain rate), as we have seen before (Fig. 4b). For ex- 
ponential raindrop size distributions all characteristic 
raindrop sizes are inversely proportional to A, notably 
the mean raindrop diameter jUp = A~' and the median- 
volume diameter D^ = 3.67A-' (e.g., Uijlenhoet and 
Strieker 1999). This implies that if the exponential dis- 
tribution is assumed a reasonable description of the data, 
IXo ~ 0.56 mm and Dp = 2.12 mm for rain rates ex- 
ceeding 100 mm h-' (both characteristic sizes are ap- 
proximately constants, in agreement with the equilib- 
rium hypothesis). 

The parameters K and A of gamma fits to the empirical 
scaled raindrop size distributions decrease nearly mono- 
tonically as the rain-rate threshold increases from 0 to 
100 mm h"' (Fig. 5, middle two panels). The parameter 
/i (bottom left-hand side), on the other hand, decreases 
rapidly from roughly 4 to 2 as the rain-rate threshold 
increases from 0 to 30 mm h"', then increases slowly 
to a value smaller than 2.5 as the rain-rate threshold 
increases further towards 100 mm h''. Between the 
thresholds of 10 and 100 mm h ', the value of /A always 
stays between 2 and 2.5. Some care should be exercised 
here however, as instrumental effects such as under- 
counting of small drops can cause jx to be always biased 
positive (Ulbrich and Atlas 1998). Since the parameter 
fi is inversely related to the relative width of the rain- 
drop size distribution, the spread of the raindrop sizes 
relative to the mean drop size is roughly constant for 
rain rates exceeding 10 mm h"'. 

3) RADAR REFLECTIVITY-RAIN RATE 
RELATIONSHIPS 

Figures 2-5 also provide insight into the implications 
of these analyses for the corresponding (climatological) 
Z-R relationships. Figures 2a-4a and the top left-hand 
side of Fig. 5 (right y axis) show that the exponents b 
of power-law Z-R relationships for the Miami data 
roughly decrease from 1.3 to 1 as the rain-rate threshold 
increases from 0 to 100 mm h"', independent of the 
choice of parameterization for g(x). Figures 2b-4b and 
the top right-hand side of Fig. 5 (right y axis) show that 
in case of an exponential form for gix), the correspond- 
ing prefactors a roughly increase from 500 to 2000. In 
case of a gamma form for gix), the general tendency is 
the same, although the values of a are consistently of 
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FIG. 6. Empirical Z-/? relationships for Miami, FL (dots, circles), 
as compared to Marshall-Palmer Z-R relationship (Z = 200/?'", dash- 
dotted lines), standard NEXRAD Z-R relationship (Z = 300/?", 
dashed lines), and nearly linear Z-R relationship (Z = 1.75 X 
10' /?">=, solid lines) resulting from scaling analysis using rain-rate 
threshold of 100 mm h"' and gamma parameterization for g(.r) (par- 
allel dotted lines indicate direction of linear Z-R relationships), (a) 
All 2506 raindrop size distributions regardless of rain rate, (b) Mag- 
nification of 139 raindrop size distributions with rain rates exceeding 
lOOmmh I. 

the order of 10% smaller, as is evident from Figs. 2b- 
4b and Fig. 5 (bottom right-hand side). 

The scaling exponents and scaled raindrop size dis- 
tribution parameters inferred from a global scaling anal- 
ysis using a rain rate threshold of 1(X) mm h"' and a 
gamma parameterization for ^{x) lead to the nearly lin- 
ear Z-R relationship Z = 1.75 X 10' ^f'''^ (Figs. 4a,b). 
Although the linearity of this relationship is consistent 
with the equilibrium hypothesis, its prefactor differs sig- 
nificantly from the 742 speculated by List (1988) to be 
"a universal constant for steady tropical rain." This 
suggests that, whereas the Z-R exponent h seems to have 
a fixed value of one, the 7.-R prefactor a under equi- 
librium conditions may not be considered constant. 
Since a is equivalent to the sixth moment of g{x) [Eq. 
(4)], this suggests that ^(x) cannot be considered a fixed 

TARIE 3. Goodncss-of-fit statistics corresponding to different sub- 
samples of Miami ISWS raindrop camera data (Fig". 6) for Marshall- 
Palmer Z-R relationship (Z = 200/?^'), standard NEXRAD Z-R re- 
lationship (Z = 300/?'-'), and nearly linear Z-R relationship (Z = 
1.75 X 10'/?'"=) resulting from scaling analysis using rain-rate thresh- 
old of 100 mm h ' and gamma parameterization for ^(A): mean bias 
error (mbc), rmse, and coefficient of determination (r-). 

Relationship 
Mbe 

(mm h"') 
Rmse 

(mm h'') 

Z = 200/?'" 
Z = 300/?'^ 
Z = 1.75 X 10'/?" 

R > 100 mm h 
Z=200/?"' -66.4 
Z=300R" -16.0 
Z= 1.75 X 10'/?'°- 18.6 

R > 200 mm h- 
Z=200/?>" -141 
Z = 300/?'^ -64.9 
Z = 1.75 X 10' /?'"• 14.7 

All 2506 spectra 
-5.62 23.2 
-0.265 19.6 
-2.97 28.5 

(139 spectra) 
86.1 
54.9 
82.7 

(32 spectra) 

151 
79.6 
93.1 

JlSiL. 

0.733 
0.809 
0.597 

-0.234 
0.498 

-0.139 

-2.04 
0.I5I 

-0.162 

function for equilibrium conditions either The larger 
prefactor we find, as compared to List (1988), is indic- 
ative of larger raindrop diameters at the same rain rate 
(Steiner and Smith 1998). 

Figure 6 and Table 3 compare the performance of the 
nearly linear Z-R relationship Z = 1.75 X 10' R'-'^- 
(solid line) with two standard Z-R relationships: the 
Next Generation Weather Radar (NEXRAD) Z-R re- 
lationship (Fulton et al. 1998) Z = 300/?' ^ (dashed line) 
and the Marshall-Palmer Z-R relationship (Marshall et 
al. 1955) Z = 200/?"^ (dash-dotted line). In addition to 
the coefficient of determination r^ (-), Table 3 also 
provides values of the mean bias error (mbe; mm h"') 
and of the root-mean-square error (rmse; mm h"^'). Fig- 
ure 6a qualitatively shows that the overall fit of the 
standard NEXRAD Z-R relationship (dashed line) to all 
2506 raindrop size distributions regardless of rain-rate 
is much better than that of the nearly linear relationship 
(solid line) and also slightly better than the Marshall- 
Palmer relationship (dash-dotted line). However, if the 
analysis is restricted to the 139 raindrop size distribu- 
tions with rain-rates exceeding 100 mm h' (Fig. 6b), 
then the nearly linear Z-R relationship does a very good 
job as compared to the two standard relationships, in 
particular at the extreme rain-rate end. Interestingly, 
both in terms of the fraction of explained variance (r^) 
and in terms of the rmse, the standard NEXRAD Z-R 
relationship outperforms the other two on all occasions, 
even if we limit the analysis to the 32 raindrop size 
distributions with rain rates exceeding 200 mm h ' (Ta- 
ble 3). For these extreme rain rates, however, the nearly 
linear Z-R relationship derived on the basis of the scal- 
ing-law formalism yields by far the smallest bias. As 
we will see later (Fig. 12), the requirement of a small 
bias error is of fundamental importance when estimating 
rainfall volumes over entire events. 
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(S-13-19S8: total rainfall = 59 mm) 
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FIG. 7. Time series analysis for 13 May 1958 event of Miami ISWS 
raindrop camera data, (a) Temporal evolution of rain rate R (solid 
line) and radar reflectivity factor Z (daslied line), with corresponding 
linear correlation coefficient r^g (-). (b) Temporal evolution of mean 
fio (bold solid line) and standard deviation <TO (thin solid line) of 
raindrop diameters [with corresponding average coefficient of vari- 
ation CVj, (-)] and of raindrop concentration (bold dashed line). 

b. Analysis of two contrasting extreme rainfall events 

The contrasting behavior of two individual extreme 
rainfall events is exemplified in Figs. 7-12. The 13 May 
1958 event (Figs. 7 and 8) exhibits a maximum 1-min 
rain rate of 492 mm h"' and a maximum 1-min liquid 
water content of 18.95 g m"^ (as derived from the spec- 
tra), both absolute maxima for the entire ISWS raindrop 
camera dataset (which includes, apart from Miami, a 
dozen other locations around the world). The synoptic 
weather type for this event is characterized by Mueller 
(1962) as "trough aloft." The 21 June 1958 event (Figs. 
9 and 10), on the other hand, contains the largest 1-min 
raindrop concentration (9091 drops per cubic meter) of 
the entire dataset. Its maximum 1-min rain rate is 284 
mm h-'. Mueller (1962) characterizes this event as "air 
mass." 

1) 13 MAY 1958 EVENT 

Figure 7a provides the time series of the rain rate R 
(solid line) and the radar reflectivity Z (dashed line) as 

5 10 16 20 
time since onset of event, t (min) 

(838comits) 
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P = 0.025 K=15S          K = 226 

A b = 1.06 1 = 1.82         X = 2.84 
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FIG. 8. Time series and scaling analyses for 13 May 1958 event 
of Miami ISWS raindrop camera data, (a) Temporal evolution of 
entire spectra [grayscale indicates number of raindrops in size inter- 
val, with darker shades showing greater density (arbitrary units); solid 
line is the median volume diameter Dg (mm)], (b) Scaled raindrop 
size distributions (dots) obtained using indicated values of exponents 
(a, P) [corresponding values of exponent b (-) of Z-R relationship 
and of coefficient of determination r^ (-) of regression line are in- 
dicated as well] and adjusted parameterizations for g{x), with cor- 
responding parameter values, prefactors a (-) of Z-R relationships, 
and coefficients of determination r^ (-): exponential parameteriza- 
tion (dash-dotted line) and gamma parameterization (dashed line). 
For comparison. List's (1988) parameterization for three-peak equi- 
librium distribution (solid line) is shown as well. 

derived from the raindrop spectra. To demonstrate the 
striking proportionality between Z and R for this event, 
linear axes are used for both variables. The fact that Z 
and R are almost perfectly linearly related throughout 
the event (the linear correlation coefficient r between Z 
and R equals 0.948) provides evidence for equilibrium- 
like conditions during this event. This means that the 
rainfall variability must be strongly, if not entirely, num- 
ber controlled (section 3c, Fig. 1). 

Figure 7b shows the time evolution of the mean rain- 
drop diameter /u.^ (bold solid line), the standard devi- 
ation of the raindrop diameters a^ (thin solid line), and 
the raindrop concentration A^j. (bold dashed line) during 
the event. The standard deviation closely follows the 
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(6-21-1958: total rainfall = 69 mm) 
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FIG. 9. Same as Fig. 7, but for 21 Jun 1958 event. 

mean, indicating a roughly constant coefficient of var- 
iation (average CVp = 0.32). The mean diameter does 
not change dramatically during the period of maximum 
rain rate, between 3 and 10 min after the onset of the 
event, neither does the median volume diameter D„ (Fig. 
8a, bold line). This indicates that the peak rain rate, 
which is approximately 3-5 times as large as the rain 
rates directly before and after the peaks (Fig. 7a), must 
have been caused mainly by a significant increase in the 
raindrop concentration, pointing toward a situation of 
number-controlled variability. 

This is essentially confirmed by Fig. 7b, .showing a 
1-min increase of the raindrop concentration from about 
1000 drops per cubic meter to between 3000 and 4000 
drops per cubic meter The rain rate R is proportional 
to the raindrop concentration A^^^ and, assuming y = 
0.67, to the 3.67th power of any characteristic raindrop 
size [see Eqs. (6) and (7)], such as the mean diameter 
MD or the median volume diameter DQ. Hence, for com- 
parison, to achieve a comparable tripling of the rain 
rates without increasing the raindrop concentrations 
would have required an approximately 35% increase in 
MD or £)(j (or any other characteristic raindrop size). 

Interestingly, the second (smaller) rainfall peak of just 
over 100 mm h'', which occurs between 17 and 20 min 

(6-21-1958: 26 spectra) 
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FIG. 10. Same as Fig. 8, but for 21 Jun 1958 event. 

after the onset of the event, has been caused mainly by 
increases of the characteristic raindrop sizes /x„ and D^ 
(Figs. 7b and 8a), with the raindrop concentration re- 
maining more or less constant (Fig. 7b). This points 
towards a relatively rare situation of size-controlled var- 
iability. Figure 8a, which gives the temporal evolution 
of the raindrop size spectra during the event, shows that 
the mentioned increases of the characteristic raindrop 
sizes (and the relatively small raindrop concentrations 
during this time period, see Fig. 7b), are apparently 
caused by a depletion of small raindrops (possibly as- 
sociated with size sorting due to wind effects). 

Figure 8b provides the results of the scaling analysis 
applied to the raindrop size distributions of Fig. 8a. The 
value of /3 («0) and b («1) provide further evidence 
for the overwhelming influence of number-controlled 
rainfall variability during this event. The values of the 
parameters of the exponential and gamma parameteri- 
zations fitted to the empirical g{x) resemble those of the 
global scaling analysis for a rain-rate threshold of 100 
mm h"' (Fig. 4b). 

2) 21 JUNE 1958 EVENT 

Figures 9 and 10 repeat the same analysis, but now 
for the 21 June 1958 event. The fundamental difference 
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between both events, besides the differences in the max- 
imum rain rates, is that for the 13 May 1958 event the 
mean raindrop diameter is about 2 mm, whereas for the 
21 June 1958 event it is of the order of 1 mm (Figs. 7b 
and 9b). These smaller mean diameters are compensated 
to a certain extent by tremendous bursts of the raindrop 
concentration, occasionally approaching 10 000 drops 
per cubic meter (Fig. 9b). A similar contrast exists be- 
tween the modal raindrop diameters for both events, that 
is, the diameters for which the peaks of the raindrop 
size distributions occur (see the dark shaded areas in 
Figs. 8a and 10a). The median volume diameters show 
a less pronounced difference (Figs. 8a and 10a), al- 
though Do remains surprisingly constant during the 21 
June 1958 event (except for one minute, possibly due 
to a sampling effect or a problem associated with the 
manual analysis of the drop camera data). In summary, 
the 13 May 1958 event is characterized by broad gamma 
spectra (Fig. 8b), the 21 June 1958 event by narrow 
exponential spectra (Fig. 10b). 

Figure 9a shows again a strong linear relationship 
between Z and R, although not as strong as for the 13 
May 1958 event. The hnear correlation coefficient be- 
tween Z and 7? is 0.799 in this case. Figure 9b shows a 
largely constant mean raindrop diameter and standard 
deviation, except for one interval. The average coeffi- 
cient of variation is slightly larger than for the previous 
event (average CVo ~ 0-51)- What is striking about Fig. 
9b is the seemingly negative correlation between the 
raindrop concentration and the mean raindrop diameter 
(and its standard deviation). This indicates that the 
bursts of raindrop concentration in Fig. 9b are not as 
evenly distributed over all raindrop sizes as true equi- 
librium conditions would demand, but must be concen- 
trated on the small-diameter end of the spectra. Figure 
10a seems to confirm this hypothesis (see the dark shad- 
ed areas corresponding to the Nj- bursts in Fig. 9b). 
Hence, although the rainfall variability during this event 
is strongly number controlled, it is not entirely number 
controlled. This also explains the smaller linear corre- 
lation coefficient in Fig. 9a and the larger values of j8 
and b in Fig. 10b, as compared to the previous event. 
The three-peak equiUbrium distribution of List (1988) 
fits the data shown in Fig. 10b relatively well (much 
better than for the 13 May 1958 event; see Fig. 8b) and 
also the prefactors of the Z-R relationships are closer 
to List's "universal constant" (a = 742). 

3) RADAR REFLECTIVITY-RAIN RATE 
RELATIONSHIPS 

The Z-R relationships derived on the basis of the 
scaling-law formalism for both events, obtained using 
a gamma fit to the scaled raindrop size distribution, are 
Z = 1.54 X 10^ R'"'' (13 May 1958) and Z = 8537?' '^ 
(21 June 1958). Although there is empirical evidence 
that the rainfall variability during both events is strongly 
number controlled (although stronger during the first 

(5-13-1958:24 spectra) 
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FIG. 11. Empirical Z-/? relationships for Miami, FL, for two con- 
trasting extreme rainfall events (circles), as compared to Marshall- 
Palmer Z-R relationship (Z = 200/?'«, dash-dotted lines), standard 
NEXRAD Z-R relationship (Z = 300/^'^ dashed lines), and nearly 
linear Z-R relationships resulting from scaling analyses (see Figs. 8b 
and 10b) and gamma parameterizations for g{x) (solid lines). Parallel 
dotted lines indicate direction of linear Z-i? relationships: (a) 13 May 
1958 event; (b) 21 Jun 1958 event. 

event), the shapes of the corresponding (scaled) distri- 
butions differ substantially. The net result of this is that 
both Z-R relationships have exponents that are relatively 
close to unity, but strongly different prefactors. This 
indicates that there exists no single linear Z-R relation- 
ship for "warm process" extreme rainfall, as List (1988) 
suggests. 

Figure 11 and Table 4 compare the performance of 
the nearly linear Z-R relationships derived for the two 
rainfall events discussed above, Z= 1.54 X 10^ i?""^ 
(Fig. Ua, solid line) and Z = 8532?"=' (Fig. lib, solid 
line), with the two standard Z-R relationships presented 
earlier (Fig. 6): the NEXRAD Z-R relationship (Fulton 
et al. 1998) Z = 3002?' * (dashed line) and the Marshall- 
Palmer Z-R relationship (Marshall et al. 1955) Z = 
200/?'^ (dash-dotted Une). In this case, the Z-R rela- 
tionships derived on the basis of the scaling-law for- 
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TABLE 4. Goodness-of-fit statistics corresponding to two contrast- 
ing extreme rainfall events in Miami, FL (Fig. 11), for Marshall- 
Palmer Z-R relationship (Z = 200/?'''), standard NEXRAD Z-R re- 
lationship (Z = 300/?''), and nearly linear Z-R relationships (Z = 
1.54 X 10' /?'<*, Z = 853/?' ") resulting from scaling analysis using 
gamma parameterization for g(x): mbe, rmse, and r'. 

(5-13-1958: total rainfall = 59 mm) 

E 
J,60 

Mbe               Rmse •2 50 
es 

Relationship             (mm h^')        (mm h ') r'(-) s 
E40 

13 May 1958 (24 spectra) 3 
z = 200/?"                         -56.7               108 0.473 

«30 

z = SOOr'"                           -13.6                 62.9 0.823 <S,n z = 1.54 X 10'/?"*■•               8.84              50.6 0.885 
e20 
'3 

21 Jun 1958 (26 spectra) ^0 

z = 200/?'"                         -68.9                80.9 -0.766 
z = 300/?"                         -29.3                46.8 0.410 t 
z = 853/?-"                            8.01               40.4 0.560 

lJ4xlO^« ,1.06 

5 10 15 20 
time since onset of event, f (min) 

malism outperform the standard relationships both in 
terms of the mean bias error, the root-mean-square error, 
and the coefficient of determination (Table 4). Their fits 
to the data also seem better from a qualitative perspec- 
tive (Figs. lla,b). 

Although the assessment of the quality of instanta- 
neous radar rainfall estimates (such as in Figs. 6 and 
11) is of intrinsic interest, for practical hydrometeoro- 
logical applications it is much more important to assess 
their quality over entire rainfall events. Figure 12 pro- 
vides a comparison of cumulative rainfall distributions 
estimated using the Z-R relationships presented in Fig. 
11 with the measured cumulative rainfall distributions 
for the two contrasting rainfall events discussed above. 
In both cases the Z-R relationships derived on the basis 
of the scaling-law formalism slightly overestimate the 
measured accumulations. This can be attributed to the 
small positive bias errors associated with these Z-R re- 
lationships (Table 4). Nevertheless, in an absolute sense 
they outperform both standard Z-R relationships, which 
significantly underestimate cumulative rainfall. More- 
over, a slight overestimate of rainfall accumulation is 
more acceptable than an underestimate because of the 
systematic error in the measurements caused by wind 
sorting (Rinehart 1983). 

5. Summary and conclusions 

A scaling-law formalism for the description of rain- 
drop size distributions and their properties (Sempere 
Torres et al. 1994, 1998) has been extended to provide 
a framework that allows an investigation of the controls 
on the variability of raindrop size distributions and the 
associated radar reflectivity-rain rate relationships in 
extreme rainfall. This scaling methodology has been 
applied to ground-based raindrop size distributions col- 
lected with the ISWS raindrop camera, corresponding 
to rain rates reaching almost 500 mm h""'. 

The main conclusions of this work can be summarized 
as follows. 

(6-21-1958: total rainfall = 69 mm) 

5 to 15 20 25 
time since onset of event, t (min) 

FIG. 12. Measured rainfall accumulations (derived from empirical 
raindrop size spectra) for Miami, FL, for two contrasting extreme 
rainfall events (thin solid lines), as compared to rainfall accumulations 
obtained from empirical radar reflectivity factors Z and different Z- 
R relationships: Marshall-Palmer Z-R relationship (Z = 200/?'', bold 
dash-dotted lines), standard NEXRAD Z-R relationship (Z = 300/?'', 
bold dashed lines), and neariy linear Z-R relationships resulting from 
scaling analyses (see Figs. 8, 10, and II) and gamma parameteri- 
zations for g(x) (bold solid lines): (a) 13 May 1958 event; (b) 21 Jun 
1958 event. 

1) A global analysis of the data (employing increasing 
rain rate thresholds) and a time series analysis for 
two contrasting extreme rainfall events show that 
extreme rain rates (exceeding 100 mm h"') tend to 
be produced in environments where the variability 
of raindrop size distributions is strongly number con- 
trolled. This implies that changes in raindrop size 
distribution properties in extreme rainfall are mainly 
caused by varying raindrop concentrations. Appar- 
ently, the competing microphysical processes shap- 
ing raindrop size distributions in extreme rainfall 
(coalescence on the one hand, and spontaneous and 
collisional breakup on the other hand) compensate 
each other in such a manner that an equilibrium state 
is reached, in which the probability density function 
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of the raindrop sizes (hence all characteristic di- 
ameters) remains largely constant. 

2) The result is that rainfall integral variables (such as 
radar reflectivity and rain rate) are roughly propor- 
tional to each other (e.g., List 1988), which is con- 
sistent with the concept of equilibrium raindrop size 
distributions. Because default Z-R relationships are 
always of a power-law form with exponents signif- 
icantly larger than one (typically around 1.5), this 
proportionality has important implications for radar 
remote sensing of extreme rainfall. It may provide 
an explanation for the underestimation reported in 
extreme warm-process rain (e.g., American Meteo- 
rological Society 2000). 

3) Although equilibrium raindrop size distributions pro- 
duced by numerical models exhibit multiple peaks 
(List et al. 1987; Hu and Srivastava 1995), the scaled 
raindrop size distributions fitted to the raindrop cam- 
era data display little or no tendency toward multi- 
modality [as opposed to the experimental findings of 
Zawadzki and de Agostinho Antonio (1988) on the 
basis of Joss-Waldvogel disdrometer data]. 

4) In contrast to prior speculation (List 1988), the 
shapes of the (measured and scaled) raindrop size 
spectra may differ significantly from event to event. 
This implies that, although the exponents of power- 
law Z-R relationships may be similar for different 
extreme rainfall events (i.e., close to unity), their 
prefactors may differ substantially. As a result, there 
is no "universal" linear radar reflectivity-rain rate 
relationship for extreme rain rates, but the variability 
is essentially reduced to one free parameter (i.e., the 
prefactor). 

5) This free parameter may be estimated on the basis 
of differential reflectivity (Z^R) measurements in ex- 
treme rainfall (e.g., Zrnic and Ryzhkov 1999). Spe- 
cific differential phase {K^p) may also prove to be a 
promising weather radar measurable for this purpose 
(e.g., Bringi et al. 2002). It is highly relevant in this 
respect to extend the simple (i.e., single) scaling-law 
formalism proposed by Sempere Torres et al. (1994, 
1998) to a more general multiscaling approach that 
would be able to employ (two or more) Doppler 
polarimetric radar measurables to infer (normalized) 
raindrop size distributions (Uijlenhoet 1999; Zawa- 
dzki 2002, personal communication). 

6) Further research is needed to establish closer con- 
nections between the identified shapes of the scaled 
raindrop spectra (and consequently the prefactors of 
power-law Z-R relationships) and the microphysics 
of the "warm rain" process. 
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^Abstract 

Radar observations of rainfall and their use in hydrologic research provide the focus for the paper. Radar-rainfall products are 
crucial for input to runoff and flood prediction models, validation of satellite remote sensing algorithms, and for statistical charac- 
terization of extreme rainfall frequency. In this context we discuss the issues of radar-rainfall product development, and the theoretical 
and practical requirements of validating radar-rainfall maps and new radar technologies. We discuss a framework for reflectivity 
based rainfall estimation, including estimation of uncertainty of radar-rainfall estimates. Validation of radar-rainfall products is a 
major challenge for broad utilization of these products in hydrologic appUcations. In the discussion of radar-rainfall prediction we 
focus on orographically induced extreme rainfall and flooding, discuss the issues of detection, statistical sample size, and scale effects. 
We conclude the paper with a set of recommendations for research priorities and experimental requirements to address them. 
© 2002 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

Radar has assisted weather predictions for over forty 
years but its operational use in hydrologic applications 
spans only a decade or so. We approached writing this 
paper on radar hydrology for the 25th Anniversary 
Special Issue of Advances in Water Resources as an op- 
portunity to discuss the research needs in the field. Our 
approach is not a comprehensive one, we focus on se- 
lected issues of radar data use in hydrology drawing on 
examples mamly from the NEXRAD system in the 
United States [23,27,29]. We limit our considerations to 
the use of weather radar for quantitative estimation of 
rainfall. We do not consider the quantitative precipita- 
tion forecasting problem as a recent issue of Journal of 
Hydrology [69] was devoted to it. Our objectives are to 
discuss those aspects of radar-rainfall estimation for use 
in hydrology that we consider general yet critically im- 
portant for the future. The paper contributes to the 
discussion solicited by [21] on emerging issues in hyd- 
rologic research. 

Quantitative estimation of rainfall from radar ob- 
servations is a complex process. It involves issues of 

'Corresponding author. Tel: +1-319-335-5231; fax: +1-319-335- 
5238. 

E-mail addresses: witold-krajewski@uiowa.edu, wkrajew@engi- 
neering.uiowa.edu (W.F. Krajewski). 

engineering design of a complicated and sophisticated 
hardware with both electronic and mechanical subsys- 
tems, signal processing, propagation and interaction of 
electromagnetic waves through the atmosphere and with 
the ground, image analysis and quality control, physics 
of precipitation processes, optimal estimation and un- 
certainty analysis, database organization and data vi- 
sualization, and hydrologic applications. The scope of 
our paper is limited to the estimation and uncertainty 
quantification issues. Rather than focusing on a parti- 
cular algorithm or method, we discuss the generic issue 
of developing radar-rainfall products and their valida- 
tion. We discuss the questions of estimating the bias and 
evaluating the random errors of the rainfall products. 
We also discuss observations of extreme rainfall. 
Weather radar offers an unprecedented opportunity 
to improve our ability of observing extreme storms 
and quantifying their associated precipitation. These 
events trigger floods and flash-floods, debris flow, 
and landsUdes. As they often occur m complex terrain 
their detection is associated with additional difiiculties 
and their treatment warrants a separate section in our 
paper. 

We close the paper wA\x a set of recommendations for 
future research. These involve not only theoretical and 
modeling studies but also the observational and experi- 
mental infrastructure necessary to answer many ques- 
tions we pose herein. 

0309-1708/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. 
PU: 80309-1708(02)00062-3 
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2. Radar-rainfall estimation 

The basics of radar-based observations of rainfall are 
discussed by many authors including popular textbooks 
by Battan [8], Doviak and Zrinc [20], Sauvaugot [47], 
and Reinhart [45] (sec also [5,31]). Here we only briefly 
repeat selected definitions for the sake of consistence of 
our use of these terms in the subsequent discussion. 
Radar measurements of power of electromagnetic waves 
backscattered by raindrops are directly related to a 
physical quantity called reflectivity, Z, with units of 
mm*/m\ Estimation of rainfall amounts (rain intensity, 
R in mm/h, or rainfall accumulation, R^ in mm) in- 
volves using reflectivity via a Z-R relationship. This 
relationship could be given in terms of a power law of 
the type Z = aR'' as discussed in [8], a look-up table [46], 
or, perhaps, a neural network. We will come back to this 
issue shortly. 

Radar reflectivity data are typically obtained in the 
form of a volume scan, i.e. a sequence of sweeps for 
increasing antenna elevation angles. A volume scan is 
available every 5-15 min and consists of data given in 
polar coordinates. The volume scan reflectivity data, 
collected on a polar grid with a resolution of about 1° by 
1 km, are converted to radar-rainfall maps (here we call 
them products), i.e. regular grids with a typical resolu- 
tion of 2 km by 2 km, or 4 km by 4 km. The conversion 
includes applying a Z-R relationship, usually in polar 
coordinates, averaging the polar grid to a rectangular 
grid, and selecting or averaging the information on the 
vertical extent of the storm. 

How is the Z~R relationship selected in the above 
procedure? We distinguish two general approaches. In 
the first approach, which we will term the drop size 
distribution (DSD) approach, Z-R relations are derived 
from raindrop size distribution observations, typically 
made at the surface and representing a sample volume of 
the order 1 m\ Because rainfall rate and radar reflec- 
tivity factor can both be derived from observed raindrop 
size distributions, Z-~R relations can be computed di- 
rected by statistical methods (for example, regression of 
natural logarithms of reflectivity versus natural loga- 
rithms of rainfall rate in the case of power law Z-R 
relationships). In this approach, a Z-R relationship is 
selected based on analysis of raindrop size distribution 
data for a given dominant rainfall regime. 

The second approach is similar in relying on statistical 
estimation procedures to relate measured values of radar 
reflectivity to rainfall rate, The fundamental difference is 
that in the second approach, which we will term the 
optimization approach, radar reflectivity measured in the 
atmosphere by a radar is related to surface observations 
of rainfall rate (typically from rain gauge networks). In 
this case, radar reflectivity observations with a charac- 
teristic scale of approximately 1 km' arc related to 
surface rainfall rate observations. This approach is mo- 

tivated by the observation [5] that the largest sources of 
error in radar-rainfall estimates are not driven by DSD 
control of Z-R relations, but by sampling properties that 
relate radar reflectivity factor at the surface to radar re- 
flectivity aloft (incomplete beam filling, bright band, 
evaporation below cloud base, updraft/downdrafts, hail 
contamination aloft, etc.). In the optimization-based 
approach, some measure of "closeness" of the radar- 
rainfall products and the surface rainfall reference data 
obtained by rain gauges is minimized. 

The DSD approach avoids the scale compatibility 
problem of comparing radar measured reflectivity at 1 
km' scale to rainfall rate at 1 m' scale, but introduces 
other problems. There is little evidence that point ap- 
proximation of Z-R relationship is adequate in view of 
the existing evidence of spatial and temporal variability 
of rainfall rate. Another problem with the DSD ap- 
proach, as demonstrated by numerous authors [15,49, 
55], the parameters of these point relationships are 
highly sensitive to (1) statistical approach used in their 
estimation; (2) sample size of the data used; and (3) in- 
strument type used to collect the data [12]. It should also 
be noted that instrumental errors both in the disdrom- 
eter used to collect the DSD data and the radar used to 
perform rainfall estimation are ignored in this approach. 
This potentially leads to diflBculty identifying eff'ects such 
bias [59] and non-linear transformation of radar-reflec- 
tivity measurements [15]. 

The optimization approach (e.g. [1,17]) treats the Z-R 
relationship as an empirical formula, in which the key step 
in algorithm implementation is estimation of the un- 
known Z-R parameters. The radar-rainfall products are 
optimized in a well-defined sense, according to a criterion 
deemed appropriate by the user for a particular applica- 
tion. The approach acknowledges explicitly that products 
optimal according to one criterion are not necessarily 
optimal according to another. For example, Ciach et al. 
[16] show, that root mean square criterion is in conflict 
with, what they term, "total conditional bias criterion". 

The main reason for this is the non-linear character of 
Z-R combined with the existence of random errors for 
both the radar-reflectivity measurements as well as the 
rain gauge data that sufi"er from significant uncertainty 
in representing the scale of the rainfall product [25,33, 
66]. Another manifestation of the optimization-based 
approach is scale dependency. As specific radar-rainfall 
products correspond to well-defined space and time 
scales, different solutions are obtained at different scales. 
In other words, optimizing products at a certain scale 
results in better estimates than simply averaging them 
from a lower scale [41]. 

2.1. Bias 

Identifying and quantifying bias is perhaps the most 
important step in characterizing the error structure of 
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radar-rainfall estimates. By "bias" we mean the sys- 
tematic departure from the true, and unknown, rainfall. 
There are numerous causes of radar-rainfall bias, 
including miscalibrated radar, overshooting the cloud 
systems, improper Z-R relationship, and subcloud 
evaporation of raindrops. All will cause systematic de- 
parture of estimated rainfall from the true rainfall. In 
the following discussion we approach the problem of 
bias identification from the real-time estimation point of 
view. This is because in the off-line mode, with the 
availabiUty of sufficiently large sample the problem of 
bias adjustment is much simpler. 

We also recognize that identification of the bias due 
to any or all of the above causes is difficult due to the 
existence of significant spatial and temporal variability 
of ramfall and the sampling area mismatch of radar and 
rain gauge sensors. To eliminate the effects of random 
factors—which include in addition to the rainfall vari- 
abiUty, the reflectivity and rain gauge measurement 
errors—on bias identification, radar-rainfall and rain 
gauge rainfall accumulation should be integrated over a 
certain time scale prior to a meaningful comparison. 
What is that scale? There is no simple answer to this 
question. If the scale is too short, for example 15 min, 
clearly significant spatial variabiUty of rainfall will mask 
the effect of the bias. From one period to the next, from 
one gauge to the next, we could have large positive and 
negative differences between the radar and rain gauge 
estimates of rainfall. As we allow time integration of 
the data, the random effects average out, and the bias, 
if present, becomes more obvious. On the other hand, 
if we wait too long, we may be mixing seasonal effects. 
The bias in the cold season is likely to be different 
from that of the warm season as the typical vertical 
extent of the cloud system and the DSDs are quite dif- 
ferent [2,50]. 

In the past, the problem of bias estimation and cor- 
rection in real-time has been approached in the mean- 
field sense, i.e. trying to ensure that the entire rainfall 
field in view of a radar does not deviate from that rep- 
resented by rain gauges. Several authors conducted 
studies of statistical techniques for this approach, in- 
cluding [2,48,53]. Recently, we note a tendency docu- 
mented in the literature towards eliminating some of the 
range dependent biases based on their physical causes 
[53]. In particular, Vignal et al. [60-62] demonstrated 
good performance of a vertical profile of reflectiv- 
ity correction that mitigates the effect of bright band, 
among other effects. As these effects operate on a short 
time scale, their effects should be corrected also on such 
a scale. Vignal and Krajewski [62] also report decrease 
of random effects in the VPR-corrected radar-rainfall 
estimates. This is understandable since some of the ef- 
fects work in the opposite directions, as we discussed 
above, and thus, when taken together, they "look" 
random. 

Anagnostou et al. [2], McCoUxim et al. [37] and Seo 
and Breidenbach [54], attempted to investigate the effect 
of different time scales on the effectiveness of the bias 
removal. StiU, due to the lack of long-term high-quality 
radar and rain gauge data sets the question remains 
largely unanswered. A Monte Carlo simulation study 
would be an alternative to provide some guidance but its 
reaHsm is likely to be compromised by the fact that we 
know little about the statistical characterization of the 
errors of radar-rainfall. 

Our discussion above has implications for the design 
of operational rain gauge networks. Qualitatively, the 
rain gauges should be placed in such a way to capture 
the range effects in all the directions that characterize the 
rainfall regimes present under a given radar umbrella. It 
is preferred to place them along the same radar ray as 
this would eliminate the potential for the near-radar 
effects due to ground clutter that may affect different 
azimuths in a different way. Directions where additional 
effects are expected, such as orographic or synoptic, 
should be covered by separate gauge sets. The number 
of gauges per direction does not need to be high as the 
systematic effects change gradually (but not necessarily 
monotonically, see [50,62]) with range. We estimate that 
4-6 gauges would do the job. 

2.2. Polarimetric methods 

Research conducted over the past 20 years indicates 
that radar-rainfaU estimation may be improved with 
additional radar measurements. Research radar systems 
simultaneously measure reflectivity and phase at hori- 
zontal (H) and vertical (V) polarization [11,32,68]. The 
physical concept behind polarization diversity mea- 
surements exploits the fact, that under aerodynamical 
stress, falling raindrops take oblate shapes, and as a 
result impact differently the propagation and backscat- 
tering of an incoming H and V electromagnetic radar 
wave. The most common polarimetric radar measure- 
ments are (1) the reflectivity factors at H and V polari- 
zation (ZH, ZV); (2) the differential reflectivity factor 
(ZDR); and (3) the propagation differential phase (<PDP)- 

These measurements provide information that can be 
related to DSD characteristics, and in turn provide im- 
proved rainfall estimate. 

Additionally, the polarimetric measurements provide 
new means for classifying precipitating particles (rain, 
hail, graupel and snow) and for distinguishing the 
ground echo due to local clutter and anomalous propa- 
gation conditions from precipitation. The two most ben- 
eficial aspects of polarimetric measurements may be the 
elimination of hail contamination effects in heavy rain- 
fall and improved detection of ground returns. 

Use of polarimetric measurements in an operational 
setting presents a host of new challenges. It is not our 
goal to discuss them herein as others have already done 
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this effectively (e.g. [26,32,68]). Some of the challenges 
deal primarily with radar system design. Other issues 
concern the fundamental physics of propagation and 
interaction of radar waves with precipitating medium. 

Our goal is to bring attention to the issue of estima- 
tion. The polarimetric measurements are not a panacea 
to many of radar-rainfall uncertainty sources (with the 
possible exception of hail contamination). Within-beam 
variability, subcloud evaporation, cloud overshooting, 
etc., cannot be solved with the polarimetric measure- 
ments. Also, the measurements of some of the po- 
larimetric variables are associated with significant 
uncertainties. For example, estimation of specific dif- 
ferential phase shift (ATDP) is subject to random phase 
errors of the $DP measurements and the backscattering 
phase shift (6), which cannot be readily separated from 
<^DP- The S value, which increases with an increase in 
raindrop size, can be significant at high rainfall inten- 
sities and high radar frequencies. This non-Rayleigh 
effect can introduce serious complications in the evalu- 
ation of ATDP at the X-band and moderate to high rainfall 
intensities, and requires careful investigation [36]. 

Studies on radar polarimetry have concentrated 
mainly on the S-band frequency and shown that 
ATDP based radar estimators are not affected by radar 
calibration errors and partial beam occlusion (e.g. 
[65,67,68]). However, at S-band, these estimators are 
characterized by relatively low sensitivity to rainfall rate 
and this, consequently, has negative impact on the 
product resolution. Since <PDP sensitivity to the raindrop 
size is proportional to the radar wavelength, one would 
expect that at X-band, these limiting values could be 
lowered by a factor of three. Consequently, the use of X- 
band wavelength should allow more accurate estimation 
of light to moderate rainfall rates at higher spatial res- 
olutions. These improvements are primarily important 
for the accurate prediction of floods in small to medium 
size watersheds with rapid response to precipitation and 
for real-time urban water management. Furthermore, 
partial signal attenuation, which is significant at X- 
band, is not an important issue for the ATDP estimator 
unless there is complete attenuation. The main compli- 
cations in Knp rainfall estimation at X-band that need to 
be investigated are (1) the presence of significant 5 in 
cases of high rainfall intensities, and (2) the effect of 
DSD variability and oblateness shape model selection 
on the estimator parameters. To date, research on the 
use of polarimetric radar measurements at X-band has 
been limited to a few theoretical [13,30] and exper- 
imental studies [36,57] but the proposed estimators lack 
adequate quantitative validation and error analysis. 

Thus, if we realize that rainfall estimates based on 
polarimetric data are uncertain, the task remains to 
quantify these uncertainties. From this point of view the 
requirements for validation of radar-rainfall are the 
same as for single-parameter radar. 

2.3. Validation 

The central question for hydrologic application of 
radar-rainfall products is "How good are these esti- 
mates?" In our view this is a question of validation. 
According to Webster's Ninth New Collegiate Dic- 
tionary, valid means "being at once relevant and mean- 
ingful," and validation is the "process of determination 
of the degree of validity of a measuring device". In this 
paper, we define validation consistently with the com- 
mon definition quoted above. Validation is determina- 
tion of the space-time statistical structure of errors of 
the radar-rainfall products, i.e. "the degree of vahdity". 

Clearly, identifying and estimating the full structure 
of the error distribution is a challenging task. It may be 
prudent to simplify it to begin with and focus on the first 
two moments of the error distribution. In the section 
above we discussed the issue of bias, here we will focus 
on the error variance. Ciach and Krajewski [14] pro- 
posed a general framework for the error variance esti- 
mation. They proposed to separate the radar/rain gauge 
difference variance into two components: one due to the 
natural variability of rainfall in space over scales smaller 
than that of the radar-rainfall products, and the second 
one being the radar-rainfall error variance. The subgrid 
variability, if substantial, implies lack of good repre- 
sentativeness of the grid scale rainfall by the rain gauges 
that measure the process at a point [33,66]. The use of 
this approach, coined error variance separation (EVS) 
method, requires two important components. First, it 
requires making an assumption about lack of correla- 
tion between the errors of the radar-rainfall and the rain 
gauge approximation of the grid scale rainfall. Second, 
it requires knowledge of rainfall variability, at least in 
terms of its spatial correlation function, at scales below 
that of the grid dimensions. 

The EVS approach was explored by Anagnostou et al. 
[3] who lacked information on the correlation structure 
of rainfall, and by Habib and Krajewski [25], who used 
experimentally derived information on the correlation 
structure of rainfall fields. Nevertheless, the problem of 
error covariance remains unresolved. To resolve this 
problem requires a special experimental setup in which 
rainfall can be accurately estimated by independent 
means. With the current technologies this implies a 
dense rain gauge network, so dense that spatial sampling 
error could be considered negligible and radar-rainfall 
products could be directly compared to the cluster-based 
estimate [39]. High-density cluster data would permit 
developing and testing framework for estimation of er- 
ror probability distribution, thus extending the scope of 
the EVS approach. 

In closing of this section, let us also mention another 
fundamental issue of operational and experimental 
rainfall measurement and estimation. There is a growing 
recognition that the historical rain gauge data are of 
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very poor quality. This concerns most of the 15-min, 
hourly, and daily rainfall data. Following the earlier 
suggestion by Ciach and Krajewski [14], supported by 
evidence discussed by Steiner et al. [56], we strongly 
recommend deployment of dual rain gauge platforms. 
In view of very high variabiHty of rainfall only gauges 
sited side by side can provide independent information 
needed for fault detection and data record collection. 
Rain gauge data are vital in our quest for improved 
understanding of radar-based rainfall estimation tech- 
nologies. 

3. Radar estimation of extreme rainfaU 

Radar estimation of extreme rainfall rates plays an 
important role in a range of applications dealing with 
the hydrology and hydrauhcs of flooding. The extreme 
rainfall rate setting also raises special challenges for de- 
velopment of radar-rainfall estimation algorithms, vah- 
dation of rainfall algorithms and design of radar-rainfall 
estimation experiments. Because of the hydrologic im- 
portance of extreme rainfall, we examine these chal- 
lenges in detail below. 

Hudson [28] presented one of the first experiments 
designed to measure and parameterize raindrop size 
distributions in extreme rainfall rate storms (see also 
[9,63]). Blanchard and Spencer [9] concluded that 
breakup of raindrops controls the raindrop size distri- 
bution for extreme rainfall rates and they observed that 
for rainfall rates in the range between 100 and 700 mm/h, 
the median diameter remains relatively constant. These 
features of dropsize distributions are used to infer that 
for a given rainfall rate in intense rainfall, a steady-state 
dropsize distribution develops in which drop growth is 
balanced by drop breakup. List [35] presents theoretical 
arguments supporting an "equilibrium" dropsize distri- 
bution in heavy rain and shows that in this case Z and R 
will be linearly related, that is, the exponent b in the 
Z-R relation for extreme rainfall rates will be 1. 

Uijlenhoet et al. [58] show that the linear Z-R rela- 
tionship holds for extreme rainfall rate drop spectra 
from Florida (ramfall rates exceeding 100 mm/h). It is 
also shown in [58] that the prefactor of the Z-R relation 
varies over a large range. It follows that, even under 
equilibrium conditions for extreme rainfall rates, bias 
estimation will play an important role in reflectivity- 
based estunation of extreme rainfall rates. This point is 
further illustrated m analyses of radar-rainfall estimates 
from "warm rain process" storms, which produce 
extreme rainfall rates [44,50,51]. Development of Z-R 
estimation procedures, as discussed above, wiU be sen- 
sitive to the weighting of observations from the extreme 
tail of the rainfall rate distribution. For applications in 
which extreme rainfaU rates are of special interest, val- 

idation procedures should exphcitly characterize the 
error of rainfall rate estunates as a function of rainfall 
rate. 

The extreme rainfaU estimation problem provides one 
setting in which ideas from the DSD approach and the 
optimization approach can be usefully combined to 
enhance radar-rainfall estimation algorithms. The ex- 
treme rainfall setting is one in which previous studies 
provide a strong basis for presuming that variations in 
DSDs play a significant role in the accuracy of radar- 
rainfaU estimates. Information on key aspects of the 
variabiUty in DSD properties can be obtained from 
polarimetric measurements, like differential reflectivity 
and differential phase shift. Including these addi- 
tional radar observations should lead to significant un- 
provements in estimation of extreme rainfall rates. The 
framework for including polarimetric measurements, 
however, should be the optunization approach, in which 
radar observations aloft are compared with surface 
measurements of rainfall rate. 

The climatology of rainfall rates exceeding 100 mm/h 
is heavily influenced by warm season systems of thun- 
derstorms. The climatology of radar reflectivity obser- 
vations for these storms, in turn, is strongly influenced 
by hail contamination [6,7]. The presence of hail in a 
radar sample volume can severely distort radar-rainfall 
estimates, due the sixth power dependence of Z on drop 
diameter. An extreme example of the hail contamination 
problem is provided by supercell thunderstorms, which 
are often prolific hail producers and the agents of ex- 
treme rainfall rates. The Dallas Hailstorm of 5 May 
1995 [52] was a supercell thunderstorm, which produced 
hailstones (more than 2 cm in diameter) in close prox- 
imity to regions experiencing 15-min rainfall rates ex- 
ceeding 200 mm/h. More than 15 fatalities resulted from 
flash floods produced the Dallas Hailstorm. Smith et al. 
[52] argue that supercell thunderstorms play an impor- 
tant role in determining the frequency of extreme rain- 
faU rates in much of the US east of the Rocky 
Mountains. Hail contamination precludes the develop- 
ment of useful climatologies of extreme rainfaU from 
single parameter radar-rainfaU estimates. As discussed 
in Section 2.2, polarimetric measurements could signif- 
icantly reduce errors in rainfall rates due to hail con- 
tamination. 

Warm season thunderstorms in urban environments 
present an important challenge to radar-ramfaU esti- 
mation procedures. Flood response of smaU drainage 
basins in urban environments is particularly sensitive to 
"fine-scale" temporal and spatial variabiUty of rainfaU. 
The precise scale boundaries wUl depend on detaUs of 
the drainage basin (see [52], for example), but in many 
settings the relevant scales of variabiUty are comparable 
or smaller than the minimum observation scales of op- 
erational weather radar systems like the WSR-88D (6 
min, 1 km). Experimental programs for radar estimation 
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at rainfall at fine space and time scales will play an 
important role in advances in urban flood hydrology. 

The utility of radar-rainfall estimates for extreme 
flood analysis can be viewed in terms of enhanced ca- 
pabilities for modeling flood response of a drainage 
basin. The potential benefits of high-resolution rainfall 
estimates have motivated advances in hydrologic mod- 
eling [10,18,34,38,40,42,43,64]. Advances in operational 
forecasting and hydrologic design have progressed more 
slowly although there are exceptions (e.g. see [22]). 
Radar-rainfall estimates hold particular promise for 
enhanced flash flood forecasting procedures and for 
engineering design and management applications in 
small basins. For these problems, hydrologic processes 
forced by rainfall rate play a comparable or even more 
important role than hydraulic processes associated with 
flood wave propagation. The central difficulty here is 
often the non-linear response of drainage basins to 
rainfall rate. 

These observations have important implications for 
development of radar-rainfall estimation procedures. 
One of the major obstacles to increased utilization of 
radar-rainfall estimates for hydrologic modeling has 
been the absence of quantitative assessments of the ac- 
curacy of radar-rainfall estimates. As discussed in pre- 
vious sections, development of formalized procedures 
for estimating the error structure of radar-rainfall fields 
and for validating radar-rainfall estimates is of central 
importance to radar hydrology. In some settings, the 
hydrologic application may impose useful constraints on 
the error assessment problem. In particular, assessment 
of error structure of radar-rainfall estimates that 
are used for hydrologic modeling should consider the 
propagation of errors through hydrologic models. The 
non-linear response of drainage basins to rainfall forcing 
implies that errors in extreme rainfall rates will play an 
important role in hydrologic modeling. Quantification 
and validation of radar-rainfall estimates for extreme 
rain conditions are also an important challenge for ra- 
dar hydrology. 

The challenges of extreme rainfall estimation are 
particularly acute in mountainous terrain. Some of the 
largest measured rainfall accumulations in the United 
States and the world [19] have occurred in complex ter- 
rain. Landslides and debris flows are added to flooding 
as major hazards associated with extreme rainfall in 
mountainous terrain. Radar-rainfall estimation in 
complex terrain is complicated by ground returns and 
signal loss associated with beam blockage [31] (see also 
Andrieu et al. [4] for novel approaches dealing with 
radar sampling problems in complex terrain). An addi- 
tional problem is that orographic storms may differ 
from storms forming away from terrain in terms of 
microphysical and dynamical properties [44,50]. Despite 
these difficulties,  radar-rainfall estimates  hold  great 

promise in improving hazards assessment capabilities in 
mountainous terrain. 

4. Conclusions and recommendations 

From the discussion on radar-rainfall estimation we 
conclude that there is much that we do not understand 
about the instrument that has been in use for over 40 
years. We cannot answer numerous basic questions 
about radar-rainfall estimation error structure. What is 
the probability distribution of the errors? Are they de- 
pendent in space and time from pixel to pixel and from 
scan to scan? How do they depend on the rainfall re- 
gime? To what extent are they caused by the radar 
hardware characteristics and to what extent can rainfall 
estimation algorithms mitigate the error sources? We 
also know little about the rainfall processes at scales that 
affect radar-rainfall estimates. What is the spatial cor- 
relation structure of rainfall at scales below 2 km? What 
is the spatial correlation structure of reflectivity and 
other moments of DSD? 

We could ask many similar questions regarding our 
knowledge of rainfall scaling. Does rainfall rate scale 
according to a certain way at scales below that of the 
typical radar-rainfall products? To what extent radar- 
rainfall error structure affects our understanding of 
rainfall scaling at higher spatial scales? How does rain- 
fall integration in time affect its scaling properties? 

It is clear that the above questions—if we as com- 
munity consider them important—form a research 
agenda for the upcoming years. Here we propose several 
recommendations for the community to consider. 

1. Long term monitoring and validation sites, provid- 
ing detailed information on precipitation, should be 
developed. The sites should have an areal extent 
on the order of 100 km^ and include a mix of radar, 
surface (rain gauge, disdrometer, and conventional 
meteorological) and upper air observations. Experi- 
mental design should be structured in a way to pro- 
vide both information of the spatial dependence 
of rainfall as well as good estimates of areal rain- 
fall for direct comparisons with radar-based esti- 
mates. 

2. New technologies for in situ measurement of precip- 
itation are needed. If we could build reliable and in- 
expensive disdrometers to replace rain gauges this 
would address many needs of remote sensing of pre- 
cipitation. Instruments with sampling volume just 
one or two orders of magnitude greater than the cur- 
rent instruments would go a long way towards clos- 
ing the scale gap in our abilities to observe 
precipitation. Optical technologies seem to be partic- 
ularly attractive here. 
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3. Methodological advances are needed in several areas 
of radar-rainfall estimation. Of particular importance 
are advances in rainfall estimation using radar polar- 
imeric observations, estimation of the error structure 
of rainfall rate estimates, and validation of radar- 
rainfall algorithms. 

4. Most important for radar hydrology is the diffusion 
of radar-rainfall products into a diverse array of hyd- 
rologic applications. The potential of radar-rainfall 
products for operational flood forecasting is going 
to be realized in application. There is still tremendous 
potential for advances in flash flood forecasting. Nu- 
merous other applications provide important areas of 
exploration in radar hydrology. These include engi- 
neering design of flood control structures, precipi- 
tation frequency analysis, operation and control of 
urban storm and waste water treatment systems, 
water supply forecasting, groundwater recharge assess- 
ments and non-point source pollution assessments. 
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ABSTRACT 

The Charlotte, North Carolina, metropolitan area has experienced extensive urban and suburban growth since 
1960. Five of the largest flood peaks in the 74-yr discharge record of Little Sugar Creek, which drains the 
central urban conridor of Charlotte, have occurred since August of 1995. A central objective of this study is to 
explain how these two observations are linked. To achieve this goal, a series of hypotheses of broad importance 
to the hydrology and hydrometeorology behavior of extreme floods will be examined. These hypotheses concern 
the roles of 1) space-time variability of rainfall, 2) antecedent soil moisture, 3) expansion of impervious area, 
and 4) alterations of the drainage network for extreme floods in urbanizing drainage basins. The methodology 
used to examine these hypotheses centers on diagnostic studies of flood response for the five major flood events 
that have occurred since August of 1995. Diagnostic studies exploit the diverse range of extreme precipitation 
forcing for the five events and heterogeneity of land surface properties for catchments with stream gauging 
records. The observational resources for studying flood response in the Charlotte metropolitan region are ex- 
ceptional. They include two National Weather Service WSR-88D radars that were deployed in 1995, a dense 
network of rain gauges and stream gauges installed by the U.S. Geological Survey in 1995, and extensive land 
surface datasets developed by Mecklenburg County. This study focuses on the regional hydrology of extreme 
flood response, as opposed to the specific effects of individual elements of the constructed environment. Of 
particular interest are the hydrologic, hydraulic, and hydrometeorological controls of extreme flood response at 
basin scales ranging from 1 to 500 km^. 

1, Introduction urban corridor of Charlotte at a drainage area of 110 
^     ^,    , XT _.!. r.     1- ^      1 * kmS have occurred since August of 1995 (Fig. 2). 
The Charlotte, North Carolina, metropolitan area       ^^ ^^^ ^^^^ ^^^^^^ .^ kittle Sugar Creek since 1995 

oin ^\;'' experienced rapid growth since the early ^ ^ ^.^^^^^ ^^jj^^^.^^ ^^ ^^^^^^. 
1960s (Martens 1968). A staking feature of the flood P ^ ^^ .^^^ 
record for the region is the senes of extreme fl^oods ? ,^^^^J,^,^, ^h't repeatedly tracked over 
dunng the 1990s. The four largest flood peaks, and nve     /  ^,    , .     ,„„ , ,   inn-fx ONTT    •       r. 
of the largest seven flood peaks, in the 74-yr discharge    *e Charlotte region (23 July 1997), 3) Humcane Danny 
record of Little Sugar Creek, which drains the central     24 July 1997) 4) a fast-moving, prefron al squal line 

(9 April 1998), and 5) a small, relatively short-lived 
thunderstorm system (27 July 1998). Storm total, basin- 

Corresponding author address: James A. Smith, Dept. of Civil and    averaged rainfall in Little Sugar Creek ranged from 50 
Environmental Engineering, Princeton University, Pnnceton, NJ     ^^ ^^^ ^^^ ^4 July 1997 Storm to more than 180 mm 

E-maii: jsmith@princeton.edu for the 23 July 1997 storm. Peak rainfall accumulations 
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FIG. 2. Annual Hood peaks (m" s ') for Little Sugar Creek at 
Archdale (station 4 in Fig. I and Table 2). A lowess smoothing of 
the data is shown by the solid line. The five flood events analyzed 
in sections .3 and 4 are marked by an "X". The 24 Jiil 1997 and 27 
Jul 1998 peaks are not annual peaks but are included for comparison 
purposes. 

from the 23 July 1997 .storm reached 280 mm during a 
12-h period, nearly doubling the daily rainfall record of 
150 mm for Charlotte, which has a gauging record of 
more than 100 yr. In addition to the contrasts in storm 
total rainfall, there were also .significant differences in 
the spatial and temporal distribution of rainfall over the 
Little Sugar Creek basin, as described in section 3. 

A central objective of this study is to provide an 
explanation for the series of extreme floods in Little 
Sugar Creek during the late 1990s. To achieve this ob- 
jective, the following hypotheses, which are of general 
interest to flood hydrology, will be examined: 

• Increasing flood peak magnitudes in the Charlotte 
metropolitan region are due to increased drainage den- 
sity associated with elaboration of the drainage net- 
work through streets, culverts, and other elements of 
the constructed environment (Graf 1977). An alter- 
native hypothesis is that increasing flood maenitudes 
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TABLE 1. Summary of flood response and trends in flood response based on stream-gauging observations for annual flood peaks from 
1962 to 1995 for five catchments in the Charlotte metropolitan area. USGS identification codes for the gauging stations are given in the first 
column. McMuUen Creek is located on the western boundary of the McAlpine Creek basin (Fig. 1). twin Creek drains the northeastern 
portion of the Irwin-Sugar Creek basin. Long Creek is northwest of Little Sugar Creek. The median annual flood peak is expressed as a 
unit discharge, i.e., discharge divided by drainage area. The fifth column provides the linear trend in annual flood peaks, expressed as a 
percentage of the median flood peak from ttie fourth column. The V/P ratio (h) is the median value for ttie station, computed using procedures 
described in the text. 

Drainage area V/P ratio Median flood Trend 

Basin (km^) (h) (m' S-' km-^) (% yr-i) 

Little Sugar (02146507) 110 8.4 1.39 1.8 

McAlpine (02146600) 103 13.6 0.86 2.3 

McMullen (02146700) 18 5.7 1.97 3.4 

Irwin-Sugar (02146300) 79 9.1 1.22 1.6 

Long Creek (02142900) 43 14.1 0.89 0.4 

result primarily from increasing runoff volumes as- 
sociated with increases in impervious area (Leopold 
1968). 

• The importance of antecedent soil moisture for flood 
response decreases with urbanization because of the 
effects of increased impervious area. The importance 
of antecedent soil moisture diminishes with the return 
interval of the event (Wood et al. 1990). For very 
large flood events in urban areas, the role of anteced- 
ent soil moisture can be neglected in assessing flood 
response. 

• The series of anomalously large flood peaks since 
1995 resulted principally from anomalously large 
rainfall. 

A paired objective of this study is to characterize the 
hydrologic, hydraulic, and hydrometeorological con- 
trols of extreme flood response and to determine their 
dependence on basin scale. For Little Sugar Creek and 
surrounding catchments, analyses span basin scales 
ranging from 1 to 500 km^. This range of basin scales 
encompasses the region of anomalous scaling behavior 
of annual flood peaks for the central Appalachian region 
of Maryland and Virginia (Smith 1992). Scaling be- 
havior of central Appalachian flood peaks can be char- 
acterized by a maximum scale of variability [as repre- 
sented by the coefficient of variation (CV) of annual 
flood peaks] at approximately 100 km^. This feature is 
inconsistent with simple scaling theories, which are 
equivalent to the index flood assumption (Smith 1992) 
and multiscaling theories of regional flood frequency. 
Explanations for this scaling property of flood response 
have centered on 1) space-time organization of rainfall, 
2) drainage network structure, and 3) channel/floodplain 
processes (Smith 1992; Gupta et al. 1994; Woods and 
Sivapalan 1999; Morrison and Smith 2001). Analyses 
of scale-dependent flood response for Little Sugar Creek 
exploit the diverse range of extreme precipitation forc- 
ing for the five flood events since 1995 and heteroge- 
neity of land surface properties, both natural and an- 
thropogenic. 

The observational resources for studying flood re- 
sponse in the Charlotte metropolitan region are excep- 

tional. The region is covered by two National Weather 
Service WSR-88D (Weather Surveillance Radar-1988 
Doppler) radars, both of which were deployed in 1995. 
A dense network of rain gauges and stream gauges was 
installed by the U.S. Geological Survey (USGS) in 1995 
(Hazell and Bales 1997; Robinson et al. 1998). Meck- 
lenburg County has developed extensive land surface 
datasets. For this study, these datasets have been adapted 
to provide high-resolution (5-30 m) gridded datasets of 
terrain elevation, impervious cover, soil texture classi- 
fication, and land use-land cover (LULC). 

2. Long-term trends in hydrologic response 

The focus of this study is the Little Sugar Creek basin 
(Fig. 1), for which five USGS stream-gauging stations 
(see inset of Fig. 1) provide discharge observations for 
the five flood events during the period of 1995-98. Little 
Sugar Creek is one of the three main tributaries to Sugar 
Creek. It is bounded on the west by Irwin-Sugar Creek 
and on the east by McAlpine Creek (Fig. 1). The Sugar 
Creek catchment, downstream of the confluence of Little 
Sugar Creek, McAlpine Creek, and Irwin-Sugar Creek, 
has a drainage area of 550 km^. 

The LULC map for Mecklenburg County (Fig. 1) was 
developed from imagery taken during the the mid- 
1990s. The Sugar Creek region is characterized by an 
inner core of urban and dense residential land use and 
an outer region of lower density residential land use and 
forest cover (Fig. 1). The downtown core of Charlotte 
is located principally in the Little Sugar Creek basin, 
and the most intense urbanization has occurred in the 
northwestern portion of the basin. 

Table 1 provides a summary of flood response prop- 
erties and temporal trends in flood response for five 
drainage basins in the Charlotte metropolitan area with 
long stream gauging records (1962-95). Each of the five 
basins has a drainage area of less than 111 km^. Two 
of the basins (Little Sugar Creek and Irwin Creek) have 
experienced significant urbanization. Four of the basins 
(Little Sugar Creek, Irwin Creek, McMullen Creek, and 
McAlpine Creek) experienced suburbanization during 
the period of 1962-96. Long Creek has experienced only 
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minor suburban development and serves as a control 
catchment. 

Leopold (1968) notes that hydrologic response to ur- 
banization is typically characterized by increasing flood 
peak magnitudes, decreasing lag time, and increasing 
runoff volumes. These elements of hydrologic response 
are interpreted as a direct consequence of decreasing 
saturated conductivity and overland flow roughness. 
Graf (1977) .shows that timing and magnitude of flood 
peaks in a suburbanizing region can be very sensitive 
to elaboration of the drainage network, which increases 
the drainage density of the basin and the hydraulic ef- 
ficiency of the drainage system (see also Anderson 1970- 
Hollis 1988). 

Marked increases in flood peak magnitudes have oc- 
curred for all areas experiencing urbanization and sub- 
urbanization (Table 1). Flood magnitude is represented 
in Table 1 by the median annual flood peak, expressed 
as a unit discharge (i.e., discharge divided by drainage 
area). The time trend in flood peaks, which was com- 
puted by linear regression of annual flood peak mag- 
nitude versus record year, is expressed as a percent of 
the median annual flood peak. The largest percent in- 
crease in flood peaks is for McMullen Creek. The 3.4% 
increase per year in flood peaks for McMullen Creek 
translates to a doubling of the median annual flood in 
approximately 30 years. Changes in flood peak mag- 
nitudes for Long Creek, the control catchment, are small 
relative to those for the other four catchments. 

Basin response times are strongly tied to LULC prop- 
erties (Table 1). Response time is represented by the 
median volume-to-peak (V/P) ratio, which is the ratio 
of the runoff volume associated with the annual flood 
peak (m'; computed from the USGS mean daily dis- 
charge observations 1 day prior to the day of the peak 
discharge to 2 days after the peak discharge) to the 
annual flood peak (m' s"'). Bradley and Potter (1992) 
discuss V/P ratios as a measure of basin response time. 
The median response time in Little Sugar Creek at 110- 
km^ scale of 8.4 h is more than 5 h faster than the 
response time of Long Creek at 42.5 km\ The median 
response time of the suburbanizing McAlpine Creek at 
102.5 km- is 0.5 h faster than that of Long Creek. Me- 
dian flood peak magnitudes also strongly reflect LULC 
properties. The median (unit discharge) flood peak in 
McMullen Creek is 2 times the median (unit discharge) 
flood peak in Long Creek at drainage areas of 18.2 and 
42.5 km^ respectively. The median unit discharge flood 
peaks of Irwin Creek and Little Sugar Creek at 70-110- 
km^ scale are approximately 50% larger than that of 
McAlpine Creek. 

Large increases in annual runoff volume have oc- 
curred in the Little Sugar Creek basin since the early 
1960s (Fig. 3; runoff is expressed as a depth by dividing 
annual runoff volume by drainage area). The trend line 
[computed using the "lowess" locally weighted poly- 
nomial regression and scatterplot smoothing algorithm; 
see Venables and Ripley (1997)] for annual runoff vol- 

1960 

Year 

FIG. 3. Time series of annual runoff (mm) for Little Sugar Creek 
at Archdalc (station 4 in Fig. 1) during the period of 1927-96. A 
lowess smoothing of the time series is provided. 

ume increases from approximately 400 mm in 1962 to 
800 mm in 1995, representing a doubling of the annual 
runoff during a 33-yr period. The annual runoff ratio 
(that is, the ratio of annual runoff to annual rainfall) 
increased from 0.35 to 0.70 during this period. The larg- 
est increases in runoff volume have occurred during the 
autumn season (September, October, November) with 
roughly a tripling of runoff volume (figure not shown). 

It is generally difficult to relate time trends in hy- 
drologic response to time trends in LULC (Potter 1991). 
For the Charlotte region, we can assess temporal chang- 
es in LULC for certain time periods. USGS 7.5-min (1: 
24 000) topographic maps provide insight to changing 
land cover in the region. The Charlotte East quadrangle 
was published in 1967 based on aerial photographs from 
1965 and was photo-revised in 1984 based on imagery 
from 1984. Extensive revisions to the topographic map 
reflect residential development within the McMullen 
Creek basin to the point that we can conclude that 
McMullen Creek was near full development conditions 
by 1984. During the period of 1964-84, the McMullen 
Creek basin was transformed from mixed woodland/ 
residential to dense residential. From 1984 to the pre- 
sent, changes in land cover within McMullen Creek 
have been small in comparison with the preceding 15- 
yr period. Changes in flood response of McMullen 
Creek (Table 1) are presumed to be closely linked to 
changes in land surface properties from 1964 to 1984. 
As Wolman (1967) notes, some of the changes to the 
fluvial system that accompany intense suburban devel- 
opment are episodic and have relatively rapid recovery 
times (1-10 yr). Other changes to the land surface, es- 
pecially those that augment the drainage network, are 
permanent changes (Graf 1977). Persistence of elevated 
flood peaks into the late 1990s suggests that permanent, 
engineered changes to the drainage and channel system 
dominate McMullen Creek time trends. 

The Derita quadrangle (north of Charlotte East), 
which was published in 1971 and was revised based on 
1993 photogrammetry, provides information on time 
trends in Little Sugar Creek land use. Martens (1968) 
notes that in 1962 the most extensive impervious area 
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TABLE 2. Summary of basin characteristics for catchments of five stream-gauging stations in Little Sugar Creelc (Fig. 1), where /f,., denotes 
the mean saturated hydraulic conductivity over the basin. The effective impervious cover for current conditions is the sum of the percent 

Drainage Percent Percent Percent 
area impervious impervious urban ^s.t 

Basin (km^) 1962 1995 soils (mm h ') 

Little Sugar at Medical Center 32 22 32 20 3.8 

(station 1, 02146409) 
5.0 Brian Creek 49 9 25 5 

(station 2, 021465022) 
8 3.6 Little Hope Creek 6.7 — 30 

(station 3, 02146470) 
Little Sugar at Archdale 110 15 27 10 4.9 

(station 4, 02146507) 
5.5 Little Sugar at NC 51 128 — 26 9 

(station 5, 02146530) 

within the Charlotte region was located in the central 
portion of the Little Sugar Creek basin'in the downtown 
area. The most extensive changes to the Derita quad- 
rangle reflect the extension of urban development into 
the uppermost portions of the Little Sugar Creek basin. 
Little Sugar Creek was gauged from 1962 to 1970 just 
downstream of the downtown region (at 39.9 km^), and 
annual peaks were reported in Martens (1968) and sub- 
sequent data reports. Annual flood peaks ranged from 
1.03 to 2.34 m^ s"' km^^, with a median value of 2.03 
m' s"' km"^. The stream-gauging station for Little Sug- 
ar Creek at Medical Center (31.6 km^ Fig. 1) was in- 
stalled in 1995. The annual peaks of 2.76 (April 1998), 
3.21 (August 1995), and 4.76 m^ s"' km'^ (July 1997) 
all exceeded the maximum flood peak of 2.34 m' s~' 
km"^ during the 1960s. These observations suggest sig- 
nificant changes in flood response from 1970 to the 
present within the most intensively urbanized catchment 
as of 1962 (Martens 1968). 

Quantitative assessment of change in impervious cov- 
er for the Little Sugar Creek basin (Table 2) was based 
on planimetric data developed by Mecklenburg County 
from 1962 (reported in Martens 1968) and 1995. The 
algorithms used for computing the 1995 impervious area 
are designed to mimic those used by Martens (1968) 
for the 1962 analysis in which impervious area was 
computed manually from hard-copy planimetric maps. 
Impervious area is defined as any area covered by build- 
ings, roads, and parking lots (paved areas other than 
roads). Impervious cover for Little Sugar Creek above 
Archdale increased from 15% in the early 1960s to 27% 
in the mid-1990s. Impervious cover for the Briar Creek 
catchment increased by almost a factor of 3, from 9% 
to 25%. Little Sugar Creek, above Medical Center, re- 
tained the highest impervious cover at 32%, but its in- 
crease was smaller than in other portions of the basin. 
The current impervious cover for Little Hope Creek, at 
30%, is only 2% smaller than that for Little Sugar Creek 
above Medical Center. Contrasts in hydrologic response 
of these two basins play an important role in the flood 
response analyses of section 4. 

The pattern of impervious cover (Fig. 4), in particular 

the contrasts between residential and urban areas, can 
play a role in hydrologic response. Connectivity of im- 
pervious area with the drainage system is an important 
element of the pattern of impervious cover. A house 
surrounded by vegetated lawn may have a combined 
impervious cover of 30%, but the contribution of this 
impervious cover to downstream hydrologic response 
will depend on connectivity with stream channels, sew- 
ers, or streets. Although the impervious fraction of sub- 
urban watersheds has approached that of urban water- 
sheds in Mecklenburg County, significant contrasts in 
annual water balance remain between urban and sub- 
urban watersheds. The mean annual runoff in Little Sug- 
ar Creek at Archdale (Fig. 3) during tiie period of 1995- 
98 was more than 20% larger than those in the subur- 
banizing watersheds of Irwin Creek and McAlpine 
Creek. The mean unit discharge of Little Sugar Creek 
at Medical Center during the period of 1995-98 of 1.73 
X 10-2 m' S-' km-2 was 21% larger than the 1.44 X 
10-2 iij3 g-i kiii-2 value for Little Hope Creek (compare 
with water balance analyses of large floods in section 
4). 

Soil hydraulic information for Little Sugar Creek (Ta- 
ble 2), based on U.S. Department of Agriculture soil 
surveys, augments the regional picture of impervious 
cover and associated infiltration potential. The "urban 
soils" classification (Table 2) includes compacted soils 
that behave hydrauUcally as impervious in short-dura- 
tion heavy rain. The effective impervious cover of a 
catchment is the fraction of impervious cover shown in 
the fourth column of Table 2 plus the fraction of urban 
soils (fifth column). The area above the Medical Center 
gauging station has the largest effective impervious cov- 
er of 52%. For Little Hope Creek, the effective imper- 
vious fraction is 38%. 

Saturated hydraulic conductivity was estimated from 
soil texture classification using the Rawls and Brak- 
ensiek relationships (Rawls et al. 1993) along with 
masks for the zero conductivity regions that are either 
impervious or urban soils. Mean saturated hydraulic 
conductivity for Archdale is 4.9 mm h"'. The mean 
(areally averaged) saturated hydraulic conductivity for 
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FIG. 5. Storm total rainfall fields (cm) for (a) the 23 Jul 1997 and (b) 27 Jul 1998 storms. Rain gauge locations are denoted by "X". The 
basin boundary of Little Sugar Creek is shown as a solid black line (see Fig. 1). 

the basin above Medical Center at 3.8 mmh"' is slightly 
larger than that of Little Hope at 3.6 mm h '. The mean 
saturated hydraulic conductivity for the 48% of the 
Medical Center area that is not effectively impervious 
is approximately 8 mm h '. These values will be com- 
pared in the following sections with the magnitudes of 
rainfall rates from the five 1995-98 storms. 

3. Hydrometeorology of the five storms 

The five flood events in Little Sugar Creek were pro- 
duced by a diverse collection of storms. In this section 
we briefly describe each storm and present analyses of 
the spatial and temporal distribution of rainfall for each 
event. These analyses are linked in section 4 to flood 
response properties of Little Sugar Creek. 

Tropical Storm Jerry produced record flooding over 
a broad area of the southeastern United States during 
26-28 August 1995. Rainfall accumulations during a 
12-h period on 27 August 1995 exceeded 200 mm in 
the Little Sugar Creek basin, with heaviest rainfall con- 
centrated during two intense rain periods separated by 
8 h. On 23 July 1997, heavy rainfall developed along 
an east-west-oriented frontal boundary, producing re- 
cord rainfall in Charlotte, as storms repeatedly tracked 
over the region during a 12-h period [see Chappell 
(1988) and Doswell et al. (1996) for discussion of quasi- 
stationary convective systems and flash flooding]. Less 
than 24 h after the heavy rainfall on 23 July 1997 pro- 
duced record flooding in Charlotte, Hurricane Danny 
grazed the region. Charlotte was spared even more cat- 
astrophic flooding because the heaviest rainfall from 
Danny passed to the south and east. The 9 April 1998 
squall line passed through South Carolina and southern 

North Carolina, producing a 2-h period of heavy rainfall 
in Charlotte. The 27 July 1998 storm was a convective 
system with low echo centroid structure in radar re- 
flectivity observations and shallow, warm cloud tops in 
satellite infrared observations. These storms are small 
but can produce extreme rainfall rates (Maddox et al. 
1978; Smith et al. 1996; Peterson et al. 1999) over pe- 
riods of several hours. 

Rainfall analyses for the five storms are based on both 
rain gauge and WSR-88D reflectivity observations, with 
the exception of the August 1995 event for which WSR- 
88D volume scan reflectivity observations are not avail- 
able. The USGS rain gauge network in Mecklenburg 
County (Hazell and Bales 1997; and Robinson et al. 
1998) consists of 46 tipping-bucket rain gauges, 9 of 
which are in or adjacent to the Little Sugar Creek basin. 
Radar rainfall estimates were computed using methods 
described in Baeck and Smith (1998). Key elements of 
the procedure are rainfall rate-reflectivity (Z-R) con- 
version using the standard WSR-88D Z-R relationship 
(Z = 3007?"'; with a 55-dBZ threshold on reflectivity 
observations) and a multiplicative bias correction using 
rain gauge storm totals from all of the rain gauges in 
the USGS network (and radar-based storm totals for the 
1-km bins containing rain gauges). Radar-based rainfall 
estimates captured variability of rainfall at sufficiently 
fine timescales (5-15 min) and space scales (1 km; Fig. 
5) to analyze response times and event water balance 
for gauged subbasins of Little Sugar Creek (Fig. 1). 

RainfaU summaries for the five flood events (Tables 
3 and 4 and Figs. 5a,b) present a contrasting picture of 
the series of extreme flood events during the late 1990s. 
The rain gauge analyses in Tables 3 and 4 are based on 
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TABI.K 3. 
Sugar Creek 
to fifth colu 
basin. 

Rainfall summaries based on rain gauges in the Little 
basin for five flood events. The maxima of the second 
™ns are taken over the nine rain gauges covering the 

Storm total   Max 5 min  Max 15 min Max 60 min 
Event max (mm)     (mm h^')      (mm h')      (mm h ') 

Aug 1995 218 
23 Jul 1997 230 
24 Jul 1997 64 
Apr 1998 64 
Jul 1998 102 

122 
161 
70 
76 
80 

101 
144 
50 
50 
64 

70 
78 
22 
35 
5! 

TABI.F. 4. Basin-averaged rainfall and fraction of storm total rainfall 
at rainfall rates exceeding 5, 25, 50, and 100 mm h ', based on rain 
gauge observations (as in Table 3). 

Event 

Aug 1995 
23 Jul 1997 
24 Jul 1997 
Apr 1998 
Jul 1998 

Total 
(mm) 

<?, > 5      9i > 25     % > 50    % > 100 
(mmh') (mm h ') (mm h ') (mm h*') 

169 
181 
50 
57 
59 

92 
97 
79 
94 
96 

54 
73 
15 
38 
60 

28 
43 

6 
5 

25 

5 
II 
0 
0 
0 

observations from the nine rain gauges in or adjacent 
to the Little Sugar Creek basin (no corrections were 
made for potential undercatch by the tipping-bucket rain 
gauges). The first two flood events, 27 August 1995 and 
23 July 1997, were the product of excessive rainfall. In 
contrast, the 1998 flood events and flooding from Hur- 
ricane Danny (24 July 1997) were the product of modest 
rainfall accumulations, by historical standards, in Char- 
lotte. 

The 27 August 199.5 and 23 July 1997 storms pro- 
duced peak rain gauge accumulations in the Little Sugar 
Creek basin that exceeded 200 mm in 12 h. Peak rain 
gauge accumulations were 100 mm or less for the other 
three events. Basin-averaged rainfall for the 27 August 
1995 and 23 July 1997 storms were 169 and 181 mm; 
basin-averaged rainfall for the other three events ranged 
from 50 to 60 mm (Table 4). The peak rainfall accu- 
mulation for the 23 July 1997 event of 280 mm, which 
was located approximately 10 km northeast of the Little 
Sugar Creek basin (Fig. 5a), nearly doubled the previous 
maximum daily rainfall accumulation from the Charlotte 
rain gauge. The median value of maximum annual daily 
rainfall from the Charlotte rain gauge during the 100- 
yr period from 1895 to 1994 is 65 mm. 

The 27 August 1995 and 23 July 1997 storms pro- 
duced markedly higher rainfall rates than did the other 
three events. Peak rainfall rates at a 5-min timescale 
were greater than 120 mm h' for both events. The 161 
mm h"' 5-min peak rainfall rate for the 23 July 1997 
storm is 64% of the 100-yr, 5-min rainfall rate for Char- 
lotte (Frederick et al. 1977) and is 111% of the 2-yr. 5- 
min rainfall rate. The 78 mm h^' 60-min peak rainfall 
rate is 86% of the 100-yr, 60-min rainfall rate for Char- 
lotte and is 181% of the 2-yr, 60-min rainfall rate (Fred- 
erick etal. 1977). Forthe27 Augu.st 1995,23 July 1997, 
and 27 July 1998 storms, more than 50% of storm total' 
rainfall was delivered at 5-min rainfall rates exceeding 
25 mm h ' and more than 25% of storm total rainfall 
was delivered at rainfall rates exceeding 50 mm h"-'. 
For the 23 July 1997 storm, 78 mm of rainfall were 
delivered at rainfall rates exceeding 50 mm h "' and 20 
mm of rainfall were delivered at rainfall rates exceedin" 
100 mm h-' (Table 4). 

To characterize the temporal variability of rainfall 
over the Little Sugar Creek drainage basin, we utilize 
5-min, 1-km radar rainfall fields to compute the follow- 

ing quantities: 1) the mean rainfall rate over the catch- 
ment at time t during the storm, M(/); 2) the fractional 
coverage of the basin by rainfall rates exceeding 25 mm 
h-' at f, Z(0; and 3) the normalized distance of rainfall 
from the basin outlet at I. D{t). The mean rainfall rate 
and fractional coverage time series provide basic in- 
formation on rainfall mass balance and distribution of 
rainfall rates over the catchment. They do not provide 
information on the spatial distribution of rainfall relative 
to the basin network structure, however. The drainage 
network, as represented by the distance function d{x), 
provides a natural metric for analyzing the spatial dis- 
tribution of rainfall. The value of </(A) for each point x 
within the drainage basin is computed as the sum of the 
overland flow distance from x to the nearest channel 
and the distance along the channel to the basin outlet 
[using the algorithms of Tarboton (1997); see additional 
discussion in section 4]. 

The normalized distance time series D(t) is a function 
of the rainfall field R(t, x) and the distance function d{x). 
It is defined as the ratio of the rainfall-weighted centroid 
distance to the basin outlet D,(0 and the maximum dis- 
tance from the basin outlet <5?,„„. The distance time series 
£>,(r) can be represented as 

D,(0 = \A\ I w(t, y)d(y) dy, (1) 

where A is the spatial domain of the drainage basin and 
the weight function vv(r, >■) is given by 

w{t, y) = R{t. y) 

\Al I 
(2) 

R{t, u) dii 

The random variable ^,(0 takes values from 0 to the 
maximum distance from the basin outlet <„„. Values of 
D{t) range from 0 to 1, with values close to 0 indicating 
that rainfall is distributed near the basin outlet; values 
of D{t) close to 1 reflect a rainfall distribution concen- 
trated at the far periphery of the drainage basin. If rain- 
fall is uniformly distributed over the catchment, then 
the weights do not vary spatially, and we obtain the 
mean distance 

= lAI- I ^( v) dy. (3) 
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For the Little Sugar Creek basin, spatially uniform rain- 
fall produces a value of D{t) equal to 0.62. 

The 23 July 1997 storm included two main pulses of 
heavy rainfall (Fig. 6a), at 0500-0900 and 1200-1400 
UTC. The first period was characterized by a series of 
small storm elements passing over the basin, resulting 
in large temporal and spatial variability of rainfall. The 
second period was characterized by growth of the rain 
area within the Little Sugar Creek catchment. At 1320 
UTC, the basin rain area exceeding 25 mm h"' (Fig. 
6a) reached its maximum value of 80% of the total basin 
area. During both periods, the rainfall distribution, as 
represented by the normalized distance D{t), moved 
from the lower to the upper basin during a 2-h time 
period (0430-0630 and 1200-1400 UTC). This pattern 
and timescale of motion was important for flood re- 
sponse in Little Sugar Creek (as discussed further in 
section 4). 

The temporal structure of rainfall distribution in Little 
Sugar Creek for the 9 April 1998 event (Fig. 6b) reflects 
the squall line organization of the storm (Houze 1993). 
The storm moved rapidly through the region and was 
large in linear extent relative to the dimensions of the 
drainage basin. The sharp spike in fractional coverage 
of heavy rainfall Z(t) reflects passage of the main line 
of convection. Throughout the rainfall period, the storm 
exhibited relatively uniform spatial rainfall distribution 
throughout the basin [i.e., D(t) is close to the spatially 
uniform value of 0.62 for Little Sugar Creek]. 

The spatial distribution of storm total rainfall for the 
27 July 1998 event (Fig. 5b) was characterized by very 
large accumulations in the lower basin (120 mm) and 
relatively small accumulations in the upper basin (40 
mm). During the 2-h period of the storm, this rainfall 
distribution resulted from an initial period of rainfall 
concentrated in the lower basin and a later period of 
expanding rain area, with large contributions in the up- 
per portions of the basin. At 1220 UTC, the rain area 
exceeding 25 mm h"' had grown to cover 80% of the 
basin, and the rainfall distribution was nearly uniform 
over the basin [i.e., D(0 is close to 0.62]. 

The time series M(t), Z{t), and D(0 for the 23 July 
1997 storm (figures not shown) were computed for the 
Little Sugar Creek basin above Medical Center (31.2 
km^) and for the Sugar Creek basin (550 km^). The 
principal differences in rainfall distribution with chang- 
ing basin scale are tied to fractional coverage of rainfall. 
In decreasing the basin size from 110 to 31 km^, we 
reach a scale at which flood response is dominated by 
periods in which the entire basin receives heavy rainfall. 
In converse, the increase of basin size from 110 to 550 
km^ reflects the transition from a scale at which peak 
periods of the storm produce fractional coverage values 
of heavy rainfall close to 100% to a scale at which no 
more than 50% of the basin receives heavy rainfall. 
These results have particular relevance to analyses of 
scaling behavior of annual flood peaks (Smith 1992; 
Gupta et al. 1994; Robinson and Sivapalan 1997; Woods 

and Sivapalan 1999). In Smith (1992), it is proposed 
that the 100-km^ scale at which the peak in CV of annual 
flood peaks occurs for the central Appalachian region 
is linked to spatial organization of flood-producing rain- 
fall. For the series of heavy rainfall events in Charlotte, 
the aspect of spatial organization of rainfall that varies 
most strikingly around a scale of 100 km^ is fractional 
coverage of heavy rainfall. 

4. Hydrologic response for extreme floods 

Hydrologic response for extreme floods in Charlotte 
is examined in this section through analyses of the five 
flood events described in previous sections. Particular 
attention is given to analyses for the Little Sugar Creek 
basin at Medical Center, which reflects the most intense 
urban development within the catchment (Figs. 1, 4), 
and the Little Hope Creek basin, which is suburban and 
is dominated by residential development (Figs. 1, 4). 

Hydrograph plots (Fig. 7) for the five flood events in 
the Little Sugar Creek basin illustrate systematic spatial 
heterogeneities in flood response, independent of the 
details of the rainfall distribution. Of most importance, 
flood peaks for Little Sugar Creek at Archdale (station 
4 in Fig. 1) are largely determined by contributions from 
the urbanized western portion of the drainage basin (as 
represented by station 1 in Fig. 1, Little Sugar Creek 
above Medical Center, and the region immediately 
downstream). Briar Creek (station 2 in Fig. 1) peaks 
well after the downstream gauge at Archdale and con- 
tributes mainly to the recession at Archdale (see espe- 
cially Figs. 7a,c,e). Flood peaks decrease (Figs. 7c,d) 
from Archdale at 110 km^ to the most downstream 
gauge at North Carolina Route 51 (NC 51; 128 km^). 

Flood summaries for Little Hope Creek (Table 5) and 
Little Sugar Creek at Medical Center (Table 6) were 
carried out for seven flood periods: the two peaks from 
27 August 1995 (as illustrated in Fig. 8), the two peaks 
from 23 July 1997 (as illustrated in Fig. 9), and the 24 
July 1997, 9 April 1998, and 27 July 1998 events. For 
each period, the water balance is summarized by basin- 
averaged rainfall (mm) and runoff (mm). Flood mag- 
nitude is represented by the peak discharge, expressed 
as a unit discharge (m^ s"' km"^). Flood response time 
is represented by the lag-to-peak value, which was com- 
puted as the time difference between the peak discharge 
and the time centroid of basin-averaged rainfall. As de- 
tailed below, these analyses suggest that expansion of 
the drainage network, and the associated enhancement 
of hydraulic efficiency of the drainage system, is the 
dominant control of increasing flood peaks in Little Sug- 
ar Creek. 

There are large differences in the timing of flood 
response between urban and suburban catchments. The 
median lag time of 1.0 h for Little Sugar Creek at Med- 
ical Center at 31.6 km^ is smaller than the 1.1 h for 
Little Hope Creek at 6.7 km^. Lag time was computed 
for a subset of flood events in Little Sugar Creek at 
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Fic;. 6. Time scries analyses of normalized distance from the basin 
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tions) for the (a) 23 Jul 1997, (b) 9 Apr 1998, and (c) 27 Jul 1998 
storms over the catchment of Little Sugar Creek at Archdale (IIO 
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concentrated at the basin outlet and I represents rainfall concentrated 
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normalized distance for uniform rainfall over the basin. 
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FIG. 7. Hydrograph plots for the (a) 23-24 Jul 1997, (b) 27-28 
Aug 1995, (c) 9-10 Apr 1998, (d) 27-28 Jul 1998, and (e) 24-25 
Jul 1997 storms: Little Sugar at Medical Center (filled circle, station 
1 in Fig. 1), Briar Creek (small-filled square, station 2 in Fig. 1), 
Little Hope Creek (hyphen, station 3 in Fig. 1), Little Sugar Creek 
at Archdale (open circle, station 4 in Fig. 1), and Little Sugar Creek 
at NC 51 (plus sign, station 5 in Fig. 1). 

TABLE 5. Flood summaries for Little Sugar Creek at Medical Center 
for the five storms (note that the 23 Jul 1997 and 27 Aug 1995 events 
are each broken into two periods; see Figs. 9 and 10). "Runoff ratio" 
is the ratio of runoff ("runoff" column) to storm total rainfall ("rain" 
column). "Lag time," or lag-to-peak time, is the difference between 
the time of peak discharge and the time centroid of basin-averaged 
rainfall. 

Archdale, McAlpine Creek at Sardis, McMullen Creek, 
Irwin Creek, and Long Creek (compare with results in 
Table 1), yielding values of 2.8, 6.2, 2.0, 3.1, and 6.8 
h, respectively. 

Additional support for the conclusion that expansion 

TABLE 6. Flood summaries for Little Hope Creek for the seven 
storm periods (as described in Table 5). 

Little Sugar at Peak Lag Peak 

Medical Center Rain Runoff Runoff (m' S-' time Little Hope Rain Runoff Runoff (m' s ' Lag time 

(event) (mm) (mm) ratio km-=) (h) Creek (event) (mm) (mm) ratio km-') (h) 

27 Aug 1995 (1) 120 66 0.55 3.2 1.0 27 Aug 1995 (1) 100 45 0.45 5.0 1.1 

27 Aug 1995 (2) 50 36 0.72 2.9 1.7 27 Aug 1995 (2) 60 45 0,75 5.4 1.4 

23 Jul 1997 (1) 134 86 0.64 4.8 2.2 23 Jul 1997 (1) 97 35 0.36 4.6 3.3 

23 Jul 1997 (2) 60 60 1.00 4.8 0.9 23 Jul 1997 (2) 70 55 0.80 7.2 1.1 

24 Jul 1997 41 33 0.81 2.0 1.2 24 Jul 1997 55 39 0.70 3.7 1.2 

9 Apr 1998 58 33 0.58 2.8 0.8 9 Apr 1998 61 41 0.68 5.7 0.9 

27 Jul 1998 39 16 0.40 1.8 0,7 27 Jul 1998 55 30 0.56 4.9 1.0 
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FIG. 8. Time series of basin-averaged rainfall and discharge in (top) Fic;, 9. Time series of basin-averaged rainfall and discharge in (top) 
Lmle Hope Creek and (bottom) Little Sugar Creek at Medical Center      Little Hope Creek and (bottom) Little Sugar Creek at Medical Center 
for the 27 Aug 1995 event. for ,he 23 Jul 1997 event 

of the drainage network (and the resulting decrease in 
response time) is a dominant control of increasing flood 
magnitudes in Little Sugar Creek is provided by two 
representations of the drainage network (Fig. 10). One 
representation (right-hand side) is derived from a high- 
resolution (10 m) DEM using an area-threshold algo- 
rithm. The second representation (left-hand side) in- 
cludes the sewer network in addition to the natural drain- 
age network. The cumulative drainage density for both 
networks is comparable (the contribution of the natural 
drainage network is smaller for the second representa- 
tion). The role of drainage network structure (Fig. 10) 
for hydrologic response can be summarized through the 
width function (Fig. 11), that is, the number of channel 
links at a specified distance from the basin outlet (Rod- 
riguez-Iturbe and Rinaldo 1997). The width function is 
proportional to the geomorphological instantaneous unit 
hydrograph (GIUH) of the basin [see Rodriguez-Iturbe 
and Rinaldo (1997) for assumptions linking the width 
function and GIUH]. The effect of urban development 
in Little Sugar Creek has been principally to amplify 
the width function in the lower section of the basin (Fig. 
11). A direct consequence has been a decrease in the 
response time and an increase in flood magnitudes for 
the Little Sugar Creek basin at Medical Center and 
downstream. 

There is little difference in the water balance of flood 
events between the Little Hope Creek basin and the 
Little Sugar basin above Medical Center. For Little Sug- 
ar Creek at Medical Center, the cumulative runoff ratio 
for the seven events is 0.66 (502 mm rainfall to 330 

mm runoff). For Little Hope Creek the runoff ratio is 
0.59 (496 mm rainfall to 291 mm of runoff) for the 
seven events. The difference in runoff ratio is due to 
the first pulse of rainfall from the largest event, the 23 
July 1997 flood (Fig. 8). The 134 mm of rain in Little 
Sugar Creek above Medical Center for the first pulse of 
the 23 July 1997 storm resulted in 86 mm of runoff; in 
Little Hope Creek 35 mm of runoff resulted from 97 
mm of rainfall. If the 23 July 1997 event is removed 
from the computation, the runoff ratio is 0.61 for Little 
Hope and 0.60 for Little Sugar Creek at Medical Center. 
As noted in section 2, cumulative runoff during 1995- 
99 was 20% larger in the Little Sugar Creek basin above 
Medical Center than in the Little Hope Creek basin. 

The water balance results are consistent with the soil 
hydraulic properties (Table 2) and rainfall rate analyses 
(Table 3) presented in sections 2 and 3. The differences 
in extreme flood response between an impervious region 
and a pervious region with saturated hydraulic conduc- 
tivity values of less than 10 mm h' (Table 2) are small 
for rain rates experienced during the series of extreme 
storms in Charlotte (Table 3). Extreme flood response 
in Little Sugar Creek, for both impervious and pervious 
regions, is dominated by infiltration excess mechanisms. 
Runoff ratios close to 1, especially for periods during 
which large portions of the basin are receiving heavy 
rainfall (see analyses in Fig. 6), are at odds with previous 
analyses of the maximum extent of saturated portions 
of a drainage basin (Dunne 1978). The decreasing runoff 
ratios between the second and third 23-24 Jufy 1997 
events are consistent with rainfall rate-controlled infil- 
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Little Sugar Creek above Medical Center 

Stormwater Drainage System 
from City of Charlone, Storm Water Services 

Equivalent Natural Network 
derived from constant area threshold with similiar drainage density 

Drainage Densities = 0.010 m-1 

FIG. 10. The drainage network of Little Sugar Creek above Medical Center (left) including the sewer system and (right) derived from a 
10-m DEM (with the same drainage density as on the left). 

tration excess runoff production but are at odds with 
expanding saturated area control of runoff. 

Antecedent soil moisture plays an important role in 
the flood response of Little Sugar Creek, even for ex- 
treme events in the most urbanized portion of the wa- 
tershed, as illustrated by flood response for the three 
storm periods from 0400 UTC 23 July until 1200 UTC 
24 July 1997. For Little Hope Creek, the runoff ratio 
increased from 36% (97 mm rain to 35 mm runoff) for 
the first event to 80% for the second event (70 mm 
rainfall to 55 mm runoff) and back to 70% for the third 
event (55 mm rainfall to 39 mm runoff). For Little Sugar 
Creek at Medical Center, the runoff ratio increased from 
64% (134 mm of rainfall to 86 mm of runoff) for the 
first event to 100% for the second event (60 mm of 
rainfall and runoff) and back to 81% for the third event 
(41 mm of rainfall and 33 mm of runoff). For the two 
August 1995 rain periods, the runoff ratios increased 

from 55% and 45% for Little Sugar Creek at Medical 
Center and Little Hope Creek, respectively, during the 
first event to 72% and 75% for the second rain period. 
For Little Sugar Creek at Medical Center, 40 mm of 
rainfall produces 33 mm of runoff for the 24 July 1997 
event (immediately following 160 mm of rainfall on 23 
July) but only 16 mm of runoff for the July 1998 event. 

Antecedent discharge (minimum discharge preceding 
flood rise), which was computed for the 27 August 1995, 
23 July 1997, 9 April 1998, and 27 July 1998 events, 
provides a useful surrogate for antecedent soil moisture. 
For Little Sugar Creek at Medical Center, antecedent 
discharge ranged from 3.0 X 10'^ m' s"^' km'^ for the 
23 July 1997 event to 6.8 X 10"= m' s"' km-^ for the 
April 1998 event. For Little Hope Creek, it ranged from 
1.4 X 10~= m^ s 
5.6 X 10-= m' s 
consequences of high antecedent soil moisture preced 

1 km-2 for the 23 July 1997 event to 
' km-2 for the April 1998 event. The 
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Fio. 11. The width function of the Little Sugar Creek drainage network (above Medical Center) 
derived from the complete stormwater drainage system (thin line; see Fig. 10) and the equivalent 
natural drainage network (thick line; sec Fig, 10). 

ing the 23 July 1997 event likely would have included 
catastrophic flooding in the major urban corridor of 
Charlotte. Runoff ratio.s close to 1 for the 0500-0800 
UTC rainfall maximum in the upper portion of Little 
Sugar Creek would have produced an 0700 UTC flood 
peak at Medical Center of far greater magnitude than 
that shown in Fig. 9. 

Flood response to the July 1998 and April 1998 
storms (Fig. 7), combined with analyses of temporal 
variability of rainfall (Fig. 6), provides additional in- 
sight into the role of space-time rainfall distribution for 
the flood hydrology of Little Sugar Creek. The April 
and July 1998 floods had comparable peak discharges 
at Archdale (Fig. 7). The July 1998 flood was notable 
for its large peak discharge, relative to the storm total 
rainfall and runoff, especially in comparison with the 
April 1998 event. The volume-to-peak ratio at the Arch- 
dale gauge for the July 1998 event was 3.2 h; for the 
April 1998 event it was 5.0 h (c.f. the results in Table 
1). The April 1998 event exhibited relatively uniform 

TABLE 7. Basin-averaged rainfall, runoff, runoff ratio, and rainfall 
minus runoff for the five basins of Table 1 (and Fig. 1) during the 
27 Jul 1998 storm. The final row is for the intervening area between 
the NC 51 gauge (station 5) and the Archdale gauge (station 4). 
Infiltration accounts for much of the difference between slorm total 
rainfall and runoff ("Residual"). 

Rain Runoff Residual 
Station (mm) (mm) Ratio (mm) 

1 39.2 15.7 0.40 23.5 
2 44.7 12.0 0.27 32.7 
3 54.4 30.2 0.56 24.2 
4 49.8 26.2 0.44 23.6 
5 58.9 34.5 0.59 24.4 

5-4 117.7 88.1 0.75 29.6 

rainfall distribution (Fig. 6b). For the 27 July 1998 
event, heavy rainfall was initially concentrated in the 
lower portion of the basin, with a trend toward more 
uniform distribution at the peak intensity of the storm 
(Fig. 6c). Storm total rainfall over the Little Sugar Creek 
basin for the 27 July 1998 storm (Fig. 5b) ranged from 
25 mm in the upper boundary of the basin to 120 mm 
at the lower boundary. Runoff ratio ranged from 20%- 
40% in the upper basin to 60^-80% in the lower basin 
(Table 7). The residual term in Table 7 includes water 
that infiltrates into the soil column, interception storage 
on vegetation, and retention storage on the land surface. 

If hillslope and channel velocities were uniform over 
the basin, storm movement down the basin would result 
in maximum flood peaks at the basin outlet for a given 
storm total accumulation over the basin [see Ogden et 
al. (1995) and Smith et al. (2000) for detailed analyses]. 
For the Little Sugar Creek basin, however, the highest 
velocities are concentrated in the central and upper areas 
of the basin. The response time of the upper urbanized 
basin (at 30-km2 scale) is approximately 1.5 h. Storm 
motion over a 2-h period from the lower basin to the 
upper basin, as occurred with the 27 July 1998 storm, 
would result in the upper basin contributing synchro- 
nously with the lower basin to the hydrograph at Arch- 
dale. The rainfall maximum in the lower basin (Fig. 5b) 
for the 27 July 1998 storm was the principal control of 
peak discharge for the event. As a consequence of storm 
motion and evolution, peak discharge at Archdale was 
augmented by rapidly responding portions of the middle 
and upper basin. Similar aspects of storm motion and 
evolution play an important role in flood response for 
the 23 July 1997 storm (see Fig. 6a and discussion in 
section 3). 
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FIG. 12. Hydrographs for Irwin-Sugar Creek (169 km^), Little 
Sugar Creek (128 km^), McAlpine Creek (240 km^), and Sugar Creek 
(550 km^) during the 27 Jul 1998 flood event. 

Flood-wave attenuation in the reach between Arch- 
dale and NC 51 (stations 4 and 5 in Fig. 1) is of com- 
parable importance to urbanization effects in determin- 
ing flood response properties at NC 51 [see Woltemade 
and Potter (1994) and Wolff and Burges (2000) for re- 
lated analyses]. The July 1998 and April 1998 flood 
events provide clear illustration of the magnitude of 
attenuation in the reach between Archdale and NC 51 
(Fig. 7). Flood-wave attenuation in this reach is asso- 
ciated with a geologically controlled drop in the lon- 
gitudinal profile (Turner-Gillespie 2001) of the channel 
and expansion of the valley bottom. Flood-wave atten- 
uation is also an important element of the delayed con- 
tribution of Briar Creek to Little Sugar Creek at Arch- 
dale (Fig. 7), noted at the beginning of this section (see 
Turner-Gillespie 2001). Geologically controlled varia- 
tion in longitudinal profile and valley bottom width also 
play an important role in flood-wave attenuation in Briar 
Creek. 

The regional flood response of Sugar Creek reflects 
the major changes in response times associated with 
urbanization and suburbanization (Fig. 7; Tables 5, 6), 
the influence of attenuating reaches (Fig. 7), and the 
scale-dependent space-time structure of rainfall forcing 
(Figs. 5,6). Figure 12 shows time series for Sugar Creek 
(550 km^) and the contributions from Irwin-Sugar 
Creek (169 km^), Little Sugar Creek (128 km^), and 
McAlpine Creek (240 km^) for the July 1998 flood. 
Timing of the peak response at Sugar Creek reflects the 
rapid contributions from the urbanized portion of the 
basin. Attenuating reaches serve to mix the effects of 
upstream heterogeneities of flood response, resulting in 
a rapid decline in the influence of urbanization on flood 
response with increasing drainage area. Of fundamental 
importance for the flood response illustrated in Fig. 12, 
as with other extreme floods, is the spatial and temporal 
pattern of heavy rainfall (Figs. 5, 6). 

5. Summary and conclusions 
The seven principal observations from our work are 

the following. 

1) There are large differences in the timing and mag- 
nitude of flood response among catchments of dif- 
ferent land use and cover in the Charlotte metro- 
politan region. Differences in land use and cover do 
not, however, result in large differences in the water 
balance of flood response for the five extreme flood 
events. Expansion of the drainage network (Graf 
1977) and the associated increase in hydraulic effi- 
ciency play a central role in controlling the increas- 
ing trend in flood magnitudes. 

2) Increases in runoff associated with impervious area 
are important for the overall water balance of the 
watershed but are of secondary importance for ex- 
treme flood response in the Little Sugar Creek basin. 
Extreme flood response, both for pervious and im- 
pervious regions, is dominated by infiltration excess 
runoff mechanisms in which the magnitude of rain- 
fall rate is much larger than saturated hydraulic con- 
ductivity values. 

3) Antecedent soil moisture plays an important role in 
the flood response of Little Sugar Creek for extreme 
floods even in the most intensely urbanized portion 
of the basin. The most striking example is the 23 
July 1997 flood peak, which resulted from rainfall 
accumulations that were approximately 2 times the 
previous daily record from the 100-yr Charlotte rain 
gauge record and which produced the largest flood 
peak in the 74-yr gauging record of Little Sugar 
Creek. It seems likely that the dry antecedent con- 
ditions preceding the 23 July 1997 event prevented 
catastrophic flooding in the major urban corridor of 
Charlotte. 

4) Fractional basin coverage of heavy rainfall is a key 
element of scale-dependent flood response in the 
Sugar Creek basin. For small basins such as Little 
Sugar Creek at Medical Center (31.2 km^), flooding 
resuks from storms with fractional coverage of heavy 
rainfall approaching 100% of the basin for the char- 
acteristic response times of the basin (0-2 h). For 
large basins, such as Sugar Creek (550 km^), frac- 
tional coverage of the basin by heavy rainfall is 
small, and the heavy rainfall periods are short in 
comparison with basin response times (24-48 h). 
The drainage area of Little Sugar Creek at Archdale 
(110 km^) falls in the transition range between these 
two extremes. It also falls near the scale of maximum 
variability of central Appalachian flood peaks (Smith 
1992). These results suggest that fractional coverage 
of heavy rainfall should be examined more closely 
as an explanation for anomalous scahng behavior of 
flood peaks. 

5) Storm structure and motion play an important role 
in the event-to-event variability in flood response. 
For the 23 July 1997 and 27 July 1998 events, storm 
motion from the lower basin to the upper basin on 
a timescale of approximately 2 h served to amplify 
peak discharge at Archdale, relative to other modes 
of storm motion. The link between storm structure. 
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motion, and peak discharge is strongly dependent on 
the spatially varying response times described in ob- 
servation 1 of this section. 

6) Attenuating reaches play a major role in the regional 
flood hydrologic behavior of Sugar Creek. Attenu- 
ation results primarily from geologically controlled 
variations in longitudinal profile and valley bottom 
width (hydraulic modeling studies are being carried 
out to examine this issue in more detail). Flood-wave 
attenuation serves to diminish the effects of urban- 
ization on downstream flood response. 

7) The regional flood response of Sugar Creek reflects 
the major changes in response times associated with 
urbanization and suburbanization (observation 1), 
the scale-dependent space-time structure of rainfall 
forcing (observation 4), and the influence of atten- 
uating reaches (observation 6). 
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[i]   The generaUzed extreme value (GEV) distribution is a standard tool for modeling 
flood peaks, both in annual maximum series (AMS) and in partial duration series (PDS). 
In this paper, combined maximum likelihood estimation (MLE) and L moment (LMOM) 
procedures are developed for estimating location, shape, and scale parameters of the GEV 
distribution. Particular attention is given to estimation of the shape parameter, which 
determines the "thickness" of the upper tail of the flood frequency distribution. Mixed 
MLE-LMOM methods avoid problems with both MLE (estimator variance) and LMOM 
(estimator bias) estimators of the shape parameter. The mixed MLE-LMOM procedure is 
extended to use the two largest flood peaks in a year. This extension is developed in a 
PDS framework. Estimation procedures are applied to flood peak observations from 104 
central Appalachian basins. The estimated values of the shape parameter for the central 
Appalachian basins are more negative than has been considered physically reasonable, 
independent of the estimation procedure that is used. Twenty-eight percent of mixed 
method estimators of the shape parameter have values less than -0.5, implying that the 
moments of order 2 and above are infinite. The estimated shape parameters for the central 
Appalachian basins do not depend on basin morphological parameters (such as drainage 
area) or land cover properties (such as percent urban, forest, or agricultural land use). 
Estimated values of the location and scale parameters for the central Appalachian 
watersheds correspond well with GEV-based simple scaling theory. Estimated values of 
the shape parameter for central Appalachian watersheds are shown to differ markedly from 
those of southern Appalachian watersheds and the difference is shown to be linked to 
contrasting properties of extreme floods. To conclude the paper, analyses of mixture 
distribution models are presented to address the question of whether flood peaks really 
have extreme "heavy tail" behavior or whether the GEV distribution is not the appropriate 
model for flood peaks.       INDEX TERMS: 1821 Hydrology: Floods; 1869 Hydrology: Stochastic 
processes; KEYWORDS: Floods, extreme value theory 

Citation:   Morrison, J. E., and J. A. Smith, Stochastic modeling of flood peaks using the generalized extreme value distribution. Water 
Resour. Res., 38(12), 1305, doi: 10.1029/2001WR000502, 2002. 

1     Introduction Parret, 1998]. "Extreme events" are often defined to be the 

'[2] The development of stochastic methods for the char- ">™'? ^^1"^°^ ^ quantity over a given period of time, 
acterization of flood peaks in drainage basins has both «^f ^\*e maximurn annual discharge m a nver. Extreme 
motivated and benefited from the treatment of classical value theory, m particular the extremal <ypes theorem 

.1         •        *_            1       * t; *•      Tu    „^„^™i;,<>^ \Leadbetter et al, 19831, suggests that the distnbution oi problems in extreme value statistics. The generalized \             .       ,,,,-',*            f,,       ^          , 
extreme value (GEV) distribution has been widely used *ese maxima should be close to one of the extreme value 
for modeling the distribution of flood peaks in at-site and yPf^- The GEV distribution, mtroduced by Jenkinson 
regional settings [Hosking et al, 1985a; Smith, 1987; [1955], is a three-parameter dismbution that combines a 1 
Stedinger andLu, 1995; Rosbjerg and Madsen,  1995; *r^f «„^treme value types into a single fonn (see section 2). 
HosUng and Wallis, 1996]. hi addition to flood modeling, ^'V^^'^T I ^^tim^tion procedures for the *ree-param- 
the GEV distribution is commonly used to model many eter GEV distribution have been extensively studied (^ 
other natural extreme events [Smith, 1986; Bauer, 1996; wo'-k oi Martins and Stedinger [lOm for a   iterature 
Kuchenhoffand Themerus, 1996; Bruun and Tawn, 1998; ^^^'^^ :, ^^ "^f * commonly used methods are the max- 

imum likelihood estimation (MLE) [Prescott and Walden, 
1980], the method of L moments (LMOM) [Hosking, 1990], 

Copyright 2002 by the American Geophysical Union. and the method of moments (MOM). It has been noted that 
0043-1397/02/2001WR000502$09.00 estimates of the shape parameter k of the GEV distribution 
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for flood peak data are usually negative [Smith, 1987; 
Madsen et a!., 1997; Martins and Stedinger, 2000], imply- 
ing heavy tails in the distribution. It has been shown that 
MLE parameter estimators have a very large variance for 
negative values of k, and result in large errors in quantile 
estimation. Although both LMOM and MOM estimators 
tend to produce biased estimates, they are still considered 
preferable to MLE because of smaller variances in their 
quantile estimates [Hosting et al, 1985b; Madsen et al., 
1997]. MLE-based methods, however, can easily incorpo- 
rate additional information, such as censored data [Prescott 
and Walden, 1983] or a known prior distribution for k 
[Martins and Stedinger, 2000, 2001]. 

[4] In this paper (section 3), we show how MLE and 
LMOM methods can be combined to produce improved 
GEV parameter estimators based on annual maximum series 
(AMS) of flood peaks. The resulting "mixed" method 
estimators of the shape parameter of the GEV distribution 
have reduced variance compared to the MLE estimator and 
reduced bias compared to the LMOM estimator. The root 
mean square errors (RMSE) of mixed method estimators of 
the GEV location, scale, and shape parameters arc superior 
to those of LMOM estimators for flood-size samples. The 
RMSE of LMOM estimators of extreme flood quantiles 
(100 and 1000 year flood magnitude analyses are presented) 
are slightly smaller than those for mixed method estimators. 
The contrasting properties of quantile and parameter esti- 
mators are examined and provide interesting insights to both 
LMOM and mixed method estimators. 

[5] Partial duration series (PDS) [Shane and Lynn, 1964; 
Todorovich and Zelenhasic, 1970] models assume that the 
arrival times of peaks above a specified threshold form a 
Poisson process in time, and that the distribution of the peak 
magnitudes has a particular form. The attraction of these 
procedures is that additional information can be used, 
relative to AMS-based techniques. There are, for example, 
many flood records in which the second largest flood peak 
during a year is larger than the majority of other flood 
peaks. The generalized Pareto (GP) distribution is a com- 
mon choice for the peak magnitude distribution both 
because it corresponds to a limiting distribution for excesses 
over a threshold as that threshold is increased [Leadhetter et 
al, 1983], and the resulting distribution of annual flood 
peaks is GEV [Smith, 1984; Madsen and Rosbjerg, 1997]. 
Madsen et al. [1997] showed that errors in parameter 
estimation under the GP/PDS approach under certain con- 
ditions are smaller than those of the GEV/AMS approach. 

[6] In section 4 we introduce a MLE method that uses the 
values of the two largest observations for a given year 
(MLE2) and extend the method to a mixed method estima- 
tor. The MLE2 method is developed in the GP/PDS frame- 
work and tested via Monte Carlo simulations. Analyses 
illustrate the flexibility of the mixed method framework and 
the potential for improving parameter and quantile estima- 
tors through incorporation of flood observations fi-om PDS 
records. 

[7] The GEV distribution has played an important role in 
regional flood frequency analyses [Masking et al, 1985a; 
Lettenmaier et al, 1987; Chowdhury et al, 199\; Stedinger 
and Lu, 1995; Masking and Wallis, 1996]. A commonly 
used foundation for regional flood fi-equency analyses is the 
simple scaling theory, which assumes that appropriately 

scaled annual flood peaks have the same distribution in a 
hydrologically homogeneous geographical region. In the 
GEV approach, this means that the shape parameter k of the 
GEV distribution and the ratio of scale and location param- 
eters arc constant for all basins in the region. 

[R] In the work of Smith [1992], a sample of 104 basin 
from the central Appalachian region was studied, and the 
hypothesis that simple scaling theory holds for this sample 
was rejected. In section 6 we further investigate the applic- 
ability of the index-flood theory to the central Appalachian 
region. In particular, we estimate the parameters of the GEV 
distribution for the same sample of basins used by Smith 
[1992] and Masking and Wallis [1996] and study the 
dependence of parameter estimates on morphological and 
land cover characteristics of the basins. 

2.   MLE and LMOM Methods 
[9] The GEV distribution combines into a single form all 

three Extreme Value (EV) distributions: Gumbel (EVI, k = 
0), Frechet (EVII, k < 0), and Weibull (EVIII, k > 0).'The 
GEV distribution has the following cumulative distribution 
function: 

G{x) = { 
exp|-(l-M^) 

,exp{-(e-^)} 

i/k 
Jt#0, 

A=0. 
(1) 

It has three parameters: scale a > 0, location b, and shape k. 
Here, -00 < x < b + a/k for k> 0, -00 < x < 00 for ^t = 0, 
and b + a/k < X < 00 for A: < 0. To simplify our notation, we 
will write e for the vector (b, a, kf, and to refer to this 
distribution form with a particular set of parameters, we will 
write Go(x). The corresponding probability density function 
will be denoted as g4,x). In this paper, we will focus on 
parameter estimation procedures for negative values of the 
shape parameter k. Because the GEV distribution does not 
have a third moment when A- < -1/3, MOM estimators will 
not be considered here. 

[10] The log likelihood function of a random sample {xj, 
X2,..., X,,} from the GEV distribution is: 

logi(OW = .. -nXoga- ^ |l - ''^^^X 
I/* 

(2) 

and the corresponding MLE estimator § = {b, a, kf is the 
point at which log Z,(e|x) attains its maximum. It can also be 
expressed as the solution to the following optimization 
problem: 

maximize IogZ.(6|.t) 

subject to k{xi-b)<a   i=\,...,n 

a > 0 

(3) 

The constraints in the problem correspond to the condition 
that the probability density function of the GEV distribution 
must be positive at {x], x,,..., x,,}. 

[11] Traditionally, the problem (3) is solved by setting the 
partial derivatives of the log likelihood fonction (2) to zero 
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and then using Newton-Raphson iterations to solve for the 
parameters [Prescott and Walden, 1980; Hosking, 1985; 
MacLeod, 1989]. These methods have only local conver- 
gence and experience difficulty when the objective function 
is nonconvex. In this study, the method of steepest descent 
was used without second-order information about the 
objective function. It was found that convergence problems 
associated with nonconvexity of the objective function 
could be largely avoided in this manner. Although these 
methods require a larger number of fimction evaluations, the 
overall increase in computational time was nonetheless 
insignificant for the cases we tested. 

[12] The LMOM estimator k for the shape parameter is 
the solution of the following equation: 

1 T3- 

1-2-* 2 

The corresponding LMOM estimators for a and b are: 

(i-2-*)r(n-^)^ 

b = \i -T{l+k)], 

(4) 

(5) 

(6) 

where Xi, \2, and T3 = Xs/Xa are the estimators of the first 
two LMOMs and the L skevraess obtained from the sample 
[Hosking, 1990]. Equation (4) is usually solved using 
Newton's method or by an approximate solution [see 
Hosking et al, 1985b]. 

[13] The bias of LMOM estimates of k increases with 
decreasing k, and is larger than 0.07 when k = -0.4. The 
MLE method produces almost unbiased estimates of k, but 
the variance of these estimates is large in comparison with 
those of LMOM. In addition, MLE fi-equently produces 
absurd estimates of ^ (< -1), which lead to very large errors 
in the quantile estimates [Martins and Stedinger, 2000]. In 
the next section, we present a combination of LMOM and 
MLE methods and show that it provides improved estimates 
of the shape parameter k. 

[M] The quantile fimction of the GEV distribution is 
given by: 

Qip)^\        ^ ^ (7) 
(b — a log(- log;?) k — 0. 

For a given value ofp, quantile estimates are obtained by 
substituting estimated values of the parameters to the 
formula above. Of particular interest are large quantile 
values, for example, the 100 year return interval flood 
magnitude Q(0.99). In subsequent sections, we examine 
properties of quantile estimators^ Q(p), in addition to 
properties of parameter estimators k, a, and b. 

3.   Mixed LMOMs: MLE Methods 
[15] One of the ways to improve MLE estimates of A: is to 

impose additional constraints on the optimization problem 
in (3). We would like these consh^ints to be based on our 

sample rather than on additional assumptions about the 
process that we have observed. One such constraint could 
be posed by LMOMs, for example, we can require the first 
LMOM of the estimated GEV distiibution to be the same as 
determined fi-om the sample. The addition of this constraint 
to the MLE problem (3) produces the fu^t Mixed (MIXl) 
method. 

[16] In the MEXl method, we maximize the log like- 
lihood function i(9|x), as a function of a and k after 
substituting b fi-om the LMOM equation (6). The MIXl 
estimator \hat 9$ of the parameters of the GEV distiibution, 
then, is the solution to the following optimization problem:b 

maximize       logi(9|x) 

subject to b = \i ■[i-r(i+^)] 

k{xi — b) <a 
a>0 

i=\,...,n 

(8) 

[17] In the second mixed method (MIX2), we maximize 
the likelihood function I(e|x) as a function of A: after taking 
both b and a firom the LMOM (equation (5) and (6)). The 
optimization problem for this method is 

maximize logL{Q\x) 

subject to t) = \i-j[l-T{l+k)] 

"" {l-2-'')T{l+k)' 

k{xi — b) < a       i = \,.. .,n (9) 

[18] We can also consider the method MIX2 to be an 
LMOM method where, instead of using (4) to obtain 
estimates of k, we maximize the likelihood fimction to 
obtam k. In this case, we avoid using the estimator for T3, 
which has a large bias if the true value of A: is less than —0.2 
and the sample size is small (less than 50). 

[19] Both MDCed methods are based on the solution of a 
nonlinear optimization problem with nonlinear constraints 
involving 1 or 2 variables. Modem optimization solvers can 
solve similar problems with hundreds of variables in a 
matter of seconds, so, from the computational point of 
view, these problems are very tractable. In our implementa- 
tion of the MIXed methods, we used the steepest descent 
method [Bazaraa et al, 1993] for solving these problems. 
The initial point was taken to be the LMOM estimate, and if 
it was infeasible (relative to the constraint in (9)), the value 
of A: was adjusted to allow it to be feasible. At each iteration, 
the bovmds on the step size were set such that the current 
solution remained feasible at all times. Although we coded 
the methods ourselves, standard optimization solvers (such 
as LOQO [Vanderbei, 1999] or MINOS [Mutagh and 
Saunders, 1998] can be readily used. 

[20] In order to evaluate the performance of the MIXed 
methods, we conducted a series of simulation experiments. 
We simulated random samples of different sizes n from the 
GEV distribution corresponding to different values of k in 
the range -0.5 to 0.0. For each sample, we estimated the 
parameters of the GEV distiibution using MLE, LMOM, 
MIXl, and MIX2 methods. We are most interested in the 
estimates of the shape parameter, but we also present the 
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8. 

Figure 1. Bias (a) and RMSE (b) of the estimator k for a 
sample size n = 30 and four different estimation methods: 
MLE, LMOM, MIXl, and MIX2. 

results for estimators of location, scale, and flood quantiles. 
Each simulation experiment was performed 10,000 times. 

[21] The bias and RMSE (defined as (E[Ck - kf]^'} 
were computed for MLE, LMOM, MIXl, and MIX2 
estimators of ^ for sample size « = 30 (Figure 1). For k < 
-0.1, the MIXl and MIX2 estimators have smaller biases 

than the LMOM methods and smaller variances than MLE, 
resulting in smaller RMSE in the estimation of A: compared 
to LMOM and MLE. Neither MDCed method produced 
absurd estimates for k. The differences in performance 
decrease with increasing sample size (Table 1). An attractive 
feature of the MIXl method is that the RMSE of the 
estimator k is insensitive to the value of k. This is a very 
desirable property for the estimator if we would like to 
examine the dependence of k on drainage basin and clima- 
tological properties. In section 5, we examine the regional 
distribution of estimators of k for central Appalachian 
drainage basins and examine the dependence of estimators 
of k on basin properties, such as basin area, land use and 
land cover (LULC), and drainage density. 

[22] The RMSE of LMOM, MLE, MIXl, and MIX2 
estimators of the quantile function Q(p) i(E[{Q(p) - 
Q(p)f]y'^) were computed for;? = 0.99 (100 year flood) 
and p = 0.999 (1000 year flood) for different values of n 
(Table 2). The ratio RMSEg - MIXl/RMSE^ - LMOM 
takes values between 0.98 and 1.02, implying that, in terms 
of quantiles, the two methods perform abnost equally well. 
This result seems somewhat unusual in comparison to the 
estimation results in parameter space, where similar ratios 
range from 0.84, when k = -0.5 to 0.97 when k = -0.1. 

[23] The differences between performance of MIXed 
method and LMOM estimators in parameter and quantile 
spaces lead to a more detailed analysis of the distribution of 
the quantile estimators. A surprising conclusion was that the 
bias of the LMOM estimator ofk plays an important role in 
producing good LMOM quantile estimators. We demon- 
strate this feature with an example using n = 30 and 
parameter values of the GEV distribution of i = 0, a = 1, 
and k = -0.3. The covariance matrix of MIX2 estimators 
(Table 3, based on 10,000 simulation runs) is smaller than 
that for LMOM estimators for each element. Only the bias 
of a is larger for MIX2 than for LMOM. 

[24] Under the assumption that the estimators have a joint 
Gaussian distribution, we can compute the moments of 
2(99) by numerically integrating expression (7) with the 
appropriate pdf of the estimators. If we neglect the bias of 

Table 1.  RMSE of Parameter Estimates for MLE, LMOM, MIXl, and MIX2 Methods for Selected Sample Sizes 
and Negative Values of k 

k 

a RMSE b RMSE A: RMSE 

n MLE LMOM MIXl MIX2 MLE LMOM MIXl M1X2 MLE LMOM MIXl M1X2 

30 -0.5 0.21 0.26 0.21 0.21 0.22 0.23 0.22 0.22 0.22 0.21 0.18 0.17 
30 -0.4 0.19 0.23 0.20 0.19 0.22 0.22 0.22 0.21 0.21 0.19 0.17 0.17 
iO -0.3 0.18 0.21 0.19 0.19 0.22 0.22 0.22 0.22 0.20 0.18 0.17 0 16 30 -0.2 0.17 0.19 0.18 0.17 0.21 0.21 0.21 0.21 0.19 0.17 0.17 0.16 30 -0.1 0.17 0.17 0.17 0.17 0.21 0.21 0.22 0.21 0.18 0.16 0.17 0.17 
30 0 0.16 0.16 0.16 0.17 0.21 0.21 0.22 0.21 0.17 0.15 0.17 0.17 
iU -0.5 0.16 0.2 0.17 0.16 0.16 0.17 0.17 0.17 0.16 0.17 0.14 0.14 
50 -0.4 0.15 0.18 0.15 0.15 0.17 0.17 0.17 0.17 0.15 0.16 0.13 0.13 
iO -0.3 0.14 0.16 0.14 0.14 0.17 0.17 0.17 0.16 0.14 0.14 0.13 0.12 
50 -0.2 0.13 0.14 0.13 0.13 0.16 0.16 0.17 0.16 0.13 0.13 0.12 0.12 50 -0.1 0.13 0.13 0.13 0.13 0.17 0.16 0.17 0.16 0.13 0.12 0.13 0.12 50 0 0.12 0.12 0.12 0.12 0.16 0.16 0.16 0.16 0.12 0.11 0.12 0.12 
100 -0.5 0.11 0.14 0.12 0.11 0.12 0.12 0.12 0.12 0.10 0.13 0.10 0.10 100 -0.4 0.10 0.13 0.11 0.10 0.12 0.12 0.12 0.12 0.10 0.12 0.09 0.10 100 -0.3 0.10 0.11 0.10 0.10 0.12 0.12 0.12 0.11 0.09 0.10 0.09 0.09 100 -0.2 0.091 0.10 0.09 0.09 0.11 0.12 0.12 0.11 0.09 0.09 0.08 0.08 
100 -0.1 0.09 0.10 0.09 0.09 0.12 0.12 0.12 0.11 0.08 0.08 0.08 0 08 
100 0 0.08 0.08 0.08 0.08 0.11 0.11 0.11 0.11 0.08 0.07 0.08 0.08 
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Table 2. RMSE of Quantile Estimates for MLE, LMOM, MDCl, 
and MDC2 Methods for Selected Sample Sizes and Values of k 

Q[0.99)mSEIQ{(i.99) e(0.999)i?M5'£-/e(0.999) 

n k MLE LMOM MIXl MIX2 MLE LMOM MIXl MIX2 

M) -0.5 1.53 0.56 0.58 0.56 9.12 1.10 1.19 1.14 
30 -0.4 1.03 0.53 0.552 0.54 3.63 1.12 1.16 1.14 
%(\ -0.3 0.96 0.50 0.51 0.50 5.44 1.08 1.09 1.07 
30 -0.2 0.63 0.44 0.45 0.44 2.04 0.90 0.91 0.88 
30 -0.1 0.53 0.37 0.40 0.39 1.70 0.67 0.77 0.73 
30 0 0.37 0.30 0.33 0.33 0.77 0.52 0.61 0.60 
50 -0.5 0.74 0.48 0.54 0.50 1.87 0.97 1.14 1.01 
50 -0.4 0.62 0.45 0.46 0.46 1.86 0.96 0.95 0.96 
50 -0.3 0.48 0.39 0.39 0.39 1.05 0.79 0.73 0.74 
50 -0.2 0.39 0.34 0.34 0.34 0.77 0.65 0.62 0.62 
50 -0.1 0.32 0.29 0.30 0.29 0.62 0.50 0.53 0.51 
50 0 0.26 0.24 0.25 0.25 0.44 0.38 0.41 0.41 
100 -0.5 0.40 0.37 0.37 0.37 0.79 0.72 0.71 0.72 
100 -0.4 0.35 0.34 0,33 0.34 0.66 0.68 0.60 0.64 
100 -0.3 0.3 0.29 0.28 0.28 0.54 0.56 0.49 0.51 
100 -0.2 0.25 0.24 0.24 0.23 0.44 0.42 0.40 0.39 
100 -0.1 0.20 0.19 0.20 0.19 0.33 0.32 0.32 0.31 
100 0 0.17 0.16 0.17 0.17 0.26 0.25 0.26 0.26 

the estimators and assume that they are centered at (0, 1, 
-0.3)^, we will find that the MIX2 method performs better 
(Table 3, center). Note that the bias of the quantile estimator 
that we obtain under this assumption is large, nearly 12%. 
Taking into account the biases of the parameter estimators 
in the computation, we obtain better results for quantile 
estimators: biases and variances of the quantile estimators 
are decreased and the RMSEjg obtained firom LMOM is 
slightly smaller than that fi-om MIX2. This agrees with the 
estimated RMSEg obtained fi-om the simulation experi- 
ments, where equation (7) is calculated for every simulation 
experiment and appropriate statistics are computed (Table 3, 
bottom). 

[25] The difference between theoretically computed and 
simulated variances and RMSEs can be attributed to non- 
Gaussian properties of one or more estimators. Further 

analyses suggested that RMSEg is most sensitive to E[k]. 
This is not surprising, because k contributes to (7) exponen- 
tially and RMSEQ decreases with increasing E{k], provided 
that the covariance between k and a is positive (see Table 
3). This result agrees well with results of IM and Stedinger 
[1992], who show that, for certain pairs of A: and n, smaller 
RMSEg can be achieved by setting k = 0. In addition, it is 
clear that decreasing covariance between k and a will result 
in better estimators of the quantiles. Although accurate 
estimation of the shape parameter k is important for proper 
characterization of the tail of the flood peak distribution, 
slight overestimation of A: for the LMOM procedure results 
in smaller values of RMSEg. Improvement of the parameter 
estimators, therefore, does not necessarily mean unprove- 
ment of the quantile estimators. 

[26] We also compared the performance of the four 
methods for positive values of A:. We found that the MIXed 
methods and MLE performed roughly the same, and 
LMOM performed slightly better than the other methods. 

[27] It is important to note here that, if we have prior 
knowledge of the underlying physical process, we can add 
associated constraints to the MLE optimization problem 
accordingly, and there is a good chance that the estimates of 
the model parameters will be improved. One example of 
such prior knowledge is including an estimate of the lower 
bound of the peak magnitude in the GEV distribution (b + 
a/k). Indeed, absurd estimates of k usually occur in situa- 
tions where the smallest value in the sample is very close to 
the estimated lower bound. If, in addition to our sample {xi, 
X2,..., x„}, we know that a value XQ < min{xi,..., x„} is a 
possible flood value, then we must have b + a/k < XQ. 

Adding this lower bound condition to the MLE problem (3) 
will reduce the chance of obtaining absurd estimates, if not 
eliminate it completely (see the work of Stedinger and Cohn 
[1986] for additional development of this idea). Martins and 
Stedinger [2000] discuss a sample of size 15, generated 
fi-om the GEV distribution with parameters a = 1, fe = 0, and 
k = -0.2 for which the MLE estimate of A: is less than -2.4. 
This resulted in an estimate of the 0.999 quantile on the 

Table 3. Comparison of Performance of LMOM and MIX2 Methods in Parameter and Quantile Spaces 
(See Text for More Details)" 

LMOM MIX2 

/   1.002   \ / 0.9538 \ 
Expected values          ,  _                                         (,^^42 -0.0010 

of the estimators,  [{b, a, A) ]                            I _^ 2529 / V-0.2871/ 

/ 4.7896   2.9063    1.2575 \ i'4.6026   2.4660    1.0321 \ 
Covanance matrix                                 _^    2.9063   4.2565    1.0176 1 2.4660   3.2099   0.5423 

of the estimators, B                            ™\ 1.2575    1.0176   3.0540/ 1^1.0321    0.5423   2.6157/ 
det B                                                                  3.2212 x lO' 2.0724 X 10' 
Theoretically computed values for g(0.99), assuming unbiased parameter estimators 
Expected value                                                         11.1817 11.0946 
Variance                                                                  36.2456 31.9329 
RMSE                                                                      6.1519 5.7723 
Theoretically computed values for g(0.99), accounting for biased parameter estimators 
Expected value                                                         9.7986 10.1838 
Variance                                                                  26.3093 26.7793 
RMSE                                                                      5.1305 5.1817 
Simulation results 
Expected value                                                         9.7756 10.1427 
Variance                                                                  24.4626 24.6872 
RMSE                                                                      4.9475 4.9733 

"The true values of the parameters are (0, 1, -0.3)''and the true value for 6(0.99) is 9.9169. 
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order of 6 x lO*", while the value of the real quantile was 
only 14.9. The true distribution has a lower bound of -5, 
while the lowest value in the sample was -0.39. Suppose 
that we had the additional information that the value XQ = 
-1 is feasible, i.e., there is a strictly positive probability of 
obtaining -1 from the underlying process. If we add this 
information into the problem (3), our estimate of k will be 
-0.74, resulting in an estimate of the 0.999 quantile of 208. 
Although the error of this estimate is still quite large, it is 
almost 30,000 times smaller than without the condition. 
Simulation experiments show that adding this condition 
reduces the overall error in quantile estimates by a factor 
of 8 in comparison with the standard MLE method. In 
applications involving natural events (floods, winds, etc.), it 
is possible that some useful additional information of this 
kind is available. For instance, the data might say that there 
was no flood peak above a certain threshold during a certain 
year, but the value of the maximum flood peak for that year 
was not recorded. While it is very hard to incorporate such 
information into the LMOM method, it is very easy to insert 
it into MLE. We will discuss this approach further in later 
sections. 

[28] To summarize this section, we conclude that for the 
negative values of A:: (1) MIXed methods produce better 
estimates of the parameters of the GEV distribution than 
MLE and LMOM; (2) Quantile estimates produced by 
MLXed methods have RMSE close to that of LMOM; (3) 
Difference between relative performances of the MIXed 
and LMOM methods in the quantile and parameter spaces 
can be explained by the correlation between parameter 
estimates, nonlinear quantile function, and the favorable 
bias of the LMOM estimates; and (4) MIXed methods 
preser\'e the attractive large sample properties of MLE 
estimators (sec the work of Morrison [2001] for derivation 
of large sample properties of MIXed method estimators; it 
is shown that estimators are strongly consistent, under 
certain regularity conditions, and have a limiting multi- 
variate Gaussian distribution). 

4.    Extension to PDS Methods 

[29] PDS models of flood peaks (sometimes referred to as 
the peaks-over-threshold approach) [Shane and Lynn, 1964; 
Todorovich and Zelenhasic, 1970] assume that the arrival 
times of peaks greater than a specified threshold form a 
Poisson process in time, and that the distribution of peak 
magnitudes has a particular form. If we assume that the 
distribution is a GP distribution (as in the works ofDavison 
and Smith [1990] and Madsen and Roshjerg [1997]), the 
annual flood peaks derived from this model have a GEV 
distribution (with an atom at zero) [see Smith, 1984; 
Hosking and Wallis, 1987]. 

[30] Assume that flood peaks above the threshold 6 arrive 
according to a (stationary) Poisson process with rate \, and 
that the peaks' magnitudes F,, Vj,... are i.i.d. random 
variables independent of the arrival process, each having a 
GP distribution with location parameter 6, scale parameter 
Q, and shape parameter K. The cumulative distribution 
function of Vj is then 

F{x) = 
l-(!-K^-^)'/'=    K^O, 

I - exp{ K = 0. 
(10) 

[3i] To simplify our notation, we will write T| to represent 
the vector (a, 6, K,)'', and to refer to the distribution fiinction 
with this particular set of parameters TI, we will write F^{x). 
The corresponding probability density function will be 
denoted as //x). Under our assumptions, the distribution 
of annual flood peaks (for values greater than 6) is the same 
as the GEV distribution with parameters 

k =   K, 

a =    cdC^, 
(11) 

After estimating the parameters for GP/PDS model, then, 
we can subsequently deduce the appropriate parameters for 
the GEV model. Madsen and Rosbjerg [1997] showed that 
the PDS approach can improve MLE and LMOM estimates 
if both the arrival rate of flood peaks above threshold is 
greater than 2 peaks per year and K, < 0. 

[32] We developed a MLE method based on the magni- 
tudes of the two largest floods each year (MLE2). Methods 
based on more than one peak per year, have been studied 
before in the application to sea level heights [Smith, 1986- 
Dupuis, 1997]. 

[33] Suppose that the flood peaks for a basin follow the 
GP/PDS process described above. Let X and Y be random 
variables representing the annual maximum flood peak and 
the second largest flood peak for a given year, respectively. 

[34] Under the GP/PDS model, we can write the proba- 
bility distribution for X: 

P{X <x} 
>>(i-f,W) 

(12) 
for J: < 8 

The joint distribution for two largest peaks during a given 
year is then: 

[X <x,Y <y} = . 

' ^-H'-^M) (I ^ ^_^f^j _ ^_^^^,j^     for 6 <y < X, 

*■(!+XF,,(x)) forO<j<6<x, 

for 0 < >■ < x < S, 

otherwise 

(13) 

[35] Under the GEV/AMS approach, we approximate the 
expression in (12) by Ge(x) with the parameters 9 related to 
those of GP/PDS ri through relationships (11). That means 
that (13) will be approximated by: 

P{X <xj<y] = GG(>.)[1 + logGe(x) - IogGe(>')]    for 6 <>■ < x 

(14) 

and the joint probability density function for Zand yis then 
just g[){y)ga(xyGfix) for 6 < _y < X. Using this argument, we 
can construct a likelihood function of the observations of 
the two largest peaks per year Also note that 

'{X < 6} = Ge(ft) = e- (15) 
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[36] Consider a basin with m years of PDS record with 
threshold 6. Among these m years of PDS record, there are 
/Wo with no peaks above 8, mi years with only one peak 
above 6 (let z\, z^,- ■., z^, denote the magnitudes of these 
peaks), and mj years with 2 or more peaks (the largest peaks 
per year will be denoted by xi, X2, ■.., x,„^ and the second 
largest by yi, yt,- ■ ■, ym)- The log likelihood function of 
these observations is, then: 

log K{%\z,x,y) = -mo\ + mi(Iog(X) - X) 
mi 

+ m2log(l - e-^ - Xe-^) + ^Iog(/^{z,)) 
i=\ 

+ Y^H{&{yj) +\og{g,{xj)) -log{G,{xj))], 

(16) 

where the parameters 9, i], and \ are connected through the 
relationships in (11). Here, the first three terms on the right 
hand side correspond to the probability of having 0,1, or "2 
or more" peaks in a given year, respectively. The term on 
the second line is the log likelihood of obtaining the 
particular values zi, Z2,..., z„^ of the single flood peaks over 
threshold that occurred during the /nj years, and the term on 
the last line corresponds to the log likelihood of obtaining 
the particular pairs of two largest peaks for the m2 years that 
we observed two or more peaks. Substituting into (16) the 
derivative of (10) for/^, and Ge and ge from (1), and using 
the relationships (11) we obtain the following expression for 
the likelihood function of the two maxima: 

log m^,x,y) = - moe*^*' + w, (A(6) - e**')) 

+ m2log(l-exp(-e*(^))(l+e*W)) 
mi 

- (mi + 2m2)loga + {l-k)Y^h{zi) 
i=l 

m2 mi 

+ (i-^)x:[%)+%)]-E^'^*^' 

where ;i(;c)=ilogfl-^^*^' 
k      \ a (17) 

The time required to evaluate this expression computation- 
ally is not much more than the time necessary to evaluate 
the standard likelihood function for the MLE method. 

[37] The maximum likelihood estimator based on the two 
largest maxima per year (MLE2) is the (local) maximum of 
the likelihood function in (17). This can be equivalently 
written as the solution to the following optimization prob- 
lem: 

minimize — IogA(G|z,x,;') 
k{zi — b) < a     ! = 1,..., mi 

subject to 
k{xj — b) < a 

k{yj-b) <a,   j= l,...,m2 

yt(6 -b)<a, 
a>0 (IS 

The first three conditions correspond to the restriction that 
the measured peak magnitudes must be feasible values for 
the varying GP distribution. The last condition is the 
restriction that the scale parameter is positive. The second to 

last constraint ("the 6 constraint") is the condition that the 
threshold level itself must be a feasible value for the GEV 
distribution. This constraint is necessary because it ensures 
that the likelihood function can be evaluated. When A: > 0, 
since all z,, xj, and yj are greater than 8, the 6 constraint never 
becomes binding on the problem (the upper boxmd of the 
GEV distribution is obviously greater than 6); when k= 0 
the 6 constraint becomes a>0, which is less restrictive than 
the last constraint. For A: < 0, the 8 constraint has an effect, 
as it requires that the lower bound for annual flood peaks be 
less than 6. This corresponds to the positive probability of 
having no peaks above the threshold during a given year. 

[38] As with the regular MLE method, we investigated 
different possible constraints that we can add to the problem 
(18) in order to improve the estimates of the quantiles. The 
equivalent of the MIXl method in this case involves adding 
the following constraint to the problem (18): 

^ = T3^-?(i + r(i+^)). (19) 

where Xi is the mean value (estimate of the first LMOM) of 
all aimual rnaxima above the threshold 8, that is, 
Xi =ii;s [£^' + 2';. This condition helps to eliminate all absurd 
estimates of A:, and improves the estimation. We will refer to 
this method as MLE2-MIX1. 

[39] The procedure that we used for Monte Carlo simu- 
lations in order to test our methods is the same as described 
by Madsen et al. [1997]. It is designed so that we can 
compare the performance of the AMS methods to that of 
PDS-based methods. It exploits the fact that in GP/PDS 
peaks above higher threshold levels from the same process 
also have GP distribution with the same value of k. 
Specifically, if peaks over the threshold level 60 arrive 
according to a Poisson process with rate XQ, and the peaks' 
magnitudes are i.i.d., independent of the Poisson process, 
and have a GP distribution with parameters TIQ = (oto, 80, K,), 

then peaks above the higher threshold 81 for Xi < XQ 

5i = 
So+^[1-fey 
80+aoiogfe) K = 0. 

(20) 

arrive according to a Poisson process with rate Xi, are i.i.d., 
and have a GP distribution with scale parameter ai = CXQ + K, 

(81 — 80), location parameter 81, and the same value of 
shape parameter K, [see Madsen et al., 1997]. 

[40] The simulation procedure can be described as fol- 
lows: 

1. Pick parameters to simulate data from the GP/PDS 
model: Choose a large arrival rate XQ, SO that the probability 
of obtaining zero peaks during any given year is very small. 
Choose a threshold level 60, scale parameter OQ, and the 
number of years in the record m. Also, choose the value of 
the shape parameter K and the arrival rate Xi for which we 
would like to test the procedure. Compute 81 from (20) and 
ai = 0!o + K, (61 - 80). 

2. Generate arrival times from the Poisson process with 
rate XQ, and generate a flood peak magnitude from the GP 
distribution with parameters 80, ao, and K, for each arrival 
time. 
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3. Extract the PDS sample corresponding to all peaks 
higher than 6) and their arrival times: compute the number 
of years with no peaks, WQ, the number of years with 1 peak, 
mi, and the number of years with more than one peak, W2 = 
m - Wo - mi. For years with only one peak, record the 
magnitude of the peak z„ / = 1,..., mj, and for years with 
two or more peaks record the magnitudes of the largest and 
second largest peaks, Xj and yj,j = 1,..., mj. 

4. Solve the optimization problem (18) and record the 
MLE2 estimates. 

5. Extract the AMS sample from the original process by 
recording the largest peak for each year 

6. Use LMOM and MIXl method to estimate the 
parameters of the GEV distribution based on the AMS 
sample. 

[41] Monte Carlo simulations were performed according 
to the procedure above for records 20-100 years long, 
values of Xj from 2 to 7, shape parameter k between -0.5 
and 0.0. Results (Figure 2) show that incorporating infor- 
mation about second maxima leads to a decrease in the 
estimation error of the shape parameter for all sample sizes. 
The results obtained for all other sets of the model param- 
eters were similar to this one (Table 4). This was especially 
significant for very negative values of k. Although the 
MLE2 method sometimes produces absurd results, it does 
so less frequently than MLE, in part due to the "8 con- 
dition" in problem (18) (see the example above). The 
MLE2-MIX1 method did not produce any absurd estimates 
of A-, and its estimates of A^ have the smallest RMSE. In terms 

Table 4. RMSE of the Estimates of k LMOM, MLE2, and 
MLE2-MIX1 Methods for Selected Sample Sizes and Negative 
Values of k 

k 

A: RMSE 

n LMOM MLE2 MLE2-MIX1 

35 -0.5 0.19 0.14 0.13 
35 -0.4 0.17 0.14 0.12 
35 -0.3 0.17 0.13 0.12 
35 -0.2 0.15 0.12 0.11 
35 -0.1 0.14 0.11 0.11 
35 0 0.14 0.11 0.11 
50 -0.5 0.18 0.12 0.12 
50 -0.4 0.15 0.11 0.10 
50 -0.3 0.15 0.11 0.10 
50 -0.2 0.13 0.10 0.10 
50 -0.1 0.11 0.09 0.09 
50 0 0.11 0.09 0.09 
100 -0.5 0.13 0.08 0.08 
100 -0.4 0.12 0.08 0.08 
100 -0.3 0.11 0.07 0.07 
100 -0.2 0.09 0.07 0.07 
100 -0.1 0.08 0.07 0.07 
100 0 0.08 0.06 0.06 

of quantiles, though incorporating second maximum 
decreased the RMSE in the quantiles by a factor of 8 in 
comparison with the standard MLE method, the LMOM/ 
AMS and MIXl/AMS methods still produce better quantile 
estimates than MLE2, primarily due to the absurd estimates 
of A. MLE2-MIX1 has the smallest RMSEQ (see Table 5) 
for A < -0.2. 
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Figure 2. Bias (a) and RMSE (b) of the estimator A for a 
sample size n = 30 and four different estimation methods: 
MLE2, LMOM, MIXl, and MLE2-M1X1. 

5.    Analysis of Flood Peak Data From the 
Central Appalachian Region 

[42] GEV parameter estimation procedures were applied 
to flood peak observations from a sample of 104 USGS 
stream gauging stations in the central Appalachian region 
(sec the works of Smith [1992] and Hashing and Wallis 
[1996] for previous analyses of this data set). These basins 
have at least 30 years of data and are not regulated by dams 
[see Smith, 1992]. The questions that we would like to 
address in our analysis are (1) How variable are at-site 
estimates of the shape parameter A within the region; (2) 
How can this variability be explained; and (3) How do the 
estimates of the three GEV parameters depend on morpho- 
logical and land cover properties of the drainage basins? To 
address the third question, basin morphological and land 
cover information was computed for each of the basins from 
digital elevation data (DEM) and LULC data (based on 
Landsat Thematic Mapper images from 1990 to 1992). 
From these data sets we computed drainage area, measures 
of basin slope and shape (including basin relief, relief ratio 
and elongation ratio) [Rodriguez-Iturbe and Rinaldo, 1997], 
and percent cover for various LULC categories (including 
urban, forest and agricultural classifications) for each of the 
104 basins. 

[43] Based on analyses of previous sections and for ease of 
comparison with prior studies, the MLE2-MIX1 method 
and LMOM method were used to estimate the parameters of 
the GEV distribution for each of the basins. The range of 
LMOM estimates of A for the central Appalachian basins was 
between -0.74 and 0.02, with a median value of -0.37. For 
the MLE2-M1X1 method, estimates of Aranged from -0.82 
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Table 5. RMSE of Quantile Estimates for LMOM, MLE2, and MLE2-MIX1 Methods for 
Selected Sample Sizes and Values of k 

k 

e(0.99) RMSE/e(0.99) 2(0.999) RMS] 

LMOM         MLE2 

E/e(0.999) 

n LMOM MLE2 MLE2-MIX1 MLE2-MrXl 

35 -0.5 0.48 0.66 0.50x2 1.02 1.67 1.02 
35 -0.4 0.42 0.55 0.41 0.88 1.23 0,80 
35 -0.3 0.42 0.45 0.40 1.01 1.03 0.83 
35 -0.2 0.30 0.33 0.30 0.64 0.66 0.55 
35 -0.1 0.25 0.24 0.24 0.54 0.46 0.45 
50 -0.5 0.46 0.54 0.47 0.96 1.16 0.92 
50 -0.4 0.38 0.41 0.37 0.81 0.81 0.72 
50 -0.3 0.36 0.34 0.33 0.81 0.68 0.64 
50 -0.2 0.26 0.26 0.25 0.56 0.50 0.47 
50 -0.1 0.20 0.19 0.19 0.40 0.32 0.33 
100 -0.5 0.36 0.33 0.38 0.80 0.61 0.74 
100 -0.4 0.321 0.27 0.31 0.72 0.49 0.60 
100 -0.3 0.26 0.22 0.23 0.60 0.39 0.43 
100 -0.2 0.19 0.17 0.17 0.37 0.30 0.30 
100 -0.1 0.15 0.14 0.15 0.27 0.25 0.25 

to 0.01 with a median value of -0.40. As given by Hosking 
and Wallis [1996] the same sample of basins is divided into 5 
groups, and the regional estimates of A: for each group were 
determined. The values of these estimates ranged from 
-0.45 to -0.24, which agrees with our distribution of at- 
site estimates. These values are more negative than what has 
conventionally been considered physically reasonable [Mar- 
tins andStedinger, 2000]. When A:is less than -1/3, the flood 
peak distribution has an infinite third moment and when k is 
less than -1/2, the distribution has infmite variance. Very 
negative values of k suggest that the distribution of flood 
peaks has very heavy tails. 

[44] Figure 3 shows the values of at-site estimates of k 
obtained using the LMOM and MLE2-MIX1 methods 
plotted against the corresponding empirical quantiles of 
the standard Gaussian distribution. The lines on the plot 
correspond to a Gaussian approximation of the distribution 
of the respective estimators of A: for the two methods, if the 
true value of A is -0.42 and the period of record is 46 (the 
average nimiber of years of record available for our sample). 
From this plot, we conclude that the distribution of the 
estimates of k for our sample is approximately Gaussian, 
and the variability of the estimates can be explained by the 
variability of the estimators used. 

[45] The estimates of the shape parameter k for the central 
Appalachian basins do not exhibit systematic dependence 
on basin morphometric properties or land cover properties. 
The relationship between estimates of k and basin area 
(Figure 4) is representative of those for other basin descrip- 
tors. Regression analysis between the estimates of A and the 
basin drainage area produced an R^ value of 0.007. R^ 
values for regression analyses of estimates of A versus basin 
morphological and land cover variables were less than 0.06 
for all variables. 

[46] According to simple scaling theory, values of the 
scaling parameter a and the location parameter b should 
exhibit a log-log relationship with drainage area A. For the 
central Appalachian basins, this property generally holds 
(Figures 5a and 5b). A significant contribution to the 
variability in this scaling relationship for estimates of the 
GEV location and scale parameters is related to land cover 
properties. It was found that basins with a higher percentage 

of urbanized land have higher values of the scaling param- 
eter a and b (Figures 5a and 5b). These basins respond as 
though they have larger effective areas [see Leopold, 1968; 
Smith et al, 2002]. Notably, the urbanization effects on 
GEV parameter estimates are quite important for location 
and scale, but not for the shape parameter k (see the work of 
lacobellis and Fiorentino [2000] for additional discussion). 

[47] GEV flood estimation analyses were also carried out 
for a sample of 34 drainage basins from the southern 
Appalachians yielding estimates of k ranging from -0.53 
to 0.24 with a median value of -0.11. Selection of the 34 
basins (all of which are in North Carolina) was based on 
identical constraints to those used for the 104 central 
Appalachian basins. A systematic difference in flood peak 
distributions between the two regions is that the southern 
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Figure 3. A normal QQ plot of at-site estimates of k for the 
central Appalachians basins. The lines on the plot 
correspond to a Gaussian approximation of the distribution 
of the LMOM and MEXl estimator of A. 
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Figure 4. Dependence of MLE2-MIX1 estimate of k on 
basin's drainage area. 

Appalachian basins exhibit markedly lower variability, as 
represented by the coefficient of variation of annual flood 
peaks, than central Appalachian basins. This contrast in 
flood peak distributions is reflected in contrasting magni- 
tudes of extreme flood peaks, as illustrated in Figure 6 by 
envelope cur\'es of flood peaks for the two samples. The 
"extreme" estimates of the shape parameter k for the central 
Appalachian region are linked to the hydrology and hydro- 
meteorology of extreme floods in the region. The central 
Appalachian region has experienced some of the largest unit 
discharge flood peaks in the United States east of the Rocky 
Mountains [Smith et al, 1996; Eisenlohr, 1952; Hack and 
Goodlett,  1960] The Three Floods paradigm of Miller 

[1990] interprets the flood hydrology of the central Appa- 
lachian region in terms of the contributions of (1) organized 
systems of thunderstorms, (2) tropical storms, and (3) 
extratropical cyclones. The relative importance of these 
three flood-producing storm systems is scale dependent, 
with thunderstorm systems of most importance at the small- 
est basin scales (less that 100 km^) and extratropical cyclo- 
nes of greatest importance at the largest basin scales (greater 
than 10,000 km^). 

[48] A key question is whether extreme estimates of the 
GEV tail parameter k necessarily mean that flood peak 
distributions indeed have heavy tails or whether altemative 
stochastic models can explain the estimated values of yt. One 
possible scenario for negative estimates of ^ from thin-tailed 
flood distributions is based on the GEV distribution not 
being the correct distribution for annual flood peaks. If, for 
example, we estimate the three parameters of the GEV 
distribution from samples of size « = 50 from the exponen- 
tial distribution, then the estimated values of k will be 
centered at -0.38 for MIXl estimators and at -0.2 for 
the LMOM estimators. The exponential distribution is from 
the Gumbel domain of attraction {k = 0), so it does not have 
thick tails. The exponential distribution, however, can be 
shown to be a poor choice for modeling flood peak 
distributions. Are there good altemative models for annual 
flood peak distributions with thin tails, but large negative 
estimates of kl 

[49] The heuristic explanation for the contrasts in flood 
distributions between the central and southern Appalachians 
given above, rests on the influence of particular types of 
flood events. This notion points to a class of altemative 
models that involve a mixture of different distributions. Let 
Fi and FT be independent random variables having distri- 
butions from the same family, with ^[Fj] > E[V{\. Again, 
let A" be a random variable representing an annual flood, and 
suppose that X = V^ with probability p and X = V2 with 
probability (1 - p). F, and Fj can be thought of as flood 
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Figure 5. (a) Dependence of MLE2-MIX1 estimate of a on basin's drainage area. Solid circles denote 
urban basins and empty circles denote rural basins, (b) Dependence of MLE2-MIX1 estimate of h on 
basin's drainage area. Solid circles denote urban basins and empty circles denote rural basins. 
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Figure 6.   Envelope curves of flood peaks for central and 
southern Appalachians region. 

peaks occurring from different classes of storms. For exam- 
ple, Vi might represent flood peaks produced by tropical 
storms [Sturdevant-Rees et al, 2001] and V2 might then 
represent flood peaks due to summer thunderstorms [Smith 
etal, 1996]. If V^ and V2 have a GEV distribution with A: = 0, 
i.e., both flood populations have a Gumbel distribution, is it 
possible to obtain estimates of A: centered at -0.4 for flood- 
length samples? The answer is yes for the following for- 
mulation: (1) Fi ~ GEV with A:i = 0, ai = 1, 61 = 0, (2) V2 ~ 
GEV with k2 = 0, a2 = 3.3, A2 = 6.6, and (3)p = 0.83. 

[50] If one estimates parameters of the GEV distribution 
from samples of size 50 from the Gumbel mixture model 
above using the GEV LMOM estimators, the estimator of 
the shape parameter k is distributed about -0.4 (Figure 7). 
For samples of size 50 from a GEV distribution with 
parameters a = lA, b = 0.2, and A: = -0.42 (a "best fit" 
GEV parameter set for the Gumbel mixture model) the 
LMOM estimator of k is centered about —0.4. The GEV 
distribution with a= lA,b = 0.2, and k = -0.42 is close to 
the Gumbel mixture distribution for the 10 year event, 
taking a value of 5.3 for the GEV distribution and 5.6 for 
the Gumbel mixture. The distributions are quite different in 
the upper tails with a 0.99 quantile of 18.7 for the GEV 
distribution versus 8.2 for the Gimibel mixture model and a 
0.999 quantile of 52.2 for the GEV and 10.6 for the Gumbel 
mixture. The preceding analyses demonstrate that if we 
estimate parameters of the GEV distribution from a flood 
sample whose true distribution is a Gumbel mixture, we can 
overestimate the upper tail thickness. Furthermore, the 
differences in assessment of upper tail thickness can have 
a marked impact on estimates of extreme flood quantiles. 

6.   Conclusions 
[51] New Mixed Method parameter estimators for the 

GEV distribution are introduced based on a combination 
of the MLE and LMOM methods. These procedures can be 
viewed as LMOM-consfrained MLE methods. The new 

estimation procedures were motivated by problems in 
estimating the GEV shape parameter using MLE and 
LMOM procedures. The performance of GEV parameter 
and quantile estimators is studied via simulation. MEXl and 
MIX2 estimators do not produce absurd estimates of k 
(unlike MLE estimators), and the RMSE of these estimators 
are smaller than that of LMOM and MLE for A: < -0.1. The 
Mixed Method estimators are based on the MLE principle 
and are readily extended to incorporate additional informa- 
tion. These estimators also possess the attractive large 
sample properties of MLE estimators. 

[52] Despite the fact that Mixed Method estimators pro- 
vide better estimators of the GEV location, shape, and scale 
parameters (for negative values of k), the resulting Mixed 
Method quantile estimators are not superior to LMOM 
quantile estimators. Analyses of the distribution of the 
quantile estimators demonstrate that bias of the LMOM 
estimator of the GEV shape parameter is an important 
element of the performance of LMOM quantile estimators. 

[53] The Mixed Method estimators are extended to use the 
largest two flood peaks in a year. This extension is developed 
in a PDS framework. Performance of the MLE2 and MLE2- 
MIXI estimators are also studied via simulation. It is shown 
that for negative k, incorporation of the additional informa- 
tion on flood peaks from the PDS record into Mixed Method 
estimators can result in quantile estimators with smaller 
values of RMSE than for LMOM quantile estimators. 

[54] The GEV estimation techniques were applied to 
flood samples from 104 basins in the central Appalachians. 
Estimates of the GEV shape parameter, which are centered 
at -0.4, are more negative than what has conventionally 
been considered physically reasonable. Comparison of 
estimators of the shape parameter with basin descriptors 
uncovered no significant dependences. The dependence of 
estimated location and scale parameters on drainage area 
was consistent with simple scaling theory. It was also 
concluded that basins with a higher percentage of urban 
area have larger values of the scale and location parameters. 
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Figure 7. Distribution of the estimates of k for GEV 
distribution and the Gumbel mixture model (with para- 
meters described in text) with sample size n = 50. 
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The estimates of k for central Appalachian watersheds are 
shown to differ from those of southern Appalachian water- 
sheds and the difference is linked to contrasting properties 
of extreme floods. Gumbel mixture distribution models 
were examined to determine whether the negative values 
of k might be explained by a stochastic model with tails 
thinner than those implied by the GEV distribution. 

[55] The methods described in this paper were imple- 
mented by the authors in the EVANESCE ("Extreme Value 
Analysis Employing Statistical Copula Estimation") pack- 
age for S-Plus [Venables and Ripley, 1997]. The package is 
available from the authors free of charge. 
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ABSTRACT 

Supercell thunderstorms, the storm systems responsible for most tornadoes, have often been dismissed as 
flood hazards. The role of supercell thunderstorms as flood agents is examined through analyses of storm systems 
that occurred in Texas (5-6 May 1995), Florida (26 March 1992), Nebraska (20-21 June 1996), and Pennsylvania 
(18-19 July 1996). Particular attention is given to the "Dallas Supercell," which resulted in 16 deaths from 
flash flooding and more than $1 billion in property damage during the evening of 5 May 1995. Rainfall analyses 
using Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity observations and special mesonet rain 
gauge observations from Dallas, Texas, show that catastrophic flash flooding resulted from exceptional rainfall 
rates at 5-60-min timescales. The spatial structure of extreme rainfall was linked to supercell structure and 
motion. The "Orlando Supercell" produced extreme rainfall rates (greater than 300 mm h"') at 1-5-min time- 
scales over a dense rain gauge network. The Nebraska and Pennsylvania storm systems produced record flooding 
over larger spatial scales than the Texas and Florida storms, by virtue of organization and motion of multiple 
storms over the same region. For both the Nebraska and Pennsylvania storms, extreme rainfall and tornadoes 
occurred in tandem. Severe rainfall measurement problems arise for supercell thunderstorms, both from con- 
ventional gauge networks and weather radar. It is hypothesized that supercell storms play a significant role in 
the "climatology" of extreme rainfall rates (100-yr return interval and greater) at short time intervals (1-60 
min) in much of the central and eastern United States. 

1. Introduction 

During the past 20 years there have been major ad- 
vances in understanding the dynamics of supercell thun- 
derstorms and their role in tornadogenesis (see Doswell 
and Burgess 1993). Supercell storms have often been 
dismissed as heavy rainfall producers based on argu- 
ments revolving around low precipitation efficiency and 
rapid storm motion. Cotton and Anthes 1989, for ex- 
ample, note that "storms producing the largest hail- 
stones occur in strongly sheared environments; thus, in 
general, we should not expect that the storm systems 
producing the largest hailstones are also heavy rain- 
producing storms." Doswell et al. 1996 provide a dif- 
ferent perspective, noting that "the combination of in- 
tense updrafts and substantial low-level moisture sug- 
gests some potential for heavy rainfall rates" (see also 
Moller et al. 1990, 1994; Doswell 1998). 

The 559-mm rainfall accumulation during 2.75 h 
in D'Hannis, Texas, on 31 May 1935 is a world record 

Corresponding author address: James A. Smith, Environmental 
Engineering and Water Resources, Dept. of Civil and Environmental 
Engineering, Princeton University, Princeton, NJ 08544. 
E-mail: jsmith@princeton.edu 

for the 2-3-h time period (WMO 1986). The Hondo 
Anvil Herald of 7 June 1935 noted that "a cyclone 
and severe electrical storm accompanied the rain" 
(see Dalrymple et al. 1937; "cyclone" is used col- 
loquially to mean tornado), suggesting that a supercell 
thunderstorm contributed to this record. This obser- 
vation is intriguing but raises more questions than it 
answers. How much rainfall was contributed in this 
case by supercell thunderstorms? Was there one storm 
or multiple storms? Were the storms moving rapidly 
or was anomalous storm motion a key ingredient of 
the rainfall record? 

During the evening of 5 May 1995, a supercell thun- 
derstorm (Fig. 1) passed over the Dallas-Fort Worth 
metropolitan area, producing softball-sized hail in Fort 
Worth and flash floods that resulted in 16 fatalities in 
Dallas. Total damages from flooding and hail made the 
"Dallas Supercell" the first $1 billion thunderstorm in 
U.S. hiptory (NOAA 1995). Unlike the 31 May 1935 
storm, there were exceptional observations of the Dallas 
Supercell from the Dallas-Fort Worth Weather Sur- 
veillance Radar-1988 Doppler (WSR-88D) and a dense 
network of rain gauges in the Dallas metropolitan area. 

In this paper, it is demonstrated that supercell thun- 

2001 American Meteorological Society 
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using anal\ses of" die Dallas Supercell and tliree other and liming of the'events are representative of the sea- 
stoi-m s_\ stems that produced extreme rainfall and flood- sonal and geographic occurrence of supercell storms (as 
ing  in  Florida (26  March   I992i.  Nebraska (21   June illustratedin tlie followiuL' sections). Detailed analvses 
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FIG. 2. Storm total rainfall distribution for 5-6 May 1995 over the 
Dallas metropolitan region, based on rain gauge observations from 
the Dallas mesonet (locations denoted by "x"). The boundary of 
Turtle Creek is outlined by dots. Contours represent storm total pre- 
cipitation isohyets (cm). 

of the Dallas Supercell are carried out, using the dense 
rain gauge observations along with WSR-88D radar ob- 
servations to characterize spatial and temporal vari- 
ability of supercell rainfall. The Oriando, Florida, storm 
provides a second opportunity to examine supercell rain- 
fall over a dense rain gauge network. The Nebraska and 
Pennsylvania storm systems resulted in flooding at larg- 
er spatial scales than those of the Dallas Supercell and 
"Orlando Supercell," owing to multiple storms tracking 
over the same area for an extended period of time. For 
both the Nebraska and Pennsylvania storms, extreme 
rainfall and tornadoes occurred in tandem over the flood 
area. 

The objectives of this study are 

1) to identify the aspects of supercell structure, motion, 
and evolution that control the spatial and temporal 
distribution of extreme rainfall and flooding; 

2) to characterize the magnitude of rainfall rates and 
their relation to supercell structure and motion; 

3) to provide a depiction of the "climatology" of ex- 
treme rainfall from supercell thunderstorms; and 

4) to illustrate the rainfall measurement problem for 
supercell thunderstorms. 

The focus of this paper is on the spatial and temporal 
structure of extreme rainfall from supercell thunder- 
storms. A particular motivation for this study is the 
desire to understand the scale-dependent hydrologic re- 
sponse of drainage basins for extreme flood events at 
basin scales ranging from 1 to 1000 km^ (see Smith 
1992; Gupta et al. 1994; Woods and Sivapalan 1999; 

■5;      o 

Rainfall  x 

Discharge o 

Time UTC 
May 6,1995 

FIG. 3. Time series of basin-averaged rainfall (mm h"'; derived 
from rain gauge observations) and discharge (mm h~') for Turtle 
Creelc (see Fig. 2 for basin boundary). Discharge is expressed as a 
unit discharge by dividing discharge (m' s"') by drainage area (lan^) 
and converting to millimeters per hour. 

Smith et al. 2000). This study is further motivated by 
applications in engineering design that require detailed 
understanding of the geographic distribution of flood 
hazards associated with extreme rainfall. As noted in 
NRC (1994), there are particular difficulties in char- 
acterizing the spatial occurrence of extreme rainfall for 
short durations and small areas. This paper does not 
attempt to identify the physical mechanisms distinguish- 
ing supercell storms that produce extreme rainfall from 
those that do not (see, e.g., Moller et al. 1994). We do, 
however, attempt to identify physical mechanisms that 
control rainfall distribution at timescales and space 
scales relevant to flood production. 

2. Dallas Supercell: 5-6 May 1995 

The Dallas Supercell is illustrated in Fig. 1 through 
observations from the Dallas-Fort Worth WSR-88D. 
The supercell and squall line were moving eastward with 
speeds of approximately 40 and 60 km h"', respectively. 
Maximum reflectivity values in the supercell were 77 
dBZ at the time of the volume scan shown in Fig. 1, 
and reflectivity values greater than 60 dBZ extended 
above 10 km. Reports of grapefruit-sized hail were re- 
ceived by the National Weather Service (NWS) at this 
time. The squall line overtook the supercell thunder- 
storm at approximately 0130 UTC along the western 
boundary of Dallas. Catastrophic rainfall during the 45- 
min period ending at 0215 UTC resulted in the 16 flash- 
flood deaths in Dallas. The synoptic-scale environment 
of the Dallas Supercell is summarized and discussed in 
the National Disaster Survey Report for the event 
(NOAA 1995). 

The storm total rainfall distribution for the Dallas 
region (Fig. 2), as determined from the Dallas metro- 
politan rain gauge network, exhibited large spatial var- 
iability. Catastrophic rainfall and flooding were con- 
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a. 1:36 UTC 

b. 1:47 UTC 

c. 1:53 UTC 

FIG 5. Doppler velocity images from the 0.5° elevation angle at (a) 0136, (b) 0147. and (c) 0153 UTC. 
The white box corresponds to the region shown in Fig. 2 and the boxed region in Fig. 4. 
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„.,^'°,^J*f "f^"-""^ ('='" •!"') '^°"'o"'' "laps for the Dallas metropolitan area during the period of 0125- 
0220 UTC 6 May (corresponding to the area in Fig. 2). Each contour map is derived from 5-min rainfall- 
rate observations at gauges (denoted by dots). The time period shown below each map is the ending time 
ot the 5-mm period for the rainfall field. 
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FIG. 7. Storm speed (km h"') for (a) the Dallas Supercell from 
2300 UTC 5 May to 0230 UTC 6 May 1995 and (b) the Orlando 
Supercell from 0000 to 0200 UTC 26 Mar 1992. 

centrated in a small area of central Dallas, with two 
maxima of 120 mm on the western boundary and south- 
eastern boundary of Turtle Creek. Spatial gradients of 
50 mm over a distance of approximately 4 km separated 
the area of heaviest rainfall from the large swath of 50- 
70-mm storm total accumulations. The local maxima 
exceeding 120 mm on the western and southeastern 
boundary of Turtle Creek were associated with different 
structural elements of the Dallas Supercell, as detailed 
below. 

Stream-gauging observations in Turtle Creek provid- 
ed a 5-min record of water surface elevation. A dis- 
charge hydrograph (Fig. 3) was constructed from the 
stage observations using stage-discharge relations de- 
veloped from observations reported in Band et al. 
(1982). The peak discharge at 20-km^ drainage area was 
400 m' s"', resulting in a unit discharge, that is, dis- 
charge divided by drainage area, of 20 m' s"' km""^. 
The peak unit discharge can also be expressed as a 
runoff rate of 60 mm h""\ which provides useful com- 
parison with basin-averaged rainfall-rate time series 
(Fig. 3). The lag time (i.e., the time difference between 
time centroid of rainfall and peak discharge) for Turtle 
Creek at 20-km^ scale was approximately 1.2 h. The 
lag time provides a useful timescale for analysis of 
space-time variability of rainfall over the catchment. 
For the 20-km2 drainage basin of Turtle Creek, rainfall 
separated by more than 1.2 h will not contribute syn- 
chronously to the peak at the basin outlet. The lag time 

for a drainage basin can be viewed as an upper bound 
on the timescales of rainfall distribution that are relevant 
to flood magnitudes at the basin outlet. 

Volume-scan reflectivity and Doppler velocity fields 
(Figs. 4 and 5) for the period of 0130-0215 UTC il- 
lustrate storm-scale evolution during the period of heavy 
rainfall in Dallas. The links between storm structure and 
evolution and rainfall distribution can be inferred from 
5-min rainfaU fields derived from the DaUas mesonet 
rain gauge observations (Fig. 6). Combining the infor- 
mation from these analyses leads to the following con- 
clusions. 

1) Between 0130 and 0140 UTC, the key elements of 
storm structure (Figs. 5 and 4c) included an inflow 
notch, with inbound Doppler velocities greater than 
25 m S-' at the 0.5° elevation angle, a "precipitation 
cascade" centered at the apex of the inflow region 
and which drapes around the inflow region; a rear- 
flank downdraft (RFD) region, most clearly seen as 
the near-circular region of outbound Doppler veloc- 
ities adjacent to the inflow notch and squall line; and 
the squall line, with a line of reflectivity values great- 
er than 60 dBZ. The precipitation cascade is linked 
with the forward-flank downdraft of the supercell 
[see Lemon and Dos well (1979) and Weisman and 
Klemp (1986) for classical models of supercell thun- 
derstorms]. At 0132 UTC (Fig. 4c) there is a region 
of lower reflectivity values at the southwestern 
boundary of Turtle Creek separating peak reflectiv- 
ities in the precipitation cascade from those in the 
RFD. 

2) Rainfall analyses for the 5-min period ending at 0150 
UTC (Fig. 6) show a region of extreme rainfall rates 
to the rear of the RFD. A small region of increased 
rainfall rates is located to the northwest and is cen- 
tered at approximately 32.85°N, 96.82°W. The larg- 
est 5-min rainfall rates for the event occurred in the 
RFD region along a 10-km southwest-to-northeast- 
oriented swath. Low-level inflow to the storm peaked 
between 0136 and 0147 UTC (Fig. 5 and additional 
images that are not shown). 

3) At 0200 UTC, similar rainfall structure prevailed, 
with two key additional observations. The RFD re- 
gion has moved, whereas the region of increased 
precipitation to the north has not (Figs. 4-6). Ex- 
treme rainfall rates for the northern region have ex- 
panded along the western margin of the Turtle Creek 
catchment. 

4) From 0145 to 0220 UTC, the RFD moved at a speed 
of 30 km h"', the squall line (tracking the leading 
edge of the 0-Doppler velocity boundary) moved at 
60 km h"', and the precipitation cascade remained 
virtually stationary. Motion of these three storm el- 
ements was closely related to the space-time distri- 
bution of flood-producing rainfall. 

The composite motion of the supercell was computed 
from storm-tracking analyses of WSR-88D reflectivity 
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FIG. 8, Storm total rainfall (cm) field (2000 UTC 5 May-0400 UTC 6 May 1995) derived from 
^^"pTf^^'l" V.^:^^^ reflectivity oKservations using the WSR-88D Z-R relationship (Z = 
-, \ 1""^ \^^-^^^ reflectivity threshold. The box corresponds to the region illustrated in Fie 
Z. and the basm boundary of Turtle Creek is outlined as in Fig. 2. 

observations. The motion vector is obtained from storm 
locations computed for each volume scan. Storm lo- 
cations are the surface projection of the 3D center of 
mass of the storm (Dixon and Wiener 1993). The most 
important element of the analysis is that from 0130 to 
0215 storm speed of the superccll decreased from 35 to 
less than 15 km h-> (Fig. 7a). As noted above, storm 
speed from 0130 to 0215 UTC included differential rates 
of motion from the precipitation cascade and rear-flank 
downdraft. The net effect of storm speed was to increase 
rainfall accumulations dramatically at a 5-30-min time- 
scale. 

The largest rainfall rates at 5-, 15-, and 60-min time 
intervals from the Dallas rain gauge network were, re- 
spectively, 231, 210, and 115 mm h-' (no corrections 
have been made for systematic underestimation of rain- 
fall rates, which for tipping bucket gauges can be sig- 
nificant at high rainfall rates; see Groisman and Legates 
1994). The peak rainfall rates at 5-, 15-, and 60-min 
time intervals are respectively 87%, 110%, and 115% 
of the 100-yr rainfall rates for Dallas at these time in- 
tervals (265, 191, and 100 mm h '; see Frederick et al. 
1977). The peak 60-min rainfall effectively provides the 

storm total rainfall for the event. Rainfall rates from the 
Dallas Supercell were most extreme at the 15-60-min 
time period, which is close to the lag time of the 20- 
km'- Turtle Creek watershed. To place the rainfall mag- 
nitudes in a broader context, record rainfall observations 
for the conterminous United States range from 1860 mm 
h-' at 1 min (Unionville, MD; 4 July 1956), to 437 mm 
h-' at 42 min (Holt, MO; 22 June 1947) and 203 mm 
h-' at 2.75 h (D'Hannis, TX; 31 May 1935). 

Extreme rainfall rates can be obtained through various 
combinations of (a) large values of storm inflow veloc- 
ity, humidity, and inflow area; (b) small values of sur- 
face rain area; (c) large rates of decrease in cloud water 
storage; and (d) small losses of water from the storm 
via evaporation. Surface observations on 5 May (not 
shown) show that wind speed increased steadily from 
4 to 12 m S-' during the 4-h period preceding storm 
arrival and that specific humidity increased from 8 g 
kg-' at 1200 UTC to 16 g kg-• immediately prior to 
storm arrival. Doppler velocity observations at 0136 
UTC (Fig. 5) show a 10-km-wide region in the inflow 
notch of the storm with Doppler velocities that average 
20 m S-' (inflow is oriented in close to a radial direction 
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FIG 9 Reflectivity imaoe ((),5-km elevation) from the Melbourne. FL. WSR-88D at 0143 UTC 26 Mar 1992 illustrating the Orlando 

Supercell. Range rings are 10 km. The boxed region contains the KSC rain gauge network (Fig. 10). and dots mdicate locations of ram 

aauaes. 

from the radar). If we take inflow width to be 10 km, 
inflow depth to be 2 km. inflow velocity to be 20 m 
s •, and specific humidity to be 12 g kg "', a cloud water 
balance would produce a rainfall rate of 104 mm h  ' 

over 100 km-, assuming an efficiency of 50% and no 
net change in cloud water storage. A doubling of the 
rainfall rate can be achieved by doubling the product of 
area, width, and inflow velocity or by decreasing the 
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FIG. 10. Locations of rain gauges from the KSC network. Boxed 

region is the same as that shown in Fig. 9. Gauge numbers are used 
in time series plots of Fig. 12 

area over which rainfall is distributed from 100 to 50 
ktn^ Precipitation efficiency clearly reflects only one 
aspect of the water budget representation of surface rain- 
fall rates. Relatively low values of precipitation effi- 
ciency can be balanced by large values of moisture in- 
flow (Doswell et al. 1996). 

Interaction of the supercell with the overtaking squall 
line appears to have played an important role in the 
space-time rainfall distribution. Extreme rainfall rates 
in Dallas were associated with a dissipating supercell. 
Maximum reflectivity values decreased from 77 dBZ at 
2300 UTC to 61 dBZ at 0200 UTC. Echo-centroid el- 
evation decreased from 5.8 km above ground level at 
2300 UTC to 3 km at 0200 UTC. The decreasing cen- 
troid elevation suggests that storage change may have 
played a role in the water budget of extreme rainfall 
rates for the Dallas Supercell. 

As illustrated in Figs. 4 and 6, the spatial distribution 
of rainfall rate within the rain area plays an important 
role in determining maximum point rainfall rates. Dur- 
ing the 5-min period of peak rainfall rates ending at 
0150 UTC (Fig. 6), rainfall rates that exceeded 50 mm 
h-' covered a region of 427 km^ The mean rainfall rate 
over this region was 113 mm h"'. The subareas with 
rainfall rate that exceeded 100, 150, and 200 mm h"' 
were, respectively, 242, 89, and 7 km^ 

One of the major obstacles to a better understanding 
of the role of supercell storms as flood hazards is the 
difficulty of measuring rainfall for these storms. Neither 
conventional weather radar observations nor observa- 
tions from operational rain gauge networks provide a 
reliable observational basis for analyzing supercell rain- 

fall. Analysis based on the standard WSR-88D Next- 
generation Weather Radar Z-R relationship (Z = 
300/?' \ where Z is radar reflectivity and R is rainfall 
rate), with a 55-dBZ reflectivity cap and Dallas WSR- 
88D reflectivity observations shows peak storm total 
rainfall over Fort Worth instead of Dallas [Fig. 8; see 
Baeck and Smith (1998) for algorithm details and dis- 
cussion of difficulties in measuring extreme rainfall 
rates from radar reflectivity observations). The analysis 
captures the west-to-east movement of the supercell but 
does not capture the peak rainfall in Dallas. Reflectivity- 
based methods for estimating rainfall from radar will 
often be compromised by hail contamination. The prob- 
lem with hail contamination can be seen by observing 
that a 10-mm hydrometeor in a 1-m' sample volume 
has the same reflectivity, 10*^ mm" m"^ (or 60 dBZ), as 
lO'' hydrometeors of 1-mm diameter in the same vol- 
ume. The presence of hail in a radar sample volume can 
seriously degrade the capability of resolving extreme 
rainfall rates by radar Use of the 55-dBZ cap presumes 
that the sample volume contains a mixture of hail and 
heavy rainfall. Radar polarimetric measurements (see 
Zrnic and Ryzhkov 1999) provide significant potential 
for eliminating hail-contamination problems in esti- 
mating rainfall from weather radar. 

Operational rain gauge networks are also unable to 
capture the rainfall distribution from supercell thunder- 
storms. Rain gauge spacing from conventional networks 
is inadequate to resolve spatial patterns of rainfall as- 
sociated with storm structure (as illustrated in Figs. 4- 
6). Rain gauges from the operational network in the 
Dallas metropolitan area sampled the periphery of the 
storm and consequently did not capture the maximum 
rainfall over Dallas. 

3. Orlando Supercell: 26 March 1992 

The Orlando Supercell of 26 March 1992 (Fig. 9) 
passed over Orlando, Florida, producing severe hail 
damage, and then passed over the Kennedy Space Cen- 
ter (KSC) mesonet (Fig. 10). For the 26 March 1992 
storm, 18 of 20 rain gauges were operational and pro- 
vided rainfall-rate observations at 1-min time interval. 
The largest 1-min rainfall rate measured at the KSC 
me.sonet during the period of 1988-93 of 330 mm h"' 
occurred when the Orlando Supercell passed over the 
network. In this section, structure, motion, and rainfall 
of the Orlando Supercell are compared with those of 
the Dallas Supercell. 

There were a series of large hail reports associated 
with the Orlando Supercell from 0000 to 0100 UTC 26 
March 1992. The largest report was for a 3-in.-diameter 
hailstone at approximately 0045 UTC. Maximum re- 
flectivity values for the storm decreased from 76 dBZ 
shortly before 0000 UTC to 60 dBZ at 0200 UTC. By 
0132 UTC (Fig. 11), the RFD region of the supercell 
had begun to surge ahead of the storm center, beginning 
the transition from supercell to bow echo (Moller et al. 
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FIG   11   Reflectivity and Doppler velocity observations from the Melbourne WSR-88D at (a) 0041 UTC 26 Mar and (b) 0132 UTC 26 

Mar 1992. 
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FIG. 12. Time series of 1-min rainfall rate (mm h-) for 10 rain gauges from the KSC network Gauge numbers 
given m the upper-nght-hand corner of each time series plot correspond to the identification number'in Fig. 10 

Wcdfat mS mc)v!"Z '"■"'T ??' °''!,"'°    P-^iP'^^'i- -^^^de with only the southernmost gauges 
rh?Z.   u        . ^   f-n^' .mmediately preceding    sampling rainfall from the expanding RFD region 
l.n .r T HJ""' '■""^'" ^^' "'''"■""'^ '' '^' ^^^ ^'''^ g^"g^ observations from the KSC network (Fig 
mesonet included a precipitation cascade and an RFD 12) illustrate the role of storm motion for space-tSe 
region. The KSC mesonet sampled rainfall from the    rainfall variability. A major control of space-dme rTn 



OCTOBER 2001 SMITH ET AL. 481 

Day of Year 

RG. 13. (a) Seasonal frequency (events per day) of flood peaks in 
Maple Creek, (b) Seasonal frequency (events per day) of tornadoes 
for counties drained by Maple Creek. 

fall variability is the west-to-east motion of the precip- 
itation-cascade region through the center of the KSC 
network. The west-to-east progression of the heavy-rain 
region from 0150 to 0210 is clearly seen in the time 
series of rainfall progressing from gauge 9 to gauge 8 
to gauge 10 (Fig. 12). Interpretation of space-time rain- 
fall variability as resulting from a steady-state storm of 
fixed size moving at uniform speed is, however, not 
consistent with analyses in Fig. 12. Most notable, from 
0205 until 0215 the eastern gauges 7 and 14 peak syn- 
chronously with the central gauge 10 at rain rates larger 
than 200 mm h"'. Superimposed on variability asso- 
ciated with mean storm motion is large temporal vari- 
ability associated with storm evolution and spatial var- 
iability associated with storm microstructure. 

Rainfall rates for the Orlando Supercell were most 
exceptional at the shortest timescales (1-5 min). Peak 
rainfall rates ranged from 330 mm h'' at 1 min to 222 
mm h'' at 5 min, 136 mm h"' at 15 min and 37 mm 
h"' at 60 min. The maximum rainfall rate at 5-min time 
interval (222 mm h"') was 85% of the 100-yr, 5-min 
rainfall rate for the region (Frederick et al. 1977; pre- 
cipitation frequency estimates are not provided at time- 
scales of less than 5 min). At 15-min timescales, the 
maximum rainfall rate (136 mm h"') was 70% of the 
100-yr rainfall rate for the east coast of Florida. The 

maximum hourly rainfall rate was not exceptional for 
Florida. 

Storm speed for the Orlando Supercell is contrasted 
in Fig. 7b with that of the Dallas Supercell (Fig. 7a). 
Storm speed remained nearly constant at approximately 
55 km h"', unlike the Dallas Supercell, for which storm 
speed slowed dramatically following merger with the 
trailing squall line. Because of steady, rapid storm mo- 
tion, extreme rainfall rates over the KSC rain gauge 
network were limited to very short time intervals (1-5 
min) and storm total accumulations were modest (less 
than 50 mm). 

4. Nebraska: 20-21 June 1996 

A series of tornadic supercell thunderstorms tracked 
through eastern Nebraska on 20-21 June 1996, pro- 
ducing record flooding at a number of U.S. Geological 
Survey (USGS) stream-gauging stations. In this and the 
following section, attention shifts from storm systems 
that produce extreme floods at small basin scales (<20 
km^) to those that produce extreme floods at larger spa- 
tial scale (> 100 km^). Analyses presented in this section 
are based largely on WSR-88D observations and stream- 
gauging observations. The focus of these analyses is the 
Pebble Creek watershed, for which virtually all rainfall 
was associated with supercell thunderstorms. Pebble 
Creek, located in eastern Nebraska, has a drainage area 
of 528 km^. It is bounded on the west by Maple Creek, 
a 1165-km2 catchment with a stream-gauging record of 
more than 40 yr. 

The long-term observed frequency of flooding in east- 
ern Nebraska is characterized by a sharp peak in sea- 
sonal flood frequency (Fig. 13a, based on Maple Creek 
annual flood peak observations) during late June. June 
storms in eastern Nebraska are prominently represented 
in the occurrence of catastrophic rainfall in small areas 
of the United States. Three of 25 storms with measured 
rainfall exceeding 50% of probable maximum precipi- 
tation for the United States east of the Rocky Mountains 
(6-h duration, 10-mi^ area) occurred in and near Maple 
and Pebble Creeks (Riedel and Schreiner 1980; Fou- 
foula-Georgiou and Wilson 1990). 

The seasonal occurrence of tornadoes (Fig. 13b) for 
the counties in and adjacent to Maple and Pebble Creeks 
exhibits a sharp late-June peak, corresponding in time 
with the peak in flood occurrence. The joint occurrence 
of flood events in Maple Creek (based on the partial- 
duration flood record series) and tornadic thunderstorms 
was examined by determining the flood events in Maple 
Creek for which a tornado report occurred the previous 
day (based on tornado reports for counties which Maple 
Creek drains). During the 1990s, there were seven flood 
events that could be linked in this manner to tornadoes. 
The count drops to three in the 1980s, one during the 
1970s, four during the 1960s, and none in the 1950s. 
The increase in incidence of floods that are linked to 
tornadoes over time is probably related to increased de- 
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tection oftornacJocs with time. Even with these detection 
problems, it is clear that tornadic thunderstorms are a 
significant contributor to the flood behavior of the re- 
gion. Si.x of the largest 14 flood peaks in the 4()-yr Maple 
Creek record are linked to tornadic storm systems. In- 
cluded are large floods during major tornado outbreaks 
on 14 June 1967. 17 June 1984. and 4 June 1992. 

Extreme flooding in Pebble Creek on 21 June 1996 
resulted from a series of four siipercell storms that 
passed over the basin durimi a 4-h period from 2^00 
UTC June 20 to 0.^00 UTC June 21 (Fig. 14). For each 
of the storms and for the time periods shown in Fig. 
14. storm motion was rapid and toward the southeast. 
Average storm speed during the periods shown in Fii:. 
14 was approximately 60 km h '. Each of the stornis 
produced one or more tornadoes (Fig. 14) as they passed 
over Pebble Creek and Maple Creek. The storm systems 
thai produced extreme rainfall in Dallas and Orlando 

were dissipating siipcrcells. in contrast to the Nebraska 
storms, which produced six tornadoes in and adjacent 
to Pebble Creek. 

Structure and motion of the four storms illustrated in 
Fig. 14 played a prominent role in determining space- 
time variability of rainfall viewed from the Eulerian 
perspective imposed by the Pebble Creek drainage basin 
(Figs. \5-\(i}. Rainfall analyses are based on WSR-88D 
volume-scan reflectivity observations and are computed 
using the standard WSR-88D Z-R relationship Z = 
m)R'^ with a .S.S-dBZ hail threshold. The fractional 
coverage of heavy rainfall (Fig. 16) is the fractional 
basin area with rainfall rates that exceed 2.^ mm h '. 
The normalized distance (Fig. 16; see Smith et al. 2001. 
manuscript submitted to / Hydrometcnr.) is the rainfall- 
rate-weighted distance to the basin outlet (w ith distance 
measured along the drainage network) divided by the 
maximum distance to the outlet. Values close to 0 in- 
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FIG. 15. Storm total rainfall (cm) field (2000 UTC 20 Jun-0600 UTC 21 Jun 1996) derived 
from volume-scan WSR-88D reflectivity observations using the WSR-88D Z-R relationship (Z - 
SOOS'") and a 55-dBZ reflectivity threshold. Basin boundaries for Pebble Creek and Maple Creek 
are shown. 

dicate a spatial rainfall distribution concentrated at the 
outlet of the basin; values close to 1 indicate that rainfall 
is concentrated at the periphery of the basin. Spatially 
uniform rainfall (solid line in Fig. 16) results in a value 
of 0.56 for the normalized distance. 

The storm total rainfall distribution (Fig. 15) reflects 
southeast motion of the four storm elements and the 
southwestward shift of the tracks of the storms (Fig. 
14). Basin-averaged rainfall for Pebble Creek was 85 
mm. The rainfall accumulations estimated by radar are 
large, but not as exceptional as implied by the measured 
runoff. The basin-averaged runoff of 43 mm resulted in 
a runoff ratio (i.e., runoff divided by rainfall) greater 
than 50%. The average runoff ratio for the summer sea- 
son in Pebble Creek is less than 10%. The 43 mm of 
runoff is 40% of the average annual runoff for Pebble 
Creek. Given the difficulties in measuring supercell 
rainfall by radar described in section 2, it is possible 
that the rainfall estimates are low. 

A key element of the 20-21 June storms for flood 
production in Pebble Creek was the organization of 
heavy rainfall into a 4-h time period. The lag time of 
10.3 h for the Pebble Creek flood peak was approxi- 

mately 2.5 times the duration of extreme rainfall (4 h). 
Similar timing characterized the Turtle Creek flooding 
in Dallas at 20-km^ scale with a lag time of 1.2 h and 
heavy rainfall duration of approximately 30 min. The 
temporal maximum in rainfall distribution occurred at 
approximately 2330 UTC on 20 June and was associated 
with storm 1 (Fig. 14). Fractional coverage of heavy 
rainfall reached a maximum of 50% (more than 250 
km^) at 0120 UTC as storm 2 passed through the wa- 
tershed (compare with spatial analyses of extreme rain 
area for the Dallas Supercell from dense rain gauges in 
section 2). The southeasterly motion of the storm ele- 
ments resulted in downbasin storm motion, as reflected 
in decreasing values of the normalized distance (Fig. 
16) during the two periods of heaviest rainfall: 2300- 
0000 UTC and 0030 UTC-0230 UTC. Storm size, mo- 
tion at 528-km2 ^^^ ngj duration all contributed to the 
peak discharge in Pebble Creek scale. 

5. Pennsylvania: 18-19 July 1996 

The western margin of the central Appalachian region 
rivals the Edwards Plateau of Texas (as typified by the 
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FIG. 16. Time series of (top) fractional coverage of heavy rainfall 
[Z,, (;); fraction of basin area with rain rate >25 mm h~'] and (bot- 
tom) normalized distance function (see text). The solid line denotes 
the normalized distance for spatially uniform rainfall. 

May 1935 D'Hannis storm noted in the introduction; 
see Costa 1987) for observations of extreme rainfall. 
The 483-mm rainfall accumulation in 2 h and 10 min 
on 18 July 1889 at Rockport, West Virginia (Finiey 
1889; Jennings 1950), was produced by a "terrific thun- 
derstorm, accompanied by torrents of rainfall and vivid 
lightning" (Finiey 1889). The world record rainfall ac- 
cumulation of 782 mm in 4 h was produced by a thun- 
derstorm complex in western Pennsylvania during the 
night and morning of 18-19 July 1942. Frequent light- 
ning and hail accompanied the storms (Eisenlohr 1952). 
Extreme flooding occurred in the Redbank Creek wa- 
tershed of western Pennsylvania on 18-19 July 1996 in 
connection with a major tornado outbreak in Pennsyl- 
vania (Pearce et al. 1998). The date of occurrence of 
the 1889, 1942, and 1996 flood events, 18-19 July is 
not purely fortuitous. There is a sharp seasonal maxi- 
mum in heavy rainfall occurrence around 18 July (Fig. 
17) that coincides with the peak in tornado occurrence 
for the region (not shown). Other major summer-season 
flood episodes in the western margin of the central Ap- 
palachians are described in Showalter (1941), Erskine 
(1951), NOAA (1991), and Bosart and Sanders (1981). 
The July 1996 Redbank Creek storm and flooding are 
examined in this section as a prototype for summer- 
season storms that produce catastrophic rainfall along 
the western margin of the central Appalachians and to 
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FIG. 17. Rate of occurrence of rainfall accumulations (24 h) ex- 
ceeding (a) 25 and (b) 50 mm for the Franklin rain gauge in western 
PA. 

illustrate the role of supercell storms in central Appa- 
lachian flood occurrence. 

The 18-19 July 1996 storm produced the flood of 
record in Redbank Creek at a drainage area of 1368 km^ 
from a stream-gauging record of more than 70 yr. The 
July 1996 flood peak of 1877 m' s"' was 33% larger 
than the previous record peak. The second- and third- 
largest flood peaks resulted from the rain and snowmelt 
event of March 1936 and Hurricane Agnes in June of 
1972 (note the striking connection to the three-floods 
paradigm of Miller 1990). The heaviest rainfall from 
the 1942 Smethport storm fell in upstream reaches of 
the Allegheny River (Redbank Creek is a tributary to 
the Allegheny River below the area of heaviest rainfall 
in 1942). The peak discharge of the Allegheny River at 
Eldred (1425 km^) in July of 1942 was slightly smaller 
than the peak discharge from Redbank Creek in July of 
1996. Peak discharge estimates for the July 1942 event 
(which are based on an extensive set of slope-area peak 
measurements conducted by the USGS) were most ex- 
ceptional at the 1-100-km^ scale (Eisenlohr 1952, Costa 
1987). Unlike the July 1942 storm (Eisenlohr 1952), 
there is no record of peak discharges at small basin areas 
within Redbank Creek for the July 1996 storm. 

Extreme flooding in Redbank Creek resulted from a 
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FIG. 18. Structure and motion of four storms that passed over Redbank Creek from 0600 to 1500 UTC 19 Jul 1996. Ellipses conlam 45- 
dBZ boundary of the storm (in three dimensions). Volume-scan times are shown for each ellipse. The Redbank Creek basm boundary is 
outlined in white. The Allegheny River is labeled, along with the towns of Kittanning. Clarion, and Punxsutawncy. PA. The storm ellipse 
for 1438 in (d) results from the merger of the two I.S57 storm elements. 

series of storms that passed over the basin from 0600 
to 1500 UTC on 19 July 1996. Structure and motion of 
four storm elements are illustrated (Fig. 18) through a 
series of storm locations and storm area. Storms 1-3 
(Figs. 18a-c) moved along similar paths from Lake Erie 
southwest over Redbank Creek at storm speeds ap- 
proaching 100 km h'. Storm 4 (Fig. 18d) moved over 
the same path but at somewhat lower speed. Storms 1, 
2, and 3 produced damaging winds and copious light- 
ning but did not exhibit the mesocyclone signatures of 
supercell storms. The fourth storm element was a "bor- 
derline superceir' (Pearce et al. 1998) and produced a 
tornado in the Redbank Creek basin at 1330 UTC. 

The Redbank Creek storms can be contrasted with 
the Orlando and Nebraska storms as a third setting in 
which supercell storms contribute to extreme flooding. 
The Orlando storm illustrates that an individual storm 
can produce extreme rainfall rates in small area and 
short time intervals. The Nebraska storms represent a 

setting in which a series of supercell storms produces 
extreme flooding. The Redbank Creek storms represent 
a storm setting in which supercell storms combine with 
other storms to produce extreme floods. 

An open question is how peak rainfall rates from 
supercell storms compare with rainfall rates from other 
forms of convective storms. For the Redbank Creek 
storm, a rain gauge at Brookville, Pennsylvania (see 
location in Fig. 19), was located in the path of all four 
storms. The storm total rainfall accumulation was 233 
mm, of which 33 mm were recorded during a period of 
approximately 10 min (rainfall rate of 200 mm h ') from 
the periphery of the supercell storm. Rainfall accumu- 
lations to the southwest of the Brookville gauge likely 
were significantly larger because of a combination of 
higher rainfall rates and longer rainfall duration. 

The storm total rainfall distribution (Fig. 19) reflects 
southeast motion of the storm elements. Tracks of the 
four storm elements cover the same area, producing a 



486 JOURNAL OF HYDROMETEOROI.OGY VOLL-ME 2 

o 
■D 
3 

CO 

41.6- 

41 > 

41.2- 

■£     41.0 

40.8- 

40.6- 

40.4- 

79.6       79.4 

T I —r 

79.2       79.0       78.8       78.6       78.4 

Longitude 

FIG. 19. Storm total rainfall (mm) field (0000-1600 UTC 19 Jul 1996) derived from volume- 
scan WSR-88D reflectivity observations using the WSR-88D Z-R relationship (Z = 300/?'-) and 
a 55-dBZ reflectivity threshold. Basin boundaries for Redbank Creek are shown. The location of 
the Brookville gauge is denoted by an "X." 

narrow swath of heavy rainfall oriented from northwest 
to .southeast. During the period of peak fractional cov- 
erage of heavy rainfall (Fig. 20) from 0800 to 0915 
UTC, heavy rainfall covered an area of more than 500 
km^ Fractional coverage of heavy rainfall from the su- 
percell storm produced an area of more than 400 km^ 
with heavy rainfall in the lower portion of the Redbank 
Creek watershed. The contribution of the supercell 
storm was to produce the rapid increase of the Redbank 
Creek hydrograph to its peak discharge. Extreme rainfall 
from the supercell storm occurred in the lower portion 
of the basin (Fig. 20) and fell on terrain that had been 
moistened by the previous storms of the sequence. 

6. Summary and observations 

There are 10 principal observations from our work. 

1) The Dallas Supercell resulted in 16 flash-flood deaths 
in the Dallas metropolitan area and more than $1 
billion in property damages over the Dallas-Fort 
Worth metroplex. Peak storm total rainfall for Dallas 
of 120 mm was not exceptional for Texas. 

2) Rainfall rates from the Dallas Supercell were most 
exceptional at 15-60-min time intervals. Peak rain- 
fall rates at 5- (231 mm h"'), 15- (210 mm h"'), 
and 60-min (115 mm h"') time intervals from the 
Dallas Supercell were 87%, 110%, and 115% of the 
100-yr rainfall rates for the region. Peak rainfall rates 
for the Orlando Supercell were most extreme at 1- 
5-min timescales. The peak 1-min rainfall rate was 
330 mm h"'. The peak 5-min rainfall rate of 222 
mm h-' is 85% of the 100-yr rainfall rate for east 
Florida. 

3) Catastrophic flash flooding in Dallas resulted from 
three elements of storm motion: (a) motion of the 
supercell precipitation cascade centered at the inflow 
notch, (b) motion of the rear-flank downdraft of the 
supercell, and (c) motion of the trailing squall line. 
Fundamental differences in rainfall distribution and 
resulting flood response between the Orlando and 
Dallas storms are linked to the contrasting storm 
motion. The uniformly rapid storm motion of the 
Orlando storm resulted in concentration of heavy 
rainfall on smaller timescales and space scales than 
for the Dallas storm. 
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FIG. 20. Time series of (a) fractional coverage of heavy rainfall [Z^jCO; fraction of basin area 
with rain rate >25 mm h"'], (b) basin-averaged rainfall (mm h"'), and (c) normalized distance 
function (see text) for Redbank Creek. 

4) Spatial variations of rainfall rate were associated 
with supercell structure for both the Dallas and the 
Orlando Supercells. For the Dallas Supercell, com- 
bined analyses of rain gauge and radar observations 
showed that distinct maxima in rainfall were orga- 
nized around the precipitation cascade and rear-flank 
downdraft. 

5) Systems of multiple supercell storms can produce 
extreme flooding at basin scales significantly larger 
than 100 km^. The 20-21 June 1996 flood episode 
in eastern Nebraska was produced by a series of 
tornadic, supercell storms. Four storms tracked over 

the 528-km2 Pebble Creek catchment during a period 
of less than 4 h. 

6) The flood occurrence behavior of eastern Nebraska 
has a sharp seasonal maximum around 20 June, 
which coincides closely with the maximum in tor- 
nado occurrence for the region. For Maple Creek, 6 
of the largest 14 flood peaks can be linked to tornadic 
storms. 

7) The western margin of the Appalachian region has 
experienced some of the largest measured rainfall 
accumulations in the world at short time intervals 
(less than 6 h). All are associated with severe thun- 
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derstorms. and the maximum in heavy rainfall for 
the region is tightly concentrated around 19 July. 
The 18-19 July 1996 flooding in western Pennsyl- 
vania was produced by a series of severe thunder- 
storms that tracked rapidly from northwest to south- 
east. The final storm element that passed through 
Redbank Creek was a tornadic supercell storm. 

8) For the Orlando and Dallas Supercells, extreme rain- 
fall rates were produced during the dissipating phase 
of the storm. For the Nebraska storm, extreme rain- 
fall and flooding in Pebble Creek resulted from a 
succession of supercell storms that produced seven 
tornadoes in and adjacent to Pebble Creek. Similar, 
for the Redbank Creek flood episode, flood-produc- 
ing rainfall and a tornado were produced at the same 
time. 

9) Fundamental rainfall measurement problems exist 
for supercell storms. Measurements from conven- 
tional radar are very useful but are limited in esti- 
mating extreme rainfall rates because of problems 
associated with hail contamination and anomalous 
raindrop size distributions (relative to those assumed 
in deriving standard Z-R relationships). Conven- 
tional rain gauge networks do not sample supercell 
rainfall at relevant space scales and timescales. Radar 
polarimetric measurements provide a promising av- 
enue for overcoming the hail problem and problems 
associated with anomalous raindrop spectra (Zrnic 
and Ryzhkov 1999). 

10) Supercell thunderstorms play a significant role in 
determining the occurrence pattern of extreme rain- 
fall rates at short timescales and small spatial scales 
for much of the United States east of the Rocky 
Mountains. These storms are of particular signifi- 
cance for urban hydrological behavior because of the 
fundamental role of extreme 1-30-min rain rates for 
design and water management problems in urban 
regions. As noted above, it is difficult to assess the 
climatological role of supercell storms from radar 
and conventional rain gauge networks. New observ- 
ing systems and novel analysis procedures are need- 
ed to characterize the contributions of these storms 
to the occurrence of extreme rainfall precisely. 
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Abstract. The scaling behavior of flood peak distributions is examined using a statistical model of the spatio- 
temporal distribution of rainfall and a hydrological model that describes the transformation of rainfall to 
discharge within a drainage network. Of particular interest is the empirical observation made by a number of 
investigators that the coefficient of variation (CV) of aimual flood peaks for a region increases with drainage area 
up to drainage areas of approximately 100 km^, and decreases with drainage area for larger drainage basins. This 
observation is neither consistent with simple scaling models, in which the coefficient of variation does not vary 
with drainage area, nor multiscaling models, in which the coefficient of variation decreases monotonically with 
drainage area. Model analyses illustrate that knowledge of the spatial and temporal organization of the rainfall, 
together with the details of the network structure of the drainage basin, is sufficient information with which to 
explain the observed behavior of sample CV. The interaction between the temporal variability of rainfall, relative 
to basin size, and the network structure is shown to be of particular importance. 

Key words,    flood peaks, scaling, coefficient of variation, simulations 

1.    Introduction 

The development of methods for estimating flood peak distributions for drainage basins 
has resulted in the identification of several classical problems in both hydrology and 
extreme value statistics [9,25]. One important line of research involving these methods is 
focused on the estimation of flood peak distributions for ungauged drainage basins (see 
[10]). A point of dep£irture for many studies concerns the role of scale, which for a 
drainage basin is most often characterized by the drainage area. Two major theories for the 
areal dependence of the annual flood peak distribution have been developed: the simple- 
scaling (index-flood) theory, and the multiscaling theory [9,10,25]. 

To illustrate these two theories, let X^ be a random variable denoting the magnitude of 
the annual flood peak in a basin with drainage area A. The theory of simple scaling 
suggests that there is a positive function g such that for any two basins in a particular 
region with drainage areas Ay and A2, the random variables X^^ and g{Ai/A2)Xj^^ have the 
same distribution. Multiscaling theory allows the function g to be random and statistically 
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independent of X^. Both theories lead to the conclusion that all moments E[(X^)'"] of X^ 
exhibit log-log linearity with the drainage basin area A. Under the assumptions of simple- 
scaling theory, the slopes of these linear relations change linearly with the order of the 
moment, m. In addition, the coefficient of variation (CV), defined as the ratio of the 
standard deviation of X^ to the expected value of X^, should not change with basin area 
[9,10]. In the multiscaling framework, however, the CV decreases with increasing basin 
area [9,10]. 

Both theories were tested on annual flood peak data for 104 gauging stations in the 
central Appalachians region in Maryland and Virginia [25]. It was shown that the 
logarithms of the moments of X^ do vary linearly with log A, although the CVs exhibit a 
very peculiar dependence on basin area (A): CV increases with increasing A for basins 
with drainage areas smaller than some critical area A^, and decreases with increasing A for 
basins larger than A^. This effect is shown in Figure 1. For the central Appalachians region, 
the critical area A^ was determined to be approximately 50 km^. Subsequently, similar 
results have been obtained by other investigators for a diverse collection of study sites in 
the United States and abroad [8,2]. The annual flood peak data from the set of stations in 
the central Appalachians region has been further studied [12] by fitting it with possible 
textbook annual flood peak distributions. The generalized extreme value distribution has 
also been fit to the data from each station, and the scaling behavior of the ensuing 
parameter estimates studied [14]. In this paper, we focus on the scaling behavior of 
moments and CVs estimated from the data, without any assumptions about the distribution 
of annual flood peaks. 

It has been suggested that the spatial variability of rainfall is the predominant factor for 
the decrease of CV at large scales while the structure of the drainage network controls the 
behavior of CV on smaller scales [7,8,20]. In this paper, the dominant factors influencing 
the behavior of CV are explored by studying the interaction between the spatial and 
temporal properties of rainfall and the network structure of river basins. The principal 
tools used in this study are a statistical model of rainfall, which produces a rainfall field 
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Figure I. CV—Drainage area relationship for centra] Appalachian floods [25]. 
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that varies both in space and time, and a simple, network-based drainage model for 
converting that rainfall field to a discharge at the drainage basin outlet. The study region is 
a ~5{)00km^ area in the Edwards Plateau, Texas (see Figure 2 for location). The Edwards 
Plateau is an interesting study site because it has experienced some of the largest floods in 
the continental US [4]. 

Our model assumes that flood peaks are due to storms with exceptionally heavy rainfall 
("extreme rainfall events"), and we are interested in computing the peak discharge 
generated by these heavy storms. Randomly sampled river basins are drawn from the 
population of river basins in our area of study, and checked to ensure that they are not 
nested inside one another (that is, none of them is a sub-basin of any other). We can then 
assume that runoff generated at the outlet of one basin does not influence the runoff from 
any other basin. Additionally, comparison of the results from different random samples of 
basins will assure us that they are not an artifact of the basin choice. 

Because the rainfall field is a complicated stochastic process,^its interaction with the 
river network makes direct theoretical computation of the flood peak distribution difficult. 
Instead, numerical simulations are used to infer the properties of the distribution. To 
simulate the rainfall field, the models of [29] and [18] were combined, leading to the 
model described in Section 2 (see [11,17-19,23,29,30] for additional discussion of space- 
time rainfall models). To compute the discharge at basin outlets, a Network Model [26], 
which depends only on the structure of the network (i.e. two different basins with an 
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Figure 2. Partial map of Texas, showing the regions mentioned in the text. The inset corresponds to the area 
of interest. Triangles represent rain gauge locations. 
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identical network structure will respond the same to the same rainfall field) was used (see 
[24, Chapter 7] for a detailed discussion of network models). Using this model, the 
maximum discharge for each basin is determined for each simulated storm, allowing 
analysis of flood peak moments and CVs. 

2.    Storm model 

Simulating an extreme rainfall event over an area of ~5000km^ is a complicated task. 
Accordingly, there are a number of spatio-temporal stochastic models for extreme rainfall 
that have been developed in the literature [5,15,23,30]. In order to determine which model 
will work the best for us, we note that the only extended record of data available in our area 
of interest (for the purpose of parameter estimation) is the daily rainfall accumulation 
measured by 23 rain gauges, which limits the number of models for which we would be 
able to estimate parameters. In addition, because our data is daily accumulation totals, 
there is no information available on the temporal structure of the rainfall for each event, so 
we modeled the spatial accumulations and the temporal structure independently. For 
modeling the spatial structure of the rainfall, we used a model [29] with a small number of 
parameters in comparison to other models to facilitate parameter estimation. The use of 
more complicated models [15,23] would be practical and desirable if additional rain gauge 
or radar data were available for parameter estimation. For modeling the temporal structure, 
we used a cascade model [18]. 

To simulate the extreme rainfall totals, the statistical model described in Smith and Karr 
[29] was used with the additional assumption of spatial homogeneity in the region. This 
model can be described as follows: 

• The arrival times of extreme rainfall events form a Poisson process N on the time axis 
with seasonally-varying mean X(t). Because it is only the annual flood peaks that are of 
interest, only the annual frequency of extreme rainfall events A is utilized in the 
simulations. 

• A rain field is constructed as a collection of distinct storm cells. The centers of these 
cells form a Poisson process M (independent of N) on the plane with spatial rate a. 

• For a particular storm, the total rainfall S^ in the center of each cell is independent of iV 
and M, and has an exponential distribution with parameter b. 

• The storm-total rainfall associated with each cell is assumed to be distributed 
symmetrically about the center of the cell with spread function 

I 
h{r) = e 

and a magnitude equal to S^ at r = 0 

Suppose that, for the /th storm, there are M storms cells with coordinates Yi,Y2,...,Yj M 
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and center accumulations 5^,1, S,,,!, • • ■,SC,M' respectively. Under the assumptions above, 
the storm-total rainfall 5,(;c) from the storm at a point x on the plane is 

M 

S,ix) = ^S,jh{\\x-Yj\\). (1) 

Moreover, note that the points {(Fj,5^,0, (Fj,5^,2), •••, (^M,^^,^)} form a Poisson 
process on IR^ x IR+ with intensity measure abe'''^ dyds. This property is used to derive 
the moment parameter estimators for the model. 

Smith and Karr computed the moments for this field [29], giving the mean /z and the 
variance a^ for the amount of storm-total rainfall at all locations x (the "storm totals") as 

^ = 2" 
a 

„2        ^ . a 

^   -2 c^b^ 

and the correlation coefficient p for the storm totals between two locations with a distance 
r between them as 

p(^) = e-^^'". 

The mean, variance, and correlation coefficient do not depend upon x because of the 
assumption of homogeneity in the region. 

This model, then, has four parameters to be estimated: the rate of storm occurrence X{t), 
the mean number a of storm cells per unit area for a particular event, the mean total rainfall 
Z> ~ ^ at the center of the cell, and the decay length c " ^ of the spread function h{r). To find 
characteristic parameters for the model from the Edwards Plateau study region, daily-total 
rainfall accumulations from 23 rain gauges were used. This data spans a period of 48 years 
(from 1948 to 1996), and, though there were gaps in the data sequence for most of the 
gauges, there were on average nine gauges reporting each day (see Figure 2 for the gauge 
locations). 

An extreme rainfall event (storm) is defined as any period of three days with a total rain 
accumulation of more than 130 mm at one or more rain gauges [29]. This definition 
certainly describes the extreme rainfall events we are studying, since the accumulation 
measured for flood peaks above the median annual flood peak value for our basins all 
satisfy this criterion. We use the same definition of storms as Smith and Karr [29] to allow 
comparison of the model parameter estimates computed for the central Appalachians 
region and Edwards Plateau. The definition was tested by comparing the annual flood peak 
data from the four stream gauging stations and rain gauge data in the area of interest. The 
measured annual flood peak data for the majority of basins describes peaks that are orders 
of magnitude smaller than for the large floods we are interested in, as illustrated in Figure 3 
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Figure 3. Measured annual flood peaks for the stream gauging station at Guadalupe river at Comfort. The line 
represents the median value. 

for the stream gauging station at Guadalupe river at Comfort. In our framework, the small 
peaks correspond to the fact that there is a strictly positive probability of no extreme 
rainfall event occurring during a given year. We computed the total rainfall accumulation 
reported by the rain gauges for the three day period ending the day of the annual flood peak 
for each year. When we then exclude the peaks below the median flood peak values for 
each of the four basins, the minimum value of the recorded storm total accumulations is 
125 mm. 

We denote the total number of gauges in the region as ly, and the total number of years of 
observation as n. The storm arrival times are denoted as T,, and the total number of storms 
detected during the n years as A^. For the /th storm, the total accumulation of rainfall S,y for 
theyth gauge (y = 1,..., z/) is computed. The estimators derived in Smith and Karr'"[29] 
can then be used to find approximate values for the parameters in our model. 

In our notation, the estimator for the annual frequency A is 

A = 
N 

The estimated value for A from our data set is 1.53 storms/year. To conveniently express 
the seasonally-varying rate X{t), one can think of a year as a time interval from 0 to 1, 
where 0 corresponds to January 1 and 1 to December 31. If the arrival times T, are 
expressed in years, then the mantissa of the arrival time {T,} indicates the time of year of 
the event. Then, for the seasonally-varying rate A(r), the window estimator 

N 

>-c)A~T.h nAt 
1 = 1 

- &t/2,t + Al/2) ({^J), 

is used, where At is the width of the time window. The estimate for A{t), obtained using a 
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Figure 4. Estimate of the seasonally-varying rate of storm occurrence. Time index 0 corresponds to January 
1, and time index 1 to December 31. 

five month window [29], is shown in Figure 4. The seasonally-varying intensity varies 
from 0.6 in January to 2.65 storms per year in August. 

In order to estimate the spread frinction parameter c, estimates of pairwise correlation 
coefficients p of the storm totals between gauges are plotted against the distance between 
the gauges. Each estimate p was computed as a sample correlation coefficient for exactly 
20 observations per pair of gauges. Pairs of rain gauges for which data exists for fewer than 
20 storms were excluded from the analyses to eliminate uncertainties in the parameter 
estimates. A least squares estimator for c is used: c is the number that minimizes 

^{Pir) - e-'^'^)\ 

— 1 giving an estimate of 30 km for c 
The estimators for the parameters a and b of the model are obtained from the moment 

equations: 

/^ 

a 
n^2 

Estimates of tx and a are readily computed from the data, giving estimates of 50 mm for 
b"^ and 0.0015 storm cells km^ for a. The mean number of storm cells in the region of 
interest (area ~5000km^) during an extreme rainfall event is then 7.5. 

It is interesting to compare our model parameter estimates for the Edwards Plateau with 
those for the Appalachians, as obtained by Smith and Karr [29]. Both sets of estimates are 
Usted in Table 1. We note that this region of Texas has approximately three times as many 
heavy storms per year as the Appalachian region. Although each storm has, on average. 
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Table 1. Estimated values for the Storm Model parameters. 

Edwards Plateau Central Appalachians 
^""^^^^'" (present study)  Smith and Karr, 1990 [29] 

A (storms/year) 1.53 Q 4^ 
a^cellsperkm^) 0.0015 0 0027 
A    '(mm) 50 15^0' 
t      (km) 30 34 

fewer storm cells than do those in the Appalachians, each cell has, on average, higher rain 
accumulation. Each comparison in the table agrees with the qualitative understanding of 
the climatic differences between the Edwards Plateau and the central Appalachians [3,28]. 

Although analysis of daily rainfall accumulation is useful for the estimation of storm 
totals. It does not provide information about the temporal evolution of the storm. To 
represent the temporal structure of the rainfall, a cascade model [18] was used. The 
cascade model used is outlined as follows: For each storm cell with total rainfall S, at its 
center, we assign a lifetime T such that the average rain rate Z at the center of the cell 
during the period x is Z = SJx. Next we divide the time interval (0,T) into two halves We 
assign a rain rate H^, ,Z to the interval (0, T/2], and W.^^Z to the interval (T/2, T), where 
Wij are independent random variables having the same distribution as a chosen positive 
random variable W. The expected amount of rain in every interval should be conserved 
necessitating the condition E[H-] = 1. The next step is to divide each subinterval (each 
half) into two new intervals, giving four subintervals with length T/4. Again we take 
independent positive random variables W^,,, W^;^, W^^, and W^^ with the same 
distribution as W^, and assign rain rates W^^^Wj ,Z to the first subinterval, W2 sH^j jZ to the 
second, 1^2,3^^1,22 to the third, and W^^^W^^^^ to the fourth. Continuing in this fashion, we 
will have at the lah stage 2* intervals, each with a length T/2* and rain rate 
Z^{t) = Zfl-^^ W^j. A schematic of this construction is pictured in Figure 5. 

The distribution of the storm total for a given storm cell in time is assumed to be 
independent of that for all other cells. Because storm cells represent different storm 
systems, it is natural to assume that they will evolve independently in time. In general, the 
temporal evolution of a storm cell might depend on changing meteorological conditions 
and interactions with other storm cells, but this is at a finer degree of detail than present in 
the spatial model of rainfall described above, and the runoff model described below. 

For our analyses, T is taken to be characteristic of all the storms cells in the simulated 
storms and assumed to be a normally distributed random variable with mean 72 hours and 
standard deviation 3.0 hours (since we used three-day rain gauge accumulations to obtain 
estimates of storm-totals, the long storm length is required for the discharges to have 
reasonable values), k, the parameter corresponding to the number of cascades used, was 
varied from 4 to 10, giving a range of rainfall patterns averaged from over a period of a few 
hours to patterns averaged every minute. Random variable Wis taken to have a lognormal 
distribution [18], i.e. W = e^^'^^, where ^ is a standard Gaussian random variable, and y 
and ? are parameters of the distribution. The condition E[M/] = 1 then corresponds to the 
condition y = - q^/2. The parameter g in our simulations was varied from 0.4 to 0.8. 
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Wi,lW2,iZ 

Figure 5. A schematic of the cascade model construction. 

To summarize, we simulate the rainfield from a storm as follows: M storm cell centers Yj 
are simulated as a realization of a Poisson process on the plane with spatial rate a, and the 
storm length T is taken from the Gaussian distribution. Each cell is assigned a total rain 
accumulation S^j in its center taken from an exponential distribution with parameter b. A 
cascade model is used for distributing S^j over the interval (0, T) to form the rain rate 
function Z^j{t). A spread function h(r) is used to describe the proportion of the S^j that 
falls at a point at a distance r from the center of cell j. The rainfield Z(x, t) at a point x is 
then 

M 
Z{x,t) = Y.^{\\x-Yj\\)Z,j{t). 

y=i 

3.    Drainage network runoff model 

In our Network Runoff Model, a discharge at the outlet of the basin is computed by the 
direct extension of the inverse GIUH function (geomorphological instantaneous unit 
hydrograph, defined as the basin's response to instantaneous rainfall with a unit magnitude 
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[24, page 477]). We represent the river network as a binary tree with n links. We will 
denote an individual link by e. Each link has a certain length l„ an upper vertex e, and a 
lower vertex e. We know the position and geometry of every link, and the way that links 
are connected (i.e., we know the structure of a network similar to the one represented in 
Figure 6). 

We make the assumption that, from every point in the basin, water flows to the nearest 
channel following the paths of steepest descent on the underlying elevation. After reaching 
the channel, the water follows the river network to the outlet. Under these assumptions, we 
can compute the travel distance/,(x) to the outlet e for each point x in the basin, and, 
assuming a constant flow velocity v both over the land and in the channels, the discharge 
Q^ at the outlet is given by: 

QM=iR{...jj^y, (2) 

where ^ denotes that the integral is taken over the basin and R{x, t) denotes the runoff 
generated at location x at time t. Note that if R{x, t) is nonzero only for a certain time 
period (0, T), then the discharge at the outlet will be nonzero at most during the period 
(0, To), with To = 7- + max/^(jc)/v. 

To approximate the effects of infiltration, the runoff field R{x, t) is computed from the 
rainfall field Z{x, t) by 

R{x,t) = {Z{x,t)-K,)-^, 

where K, is a parameter similar to the saturated hydraulic conductivity, and 
j+ = max{0,y). We assume that K, is the same throughout the basin. This representation 
of the infiltration process is reasonable for extreme rainfall events [16]. 

Figure 6. The network structure of the Guadalupe river. The bold line shows path of the water from the 
marked point in the basin to the outlet. 
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This model provides a useful tool for studying drainage basin response to extreme 
rainfall. It has only two parameters: the average surface flow velocity v, and the value of 
K^. We can estimate the values of these parameters from reconstructed hydrographs 
for extreme events for which we have both good rainfall measurements and 
discharge measurements at one or more nodes. The assumption of constant velocity in 
the channels for extreme events has been discussed previously [10]. The analyses of 
measured velocity in different channels suggests that the velocity is effectively the same if 
the respective discharge levels in the channels have the same probability of occurrence 
[24, page 14]. 

We have implemented this model for several extreme events in Texas and other areas 
[26,27], and achieved acceptable reconstruction of discharge hydrographs. For the 
purposes of our simulations, we varied the flow velocity from 0.6 to 3.0ms~ , and K^ 
from 0 to 20mmh~ ^ 

4.    Scaling analyses 

We simulated flood peaks for 100 non-nested sub-basins of the Guadalupe river basin in 
the Edwards Plateau for a period of 50 years (see Figure 2 for the location of the 
Guadalupe river basin). For the river network structure, we used EPA RF3 river reach data 
(Figure 6), which corresponds to the blue lines on USGS topographical maps. Rainfall was 
simulated according to the Storm Model described in Section 2, and the ensuing runoff for 
each sub-basin was computed using the Network Runoff Model described in Section 3. 

For each sub-basin, the annual flood peaks were identified as the maximum computed 
discharge from the simulated storms in that year. Since extreme rainfall events form a 
Poisson process on the time axis, there is a nonzero probability of obtaining zero events in 
a given year. For years with zero events, the annual flood peak was taken to be zero. As 
was noted earlier, this is justified by the fact that the measured annual flood peak data for 
most basins includes peaks that are orders of magnitude smaller than the large flood peaks 
of interest (Figure 3). The computations were repeated for different values of the Storm 
Model time cascade parameters, K^ value, and channel velocity, and different catchment 
sampling (choice of sub-basins). The dependence of the behavior of the flood peaks upon 
the values of the Network Runoff Model parameters was not statistically significant. 

The first and second sample moments of the simulated flood peak data set for one set of 
sampled sub-basins are plotted against sub-basin area in Figure 7 (for v = 1 m s ~ , 
K^ = 0.5 mmh~ \ g = 0.6, and k = 8). The logarithms of the moments clearly exhibit a 
linear relationship with the logarithms of the sub-basin drainage areas. The slope of the 
linear regression for the sample means is 0.72, which is consistent with typical slopes for 
the real data [10,14,21]. Mean annual flood peaks computed from the measurements of 
several stream gauging stations in our area of interest are also shown in Figure 7 (squares). 
There are no small gauged basins in the area of interest with a long ( > 30 years) record of 
maximum aimual flood peaks. 

The dependence of the coefficients of variation on the sub-basin drainage area is shown 
in Figure 8 (triangles). The overall shape of this dependence is similar to that obtained 
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Figure 7. Log-log plot of first (solid circles) and second (crosses) sample moments of the simulated flood 
peaks versus drainage area. Empty squares represent estimated values of mean annual flood peak for actual 
basins in the area of interest. The units of the y axes are m^s" ' for the first moments and m^s-^ for the 
second. The parameters used to obtain this plot were: v = 1 m s ~ ', A"^ = 0.5 mm h " ', g = 0.6, and /t = 8. 

o 
Cvj 

> 

in 
o 

*■     A 

.n 

*" •.'. n   n 

o   o § 
o    * 

0.5 
—I— 

10 5       10 50     100 

Drainage Area (km^) 

—I r 

500   1000 

Figure 8. CV—Drainage area relationship for the simulated flood peaks. Triangles indicate values obtained 
with the rainfall simulated with the Storm Model, empty circles indicate values where the rainfall was 
simulated without the time cascade structure. Squares represent estimated values for CV for actual basins in 
the area of interest. The parameters of the models are as in Figure 7. 
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from an empirical study of actual flood peak data (Figure 1). There tends to be an increase 
of CV with increasing drainage basin area for catchments with areas smaller than 
Ac = 10 km^, and a decrease of CV with increasing drainage basin area for larger 
catchments. Similar results were obtained for all input parameters used in the simulation 
models. It is interesting to note that the CVs computed from annual peak data from several 
stream gauging stations in our area of interest is of the same order of magnitude (Figure 1, 
squares) as the simulated results. The inference that behavior of CVs for annual flood 
peaks can be largely explained in terms of spatial and temporal properties of the rainfall 
and the structure of the river networks is supported by the observation that only these three 
elements were included in our simulations. 

In order to gain further understanding of the factors that influence the behavior of CVs, 
the simulation experiments were repeated with a stationary rainfall field, i.e., the time 
cascade construction was removed from the Storm Model. This simulation was performed 
in an attempt to isolate the effects of the spatial properties of the rainfall and the network 
on CV. CVs obtained without the cascade strucmre are also shown in Figure 8 (empty 
circles). They were computed with the same rainfall field spatial structure as the CVs 
obtained with the cascade structure (triangles) for each simulated event. The areal 
dependence of the prior analyses is no longer present. Because similar results were 
obtained for a wide range of simulation parameters, we infer that the temporal structure of 
the simulated rainfall is important for producing the small area behavior of CVs in our 
results. 

There are multiple explanations for the change in low-area scaling in the context of 
our model. Because small basins have much shorter response times than larger basins, 
their instantaneous discharges depend on the rainfall during a shorter period of time 
than do larger basins' discharges. For the runoff calculated using the Network Runoff 
Model this effect is readily apparent, since, for each link e at time t, the discharge Qe{t) 
is calculated from the rainfall during the time interval [t — max(f^(x)/v), t]. Moreover, 
the form of equation (2) is similar to a resampling and averaging of the rainfall. A plot 
of max(/e(x)/v) as a function of basin drainage area is shown in Figure 9 for the sub- 
basins of"the Guadalupe river (assuming v = l.Om/s). We see that the largest transit 
time scales are roughly ^ 1 hour for small basins and 30 hours for large basins. In the 
simulation experiments, the rainrates generated by the Storm Model generally changed 
every 10 minutes, so small catchments experienced little averaging of the temporal 
structure. This plays a role in determining the importance of rainfall temporal structure 
for small basin CVs, and especially for the discharges calculated using the Network 
Model. 

The spatial structure of the simulated rainfall might also be suspected as the explanation 
for the low-area dependence. The two parameters that determine the spatial scale of the 
Storm Model are a and c. According to the estimates from Table 1, the average distance 
between storm cells is a~^l'^ = 26 km and the characteristic scale of a single storm cell is 
c -1 =30 km. These scales are somewhat larger than the resolution observable by the rain 
gauge network (the average distance between a particuleir rain gauge and its nearest 
neighbor was about 12 km), so the rain gauge network adequately captures the spatial 
structure considered. However, the error in the estimation of the parameters a and c is 
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Figure 9. In the Network Runoff Model, the time scale of a basin response is max(/^(Ar)/v). Here, values of 
^^^{fe{x)/v) are plotted as a function of drainage area for v = 1 m s " '. 

large (see Bloschl [1]), and the CV results are dependent on the estimated characteristic 
spatial scale of the simulated rainfall. 

To address the issue of the uncertainty in determining the spatial scale of the rainfall 
patterns, we simulated rainfall with several different values of a and c. The results are 
presented in Figure 10, which shows the envelope curves for four different simulation 
experiments with unique values of the parameters a and c. The shapes of these curves are 
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Figure 10. The envelope curves for the CV-area relationship resulted from simulated rainfall with different 
spatial scales. (1) a-'/2=60, c-'=60; (2) a-'/2 = 3o, c-' = 15; (3) a-'/2 = i5 c-' = 15; (4) 
a-'/2 = 15, C-' =30 (km). 
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all similar to that of the real CVs (Figure 1). So while the particular estimates of the spatial 
structure might be imprecise, the scaling behavior of the simulated CVs does not change 
significantly. 

Many authors [7,9,20] have stressed the importance of the network structure of the basin 
in determining the behavior of CVs for small catchments. In this study, we used a network 
taken from an actual basin, so realistic basin network properties were employed. In order 
to further understand the importance of employing actual river networks, though, we 
tested the same rainfall model with the Peano network. 

The Peano network is an idealized model of a channel network [6,10,13]. An example of 
a Peano network, along with its basic properties, can be found in Rodriguez-Iturbe and 
Rinaldo [24, page 123], and a Peano network of order 5 is shown in Figure 11. Under the 
assumption of constant rainfall and constant water velocity in streams, the peak discharge 
in a Peano network exhibits simple scaling [10]. The scaling of flood peaks in a Peano 
basin with the spatial cascade model for rainfall has been studied both analytically and 
computationally [6], and it has been concluded that the peaks exhibit multiscaling in this 
case. 

We studied the response of a Peano basin to rainfall generated by the Storm Model 
through simulations, and discharges at the end of each link were computed using 
the Network Model. The area of the entire Peano basin was taken to be approximately the 
same as the area of the Guadalupe river at Comfort basin (2190 km^), and the order of the 
Pfeano basin was taken to be 5 (Figure 11) so that the drainage density is approximately the 
same as for the Guadalupe river basin. Figure 12 shows the flood peak CVs obtained with 

Figure 11. Peeino network of order 5. 
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Figure 12. CVs of annual flood peak simulated in the sub-basins of Peano basin. Parameters of the models 
are as in Figure 7. 

the same set of model parameters as used for Figures 7 and 8. It is clearly seen that CVs 
decrease with increasing drainage area for all scales. Although it is difficult to study the 
distribution of flood peaks with our rainfall model even in the Peano basin, this simulation 
experiment supports the hypothesis of multiscaling. This simulation experiment with a 
Peano basin shows that the network structure of the drainage basin is an important factor 
for determining the scaling behavior of flood peaks CVs, which agrees with the cited 
findings [7,9,20]). 

Finally, we observe that our results provide a starting point from which to further test 
additional influences on the behavior of CVs. Much research has been performed to 
determine the features in the basins' morphology, dynamic response, and rainfall that 
produce the greatest effects on the behavior of flood peaks [2,7,21]. It has been suggested 
that the basin response to rainfall on a small scale is largely controlled by the spatial 
variability of basin's morphological properties [31], which are therefore critical for the 
scaling of annual flood peaks. It has also been hypothesized that the transfer of water from 
hill slopes to channels may be the key process defining the characteristic spatial scales of 
regional hydrology [22]. Another hypothesis, that nonlinearities in runoff generation 
contribute to the increase in CVs for small scales [2], is supported by the effect of the 
temporal structure of the model rainfall on the small scale behavior of CVs that was 
observed in this study. This study did not directly model any of the processes mentioned 
above. That our results reflect the observed behavior of CVs does not rule out any of these 
additional influences, but merely demonstrates that the overall response of the real system 
can be mimicked by the fundamental response of a much less complex system we can 
tractably analyse. 

It is further encouraging to note that many of the additional processes not included in 
our results are coming within the reach of computational models with the recent increases 
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in computing power, while they would be prohibitively computationally intensive only 
two years ago. 

5.    Summary and conclusions 

There are three primary results from our work: 

• The simulation of rainfall over an area, coupled with the Network Runoff Model, 
provides a useful tool for studying flood peaks. Estimation of most of the parameters for 
such simulations can be done based on analysis of daily-accumulation rain gauge data. 

• The areal scaling properties of flood peaks (log-log linearity of moments vs. basin 
drainage area and the peculiar behavior of the coefficients of variation) can be explained 
by the spatial and temporal structure of the rainfall and the spatial structure of the stream 
network. 

• There is evidence that the interaction between the temporal structure of the rainfall and 
the network structure of the basin might be important to the scaling behavior of the flood 
peak coefficients of variation for basins with a sufficiently small area. 
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Tropical storms and the flood hydrology 
of the central Appalachians 

Paula Sturdevant-Rees,i James A. Smith,2 Julia Morrison,^ and Mary Lynn Baeck^ 

Abstract.   Flooding from Hurricane Fran is examined as a prototype for central 
- Appalachian flood events that dominate the upper tail of flood peak distributions at basin 
scales between 100 and 10,000 km^. Hurricane Fran, which resulted in 34 deaths and more 
than $3.2 billion in damages, made land fall on the North Carolina coast at 0000 UTC, 
September 6, 1996. By 1200 UTC on September 6, Fran had weakened to a tropical 
storm, and the center of circulation was located at the North Carolina-Virginia border. 
Rain bands surrounding the tropical depression produced extreme rainfall and flooding in 
Virginia and West Virginia, with the most intense rainfall concentrated near ridge tops in 
the Blue Ridge and Valley and Ridge physiographic provinces. The most severe flooding 
occurred in the Shenandoah River watershed of Virginia, where peak discharges exceeded 
the 100-year magnitude at 11 of 19 U.S. Geological Survey stream-gaging stations. The 
availability of high-resolution discharge and rainfall data sets provides the opportunity to 
study the hydrologic and hydrometeorological mechanisms associated with extreme floods 
produced by tropical storms. Analyses indicate that orographic enhancement of tropical 
storm precipitation plays a central role in the hydrology of extreme floods in the central 
Appalachian region. The relationships between drainage network structure and storm 
motion also play a major role in Appalachian flood hydrology. Runoff processes for 
Hurricane Fran reflected a mixture of saturation excess and infiltration excess 
mechanisms. Antecedent soil moisture played a significant role in the hydrology of 
extreme flooding from Hurricane Fran. Land use, in particular, the presence of forest 
cover, was of secondary importance to the terrain-based distribution of precipitation in 
determining extreme flood response. 

1.   Introduction 

The central Appalachian region has been a workshop for 
hydrologists and geomorphologists to study extreme floods. 
Analyses of central Appalachian flood properties have played 
a central role in assessments of scaling theories of flood re- 
sponse [Gupta et al., 1994; Miller, 1990; Robinson and Siva- 
palan, 1997; Smith, 1992]. The Shenandoah River basin was the 
study site for J. T. Hack's seminal studies of fluvial geomor- 
phology, especially related to the role of catastrophic events 
[Hack, 1957,1965; Hack and Goodlett, 1960; see also Jacobson 
et al, 1989; Miller, 1990]. Extreme flooding occurred in the 
Shenandoah River basin on September 6, 1996, as the rem- 
nants of Hurricane Fran moved through the central Appala- 
chians of Virginia (see Plate 1 for regional setting and sum- 
mary rainfall analyses). The Shenandoah River basin lies in the 
Valley and Ridge physiographic province and is bounded on 
the east by the Blue Ridge. 

Tropical storms play a major role in the hydrology of ex- 
treme floods m the central Appalachian region. Flood peaks 
that were produced by tropical storm rainfall dominate the 
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upper tail of flood frequency distributions for the central Ap- 
palachian region, particularly for drainage areas larger than 
500 km^ as illustrated in Figure 1 for the Shenandoah River at 
7827 km^ and the South River of the South Fork Shenandoah 
River at 549 km^. In the 80-year stream gaging record of the 
Shenandoah River, six of the eight largest flood peaks have 
resulted from tropical storms (Figure 1 and Table 1). Table 1 
summarizes information on the eight largest flood peaks in the 
Shenandoah River basin and places them in the context of the 
larger Potomac River basin. The tracks of the six tropical 
storms (Plate 2) show south-to-north movement through the 
eastern United States. Orographic thunderstorms [Eisenlohr, 
1952; Hack and Goodlett, 1960; Miller, 1990; Smith et al, 1996] 
have produced many of the largest unit discharge flood peaks 
in the central Appalachian region. Extreme rainfall and flood- 
ing for these events is typically restricted to areas smaller than 
500 km^. Flooding from Hurricane Fran is examined as a 
prototype for central Appalachian flood events that dominate 
the upper tail of flood peak distributions for basin scales be- 
tween 500 and 10,000 km^. 

A key feature of extreme tropical storm rainfall in the cen- 
tral Appalachian region is orographic enhancement of precip- 
itation in mountainous regions [Bailey et al, 1975; Clark et al, 
1987; Schwartz, 1970]. The largest measured rainfall totals 
from Hurricane Fran (400 mm in less than 12 hours) occurred 
along high-elevation regions of the Virginia Blue Ridge. These 
rainfaU accumulations have recurrence intervals exceeding 100 
years in the study area [Clark et al, 1987; Hershfield, 1961] and 
are comparable to the maximum recorded precipitation asso- 
ciated with many of the events listed in Table 1 [Miller, 1990]. 
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Plate 1. Regional setting and summan' rainfall analyses for the September 6. 1996. flooding from Hurricane 
Fran in the Shenandoah River basin (yellow outline). The background map is a false color representation of 
topography derived from 30-m USGS digital elevation map (DEM) for the Potomac River basin. Contour plot 
of storm total rainfall (in mm: solid black lines) was derived from the IFLOWS network. Storm centroid 
locations (red line tracks), derived from WSR-8SD volume scan reflectivity observations, are shown from 0600 
to 2400 UTC on September 6. The blue stars show the center of circulation of the tropical storm at 1800 and 
2400 UTC on September 6. 

Hypotheses concerning flood hydrologv' that are addressed 
in this paper include the following: 

1. Dependence of flood properties on a basin scale derives 
from space-time scaling properties of rainfall [Gupta cl al.. 
1994: Perica and Foitfoitla-Gcoi-giou. 1996: Smith. 1992]. 

2. Antecedent soil moisture is of little importance in de- 
termining the magnitude o^ extreme floods [Wood et a!.. 1990]. 

3. Runoff production for extreme floods is solely via the 
saturation excess mechanism in humid, vegetated environ- 
ments [Dunne. 1991]. 

4. Extreme flood response of forested basins is markedly 
different from nonforested regions: forest ccwer promotes 
striking attenuation of flood response [Hewlett et al.. 1977]. 

The paper is organized as follows: Section 2 includes a de- 
scription of the data sets used for both the precipitation anal- 
yses and analyses of flood response. The spatial and temporal 

variability of rainfall along with the atmospheric environment 
of the storm are discussed in section 3. This information is 
combined with land surface information introduced in section 
4 to assess the hypotheses presented above. 

2.    Data 
A key clement of precipitation analyses for the storm was 

availability of 15-min rain gage observations from the Inte- 
grated Flood Observing and Warning System (IFLOWS) net- 
work of high-elevation rain gages. Table 2 summarizes obser- 
vations from the IFLOWS gages in and around the 
Shenandoah River basin. Locations of IFLOWS gages are 
shown in Plate 3. Of comparable importance for storm analy- 
ses are volume scan reflectivity observations at a 6-min time- 
scale from Weather Surveillance Radar-198S Doppler (WSR- 
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Figure 1. Exceedence probability of annual flood peaks for 
tiie Shenandoali River at Millville at 7827 km^ (80-year record) 
and the South River of the South Fork Shenandoah River at 
549 km^ (55-year record). Circled sj^mbols indicate large an- 
nual peaks associated with tropical storms. For Millville, six of 
the seven largest flood peaks are associated with tropical 
storms (note that for smaller flood peaks no distinction be- 
tween tropical storms or other events are implied). For the 
South River the largest four flood peaks are associated with 
tropical storms (as above, numerous other smaller flood peaks 
associated with tropical storms are not marked). 

88D) radars located in Sterling, Virginia, and Roanoke, 
Virginia. Both the Sterling and Roanoke radars suffer from 
problems of terrain blockage in the Shenandoah basin. Obser- 
vations from the Geostationary Operational Environmental 
Satellite (GOES) satellite provided a synoptic-scale depiction 
of tropical storm motion and evolution. 

U.S. Geological Survey (USGS) discharge observations were 
used to examine hydrologic response to rainfall produced by 
Hurricane Fran. Unit values discharge data were obtained 
from the USGS for all available stations in the Shenandoah 
River basin during the period of flooding resulting from Hur- 
ricane Fran (13 sites). The time resolution of unit values data 
for most stations was 15 min. At the largest drainage areas the 

time resolution was hourly. USGS peak discharge measure- 
ments were available at seven additional sites throughout the 
Shenandoah basin. Mean daily discharge and annual flood 
peak observations for each station were also utilized in this 
study. The locations of USGS streamflow gaging stations 
within the Shenandoah are shown in Figure 2. 

USGS digital elevation data (DEM) were used in conjunc- 
tion with U.S. Environmental Protection Agency (EPA) River 
Reach 3 (RF3) data to define basin boundaries and to derive 
basin morphological characteristics. Soil distribution at a 1-km 
resolution was derived from the Pennsylvania State Contermi- 
nous United States (CONUS) soils database [Miller and White, 
1998]. Land use-land cover distribution at a 30-m resolution 
was derived from the EPA region 3 land use-land cover data 
set (based on Landsat thematic mapper images from 1990, 
1991, and 1992; [see Loveland and Shaw, 1996; also http;// 
www.epa.gov/mrlc]). 

3.   Precipitation Analyses 
Hurricane Fran made landfall as a category 3 hurricane near 

Wilmington, North Carolina, around 0000 UTC on September 
6, 1996. The storm system continued to move north- 
northwesterly through North Carolina, Virginia, and West Vir- 
ginia during the next 24 hours (Plate 1). The southeasterly 
steering flow was the product of an upper level low that de- 
veloped over the Tennessee and lower Mississippi valley and a 
strong subtropical ridge located over the western Atlantic, 
which formed in the wake of Hurricane Edouard's northward 
passage off the East Coast from August 31 to September 2 
[Mayfield, 1996]. During the 24-hour period after landfall, 
storm intensity decreased from category 3 hurricane to tropical 
depression, as illustrated in the GOES IR images from 0645 
and 1245 UTC (Plates 4a and 4b). 

Plate 1 provides a detailed view of storm motion through the 
central Appalachian region. The locations of the center of 
circulation of the tropical storm, as determined by the National 
Hurricane Center, are shown at 1800 and 2400 UTC on Sep- 
tember 6. The average speed of the tropical storm from 0645 to 
1845 UTC (the period of rainfall in the Shenandoah River basin) 
was 26 km h~' (7.3 m s"^). The rapid motion of Fran contrasts 
sharply with motion of the other five tropical storms shown in 
Plate 2. Heavy rainfall from these storms was associated with rain 
periods greater than 24 hours. As discussed below, a distinctive 
feature of Hurricane Fran was the combination of rapid tropical 
storm motion and anomalously high rainfall rates. 

The track of rainfall centroids (i.e., the spatial centroid of 
rainfall mass flux) through the region (Plate 1), based on 6-min 

Table 1.   Largest Flood Peaks Occurring During the 100-year Record of the Shenandoah and Potomac Rivers 

Potomac River Potomac River 
Shenandoah River at Hancock, at Point of Ranking 

Event at Millville, cm cm Rocks, cm at POR' 

Oct. isge*" 2970 NA 5,780 8 
May 1924 3370 4530 7,840 6 
March 1936 4280 9630 13,590 1 
Oct. 1942*' 6510 4390 11,840 2 
Aug. WSS*" 2800 3480 6,100 7 
June 1972" 2920 3170 9,830 3 
Nov. WSS*" 4020 5860 8,750 4 
Sept. 1996" 4420 4200 8,740 5 

''With regards to historical flood peaks in the Potomac River at Point of Rocks (POR) basin. NA, not available. 
"Flood peaks were produced by tropical storm rainfall. 
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Table 2.   IFLOWS Rain Gage Data^" 

Station Code Latitude Longitude Elevation, m Rain, mm Max Rate, mm h  ' 

Toms Branch jgh 37.9639 78.9469 469 363 64.0 
Sherando SHE 37.9958 78.9917 442 203 39.6 
Robinson Hollow RBH 38.0042 78.9197 448 212 39.6 
Spottswood SPO 37.9617 79.2122 575 196 47.8 
Middlebrook MID 38.0483 79.2292 591 137 51.8 
Stoney Creek STC 37.9900 79.1228 488 205 35.6 
Stokesvillc STK 38.3550 79.1500 465 148 43.7 
Craigsville CRI 38.0614 79.3997 549 342 72.14 
Upper Sherando US 37.9167 79.0167 594 264 55.9 
Elkhorn I^ke ELK 38.3233 79.2275 634 180 32.5 
Mills Creek Dam MLC 37.9536 79.0008 579 263 43.7 
Hearthstone Lake HRS 38.3950 79.1600 567 184 39.6 
Mill Creek/Count)' Line MIC 38.1492 79.4644 658 164 32.5 
Lovingston LOV 37.7719 78.8711 283 168 55.9 
Montebello Fish MON 37.8442 79.1303 808 240 39.6 
Rockfish ROC 37.8008 78.7536 149 132 32.5 
Brent Gap BRN 37.8447 78.9281 369 245 47.85 
Devils Knob DK 37.9083 78.9378 1049 296 72.1 
Afton Mountain AFT 38.0289 78.8597 622 134 39.6 
Lewis Mountain Camp LEW 38.4367 78.4792 1036 229 32.5 
Ida IDA 38.5872 78.4261 1006 256 76.2 
Skyland SKY 38.5914 78.3800 1149 249 39.6 
Rock>' Branch RO 38.6917 78.3336 506 308 88.4 
Big Meadows BM" 38..5217 78.4361 1076 400 72.1 
South Fork LYW 38.3225 78.7550 309 192 47.8 

Shenandoah River at 
Lynnwood 

Cootes Store CO" 38.6369 78.8531 320 146 43.7 
Bergton NW BRG 38.7514 79.0686 942 177 32.5 
Long Run Road LR 38.5981 79.0592 975 256 39.6 
Dundore Mountain DUN 38.5264 79.1347 1201 198 24.4 
Briery Branch BRB 38.4439 79.0900 539 185 32.5 
Swift Run SFT 38.3661 78.5786 433 194 47.8 
Camp Roosevelt CAM 38.7256 78.5100 567 156 68.1 
Dctrick DET 38.8431 78.4172 274 167 47.8 
Smith Creek SM 38.6214 78.6639 317 162 28.5 
Bryce Mountain BRC 38.8083 78.7703 512 177 43.7 
Jerome Gap JE" 38.8769 78.7508 415 223 68.8 
Woodstock Reservoir WOD 38.9058 78.6525 411 147 55.9 
Fetzer Gap FET 38.9708 78.5064 573 129 51.8 
Mount Olive MTL 38.9850 78.4594 299 122 68.1 
Strasburg Reservoir ST" 38.9442 78.3550 472 182 96.5 
Hogback Mountain HOG 38.7619 78.2750 1058 261 59.9 
Limeton LIM 38.8808 78.2467 195 96 35.6 
Chester Gap CHT 38.8500 78.1483 610 123 64.0 
Manassas Gap MAN 38.9094 78.0764 283 133 47.8 
Nineveh NIN 39.(K)69 78.1689 189 101 43.7 
Browntown BRW 38.8040 78.2342 299 203 59.9 

"Station name, code name, latitude and longitude in decimal degrees, elevation, rainfall accumulation, and maximum recorded 15-min rainfall 
te. 
"Rain gage locations depicted in WSR-88D radar images (Plates 6a-6f). 

WSR-88D volume scan reflectivity observations, provides a 
representation of storm motion that reflects the composite 
movement of the storm center and the major rain bands asso- 
ciated with the storm. Before reaching the Blue Ridge, the 
storm centroid moved at a speed of 24 km h"'; the speed 
decreased to 18 km h ' as the rain centroid moved along the 
Shenandoah valley. Shortly after 1500 UTC, the storm centroid 
pa.ssed into the South Branch Potomac watershed. Rainfall 
time centroids (i.e., the time prior to and after which 50% of 
rainfall occurs) were calculated for the IFLOWS rain gages in 
and surrounding the Shenandoah basin. These values were 
used to compute basin-averaged rainfall time centroids (Table 
3). Analyses of the track of spatial rainfall centroids and the 
basin-averaged time centroids of rain gage observations reflect: 
(1) the southeast to northwest movement of the tropical storm 

system, (2) curvature of rain band precipitation, which resulted 
in rain bands reaching the eastern Shenandoah basins earlier 
than western portions of the basin, and (3) intensification of 
rain band precipitation from east to west, which also resulted 
in east-to-west time differences in precipitation distribution. 

The periods of greatest rainfall accumulation and intensity 
in the Shenandoah basin preceded the remnants of the hurri- 
cane eye. Passage of the center of circulation to the south and 
west of the Shenandoah basin resulted in strong, low-level 
easterly flow perpendicular to the Blue Ridge [see also 
Schwarz, 1970] and Shenandoah Mountain, which is the west- 
ern ridge of the Shenandoah basin. These aspects of the storm 
environment played a major role in the orographically en- 
hanced distribution of rainfall. 

The storm total rainfall distribution (Plate 1) exhibited tw^o 



STURDEVANT-REES ET AL.: FLOOD HYDROLOGY OF THE CENTRAL APPALACHLWS 2147 

Table 3.   Basin-Averaged Rainfall Time Centroids'* 

Basin 

Rainfall Mass 
Centroid, 

hours 

Time of Peak 
Discharge, 

hours Lag Time, hours 

SF Shenandoah 
South River 

Dooms 
Harriston 

Middle River 
North River 
Lynnwood 
Front Royal 

NF Shenandoah 
Cootes Store 
Smith Creek 
Mount Jackson 
Strasburg 
Passage Creek 

Shenandoah 
Millville 

12.5 
12.5 
13.0 
14.7 
13.2 
13.8 

15.5 
15.3 
15.5 
15.0 
13.8 

14.5 

21.0 
20.5 
28.0 
23.8" 
30.5 
51.5 

22.5'' 
21.5 
26.5 
40.8 
22.0 

60.0 

8.5 
8.0 

15.0 
9.1" 

17.3 
37.7 

7.0" 
6.2 

10.9 
25.8 

8.2 

45.5 

"Time of rainfall mass centroid for Shenandoah basins is based on IFLOWS data; time of peak discharge for Shenandoah basins is based on 
unit discharge data; and lag time is calculated as the difference between occurrence time of the rainfall mass centroid and the peak discharge. 
All values are in fractional hours from 0000 UTC on September 6, 1996. SF, South Fork; NF, North Fork. 

"Estimates based on the available data. 

local peaks along the Blue Ridge with accumulations exceeding 
350 mm (see also Table 2). The largest accumulation was at 
Big Meadows, which is <10 km north of the point where the 
rainfall centroids passed over the Blue Ridge and into the 
Shenandoah basin. The second peak was along the Blue Ridge 
in the southernmost portion of the Shenandoah basin. A dense 
network of IFLOWS rain gages in and near the South River 
basin provides a detailed picture of orographic enhancement 
of precipitation by the Blue Ridge (Plate 5). Along a southeast- 
to-northwest transect originating in the lower right-hand cor- 
ner of Plate 5, rainfall accumulation increased from 132 mm in 
the valley of the neighboring watershed to 296 mm at the crest 
of the Blue Ridge. The largest South River storm total accu- 
mulation of 363 mm was located on the western slope of the 
Blue Ridge near the crest. At the northwest end of the 
transect, rainfall accumulation dropped below 200 mm in the 
Shenandoah Valley. Peak rainfall accumulations from Hurri- 
cane Fran occurred at or near ridge tops (compare with anal- 
yses of Smith et al. [1996] of the June 27,1995, Rapidan storm, 
which produced rainfall accumulations exceeding 600 mm east 
of the Blue Ridge; see also Hack and Goodktt [I960]). 

WSR-88D radar reflectivity observations show that rainfall 
was produced by a combination of weak, structured rain band 
convection, remnant eyewall convection, and broader-scale 
stratiform rainfall. The temporal and spatial structure of cat- 
astrophic fiood-producing rainfall in the Shenandoah River 
basin and adjacent area is illustrated through time series of 
15-min rainfall rate observations at 10 IFLOWS gages (Figures 
3a-3e) and radar reflectivity fields from the Sterling WSR-88D 
at six times (1058, 1200, 1345, 1438, 1635, and 1734) (Plates 
6a-6f). All times are in UTC on September 6. 

Peak rainfall rates at most locations in the Shenandoah basin 
were associated with embedded convection in rain bands. The 
peak rainfall rate in the South River at Devil's Knob occurred 
around 1100 UTC (see Figure 3a) and was associated with the 
major band of rainfaU (Plate 6a) that moved northward over 
the Shenandoah basin (at the same time, a secondary peak in 
15-min rainfall rate occurred at the nearby Tom's Branch rain 
gage; Figure 3a). Rainfall from this rainband played a major 

role in the Shenandoah River flooding (as illustrated in all time 
series plots of Figure 3 and reflectivity fields in Plate 6). Or- 
ganization of embedded convection within the rain band struc- 
ture imposed large spatial gradients in rainfall rates. At 1100 
UTC the Devil's Knob and Tom's Branch gages were con- 
tained within the same region of embedded convection (Plate 
6a) that produced 15-min rainfall rates ranging from 40 to 75 
mm h~' at IFLOWS sites over which it passed. 

The peak 15-min rainfall rate at Big Meadows of 72 mm h^^ 
(Figure 3b) occurred at 1230 UTC and was associated with the 
primary rainband which passed the South River region 90 min 
earlier (see Plate 6b). Extreme rainfall accumulations at Big 
Meadows (the site of the largest storm total accumulation and 
one of the highest observed rainfall rates, as noted above) were 
not solely the result of intense rainband convection. Qf the 
400-mm storm total accumulation at Big Meadows, 175 mm 
fell from 1330 to 1800 UTC at rain rates between 30 and 50 
mm h^'. Rainfall during this period was produced by a com- 
bination of stratiform precipitation and weak convection. At 
1345 UTC (Plate 6c) an elongated, narrow band of elevated 
reflectivity extended from central Virginia to Big Meadows. 
Reflectivity values ranged from 30 dBZ (light green/light blue) 
in central Virginia, to 36 dBZ (dark blue/purple) in a 40-km 
swath extending southeast of Big Meadows to 42 dBZ (pink) 
immediately southwest of Big Meadows. Elevated reflectivity 
values (35-40 dBZ; blue/purple color codes in Plate 6c) oc- 
curred along and immediately to the east of the Blue Ridge 
from Big Meadows southward to the South River. Peaks in Big 
Meadows rainfall rates from 1330 to 1800 UTC were associ- 
ated with periods when weak convection embedded in rain 
bands passed over the gage site (see also Plate 6d at 1438 
UTC). The background stratiform rainfall rates did not drop 
below 20 mm h~^ until after 1915 UTC. 

The narrow rainbands that passed Big Meadows at and after 
1438 UTC intensified as they moved northward, producing a 
narrow ribbon of high rainfall rates (Plates 6e and 6f). At 1635 
UTC (Plate 6e), a thin line of convection extended from 80 km 
east of the Blue Ridge to Rocky Branch (RO) near the crest of 
the Blue Ridge, and across the Shenandoah Valley to Jerome 



2148 STURDEVANT-REES ET AL.: FLOOD HYDROLOGY OF THE CENTRAL APPALACHIANS 

ON 

O 
ON 

s 

in 
00 
en 

00 

Potomac 
Hancock 

to South and North 
Branch Potomac 

-79.5 -79.0 -78.5 
longitude 

-78.0 -77.5 

Figure 2. Drainage network structure for the Shcnandoah River basin with the locations of USGS streamflow 
gaging stations noted. Solid squares indicate sites where unit values data were obtained for Hurricane Fran. Open 
squares indicate sites where only peak discharge and mean daily values data were available. The abbreviations SF 
and NF stand for South Fork Shenandoah River and North Fork Shenandoah River, respectively. 

Gap (JE) in the Shenandoah Mountains. The Rocky Branch 
and Jerome Gap rainfall time series show spikes in rainfall rate 
to 90 and 70 mm h"', respectively (Figures 3b and 3d). 

Heavy rainfall in the South River from 1330 to 1530 UTC 
was associated with a storm element that originated in North 
Carolina as eyewall convection. In North Carolina this element 
of the storm resulted in catastrophic flooding in the Tar River 
basin [Baeck and Smith, 1998]. The area of convection can be 
tracked from near Raleigh, North Carolina, at 0600 UTC 
through southern Virginia into the Shenandoah basin. At 1058 
UTC it was located at the extreme southwestern area of the 
Sterling WSR-88D coverage (Plate 6a). The region of convec- 
tion moved separately from the remnant center of circulation 

of Fran. At 1200 UTC it was located 78 km northeast of the 
storm center. From 1438 UTC (Plate 6d) to 1635 UTC (Plate 
6e) the storm element moved down the South River into South 
Fork Shenandoah basin. Motion of this storm element played 
an important role in the magnitude and timing of flood peaks 
in the South River and South Fork Shenandoah, as discussed 
further in section 4. As previously noted, the peak rainfall rate 
at Tom's Branch in the South River basin did not occur with the 
major rainband, but during this extended period of 45-65 mm 
h"' rain rates from 1330 to 1530 UTC (Figure 3a). At other sites 
in the South River, this period produced high rainfall rates that 
were exceeded only by rain rates from the major rain band. 

The composite effects of storm structure, storm evolution 
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Plate 2.    Tracks of six tropical storms which produced major flood peaks in the Potomac River basin during 
the past 110 years. The Shenandoah watershed boundary is outhned in orange. 

and orographic enhancement of precipitation on the regional 
distribution of precipitation are illustrated in Figures 4 and 5 
through the relationship between (1) storm total rainfall and 
maximum 15-min rainfall rate (Figure 4) and (2) storm total 
rainfall and the fraction of storm total rainfall produced by 
heavy rainfall rates (i.e., 15-min rainfall rates exceeding 25 mm 
h"'; Figure 5). The North River and southern North Fork 
Shenandoah region (open squares, color-coded orange in Plate 
3) had relatively low rainfall rates. In contrast, the northern 
North Fork Shenandoah River watershed (solid squares, color- 
coded maroon in Plate 3) had anomalously large rainfall rates 
for a given rainfall accumulation due to intensification of rain- 
band precipitation in the upper watershed (see discussion 
above). The Blue Ridge (open triangles, color-coded pink in 
Plate 3) and South River (solid triangles, color-coded blue in 
Plate 3) regions, with their mix of rainband convection, rem- 
nant eyewall convection and extended period of elevated strati- 
form precipitation, produced large rainfall rates and the largest 
storm total accumulations. As noted earlier, the lowest rainfall 
accumulations and rainfall rates occurred in portions of the 
Shenandoah Valley that were farthest removed from the ele- 
vated terrain of the Blue Ridge, Shenandoah, or Massanutten 
Mountains. 

The fraction of storm total rainfall with 15-min intensity >25 

mm h^' increased sharply with storm total rainfall accumula- 
tion (Figure 5). Rainfall rates greater than 25 mm h~' ac- 
counted for >70% of the rainfall measured at the two sites 
where accumulations were greatest (Big Meadows and Toms 
Branch). Greater than 25 mm h~' fractional intensity values 
were largest in the South River due to the combined effects of 
the main rainband and the remnant eyewall convection on 
rainfall rates. The 25 mm h~' fractional intensity was also 
greater in the northern North Fork due to the intensification of 
rainbands after passing Big Meadows, discussed above. 

Rainfall intensities >25 mm h^' exceed saturated hydraulic 
conductivity values in the Shenandoah basin and suggest the 
potential for significant infiltration excess runoff (see section 4 
for additional discussion). Pronounced nonlinearity in runoff 
response to precipitation underlies the importance of short- 
term variability of rainfall rate. 

The peak rainfall rates from Hurricane Fran at 15-min time- 
scale of nearly 100 mm h"' are larger than those documented 
for any of the tropical storms of Table 1 [see Bosart and Carr, 
1978; Clark et al., 1987; Costa, 1974; Engman et al., 1914; Miller, 
1990]. Much larger rainfall rates have been reported for oro- 
graphic thunderstorms in the central Appalachians (the June 
27,1995, Rapidan storm produced rainfall rates >300 mm h~' 
for time periods >15 min [see Smith et al., 1996]) and for 
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Plate 3. Tlic Ideations (if IFI.OWS rain gages in and around the Shcnandoah River basin. The gages are 
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northern North Fork Shenandoah and Passage Creek; and orange, southern North Fork Shenandoah and 
North River South Fork Shenandoah. The underlined gages are included in the WSR-8SD radar images 
(Plate 6). 

tropical storms in more southerly locations. The remnants of 
Hurricane Camille likely produced rainfall rates comparable to 
the Rapidan storm over small areas along the cast slope of the 
Blue Ridge near the Shenandoah River basin. As noted by 
Smith cr ol. [1996], however, this storm is more closely related 
to the Rapidan storm than to the tropical storms which pro- 
duced extreme flooding over a wide range of basin scales in the 
central Appalachians (Table 1). From the perspective of the 
tropical storms of Table 1, distinctive features of Hurricane 
Fran were its rapid motion and anomalously large rainfall 
rates. The combined influence of rapid storm motion and large 
rainfall rates on runoff response during Hurricane Fran are 
examined in detail in section 4. 

4.    Analyses of Flood Response 
Rainfall produced by Hurricane Fran resulted in severe 

flooding throughout the Shenandoah River basin (Figure 6a). 
Flood peaks with recurrence intenals greater than 100 years 
occurred in II of 19 basins ranging in size from .S to SOOO km". 
Record peak discharges were set in 1 I anti equaled in 3 of the 
20 basins for which data were available. The most severe flood- 

ing occurred at basin scales <,^000 km". Flood peaks at drain- 
age basin scales exceeding .^000 km" were characterized by 
recurrence intervals of ~.'iO years. Hydrologic response to Hur- 
ricane Fran is summarized in Table 4 through flood peak and 
water balance summaries and in Figures 7a-7f through nested 
flood hydrograph plots throughout the basin. The contrasting 
flood response properties of Shenandoah drainage basins are 
examined below in terms of (1) orographic enhancement of 
precipitation, (2) drainage network structure, (3) storm struc- 
ture and motion, (4) land use-land cover properties, (5) soil 
moisture properties, and (6) runoff production mechanisms. 

4.1.    Orographic Enhancement of Precipitation 

The spatial distribution of storm total runoff (Figure 6b; 
compare with the rainfall accumulation map of Plate 1) illus- 
trates the primary role of orographic enhancement of tropical 
storm precipitation for extreme flcxid response. Storm total run- 
off (in mm) was computed from USGS discharge observations by 
integrating volumetric water flux (in m^' s ') over the period of 
the flood (September 5-9) and dividing by the drainage area. 

The largest runoff volumes were concentrated in the high- 
elevation regions of the western Shenandoah basin (194 mm 
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Plate 4. GOES IR images of Hurricane Fran on September 6, 1996 at (a) 0645 UTC, located over northern 
North Carolina and (b) 1245 UTC. located in central Virginia. The brightness temperature color scale is 
provided on the left side. The most intense convection is associated with the coldest temperatures. At coldest 
temperatures are approximately —80°C. At 1245 UTC, coldest temperatures are approximately —60°C. 
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Plate 5. Dct;iil of storm rainfall accutnulalions in the South Ri\er of the South Fork Shenandoah River and 
surrounding region. Red dots show the loeations of IF'I.OWS gages, with aeeumulation given in millimeters. The 
haekground map is a false color representation of topography deri\etl from .'^O-m IJSGS DEM for the region. 

for the North Ri\er at Slokesville. 182 mm for the North Fork 
Shenandoah at Cootes Store, and \57 mm for Muddv Creek). 
High runoff \olumes also occurred along the Blue Ridge, re- 
sulting in the increase in unit area runoff in the South l-'ork 
Shenandoah between l.ynnwood (97 mm) and Front F^oyal 
(1 14 mm). Storm total runoff for the South I'ork Shenaniloah 
basin between Lynnwood and Front Royal was 147 mm. In the 
reach ber^vecn Furay and Front Royal the runoff volume was 
161 mm. This region of the Blue Ridge was the location of the 
largest rainfall accumulations obser\etl throughout the 
Shenandoah basin (corresponding to the rain gages at Big 
Meadows and Rockv Branch. F'igure .'^b and Table 2). The 
smallest runoff volumes were concentrated in the low- 
ele\ation basins draining the Shenandoah Valley (for example. 
Smith Creek at 7iS mm). 

The contrasting spatial characteristics of Hood response for 
Hurricane F'ran. associated with orographic enhancement of 
precipitation. pla\ a fundamental role in determining the re- 
gional \arialion of tlootl frequency. Orographic enhancement 
of precipitation results in the occurrence of larger unit dis- 
charge \alues in high-elevation basins not only for Hurricane 
F'Yan but throughout the flood frequency distribution. This 
point is illustrated in Figure S through sample flood frcc|uency 
distributions for the high-ele\ation North l-'ork Shenaiuloah 

River at Cootes Store (.^44 km^) and the low-ele\ation Smith 
Creek catchment (241 km": see Figure 2 for basin locations). 

4.2.    Drainage Network Structure 

The role of drainage network structure in controlling basin- 
scale flood response can be illustrated through the geomor- 
phological instantaneous unit hydrograph (GHJH)/(0- which 
represents the basin response at time / to a unit mass input of 
rainfall at time 0 uniformly distributed o\er the catchment (see 
Rti(lriiiiic:-liiirhc and Riiuddo \\'-)'-)l\ for additional discussion). 
(iiiptii end. [1986] show that the GIUH /'(/) is proportional to 
\\'(r'\'). where the width function ll(.v) is the number of 
channel segments at length .v from the outlet. F' is a uniform 
flow velocity, and i is time. From nested hydrograph analyses a 
wave celerity of 1.9 m s ' was estimated for both the South 
Fork and North I'ork Shenandoah (see Figures 7c and 7e). The 
width function for the Shenandoah Riser basin was extracted 
from F-!PA RF.i river reach data. GILJII representation of basin 
response, determined by using the estimatetl width function 
and wave celerit\' as the uniform flow \elocity. is summarized 
in l-'igure 9 through a contour map of travel time to the basin 
outlet. A key obsei%ation from this anahsis is that the surface 
runoff travel time of 4.^ hours at the southern end of the basin 
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is ~4 times longer than the time required for the storm to 
traverse the basin from south to north (see section 4.3). 

The drainage network structure, as represented by the 
GIUH, provides a reasonable simulation of flood magnitude 
and timing at the basin outlet (Figure 10). These results are 
based on uniform runoff over the catchment during the 10- 
hour rainfall period. The GIUH simulations result in distinct 
peaks from the North Fork and South Fork at the basin outlet, 
in contrast to the observed hydrograph (solid line), which in- 
dicates that the two basins contributed synchronously to the 
peak discharge (Figure 10, top right). Conversely, in the South 

Fork Shenandoah the GIUH simulation has less distinct peaks 
than the observed hydrograph (Figure 10, middle right). The 
initial GIUH peak in the South Fork Shenandoah is too small 
and the second peak too large (Figure 10, middle right), re- 
flecting the heterogeneity in runoff distribution that is not 
accounted for by the GIUH analysis. Timing of the GIUH 
response in the North Fork Shenandoah is much too fast (Fig- 
ure 10, bottom right), reflecting the elements of storm motion 
and structure that controlled the time-varying runoff produc- 
tion throughout the basin. 

The assumption of spatially and temporal uniform runoff is 
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Figure 4. Maximum rainfall rate (in mm h"') versus storm 
total rainfall (in mm) for IFLOWS rainfall data grouped by five 
regions (South River, Blue Ridge, Valley, northern North 
Fork, and southern North Fork, see Plate 3). 
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15-min time periods with rainfall intensity >25 mm h ', versus 
storm rainfall total in millimeters for IJFLOWS rainfall data 
grouped by five regions (South River, Blue Ridge, Valley, 
northern North Fork, and southern North Fork, see Plate 3). 
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Figure 6. (a) Ratio of the peak discharge associated with Hurricane Fran to the generalized extreme value 
(GEV) distribution, using L moment estimators of Hosking [1990], estimate of the 100-year return interval 
discharge at USGS streamfiow gaging sites throughout the Shenandoah. The record for Muddy Creek (refer 
to Figure 2) is too short to accurately determine the lOQ-year return interval discharge and is not included. 
Values >1 indicate >100-year events, (b) Spatial distribution of storm total ninoff (mm) throughout the 
Shenandoah River basin, (c) Antecedent soil moisture index values at USGS streamfiow gaging sites through- 
out the Sheiiandoah basin. The antecedent index was computed based on the ratio of discharge preceding 
Fran to the median discharge value for September, (d) Soil moisture storage capacities throughout the 
Shenandoah River basin, represented as the ratio of the daily discharge exceeded 90% of the tiriie to the mean 
daily flow. 

at odds with the orographically controlled spatial distribution 
of rainfall (section 4.1) and with the temporal and spatial 
distribution of rainfall determined by storm structure and mo- 
tion (as discussed in section 4.3). The assumption of uniform 
flow velocities is also not valid over the entire watershed. 
There are significant contrasts between response times (Table 
3) of low-gradient, Shenandoah Valley basins (for example, 
Middle River (Figure 7b) and Smith Creek (Figure 7d)) and 
high-elevation basins (North River (Figure 7b), North Fork 
Shenandoah (Figure 7d), and South River (Figures 7a and 7b), 
for example). The low gradient environment of Shenandoah 
Valley basins combines with lowest values of drainage density 
(Table 5) to produce markedly slower flood response than in 
other portions of the Shenandoah basin. 

4.3.   Storm Structure and Motion 

Storm structure and motion (see section 3) were important 
elements of flood response in the Shenandoah watershed for 
basin scales ranging over 2 orders of magnitude (from <100 
km^ to 10,000 km^). Drainage network analyses of section 4.2 and 
nested flood hydrographs (Figure 7) for the Shenandoah River 
basin provide a background for interpreting the role of storm 
structure and motion for the scale-dependent flood respoiise. 

The large-scale motion of the storm system (Plate 1) from 
south to north served to amplify the peak discharge at the basin 
outlet (note, in particular, the anomalously low volume-to- 
peak ratios inferred in Table 6). Storm motion was, however, 
far from that which would optimize peak discharge for a given 
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Table 4.   Summary of Flood Response in the Shenandoah River Basin to Extreme Rain Produced by Remnants of 
Hurricane Fran" 

DA, Peak, m' s"' 
Basin km' km-2 Runoff, mm Rainfall, mm Runoff Ratio 

SF Shenandoah 
South River 

Dooms 386 L55 108 240 0.45 
Harriston 549 1.49 93 225 0.41 

Middle River 971 1.29 93 170 0.55 
North River 982 2.03 171" 210 0.81 
Lynnwood 2808 1.08 97 190 0.51 
Luray 3566 0.89 105 200 0.53 
Front Royal 4253 0.81 114 215 0.53 

NF Shenandoah 
Cootes 544 3.30 182*' 220 0.83 
Smith Creek 241 1.46 78 150 0.52 
Mount Jackson 131! 2.22 117 180 0.65 
Strasburg 1989 1.62 100 175 0.57 
Passage Creek 228 2.86 109 150 0.73 

Shenandoah 
Millville 7827 0.56 86 185 0.46 

"The value for the intervening area between the SF Shenandoah at Front Royal and Lynnwood is not included. Basin-averaged rainfall over 
this region was 240 mm, while runoff was 147 mm, resulting in a ninoff-to-rainfall ratio of 0.61. Volume-to-pcak ratios arc not given explicitly 
due to space constraints but may be inferred from the provided data. DA, drainage area. 

''Estimates based on water mass balance. 

runoff volume (see Smith et al. [2000] for an example of storm 
motion and structure which optimizes peak discharge). As 
noted in section 4.2, the time for the storm to pass through the 
basin was approximately 1/4 of the time for runoff produced in 
the southernmost portion of the basin to move the drainage 
network to the basin outlet at Millville. 

Structure, motion, and evolution of rain bands strongly in- 
fluenced the timing of flood response in the South Fork and 
North Fork of the Shenandoah. Motion of the principal rain 
band (Plates 6a-6c) affected runoff production along the 
South Fork Shenandoah at Lynnwood, Luray, and Front 
Royal, which were characterized by near simultaneous hydro- 
graph rise times (Figure 7c). This response was due to rapid 
motion of the primary rain band (timescale <2 hours; see 
discussion in section 3) and the long response times from the 
South Fork headwaters to Front Royal (-30 hours; see Figure 
9). Storm motion and organization influenced the form of the 
flood hydrographs at Luray and Front Royal, which were char- 
acterized by an initial rise followed by a primary rise to the 
observed peak discharge. The initial rise is attributable to run- 
off occurring over the intervening drainage area; the primary 
peak is attributable to downstream advection from Lynnwood 
to Luray and from Luray to Front Royal. 

Initial stream response to rainfall moved progressively from 
the eastern to western portion of the Shenandoah basin, as 
seen in the flood hydrographs for the Shenandoah at Millville, 
South Fork Shenandoah at Front Royal, and the North Fork 
Shenandoah at Stra.sburg (Figure 7f). Downstream advection 
of the flood peak along the North Fork Shenandoah between 
Mount Jackson and Strasburg (Figure 7e) suggests that the 
bulk of the North Fork flood originated in the high-elevation 
headwater region, supporting earlier analyses indicating the 
importance of orographic enhancement of rainfall. The flood 
wave passed through the North Fork Shenandoah valley bot- 
tom without significant attenuation or augmentation. 

The importance of storm motion for flood response at scales 
<100 km^ is clearly illustrated in the South River, where the 
downstream flood peak at Harriston occurred simultaneously 

with the upstream peak at Dooms (Figure 7a). The peak at 
Harriston was augmented by movement of the remnant eye- 
wall convection (as discussed in section 3 and shown in Plates 
6c-6e) down the South River basin (see also the peak rain 
period at the Toms Branch IFLOWS rain gage. Figure 3a). 

4.4.   Land Use-Land Cover Properties 

The interaction between land cover and streamflow has been 
studied for some time [see, e.g., Hewlett et al., 1977; Potter, 
1991; Swank and Crossley, 1986; Zon, 1927], but the influence 
of land use and cover on extreme floods is still not well under- 
stood. The idea that forest cover attenuates flood peaks by 
increasing infiltration has found particular resonance with 
those involved in watershed management and policy develop- 
ment (see, for example, discussion of Hurricane Fran impacts 
in the context of Chesapeake Bay water quality [Potomac Basin 
Reporter, 1996]). 

Analyses of Shenandoah hydrologic response to Hurricane 
Fran rainfall and its relation to land cover (see especially 
Tables 3,4, and 7 and Figure 7 and Plate 7) provide little direct 
evidence for attenuation of flood peaks or reduction of runoff 
production. The largest runoff volumes and flood peaks oc- 
curred in the forested, high-elevation portions of the basin. 
Multiple linear regression analyses with lag time (i.e., the time 
interval between the occurrence of the mass centroid of rainfall 
over a basin and the peak discharge at its outlet; see Table 3) 
as the response variable indicate that flood response time is 
most sensitive to drainage basin area (1% significance level) 
but is also influenced by drainage density (10% significance 
level) and aspect ratio Al (5% significance level). Lag time is 
relatively insensitive to land use and cover (Table 8). 

The extensive forest cover throughout the Shenandoah 
River basin (Plate 7, and Table 7) is new-growth forest dating 
from the late 1800s. Conversion of forest land to other uses 
during the twentieth century has been concentrated along val- 
ley bottoms, while upland areas, which experience the heaviest 
rainfall during extreme events, have remained forested. It is 
possible that flood response would have been faster and 
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Plate 6. WSR-88D radar reflectivity fields from the Sterling WSR-88D at (a) 1058. (b) 1200. (c) 1345. (d) 
1438. (e) 1635. and (f) 1734 UTC on September 6. The code names of IFLOWS gages identified in Plate 3 and 
Table 2 are included for reference. The basin boundary for the Shenandoah River basin is depicted as a white 
dotted line. 
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Plate 6. (continued) 
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Figure 7. Nested flood hydrograph plots for locations throughout the Shenandoah where unit values data 
are available. Details of the drainage network structure are shown in Figure 2, and information for the 
individual basins is available in Tables 4 and 5. (a) Discharge at South River gaging stations, (b) Discharge at 
gaging stations at and upstream of the South Fork Shenandoah River at Lynnwood. (c) Discharge along the 
main stem of the South Fork Shenandoah River, (d) Discharge at gaging stations at and upstream of the North 
Fork Shenandoah River at Mount Jackson, (e) Discharge along the main stem of the North Fork Shenandoah 
River, (f) Discharge at the most downstream gaging station of major Shenandoah River tributaries. 



STURDEVANT-REES ET AL.: FLOOD HYDROLOGY OF THE CENTRAL APPALACHLWS 2161 

E 

P 

Q 

c 
3       ^ 

^       NF Shenandoah R at Cootes Store 
V       Smith Ck 

,^^>f9^Z^VVVVVVVV7 

 i i 1 1 r 

0.0 0.2 0.4 0.6 0.8 1.0 

Probability 

Figure 8. Sample flood frequency distributions for the North 
Fork Shenandoah River at Cootes Store, a high-elevation ba- 
sin with a drainage area of 544 km^, and for Smith Creek, a 
low-elevation basin with a drainage area of 241 km^. The 
annual peak data have been scaled by drainage area. 

greater if some of the high-elevation mountainous regions 
were unforested. 

4.5.   Soil Moisture Properties 

Wood et al. [1990] note that for large floods the role of 
antecedent soil moisture for flood response should decrease 
with increasing return interval. An open question is where 
"large" begins. In other words, how rare must floods be for 
antecedent soil moisture to have negligible importance for 
flood response? An antecedent moisture index for each sub- 
basin was derived by dividing the discharge preceding Fran by 
the median discharge value for September. Results are shown 
in Figure 6c. Values greater than one indicate wetter than 
average conditions for the month of September. Soil condi- 
tions in the western half of the Shenandoah watershed were 
significantly wetter in the prestorm environment than the re- 
mainder of the basin. Of particular note are values for the 
North River, North Fork Shenandoah at Cootes Store, and 
North Fork Shenandoah at Mount Jackson. Extraordinary 
peak discharge and storm total runoff values were observed at 
these stations (Figures 6a and 6b). In addition, runoff-to- 
rainfall ratios were generally higher in the North Fork Shenan- 
doah than the South Fork Shenandoah (Table 4). These results 
suggest that in the central Appalachian region, antecedent 
moisture conditions can play a significant role in determining 
land-surface response to extreme rainfall for events with return 
intervals exceeding 100 years. 

In the central Appalachian region, soil moisture storage 
capacity is closely linked to spatial variations in bedrock and 
surficial geology. Folded sedimentary rocks underhe most of 
the Shenandoah River basin. Thin, low-permeability soils 
cover shales and sandstones in the North River, North Fork 
Shenandoah River, and Passage Creek [Smith et al, 1982]. 
These regions are characterized by low storage capacities and 
are poor sources of baseflow [Smith et al., 1982]. Relatively 
thick surficial deposits, developed from coUuvium and under- 

lain by carbonate rocks, are characteristic of the South Fork 
Shenandoah River, Middle River, and South River [Ciolkosz et 
ah, 1979; Hack, 1965]. These are regions of high groundwater 
storage and high baseflow [Smith et al., 1982; White, 1976, 
1977]. The ratio of daily discharge exceeded 90% of the time to 
the mean daily flow, Q^Q/QA' illustrates the variability in soil 
moisture storage capacity in the Shenandoah River basin (Fig- 
ure 6d). Soil moisture storage capacities along the western 
Shenandoah basin are significantly lower than those in the 
eastern portion of the basin. The more extreme flood response 
in the western Shenandoah basin suggests that soil moisture 
storage capacity is an important factor determining land- 
surface response to extreme rainfall. 

Higher antecedent soil moisture conditions (Figure 6c) and 
lower soil moisture storage capacity (Figure 6d) contributed to 
the more extreme flood response observed in the western 
Shenandoah basin despite the fact that measured rainfall rates 
and rainfall accumulations were greatest in the eastern portion 
of the basin along the Blue Ridge. The relative difference 
between rainfall rate and potential infiltration rate, as repre- 
sented by saturated hydraulic conductivity (Plate 8 and Table 
9), may also affect runoff generation. 

4.6.   Runoff Production Mechanisms 

The interactions between soil moisture deficit, soil hydraulic 
properties (especiaUy, saturated hydraulic conductivity), and 
rainfall rate determine whether infiltration excess or saturation 
excess runoff production mechanisms control flood response.. 
In this section, numerical simulation studies are used to exam- 
ine the runoff production mechanisms at play in the Shenan- 
doah River basin during Hurricane Fran. 

Simulations are based on Richards equation for one- 
dimensional unsaturated flow in the soil column (see Appendk 

-79.5 -79.0 -78.5 -78.0 -77.5 

longitude 

Figure 9. Contour map of travel time to the basin outlet 
based on GIUH analyses. The basin boundaries of the Shenan- 
doah River at MOlville, North Fork Shenandoah, and South 
Fork Shenandoah are shown in grey. The basin outlet at 
Millville is highlighted with a star. 
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Figure 10. (left) GIUH representation of flood magnitude and timing of the Shenandoah River at Milivilie 
(solid square), South Fork Shenandoah River (inverted triangle), and the North Fork Shenandoah River 
(triangle), assuming uniform runoff over the catchment during a 10-hour period, (right) Differences between 
the actual streamflow response (depicted by solid lines) and the GIUH representation of response (depicted 
by symbols on lines) for (top) the Shenandoah River at Milivilie, (middle) SF Shenandoah River, and (bottom) 
NF Shenandoah River. 

A for details). Rainfall forcing is based on the observed rainfall 
time series from the Toms Branch (Figure 3a) rain gage. So- 
lution of Richards equation is obtained by a modified Picard 
procedure [Celia et al., 1990] for time-varying rainfall. Van 

Genuchtcn constitutive relationships are used with parameter 
values for a silt loam soil with a low (2.1 mm h"') and medium 
(6.8 mm h~') saturated hydraulic conductivity [Maidment, 
1993; van Genuchten, 1980]. A silt loam soil was chosen due to 

Table 5.   Drainage Basin Area, Average Stream Slope, Aspect Ratio, Drainage Density, and Relief Ratio of Select 
Shenandoah Drainage Basins" 

Aspect Ratio, m^ m  " 
DA, Stream Slope, Drainage Dcnsitv, Relief Ratio, 

Basin km^ m m  ' Al A2 m km"- m m~' 

SF Shenandoah 
South River 

Dooms 386 0.030 0.44 0.86 810 0.0(180 
Harriston 549 0.031 0.42 0.69 752 0.0070 

Middle River 971 0.009 0.54 0.85 395 0.0055 
North River 982 0.040 0.57 0.94 488 0.0080 
Lynnwood 2808 0.028 0.61 0.73 520 0.0078 
Front Royal 4253 0.027 0.45 0.49 499 0 004'' 

North Fork Shenandoah 
Cootcs 544 0.044 0.64 0.79 493 0.0164 
Smith Creek 241 0.026 0.48 0.39 408 0 0065 
Mount Jackson 1311 0.033 0.65 0.88 416 0 009'' 
Strasburg 1989 0.028 0.50 0.68 424 0 0064 
Passage Creek 228 0.021 0.64 0.17 409 0 0084 

Shenandoah 
Milivilie 7827 0.025 0.55 0.38 512 0.0029 

"Stream slope is defined as the difference in elevation between the basin headwaters and stream outlet divided bv channel length. Aspect ratio 
Al IS defined as/l/(Ll •L2) and A2 is defined as L1/L2 whereat is drainage basin area, /. 1 is the length of the longest side of a rectangle enclosin" 
the basin, and L2 is the length of the shortest side of the rectangle [see Patton and Baker. 1976). Drainage densit\' is defined as tolal length of 
the channels divided by drainage basin area \Cnsta. 1987]. Relief ratio is defined as the difference between the average elevation of the drainage 
basin divide and the basin outlet divided by the basin length parallel to the main stream [Patton and Baker. 1976]." 
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Table 6.   Event Volume-to-Peak Ratio" 

Basin 1936 1942 1972 1985 1996 

South Fork Shenandoah 
South River Dooms NA NA NA 0.99 0.46 
South River Harriston 1.06 0.63 0.87 0.90 0.42 
Middle River 0.81 0.71 0.78 0.69 0.52 
North River 0.51 0.49 0.97 0.43 0.59 
Lynnwood 0.72 0.64 0.80 0.83 0.57 
Front Royal 0.83 0.71 0.81 0.81 0.72 

North Fork Shenandoah 
Cootes 0.60 0.68 1.12 0.87 0.55 
Smith Creek NA NA 0.77 0:96 0.55 
Mount Jackson NA NA 0.89 0.81 0.44 
Strasburg 0.58 0.50 1.02 0.58 0.42 
Passage Creek 0.43 0.57 0.98 1.00 0.34 

Shenandoah 
Millville 0.74 0.68 0.85 0.80 0.75 

"Standardized by the mean volume-to-peak ratio for a basin for key historical extreme flood events in the Shenandoah; NA, not Available. 

its relative abundance throughout the Shenandoah watershed. 
Water table depth and the assumption of a hydrostatic pres- 
sure distribution are used to specify a range of initial condi- 
tions. The water table depth is determined by solving the stor- 
age deficit function for a given moisture deficit. 

Numerical simulation resiilts summarizing the relative con- 
tributions of Hortonian overland flow (infiltration excess) and 
saturation overland flow (saturation excess) contributing to the 
total runoff over a range of antecedent moisture conditions 
(initial water table depth) are summarized in Figures 11a and 
lib for the low- and medium-saturated hydraulic conductivity 
soils. In order to also depict the change in net infiltration with 
antecedent moisture conditions, the numerical results have 
been normalized by the total storm rainfall. The fraction of 
precipitation contributing to infiltration excess (shown by 
crosses), saturation excess (shown by circles) and infiltration 
(shown by pluses) thus sum to one. As the depth to water table 
increases, the fraction of total rainfall contributing to infiltra- 
tion increases for both soils and total runoff decreases accord- 
ingly. 

Numerical results derived for the low-saturated hydraulic 
conductivity soil (Figure 11a) show that due to elevated rainfall 

rates early in the event, small amounts of infiltration excess 
runoff (aroUnd 1%) occur even when the initial water table 
depth is less than a meter from the surface. The amount of 
rainfall partitioned to infiltration excess runoff increases 
sharply between initial water table depths of 1.5 and 2.2 m 
while saturatioii excess runoff decreases sharply. For an initial 
depth of 1.8 m, runoff is equally distributed between itifilfra- 
tion excess and saturation excess runoff generating rhedha- 
riisms. The sharp increase in the fraction of infiltration excess 
runoff with water table depth is a function of interactiori be- 
tween the rainfall time series and the available water storage 
capacity. When initial water table depths are greatef than --2.2 
m, all runoff is partitioned to infiltration excess. 

Numerical results derived for the medium saturated hydrau- 
lic conductivity soil (Figure lib) are significantly different. 
Saturation excess generating mechanisms dominated runoff 
production for initial water table depths <2.0 m. Infiltration 
excess runoff occurred only when initial water table depths 
were >2.0 m; significant (>20%) partitioning of rainfall to 
infiltration excess did not occur until the initial water table 
depth was >2.4 rh. At initial watei: table depths >2.6 m, how- 
ever, more than 50% of the runoff was generated by infiltration 

Table 7.   Percent of Land Classified as Developed, Agricultural, and Forested in the 
Shenandoah Basins" 

Basin 

Land Use-Land Cover, % 

Developed Agriculture Forested 

South Fork Shenandoah 
South River 

Dooms 5.9 
Harriston 5.1 

Middle River 3.5 
North River 3.1 
Lynnwood 3.5 
Front Royal 3.2 

North Fork Shenandoah 
Cootes 0.3 
Smith Creek 4.8 
Mount Jackson 1.9 
Strasburg 2.5 
Passage Creek 0.6 

Shenandoah 
Shenandoah River at Millville 2.8 

30.2 62.2 
31.5 61.9 
55.5 40.2 
33.0 63.3 
43.1 52.4 
37.8 57.9 

7.9 91.0 
51.2 43.1 
37.2 60.1 
37.1 59.5 
11.9 85.9 

37.4 58.6 

"Data are based on the EPA 30-m MRLC data. 
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Table 8.   Regression Equations 

Regression Equation 

= 6.5 + 0.0055 area 
.ag = n.6 + 0.0034 area 
,ag = n.7 + 0.0054 area 

= 9.1 + 0.0054 area - 
= 52.6 + 0.0053 area 

ag = 40.1 + 0.0053 area 
ag = 40.1 + 0.0050 area 
ag = 42.4 + 0.0054 area 

- 173.6 basin slope 
' 175.5 stream slope 
0.041% forest 

- 68.6 Al - 2.79% developed 
- 0.021 drainage density - 42.1 Al 
- 0.021 drainage density - 42.1 Al + 0.13% forest 
- 0.042 drainage density - 65.7 Al + 0.184%) forest + 0.159 silt loam 

R- 

0.89 
0.90 
0.90 
0.89 
0.96 
0.94 
0.95 
0.97 

excess mechanisms (equivalent to around 35% of the total 
rainfall). Results for larger values of saturated hydraulic conduc- 
tivity result in progressively deeper initial water table depths be- 
fore infiltration excess runoff becomes significant. 

The numerical infiltration studies provide a context for in- 
terpreting the runoff processes that occurred throughout the 
Shenandoah River basin, given the distribution of soil hydrau- 
lic properties (Plate 8), rainfall (Figures 3a-3e and Table 4), 
and runoff (Figure 6b and Table 4). Rainfall rates were signif- 
icantly larger than saturated hydraulic conductivity values 
throughout the basin (Figure 5 and Plate 8). The eastern mar- 
gin of the Shenandoah basin is underlain by carbonate terrain 
and is characterized by thick soils with high storage capacity 
and some of the largest depths to bedrock (typically >1.3 m) 
observed throughout the Shenandoah. These characteristics, 
combined with relatively low initial soil moisture content, sug- 
gest that infiltration excess runoff may constitute a significant 
fraction of the runoff generated in these basins during Hurri- 
cane Fran. Infiltration excess runoff mechanisms likely con- 
tributed less to total runoff volumes in the western Shenan- 
doah due to low storage capacity, high initial moisture 
contents, and shallow depth to bedrock. The potential impor- 
tance of infiltration excess runoff generation during Hurricane 
Fran, particularly along the forested ridges of the South Fork 
Shenandoah, underscores the role rainfall intensity plays in 
controlling storm runoff volume and peak discharge (compare, 
for example, with Hewlett et al. [1977]). 

5.   Summary and Conclusions 
There are eight principal observations from our work. 
1. Hurricane Fran produced record flooding in the 

Shenandoah River watershed at basin scales ranging from 35 
to 10,000 km^. The magnitude of flooding was comparable to 
that observed for other tropical storms producing extreme 
flooding at these scales in the central Appalachians, including 
Hurricane Juan (1985), Hurricane Agnes (1972), Hurricane 
Diane (1955), and the tropical storm of 1942. 

2. Moist, upslopc easterly flow sustained by the hurricane 
circulation resulted in orographically enhanced precipitation in 
the Shenandoah basin, with rainfall accumulation maxima (>350 
mm) located near ridge tops. Rain gage accumulations were 
greater along the Blue Ridge (eastern boundary of the basin) than 
along Shenandoah Mountain (western boundary of the basin). 
Significantly lower accumulations (<200 mm) occurred in the 
Shenandoah Valley. Orographic enhancement of tropical storm 
precipitation plays a major role in determining the regional flood 
hydrology for the central Appalachian region. 

3. Extreme rainfall from Hurricane Fran was produced by 
a combination of rain band convection, broader-scale strati- 
form precipitation and remnant eycwall convection. Peak rain- 
fall rates in rain band convection approached 100 mm h"' at 
15-min timescale. Hurricane Fran is distinguished from other 
flood-producing tropical storms in the central Appalachian region 
through the anomalously high magnitudes of rainfall rates. 

Table 9.    Percent of Soil Cla.ssified as Sandy Ix)am, Silt Loam, Loam, or Silty Clay Loam in the Shenandoah Basins" 

Soil, % 

Ba.sin Sandy Loam Sill Loam Loam Silty Clay Loam 
Average K^„, 

mm h~' 

South Fork Shenandoah 
South River 

Dooms 12.2 87.8 0.0 0.0 8.6 
Harriston 14.6 85.4 0.0 0.0 9.0 

Middle River 6.5 80.9 0.0 12.7 7.2 
North River 40.9 51.3 0.0 7.9 126 
Lynnwood 20.7 71.0 0.0 8.4 95 
Front Royal 22.5 67.1 4.3 62 10 7 

North Fork Shenandoah 
Cootes 26.6 73.0 0.4 0.0 10.8 
Smith Creek 27.4 44.6 0.0 28.0 96 
Mount Jackson 18.7 65.1 0.2 16.0 89 
Strasburg 21.6 64.5 0.11 13.78 94 
Passage Creek 61.1 38.9 0.0 0.0 16 0 

Shenandoah 
Shenandoah River at Millville 22.0 66.7 2.8 8.5 9.9 

°Data are based on the CONUS 1-km data set. 
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Figure 11. Numerical infiltration experiment results for (a) 
the low-saturated hydraulic conductivity soil and (b) the me- 
dium-saturated hydraulic conductivity soil. Experiments were 
based on the rainfall time series from the IFLOWS rain gage 
at Toms Branch and for initial water table depths ranging from 
<1 m to almost 3 m. The fraction of storm total rainfall 
contributing to storm total infiltration excess, saturation ex- 
cess, and infiltration is shown (see text for details). 

4. Hurricane Fran was also distinguished from other ex- 
treme flood-producing tropical storms through its rapid storm 
motion. Several elements of storm motion were important for 
flood response. The south-to-north motion of the tropical 
storm circulation amplified peak discharge at the outlet of the 
south-to-north flowing Shenandoah River. The rapid south-to- 
north motion of the principal rain band was especially impor- 
tant for runoff distribution in the South Fork Shenandoah 
River. The east-to-west motion and amplification of embedded 
rainband convection played a significant role in the spatial and 
temporal runoff distribution throughout the Shenandoah basin. 
Motion of remnant eyewall convection played a dominant role for 
flood response in the South River of the South Fork Shenandoah. 

5. Antecedent soil moisture distribution appears to have 
played an important role in flood response. Larger unit dis- 
charges and runoff ratios in the western Shenandoah basin 
were likely related to the relatively higher initial moisture 
conditions. Spatial variability in soil moisture storage capacity 
was also an important aspect of the contrasting runoff produc- 
tion over the basin. 

6. Numerical model experiments using Richards equation 
suggest that significant portions of the basin, including the for- 

ested, high-elevation South Fork Shenandoah basin, experienced 
infiltration excess production. Infiltration excess runoff becomes 
more significant as the initial depth to the water table increases. 

7. The principal forested regions of the Shenandoah River 
basin are concentrated in the high-elevation areas of the basin 
which received largest storm total accumulations. Any influences 
of forest cover on flood response, either through enhanced infil- 
tration or increased roughness, were masked by the pronounced 
orographic amplification of rainfall accumulations. 

Appendix A 
Infiltration analyses in section 4 are based on Richards equa- 

tion of unsaturated zone flow in the form 

where 

D{e) = K 
dh 

(Al) 

(A2) 

A flux boundary condition is specified at the ground surface 
whenever the surface moisture content is less than saturation, 
i.e., for e{t, 0) < 6,. In this setting, the surface flux is 
equivalent to the rainfall rate R{t) (in mm h~') 

q{t,0)=Ril). (A3) 

When the surface becomes saturated, expressed as e{t, 0) = 
e„ then 

h{t, 0) = 0. (A4) 

The flux out of the soil column is assumed to be zero: 

qU, L) = 0. (A5) 

The van Genuchten constitutive relationships are used to 
solve Richards equation. They are specified in terms of five 
parameters, a, n, 6,, 6,., and K,. The constitutive relation- 
ships are expressed as 

0(^^) = 

0 

e{t,z)~e, 

1 
l + (a\h\r} 

K{e) = K,e"\i - (1 - 0"""~i))'"-i)'"]^, 

am{e,- e,) 

-f (1 - ©'"") 2]. 

(A6) 

(A7) 

(A8) 

(A9) 

Initial conditions are specified by a water table depth co^, i.e., 
W{(}) = 0)0 and the assumption of a hydrostatic pressure 
distribution, i.e.. 

h{z,  0)   = Z  -   COg. 

It follows from the constitutive relationship that 

(AlO) 

6(0, z) = 
[1 +(a[o>o-/])"]" 

w. + er       (All) 

for 2 s 
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The storage deficit function 

s(t)=     [e,-e{t,z)]dz (A12) 

can be used to explicitly distinguish infiltration excess and 
saturation excess runoff. The infiltration rate I{t) is the time- 
varying Darcy flux at the surface: 

m = q{t, 0). (A13) 

The surface runoff rate is the difference between rainfall rate 
and infiltration rate: 

Q{t) = R{t) - m   R(t)>m 

Q{t) = 0 R{t)^m. 

The saturation excess runoff rate Q^(t) is the surface runoff 
that occurs when the storage deficit equals 0, i.e., 

Qsit) = Qit)       S{t) = 0 

QAt) = 0 S{t) > 0. 

The infiltration excess runoff rate g,(f) is the surface runoff 
that occurs when the storage deficit is positive, i.e., 

QM = Qit)     S(t) > 0 

e,a) = 0      5w = 0. 

time (in hours), t e [0, T\. 
total run time (in hours). 
depth from the surface (in mm, positive 
downward), z £ [0, L]. 
depth of zero-flow boundary (in mm). 
moisture content at time t and depth z. 
Darcy flux (in mm h"-*) at time t and depth z. 
pressure head (in mm) at time t and depth z. 
water table depth at time t (in mm). 
hydraulic conductivity at depth z for moisture 
content d. 
soil water diffusivity at depth z for moisture 
content 6. 
saturated hydraulic conductivity at depth z. 
residual moisture content. 
saturated moisture content. 
soil water diffusivity. 
exponent. 
scale parameter. 
storage deficit function (in mm). 
infiltration rate (in mm h"^). 
excess rainfall (in mm h~^). 
saturation excess runoff (in mm h"-'). 
infiltration excess runoff (in mm h~^). 

Votal tioi 
t 
T 
z 

L 
0(<, z) 
q{t. z) 
h{t. z) 

W{t) 
K{z, e) 

D{z, e) 

K.(z) 

Die) 

5(0 
lit) 

Qit) 
Qsit) 
QM 
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