

Theoretical Studies of High Energy Oxygen Atom Chemistry

M. Braunstein, J. Duff, R. Shroll, L. Bernstein, S. Adler-Golden, and R. Panfili Spectral Sciences, Inc. (www.spectral.com)

The 2004 Air Force Office of Scientific Research

Molecular Dynamics and Theoretical Chemistry Contractor's Meeting

24-26 May 2004 Newport, Newport, RI.

Approved for Public Release; Distribution Unlimited

maintaining the data needed, and of including suggestions for reducing	completing and reviewing the collect g this burden, to Washington Headq ould be aware that notwithstanding a	to average 1 hour per response, inclition of information. Send comments uarters Services, Directorate for Informy other provision of law, no person	regarding this burden estimat ormation Operations and Repo	e or any other aspect of rts, 1215 Jefferson Dav	this collection of information, is Highway, Suite 1204, Arlington		
1. REPORT DATE 13 APR 2004		2. REPORT TYPE		3. DATES COVE	RED		
4. TITLE AND SUBTITLE Theoretical Studie	s of High Energy O	5a. CONTRACT NUMBER F04611-03-C-0015					
		5b. GRANT NUMBER					
		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S) M. Braunstein; J. 1	Duff; R. Shroll; L. 1	5d. PROJECT NUMBER BMSB					
		5e. TASK NUMBER R2FT					
		5f. WORK UNIT NUMBER BMSBR2FT					
	IZATION NAME(S) AND A Incorporated,4 Four n,MA,01803-3304	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO	DRING AGENCY NAME(S)	10. SPONSOR/MONITORS ACRONYM(S)					
			11. SPONSOR/MONITORS REPORT NUMBER(S)				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited							
13. SUPPLEMENTARY NO The original docur	otes nent contains color	images.					
	of the Following Ro O + HCl*, Cl+ OH*	eactions:"CO + H2;	úOH + H¨CO + I	H2O ;úO + H	2O*, OH** +		
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT	OF PAGES 45	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgements

- Missile Defense Agency Phase II SBIR Award
 - Contract Number F04611-03-C-0015
- Department of Defense
 - Contract Number F19628-00-C-0006
- Air Force Research Laboratory, Edwards AFB, California
 - M. Venner, Technical Monitor
- Collaborators:
 - G. C. Schatz, B. Maiti, Northwestern University
 - B. Ramu Ramachandran, Louisiana Technical University
 - J. Bowman, T.Xie, Emory University
 - T. Minton, Montana State University

Outline

- Ab-initio Modeling of the Following Reactions:
 - $-O + H_2 \rightarrow OH + H$
 - $O + H_2O \rightarrow O + H_2O^*$, $OH^{**} + OH^*$
 - $-O + HCI \rightarrow O + HCI^*$, $CI + OH^*$

Cross Sections vs. Energy H₂(v)

Comparisons with QM

Vibrational Distributions

Rotational Distributions

20

OH(j)

OH(j)

Angular Distributions

Surprisal Fits of Vibrational Distributions

Vibrational Surprisal Parameter vs. Energy

Overview of the O + H₂O System

- Principal channels
 - $O + H_2O \rightarrow O + H_2O^*$
 - O + H₂O \rightarrow OH** + OH*
- **Experimental Studies**
 - Shuttle Observations (~8 km/s)
 - Shock Tube (~4.3 km/s)
 - Physical Sciences Inc. (CVF) measurements (~8 km/s)
 - Rate constants up to ~2500 K
 - Recent measurements
 - $(H_2O)O^-$ + photon \rightarrow OH* + OH** (transition state information)
 - O + HOD($4v_{OH}$) \rightarrow OH* + OD*
- Theory
 - Old 'non-reactive' surface
 - Johnson (Quantum)
 - Redmon et al. (Classical)
 - Large disagreements
- Measurements are sparse and Theory not really helpful

Calculations and Measurements of the O + H2O Cross Sections

O + H₂O Reaction Approach

Short Term:

- Perform direct dynamics calculations with VENUS
 - Quick picture of reaction chemistry (but less accurate)
 - AM1, PM3 level of theory (approximate)

Long Term:

- Generate new O + H₂O surfaces and do reactive scattering calculations
 - Compute new high level ab-initio reactive surface
 - Fit surface
 - Run classical trajectory calculations with VENUS

*Karkach and Osherov, JCP, 110 11918 (1999)

Reactive Rate Constant:

HOD* + O Direct Dynamics Results:Comparisons to Experiment

 $O + HOD(4v_{OH}) \rightarrow OH^* + OD^*$ Pfeiffer *et al.* J. Chem. Phys. Vol. 113, 7982 (2000): Experiment

- 1) Excite OH bond in HOD with 4 quanta (about 20 kcal mol⁻¹ over barrier)
- 2) Let excited HOD react with very low energy (590 cm⁻¹) O atom
- 3) LIF detection of product OH and OD

V	OH(v)-DD	OH(v)-Exp.	OD(v)-DD	OD(v)-Exp.
0	0.02		0.97	0.93 ±0.03
1	0.04		0.02	0.07 ±0.03
2	0.32	1.0±0.04	0.00	
3	0.62		0.00	

- Theory yields somewhat hotter distributions than measurements
- Relaxation certainly a factor in experimental set up

Consistency of Direct Dynamics **Approaches**

Direct Dynamics Predictions for OH* Production

- Direct dynamics cross sections are comparable to experimental measurements at ~8 km/s
- Need further analyses, especially spectral comparisons with measurements

State Specific Reactive Cross Sections $O + H_2O \rightarrow OH(v,J) + OH(v',J')$ 10 km/s

Note that OH products are formed in 'hot' and 'cold' populations

OH(v,J)

- With classical approach, it is not straightforward to determine product vibrational mode
 - Assume most vibrational energy goes into H₂O(v₂)
 - Preliminary results are comparable to experiment

Status of Direct Dynamics Calculations

- Investigating possible H + OOH product channel (high energies)
- More calculations for better statistics
- Simulating spectra from final OH distributions
 - Two temperature fit
 - Compare to PSI CVF measurements (OH overtone)
 - Other spectral data
- Continue comparisons with HOD* + O measurements

O + H₂O Potential Energy Surface: **Electronic Structure Calculations**

- Basis: TZV + 2d,1f on O + 2p on H; 90 total basis functions
- 10e8o CASSCF + MP2 (1s,2s frozen, 2 lone pair, 2 bonding, 2 alpha, 2 anti-bonding)
- No symmetry; 3 state average
- Calculated $\Delta H = 15.6 \text{ kcal mol}^{-1}$, exp. = 14.7 kcal mol $^{-1}$

Internal Coordinates for Electronic **Structure Calculations**

- As reaction proceeds, x and y change
 - -For Reagents: x is small, y is large
 - -For Products: x is large, y is small
- Performed ~1.e5 fixed point calculations
- Surface fitting code nearly complete,
 - Unit testing in progress

Intend to Follow Lowest Three **Electronic States**

Surface Fitting Computation Procedure

- First, compute electronic energies for selected geometries
- Then, generate a potential-energy surface from data using a combination of pre-determined functional behavior and multidimensional spline interpolation
 - Multi-dimensional spline routines from Princeton Plasma Physics
 Lab
 - Water and OH potentials from Schwenke et al. [J. Chem. Phys., 1996]
 - Functional fits to least sensitive coordinates from Schatz et al. [J. Chem. Phys., 2000]
- Once complete, the potential corresponding to an arbitrary set of Cartesian coordinates can be computed within a classical dynamics simulation.

Spectator and Active Coordinates

The twelve Cartesian coordinates of our four-atom system can be uniquely described by a set of six "internal" coordinates. These six coordinates are separated into three "active" coordinates (x,y,z), which will be fit using multidimensional splines and three spectator "coordinates" (u, θ , τ), which will be fit using pre-determined functional forms.

$$V_Q = V_{active}(x, y, z) + V_{spectator}(u, \theta, \tau; x, y, z)$$

O-H radial distance (internal coordinate "u") [a.u.]

From Reactants to Products

The potential energy surface ("V") will transition smoothly from the initial reactants state ("R") to final products state ("P") using smoothing functions ("S"):

$$V = (1 - S_R - S_P) \cdot V_Q + S_R \cdot V_R + S_P \cdot V_P$$

Potential Symmetrization

The incoming oxygen atom can bind to either hydrogen atom in the water molecule. To model two possible scenarios using a single set of Cartesian coordinates, a 'symmeterization' procedure is added in which the position of the two hydrogen atoms are transposed. Transitioning between the two orientations is provided by a smoothing function (S).

$$V_{Final} = (1 - S_s) \cdot V((H_a - O_a - H_b) + O_b) + S_s \cdot V((H_b - O_a - H_a) - O_b)$$

Interim Fitting Results – Spline fit with

Overview of O + HCI System

- Many important studies, but very little information at high velocities
 - major channels O + HCl → O + HCl*, Cl + OH*
- Experimental Studies:
 - Numerous experimental studies of the rate constant up to ~2500 K
 - Final state resolved measurement of O + HCI*
- Theory
 - Large body of work over many years up to the present
 - Detailed, high level potential energy surfaces (PES)
 - Classical and Quantum studies (rate constant)
 - Very recent study (PES+dynamics):
 - » Ramachandran (Louisiana Tech), Peterson, Bowman
 - Note: H + OCI channel missing in all studies
- No clear picture of magnitude or relative importance of channels

O + HCI Reaction Approach

- Perform classical dynamics calculations
 - Use latest surfaces provided by Professor B. "Ramu"
 Ramachandran (Louisiana Tech)
 - Generate temperature dependent rate constants to compare with available experimental data
 - Generate velocity dependent, state-specific cross sections
 - Analyze final state distributions
- Collaboration with Ramachandran/Bowman groups
 - Quantum/classical dynamics study

Thermal Rate Constant for O+HCI Reaction

- Good agreement between present calculations (QCT) and experiment/QM results for T<2000K
 - -Possible quantum (tunneling) effects
 - < 1500 K
- Disagreement between theory and experiment for T>2000K is not currently 1.0 understood
 - O(¹D) contamination
 - OCI channel accessible

5

Velocity Dependence of O+HCI Reaction

Velocity Dependence of OH Vibrational Distributions

- Exponential falloff of vibrational distributions consistent with Polanyi studies of the effect of barrier location of vibrational energy in products
 - Late barriers (in product channel) result in mixed energy release into translation & rotation

Velocity Dependence of OH Vibrational/Rotational Distributions

Based on 1st moment of rotational distributions (assuming a Boltzmann distribution of OH(v'=1,j)), OH rotational temperatures approach 6000K

Energy Deposition in O+HCI Reaction

- Reactant translational energy is preferentially channeled into product translational energy
- Rotational excitation is substantial for U> 4 km/s

OH Differential Cross Section at 8 km/s

OH(v'=0,1;j') Rotational Distributions

(Averaged over Experimental E_{tr} Distribution)

5

O+HCL Energy Distribution

O+HCI Translational Energy Distribution

- Experimental velocity distribution of Hradil et al. is fit to sum of Gaussians
- Velocity distribution is first convolved with thermal motion of NO₂ precursor and then with thermal motion of HCl [van der Zande et al., 1991; Brouard et al., 1992]
- Figure shows resultant O+HCl relative energy distribution generated by trajectory code

HCI Vibrational Excitation

Rotational excitation is estimated to be 5000K-8000K in the 6-10 km/s velocity range