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On Channel Estimation Using Superimposed Training
and First-Order Statistics

Jitendra K. Tugnait, Fellow, IEEE,and Weilin Luo

Abstract—Channel estimation for single-input multiple-output
(SIMO) time-invariant channels is considered using only the first-
order statistics of the data. A periodic (nonrandom) training se-
quence is added (superimposed) at a low power to the information
sequence at the transmitter before modulation and transmission.
Recently superimposed training has been used for channel estima-
tion assuming no mean-value uncertainty at the receiver and using
periodically inserted pilot symbols. We propose a different method
that allows more general training sequences and explicitly exploits
the underlying cyclostationary nature of the periodic training se-
quences. We also allow mean-value uncertainty at the receiver. Il-
lustrative computer simulation examples are presented.

Index Terms—Channel estimation, superimposed training.

I. INTRODUCTION

CONSIDER an single-input multiple-output (SIMO)
finite-impulse response (FIR) linear channel with

outputs. Let denote a scalar sequence which is input
to the SIMO channel with discrete-time impulse response

. The vector channel may be the result of multiple
receive antennas and/or oversampling at the receiver. Then the
symbol-rate, channel output vector is given by

(1)

The noisy measurements of are given by

(2)

A main objective in communications is to recover given
noisy . In several approaches this requires knowledge
of the channel impulse response [3], [5]. In training-based ap-
proach, training sequence (known to the re-
ceiver) for (say) and for is the
information sequence (unknown apriori to the receiver) [3], [5].
Therefore, given and corresponding noisy , one es-
timates the channel via least-squares and related approaches.
For time-varying channels, one has to send training signal fre-
quently and periodically to keep up with the changing channel.
This wastes resources. An alternative is to estimate the channel
based solely on noisy exploiting statistical and other prop-
erties of [3], [5]. This is the blind channel estimation
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approach. More recently, [1] and [2] have explored a superim-
posed training based approach for time-invariant systems where
one takes , is the information se-
quence and is a nonrandom periodic training (pilot) se-
quence. Exploitation of the periodicity of allows identi-
fication of the channel without allocating any explicit time slots
for training, unlike traditional training methods. There is no loss
in information rate. On the other hand, some useful power is
wasted in superimposed training which could have otherwise
been allocated to the information sequence. This lowers the ef-
fective signal-to-noise ratio (SNR) for the information sequence
and affects the bit error rate (BER) at the receiver.

Let

(3)

in (1) where is the information sequence and is the
superimposed training sequence. Let denote the Kronecker
delta, denote the identity matrix and the superscript

denote the complex conjugate transpose operation. Assume
the following:

(H1) the information sequence is zero-mean, white
with ;

(H2) the measurement noise is nonzero-mean
( ), white, uncorrelated with ,
with .
The mean vector is unknown;

(H3) the superimposed training sequence
is a nonrandom periodic sequence with pe-

riod .
Reference [1] uses the second-order statistics of the received

signal to estimate the channel whereas [2] exploits the first-order
statistics. As in [2] we will exploit the first-order statistics of the
received signal. (A consequence of using the first-order statis-
tics is that the knowledge of the noise variancein (H2) is
not used.) The corresponding time-invariant model in [2] (also
[1]) does not include an unknown constant term (d.c. offset) in
the measurement equation [in (H2)]; it should, however, if we
exploit to estimate the channel. In practice, linear sys-
tems arise because of linearization about some operating (set)
point–“bias” in amplifiers, e.g., These set points are typically
unknown (at least not known precisely)a priori, and one does
not normally worry about them since unknown means are es-
timated and removed before processing (blocked by capacitor-
coupling etc.) and they are not needed in any processing. How-
ever, if (time-varying) mean is what we wish to use (as
in [2]), then we must include a term such as nonzero. Ref-
erence [2] proposes the choice . The
choice of [2] leads to a poor peak-to-average power ratio of the
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transmitted signal which is highly undesirable if the transmit
power amplifier has some nonlinearity. In this paper we follow
the basic ideas of [1] and [2] but propose a different method
which works for nonzero in (H2).

II. SUPERIMPOSEDTRAINING-BASED SOLUTION

By (1)–(2) and (H3), we have

(4)

Since is periodic, we have ( )

(5)

The coefficients ’s are known at the receiver since is
known. We have

(6)

The sequence is periodic [4] with cycle frequencies
, . A mean-square (m.s.) consistent estimate
of , for , follows as [5]

(7)

As , m.s. if and m.s.
if .

We now establish that given for , we
can (uniquely) estimate ’s if , , and

. Since is unknown, we will omit the term
for further discussion. Define

...
...

...
...

(8)

(9)

(10)

(11)

where denotes the Kronecker product [7, p. 429]. Omitting
the term and using the definition of from (4), it
follows that

(12)

In (8) is a Vandermonde matrix with a rank of if
and ’s are distinct [6, p. 274]. Since , by [6,

Result R4, p. 257], . Finally, by
[7, Property K6, p. 431],

. Therefore, we can determine ’s uniquely. Define
as in (12) with ’s replaced with ’s. Then we have the

channel estimate

(13)

Precise knowledge of the channel lengthis not required; an
upperbound suffices. Then we estimate for
with for ( ) as
record length . Also, we do not need for every

. We need at least nonzero ’s. This can be accom-
plished by picking a “large” and a suitable (picked to
satisfy a peak-to-average power constraint, e.g.,). Implicit in our
approach (also in [1] and [2]) is the need at the receiver for syn-
chronization with the transmitter’s superimposed training se-
quence.

A. Equalization

With denoting the estimated and
, define

(14)
where . That
is, is obtained by removing the (estimated) contribution
of the superimposed training and the dc-offset from the noisy
data. Model (14) with the estimated channel is used to equalize
the channel and to detect the information sequence. For the
simulations of Section III we used a linear MMSE (minimum
mean-square error) equalizer which also requires the knowledge
of the correlation function of . We estimate the noise vari-
ance (see (H2)) as ( denotes trace of matrix )

(15)

(If (15) yields a negative result, we set it to zero.) The correla-
tion function of can then be estimated using the estimated
channel (instead of the less reliable sample averaging); only the
zero lag correlation requires .

III. SIMULATION EXAMPLES

A. Example 1

Consider a continuous-time channel given by
where is the symbol in-

terval, denotes the raised-cosine pulse with roll-off
factor 0.2 and length truncated to (i.e.,
for ), the amplitudes ’s are mutually independent,
zero-mean, complex Gaussian with same variance for all’s,
and delays ’s are mutually independent, uniformly distributed
over . The continuous-time channel is sampled
once every seconds to yield the discrete-time channel

. Thus we have in (1) leading to

(16)

Let be the upper bound on channel length . We
take . The channel is randomly generated in each
Monte Carlo. The input information sequence is i.i.d.
equiprobable 4-QAM (quadrature amplitude modulation)
taking values . The training sequence was chosen
to have with as in [2];
is picked to yield a particular training-to-information sequence
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Fig. 1. (a) Example 1: Normalized channel MSE (17) based on
T = 150 symbols per run, 100 Monte Carlo runs,P = 15, TIR � = 0:585.
DCAC ratio = [Efv(n)g] =(Efjy(n) � v(n)j g). The curves for
the proposed method for different DCAC ratios are overlaid (very close).
(b) Normalized channel MSE for Example 2; the rest as for Fig. 1(a).

power ratio (TIR) where and denote the
average power in the information sequence and training
sequence , respectively. Complex white zero-mean
Gaussian noise was added to the received signal and scaled
to achieve an SNR at the receiver (relative to the contribution
of ). A mean-value was added to the noisy received
signal to achieve a specified dc-offset to signal ac-component
(DCAC) power ratio . Normalized
mean-square error in estimating the channel impulse response
averaged over 100 Monte Carlo runs, was taken as the perfor-
mance measure for channel estimation. It is defined as (before
Monte Carlo averaging)

(17)

The simulation results are shown in Fig. 1(a) for various
SNR’s and DCAC power ratios for a record length of
symbols and a TIR of dB ( ). Our proposed
method and that of [2] were simulated. It is seen that the
proposed method is insensitive to the presence of the unknown
mean whereas the method of [2] is very sensitive. For

, the performance of our method is slightly inferior to
that of [2]. In the method of [2], ’s are estimated directly
from data for whereas in our approach,
we first estimate ’s for and then use
(13). Since we estimate more variables (14 versus 11), this may
account for the slightly inferior performance of our method for

.

B. Example 2

This example is exactly as Example 1 except for
the training sequence which was taken to be an-se-
quence (maximal length pseudorandom binary sequence)
of length 15 ( ), ,

. The
peak-to-average power ratio for this sequence is one (the best

Fig. 2. Example 2. (a) Equalization performance using linear MMSE
equalizers based onT = 150 or 300 symbols per run, 100 Monte Carlo runs,
P = 15. DCAC ratio = 0, TIR � = 0:585. (b) Fig. 2(a) redrawn with
the curve for the known-channel linear MMSE equalizer adjusted by 2 dB –
no power is wasted in training.

possible). The simulation results are shown in Fig. 1(b) for a
record length of symbols and a TIR of dB
( ). Only our proposed method was simulated since
the method of [2] does not apply to this model. It is seen that
as in Example 1, the proposed method is insensitive to the
presence of the unknown mean. Equalization performance
(BER) of a linear MMSE equalizer based on the estimated
channel (Example 2) is shown in Fig. 2(a) for two different
record lengths of and 300 symbols. The linear
equalizer was designed as noted in Section II with equalizer
length of 10 symbols and delay of five symbols. Also shown
is the performance of a linear equalizer based upon perfect
knowledge of the channel and noise variance. It is seen that
the performance improves with record length. Note that for our
choice of , the SNR relative to would be
2 dB less than the SNR shown in Fig. 2(a), which is relative
to . To reflect this loss in SNR due to inclusion of the
superimposed training, we redraw Fig. 2(a) as Fig. 2(b) with
the SNR for the curve for the known-channel linear MMSE
equalizer adjusted by 2 dB.
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