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On Channel Estimation Using Superimposed Training
and First-Order Statistics

Jitendra K. TugnajtFellow, IEEE,and Weilin Luo

Abstract—Channel estimation for single-input multiple-output ~ approach. More recently, [1] and [2] have explored a superim-
(SIMO) time-invariant channels is considered using only the first-  posed training based approach for time-invariant systems where
order statistics of the data. A periodic (nonrandom) training se- one takess(n) = c(n) + b(n), {b(n)} is the information se-

quence is added (superimposed) at a low power to the information - d iodic traini ilot
sequence at the transmitter before modulation and transmission. 4U€NCe andc(n)} is a nonrandom periodic training (pilot) se-

Recently superimposed training has been used for channel estima- quence. Exploitation of the periodicity ét(n)} allows identi-

tion assuming no mean-value uncertainty at the receiver and using fication of the channel without allocating any explicit time slots
periodically inserted pilot symbols. We propose a different method  for training, unlike traditional training methods. There is no loss
that allows more general training sequences and explicitly exploits i, information rate. On the other hand, some useful power is
the underlying cyclostationary nature of the periodic training se- . . L . .
quences. We also allow mean-value uncertainty at the receiver. II- wasted in superlmpo§ed traln_lng which could have otherwise
lustrative computer simulation examp|es are presented. been allocated to the information sequence. This lowers the ef-
fective signal-to-noise ratio (SNR) for the information sequence
and affects the bit error rate (BER) at the receiver.

Let

Index Terms—Channel estimation, superimposed training.

I. INTRODUCTION

o . s(n) = b(n) + c(n) @)
ONSIDER an single-input multiple-output (SIMO)
finite-impulse response (FIR) linear channel wiffi in (1) where{b(n)} is the information sequence ang) is the
outputs. Let{s(n)} denote a scalar sequence which is inpuperimposed training sequence. &@t) denote the Kronecker
to the SIMO channel with discrete-time impulse responskelta, Iy denote theV x N identity matrix and the superscript
{h(l)}. The vector channel may be the result of multiplé/ denote the complex conjugate transpose operation. Assume
receive antennas and/or oversampling at the receiver. Then te following:

symbol-rate, channel output vector is given by (H1) the information sequend@(n)} is zero-mean, white
L with E{|b(n)|?} = 1;
x(n) := Zh(l)s(" =1). 1) (H2) the measurement noisgév(n)} is nonzero-mean
1=0 (E{v(n)} = m), white, uncorrelated wit{b(n)},
The noisy measurements »fn) are given by with E{[v(n + 7) — m][v(n) — m|"} = o} IN6().
The mean vectom is unknown;
y(n) =x(n) + v(n). (2)  (H3) the superimposed training sequen¢e) = c(n +
: o L : . mP)Vm,nisanonrandom periodic sequence with pe-
A main objective in communications is to recowén) given riod P.

noisy {x(n)}. In several approaches this requires knowledge

. . Reference [1] uses the second-order statistics of the received
of the channel impulse response [3], [5]. In training-based ap- : : .

s Ignal to estimate the channel whereas [2] exploits the first-order
proach,s(n) = ¢(n) = training sequence (known to the re-

ceiver) for (say)n = 1,2,..., M ands(n) forn > M is the statistics. As in [2] we will exploit the first-order statistics of the

) ) L . eceived signal. (A consequence of using the first-order statis-
information sequence (unknown apriori to the receiver) [3], [SL.Cs is that the knowledge of the noise variandgin (H2) is
Therefore, givert(n) and corresponding noisg(n), one es- !

timates the channel via least-squares and related approac gLused.) The corresponding time-invariant model in [2] (also

: ) - . ﬁf'does not include an unknown constant term (d.c. offset) in

For time-varying channels, one has to send training signal frg: . - .

> = ) . the measurement equatianin (H2)]; it should, however, if we

quently and periodically to keep up with the changing channel.” " . o

: U . exploit E{y(n)} to estimate the channel. In practice, linear sys-
This wastes resources. An alternative is to estimate the char}n

based solely on noisg(n) exploiting statistical and other prop- ems arise because of linearization about some operating (set)

. o : . T point—"bias” in amplifiers, e.g., These set points are typically
erties of {s(n)}[3], [5]. This is the blind channel estimation -\ (at least not known precisely)priori, and one does

not normally worry about them since unknown means are es-
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transmitted signal which is highly undesirable if the transmit Precise knowledge of the channel lendtfs not required; an
power amplifier has some nonlinearity. In this paper we followpperbound.,, suffices. Then we estimate(i) for 0 < i < L,
the basic ideas of [1] and [2] but propose a different methadth h(i) — 0 m.s. fori > L 4+ 1 (= true channel length) as

which works for nonzeran in (H2).

Il. SUPERIMPOSEDTRAINING-BASED SOLUTION
By (1)—(2) and H3), we have

E{y(n)} = E{x(n)} + m = Zh cn—10)+m. (4)
Since{c¢(n)} is periodic, we havec(m := 2mm/P)
P—1 ' 1 P—1 '

n) = mZ:Ocme]“’"" Vn, cm = 7 7;] c(n)e=7omm . (5)

The coefficients:,,’s are known at the receiver sinfe(n)} is
known. We have

P-1T L ' '
Z [Z cmh(l)e]a"ll] " +m.  (6)

m=0 LI=0

E{y(n)} =

~~

=:dm

record lengthl” — oo. Also, we do not need,, # 0 for every

m. We need at least + 2 nonzeroc,,’s. This can be accom-
plished by picking a “large’P and a suitabléc(n)} (picked to
satisfy a peak-to-average power constraint, e.g.,). Implicit in our
approach (also in [1] and [2]) is the need at the receiver for syn-
chronization with the transmitter’s superimposed training se-
guence. e

A. Equalization

With h(i) denoting the estimateld(i) andv(n) := v(n) —
m, define
L R L
—Z h(i)e(n—i)—rm ~ Z h(i)s(n—i)+v(n)
1=0 1=0 (14)
wherern := (1/T)S25_ [y(n) — S5 h(i)e(n — 4)]. That

is, ¥(n) is obtained by removing the (estimated) contribution
of the superimposed training and the dc-offset from the noisy
data. Model (14) with the estimated channel is used to equalize

The sequencé/{y(n)} is periodic [4] with cycle frequencies the channel and to detect the information sequence. For the
am, 0 <m < P —1. Amean-square (m.s.) consistent estimai§imulations of Section Ill we used a linear MMSE (minimum

&m of d,,, for a,,, # 0, follows as [5]

1 Z
d,, = T z_:ly(n)eﬁa’"".

AsT — 0o, d,, — d,, m.s. ifa,, #0 and&o — dp+mm.s.
if o, = 0.

We now establish that gived,, for1 < m < P — 1, we
can (uniquely) estimata(l)’'sif P > L + 2, a,, # 0, and
¢m # 0Vm # 0. Sincem is unknown, we will omit the term
m = 0 for further discussion. Define

()

1 e_j(yl - e_j(ylL

1 e Joz ... e de2lL
V:= 8)

1 e Jar-1 e—Jap-1L (P—1)x(L41)
H:=[h"(0) h"(1) h(1)1" )
D:=[df df dZ_ 7 (10)
C: Sdlag{cl €2y .. cp_1}V)RIy (11)

-~

=y

mean-square error) equalizer which also requires the knowledge
of the correlation function of (n). We estimate the noise vari-
anceo? (see H2)) as ¢r{A} denotes trace of matrix)

T L
02 = tr{ ﬁ;y(n)y’%n)l - ;ﬁ(z‘)ﬁf’(i)}. (15)

(If (15) yields a negative result, we set it to zero.) The correla-
tion function ofy(n) can then be estimated using the estimated
channel (instead of the less reliable sample averaging); only the
zero lag correlation requires;.

I1l. SIMULATION EXAMPLES

A. Example 1

Consider a continuous-time channdl(t) given by
h(t) = Yi_, aipar. (t — 7;0.2) whereT, is the symbol in-
terval,p,r, (¢;0.2) denotes the raised-cosine pulse with roll-off
factor 0.2 and length truncated 4d’; (i.e., par, (¢;0.2) = 0
for |¢| > 2T,), the amplitudes:;’s are mutually independent,
zero-mean, complex Gaussian with same variance forsall

where® denotes the Kronecker product [7, p. 429]. Omittingnd delays;’s are mutually independent, uniformly distributed

the termm = 0 and using the definition odl,,
follows that

, from (4), it

CH = D. (12)

In (8) V is a Vandermonde matrix with arank bf+-1if P—1 >
L+ 1 andq;’s are distinct [6, p. 274]. Sincg,, # 0 Vm, by [6,
Result R4, p. 257kank(V) = rank(V) = L + 1. Finally, by
[7, Property K6, p. 431Jrank(C) = rank(V) x rank(In) =
N(L+1). Therefore, we can determihg!)’s uniquely. Define

D as in (12) withd,,,’s replaced withd,,,’s. Then we have the

channel estimate

H=(clc)y"'cHD. (13)

over [0,47.]. The continuous-time channél(z) is sampled
once everyT; seconds to yield the discrete-time channel
h(n) := h((n — 1) 5). Thus we haveV = 1 in (1) leading to

Zh

Let L, be the upper bound on channel lendth= 7. We
take L, = 10. The channel is randomly generated in each
Monte Carlo. The input information sequentign)} is i.i.d.
equiprobable 4-QAM (quadrature amplitude modulation)
taking valueg+1 + j)//2. The training sequence was chosen
to haveP = 15 with ¢(n) = 3, Vabé(n — 15k) as in [2]; «
is picked to yield a particular training-to-information sequence

b(n—1)+c(n—10]+v(n). (16)
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Fig. 1. (a) Example 1: Normalized channel MSE (17) based oRig. 2. Example 2. (a) Equalization performance using linear MMSE
T = 150 symbols per run, 100 Monte Carlo run3,= 15, TIR o = 0.585.  equalizers based dfi = 150 or 300 symbols per run, 100 Monte Carlo runs,

DCAC ratio = [E{v(n)}]*/(E{ly(n) — v»(n)|?}). The curves for P = 15. DCAC ratio = 0, TIR o = 0.585. (b) Fig. 2(a) redrawn with
the proposed method for different DCAC ratios are overlaid (very closethe curve for the known-channel linear MMSE equalizer adjusted by 2 dB —
(b) Normalized channel MSE for Example 2; the rest as for Fig. 1(a). no power is wasted in training.

power ratio (TIR)a = o2/0j whereoj ando? denote the possible). The simulation results are shown in Fig. 1(b) for a
average power in the information sequeriben)} and training record length off = 150 symbols and a TIR 0f-2.33 dB
sequence{c(n)}, respectively. Complex white zero-mean, — .585). Only our proposed method was simulated since
Gaussian noise was added to the received signal and scgigdmethod of [2] does not apply to this model. It is seen that
to achieve an SNR at the receiver (relative to the contributig i, Example 1, the proposed method is insensitive to the
of {s(n)}). A mean-valuen was added to the noisy receivedyresence of the unknown mean Equalization performance
signal to achieve a spc;cmed dc-offset to 55'9”3' ac-COMpPON]RER) of a linear MMSE equalizer based on the estimated
(DCAC) power ratiom”/(£{|y(n) — v(n)["}). Normalized channel (Example 2) is shown in Fig. 2(a) for two different
mean-square error in estimating the channel impulse respopsgyrq lengths off = 150 and 300 symbols. The linear
averaged over 100 Monte Carlo runs, was taken as the perigualizer was designed as noted in Section Il with equalizer
mance measure for channel estimation. It is defined as (bef%ﬁgth of 10 symbols and delay of five symbols. Also shown

Monte Carlo averaging) is the performance of a linear equalizer based upon perfect

L. L. -1 knowledge of the channel and noise variance. It is seen that

Z A1) — ;1(1)||2] [Z ||h(l)||2] . (17) the performance improves with record length. Note that for our
=0 choice ofa = 0.585, the SNR relative to{b(n)} would be

utZ%dB less than the SNR shown in Fig. 2(a), which is relative

, . . s(n)}. To reflect this loss in SNR due to inclusion of the

SNR's and DCAC power ratios for a record lengttifof= 150 suée(rir%i:)osed training, we redraw Fig. 2(a) as Fig. 2(b) with

symbols and a TIR 0f-2.33 dB (« = 0.585). Our proposed i :
method and that of [2] were simulated. It is seen that tlﬂa]euji':eRr Z’lejt;feg%r;/z Z’é the known-channel linear MMSE

proposed method is insensitive to the presence of the unknow%
meanm whereas the method of [2] is very sensitive. For R
m = 0, the performance of our method is slightly inferior to EFERENCES
that of [2]. In the method of [2]h()'s are estimated directly [ F _Mé_lzzen_gﬁv “ﬁ%znnel $Stimati0n agg Ié?EquTaliZ<’>lticl>3r1\fb'<1?d AM_tranT-

_ . mission with a hidden pilot sequenc rans. Broadcasting/ol.
from_ data f_orl SI<L,+1=11 whereas in our approach, 46, pp. 170-176, June 2000.
we first estimated,,’sfor 1 < m < P —1 = 14 and then use [2] G. T. Zhou, M. Viberg, and T. McKelvey, “Superimposed periodic pi-
(13). Since we estimate more variables (14 versus 11), this may lots for blind channel estimation,” iRroc. 35th Annu. Asilomar Conf.

account for the slightly inferior performance of our method for gé%n_%zfysmms ComputeRsacific Grove, CA, Nov. 5-7, 2001, pp.

NCMSE :=

=0

The simulation results are shown in Fig. 1(a) for vario

m = 0. [3] J.K.Tugnait, L. Tong, and Z. Ding, “Single-user channel estimation and
equalization,”IEEE Signal Processing Magvol. 17, pp. 16—-28, May
B. Example 2 2000.

[4] A. V. Dandawate and G. B. Giannakis, “Asymptotic theory of mixed

This example is exactly as Example 1 except for time average andth-order cyclic-moment and cumulant statistics,”
IEEE Trans. Inform. Theorwol. IT-41, pp. 216-232, Jan. 1995.

the training sequence which was taken tQ be rarse- 5] J. G. ProakisPigital Communications4th ed. New York: McGraw-

quence (maximal length pseudorandom binary sequence) Hill, 2001.

of Iength 15 (: p) c(n) — \/aé(n) {5(71)}150 — [6] P. Stoica and R. L. Moses#ntroduction to Spectral Analysis Upper
] y n—=

Saddle River, NJ: Prentice-Hall, 1997.
{_1-/ -1,-1,1,1,1,1, -1, 1»_ -1,1, 1_» -1,-1, 1}- ] The [7] B. Porat,Digital Processing of Random SignalsUpper Saddle River,
peak-to-average power ratio for this sequence is one (the best NJ: Prentice-Hall, 1994.
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