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Abstract 

Stagnation point flow and heat transfer in the presence of free-stream tur- 
bulence is investigated through both numerical simulation and theoretical 
analysis. Large eddy simulations (LES), using fourth order finite difference 
in curvilinear coordinates and an efficient dual time linearized sub-iteration 
scheme, are performed to investigate free-stream turbulence impingement 
upon an elliptical leading edge and the resulting heat transfer enhancement. 
A new blending procedure is developed through which independent, statisti- 
cally identical realizations of homogeneous isotropic turbulence are combined 
to provide realistic representations of free-stream turbulence. 

Results for diflTerent free-stream turbulent intensity, length scale, and 
Mach number are reported. Strong anisotropy of the turbulence due to the 
mean flow strain is observed as the stagnation point is approached. The 
Reynolds stress statistics and budgets are obtained and presented. These re- 
sults are expected to provide unique data for turbulence modelling of strain 
dominated flows. The numerical results show good agreement with the ex- 
perimental measurements on elevated heat transfer coefficient. It also reveals 
that small scale, intense vortical flow structures generated at the leading edge 
by vortex stretching induces significant changes in local thermal boundary 
layer, causing the observed heat transfer enhancement. 

In the theoretical study, the distortion of three dimensional unsteady dis- 
turbance in an incompressible Hiemenz boundary layer and its effect on the 
wall heat transfer is analyzed based on linear vortex dynamics. An asymp- 
totic solution for disturbance vorticity is obtained with explicit dependence 
on the disturbance length scale and frequency. It is shown that the vortic- 
ity amplification, and hence the heat transfer enhancement, increases with 
decreasing length scale and the maximum value is found around five times 
the boundary layer thickness. The unsteadiness of the disturbance reduces 
the disturbance amplification but is of second order at low frequency. By ex- 
tending the analysis to free-stream turbulence, a new scaling correlation for 
the relative heat transfer enhancement is derived which incorporates turbu- 
lence intensity, integral length scale and mean flow Reynolds number. This 
correlation is shown to reasonably collapse the recent experimental data. 



Keywords: Stagnation point flow, free-stream turbulence, turbine blade 
heat transfer, large eddy simulation, vorticity dynamics, turbulence mod- 
elling. 



Contents 

Introduction 3 
1.1 Motivation and Background  3 
1.2 Experimental Studies  5 
1.3 Theoretical Analysis  8 
1.4 Numerical Predication  10 
1.5 Overview and accomplishments  12 

Governing Equations 14 
2.1 Governing Equations for Compressible Flow  14 
2.2 Filtered Governing Equations  16 
2.3 Dynamic Model for SGS Transport  18 

Numerical Method 21 
3.1 Implicit Scheme with Linearized Subiterations  21 
3.2 Approximate Factorization  24 
3.3 Spatial Discretization  26 
3.4 Boundary Conditions  28 
3.5 Numerical damping  30 
3.6 Potential Flow solution  31 
3.7 Similarity Solutions  31 
3.8 Leading Edge Receptivity to Sound  32 

Generation of Free Stream Turbulence 46 
4.1 Inflow Turbulence  46 
4.2 LES of homogeneous isotropic turbulence  47 
4.3 Blending Procedure  48 



5 Numerical Simulation Results 58 
5.1 Experimental Setup  58 
5.2 Simulation procedure  60 
5.3 Inflow turbulence  64 
5.4 Turbulent mean flow and heat transfer  65 
5.5 Reynolds stress and turbulent transport      66 
5.6 High intensity and High Mach Number cases  70 

6 Theoretical Analysis 144 
6.1 Introduction 144 
6.2 Governing equations 147 
6.3 Numerical Results 152 
6.4 Linear Vortex Dynamics 156 

6.4.1 Series expansion 156 
6.4.2 Outside the boundary layer 158 
6.4.3 Composite solution 160 
6.4.4 Boundary conditions for the vorticity 162 

6.5 Asymptotic Behavior 164 
6.5.1 Vorticity asymptotes 164 
6.5.2 Heat transfer scaling 165 

6.6 Discussion of Free-Stream Turbulence 167 

7 Summary and Conclusion 187 

A Incompressible Potential Flow 191 

B    On the Coefficient of Niunerical Dissipation 195 

C  Compressible Boundary Layer Over a Leading Edge 205 
C.l   Introduction 205 
C.2   Boundary Layer Approximation 205 
C.3   Stewartson Transformation 209 
C.4   Similar Solutions 213 

D Vorticity boundary conditions 215 

E  Vorticity asymptotes 218 



Chapter 1 

Introduction 

1.1    Motivation and Background 

Stagnation point flow, where fluid approaching a solid surface divides into di- 
verging streams, is a ubiquitous and important flow phenomenon. Hiemenz's 
pioneering work at the beginning of last century showed that the incom- 
pressible stagnation point flow is one of those very few fundamental types 
that admit exact solutions to the Navier-Stokes equations. However, this 
seemingly simple flow, when disturbed, exhibits surprisingly rich phenomena 
and intriguing dynamics. This can be, at least partially, attributed to the 
fact that in the stagnation region the upstream disturbance typically reaches 
its maximum by the effect of mean flow strain while the mean flow velocity 
itself, on the other hand, approaches zero — perturbed stagnation point flow 
is inherently nonlinear. This peculiar feature contributes to many diflBculties 
in our understanding of the nature of the perturbed stagnation point flow. 
The correct account for the linear instability, for instance, did not appear 
until late 1970's. 

In addition to the substantial theoretical interests, the practical reason 
why stagnation point flow continue to remain as an active research subject 
after more than a century's study lies in its ubiquitousness: almost all the 
interactions between fluid flow and solid structures involve some kinds of 
stagnation points or lines. Many flow and heat transfer problems encoun- 
tered in various important engineering applications are of stagnation point 
nature. Gas turbine cooling and micro electronics design are among the most 
noticeable examples. 



As one of the major energy conversion devices of our times, gas turbine 
is used both for aircraft propulsion and in land-based power generation. Up 
to now, it is widely recognized that the key technology to design and man- 
ufacture more efficient and powerful gas turbines is to increase the turbine 
inlet temperature, for the power output and thermal efficiency of gas turbine 
increases with the increasing inlet temperature. For this reason, the temper- 
ature of combustion gas at turbine inlet at present far exceeds the melting 
point of turbine blade superalloy, and very sophisticated measures (e.g. film 
cooling, internal cooling) must be applied to cool the turbine blades. To de- 
sign effective cooling systems, accurate heat transfer prediction between the 
gas and the turbine blades is crucial.   Overestimating heat transfer would 
cost excessive amount of cooling air bled from the compressor, hence incur 
severe penalties in the engine performance and efficiency. Underestimating 
heat transfer, on the other hand, could result in component failure. It has 
been reported that a ten degree underestimation of turbine blade tempera- 
ture would reduce the blade life time by half. Accurate prediction of turbine 
heat transfer, however, has proven to be rather difficult.   One of the key 
difficulties stems from the large scale and high intensity turbulence gener- 
ated in the combustor through its intricate swirling, mixing and combustion 
processes. The turbulence contained in the free stream greatly enhances the 
heat transfer between the combustion gas and turbine blades. This augmen- 
tation effect becomes most salient in the stagnation region of blade leading 
edge, where the largest heat transfer occurs.   Because the physical mecha- 
nism which leads to this significant heat transfer enhancement is not well 
understood, the prediction of heat transfer in the presence of free-stream 
turbulence remains empirical in gas turbine design. 

Similar heat transfer problems related to stagnation point flow also arise 
in micro-electronics cooling. As the number of transistors on a standard- 
sized microprocessor continues to increase, the power density is expected 
to exceed 100 Wjan^ in the near future. The thermal management of the 
power dissipation has become one of the major limiting factors in building 
more powerful, compact and reliable computers. With the development of 
MEMS technology, microjet (or jet array) impingement, capable of producing 
heat transfer coefficient one order of magnitude higher than that of the tra- 
ditional fan-driven convection, has emerged as a promising new technology. 
Active experimental researches are conducted to explore various methods 
for increasing the heat removal rate as well as enhancing the controllability. 
Obviously, a detailed knowledge of the impinging jet flow and surface heat 



transfer is essential to achieving a optimized cooling design which ensures 
both the performance and reliability for future microprocessors. 

Many other engineering applications, such as combustion spray, fluidized 
bed, paper drying, wind-building interaction, need to deal with problems in- 
volving stagnation point flow and heat transfer. In all these practical cases, 
disturbances exist in the free stream and in fact, are often the major concerns 
of the problem. Hence, a better understanding of the dynamics of the stag- 
nation flow and heat transfer under various disturbances is at the heart of the 
fluid mechanics research which aims at improving the existing technologies, 
and is also the primary goal of the present study. 

In what follows, past studies through experimental measurements, the- 
oretical analysis and numerical computations on the stagnation point flow 
and heat transfer are reviewed. 

1.2    Experimental Studies 

The experimental studies of stagnation point flow in the presence of distur- 
bances started in later 1920s when the unexpectedly high velocity fluctuations 
were first observed in the stagnation region of a blunt body placed in the wind 
tunnels with uniform streams (Piercy and PUchardson, 1928, 1930). Later, 
large disparities in the related heat transfer measurements among different 
researchers led to the discovery that much of the difference can be attributed 
to the different levels of the free-stream turbulence in the wind tunnels. Fur- 
ther systematic experimental studies confirmed that the free-stream turbu- 
lence causes significant heat transfer enhancement in the stagnation point 
region (Giedt, 1949; Hegge-Zijnen, 1957; Kestin et al., 1961). 

To understand and model the effect of the free-stream turbulence in stag- 
nation point flows. Smith and Kuethe (1966) used eddy viscosity which was 
assumed to be proportional to the product of free-stream turbulence intensity 
Tu and the distance from the wall. Upon applying the Hiemenz transforma- 
tion, the combination of -^ emerges as a parameter that controls the shape 
of the turbulent mean velocity and thermal profiles. This parameter later 
forms the basis of many empirical correlations, including Smith and Kuethe 
(1966); Kestin and Wood (1971); Lowery and Vachon (1975); Mehendale et al. 
(1991). These correlations fit the Frossling number Fr = J^    (Frossling, 

1940) all using a second order polynomial of T^ but with slightly diffierent 
coefficients by different investigators. 



Correlations based on the parameter ^ achieved some success in data 
reduction and some of them are still used today. But they generally have a 
rather narrow applicable range in terms of Reynolds number and turbulence 
intensity, which indicates that a potentially important role of turbulence scale 
has been missing in the formulation. The reason that in early experiments 
the length scale of turbulence did not receive much attention — most of the 
investigators did not measure the length scale except Hegge-Zijnen (1957), 
are probably twofold. In the first place, it is not very easy to achieve experi- 
mentally a large enough turbulence scale range so that a definite conclusion 
of its effect can be drawn. Secondly, it was expected that the turbulence 
length scale only plays a subordinate role (Kestin and Wood, 1971). As was 
then understood, the small velocity fluctuations in the free stream triggers 
the instability of the mean flow, but the resulting structures, presumably re- 
sponsible for the heat transfer enhancement, are determined by the intrinsic 
instability features rather than by the free-stream turbulence per se. 

Presently, the importance of turbulence length scales has been well rec- 
ognized. Intuitively, very small scale disturbances are quickly damped by 
the viscosity, whereas very large scale disturbances only exert a quasi-steady 
efiect. Hence there exists a certain length scales range in which the distur- 
bances are most effective. However, it is not clear what is the precise role 
of the turbulence length scales in determining the overall turbulence effect, 
and different opinions exist on even which turbulence scale is relevant and 
should be incorporated into the formulation. 

Yardi and Sukhatme (1978) measured the effect of the turbulence integral 
length scale L on the stagnation point heat transfer using a circular cylinder 
in a cross-flow, and showed that, at both very large and very small scales, 
the heat transfer enhancement is reduced. The maximum effect of turbulence 

1/2 

length scale appeared somewhere between 5 < ^^P < 15, where D is the 
diameter of the cylinder, or roughly 4-12 times of boundary layer thickness. 

Ames and Moffat (1990) studied the effect of free-stream turbulence with 
relative large scales (^ > 1.0) on stagnation point heat transfer. The eddy 
viscosity formulation in Smith and Kuethe (1966) was generalized by tak- 
ing into account the change of the turbulence intensity as the stagnation 
point is approached. Based on a model turbulence energy spectrum and 
rapid distortion theory (Hunt, 1973; Hunt and Graham, 1978), a new correla- 
tion parameter is developed incorporating the turbulence intensity, Reynolds 
number and turbulence energy scale (the dissipation scale of Hancock and 
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TuReV^^ Bradshaw (1983)) in the form of jf^^j^^- The energy scale represents the 

energy-containing eddies and is estimated by Lu = l.bufj^Je, where e is the 
turbulence energy dissipation rate. This parameter appears to well corre- 
late their experimental data. Data from other groups are also correlated but 
with more scatter. Further experiments have been reported recently (Ames 
et al., 2002) with a larger Reynolds number range and different turbulence 
conditions. 

Van Fossen et al. (1995) made a systematic study on the influence of 
various flow parameters on stagnation point heat transfer, focusing on the 
relatively short turbulence length scale (^ = 0.05 - 0.3). The turbulence 
intensity Tu varies from 1.1 to 15.9 percent, and Reynolds number Rep from 
37000 to 228000. They showed that the heat transfer enhancement increases 
as turbulence length scale decreases, but no peak was found within their 
range of length scale. The measured heat transfer enhancements are found 

to be best fitted using an empirical parameter of Tumo^- Different mean 
flow strain rates are also studied but no significant influence was observed on 
the heat transfer enhancement. Further experiments concerning the effect of 
anisotropy of the turbulence (Oo and Ching, 2001), and for even higher (upto 
28.5 percent) turbulence intensities (VanFossen and Bunker, 2000) have also 
been reported. 

Dullenkopf and Mayle (1995) argued that across the entire turbulence 
energy spectrum, only a rather selective frequency band contributes signif- 
icantly to the heat transfer enhancement. Thus, instead of using the total 
turbulence intensity, they proposed to use an effective turbulence intensity 
obtained by integrating the von Karman's model spectrum over a narrow 
frequency range. Based on their own and some previous data, they found 
that the heat transfer enhancement appears to vary linearly with this length 
scale weighted turbulence intensity, reminiscent to the earlier prediction by 
Smith and Kuethe (1966). 

It should be pointed out that, in most cases, correlations developed 
through specific experiments are not applicable to data from other researchers. 
Moreover, of particular interest to the gas turbine applications is the stag- 
nation point flow and heat transfer with turbulence present in a transonic 
free-stream, but experimentally this has proven very challenging and few 
measurements are available. Difficulties also arise when the correlations de- 
veloped using simplified geometry are to fit the heat transfer data in a turbine 
blade leading edge region (Yeh et al., 1993; Thole et al., 2002). On one hand. 



this may be attributed to the sensitivity of the stagnation point flow to var- 
ious free stream disturbances. On the other hand, the empirical nature of 
these experimental correlations is the inherent reason for their limited appli- 
cability. From this perspective, theoretical analysis should shed more light 
on the underlying physical mechanism, and lead to a better understanding 
of the precise roles of the various flow parameters used in the experimental 
correlations. 

1.3    Theoretical Analysis 

In an attempt to explain the sensitivity of the stagnation point flow and heat 
transfer to the upstream disturbances, theoretical analysis has been carried 
out from various perspectives, mainly: unsteady mean flow eff"ect, linear and 
nonlinear instability and vortex stretching and amplification. 

The unsteadiness of the mean flow caused by upstream disturbances was 
first considered by Lighthill (1954), who examined the effect of pulsating up- 
stream mean velocity about a cylindrical body and obtained the Stokes-layer 
correction, but no significant change in heat transfer was found. Similarly 
modulated stagnation point flows were also studied by Ishigaki (1970) and 
Pedley (1972), but with an emphasis on the surface skin friction. Merchant 
and Davis (1989) examined the steady streaming driven by large amplitude 
and high frequency temporal free stream modulation. The results show that 
the streaming, when it exists, is always confined within the Hiemenz bound- 
ary layer thickness. These unsteady analyses are limited to two dimensional 
case, thus do not explain the large three dimensional structures often ob- 
served in the perturbed stagnation point flow. These structures, presumably 
the reason of the heat transfer enhancement, often take the form of an array 
of secondary streamwise vortices separated by a distances of the order of 
boundary layer thickness. 

From the point of view of flow instability, these structures are hypoth- 
esized as the result of a selective amplification process, i.e. the three di- 
mensional disturbances originating from the viscous stagnation region of 
one particular spanwise wavelength is preferentially amplified. The wave- 
length may potentially correspond to the distance of vortex spacing observed 
in the experiments. Early linear stability analysis by Gortler (1955) and 
Hammerlin (1955), however, showed that the resulting eigenvalue problem 
yields a continuous spectrum of spanwise wavenumbers for the neutral time 
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dependent disturbance as opposed to a unique most amplified wave number. 
Later, Kestin and Wood (1970) pointed out that the lack of unique eigen- 
value is the result of the over simplification of the boundary conditions at 
far upstream. The mathematical formulation was considerably clarified by 
Wilson and Gladwell (1978), who showed that the correct behavior of the 
disturbances originating from the stagnation region should be exponentially 
decaying far upstream. The resulting stability analysis in this case led to 
an unique eigenvalue problem, but the disturbances are all found to decay, 
i.e. the plane stagnation point flow is always linearly stable to the three 
dimensional disturbances. The nonlinear instability of finite amplitude dis- 
turbances was further considered by Lyell and Huerre (1985) using Galerkin 
method, and they showed that the flow can be destabilized if the level of the 
external two- or three dimensional disturbances exceeds certain threshold 
value. 

In a comprehensive review, Morkovin (1979) argued that the enhancement 
of heat transfer is more likely a result of forced response to the upstream dis- 
turbances as opposed to the internal flow instability. The flow visualizations 
by Nagib and Hodson (1978) and Botcher and Wedemeyer (1989) strongly 
support this argument. The same point of view was advocated earlier by 
Sutera (1965) who analyzed the amplification effect of the mean flow strain- 
ing on the incoming organized disturbances, indicating the sensitivity of the 
heat transfer to vortical disturbances. Hunt (1973) used rapid distortion 
theory to investigate the asymptotic behavior of free-stream turbulence as it 
approaches a bluff body; considerable insight was gained into the distortion 
process of the turbulence of different length scales. But the mean flow was 
assumed potential, therefore no heat transfer between the fluid and wall was 
considered. To explain the formation of the secondary vortices, Kerr and 
Dold (1994) showed that an inviscid two dimensional stagnation flow can 
posses periodic streamwise vortices. The characteristics of these vortices are 
also studied in the experiments of Andreotti et al. (2001). To connect the dis- 
turbances in the free stream with the vortices found in the stagnation region, 
Dhanak and Stuart (1995) showed that the weak external cross-stream vortic- 
ity with small length scales follows an algebraic structure in the wall normal 
direction, under which the corresponding inner viscous boundary layer can 
support a substructure of counter-rotating streamwise eddies. Regarding the 
effect of the three dimensional flow structures on the heat transfer, the nu- 
merical simulation of Rigby and VanFossen (1992) showed that the small 
spanwise nonuniformity can result in large increase of heat transfer in the 



stagnation point region of a cylinder. Bae et al. (2000) also found that differ- 
ent length scales generate quite different flow patterns and in turn different 
heat transfer responses in a plane stagnation point flow. 

Despite the significant progress made in the past, the precise mechanism 
governing the disturbance evolution and heat transfer augmentation is still 
not fully understood, and particularly elusive is its dependence on the various 
disturbance parameters. 

1.4    Numerical Predication 

To represent the turbulence effect on the flow and heat transfer for most of the 
practical applications, the Reynolds averaged Navier-Stokes equations based 
on various turbulence models are at present still the major predication tools. 
However, stagnating turbulence presents a serious challenge for turbulence 
modelling. This is chiefly because the formulation of turbulence models is in 
most cases based on the shear dominated flows such as boundary layer rather 
than the strain dominated flows like those found in a stagnation point. 

One equation model of Spalart and Allmaras (1992) has been widely 
used and shown particularly successful in aerodynamic flows (Bardina et al., 
1997; Wilcox, 2001). In this model the eddy viscosity is obtained algebraically 
through an efi"ective eddy viscosity which satisfies a proposed transport equa- 
tion. The model, however, does not explicitly account for the effect of free- 
stream turbulence. In order to predict the eff"ect of free-stream turbulence, 
e.g. heat transfer enhancement, bypass transition, modifications must be in- 
troduced into the formulation (Tsourakis et al., 2002). Those modifications 
are often of rather ad hoc nature, and it is not clear how in general that the 
effect of free-stream turbulence may be incorporated. 

Standard two equation models, e.g. k - e or k - cj model, when used 
in the stagnation point turbulent flows, badly over predict the turbulent ki- 
netic energy and heat transfer — "stagnation anomaly" has been termed to 
describe this phenomenon (Durbin, 1996) although it happens wherever the 
mean strain rate is large in the flow field, such as in a gas turbine passage 
(Medic and Durbin, 2002). For uniform mean flow strain, rapid distortion 
theory shows that the production of the turbulent kinetic energy is pro- 
portional to the mean flow strain rate. But in the two equation models, 
the normal stresses are expressed by eddy viscosity and mean flow gradi- 
ents, thus the production terms becomes proportional to the square of the 
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strain rate. Moreover, turbulence effect in two equation models is repre- 
sented chiefly by its kinetic energy, implying the turbulence is isotropic. But 
in stagnation point flows, the free-stream turbulence quickly becomes very 
anisotropic, because different components of the velocity fluctuation respond 
differently to the mean flow strain rate when the wall is approached. These 
two factors essentially render the standard two equation model inapplicable 
in the stagnation point type of flows. Various remedies have been proposed 
to cure the problem, ranging from modifying the standard model coeflBcients 
(Champion and Libby, 1991), changing the upstream boundary condition 
(Abid and Speziale, 1994), reformulating the turbulence production term 
(Kato and Launder, 1993) to zonal matching (TVaci and Wilcox, 1975; Wang 
and Yeh, 1987) and using second order Reynolds stress model for the nor- 
mal stresses (Taulbee and Tran, 1988). One recent development is to use 
time-scale limiters (Durbin, 1996), where an additional bound for the turbu- 
lent characteristic time scale is derived from the realizability considerations. 
When implemented into standard two equation models, it shows promising 
results in predicting the correct turbulence behavior and heat transfer coef- 
ficient (Medic and Durbin, 2002; Behnia et al., 1999; Parneix et al., 1999). 

The Reynolds stress models are the most complicated turbulence models. 
They are used less often than the two equation models because not only 
more equations are involved, but also the coupling among different Reynolds 
stress terms makes the numerical problem difficult. Nevertheless, in Reynolds 
stress models, the anisotropy of the turbulence is explicitly accounted, so 
better predicative capability may be expected. However, though better than 
k — e type models, Reynolds stress models are still far from satisfactory when 
applied to stagnating turbulent flows such as an impinging jet. Im et al. 
(2003) used three variants of Reynolds stress model, GL model (Gibson and 
Launder, 1978), GL-CL model (Craft et al., 1993) and SSG model (Speziale 
et al., 1991), to compute both the impinging and counter-current stagnation 
flows. All the models give severe over-predictions in turbulence kinetic energy 
and large discrepancies in other Reynolds stress components when compared 
with experimental measurements. The problem stems from, on one hand the 
over-prediction of the energy production, while on the other hand the under 
prediction of the redistribution due to the troublesome terms modelling the 
pressure strain correlations. 

In summary, from the aforementioned studies using experimental, the- 
oretical and numerical approaches, it is clear that despite the effort and 
progress made over the years, many important questions regarding to the 
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perturbed stagnation point flow remain to be answered. A closer and more 
detailed investigation, combining both numerical simulation and theoretical 
analysis, is thus of great interest. Not only will it shed much light into the 
physical mechanism but also can potentially provide valuable guidance to- 
wards developing and calibrating new turbulence models. The insight gained 
from the study may improve the design of experiments and help developing 
new technologies in a wide range of related industrial fields. 

1.5    Overview and accomplishments 

In this study, we adopt both numerical and theoretical approaches to inves- 
tigate the the turbulent flow and heat transfer at a two dimensional elliptical 
leading edge. The principal contributions and findings of this work are listed 
below. 

• High order fully implicit numerical method, with a linearized dual time 
sub-iteration scheme oflfering a 4-5 times speed-up over the usual subit- 
eration schemes, is developed and validated to study the stagnation 
point flow and heat transfer in the presence of free-stream turbulence. 

• A new blending procedure is developed for generating realistic free 
stream turbulence. By blending a series of independent but statistically 
identical realizations of homogeneous isotropic turbulence, this simple 
yet effective method preserves the first order and most of the second 
order turbulence statistics. 

• For low Mach number case, free-stream turbulence conditions with dif- 
ferent length scales and turbulence intensities matching experimental 
conditions are computed using large eddy simulation. Very good agree- 
ment between the numerical simulation and experimental measurement 
on the heat transfer enhancement (Van Fossen et al., 1995) is obtained. 

• Three different stages charax^terizing the interaction between free-stream 
turbulence and stagnation point are identified and examined in detail. 
Turbulence statistics are obtained and analyzed in the light of rapid 
distortion theory. 

• The impinging and lateral movement of stretched free stream turbu- 
lent eddies are found to be directly responsible for the heat transfer 
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enhancement. The wall blockage effect are shown to be the cause of 
rapid lateral movement of the eddies, and the magnitude of the trans- 
lating velocity is characterized. 

• Large eddy simulation at high Mach number is performed, and the 
turbulence statistics are obtained and compared with the low Mach 
number case. 

• The length scale effect on the disturbance evolution is analyzed us- 
ing matched asymptotic expansion. A new uniformly valid analytic 
expression is obtained which describes evolution of three dimensional 
unsteady upstream disturbances being convected towards the stagna- 
tion point. The effect of mean flow straining and viscous dissipation as 
well as its implication on heat transfer are explicitly shown. 

• The analysis for organized disturbances is generalized to the free stream 
turbulence. A new correlation parameter is developed which corre- 
lates the heat transfer enhancement to the turbulence intensity, inte- 
gral length scale and Reynolds number. The new parameter is shown to 
reasonably collapse both the recent experimental data and the results 
of the present numerical simulations. 

This report documents the primary computation and analysis methods as 
well as the results and findings at the time of writing. More detailed technical 
information will be available in the Stanford University Ph.D thesis (Xiong, 
2004). 
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Chapter 2 

Governing Equations 

2.1    Governing Equations for Compressible Flow 

The physical laws governing the motion of a compressible fluid are expressed 
through the continuity, momentum and energy equations. Using Cartesian 
tensor notation and dimensional primitive variables, they can be written as 

pr^+(/<),.■=0 (2.1) 

p*ult + p*u*u*j = -p* + T*ij (2.2) 

/>*/.* + p*n;/l^ - (P:, + u*p*j) + qlj + r*.«;^. (2.3) 

where p* is the density, u^ is the velocity vector, p* is the thermodynamic 
pressure, r^*- is the viscous stress tensor, QJ is the heat flux, and h* is the fluid 
enthalpy defined by 

h* = e*+p*/p* (2.4) 

where e* is the internal energy per unit mass. In the above equations, sub- 
scripts following a comma denote partial differentiation with respect to the 
subscript, and the Einstein summation convention is used. 

We assume Newtonian fluid such that the viscous stress tensor and the 
heat flux are given by 

r^ = A*<,% + 2/x*5*. (2.5) 

q^ = -^T* (2.6) 

where /x* and A* are the first and second coeflScient of viscosity, K* is the 
thermal conductivity, S^j = IC^ij+^j.i) '^ ^^^ ratie-of-strain tensor, T* is the 
absolute temperature, and 5ij is the Kronecker delta. 
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To close the system of equations (2.1) - (2.3), an equation of state which 
links the thermodynamical variables and additional equations which relate 
the fluid properties to the thermodynamical variables are needed. We assume 
an ideal, calorically perfect gas with constant specific heats, so the equation 
of state is 

p* = p'TVT* (2.7) 

were TV = c^- c^ is the gas constant, c; is the specific heat at constant 
pressure, and cl is the specific heat at constant volume. Both c* and c* 
are constant as is the ratio 7 = c;/<. Under these conditions, the^internal 
energy and the enthalpy are related to the absolute temperature by 

e* = clT* V (2.8) 

h* = C;T* (2.9) 

The fluid properties, for a calorically perfect gas, are functions of temperature 
only. For low speed flows with small temperature variations, the viscosity 
H* and conductivity «* can be treated as constants. When the temperature 
dependence becomes important, fi* and K* are often expressed in empirical 
relations in a nondimensional form involving reference states. So before de- 
scribing them, we first nondimensionalize (2.1) - (2.9) using the following 
expressions, 

P=-^^      /^ = ?F'        '^ = ^' (2.10) 
«;' ^» - L; '        f - IJT^ 

where subscript r denotes the reference variables, whose particular values 
are defined for each problem considered. Using (2.10) in (2.1) - (2.7), the 
nondimensional governing equations take the form 

P,t + {fnii),i = 0 (2.11) 

pui,t + puju,j = -p,, + ;^[(A«,-,),- + {2fiSij)j] (2.12) 

7(7 - 1)M^ 
-^"^^~—[A5„% + 2}iSijS,j] (2.13) 
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where 

M=<,       Re='>^,       Pr=^ (2.15) 

are the Mach number, Reynolds number and Prandtl number. In deriving the 
nondimensional energy equation (2.13), (2.9) is used to convert enthalpy to 
temperature. The continuity equation (2.1) along with the equation of state 
(2.7) are used to remove the explicit pressure dependence. The nondimen- 
sional viscosity // = 1 when it is independent of temperature, and otherwise 
a power law is used 

/i = T" (2.16) 

where n is taken as n = 0.70. The second coefficient of viscosity is computed 
using Stokes hypothesis, A = —|/i (giving zero bulk viscosity), and the ther- 
mal conductivity is determined by assuming constant Prandtl number, so 
that K = fx. Unless otherwise specified, the fluid is assumed to be air with a 
Prandtl number of 0.71 and a ratio of specific heats 7 = 1.4. 

2.2    Filtered Governing Equations 

The governing equations for large eddy simulation (LES) are obtained by 
filtering equations (2.11)-(2.14). Let a filtered or large-scale flow quantity be 
denoted by an overbar 

J{x) = f G{x- x')f{x')dx' (2.17) 
JD 

where G is some spatial filter and the integral is over the flow domain D. 
The velocity itj, density p and temperature T can be decomposed as 

Ui = u-i + Ui,       p = p + p',       T = T + T' (2.18) 

Applying the spatial filter G to equation (2.11)-(2.14) leads to 

P,t + {fmi),i = 0 (2.19) 

pui,t + pujUij = -p,i + —[{Xujj),i + {2pSi3)j] (2-20) 
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7(7 - DM^        
Re       ^^^"^" + 2/i5,,-5,,] (2.21) 

-    7r 
P=7^ (2.22) 

The large-scale field equations (2.19)-(2.22) can be operationally simplified 
when the variables are recast in terms of Favre-filtered quantities. A Farve- 
filtered variable is defined as 

/ = P7/P (2.23) 

Note that 

pui = pui,    pUjUij = pujUij,    pujTj=-pujT^ (2.24) 

The stress tensor and the heat flux can be decomposed into resolved and 
sub-grid scale (SGS) components as follows: 

'puiUj = -puiUj + pju^j - UjUj) (2.25) 

puiT = puif -t- -p{uiT- Ujf) (2.26) 

Similar decompositions are made for the viscous terms in the momentum and 
energy equations and the pressure dilatation and conduction terms in energy 
equation. But their small scale subgrid components were neglected. When 
the filtering operation (2.17) is applied to homogenous directions of the flow, 
it commutes with the diff'erentiation operator. In this case, the governing 
equations for the large-scale field become 

P,t + (pwt),i = 0 (2.27) 

^i,i + pujUij = -p, + -^[CXujjh + (2/i4).i] - rljj (2.28) 

7(7-l)M2--   - -   - 
-^■^-^^[XSuSjj + 2pS,jSij] - <,        (2.29) 
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p = :^ (2-30) 

where ju is the same as in (2.16) except the T is replaced by T. The second 
viscous coeflBcient A is still given by A = -|/i and thermal conductivity 
k = K. 

2.3    Dynamic Model for SGS Transport 

To close the momentum and energy equation, T\J and qj must be modelled. 
For notational convenience, the ' will be omitted in what follows. For r^, the 
trace-free Smagorinsky eddy viscosity model is used 

Tij = \q% - 2CpA2|5i(4- - i^u^) (2.31) 

where q^ = T,J is the isotropic part of the SGS Reynolds stress tensor, Sij — 
|({tjj + «j,i) and \S\ = {ISijSijY^"^. The SGS energy q^ is parametrized using 
Yoshizawa's expression: 

g2 ^ 2C/pA2|5p (2.32) 

For the ft, the eddy diffusivity model is used 

CpA2|5! 

Pn 
Ti (2.33) 

where the Prt is the SGS turbulent Prandtl number and C is the same as 
in (2.31). We will use dynamic procedure to compute the eddy coefficients 
C, Ci and SGS turbulent Prandtl number Prt (Moin et al., 1991). For this 
purpose, first define a test filter, denoted by a caret, with a width A larger 
than that of the resolved grid filter. The test-filtered stresses J^ij is defined 
by direct analogy to the stresses r^: 

Tij = ^^j - iWi) iWj) I % (2-34) 

By Germano's identity (Germano, 1990), the Leonard stresses £jj can be 
expressed in terms of Tij and f,j as 

Hij = Tij - fij = {pUiUj) - {pui) [pUj) 11p (2.35) 
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Since the test filter is always applied to the resolved field, all the quantities 
with "are obtained from the computed field. So the right-hand side of (2.35) 
is computable from the solved variables. To determine coefficient C/, the 
trace of (2.35) is used in conjunction with the model of (2.31) for Ta and TH: 

^i - (^i) (]5a0/^ = 2C/(M'|^|' - A^i^^) (2.36) 

Hence Cj can be written as 

Ci = < P"i"» - CP^i) (giV^ > ^2 37) 
< 2{fA^\S\'^ - A2p|5|2) > 

where <> indicates some kind of volume averaging procedure which is needed 
to make the determination of Cj and the other SGS coefficients well condi- 
tioned. In this LES study, C/ = 0 has been chosen following most of the 
previous studies for numerical stability. 

To obtain C, we also use Smagorinsky model(2.31) for the test field 
stresses, i.e. 

^u - l^TkkSij = -2C^A2|||(4 - YSkkSij) (2.38) 

Substituting Tij and r^ into (2.35), after contracting with 5^ and appropri- 
ate spatial averaging, we obtain 

C = <[pUiUj - {pUi){fmj)/p]Sij - ^Skk{:Fmm - fmm) > 

< -2pA^\S\{SijSij - ISkkS^m) + 2A2(p|5|4-4- - ^p\S\SkkSmm) > 
(2.39) 

where 
^mm - Tmm = pUmUm " (^m) {pUm)/p (2.40) 

To determine Prt, let Qi denote the the heat flux at the test filter scale 
and use the same eddy diff"usivity model, it follows that 

Qi=^- C^i) (Pf) /f = -^£^f, (2.41) 

Substituting Qi and qi into(2.35), contracting with Tj and performing the 
appropriate spatial averaging, we obtain: 

Pr, = g < A^f, - A^tif, > ^^^^^ 
<{-pui-ffr /^--puif)fi> 
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where C is given by (2.39). 
With the dynamic SGS model, the equations for the filtered quantities 

now take the form 
p,, + (puO,i = 0 (2.43) 

-pui^t + -pUjUi^ = -pT,i + ■^[0<TUj,j),i + (2/ir5y) j] (2.44) 

ry{j    i)M^        ~   ^ 2/i5i,-5y] (2.45) 
Ke 

where 

iiT = fi + Crp^''\S\Re (2.47) 

XT = -^/ir (2.48) 

kT = k + CpA''\S\^ (2.49) 

This system of equations constitutes the governing equations for the large 
eddy simulation of compressible turbulence in the present study. 
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Chapter 3 

Numerical Method 

We describe in this chapter the numerical method of solving the compress- 
ible flow governing equations (2.43) - (2.49). The equations are discretized 
using a fully implicit, approximately-factorized (AF) time marching scheme 
in conjunction with fourth order spatial center differencing in a curvilinear 
coordinate. A linearized dual time sub-iteration scheme, which offers a 4 — 5 
times speed-up over the usual subiteration scheme, is developed. The details 
of the finite difference scheme, implicit boundary conditions and other as- 
pects such as numerical dissipation are also discussed. The numerical code is 
validated against the analytical, self-similar solution of stagnation point com- 
pressible boundary layer, and the computation of leading edge receptivity to 
sound of a flat plate compressible boundary layer. 

3.1    Implicit Scheme with Linearized Subiter- 
ations 

Implicit methods have been traditionally developed to compute steady state 
or slowly varying unsteady flows, whereas explicit methods like R-K schemes 
were typically the choices for time accurate computations in the past. With 
the growing demand for detailed flow simulations with complicated geometry 
particularly in the presence of solid surfaces, the high grid resolution inside 
boundary layers often makes the unsteady implicit method more preferable, 
because larger time steps can be taken than would be permitted by explicit 
stability limits. 

For the implicit time marching scheme, we first recast the compressible 
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flow governing equations into a general form: 

Ui + F{U) = Q (3.1) 

where U = {p, u, u, w, T}^ is the vector of flow variables and F{U) represents 
the nonlinear and viscous terms. With the second order backward Euler 
scheme, (3.1) can be written in a semi-discretized form as 

 _ + F(f/"+^) = 0 (3.2) 

In the dual time formulation, a new pseudo time-derivative U^^ is intro- 
duced into (3.2), i.e. 

3f/"+i - 4f/« + f/»-i 
^•^ "^ 2Kt + ^(^ ^ = ^ (3.3) 

where r is the pseudo time variable. Hence when (3.3) reach a steady state, 
i.e. U^r, it recovers (3.2). To this purpose, we first linearize F(C/"+i) with 
respect to f/" 

F{U^^^) = F(f/") + A{ir)Air + 0(AC/2) (3.4) 

where A{U) = F^u is the Jacobian of F{U) and Af/" = f/^+i-C/". Typically, 
in a multi-dimension system, the size of the coefficient matrix A, resulting 
from spatial discretizations, is of the the order ~ (N^ Ny N^f, and often 
prohibitively expensive to be inveriied directly, where AT^, Ny, N^ are number 
of grid points in x, y, z directions. In standard factorization (AF) method, 
the matrix A is replaced by a sequence easily invertable matrices (Briley 
and McDonald, 1975; Beam and Warming, 1978) whose product recovers 
approximately to A with factorization errors on the order of (Ai)^. To ensure 
the factorization error is negligible and not to corrupt the solution, a time 
step far smaller than is required by time accuracy has to be used in unsteady 
computation. 

To alleviate this problem, an inner iteration called subiteration is intro- 
duced for each physical time step of an unsteady computation (Rai, 1987; 
Pulliam, 1993). If the subiteration converges, the factorization error will 
be eliminated. For the steady state computation, subiteration enhances the 
stability and robustness of the AF method, whereas for unsteady computa- 
tion, it will recover the desirable time accuracy. But the efficiency of the AF 
method now strongly depends on the convergence rate of the subiteration. 
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So introduce a subiteration index k and approximate C/,- by first order 
backward Euler scheme, 

Ifk+i _ ijk 
U, =       ^^ (3.5) 

(3.3) becomes 

AT^(t/")AC/" = -^TF{IP) (3.6) 

where the AT is an appropriately chosen pseudo time step for subiteration 
and Af/* = t/*"*"^ — f/*. Furthermore, replacing n + 1 by fc + 1 and subtract 
l^f/*^ from both sides of the 3.6, we obtain 

(/ + |-^) ^U'' + Ar^(Cr') (C/*+^ - CT') = 

-^(3f/'= - 4t/" + t/"-^) - ATF(f/") (3.7) 

Finally, notice that 

and expand F{U'') at t/", the subiteration scheme for AC/*^ can be expressed 
as 

3Ar 
[/ + —-/ + Ar^(t/")] At/* = -Ar7^* (3.9) 

where 

^»=2El^^±£ri,^,^.) (3,0) 
For each physical time step, take U" as the initial value for f/* where fe = 0 to 
start the subiteration. When the subiteration converges, we have Af/*^ —> 0, 
f/fc+i ^ f/fc The final value of C/*+^ can be taken as f/"+^ and 7^"+l = 0 
recovers the second order fully implicit scheme in (3.2). 

Notice that the left hand side operator in (3.9) is only a function of C/", 
whereas in the standard subiteration schemes, it is a function of f/*^. So (3.9) 
is actually linear for the subiteration variable AU'^ (Venkateswaran et al., 
1997); we can first perform the LU decomposition of the coefiicient matrices 
and store the factored matrices in the first step and use them throughout 
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until the subiteration converges. This obviates the need of computing Jaco- 
bians and inverting the coefficient matrices at each subiteration step, there- 
fore significantly improves the subiteration efficiency. Moreover, the present 
subiteration formulation is general in that it depends on neither the spa- 
tial discretization schemes nor the specific factorization form. Other implicit 
schemes than second order backward Euler can also be incorporated readily. 
A disadvantage of this linearized scheme is the requirement of large memory 
storage of the L and U. But when the algorithm is implemented on the mod- 
ern parallel computers, the demand for memory is usually satisfied without 
major difficulties. 

3.2    Approximate Factorization 

As mentioned earlier, approximate factorization is needed to reduce a multi- 
dimension problem to a sequence of one dimension problems in terms of 
matrix inversion. For simplicity, we consider the governing equations in three 
dimensional Cartesian coordinates, where the Jacobian A{U) in (3.9) can be 
generally expressed as 

A{U)   =   AU^ + BUy + CU, + DU 

-   yyyUyy-Vy,Uy,-K,U,, (3.11) 

here the matrices {A, B, C, Z>, V-^) are functions of U and its gradients, (see 
for example Collis (1997)). Substitute (3.11) into the left hand side of (3.9) 
and factorize it into three spatial directions, we obtain the factorized iteration 
scheme as follows 

[S + AT{AA^ + D- V^^A^^)]V = -Ar7^* (3.12) 

[S + Ar{BAy - VyyAyy)]Q = SV (3.13) 

[S -f- Ar(CA, - V;zA,,)]Af/* = SQ (3.14) 

where 

2At 
and Ai, Aja; ... are the spatial differencing operators. 
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We can further examine the effectiveness of the factorization by r ewriting 
(3.12 - 3.14) as a general implicit operator £(f/") 

Ar 
C{ir)AU''   =   -^(3C/'= - 4fr + f/"-i) 

-ArFiU") (3.16) 

where 

£([/")   =   [S + Ar{AA^ + D-V^:,A^:,)]S-^ 

X [S   +   AT{BAy-VyyAyy)]S-' 

X   [S + Ar{CA,-V,Azz)] (3.17) 

is a function of f/" only. Introducing the subiteration residual e* = f/*^ - 
U where U denotes the converged solution of subiteration, e* satisfies the 
following equation: 

£(C/")(e*+' - e*=) = -^(3^ - 4f/" + t/""^) 
  ^AT 

-Ar[F(t/) + ^(t/)e*]-^ (3.18) 

Since U is the converged solution, the above equation is simplified as 

C{U^){e'+' - e") = -[^ + Ar.4(f/)]e* (3.19) 

It follows that 

e*+i = C-\lP)[C{ir) - 1^ - Ar^(t/)]e* (3.20) 

Thus the requirement for stability and convergence of the subiteration scheme 
is that 

II £-i(f/")[£(C/") - 11^ - Ar^(I7)] II < 1 (3.21) 

which implies that 

C{U-) « i^ + ^''AU) (3.22) 

Therefore, in order to achieve rapid convergence, the factorized formulation 
C needs to resemble the original unfactorized form as accurately as possible, 
i.e. keeping the factorization error minimum. On the other hand, as long as 
the subiteration converges, we obtain the second order temporal accuracy by 
(3.2); the particular form of the left hand matrix is only important in the 
sense that subiteration convergence can be achieved. 
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3.3    Spatial Discretization 

In all the present computations, the spanwise direction z is assumed to be 
homogeneous. So to compute the spatial derivatives, the physical domain 
(x, y, z) is first transformed into a computational domain (^, ?;, z) by a two 
dimensional mapping (a:,|/) i-^ (^, ^) with both ^ and t] belong to [0 1]. Con- 
sider derivative operators in the uniform computational space {^, 77), where 
^„ T/j represent the nodal locations with ^j = A^{i — 1) for 1 < i < AT^ and 
r]j = lS.r]{j — 1) for 1 < j < N^. we need only to present the differencing 
schemes in ^ direction as it is completely analogous in the r\ direction. 

At interior nodes, the fourth order central difference scheme is used for 
first and second derivatives. 

(^).   =   T^[(/-2)-/i+2)-8(/,_i-/,+i)] (3.23) 

(0).   "   Y^(^[-(/i-2-2/i + /i+2 + 16(/,-i-2/, + /,+:)(p.24) 

Near the computational boundaries, the finite difference stencil need to be 
bieised toward the interior. As in the interior points, a five point stencil is used 
at the boundary grid point ^1. The resulting difference schemes axe fourth and 
third order accurate for the first and second derivatives respectively. Hence, 
At the first grid point ^1, the first and second derivative are expressed as : 

(!),= 
^    [-25/1 + 48/2 - 36/3+ I6/4-3/5]       (3.25) 

12Ae 

(0)     =   TITTL^I 11/1-20/2+ 6/3+ 4/4-/5] (3.26) 
12(A0= 

while at the second point ^2, they are 

(3.27) 

(^),    "   :;^[-3/i-W2 + 18/3-6/4 + /5] (3.28) 

( 

2 12A^' 

0)    =  ■^^;^^\'^^h-^^^h + \\h-^^!^-^^\h\   (3.29) 

Similar expressions hold for the derivatives at nodes of 7V^ — 1 and AT^ but 
with the stencils reversed and the signs switched on the coefficients for the 
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first derivatives. With the above fourth order discretization scheme, the left 
hand side in each of the (3.12) - (3.14) is a block penta-diagonal matrix, see 
the structures in figure 3.2 and 3.3, with additional blocks at the boundary 
nodes to account for high order boundary treatment. Each block is a 5 x 5 
matrix for the five flow variables. The resulting coefficient matrix can be 
solved efficiently using direct Guassian elimination method. 

After the derivative is obtained in the computational space, they are 
converted to the physical space through the metrics of the mapping function. 
For first order derivative, it follows 

d_ 

_  ' (3.30) nHtim 
and similarly for second derivative 

dxdy 

9»^ 

> = 
iw 2^^^,! M' 
s,a;S,y Cx^,y + ty^^ V^V^y 

iW ^tyV,y ivj' 

a 
Q2t2 

a^ 
av^ 

> + 
Sjix V,xx r -^ 
U V,xy If 

. ^,yy V,yy . I dt) ] 
(3.31) 

where (^^, 77^,...) are metrics of the mapping transformation. Most of maf)- 
ping functions are given in an explicit form of a: = x(^, 77), y = y{^, T]) instead 
of ^ = ^{x, y), 7/ = T){x, y). In such cases, the metrics terms (^,1,77^1,...) can 
be obtained by solving the linear system of equations resulting simply by 
substituting the coordinates x, y into the operators (3.30) and (3.31). Com- 
putational experience also shows that the x^, y,,, ... in the metrics expression 
should be computed using the same differencing scheme as those for the flow 
variables to achieve improved accuracy (Fletcher, 1991) 

Since the subiteration is in fact a steady state problem, to accelerate the 
subiteration convergence, the pseudo time step size AT can be allowed to 
vary spatially. In a general curvilinear coordinates, taking into account the 
physical domain of dependence within a computation cell, the AT are chosen 
by 

^^ ^^ (3.32) AT = CFL 

where 

A   =   |JiiMi|A77+|J2iWi|Ae + c 

X   [{Jl + jD^rf + (4 + 4)A^T/' 
(3.33) 
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A^, AT) are the cell size in the computational domain; c is the mean speed of 
sound. This definition of A includes the convective and acoustic phenomena 
but ignores viscous diffusion. The CFL in (3.32) is specified by a uniform 
physical time step Af for unsteady computations which is independent of AT 

and should reflect the time resolution requirements for the physical process 
of interest. 

Figure 3.4 shows a typical comparison of the convergence history between 
the present and standard subiteration schemes. After first subiteration step, 
the present scheme store the LU decomposition of the block penta diagonal 
matrix and use them in the subsequent steps. For a four order of magnitude 
of residual reduction, a factor of 4 - 5 speed-up is achieved in comparison 
with the standard subiteration scheme. Note the jump of residual at last 
points of the two curves correspond to the beginning of the next physical 
step. 

3.4    Boundary Conditions 

Boundary conditions are introduced to replace the governing equations at 
the inflow, outflow and the wall boundary of the computational domain, see 
figure 3.1. 

Consider an arbitrary boundary constraint at time level n +1 on the flow 
variable U = {p, u, u, w, T} 

B{ir^') = 0 (3.34) 

The general implicit treatment of boundary conditions in terms of 5U = 
(/n+i _ i/n (^„ |jg written as 

(§)"- = -S(f/") (3.35) 

For example, the no-slip and isothermal boundary conditions are always en- 
force at the wall, for which (3.35) becomes 

6u^ = -< = 0,        5T^ = -T^ = -T^ (3.36) 

. The density at the wall is obtained by solving the continuity equation. 
The boundary conditions at inflow are needed to provide both the far field 

mean flow and to introduce disturbances or free stream turbulence in to the 
computational domain. According to characteristic analysis, for a subsonic 
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flow, four incoming quantities must be specified with one outgoing quantities 
computed from the interior domain. The specific choice of these quantities 
depends on the formulation of each problem. Here we constrain the entropy, 
spanwise and tangential velocity, and the incoming Riemann invariant. The 
outgoing Riemann invariant are computed by first order extrapolation from 
the neighboring points inside the boundary.   The locally one-dimensionaJ 
Riemann invariants are defined in the direction normal to the inflow boundary 
as 

2c „ 2c ,       , 
Ri=Vn r, R2 = Vn +  (3.37) 

7—1 7—1 
where c is the local speed of sound and w„ is the velocity normal to the 
boundary. So at the inflow boundary, 

S = Soo,  W = w', Vt=Vl + v't, 

Ri = Ri + E!i,     R2 = R^int (3.38) 

here the overline quantities denote the base flow in the absence of inflow 
disturbance; primed quantities represent the disturbance to be introduced 
into the domain, and the subscript t denotes the tangential velocity along 
the inflow boundary in the x—y plane. In the present configuration, the inflow 
is place close to the body to reduce computational cost, and the flow passage 
is chosen to have significant blockage to mimic the wind tunnel experiments, 
so the potential solution should not be used directly to form the incoming 
Riemann invariant because of the development of the boundary layer on the 
body. Therefore, we first compute the two dimensional steady base flow using 
the same set of the inflow conditions but in the absence of disturbance. The 
velocities Vt and t;„ are determined by 

ZJ = 0,     Vn= Vnp (3.39) 

Here u is the vorticity at the inflow and t;„p denote the normal velocity 
obtained from the potential solution. These overline quantities are used to 
form the Ri and the primed quantities are interpolated from the precomputed 
disturbance flow field. The interpolation is implemented using fourth order 
B-spline. The i?2int are computed from the interior domain by first order 
extrapolation i^^nt = 2i?2iv-i — R2N-2- When the Riemann invariants are 
obtained, the values of Vn and c are obtained as follows. 

Vn = -^{Rm + R2i),        c = "^{Rm - R2i) (3.40) 
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At the outflow, we follow Collis (1997) and use the parabolized Navier- 
Stokes equations, i.e. the streamwise second order derivatives in the equa- 
tions are neglected. In addition, the streamwise pressure gradient is provided 
by the corresponding potential solution at the exit. This treatment is found 
to yield a adequate and stable outflow boundary conditions for the laminar 
mejin flow and turbulence computations. 

In the spanwise direction, periodic boundary condition is always imposed 
in the present study. 

3.5    Numerical damping 

The function of numerical dissipation, either implicitly contained in the dif- 
ferencing scheme like upwind scheme, or explicitly added to the discretized 
equations, is to damp the unresolved high wave number components gen- 
erated by nonlinear flow interaction. Because of the symmetric stencil, the 
center finite diff'erencing scheme in the present spatial discretization is by it- 
self nondissipative . In large eddy simulation of turbulence, these high wave 
number components are constantly generated and, if left uncontrolled, leads 
to to numerical instability. To overcome the problem and prevent the un- 
resolved components from corrupting the numerical solution, the following 
numerical dissipation terms are added to the right hand side of the equation: 

D = -«,a,K,,)(Af«g + A^^ + A;0) (3.41) 

where cj is the amplitude of the added dissipation, and 0 < a^ < 1 control 
and range of the dissipation. Typically in laminar computation, such numer- 
ical dissipation is not needed because the spatial scales of the flow is to some 
extent known a priori; grid can usually be generated with enough resolu- 
tion. But numerical dissipation is generally needed in turbulence simulations 
to ensure numerical stability But care must be taken to ensure the added 
numerical dissipation is minimum and it does not deteriorate the resolved 
solution. For this purpose, we choose e^ in such way that the magnitude of 
the added I>„ terms is significantly smaller than the that of the truncation 
error of the underlying spatial difl'erence scheme. Based on modified wave 
number analysis, this is achieved by choosing 

c < 0.017V, (3.42) 
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where Ng = {N^ + iV, + Nz)/3 is the averaged number of grid points in one 
spatial direction. A more detailed discussion on this matter can be found in 
the appendix B. 

3.6    Potential Flow solution 
Two dimensional potential solution is needed in the present computation to 
provide necessary initial and boundary conditions for corresponding viscous 
computations. Let (f) be the velocity potential such that 

" = (l>,x,        v = (t),y (3.43) 

the potential equation in a nonconservative form may be written as 

(1   -   M',)<f>,,,  +   (1   -   M^)<f>,yy   -   2M,My<l>,,y   =   0 (3.44) 

where M^ = u/c, My = v/c and c = y/T/M with T computed from the 
isentropic relation 

T = 1 + (lzi)^(i -u'- ^^) (3.45) 

and M = Uoo/coo is the free stream Mach number.   The no-penetration 
condition. 

|*=0 (3.46) 
on 

At inflow and outflow, the potential function is set to the values correspond- 
ing to the free stream values. The solution of the potential flow equation are 
obtained using the same approximately factorized implicit method with the 
fourth order finite difference scheme for spatial discretization. 

3.7    Similarity Solutions 
We choose the self-similarity analytic solutions of compressible boundary 
layer with heat transfer near a blunt leading edge (Reshotko and Beckwith, 
1957) to validate the present numerical method in steady computations. 
The detailed derivations of the self-similar equations based on Stewartson- 
lUingworth transformation are given in the appendix. The boundary layer 

31 



velocity and enthalpy profiles at a circular leading edge is computed numer- 
ically with different Mach numbers, Prandtl number and different temper- 
ature ratio between the wall the and incoming flow. used. As required to 
possess a similarity solution, the viscosity is assumed to be a linear function 
of temperature. The computational grid in the x-y plane is generated by us- 
ing an algebraic multi-surface method (Fletcher, 1991) which gives desirable 
orthogonality at the body surface and at the inflow/outflow boundaries. The 
grid is clustered towards the wall and the leading edge. 

Figure 3.5 to figure 3.8 show the velocity and enthalpy profiles of the 
stagnation point boundary layer for Pr = I. The wall temperature is set 
twice of the total temperature of the incoming flow, i.e. T^/TQ = 2. It can 
be seen that for both Mach numbers, A/a = 0.1 and Ma = 0.8, excellent 
agreement of the velocity and enthalpy profiles are obtained between the 
numerical and analytic solution. When Pr ^ 1, similarity solution exists 
in a strict sense only when the external velocity is zero, i.e. Ug = 0. This 
corresponds to the stagnation plane y = 0. So figure 3.9 and 3.10 show 
the enthalpy profiles for both Mach numbers atPr = 0.7 and T^/TQ = 0.5, 
and again excellent agreement is reached between the numerical and analytic 
solutions. 

3.8    Leading Edge Receptivity to Sound 

Receptivity is defined as a process by which external flow disturbances are 
converted into instability waves (Morkovin, 1969). For flat plate boundary 
layer flow, the sound receptivity refers the generation of instability T-S waves 
inside the boundary layer by ambient acoustic waves. In low Mach number 
case, this process represents a change in characteristic flow length scale — 
from an acoustic, fast travelling, long-wavelength mode in free stream to 
a convective, slow-travelling and short wavelength T-S wave mode in the 
boundary layer. This conversion can be effectively realized when the leading 
edge of the flat plate is blunt. 

The numerical solution of sound receptivity in a compressible boundary 
layer on a flat plate with a super ellipse leading edge (Lin, 1992; Collis, 1997) 
IS presented here. Unlike the usual numerical approach for receptivity study 
in which the computation is based on linearized governing equations about 
a base flow, here the full nonlinear N-S equations are used both for the base 
flow and the disturbance computations.   The evolution of the disturbance 
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is obtained by subtracting the base solution from the instantaneous solu- 
tion. By comparing with results obtained through linear approaches, this 
computation provides a validation case for the present numerical method in 
unsteady flow simulations. 

The flow configuration and the computational domain, including the sur- 
rounding inflow and outflow sponges, are shown schematically in figure 3.11. 
The inflow sponge is used to introduce acoustic waves with specified fre- 
quency and amplitude, whereas the outflow sponge damps spurious waves 
reflected from the outflow boundary. The geometry of the leading edge is 
defined by a super ellipse: 

(-r + (T)' = 1 (3-47) 
a 0 

where the a and b are the half major and minor axes of the super-ellipse. The 
junction between the leading edge and the flat plate is chosen to be a: = 0, 
and the parameter m, controlling the smoothness of the junction, is taken as 
m = 4. The reference length scale is chosen to be a and the aspect ratio of 
the super ellipse is 6. The stagnation point is therefore at x = — 1 and the 
surface of the plate is y = 6 = 1/6. Based on the free-stream velocity u^o 
and a, the Reynolds number Re = UooO,/v is 14400. The free stream Mach 
number is M = 0.1. The Prandtl number is chosen as Pr = 0.71 and a 
power law /x = J*'^" is used for the viscosity. The wall is isothermal and the 
temperature equals to the free stream stagnation temperature. The number 
of grid points in streamwise direction is 481 and in wall normal direction 129. 
The grid is clustered near the wall and towards the leading edge with about 
35 points across the boundary layer and 20 points per T-S wavelength. 

To obtain the correct disturbance field, the base flow must first be a well 
converged solution to the N-S equations. In other words, the evolution of 
the full solution must be dominantly due to the evolution of the disturbance. 
Any changes of the mean flow part in the unsteady computation should be 
negligible compared to the disturbance itself. In the present computation, 
the mean flow is judged steady after the residue has dropped 8 orders of 
magnitude from its initial value. The mean flow wall vorticity w^ and the 
streamwise pressure gradient dp/ds at the wall are shown in figure 3.12 and 
3.13, here s is the arc length of the surface from the stagnation point. The 
results are compared with those from Collis (1997) and the agreements are 
very good. In figure 3.14, the streamwise velocity profile at x = 2.783 is 
shown as a function of the Blasius variable 776, defined as r/b = y'\/Re/(x + l). 

33 



Again, the present result agrees well with Collis (1997). 
After the base flow is obtained, acoustic wave is introduced through the 

inflow sponge at a frequency u = 3.312 and amplitude A = 0.001. With the 
mean flow Mach number A/ = 0.1, the downstream acoustic wave length is 
Ao = 20.833. In the the sponge region, the following term is added to the 
right hand side of the N-S equations, 

S = o{^, v) [ U{x, y, z, t) - Urefix, y, z, t) ] (3.48) 

where the f/^e/ is an arbitrary reference state. For the inflow sponge U^ef is 
the base flow plus the acoustic wave, whereas for the outflow sponge, only 
the base flow itself, a controls the distribution and strength of the sponges. 
Following Collis (1997), for the inflow sponge in T) direction 

(7(7,) = M^^!^^^)^' (3.49) 

where 77, and ijt are the locations where the sponge starts and ends. a(7/) = 
0 for 7? outside (77^, 77^). The outflow sponge in ^ direction is constructed 
similarly. In the present computation, N, is chosen to be 3; A^ is 50 for the 
inflow sponge and 100 for the outflow sponge. The time marching scheme is 
the second order backward Euler scheme with linearized sub-iterations. For 
the unsteady computation, At is chosen to be around 1000 time steps per 
acoustic period and four sub-iterations are used in each time step. 

The overall disturbance flow fields in the boundary layer contains not only 
the excited T-S wave, but also the incoming and scattered acoustic waves. 
To extract the T-S wave, we need first remove the the acoustic component 
from the total solution. In low mach number flows, such a procedure was 
introduced by Wlezien (1994). The basic idea is that, in low Mach number 
flows the effect of the acoustic wave can be considered, due to its long wave 
length compared with the T-S wave, as to change the center of the circular 
orbit in the velocity phase plane for the T-S wave. By tracking and sub- 
tracting this center movement, the correct amplitude of the T-S wave can be 
recovered. This procedure works well for the T-S waves on the flat portion 
when vertical velocity is used to denote the T-S wave signal, but does not 
work in the curved leading edge region, or in high Mach number flows where 
the wave lengthes for the acoustic and T-S waves are comparable. 

An instantaneous disturbance field is shown in figure 3.15 (excluding the 
sponge region) after the flow has reached a periodic state driven by the acous- 
tic wave. The incident acoustic wave are clearly shown from p and u contours 
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away from the plate. The v contours show the generation and downstream 
development of the T-S wave inside the boundary layer. Generated at the 
leading edge, the T-S wave pattern becomes clearly visible on the flat portion 
of the wall, where the vertical component of the acoustic velocity is negligi- 
ble. In the leading edge region itself, however, the scattered acoustic wave 
is of the same or greater order of magnitude than the T-S wave; the two 
velocity components can not be cleanly separated. 

Figure 3.16 shows the local maximum of the amplitude of vertical compo- 
nent of total disturbance velocity and the extracted acoustic component as 
functions of x. The solutions from Collis (1997) are also plotted for compar- 
ison. The total disturbance amplitudes follow almost identical shape along 
X, with the present solution slightly lower. The acoustic wave components 
compares very well throughout out the domain. 

By subtracting the acoustic components from the total disturbance solu- 
tion, the amplitude of the T-S wave is shown in figure 3.17. The results from 
Lin (1992) for incompressible flow and from Collis (1997) are also plotted. 
Again, we can see that three computations follow similar shapes with some 
small quantitative differences. Given the great sensitivity of the growth rate 
of the T-S wave, the difference is considered to be acceptable, and the overall 
agreement is satisfactory. 
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Figure 3.1: Flow configuration and inflow, outflow and wall boundary 

n 

n 

as H 
Ha m H 
H H H a H 
□ □ □ □ □ 
□ □ □ □□ 

H a [3] H [5] 
m a a H 
■ a a a 

Figure 3.2: The structure of block penta-diagonal coeflicient matrix resulting 
from implicit fourth order finite diflference scheme. Each block is a 5 x 5 
matrix. 
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Figure 3.3: The structure of periodic block penta-diagonal coefficient matrix 
resulting from implicit fourth order finite difference scheme.Each block is a 
5x5 matrix. 
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Figure 3.4:   Comparison of the convergence history between the present 
and standard subiteration schemes.  : present linearized subiteration. 
 : standard subiteration, symbols stand for each subiteration step. 
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Figure 3.5: Comparison of boundary layer velocity profile at the leading edge 
Re = 10^ M = 0.15, T^/To = 2.0, Pr = 1.0. : computation, : 
similarity solution 
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Figure 3.6:  Comparison of boundary layer enthalpy profile at the leading 
edge.7?e = 10^ M = 0.15, T„/To=2.0, Pr = 1.0. :   computation, 
 : similarity solution 

V 

Figure 3.7: Comparison of boundary layer velocity profile at the leading edge. 
Re = 10^ M = 0.8, T^/To = 2.0, Pr = 1.0. : computation, : 
similarity solution 
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Figure 3.8:  Comparison of boundary layer enthalpy profile at the leading 
edge.Re = 10^, M = 0.8, T^/To=2.0, Pr =  1.0. :   computation, 
 : similarity solution 

Figure 3.9:  Comparison of boundary layer enthalpy profile at the leading 
edge.fie = 10^, M = 0.15, TjTo=0.b, Pr = 0.7. :   computation, 
 : similarity solution 
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Figure 3.10:   Comparison of boundary layer enthalpy profile at the lead- 
ing edge.Re = 10^ M = 0.8, T^/To=0.5, Pr = 0.7. : computation, 
 : similarity solution 

Inflow Sponge 
Both 

Sponges 

Outflow 
Sponge 

I I I I I I I I I I I I I I I I I I I I I I I • I I i ■ 
^-4-20246 

X 

Figure 3.11: Schematic of computational domain and the inflow and outflow 
sponges. 
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Figure 3.12: Pressure gradient dp/ds along the plate, 
putation, , result of Collis (1997). 
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Figure 3.13: Comparison of the wall vorticity OJ^M- 

tation, , result of Collis (1997). 
present compu- 

42 



Figure 3.14: Streamwise velocity profile at x = 2.783. 
putation, , result of Collis (1997). 

-, present com- 
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Figure 3.15: Disturbance flow fields of sound receptivity on a flat plate with a 
super-elhpse leading edge, a) density p, b) streamwise velocity u, c) vertical 
velocity v^ Contour levels: p^^ = 5.07 x 10-^ p^in = -9.32 x IQ-^ Ap = 
7.59 X 10-6. u^^ = 4.80 x 10-^ Umin = -9.20 x 10-^ Atx = 6.55 i 10-^ 
Vmax = 1.17 X 10-^ t;„i„ = -3.90 X 10-^ Au = 8.16 x 10"^. 
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Figure 3.16: Local maximum of the amplitude of vertical component of dis- 
turbance velocity and the acoustic components.  : total disturbance. 
 -: acoustic component. and : results of Collis (1997). 
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Figure 3.17: Local maximum of the amplitude of the T-S wave based on the 
vertical disturbance velocity.  : present computation. : result 
of Collis (1997). : result of Lin (1992). 
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Chapter 4 

Generation of Free Stream 
Turbulence 

In this chapter, we describe the methodology of generating free stream tur- 
bulence for the main large eddy simulations. In order to avoid the artificial 
periodicity of recycling the same free stream turbulence data, a series of in- 
dependent but statistically identical, homogeneous and isotropic turbulence 
data sets are first computed. With the same specified length scale and in- 
tensity, they are concatenated by a blending procedure to form a sufficiently 
long time record for the main LES. Turbulence statistics before and after the 
blending shows that the blending procedure is a simple yet effective way of 
generating free stream turbulence. 

4.1    Inflow Turbulence 

Consider compressible turbulent flow in an arbitrary domain n ( as shown in 
figure 4.1 ) with a nominally uniform mean flow outside fi. The coordinate 
system {x, y, z) is such that the mean stream is aligned with the ar-axis. The 
boundary dCt of the domain fi may be split into three parts: a) an inflow 
boundary Sflj, b) an outflow boundary dQ,o, and c) the wall boundary 50^- 
These parts satisfy the requirement dO. = 5f2, U^OoU^^tu- Turbulence 
is convected into the domain 0 by the mean velocity U across the inflow 
boundary dVti. 

The incoming stream is assumed to consist of a "frozen" turbulent field 
being carried by the mean.  The time varying boundary condition on dQ.i 
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may then be obtained from the frozen field by converting, through Tay- 
lor s hypothesis, the x-coordinate to time (Lee et al, 1993).  The problem 
then reduces to accurate description of the "frozen" field. The simplest ap- 
proach IS to obtain a realistic turbulence field by a separate calculation of 
homogenous isotropic turbulence with desired characteristics (Reynolds num- 
ber, length scale, intensity etc.).  However, this approach may turn out to 
be very expensive. For example, in the free-stream turbulence(FST)-induced 
bypass transition of a boundary layer, statistical convergence requires at least 
SIX flow through times; the domain for inflow turbulence simulation is thus 
~ 6L^ xLyXL^ in size. If the resolution for the isotropic turbulence is the 
same as the main simulation, the inflow turbulence calculation becomes six 
times larger than the problem of interest, making this approach impractical. 

1 his limitation may be overcome by catenating, in random order, isotropic 
turbulence in smaller boxes provided that the catenation is carried out with- 
out significant modification of turbulence characteristics. By exploiting isotropy 
and reusing individual boxes, a long time record can be generated with a lim- 
ited number of realizations. Compared to the brute force method, this prc> 
cedure is not only cheaper, but also capable of generating inflow turbulence 
with time varying charax^teristics. We first describe the large eddy simulation 
of the individual realizations, and then develop the the blending procedure 
to concatenate these realizations and form the long time record. 

4.2    LES of homogeneous isotropic turbulence 

The individual isotropic homogeneous turbulence data are computed by sep- 
arate large eddy simulations. The numerical LES code is adapted from an 
existing DNS code (Lui and Lele, 2001) by incorporating the same dynamic 
SGS model d^cribed in Chapter 2. The temporal and spatial dicretization is 
fourth order Rung^Kutta method and sixth order compact finite difference 
scheme (Lele, 1992). Periodic boundary conditions are applied in all spatial 
directions. The initial condition is a solenoidal velocity field with uniform 
densito^ and temperature field. The initial three dimensional energy spectrum 
is of the form 

Ein) ex «'• exp[-2(«/Kp)2] (41) 

where the peak wave number K, is equal to 4. After first validating the 
LES code against both the DNS of Lee et al. (1991) and the experiment of 
Comte-Bellot and Corrsin (1971), we apply the simulation to a rectangular 
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box of the size ISD, 1.6D and QAD in x, y and z direction, where D is the 
diameter of the elliptic leading edge to be placed in the domain of the primary 
simulation. Note that the spanwise box size OAD is chosen to be the same 
as in the primary simulation. To preserve the isotropy of the turbulence, 
the grid size is chosen to be 128x128x32, i.e. Ax = Ay = Az. A few small 
wave numbers which represent the long waves permissible in the x and y 
directions but not in z are zeroed out initially to preserve the turbulence 
isotropy. After the turbulence statistics such as intensity and length scale 
reach predetermined values, snapshots of instantaneous flow fields are taken 
as one turbulence realization. 

To compare directly with experimental measurements, throughout this 
report the turbulence integral scale L is determined by a least-squares curve- 
fitting to the autocorrelation data using an exponential function (Van Fossen 
et al., 1995) 

R{r) = e-^l^ (4.2) 

Data between 0.33 < R{r) < 1.0 were used for curve fitting. The exponential 
function does not have the correct limiting behavior for very small values of 
r, but the fit is satisfactory over the main portion and the fitted R{r) can be 
integrated from 0 to oo to give the turbulence integral length scale. Figure 
4.2 shows the initial and final three dimensional energy spectrum, where the 
small scale turbulence has filled the high wave number space, figure 4.3 
shows the velocity skewness reaches the typical value —0.4 — 0.5 for the 
realistic turbulence at RCL about 80. The time development of turbulence 
kinetic energy is shown in figure 4.4. Notice that uP' is slightly larger than 
u^ and v^ in the time series, which may be caused by the different size 
of the computational domain in the z direction compared to the x and y 
directions. Since this lack of isotropy is small, it is not expected to have any 
major eiFect. As we started with the uniform density field. Figure 4.5 shows 
the time development of the RMS value of density fluctuation. The time 
development of the dynamic model coefficient C is shown in figure 4.6. 

4.3    Blending Procedure 

Before we introduce the blending zone, in which the two date set transition 
smoothly from one data to another, consider first two independent, statisti- 
cally identical random velocity fields u^'^^ and u^^^ that are homogeneous and 
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isotropic. Let u be a linear combination of the form 

where a and ^ are scalar constants. If u^^) and u^^) are velocity fields corre- 
sponding to homogeneous isotropic turbulence, their mean is zero, as is that 
of the new field u. Furthermore, the two point correlation /2j_,(r) for the new 
field u, 

IkAr) = (ti,(x)u,{x+r))   =   a^ (uf )(x)tx;.^)(x-f r)) + ^^ (uf\^)uf [x^-r)) 

+   a^ ((ui^)(x)uf (x+r)) + {uf\x)y^\x-^t^y) 

reduces to, 

RiAr) = {a'+ P') H^^ (4.5) 

by virtue of u(^) and u^^) being independent, where the angled brackets (•> 
indicate an averaging (volume average suffices for the homogeneous fields un- 
der consideration). To retain the second order statistics of the original fields 
u^^l and u^^\ an appropriate rescaling of the definition in (4.3) is required. 
This renormalization yields 

Using trigonometric identities, this may be rewritten as 

u = cos ^ u^^^ + sin e u^^) (4.7) 

The new field so obtained retains the mean values and second order statistics 
of the original fields. 

This linear combination may be generalized by varying 0, allowing smooth 
transition from one field to another over a blending zone within which 0 varies 
from 0 to f as illustrated in figure 4.7. With 0 = e{x) and (-) restricted to 
averaging in y-z plane, the single point statistics are preserved, as are two 
point correlations in the 2/ - 2; plane. The two point correlation in the x 
direction, by (4.7), can be expressed as 

< Ui(x)uj(x -I- r^) > = cos [ 0(x, r^) ] Rij{r^) (4.8) 
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where (^(x, r) = 0(x + r) - 0(x), and i?ij is the original two point correlation 
in X. Let us consider the case where r < L, where L is the correlation length 
of the original field, then in the blending zone, (^(x, r) can be estimated as 

where Xj, = {Tr/2)/{dd/dx)max is defined as a characteristic length of the 
blending zone. From (4.8), the difference of the two point correlation in x 
between the blended and the original field is proportional to |(^^ when <j> <^l, 
so we have 

I < «i(x)u,(x + r.) > - Rij(r,)\     -     {h^Rij{r,) (4.10) 

which means the longer the blending zone, the less error will result in the 
two point correlation in x direction. 

The dependence of ^ on x within the blending zone, however, also intro- 
duces an extra term Vg in the dilatation field: 

V-u   =   cos^(V-u(^)) + sin0(V-u(2)) + X>e 

2>e   =   (-sin^u(^) +cos0u('))^x (4.11) 

In incompressible flows, Vg violates mass conservation, whereas in compress- 
ible flows it can cause large artificial pressure fluctuations. This undesired 
dilatation may be removed by a projection method based on the Helmholtz 
decomposition theorem for the velocity vector u 

u = V X A + Vy? (4.12) 

where A and ip are the vector and scalar potential of u. The scalar poten- 
tial ipe corresponding to the extra dilatation V^ satisfies a Poisson equation 
obtained by taking the divergence of (4.7), 

VVe = T>e (4.13) 

This equation is solved with homogeneous boundary conditions in x direction 
and periodic in the other two directions. Subtracting V(pe from u yields the 
the final expression of the blended velocity u as 

U = U - Vipe (4.14) 
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Two sample data sets of homogeneous isotropic turbulence are used to 
demonstrate the blending procedure. The two data sets may be regarded 
as different realizations of the same turbulent statistical state, to which the 
above blending procedure is applied. In the present case, the size of the 
blending zone is taken as 1/8 of the box length. The results for blending 
over 1/16 of the box length are found to be similar. 

The energy spectra of the original and blended turbulence fields are shown 
in figure 4.8. The energy spectrum of the blended field is very close to the 
original. Because of the increased length in the ar-direction, a lower wave 
number with very small amount of energy is present. The effect of the pro- 
jection procedure is shown in figure 4.9, where dilatation, averaged over y-z 
plane, is plotted as a function of x. Simple blending using equation (4.7) 
produces a dilatation spike inside the blending zone which is removed by 
(4.14). Notice that outside the blending region, the flow field remains intact. 
Numerically, the velocity associated with the extra dilatation V^e »s at least 
one order of magnitude smaller compared to u. The effect of removing extra 
dilatation on the overall second order statistics is therefore negligible. The 
velocity gradient skewness averaged in y-z plane is plotted in figure 4.10 as 
a function of x. For clarity, the second half of the first data set and the first 
half of the second data set are shown together on top. The blended data of 
the corresponding range is shown at the bottom. All three components of 
the skewness maintain similar magnitude in the blending zone without ex- 
cessively large fluctuations. The corresponding vorticity distribution, shown 
in figure 4.11 before and after blending, is also well behaved. 

In this Chapter, a blending procedure is described for combining realiza- 
tions of homogeneous isotropic turbulence into a unified field that serves as 
a realistic representation of free-stream turbulence. Different realizations are 
catenated by a smooth blending function, and extra dilatation is removed us- 
ing Helmholtz vector decomposition theorem. By construction, the combined 
field preserves the turbulence intensity, and the change to other statistical 
quantities are shown to be minimal. Examples will be given from the LES of 
free-stream turbulence effect on leading edge heat transfer in the subsequent 
chapters. This simple yet effective method could be useful in other direct 
or large eddy simulations in which effects of sustained free-steam turbulence 
are important. 
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Figure 4.1: Length of free-stream turbulence field needed for typical spatial 
numerical simulations. 
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Figure 4.2: Initial and final three dimensional energy spectrum for isotropic 
homogeneous turbulence in a rectangular box. 
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Figure 4.3: Time development of the velocity gradient skewness.r = L/urms, 
where L is the turbulence integral length scale. 
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Figure 4.4:  Time development of the turbulence kinetic energy. 
Turbulence kinetic energy, : u^^ — ■:v\ 
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Figure 4.5: Time development of the density fluctuation. 
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Figure 4.6: Time development of the dynamic SGS model coeflBcient C. 
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^^^^ Blending zone 0 < e{x) < 7r/2 

Figure 4.7: Blending function for joining two turbulence realizations. 

Figure 4.8: Energy spectra for the original and blended data sets 
data 1, : data 2, : blended 
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Figure 4.9: Divergence of blended compressible turbulence data before and 
after the removal of extra dilatation field.   : original, , extra 
dilatation removed. 
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Figure 4.10:  Velocity gradient skewness.   The blending zone are marked 
between dashed lines. , , and are S^g in x, y, z directions. 
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Figure 4.11: Vorticity fluctuation.  The blending zone are marked between 
dashed lines.  , , and are u in x, y, z directions. 
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Chapter 5 

Numerical Simulation Results 

In this chapter, we present the numerical results of LES of free-stream tur- 
bulence impinging upon an elliptical leading edge and the related heat trans- 
fer enhancement. The problem set up is based on the experimental results 
of Van Fossen et al. (1995), and the LES results shows very good agree- 
ment with the experimental measurements. The interaction process between 
the free stream turbulence and leading edge is analyzed through the turbu- 
lence statistics. The characteristic vortical structures responsible for the heat 
transfer enhancement are identified. 

5.1    Experimental Setup 

In the wind tunnel experiments of Van Fossen et al. (1995), free-stream turbu- 
lence is generated by diflFerent grids with different length scale and intensity, 
see figure 5.1. The heat transfer is measured in the stagnation region of 
four elliptical leading edge models; the ratios of major to minor axes are 1:1, 
1.5:1, 2.25:1, and 3:1. The Reynolds number based on diameter of curva- 
ture at leading edge and the mean streamwise velocity ranges from 37000 
to 228000. Turbulence intensity (measured in the absence of the models) is 
in the range of 1.1 to 15.9 percent. The ratio of turbulence integral length 
scale to the leading edge diameter range from 0.05 to 0.30. In this section we 
describe the specification of turbulence intensity and length scale according 
to the experiments. We choose to use experimental data set No. 244, corre- 
sponding the leading edge with 3:1 major to minor axis ratio, as an example 
to describe the method. In our simulations, this corresponds to the case B 
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in table 5.2 where the flow conditions and computational parameters used in 
the present LES are summarized. The main simulation results that will be 
presented in this chapter are also from case B. 

First, the Reynolds number Re in the simulation is defined as 

/?^     -  (^)°o-P        2(1 - B) {pUUD 
°° ~ ~1IZ~ =     2-B        I        = 0-8284 i?e„„ (5.1) 

where Rcav is the Reynolds number used in the experiments, and {pU)av is 
the average between the mass fluxes at far upstream and the location with 
maximum model blockage. The blockage coefficient B (Maximum model 
thickness / Wind Tunnel Height) is 0.293 for the 3:1 model. The experimental 
condition is corresponding to the data set No. 244 for this model and the 
measured turbulence data are: 

/?e„„ = 50700       T« = 0.0352       A,/Z> = 0.121,        D = 6.6 cm    (5.2) 

Note the values of Tu and AJD are taken at the corresponding location of 
leadmg edge but in the absence of the model. The following experimental 
correlations are obtained for Tu (in percentage) and A^ as a function of the 
streamwise distance x from the turbulence generating grid: 

where b is the bar width of the grid. For the grid used in this group of 
measurement, grid G3, the coeflScients in equation (5.3) are 

a = 149.4,        6 = 0.318 cm,        m =-0.830,        7 = 0.264        (5.4) 

Thus, corresponding to the experimental value given in equation (5.2), we 
can obtain that the leading edge is located at 

XLE = 91.45 6 = 4.4 D (5.5) 

downstream the grid. The corresponding values for Tu and A^ at the inflow 
boundary which is in current simulation located 1.5D upstream of the leading 
edge can then be obtained by setting 

xiN = XLE-'^.^D = 2.9 D = 60.19 b (5.6) 
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Thus the Reynolds number, turbulence intensity Tu and streamwise integral 
scale Ax are 

Rev = 42000,       TM = 0.05,        ^=01 (5-7) 

Under the operation condition of the wind tunnel at T « 300K, the kinematic 
viscosity of air is i/ = 1.60 x 10~^m^/s. For the Reynolds number Re = 
42,000, the incoming upstream velocity is Uoo = 10.18m/s, which is roughly 
corresponding to Moo = 0.03. To make the compressible code run efficiently, 
we choose the upstream Mach number to be 

Moo = 0.15 (5.8) 

5.2    Simulation procedure 

To represent the experimental conditions accurately with the current flow 
configuration, the simulations are performed in a progressive way. We first 
generate the incompressible potential flow around the body with blockage 
efiect taken into account. For this purpose, consider a point source placed 
midway between two parallel planes with a uniform incoming stream Uoo, 
the blockage effect causes the flow field to differ, particularly in pressure 
distribution, from the open flow case where the walls are absent. Let a be 
the half height of the wind tunnel and b the half thickness of the plate (see 
appendix A ), choose the stagnation point at the center line y = 0 as the 
origin x = 0, the downstream blockage can be realized by placing the point 
source S of strength 27rm, where 

m = — -Uoo (5.9) 
n[a — 0) 

at location x = c, where 

e=^l„(l + ^) (5.10) 
TT aUoo 

The resulting velocity field may be expressed as 

u   =      fet/oo    . coth^ ^ 2a    ■ 
2(a - b)  cos2(|f) + sin2(f) coth' ^^      b 

bUoo    , tan(f) 

2(a - b) ^sinh" ^ 4- tan2(f) cosh' ^ 
(5.11) 
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Although in leading edge region, the separating streamline in (5.11) repre- 
sents a modified Rankin body instead of the exact elliptic shape of the model, 
it is a good approximation to the low Mach number flow far upstream and 
downstream. So (5.11) has been used as the initial condition for the com- 
pressible potential solution. The compressible potential flow is solved using 
the procedure described in Chapter 3 and the solution sought in two steps. 
First we solve the potential flow in a large domain which covers half of the 
ellipse downstream and extends vertically from the bottom to the top wind 
tunnel wall. On such a grid, the far field boundary conditions can be read- 
ily provided by the above incompressible solution. After the compressible 
solution is obtained on the large grid, a smaller grid which only surrounds 
the leading edge region is extracted for the subsequent viscous computa- 
tions. Accordingly, the boundary conditions needed for viscous computation 
on this smaller, inner grid can now be provided through the whole solution 
at the boundary, see figure 5.2. This dual grid approach improves the res- 
olution near the leading edge and reduces the computational cost for three 
dimensional turbulence simulation. 

As aforementioned, four different models with the same leading edge di- 
ameter but different major to minor axes ratios, from 1:1, 1.5:1, 2.25:1 to 
3:1, were used in the experiments to produce different leading edge velocity 
gradient. These cases have been duplicated in the compressible potential 
solution to test the numerical accuracy. Figure 5.4 shows the comparison of 
the velocity gradients at the leading from the present compressible potential 
solution at M^o = 0.15 with the results obtained by a panel method (Van 
Fossen et al., 1995). Note the leading edge velocity gradients are affected 
significantly by the blockage effect, and the excellent agreement shows that 
this important feature of the experiments has been captured accurately. 

For the viscous calculation, the flow parameters are Reo = 42,000, Moo = 
0.15, T^/TQ = 1.075, where T^ and TQ are the wall and total free stream 
temperature. The laminar solution for density p, velocity u and v and the 
temperature T are shown in Figure 5.5 to 5.8. The corresponding profiles 
along the stagnation streamline (y = 0) are shown in figure 5.9 to 5.11. It 
can be seen that while the p and T are only significantly changed inside the 
boundary layer, considerable gradient caused by the presence of the model 
exists in the mean streamwise velocity even at the inflow boundary. 

The non-dimensional leading-edge heat transfer coefficient, or Frossling 
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number, is defined as 

Fr = -^ = ^^^!^ (5.12) 

where T„ is the nondimensional wall normal temperature gradient, and /c^ 
and Ko is the thermal conductivity evaluated at the wall temperature and 
the free-stream total temperature. Following Rigby and VanFossen (1992), 
the characteristic temperature difference AT in (5.12) is chosen to be the 
difference between the wall temperature and the adiabatic wall temperature, 
i.e. AT = r„, - Taw The adiabatic temperature can be approximated by 

Ta^ = y/P^{To-Te,ge)+Tedge (5-13) 

Here Tgdge is the temperature at the edge of the boundary layer. Using the 
isentropic relation and assuming constant pressure across the boundary layer, 
the Tedge is obtained by 

Te,ge = To (%i)(^-l)/^ (5.14) 

where PQ is the free stream total pressure. The laminar computation of the 
Fr distribution along the leading edge surface is compared with experimental 
data obtained without the turbulence generating grids in figure 5.12 . Three 
groups of data at slightly different Reynolds numbers (based on Uav) are 
included, and the agreement is quite good. Note that in such cases, the 
background fluctuation in the wind tunnel is Tu = 0.3% and the length scale 
is L/D = 2.308. 

The steady two dimensional viscous solution is then taken as the LES base 
flow to which free-stream turbulence, generated by the method described in 
Chapter 4, is introduced through the inflow boundary. 

However, prior to the LES corresponding to case B, a preliminary sim- 
ulation, Case A, was preformed at a lower Reynolds number to test the 
numerical method and optimize the computation configuration. Figure 5.13 
shows the turbulence intensity along the the stagnation stream line. The 
root-mean-square values are obtained by averaging «', v' and w' in time and 
in the spanwise direction. The turbulence is largely decaying until it reaches 
a distance of about D from the leading edge where the behavior of u', v' and 
w' start to change. Notice that close to the body u' and w' are amplified 
while v' continues to decay. In Van Fossen's experiment, a power law curve of 
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Case 

A 

B 

C 

D 

Ma       Re       Tu    L/D     Domain (a:,y,z) Grid 

0.15 10,000 0.08 0.10      7D x lOD x D 384 x 192 x 64 

0.15 42,000 0.05 0.10 3.5D x 5D x0.4D 192 x 144 x 48 

0.15 43,740 0.11 0.06 3.5D x 5D x0.4D 192 x 144 x 48 

0.60 42,000 0.04 0.06 3.5D x 5D x0.4D 192 x 144 x 48 

Table 5.1: Flow conditions and the parameters of numerical simulations. 

the form Tu ~ x"" was used to fit the decay of free-stream turbulence in the 
absence of the model, here x is the distance downstream of the turbulence- 
generating grid. The power-law-fitted curve is also plotted in Fig. 5.13 with 
the same exponent m = -0.83 used in the experiments. The fairly good 
agreement indicates that the initial decay rate of the free-stream turbulence 
has been captured correctly in the simulation. 

Figure 5.14 uses a logarithmic scale on a slightly shifted x-axis to show 
the same data as in figure 5.13 with the leading edge region amplified for 
clarity. The transformation of the x-axis used here is f = log{Am-x). Note 
X = 4 corresponds to the location of the leading edge. It reveals that the free- 
stream turbulence goes through three different stages as it impinges upon the 
leading edge. The first is free decay of the turbulence, corresponding to the 
distance from the inflow to approximately x = 3, as the presence of the body 
has not been felt strongly by the incoming turbulence. The second stage is 
an inviscid rapid distortion process, approximately corresponding to the dis- 
tance from X = 3 to X = 3.95, where the free-stream turbulence experiences 
large straining by the diverging mean streamlines. A direct, quantitative 
comparison between the present results and the compressible rapid distor- 
tion theory (RDT){GoIdstein, 1978) is not easily obtained due to the viscous 
eflfect and the relatively small scale of turbulence, but the increase of MJ.^, 

a"<l <m,. and decrease of v[^^ are qualitatively in agreement with the tem- 
poral prediction of RDT under plane strain(Batchelor and Proudman, 1954). 
The third stage occurs at a distance very close to the wall where the viscous 
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dissipation dominates and all the turbulence rapidly reduces to zero at the 
wall. Also notable is that the spanwise velocity lyj.^^ continues to increase 
significantly while u^.^^ and v'^^^ start decreasing due to the presence of the 
wall. This is due to inviscid wall-blocking or splatting eflFect (Hunt and Gra- 
ham, 1978; Perot and Moin, 1995), in which the wall normal fluctuation is 
suppressed by the no penetration condition of the wall and has to transfer 
its energy to the other two components. As wall blocking is an inviscid pro- 
cess, it typically extends beyond the viscous dissipation range in the normal 
direction. 

It is based on the results of this simulation that a dual mesh methodology 
is adopted for subsequent simulations as shown in figure 5.2. The allows the 
LES to focus on the rapid strain of the free-stream turbulence and the viscous 
interaction between the turbulence and wall. Hence in the LES of case B, C 
and D, the inflow boundary of the mesh is chosen to be roughly corresponding 
to the end of the free decaying process, in the present case at l.bD upstream 
the leading edge. The domain size in the spanwise direction is chosen to 
be OAD. Figure 5.3 shows four streamwise locations along the leading edge 
surface where profiles of various turbulence statistics at these location will 
be presented. 

5.3    Inflow turbulence 

Twelve independent realizations of homogeneous isotropic turbulence with 
intensity Tu = 5% and integral length scale C/D = 0.1 are pre-computed 
using the large eddy simulation. The LES code for inflow turbulence genera- 
tion uses the same dynamic SGS model and is adapted from a DNS code (Lui, 
2003) which incorporates six-order compact finite diff^erencing and fourth or- 
der R-K time marching scheme. To fit the aspect ratio of the main simula- 
tion, the LES of decaying turbulence is performed in a rectangular box of 
size 1.6D, 1.6D and OAD in x, y and z direction, respectively. The number 
of grid points is 128 x 128 x 32 to ensure the turbulence isotropy and initial 
velocity field is solenoidal. After the twelve independent turbulence fields are 
obtained, they are then lined up spatially and joined together by applying 
the blending procedure at the interface between adjacent fields, resulting in 
a box of turbulence twelve times longer than each individual realization, but 
having the same characteristics as each one. This long blended field then 
serves as the free-stream turbulence which is convected into the main com- 

64 



putational domain through the inflow boundary located 1.5D upstream the 
leading edge. 

Figure 5.15 shows the visualization of instantaneous spanwise velocity 
within a slice of 2: = 0 and the temperature gradient at the blade surface 
near the stagnation point s = 0. It can be seen that the isotropic turbulence 
eddies are strongly stretched near the leading edge region. As a result, the 
vorticity in the free-stream in x direction Ux is compressed and reduced, 
but the Uy is greatly stretched and amplified. After the leading edge, these 
vortices wrap around the leading edge; the vortices originally in transverse 
direction tend to form strong streamwise vortices. The strong and relatively 
thinly strectched vortices impinging upon the leading edge and modifies the 
thermal boundary layer significantly As a result, the surface heat transfer 
distribution develops into thin, streamwise elongated streaky structures as 
shown in figure 5.15. 

The instantaneous temperature contour, corresponding to the flow field in 
figure 5.15 are shown in figure 5.16 through a series of wall normal sections at 
different streamwise locations. Clearly, the instantaneous temperature con- 
tours develops into various mushroom like structures under the influence of 
the incoming turbulence eddies. A sequence of visualizations show that these 
mushroom structures typically do not occupy a fixed spanwise location, but 
moves laterally over a significant distance during their lifetime. The charac- 
terization of this movement and its implication are discussed subsequently. 

5.4    Turbulent mean flow and heat transfer 

The turbulent mean_density p, streamwise velocity U, transverse velocity 
V and temperature T are shown in figure 5.17, 5.18, 5.19 and 5.20. The 
contours of the turbulent mean fields show qualitatively similar patterns 
to the corresponding laminar quantities, particularly outside the boundary 
layer. 

The profiles of turbulent mean streamwise velocity U (in local s - n 
coordinates) and temperature (r-l)/(T^-l) are compared with the laminar 
profiles at s = 0 in figure 5.21, 0.2D in figure 5.22, 0.8D in figure 5.23 and 
1.6D in figure 5.24. Of all the locations, the turbulent mean temperature 
profile has a greater slope at the wall while the mean velocity profile has 
almost identical slope at the wall. This means that the heat transfer is much 
more sensitive to the free-stream turbulence than the skin friction. 
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The time history of spanwise averaged Frossling number at the stagna- 
tion point is shown in figure 5.25. Notice that the significant increase in Fr 
around < = 4 is the time when the free-stream turbulence reaches the leading 
edge after entering the domain at f = 0. The turbulent mean Fr after < = 4 
shows a clear increase over the laminar value, indicating the heat transfer en- 
hancement by the free-stream turbulence. The distribution of the Fr on the 
surface is plotted in figure 5.26 along with the experimental measurements of 
Van Fossen et al. (1995) for comparison. Both the computation and exper- 
imental results show that while the surface distribution of the heat transfer 
coefficient is essentially the same as in the laminar case, its amplitude is 
significantly increased by the free-stream turbulence. Although the present 
LES result is slightly lower than the experimental measurements, as not all 
the turbulence scales are resolved in the computation, the overall agreement 
is quite good. It will be shown in Chapter 6 that except at very small scales, 
as the length scale of the turbulence decreases, its effect on heat transfer 
increases. So it is generally important to resolve the small scale turbulence 
for good numerical prediction of stagnation point heat transfer. 

To quantify the effect of SGS modelling, a typical distribution of spanwise 
averaged SGS UT is shown in figure 5.27. The distribution of time averaged 
SGS UT is shown in 5.28. Both figures show that the maximum VT occurs 
in the leading edge region, where strong vortex stretching and amplification 
produces small scale turbulence. However, the value of i^ is relatively small, 
about half of the molecular viscosity, indicating the grid resolution close to 
the wall is adequate. 

5.5    Reynolds stress and turbulent transport 

Of main interest in stagnation point turbulent flow is the distribution of tur- 
bulence statistics along the stagnation streamline. Figure 5.29 shows stag- 
nation line distribution of RMS value of turbulence intensity. As mentioned 
before, the choice of the closer inflow boundary essentially eliminates the free 
decaying stage of the turbulence. After a relatively balanced, isotropic de- 
velopment stage before x ~ 2.4, the free-stream turbulence becomes strongly 
anisotropic due to the mean flow straining effect, i.e. Urms, "^rms increase but 
Vrms decreases between x ~ 2.4 to x ~ 2.7. At this stage, the turbulence 
experiences the change of mean flow due to the presence of the leading edge, 
but it was not until within even a closer distance a; > 2.7 that the leading 
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edge surface itself exerts an strong blocking effect upon the turbulence. The 
blocking effect causes a continuing, rapid increase in Wrm$ while Urm» already 
starts to decay. At the same time, because the high value ofurms and Wrms in 
this case, the previously decreasing Vrms also start to increasing after x ~ 2.7 
in an almost linear fashion. Within an extremely closer distance, viscous 
effect dominates and all the turbulence vanishes at the wall. 

To understand the dynamics of turbulence Reynolds stress and heat trans- 
port, it is instructive to write their governing equations — the Reynolds av- 
eraged Navier-Stokes equations. Let / denote the time average value of /, 
we can decompose turbulence fields into mean and the fluctuation 

p = p + p', Ui^Ui + u[, p=P + p', T = T + T' (5.15) 

and similarly for the transport coefficients 

XT = X + A',        HT = 77 + /i',        KT = K + K', (5.16) 

Then the steady transport equation for the Reynolds stress v~uj is 

pUkiuyj)^   =   -urpf,-u^j 

- Ui,k [ PK^) + uj^^+^^] 

-p<K«j),fc-p'"'fc(«i«j),* 
+ '^R (5.17) 

On the right hand side of (5.17), the first row is the velocity pressure gradient 
correlation; the second and the third rows are the Reynolds stress production; 
the fourth row is the turbulence transport, ^R in the last row is the turbulent 
dissipation 

(ADj<-f D^AX + A^^)] 

iliS^i + 5,M/^ + /i^5j,^fc«;)] (5.18) 
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Where D = u^ denotes the divergence of the velocity field. Similarly, for 
the turbulence heat flux u'^T', we have 

mW% = ;f%__  
-   Ui,klMT' + UkfyT' + f/u',T']  

+   $p + $H (5.19) 

On the right hand side of (5.19), the first row is the temperature pressure gra- 
dient correlation; the second and the third rows are the heat flux production; 
the fourth row is the turbulence transport and the fifth row is the turbulent 
heat conduction. In the last row $p, and $/? are the pressure dilatation work 
and viscous dissipation. The expressions for $p and $/f are omitted here; 
they are usually not importance in understanding the turbulence dynamics. 

Figure 5.30 to 5.32 show the turbulence budget for u'^, v'^ and w'^ along 
the stagnation line. For u'^, there is a large production term corresponding 
to —u'^dU/dx due to the mean flow straining. Conversely, the production for 
y/2 jg x/idU/dx which has an opposite sign, and thus actually takes energy 
away from the vertical fluctuation. Since the turbulent mean flow is two 
dimensional, there is not production term for w'^. 

The turbulent transport has the largest absolute value but is mostly con- 
fined only within near wall region. It also reverse sign as the wall is ap- 
proached. This is characteristic of turbulent transport, i.e. when integrated 
along the stagnation line, its net contribution to turbulence energy is zero. 
Turbulent transport is not important for v'"^ compared to other terms. For 
w'2, turbulent transport largely cancels with the mean convection term, and 
the summation of these two plotted in 5.32 shows it has a weak dissipative 
effect on the w'^. 

The viscous dissipation term extends from the wall the largest distance 
for u'^ and smallest distance for v'^. It has the largest value w'^ yet smallest 
value for u'^. Except for w'^, the dissipation term do not play a significant role 
at the along the stagnation line unless within the extremely close distance to 
the wall for v'^. 

Of particular interest is the redistribution term, i.e. the correlation be- 
tween velocity and pressure gradient.   It has comparable amplitude in all 
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three Reynolds normal stress and plays very a important role for each of 
them . Essentially, its overall effect is to induce large turbulence anisotropy 
in_strongly strained jnean flow. In figure 5.30, it appears largely negative for 
u'2 but positive for v'^ and w'^ as shownjn figure_5.32 and 5.32. So it takes 
energy from u'^ and redistribute it to u'2 and w^. For both of them, this 
appears to be the only major energy input. For v'^ it balances with the neg- 
ative production term, while for w'^, it balances with the viscous dissipation 
and total convection. It should be pointed out that this particular feature of 
redistribution term is important for Reynolds stress modelling. The turbu- 
lence anisotropy induced by the redistribution is often the cause of the failure 
of using two equation models in strongly strained flows, since in these models 
the turbulence is usually assumed isotropic and only the kinetic energy k is 
modelled. 

To more clearly show the vortex stretching effect, the fluctuation vorticity 
along the stagnation line is plotted in figure 5.33. It can be seen that the 
amplitude of turbulence vorticity cj'^ has increased by two order of magnitude 
from the inflow to the wall. 

To better visualize the typical vortex structures and its effect on heat 
transfer, the temperature contour and the corresponding velocity field in the 
stagnation plane y = 0 is shown in figure 5.34 at a time interval of At = 0.6. 
The velocity fields show clearly the formation of these mushroom shapes in 
the thermal contour; the strong, amplified y-oriented vortices creates re- 
verse flow (u < 0) in the stagnation region, which lifts up the hot fluid 
particle close to the wall and swaps them with those away from the wall at 
a lower temperature. In doing so, the mushroom structure for temperature 
contour forms. However, it should be noted that directly underneath these 
mushrooms structures, the thermal boundary layer is thicker than the undis- 
turbed case — the heat transfer is in fact reduced. It is the region between 
these mushrooms, where the disturbed flow has a positive normal velocity 
towards the wall, the boundary layer become thinner, and consequently the 
heat transfer is increased. The overall or spanwise averaged Fr number ap- 
parently will depend on the distribution and intensity of these thickened and 
thinned regions. 

From figure 5.34, it is observed that these mushrooms are moving along 
the spanwise direction. To quantify its average convection speed, the space- 
time correlation of the wall vorticity along the stagnation line (^-axis) is 
shown in figure 5.35. By following the slowest descent line on the contour, 
the expected value of the moving speed is found at ±0.06, the same order as 
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Wrms- The lateral movement of the wall vorticity can also be explained by the 
wall blocking effect. Considering a single vortex approaching a wall parallel 
to its axis, an inviscid image vortex with opposite sign will be generated 
at a equal distance on the other side of the wall in order to satisfy the no 
penetration boundary condition on the wall. Then the mutual induction of 
these two vortices generates a velocity along the wall whose magnitude is 
in general proportional to the intensity of the approaching vortex, and this 
cause the vortex moves laterally. 

The probability density function of Fr at the leading edge is shown in 
figure 5.36. It deviates from a normal distribution and indicates that events 
associated with large positive heat transfer are less frequent than those with 
large negative variance.    

Figure 5.37 to figure 5.46 show the distribution and profiles of f/^, u'^, 
v'^, w'^ and T'^. Figure 5.47 to figure 5.52 show the distribution and profiles 
of u'v', u'w', and v'w'. Figure 5.53 to figure 5.58 show the distribution and 
profiles of t?T', 'xfP and w'T. 

The rest of the figures show the magnitude and distribution of various 
terms in the Reynolds stress transport equation, including the production, 
pressure strain and turbulent transport. These terms are typically important 
for turbulence modelling and the profiles at specific locations are intended 
to provide quantitative information. For brevity, the description of the char- 
acteristics of each figures is omitted here, but the specific information are 
mostly provided in the captions. 

5.6    High intensity and High Mach Number 
cases 

At the time of this writing, the post processing of the data from the LES 
of high turbulence intensity, case C, and high Ma number, case D, is still 
in progress. Only preliminary results will be presented here. Figure 5.83 
shows the stagnation streamline distribution of turbulence intensity. It has 
essentially similar features as lower Tu case B except the turbulence decays 
after entering the domain. This is mainly because the smaller length scale 
for case C. The heat transfer coefficient on the surface is shown in figure 
5.84. It shows good agreement with the experimental results but the simu- 
lation results is also lower than the measured data. Figure 5.85 shows the 
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Fr distribution on the surface for high Mach number case. Since in this 
case the intensity is relatively low, the heat transfer enhancement is modest. 
Qualitatively, the shape appears similar to the low Mach number cases. 

,'- Probe access 

r- 4.85:1 Contraction 
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transfer _,' 
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Soda straw 

Figure 5.1:  Wind tunnel measurements for leading edge heat transfer en- 
hancement under free stream turbulence. (Van Fossen et al., 1995) 
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Figure 5.2: The inner grid of 192 x 144 near the leading edge and outer 
region in which potential solution are first obtained to provide the boundary 
conditions for the inner solution. 
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Figure 5.3: Locations of the cross sections along the surface. 
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Figure 5.4: Leading edge velocity gradients. Solid line with plus sign is the 
present simulation, and the circles from Van Fossen et al. (1995). 
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Figure 5.5: Contours of density p of the laminar flow at Ma = 0.15, Re 
42,000, T^/To = 1.075. 
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Figure 5.6: Contours of streamwise velocity u of the laminar flow at Ma 
0.15, Re = 42,000, T,,/Tfi = 1.075. 
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Figure 5.7: Contours of transverse velocity v of the laminar flow at Ma 
0.15, Re = 42,000, T^/TQ = 1.075. 
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Figure 5.8: Contours of temperature T of the laminar flow at Ma 
i?e = 42,000, T^/To = 1.075. 
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Figure 5.9: Density p along the stagnation line. Ma = 0.15, /Ze = 42000. 

77 



ti      0.4 

X 

Figure 5.10: Streamwise velocity U along the stagnation line.  Ma 
Re = 42000. 
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Figure 5.11: Temperature T along the stagnation line.  Ma = 0.15, Re = 
42000. 

78 
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Figure 5.12: Frossling number distribution on the surface. — 
computation, Symbols: experimental measurements at Tu = 0.3%, L/D = 
2.308; o:  Re^v = 50100, A:  Rcav = 50200, D:   Rcav = 50700. 
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Figure 5.13: Turbulence intensity along the stagnation streamline. : 
y-rms, :  Vrms, :  Wrms,  :  power law fit by a;~°^'.   (Van 
Fossen et al., 1995). 
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Figure 5.14: Turbulence intensity along the stagnation streamline in trans- 
formed coordinates x for clarity, where x = log(4.02 — a:).   :  Urms, 

'^rmsj ■: Wr 
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Figure 5.15: Instantaneous spanwise velocity in x-y plane and temperature 
gradient on the body surface. 
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Figure 5.16:  Instantaneous temperature contours at different locations on 
the body surface. 
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Figure 5.17: Mean density contours. Re = 42,000, Ma = 0.15, Tu = 0.05, 
L/D = 0.1. Contour minimum: 0.9076, maximum: 1.004, increment: 0.0048. 
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Figure 5.18: Mean streamwise velocity contours. Re = 42,000, Ma = 0.15 
Tu = 0.05, LfD = 0.1. Contour minimum: 0.0 , maximum: 1.233, incre^ 
ment: 0.0615. 
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Figure 5.19: Mean vertical velocity contours. Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum: -0.5926, maximum: 0.5977, 
increment: 0.0567. 
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Figure 5.20: Mean temperature contours. Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum 0.995, maximum 1.075, increment- 
0.0027. 
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Figure 5.21: Comparison between turbulent mean and laminar temperature 
profile along stagnation streamline s = 0.  : turbulent mean, : 
laminar. 
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Figure 5.22: Comparison between profiles of turbulent mean velocity U, tem- 
perature (T—l)/(T,j,-l) at s = 0.2D with laminar profiles, : turbulent 
mean, : laminar. 
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Figure 5.23: Comparison between profiles of turbulent mean velocity U tem- 
perature {r-l)/(T,-l) at s = 0.8D with laminar profiles, : turbulent 
mean, : laminar. 
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Figure 5.24: Comparison between profiles of turbulent mean velocity U tem- 
perature {T-1)/(T,-1) at s = 1.6D with laminar profiles, : turbulent 
mean, : laminar. 

88 



t 

Figure 5.25:   Time history of spanwise averaged Frossling number at the 
leading edge. 

Figure 5.26: Averaged Frosshng number distribution on the body surface. 
 : turbulent mean, : laminar, o : experimental data (Van Fossen 
et al., 1995). 
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Figure 5.27: Instantaneous SGS eddy viscosity v^jv (averaged in z) . Re = 
42,000, Ma = 0.15, Tu = 0.05, L/D = 0.1. Contour minimum : 0.05, 
maximum: 0.75, increment: 0.014. 
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Figure 5.28: Turbulent mean SGS eddy viscosity VTIV- Re = 42,000, Ma = 
0.15, Tu = 0.05, L/D = 0.1. Contours: minimum : 0.05, maximum: 0.52, 
increment: 0.040. 
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Figure 5.29: TXirbulence intensity along the stagnation streamline. 
«r Wr 
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Figure 5.30:   Turbulence budget of u'^ along the stagnation streamline. 
— o —: production, : dissipation, : mean convection, : 
turbulent transport, : pressure gradient velocity correlation. 
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Figure 5.31:   Turbulence budget of w'^ along the stagnation streamline. 
—o—: production, : dissipation, : mean convection, : 
turbulent transport, : pressure gradient velocity correlation. 
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Figure 5.32:   Turbulence budget of w'^ along the stagnation streamline. 
 : dissipation, : mean convection + turbulent transport, : 
pressure gradient velocity correlation 
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Figure 5.33: RMS value of turbulence vorticity along the stagnation stream- 
line.  : a;^, •• •: u). •■ Wj,. 

94 



2.95 

Figure 5.34: Temperature contour and the corresponding velocity field in the 
stagnation plane at diflFerent times. The mean flow direction is downward and 
the time interval is Af = 0.6 
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0.08 

Figure 5.35: Space-time correlation of vorticity at the leading edge (s = 0). 
Contour minimum: 0.1, maximum: 1.0, increment: 0.002. The dash lines 
indicates that the most probable convection speed in spanwise direction 
~ ±0.06. 

IS 

Figure 5.36: Probability density function of Frossling number at the leading 
edge 
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Figure 5.37: Turbulent density fluctuation fP, Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : 0.00001, maximum: 0.00019, 
increment: 0.00001. 
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Figure 5.38: The profiles of turbulent density fluctuation along wall normal 
direction.  : s = 0, : 5 = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.39: Turbulent velocity fluctuation u'^. Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : 0.0035, maximum: 0.0233, 
increment: 0.001. 
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Figure 5.40:   The profiles of turbulent velocity fluctuation v!^ along wall 
normal direction.  : s = 0, : s = 0.2D, : s = 0.8D, and 
 : 5 = 1.6D. 
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Figure 5.41: Turbulent velocity fluctuation v'^, Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : 0.0030, maximum: 0.0045, 
increment: 0.00015. 
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Figure 5.42: The profiles of turbulent velocity fluctuation v^ along wall nor- 
mal direction.  : s = 0, : s = 0.2D, : s = 0.8D, and 
 : s = l.6D. 
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Figure 5.43: Turbulent velocity fluctuation w'^, Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : 0.0040, maximum: 0.0140, 
increment: 0.001. 
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Figure 5.44:   The profiles of turbulent velocity fluctuation w'^ along wall 
normal direction. : s = 0, : s = 0.2D, : s = 08D and 
 : s=: 1.6D. 
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Figure 5.45: Turbulent temperature fluctuation T'^, Re = 42,000, Ma = 
0.15, Tu = 0.05, L/D = 0.1. Contour minimum : 0.00002, maximum: 
0.0002, increment: 0.00002. 
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Figure 5.46: The profiles of turbulent temperature fluctuation T^ along wall 
normal direction. : s = 0, : s = 0.2D, : s = 0.8D, and 
 : s = 1.6D. 
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Figure 5.47: Turbulent Reynolds stress u'v'. Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.006, maximum: 0.006, increment: 
0.0006. 
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Figure 5.48: The profiles of turbulent Reynolds stress u'v' along wall normal 
direction.  : s = 0, : 5 = 0.2D, : s = 0.8D, and • 
5 = 1.6D. 
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Figure 5.49: Turbulent Reynolds stress u'w', Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.0005, maximum: 0.0005, 
increment: 0.00005. 
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Figure 5.50: The profiles of turbulent Reynolds stress u'w' along wall normal 
direction.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
s = 1.6Z). 
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Figure 5.51: Turbulent Reynolds stress t;'w', Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.0006, maximum: 0.0006, 
increment: 0.00005. 
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Figure 5.52: The profiles of turbulent Reynolds stress v'w' along wall normal 
direction.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
5 = 1.6D. 
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Figure 5.53: Turbulent heat flux u'T', Re = 42,000, Ma = 0.15, Tu = 0.05, 
L/D = 0.1. Contour minimum : -0.0019, maximum: -0.0001, increment: 
0.0001. 
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Figure 5.54: The profiles of turbulent heat flux u'T along wall normal di- 
rection.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.55: Turbulent heat flux v'V, Re = 42,000, Ma = 0.15, Tu = 0.05, 
L/D = 0.1. Contour minimum : -0.0007, maximum: -0.0007, increment: 
0.0001. 
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Figure 5.56: The profiles of turbulent heat flux v'V along wall normal di- 
rection.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.57: Turbulent heat flux w'T, Re = 42,000, Ma = 0.15, Tu = 0.05, 
L/D = 0.1. Contour minimum : -0.000065, maximum: -0.000044, increment: 
0.00001. 
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Figure 5.58: Profiles of turbulent heat flux w'T' along wall normal direction. 
 : s = 0, : s = 0.2D, : s = 0.8D, and : s = 1.6D. 
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Figure 5.59: Turbulence production for u^. Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.0018, maximum: -0.066, increment: 
0.003. 
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Figure 5.60: Profiles of turbulence production for u'^ along wall normal di- 
rection.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.61: Turbulence production for v^, Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.0016, maximum: -0.036, increment: 
0.002. 
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Figure 5.62: Profiles of turbulence production for v^ along wall normal di- 
rection.  : 5 = 0, : s = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.63: Turbulence production for u'V, Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.007, maximum: -0.0002, 
increment: 0.0002. 
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Figure 5.64:  Profiles of turbulence production for u'T' along wall normal 
direction.  : s = 0, : s = 0.2D, : s = 0.8D, and • 
s = 1.6D. 

124 



S.      0 

]—I—I—I—1—I—I—I—I—I—I—I—I—I—I—]—I—I—I—I—I—I—I—I—I—I—r" 

X 

Figure 5.65: Turbulence production for u'T', Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.007, maximum: 0.01, increment: 
0.0005. 
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Figure 5.66:  Profiles of turbulence production for i/T' along wall normal 
direction.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.67: Pressure-strain correlation i/S[^, Re = 42,000, Ma - 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.115, maximum: 0.08, incre- 
ment: 0.005. 
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Figure 5.68: Profiles of pressure strain correlation ^^ along wall normal 
direction.  : 5 = 0, : s = 0.2D, : 5 = 0.8D, and : 
s = 1.6D. 
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Figure 5.69: Pressure-strain correlation f/S'22, Re = 42,000, Ma — 0.15, 
Tu = 0.05, LfD — 0.1. Contour minimum : -0.08, maximum: 0.115, incre- 
ment: 0.005. 
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Figure 5.70: Profiles of pressure strain correlation J/S22 along wall normal 
direction.  : s = 0, : 5 = 0.2D, : s = 0.8D, and : 
s = 1.6D. 
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Figure 5.71: Pressure-strain correlation j/S'^^, Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.016, maximum: 0.023, 
increment: 0.001. 
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Figure 5.72: Profiles of pressure strain correlation j/S'^^^ along wall normal 
direction.  : s = 0, : s = 0.2D, : s = 0.8D, and : 
5 = 1.6D. 
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Figure 5.73: Turbulent transport for «'2, Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.05, maximum: 0.04, increment: 
0.004. 
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Figure 5.74: Profiles of turbulent transport for u'2 gjo^g ^^^ normal direc- 
tion.   :  s = 0, : s = 0.2D, :  s = 0.8D, and : 
s = 1.6D. 
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Figure 5.75: Turbulent transport for v'^, Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.014, maximum: 0.014, increment: 
0.001. 
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Figure 5.76: Profiles of turbulent transport for u'^ along wall normal direc- 
tion.   :  s = 0, :  s = 0.2D, :  s = 0.8D, and : 
s = 1.6D. 
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Figure 5.77: Turbulent transport for w'^, Re = 42,000, Ma = 0.15, Tu = 
0.05, L/D = 0.1. Contour minimum : -0.028, maximum: 0.012, increment: 

0.002. 
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Figure 5.78: Profiles of turbulent transport for w'^ along wall normal direc- 
tion.   : s = 0, :  s = 0.2D, :  s = 0.8D, and : 
s = 1.6D. 
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Figure 5.79: Turbulent transport for 2d{j/u')/dx, 7?e= 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.16, maximum: 0.24, incre- 
ment: 0.02. 
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Figure 5.80: Profiles of pressure velocity correlation 2d{j/u')/dx along wall 
normal direction. : s = 0, : s = 0.2D, : s = 0.8D, and 
 : s = 1.6D. 
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Figure 5.81: Turbulent transport for 2d{f/v')/dy, Re = 42,000, Ma = 0.15, 
Tu = 0.05, L/D = 0.1. Contour minimum : -0.24, maximum: 0.16, incre- 
ment: 0.02. 
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Figure 5.82: Profiles of pressure velocity correlation 2dij/v')/dy along wall 
normal direction. : s = 0, : s = 0.2D, : s = 0.8D, and 
 : s = 1.6I>. 
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Figure 5.83:  Turbulence intensity along the stagnation streamline   Tu 
0.11, L/D = 0.06, Re = 43740, : tz,^„ : Vr^s, — -: Wr 

142 



Figure 5.84: Averaged Frossling number distribution on the body surface. 
 : turbulent mean, : laminar, o : experimental data (Van Fossen 
et al., 1995). 
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Figure 5.85: Averaged Frossling number distribution on the body surface at 
Ma = 0.6. : turbulent mean, : laminar 
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Chapter 6 

Theoretical Analysis 

6.1    Introduction 
The study of fluid flow and heat transfer at a perturbed two-dimensional 
forward stagnation point provides an improved understanding of the effects 
of free-stream turbulence in a wide range of engineering problems. In a 
modern gas turbine engine, for instance, the gas flow exiting the combustor 
contain high levels of turbulence which cause significant enhancement of heat 
transfer to the downstream turbine blades (Goldstein, 2001), the effect being 
most severe in the stagnation point region near blade leading edge. Efforts 
to improve the thermal eflSciency and reliability of the blade cooling system 
hinges critically upon an accurate prediction of heat transfer in the presence 
of free-stream turbulence. Stagnation point flow also plays important roles 
in other industrial applications such as material processing and electronics 
cooling (Nakayama, 1995). 

Over the years, a number of experiments have investigated the heat trans- 
fer enhancement over its laminar value in stagnation point flows in the pres- 
ence of free-stream turbulence, see Kestin (1966); Sadeh and Brauer (1980); 
Van Fossen, Simoneau, and Ching (1995); and Ames (1997). The turbulence 
intensity, length scale and the mean flow Reynolds number were shown to 
be the most important parameters in determining the turbulent heat trans- 
fer rate. Typically, the heat transfer enhancement was found to increase 
with increased Reynolds number and turbulence intensity, but decrease with 
increased turbulence length scale. Semi-empirical correlations have been pro- 
posed to predict the heat transfer enhancement, see for example Smith and 
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Kuethe (1966); Van Fossen et al. (1995); and Ames (1997). Numerical sim- 
ulations have also been performed to study the detailed interaction between 
tree-stream turbulence and a stagnation point boundary layer. Spalart (1989) 
found that out of initial whit^noise disturbances in a swept Hiemenz bound- 
ary ayer, the most unstable disturbance-mode is the one that has the same 
s,m.lanty form as the mean Hiemenz flow, i.e. the streamwise velocity is a 
linear function of the streamwise coordinate x , and the wall normal velocity 
IS .ndependent of z. The flow structures induced by free-stream turbulence in 
a stagnation region are found to be qualitatively similar to those induced bv 
upstream organized disturbances (Xiong and Lele, 2001). The importance of 

cal simir'' r^^ uf ^"^ *''"" '^""" ^^^^"^'^ *^^«"eh direct numer- 
(2003) "     ^ stagnation point flow by Bae, Lele, and Sung 

Theoretically, the efi-ect of temporal modulation of free-stream velocity 
was first studied by Lighthill (1954) who obtained the Stokes-Iayer correc- 
tions for skin friction and heat transfer for a twc^dimensional pulsating mean 
flow about a cylinder^ The steady streaming (second order alteration to 7e 
mean flow owing to the Reynolds stresses) in an oscillatory Hiemenz bound- 

ed DaJis^aJsqlh rr'""" ^" ""'"'' "^' '^"^" (^^^2) ^"^ M-^^-t and Davis (1989), but the emphasis is on finding similarity solutions and 

Itrt    K^ «     "      u^'" ^"'*'°"-   ^^" enhancement of heat transfer in a 
perturbed Hiemenz boundary layer was also conceived as a consequence of 

mod^gymT ^'^J'i' *'' '"'""'"^ disturbances. However, Kestin and 
Wood (1970) found, and later much clarified by Wilson and Gladwell (1978) 
that the two-dimensional Hiemenz boundary layer is always linearly stable 
to the mcoming three dimensional disturbances. The nonlinear instability 
was studied by Lyell and Huerre (1985) who showed that if the level of the 

H^tlhT ^  p     'T T""^' '''^^'" ^^'•^^^'^ ^^"e' Hie«^enz flow can be 

ind Th "fi^ r/^oTJ"" "''^ ^^" investigated by Lin and Malik (1996) 
^,l?h^ r t ^'^^^^- ^"^'^""" ^'^^')' *" ^ co-Prehensive review, ar- 
gued that the enhancement of heat transfer is more likely a forced response 
o the upstream disturbances rather than a result of internal flow instabil- 

^^The flow visualizations by Nagib and Hodson (1978) and Botcher and 
Wedemeyer 1989) strongly support this argument. Vhis iiew point wi ad 
vocated eariier by Sutera (1965) who analyzed the amplification effect 5 the 
mean flow on the incoming disturbances and linked them to the sensitivity of 
heat transfer to upstream vortical disturbances. By generalizing the classical 
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rapid distortion theory (RDT) (Batchelor and Proudman, 1954), Hunt (1973) 
analyzed the second order moment of the turbulent velocity field when the 
free-stream turbulence, of either very large or very small integral scales, im- 
pinges onto a circular cylinder, but the heat transfer between the fluid and the 
cylinder was not considered. Dhanak and Stuart (1995) showed that, in the 
forward stagnation region of any two-dimensional body, the viscous bound- 
ary layer can support a substructure of counter-rotating streamwise eddies 
when there exists weak cross-stream vorticity in the external flow. Kerr and 
Dold (1994) obtained a family of strained periodic vortex array embedded in 
an inviscid two-dimensional stagnation point flow. Andreotti, Douady, and 
Couder (2001) have recently used these vortices as a model to study experi- 
mentally the dynamics of interaction between strain and vorticity. Although 
much progress has occurred in understanding the heat transfer augmenta- 
tion mechanism, there is however no, to the authors's knowledge, analytical 
solution to the impinging vortical disturbances in a viscous Hiemenz bound- 
ary layer. Theoretical analysis on the effects of length scale, intensity and 
frequency of the impinging disturbance and the associated heat transfer has 
been Izicking. This is partly the reason that the prediction of stagnation point 
heat transfer in the presence of free-stream turbulence has largely remained 
empirical. In this paper, the distortion of unsteady three-dimensional dis- 
turbances in a two-dimensional stagnation point flow is investigated using 
theoretical analysis and numerical solutions. Its objective is to gain quanti- 
tative understanding of the heat transfer augmentation mechanism, particu- 
larly its dependence on disturbance parameters, e.g. length scale, intensity, 
and frequency, as a way to improve the prediction of turbulence effects in 
this technologically important flow. 

The paper is organized as follows. The governing equations for the mean 
flow and the disturbances are formulated in §2, followed by a discussion of the 
length and velocity scales associated with the disturbances. The numerical 
solutions of the nonlinear disturbance equations, showing the characteristics 
of the disturbance development, are presented in §3. Analysis based on a 
linear vortex dynamics is pursued in §4 to derive the dependence of vorticity 
amplification on the disturbance length and time scales. In §5, the asymptotic 
behavior for large scale and low frequency disturbance is discussed, along 
with its implications for the wall heat transfer. By superposing different 
modes of upstream disturbance, the analysis is extended in §6 to treat the 
case of homogeneous isotropic free-stream turbulence. A new heat transfer 
scaling correlation based on the turbulence intensity, integral length scale 
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and Reynolds number is proposed and compared with recent experimental 
measurements. The conclusions of the present study and a discussion is riven 
in §7. 

6.2    Governing equations 

We consider unsteady, incompressible, viscous flow with constant fluid prop- 
erties in the forward stagnation region of an arbitrary two-dimensional bluff 
body shown in figure 6.1a. The coordinate axes are chosen as follows: x is 
parallel to the body and normal to the attachment line, y along the free- 
stream away from the body, and z along the attachment line. The mean flow 
around the bluff body is assumed to be steady and two-dimensional but the 
incoming disturbances are three-dimensional and may vary with time. The 
length scale of the disturbances is assumed to be large compared with the 
boundary layer thickness but much smaller than the diameter of curvature at 
the stagnation point, hence the mean flow in this region is well modelled by a 
plane Hiemenz boundary layer flow, see for example in Batchelor (1967). In- 
deed, Wilson and Gladwell (1978) showed that as Reynolds number Re -> cx), 
the laminar flow in the stagnation region of any two-dimensional bluff body 
is reduced to a plane Hiemenz flow problem. Exploiting this reduction, the 
present analysis will be focused on the Hiemenz boundary layer flow in the 
presence of upstream disturbances as shown in figure 6.1b. By relating the 
strain rate in Hiemenz solution to the free-stream velocity and the diameter 
of curvature at the stagnation point, the present analysis applies to a general 
two-dimensional bluff body. 

When the characteristic length scale IQ and velocity scale VQ of the Hiemenz 
boundary layer, defined as 

h = sJv*IA\ Wo = Vi/M* (6.1) 

are used to nondimensionalize the coordinates and the flow variables, we 
have 

(C, ^, C) =  (f-, 7", ^) (6.2a) 
to      to      *0 

(6.2b) 

(6.2c) 
A'oo"'0 
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where the superscript * is used hereafter to denote the dimensional quantities, 
V* is the kinematic viscosity and A* is the strain rate of the external potential 
flow in the Hiemenz solution, p* and p* are the pressure and density. The 
wall is assumed to be isothermal with temperature T^ and the upstream flow 
temperature is T^. 

The flow field {vi,p,9} is assumed to consist of a plane stagnation point 
flow {U,P, 0} and a unsteady disturbance field {u,p, ^}, i.e. 

u = u + u,     p = p+p,     e = e + e (6.3) 

Following Batchelor (1967), the mean velocity U of Hiemenz flow may be 
expressed as 

V=iU,V,W) = {(f>'^,-(f>,0). (6.4) 

Together with the mean temperature 0, they satisfy the following Hiemenz 
equations 

(I)'" + ({>(f>" + 1-(I>'^ = 0 (6.5a) 

0" + Pr00'-O. (6.5b) 

where (^ is only a function of r} and' denotes d/drj. Pr is the Prandtl number. 
The boundary conditions for ^ and 0 are given by 

<^(0)  = (f)'{0) = 0,    (j)'{oo) = 1 (6.6a) 

0(0) = 0,       0(oo) = 1 (6.6b) 

The general governing equations for the perturbation field, following from 
(6.1) and (6.3), can be written as 

V • u = 0 (6.7a) 

5!eU + u-Vu + U-Vu + u-VU = -Vp + V^u (6.7b) 

dt9 + u-V9 + V-Ve + u-Ve = -^V'^9 (6.7c) 
Pr 

In this paper, perturbations of the form 

u = {u{T},Ct)^,    r;(77,C,0>    w(r;,C,t)},       P = p{v,C,t),        0 = 9{T),C,t) 
(6.8) 
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are considered; the perturbation variables have no ^ dependence except the 
e-component of u. As noted by Spalart (1989), this is a good approximation 
to the flow field in the neighborhood of the stagnation 77 - C plane. Steady 
perturbations of this form were also used by Sutera (1965). Substituting 
(6.8) into (6.7) yields the governing equations for the perturbation field: 

u + v' + d^w = 0 (6.9a) 

dtu + {u^ + vu' + wd^u) -(fm' + vf + 2u<f>' = u" + 5^« (6.9b) 

dtv + {vv' + wd^v) - {(fyo)' = -p' + [v" + Eilv) (6.9c) 

dtw + [vw' + wdt^w) -<fyw' = -d<^p + {w" + d^w) (6.9d) 

dt9 + {vff + wd^e) + ve'-<!>$'=: -L^e" + ^^) (6.9e) 

Note here the prime ' denotes the partial derivative ^. The disturbance 
vorticity may be conveniently found as 

U}^ = w'-d(^V, U}r,=0(;U, UJ<^ = -^v! (6.10) 

As will be seen in subsequent discussion, the disturbance vorticity in $, di- 
rection W(, which is subject to stretching by the mean diverging flow, plays 
a central role in describing the disturbance evolution in this type of flow. 
Hence the governing equation for streamwise vorticity, hereafter denoted by 
w, is written as 

dtU} - {u" + ei^uj) - {ifKoy = -{vujy - d^{woj) (6.11) 

To seek solutions which are periodic in time t (or steady) and periodic 
m the spanwise direction C, we expand u,v,w,cj and ^ in a double Fourier 
series: 

oo 

uivXyt)    =    Ap^  Umn{T))exp{i{rTU7ot + nkoO}+v'Q{T))    (6.12a) 
m,n=l 

CXI 

v{T),C,t)   =   ApJ2^mn(v)GMiirnaQt + nkoC)}-Vo{v)  (6.12b) 
m,n=l 

oo 

wivXJ)   =   ApJ^{nko)-^WmMexp{i{maot + nkoO}   (6.12c) 
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(^{v,C,t)   =   A> X] ci;^n(^)exp{z(mc7ot + nfcoC)} (6.12d) 
m,n=l 

oo 

e{r},C,t)   =   ApJ2^rnn{v)eMi{m(Tot + nkoO} + Oo{v)   (6.12e) 
m,n=l 

where Ap is the perturbation amplitude; fco = fc*io is the fundamental wavenum- 
ber in spanwise direction and CTQ = a*/A* the fundamental frequency. The 
functions Vo{r]) and 9Q{T)) represent the nonzero spanwise averages of the 
perturbation velocity and temperature, i.e. the modification to the mean 
flow profiles due to the nonlinear interaction among the disturbance modes. 
Additionally, the normal derivative of ^o(^) at the wall gives the spanwise 
averaged heat transfer enhancement. 

Substituting the expansions (6.12) into the continuity equation (6.9a) 
yields 

Umn + V'^n + i ^mn = 0, (6.13) 

and from the definition of ct;,„„, it follows that 

i n^kl Vmn - W'^n + "^0 ^mn = 0. (6.14) 

Similarly, the governing equations for streamwise velocity Umn, vorticity Umn 
and temperature dmn reduce to 

'^mn - (2^' + "^^0 + imao)Umn + <f> "mn "  <^" "mn = ^o(«, U, w) (6.15) 

^mn - {^^f4 + imao)u}mn + {<f>t^mn)' = Ni{v,W,U}) (6.16) 

C„ - [n^'kl + imPrao) 0mn + Pr<t> C„ - Prvmn^' = M(w, w, 0)     (6.17) 

The equations for i'o(^) and ^0(^7) can also be derived as 

< + K - 20X + 0"^>o = Mz{u, v) (6.18) 

^' + Prcf) e'o = H^{v, w, 9) (6.19) 

In the above equations, .A/i's are the nonlinear terms given by the following 
expression: 

A    °° 
J^Q    =    "Z"  / ^ \UpqUm-p,n-q + UpqUm,+p,n+q + '^pq'^m-p,n-q + '^r>q'^m-^p,n-\-q 

p,q=l 

150 



+-[(n - q)w„Um-p,n-g + {n + 9)Wp,K^+p,„+,]} (6.20a) 

A, 
00 

p,q=l 

+—[Wp^rn-p,n-q + Wj^m+p,u+q] } (6.20b) 

A Pr  °° 

P,7=l 

-^1 +-[(n - 9)«;;>,e^_p,„_, + (n + 9)u)p,^„»+p,„+,]} (6.20c) 

00 1 

^3   =   ^PE[W+2("P7«P7)'] (6.20d) 
p,q=l 

A^Pr °° 
^4   =   ~-J^Mvp,^pg + iWj>,e„} (6.20e) 

where' stands for the complex conjugate. Suppose that unsteady disturbance 
vorticity is introduced upstream at r/ = /To » 1 by superimposing a simple 
smusoidal variation with the amplitude A^, at the fundamental spanwise 
wavenumber ko, and frequency ao on the mean velocity 0(77). The disturbance 
boundary conditions at T) = HQ are 

VU = 1,      Vmn =0     for     TH, U ^ 1, U^n = Wmn = ^mn = 0 (6.21) 

At the wall 77 = 0, no slip and isothermal boundary conditions are enforced 
for the velocities and temperature, thus 

Umn = Vmn = W^n = ^mn = 0 (6.22) 

Once the disturbance velocity v^n , Wmn and temperature O^n are obtained, 
the relative heat transfer enhancement Ah over its undisturbed mean value 
h can be found by solving (6.19) 

X = l|-r-^'^-'-/V<e-^^'"-W., (6.3) 
It is convenient to introduce new length and velocity scales besides those 

m (6.1). By the assumed spanwise periodicity, a natural choice for the dis- 
turbance length and velocity scales are 

Id = 1/A:*,        ua = uk* (6.24) 
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It is observed below that the square of the ratio between the disturbance 
length scale Id and the Hiemenz boundary layer scale /o, represented by a 
dimensionless parameter A see Kerr and Dold (1994), 

is a critical parameter in determining the evolution of the disturbances. 
When A is large, the distortion of the upstream disturbances is mainly due 
to the mean flow straining effect; the nonlinear interaction among the dis- 
turbance modes is of higher order. This is similar to the cases treated by 
the traditional linear RDT. But in the presence of viscosity, the nonslip wall 
introduces the viscous effect in its vicinity and must be included in the for- 
mulation both for the mean flow and the disturbances. Interestingly, A can 
also be interpreted as the time scale ratio between the disturbance turn-over 
time Id/ud and the mean flow straining time 1/A*, i.e. 

A = {^)A* (6.26) 
Ud 

For different values of A as well as Ap, the numerical solutions to the flow 
problem posed here are presented in the next section. 

6.3    Numerical Results 
The system of equations (6.13) - (6.19), with boundary conditions (6.21)- 
(6.22), forms a second order boundary-value problem driven by an inhomo- 
geneous boundary condition away from the wall. Numerically, they can be 
readily solved using the over-relaxation method, described for example in 
Isaacson and Keller (1993). Fourth order finite difference scheme is adopted 
to approximate the spatial derivatives and different numbers of grid points 
are used to obtain the grid independent solutions. For the nonlinear calcula- 
tions, a total number of modes resulting from a truncation at m = 6, n = 6 
of the double Fourier series in (6.12) are found sufficient for the solutions to 
converge. The details of the numerical method and convergence study can 
be found in Xiong (2004). 

The case of steady disturbance, i.e. ao = 0, is discussed first; this will 
help clarify the dependence of the disturbance evolution on the length scale 
ratio A.   In all computations, the Prandtl number is taken as Pr = 0.71, 
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and the disturbance amplitude Ap is ten percent of the mean flow velocity 
(f> at the inflow boundary rj = HQ, i.e. Ap = 0.1(f>{Ho) and Ho = 18. Figure 
6.2 shows the profiles of the base state velocity and temperature (without 
any free-stream disturbance). The velocity and temperature boundary layer 
thicknesses (defined as the location at which 99% of the external value is 
reached) are around T) = 2.4 and r; = 4, respectively. Figure 6.3 shows the 
streamline patterns of the perturbed flow in the stagnation plane for different 
values of A. The horizontal axis spans one spanwise wavelength for each case. 

As can be seen, initially at A = 1.1, the perturbed streamlines converge 
toward a free stagnation point at the symmetry plane 2 = 0. At A ~ 0(2), 
a pair of counter rotating vortices start to form at the edge of the boundary 
layer. The strength of these vortices increases rapidly with the increasing A 
and attains its maximum at A = 4.  When A increases further, the vortex 
strength slowly decreases. At A = 32 the vortices disappear and are replaced 
again by a sink type free stagnation point.   For even larger A = 64, the 
mean flow dominates, and the free stagnation point also disappears. Qual- 
itatively, these streamline patterns can be first classified into two groups 
depending whether a free stagnation point (FSP) is present.   The stagna- 
tion point emerges when the disturbance wall normal velocity v exceeds the 
mean flow <f>. Since at the wall, <f) = <!>' = v = v' = 0, this can occur when 
k (0)1 > 10" (0)1- Furthermore, depending on the direction of the spanwise 
velocity in the neighborhood of FSP, the resulting FSP can be either a sink 
point — when the spanwise velocity w points inward, or a saddle point — 
when it points outward. Since by symmetry w = 0 at z = 0, the direction of 
w is determined by ^. From continuity equation, this is in turn determined 
by ^, the rate at which the vertical velocity tends to zero at the free stag- 

nation point. When g < 0, it becomes a saddle point and the streamlines 
emanating from the stagnation point eventually form the spiral vortices. For 
the present case with fixed Ap, the free stagnation point emerges for A > 1, 
and transition from a sink point to a saddle point type occurs at A = 1.6. At 
A = 30, the saddle type stagnation point changes back to a sink point type, 
causing the vortices to disappear. At A > 60, the free stagnation point also 
disappears, and the perturbed flow becomes unidirectional in wall normal 
direction. 

In addition to the change of A, the eff'ect of the disturbance amplitude 
Ap on the vortex formation is shown in figure 6.4 where Ap varies from 2 
to 15 percent of <t>{Ho) for fixed A = 4.   In this case, the free stagnation 
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Amplitude ^ / (^(JHO)      Velcoity 1^^0X1      Vorticity |a;,„|      Heat transfer A/i //i 

0.02 0.9321 1.4953 0.0100 
0.05 2.5558 3.7457 0.0620 
0.07 3.8928 5.2490 0.1206 
0.10 6.4999 7.5256 0.2406 
0.12 8.8094 9.0672 0.3368 
0.15 13.729 11.410 0.4918 

Table 6.1: The maximum wall normal disturbance velocity Ismail, vorticity 
at the wall |a;„| and the heat transfer enhancement /^h/h for different Ap at 
A = 4, ^0 = 18. 

point first emerges at Ap = 0.03(^(Ho), and the transition from the sink 
type to the saddle type takes place at Ap = 0.05^(//o)- The latter can be 
considered as a threshold for Ap since only beyond this value the counter- 
rotating vortices become possible in the streamline pattern. Moreover, figure 
6.4 also reveals that although the strength of the vortices increases with the 
increasing Ap, the overall flow pattern remains qualitatively similar once the 
threshold is reached. The existence of a threshold in disturbance amplitude 
is also consistent with earlier observations by Nagib and Hodson (1978) on 
the formation of vortex pair at the stagnation region of a bluff body subject 
to the impingement of wakes. Similar flow patterns as those shown in figure 
6.3 and 6.4 also emerge in aforementioned experiments (Nagib and Hodson, 
1978; Botcher and Wedemeyer, 1989) as well as numerical simulations (Xiong 
and Lele, 2001; Bae et al., 2003). The quantitative characterization of the 
flow fields in figure 6.4 in terms of the maximum wall normal disturbance 
velocity [umoxlj wall vorticity |a;,„| and heat transfer enhancement A/i//i are 
summarized in Table 6.1. 

Figure 6.5 shows the profiles of the fundamental mode and higher har- 
monics at A = 4 for the disturbance velocity, vorticity and temperature. The 
disturbance v velocity and vorticity are found to be amplified before reach- 
ing the boundary layer. Compared to the fundamental mode m = l,n = 1, 
the amplitudes of the higher harmonics are typically small, except for tem- 
perature where the mean temperature modification 9Q attains an amplitude 
similar to ^n. Of the three components of the disturbance velocity, «mn is 
found to be typically one order of magnitude smaller than Vmn and Wmn- The 
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corresponding contours for the vorticity and temperature are plotted in fig- 
ure 6.6 and figure 6.7. The incoming vorticity is amplified by a factor greater 
than 5 due to stretching and thus large amplitude vorticity with opposite 
sign is induced within a thin near-wall region to satisfy the no slip boundary 
condition. The temperature contours are also significantly modified by the 
disturbance velocity. The upward velocity causes the local thermal boundary 
layer to become thicker, while the downward velocity makes it thinner. The 
net eflfect on the spanwise averaged heat transfer depends on the strength 
and distribution of these thickened and thinned regions. 

In figure 6.8, the relative heat transfer enhancement A/i/ft is plotted 
as a function of A. For small A, or small disturbance wavelength, A/i//i 
increases rapidly as A increases. But for large A , it decrease slowly with 
the increase of A. A peak value is found around A = 4, indicating that an 
optimum disturbance length scale exists at about five times the boundary 
layer thickness and produces maximum heat transfer enhancement. Also 
shown in figure 6.8 is the maximum value of the fundamental mode of the 
disturbance wall normal velocity vu- It shows a similar trend with A and 
optimum amplification at nearly the same value of A. However, for large A, 
Vmcx ~ A-V2 while ^/j/;j ^ ^-1 Finally, in figure 6.9 the amplitude of the 
vorticity at the wall is plotted as a function of A. Besides a similar peak 
location around A = 4, the striking feature of the wall vorticity is that it 
approaches a constant which depends only on HQ and Aj, as X becomes large. 

The dependence of flow characteristics on the length scale is due to the 
competition between the vortex stretching and the viscous dissipation. The 
convective heat transfer or more generally passive scalar transport is a direct 
consequence of the amplified velocity disturbances, and may in fact be re- 
garded as an indication of how significantly the flow near the wall has been 
modified. Based on this point of view, the vorticity equation (6.16), compris- 
ing the mean flow stretching, viscous dissipation and nonlinear interaction 
effects, shall be the starting point for analyzing the disturbance evolution. 
FVom the profiles of a;„,„ in figure 6.5, the nonlinear interaction is shown to 
be relatively weak, hence in the subsequent analysis the nonlinear terms in 
(6.16) will be neglected. A similar rationale is also the basis for the linear 
RDT which has been successfully applied to this type of flow. However, un- 
like the purely inviscid interaction considered in RDT, in the present problem 
viscosity exerts a significant influence upon the disturbance throughout the 
whole domain, even when the mean flow can be treated largely as inviscid in 
the region outside the boundary layer. Indeed, it is the balance between the 
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vortex stretching and viscous diflfusion that produces the maximum vorticity 
near the edge of boundary layer. Therefore, analysis of the vorticity dy- 
namics helps to understand the basic mechanism governing the flow and the 
associated scalar transport. This is carried out in detail in the subsequent 
sections. 

6.4    Linear Vortex Dynamics 

The primary goal of the analysis in this section is to find an asymptotic 
expression describing the evolution of the large scale, low frequency distur- 
bances in the Hiemenz boundary layer. The solution is sought by first ex- 
pressing the vorticity in a series expansion based on the large length scale 
(A » 1) and low frequency(ao -C 1). This solution is formally valid in the 
entire spatial domain, but insufficient to describe the vorticity evolution in 
an explicitly way owing to the lack of closed form expression for (f>. On the 
other hand, by exploiting the particularly simple form taken by 0 in the 
region outside the Hiemenz boundary layer, a closed form solution for the 
vorticity can be found for any arbitrary A and OQ in that region. These two 
solutions are required to match in the region outside the Hiemenz boundary 
layer where they are both valid. Thus, an explicit composite asymptotic so- 
lution can be formulated which describes the evolution of the large scale, low 
frequency vortical disturbances, and forms the basis of further analysis. 

6.4.1    Series expansion 

As shown by the numerical results in figure 6.5, the disturbance typically 
reaches its maximum amplitude at the edge of the boundary layer before 
it decays . By (6.16) and (6.25), the linearized governing equation for ojmn 
takes the form 

<n - (y + ^ "^^O) "^rnn + (<^^mn)' = 0 (6.27) 

Here only the case of large A » 1 and small CTQ <C 1 will be considered. These 
limits correspond to the situation where the upstream disturbance is of large 
scale and low frequency relative to the Hiemenz boundary layer scales. This 
regime is prototypical for the free stream turbulence impinging on gas turbine 
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blades. A small parameter e may be defined as: 

n2 
e = — + im(To,    |e|<l (6.28) 

and a series solution ofumn is sought in the powers of c as a regular pertur- 
bation: 

^mn = U}^rx + fi^mn + - (6.29) 

The equation at zeroth order becomes 

Kn)" + {<f>^Ly = 0 (6.30) 

whose general solution can be found as 

<^Liv) = E"e-* + F^e-'' Pe^^^^dr)'. (6.31) 

At first order the equation is 

«n)" + (^a;L)' = ^L (6.32) 

and the solution can be expressed using co^^ as 

-fo Jo Jo 
u      ^ .   . o    . (6-33) where $ is defined as 

Hri) = j   (}>{ri')dTi' (6.34) 

and EP,E^,F^,F^ are arbitrary constants. The higher order terms can be 
computed similarly. The series expansion (6.29) is valid in the entire spatial 
domam from the wall to the inflow but, as such, of limited use because it 
mvolves unknown constants. In next section, the exact solution of (6.27) in 
a region outside the Hiemenz boundary layer is obtained for arbitrary A and 
(Jo. By examining the characteristics of the exact solution for the case of 
A > 1 and ao < 1, the unknown constants in (6.31) can be determined. 
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6.4.2    Outside the boundary layer 

Outside the Hiemenz boundary layer, the relevant length and velocity scales 
are determined by the incoming disturbance. To facilitate the subsequent 
analysis, the vorticity equation (6.27) is first rescaled by Ij and Ud defined in 
(6.24) 

^mn + ^^ ^'mn + {M' " "^ - Z mA(To) tOmn = 0. (6.35) 

Note here both the dependent and independent variables are rescaled, and 
the derivatives are now with respect to the new independent variable s = 
y*/ld — r}/y/\. In particular, the mean velocity profile (f){s) in (6.35) is equal 
to the <j>{rj) multiplied by the factor 1/\/A , i.e. <^(s) = (f>{T])/y/X. The 
boundary conditions for the mean and disturbance flow remain unchanged 
under this rescaling. 

As noted in figure 6.2, the mean velocity profile (j) takes a simple irrota- 
tional form outside the Hiemenz boundary layer 

<f> ^ s — Sd,        (/>' ^ 1. (6.36) 

where Sd represents the displacement thickness 5d of the Hiemenz bound- 
ary layer, i.e. Sd = Sd/vX. In this region, the main effect of (f) on the 
disturbances, besides the convection, is to stretch the ^—component of the 
incoming vorticity. When the disturbance scale is relatively large, viscosity 
plays a less important role and the straining effect leads to an increase of the 
vorticity. 

Denoting Umn outside the boundary layer by a;^„ and using (6.36), (6.35) 
becomes 

«J" + A (5 - Sd) «„)' +{\-n'-i mXao) <„ = 0 (6.37) 

On introducing a new independent variable r 

r=-lx{s-sdf (6.38) 

the vorticity equation is further transformed into 

r«„)° + (; - r)(u^„J - '^ " "'-^•'"^"°> a^„ = 0 (6.39) 

where ' stands for d/dr. This is the confluent hypergeometric equation of 
the general form 

xy" + {c- x)y' -ay = 0 (6.40) 
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whose solution may be expressed as 

y = CiM{a; c; x) + C2 U{c - a; c; -x) e* 

for c 7^ 0, ±1, ±2 • -.. M{a; c; x) and U{a; c; x) are the first and second kind 
of confluent hypergeometric functions (Abramowitz and Stegun, 1970). In 
the present case, they correspond to 

y-^mn.       x-T,       c=-;    a = — °, (6.41) 

An integral representation for M{a]c\x) when Rec>Rea>{i\s 

and f/(a;c;x) can be expressed by M{a;c;x) through the following expres- 
sion 

U{a- c; x) = —iL_/_J£(2i£L£)_ _    i-c^(l+fl-c;2-6;x), 
sin(c7r)^r(l+a-c)r(c)      "^ r(a)r(2 - c)        ^ 

IT u (6-42) 
Hence the general solution for the vorticity becomes 

<. = C,M(i^-ii!^; 5; r) + C,t/(|!+i^; I _,)e^ (6.43) 

For A < 1, the solution simply decays from its upstream value, and for A = 1 
it becomes a constant. So in what follows only the case of A > 1 is considered 
First writing s in terms of the original variable 77, and by the definition of r 
it follows ' 

where the shifted coordinate fj is defined as 

V = V-Sd- (6.45) 

After some simplification, the general solution for the vorticity outside the 
boundary layer a^„ may be expressed as 

cjP   =C    M(^—^   ,"^'^0.1.     ^\^n     »^A2A-n2    . mao   3      n^ 
^mn      ^mnM[     ^^     "^ "y"'  2' "y) + ^-^("^^ ' ~F'  2' ~ V'^" 

.       ^       _ (6.46) 
wnere Cm„, D^n are arbitrary constants. A typical solution for A = 4, 
ao = 0 composed of two confluent hypergeometric functions ( with C„„' 
Dmn specified by (6.61) in section 6.4.4) is illustrated in figure 6.10. 
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6.4.3    Composite solution 
To facilitate further analysis, the series solutions (6.29)-(6.33) is combined 
with the solution outside the boundary layer to derive a composite asymptotic 
solution. To do so, the unknown coeflBcients in the series expansion need to 
be determined first. Notice that as T; —>^ oo, 

-2 

0    ~    77       and       $    ~    $0 + ^ (6.47) 

where $0 = /o°°('^ ~" V)dT} — -f is an integral constant. This asymptotic 
representation is valid for fj > fjo, where 7^ > 5^ is a location beyond which 
the irrotational flow applies. The zeroth order series solution (6.31) may be 
rewritten as 

rvo rn 
^Liv) = e-^[E^ + F^        e*('')d77'] + F°e-* /   e^^^Urj'.        (6.48) 

^0 JT)O 

However when 7; -> 00, the first term in (6.48) vanishes, so it follows 

^mnin)     ~     ^°e-*  re'^'^Ui     ~     F°e-^   P e^ dfj'.       (6.49) 
Jrx, Jo 

where in the second expression, (6.47) has been used and the lower limit has 
been extended to zero using the same decomposition in (6.48). On the other 
hand, the corresponding zeroth order expansion of (6.46) in e becomes 

O^n = CmnM{l \, -^)   +   Z)^„ M(l; | -^)^. (6.50) 

Noting the following identities 

M{a\ a; z) = e'   and    e~^ /   e^dT! = zM{\; -; ——) (6.51) 
yo 2       2 

and comparing (6.49) and (6.50) for large 77, we obtain 

I>mn = F° (6.52) 

since the first term in (6.50) vanishes more rapidly than the second. 
No appropriate matching condition for C-mn can be derived from the large 

77 asymptotics.   Hence, it is necessary to find the matching condition by 
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considering the behavior of the vorticity close to the wall. As shown in 
figure 6.9, the wall vorticity plays a key role in determining the interaction 
between the incoming disturbances and the Hiemenz boundary layer. An 
initial choice for matching C^„ and E^ therefore seems to require the wall 
vorticity obtained from (6.46) and (6.31) to be equal. However, the vorticity 
at the wall obtained by setting 77 = 0 in (6.46) is not accurate, since (6.46) 
is only applicable outside the Hiemenz boundary layer. A more appropriate 
choice is to require the vorticity obtained from the two solutions to match 
at the edge of the Hiemenz boundary layer where both solutions apply. This 
results the following expression for C^„, 

Cm„ = [Ef^ + F" 1^  e*rf7?]e-** - F« j'''" e"^ drj (6.53) 

where $, = $(<J) ~ (S - 5^)2/2. Further matching (6.46) to (6.33) at higher 
order requires evaluation of M{a,c,z) subject to the perturbation of a and 
the asymptotic behavior of the last term in (6.33) for large 77, for which the 
explicit expressions have not been obtained. Nevertheless, an approximate 
solution of iVmn, more explicit than the series expansion, can still be con- 
structed by a similar procedure to those in matched asymptotics (Van Dyke, 
1975), i.e. 

C^mn   ~   a;°„   +   U^„   -   CO^^ (6.54) 

here the expressions for a;^„, c^„ and <„ are (6.31), (6.46) and (6.50), 
respectively. Using the matching condition (6.52) and (6.53), we obtain the 
following asymptotic expression for the incoming vorticity in the case of 
A » 1 and ao <C 1 in the whole range of 7/ 

<^mn{v)      ~      C^„[M(Az_Z^-z!^;i;_(!L_^)+e(*^^^^ 

+      Z>.„[M(^-.-!^;|_(!L_M!)(,_,,)^ 

M{l;l;-^^^){n-S,)] (6.55) 

Here the dependence of a;^„ as an explicit function of A and CTQ, not readily 
obtained by the series expansion itself, has been retained in (6.55), and by 
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correcting the a^„ in the near wall region through u;^„, (6.55) also extends 
inside the Hiemenz boundary layer. In figure 6.11 and figure 6.12, the com- 
parisons between the composite asymptotic solution (6.55) and the numerical 
solution are shown for A = 4 and A = 36, respectively. The vorticity pro- 
files have been normalized by its value at the inflow boundary 77 = HQ. The 
numerical solution are obtained by solving both the linear equation (6.35) 
and the fully nonlinear equation (6.16). The asymptotic solution and the 
linear numerical solution agree well at A = 4 and become indistinguishable 
at A = 36. Recall that the disturbance amplitude is here taken as 10 per- 
cent of the mean free-stream velocity, Ap = 0.1<l>{Ho), and the linear solution 
approaches the nonlinear solution quite well as A increases. This indicates 
that the present linear analysis is adequate for describing the characteristics 
of disturbance development in a Hiemenz flow. 

6.4.4    Boundary conditions for the vorticity 

The general composite solution in (6.55) describes the evolution of distur- 
bance vorticity in the whole domain from the inflow to the wall boundary. 
Now we set to specify the constants Cmn and D^n by the inflow and wall 
boundary conditions. In fact, it will later become clear that both Cmn and 
Dmn bear clearly defined physical meanings. First, the initial disturbance 
vorticity is introduced at the inflow boundary far upstream, i.e. 

Wmn  = (^mn{Ho) at 7? = -ffo (6-56) 

Then, the value of vorticity at the wall needs be specified. However, there is 
no explicit expression for oJmniv = 0) because, as indicated by Sutera (1965), 
the vorticity equation is coupled, through the no-slip boundary condition, 
with the velocity equations. To obtain the correct value of vorticity on the 
wall, the equation for normal velocity Vmn must be solved first. By (6.13) 
and (6.14), it follows 

v'mn - "^ ^^O "mn = -inko U)mn " «mn>     with     Vmn{^) = Wmn(O) = 0-   (6-57) 

Using the method of variation of parameters, the solution of Vmn satisfying 
the above boundary conditions is 

ptikori    rn g,-nkov 

(6.58) 
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But (6.58) contains u„,„ which couples with v^n through (6.15) and has not 
been solved. Nevertheless, by requiring that Vmn is bounded as r; -> oo, 
further analysis (see Appendix A) shows that the second boundary condition 
for Umn can be expressed as 

roo 

I   oCne-'^^^drj = 0 (6.59) 

Together with (6.56), we now have 

Ml Cmn    + Mz Dmn = 1 (6.60a) 

h Cmn     + h Dmn   = 0. (6.60b) 

Solving (6.60) for C^„ and D„„ yields 

M^h - M1/2'        ^""^ ~ M^h-M^h 

where 

^   2A 2   ' 2' 2        ^ 

M- 

(6.62a) 

^-   =   r^(^-*T^5-^^)-*"*' M2C) 

Notice that in (6.60) the vorticity at inflow has been chosen as a;^„(Fo) = 1 
since the equation is linear. The value of a;^„ therefore represents the factor 
by which the initial vorticity is amplified or attenuated as it approaches the 
wall. Before we discuss the asymptotic behaviors of Cmn and £)^„, a few 
remarks on their significance and qualitative behavior are in order. First, 
(6.55) indicates that for a vortical disturbance specified upstream by A and 
ao, the induced vorticity on the wall is directly related to the value of Cmn 
and Dmn- In the case of A > n^, |C^„| represents the amplitude of vorticity 
at the wall, i.e. |a;^„(0)| ~ |C^„|, and Dmn represents the amplitude of nor- 
mal derivative of the vorticity at the wall, i.e. \uj'^M\ ~ |Z)^„|. This can 
also be seen more clearly from figure 6.10. Consequently, the amplitude of 
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Cmn and Dmn indicates the effectiveness for the disturbance to penetrate the 
boundary layer and modify the mean flow structures near the wall. Second, 
the boundary condition (6.59) shows that for steady disturbance, uj"' must 
change sign in the flow domain; vorticity with sign opposite to the incom- 
ing vorticity needs be developed at the wall in order to satisfy the no slip 
boundary condition. This can be observed clearly form the vorticity contours 
in figure 6.6. Note that the amplitude of the induced vorticity at the wall 
'^mn(O), as shown in figure 6.9, approaches a constant when A becomes large. 
The origin and implications of this interesting behavior of a;„,„(0) can be 
understood through the asjonptotic analysis for large A and small ao, and is 
presented in the next section. 

6.5    Asymptotic Behavior 

In this section, the asymptotic behavior of Cmn and Dmn in the vorticity 
expression is analyzed for the large scale A >■ 1 and low frequency CTQ "C 1 
disturbances. Based on this analysis, a scaling relation for the heat transfer 
enhancement in stagnation point flows in the presence of upstream distur- 
bances is also derived. 

6.5.1    Vorticity asymptotes 

The asymptotic expression of Cmn for large A and small ao may be obtained 
as (see the Appendix B) 

2 2 

\Cmn\ - Fo [1 + (ax - lnFo)y] [1 - ^^a^ (6.63) 

where ai = |(ln2 + 7) and 7 = 0.5772156-•• is the Euler constant.  The 
expression for \Dmn\ can be similarly obtained. 

An important observation for (6.63) is that the amplitude of the vortic- 
ity induced at the wall, up to the leading order, is linearly dependent on 
the normal distance J^o between the wall and the upstreani location where 
the disturbance is introduced. This means that for large A and small ao, 
within the linear dynamics regime, the amplification factor due to the vortex 
stretching for the initial vortical disturbance has an upper limit set by HQ. 

This explains the behavior seen in figure 6.9 as A becomes large. From (6.63), 
one also finds that the unsteadiness of the disturbances tends to decrease the 

164 



induced vorticity amplitude at the wall compared with the steady case, but 
only to the second order in terms of frequency ao- In figure 6.13, the vorticity 
profiles at different frequencies are computed numerically for A = 4 to show 
the effect of the disturbance unsteadiness. Notice that although the numeri- 
cal computation uses the full nonlinear equations, the vorticity value at the 
waJl indeed follows the asymptotic behavior (6.63) and shows only modest 
changes relative to steady case for ao < 0.5. From a viewpoint of time scale, 
(To « 1 implies that the disturbance turn-over time is much longer than the 
time scale of mean flow distortion; vortex stretching is predominant, and 
hence generating flow structures similar to the steady case. For high fre- 
quency case ao » 1, (6.28) is not valid, and in the course of disturbances 
being convected towards the wall, many cycles of oscillation have completed. 
The net vorticity induced at the wall is small due to the cancellation effect 
of the incoming disturbance vorticity with alternating signs. This effect, also 
known as 'vortex piling', has been analyzed by Hunt (1973). Our numeri- 
cal results in figure 6.13 shows that indeed the induced vorticity at the wall 
decays monotonically with <TO and becomes rather small when ao > 2.5. 

6.5.2    Heat transfer scaling 

With the amplitude of the velocity disturbance at the inflow Vmn{Ho) kept 
constant, the vorticity a;^„ introduced at the inflow varies as a function of A 

(^mn{Ho,X)  =  U}mn{Ho,l) >^~^ (6.64) 

where a;m„(/fo, 1) is a reference value of vorticity for A = 1. Recall that, Cmn, 
Dmn, as functions of A and ao, represent the amplification factor for the wall 
vorticity value. The amplification factor increases with A, initially at a large 
rate but eventually approaches a constant value determined by HQ. Together 
with the A" 2 factor, this gives rise to an overall optimum amplification for 
A«4 

Once the vorticity is obtained, the corresponding velocity disturbance can 
be found by (6.58) as 

Vmn = -^— j    {iU}mn-Umn)e''''°'^dr). (6.65) 

As shown in appendix A, the second term of the integrand in (6.65) is ex- 
pected to be much smaller than the first for A:o < 1. Hence the dependence 

165 



of Vmn on A directly follows that of w^n- When A is large, the vorticity am- 
plification factor Cmn approaches a constant. Accordingly, \v\max '^ A~^/^, a 
trend noted in figure 6.8. Now from (6.23), it follows that 

For the temperature disturbance dmn-, the linearized equation of (6.17) is 

Cn + ^r0 ^^„ - [n^kl + im Prao)emn = PrVmnO' (6.67) 

The amplitude of the temperature fluctuation 9mn can be deduced; viz. 6mn 
will be proportional to the amplitude Vmn and follows the same asymptotic 
dependence on A as ojmn and Umn- Hence, we have 

\Vmniv)\   ~   l^mn(^)|   ~   |c^mn(^)|   -^   |C^„|^^^^^^^ (6-68) 

For the low frequency case ao <^ 1, the heat transfer enhancement scales 
with the disturbance parameters. 

Ah AiH. 21/2 „2 

h A 
- E [l + («i-ln^o)^]' [l-^mVo^]^|t;,„„(ffo)r- (6-69) 

m,n 

When A » 1, we have Ah/h ~ A~^ for fixed Ap, a behavior noted in figure 
6.8. We can rewrite j in terms of the disturbance length scale Id, and obtain 
the following scaling relation for the relative heat transfer enhancement at 
low disturbance frequency 

^   -f E(l - T^'^O)' \^rnn{Ho)f (6.70) 
''    m,n 

The above expression reveals different roles played by the various flow param- 
eters in heat transfer enhancement. First, the enhancement is proportional 
to the square of the disturbance amplitude Ap due to the net convective flux 
by the disturbance modes. Second, the length scale of the disturbance has 
a critical effect upon the heat transfer enhancement. For large scale distur- 
bances, the heat transfer enhancement decreases with increased length scale. 
The most effective disturbance will be those with length scales comparable 
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to the boundary layer thickness. Finally, the overall effect of the frequency 
of the disturbances is to reduce the heat transfer enhancement. The decrease 
is of the second order when the frequency is low, and at high frequencies the 
heat transfer enhancement approaches to zero owing to the rapid decay of 
the incoming disturbances. So far the Prandtl number has been kept at a 
constant in the analysis Pr = 0.71. For a different Prandtl number, both the 
mean thermaJ boundary layer thickness and the amplitude of the e„„'s will 
be affected. Nevertheless, the qualitative dependence on Prandtl number can 
be inferred from (6.23). For small Pr, the Ah/h increases with the increase of 
Pr, but as Pr becomes very large, the effect diminishes due to the extremely 
thin thermal boundary layer. So there will be a optimal value of Prandtl 
number for each fixed value of A which gives the maximum heat transfer en- 
hancement. Numerical calculations show that this optimal Prandtl number 
decreases with increasing A from Pr = 7 at A = 1.5 to Pr = 0.71 at A = 12. 
However, for a fixed Prandtl number, the optimal value of A is still around 
A = 4, and the overall maximum value of Ah/h occurs around A = 4 and 
Pr=1.5 (Xiong, 2004). 

6.6    Discussion of Free-Stream Turbulence 

One of the primary goals of the preceding analysis is to provide an improved 
understanding on the free-stream turbulence effect in stagnation point flows. 
In this section, we extend the incoming disturbances from discrete harmonic 
modes to free-stream turbulence. The latter is assumed to be isotropic and 
homogeneous. This extension allows a comparison to experimental measure- 
ments. This also serves as a test of applicability of the analysis to relevant 
engineering problems. The formulation is analogous to that in RDT, i.e. 
the overall changes of the turbulence statistics are obtained by integrating 
over all the Fourier modes once the modal distortion for each of them is 
known. The goal is to derive a scaling relation between the characteristics 
of the free-stream turbulence and the relative heat transfer enhancement at 
the wall. 

On expressing the velocity fluctuations as 

U(C, ^' ^' ') = y y y       ^ («1. «2, Ks) exp [i{Ki( + K2V + KsC + at)]dKidK2dK3 

(6.71) 
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and using Taylor's hypothesis, the free-stream turbulence is treated as 'frozen' 
while being converted into the domain through the inflow boundary with a 
time frequency a = -UK2. Let r) = Hohe the location of the inflow bound- 
ary, then 

U(e, Ho - Ut, C) = ///" ^n{«l' «2' «3) e'(«^^+'^^(^''-^*^+"'^) rfACi d«2 d^^. 

(6.72) 
While being convected towards the stagnation point, the free-stream tur- 
bulence experiences an accumulated vortex stretching in ^ direction by the 
diverging mean flow. As a result, this leads to ki <C k2, k^ in the stagnation 
point region. Thus the dependence of u on ^ may be neglected in the above 
expression, and the inverse transformation of Ui„ is now written as 

ii,„(K2, K3) = 7^ 11^ u(^o - Ut, 0 e-'(«^(^''-^')+'^3^) dCdt      (6.73) 

The heat transfer enhancement in the presence of free-stream turbulence can 
be computed in terms of the downstream velocity and temperature spectra 
n{r),K2,K.3), 0{'n,H2,K3). Following the discussion in preceding sections, we 
assume that for the 7y-velocity v and temperature 0 

v{r), K2, K3) = G{r])v{Ho, KZ, /C3) ~ Hv, «2, «3) (6.74) 

where function G(r/) represents the amplification ratio at downstream loca- 
tion 77 for mode V{K2, K3) due to mean flow straining and viscous dissipation. 
Taking the amplitude of G{T}) as C{K2, K3), i.e. 

\G{ri,K2,K3)\   ~   |C(«2,K3)| (6-75) 

The overall effect of free-stream turbulence on the heat transfer can be es- 
timated by summing the contribution from all the modes of different wave 
numbers and frequencies. In view of (6.23), for a single mode disturbance 
specified at the inflow, the heat transfer enhancement mainly results from 
the second order interaction terms. Thus in the present linear analysis when 
(6.23) and (6.74) are used to find the contribution from mode Vrnn, the non- 
linear term A/4 can be written as 

A/'4(K2,K3)   ~   \C{K2,K3)f\v{K2,K3)f  ~  |C(«2, K3)|^ ^«(«2, «3) (6.76) 
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where the $ii(K2,«3) is the energy spectra density for the free stream tur- 
bulence. Since the free-stream turbulence is assumed to be isotropic and 
homogeneous, the energy spectrum E{K) is defined as: 

E{K) = 27r$<.(K)K2 (g 77^ 

The turbulence intensity T„ and the integral length scale L may be related 
to the amplitude and fundamental wavenumber of energy containing range 
by 

Al - (UT,)';        Ko r^ j (6.78) 

The total contribution from all wave number components is the integration 
of the turbulent energy spectrum, i.e. 

AlJ2\v{Ho,K„n,)\' r.   //r$,.(K)rf3« ^ TlT^dinL) 
»t2,fc3 J J Jo JQ     q^L ' 

(a 7Q^ 

Substitute (6.76), (6.79) into the expression for heat transfer enhancement 
(6.23), it becomes 

-^ ~ Tl jE{KL)\C{kL)\U{KL) (6.80) 

where E{KL) = E{K)/{q^L). In most of the engineering problems involving 
turbulence impinging on a stagnation point, the turbulent eddy turn-over 
time is typically much longer than the time scale associated with the mean 
flow straining, i.e. ao < 1. In addition, the turbulence length scale is 
assumed much larger than the boundary layer thickness, i.e. L > <5. By 
(6.68), for a fixed upstream location it follows 

\C{KL)\  ^ -^  ^ _  ^  {«L)(-) for 0 < K < Kma. (6.81) 

Hence, 

~r ~ ^~r)' / E{KL) (KL)^ d{KL) (6.82) 

where kmax represents the highest wavenumber component having contribu- 
tion to the heat transfer augmentation. From the previous analysis, the heat 
transfer enhancement reaches its maximum value with the disturbance scale 
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similar to the the boundaxy layer thickness. At even smaller scales the dis- 
turbances decay rapidly because of the viscous dissipation and have little 
effect on the wall quantities. 

For practical engineering problems, such as flows over a bluff body, the 
boundary layer thickness at the stagnation region scales 

lo = y/lFJA* ~ <J ^ (6.83) 
y/Re 

where the Reynolds number is based on the mean flow U and the diameter of 
curvature D, see figure 6.1a. For an effective strain rate A*, e.g. A* = MJjD 
for a circular cylinder, «Vnox may be expressed as 

Krr^h ~ :^ ~ v^^ (6.84) 

Furthermore, the energy spectrum of the free stream turbulence is as- 
sumed to follow the KolmogoroflF —5/3 law 

E{KL) - («L)-'/^ (6.85) 

Substituting (6.84) and (6.85) into (6.82), the heat transfer enhancement at 
stagnation point can now be correlated to the free-stream turbulence param- 
eters by 

Note that here the three-dimensional spectrum function is used. Following 
the form of organized disturbances in previous discussion, a one-dimensional 
spectra is probably more appropriate. However, at high Reynolds number, 
it also follows the same -5/3 law as the three dimensional spectrum. 

In order to examine heat transfer scaling, (6.86) is compared against 
the experimental measurements for stagnation point flows in the presence of 
free-stream turbulence. A recent experiment was conducted by Ames, Wang, 
and Barbot (2002), in which the heat transfer to a model vane is measured 
for six different inlet turbulence conditions with turbulence intensity up to 
14 percent. The different characteristics of the free-stream turbulence are 
generated using mesh biplanar grid and various mock combustion system 
configurations. The experimental set up is representative to modern dry low 
NOx and aeroderivative combustors.   The downstream vane heat transfer 
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measurements can serve as a database for the validation of predictive meth- 
ods. Another reason to choose this experiment is that the characteristics of 
fre^stream turbulence i.e. intensity and length scale are measured with the 
model vane present in the flow. Thus the mean velocity follows the Hiemenz 
profile at the locations where the turbulence is measured. This is the same 
case as has been assumed in the present analysis. In some other experiments 
e.g. Van Fossen et al. (1995), the free stream turbulence is first measured 
in the uniform flow without the model. When the model is present, the tur- 
bulence characteristics are obtained by extrapolation using a power law for 
decaying turbulence. At locations close to the stagnation point, the turbu- 
lence characteristics obtained by this method will be significantly different 
from those obtained with the presence of the model.  Although the differ- 
ence becomes smaller beyond a distance on the order of D away from the 
wall^ the Hiemenz flow, as a good approximation at the stagnation point for 
bluff-body flows, is also only valid within the order of D away from the wall 
Hence, in figure 6.14 the present heat transfer correlation is compared with 
the measurement of Ames et al. (2002) at four high turbulence levels gener- 
ated by grid as well as by aero-derivative and dry low NOx mock combustor 
system.  The Reynolds number based on the leading edge diameter ranges 
from 58,000-232,000; turbulence integral scale from O.llD- l.OD and the 
turbulence intensity from 8 - 14%. The collective experimental uncertainty 
is ±5 percent for turbulence measurement and ±3 percent for heat trans- 
fer data. Although some scatter is present, the correlation appears to agree 
reasonably well with the experimental data for the correlation parameter U 
over the range 5 to 35. Notice that the turbulence levels in these experiments 
are quite high, but the analysis indicates that only small scale components 
contribute effectively to the heat transfer enhancement.  So even the total 
turbulence level is high, the amplitude at the small scale, i.e. the scale of 
boundary layer thickness that affects the heat transfer most, would still be 
relatively small. For a single mode velocity disturbance at a level equivalent 
to 10 percent of the mean flow, the numerical results show that the dis- 
turbance evolution can still be largely described by linear vortex dynamics 
This may explain why the correlation based on linear analysis seems to hold 
even for the case of high turbulence intensity It is also interesting to notice 
that the present correlating parameter is close to the square of the empir- 
ical TLR parameter TLR = T,Re'^'\D/L^y/^ proposed by Ames (1997), 
If the turbulence integral length scale were replaced by the 'energy scale' 
Lu - 1.5|u'| /er, where \u'\ is the r.m.s. streamwise fluctuation velocity and 
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cr is the turbulent dissipation rate. 
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Figure 6.1: a) Disturbed stagnation point flow at the leading edge of a two- 
dimensional bluff body, b) Hiemenz boundary layer flow with upstream in- 
coming disturbances. 

173 



V 0.5 ■9   «- 

® 0.5 

Figure 6.2: Profiles for the mean velocity (^, its derivative ^' and the mean 
temperature 0. 
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Figure 6.3: Streamline patterns in the stagnation plane for different values of 
A. Flow is downward and the spanwise width is one disturbance wavelength. 
A = 1.1,2,4,16,32,64 from a to f. 
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Figure 6.4: Streamline patterns in the stagnation plane for different values 
of yip at A = 4. Flow is downward and the spanwise width is one disturbance 
wavelength. Ap = 0.02,0.05,0.07,0.10,0.12,0.15 from a to f. 
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Figure 6.5: Profiles for steady (a = 0) velocity and temperature disturbances 
at A _ 4. Solid line is the fundamental mode, The dash, dash dot and dotted 
line correspond to mean flow modification, second and third harmonics for 
Umn, Vmn, Omn, and second, third and fourth harmonics for cjmn and w 
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Figure 6.6: Vorticity contours in stagnation plane at A = 4, Flow is downward 
and the spanwise width is 27r. Solid lines are for the positive values of oj and 
dash lines for the negative. 
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Figure 6.7:  Temperature contours in stagnation plane at A = 4.   Flow is 
downward and the spanwise width is 27r. 
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Figure 6.8:  Relative heat transfer enhancement Ah/h and the maximum 
amplitude of the fundamental v velocity (renormalized) as a function of A. 
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Figure 6.9: Vorticity magnitude at the wall as a function of A for the steady 
fundamental mode. 
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Figure 6.10:  A typical vorticity profile composed of two confluent hyper- 
geometric functions. A = 4, CTQ = 0 
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Figure 6.11: Comparison of vorticity profile between numerical and asymp- 
totic solutions at A = 4. 
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Figure 6.12: Comparison of vorticity profile between numerical and asymp- 
totic solutions. A = 36. 
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Figure 6.13:   Vorticity profiles for diflferent fundamental disturbance fre- 
quency ao at A = 4. 
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Figure 6.14: Experimental data of leading edge heat transfer enhancement 
under free-stream turbulence correlated by the present scaling parameter V.. 

186 



Chapter 7 

Summary and Conclusion 

We have developed a numerical method for three-dimensional compressible 
flow based on fourth order finite difference scheme in curvilinear coordinates, 
and a very eiBcient dual-time linearized subiteration scheme for fully implicit 
time marching. This method is suitable for numerically simulating turbulent 
flows around bluff bodies. It has been implemented, validated, and used to 
perform large eddy simulations of free-stream turbulence impinging on an 
elliptical leading edge and the resulting heat transfer enhancement. 

A new blending procedure is developed by which independent but sta- 
tistically identical realizations of homogeneous isotropic turbulence are com- 
bined into a unified field to represent free-stream turbulence realistically. 
The blending is performed over a blending zone at the interface between dif- 
ferent realizations using a smooth varying function. Extra dilatation field 
within the blending zone is further removed using Helmholtz decomposition 
theorem. Outside the blending zone, the original turbulence fields remain 
unchanged. By construction, the combined field preserves the turbulence 
intensity, and the change to other statistical quantities are shown to be min- 
imal. The method is simple yet effective and could be useful in other direct 
or large eddy simulations in which effects of sustained free-steam turbulence 
are important. 

The large eddy simulation results characterize the anisotropy of turbu- 
lence due to the mean flow strain as it approaches the stagnation point. The 
turbulent budgets for the Reynolds stresses in such a strongly strained flow 
are presented, and different roles in the dynamics for different terms are dis- 
cussed. These results provide guidelines for modelling strongly strained tur- 
bulent flows for Reynolds averaged Navier-Stokes equations, a subject which 
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has been proved difficult in the past. The numerical results also shows that 
fre^stream turbulence significantly elevates the surface heat transfer coeffi- 
cients, but the distribution of the heat transfer coefficient along the surface 
IS essentially kept the same as in the laminar case. Both of these results 
show good agreement with the corresponding experimental measurements 
The numerical simulation also reveals that small scale, intense vortical flow 
structures generated at the leading edge by vortex stretching induces signif- 
icant changes in the thermal boundary layer thickness, and are the primary 
cause of the observed heat transfer enhancement. 

In the theoretical study, we analyze the distortion of unsteady three di- 
mensional organized disturbances in an incompressible Hiemenz boundary 
layer and its effect on the wall heat transfer. Based on linearized disturbance 
equations, it is found that the vorticity outside the boundary layer can be 
expressed analytically in terms of confluent hyper-geometrical functions, pa- 
rameterized by the disturbance length scale and temporal frequency. When 
the scale of the disturbance is large and the frequency is low, an approximate 
asymptotic solution is obtained with explicit dependence on the disturbance 
length scale and frequency. This solution compares well with the full nonlin- 
ear numerical solutions over a wide range of disturbance parameters. 

It is further shown that the ratio between the disturbance length scale 
and the boundary layer thickness is the critical parameter in determining 
the amplification factor of incoming vorticity. Essentially, it represents the 
interaction between the vortex stretching eff^ect and viscous diffusion The 
amplification factor is found to be inversely proportional to the length scale 
except at very small scales where it increases with increased length scale 
The maximum amplification is found for the disturbances with a length scale 
about five times the Hiemenz boundary layer thickness. The associated heat 
transfer enhancement also strongly depends on the disturbance length scale 
and is analyzed through the induced vorticity at the wall. Compared to the 
steady case, the heat transfer enhancement is reduced by the unsteadiness of 
the disturbance but the effect is of second order when the frequency is low 

The analysis is further extended to the case of homogeneous and isotropic 
free-stream turbulence. The turbulence energy spectrum is assumed to follow 
the Kolmogoroff's -5/3 law and the integral scale is much larger than the 
boundary layer thickness. Under these conditions, a new scaling correlation 
is derived between the relative heat transfer enhancement and the turbu- 
lence intensity, integral length scale and the mean flow Reynolds number 
In comparison to recent experimental data on turbine blade heat transfer 
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in the presence of free-stream turbulence, the present correlation provides a 
reasonable guide to the observed variations. 

This technical report represents a status report at the time of writing. 
The post processing of the simulation data is continuing and the finalized 
version including all the results and discussions will be reported in the PhD 
thesis of Xiong (2004). 
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Appendix A 

Incompressible Potential Flow 

We derive the incompressible two dimensional potential flow solution of a 
point source placed midway between two parallel planes with a uniform in- 
coming stream, see figure C.l. The configuration is prototypical to experi- 
ments where a blunt leading edge model with flat plate after-body placed in 
a wind tunnel test section, and due to the thickness of the model in com- 
parison with the height of the test section, the flow passage is significantly 
blocked. The blockage causes the flow field to differ, particularly in pressure 
distribution, from the open flow case where the walls are absent. To make a 
direct comparison between computation and experiment, the blockage effiect 
often needs to be accounted explicitly in the computational configuration. 

Let Uoo be the uniform incoming velocity at far upstream, a be the half 
height of the test section, and h the half thickness of the model. The coordi- 
nate is chosen such that the forward stagnation point is at the origin x = 0. 
The goal here is to find the strength 27rm and the location a; = c of a two 
dimensional point source S so that at far downstream, the required blockage 
ratio h/a can be reproduced. 

Following Milne-Thomson (1960), the complex potential for a point source 
placed midway between two planes with a general uniform incoming stream 
U can be written as 

W = (f> + i'tl) = -Uz - m In sinh ^^^ ~ ^^ (A.l) 
2a 

here (f> and ip are the velocity potential and stream function, and z = x + iy. 
By the definitions of complex function In z and sinh z 

y \nz   =   \n{y/x^ + y'^) + i arctan — (A-2) 
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tan — = - tan ^ (A.6) 

sinh z   =   cos y sinh x-\-i sin y cosh x (A.3) 

The stream function V in (A.l) is 

^ = -Vy - m arctan [tan ^ coth ^^^ ~ ^^ f A 4) 
^      2a 2a     ^ ^      '' 

The dividing streamline, which forms the boundary of the Rankine body, 
corresponds to (?i = 0. This requires 

.     Uy        ^     '^y     ., 7r(x -c) 
tan — = - tan -^ coth -^^ '- (A 5) 

m 2a 2a ^     -' 

At far downstream a; -> 00, coth ^^^^ -> 1, thus 

Uy Try 
— = — tan — 
m 2a 

whose solution is 
Uy        Try , 
— = --±n7r,    n = 0,1,2... (A.7) 

Physical conditions indicate that only n = 0 and n = 1 are needed, so that 
at far downstream the y coordinates of the Rankine body are 

„      n. j^ 1.       I      2am7r y = 0,        y = ±b=±—-—     as   x-^00 (A.8) 
2aU + mn ^     ' 

Note that to ensure |j/| < a at x -^ 00, the incoming velocity U must satisfy 

7rm 
V>^ (A.9) 

Furthermore, the streamwise velocity u can be obtained from ^ by 

d^      ,,    nm coth^^if^ 

dy 2a cos2(M) + sin2(M) coth^ ^ ^    '"^ 

Setting u(0,0) = 0, we obtain the location of the source c 

a,   .2af/ + 7rm, 
c=-ln^-77 ) (A.ll) 

TT      2aU — Trm ^       '' 

But, if we now let x -^ -00, (A.IO) leads 
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That is, the resulting velocity at upstream differs from the value U which 
we initially imposed! This apparent contradiction stems from the fact that 
due to the presence of the planes, the velocity generated from the source, 
which would vanish as l/r at r -> oo in open flows, does not vanish in the 
present case; instead, it reaches a constant value at ar = ±00. Indeed, by 
continuity equation and in the absence of imposed mean flow U, a point 
source of strength 27rm placed between two planes y = ±a generates velocity 

. Trm , / A -io\ 
u = ±-—    at   x = ±00 (A.13) 

2a 

at X = ±00. The incoming velocity at x = -00 is therefore a superposition 
of the imposed incoming mean flow U and the outgoing velocity ^ from 
the source inside the domain. If the boundary condition is set u = Uoo ai, 
X = — 00, then we need choose 

U = Uoo + ^ (A.14) 

for the resulting velocity to be compatible. Hence, for given lengthes a, 
b, and velocity Uoo, substituting (A.14) into (A.8) and (A.ll), we find the 
required downstream blockage can be realized by placing the point source S 
of strength 27rm, where 

m = -7-^f/oo (A.15) 
7r(a — 0) 

at location x = c, where 

c = - In  1 + —-) (A.16) 
TT aUoo 

An example of the streamline pattern for a = 5, 6 = 1 and ?7oo = 1 is shown 
in figure A.2. Note that obviously in the potential framework, the boundary 
layers developed along the model surface and the wind tunnel walls are ne- 
glected. Furthermore, in the near field, the generated Rankine body shape 
does not, in general, follow the specific geometry of the leading edge of a test 
model. The solution, however, can serve as an initial condition for numerical 
computations where specific leading edge geometry is incorporated, and, in 
low Mach number case, provides a reasonably good boundary condition at 
far field for the compressible flow in question. 
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Figure A.l: A source with uniform incoming flow placed between two parallel 
plates 
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Figure A.2: Streamline pattern of a point source with uniform stream placed 
between two planes, a = 5, 6 = 1 and C/oo = 1 
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Appendix B 

On the Coefficient of Numerical 
Dissipation 

Center differencing scheme (differencing scheme on a symmetric stencil) is 
dispersive but not dissipative. Owing to the stencil symmetry, the dissipation 
terms in the truncation error — the even order derivatives are completely 
canceled out. The discretization error in this case consists of only dispersion 
terms associated with the odd derivative terms. For a simple traveling wave 
computed using center differencing scheme, for instance, the wave will travel 
at a different speed due to the numerical dispersion, but the amplitude of 
the wave is maintained. 

The inherent non-dissipative nature makes the center differencing scheme 
susceptible to numerical instability, particularly in the simulations of turbu- 
lence. Once some high wavenumber components are generated and can not 
be represented adequately by the underlying grid, they tend to persist in the 
course of computation and often eventually leads to numerical divergence. A 
common cure to this problem is to add controlled artificial dissipation terms 
to the governing equations to suppress the unwanted high wavenumber com- 
ponents. Another way of dealing it is to use numerical filtering, which will 
not be discussed here. 

Specifically, consider a general one dimensional equation in its conserva- 
tive form 

ft + FM = 0 (B.l) 

where the subscripts denote temporal and spatial partial derivatives. Suppose 
in computational domain [0,1], a uniform grid consists of N points is used. 
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then X, = ih, l<i<N, where h = 1/N is the grid spacing. A five point 
tourth order center differencing scheme 

is chosen to approximate the spatial derivative. To enhance the robustness 
of difference equation resulting from (B.2), a numerical dissipation term of 
the form 

-^''(^^ (B.3) 
may be added to the right hand side of (B.l). Here a > 0 is the coefficient 
controlhng the amount of numerical dissipation added, whereas the /i^ keeps 
the dissipation term, if a is not excessively large, of the same order of the 
truncation error in {B.2). In this way, it is expected that the formal accurax:y 
ot the difference equation will not be ruined by the addition of (B 3) The 
fourth order derivative in (B.3) may be approximated by the following seven 
point 4th order scheme 

^^'^ " fe^' = 6^I-(^'-3 + /i+3) + 12(/,_2,+/i+2)-39(/.._i + /,+i) + 56/,]. 

Now the problem reduces to how to the specify the value of a so that^the 
unresolved scales can be effectively damped while the resolved scales remain 
essentially unaffected. In practice, the value of a is often chosen, to a large 
extent, empirically depending on the computations in question. Here we 
analyze the proper bound of a using modified wavenumber analysis-' the 
purpose is to provide a guideline in determining the value of a in practical 
computations. 

func^kjn^^'" "^'^^ modified wave number analysis, let / be a simple periodic 

/ = e'*^   then   U = ike*'''' (B.5) 

The relative error contained in the numerical differentiation /^ by (B.2) is 

l/x - fx\     ,     16sin(A:/i)-2sin{2A;;i) 
~lfr = ' Ukh (B.6) 

On the other hand, the relative error resulting from (B.3) can also be similarly 
expressed as *^ 

^^'l-^'^'^l _ ^.-2cos(3fc/i) + 24cos(2A:M - 78cos(kh) + 56 
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Figure B.l: Relative error of 4th order center differencing scheme and 4th 
order dissipation term (scaled) as a function of hk. 

To maintain the formal accuracy of the numerical solution, we require that 
the maximum of the (B.7) is one order of magnitude smaller than maximum 
of (B.6),i.e. 

max a/i^|/(^)| < 0.1 max]/, - f^\ (B.8) 

For the particular choice of difference schemes used here, it is found that this 
can be achieved by setting 

ah<Om (B.9) 

For other differencing schemes, similar results can also be found. The com- 
parison of (B.6) and (B.7) resulting from (B.9) is shown in the figure B.l as a 
function of kh. As can be seen, the error in this case caused by the numerical 
dissipation term is negligible compared to the inherent difference truncation 
error. If we take (B.9) as an upper bound for a for fixed h = 1/N, a useful 
estimation for a can be derived as 

a < O.OIN (B.IO) 

In what follows, condition (B.IO) is tested by solving the following one 
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dimensional convection equation with and without added numerical dissipa- 
tion. 

/e + /x   =   -oh'f^'^ 

f{x,0)   =   e-'^'^^-'-')' (B.ll) 

The computational domain is 0 < a: < 1 with periodic boundary conditions 
at both ends. Although there are many choices for time marching scheme, 
we choose an implicit dual time stepping scheme with sub-iterations. While 
certainly not the simplest, this scheme is very representative to the time 
marching scheme often found in the unsteady wall bounded flow simulations. 
The derivation of this scheme is outlined as follows. 

First, the semi-discrete form of (B.ll) with implicit second order Euler 
scheme is 

-^ ~^— + /r^ = -ah'f^*^^-'' (B.12) 

After adding a pseudo time derivative fr to the left hand side, (B.12) becomes 

^' "^      2A/ + ^^' = -ahU^'^^' (B.13) 

k — Now we approximate /^ by first order Euler scheme fr = ^, where 5f = 
yfc+i _ y*^ ^^^ replace the index n -|-1 to A; -f-1 in (B.13), the A form of the 
sub-iteration scheme becomes 

^Ar + 2Af + ax+^%x^^'^^ ^t a7~^^^9^ 
(B.14) 

When the sub-iteration converges, i.e. 8f^ = 0, /*+i is taken as /"+^ , and 
the right hand side of (B.14) recovers the (B.12). The pseudo time step Ar 
can be properly chosen to ax^celerate the sub-iteration convergence. In the 
present computation, the first and fourth derivatives at the right hand side of 
(B.14) are approximated using (B.2) and (B.4). The fourth derivative at the 
left hand side of (B.14) is approximated by the following five point second 
order accurate scheme 

d^f 1 
fe^' = /;T[/«-2 + /i+2 - 4(/,-i + /i+i) + 6/i]. (B.15) 

which preserves the penta-diagonal structure of coefficient matrix at the left 
hand side of (B.14). The total number of grid points is taken TV = 50, time 

198 



step At = 0.001, and the pseudo time step AT = 4Ai. Five sub-iterations are 
used for each time step. The comparison of the numerical solutions with and 
without added dissipation term are shown in figure B.2 through B.5. Notice 
the small waves at the trailing edge of the numerical solution are the result 
of dispersion error in the center differencing scheme — the traveling speeds 
of these waves are different from their theoretical values. The decrease of the 
peak is also due to the dispersion of the constituent waves in an Gaussian 
function. Although we have used the maximum value of a = 0.5 and a rather 
modest resolution N = 50, the comparison between the numerical solutions 
with and without the dissipation at four and eight flow through times is 
satisfactory. Only slight damping is observed on the side waves; the large 
structure of numerical solution is essentially unaffected by the addition of 
the dissipation term at a = 0.5. 

For different grid resolution, Table 1 summarizes the numerical error (in 
L2 norm) with a = 0 and a = 0.5 after four flow through times. As can be 
seen, at AT < 50, the error is smaller for a = 0.5 compared to the no dissi- 
pation case because the unsolved scales are more damped by the dissipation 
term. Beyond N = 50, the dissipation term shows essentially no effect on 
the numerical accuracy. The corresponding solutions for N = 100 plotted in 
figure B.6 shows no discernible differences between a = 0 and a = 0.5. In 
addition, due to the increased resolution, the dispersion error is significantly 
reduced so that the numerical solutions are in good agreement with the exact 
solution. 

In practical simulations, a is typically set, often by trial and error, at 
the minimum value that can stabilize the computation. This criterion, while 
necessary, is not sufficient to maintain the formal accuracy of the original 
equation. To do so, a should be further limited below its upper bound. The 
estimation of the upper bound of a also offers a better assessment on the grid 
resolution: if the maximum a is still insufficient to stabilize the computation, 
it suggests that the resolution is critically low and increasing the number of 
grid points is essential. Increased resolution, on the other hand, also increases 
the upper bound of a according to (B.IO), so on a refined mesh, a can take 
a larger value and the numerical method can achieve, without sacrificing the 
accuracy, an improved robustness. 
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Number of grid points N No Dissipation a = 0 Dissipation at a = 0.5 
25 0.1362 0.1009 
50 0.0214 0.0209 
100 0.0025 0.0026 
200 0.0015 0.0015 

Table B.l: L2 norm of the numerical error after four flow through times. 
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Figure B.2: Comparison between numerical and exact solutions of an initial 
Gaussian function, after 4 flow through time without numerical dissipation. 
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Figure B.3: Same as above, but with numerical dissipation o = 0.5. 
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Figure B.4: Comparison between numerical and exact solutions of an initial 
Gaussian function, after 8 flow through time without numerical dissipati tion. 

202 



1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2. 

  1  1  r—    —           ' 

 exact 
 numerical, t=8, CT = 0.5 

A \ 
1    A 

f /   1 
Ij 

ll 
 //.. \ 

■    V 
V 

1 

0 0.2 0.4 0.6 0.8 

Figure B.5: Same as above, but with numerical dissipation a = 0.5. 
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Figure B.6: Comparison between numerical and exact solutions of an initial 
Gaussian function, after 4 flow through time without numerical dissipation 
A'^ = 100. 
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Appendix C 

Compressible Boundary Layer 
Over a Leading Edge 

C.l    Introduction 
The self-similar boundary layer momentum and energy equations in the re- 
gion of the stagnation line of a swept cylinder in high speed compressible 
flows were first obtained by Roshotko and Beckwith ? using the Stewart- 
son's transformation ?. The solutions to these equations play the same role 
in a two dimensional stagnation point flow as the Blasius solution in a flat 
plate boundary layer. As exact solutions to the Navier-Stokes equations, they 
have been used in the present study to compare with numerical solutions to 
determine the accuracy of the numerical algorithm. The derivation of self- 
similar boundary layer equations, somehow unavailable in the literature, is 
provided in this note for completeness. 

C.2    Boundary Layer Approximation 

Consider compressible, viscous, and heat conducting gas moving at an uni- 
form supersonic speed Moo > 1 towards an infinitely long cylinder placed at 
a swept angle 9, as sketched in figure C.l. We define the coordinates system 
such that the ar-coordinate is the distance along the cylinder surface mea- 
sured in chordwise direction from the leading edge stagnation line, y is the 
coordinate normal to the cylinder surface, and z is the spanwise direction. 
The subscripts oo, 1, and e denote the flow quantities at upstream infinity. 
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Stagnation line 
' y 

Figure C 1: Compressible boundary layer in the region of the stagnation line 
of a swept cylinder placed in a supersonic flow. 

immediately downstream the bow shock, and the edge of the boundary layer 
The boundary layer thickness is assumed to be small in the stagnation re^ 
gion compared with the local radius of curvature of the surface. Note that 
although the gas speed in the normal direction is reduced to subsonic af- 
ter the bow shock, the velocity in spanwise direction w, not affected by the 
shock, may still be supersonic, i.e. w^ = w^. 

With the usual boundary layer approximation, and noting that all the 
spanwise derivatives are identically zero, i.e. 

d _ 
d~z = ^ (C.l) 

the dimensional continuity, momentum, energy and state equations reduce 

Continuity: 
d{pu)     d{fw)     ^ 
~^r'^~d^ = ^ (C.2) 

Momentum: 

du        du dp      d     du 
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^   =   0 (C.4) 
dy 

dw        dw d , dw. ,^ _. 

Energy: 

State: 
P = pRT (C.7) 

where p is density, u, v, and w are the velocity components in x, y, and z 
directions, p is pressure; p, is the dynamic viscosity, and Pr is the Prandtl 
number 

Pr = ^ (C.8) 

The H in (C.6) is the total and stagnation enthalpy defined as 

H=.hu'' + v^ + w^) + E + ^ = lu'' + c^T (C.9) 

where T is the temperature, E is the internal energy, K is the heat conduction 
coefficient and c^ = -^ is the specific heat at constant pressure. 

The continuity and momentum equations follow directly from the bound- 
ary layer approximation and (C.l). The energy equation (C.6) is derived as 
follows. Following ? (p. 158), the general energy equation is 

where the strain e^ and the dilatation e are 

1, dui     duj X A //^ 1 -I \ 

By the Einstein summation convention and (C.l), (C.IO) becomes 

dH        dH d ,    . ,du     1 ..     v,dv     du.     wdw,^ 
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,    d . dr.    d , dT, 

Apply the boundary layer approximation, i.e. neglecting terms of the form 
diMai • • •]} ^d £{«[^ • • •]}. and all the high order terms of v, we obtain 
the energy equation as in (C.6) 

dy^Prdy^     dy^^^Pr       'dy^~^~^^ 

The velocity and thermal boundary condition are 
At y = 0 

u = v = w = Q   and    H = H^or-—=0 (C.12) 

At y -^ oo 

« = Me,    w = We,    and   H = He (C.13) 

The viscosity /i is assumed to be a linear function of temperature 

f^ = ^T (C.14) 

where subscript w denotes the quantities at the surface. T^ is a known 
function of x, and fj^ may be taken as any desired function of T^, such 
as the Sutherland law. Outside the boundary layer, the chordwise velocity 
satisfies the steady Euler equation 

dUg        dp. dp 

since p is a constant in the direction normal to the surface resulting from 
y-momentum equation. 
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C.3    Stewartson Transformation 

Define stream function i? such that 

^y^-^u,       i^.^-^v (C.16) 
Pa Po 

The Stewartson transformation introduces the transformed coordinates X 

and Y by 

X(x)= r ^---dx (C.17) 
JQ   T^ iMi Go Po 

Y{x,y) = ^ r -^dy (C.18) 
^ .    ao Jo   po 

here the subscript 0 denotes the total or stagnation value of the corresponding 
quantity, and a is the speed of sound. From (C.17) and (C.18), we have 

9_   _   x^ + Y^— (C.19) 

^   -   Y— (C.20) 
dy   "     "dY 

-^   -   y2-^ + K — (C.21) 

Furthermore, define the transformed velocities t/ and F as 

U = ipY, V = -'^x (C-22) 

Then, in terms of U and V, we have 

u   =     ^U {C.23) 

„   ^   _^(tn-^-yX,) (C.24) 
p 

therefore 

5x dy Co   ax Oo ^2/ °o 
^   p(^)2x,[t/xt/ + C/yV + ^t/^] (C.25) 
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where in the last expression, (C.14) and (C.4) have been used. To derive the 
pressure gradient, we first note that in external flow, H is constant; thus 

«5 = «e + ^K + «'e) {C.27) 

Now introducing A 

as the ratio between the total temperature in the streamwise direction and 
the total temperature upstream, we have 

a-l - ~^wl = al\ =al + -—-ul (C.29) 

Differentiating it with respect to x yields, 

1 doe 7-1     dUe 

Since u^ = ^Ue, and U^ is only a function of A-, we have 

ao 2aeOo        dx      co ^ 
that is 

rf"e it? U, ' dx   ~ 1+2^(^)2^- ^-^eX (C.31) 

Combining {C.28), (C.29) and (C.32), the pressure gradient becomes 

dx - -J^-^J ^-^^^^^ (C.32) 
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Substituting {C.25), (C.26) and {C.32) into {C.3) yields the x-momentum 
equation 

UUx +VUy=[ ^U^r UMeX - —U' ] + Uo Uyy (C.33) 
p A ao fle 

where VQ = /io/po- However, 

0'eXjj2    _      1  rfOe   1   /;^\2,2 

tte Cie "^ -^x   Oe 

7- 1     due   I   ,ao 2 .2 
2a2       dx Xx   a, 

7-i|i(£i).c.c^x,a(5>)v 
2a2    A ao ^x   a^ 

=     -^(-fC^et/eX (C.34) 
2A     oo 

and also noticing that peTe = pT, so (C.33) becomes 

UUx +VUy=[^ + ^U' ] \ {^f UeUeX + V, Uyy (C.35) 
Yg        iCg A   Co 

Similarly, we have 

pa^ + fy,^   =   p-U{wxXx + WyYx)- p{UYx-VXx)^^wy 
ox ay ao PQ^Q 

=   p(^)X,(t/wx + V^w) (C-36) 
Co 

A(„^)   =   ^AAf„(^)-^^] (C.37) 

which leads the spanwise momentum equation (C.5) to (C.5) 

Uwx +Vwy = UQ Wyy (C.39) 

Since we can also write 

f^^ + f^^   =   p-U{HxXx + HyYx)-p{UYx-VXx)-^^Hy 
ox oy Oo Po^o 
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=   p{^)XAUH^ + VHy) (C.40) 

_       P ,(^e.2t^wPe „ 

=   -^^^^?7^n'[(^V + (t.^)KK] (C.42) 

where ;g(/iFj,) = 0 has been used.   Thus, the energy equation (C.6) now 
takes the form 

UH, ■yVHy = i5(^ I (j;^),, + (^V. ] + %Hyr        (c.43) 

Now, defining nondimensional functions y and 0 as 
w 

^   =   ;r (C.44) 

$ = 

We 

H-K w 

He-H, 

and because of 

we have 

(C.45) 

(C.46) 

ffo = CpTo = CpTe + ^{ul + wl) = He (C.47) 

This gives 

-'0 J3e — Jiw 

=    T+^ + ^g^-T 

=   ^ + ^ + ^o{l-%2-T, (C.48) 

r = r.((,-|).-„-.y,|_l^J       (0.49) 
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and further 

'^ + ^u' = ^[(1 - ^)0 - (1 - A)/ + h (C.50) 

Substitute (C.50) into {C.35), the x-momentum equation becomes 

UUx + VUY = [{\ - ^)9 -{\- 1)5' + ^] UeUeX + ^0 Uyy     (C.51) 
A       I NO ^ J^NO 

Substituting the definitions of A into (C.28) and g and 6 into (C.39), and 
(C.43), we thus obtain 

x-momentum: 

UUx+VUy=UM^[l + {^-m-9') + {^-l){^){l-0)] + UoUyy 
-INO JQ JTVO 

(C.52) 
^-momentum: 

Ugx + Vgy= uo gyy (C.53) 

ue 

energy: 

..^-VBy^ ^{Qyy - (^)-^-^[{^)^(C/^)yy + {v^'M)yY]} 

(C.54) 

C.4    Similar Solutions 

To obtain similar solutions, an external flow of the Falkner-Skan type 

t/e = CX"* (C.55) 

is assumed. Introduce the usual boundary layer transformation 

g   =   gin) (C.57) 
e   =   e{ri) (C.58) 

U   =   UJ'iv) (C.59) 
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the momentum and energy equations in terms of /, g, and 6 take the form 

/'" + //" = 0\r - 1 - (^ - 1)(1 -g-)-^&- l)(l - e)]   {C.60) 

g"-\-fg' = Q (C.61) 

*"+''^!<'=(Te§i^(5)'(/")"+(1 - f )(p^)")  (C.62) 
where 

^=;;rTT (C.63) 
The boundary condition for the system equations are 

at ?7 = 0 

f = f' = g = 0 = O (C.64) 

at T; -> oo 

f' = g = 9 = l (C.65) 

Note the right hand side of the energy equation contains Ue which may in 
general depend on x. For similar solution to be permissible, this dependence 
must be identically vanish, i.e. the right hand can only be a function of rf. 
For gas with 7 7^ 1, this can be realized if one of the following conditions is 
satisfied. 

• Pr = l 

• «e = constant 

• failfSe.\2] _ Ilia. 

In such cases, the self-similar solutions can be found numerically. For the 
details of the numerical solutions, see ?. 
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Appendix D 

Vorticity boundary conditions 

Here we derive the second boundary condition (6.59) for the vorticity cvmn- 
For simplicity, the subscript mn will be dropped from the disturbance quanti- 
ties. Hence, the linearized governing equations for uj, u and v can be written 
in a general form as 

£^((A,a;) = 0,    £„((^,u,«) = 0,    C^{u,uj,v) = Q (D.l) 

where the expressions for the £s are those in (6.15), (6.16) and (6.57), re- 
spectively. Following a decomposition for the mean Hiemenz velocity <}> 

(f,{r,) = r + <f>'' = {n-Sd) + <f>' (D-2) 

the operators £„ and £u can also be decomposed into 

CM^)   =   Z:P(,^,u;) + £^(</^,^^a;) 

C.{(f>,v,u)   =   Cl{<f/',v,u) + Ci{(}^,cl>\v,u) (D.3) 

where the superscript p denotes the operator in which <f> has been replaced 
by its potential form (^, and b denotes the complementary operator resulting 
firom this decomposition; the effect of the Hiemenz boundary layer is thus 
incorporated in the C^ operators. The disturbances w, u and v can also be 
naturally decomposed as 

a; = a;P + a;'';        u = u'' + u'';        V = VP + V'' (D.4) 

For the p quantities, the governing equations are 

Cl{<f,uf) = 0;        Cl{<fi',v^,un = 0;        £„(n^a/,?/) = 0        (D.5) 
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The governing equations for the b quantities follow directly from the decom- 
positions in (D.3) and {D.4). For velocities vF and v^, we enforce the same 
boundary conditions as those for the original u and v, i.e. 

ti'' = 0      at   7/ = 0   and   rj -^ oo (D.6) 

dv'' 
v^ = 0   and    "j- = 0   at   r) = 0 {D.7) 

For the c^, (6.56) leads to the first boundary condition 

cJ' ^Uoo       as   7/ -> CO (D.8) 

where uj^o is the initial disturbance vorticity introduced far upstream. The 
second boundary condition for u^ can be derived from the following fact that 
as 77 -^ oo 

,.B     ,   / 1       for fundamental mode 
"    "^  \ 0      else (D.9) 

which is implied by (6.21). To see this, solving the last equation in (D.5) 
subject to the boundary condition (D.7), we obtain 

(D.IO) 
For (D.9) to be realizable, v^ must remain bounded as 77 ^ 00. So the 
coefficient of e"*"'' in (D.IO) must go to zero as 77 -> 00, i.e. 

(ia;P + uP)e-"*°'^d7;' = 0 (D.ll) 

Moreover, notice that 

u'' = 0 (D.12) 

as a result of (<^)" = 0 in £J and the homogeneous boundary condition 
(D.6). Thus (D.ll) reduces to 

I 
■00 

'Pe-"*<"^rf77' = 0 (D.13) 

which serves as the second boundary condition for UJP. Since the general 
expression for u^ has been obtained in (6.46), (D.8) and (D.13) can thus be 
used to specify the two arbitrary constants therein. 
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Once oj^ and v^ axe known, the corresponding 6 quantities can be readily 
solved. Notice that, by construction, u* and v^ satisfy homogeneous boundary 
conditions, and the boundary condition for ij' for 77 —>^ oo is also homoge- 
neous. 
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Appendix E 

Vorticity asymptotes 

The general asymptotic expression for the confluent hyper-geometric function 
with large real argument is (Abramowitz and Stegun, 1970) 

^^"'"''"^^^ IV=^^~°t^ + ^(l^'"')l    ^   ^-> oo; PMZ) = 0 (E.1) 

Since the inflow boundary is assumed to be far upstream, i.e. i/o > 1, the 
asymptotic expressions for Mj and Mg in (6.60) are as follows. 

r(^ + i^) ^v^ (E.2b) 

When A -> cx), by the nature of T function on complex plane, |r(^)| decrease 
rapidly along the imaginary axis. So (E.2) shows that for large A, M2 » 
Ml. Moreover, |/i| and I/2I in (6.62) can be shown of the same order of 
magnitude, thus compared to I/1I/I/2IM2, Mj can be neglected. Substituting 
these relations into (6.61) yields the asymptotic expression for the amplitudes 
of Cmn and D„„ at large A: 

n r(l + fi + i2fa)    r^        „, 

v^r(f)      ^72 i-^y—-'"""^ (E.3b) 
^2 
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In order to evaluate cjmn at the wall, the amplitudes of Cmn and D^n may 
be estimated more explicitly if the fundamental frequency ao is low. In fact, 
for the r function of a complex argument, it follows 

and as (To <C 1, it becomes 

2 , 

where 

2    ^^       ^ yfl^n^ 

Qn = Y. 
ifeJo (^+ 2 + 2A) 

Substitute these expressions into (E.3a), and expand the T function in terms 
of power series of ^ and m^ol up to the first order, we have 

~   Fo[l + (ai-lnFo)y][l-^ao^] (E.6) 

where ci = |(ln2 + 7) and 7 = 0.5772156-•• is the Euler constant. The 
expression for \Dmn\ can be similarly obtained. Notice that the value of 
I/1I/I/2I, as mentioned before, is slow-varying and of order one. For instance, 
in the limit of low frequency and large scale, i.e. CTQ —> 0 and A —> 00 , 

/i  ~  \/f[l-erf{^)];        /2 ~ ^Ei(l,i) (E.7) 

where erf and Ei are the error function and exponential integral, we have 
therefore I/2I/I/1I -> 0.70378178 ••-. To simplify the discussion, the depen- 
dence of h/h on A and GQ will be neglected, i.e. |/i|/|72| is treated as a 
constant. 
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