
AFRL-VS-HA-TR-2004-1029 

IMPROVED SURFACE WAVE DISPERSION MODELS AND 
AMPLITUDE MEASUREMENTS 

J. L. Stevens 
D. A. Adams 
M. G. Eneva 
G. R Baker 

Science Applications International Corporation 
10260 Campus Point Drive 
San Diego, CA 92121-1578 

24 October 2003 

Scientific Report No. 2 

20040518 090 

AIR FORCE RESEARCH LABORATORY 
Space Vehicles Directorate 
29 Randolph Rd 
AIR FORCE MATERIEL COMMAND 
Hanscom AFB, MA 01731-3010 



This technical report has been reviewed and is approved for publication. 

/SIGNED/ /SIGNED/ 

ROBERT RAISTRICK ROBERT BELAND 
Contract Manager Branch Chief 

This document has been reviewed by the ESC Public Affairs Office and has been 
approved for release to the National Technical Information Service (NTIS). 

Qualified requestors may obtain additional copies from the Defense Technical 
Information Center (DTIC). All others should apply to the NTIS. 

If your address has changed, if you with to be removed from the mailing list, or if the 
addressee is no longer employed by your organization, please notify AFRL/VSIM, 29 
Randolph Rd., Hanscom AFB, MA 01731-3010. This will assist us in maintaining a 
current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Fonn Approved 

OMB No. 0704-0188 
Public reporting buiden for this collection of information is estimated to average 1 hour per response, including the time lior reviawing instructions, searching existing data sources, galfienng and maintarnmg the 
data needed and completing and reviewing this collection of informalion. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducrng 
this burden i> Department of Defense, Washington Headquarters Services, Directorate for InfiMmation Operations and Reports (D704-01B8), 1215 Jefferson Davis Highwray, Suite 1204. Artington, VA 22202- 
4302  Respondents should be amre that notwithstanding any other provision of law, no person shall be sutiject to any penalty for failing to comply with a collection of infomiation if it does not display a cunenBy 
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD-MM-YYYY) 
24-10-2003 

2. REPORT TYPE 
SCIENTIFIC REPORT # 2 

4. TTTLE AND SUBTITLE 
Improved Surface Wave Dispersion Models and Amplitude 

Measurements 

6. AUTHOR(S) 
J.L. Stevens, D.A. Adams, M.G. Eneva, and G.E. Baker 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Science Applications  International  Corporation 
10260  Campus   Point  Drive 
San  Diego,   CA 92121-1578 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory 
29 Randolph Road 
Hanscom AFB MA 01731-3010 

12. DISTRlBimON / AVAILABILITY STATEMENT 

3. DATES COVERED (From - To) 
1 Oct  02   -   30  Sep 03 
5a. CONTRACT NUMBER 
DTRAOl-Ol-C-0082 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 
DTRA 

Se. TASK NUMBER 
OT 

5f. WORK UNIT NUMBER 
Al 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

SAIC-03/2051 

10. SPONSOR/MONITOR'S ACRONYM(S) 
AFRL/VSBYE 

11. SPONSOR/MONITOR'S REPORT 
NUMBERfSI 

AFRL-VS-HA-TR-2004-1029 

Approved for Public Rel^se; DLstribution Unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The report describes the status and results to reduce the magnitude threshold for which 
surface waves can be identified and measured reliably, and to improve the accuracy of surface 
wave measurements, using phase-matched filtering, development of global regionalized earth and 
dispersion models, and other techniques. We have focused on improvements to global earth 
models and dispersion maps, and improved techniques for measuring surface wave amplitudes. 
Completed work on implementation and testing of azimuth estimation techniques at three 
component stations based on polarization analysis. Global regionalized earth and dispersion 
models are being developed by inversion of the very large data set of phase and group velocity 
dispersion measurements. The complete data set now contains over one million dispersion data 
points. The dispersion measurements are inverted for earth structure,- the earth structure is 
then used to generate dispersion predictions. Improvement in the inversion procedure has been 
the introduction of the capability to vary damping and smoothing parameters for each model. 

15. SUBJECT TERMS 
Seismic velocity Seismic attenuation Seismic propagation 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
DNCIiAS 

b. ABSTRACT 
DNCLAS 

c THIS PAGE 
UNCLAS 

17. UMITATION 
OF ABSTRACT 

SAR 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Robert Raistrick 

19b. TELEPHONE NUMBER (include area 
code) 
781   377-3726 

Standard Fonn 298 (Rev. 8-98) 
Prescribed by ANSI Std. 239.18 



CONTENTS 
Section Page 

Abstract iv 
Figures v 
Tables vii 
Preface viii 

1. Executive Summary 1 

2. Global Earth Models and Surface Wave Dispersion Maps 3 

2.1 Description of 3D Earth Model 3 

2.2 Surface Wave Dispersion Data Set 4 

2.3 The Inversion Procedure forthe 3D Earth Model 4 

2.4 Regularization and Predictions 5 

2.5 Techniques for Evolving Earth Models 5 

2.6 Data Statistics for Best Current 3D Earth Model 8 

3     Optimization of Surface Wave Amplitude Measurements 9 

3.1 Surface Wave Measurements Using Events on and Near the Lop Nor Test Site 10 

3.2 Path Corrected Noise Estimates 15 

4.   Improved Azimuth Estimation 17 

4.1 Differences Between the Algorithms 17 

4.2 Performance of the Algorithms in 4 Frequency Bands 18 

4.3 The Effect of Signal Strength (event size) on Backazimuth Estimates 20 

4.4 Variable Group Velocity 22 

4.5 Predicting Accuracy of Estimates Using the Crosscorrelation Value 23 

4.6 Events for Which Surface Waves are not Detected 23 

4.7 Conclusions and Recommendations 25 

6.   Data DeUverable 26 

References 27 

iii 



ABSTRACT 

The report describes the status and results at the end of the second year of a project to reduce the 
magnitude threshold for which surface waves can be identified and measured reliably, and to 
improve the accuracy of surface wave measurement, using phase-matched filtering, development 
of global regionalized earth and dispersion models, and other techniques. In year two, we have 
focused on two topics: improvements to global earth models and dispersion maps, and improved 
techniques for measuring surface wave amplitudes. We also completed work on implementation 
and testing of azimuth estimation techniques at three component stations based on polarization 
analysis. Global regionalized earth and dispersion models are being developed by inversion of a 
very large data set of phase and group velocity dispersion measurements. The complete data set 
now contains over one million dispersion data points. The dispersion measurements are inverted 
for earth structure, and the earth structure is then used to generate dispersion predictions. A 
significant improvement in the inversion procedure over the past year has been the introduction 
of the capability to vary damping and smoothing parameters for each model. This allows us to 
improve the data fit for many models, while still retaining realistic earth models in all areas. In 
addition to improving earth and dispersion models, we have implemented and tested procedures 
for measuring surface wave amplitudes at short periods (5-15 seconds) and at regional distances. 
We find that the best procedure is to measure surface wave amplitudes at periods greater than 12 
seconds at all distance ranges for three reasons: 1) earthquake spectra tend to decrease with 
frequency, degrading discrimination; 2) unlike time domain measurements, spectral 
measurements can be made accurately at lower frequencies at close distances; and 3) S/N 
remains higher at periods greater than 12 seconds even for very close distances. 

IV 
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1.     EXECUTIVE SUMMARY 

Surface waves are of primary importance for nuclear monitoring because the Mi.mb discriminant 
and its regional variants are among the most reliable means of determining whether an event is 
an earthquake or an explosion. The primary goal of this project is to reduce the magnitude 
threshold for which surface waves can be identified and measured reliably and to improve the 
accuracy of surface wave measurement using phase-matched filtering and global regionalized 
earth and dispersion models. 

Global regionalized earth and dispersion models are being developed by inversion of a very large 
data set of phase and group velocity dispersion measurements. The complete data set now 
contains over one million dispersion data points. The dispersion measurements are inverted for 
earth structure, and the earth structure is then used to generate dispersion predictions. This is 
accomplished in the following way. The inversion is performed for approximately 600 distinct 
base structures, which were originally derived from the Crust 2.0 models over the AK135 mantle 
model. The Moho depth, bathymetry, and sediment depths vary on a one-degree grid. Moho 
depths are derived from Crust 2.0, sediment depths from the Laske and Masters sediment maps, 
and bathymetry from ETOP05. Moho depth, bathymetry, and sediment properties are fixed in 
the inversion, while crust and upper mantle velocities are allowed to vary in the base models. 
Phase and group velocity dispersion curves are calculated for each of 64,800 models on the one- 
degree grid. The phase velocity dispersion curves are then used to calculate phase-matched filters 
to improve detection. 

One of the difficulties of performing such a large, heterogeneous inversion is finding optimum 
values for smoothing and damping (regularizing) parameters. This is important because too 
much smoothing/damping will increase data misfit, and too little will produce unrealistic earth 
models. In this case, smoothing minimizes the gradient of each structure between specified 
discontinuities, while damping minimizes the difference between the model and the starting 
model. Discontinuities occur at the Moho and at the base of the surface sediments. In a few cases 
where there is sufficient high frequency information to resolve shallower structure, inversion is 
performed for deeper sediments, which introduces another discontinuity. A significant 
improvement in the inversion procedure over the past year has been the introduction of the 
capability to vary damping and smoothing parameters for each model. This allows us to improve 
the data fit for many models, while still retaining realistic earth models in all areas. We are 
performing 2D inversions (inversion of dispersion at discrete frequencies to form spatial 
dispersion maps) to identify regions where additional parameterization is needed in the 3D 
inversions. The additional parameterization takes the form of introduction of new base structures, 
merging of base structures, or adjustments to boundaries between base structures. 

In addition to improving earth and dispersion models, we have implemented and tested 
procedures for measuring surface wave amplitudes at short periods (5-15 seconds) and at 
regional distances. We are identifying optimum procedures for measuring path corrected spectral 
magnitudes and then comparing the results with other procedures, such as Marshall-Basham 
amplitude corrections, which were designed to correct time domain amplitudes for frequency and 
structure dependence. Path corrected spectral magnitudes should be independent of distance and 
only weakly dependent on frequency for shallow events. At higher frequencies and longer 
distances the amplitude correction depends on having accurate Q models. We find that the best 



procedure is to measure surface wave amplitudes at periods greater than 12 seconds at all 
distance ranges for three reasons: 1) earthquake spectra tend to decrease with frequency, 
degrading discrimination; 2) unlike time domain measurements, spectral measurements can be 
made accurately at lower frequencies at close distances; and 3) S/N remains higher at periods 
greater than 12 seconds even for very close distances. 

We evaluate the performance of a new algorithm for determining Rayleigh wave propagation 
direction using the Rayleigh wave polarization. The algorithm uses the correlation of the 
horizontal and Hilbert transformed vertical seismograms to estimate backazimuth, where the 
horizontal component is rotated through the full range of possible backazimuths. The vertical and 
radial seismograms' correlation coefficient predicts the accuracy of the backazimuth estimate. 
The effect on backazimuth residuals of group velocity window, passband, and different measures 
of peak correlation, is evaluated using a large data set. We find that the algorithm provides 
accurate estimates of Rayleigh wave polarization and is a significant improvement over current 
automatic processing procedures. The algorithm can be combined with a dispersion test to 
improve detection capability. 



2.     GLOBAL EARTH MODELS AND SURFACE WAVE DISPERSION MAPS  

To improve the detection and measurement of surface waves it is important to make good 
dispersion predictions. Dispersion is used in Wo ways: 1) to construct phase-matched filters to 
improve signal to noise ratio, and 2) to provide sufficient time resolution to test that the surface 
wave is correctly associated with a particular event. In our work, surface wave dispersion 
predictions are based on dispersion measurements for ray paths from all over the globe. We 
make these predictions via models of the earth. Alternate methods could be developed which 
would depend on interpolation schemes, such as kriging and which would not make use of earth 
models. An important advantage gained from using earth models is that we can include 
information from other studies leading to physically reasonable constraints on dispersion. For 
our earth models this information consists of the boundaries between geologic zones, bathymetry 
of oceans, thicknesses of sediments and ice, Moho depths, and prior estimates of seismic 
velocities derived from Crust 2.0 and AK 135 earth models. These constraints are especially 
important for filling in the gaps found in the path coverage of our data set and they enable 
prediction along paths unlike any of the paths in the data set. We perform non-linear least 
squares inversion of the dispersion data for two types of models. First are 3D earth models where 
the adjustable parameters are the shear wave velocities of layers. Second are 2D group velocity 
models determined by inverting dispersion measurements made in narrow frequency bands. The 
2D models are used as a guide in the parameterization of the 3D earth model. 

2.1    Description of 3D earth model 
The 3D earth model is described briefly here and in greater detail in Stevens et al. (2002). It 
consists of l°xl° blocks and is made up of layers of ice, water, sediments, crust and upper 
mantle. Currently this model depends on 8918 free parameters which are adjusted by least 
squares fitting to Rayleigh wave dispersion data. The free parameters are the S-wave velocities 
of layers of 572 different model types. Other constrained parameters in the model are P wave 
velocities, densities and Q. The model types are based on the Crust 2.0 2°x2° crustal types 
(Bassin et al., 2000 and Laske et al. 2001) and also on ocean ages (Stevens and Adams, 2000). 
The top few km of the model (consisting of water, ice and/or sediments) are fixed and match data 
from one degree bathymetry maps made by averaging Etopo5 five minute measurements of 
topography, and Laske and Masters (1997) 1 degree maps of sediments. There is an explicit 
discontinuity between the bottom of the sediments and the crust. There are three or more crustal 
layers. The Crust 2.0 models which were the starting point for these structures have three crustal 
layers, but we found it necessary to add more layers in regions of thick crust. There is another 
explicit discontinuity at the Crust/Mantle boundary. The Moho depth is derived from Crust 2.0 
and varies on a 2° grid. The mantle starting model is derived from AK135 (Kennett, et al, 1995). 
With these constraints, the inversion is performed for the shear velocity of the crust and upper 
mantle to a depth of 300 km. Below 300 km the earth structure is fixed, and the inversion model 
is required to be continuous with the mantle structure at the base of the inversion. In broad ocean 
areas, we replace the Crust 2.0 model with models distinct for each ocean and subdivided by 
ocean age. We also separate into distinct models Crust 2.0 models that are geographically 
separated. So, for example, if Crust 2.0 has the same model type in North America and in Asia, 
we use the same starting model for each, but treat them as separate models in the inversion. 



2.2   Surface wave dispersion data set 

During the second year of our project we added three new sets of dispersion data and improved 
one already existing set bringing the total number of Rayleigh wave dispersion measurements 
with frequencies greater than or equal to .01 Hz to more than 1,000,000. One new set comes 
from Los Alamos National Laboratory (Yang et al, 2002) consisting of more than 37,000 
dispersion measurements (2009 individual paths) from Central Asia ranging between 0.05 Hz 
and 0.23 Hz. For frequencies below 0.03 Hz these data are much slower than other data in the 
same region; consequently we have removed all the Los Alamos data below 0.04 Hz. Another set 
comes from Huang et al (2003) and consists of more than 285,000 data points (9730 paths) from 
China. These data include unrealistically fast paths crossing cells with water at frequencies 
higher than about 0.06 Hz. Consequently we have removed all the Huang data points with paths 
passing through cells with water above 0.04 Hz. We have added approximately 14,000 our own 
dispersion measurements for paths to IMS stations crossing Eurasia (Levshin et al, 2003). Pre- 
existing data coming from University of Colorado (Levshin et al, 2002) were improved by 
relocating events to the hypocenters in Engdahl et al (1998) where possible as described in 
Levshin et al. (2003). Other data already in the data set are described in Stevens et al (2001a,b 
and 2002). Figure 1 shows the frequency distribution of group velocity and phase measurements 
in our data set. In addition to the phase velocity measurements shown in the figure, the data set 
also includes a large number of long period phase velocities derived from the global phase 
velocity model of Ekstrom et al. (1996). 
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Figure 1.  Bar graph of the number of group velocity measurements (left) and phase velocity measurements (right) 
in each frequency band for all data currently used in the tomographic inversions. 

2.3   The inversion procedure for tiie 3D earth model 

The relationship between dispersion and the shear wave velocities of the layers in the earth 
model is non-linear, so the shear wave velocities are estimated by non-linear least squares. At 
each step a system of tomographic equations is formed, augmented by additional equations of 
constraint and then solved by the LSQR algorithm. The equations solved are 
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where x is the vector of slowness adjustments to the shear wave slownesses of layers in each of 
the 572 model types. 1 is the vector of slowness differences between predicted and observed 
dispersion measurements, e is the vector of residuals that remain after inversion (the inversion 
minimizes |e|). XQ is the vector of slownesses estimated in the last iteration. The elements of the 
matrix A consist of partial derivatives of dispersion predictions with respect to shear wave 
slownesses in each layer. H is a difference operator that applies to vertically neighboring layers 
and has the effect of constraining the vertical smoothness of velocity profile, s is the weighting 
of the smoothness constraint and can be a diagonal matrix (for variably weighted smoothing) or a 
scalar (constant smoothing). We have implemented variable smoothing so that a different 
smoothing parameter can be selected for each model type. Lateral smoothing, which is usually 
applied in tomography studies, is executed indirectly in our study through selection of the model 
types. I is the identity matrix and X weights the damping which constrains the norm of the 
difference between final slownesses and constraining model slownesses (in our work a variant of 
the Crust 2.0 values). X can be a scalar for constant damping, or a diagonal matrix for variable 
damping. As for smoothing, variable damping is implemented so that a different parameter can 
be selected for each model type. 

2.4 Regularization and predictions 

Choosing regularizing parameters is an essential part of finding a model which best predicts 
dispersion, since regularization acts both to control the influence of data noise on the estimation 
of model parameters and to constrain parts of the model that are poorly constrained by data. Too 
much regularization will make the model too smooth and too little regularization will allow noise 
to be projected into the model, making it unrealistic and rough. In this study the damping and 
smoothing constraints and their associated weighting parameters are used to regularize the 
solution. Techniques for optimization of regularization parameters are not yet mature, especially 
for large scale problems such as this. The methods most often described (e.g. Hansen, 1998) are 
the L-curve, generalized cross validation, and discrepancy principle. In the literature the first two 
methods are usually applied to smaller scale problems than ours and with only one regularizing 
parameter, whereas we have at least 2 and possibly many more. The last method mentioned 
requires a reliable independent estimate of data noise and works by selecting the regularization 
resulting in the residual based estimate of noise being the same as the independent estimate. We 
have experimented with several of these techniques for our inversion problem, but have not 
found any reliable enough to replace analyst review of the inversion results. 

2.5 Techniques for evolving earth models 

The selection of model types and regularizing parameters are interrelated. For example making a 
parameterization finer (i.e. adding new model types) without increasing data coverage increases 
the need for regularization. Our approach for finding a best predictive model has been to start 
with a small number of model types and increase this number gradually as new data become 
available or when we detect systematic data misfit. Once a new parameterization is determined, 
the regularizing parameters are adjusted. 

To determine whether there are enough model types, we carry out 2D inversions of group 
velocity residuals in at least 12 narrow frequency bands to determine group velocity adjustment 
maps at 1-degree resolution. Each 2D inversion of group velocity residuals is regularized with a 
damping parameter which constrains the norm of the group velocity adjustment, and a smoothing 



parameter which weights a first difference operator that constrains lateral smoothness of the 
estimated group velocity (i.e. v+5v). We vary these two parameters for each frequency band to 
find the smoothest looking map that still reduces data misfit reasonably. The resulting maps are 
examined to find areas of similar adjustment common to most frequency bands, which are then 
used to delineate new model types. 
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Figure 2. Shear velocity profiles for two model types: less sensitive to regularization on the left and more sensitive 
on the right. Ch is from the Yellow Sea and Max is from North East of Mexico. The different structures 
correspond to different combinations of the scalar regularization parameters s and X. 

After the model types are selected the damping and smoothing parameters (scalars, or diagonal 
matrices) X and s are adjusted to find a reasonable looking model that still fits the data 
adequately. Currently we are experimenting with spatially variable regularization using diagonal 
matrices rather than scalars. We find that the sensitivity of slowness adjustments to scalar 
regularization parameter settings is not uniform and depends on model type. In other words when 
comparing adjustments for different combinations of scalar pairs (s, A,), there is much less 
variation for some model types than others (see for example Figure 2). The strategy we are now 
developing is to relax regularization for those types that are relatively insensitive to 
regularization, and to increase it for those model types that are sensitive to it. 

A measure of sensitivity to regularization is the maximum of the absolute adjustments in S-wave 
slownesses (max_dev) for one or more regularizations. For example the map in Figure 3 shows 
how this deviation varies geographically when (s, X)= (50,50). The map shows that oceanic 
model types are under regularized compared to the others. Several regularizations with s and X 
diagonal matrices were formed where (s(i), X(i)) = a*K*max_dev(i), "i" indicates model type, 
s(i) and X(i) are diagonal matrices with dimension equal to the number of adjustable layers in the 
i-th model, and K is a constant. K was varied to find its best value by comparing solutions. The 
vector a is (1,1) or (2,1). After a good value of K is found a small number of model types are still 
too sensitive, and for them the regularization needed to be increased further. Figure 4 shows 
maximum absolute deviations for the latest non-uniform regularization. Here the absolute 
deviations are much more similar among model types than in the uniform regularization case. 
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Figure 3. Map of maximum absolute slowness deviations (units of 10"^) for each model type for a uniform 
regularization of (s, X)= (50,50). 
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Figure 4. Map of maximum absolute slowness deviations (units of 10"^) for each model type for most recent model 
type dependent (non-uniform) regularization . 



2.6   Data statistics for best current 3D earth model 

The means and standard deviations of normalized group velocity residuals, 1-Vo/vp, where Voand 
Vp are observed and model predicted group velocities, were calculated for narrow frequency 
bands and are shown in Figure 5. Solid is for our best 1-degree model, and dashed is for the best 
5-degree model (e.g. Stevens and Adams, 2000) based on Crust 5.1 (Mooney, et al., 1998). 
Figure 5 shows the value of the 1-degree model, especially for high frequencies. 
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Figure 5.  Standard deviations (o) and means (+) of normalized group velocity residuals are plotted against 
frequency for Idegree earth model (solid red) and 5-degree earth model (dashed blue). 



3.     OPTIMIZATION OF SURFACE WAVE AMPLITUDE MEASUREMENTS  

Surface wave measurements traditionally are accomplished by measuring a time domain 
amplitude at a period near 20 seconds and then calculating a surface wave magnitude Ms. This 
procedure is problematic at regional distances because the surface wave is not well dispersed and 
a distinct 20-second arrival may not be present. It is possible to measure time domain amplitudes 
at higher frequencies with corrections (e.g. Marshall and Basham, 1972), however measurements 
may be inaccurate due to differences in dispersion caused by differences in earth structure. 
Stevens and McLaughlin (2001) suggested as an alternative replacing time domain 
measurements with a path corrected spectral magnitude. The path corrected spectral magnitude, 
logMo, is calculated by dividing the observed surface wave spectrum by the Green's function for 
an explosion of unit moment and taking the logarithm of this ratio, averaged over any desired 
frequency band. The objectives of the present study include determining the optimum frequency 
band for measurement and the best procedure for averaging the spectra over this band. 

The advantages of using logMo instead of the traditional surface wave magnitude Ms are that 
logMo is insensitive to dispersion, independent of distance, works well at regional distances, and 
is inherently regionalizeable. Regionalized path corrected spectral magnitudes incorporate 
geographic variations in source excitation and attenuation. Furthermore, as discussed below, it 
can in principle be measured over different frequency bands to optimize the signal-to-noise ratio. 
Ms and logMo share some limitations: spectra from earthquakes vary due to source mechanism 
and depth, and errors can occur if the measurement is made in a spectral dip or at high 
frequencies for a deep event (Figure 6). Azimuthal variations in amplitude caused by focal 
mechanism also affect the amplitudes of both logMo and Ms. 
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Figure 6. Path corrected spectral magnitude for an explosion and for earthquakes calculated for several depths. The 
path corrected explosion spectrum is flat over the entire frequency band (for perfect data and path 
correction, while the path corrected earthquake spectrum is flattened, but has some variation due to 
source mechanism and source depth. 



The test cases discussed by Stevens and McLaughlin (2001) used a frequency band of 0.02-0.05 s 
(50-20 s) to estimate the spectral magnitudes. They estimated that on average, the time domain and 
spectral magnitudes are related as logMo=Ms+11.75. Most of the waveforms in that work were 
recorded at distances exceeding 8°. Due to the relatively flat spectra over the 0.02-0.05 Hz band for 
most data, this choice worked quite well. The authors noted, however, that higher frequencies 
might be required for shorter paths. An important observation was that the logMo residuals are 
independent of distance, despite the simple Q models used in the earth structures (Figure 7). 
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Figure?.  Path  corrected  spectral   magnitude  (Log  MO)  residuals  plotted  vs.   distance  (from  Stevens  and 
McLaughlin, 2001). Log MO is nearly independent of distance. 

In the present work we focus on the utility of higher frequencies in estimating spectral 
magnitudes of smaller events, recorded at smaller distances. The purpose is to optimize the 
spectral magnitude estimates, to test their distance and frequency independence, and to identify 
any measurement problems or pitfalls. For large amplitude signals we can expect the lower 
frequencies to be better in general, particularly at larger distances due to greater attenuation at 
higher frequencies. Our hypothesis at the initiation of this study was that using higher 
frequencies for measuring spectral magnitudes at shorter distances would optimize signal to 
noise ratio and therefore be better for measuring surface waves at regional distances, however as 
discussed below this is only true to a limited extent. 

3.1    Surface wave measurements using events on and near the Lop Nor test site 

To optimize the measurement procedures and examine the performance of the path corrected 
spectral magnitude at regional distances, we use 584 spectra from 76 earthquakes and 11 
explosions in the Lop Nor area (Figure 8). Additional spectra are available from these events, but 
only the above spectra were deemed to be of good quality. This means that they passed the 
dispersion test described by Stevens and McLaughlin (2001) and were checked for certain 
anomalies such as incorrect instrument calibrations. Approximately 11% of the spectra used for 
the logMo estimates originate from records at source-station distances of 5° or less, and another 
11% at distances of 30*^ or greater. Thus the bulk of the data comes from intermediate distances. 
Figure 9 shows examples of explosion and earthquake path corrected spectra from Lop Nor at 
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various distances. The tendency of the explosion spectra to be relatively flat over more extended 
frequency bands compared with earthquake spectra is evident. This is expected because 1) the 
spectra are corrected by an explosion Green's function that flattens earthquake spectra 
imperfectly, and 2) the earthquake spectra have frequency variations caused by source 
mechanism and depth. 
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Figure 8. Maps showing the Lop Nor area (rectangle), stations (triangles), and earthquake (circles) and explosion 
(crosses) epicenters. 

10 
17 

16 
10 

^ lO'" 

E 
o 

10 
14 

10 
13 

0.01 0.10     0.01 
Frequency (Hz) 

0.10 
Frequency (Hz) 

Figure 9. Examples of path corrected spectra used in this work: (a) Lop Nor explosions recorded at distances of 2°, 
T and 67° (left); (b) Lop Nor earthquakes recorded at distances of 0.4°, 22° and 65° (right). See examples 
of station logMo estimates in Table 1. S/N is good at all but the highest frequencies. Low frequency noise 
dominates over the surface wave signal below about 0.02 Hz. 
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We calculated individual spectral magnitudes (i.e., several station magnitudes per event) over all 
possible frequency bands between 0.02 Hz (50 s) and 0.15 Hz (~7s), with bandwidths of 0.03 
Hz, 0.04 Hz, etc., up to 0.13 Hz for the 0.02-0.15 Hz band. This procedure provided 153 bands to 
examine from each spectrum. In the search for the most robust spectral magnitude estimate, four 
different methods were used as follows. 

1. Calculating a "simple" mean of the logarithms of all path corrected amplitude 
measurements made in a given frequency band. This is comparable to Stevens and 
McLaughlin's (2001) estimates in the 0.02-0.05 Hz band. 

2. Iteratively calculating a "robust" mean, by rejecting outliers outside two standard 
deviations from the mean calculated at each step. The procedure ends when all 
measurements remain within two standard deviations or when half of the amplitude 
measurements in a frequency band are rejected, whichever occurs first. Thus the spectral 
magnitude estimates are much less affected adversely by the tendency of some spectra to 
sharply vary in amplitude over some frequencies, with most outliers marking 
anomalously low amplitudes (see Figure 9 above). Figure 10 compares the individual 
(station) logMo estimates from (1) and (2). Standard deviations from the robust-mean 
method are predictably lower than those in the simple-mean method, as the insets in 
Figure 10 show. 

3. Calculating logMo at the center frequency of a least-squares straight line fit to the 
spectrum over a given frequency band. 

4. Same as (3), but the straight line is "robust", minimizing the absolute deviations of the 
logarithms of the amplitudes from the line. 
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Figure 11.Histograms of standard deviations of the mean 
station logMo estimated in three frequency bands 
(shown on right), for small and larger distances 
(shown on top). 
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The above estimates were compared in order to select the most suitable frequency bands, 
possibly varying with distance. Ideally, the corrected spectra would be flat over an extended 
band of frequencies. Flatness is particularly expected for explosions, as supported (within limits) 
by the explosion examples in Figure 9 above. The magnitude spectra estimated over any 
reasonable band would be then consistent. In reality, truly flat spectra over extended frequency 
bands are rare, so we need to choose bands small enough not to include too many variable 
features of the spectra, yet large enough not to reflect only local, possibly spurious, 
characteristics. 

In view of the above, the two main desirable properties of a spectrum over a given frequency 
band are small standard deviations and flatness. For this reason, in our search for optimum 
frequency bands we used two criteria. First, small standard deviations from (1) above represent 
one measure of the suitability of a frequency band. Figure 11 indicates that for small distances, 
the 0.08-0.11 Hz frequency band may be preferable (the largest number of small standard 
deviations) to either 0.02-0.05 Hz, or 0.12-0.15 Hz. Larger distances do not present a clear 
picture, but it is still evident that relatively more small standard deviations are found in the 0.02- 
0.05 Hz frequency band, compared with the higher frequencies. We note that at this stage we do 
not use the standard deviations from (2), since they are designed to greatly diminish the presence 
of outliers and are thus not representative enough of the quality of the estimates in the different 
frequency bands. However, once a suitable frequency band is chosen, the robust mean is the 
most reliable estimate of logMo. Spectral flatness as measured with the slopes of the "robust" 
lines in (4) above provides a second measure of the quality of frequency band; the smaller the 
slope, the flatter the spectra. Table 1 shows examples of selected estimates, over one specific 
frequency band out of 153 (0.05-0.1 Hz), for the explosion and earthquake spectra shown in 
Figure 9. Smaller slopes (flatter spectra) are evident for explosions compared with earthquakes. 
On the other hand, increasing absolute values of slopes and standard deviations are seen for 
earthquakes with increasing distance. This is to be expected, as the relatively high-frequency 
band in the example is less suitable as distance increases. 

Table 1.    Station LogMO estimates in 0.05-0.10 Hz from the spectra in Figure 9. 

Event Type ID. station 
Distance, 
degrees 

Station logMo 
(simple) 

Station logMo 
(robust) 

Station 
slope/logMo nib 

Explosions 
21450528. WMQ 2.2 14.31+0.10 14.33+0.08 +1.02/14.31 4.5 
21450535.MAK 7.1 15.60+0.15 15.67+0.05 +0.41/15.64 5.8 
21450534.ESDC 66.8 14.95+0.22 15.02+0.09 +1.62/14.97 5.4 

Earthquakes 
21456615.WMQ 0.4 13.92+0.14 14.01+0.05 +3.64/13.93 3.2 
21456712.ARU 22.2 14.44+0.25 14.44+0.24 -8.70/14.48 3.8 
21457058.E.AR 65.3 15.55+0.27 15.45+0.10 -11.18/15.59 4.3 
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Figure 12. Comparison of station spectral magnitudes in different frequency bands: (a) adjacent bands, all distances; 
(b) ovedapping bands, ail distances; (c) ovedapping bands, distances <5°. 

Next, we examined the consistency of spectral magnitude estimates in different frequency bands. 
Figure 12 shows examples of such estimates in several frequency bands (marked along the plot 
axes). These results indicate that although measurements are generally consistent when measured 
in different frequency bands, some individual measurements do change significantly. Also, there 
is a tendency for measurements to be smaller at higher frequencies (points lie slightly to the right 
of the lines in Figure 12). These results indicate that spectral magnitudes can be measured in 
different frequency bands, but with some caution and attention to spectral shape variations. 

Finally, we examine which frequency bands perform best for discrimination between small 
earthquakes and explosions. That is, we want to find out if any set of variable frequencies would 
perform better in terms of discrimination than a single frequency band applied at all distances. 
Figure 13 shows logMo-.nib plots using a set of variable frequencies (0.02-0.05 Hz for distances 
exceeding 25°, 0.06-0.09 Hz for 10° to 250, and 0.08-0.11 Hz for distances below 10°) and the 
0.03-0.07 Hz frequency band for all distances. The plot on the left, where higher frequencies are 
used at small distances (and hence for the smallest earthquakes) apparently has a lower 
discriminating power for small events than when 0.03-0.07 Hz magnitudes are used. The reason 
is that the spectral magnitudes of smaller events (logMo 14 to 15; i.e., Ms 2.2 to 3.2), recorded 
predominantly at regional distances, are generally smaller than the estimates at lower 
frequencies. We examined the logMo:mb ratio for a number of frequency bands and established 
that the 0.03-0.07 Hz interval performs best in discriminating between earthquakes and 
explosions for the Lop Nor data set. The performance of the time domain Ms-.nib discriminant for 
these events (not shown), is similar to that of the variable frequency measurement (Figure 13, 
left), although the comparison is complicated by the fact that there is not a standard procedure 
for measuring time domain Ms in the regional distance range. 
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Figure 13.LogMo:mb plots showing event spectral magnitudes for earthquakes (O) and explosions (X) in Lop Nor. 
Station spectral magnitudes were calculated using frequencies increasing with distance (left) and the 
0.03-0.07 Hz frequency band for all distances (right). Bold lines mark the empirical discrimination 
relationship of Stevens and McLaughlin (2001). 

3.2   Path corrected noise estimates 
While a path corrected spectral magnitude can be measured over any frequency band, it is 
subject to the following constraints: 

1. Earthquake spectra decrease at high frequencies, depending on depth (Figure 6), so the 
high end of the frequency band should be low enough that discrimination is not degraded 
by this effect (Figure 13). 

2. At high frequencies, attenuation is higher and the dispersion more variable, so the path 
correction is likely to be better and the signal may be higher at lower frequencies. 

3. Noise increases at low frequency, so the low end of the frequency band should be at a 
frequency high enough to be above the noise level. 

In order to quantify these effects better, we measured some "path corrected noise spectra" for the 
Lop Nor data set. These are simply noise spectra measured at the station that have been divided by 
an explosion Green's function in the same manner as would be done for a signal. Since the signal 
spectra are approximately flat over most of the frequency band, the path corrected noise spectra are 
a measure of the minimum path corrected signal that could be measured at each station. 

Figure 14 shows the noise measurements for two stations: WMQ, located an average of 2 
degrees from each event, and HIA, located an average of 27 degrees from each event. At the 
lowest frequencies, the noise levels decrease with increasing frequency, reaching a minimum at 
about 0.04 Hz, then increase to a peak at about 0.06 Hz, which corresponds to the frequency of 
the primary microseism peak. The noise levels then decline to about 0.1 Hz, and then increase. 
As Figure 14 shows, there is also substantial variability in the noise level, so that although the 
average noise level suggests that the minimum spectral magnitude that could be measured is 
about 13.5 at WMQ and 14.5 at HIA, it may be substantially lower or higher. These results 
suggest that in general it is best to measure surface wave spectra at frequencies above 0.03 Hz 
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and below 0.1 Hz. Although noise levels remain fairly low in the 0.1-0.2 Hz frequency band at 
the closest stations, factors #1 and #2 mentioned above make measurement in this band risky. 
Based on the empirical tests described earlier, we recommend measuring surface waves at 
frequencies between 0.03 and 0.08 Hz. 
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Figure 14. Average path corrected noise measurement and ±one standard deviation curves for 13 time segments at 
WMQ (bottom) and for 54 time segments at HIA (top). The average distance to WMQ is 2 degrees and 
the average distance to HIA is 27 degrees. 
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IMPROVED AZIMUTH ESTIMATION 

To monitor nuclear testing, the International Data Center (IDC) automatically processes surface 
waves recorded at individual International Monitoring System (IMS) stations, attempting to 
identify them and measure amplitude and Ms. Three-component azimuth estimates derived using 
the current, spectral method are recorded but are too inaccurate to use for identification. That 
method is based on an algorithm originally proposed (Smart, 1978) as part of a surface wave 
detector, rather than as a means of estimating the azimuth. Selby (2000) suggested that another 
detection technique (Chael, 1997), based on correlation of the vertical and Hilbert transformed 
radial component Rayleigh wave records, could be used for azimuth estimation and would 
improve IDC processing. 

To compare the performance of the algorithms, we incorporated the Chael/Selby (CS) algorithm 
into the automatic surface wave processing software that utilizes the current IDC method (CM). 
In the standard processing of surface waves, there is a detection if the surface waves pass a 
dispersion test (Stevens and McLaughlin, 2001). In this study, both algorithms are tested on 
2,599 records that passed the dispersion test and 2,363 generally poorer S/N records that failed, 
all from events that had at least four surface wave detections. We assess the performance of each 
algorithm for different passbands and group velocity windows. 

4.1   Differences between the algorithms 

Both the CM and CS algorithms find the backazimuth that best matches the expectation that the 
horizontal and vertical components of the Rayleigh wave records are similar, but 90° out of 
phase. The biggest difference between algorithms is that the CM uses Love as well as Rayleigh 
waves to estimate the backazimuth. 

The use of both Love and Rayleigh waves by the CM versus only Rayleigh waves by the CS 
algorithm makes it impossible to compare the algorithms using the same time window while 
optimizing the performance of both. The CS algorithm should perform optimally when the time 
window encompasses just the Rayleigh wave, as a longer window will only add noise. 
Antithetically, the CM should perform optimally with a longer time window that encompasses 
both the Rayleigh wave and the higher group velocity Love wave. 

4.1.1   The Current Method 

The CM finds values for rn and In, the complex Fourier coefficients of the Rayleigh and Love 
wave vertical component displacements, (j), the backazimuth, and En, the Rayleigh wave 
ellipticity, that minimize the squared distance between the data and model (Smart, 1978; 1981). 
The ellipticity may be assumed known, which reduces by one the degrees of freedom. Subscripts 
refer to frequency. The function minimized is written 

I |2 z —r\ + 1 "^w n 
3'„ -{^■^«^«cos(^)-/„ sin(^))|' +\x„ -{i€jj + l„af (1) 

where Xn, yn, and Zn are the complex Fourier coefficients of the east, north, and vertical 
components of the seismic record. Two important elements of this function are that the radial 
component of the Rayleigh wave equals iEnrn, that is, the vertical component advanced by 90° 
and scaled by the ellipticity, and that the Love wave is independent of the Rayleigh wave. 

17 



4.1.2   The Chael/Selby algorithm and its implementation 

The CS algorithm (Chad, 1997; Selby, 2000) finds the backazimuth for which the correlation 
coefficient of the vertical and Hilbert transformed radial is a maximum (Equation 2). 

where, 

"   V^A' <" 

'^;i=Z^y(^K(^)- (3) 
r=l 

The implementation uses the correlation of the Hilbert transformed vertical with the radial, for 
one degree increments of backazimuth. While Selby uses the maximum positive correlation as 
the backazimuth, Chael (1997) uses the central azimuth, determined by the circular mean (e.g. 
Fisher, 1993). We test the algorithm using both measures. 

For synthetic Rayleigh waves with azimuthally evenly distributed random noise, the circular 
mean provides more accurate estimates than the maximum correlation. The lower the S/N, the 
greater the advantage of the circular mean. 

For noise free data (i.e. synthetics), equation 2 will return a negative or positive constant, as the 
cross-correlation of the Hilbert transformed vertical and radial and the autocorrelation of the 
radials change in synch as the algorithm steps through backazimuths. Our implementation of the 
algorithm therefore provides two methods of estimating the similarity of the components. One 
uses the correlation coefficient (equation 2). The second method is intended to avoid the 
problem described above when data are noise free by normalizing by S^ alone (equation 4). 

C.-=|^- (4) 

4.2   Performance of the algorithms in 4 frequency bands. 

The first set of tests used a 2.5 to 5.0 km/sec group velocity window, which should encompass 
both Love and Rayleigh waves, and compared backazimuth estimates in 3 relatively narrow, 
overlapping frequency bands, 0.02-0.04 Hz, 0.03-0.05, 0.04-0.06 Hz, plus one frequency band 
covering the entire spectrum from 0.02 to 0.06 Hz. 

Figure 15 shows histograms of azimuth residuals for the CM and one implementation of the CS 
algorithm for the middle frequency band. Table 2 presents the errors associated with each 
method. The CS algorithm performs better in two ways. First, the CM applied as it is currently 
used in the automatic processing, has sign errors for a significant number of events. Second, the 
histograms reveal a much larger number of outliers for the CM compared to the CS algorithm'. 

Surprisingly, the best implementation of the CS algorithm is the combination of the peak 

position of the correlation and normalization of the correlation by ^JS^S- . Why the maximum 
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correlation provides a more accurate estimate of backazimuth than the circular mean bears 
further investigation. One possibility is that the real noise is azimuthally unevenly distributed and 
so biases the circular mean measurement toward the direction of the predominant noise source. 
Such skewed noise would not so strongly affect the maximum correlation position. 

Current IDC Method Selby-Chael Algorithm 

400 400 

-100       0       100 
Azimuth Residual (degrees) 

-100       0       100 
Azimuth Residual (degrees) 

Figure 15. Azimuth residuals for 0.03-0.05 Hz using the current method (left) and the Chael/ Selby algorithm using 
the normalization of equation 2 and peak correlation (right). 

The scaled median absolute deviation (SMAD), the one-norm measure of the central tendency, 
provides a more accurate measure of the spread of data about the central value for such heavy- 
tailed data as these than does the standard deviation (STD). Errors for all of the tests performed 
badly fail the Kolmogorov-Smimov test for normality of a distribution. That the STDs are so 
much larger than the SMADs indicates that, while most estimates are reasonably accurate, there 
are a large number of outliers. 

The CM performs best at higher frequency, while the CS algorithm performs best at lower 
frequency. The CM performs almost as well as the CS algorithm at the highest frequencies 
tested. This is likely because the Love waves are relatively larger at longer periods than the 
Rayleigh waves, and contrary to expectations, the CM performs poorly when the Love waves are 
very large. This is probably due to the 180 degree ambiguity in Love wave polarization, which 
causes large Love wave amplitudes to increase the likelihood of a 180 degree error in azimuth. 

Larger azimuth residuals at higher frequency for the CS method may be due to lower S/N. 
Alternately, greater lateral heterogeneity in the shallower Earth layers could lead to more 
variation in the propagation direction of higher frequency surface waves. The estimates may in 
that case accurately reflect the effect of lateral heterogeneities on higher frequency waves. 

For the CS algorithm, the backazimuth residuals for the broader frequency band are comparable 
to those in the 0.03-0.05 Hz passband, larger than those of the lowest frequency passband, and 
smaller than those of the highest frequency passband. The parts of the frequency band where the 
backazimuth either varies or is less well resolved appear to diminish resolution of the broadband 
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estimate compared to narrower passband estimates, so a broad frequency band does not provide 
any advantage. For the CM, the performance is actually poorer for the broadband data than for 
each of the narrower passbands used. The rest of the analyses are performed for just the three 
narrow frequency bands. 

Table 2. Scaled median absolute deviations and standard deviations (in parentheses) of the azimuth residuals in 4 
frequency bands from the algorithms tested. Four variations of the implementation of the CS algorithm are 
tested. CS, and CS2 use the peak amplitude of the correlation while CS3 and CS4 use the circular mean. CS, 

and CS3 are normalized by yjS^S^ as in equation 2. CS2 and CS4 are normalized by S^ as in equation 4. 

CM 
CSl 
CS2 
CS3 
CS4 

.02-.04 Hz 
31(85) 
13 (41) 
17 (40) 
15 (39) 
17 (40) 

.03-.05 Hz 
22(71) 
16 (47) 
19 (46) 
17 (46) 
19 (46) 

.04-.06 Hz 
22(64) 
19 (53) 
22 (52) 
20 (52) 
22 (53) 

.02-.06 Hz 
20 (68) 
16(45) 
20 (45) 
17 (45) 
20 (45) 

4.3   The effect of signal strength (event size) on backazimuth estimates. 

Figure 16 shows the backazimuth residuals for each of the algorithms vs. event size, which 
serves as a proxy for the signal-to-noise ratio. The CM is almost comparable in performance to 
the CS algorithm for large events, except for a large number of outliers at 180 degrees. It begins 
to fail badly for smaller events, especially at the lowest frequencies. Table 3 show results 
comparable to Table 2, but for events of Ms 5.0 and above. 

Table 3,    Same as Table 2, but for 335 records of events with M. > 5.0. 

.02-.04 Hz .03-.05 Hz .04-.06 Hz 
CM 14.5 (68.6) 14.4(51.9) 12.9 (47.3) 
SC, 8.7 (30.5) 9.6 (29.8) 10.6 (35.2) 
SC2 10.8 (29.5) 13.0(28.4) 13.4(34.5) 
SC3 9.4 (29.7) 11.7(28.9) 12.2 (34.9) 
SC4 10.7 (29.5) 12.8 (28.4) 13.2 (34.5) 
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Figure 16. Median ±2 SMAD confidence intervals of azimuth residuals binned by Ms values, for the CM (dotted) 
and the best performing implementation of the CS algorithm (solid). Each bin has approximately 250 
azimuth residuals. Results in the 20-33 second period passband are intermediate between those shown. 
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4.4    Variable group velocity 

The work reported above used 2.5 to 5.0 km/sec group velocity windows that we expect to favor 
the CM, as they are most likely to include both Love and Rayleigh waves. Next we use the group 
velocities predicted by a 1° global surface wave model (Stevens, et al 2002) to select windows 
intended to more narrowly bracket the Rayleigh waves and so minimize the effect of noise 
outside those windows (Figure 17). The minimum group velocity is that used in the dispersion 
test for surface waves at the high frequency comer of the passband. Similarly, the maximum 
group velocity is determined by the low frequency comer. 

Table 4 is similar to Table 2, but for the variable length group velocity windows. The performance 
of the CM is slightly worse for the shorter windows at the highest frequency passband, as expected, 
and there is a small improvement in performance for the best performing algorithm, CS using the 

peak of the cortelation with normalization by ^5^5- , compared to the longer group velocity 

windows. Overall, the effect of narrowly isolating the Rayleigh waves is quite small, which is 
encouraging regarding the prospects of the CS algorithm for routine detection. 
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Figure 17. Surface wave records in the 3 passbands tested at the station ARCES for an Ms 5.0 event at 6035 km. 
The entire trace is the 5.0 to 2.5 km/s group velocity window, while the outlined segments are the shorter 
group velocity windows used to isolate the Rayleigh waves. The isolation works best at the highest 
frequency passband, where the large Love wave (top trace) is outside the narrower window. 

Table 4. Same as Table 2, but for group velocity windows designed to isolate the Rayleigh waves. The change 
from the 2.5 to 5 km/s group velocity windows is given in parentheses (negative change is 
improvement). 

.02-.04 Hz .03-.05 Hz .04-.06 Hz 
CM 31.4 (+0.7) 21.2 (-0.4) 23.9 (+1.5) 
SC, 12.7 (-0.5) 14.9 (-0.8) 18.1 (-0.5) 
SC2 17.0 (+0.5) 19.0 (+0.3) 21.5 (-0.3) 
SC3 14.7 (-0.1) 16.8 (-0.2) 19.6 (-0.4) 
SC4 16.9 (+0.4) 19.0 (+0.2) 21.6 (-0.2) 
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4.5   Predicting accuracy of estimates using the crosscorrelation value 

The crosscorrelation of the Hilbert transformed vertical with the radial predicts the accuracy of 
the azimuth estimate. Figure 18 shows azimuth estimate residuals vs. the cross-correlation for the 
best implementation of the CS algorithm applied to data that pass the dispersion test. 

For 0.02 to 0.04 Hz, 60% of the data have a cross-correlation > 0.8. The SMAD of the error of 
those data is 8.5°, vs. 12.7° for all the data. For 0.03 to 0.05 Hz, 58% of the data have a 
crosscorrelation value > 0.8, and those data have a smad of 9.3° vs 14.9° for all the data. For 0.04 
to 0.06 Hz, 54% of the data have a crosscorrelation value > 0.8, and those data have a smad of 
11.1° vs 18.1° for all the data. 

This ability to predict backazimuth estimate accuracy can aid association with known events. In 
particular, the strict dispersion criteria for detection at the IDC could be relaxed in cases where 
the backazimuth is consistent with the theoretical backazimuth and the crosscorrelation value is 
high. Well constrained uncertainties are also important for understanding the accuracy of 
inferences made from measurements of the surface waves, for example, tomography based on 
surface wave polarization (e.g. Yoshizawa, et al., 1999). 
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Crosscorrelation 

Figure 18. Median azimuth residuals ±2 SMAD confidence intervals vs. the median cross-correlation of the radial 
and Hilbert transformed vertical Rayleigh waves, for each bin of 171 measurements, for the 0.03-0.05 Hz 
passband. Results are similar for the other passbands. 

4.6   Events for which surface waves are not detected . 

Figure 19 shows the results of each method of polarization analysis applied to the poorer S/N 
records that did not pass the dispersion test. The CS method (implemented using maximum 
cross-correlation) extracts accurate backazimuth estimates for many of these data. The more 
accurate estimates can be identified by their cross-correlation value. 
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Figure 19. Azimuth residuals for the 0.02 - 0.04 Hz passband for the CS algorithm (top row) and the CM (bottom 
row). Histograms of azimuth residuals for all the data (left column) and for data with correlation > 0.8 for 
CS (upper middle) or F-statistic > 30 for the CM (lower middle). The central plots use -14.5% of the 
data in each case. The upper right plot shows the median azimuth residual ±2 SMAD confidence 
intervals vs. the correlation, as in Figure 18, for the CS algorithm. The bottom right shows the median 
azimuth residual ±2 SMAD confidence vs. the F statistic of the CM. 

The SMAD of the azimuth residuals for data not passing the dispersion test is 58°, vs. 108° for 
the CM. The upper central plot shows histograms just for data with a correlation > 0.8, which 
comprise 14.7% of the data. Their azimuth residual has a SMAD of 14.8°. The F-statistic of the 
CM does not provide similar predictive capabilities. In fact, for the largest F-statistic values, the 
CM's error increases. This is because the F-statistic can be very large when the signal is 
dominated by very large Love waves, but such records often have 180° (i.e. sign) errors. Even 
disregarding the sign errors, the F-statistic is a much poorer predictor of the accuracy of 
polarization estimates, and the resolution of the current method is much poorer than that of the 
CS algorithm. 

4.7    Conclusions of Azimuth Study 

The correlation of the radial and Hilbert transformed vertical seismic records provides accurate 
estimates of Rayleigh wave polarization and provides significant improvement over the current 
method employed at the IDC. Further, the value of the cross-correlation provides a reliable 
estimate of the accuracy of the polarization. 

The CS method could also improve detection of Rayleigh waves, through better association with 
known events. Specifically, current strict IDC requirements on detection in multiple passbands 
could be relaxed when there is a backazimuth estimate that has a high cross-correlation value and 
is consistent with the theoretical backazimuth. 
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5.     CONCLUSIONS AND RECOMMENDATIONS 

Improvements to surface wave dispersion models are being accomplished by: 1) continuing 
addition of new data with good quality control and particular attention to regions with gaps in 
data coverage; 2) removal of poor quality data in the data set (poor quality data becomes more 
apparent as the data set increases and the model quality improves); 3) addition of model types 
where the data requires them; 4) improvement in constraints on sediments and Moho thickness; 
5) improvement to the regularization techniques, which can now be defined on a model by model 
basis, allowing improved data fit while achieving realistic earth models. 

Improved methods for surface wave measurement are being implemented and tested. Surface 
wave spectra are derived from phase-matched filtered data, and the phase-matched filters are 
derived from the regionalized dispersion models. Path corrected spectral magnitudes are derived 
by dividing the observed spectra by an explosion Green's function, where the Green's functions 
are calculated from the global earth models. Thus we use the earth and dispersion models to 
optimize spectral measurements and regionalize surface wave excitation and attenuation. In this 
paper, we have described a detailed study of procedures for optimizing measurement of path 
corrected spectral magnitudes. A significant advantage of logMo over Ms is that it can be 
measured at any distance range without the anomalies caused by variations in dispersion that 
affect Ms. In principle, logMo can be measured over any frequency band and optimized by 
choosing the band with maximum S/N. However, we found that logMo for earthquakes is 
frequently significantly lower at higher frequencies, which degrades discrimination, and that 
furthermore the S/N for lower frequencies is good even for very short distances. We therefore 
recommend that surface wave measurements be made at lower frequencies even at short 
distances. We are in the process of determining the optimum frequency band for measurement, 
and our current recommendation is to use a frequency band of 0.03-0.07 Hz consistently for all 
data. We are continuing to evaluate this recommendation for a larger data set with more types of 
earth structure. 
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6.     DATA DELIVERABLE 

Two data deliverables are provided together with this annual report. They are: 

1. The current set of earth models, dispersion curves and other derived data. These are 
contained in compressed tar file "LP_2003_Oct.tar.Z". Information on data format is 
included in the delivery. 

2. The maxpmf program compiled for Sun Solaris, and the maxpmf man page. These are 
contained in compressed tar file "maxpmf_5.2.tar.Z" 

These data deliverables may be obtained from the contracting office or from the authors. 
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