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EXECUTIVE SUMMARY 

The primary goal of this research was to develop physically based damage models, 
computational approaches based on shear deformation plate theories and layerwise theory, a 
finite element formulation for the analysis of thin and thick laminated composite structures 
with embedded sensors/actuators. During the period of this project the following tasks have 
been completed: (1) literature search to assess damage and failures models; (2) theoretical 
formulation of the layerwise models for smart composite structures, (3) formulation of damage 
models, (4) finite element analysis of laminated adaptive plate structures using the layerwise 
theory, and (5) finite element analysis of laminated adaptive plate structures using the single- 
layer theories (classical, first-order, and third-order plate theories). Geometric nonlinearities 
are accounted for and parametric effects of lamination schemes, material properties, Eind 
boundary conditions were investigated. 

TECHNICAL DISCUSSION 

1. Damage Models 

1.1 Introduction 

Fiber-reinforced laminated composites typically exhibit several different forms of progressive 
damage including fiber breakage, fiber buckling, fiber/matrix debonding, matrix cracking, 
individual ply rupture and separation between adjacent plies (i.e. delamination.) These modes 
of damage are often initiated at loads that are far below the ultimate failure load of a composite 
material. Any damage that is initiated tends to progress as the loading is further increased or 
cycled, and thus effectively degrades the stiffness of the material, causing significant load 
redistribution before ultimate failure occurs. To capture this complex behavior in a finite 
element simulation, two different approaches have emerged for the development of damage- 
dependent constitutive relations: a phenomenological approach (known as continuum damage 
mechanics, or CDM), and a micromechanics approach. In practice, the difference between 
these two approaches is often blurred; however, in the extreme case, we can differentiate 
between the two approaches as follows. 

• The CDM approach attempts to predict damage accumulation and stiffness reduction in 
the equivalent homogenized version of the heterogeneous material. 

• The micromechanics approach attempts to predict damiage accumulation and stiffness 
reduction in the heterogeneous material before homogenization. 



Therefore we cem say that the difference between the two approaches is simply a matter of the 
timing of the homogenization process. The micromechanics approach has the potential for 
greater accuracy; however, it typically involves significantly more computational effort and also 
requires more experimentally derived material data (much of which is often unavailable). Given 
these obstacles, "from a practical point of view, it is diflicult to imagine that a purely 
micromechanical theory, with all of its complexities, will ever replace a properly formulated 
phenomenological theory as a design tool," (Krajcinovic [1,2]). Perhaps in its most useful 
sense, the micromechanics-based damage model can be utilized as a basis on which a 
simplified CDM model can be built with a reasonable chance of replicating experimentally 
observed trends over a wide spectrum of materials and responses (Krajcinovic [1,2]). This is 
essentially the same philosophy adopted in the current proposal for a general-purpose finite 
element framework capable of accurately and efficiently simulating the progressive damage of 
smart composites. 

1.2 Literature Review 

A detailed literature review of the existing damage £ind failure models was included in the first 
interim progress report. Here we briefly discuss the main developments of that review. 

Chang and Chang [3] gave a progressive damage model for laminated composites containing 
stress concentrations and subjected to tensile loading. The aim was to assess damage and 
predict ultimate tensile strength. Stress and strain analysis was based on classical laminate 
theory, with material non-linearity also being considered. For matrix cracking failure, they 
proposed a matrix failure criterion. Fiber-matrix shearing gmd fiber breakage were predicted by 
a modified Yamada-Sun failure criterion. A property degradation model was also proposed. 
Results obtained from a nonlinear finite element model for laminates containing a circular hole 
were compared with experimental data. 

Aboudi [4] presented a model in which the effect of damage due to imperfect bonding between 
constituents of composite materials was incorporated. The interface de-cohesion was described 
by two parameters which completely determine the degree of adhesion at the interfaces in the 
normal and tangential directions. Perfect bonding, perfect lubrication and complete debonding 
were obtained as special cases. The model also predicts the overall moduli! and overall 
coefficients of thermal expansion of composites in the presence of imperfect bonding. Ladeveze 
and Le Dantec [5] presented a model of the mechanical behavior of an elementary ply in a 
fibrous composite laminate. Continuum damage mechanics theory was used to describe matrix 
microcracldng and fiber-matrix debonding. To model the anelastic strains induced by damage, 
a plasticity model was proposed. The model takes into account the differences between tension 
and compression in the fiber direction. The model leads to a laminate failure criterion. 

Homogenization approaches to damage have also been developed. These often involved a two- 
step process in two different ways: a) homogenization of the stationary (non-evolving) 
microstructure, i.e. fibers and matrix, followed by incorporation of the evolving damage as 
internal variables, and b) incorporation of damage in each phase followed by homogenization of 
the phases. Fish et al. [6] choose to carry out the two steps simultaneously by using an 
extended homogenization procedure, wherein the field variables and a damage variable are 
given asymptotic expansions. The micro level total displacement is assumed to have 
contributions from the elastic strain and a damage induced strain, d, which is related to the 
damage variable co. The microstructure of a composite material is assumed to be locally 
periodic and the influence of this periodicity scale is assumed to be the same for both strains. 
To avoid a computational stability problem observed previously in local approaches. Fish et al. 
defined a non-local damage variable that is a weighted average over the two phases in a 
characteristic volume. Finally, they expressed damage evolution in each phase separately in 
terms of the damage energy release rates. Another example of the homogenization approach is 



that of Ghosh and his colleagues [7-9]. These authors do not use the concept of damage as an 
internal variable; instead, they determine the damage events explicitly by local stress analysis 
and failure criteria. They also allow for non-uniformity in the distribution of one phase 
(particles or fibers) into another (matrix), and use Voronoi cells to represent this heterogeneity. 
The micro scale model is analyzed using the effective strain from the global (structure) scale 
results and the effective (average) modulus tensor is evaluated. When damage evolves, the two- 
scale analysis must be conducted iteratively. 

One of primary difficulties that one faces in attempting to model progressive damage in fiber- 
reinforced laminated composites is that many of the damage modes (e.g. fiber breakage, fiber 
buckling, fiber/matrix debonding, matrix cracking) occur on geometric scales that are 
impractical to reach with direct mesh refinement. However, these forms of damage have a very 
significant effect on the stiffness of the heterogeneous material that constitutes the typical 
finite element. On the other hand, some forms of damage (e.g. ply rupture £tnd delamination) 
occur on geometric scales that might be smaller or larger than the typical finite element, 
depending on the level of mesh discretization. Furthermore, the criteria used to evaluate the 
onset and progression of damage invariably involves the stress, strain and/or energy of the 
material and these results are known to exhibit a strong dependence on mesh descritization. 
Therefore, in attempting to develop a computational model that incorporates aU these various 
forms of damage, we must distinguish between macroscopic damage and microscopic damage. 
Within the context of modeling and simulation, we wiU distinguish between these two 
categories of damage on the basis of whether the damage entity is smaller or larger than the 
computational reference scale (i.e. the geometric scale of the individual finite element.) Thus, 
our choice of using the geometric scale of the individual finite element as the reference for 
distinguishing microscopic damage from macroscopic damage leads to the following 
interpretations: 

• Modeling of microscopic damage does not explicitly require modification of the basic 
assumed kinematics of the model, but does require modification of the material properties 
to account for the damaged or weakened state of the material. Typically, microscopic 
damage is handled by using a homogenized description of the distribution, density and 
orientation of the microcracks and microvoids that occur in the immediate neighborhood of 
a Gaussian integration point within a finite element. For finite elements that are 
significantly lairger than the fiber/matrix RVE, but not necessauily larger than the thickness 
of a single lamina, microscopic damage typically includes fiber breakage, fiber buckling, 
fiber/matrix debonding and matrix cracking. 

• Modeling of macroscopic damage explicitly requires modification of the basic assumed 
kinematics of the model. This category of damage includes cracks or voids that are of the 
same order or larger than the representative finite element size. For finite elements that are 
smaller than the thickness of a single lamina, macroscopic damage might include ply 
rupture and delamination. However, for very large finite elements whose smallest 
dimension is equivalent to the laminate thickness, even these forms of damage might be 
treated as microscopic damage. Of course, the appearance of macroscopic damage is 
necessarily preceded by cumulative microscopic damage that coalesces into macroscopic 
damage. Therefore, a simulation that is capable of predicting the appearance and 
subsequent propagation of macroscopic damage must necessarily incorporate both a 
mechanism to alter the material properties based on homogenized microscopic damage and 
a mechanism to alter the assumed kinematics based on macroscopic cracks and voids. 

From the above description, it is obvious that the classification of a particular form of deimage 
as microscopic damage or macroscopic damage depends upon the specific type and quality of 
computational results that we seek. This is the most influential factor in our choice of a 
particular mathematical model and a particular finite element size. Thus it is imperative that a 
general-purpose computational tool should be flexible in its treatment of damage modeling at 



different geometric scales. Ideally, the classification of different physical modes of damage as 
microscopic or macroscopic should be automatically based on the characteristic element length 
scale that is appropriate for the particular results sought. Thus for one type of problem, the 
simulation code might handle delamination as a macroscopic form of damage, while for 
another type of problem the code might handle delamination as a microscopic form of damage. 
While the complete satisfaction of this goal is impractical given the current state of simulation 
technology, the softwaire development proposed in Phase II of this effort represents a significant 
step in this direction. 

1.3 Microscopic and macroscopic damage modeling 

The computational model for simulating progressive damage in smart composites incorporates 
the following mechanisms for modeling the initiation smd propagation of damage induced by 
service loads. 

1. Microscopic damage is modeled within the context of Continuum Damage Mechanics, or 
CDM, where the material properties are modified to account for the weakened state of the 
material due to the presence of distributed microcracks and microvoids that occur as a 
result of stress concentrations within the heterogeneous laminate. With the exception of 
pre-existing delaminations, aU forms of damiage are initially modeled as microscopic 
damage using continuum damage mechanics, regardless of the size of a particular finite 
elemerit. This method is appropriate up to the point where the microscopic damage 
becomes severe enough to cause coalescence into macroscopic damage (i.e. delamination or 
ply rupture) whose dimension is approximately equal to the dimension of the finite element. 
The successful implementation of the modeling of microscopic damage via continuum 
damage mechanics requires the following components: 

A. Damage Variable - Choose an appropriate tensorial form for the internal variable that 
will be used to characterize the microscopic damage. This internal variable, known as 
the damage tensor, is responsible for describing the distribution, density, and 
orientation of microcracks and microvoids. Various forms of the damage tensor have 
been proposed in the literature, for example, scalars, vectors, 2»«* order tensors, and 4* 
order tensors (Skrz3^ek and Ganczarski [10]). Depending on the emticipated 
complexity of the damage process, we should choose the simplest tensor that is capable 
of accurately describing the distribution, density, and orientation of microcracks and 
microvoids for the intended type of problem. For fiber-reinforced composite laminae, 
the simplest form of the damage tensor that is capable of accurately describing 
microscopic damage is a symmetric 2"'' order tensor whose principal directions are 
assumed to coincide vidth the principal material directions, i.e. orthotropic damage 
(Barbero and De Vivo [11]). 

B. Stiffness Reduction Scheme - Define the effective homogenized material properties in 
terms of the current level of the damage variable, i.e. we must have a consistent means 
to modify the original homogenized material properties to reflect the weakened state of 
the material due to the presence of distributed microcracks and microvoids. This is 
accomplished by using various equivalence principles, e.g. the principle of elastic energy 
equivalence. 

C. Damage Surface - Define a damage threshold criterion, i.e. a multidimensional surface 
in the space of state variables that must be exceeded before any damage can be 
initiated, or before existing damage csm progress. Thus the damage surface serves to 
separate non-damaging behavior from damage-inducing behavior. 



D. Damage Evolution - Define the damage evolution equation. Assuming that the damage 
surface has been reached, we must express the rate of change of the damage tensor as 
a function of the remaining state variables. 

2. Macroscopic damage in the form of delaimination is modeled by hierarchically enriching the 
kinematics of the model to permit general relative motion between the newly created 
interlaminar surfaces. Thus the appearance of macroscopic damage involves an increase in 
the number of degrees of freedom of the model. The successful implementation of the 
modeling of macroscopic damage requires the following components: 

A. Kinematic Enhancement - Incorporate a hierarchical description of the displacement 
field that permits degrees of freedom to be added to the existing model to account for 
the relative motion of newly created interlaminar surfaces due to delamination. The use 
of a hierarchical displacement field facilitates automation of the process since the 
existing mesh does require alteration; we simply add incremental displacement degrees 
of freedom to the existing model (Robbins and Reddy [5,6]). 

B. Delamination Criterion - Define a criterion, based on the homogenized, microscopic 
damage variable to indicate initiation and further propagation of delamination. 

A detailed description of modeling of microscopic and macroscopic damage will be given in the 
following sections. 

1.4 Continuum damage mechanics at the meso-scale (i.e. ply Level) 

In the sequel, the use of the term damage is understood to mean microscopic damage unless 
explicitly stated otherwise. Thus the term damage is intended to indicate the presence of 
microcracks and microvoids that are small compsired to the geometric dimensions of a typical 
fmite element and can thus be handled to sufficient accuracy via continuum damage 
mechanics, or CDM. In most practical analyses of composite materials, the typical dimensions 
of a finite element do not approach the geometric scale of the fiber/matrix RVE. Thus it can be 
safely assumed that cracks and voids that are small compared to the thickness of a single 
fiber-reinforced composite lamina will be treated as microscopic damage and handled via CDM. 
Thus damage in the form of fiber breakage, fiber/matrix debonding, and matrix cracking wiU 
be treated via homogenization at the meso-scale (or ply level). This is analogous to the process 
used to define equivalent anisotropic material properties at the meso-scale (or ply level) by 
homogenization of the heterogeneous material constituents. In contrast, the modeling of 
delamination most often requires treatment as a form of macroscopic damage that cannot be 
homogenized. 

The meso-scale continuum damage mechanics model developed in this study is capable of 
utilizing the full 3-D stress and strain fields evaluated at the ply level. This model represents 
an extension of the 2-D continutmi damage mechanics model of Barbero and DeVivo [11], 
where each individual lamina was assumed to be in a state of 2-D plane stress. In the present 
CDM approach, the fiber-reinforced composite material that constitutes an individual lamina is 
replaced with a non-heterogeneous orthotropic material. Prior to the appearaince of any 
damage, the equivalent orthotropic material may be considered homogeneous within the 
lamina. However, once damage initiates, the orthotropic material properties vary with respect 
to position within the lamina since damage occurs locally within the lamina depending on the 
local state of the material. 

1.5 Description of damage (kinematics) 



A symmetric 2"* order damage tensor D = DyeiCj is chosen to describe the distribution, density 
and orientation of microcracks and microdefects within the homogenized lamina. When the 
damage tensor D is expressed in an arbitrary coordinate system, it is difficult to assign 
physical meaning to its individual components (i.e. the Dy). However, when the damage tensor 
is expressed in its principal coordinate system, the eigenvalues of D (denoted Di, D2, and D3) 
have a simple physical interpretation. The i* eigenvalue Di represents the fractional reduction 
in load carrying area on planes that are perpendicular to the i"' principal direction. Thus the 
use of a symmetric 2"^ order damage tensor implies that the microscopic damage is orthotropic 
(i.e. a system of microcracks and microvoids that are oriented along three mutually 
perpendicular directions. This tj^se of damage tensor is most often appropriate for fiber- 
reinforced composite laminae since the predominate modes of microscopic damage are fiber 
breakage, fiber buckling, fiber/matrix debonding, and matrix cracks that are oriented either 
parallel to the reinforcing fibers or perpendicular to the reinforcing fibers. Furthermore, this 
orderly arrangement of microcracks can be described to an acceptable level of accuracy by 
using a 2"'* order damage tensor D whose principal directions are assumed to coincide with the 
principal material directions of the lamina (Barbero and DeVivo [11]). 

Damage tensor expressed in 
Arbitrary Coordinate System 

Damage tensor expressed in 
Principal Material Coordinate System 

Du D12 Di3 
D21 D22 D23 
D31   D32   D33 

-> 
Dii 0 0 
0 D22 0 
0      0     D33 J 

or 
Di 0 0 
0 Da 0 
0     0    D3 

(1) 

This is a particularly convenient assumption since it permits us to work directly with the 
physically meaningful eigenvalues of D in a coordinate system that we already know from the 
material description. The eigenvalues of the damage tensor must be in the range 0 < Di < 1, 
where Di = 0 corresponds to the case of complete lack of microcracks that are normal to the i* 
principal material direction, while Di = 1 corresponds to the case of complete separation of the 
material across planes that are normal to the i* principal material direction. In practical 
terms, the material becomes unstable and ruptures when the damage reaches a critical value 
that is most often considerably less than 1. Thus the practical ranges for the three eigenvalues 
of the damage tensor are expressed as 

0 < Di < Di* i= 1,2,3, (2) 

where the values  Dr < 1   (i = 1,2,3)  are considered to be material properties indicative of the 
fracture toughness of the material in planes normal to the principal material axes. 

Related to the damage tensor is the integrity tensor Q = QijCiCj given by 

a-a = i-D or a = yjI-H -^ Qi = yj 1-Di i= 1,2,3, (3) 

where Oi and Di are the eigenvalues of the integrity tensor and the damage tensor 
respectively. Thus, while the eigenvalues of the damage tensor D provide a measure of the 
fractional reduction in the original load carrying area, the eigenvalues of the integrity tensor Q 
provide a measure of the fraction of the original area that is still available to carry load. Due 
to the definition of the integrity tensor in Eq. (3), the principal directions of the integrity tensor 
also coincide with the principal material directions, and the eigenvalues of the integrity tensor 
Qi, Q2, and Q3 represent the square roots of the available fraction of the original load carrying 
area on planes that are perpendicTilar to the 1,2, and 3 directions respectively. 



1.6 Damaged constitutive relations (stiffness reduction scheme) 

The damage tensor D and the integrity tensor £1 can be used to define the concept of effective 

stress CT . For damaged materials, the definition of the effective stress a represents an attempt 
to assign the actual internal material forces to cross sectional areas that have been reduced 

due to the presence of damage. Qualitatively speaking, we expect the effective stress a to be 
greater than the apparent stress a (which uses the original undamaged cross sectional area); 
however, the precise manner of defining the effective stress is somewhat arbitrary, and 
consequently numerous methods have been proposed in the literature {Skrz5Tpek and 
Ganczarski (10]). 

In this study, we use the symmetric effective stress tensor described by Cordebois and 
Sidomoff [12], which can be expressed as 

M"Sa   =   (a '® a^):a   =   ( (Vl - D)"' ® (Vl - D)"' ) :o . (4) 

where M is the 4*^ order, doubly S5mametric, damage effect tensor whose components are Myki = 
QikQji. Thus as damage aecumulates, (i.e. as the Di increase, or as the Q, decrease) the load 
carrying area decreases which causes the effective stress to increase above the apparent or 
nominal stress. When the above relationship is expressed in the principal material coordinate 
system, then the 2""^ order damage tensor D and the 2"<* order integrity tensor D can be 
expressed in terms of their eigenvalues: 

Q -^ 
Qi 0 0 
0 O2 0 
0     0    Q3 

and   D -» 
Di 0 0 
0 D2 0 
0     0    D3 

Further, if we represent the effective and apparent stress tensors using contracted notation, 

then we can represent the damage effects tensor M and its M 
coordinate system as a diagonal 6x6 matrix as follows. 

inverse in the principal material 

M -> 

f"' 0 0 0 0 0 

0 ^l 0 0 0 0 

0 0 nl 0 0 0 

0 0 0 £22^3 
2 0 0 

0 0 0 0 2 0 

0 0 0 0 0 Q1Q2 
2     J 

(5) 



M -^ 

—    00 

0     0 

0—0 

1 

^3 

0 0 0 

0 0 0 

0    0      0 

0 

0 

0 

2 
Q2£23 

0 

0 

0 

0 

0 

0 
2 

0 

0 

0 

0 

0 

0 
2 

Qii22 -J 

(6) 

This 5delds the following expressions for the components of the effective stress tensor a 
expressed in the principal material coordinate system. 

o.     = 

OA      = 

Q? (l-Di)  ' 

^2 O2 

^ (I-D2)  ' 

O3 t^a 

^      - (I-D3)  ' 

<^4 «^4 

02^3 Vl -DaVl • -D3  ' 

O5 O5 

QsQi VI-D3VI- -Di   ' 

<^6 ^^6 

Q1Q2 -\/l - Di Vl -D2 

(7a) 

{7b) 

(7c) 

(7d) 

(7e) 

(7f) 

We can now define the components of the effective strain tensor e by insisting that the actual 
damaged configuration and the fictitious undamaged effective configuration should exhibit the 
same form for the strain energy density. This is the so-called principle of equivadent strain 
energy, which can be expressed as follows 

1 
e   = 2<J:e (8) 

Now, substitute the inverse of Eq. (4), i.e., o   =   M : o 

a : e   =   \M: a) : e       -^       e:c=e:M:a. 

Equation (9) must be true for arbitrary a, which yields 

e   =    E : M   =    M : e . 

(9) 

(10a) 

Thus, based on the principle of equivalent strain energy, the components of the effective strain 

tensor e are given by 



e   =   M : e   =   (Q ® Q):E   =    (A/I - D) ®(VI - D) : e , (10b) 

where Myki = Qikfiji- When expressed in the principal material coordinate system, the tensors D, 
Q, and M can be represented by diagonal matrices, and thus yield the following expressions for 
the strain components. 

El = t^di    =    ei(l-Di) , (11a) 

ej = ejQa    =    62(1-02) , (lib) 

E3 = EgQa    =    £3(1-03) , (lie) 

64 = e^QaQs    =    e^yfT^zy[l^^3 , (lid) 

65 = egQaOi)    =    ^s^|l-D3^|l-Dl, (lie) 

Eg = £6QiQ2)    =    EgVl-DiVl-Da. (llf) 

The presence of distributed damage, as defined by the internal variable D, affects the 
Helmholtz free energy ¥, which is postulated to be the sum of elastic strain energy (p and 
dissipation energy it: 

¥ = T(8, D, 5) = (p(e, D) + 7t(5) . (12) 

In Eq. (12), we have assumed introduced another internal variable 5, which is a non- 
dimensional parameter that will be shown later to govern the evolution of the damage tensor D. 

Assuming that the homogenized composite material exhibits a linear elastic stress/strain 
relationship up to the point of damage initiation, we can express the strain energy cp in either a 
strain-based form or stress-based form as follows 

(p(e, D)    =    2 E=C:£     =     2 <'=^        ' (13a) 

(p(a, D)   =   2<^-C  :a    =    2°'^    • (1"^^) 

where C = C(D) is the 4* order damaged material elasticity tensor, and C = C (D) is the 4* 
order damaged material compliance tensor. The dependence of these two tensors on the 
damage tensor D is defined by requiring that the elastic strain energy of the actual damaged 
configuration should be equivalent to the stain energy of the fictitious, undamaged effective 
configuration.   This strain energy equivalence can be expressed as follows: 

(p(a,D) = (p(o,D=0) stress-based (14a) 

or 

(p(e,D) = (p(e,D=0) strain-based {14b) 

Equations (14a) and (14b) can be written as 

2CT:cSa    =    ■2<T:C^a   , (15a) 

2e:C:e    =2£-C = £        > (ISb) 

where C £ind C     represent the stiffness and compliance tensors of the undamaged material. 
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Substituting Eq. (4)  a =   M  :CT into Eq. (15a)  and substituting Eq. (10)   e  = M:e into Eq. 

(15b),   and further noting that  a : M   = M  :a  and  e:M= M : e   since  a  and e   are both 
symmetric tensors, we arrive at 

1 1       «-i 2a:C  :a a : M Sc': M So , 

2e:C:e    =   Q^'^'^'^-^   • 

(16a) 

(16b) 

Equations (16a,b) must be valid for any arbitrary a and   e.   Therefore, Eq. (16a) 3delds the 
following expressions for the damaged compliance tensor 

c"^ = MSCS M'^ (17a) 

c'' =   {Ci% Cl^) :C"': (fl~^® ft"')    , (17b) 

C"' =   ( i^JT^r ® (VT^)"' ) :C"': ( i-^T^r ® hl^^y ) . (17c) 

and Eq. (16b) yields the following expressions for the damaged stiffness tensor. 

M:C : M (18a) 

(18b) 

(18c) 

C    =   (ft ® Q) : C : (£2 ® £2) , 

C    =    ( (Vl - D) ® (Vl - D) ) : C : ( (Vl - D) ® (^I - D) ). 

Eqs. (17) and (18) define the damaged 4* order compliance tensor C and the damaged 4* 
order elasticity tensor C in terms of the 4* order damage effects tensor M, the 2"^ order 
integrity tensor Cl and the 2"'* order damage tensor D. 

Expressing Eqs. (18a-c) in the principal material coordinate system emd using contracted 
notation, the resulting 4* order, damaged material elasticity tensor C can be represented by 
the following 6x6 matrix which is indicative of £in orthotropically damaged material. 

(19) 

r Cii C12 Ci3   0    0 0  -] 
C21 C22 C23   0    0 0 

c  -^ C31 C32 C33   0    0 0 
00    0   C44   0 0 • 

0         0          0          0       Cs5 0 
L    0      0       0       0       0 Cee — 

The individual components of the damaged ortl 

Cii   =   CUQI    =     Cii(l-Di)2     , 

Cl2     =    Ci2n?Q2     =      Ci2(l-Di)(l-D2)     =     C21 , 

Cl3     =    Ci3Q?£i3     =      Ci3(l-Di)(l-D3)     =     C31, 

C22   =   C22Q2   =     £22(1-02)2, 

C23   - C23C1IQI     =       C23(l-D2)(l-D 3)    = C32 

(20a) 

(20b) 

(20c) 

(20d) 

(20e) 

11 



C33     =     €33^3       =       C33(l-D3)2, {20f) 
1   ~         2    2                 1   ~ 

C44   =   2^4402^^3   =    2^'''>(1-'^2)(1-D3) , (20g) 

Css   =   2 CssOsO?   =    2 £55(1-03) (1-Di) , (20h) 

C66     =     2C66n?il2     =       2^66(1-Dl)(l-D2) . (201) 

Similarly, the individual components of the damaged orthotropic material compliance tensor 
are expressed in the principal material coordinate system as 

c;i = 

c;^ = 
i2?Q2 

c;^ = 
£2?Q3 

C22 = 
C22 

"    at 

C23 = 
C23 

02^3 

C3^     = 

c;i = 2C44 
2    2 

Q2Q3 

Cs^  = 
.    2C55 

Cee   = 
2C66 

n?Q2 

cZ 
(l-Di) 2 ' 

t^l2 ^-1 
(1-Di)(l-D2) 

Cl3 ^-1 

(1-D,)(1-D3) 

C22 

C23 ^-1 

(1-D2)2   ' 

ir5)2)(l-D3) 

C33 
(1-D3)2 

2C44 

{1-D2)(1-D3) 

2C55 

(21a) 

=   Cai , . (21b) 

=   C3I , (21c) 

(2 Id) 

=   Csi , (21e) 

(2 If) 

(21g) 

(21h) (1-D3)(l-Di)   ' 

2C66  
(1-Di)(l-D2)   • <21i) 

1.7 Damaged surface 

For the independent kinematic state variables (e, D, 8) that are used to express the Helmholtz 
free energy, the associated energy conjugate variables (i.e. thermodynamic forces) are obtained 
by partial differentiation of *P with respect to the kinematic variables. 

Partial differentiation of p*P with respect to the strain tensor e yields the stress tensor a that 
acts on the damaged configuration. 

a = pai'/ae =   C : e   =    (M:C:M) : (22) 
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Partial differentiation of 4* with respect to the damage tensor D 3delds the energy release rate 
tensor Y, so named because it represents the energy released per unit increase of the damage 
tensor. 

_       3y(e,D,8)    _       3cp(e,D)    _       ^2^^ 

In Eq. (24), C = C(D), while e is independent of D. 

^(2^^^^^) 1       ac i      d(M:hM) 
Y gjj 2^-3D-^ 2^-        aD        •^' (^"^^^ 

Y =   - 2 « : ao-^-'** • ^    ~ 2 ^ ■ ^'^'aD■ ^   ~   - e : -^ :C: M : e . (24b) 

When Eq. (24) is evaluated in the principal material coordinate system, the energy release rate 
tensor Y is diagonal and its eigenvalues Yi (i=l,2,3) are expressed in terms of the actual strains, 
the undeimaged stiffness and the eignevalues of the integrity tensor as 

Yi   =   CiiQie?   +   C12Q2 £182   +   Claris eiEs    +   Css^is es      +   Cee^l ee , (25a) 

Y2   =   C21Q? 6162   +   £22^22 62   +   623^3 6263    +   C44ii3 es      +   Ceeiii ee , (25b) 

Y3   =   CiiQ? £163   +   C32Q2 £263   +   C23Q3 £3    +   £4402 £5      +   Cssfii Es . {25c) 

Substituting Eqs. (20a-i) into Eqs. (25a-c), the eigenvalues of the energy release rate tensor Yi 
(i= 1,2,3) can be expressed in terms of the actual damaged stiffness tensor, the actual strain 
tensor and the integrity tensor: 

Yi   =    — (Cue?   +   C12 £162   +   Ci3 £163    +   C55 £5     +   Cee £6), (26a) 
Qi 

1   / 2 2 2 \ 
Y2   =   — \C2iei£2   +   C22 £2   +   C23 £2£3    +   C44es      +   CeeEe), (26b) 

Q2 

Y3    =    — {Cii£i£3    +    C32e2e3    +    €2363      +    C44£5       +    CssEs). {26c) 
Q3 

Note that the potential cp in Eq. (23) can alternately be expressed using 8(D) and C, instead of 
e and C, which would yield 

Y = -pa4'/aD    = -pacp/aD =   --^^ ^ -, (27a) 

<i 3|-e:C:e, ^ ^^ 1 ~    ~    ae ae    ~    ~ 
'-- aD -   -2dD--^--^   -2^--^--dB   =   -dD--^--^- (27b) 

When evaluated in the principal material coordinate system,  Eq.   (27b) yields the same 
expressions for the eigenvalues of Y as obtained earlier in Eqs. (25) and (26). 

We can express the energy release rate tensor Y in terms of stress components by utilizing the 
dual of the potential (p as follows 

13 



<T : e   = cp(e,D) + (p*(a,D)       -^      (p(e,D)   =   a : e   - (p*(a,D) . 

Thus the energy release rate tensor can be expressed in either of the following ways. 

Y   =   - D^   =   D^±- 'aD aD 

where   (p*(a, D)   =   2 ^ ' ^  • *^     ^^'^    ^   "^ ^ '(^)- 

Substituting Eq. (30) into Eq. (29) yields 

Y    =    —^ — 

-1 

^   -   -i<':^:C-':M-':<,-i<,:M-':6 

1       3C '                 1       a( M Sc~':M ') :a   =     2a:-» ^5  

1 dm'' 

2*^^ aD : a. 

aM~'   ~-i    -1 
a:-|^:C  :M    : o 

(28) 

(29) 

(30) 

(31a) 

(31b) 

When Eq. (31b) is evaluated in the principal material coordinate system, the eigenvalues of the 
energy release rate tensor Y, (i= 1,2,3) can be expressed in terms of the undamaged compliance 
tensor, the actual stress tensor, and the integrity tensor as follows. 

Yi   = ~yoi   +       jai02   +       2 
^■2 ^3 

i~l 

Q2 

r;x-i 

Cl3 ^      -.„    - 
2 <7i03      +    ~^ Os       + 

C55 _2 

O3 

v-^ee   2 
2 ^6 

i22    y 

^   C21 . , C22   2          C23 ,    C44   2 , Cge   2 
4         2   ^1^2 + 2 <^2     +           2 ^2<T3 +          5" O4 +  ^ 06    , 

Q2U1 i22 £23 Q3                 Q?    j 

— l^^«. j. ^32 ^„        .      C33     2 C44     2 ^ C55    2 
4         2   ^l^'S + 2 ^203     +           2 <^3 +          5" CT4 +  o O5    . 

ntycii fi2 Q3 O2                 £2?    J 

2 (C3I 

(32a) 

(32b) 

(32c) 

Substituting Eqs. (21) into Eqs. (31), the eigenvalues of the energy release rate tensor can be 
expressed in terms of the actual damaged compliance tensor, the actual stress tensor and the 
integrity tensor. 

Yi   =   ~ (Cii a?   +   C12 ai02   +   C13 O1O3    +   C55 05     +   Cee Oe), 

2  {„-i -1   2 -1 
<T2CTi     +     C22 O2     +     C23 • k '""^'^ Y2 

Y3     =    -T (C31 

^-1     2 _-l     2 \ 
1CT2O3     +   C44O4    +   CeeOej, 

— (C3i Osai    +   €320302   +   C33 03     +   C44O4    +   CssOs). 
£23 

(33a) 

(33b) 

(33c) 

Equation. (32) and (33) can also be obtained by expressing the dual potential cp* in terms of the 

effective stress a and the undamaged compliance C  ,    i.e., (p*(CT, D)   =   -^atcSa where 

a = a(D) and C   is independent of D. 
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The damage surface, which is assumed to separate non-damaging behavior from damage- 
inducing behavior, is defined as a complete quadratic function of the energy release rate 
tensor. 

g(Y,Y)   =   ^[Y^JiY   +   VlH:Y|     - (#) + yo). (34) 

In Eqs. (33), the 4* order tensor J and the 2'"' order tensor H represent experimentally derived 
material constants that define the damage tolerance of the material. When expressed in the 
principal material coordinate system, J and H are each assumed to have only three non-zero 
values, denoted Jii= Jim, J22 s J2222, J33 = J3333, Hi^Hn, H2 = H22, H3 = H33 . These six 
material constants define the shape of the damage surface. The material parameter yo is also 
determined from experimental data and defines the initial size of the damage surface, thus 
functioning as an initial damage threshold. In Eq. (33), the linesir term H:Y is necessary to 
define a material that has different damage tolerance in tension and compression. When 
expressed in the principal material coordinate system, the damage surface simplifies to the 
following form. 

g(Y,y)   =   A/JUY? +J22Y^ +J33Y^   +   VI HiYi + H2Y2 + H3Y3 I     - ( y(8)  + yo ) (35) 

Depending upon whether the energy release rate eigenvalues Yi (i= 1,2,3) are expressed using 
Eqs. (25), (26), (32), or (33), the damage surface can be defined in terms of either of the 

following sets of variables: (C,£2,8,T^,  (C,Cl,e,il,   (C  ,£2,a,y), or (C  ,Q,a,y) . 

The damage surface defined by Eq. (35) has the shape of the Tsai-Wu failure surface when it is 
expressed in stress space. This can be seen by noting that the energy release rate eigenvalues 
[Eqs. (32) or (33)] are quadratic functions of the stress components, thus the damage surface 
[Eq. (35)] can be expressed as 

gfJT.-iO   =   PijOiOj +   aiai    - (y + yo) i,j = 1,2,...,6    , (36a) 

where the coefficients Py, and a, are functions of the damaged compliance tensor C~i(D), the 
integrity tensor £2(D), and the material damage characteristic tensors J and H. The Tsai-Wu 
failure criterion [13] predicts failure when 

FijOiOj +   FiOi    >    1 i,j = 1,2,...,6    , (36b) 

where the coefficients Fy and Fi are functions of the lamina strength in the vairious modes of 
deformation. 

If we choose to define the quantities y and yo such that the expression ( y + yo ) = 1 indicates 
complete failure of a lamina, then the damage surface g(Y,'^ increases failure in the same 
manner as the Tsai-Wu criterion [13]. 

The damage surface [Eq. (35)] defines the limits of non-damaging behavior at an arbitrary point 
in the lamina. If the current local values of Yi (i= 1,2,3) and y yield a point on the surface 
giy.,y), then further damage is assumed to occur. The damage-flow surface, denoted as ffV,'^, 
is defined similar to the damage surface g(Y,')^ but without the linear term H:Y. 

f(Y,y) = ^jY^JiY - (y(5) + yo )   = -N/^HY? + J22Y2 + J33Y3 - (y(5) + yo) (36c) 
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1.8 Damage evolution 

The dissipation potential n is assumed to be of the form 

jc(5) = -ci^S + C2exp(J))     , (37) 

where the dimensionless parameter 8>0 controls the evolution of the damage process. This is 
the simplest dissipation potential with the minimum number of adjustable coefficients that still 
captures the experimentally observed behavior of fiber-reinforced composite laminae. The 
evolution law is assumed to be isotropic for simplicity and due to the lack of experimental 
observations indicating anisotropic evolution of the damage surface (Barbero and DeVivo [11]). 

The energy conjugate variable to 6 is denoted as y and is obtained by partial differentiation of 
the free energy with respect to 5: 

Y   =   - §    =    -i   =   ^{l  ^ ^^£))- <38a) 
The evolution of the damage tensor D occurs in a direction that is normal to the damage-flow 
surface as defined by Eq. {36c): 

The evolution of the damage surface is given by 

•    ^   ^^2^   =   ^(_i)   =   _^i. (38c) 

In the interest of keeping the size of the report in reasonable limit, numerical results based on 
the damage models discussed herein are not reported. They will appear in the literature in the 
near future. 

2. Finite Element Formulation of the Layerwise Theory 
2.1 Introductory comments 

The layerwise theory proposed by Reddy [14-16] exploits the laminate architecture to separate 
the thickness variation from the surface variations and the thickness variation is represented 
independently using Lagrange polynomials. Reddy and Mitchell [17] presented a general 
formulation of the problem using both ESL and layerwise theories. Layerwise finite element 
models of Reddy's layerwise theory can be found in [14-16]. The work of Saravanos et al. [18] is 
perhaps the first one to use a layerwise finite element model for the analysis of piezoelectric 
plates. However, these authors only considered constant and linear approximation schemes 
across the thickness. 

In the present study, a general, displacement finite element formulation of the layerwise theory 
of Reddy [14-16] for laminated plate structures with piezoelectric materials (layers or patches) 
is developed. The formulation includes full electromechanical coupling and arbitrary 
approximation through the thickness as well as in the surface of the laminate. Several 
approximations are used for the primary variables of the problem in the thickness direction 
and different interpolation schemes are considered in the surface directions. 
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2.2 Theoretical formulation 

Consider a laminated plate with thickness H and arbitrary planar geometry, built with 
piezoelectric laminae or patches and laminae made with different linear elastic materials. A 
globail orthonormal rectangular reference frame (x,y,z) with the z axis aligned with the laminate 
thickness is assumed. The material within each layer of the laminate is assumed to be 
homogeneous, generally anisotropic and linear elastic, including linear piezoelectric effects. The 
constitutive law considered for a composite material is [19-21]: 

^U=^iZ'lm;    Di=xfhi (39) 

and for a piezoelectric material: 

^iJ = ^fl'lm -^f^l •'     ^i = ^f^l ^^^^Im (40) 

where Sy and &m are the components of the stress and strain tensors, Dt and Ek are the electric 
displacement and electric field vector components, Gjim are the components of the fourth-order 
tensor of elastic moduli, euj are the components of piezoelectric moduli and xn are the 
components of the dielectric moduli for the fc* lamina. The constitutive behaviour of 
piezoelectric materials makes a piezolaminated structure a coupled mechanical and electrical 
problem. 

The equilibrium of stresses at the interface between adjacent plies [k) and {k +1) requires the 
stress field to satisfy the conditions (see Figure 1) 

V (■♦1) 
Szz} 

The electric displacements at the interface must satisfy: 

/)(*-•). Df = w, (42) 

where We is the imposed surface charge. If no electric potential is prescribed along the 
interface, or equivalently no surface charge is imposed, the electric displacement Dz component 
will be continuous across the interface. Because, in general, the material properties differ for 
layers (k) and (k + l), conditions (41) and (42) can only be satisfied if: 

iW 
\eyz. E^^^^Ef^^^y (43) 

These conditions imply that the displacement and electric fields must be C^ continuous in the 
thickness direction, along the interfaces joining dissimilar materials. Hence, the primary 
variables, namely, the displacement field components (u, v, w) and electric potential (p, are 
represented as products of functions of (x,y,t^ and C° continuous functions of the thickness 
coordinate z (the upper indices are not exponents): 
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Figure 1: Equilibrium of interlaminar stresses. 

u{x,y,z,t)=Yu\x,y,t)F\z); v{,x,y,z,t)=Y/  (^'^''>^   ^^^ 
7=1 7=1 

w(x,y,z,t)=^W^(x,y,t)Y^(z);   jix,y,z,0 = ^^^<^'^''^^^(2) 
7=1 7=1 

(44) 

Following the approach proposed by Reddy [14], the thickness direction C° continuous 
functions P{:^, i^(2^ and <y(z) are constructed using the Lagrainge poljoiomials and have the 
following characteristics: 

(a)      F^{zj) = dij;       Yh^j) = diJ.      Qh^j) = dij-      where    ^77 = 
(1, 7 = y 

\o,i^j 
(45) 

(b)       local support, the functions are nonzero only in the layers that share the Ah interface 
(see Figure 2). 

With this approach several finite element models can be constructed in an efficient and 
stredghtforward manner. 

The unknowns for the this layerwise theory are the surface functions lP(x,y,f), W(x,y,tj, W(x,y,tj 
and j\x,y,tj. The number of functions NY , NY and NQ , considered by the theory, depend on the 
number of layers and on the degree of the assumed approximation along the thickness of each 
layer for each one of the primary variables. Underlying this assumption for the primary 
variables is the hypothesis that the behaviour of these fields along the surface directions (x,y), 
is different from the behavior along the thickness direction (2^. This is sin assumption common 
to all the plate and shell theories, that allows reducing a three-dimensional problem to a two- 
dimensional one. 
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Figure 2. (a) Layer-wise displacement field, (b) Laywerwise representation of a laminate. 

The layerwise finite element models Eire developed using a variational formulation. For 
details on the theory and variational formulation of the layerwise theory, the reader may 
consult References 14 through 16. To obtain the finite element model, the primary variables 
are approximated inside each elem^ent as: 

N, ^N' 
u(x,y,z,t) = '^ 

7=1 

J^UJ.(t)Jj.ix,y) 
K=l 

N. 
F^(z); v(x,y,z,t) = Y^ 

1=1 [K=\ 
F^(z) 

w{x,y,z,t) = Yj   Yj^l:(t)c^^ix,y) Y^{z);   Kx,y,z,t) = Y, 
I=\yK=\ ) I=\ 

'K 

K=\ 
ah^) 

(46) 

The numbers Ni/, N]/, Nw' and A^ of interpolation functions aK'(x,y,tj, bi^[^x,y,tj, ci<f(x,y,(j and 
fid[x,y,^, depend of the interpolation scheme associated with the Ah layer thickness function 
inside the element.This set of equations can be cast in a matrix form: 

[Muu]      [0] [0] [0] 

[0] [il/vv]       [0] [0] 
[0] [0] [M^] [0] 

[0] [0] [0] [0] 

{U} 

{V} 

m 

[^uu] [Kuv] l^tfw] [f^uj] 
[Kyu] [Kyy] [Ky^] [Kyj] 

[^wu^ [-^wv] [■'^ww] [^wj] 
[Kju] [Kjy] [Kjj] [Kjj]^ 

\{U}] \{Fu}] 
{V} {Fv} 
{W} {Fw} 

W}\ .m 
■    (47) 

After assembling the contributions from all the elements, the global system of equations 
obtained can be written as: 

[M]{A} + [K]{A} = {F}, (48) 

where [iW| is the mass matrix, [K\ the stiffness matrix, {F) the load vector, and {D}is the vector of 
nodal values of the generalized displacements. 

Numerical results of the formulation presented above can be found in [23]. 
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3. Finite Element Analysis of Plates with Embedded ActuatorsUsing FSDT 

3.1 Introduction 

The displacement fields of all equivalent single-layer plate theories are expanded in terms of the 
thickness coordinate up to a desired degree. However, theories higher than the third are not 
attempted due to very little improvement in accuracy for the amount of algebraic complexity 
and computational effort involved. Here we discuss the nonlinear finite element formulation of 
the first-order shear deformation plate theory (FSDT), which will be used in Phase II effort in 
conjunction with the layerwise theory of Reddy [14,15] to ceiny out the global-local analysis of 
composite laminates. 
3.2 liquations of motion 

The displacement field for the first-order shear deformation theory can be expressed in the form 
(see Reddy [15]) 

u(x,y,z,t) = Uoix,y,t) + z(p^ix,y,t) 

v(x,y,z,t) = Voix,y,t) + z^y(x,y,t) 

wix,y,z,t) = WQ(x,y,t) 

(49) 

where (MO.^O^O) ^^^ ('Px>^y) denote the displacements and rotations of transverse normals on 

the plane z = 0, respectively (see Figure 3). 

Figure 3. The kinematics of deformation of a typical edge in the first-order shear 
deformation plate theory (FSDT). 

The equations of motion of the first-order shear deformation theory are derived using the 
dynamic version of the principle of virtual displacements (see Reddy [15]). The equations of 
motion are 
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dx 

xy 

dy =io 
dNxy    BNyy a^vQ 

ax 

—i + —^+N(HO,VO,WO) + ? = /0 
ax        ay 

dy 

d   WQ 

dt' 

(50a) 

dx 

where 

dy -Qx=l2 
^^^x 

dt' 

dMxy dMyy d     ^y 

dx dy dt 2   ' 

N(MO.VO,WO) = — 
ax 

'N^^^^N.  ^0 'XX dx        ^   dy )   dy ^ 

denotes the von Karman nonlinear contribution. 

aH;o_ dwo 

^^ dx ^^yy dy 
(50b) 

^' = Ef     P^*^(^)'^   0 = 0,1,2 6), 
k=l 

(51) 

are  the  mass  inertias,   and  (N^,Nyy,Njfy)   denote  the  total  in-plane  force  resiiltants  and 

{M^,Myy,M^) the moment resultants: 

Nyy 
\Nxy 

-\l 
<^xx 
Oyy 

\Pxyl 
dz, M 

M- 
yy 
xy 

-w Jyy 

'xy 

•z dz, (52) 

The force and moment resultants are related to the strains by 

wl_ [-4]   [B] 
{M}f-l[B]   [D]j 

where 

{eW}l_UA^} .(0), 

{e'-^''}!    \{M^}\ 
\8}=[AifH (53) 

(54) 

and the stress resultants associated with the smart materials are defined by 

M^' 
N 

631 
(t) f<l 

N 
£31 

(t) 

yy [=?; rj £32 ■    H,dz,- K =1 r 632 •    H^zdz. 

'   xy 636 [K\ 636 

(55) 
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Here ey are the transformed moduli of the actuating/sensing material, and H^ is the electric 

field. The coefficients of Ay , By and Dy are given in terms of the layer tramsformed stiffnesses Qy 

and layer coordinates z^^, and z,^ (see Figure 4). 

Figure 4. Schematic of a laminated plate. 

3.3 Velocity feedback, control 

Here we consider the velocity proportional closed-loop feedback control, the magnetic field 
intensity H is expressed in terms of coU current I{x,y,t) as 

H{x,y,t) = k^I{x,y,t). (56) 

The current I{x,y,t) is related to the transverse velocity of the plate wg by 

I{x,y,t) = c{t)^. (57) 

Here k^ denotes the coil constant, which can be expressed in terms of the coil width b^, coil 
radius r^ and number of turns «^ in the coil by 

'^^v^y^' (58) 

and c(0 is the control gain. In this study the control gain is assumed to be constant. Hence it 
is represented as c. 
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3.4 Weak formulation of the equations 

The weak forms of the equations of motion are 

■'n ''W 

'-L\^''^^^-^''^^^yQy^^> 

-L \^M^+^M^ + S</,^M, + S</>^ :cfy - j^S(fi,iM„n^ + M^^ny)ds, 

- L {^^^ ^^^-«-^^K ^--^]^^K ^-3. ^] ox  \^        ox ^y ) 

9 wo I f 
(59) 

where F„ is defined as 

K=i<2.nx+Qyny)+ N  —- + N  —- \n + n,. (60) 

3.5 finite element model 

The primary variables of the first-order theory are «„, u^, WQ, ^„, ^^, where {u„,u^) denotes in- 
plane normal and tangential displacements, and ((d„,^J are the rotations of a transverse line 
about the in-plane normal and tangent. Lagrange interpolation functions of (U„,U^,WQ,^„,^^) 

are used for the formxilation of the displacement finite element model. The finite element 
model has five degrees of freedom per node and four-node, eight-node, or nine-node 
rectangular elements may be used. 

The generalized displacements are approximated over a typical element Q^ by the expressions 

m m 

/=1 i=\ 
m _ 

WO (x, j, 0=X ^^ w *f ^^' y^' 
i=l 
m m 

ifx (^. >'. 0 = X ^f (') Vf (^. ;^),    <t>j; {X, y,t) = Y, Yf (t) v|/f (x, y), 

(61) 
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where ^/fand ^f denote the Lagrange interpolation functions. Here we chose the same 

approximation for the displacements {UQ,VQ,WQ) and rotations (^jt,^y), although one could use 
different approximations for these two sets of fields. 

The finite element model is of the compact form 

i ikf AP .Cf AP..Mf Ap.]-i.«=0 , i = l,2,...,n, (62) 

P=l7=l ^ 

where a = 1,2, 3, 4, 5 and «! = KJ = «3 = «4 = "5- The nodal values AJ are 

A', = uj, A) = vj. A) = wj, A] = Xj, A] = Yj (63) 

and the non-zero stiffness, mass, and damping coefficients are defined in Appendix 1. 

This completes the general non-linear finite element model development for the first-order 
shear deformation plate theory with actuator layers. The finite element model is called a 
displacement finite element model because it is based on equations of motion expressed in 
terms of the displacements, and the generalized displacements are the primary nodal degrees 
of fireedom. 

Transient Analysis 

Here we discuss the procedures to determine the transient response of composite laminates. 
The equations of motion (62) must be approximated further using the Newmark method. First, 
note that Eq. (62) has the general form 

[M^] {ii'}+[Cn m+[K'] {u'} = {F'} (g4j 

The global displacement vector {«} is subject to the initial conditions that the displacement 

and velocity are known at time t = 0:{M(0)} = {«}„ {M(0)} = {«}„. In Newmark's scheme, the 
function (of time) and its first derivative are approximated using Taylor's series and only terms 
up to the second derivative are included: 

{u}s+l={")s+^{^}s+-{^)^{u}s+y'   {u}s+l={»}s+^{«}s+a>    R^+a =0-a){«}5+a{«}5+l  (65) 

where At is the time increment, At = t^^^ -t^ and t^ is the current time and r^^., is the next 
time at which we seek the solution. We assume that the solution at time t^ is known. 
Substituting the third equation into the first two and solving for {«}, we obtain 

{"}.+! ={"}.+ «1 {"}. + «2 {«}.+!   .       {"}.+! = «3 ({«}.+! - {"}. ) - ^4 {«}. - ^5 {"}. (55) 

2 il-y) 
a^=(\-a)At, a^=0(ht, a^= a^=a^At, a^=^—i^, (67) 

r{Atf r 

and a £ind y are parameters that determine the stability and accuracy of the scheme Finally 
,we obtain the finite element equations of the form 
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[KuM}s.^={hs-,.^ (68) 

[Kl,, =[Kl,, +a,[MU, +a,[CU,   {F},,,,, = {F},„ +[M],,,{4, +[€^{3}, 

{4s =%K +«4{"l +^R . W. = "6 {"}. + «7 {«}. + «8 {"}, 
2a 
■)At 

a. =■ 
2« 

-1, flg = A/ 

(69) 

(70) 

3.6 Numerical results - linear 

Numerical studies are carried out to analyze the vibration suppression characteristics for the 
different lamination schemes and boundary conditions using the previously developed TSDT 
finite element models. The baseline of the simulations is the simply supported square laminate 
(a/b = l, a/h = lO) under sinusoidal distributions of velocity initial conditions over the domain, 

—-(x,;K,' = 0) = sin—sin—.  The selected time step in the present study is O.OOOSsec.     The 
dt a       b 

lamination scheme (0i,e2,03,64,/«)s means that the 10 layered symmetric laminate with the 
fiber orientation being (ei,e2,e3,e4,/«,w,e4,e3,e2,ei), where /n stands for the magnetostrictive 
layer £ind subscript s stands for S3aiimetric.   The material properties of Terfenol-D and the 
elastic composite materials are listed in Table 1. 

In finite element analysis, solution symmetries should be taken advantage of identifying the 
computational domain because they reduce computational efforts. For a laminated composite 
plate with all edges simply-supported or clamped, a quadrant of the plate may be used as the 
computational domains. Figure 5 shows the two types of simply supported boundary condition 
for third-order shear deformation theory. Quarter plate models with proper boundary 
conditions can be used in the antisymmetric laminates with simply supported boundary 
condition but not with the clamped cases. For symmetric laminates, the simply supported 
cross-ply laminates can be modeled as a quarter plate. 

Table 1. Material properties of magnetostrictive and elastic composite materials. 

Material 
El 

[GPa] 
E2 

[GPa] 
Gi3 

[GPa] 
G23 

[GPa] 
G12 

[GPa] ^12 

P 

[Kgm-'^] [10"^»z^~^l 
Terfenol-D 26.5 26.5 13.25 13.25 13.25 0 9250 1.67 

CFRP 138.6 8.27 4.96 4.12 4.96 0.2 
6 1824 - 

Gr-Ep(AS) 137.9 8.96 7.20 6.21 7.20 0.3 
0 1450 - 

Gl-Ep 53.78 17.93 8.96 3.45 8.96 0.2 
5 1900 - 

Br-Ep 206.9 20.69 6.9 4.14 6.9 0.3 
0 1950 - 
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TSDT &CLPT: 
MO="'0 = «'0,*=0 

TSDT & CLPT: 
U0=   U>o= Wo,y= 

FSDT: 

l>0=   Wo = ^y=0  \*-y-°'/2' 

CLPT: Uo=Wo = U)o,x=0 

FSDT: 

TSDT & CLPT: 
Uo=  "'0= W(,,y=0 

FSDT: Uo=Wo=^x = 0 

Figure 5. Simply supported boundary conditions, SS-land SS-2, for laminates using the third- 
order shear deformation theory. 

Simply supported composite Uim.inates 

To compare with the analytical results, the SS-1 boundairy conditions and quarter plate F.E. 
model have been used in the S5mimetric cross-ply laminates. The vibration suppression effects 
from the Einal5rtical and numerical methods are within the reasonable range of distribution as 
shown in Figure 6. Figure 7 shows the central displacements using the different plate theories 
(CLPT, FSDT, and TSDT) for two different lamination schemes. It is observed that CLPT gives 
the higher vibration suppression capacity in both cases. This is expected because the CLPT 
renders the plate stiffer compared to the other theories. After stud5dng the influence of lamina 
material properties on the amplitude of vibration and vibration suppression times, it is 
observed that materials having the almost same ^'j/^j ratio have similar vibration 
suppression characteristics. Figure 8 shows the vibration suppression characteristics for the 
different laminate materials. 

0.010 

0.005 

Q -0.005 

-0.010 

0.00 

Analytic solution 
- FEA solution (dt=0.0001) 

-FEA solution (dt=0.0005) 
• Uncontrolled motion 

0.05 0.10 

Time (sec) 

0.15 0.20 

Figure 6. Comparison of analytical and numerical central displacements with the case of 
uncontrolled behaviour for the S3anmetric cross-ply CFRP laminates (m,90,0,90,0)s . 
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Figure 7(a) The comparison of the central displacements by the different plate theories for 
CFEP simply supported laminates; symmetric cross-ply CFRP laminate (m,90,0,90,0)s. 
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Time (sec) 
0.03 

Figure 7(b). The comparison of the central displacements by the different plate theories for 
CFRP simply supported laminates; symmetric cross-ply CFRP laminate (0,90,0,90,m)s . 
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0.08 0.10 

Figure   8.   The   effect  of the   lamina  material  properties   on  the  vibration   suppression 
characteristics for the symmetric cross-ply laminates (m,90,0,90,0)s. 

27 



Clamped composite laminates 

The same laminated plates but with fully clamped boundary conditions are analyzed using a 
8X8 mesh in a full plate. The effect of the boundary conditions on the vibration characteristic 
is shown in the Figure 9. The maximum displacements of the simply supported plate are 
greater than those of the clamped case, which is expected. For the vibration suppression, the 
cases of simply supported laminates that has the bigger displacements take less suppression 
time. 

0.0010 

-^  0.0005 

s 
to 

i 0.0000 

Q -0.0005 

-0.0010 
0.000 

 C(m,90,0,90,0)s     - - - C(90,m,90,0,90)s 
— C(0,90,m,90,0)s     -• C(90,0,90,m,90)s 
 S(m,90,0,90,0)s      S(90,m,90,0,90)s 

^*J^ - - S(0,90,m,90,0)s      - - ■ S(90,0,90,m,90)s 
_ ■.'-'.''^i--fc                                          ^ ■ I;, 

\\# VxVoS^^/^^?^^^ \V     ^^v /:9^h^<y      ^^^^<Q^^^'^-^~fi^^i-^- 
"■■^ 

0.002 0.004 0.006 

Time (sec) 

0.008 0.010 

Figure 9. The effect of boundairy conditions on the central displacements for the different 
laminates; compEirison of simply supported and clamped laminates. 

Effects of the mechanical loading 

Numerical studies are also carried out to analyze the vibration suppression characteristics for 
the composite laminates under the uniformly distributed load ^Q instead of velocity initial 

conditions. Figure 10 shows the vibration suppressions for the selected simply supported and 
clamped laminated plates under continuously applied uniformly distributed loading while 
Figure 11 shows the case under suddenly applied and removed distributed loading. The effect 
of sinusoidal loading on the central displacement has been studied. The results of the 
symmetric cross-ply laminate with simply supported laminates subjected to the sinusoidal and 
uniformly distributed loadings are shown in Figure   12.     Here the sinusoidal loading is 

sin—sin—    £ind   the   transverse   displacements   in   Figures    10-12   are   plotted   in   the 
a       b 

nondimensionalized forms as WQ (100) ^2^ 

*% 
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Figure 10. Nondimensionalized central displacement for simply supported and clamped 
laminated plates under uniformly distributed loading. 
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Figure 11. Nondimensionalized central displacement for simply supported and clamped 
laminated plates under suddenly applied uniformly distributed loading. 
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— • Uniform loading (m,90,0,90,0)s 
 Uniform loading (90,m,90,0,90)s 
 Sinusoidal loading (m,90,0,90,0)s 
 Sinusoidal loading (90,m,90,0,90)s 

0.04 0.08 0.12 
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Figure 12. Comparison of central displacements for simply supported laminated plates 
under Sinusoidal and uniformly distributed loadings. 
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3.7 tfumerical results - nonlinear 
Laminated composite square pla.te(a/b = l) with both the upper and lower surfaces 

embedded magnetostrictive materials, as shown in Figure 2, is considered. The plate is 
made of composite fiber reinforced polymer (CFRP) composites and the magnetostrictive 
material, Terfenol-D. The adhesive layers are neglected in the analysis. The laminated 
composite plates are composed of total 10 layers and all the layers are assumed to be of the 
same thickness. Two side-to-thickness ratios a//i = 10 and 100 are considered to represent 
the thick and thin composite plates. 

The geometric and material parameters used are 

• Geometry        ■.a = b = lOOcm,   h = 10 or Icm 

.     CFRP :.£, =138.6 GPa,j5:2= 8.27 GPa,G,2 = G,3= 4.96GPa,G 23= 4.12GPa 

v,2= 0.26, p = 1824isTg/w^ 

.     Terfenol-D       : E" = 26.5 GPa, d"" = 1.67x10-^wJ"', v = 0, /? = 9250Kgjm^ 

The numerical analysis variables in this study and the representing notations that are 
used in the result figures are the following: 

• 3 Plate theories : CLPT^Q, FSDTfjy, TSDT^T; 

• 4 Lamination schemes : symmetric cross-ply (m, 90,0,90,0)s ^SC^,s3mimetric 
angle-ply 

(m, 45,-45,45, - 45)s fSAj, symmetric general angle-ply 
(m,45,—45,0,90)s fSG^, and asymmetric general angle-ply 
(m,45,- 45,15,-15,0,90,30, - 30,m) (AS) laminated plates. 

• 4 Loading conditions : Uniformly distributed \oa.d(UMD), uniformly distributed impact 
\oaA(IMD), uniformly distributed sinusoidal \oaA(SVMD), uniformly distributed sinusoidal 
impact load^SIMDI 
• The other indices: Linear/L^ and Nonlinear^WL^ analyses, Thick(a//j = 10) plateflO^ and 

thin(a//z = 100) plate^IOO;, and Load intensity q^ = \0^(EO), q„ = 5.0x10''(SET), and so on. 

The shear correction factor used in FSDT is 5/6; m represents magnetostrictive layer and 
subscript s stands for symmetric, and the sinusoidal load means 

q{x, y) = q^ sm(m/a) sin(7ty/b). 

The displacements are measured at the center of the plates and nondimensionalized as 
w^ =lOOy.Wf^E^h^Ia^q^. A tolerance of e = \0~^ is used for convergence in the Newton- 
Raphson iteration scheme to check for convergence of the nodal displacements. 

First, the effects of the different plate theories on the transient responses are considered. 
Linear and nonlinear responses obtained by the three different theories are presented in 
Figure 13. It is observed that the effect of nonlinearity on the transient responses is to 
decrease the amplitude and increase the frequency. Note that due to the large geometric 
nonlinearity effects the nonlinear transient behaviors between TSDT and other two theories 
are apparent. It is also observed that the CLPT theory gives higher frequencies and lower 
amplitudes. It is because CLPT theory renders the plate stiffer compared to the other two 
theories. 
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Next, the effect of applied loading conditions on the vibration suppression can be seen from 
the Figure 14. The four different loading conditions are considered to study their effect on 
the response. They are uniformly distributed load, uniformly distributed sinusoidal load, 
uniformly distributed impact load and uniformly distributed sinusoidal impact load. Since 
the first two loadings are continuously applied over the computational domain during the 
analysis the converged transient solution is different for each case. The plots show the 
differences between the loading conditions on transient response effects for the different 
lamination schemes. 
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0.000 0.002 0.004 0.006 0.008 

Time, ((sec) 

"D-LiaewCLPT     -•~Nonline«-CLPT-*-.LiM«r FSDT 

—•—Nonlinear TSDT 

,■'*•■ 

/'»;"• 
,4:^.\\ 

.-••'■."''•••. 

g     V \ *■•;            M^ 

/   W   M \\\'v//s 
1     \\^'' //■■•• \ \ "y(y,.v 
/     \^M X^^o**"'*' 

J               Wc*"^'-*' 

0.00 0.02 0.04 0.06 
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Figure 13. Effects of plate theories on the nonlinear transient responses for the symmetric 
cross-ply thick {a/h =10) laminates with SSSS boundary conditions and under uniformly 

distributed load (^o =5x10''). 
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Figure 14(a,b). Effects of loading conditions (Impact), Uniformly distributed loading on the 
transient responses with SSSS boundary conditions (cross-ply laminates). 
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Figure 14(c,d). Effects of loading conditions (Impact), Uniformly distributed loading] on the 
transient responses with SSSS boundary conditions (angle-ply laminates). 

CONCLUSIONS 

The development of physically-based damage models and nonlinear-finite models based on 
the first-order shear deformation theory and the computer implementation of the nonlinear 
finite element model were the major accomplishments of the study. The integration df these 
elemients into the layerwise theory for global-local analysis and prediction of damage and 
failures in composite laminates can be carried out. The effects of the lamination scheme, 
types of load, and boundary conditions on the static and djmamic deflection was 
investigated. It is observed that the effect of nonlinearity on the transient responses is to 
decrease the amplitude and increase the frequency of nondimensionalized center 
displacement. It so also observed that the nonlinear transient behaviors between TSDT and 
other two theories (CLPT and FSDT) are apparent because of the geometric nonlinearity. 

RELATIONSHIP TO FUTURE RESEARCH AND DEVELOPMENT 

The integration of physically based damage models that account for micros-scale as weU as 
damage into robust computational models is perhaps the most significant contribution of 
this research. From the science and technology points of view, the results of this research 
will contribute to a fundamental understanding of the non-linear behavior and damage 
progression in thick composite and sandwich structures with embedded sensors and 
actuators. The restdts will also have a significant impact on the design of composite 
structures used in lightweight composite and sandwich structural components used in army 
and marine structures. 
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APPENDIX I: FINITE ELEMENT COEFFICIENTS 
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fr24_   ffo   ^Wi^rj ^Vi^V^J.j,   ^Wi^Vj^r,    ^VI^V'AA.A,, 

dxdy , 

(Kll)y =  J^ dwi 
dx 

dyfi_ 

dy 

dwn 
dx 

dwn 

dx dy )     dy [^        dx dy ) 

(A ^+A   ^'^A+^oi,  ^Vj-.   ^Wj] >dady 
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(^I),=ji^ dx 

dy 

dWn f._^..     M 
dx 

dwn 

■^ll- + 4 16 ■ dy dx ^ dy 

dy/j dWj 
^26-^7"+ ^66-^ 

dx ^26" dy 
- + A. 66- dx 

dwQ 

■  dy 

( dyfj dyff 
^22-5—+ ^26-3 ay dx 

\dady 

4^=1 
a' 

a;c 
^    d<pj      ^vA d(pi{^ d<pj      d(pj 

ay dx )     dy 
A^^-^+Aii-^\\dxdy, 

•^le- 
awQ dwo 3^7    . fawo] 9?'^ 
dx   dy   dx 

+ A '26 l^ dy j    ay ^ + ^6 

2V 
awp awp dq>j     dg>j (dwQ^ 

dx   dy   dy       dx y dy ^ 

dy l^ ax j ax        ax a^' ay       l^ ax J ay    dx 
dw(j dwfj 

+ { 
^   dwQ dwQ d<pj ^ ^^   (dwA ^fl_^_^     dwpdwodgfj ^ djpjfdwQ^ 

dx   dy   dx y dy J    dy dx   aji'   dy       dx [^ dy J 

dx   dy 

2^ 

)dxdy 

Kr=j[^^ssWj^^A,sWj]dxcfy 

a' 

d^i 
dx 

dy 

dx [        dx dy 
^0 

dy dx dy 

dwn 

dx dy {       dx dy ^ 
^16^—+ ^66   -V dx dy 

dxdy 

Kf=  \\mA,,y.y-$-{A^yrj 
J    dx dy 

dxdy, 

a' 
^^^^^^- - J \-^[d7[^'-di*^'^y'di[^''-v  '''^ 

ay dx )     dy y        dy dx dy dx 
dxdy 

ax    dx dy    dy I  dx    dy       dy    dx 
dxdy, 4'=J 

JI        dx    dy dx    dx dy    dy dy    dx ) 
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(«^s)„= ih J 12 [^       3x   3x    dx            dy   dx   dy          [^ dx   dx   By dy   dx   dx 

I f^ia ^"^P ^'^^ ^^^' I 5 „ ^'^P ^^'' ^^■^' I i?   r^o ^Wi ^Vj I 9wo ^j/; 
I         dx   dy   dx             dy   dy   dy           ydxdy   dy dv   dv 

'"'        J dx    dx dy dy {^ dx    dy       dy    dx 

dwQ dy/j ^<Pj    dwQ dy/j ^9j ^ 
dx   dy   dy       dy   dy    dx 

dxdy , 

a' ^ 

'^       JI        3x    3x dx    dy dy    dx 

i^^ = 
J dy    dy dx    3x I   dx    dv       oK'    d;c 

dy    dy 

g   dwp dy/j dq>j ^ ^   dwp di/fj ^<Pj ^ ^  (dwQ dy/j ^Vj ^ dvyp djy,- ^Vj 
dx   dy    dx dy   d;;   dy ydx   dy   dy      dy   dy   d;c j 

(     dw^dy/f d(pj dwo dy/i ^<Pj (dw^ dj/,- ^Vj ^ dwo dj/; ^Vj 
(^       dx   dx   dx       ^° dy   dx   dy       ^\ dx   dx   dy       dy   dx   dx 

^dxdy 

My = ^JoWiWjdKdy , Mf = £ I^yfiyfjckdy ,   Mf = ^Jo<Pi<Pjdxdy , 

Mf = ^^ h¥i¥jdxdy ,   Mf = J^^ hViVjdxdy , 

dxdy, 

-=i ■■k+l -Zk) 
i=l 

[en,d„,k,C(,t)]^<Pj \dxdy , dx 

'I'-1 J^{Zk^i-Zt) [e„d„k,Cit)]^<Pj[dxdy, 

"^f=if 1 t^i'"^^" -^*') f^-^-'^^wf^"!?}' n' 
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[e„d„k,C(t)]^g>Adxdy , 

[e^d„k,C{t)]^(Pj dxdy , 
iat=i J   Li=i J. 

^•' = -Jl (^««x + ^xy'^y Vids '  F?=<^ {Nxyfx + ^yy^y ^ids ,    Pf = ^^ q(Pidxdy + i^ {V„<Pi)ds , 

F,^ = ^ [M^TI^ + M^Hy )lfids ,   ^-^ = ^ Wxyrtx + Myyfy Vi* , 

dxdy, 

dxdy. 
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