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Abstract 

Quasi-wavelets (QWs) are a representation of turbulence consisting of self-similar, eddy- 
like structures with random orientations and positions in space. They are used in this paper to 
calculate the scattering, due to turbulent velocity fluctuations, of sound behind noise barriers 
as a function of the size and spatial location of the eddies. The sound scattering cross-section 
for QWs of an individual size class (eddy size) is derived and shovm to reproduce results for 
the von Karman spectrum when the scattered energies from a continuous distribution of QW 
sizes are combined. A Bragg resonance condition is derived for the eddy size that scatters most 
strongly for a given acoustic wavenumber and scattering angle. Results for scattering over 
barriers show that, for typical barrier conditions, most of the scattered energy originates from 
eddies in the size range of approximately one-half to twice the size of the eddies responsible for 
maximum scattering. The results also suggest that scattering over the barrier due to eddies 
with a line of sight to both the source and receiver is generally significant only for frequencies 
above several kilohertz, for sources and receivers no more than a few meters below the top of 
the barrier, and for very turbulent atmospheric conditions. 
© 2003 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Turbulence can reduce the effectiveness of outdoor noise barriers by scattering sound 
energy deep within the diffracti ve shadow region (that is, the indirectly insonified region) 
formed by the barrier. Accurate modeling of this phenomenon is quite challenging, as 
realistic representations for the turbulence in the vicinity of the barrier are required in 
addition to techniques for calculating the complex sound propagation effects. Daigle [1] 
provided the first detailed calculations of the scattered and diffracted sound energy 
behind a barrier, and compared the results to experiments involving detailed acoustical 
and turbulence measurements. He demonstrated that scattering can significantly impact 
barrier performance, particularly for frequencies above a few kilohertz. 

Recently, a new tool for representing turbulence, called quasi-wavelets (QWs) 
[2,3], was introduced. Unlike Fourier spectral representations of turbulence, QWs 
have the advantage of being localized in space. This feature makes scattering cal- 
culations more straightforward and allows the scattering process to be characterized 
simultaneously in space and scale of the scatterers. Another improvement is that the 
QW representation includes scattering from the energy-containing subrange of the 
turbulence (the large eddies). Goedecke et al. [4] successfully used a QW formulation 
to calculate the spectral broadening of sound scattered by moving eddies. In this 
paper, we reexamine the phenomenon of sound scattering over barriers using a QW 
representation of the turbulence. 

The individual QWs are intended to have properties reminiscient of actual eddies 
in a turbulent flow. The general technique of representing turbulence in wave scat- 
tering calculations as a collection of discrete, eddy-like structures (sometimes called 
turbules) apparently originates with DeWolfe [5]. More recently, McBride et al. [6] 
used such a representation for scattering of sound above a complex impedance 
boundary, and Boulanger et al. [7] used it to determine turbulence effects on sonic 
booms. We call the eddy-like structures quasi-wavelets when the ensemble is con- 
structed from a parent function in a systematic, self-similar manner. 

The paper is organized as follows. We provide an overview of the QW model 
formulation, together with some new results for determination of the model pa- 
rameters, in Section 2. Equations are derived in Section 3 for the scattered field from 
a single QW and for the scattering cross-section of a random spatial distribution of 
QWs belonging to a single size class (eddy size). When the scattered energies from a 
continuous distribution of QW size classes are combined, the resulting cross-section 
agrees with a previous result for the von Karman turbulence spectrum. In Section 4, 
QWs are applied to the problem of sound scattering over a barrier. The results il- 
lustrate the eddy scales primarily responsible for scattering as well as the spatial 
regions from which the scattered energy originates. 

2. Quasi-wavelet ensembles 

Turbulence is generally conceived as a collection of eddies of many different sizes 
[8,9]. The QW model is a mathematical representation of turbulence that more 
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closely resembles this physical picture than Fourier modes or customary wavelets. 
Like customary wavelets [10,11], the QW representation is based on self-similar 
application of a spatially localized parent function. In contrast to customary 
wavelets, however, the orientations and positions of the quasi-wavelets are random. 
Furthermore, the QW basis functions are not required to be mutually orthogonal or 
to form a mathematically complete set. 

Recently, a QW representation has been developed that reproduces the von 
Karman turbulent velocity spectrum [3], which generally fits atmospheric turbulence 
well. In [2], expressions for temperature and velocity fluctuation spectra for isotropic 
homogeneous turbulence were obtained using QW (turbule) superpositions. Only the 
velocity spectra are considered in this paper. The relationship between the QW 
parent function and the turbulence kinetic energy spectrum is discussed in this sec- 
tion in detail. The parameters of the QW ensemble are related to the inertial- 
subrange characteristics of the turbulence. 

2.1. General results 

Like customary wavelets, QWs are derived from translations and dilatations of a 
dimensionless, spatially localized parent function f{i). Here, ^ is the magnitude of 
the vector ^ s (r - b")/a„, where r is the spatial coordinate, b"" is the center of the 
QW, and «» is its size. The index a indicates the size class of the QW, with a = 1 
being the largest size and a = A^ the smallest, and « indicates a particular QW within 
that size class. The size ai is associated with the outer scale of the turbulence and a^ 
with the inner scale. By defining the velocity field v"(r) as the curl of a vector po- 
tential A™(r), we assure that the turbulence will be a solenoidal field. Hence, we set 
v™(r) = V X A"(r), where 

A^"ir) = ir"alf{^) (1) 

and il"" is the angular velocity vector of the QW. The presence of a^ in the definition 
provides dimensional consistency. Writing out the curl of the potential leads to the 
following result for the rotational velocity field associated with the QW: 

v™(r) = il"" X (r - b™)( - r'8//80- (2) 

Since turbulence and scattering processes are often studied in spectral domain, we 
will have use for the Fourier transform of the velocity field. By definition, 

v(K)=-l-3y"dVe--Mr), (3) 

in which K is the wavenumber vector for the turbulence. Transformation of Eq. (2) 
leads to 

V"(K) = IK X A""(K) = i(K x ft™) exp ( - IK • b")a^F(Ka„), (4) 
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where 

F{y) 
(2 u)' I d'^e-'^V(0 (5) 

is the spectrally transformed parent function. 
A key distinction between QWs and customary wavelets is that the orientation of 

the QWs, ft" (where the carat indicates a unit vector), and their eddy centers, b"", 
are random variables. For a homogeneous, isotropic model, the Q'" are statistically 
independent and distributed uniformly over all directions, and the b'" are statistically 
independent and distributed uniformly in a volume of interest V. This construction is 
illustrated in Fig. 1. The total velocity field created by the quasi-wavelets (the QW 
ensemble), found by superposition, is 

N      N, 

^w = EE^''«, (6) 
= 1    n=l 

where A^ is the number of size classes and N^ is the number of QWs for the size class 
a. We may define the spectral density tensor ^ijix) of the velocity fluctuations as 

(IK) 
^oi'^) = -Y-{iM'^»), (V) 

Fig. I. Distribution of quasi-wavelets in a volume K. Each QW has a random position b" and angular 
velocity vector ft", vk'here a is an index for the size class of the QW and n is an index for the QWs within 
each size class. The nominal size of the QW is a,. Also shown is the geometry used for calculating scat- 
tering by a QW in Section 3. The source position is indicated as S, the receiver position as R, and the origin 
as O. The vector r extends from the origin to the field point at which the scattering is calculated. 
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where () is the ensemble average (average of a large number of random realizations) 
over the fl and b variables. Substituting vi^ith Eq. (4) and recalling that the QWs have 
statistically independent orientations, we find 

$,(K) =^ X^Af.a>^(Ka„)([(K X ft"") •e,][(K x ft"") -e,]), (8) 

where e, is the unit vector in the rth direction. Since the angular velocity magnitude is 
the same for all members of a size class, we may define i3c = |Q™|. Writing out the 
components of this equation and noting that the cross-correlations of the angular 
velocity components (e.g., (^"fl")) are zero, whereas the autocorrelations (e.g., 
{{Q";)^)) must equal 0^/3, we find 

$,(K) = -^ {K%J - K^Kj) j^KQy^F^Ka.), (9) 
a—1 

where dij = 1 when i = j and 0 otherwise. As is well known in the theory of isotropic 
turbulence, the spectral tensor can be written as ^,J(K) = E{K){K^dij - KiKj)/{Ann^), 
where ^(K:) is the turbulent kinetic energy (per unit mass) spectrum [9]. Using this 
formula and Eq. (9), we have 

E{K) = ^^Y^KQlay\Ka.). (10) 
01=1 

The spectral properties of the QW model are dependent upon the choice of F(y) and 
the scaling of flc and A^^ with «„. Let us construct the representation such that the 
packing fractions, 

(p,=N,a\lV, (11) 

equal a constant value cp, independent of the eddy size class a. Next, we choose the 
angular velocity magnitudes according to Kolmogorov's [12] original hypotheses for 
the inertial subrange. According to that treatment, quantities in the inertial subrange 
depend only on the eddy size (oo, in our notation) and the dissipation rate of specific 
turbulent kinetic energy, e. By dimensional analysis (since e has dimensions length^ 
time"^), we must have 

Q.^caa-"h"\ (12) 

where ca is a constant. Substituting these scalings into (10) yields 

E^,)J^-'<f>f"-'f^aTF\Ka.). (13) 

This result shows that we can adjust the product <pc| in order to obtain a desired 
turbulent kinetic energy. 
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As with customary wavelets, the QW size classes are chosen to scale in a self- 
similar fashion; that is, a^+i/a, = const. For convenience, we define a constant // > 0 
such that 

a,+,/a, = e"''. (14) 

When the size classes are very closely spaced, this relationship implies Aa^ = 
flj+i - flj ~ -//Qj. Therefore, 

^ 1=1 

^  3^ X    ^'''^     ^('^''^)- ('5) 
With the substitution y = KQ, we have 

£(^)^££!L^^^A_    /       iyy»PF'~(y). (16) 

The ratio (p//< can be removed from this expression by noting that the total number 
of quasi-wavelets in the representation is 

^Qw = Y.^. = (pVY,a:'c^ {(pV/n) r da a''. (17) 

The integration results in 

NQy,c,^{a;'-aj'). (18) 

Solving for the ratio cp/n, we may now rewrite Eq. (16) as 

£(K-)c. ^ (a-.'-aj')     /      dy y''''F'(y). (19) 

To maintain a fixed value of the energy spectrum E{K), C^ must be varied in 
proportion to the inverse of the number of quasi-wavelets per unit volume. 

We next turn to the matter of relating the parameters of the QW ensemble to 
known properties of the turbulence. The energy spectrum in the inertial subrange has 
been shown empirically to obey the equation [13,14] 

E{K) = {55a„/l8)e^f'K-"\ (20) 

where a,„ an empirical constant, has the approximate value 0.52. Comparing Eqs. 
(19) and (20), we have for wavenumbers K the inertial subrange (a^' < K: «: a;;;'), 

^=5^^(„._„-.)-ir,„.«^.t„^ (21) 
JKHN 

The preceding equality can be satisfied by setting 
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c'„ = .:..-.^(a--«r^)=^ (22) 
'« " Sien^Q^ ^"^     ''• ^ " 1927i> 

and normalizing the function F{y) such that 

d>'y^/^F2(>') = l. (23) 
pKai 

J KOfJ 

Since KAI > 1 and KUM < 1 for K in the inertial subrange (and anticipating that 
realistic spectral parent functions will be monotonically decreasing in y, well behaved 
near y = 0, and very small for y > 1), the limits on the integral may be replaced by 0 
and 00, resulting in the following normalization condition: 

f Jo 
dy y''f'F'iy) = l. (24) 

Combining (22) and (19), we have 

E{K) = ^e^/^K-V^ r dy y''"F'(y). (25) 

Eq. (25) provides the energy spectrum from a prescribed F{y). In some applications, 
we may wish to reverse the process by calculating F{y) from a prescribed energy 
spectrum. Multiplying both sides of Eq. (25) by K'I^, putting AA, = 0 (neglecting the 
effect of dissipation on the energy spectrum), and differentiating with respect to K 

yields an equation for F^(K:ai), 

^'^'^"•) = 5^^"'''^'"'''^"'''^['^'''^('^)]- ^''^ 

2.2. Von Karmdn quasi-wavelet 

The von Karman energy spectrum has been found useful for calculations of sound 
propagation in the turbulent atmosphere [15,16]. It is given by 

55r(5/6)        ayil 
9v/ir(l/3) (l + K^iJ)' ^v(>c) = ;^i::rL.  '^-';,:n/e. (2^) 

where a^ is the variance and L^ an outer length scale. Taking the limit KL^ -^ oo and 
matching the result with Eq. (20) for the inertial subrange yields a relation among 
LV,(TM, and e: 

Iv = 
2r(5/6) 3/2^3 

—. (28) 
.a„Vir(l/3) 

A spectral parent function that yields the von Karman spectrum can be deter- 
mined from Eq. (26). The result is 
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It can be shown, by substituting Eq. (29) into Eq. (24), that the normalization 
condition is satisfied for any value of the ratio Lv/oi- Normally, one would take the 
largest size class to be near the outer scale; that is, L^/o] ~ 1. 

The spatial parent function /v(<^) (the "von Karman QW") is found by substi- 
tuting Eq. (29) into the inverse of Eq. (5). Because of the spherical symmetry, the 
inverse transform reduces to the following integral: 

m) = 4n   r 
J Jo 

dy ys\n{y^)Fiy). (30) 

With F{y) given by Eq. (29), the integral can be found in tables [17]. After some 
algebra, the result is 

Mi) = 
I7l/227/l2jj3/2 5/12 

K. 5/12 
iv 

(31) 3i/2r(23/12) 

where ^v is the modified Bessel function of the second kind. 
Fig. 2 shows QW energy spectra based on Eq. (29) for representations with N^, - 4 

and N^ = 64 size classes. The actual von Karman energy spectrum (Eqs. (27) and 
(28)) and the Kolmogorov spectrum (Eq. (20)) are shown for comparison. The length 
scales for the calculations are such that oi = Z,v = lOOOa^. We see that the QW 

-10' 

V 

o 
2 

-10 
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-10' 

-10' 

-10 
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•        '            ■•■-.N , 
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/          *>^    ^'""^■*»^  
V                     ^     ^*^^*^    •* 

./                                        ^  ^         ^^.^N 
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■/                                                                                                                  "*  - 
^^^^ N 
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Fig. 2. Energy spectra resulting from QW representations with 4 and 64 discrete size classes. The von 
Karman and Kolmogorov energy spectra are shown for comparison. 



D. Keith Wilson et al. I Applied Acoustics 65 (2004) 605-627 613 

representation with 64 size classes is essentially the same as the von Karman spec- 
trum within the energy-containing (jcLy < 5) and inertial (5 < KL^ < 500) subranges. 
Within the dissipative subrange {xLy ^ 500), the QW representation exhibits rapid 
diminishment in the spectrum with increasing wavenumber. This spectral roll-off, 
which is similar to that found in actual turbulence, is not present in the von Karman 
spectrum because Eq. (27) does not model it. The QW representation with four size 
classes produces a very bumpy spectrum that is not consistently close to the 
von Karman spectrum. These results suggest that QW representations with ap- 
proximately 20 or more size classes per decade provide smooth, accurate spectral 
models. 

3. Scattering by quasi-wavelets 

Let us first consider the scattering from a single QW. Fig. 1 defines the scattering 
geometry. Here, R is the vector from the origin to the receiver, Ro is the vector from 
the origin to the source, n = R/|R|, no = -Ro/|Ro|, k = fcn, ko = kuo, and 6 is the 
angle between n and no. The acoustic wavenumber k is2nf/co, where/ is frequency 
and Co is the background sound speed. The pressure field associated with the wave 
propagating spherically from the source ispo(R - RQ) = ^ exp(iA:|R - Ro|)/|R - Ro|, 
where A is the pressure ampUtude 1 m from the source. For single scattering by 
velocity fluctuations, the scattered pressure field is [18, Eq. (7.6)] 

^W =-4^ y/Vexp[i.(/?;+/?;)] 2 cos 9 HQ • v(r) 

Co 
(32) 

The primed vectors Rj, and R'l extend from a point in the scattering volume to the 
source and receiver, respectively. With the approximations kR\ ~ M - r • k and 
kR'o ~ Mo + r • ko (valid for R,Ro » V^f\kLoV^'\ where LQ is the outer length scale 
of turbulence, as discussed in section 7.1.2 of [18]), we may interpret the integral in 
the previous expression as a Fourier transform. Applying Eq. (3), we thus have 

"2cos0no-v(-K)' 
Ps(R) = -^^exp[i^(/? + /?o)] 

Co 
(33) 

where K = ko - k = A:(no - n) is the scattering vector. For a single, rotating QW, 
substitution with Eq. (4) gives a formula for the single-scattered sound field 

(jj) ^ i4nAka^FiKa.)cose ^^^ ^.^^^ +;;„_(„_ „„). b«")][„o . (K x ft»)]. 
CQRRO 

(34) 

The ranges of appUcability of the single scattering approximation are given by Eqs. 
(7.13) and (7.14) in [18]. 

The total scattered field is a sum of/7^"(R) over a and n; that is, the sum of the 
fields scattered by all QWs. To calculate the mean intensity of the total scattered 
field, one needs to multiply the total field by its complex conjugate and then average 
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over random positions b"" and angular velocities SI'". Since the b"" are statistically 
independent and randomly distributed, the contribution to the intensity will be zero 
for the cross-terms involving two distinct QWs (different value of a or n). Therefore, 
the intensity of the total scattered field is the incoherent sum of intensities of the 
sound fields scattered by the individual QWs. 

Let us now determine the mean-square sound pressure (|p|"p) for an individual 
QW with ft" varying randomly in orientation. This requires an evaluation of 
([no • (K X ft")] ). Writing out the components of this equation and applying the 
properties of the angular velocity correlations that were described in Section 2.1, we 
find 

([no-(Kxft"')f)=^|noxn|^ (35) 

Since |no x n|^ = sin^ 6 and K = ky/2{\ - n • no) = k^2{l -cosfl) = 2A:sin(0/2), we 
thus have for the mean-square pressure field scattered by a single QW, 

(bsf) = 
\6nU^k^Qial''F\2ka,sm 9/2) sin^ 6 cos^ 6 

(36) 

For the von Karman spectral function, Eq. (29), this becomes 

212KW^k^Qla\'' sin^ ^cos^ 6 f LA "^^ (Kf) 

HR'Rl 

H            a] )        ■ (3^) 

To find the scattered mean-square pressure \pl\^ from all QWs of a given class size 
within some scattering volume V, the contributions from each QW are simply added 
incoherently, as described earlier: (|/j^|^) = T,%{\p^f) = K{\pl"\^). Making sub- 
stitutions with Eqs. (11), (12) and (22), we therefore have 

(bsP) 
935a„H2A:'*£2/3 ^.^17/3 sin^ flcos^ 6 f LA "'' 

4k'Llalsm\e/2)\''''^' 

This result provides a decomposition of the scattering based on the size of the tur- 
bulent eddies. It applies to scattering from both the energy-containing and inertial 
subranges of the turbulence. In the following section of this paper, we will use 
Eq. (38) to determine the location and size of the eddies primarily responsible for 
scattering of sound energy over barriers. 

The scattering cross-section per unit volume into a unit solid angle is defined as 
(e.g., [18], p. 188) 

.«-) = ^. (39, 
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where {/s) = {\p^f)/{2poCo) is the scattered intensity and k = A^I{^PQCORI) is the 
unscattered intensity incident on the volume. Eq. (38) leads to the following scat- 
tering cross-section for each size class: 

^to^     935«./ifc^e^/^a^^/^sin^9cos^0 (L,\'"'(, , Ak-'Llalsin^(g/2)>^' 
-23/6 

(40) 

Consider the ratio of the cross-section for scatterers of size class a to size class 1. 
Using the previous equation, we can write this as 

17/3 \+q^ 

1 +(qa^/ai) 

23/6 

(41) 

where q = 2kLy sin(0/2) = kLy is a normalized scattering vector. Fig. 3 shows this 
ratio as a function oi q for various values of ai/oa. Note that relatively large eddies 
scatter most efficiently for small q (forward scattering and/or wavelengths small 
compared to Ly), whereas relatively small eddies scatter most efficiently for large q 
(large-angle scattering and/or wavelengths small compared to Lv), as previously 
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Fig. 3. Ratio of the scattering cross-section (f for QWs in the size class a to cr' for QWs in the largest size 
class. Results for various values of ai/ca are shown as a function of 2A:Z,v sin(0/2), where iy is the von 
Karman outer length scale and 0 the scattering angle. 
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emphasized in [4]. By differentiating the preceding expression with respect to the 
ratio a,/ai, one finds that QWs with the size a^/a, = ^jM/e/q are the strongest 
scatterers. Alternatively, we could write this condition as A:a^sin(0/2) = 
v/17/24(ai/Z,v), which casts the result as a Bragg scattering resonance for a given 
value of the ratio a\/L^. 

To check Eq. (38), let us compare it now to previous results for scattering from a 
continuous distribution of eddy sizes. Summing Eq. (38) over the size index a and 
then taking the continuous limit (as was done in a similar context in Section 2.1), we 
have 

(^0 9^5A^k"^ai„fy^V^xx?ecof_e_ /L 17/3     ^*a. 

108c2/f2/;2 -)       / «1 / Jka, 
dyy 14/3 

-^ ^4/Lls\nHe/2)\ -23/6 

(42) 

As before, we may replace the lower limit on the integration by 0 when k is within the 
energy-containing or inertial subrange. The integration may then be performed by 
making the substitution / = 1 + (2LvSin(fl/2)/a|)"V^ with result 

80 100 
Angle, 6 (deg) 

180 

Fig. 4. Total scattering cross-section (normalized by multiplication with clLl'^/C;) for the von Karman 
turbulence spectrum as a function of scattering angle. Various values of kL^ are shown. 
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(43) 

Substituting the structure-function parameter C^ = (3/2)r(l/3)a„e^''^ [16, Eq.(20)], 
the overall scattering cross-section becomes 

a{e) 
SSAr'/^C^sin^flcos^e 

54r{l/3)cl (2sin id/2)f + {kL, 
-1 17/6 ■ 

(44) 

This result agrees with [19], which was derived for the von Karman velocity spec- 
trum. For the inertial subrange, A:Z-v > 1, the cross-section reduces to Eq. (7.17) in 
[18], which was derived from the Kolmogorov spectrum. Fig. 4 shows the depen- 
dence of Eq. (44) on Q for various values of kL^. 

4. Application of QWs to scattering over barriers 

The geometry of the barrier scattering problem is illustrated by Fig. 5. For sim- 
plicity, in this paper the ground is assumed rigid and the reflections are, therefore, 
represented by an image source and an image receiver. We consider four possible 
transmission paths involving scattering by turbulence: source-scatterer-receiver (line 
SOR), source-ground reflection-scatterer-receiver (line WOR), source-scatterer- 
ground reflection-receiver (line SOU), and source-ground reflection-scatterer- 
ground reflection-receiver (line WOU). 

/■ j(^?f viiy Q} 

\^0 ^ 

Fig. 5. Geometry for sound scattering over a barrier. A scattering volume V populated with random QWs 
is shown above the barrier. S is the position of the actual source, W the image source, R the actual receiver, 
and U the image receiver. 
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To examine the spatial properties of the scattering process, we partition the total 
scattering volume V into a number of subvolumes dVi and calculate the scattering 
cross-section CT'C^,) for each subvolume and QW size class. As a practical matter, 
each subvolume is treated as an effective point scattercr. This is reasonable when the 
distances between the subvolume and the source and receiver (/? and /?o, respectively) 
are many wavelengths long. Note that the derivation of the scattering cross-section 
in the previous section already assumed this condition. Neglecting for a moment the 
ground reflections, Eqs. (38) and (40) allow us to write the received mean-square 
scattered pressure attributable to the given scattering subvolume and size class in the 
following form: 

(bfp) = ^'|G(Ro,/ + R.,,-, R,,f5V,a\0,)\G{^,,, R, + R,,)P, 

where Ro.„ R,, and R/,, are the vectors from the center of the scattering subvolume to 
the source, receiver, and the top of the barrier, respectively. The angle 0, is the 
scattering angle for the subvolume, as defined in Fig. 5. The function G{Vi^, R^) is the 
Green function for propagation from the source at position Rs to the receiver at 
position Rr with the vectors defined relative to the top of the barrier. In free space, 
we would have simply G(Rs,Rr) = exp(iA-|R, - %\)/\R, - Rrl- However, it is more 
suitable to use the Green function for the sound field in the vicinity of a barrier that 
includes diffraction behind the barrier. The calculations in this paper use Pierce's 
[20] Eq. (9-9.1), for this purpose. (The function G(Rs,Rr) here is p/S in Pierce's 
notation.) 

Extending the free-space result to include contributions from the reflected paths, 
we have 

(IA'P) - A^[|G(Ro, + R.i, \it,,f^V,a\e,)\G{R,j,R, + R,,)f 

+ |G(R,„,,- + R,,,, R,,)|'^f^a°((?, + /?,)|G(R,,,, R, + R,,,)f 

+ |G(Ro, + Rw, R,,)p,5(^a"(0, + /,)|G(R,,, R„,, + R,,)P 

+ |G(R„,,,- + R,,, R,,)|'<5J^(T"(0, + /?, + Z,)|G(R,,,, R„, + R,,)|']      (45) 

where R„,,, is the vector from the center of the scattering subvolume to the image 
source, R„,, the corresponding vector to the image receiver, and the angles y?, and x, 
are defined in Fig. 5. The four terms in the equation correspond to the propagation 
paths SOR, WOR, SOU, and WOU, as described previously. The scattered contri- 
butions from each of the four paths are assumed to be uncorrelated in this formu- 
lation. The reader is referred to [21] for a discussion of path-correlation efl"ects. 

Except as otherwise noted, the calculations to follow in this section are based on a 
barrier of height 2.5 m, with z, ■= 0.5 m, Xs = -10 m, z^ = 1.2 m, and x, = 15 m. The 
total volume used for the scattering calculations spanned -20 m^x^25 m, 
-20 m^j^20 m, and 0 m<z<40 m. This overall volume was partitioned into 
60 X 21 X 60 subvolumes. In the QW representation, the scale of the largest size 
class, fli, is set to 5 m. This value, which is representative of the size of the largest 
shear-generated eddies in the vicinity of the barrier top, is also used for Ly. (In [16], it 
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Fig. 6. Vertical cross-section through the region of primary scattering, as determined from the QW model. 
The calculation is for a frequency of 2000 Hz, barrier height 2.5 m, z, = 0.5 m, JCS = -10 m, z, = 1.2 m, and 
;c, = 15 m. Ten percent of the scattering occurs outside the 10% contour, 20% of the scattering occurs 
outside the 20% contour, etc. 
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Fig. 7. Comparison of scattering calculations performed with the Kolmogorov, von Karman, and QW 
models. A total of 128 QW size classes, ranging from a, = 5 m to a;v = 0.005 m, were used. 
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was shown that Z-v = l-8z for shear-generated turbulence over flat ground, implying 
that Z,v = 5 m when z = 2.8 m.) The scale of the smallest size class, a^, is set to 0.005 
m, which is characteristic of the Kolmogorov microscale in the atmosphere. A total 
of 128 size classes are used, in order to obtain a very smooth spectrum. 

For simplicity, only turbulent velocity fluctuations generated by ground-based 
wind shear are explicitly included in the calculations; thermal turbulence and tur- 
bulence generated through interactions of the atmospheric flow with the barrier are 
neglected. This idealization is reasonable when the wind blows parallel to the barrier. 
For oblique wind angles, one can expect increased turbulence downwind of the 
barrier. The strength of the turbulent velocity fluctuations is specified with the 
friction velocity «,, which is related to the dissipation rate through the equation 
c = ul/OAz, where z is set to 2.8 m [16]. (The turbulence parameters L^ and e could 
have been made height dependent in generating the QW field, but this would com- 
plicate interpretation of the results.) Furthermore, only scattering elements with a 
hne-of-sight to both the source and receiver are considered. Because the scattering 
model (based on von Karman's spectrum) is valid in the forward directions, we need 
not restrict ourselves to scattering angles greater than 20°, as was necessary for 
earlier calculations [1] based on Kolmogorov's spectrum. The reason for considering 
only the line-of-sight paths is to make a clear physical distinction between the dif- 
fraction process and scattering by intrinsic atmospheric turbulence. Scattering along 

-27 
Kolmogorov 
von Karman 
Ouasiwavelet 

1 2 
Frequency (kHz) 

10 

Fig. 8. Comparison of scattering calculations performed with the Kolmogorov, von Karman, and QW 
models. A total of 128 QW size classes, ranging from oi = 1 m to QAT = 0.025 m, were used. 
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non-line-of-sight paths likely involves complicated interactions between the wind 
field and barrier, which have the additional effect of refracting sound. The reader is 
referred to [22,23] for discussions and models of these phenomena. 

The calculated spatial extent of the scattering volume for this geometry at 
/ = 2000 Hz is shown in Fig. 6. This figure was created by calculating the ([pff> 
corresponding to each 5Vi (using Eq. (43)), sorting the results in order of increasing 
(|/)"p), and then cumulatively summing the resulting sequence. Note that the 
strongest scattering occurs in a small region immediately above the barrier. Scat- 
tering weakens substantially a few meters above the barrier or 5-10 m toward the 
source or receiver. Results for other frequencies (not shown) demonstrate that the 
appearance of the scattering volume does not change substantially over the fre- 
quency range considered in this paper. 

Sound pressure levels (SPL) of the scattered fields corresponding to the von 
Karman (Eq. (43)), Kolmogorov (large kL^ limit of Eq. (43)), and QW models are 
plotted in Fig. 7. The SPL is represented here as 101og(|psf>/boP. where po is the 
pressure field in free space. For comparison purposes, a similar plot is presented in 
Fig. 8 except with the size of the largest QW class reduced fivefold and that of the 
smallest QW class increased fivefold (ai = 1 m and ON = 0.025 m, with L^ in the von 
Karman model changed accordingly). At low frequencies, the von Karman and QW 
models give essentially the same result. This is to be expected, since they produce the 

0.03 

0.025 

500 Hz 
2000 Hz 
8000 Hz 

10 

Eddy size (m) 

Fig. 9. Contribution to the scattered mean-square pressure as a function of eddy size, {|p|| )/{\ps\ ) 
Results for QW scattering at the frequencies 500, 2000, and 8000 Hz are shown. 
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same turbulence spectrum within the energy-containing and inertial subranges (Fig. 
2). The Kolmogorov spectrum predicts a higher scattered SPL at low frequency, 
because it lacks a realistic spectral roll-off at low wavenumber. This effect is barely 
evident in Fig. 7 but is quite clear in Fig. 8, due to the smaller value of a|. At higher 
frequency, the Kolmogorov and von Karman models give the same results, whereas 
the QW model predicts a somewhat lower SPL. This is a result of the spectral roll-off 
in the dissipation subrange, which is included in the QW model but not the others. 
One may deduce from Fig. 7 that the Kolmogorov spectrum is a reasonable ap- 
proximation for the scenario, even at frequencies as low as 250 Hz. This outcome is 
very dependent upon the barrier geometry and outer length scale of the turbulence, 
however. 

Fig. 9 shows the scale of the eddies (QWs) responsible for the scattering for the 
frequencies 500, 2000, and 8000 Hz. Specifically, the ratio (bsf>/(IPsP) at the re- 
ceiver position is plotted. The maxima for these curves appear at a^ ~ 0.30 m for 500 
Hz, a, ~ 0.080 m for 2000 Hz, and a, ~ 0.022 m for 8000 Hz. As shown in Section 3, 
the scattering cross-section is maximized for the size class a such that 
Oa/fli = i/17/6/[2A:Z,v sin((?/2)]. Taking 3 m as the nominal height of the scattering 
volume, and assuming that the horizontal center of the scattering volume is above 
the barrier, implies a scattering angle of about 20° for the unrcflected path SOR. 
With fl, = Ly, we therefore have a, ~ 260/'' m for SOR. Maximum scattering is 
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Fig. 10. Scattered, diffracted, and total SPL as a function of frequency. The barrier height is 2.5 m and the 
friction velocity (a measure of the strength of the turbulence) is 0.6 m s"'. 
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thus expected to occur at a^ ~ 0.52 m for 500 Hz, a,, ~ 0.13 m for 2000 Hz, and 
a„ ~ 0.032 m for 8000 Hz. These values are 45-70% larger than the locations of the 
calculated peaks. However, it must be kept in mind that the the actual scattering 
volume is distributed in space, and that the regions distant from the barrier are 
characterized by higher scattering angles. Furthermore, the ground-reflected paths 
have higher scattering angles. A repeat of this exercise for the double reflection path, 
WOR, yields a scattering angle of about 35°, a^ ~ 150/"' m, a„ ~ 0.30 m for 500 Hz, 
fl„ ~ 0.075 m for 2000 Hz, and a„ ~ 0.019 m for 8000 Hz. These values are much 
closer to the theoretical result, thereby suggesting the correctness of the theory. It is 
also interesting that the scattering contributions have a distinctly normal (bell-curve) 
appearance when plotted as a function of the logarithm of the eddy size. Most of the 
scattering occurs from eddy sizes between one-half and twice the peak scattering size. 

The frequency dependence of the scattered, diffracted, and total received SPL is 
shown in Fig. 10. The diffracted field was calculated with Pierce's formula [20, Eq. 
(9-9.1)]. The scattered field in this example was calculated from the friction velocity 
M, = 0.6 m s"', which corresponds to C^ = 0.47 m^'^^s"^ at 2.8 m height and is a 
rather large value for the atmosphere [24]. (In practice, the barrier may generate 
additional turbulence, effectively raising «,.) Only for frequencies above approxi- 
mately 4 kHz does scattering significantly affect the observed SPL. This outcome is in 
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Fig. 11. Scattered, diffracted, and total SPL as a function of barrier height. The heights and horizontal 
distances of the source and receiver are held constant. The calculation is for / = 8000 Hz and a friction 
velocity of 0.6 m s~'. 
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broad agreement with Fig. 8 from [1], although the details of the frequency depen- 
dence are different here due to the inclusion of the ground-reflection paths. 

Fig. 11 shows the received SPL at 8000 Hz as a function of the barrier height. The 
heights of the source and receiver, and their horizontal distances from the barrier, 
were held fixed to the values given earlier. For barrier heights less than about 4 m, 
the scattered contribution is roughly equal to the diffracted one. At greater heights, 
and therefore at larger scattering angles, the diffracted contribution is more prom- 
inent. Fig. 12 is similar to Fig. 11, except that the received SPL at 8000 Hz is shown 
as a function of the horizontal separation between the barrier and receiver {x,). The 
barrier height for Fig. 12 is again 2.5 m and the horizontal distance to the source 
remains fixed at Xs = -10 m. As the distance of the receiver from the barrier in- 
creases, the scattering angle becomes smaller and therefore the scattered energy 
becomes more significant. Also note that as the distance increases the effects of 
multiple scattering in the direction of sound propagation become more important. 
These effects, however, result mainly in fluctuations in the phase and amplitude of a 
sound wave reaching the receiver while the intensity of the wave remains approxi- 
mately unchanged. 

Last, Fig. 13 shows the scattered, diffracted, and total received SPL at 8000 Hz as 
a function of the friction velocity. As u, increases past 0.6 m s"', the scattered 
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Fig. 13. Scattered, dififracted, and total SPL as a function of the friction velocity of the turbulence. Results 
for the friction velocity varying from 0.1 to 1 m s"' are shown. The calculation is for/ = 8000 Hz and a 
barrier height of 2.5 m. 

contribution overtakes the diffracted one. Taken together, Figs. 10-13 demonstrate 
that turbulent scattering is significant primarily at high frequencies and for relatively 
short barriers. This outcome is consistent with Fig. 4, which shows that the 
scattering cross-section is highest for nearly forward scattering at large values of A:Iv 
Strong turbulence, either already intrinsic to the atmosphere or injected by flow 
disturbances from the barrier or other nearby objects, must be present for significant 
scattering. 

5. Conclusion 

As was first demonstrated by Daigle [1], turbulence diminishes the effectiveness of 
noise barriers by scattering sound energy over them. Daigle's calculation of the 
scattered sound energy was based on the scattering cross-section for inertial sub- 
range turbulence, namely the large kU limit of Eq. (44). In this paper, we have 
performed scattering calculations similar to Daigle's, although the recently intro- 
duced quasi-wavelet (QW) representation was used. The QW representation mimics 
the conceptual picture of turbulence consisting of a number of discrete, randomly 
placed eddies whose sizes span a range of spatial scales. Parameters of the QW 
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representation, such as the number of eddies, their size distribution, and angular 
velocities, can be chosen to reproduce known models for the atmospheric turbulence 
spectrum. When applied to scattering, the QW representation provides a concise 
decomposition of the scattering as a function of the eddy size and location. Also, 
since the QW parent function was derived in this paper on the basis of von Karman's 
spectrum, it can be applied to scattering from the energy-containing subrange and 
therefore to small scattering angles. 

An expression for the scattering cross-section of an ensemble of randomly ori- 
ented QWs of a particular size was derived in this paper. When the scattered energies 
of all of the QW size classes were added together, and the continuous size limit taken, 
the total scattering cross-section agreed with a previously derived result for the von 
Karman turbulence spectrum. An expression for the eddy size that maximizes 
scattering, as a function of the acoustic wavenumber and scattering angle, was also 
derived. Calculations showed that, for a typical barrier condition, most of the 
scattered energy originates from eddies in the size range of approximately one-half to 
twice the size of the eddies responsible for maximum scattering. 

The results in this paper suggest that scattering behind the barrier attributable to 
"line-of-sight" eddies, namely those with a line of sight to both the source and re- 
ceiver, is generally significant only for frequencies above several kilohertz, for 
sources and receivers no more than a few meters below the top of the barrier, and for 
very turbulent atmospheric conditions. 
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