M

)

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

NPS AUV WORKBENCH: COLLABORATIVE ENVIRONMENT
FOR AUTONOMOUS UNDERWATER VEHICLES (AUV)
MISSION PLANNING AND 3D VISUALIZATION
by

Lee, Chin Siong

March 2004
Thesis Advisor: Donald P. Brutzman
Thesis Co-advisor: Curtis L. Blais
Thesis Second Readers: John Hiles, Duane Davis

This thesis done in cooperation with the MOVES Institute
Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2004 Master’s Thesis
4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS
NPS AUV Workbench: Collaborative Environment for Mission Planning and 3D
Visualization
6. AUTHOR: Lee, Chin Siong
7. PERFORMING ORGANIZATION NAME AND ADDRESS 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER
9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS 10. SPONSORING/MONITORING

National University of Singapore (NUS) and Defence Science Organization AGENCY REPORT NUMBER
(DSO), Singapore, Office of Naval Research.

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited A
13. ABSTRACT

The absence of common software platforms for Autonomous Underwater Vehicle (AUV) mission planning and
analysis is an ongoing impediment to collaborative work between research institutions, their partners, and end users. This
thesis details the design and implementation of a distributable application to facilitate AUV mission planning and analysis.
Java-based open-source libraries and a component-based framework provide diverse functionalities. The extensible Markup
Language (XML) is used for data storage and message exchange, Extensible 3D (X3D) Graphics for visualization and XML
Schema-based Binary Compression (XSBC) for data compression. The AUV Workbench provides an intuitive cross-platform-
capable tool with extensibility to provide for future enhancements such as agent-based control, asynchronous reporting and
communication, loss-free message compression and built-in support for mission data archiving.

This thesis also investigates the Jabber instant messaging protocol, showing its suitability for text and file messaging
in a tactical environment. Exemplars show that the XML backbone of this open-source technology can be leveraged to enable
both human and agent messaging with improvements over current systems. Integrated Jabber instant messaging support makes
the NPS AUV Workbench the first custom application supporting XML Tactical Chat (XTC).

Results demonstrate that the AUV Workbench provides a capable test bed for diverse AUV technologies, assisting in
the development of traditional single-vehicle operations and agent-based multiple-vehicle methodologies. The flexible design
of the Workbench further encourages integration of new extensions to serve operational needs. Exemplars demonstrate how in-
mission and post-mission event monitoring by human operators can be achieved via simple web page, standard clients or
custom instant messaging client. Finally, the AUV Workbench’s potential as a tool in the development of multiple-AUV
tactics and doctrine is discussed.

14. SUBJECT TERMS 15. NUMBER OF
AUV Workbench, Virtual Environments, Extensible 3D Graphics, X3D, Scalable Vector Graphics, | PAGES
SVG, Extensible Markup Language, XML, Java, DIS-Java-VRML, Extensible Modeling and 219

Simulation Framework (XMSF), Extensible Messaging and Presence Protocol (XMPP), Scenario [16. PRICE CODE
Authoring and Visualization for Advanced Graphical Environments (SAVAGE), Distributed
Interactive Simulation (DIS)

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited

NPS AUV WORKBENCH: COLLABORATIVE ENVIRONMENT FOR
AUTONOMOUS UNDERWATER VEHICLES (AUV) MISSION PLANNING
AND 3D VISUALIZATION
Lee, Chin Siong

Civilian, Defence Science and Technology Agency
B.S. (Computer Engineering), Nanyang Technological University, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2004
Author: Lee, Chin Siong
Approved by: Don Brutzman
Thesis Advisor

Curtis L. Blais
Thesis Co-Advisor

John Hiles
Second Reader

LCDR Duane T. Davis, USN
Second Reader

Peter Denning
Chairman, Department of Computer Science

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The absence of common software platforms for Autonomous Underwater Vehicle
(AUV) mission planning and analysis is an ongoing impediment to collaborative work
between research institutions, their partners, and end users. This thesis details the design
and implementation of a distributable application to facilitate AUV mission planning and
analysis. Java-based open-source libraries and a component-based framework provide
diverse functionalities. The extensible Markup Language (XML) is used for data storage
and message exchange, Extensible 3D (X3D) Graphics for visualization and XML
Schema-based Binary Compression (XSBC) for data compression. The AUV Workbench
provides an intuitive cross-platform-capable tool with extensibility to provide for future
enhancements such as agent-based control, asynchronous reporting and communication,
loss-free message compression and built-in support for mission data archiving.

This thesis also investigates the Jabber instant messaging protocol, showing its
suitability for text and file messaging in a tactical environment. Exemplars show that the
XML backbone of this open-source technology can be leveraged to enable both human
and agent messaging with improvements over current systems. Integrated Jabber instant
messaging support makes the NPS AUV Workbench the first custom application
supporting XML Tactical Chat (XTC).

Results demonstrate that the AUV Workbench provides a capable testbed for
diverse AUV technologies, assisting in the development of traditional single-vehicle
operations and agent-based multiple-vehicle methodologies. The flexible design of the
Workbench further encourages integration of new extensions to serve operational needs.
Exemplars demonstrate how in-mission and post-mission event monitoring by human
operators can be achieved via simple web page, standard clients or custom instant
messaging client. Finally, the AUV Workbench’s potential as a tool in the development

of multiple-AUYV tactics and doctrine is discussed.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

I1.

I11.

TABLE OF CONTENTS

INTRODUCTION...cuuiiiuiicnensnecsnecsnecssesssnecssessssssssasssassssassssssssssssassssasssssssasssssssssassnse 1
A. PROBLEM STATEMENTccuiiiiiniiiniinninsnissnnsssesssssssssssssssssessssssssssssasens 1
B. OVERVIEW....uiiniinninnicnnicniissinsiisessiisissssessssssssssssssssssssssssssss 1
C. MOTIVATION .cciiiiiniiiinninneissnesssisssessssissses 2
D. OBJECTIVES ...coiiiiininninnninnnnnsssensnessssesssessssecsssssssesses 3
E. THESIS ORGANIZATIONcouiiiiiiiiitenseicsnensnnsssesssisssnsssssssssssssssssssssssns 3
BACKGROUND AND RELATED WORKcouiiiiitenseinnenseensnensnecsaesssacsssesnne 5
A. INTRODUCTION.....uuuiitiiininsneissnnissnnsssesssssssessssssssesssssssssssssssssssssssssssssssssssass 5
B. DATA REPRESENTATION AND MANIPULATION USING XML....... 5
1. Removing Ambiguity Through Namespaces.........cccceeecvnerccsccnnseccsnns 6
2. Defining the XML Document Structurecceeeneeesseecseecssnecsaessnens 7
3. Transforming XML DoOCUMENLScvuerieeisrenrecsssnnrcsssssssecsssssssssssnnses 9
C. 2D AND 3D GRAPHICS REPRESENTATION......cccceevuensueensnecsuensnecsancnne 10
1. Scalable Vector Graphics (SVG) ccceeiccnvvniiccscsnnnecsssnnrccsssssssccssnnnes 10
2. Virtual Reality Modeling Language (VRML)......cccccceercurrcrcnercsnne 11
3. Extensible 3D (X3D) Graphics.......cccecveeiccscsnrrccsssnnrecssssnsecsscnssscsnes 13
4. Xj3D 3D Display LiDraryc.ccceceeicsseccsssncssssncssnsecssssecssssesssssens 13
D. JABBER AND EXTENSIBLE MESSAGING AND PRESENCE
PROTOCOL (XMPP) 13
E. OPEN-STANDARD TECHNOLOGIES AND OPEN-SOURCE
SOFTWARE......ooitiniinnennninninsnesssesssesssessssessssssssssssassssessssssssssssassssessssse 15
F. PROGRAMMING LANGUAGE AND DEVELOPMENT
ENVIRONMENTccuuiiiiiiinniensnnnseesssesssnssssesssaesssesssssssssssssssssessssssssssssassnss 16
1. JBUILAET c..cuueinriiiiiiiiiiiticincttienctecstncsessssssesssesssssssssseesssssssees 17
2. ECHPSE cuueieneriiniiisniinsniinsniensnnicssnsncssssscsssnssssssessasssssssssssssssssssssssssssses 18
3. NEtBEANS ..uuueeeurieinricniiciteicinniesinnicssnnecssanecsssnesssssesssesssssesssssesssssecsns 20
G. NPS ARIES AUTONOMOUS UNDERWATER VEHICLES (AUV)......23
1. INtrodUCtion......ccceeeecneeecieeineecnneecsneecsneecsanesssessssseesssseessssecssssecsns 23
2. Dimensions and ENduranceeeeeeniineennecnnnecnennsscnsecssecsees 23
3. Propulsion and Motion Control SyStems........cccccereesccnnerccsccnnsrccsnns 23
4. Navigation Sensors 24
5. Sonar and Video SenSOrS.......cieccieecisnecssencssnencsssecsseeessssecssssecsanes 24
6. Vehicle/Operator CommuniCations.......ccceeevveressssressrresssressssncssnsnes 24
7. Computer Hardware Architecture.........cceeeiccscsericsssnnrccsscnnseocsnns 24
8. Computer Software ArchiteCture......eeicvcceecssercssnrcssnercssanecssssnenes 25
H. RELATED RESEARCH.uuiiiitiiiicninnnnnnisnsicssesssssssesssnssssssssssssasssss 26
1. History and Contributors 26
L. SUMMARY ...uuiiitiiiiiisnennninneissncseisssessssssssesssass 27
AUV WORKBENCH.....utiiniintinsnninnensninsnenssessssesssessssesssessssssssassssssssasssassssassssssssans 29
A. INTRODUCTION...uuuiiteiinicsneisnnnssensssecssnssssnsssessssesssassssssssasssssssssssssssssssssss 29

e

DESIGN RATIONALEuuuteiintinnnessnensnnssnnsssnesssssssssssassssssssssssasssssssssssssns 29

1. Graphical User Interface (GUI)ccevvercvcercscneicscnercssnnncssnnncssnsnenes 29
2. Project StruCture....eeicccccseeiccsssnnecsssssnrecsssssssscsssssssessssssssssssssssssssses 31
3. Source Code and Runtime Package Structure 31
4. Configuration File......icoveiicniinnnicnsssnnricssssnnncsssssnsncsssssssesssssssssssnns 34
5. ANT — JAVA-based Build Toolcueeveensuenseensuenseecsnenssnccsenenns 37
MISSION PLANNING ...ccoiiitiininnnenstisssissnnsssessssssssssssssssesssssssssssssssssssssss 41
1. OVEIVIEW cuueereiineicnensninsnensnesssessessssesssessssesssassssessssssssssssnssssessssssssssss 41
2. AUV XML-based Mission Control SCriptccccceeeecccnnrecsccnnrecsnns 41

a. “MisSionData” EICHEnt...........uueeneeeueenrveesreensuenssaenseeessecsaene 42

b. "UnitsOfMeasure”’EIeMEntuueeeeseneereosssnnieosssnssossssssenes 42

c. “MiSSION” EICMENL..u.unueennneenneenneinrnennennrnensnnicsanisacsssnsssseesaens 43
3. Mission Script Authoring ToOolS.......ccueeiicnicnriccsssnnrecsssnneccsssnssecssnns 43
EXECUTION AND DYNAMICS PROCESSESccocvviivrvnrccrnrcssnnrcssanecns 47
1. EXECULION «uuceeeneeiiericnniiiintecnsneecssnnecssnnecsssnesssnnessseesssseessssessssnsssssecses 47
2. DYNAMICS cccuvtiersrricssnnicssancssssncssssncssssncssssncssssssssssesssssessssssssssssssssssssssssses 48
3D VISUALIZATION ..uuuiiiiiiseicninsnicssnsssnsssessssssssessssssssesssssssssssssssssssssss 49
1. Design and Implementationccoeeeenveicssneccssnncssnncssnsncssnsncsnsecnes 49
2. USer INtErface.....ueecneeeiieeciieecssencssnnecssneecssnnessncesssseessssecssssscssssscsns 49
WEB SERVERiiitintinitenninnninnieiisniississesssissesssssssesssssssessss 50
1. Design and Implementationccoceeiccscsnnneccssnnnccsssnnsecsssnssscsnns 50
2. LUETS S 11175 § £ T OO 51
JABBER INSTANT MESSAGING......iiiiiriisiicniinnnsssensensssnsssssssssenes 52
1. Design and Implementationcceeecnveccssnnecssnncsssecssnsncssnsscssnsecnes 52
2. USer INtErface.....eeecneeecseeciieecssencssnnecssnencssnnessnecssssesssssesssssecssssscsns 53
XTC EVENT MONITORouinniinniininsnensneessnesssecsssesssnssssesssassssesssassssesss 54
1. Design and Implementationccoueeerveccssnnccssnncsssercsssnncssssscsnsesses 54
2. USer INerface......ueicvveiiiceiiiinrinsnninsnncnsnncssnncsssnecssssncssssnessssscssssecses 56
3. XTC Event Monitoring Configurationcceceeeecvercscnrcscnescsnnees 58
4 How Incoming Events are Handled...........c.ccceveiicvnrinsencnsnercncnnnenns 59

a. Y A L o 60

b. Y2 I VL TR 60

c. URL 0r Hyperlink AlErt........eeueeeesueressrerossrerosserssssesssssssssanns 60
S. How Events/Messages are Generatedcceeeeevnecsuensncssaeesnecanes 62

a. Free-form Text Using Standard Jabber Clients 62

b. NY 12 T T B o 62
APPLICATION TOOLBAR.......uitictiineinnenntecssenssesssecsssecssssssesssassnns 63
STORAGE, NETWORKING AND COMPRESSION.......cccceevrerueencercnees 66
1. Naming CONVENTIONccecererssercssnrcssanicssanssssasessssssssssssssssssssssssssssssses 66
TOOLS AND PRODUCTS ...uuiiiiiiiininsninnnnsssisses 68
1. OVEIVIEW cuucereiiniiineisnnissnensnecsssicssessssesssessssesssesssssssssssssssssassssssssssssassns 68
2 Jabber Instant Messaging (IM) Client..........cceceevsvecsuenssncssaecsnecaees 69
3 Internet BrOWSETcueiieeeniicsniisseensnecssnicsnecsssnsssecssesssnssssssssessssssssess 71
4 X3BD-Edit.ccouiesiiisninienisninssensssncssensssnesssssssssssssssssssssssssssssssssssessasssssssans 72
5 JEItacniiiiiiiiiniiniiiintintnnseniennsesnnsssesssesssessssssssesssssssassssasanns 73

Iv.

6. - NUBAYAR D BT 2: R TS) 0 <) 75

L. SUMMARY ...utiiiiinsninnnncneisnnsssesssnesssessssesssessssssssssssassssasssssssssssssssssasssssssaase 77
MESSAGE EXCHANGE TECHNIQUES AND TRANSPORT
PROTOCOLS ..uuoouuiiniineeniensnnnnsnenseesssecssnssssssssessssessssssssssssassssessssssssssssassssasssssssaasss 79
A. INTRODUCTION....uuuiitiisiicsniisnncssenssisssnssssnsssessssisssesssssssssssssssssssssssssssssss 79
B. COMPRESSION AND DECOMPRESSION USING JAVA.UTIL.ZIP..79
1. Y21 0] 1) 10T TN 80
a Compressing and Archiving Data to a ZIP File.................... 80
b Decompressing and Extracting Data from a ZIP File.......... 81
c ZIP File PrOperties...eeccesseessssressssssssssssssssssssssssssssssnsssses 82
2. GZIPPING ODJECTS..cceiiurriirssrnricssssanrecssssssnesssssssssssssssssssssssssssssssssssssasss 82
3. Java Archive (JAR) Format..........cccccvveeiccscsnniccsssnnnccsssansecssssnsscssses 83
4. CRECKSUIMS c..uuueiiinniiinieinieciniessneecsnencssecssseessssessssseessssessssnsssssnsnes 84
C. BINARY TO TEXT ENCODING AND DECODINGcccvvueeruersnccsancnne 85
1. Brute-Force APpProach..........icceeiicnccsnniccsssnnncssssnnnecssssssssssssssssssnns 85
2. Base-64 Encoding Approach..........cceeicsvencnssnncssnncssnnncssnnncssnscenes 86
3. Complex and Proprietary AIZorithmscccovvvericcicsnnrecsscnnrecsnns 87
D. MESSAGING PROTOCOLSucovueenrrnrninsnensnncssnecssessssesssessssecsssssssssssasnss 88
1. Simple Mail Transfer Protocol (SMTP)cccocvueriivvvnnrrccscnnreccccnnnes 88
2. File Transfer Protocol (FTP) and Secure FTP (SFTP).......cccceeuee. 89
3. HyperText Transport Protocol (HTTP) Get/Post and Secure
Hypertext Transfer Protocol (HTTPS).....ccueeveevveecsercsnensencceecnne 89
4. Messaging Queue System (e.g., Java Messaging Service) 90
5. Jabber/Chat Using Extensible Messaging and Presence
Protocol (XIMPP)....eeeiiiccininnnnnnnnniecccssssssssssssssscsssssssssssssssssssssssens 91
E. MESSAGE REPRESENTATIONccctiniinnuensnnnsnecsnnssnenssecsssecssnsssesssncnne 93
1. Jabber Enhancement Proposalscecceveicccvencnsnrcssnencssnnicssnnsenes 93
a. Private Dat@ (JEP=49)......ccuueeieevevsuriccsssericssssnsissssssssssssssssese 93
b. Extensible HyperText Markup Language (XHTML)
(JEP-T1) coouueeeeinnensuinsensnissaessssnssens 93
2. Embed Hyperlink to Binary Data via Out-of-band (oob)
IMIESSAGES.cuuurrersrricsssnecssanecssnessssnesssssessssessssasssssesssssesssssessssnsssssssssssssses 94
3. Embed Binary Data in CDATA Sectionccoeeeeevercssnercssnercssnsscnes 96
F. DESIGN AND IMPLEMENTATIONuiniiniiniinnniinnissnecsssnsssssssnssssesans 97
1. OVEIVIEW cuuccreiiniiinnisninnensneisssecsecsssecsessssessssssssssssasssssssssssssssssssssasens 97
2. Introduction to Jabber Protocol............ceiicvveiicvenicscnncnsnrcscnnnenns 98
3. Web-based Jabber Client...........cucouiiiveisneinseecsenssecnsecsseecssensnnns 101
4. Standard Jabber Client.........ciiciveiissricssenisssnncssnncssnnncssssncssssnenes 104
5. Customized Jabber Client........oeiceeivreicseisseensnensseecsnnsssessncssseenns 106
6. Interior of a Jabber-enabled Agent 109
a. Jabber COMMURNICATIONS .a.euueeeonneeeosursossanssssssossssssssasssssansses 110
b. MesSAZE FOVMAINGeneeeeenneevcnneniseeissnressnressnsnessssnesnenes 110
c. MeSSAZE PrOCESSING .ouueveeneressuerossserssssssssssssssssssssssssssssssssassss 111
d. Compression and DecOmMPYESSIiONueeeneeeruersvensaeesveeanns 112
e Base-64 Encode and Decodeueueeoenevosnerossnerossnesosnenes 113

X

VI

f XML PAFSING caveeveonenneeiossssarrisssssssssssssssssssssssesssssssssssssssssssssns 113

7. Message Generation........ecceceecssnicssanccssssesssssessssesssssssssssosssesssssess 113
8. N 11 T4 S D1 1) 21 o N 115
G. BENCHMARKS ...uuoiiitiiiintinntenninnnennensnssssessnesssessssesssesssssssssssssssssess 116
H. SUMMARY ...uuiiitiiiiinininniinsniinnisssessssiss 118
TASK COLLABORATION USING AGENTS ...uuuiiivviiinnnicssnnicssnnecssncssssressnsncnes 121
A. INTRODUCTION....uuiiiiiiniicnensencsnncssnisssnsssessssesssessssssssasssssssssssssssssssssssens 121
B. ENVIRONMENTuutiiiintinniinsnensnnessnessessssecssessssesssesssssssssssssssssessssssssssss 122
C. OBUJIECTS oiitiiiistinncsninnnisssesssisssessssssssssssssssssssssssssssssasssssssssssssssssassss 123
1. AUV itirrinnnnnnennnnnnesnesssesssessesssessesssssssesssses 123
2 SCISOL ceccuureiiinreiineessneesssnecsssnecsssnesssssessssssssssnssssssssssssessssesssssasssssnssss 124
3. Communications Stationceeeeevveeisennseecsensseensecssseessnssssesssecenne 124
4. ODSLACIC..cuueeeereeeinieistieisneeisneissnteecsnneessssesssssesssssesssssessssssessssnssssaecs 125
5. AT FEE 100 1 o F: 1 | OO OROORRt 125
6. Launching/Pick-up Point........cccoovveiicnssnniicsssnriccsssnnsecsssnssesssssseces 125
D. AGENTS AND ACTORScccvvuiiirnrinsnnissnnicssnsicssssicssssssssssesssssosssssssssssssanss 125
E. RELATIONSHIPS....uuiiiitiitiitintintisnesseissnissssssssnsssssssssssssssssssssssssssens 129
F. PROCESSES AND OPERATIONS ...cccoviierviicssnnisssnrcssssncssssncssssssssssssssses 129
G. SUMMARY OF LAWS ...uuiiinniinniineissecssicssnsssssssessssnssssssssssssssssss 130
H. AGENT IMPLEMENTATIONccionniiininiissnicssnnicsssnssssnesssssssssssessssscsanss 131
1. Concept of Connector-Ticket Pairccovveeeecisvnriccccsnneccsccnnnncssnns 131
I. AGENT-TO-AGENT COMMUNICATIONS....cctierverirssrrcssnressnsscssssessones 132
1. FANLL0 T 6 003111) 132
2. CommMmUNICATIONS .ueeereeeseenseensnncsaenssnecssecssnecssesssassssesssssssssssssssssasnne 133
3. Strategy for Data ColleCtionccoccveeeecsicnerccsssnnrccscssnsecsssnssscsnns 133
4 Data ANalySiS....cccuveeessrenssncsssnncssnncssnnicsssnisssssesssssesssssssssssosssssssassecs 134
a. INitializaAtion PRASEeeueeeneerossnerossuerossnerossnesssssesssssssssnsses 134
b. Start/During the Run (AUV EXECULION)uueeenneeerneeesnene 134
c. POSSIDLE STrALEZICS...uuueeeeeueresseressseressersssaerssssssossasssssssssssassss 135
J. SUMMARY ...uuiiiiiiniinnninniinssiisssnsssissssissssesss 137
CONCLUSIONS AND RECOMMENDATIONS....ccccctetsuricssarcssnssssssssssssssssssssns 139
A. INTRODUCTION....uuiiiiiiniinsniisensssicssssssiessens 139
B. RECOMMENDED FUTURE WORK.iiinnnrinsnncssnnncssnnscsssssssansese 139
1. OVEIVICW cuueriinnricsnricsnnicsssnessssnesssnesssnesssssesssssssssssssssssssssssssssssssssssss 139
2. AUV Multi-Agent System Frameworkcceceevvercscercssnercscnnnes 140

3. Development of Collaborative Sensing Strategy Using
DisSIMIlAr AUVS.cuuuiiiireiiiiseicissnncsssnisssnissses 141
4. Simulation of Targets/Obstacles.......ciuennieenseessrncsenssncsseecssnecsanes 142
5. Simulation of Environmental Conditions.........cccecceeveuercrcnercscnnrenes 143
6. Plug-in FrameworK.......iieicnniicnseecssnnecssnnecssnncsssncsssnnessssncssssees 143
7. AUV MisSion Managercoceceeseecssanesssasesssasessssssssssssssssssnsssssnsess 144
8. User Interface Enhancements...........coceeiccercnsnrcssnncssnencssneecsnenes 144
a. Manipulate Multiple Missions in 2D Mission Planner....... 144

b. Animated Icons in 2D Mission Planner and Mission
COMMANA LISt a..nnnaeennaesosaennssaresssaresssaresssassssssssssssssssssssssssess 144

X

9. Distributed Robot (Execution) and Virtual Environment

(DYNAMICS) ProCesSes....cccueievverecsnrcssnncssnncsssncssnsncssssncssssscssssssansecs 145

10. Compression and Error-Correction Algorithmscccoccuuereennne. 145

11. Mapping Capability in Mission Planner.........cccceevueeceecseeesnecnnces 146

C. SUMMARY .cuviiirruiessnncssnsssssnssssssssssasssssasssssasss 147

APPENDIX A. ACRONYMS AND ABBREVIATIONS.....ccccvctteennnnnnicsssnssecssnnnes 149
APPENDIX B. LIST OF ARIES AUV-SPECIFIC EXECUTION-LEVEL

COMMANDS .tiiennnicssnriesssnesssstssssssesssssosssssosssassns 151

A. INTRODUCTION....uiiinruiesssancsssanssssassssssssssssssssasssssssssssssssssssssssssssssssssssssss 151

B. XML-BASED EXECUTION LEVEL COMMANDSuutiiencnnniecsssnnnecces 151

1. <Depth> Elementueiieeivvneiicscsnnicssssnricsssssssessssssssssssssssssssssssseses 151

2. <EnterTube> Elementcceierveicrvrrcssnnicssnnccssnncssssnesssnessssnosnsees 151

3. <FollowLight> Element.........cccoccvvricrissnnricscsnrrccsssnnsscsssnssssssssssseses 152

4. <GpsFix> Element 152

5. <Heading> Element.......cccouverierirnricssssanricssssnsrccssssssscsssssssssssssssseses 152

6. <HeIp> Element........ccceeievvuriesrrrccsnrcssnncssnnncssssesssssesssssssssssosssssossnsecs 153

7. <HoOVer> Elementcccccrrreeeriicccssscsssrnsssscccsssssssssssssscssssssssssssssscsssss 153

8. <Lateral> Elementccccceeerverirsseresssnrcssnrcsssnrcssssncssssscssssscssssssssses 153

0. <MissionScript> Element.......cccouvveiicrisnrrccsssnnreccssnssecssssnsnessssssseces 154

10. <Pause> Element..........ccovereiseicssnicssnnicssnnicsssnessssncssssnssssssessssssssssess 154

11. <Planes > Element........cccuveeeeiicccsiicsssnessssccssssssssssssssscsssssssssssssssssssss 154

12. S 11 10) 1 Bl D1 1311 1<) 1 1 154

13. <Propeller> Element........ccccccrieiirvriccscsnrnccsssanrncsssssssecsssssssesssssssscss 155

14. <QUIt> EICINENLceeeeeerrcrnrnneereececsssssnsssseeccsssssssnsssssssesssssssnsasssssasssns 155

15. <RealTime> Elementuueeeiiiceiiiicnssnnniecccssssssssssssssccsssssssssssssscsssas 155

16. <ResetTime> Element.........coeiceveicsinncssnnicssnnesssnncsssncsssssessssncssnsecs 156

17. <Rotate> Elementcccceivveeiiciicsnnicssssnsicssssnssscsssssssssssssnssssssssssases 156

18. <Rudder> Element.........cceeeiieeccniisscssansseneccssssessssssssscssssssssssssssssscss 156

19. <SoNAar> ElemMeNt......cccvveeieeinrericcsssansicsssassesssssssscsssssssssssssnssssssssssases 157

20. <Standoff> Element 157

21. <TakeStation> Element..........cccovveeiecssrnnicssssaesccsssasscssssansscssssnssaces 158

22. <Thrusters> Element.........ccciiiieiiiinnnnnneiececesssssssnsssessccsssssnsssssssessses 159

23. <TimeStep> Elementccoveierrnicrsanicssnrcsssnncssnrsssssssssssssssssssssssses 159

24. <Trace> ElemeNnt..........cccoveeeireeceisssssnsssseeccssssssssssssssescssssssssnsssssssses 159

25. <WAIt> EICMENT ...cccccinneiiiiiinnniicsissnnicssssansicsssnssscsssssssessssssssssssssssssss 160

26. <Waypoint> Element.........cceiiiieiciseecssnecssnecssneccssseccsssessssncsssnes 160

APPENDIX C. CDROM MATERIALoneiicinreniicnssansecssssasscsssssssscssssssssssssasssssses 161

A. DIRECTORY AND FILE STRUCTUREciiineienreicnsnrcssannossassossanes 161

1. DocumMENTAtIONcceieeiivneiicinisnnnicssssnsicssssansscsssssssecsssssssssssssnssssssssssases 161

2. AUV Workbench Application.........ceveecseenseensnensecssnecsaesssnessaennns 161

B. MAIN APPLICATIONonneiiicirnnnnicssssnnsccssssnsscsssssssssssssssssssssssssssssssssssssns 162

C. MISSION PLANNING ...cuuiiinveiinsencsssnnossasssssasssssasesssasssssssssssssssssssssssssssssssss 163

D. JABBER INSTANT MESSAGING.....uiiiinreniicsssnsicssssnssesssssnsscssssasssssnns 165

E. WEB ...ouuiiiiriiinnniicnnnniensanisssasissssssssssssssssssssssssssasssssasssssasssssasssssasessssssssssssssnsses 166

F UTILITIES ..ouuooiininiinniennensannssnesssnssssssssnsssssssassssssssssssssssssssssssssssssasssssssss 166

G. LIBRARIES......uuoitintinininininsnissessessessessssssssssssssssssessesssssassassassassssssssssases 167

H. CONFIGURATION FILE ..cuuiiiuiuicninrinsicicsensessessssssssscssessessessesseessssessaess 168
APPENDIX D. AUV WORKBENCH DEVELOPER AND USER GUIDE 169
A. SETUP .cctiitiitinininininnnnisississisisissssisssssissississsessessesssssssssssssssssesssssens 169

B. HOW TO RUN IT..ucouiiinininnnnnsnnsnnsnessesssssessessassasssssassssssesssssesssssassassassass 169

C HOW TO COMPILE IT ...cucoiiiiiinisninnicensensensnsssssscssessessessessessassasssssssanes 170

D TOOLS AND APPLICATIONScooininininnninnnnnsnesnessessessesssssessessassanes 170

E FREQUENTLY ASKED QUESTIONS (FAQ) ..ccoceeuenrenensunsunsensunsncncanee 170

1. Unable to Start AUV Application.......ceeecrueeseenseensseecsaensnccseecnne 170

F. COMPONENT CHARTcoouitininrinrininsensensnnssnssissessessessesssssasssssssssssscsnees 171
APPENDIX E. PROCEDURE TO PACKAGE BINARY DATAccceeevurrvennns 177
APPENDIX F. GNSJAV A .citititintininininissnsisisisisisississsssssssssssssssssiss 185
LIST OF REFERENCESuuuuiiniiininnninnininnninisssssssssesssssessesssssesssssssssssssssssssssssssases 191
INITIAL DISTRIBUTION LIST ..uconinininininsensensensenssessissessessessessassasssssssssessessessssssesases 197

Xii

Figure 1.

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.

Figure 12.
Figure 13.

Figure 14.

Figure 15.
Figure 16.

Figure 17.
Figure 18.

Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Figure 27.

Figure 28.

LIST OF FIGURES

Sample DTD defining a Waypoint element with two attributes “x” and

g ettt et h et et h et h e bttt ea e nh e b it e bt et et 8
Sample XSD on Waypoint €lement.cccueeeeiieriieeniieenie e 8
Relationship of Parsing, Validating and Transforming an XML document....10
A sTImple SVG cOde SNIPPEL. .ccuveieeiiieeiiieeiieeeie ettt e e ens 11
Graphical representation of the above SVG code........ccoevvveviiiiiiniiniieicnee. 11
Contents of VRML file for a Im by 0.5m by Im blue boX.cccecevuvveenneenn. 12

Rendering of the Im by 0.5m by 1m blue box defined in Figure 6 using
Internet Explorer and the Cortona VRML plug-in. User has rotated the

scene for a custom viewpoint location and orientation............cecceeeeveereveennennne. 12
Borland JBuilder 7.0 application user interface running on Windows XP
PLAtTOTINL 1.ttt et ens 17
Codelnsight feature running in Borland JBuilder 7.0. This feature displays
context-sensitive pop-up windows to facilitate code completion..................... 18
Eclipse SDK 3.0 Stream Stable Build user interface running on Windows
XP PlatfOr...eeeieeiieiie ettt es 19
CodeAssist feature running in Eclipse. This feature displays context-
sensitive pop-up windows to facilitate code completion.cccceeerveneenen. 20
NetBeans IDE 3.5 user interface running on Windows XP Platform.............. 22
Code completion feature running in NetBeans IDE 3.5. This feature
displays context-sensitive pop-up windows to facilitate code completion......22
Relational Behavior Model tri-level architecture hierarchy with level
emphasis and submarine equivalent listed [Holden 1995].ccccoeeeiveenenns 25
AUV Workbench application user interface...........cccceevverieeniiencieenieeieeeenne 30
List of modules and libraries required to build the AUV Workbench
APPIICALION. ...ttt ettt ettt ettt et e st e et e s e e beeeate e bt e enbeennes 30
AUV Workbench project directory Structure.ccceeeveeerveeerieeerveeevee e 31
AUV Workbench application (AUVW) Java source and binary directory
SETUCTUTE. ...ttt ettt e et e st e e st e e et e e st e s e e eaaee 31
Overview of AUV Workbench classes.cocueverieriineniiinieienicnenieneeens 32
“Main” module PACKAZE.ccveeeiuiieeiiieeieecee e e 33
“Util” module package.........c.eeviieiiiiiiiiiieeieeeee e 33
“Web” module package.ccvveeiiieeiiieeeeee e 33
“Im” module PACKAZE.eoviieiiieiieie e 33
“Mission” module package.cceeevvuiieiiiieriieeeeee e 34
Sample AUV Workbench configuration file.ccceevieeiieniiienieniieiee. 36
AUV Workbench ANT build.xml used to compile and build the
APPIICALION. ...ttt ettt e et e e st e et e nbe e teeenbe e bt e enbeenns 40
Output from “ant dist” command running the AUV Workbench
“DUILA. XD FILE. 1 et 41
A sample XML-based mission script [after Hawkins 2002].cccccvvennennne. 43

xiil

Figure 29.

Figure 30.

Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.

Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.
Figure 51.

Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.

XML-based mission script display and 2D Mission Planner. The mission
commands are displayed as a list on the left and the positional data are
displayed graphically on the right.........ccoceeviriiiniiininiieee, 44
Right-click popup menu for the 2D Mission Planner. The popup menu
provides the user with additional functionalities (e.g., add a “Waypoint”).....45

Select a point and right-click to either “Edit” or “Delete” a waypoint............ 46
Mission Command Editor showing the Waypoint information........................ 46
Mission Command Editor showing the Thruster information. 46
Right-click popup menu on the Mission List display.c..cccceeverieneenennenne. 47
3D Visualization Display displaying AUVInBeachTank scene. 50
Web server settings in XML configuration file.cccoeeveriieiiienienniennene, 51
Web server module user interface...........oevveeiieniiiiiiniiieeeeeeee 52
Jabber settings defined in the AUV Workbench configuration file................. 52
User interface to configure instant messaging (IM) settings.cccccveeenneee. 54
Sample XHTML message with encoded binary file in CDATA section.......... 55
Instant Messaging user interface to package and send text and files............... 56
Instant Messaging user interface to display list of incoming messages........... 57
Instant Messaging user interface to define the criteria to alert the user........... 57
Sample EventMonitor stanza specifying the type of Watch Events and their

COTTESPONAING ALCTLS. .vveeevieeieeeiie ettt e e etee e tee e e aee e sbeeesaseeennns 58
WatchEVent QUALTAIN.c.cevuieeciierieeieesiee et esieesaeesieesaeeaeesaeeseesneeenseennnas 60
A sample alert of type “VISUal”........ooeoiieiiiiecieece e 60
A sample alert of type “Sound”.ccceeiiiiiiiiiiieieeieee e 60
A sample alert of type “Url”.oooviiiieiiee e 60
A sample list of applications defined in Application stanzas that can be

TVOKEA. ..ttt 61
Instant messaging event monitoring and alert mechanism process via

standard Jabber ClIent...........coooiiiiiiiiiieeeeee e 61
An event monitoring HTML form to capture target type and location

INFOTMALION. ...ttt 63
A floating application toolbar.ccoooieiiiiiiiii e 63
A docked application toolbar on the left...........cccoeviriiiiiiiiiiiiiecreee 64
A sample toolbar application defined in the Application stanza...................... 65
X3D Naming Convention [X3DHints 2004].ccccoeviiiriieeniieeniieeeiee e 67
Splash-screen poster image describing the AUV Workbench, produced by

the QULROT. ..ooiiiie e s 68
Screen-capture button on the Application Toolbar..........ccccocveverviniininncnnn. 68
Jabber application setting in the AUV Workbench configuration file 69
Rhymbox Jabber client main user interface.cocceeevvvenieneniinicnenicneenne. 69
Rhymbox Jabber client “Chat-room” interface.............ccceevveevieeriieniencieennnenne 70
Rhymbox Jabber client “Settings” interface.cccceceviereeneniinecneencnnne 70
Rhymbox Jabber client “Console” interface............ccoueeeveerieeciienieeciieeieeiees 71
Microsoft Internet Explorer 6.0 browser user interface............cccceevceeeieennnnnne 71
Internet Browser entry in the AUV Workbench configuration file. 72

X1V

Figure 65.

Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.

Figure 80.
Figure 81.
Figure 82.
Figure §3.
Figure 84.
Figure 85.
Figure 86.
Figure 87.

Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.

Figure 95.

Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.

Figure 101.
Figure 102.

X3D-Edit Graphical User Interface (GUI) for developing 3D objects and

SCENES USING X3 D . .iiiiiiiieiie et ettt e e e e e e eeenes 73
X3D-Edit entry in the AUV Workbench configuration file.ccccceeeneee. 73
jEdit User Interface running on Windows platform.cccceeevveevvveenieeennnn. 74
JEdit PIugin Manager.ccceeviiiniiieiiesiie ettt ettt seve e e 75
jEdit entry in the AUV Workbench configuration file.cccooevveeieennnnenn. 75
ADS data source panel user INterface.occveveieviienieeiienie e 76
ADS data destination panel user INterface..........cccvvevvieerciieeiiie e 76
ADS-generated VRML scene from AUV data.........ccoocveeiieiieniienienieeeee, 77
ADS entry in the AUV Workbench configuration file...........ccccoevveveiienninnns 77
File compression code SNIPPEL.c.eevveeriieriieniieeiieiie ettt 81
File Decompression code SNIPPEL.cccveeeriieeeiieeniieeniieeeieeesveeesveeesevee e 82
Object Compression COAe SNIPPEL.....c.eeerueerrreriierieeriieeieeniieeieerieeereesieeeseees 83
Object Decompression code SNIPPEL.cccveeerieeerieeeiieeeieeeeieeeeieeesreeeeree e 83
Sample Manifest.mf file for Java Archive.........cccoovieiiiiniiiiiieniieiecieeeen 84
Base-64 encoding illustrated 3-byte stream converted to four 6-bit data

UTHEES. ettt ettt ettt ettt st b et a et et she et e et e b e e bt et e sh e e bt et e e bt e bt et nae e 86
Sample XML document with base-64 encoded data in CDATA section. 87
Packaging binary data in a Jabber message.ccocveeeiierieeniienieeieeieeee 94
Overview on file transfer using out-of-band (0ob) message.ccceceuven... 95
Sample XML message with encoded binary data............cccccueevieriieniienieenn. 96
Overview of the three approaches to Jabber instant messaging. 98
A sample “groupchat” message to “savage” chatroom..........c.cccceeveervenennnene 98
A sample chat message to “auvrobot” Jabber user.cccceevveeevieeeiieeennnn. 99
A sample “presence” packet from ‘“auvrobot” to “savage groupchat”

SEIVET . c.tteeuttte ettt e ettt e ettt e ettt e sttt e et e e e bt e e e a bt e e e a bt e e e ab e e e ab e e e ebbe e e ebbeeeabbeeenateeenteenane 99
Data and file transfer via HTTP-Jabber protocol..........cccccoceevirviniininncnnne 103
Sample HTML form for posting of data.c.cccceeeeienviieiieniecieeeeeeee 103
Sample HTML form for posting of data and files.ccccceviiniiiniencnnn. 104
Sample HTML form for Target EVents.c.cccceveiieiieniienienieeieeeeeeeee 104
Rhymbox Jabber Client.c.cccoeiiiiiiiiiiiiiiiiiccceeeeecseeee 105
Data exchange using standard Jabber client.cccooveviieniieciieniecieeee 106
Customized Jabber client user interface to send data and files as Jabber

TTIESSAZE. +veeuvreerurreenureeesreeensseeensseeasseeansseeansseeassseessseeeasseesasseesasseesssseesssseesnsees 107
Customized Jabber client user interface to display list of incoming Jabber

TTIESSAZES. +euvvveeurreenureeensreeensaeeensseeansseeasseeasseesssseessseesssseesssseesnsseesnsseesssseesnsees 107
Customized Jabber client user interface — Event Monitoring Criteria........... 108
Data and file transfer via HTTP-Jabber and Jabber protocol. 108
Interior of a Jabber-enabled agent...........ccccooveviriiniiiiniiniicee 110
Two files are packaged within the Jabber message.ccccvevveviierivennnnnne. 111
Binary data, if present, is embedded within the highlighted CDATA

SECLIOML. .ttt ettt ettt ettt et ettt et e st e bt e e bt e et e sae e et e e sab e et esae e e b e e naeeeane 112
Links to multiple storage locations.c.ceeveeriienienieinieniieie e 114
Processing of outgoing binary file data before it is sent out via Jabber

PTOLOCOL. .ttt ettt et e 114

XV

Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.

Processing of incoming encoded binary data via Jabber protocol................. 115
ASCII Plain-text Files achieved on average 72.09% reduction in size. 116
HTML Plain-text Files achieved on average 86.69% reduction in size. 117
XML Plain-text Files achieved on average 85.95% reduction in size........... 117
X3D Plain-text Files achieved on average 82.38% reduction in size............ 117
VRML Plain-text Files achieved on average 81.23% reduction in size. 118
SVG Plain-text Files achieved on average 66.82% reduction in size............ 118
AZent BOUNAATY.oviiiiiieiiece et 122
AUV operating €nVIrONMENL..........ccueeruierieeriierieeiienieereesereeseesieesseesseesnnens 123
AZENT OVETVIEW. ..eiiieiiieeeiiieeeiieeeeiteeeteeetaeeetreesseeesaeeessbeeessseesenseeensseeenseas 126
Connector-Ticket - Packaging and Tagging.ccceevverirevieencieenvenieeneenne 131
Connector-Ticket MatChing.c..coecuiieeiiiiiiiie et 132
Agent-to-agent communications using XMPP.ccccoconiiiiniininninn. 133
Human and Agent interaction via Jabber chat room..........c.ccccoeevveeenieenee. 133
AUV Agent - SEarch Map........coovieiieiiiieiiieieeieeieee et 137
Modular overview of future Worki...........ccoooeeiiiiiiiniiiceeee 140
Proposed XML-based representation of Mine Target.ccceeceeeuverreennnnne 142
XML-based representation of Plug-in Class.........cccceeeuveeviiiencieenciieeeiee e, 143
Mission Layer Manager in 2D Mission Planner module.ccccoeeveennee. 144
Main Application User Interface.ccceevveeeiiiieiiieeiiie et 171
2D Mission Planning and 3D Visualization User Interface.........c.ccccevueneen. 172
Execution and Hydro-Dynamics User Interface.ccocceeevviveieieeeeneeennnen. 172
Font Dialog User INterface...........cccueeciierieeiiieiieeiiesieeieese e 173
ApPplication TOOIDAT.cccuviiiiiieciieeeee e 173
Customized Jabber Client — Message Settings Module.c.ccccvveiiennnnne. 174
Customized Jabber Client — Message Send Module.............cccoevevieniieennens 174
Customized Jabber Client — Message Send Receive.c..cecevveveivienicnenne 175
WD SEIVET ...ttt ettt sttt ettt sseenaea 175
Procedure to encode binary data to XMLccccoeiiiiiiiiiiiiiicceeee 179
Procedure to decode binary data to XMLccccccoeviiiiiieniiiiiieiecieeee e 184

XVi

Table 1.

Table 2.
Table 3.
Table 4.

Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.

LIST OF TABLES

Description of text-based command for Waypoint orders. Extracted from

mission.script. HELP [Brutzman 1994].........ccoiieiiiiiieeeeeeeeeee e 5
XML Design Goals (after W3C, 2003)......ccccuieiiiiriieiiieeieeiieeieeiee e 6
Comparison of DTD and XSD........coooiiiiiiiieiiiieieeeeeeee e 8
Open source libraries used in the development of AUV Workbench

F210) 0] F U221 5 o) 4 F SRRSO 16
A summary of AUV Workbench packages.ccceoeeviieiieniienienieciiee, 32
XML tagset to define the AUV Workbench configuration.ccoeeneee. 37
XML Elements and attributes of MissionData element.ccceevuvenenne. 42
XML Elements and attributes of UnitsOfMeasure element.cccceeueeeee. 43
Details of mouse right-click popup menu items.ccceeceeeveeenieeciieneeeneenne. 45
Sample web server directory StruCtUIE........cccvveervieerieeeie e 51
XML tagset defining the web server configuration.c.cceeeevveeieneeniennene 51
Details of web server user interface.cocoeveeniiiiiiniiineieeeeeeee 52
Workbench instant messaging directory structure.occeeeveevveenveerieennnenne. 52
XML tagset specifying the Jabber configurations.cccccceevveeeeieeenieeennnn. 53
Details of customized Jabber user interface...........cccceeeevevieniiiiniecciieieeenne 54
XML tagset to configure XTC event monitoring.cceceveeevveeerveeesveeesenennn 59
Details of Toolbar BUttOns.cccuieriieiiiiiieeiieiiecie e 64
XML tagset for configuring the toolbar module............cccovvevviieiiiieeiieeee. 65
File types and their SUffiXes.cocueevieiiiiiiiiiieiee e 66
Java Source Code Naming Convention [after JavaCodeConvention 1999]....67
Classes for File Compression and Decompression.eccueeeveereeenieeennenne. 80
Classes for Object COMPIESSION.ecevrrervreerireeriieenieeesreeesreeesseeesseeessseennns 82
Classes for CheCKSUIML.cc.eiviiiiirieieiieeeece e 84
Comparison of messaging systems and their protocols.cccceeevveerieeerneens 92
XML tagset to define the XHTML payload in the Jabber message. 97
Message packet types and protocol..........cccvveeciiiiiieiecieeeieece e 99
“Presence” packet types and protocol..........ecvevvieriieniieniieniieieeieeeee 100
Comparison of the three approaches.coccveeviiierciieeiiieecee e 109
AUV AHITDULES. ..ottt ettt 124
SENSOT AIIDULES.ceieiiiieeiieie et 124
Communications Station Attributes.ccceevveeeiieriieiiiienieeieeee e 124
ODbStacle AITDULES.ooiuieiiiiiieeie e 125
Mission Plan AttrIDULES.ccuieruieriieiieeie ettt 125
Agent input and actuator SUILE.eeevvueeeriieeriieeiieeeeeee e eree e e eaaee e 126
Mission SCript XIML tag S€t......cc.eeecuieriieeiiieriieeiiieeieeieesee et ste e eee e 127
Agent goal defiNItioN.cceeeiiiiieiiie e e e e 129
Acronyms and abbreviations..........c.eeivieiieriienie e 149

xvil

THIS PAGE INTENTIONALLY LEFT BLANK

xviil

ACKNOWLEDGMENTS

I would like to thank Don Brutzman for his ideas, in-depth knowledge in the area
of XML, AUV modeling and simulation and opportunities, Curt Blais for his guidance on
agent technology and XML, John Hiles for introducing the concepts of cognitive
blending and LCDR Duane Davis for being a great sounding board and his in-depth
domain knowledge, and most importantly, my patient and loving wife, Joanne who has
been a great source of strength all through this work. Not forgetting our families back

home in Singapore.

X1X

THIS PAGE INTENTIONALLY LEFT BLANK

XX

I. INTRODUCTION

A. PROBLEM STATEMENT

The lack of common software tools for Autonomous Underwater Vehicle (AUV)
mission planning and analysis is an ongoing impediment to collaborative work between
research institutions, their partners, and end users. Current proprietary software solutions
have a myopic view on the capability of AUVs. Most place too much emphasis on single
and relatively simple AUV operations. A common software development and mission
evaluation platform will not only facilitate modeling and simulation of AUV, but it will
aid in the introduction of complex multi-agent systems to try out and answer more
challenging questions. Longer-term needs such as the development of AUV concept of

operations and collaborative sensing between vehicles can be achieved.

A common and flexible platform will facilitate the transition from simulation to

actual operations.

B. OVERVIEW

This thesis details the design and implementation of a common platform to
facilitate AUV mission planning, visualization and analysis. The end product is capable
of handling the various phases of a mission. An important component is the definition
and use of a common AUV mission control script. The control script defines the AUV
commands that are similar to the low-level execution commands that are used by the

actual AUV hardware.

Using Java-based open-source libraries for functionality, Extensible Markup
Language (XML) for data storage [Serin 2003] and exchange, and a component-based
framework, the AUV Workbench provides an intuitive cross-platform-capable tool with
extensibility to provide for future enhancements such as agent-based control,
asynchronous reporting and communication, and loss-free message compression. As a

collaboration environment, it is important that communication channels and tools are

easily available for developers and users to communicate. Jabber instant messaging is
selected as it is based on open-source Extensible Message and Presence Protocol (XMPP)
[XMPP 2004].

In addition, this thesis investigates the Jabber instant messaging protocol and
discusses its suitability for text and file messaging in a tactical environment. Exemplars
show that the XML backbone of this open-source technology can be leveraged to enable

both human and agent messaging with improvements over current systems.

C. MOTIVATION

One motivating factor is to support the current research efforts at NPS and with
partners such as Singapore Defence Science Organization (DSO). Similar partner
relationships are occurring with other AUV laboratories. A componentized framework
using open-source software and open-standards technologies is presented to support
collaborative development. The ultimate goal of software components is to fuse the use
of different pieces of software into one smoothly operating package. The end product
facilitates collaboration and continued research development between the two research

entities.

A well-designed and well-documented system promotes knowledge sharing and
retention. Ease of use and user interface design is important issues that will determine
whether it gains user acceptance. Usability should not be considered as an afterthought.
Ultimately user acceptance aids the transition of a modeling and simulation (M&S) tool

into a system that meets operational needs.

A further long-term motivation is to develop a common platform that can be
extended to become a Sensor Workbench and also support agent research and
development. Much important work awaits; that is otherwise impossible without such a
dedicated tool. In many respects, the NPS AUV Workbench is the culmination of many
technical threads carrying to fruition that were first initiated as part of the NPS AUV
Underwater Virtual World. [Brutzman 1994]

D. OBJECTIVES
The primary focus of this thesis is on the design and implementation of a common
platform for AUV mission planning and analysis through the use of Open-source

software and tools. In addition, this thesis addresses the following research questions:

o What are the open-source tools and open-standards technologies available
to facilitate development of a collaborative platform for AUV mission

planning and visualization?

o What constitutes an AUV XML-based mission control script?
o Can the mission control script be graphically represented?
J How can open-standards technologies be leveraged to design and

implement a message exchange system that can support both human and

machine communications?

o Can Jabber be used for machine-to-machine communications; e.g., for

self-validating agent-to-agent messaging?
J Can binary files be transported via Jabber instant messaging protocol?

o Can Jabber instant messaging together with HTTP, serve as a reliable

means for the transfer of textual and binary data?

E. THESIS ORGANIZATION

This first chapter identifies the purpose and motivation behind conducting this
research and establishes the goals for the thesis. Chapter II discusses similar research
and provides general background information to the concepts and set of tools and
technologies employed in this thesis. Chapter I1I examines the design and
implementation of the various modules that make up the AUV Workbench application.
Chapter IV discusses the use of Jabber instant messaging protocol for message exchange
of textual and files. It provides an exemplar on how event monitoring can be
implemented. Chapter V analyzes the software design of AUV agents. Chapter VI gives
a summary of the conclusions and recommendations for future work. The future work

section lists eleven specific areas where this thesis can be extended. The appendices
3

present information on the programming source code produced and system installation in
conjunction with this thesis. All source code and model content are provided online and

in Appendix C.

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION

This chapter briefly discusses the technologies and tools leveraged in the conduct
of this thesis. An overview on the open-source tools and open-standards technologies
employed is given. This chapter also summarizes pertinent previous work on the current
NPS AUV and its virtual world software. Further explanation and study of the topics may

be found in the list of references at the end of this thesis.

B. DATA REPRESENTATION AND MANIPULATION USING XML

Data is only as good as the way it is packaged. Information is a valuable asset,
but its value depends on its longevity, flexibility, and accessibility. Traditionally, data is
represented in a simple text-based format (see Table 1). The main disadvantage of such
an approach is that it is likely to introduce ambiguity in how the data is captured,
resulting in additional effort to write a robust parser to handle the ambiguity. This parser
has to handle case-sensitivity (“WAYPOINT” is not the same as “Waypoint”) and
potential variations in user input (e.g., “WAYPOINT” and “WAYPOINT-ON” refer to
the same information). This added logic slows down (and may confuse) in-water

processing time.

WAYPOINT #X #Y [#2Z] [#rpm]

WAYPOINT-ON #X #Y [#Z] [#rpm]
Point towards waypoint with coordinates (#X, #Y)
(depth #Z optional) (speed #rpm optional). You can

leave waypoint control by ordering course, rudder,
sliding-mode, rotate or lateral thruster control.

If speed is < 200 RPM, port & starboard RPMs are
increased to 400 RPM to ensure waypoint can be
achieved.

If in TACTICAL mode, execution reports STABLE when
waypoint is achieved.

Table 1. Description of text-based command for Waypoint orders. Extracted from
mission.script. HELP [Brutzman 1994].

The World Wide Web Consortium’s (W3C’s) XML Working Group developed
Extensible Markup Language (XML) in 1996. XML evolved out of the earlier Standard
Generalized Markup Language (SGML), HyperText Markup Language (HTML), and the
earliest presentation markup language. XML documents contain only data, not
formatting instructions. XML is an open standard and its extensibility allows it to
markup virtually any type of information. XML is a simple, standard way to interchange
structured textual data between applications. It is also readable and writable by humans,

using a simple text editor.

Some examples of XML languages are Extensible HyperText Markup Language
(XHTML), Sensor Markup Language (SensorML) for sensors [SensorML], Defense
Advanced Research Projects Agency (DARPA) Agent Markup Language (DAML) for
agents [DAML], Geography Markup Language to describe geographic information
[GeoML], MathML for mathematics [MathML], and Chemical Markup Language (CML)
[CML]. A list of XML-based data representation can be found at http://www.xml-

acronym-demystifier.org/xmlad.html (Accessed February 2004). The design goals for
XML are shown in Table 2 below.

Point Goal

1. XML shall be straightforwardly usable over the Internet.

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

2
3
4. It shall be easy to write programs that process XML documents.
5

The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

XML documents should be humanly legible and reasonably clear.

The XML design should be prepared quickly.

The design of XML shall be formal and concise.

© | ® NS

XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

Table 2. XML Design Goals (after W3C, 2003).

1. Removing Ambiguity Through Namespaces
Namespace is a mechanism by which element and attribute names can be assigned
to groups. They provide means for document authors to prevent ambiguity and are most

often used when combining different vocabularies in the same document. Namespace
6

identifiers have to be assigned some kind of unique identifiers. They are, by convention,
assigned to the Uniform Resource Locator (URL) subset of Uniform Resource Identifiers
(URIs), not the more abstract Uniform Resource Names (URNs). However, this is not a
requirement, since the XML parser does not actually look up any information located at

that URL.

2. Defining the XML Document Structure

An XML document can optionally reference a document that defines the
document structure and data type. This document can either be represented as Document
Type Definition (DTD) or a schema. DTDs were originally developed for XML’s
predecessor, SGML. They use a compact syntax and provide document-oriented data
typing. XML DTDs are a subset of those available in SGML, and the rules for using
XML DTDs provide much of the complexity of XML 1.0.

XML Schema is an XML-based alternative to DTD. The XML Schema language
is also referred to as XML Schema Definition (XSD). XSD expresses shared
vocabularies and allows machines to carry out rules made by people. It provides a means

for defining the structure, content and semantics of XML documents [Schema 2004].

Through the use of a schema or DTD, the XML document can be validated (i.e.,
checked for conformity) as it is parsed. If the XML document follows the DTD or
schema, it is valid. If an XML parser can successfully parse an XML document, it means
that the document is syntactically correct (well-formed). Therefore a valid XML

document is also well-formed.

DTDs are not XML documents (See Figure 1). This makes them difficult to
programmatically manipulate. A DTD describes an XML document’s structure but not
the format of the individual elements. In 1999, the W3C began to develop XML
Schemas in response to the growing need for a more advanced format for describing

XML documents. XML Schemas reached recommendation status in May 2001.

<!—Command the vehicle to transit to a specified location. -->
<!ELEMENT Waypoint EMPTY>

<!—List of attributes -->

<!/ATTLIST Waypoint x CDATA><!—CDATA indicates character data -->
<!ATTLIST Waypoint y CDATA>

Figure 1.

Sample DTD defining a Waypoint element with two attributes “x” and “y”.

<xsd:element name="Waypoint”>

<xsd:annotation>

<xsd:appinfo>Command
location. Vehicle will not stop when location reached.</xsd:appinfo>

</xsd:annotation>
<xsd:complexType>

the wvehicle to

<xsd:attribute name="x" type="xsd:decimal”

<xsd:attribute name="y”

type="xsd:decimal”

<xsd:attribute name="z" type="xsd:decimal”

</xsd:complexType>
</xsd:element>

transit to a

use="required”/>
use="required”/>
use="required”/>
<xsd:attribute name="rpm” type="xsd:decimal” use="optional”/>

specified

Figure 2.

Sample XSD on Waypoint element.

S/IN Functionality Document Type Definition XML Schema

1. Syntax Extended Backus Naur form. XML format.

2. Namespaces Not fully supported. Enables the definition of
vocabularies that utilize
namespace declarations.

3. Data Types Text only. No constraint Simple or complex with

checking. constraint checking; e.g.,
numbers within a certain range,
positive numbers or dates.

Entity Declaration Yes Yes
Providing defaults for Yes Yes
attributes

6. Support embedded Yes No
declaration

7. Parser support Readily supported by most Supported by a few open-

parsers. source parsers (Castor
http://www.castor.org,
accessed on February 2004)

Table 3.

Comparison of DTD and XSD.

3. Transforming XML Documents

As the name implies, Extensible Stylesheet Language (XSL) is intended to define
the formatting and presentation of XML documents for display. The first proposal for
XSL was dated 21 August 1997 [XSL 2004].

XSL Transformations (XSLT) is a language designed for transforming XML
documents into other XML documents [XSL 2004]. Just as XML was derived from
SGML, XSLT has its origins in an SGML-based standard, Document Style Semantics
and Specification Language (DSSSL). A transformation expressed in XSLT describes
rules for transforming a source tree into a result tree. The transformation is achieved by
associating patterns with templates. A pattern is matched against elements in the source
tree. A template is instantiated to create part of the result tree. The result tree is separate
from the source tree. The structure of the result tree can be completely different from the
structure of the source tree. In constructing the result tree, elements from the source tree
can be filtered and reordered, and arbitrary structure can be added. A transformation

expressed in XSLT is called a stylesheet.

XSLT is designed for use as part of XSL, which is a stylesheet language for
XML. XSL specifies the styling of an XML document by using XSLT to describe how
the document is transformed into another XML document that uses the formatting
vocabulary. XSLT is designed to work independently of XSL. The dominant feature of
XSLT is that it is declarative. It produces an output when a particular pattern (based on a
set of non-sequential template rules) occurs in the input. This is opposed to a procedural
program where the tasks are defined in the order they are supposed to perform. Apache
Xalan is a Java-based open-source XSLT processor [Xalan 2004] that is used in this

thesis.

The basic relationship between an XML document with XSL and XSD is

illustrated in Figure 3.

T

e
P Storage
‘-T
Result
Source document
XML Parser —» Validation Transformation F—p»| (8.9- Text,
document XML or
HTML)
DTD or XSL
schema stylesheet
b A b A b A
hd hd hd
Check whether Check whether Convert docurment
document is document is valid into another form
syntactically correct
(well-farmed)

Figure 3. Relationship of Parsing, Validating and Transforming an XML document.

C. 2D AND 3D GRAPHICS REPRESENTATION

1. Scalable Vector Graphics (SVG)

SVG is a language for describing two-dimensional graphics and graphical
applications in XML. It was created by the World Wide Web Consortium (W3C), the
non-profit, industry-wide, open-standards consortium that created HTML and XML,
among other important standards and vocabularies. SVG allows for three types of graphic
objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images
and text. Graphical objects can be grouped, styled, transformed and composited into
previously rendered objects. Text can be in any XML namespace suitable to the
application, which enhances searchability and accessibility of the SVG graphics. The
feature set includes nested transformations, clipping paths, alpha masks, filter effects,
template objects and extensibility. As an XML grammar, SVG offers all the advantages
of XML. SVG graphics can easily be generated on Web servers "on the fly," using
standard XML tools, many of which are written in the Java programming language

[SVG 2004].

10

SVG drawings are dynamic and interactive. The Document Object Model (DOM)
for SVG, which includes the full XML DOM, allows for straightforward and efficient
vector graphics animation via scripting. A rich set of event handlers such as onmouseover
and onclick can be assigned to any SVG graphical object. Because of its compatibility
and leveraging of other Web standards, features like scripting can be done on SVG
elements and other XML elements from different namespaces simultaneously within the

same Web page.

SVG 1.1 is a W3C Recommendation and forms the core of the current SVG

developments. SVG 1.2 is the specification currently being developed.

<svg width="360" height="120">
<rect x="0" y="0" width="100%" height="100%" fill="lightgray"/>
<g id="sampleLogo" transform="translate (5, 5)">
<rect fill="#ff3366" width="155" height="70"/>
<image xlink:href="sample.svg" x="15" y="15"
width="120" height="40" />
</g>
<rect fill="#3366ff" x="165" y="5" width="180" height="70"/>
<rect fill="#FFFFO0" x="10" y="80" width="335" height="35"/>

<g font-family="SunSansCondensed-Heavy" fill="black"
font-size="20" stroke="white" >
<text x="20" y="70" stroke="none" >NPS AUV Workbench</text>
</g>
</svg>

Figure 4. A simple SVG code snippet.

Figure 5. Graphical representation of the above SVG code.

2. Virtual Reality Modeling Language (VRML)

The Virtual Reality Modeling Language (VRML) is am International Standards
Organization (ISO) standard for defining 3D virtual worlds through the use of a
structured text file, such as depicted in Figure 6. The text files are typically small and are
ideal for transmission over the Internet. VRML files typically contain four main types of

components; header, prototypes, shapes and routes. VRML virtual worlds are rendered
11

using specialized viewers that read the VRML text files and render the content defined in
the file, (e.g., ParallelGraphics Cortona VRML Client 4.2 at

http://www.parallelgraphics.com accessed on February 2004). These viewers are

installed as Internet browser plug-ins. There are also several open-source VRML viewers

available on the Internet, such as Xj3D [XJ3D 2004].

#VRML V2.0 utf8
NavigationInfo {
type ["EXAMINE" "ANY"]
}
Shape {
appearance Appearance {
material Material {
diffuseColor 0 0 1
}
}
geometry Box {
size 1 0.5 1
}

}
Figure 6. Contents of VRML file for a Im by 0.5m by 1m blue box.

File Edit WYiew Favorites Tools Help o

O - |ﬂ: g , :,"SBarch l_l_'_'_i__-'Fa\rDrites @Media L Links

&j Cane - - ¢ Wy Campuiter =
Figure 7. Rendering of the Im by 0.5m by Im blue box defined in Figure 6 using Internet
Explorer and the Cortona VRML plug-in. User has rotated the scene for a custom
viewpoint location and orientation.

12

3. Extensible 3D (X3D) Graphics

X3D Graphics is the next generation of the Virtual Reality Markup Language
1997 (VRML97) 3D graphics format for the Internet. X3D has been developed with an
open-source sample implementation for specification implementation and evaluation
along with support from major industry players in 3D content development for the
Internet. Since the format is XML based, it can also take advantage of the benefits of
XML through the use of XSLT stylesheets to view the same content rendered in
VRMLY97, HTML or with direct rendering of the XML-based tree structure in an open-
source browser implementation such as Xj3D [XJ3D 2004].

4. Xj3D 3D Display Library

Xj3D is the open-source rendering implementation for the X3D graphics standard
[XJ3D 2004]. It is “a Java-based toolkit developed by Yumetech that allows companies
to rapidly support X3D.”[X3D 2002] The Web3D Consortium has also formed the Java
Rendering Working Group consisting of members from Media Machines Inc. Anaviza
Inc., Sun Microsystems, and Yumetech that are concurrently working on the definition
and implementation of bindings for various common graphical API’s such as OpenGL®
and Direct3D™. Upon completion, this implementation will make the specific graphics
rendering context of X3D graphics agnostic and this less vulnerable to the commercial

“ups and downs” of the market place or consumer popularity.

D. JABBER AND EXTENSIBLE MESSAGING AND PRESENCE
PROTOCOL (XMPP)

Jabber is a set of streaming XML protocols and technologies that enable any two
entities on the Internet to exchange messages, presence, and other structured information
in close to real time. The first Jabber application is an instant messaging (IM) network
that offers functionality similar to legacy IM services such as AIM, ICQ, MSN, and
Yahoo. However, Jabber is more than just IM, and Jabber technologies offer several key

advantages [Jabber 2004]: Jabber protocols are free, open, public, and easily

13

understandable; in addition, multiple implementations exist for clients, servers,

components, and code libraries.

First developed by Jeremie Miller in 1998, Jabber is becoming a stable and
proven piece of technology. The architecture of the Jabber network is similar to email; as
a result, anyone can run their own Jabber server, enabling individuals and organizations
to take control of their IM experience. Robust security using Simple Authentication and
Security Layer (SASL) and Transport Layer Security (TLS) has been built into the core
XMPP specifications.

Using the power of XML namespaces, it is extensible in that anyone can build
custom functionality on top of the core protocols; to maintain interoperability, common
extensions are managed by the Jabber Software Foundation. Jabber-enabled applications
are more than IM. These include network management, content syndication,

collaboration tools, file sharing, gaming, and remote systems monitoring.

With a wide range of companies and open-source projects using the Jabber
protocols to build and deploy real-time applications and services; there is no technology

“locked in” as compared to proprietary tools or technologies.

The Extensible Messaging and Presence Protocol (XMPP) is a general purpose
protocol not necessarily limited to instant messaging and presence [XMPP 2004]. XMPP
is a revision of the communication portion of the widely deployed Jabber protocol.
XMPP is a TCP-based protocol that uses Extensible Markup Language (XML) as the
syntax for its protocol elements. XMPP can be used as a client-to-server protocol as well
as a server-to-server protocol. The base of the protocol exchange is the XML “stream",
effectively a stream of XML data sent from one party to the other which starts with an
XML <stream> tag and ending with an XML </stream> tag. Streams are unidirectional,
so communication between two parties requires two separate streams (though they can
run over the same full-duplex connection). Within the stream, Requests and Responses
are exchanged between the two parties in XML “‘stanzas”, a portion of the stream that has
semantic content. The document describes the routing of stanzas from machine to
machine through streams. XMPP includes guidelines to ensure that extensions are

possible without conflicts or breaking core interoperability. Lack of conflicts is ensured

14

with use of XML namespaces. Interoperability is ensured with careful layering of stanzas

of known types, on top of the base stream.

The Internet Engineering Task Force (IETF) has formalized the core XML
streaming protocols as an approved instant messaging and presence technology under the
name of XMPP, and the XMPP specifications are moving forward rapidly within the

IETF's standards process (http://www 1.ietf.org/mail-archive/ietf-

announce/Current/msg28170.html accessed 29 January 2004)

E. OPEN-STANDARD TECHNOLOGIES AND OPEN-SOURCE
SOFTWARE

Open-source software is freely available for any use, including modification and
redistribution. The first formal statement of the official Open Source definition appeared
in 1997 by Bruce Perens [OSI 2002]. This definition has continued to be refined and
maintained by the Open Source Initiative (OSI), a non-profit corporation. [OSI 2004]
Developers have a say in how open source are designed and are free to use what works
for them, rather than be tied to a particular proprietary package. The plethora of open

standards and open source components has shown that this approach is a viable one.

Open source products and tools are based on the premise that the programming
source code is freely available to anyone who wishes to read, add to, or even modify and
redistribute the computer software code. Thus “free” refers primarily to “freedom to use

and modify”.

The list of open source libraries used in the AUV Workbench application is given

in Table 4.

S/N | Library Version | Description Library Files
Apache Ant 1.6.0 | Java-based build tool. ant.jar, optional.jar, xerceslmpl.jar,
xml-apis.jar
Apache SOAP 2.31 Base-64 encoding and soap.jar
decoding.
Apache Xerces 2.5.0 | XML parsing. xmlParserAPls.jar, xml-apis.jar,

xerceslmpl.jar

Apache Xalan 2.5.0 | XML transformation, xalan.jar

Batik

1.5.0

A Java based toolkit for apps
that want to use images in

batik-awt-util.jar, batik-bridge.jar,
batik-css.jar, batik-dom.jar, batik-

15

S/N | Library Version | Description Library Files

the SVG format for viewing, ext.jar, batik-gvt.jar, batik-
creation and manipulation. parser.jar, batik-script.jar, batik-
svg-dom.jar, batik-svggen.jar,
batik-swing.jar, batik-util.jar, batik-
xml.jar, js.jar

Extensible Java M8 Display of 3D VRML and X3D | aviatrix3d-all.jar, gnu-regexp-
3D models 1.0.8.jar, httpclient.jar, j3d-org-
images.jar, j3d-org.jar, Jama.jar,
js.jar, JXlnput.jar, uri.jar,
vlc_uri.jar, virmlI97 jar, xj3d-all.jar

Jivesoftware 1.2.1 XMPP communications. smack.jar, smackx.jar.

SMACK APIs

dis-java-vrml - Distributed Interactive dis-java-vrml.jar
Simulation.

Table 4. Open source libraries used in the development of AUV Workbench application.

F. PROGRAMMING LANGUAGE AND DEVELOPMENT ENVIRONMENT
The Java Programming Language by Sun Microsystems is the primary language
used for this thesis [JDK142]. With Java, numerous commercial and open-source tools,

notably Jakarta Apache at http://jakarta.apache.org (accessed February 2004) are

available.

The choice to use Borland’s JBuilder 7.0 Enterprise (NPS Education Edition) for
development of the AUV Workbench was largely based on the author’s familiarity with
Borland’s Integrated Development Development (IDE) from the use of Borland’s Object
Pascal, Delphi. The edition of Java used is Java 2 Standard Edition (J2SE) JDK1.4.2.
There is no dependency on any particular IDE for development of the NPS AUV
Workbench. The NetBeans and Eclipse IDEs are both open source and good no-cost

alternatives.

Most IDEs provide tools to easily design a user interface and automatically
generate the interface code. This comes at the expense of over-dependence on a
particular IDE and likely to pose problems when the user interface needs to be amended
on another IDE. Therefore the design and implementation of the AUV Workbench
graphical user interface is coded from scratch, instead of using JBuilder’s Graphical User

Interface (GUI) Designer.

16

The following sections provide a brief description on some of the IDEs currently
available, consisting of both commercial (e.g., Borland JBuilder) and open-source tools

such as NetBeans and Eclipse.

1. JBuilder

JBuilder uses one window to perform most of the development functions: editing,
visual designing, navigating, browsing, compiling, debugging, and other operations. This
window is called the AppBrowser, and it contains several panes for performing these
development functions. The tabbed panes that are available in the content pane depend on

what kind of file is selected in the project pane.

(D JBuilder 7 - C:/Project/darUUV/src/ mission/MissionPoint.java _ ol x|

File Edit Search “iew Project Run Team Wizards Tools Window Help

DE2Ea-BE ﬁ§|n o %‘MDIH_EXECUTION_C =% W Th E3-|@ [P | .=>|@
= darUUV.jpx %@ antvnd| %/ MissionCommand X & MiasionF’ointlﬂ& Missioriviswer |

4

darUUV.jpx * zet stand-off distance =
T =Project Source= * @param aDist numeric valus
i main *J
gmillssmn public void setStandoff (int aDist) {
R web _stand0ff = abDist;
' Mative Executable } // setftandOoff
[2) manifest rf f e ——_—————
/kk
=[] Imports B * get Value . . .
= @ MissionPaint * @param alMP Mission Point to be set
B MissionCommand */
% MissianPaint() public void setValue (MissionPoint aMP)
 MissionPoint(int index, Paint aPt, int depth, de pos = aMP.getDos () ;
® MissionPaint(Point aPf - _ ’ ’
¥ MissionPaint(Point aPt, String sType) _depth = aMP.getDepth () ;
- % compareTa(Object mo _speedPort = aMP.get8peedPort ()
- % draw(Graphics2D pArea, intviewporwidth, in _speedftarboard = aMP.getSpeeditarboard()
- % drawStandOffiGraphics 20 aArea, Paint aPt, i1 _course = aMP.gstCourse () ;
: getCoursed _flagThruster = aMP.getThruster () ;
\ gz}::‘nilztﬂjo _timeout = aMP.getTimeout () ;
% gelPos() [_rpm = aMFP.gstRpm () ;
- % gatRpm() _standoff = aMb.getitandoff () ;
- % petSpeedPort() _tvpe = aMP.getType i) ;
- % getSpeedStarhoard(y A/ setvalue
% getStandOf) 2 2
- % getThruster() e
- % getTimeout) o
% getTypeq * means to compare £ Mission Plans
- % gefCoursednt aCourse) *
% setDepthint aDep) * ([@param mp Mission Peint to be compare to
:setlndex(mtaldx) * @return 1 - not same coordinates
. ggigzximfsp’j&) * 0 - same coordinates _'_.I
- % getSpeedPor(nt aSpesd) 4 | L3
- % setdpeedStarhoard(int aSpeed) { [MissionFaint java [IEECEE [Insert
L U, i
| [o™ | s [Deson] Foor]] o]]

Figure 8. Borland JBuilder 7.0 application user interface running on Windows XP platform.

17

D JBuilder 7 - C:/Project/darUUV/src/ mission/MissionPoint.java - ol x|

File Edit Search “iew Project Run Team Wiizards Tools Window Help

D E@ET'%§|“ ~ B3 9&|MD\R,E><ECUT\0N,C vta‘,?m’ﬁ‘lgl‘;-‘@)vﬁv__:é.‘ﬁ.w _V|@

e darUUV jim - | x| annove| x| Missioncommand X/ MwssiDnF’oimt|ﬂ& Missionviewer |
(20 daruuw jpx * et stand-off distance =
-0 <Praject Sources * @param aDist numsric valus

W main */
-"ﬂm‘llsslon public void setftandOff (int aDist) {
@ web _stand0off = aDist;

Native Executable } 4/ setstandoff

i [5] manifestmf B et
e
= [gal mports = * =zet Value)))
= @ MissionFaint * @param aMP Mission Point to be set
% MissionCommand =/
 WissionPaintd public void setValue (MissionPoint aMP) {
$M\SsmnFmm(lmmnax,F—‘mmaPL int depth, dc pos = aMB. gatPos () ;

< MissionPaintPoint aPt

& MigsionPaint{Point aPt, String sType) _depth =4 missionMissionPoint
* compareTo(Object mp) _speedPort = all% ' =Tcna ()
% draw(Graphics2D gArea, int viewporiidth, in _=speeditarboard = a¥l S 5lorpoint
:gr:tgssargsgﬁ‘(sraphmsm gArea, Point aPt, it _;iu:;; . : aM 4 colorPointSelected
% getDentho i agfhruster - Al ¢ colorpointstart
* getindex) _timeout = 4l ¢ colorText
* getPos([_rpm = &M ¢ colorWatchRadius
“ getRpmg _standoff = aM & gompareTo (Object)
:giipzzs;ggnamo _t¥pe = aMl % graw (Graphics2D, int, int, int, int, dot
. getstpanuoﬁo } // setValue * drawStandOff (Graphics2D, Point, int)
© getThrusterg L — % equals (Object)
* getTimeoutg s .
* getTypeq * means to compare 2 Mission Plans
* setCoursedint aCourse) *
* setDepth(int aDep) * @param mp Mission Peoint to be compare to J
& setindex(int alcg * @return 1 - not same coordinates
< satPos(Paint aPy * 0 - zame coordinates
% setRpmiint aRpr =
% setSpeedPort(int aSpeed) 1 | LI_I
% setSpeedStarboardint aSpeed) .{ |MissionPaintjava [asni27 | [Insent
1| Mm’r"m“’n - _.I_I Source | Design | Bean %‘E‘ History
Luadmg and optimizing Codelnsight..

Figure 9. Codelnsight feature running in Borland JBuilder 7.0. This feature displays
context-sensitive pop-up windows to facilitate code completion.
2. Eclipse
Eclipse is an open-source software development project dedicated to providing a
robust, full-featured, commercial-quality, industry platform for the development of highly
integrated tools. It is composed of three projects, the Eclipse Project, the Eclipse Tools

Project and the Eclipse Technology Project (http://www.eclipse.org accessed January

2004.). It is composed of three subprojects: Platform, Java Development Tools (JDT),

and Plug-in Development Environment (PDE).

The Eclipse Tools Project provides a focal point for diverse tool builders to
ensure the creation of best of breed tools for the Eclipse Platform. The mission of Eclipse
Tools Project is to foster the creation of a wide variety of tools for the Eclipse Platform.
The Tools project provides single point of coordination for open-source tool developers
in order to minimize overlap and duplication, ensure maximum sharing and creation of
common components, and promote seamless interoperability between diverse types of

tools.

18

The Eclipse Platform is an open extensible IDE. The Eclipse Platform provides

building blocks and a foundation for constructing and running integrated software-

development tools. The Eclipse Platform allows tool builders to independently develop

tools that seamlessly integrate with other people's tools.

The Eclipse SDK (software developer kit) is the consolidation of the components

produced by the three Eclipse Project subprojects (Platform, JDT - Java development

tools, and PDE - Plug-in development environment) into a single download.

£ Java - SystemUtilX.java - Eclipse Platform o] x|
File Edit Source Refactor Mavigate Search Project Run Window Help
[S~vHalpvik~a~v|osdo~ | ®sB]s~vaiveavay
E “=. Navigator ¥ X || 4 ExampleFile... | J1TmageDispla... | J1SystemUtL]... » || 82 Qutline x
Byl =« | w4 * CDATR mayb_e]{ep‘F empty 1f the f;;e_.s;ze ;S__tD‘E 315 a o .\I.,}
ﬁ?ramE#Sam e - * a storage location, parse through list of URL 2F TAG URL 1~
gJ o E'I — * FTP GET is not implemented vet. n"ATI'ﬁ FILI.E
ol E-G= uti . .
- [@ AgentPayload.clz * fparam srcXml source XML file or string (o - F ATTR_FILE
[AgentPayload.jau * @param destFile destination output file, attr #F ATTR_CHE
-~ @ ExampleFileFilter * @param sTéqName tag name to be U§ed] - &F ATTR_CON
@ ExampleFileFilter * @param bFile true if read from file, otherwis SF ATTR CON
) i * @return list of destination filenames saved t 5F -
-~ 8 ImageDisplay.cla * @throws IOException XML exception error @ ATTR_DES
-] ImageDisplay.ja\ */ - o ATTR_TIMI

- [& ImageDisplay$1.
- ImageDisplay$2.

ImageDisplay$3.

-~ NumericInputHar

91 NumericInputHar

[l SplashScreen.cla
[SplashScreen.jav

SplashScreen$l.c

- SplashScreen$2.c

SplashScreen$3.¢

4]

boolean fUnZipit

String valFileName
String wvalDesc
String valTimeStamp

String valContentType

false; //

.
;

nw .
N

nw .

.

public static Arraylist decodeXMLToData(String s

String d

String s

boolean
false; //

o

4

- fF DEFAULT_
- @ % decodeXML

o ® decodeXML
- @ % decodeXML

o ® decodeXML
-5 decodeXML
- o 9 encodeDat:

o % encodeDati _
| >

B SystemUtil.class | 2 Probletm? Ll Ba vy x

-4 SystemUtil java jsl DESC"Dt!Oﬂ | RESOUFCE- : | In Folder : |

-8 SystemUtiI$1.cla The static field Node.CDATA_SECTION_NOD... SystemUtilX. java Sample/util

[SystemUtilX.clas:

)| Systemutilx.jafl;l
a | Ay —
Hierarchy \Navigator I Problems I Javadoc
|writable |Smart Insert 397 : 23

Figure 10.

19

platform.

Eclipse SDK 3.0 Stream Stable Build user interface running on Windows XP

¢ Java - SystemuUtilX.java - Eclipse Platform
File Edit Source Refactor Navigate Search Project Run Window Help

IS~Ha|vikvav|depoer|@vE]lorevravra

=lolx]

g 5. Navigator = | 41 ExampleFile... ‘ 4 ImageDispla... ‘ﬂSystemUtiI.j... m x || 82 Qutline %

=1 (= ettt ottt o e cru e ol ermsores] 2l me & o o[

@ util /%% # util 1=

E AgentPayload.class * read in XML data from a file = “z import declara
5 AgentPayload.java : ar:;c qe‘ar:}j,qfozf? particular tag & base64 deco ® SystemUtiX
ExampleFileFilter.class * ilafte.a,ﬂz Zés:' _t',c.m filename is specified, t - #F HTTPPOST.
41 ExampleFileFilter.java * | ame="hello.bmp"> - #F TAG_AGEN
ImageDisplay.class % #F TAG_AGEN |
3 ImageDisplay.java #F TAG_URL :
ImageDisplay$1.class pun v £ #F ATTR_FILE
ImageDisplay$2.class g e S #7 ATTR_FILE
ImageDisplay$3.class public static ArrayList decodeXMLFileToData (Stri -~ FF ATTR_CHE
NumericInputHandler.clas try { - &7 ATTR_CON
[#) NumericInputHandler.jave return decodexMLToData(srcxml, "", TAG AGENT - #F ATTR_CON

} F
SplashScreen._cIass catean (Exception ax) 1 rFF ATTR_DES
[@ SplashScreen.java R & ATTR_TIMI
SplashScreen$1.class zet o notifyAll() void - Object 4[[prints this throwable and its backtrace to the
SplashScreen$2.class BB orintStackTrace() void - Throwable standard error stream. This method prints a stack
SplashScreen$3.class © printStackTrace(PrintStream s) void - | trace for this Throwable object on the error output
SystemUtil.class m © printStackTrace(PrintWriter s) void - | Stream that is the value of the field System.err. The
19 SystemUtil java (o —" ' o setStackTrace(StackTraceElement[] ¢ | first line of output contains the result of the .
SystemuUtil§1.class Description ,, toString() String - Throwable toString() method ﬁ?r this object. Remaining lines
B SystemUtilX.class 4 The staticf o Waitt) wid = object represent data previously recorded.b){ the me?hod :
HEo » walt{|ong Fimeout) vold—Gbject ﬂIIInStackTrace(l). The forma_t of this |nforrnat|c_)n

4 SystemUtilX.java : : A - depends on the implementation, but the following
B SystemUtiIX.javan-il-v _lﬂ @ wait(long timeout, int nanos) void - C_| example may be regarded asitynical:
3 2 = java.lang.NullPointerException
Hierarch\-f|'I ig L3r| Probl ‘1 Sl | _’l_ ! ¢ & T

\Writable Smart Tnsert [186 : 10

Figure 11. CodeAssist feature running in Eclipse. This feature displays context-sensitive
pop-up windows to facilitate code completion.

3. NetBeans

The NetBeans platform is an application runtime - a "generic large desktop
application." NetBeans Integrated Development Environment (IDE) comprises the
platform and modules such as an editor, tools for working with source code (e.g., Java
and C++) and version control. The IDE has advanced syntax highlighting and an error
checking code editor that supports Java, C, C++, XML and HTML languages. Some of

the features of the platform are (http://www.netbeans.org accessed January 2004):

o User interface management - Windows, menus, toolbars and other
presentation components are provided by the Platform. Developers write
to a set of abstractions such actions and components, saving time and
producing cleaner, more bug-free code. Custom components and

behaviors can be written, but for most cases this is not needed.

o Data and presentation management - The NetBeans Platform contains a

rich toolset for presentating data to the user and manipulating that data.

20

o The Editor - Available as an extension to the Platform, applications built
on NetBeans can use the NetBeans Editor, a powerful and extensible

toolset for building custom editors.

o Setting management - The NetBeans Filesystems infrastructure abstracts
file-based data. Files may exist locally or remotely, on FTP or CVS
servers or in a database; access to them is transparent to module code that
works with files. The Platform can be extended to support new forms of

storage. Applications built on NetBeans are Internet-ready.

o The Wizard framework - a toolset for easily building extensible, user-

friendly Wizards to guide users through more complex tasks.

J Configuration management - Rather than tediously write code to access
remote data and manage and save user-configurable settings, etc., all of
this is handled by the Platform. Applications consist of the platform and

the logic code important to that application.

o Storage management - An abstraction of file-based data access. "Files" in
the NetBeans paradigm may be local files, or exist remotely, for example,
on an FTP server, CVS repository or in a database. Where this data is

stored is completely transparent to other modules that work with this data.

o Cross-platform - since the Platform is written entirely in the Java
language, applications based on it, by their very nature, will run on any

operating system with a Java 2 compatible (1.3 or greater) JVM.

The IDE has a dynamic code completion feature for the Java Editor that enables
you to type a few characters and then display a list of possible classes, methods,

variables, and so on that can be used to automatically complete the expression.

21

NetBeans IDE 3.4.1 - Project Default - Source Editor [ColorPicker] =13

file Edit View Froject Buld Debug Versionng Iools Window Help o

p=Bde|tupnoe apBenb| PHu
_sttng [[Gureong | st |

Explorer [Filesystems] = pp———— " @ 2 2 Boap @
@ Filesystems —
? = ClDocumerts and Setingsiclet Lnetbeanst3 disampledic }
9 A examples
® 2 _colorpicker /#* This pethod is called from within the constructor to
@ B ColorPicker .
4 o[RS initialize the foram.
& @ Filde + WARNING: Do NOT modify this code. The contemt of this method is
o @ construstors + aluays regenerated by the FormEditor.
& @ Methods -
B BeanPatiern private void initComponents(| (
ColorPreview sliderPanel = mew javax.swing.JPanel (] ;
o class ColorPreview redSlider = new javax.swing.JSlider():
ColorPreview greenslider = new javax.swing.JSLider():
ColorPreviewBeaniio blueSlider = mew javax.swing.dSlider():
colorPreviewPanel = new javex.swing.JPanel();
colorPrewviewl = mew exauples.colorpicker.ColorPreview() :
addWfindowlistener (new java.awt.event. Windowhdapter() {
= public void windowClosing|java. avt.event.WindovEvent evt) {
Jublic class ColorFicker extends javax.swing.Jrrame Catioonlcyl
¥
(3 Filesystems » Vs
sliderPanel.setLayout (new javax. swing.BoxLayout(sliderPanel, javex.swin
Name ColorPicker
Synchrorization Mode || Confirm &l Changes miBl R 021 §
redSlider.setBorder (new javax.swing.border.TitledBorder (new javax.swing.
Tene (et redSlider.addChangeListener (new jave.swing. event.ChangeListener() (
public void stateChanged {javax. swing.event. ChangeEvent evt| {
redSliderStateChanged [evt) ;
H
H:
sliderPanel.add (redSlider) ; ~
|_H [*]
20 |ms]
pepees [7o] o I

Figure 12. NetBeans IDE 3.5 user interface running on Windows XP Platform

NetBeans IDE 3 (=]

file Ecit View Project Build Debug Versioning Tooks Wdndaw Help o f B

nas@a|Xnende aa
oo [ousana oeuaana

Explorer Filesystems] 000 i
(@ Filesystems
@ 3 C'Documents and Settingsicle! netheans 3 Asampledic
@ & examples
@ A colorpicker
® B ColorPicker

‘ B intcompanents v‘ S 2 E By oo s
at g b 8 &

¥ java.lang.object il

public final native java.lang.Class getclass ()

@ o class ColorPicker elddeEimel.,

o B Fietis
Javadoc not found. Either Javadoc documentation
@ (# Constructors redilider.se) N
@3 Methods redSlider.se| for this item does not exist or you have not mounted g
© B BeanPatterns redslider. ad a filesystem that contains the source for this class
? ColarPreview ETEED The Javadoc documentation that is displayed in this -
O b class ColorPreview reds]

javacswing.JSlder *
o i ELTSUEA 1| AT S 51

¥ @ Class getClass()
@ Cbject getClisrtProperty(Chject key)

W] colarPreview
ColorPreviewBearinto

¢d sliderpanel,| @ ColorModsl getColarhiod=l)
¢ redSlider.ge| @ COMpenent getComponent(rt r)
redSlider.ge @ ComPonent getComponentat(nt x,irt y)
< = g
public class ColorPicker extends Javax swing JFrame greenslider. setMaximum|255) ;
(3 Filesystems = greenslider (mew javax.swing.border,TitledBorder (new javax. syl

greenSlider tener (new javax.swing.event.ChangeListener() {

BEERE public void stateChanged (javax.swing.event. ChangeEvent eve) {

greenSliderStateChanged (evt) ;

Excepions 3

Javadoc Comment This method is called from within the constructor o0 i B
o al

odifiers (e sliderPanel.add(greenslider);
Hame intCompanerts greenSlider ihleContext () i ("Green Slider"):
Parameters greenslider hleContext (1 iption(“Green slide
Return Type voidl

blueslider.setMaximm(255) ;
Dblueflider.setBorder (new javex.swing.border.TitledBorder (new javax.swin
hlueSlider. addChangelistener (new javax. swing. 1t . Chi List 8]

| Ve D
e s]
Properties - [E ColorPicker *

Figure 13. Code completion feature running in NetBeans IDE 3.5. This feature displays
context-sensitive pop-up windows to facilitate code completion.

22

G. NPS ARIES AUTONOMOUS UNDERWATER VEHICLES (AUYV)

1. Introduction

The Naval Postgraduate School Center for AUV Research has been building,
operating, and researching autonomous underwater vehicles (AUVs) since 1987. Each
new generation of vehicles have substantially increased operational capabilities and are
much more robust and sophisticated in terms of hardware and computer software. These
vehicles have also moved from operating in swimming pool environments to the open
ocean [Oceans 2000]. The latest NPS vehicle is named Acoustic Radio Interactive
Exploratory Server (ARIES). This vehicle is a student-research test bed for shallow-water
minefield-mapping missions, operating in the literal ocean. Currently the vehicle operates

regularly in Monterey Bay [Grunesien 2002].

2. Dimensions and Endurance

The vehicle weighs 225 Kg and measures approximately 3 m long wide and 0.25
m high. The hull is constructed of 6.35 mm thick type 6061 aluminum and forms the
main pressure vessel that house all electronics, computers and batteries. A flooded
fiberglass nose is used to house the external sensors, key-controlled power “on/off”
switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is
powered by six 12-volt rechargeable lead-acid batteries. Vehicle endurance is
approximately 4 hours at top speed, with 20 hours endurance under “hotel load” only.
The ARIES is primarily designed for shallow-water operations and can operate safely

down to depths of 30 meters [Oceans 2000].

3. Propulsion and Motion Control Systems

Main propulsion is achieved using twin 2 Hp electric drive thrusters located at
the stern. During normal submerged flight, heading and depth are controlled using upper
bow and stern rudders plus a set of bow planes and stern planes. Since the control fins are
ineffective during slow (or zero) forward-speed maneuvers, vertical and lateral cross-
body thrusters are used to control surge, sway, heave, pitch and yaw motions

[Oceans 2000].
23

4. Navigation Sensors

The sensor suite used for navigations includes a 1200 kHz Instruments (RDI)
Navigator Doppler Velocimeter Log (DVL) that also contains a TCM2 magnetic
compass. This instrument measures the vehicle ground speed, altitude, and magnetic
heading. Angular rates and accelerations are measured using a Systron Donner 3-axis
Motion pak IMU. While surfaced, Global Positioning System (GPS) inputs is provided
by a carrierphase differential GPS (DGPS CP) system, available during surfaced
operation to correct any navigational errors accumulated during the submerged phases of

a mission [Oceans 2000].

5. Sonar and Video Sensors

Tritech ST725 scanning sonar and an ST1000 profiling sonar is used for obstacle
avoidance and target acquisition/reacquisition. The sonar heads can scan continuously
through 360 degree of rotation or swept through a predefined angular sector. A fixed-
focus wide-angle video camera is located in the nose and is connected to a DVC recorder.
The computer is interfaced to the recorder that controls on/off and start/stop record
functions. While recording images, data for date, time, vehicle position, depth and

altitude is superimposed on the video image [Oceans 2000].

6. Vehicle/Operator Communications

Radio modems are used for high bandwidth command, control and system
monitoring while the vehicle is deployed and surfaced. While submerged, an acoustic
modem is used for low-bandwidth communications. In the laboratory environment, a 10
Mbps thin-wire Ethernet connection is used for software development and mission data

upload and download [Oceans 2000].

7. Computer Hardware Architecture

The dual-computer system unit measures approximately 28 x 20 x 20 cm. It
consists of two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM,
four serial ports, a network adapter and a 2.5 GB hard drive each. Two DC/DC voltage

24

converters for powering both computer systems and peripherals are integrated into the
computer package. The entire computer system draws a nominal 48 Watts. Both systems
use TCP/IP sockets over thinwire Ethernet for inter-processor communications as well as
connections to an external LAN. The sensor data-collection computer is designated
QNXT. The second is named QNXE and executes the various auto-pilots for servo-level

control [Oceans 2000].

8. Computer Software Architecture

The ARIES AUV uses a tri-level software architecture called the Rational
Behavior Model (RBM). RBM divides the responsibilities into areas of open-ended
strategic planning, soft-real-time tactical analysis and hard-real-time execution-level
control. The RBM architecture is modeled after a manned submarine operational
structure. The correspondence between the three levels and a submarine crew is shown

in Figure 14 below.

Figure 14.

. Manned
RBM Level Emphasis Siubmarine
: Mission Commanding
Strategic Logic Officer
. Officer of the
. Vehicle
T
actical Behaviors Deck/Watch
Officers
. Hardware Watch-
Execution Control standers

Relational Behavior Model tri-level architecture hierarchy with level emphasis

and submarine equivalent listed [Holden 1995].

This figure represents the tri-level software hierarchy with level emphasis and

submarine equivalent listed. The Execution Level assures the interface between hardware

and software. Its tasks are to maintain the physical and operational stability of the

vehicle, to control the individual devices and to provide data to the tactical level. These

tasks are currently performed by on-board host QNXS computer. The Tactical Level

25

provides a software level that interfaces with both the Execution Level and the Strategic
Level. Its chores are to give to the Strategic level indications of vehicle state, completed
tasks and execution level commands. The Tactical level selects the tasks needed to reach

the goal imposed by the Strategic level. It operates in terms of discrete events.

The Strategic Level controls the completion of the mission goals. The mission

specifications are inside this level.

H. RELATED RESEARCH

1. History and Contributors

The AUV Workbench is the result of the combined efforts of several past and
present NPS students and faculty. Adrien Gruneisen and Yann Henriet [Grunesien 2002]
developed the first version of the workbench based on the dissertation research of Don
Brutzman [Brutzman 1994]. It executes AUV missions while providing the user with a

“close-up” view of the vehicle so the vehicle dynamics can be observed.

Doug Horner added support for a non-validating XML-based mission script, an
obstacle avoidance algorithm, and support of mission planning using plain text format.
The original vehicle execution was re-written using Java network communications. Of
note, the XML-based mission script format has been superseded by the Hawkins and Van
Leuvan thesis effort in 2003 [Hawkins 2003] and the Ayala thesis on AUV Java
execution using Distributed Interactive Simulation (DIS) supersedes the older vehicle
execution [Ayala 2002]. The obstacle avoidance module does not compute the path
dynamically. It generates a path based on a list of known obstacles and the preloaded
AUV mission script. The initial efforts were to implement a simple standalone
application for pre-mission visualization and as a quick prototype for proof-of-concept.
Therefore there was no network connectivity (e.g., through IEEE Distributed Interactive

Simulation DIS protocol) and no collaboration tools were introduced.

26

L. SUMMARY

The NPS AUV Workbench integrates years of research work by students and
faculty. To take the AUV Workbench to the next step, it is necessary to streamline these
efforts and employ the best practices of software development. It is through such an
approach that important knowledge can be retained and continued research and

development can be promoted.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

III. AUV WORKBENCH

A. INTRODUCTION

The AUV Workbench is a common mission planning and analysis tool for AUVs.
It supports physics-based AUV modeling and visualization of vehicle behavior and
sensors in all mission phases: pre-mission, post-mission and ongoing mission
visualization. The AUV workbench consists of four main modules. These modules
communicate with each other either directly or over the network for required interaction.
The individual modules are responsible for four distinct functions: mission execution;
virtual world dynamics modeling and feedback; mission planning and generation; and
2D/3D mission visualization. This chapter provides details regarding the design and
implementation of the modules developed under this thesis, namely mission planning,
XML-based mission script and the general Workbench interface. The topics on mission
execution and virtual world modeling and feedback are also explained. Two supporting
modules are included to facilitate information exchange among human operators as well

as agents.

B. DESIGN RATIONALE

1. Graphical User Interface (GUI)

The Workbench user interface is divided into four distinct sections. Text or
XML-based mission scripts are loaded as part of the Mission panel, in the upper left
pane. Clicking on List and Text tabbed pages toggle between the various modes of
the mission script. The Mission Planner and three-dimensional visualization displays
provides the viewing panel on the upper right pane. The modules, Execution and
Dynamics, to model the robot and its virtual environment are found at the bottom of the
Workbench window. By default, the application toolbar is located on the right side. It
allows the addition of custom applications to be added and launched in a separate
process. Of note, the toolbar is both dock-able and float-able. The user can choose to

dock the toolbar on any side of the Workbench application, or keep it floating.

29

#. AUV Workbench - Mission Planning & Visualization
st [T | 00| |30 Dispay | 20 Mission viewr |

XI3D Viewer for X3D
./ open g Save I

B Wwission Script %
. Hover 1l
. Speed

Thruster
|
|

33
X3D File : AuvinBeachtanksNoExtern.wrl &
Application
S| NoReallime | Clear Save | Toolbar
AUV Execution Z Virtual World Dynamics
Execution Hydrodynamics
Figure 15. AUV Workbench application user interface.
User Interface
Event Application
Mission Planner | 3D Visualization Monitoring bP Modules
Toolbar
Agent
Application Interfaces APls / Libraries
XFSP Compression/Encoding Message
DIS Packaging &
Jabber Web Communications
Multicast XMPP HTTP/HTTPS Protocol
I 3
v
Execution |« » Dynamics

Figure 16. List of modules and libraries required to build the AUV Workbench application.

30

2. Project Structure

The AUV Workbench is Java-based and was implemented using a componentized
framework. The project structure is shown in Figure 17. At the top level, the core
directories are /bin, /lib, /execution, /dynamics, /Models, /Scripts, /dataweb and /dataim.
The Java packages and classes that make-up the Workbench are kept in /bin directory.
The list of required libraries such Apache Xerces for XML parsing are stored in //ib. The
robot control and virtual environment modules are found in /execution and /dynamics
respectively. To facilitate the user to get started quickly, sample models and mission
scripts are distributed in /Models and /Scripts directories. /dataweb and /dataim store

files that are used by the web server and Jabber instant messaging modules.

AUV Workbench
' } }

‘ /bin | f'executionl ‘ /Models ‘ /Script ‘ [fsre ‘

!

fmain "*l Nib ‘ ‘Idynamics‘ ‘;‘dataweb‘ ‘ /dataim ‘ "‘ /main

o .
/mission ‘ in I. [in ’- /mission

‘ out l‘* l out fim

fweb

iweb

[
i

futil futil

Figure 17. AUV Workbench project directory structure.

3. Source Code and Runtime Package Structure
The directories in Figure 18 illustrate the directory structure of the AUV

Workbench Java source and runtime packages.

AUVW
- - ‘ . .

‘ Imain ‘ ‘Imission ‘ ‘ fim ‘ ‘ hveb ‘ ‘ futil ‘

Figure 18. AUV Workbench application (AUVW) Java source and binary directory
structure.

31

This setup provides ease of development and subsequent maintenance of the
different modules. /main contains the source code of the main user interface and the 3D
visualization. It is responsible for the rendering of the entire user interface including the
placements of the user interfaces for the various modules. The two-dimensional mission
planner module is placed in /mission. Jabber instant messaging and web server modules

are placed in /im and /web respectively. Common utilities and procedures are kept in /util.

S/N | Name Description

1. main Main user interface and 3D Visualization module.

2. mission Two-dimensional mission planner module.

3. im Jabber Instant Messaging and XTC Event Monitor modules.
4. web Web server

5. util Common utilities.

Table 5. A summary of AUV Workbench packages.

AUVW

- - - - -
main mission im web util
4% ALY ‘ ‘ Migsion }1—4’{ MigsionPoint ‘ AgentConfig ‘ Aﬁ PostFanm ‘
4% Conflgspp ‘ ‘ Wi ssionDrawAres 4>{ MissionWaypaint IMCanfig ‘ 4% RequestHTTP ‘
Aﬁ AlUVWarkbenchConfig ‘ ‘ Missioniewer 4’{ MissionPosition Manitor ‘ ﬂ HandleRequest
4% AN ‘ ‘ MissionPointyiew AD{ MissionHover Ulsgent ‘ # HTTFSemver ‘
4% VrrmlLoader ‘ ‘ MiggionDizlog 4>{ Mis sioniait ‘ ExampleFileFilter
Aﬁ DynamicsExecutionThread 4’{ MissionSpeed ‘ MumericinputHandler
SplashScreen

Figure 19. Overview of AUV Workbench classes.

Systemtil

AgentPayload

SysternUtil=

Imagelisplay

v vy v v
v v v v

gy e B

‘ MissionThruster

32

rmain util
-2 AV o -3 Systernltil -
| | | i |
: Configh : : ' :
! /El\ or ! : AgentPayload :
| i | | A |
“--4 AUVWorkbenchConfig ! | — |
i ---- Systernl il !
M | |
E"" AN - Imagelisplay Lo
! Y
! wrrmlLoader ExampleFileFilter
:-—> DynamicsExecutionThread MurmericinputHandler
HaDLoader SplashScreen
Figure 20. “Main” module package. Figure 21. “Util” module package.
wieh im
PostFarm
- WatchEvent |< -4 Monitor
I 1
: 1 n
1 1
FequestHTTP _ s - _
4 : > AlertVisual AgentConfig
f:\ ! A
: > AertSound [— !
1
HandleFequest : IMConfig
A ©-> AlertURL [— oy
! i
1
HTTPServer Alert <! | UulAgent
Figure 22. “Web” module package. Figure 23. “Im” module package.

33

4.

mission

o MissionViewer

i s
)(’***{ MissionDrawiArea

R |

—{ MissionTrace
—{ MissionHelp
—{ MissionPause
—{ MissionGluit
‘ —{ MissionSpeed
‘ —{ MissionThruster r=--

MissioninputOneyiews: - i
—{ Missioniyait k" %—f MissionDialog

—{ MissionPoint wE---- { MissionFointvisw

| MizsionHaver }——{ MiszsionFosition
| Mission'vaypoint }74{ Targethine |

‘ MissionCommand

‘ MissionDepth }74{ MissionRealtime
‘M\sswunEnterTube }——{ MissionResetTime
‘M\ssinnFanwL\ght }——{ MissionRotate ‘
‘ MissionHeading }74{ MissionRudder
‘ MissionLateral }74{
‘ MissionMissionScript }——{
‘ MizsionPlanes }——{
‘ MissionFropeller }——{

‘ MissionListView %""""""; i

MizsionSanar

MissionListCellRenderer
MissionStandoff

MigsionT akeStation

MissionTimeStep

A

Figure 24. “Mission” module package.

Configuration File

Although the componentized framework works well for developers, day-to-day

users of the Workbench require something simpler so that they can make changes to the

system easily and move on to their actual work. Therefore an XML-based configuration

file has been introduced. This file is located in the same directory as the application

executeable. Adding a new tool is as simple as opening the configuration file,

AUVWorkbenchConfiguration.xml, adding a new entry under the Application stanza

section and re-starting the Workbench. Details on adding new tools to the application

toolbar will be discussed in a subsequent section.

<?xml version="1.0" encoding="UTF-8"?>

<l==

<head>
<meta
<meta
Naval
<meta
<meta
<meta

Us

<meta

name="filename" content="AUVWorkbenchConfiguration.xml" />
name="authors" content="Daryl Lee, Duane Davis, Don Brutzman,

Postgraduate School, Monterey, CA" />
name="created" content="15 February 2004" />
name="revised" content="15 February 2004" />

name="description"
content="This file contains the AUV Workbench configuration/>
name="url"

content="C:/auv/Workbench/Scripts/AuvCommandLanguage.xslt" />

<meta

name="document summary" content="A valid document will have a

34

AUVWorkBench command root element. A AUVWorkBench element can contain
General, 1 Execution, 1 Hydrodynamics 1 EventMonitor and 1
PluginManager"/>
</head>
-—>
<AUVWorkBench>
<General>
<Models>../Models/</Models>
<Scripts>../Scripts/</Scripts>
<Application name="Jabber" tooltip="Instant Messaging Client"
image="image/jabber.gif" show="true">
<Command>C:/Program Files/RhymBox/RhymBox.exe</Command>
<Command>D:/Program Files/RhymBox/RhymBox.exe</Command>
<Command>C:/Program Files/IM/RhymBox/RhymBox.exe</Command>
</Application>
<Application name="Browse" tooltip="Web Browser"
image="image/browser.gif" show="true" content-type="text/html">
<Command>C:/Program
Files/mozilla.org/Mozilla/mozilla.exe</Command>
<Command>D:/Program
Files/mozilla.org/Mozilla/mozilla.exe</Command>
<Command>C:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
<Command>D:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
</Application>
<Application name="X3D-Edit" tooltip="X3D Editor"
image="image/x3d.gif" show="true" content-type="model/x3d">
<Command>C: /www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit.bat</Command>
<Command>D: /www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit.bat</Command>
<Command>C: /www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit-English.bat</Command>
</Application>
<Application name="JEdit" tooltip="JEdit"
image="image/jedit.gif" show="true" content-type="text/x-java">
<Command>C:/Program Files/jEdit 4.1/jedit.exe</Command>
<Command>D:/Program Files/jEdit 4.1/jedit.exe</Command>
</Application>
<Application name="ADS" tooltip="AUV Data Server"
image="image/3cubes.gif" show="true">
<Command>C:/auv/ADS/AuvDataServer.bat</Command>
<Command>D:/auv/ADS/AuvDataServer.bat</Command>
</Application>
<Application name="NotePad" tooltip="Windows Notepad"
image="image/note.gif" show="false" content-type="text/plain,
text/xml">
<Command>C:/windows/NOTEPAD.EXE</Command>
</Application>
<Application name="Picture" tooltip="Windows Fax and Viewer"
image="image/graphics.gif" show="false" content-type="image/bmp,
image/gif">
<Command>C:/windows/System32/mspaint.exe</Command>
<Command>D: /windows/System32/mspaint .exe</Command>
</Application>

35

<Application name="SVGVRML" tooltip="Display VRML and SVG"
image="image/SVG.gif" show="false" content-type="model/vrml,
image/svg+xml">
<Command>C:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
<Command>D:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>

</Application>

<Webserver docroot="../dataweb/" port="80" autostart="false"
upload="../dataweb/in/" />

<Jabber dirIn="../dataim/in/" dirOut="../dataim/out/"

domain="surfaris.cs.nps.navy.mil" port="5222" username="lee"
nickname="WorkBenchDaryl" resource="Work"
jid="savage@conference.xchat.movesinstitute.org"/>
</General>
<Execution>
<ExecutionJava>../Java
execution/classes/Execution</ExecutionJava>
<ExecutionC>../execution/execution.exe</ExecutionC>
</Execution>
<Hydrodynamics>
<Dynamics>../dynamics/classes/dynamics</Dynamics>
<AUV number="1" multicastGroup="224.2.181.145"
multicastPort="62040" ttl="15" applicationID="0" siteID="0"
entityID="1" desc="AUV in Beach Tank 1" />
<AUV number="2" multicastGroup="224.2.181.145"
multicastPort="62040" ttl="15" applicationID="0" siteID="0"
entityID="2" desc="AUV in Beach Tank 2" />
<AUV number="3" multicastGroup="224.2.181.145"
multicastPort="62040" ttl="15" applicationID="1" siteID="1"
entityID="36" desc="AUV in Beach Tank 3" />

</Hydrodynamics>
<EventMonitor>
<MonitorDefault keywordSubject="mine " keywordBody="nice, mine">
<WatchEvent expr="".* (?1)MINE[s|S]? .*[(]1{1,2} (\d*), [
110,23 (\d*), [1{0,2} (\d*) [).]2+">

<Alert type="visual" src="image/mine.gif"/>
<Alert type="sound" src="sound/alert.wav"/>
<Alert type="url" src="C:/auv/Workbench/doc/index.htm" />
</WatchEvent>
<WatchEvent expr="".*(?1)SHIP[s|S]? .*[(I1{1,2}(\d*), [
1{0,2} (\d*), [1{0,2} (\d*) [).]12+">
<Alert type="visual" src="image/ship.gif"/>

</WatchEvent>
<WatchEvent expr="".*(?1)LOCATION[s|S]? .*[(]1{1,2}(\d*), [
1{0,2} (\d*), [1{0,2}(\d*)[).1?+" alert=""/>
</MonitorDefault>
<Monitor jid="savagelconference.xchat.movesinstitute.org"
desc="" datetimeStart="" dateTimeEnd="" keywordSubject=" location"/>
<Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc=""
datetimeStart="" datetimeEnd=""/>
</EventMonitor>
</AUVWorkBench>

Figure 25. Sample AUV Workbench configuration file.

36

S/N | Name Type Description

1. | AUVWorkBench Element | Root.

2. General Element | Application configurations.

3. | Models Element | Directory location of 3D models.

4. | Scripts Element | Directory location of mission scripts.

5. | Execution Element | Not used.

6. | Executiondava Attribute | Location of Java class for execution application.
7. | ExecutionC Attribute | Location of C program for execution application.
8. | Hydrodynamics Element | Not used.

9. | AUV Element | Not used.

10. | multicastGroup Attribute | Multicast address. Not used.

11. | multicastPort Attribute | Multicast port no. Not used.

12. | ttl Attribute | Multicast packet time-to-live. Not used.

13. | applicationID Attribute | DIS packet application ID. Not used.

14. | sitelD Attribute | DIS packet site ID. Not used.

15. | entitylD Attribute | DIS packet entity ID. Not used.

16. | desc Attribute | Description. Not used.

Table 6. XML tagset to define the AUV Workbench configuration.

5. ANT - JAVA-based Build Tool

Ant is a Java-based build tool. In theory, it is kind of like Make, without Make's
wrinkles and with the full portability of pure Java code. According to Ant's original
author, James Duncan Davidson, the name is an acronym for "Another Neat Tool". Ant
builds projects specified by an XML build file. The Build file defines Build targets and
Build tasks. For example, a build file might contain separate targets for building a
project and generating Javadoc. The individual targets or the default target for the project

can be executed using the Ant build file (http://ant.apache.org accessed January 2004).

The build.xml for AUV Workbench is given in Figure 26.

<?xml version="1.0" encoding="UTF-8" 2>

<!-- ANT Build Script for the AUV Workbench Project -->
<project name="AUVWorkbench" default="bin" basedir=".">

<I—— ###f#4####### Project Standard Properties ########### ——>

37

<property name="project.name" value="AUVWorkbench" />
<property name="project.version" value="0.1" />

<!-- Java source and package directory -->

<property name="src.dir" value="${basedir}/src" />
<property name="src.main.dir" value="${src.dir}/main" />
<property name="src.mission.dir" value="${src.dir}/mission" />
<property name="src.im.dir" value="${src.dir}/im" />
<property name="src.web.dir" value="${src.dir}/web" />
<property name="src.util.dir" value="${src.dir}/util" />

<!-- Library dependencies -->

<property name="lib.dir" value="${basedir}/1ib" />

<!-- Java compiled and package directory -->

<property name="build.dir" value="${basedir}/bin" />
<property name="build.main.dir" value="${build.dir}/main" />
<property name="build.mission.dir" value="${build.dir}/mission" />
<property name="build.im.dir" value="${build.dir}/im" />
<property name="build.web.dir" value="${build.dir}/web" />
<property name="build.util.dir" value="${build.dir}/util"™ />
<property name="build.image.dir" value="${build.dir}/image" />
<!-- distribution directory is the same as bin for the moment -->
<property name="dist.dir" value="${basedir}/bin" />

<property name="dist.jar.file"
value="${dist.dir}/${project.name}-${project.version}.jar" />
<property name="manifest.file"
value="S${build.dir}/META-INF/manifest.mf" />

<!-- Java documentation directory -->
<property name="javadocs.dir" value="${basedir}/javadocs" />
<!-- Javadocs ZIP file -->

<property name="javadocs.file"
value="${dist.dir}/${project.name}-${project.version}-javadocs.zip"

<!-- include dependent libraries to classpath -->
<path id="build.classpath">
<fileset dir="${lib.dir}">
<include name="*.jar" />
<include name="*.zip" />
</fileset>
</path>
<!—— #####HHEHHEHHEAHEHS Project Build ##########H4#44##4#4 ——>
<!—— H###fHH4HHHEHH#AEE "clean" command ###HHFHFEEHFESEEESE >

<!-- Clean-up existing files and directories -->
<target name="clean">
<!-- remove compiled packages -->

<delete dir="${build.main.dir}" />
<delete dir="${build.mission.dir}" />
<delete dir="${build.im.dir}" />
<delete dir="S${build.web.dir}" />
<delete dir="S${build.util.dir}" />

/>

38

<!-- remove JAR file -->
<delete file="${dist.jar.file}" />

<!-- remove JavaDocs -->
<delete dir="${javadocs.dir}" />
</target>

<V—— $##HfHHHEHHHERHEE "prepare" command ####EHFFEHFFEREFE ——>

<!-- Create the destination directories -->
<target name="prepare" depends="clean">
<!-- create packages directory -->

<mkdir dir="${build.main.dir}" />

<mkdir dir="${build.mission.dir}" />

<mkdir dir="${build.im.dir}" />

<mkdir dir="${build.web.dir}" />

<mkdir dir="${build.util.dir}" />

<mkdir dir="${javadocs.dir}" />
</target>

<!—— #H##4##f44 4t E#H## "command" command ###EH#FHSEHFHREEE ——>
<target name="compile" depends="prepare"
description="compile all the source codes">
<javac srcdir="${basedir}/src"
destdir="S${build.dir}" deprecation="true">
<classpath refid="build.classpath" />
</javac>
</target>

<!—— #4###H#EHFHE "dist" command to generate JAR #########F ——>
<target name="dist" depends="compile">
<jar jarfile="${dist.jar.file}"
basedir="S${build.dir}" manifest="${manifest.file}">
</Jjar>

</target>

<!—— H###fHHH4HHEEAH#EE "Javadoc" command ##H##FHFHEHFESEEESE ——>
<target name="javadoc" depends="compile">
<javadoc destdir="${javadocs.dir}"
windowtitle="${project.name}
Class Library (version ${project.version})"
overview="${basedir}/src/overview.htm">
<classpath refid="build.classpath" />
<packageset dir="S${src.dir}" defaultexcludes="yes">
</packageset>
</javadoc>

<!-- create a zip file for the javadocs in
distribution directory -->
<zip zipfile="${javadocs.file}">
<zipfileset dir="${javadocs.dir}"
prefix="${project.name}-${project.version}-javadocs"
</zip>
</target>

<!—— #e###dHHFEHEFESEFEE "all" command ###EHFFEHEFEREFERES ——>
<target name="all"

/>

39

</target
</project>

depends="dist, javadoc"

description="Compiles the source, builds the jar files,
generates the Javadoc HTML pages and creates
distribution files (.zip) .">

>

Figure 26. AUV Workbench ANT build.xml used to compile and build the application.

Here is a detailed examination of the build.xml file to explain what it does:

project: includes a project name, the default target to run if none of the
other individual targets are run, and the location of the base directory

(/bin).

properties: Ant targets and tasks are typically “property-aware”.
Properties are also used to pass parameters to tasks without overriding the
existing properties in the build file. To get the value of a property, use

“${<property name>)}” syntax.
clean target: deletes existing compiled packages’ directories and the
project JAR file.

prepare target: creates the package directories for the compiled classes.

compile target: initiates the clean target first (using the depends keyword),
which in turn initiates clean target, then compiles the Java source files and

puts the generated .class files in the build directory.

dist target: initiates the compile target first and creates a JAR file in that
directory.

Jjavadoc target: creates the JavaDoc for the project and also generate a

compressed copy of the Java documentations.
zip target: Compress all the project dependencies into a single ZIP file.
all target: initiates dist, javadoc and zip targets.

To activate the individual targets, use “ant <target name>"; e.g., “ant
compile”. By default, Ant looks for “build.xml”. To specify a different

Build file name, use “ant —buildfile <Build filename> <target name>"
40

Buildfile:

clean:
[delete]
[delete]
[delete]
[delete]
[delete]
[delete]
[delete]
prepare:
[mkdir]

Deleting directory
Deleting directory
Deleting directory
Deleting directory
Deleting directory

JAVA HOME=C:\Application\ j2sdkl.4.2
ANT HOME=C:\apache-ant-1.6.0
build.xml

:\Project\darUUV-ant\bin\main
:\Project\darUUV-ant\bin\mission
:\Project\darUUV-ant\bin\im
:\Project\darUUV-ant\bin\web
:\Project\darUUV-ant\bin\util

ONONONQ!

@!

Deleting: C:\Project\darUUV-ant\bin\AUVWorkbench-0.1.jar
Deleting directory C:\Project\darUUV-ant\javadocs

Created dir:
Created dir:
Created dir:
Created dir:
Created dir:
Created dir:

Compiling 44

Building jar:

BUILD SUCCESSFUL
Total time:

12 seconds

:\Project\darUUV-ant\bin\main
:\Project\darUUV-ant\bin\mission
:\Project\darUUV-ant\bin\im
:\Project\darUUV-ant\bin\web
:\Project\darUUV-ant\bin\util
:\Project\darUUV-ant\javadocs

OHONONONONQ!

source files to C:\Project\darUUV-ant\bin

C:\Project\darUUV-ant\bin\AUVWorkbench-

Figure 27. Output from “ant dist” command running the AUV Workbench “build.xml” file.

C. MISSION PLANNING

1.

Overview

The AUV Workbench supports both a simple, text-based mission script as well as

the use of XML-based mission scripts. This section presents the details of the XML-

based mission script and the tools to author them.

2.

AUV XML-based Mission Control Script
The XML AUV command language is defined using XML schema

[Hawkins 2003]. In general the command language enables the explicit declaration of an

entire mission using execution-level commands, the ad-hoc definition of a mission by

providing individual commands asynchronously (in the form of individual single

command element documents), mission data archiving (telemetry, control orders, sonar

41

data, derived sensor-based data, etc.), and communication between various levels of the

control architecture (execution, tactical, strategic levels) or between multiple autonomous

vehicles, software agents, or human controllers. This mission control language is a

subject of ongoing research and is likely to change significantly in the next version.

A valid document will have a missiondata, mission, report or individual

command root element. A missiondata element can contain up to one mission element

and an arbitrary sequence of individual command, report, telemetry, control order and

sonar data elements. A mission element will contain one or more command elements in

any order.

a.

“MissionData” Element

Autonomous vehicle relevant info: mission commands, control orders,

telemetry, sonar results, and/or reports to and from internal or external entities (other

vehicles, agents, or human controllers).

S/N | Name Description Format Default | Required
1. UnitsOfMeasure Units of measure XML element. -
selections for
application scaling as
required.
2. vehicleName Name of vehicle. VehicleTypes = {“aries”, aries N
“remus”, “phoenix”, “Los
Angeles SSN”, “SDV-97}
Enumerated list of
potential vehicle types for
use with this schema.
3. date Date and time of | “dd MMM yyyy hh:imm:ss” | - N
mission. format; e.g., “15 January
2004 12:59:59”
Table 7. XML Elements and attributes of MissionData element.
b. "UnitsOfMeasure”Element
S/N | Name Description Type Default Required
1. distance Units of measurement | DistanceMeasures = meters N

for distance.

{“feet’, “meters”,
“kilometers”, “miles”}
Enumerated list of possible
distance measurement

units.

42

2. angle Units of measurement | AngleMeasures = degrees N

for angle. {“radians”, “degrees”,
“rads”}

Enumerated list of possible
angular measurement
units.

Table 8. XML Elements and attributes of UnitsOfMeasure element.

c. “Mission” Element
Mission 1s an ordered set of command elements comprising a vehicle
mission. The list of ARIES AUV-specific Execution-level command elements are given

in Appendix B.

<?xml version="1.0" encoding="utf-8"?>
<MissionData vehicleName="aries" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:noNamespaceSchemalLocation="C:\auv\Workbench\Scripts\auvCommandLanguage-
xfsp.xsd">
<Mission>
<Position x="12" y="55" depth="5"/>
<Standoff range="3.0"/>
<Thrusters on="false"/>
<Waypoint x="120" y="55" z="15"/>
<Waypoint x="120" y="65" z="15"/>
<Hover x="12" y="65" heading="270"/>
<Thrusters on="false"/>
<Waypoint x="12" y="55" z="5"/>
<Waypoint x="120" y="55" z="15"/>
<Waypoint x="12" y="55" z="5"/>
<Hover/>
<Wait time="10"/>
<Depth value="0"/>
<Wait time="50"/>
<Thrusters on="false"/>
<Quit/>
</Mission>
</MissionData>

Figure 28. A sample XML-based mission script [after Hawkins 2002].

3. Mission Script Authoring Tools

The two-dimensional Mission Planner module provides the means to graphically
and intuitively display and author the XML-based AUV mission scripts. The user is
presented with a two-dimensional planar view of the mission. This module has a mission
canvas whereby a user can easily manipulate positional information pertaining to the

script. Extra effort was made to ensure that it is context-sensitive and is at the same time

43

as intuitive as possible. For example, adding or deleting a waypoint is a simple right

mouse click, double clicking on a point displays the attributes associated to it. Each

mission command has its own set of attributes and its respective user interfaces to

manipulate them.

Additionally, mission points can be edited manually or adjusted by using the drag

feature. Minor, but useful features such as snapping to the grid display were added too.

[List [Text | XML |

& Open g Saue

Position

Waypaoint

Waypaoint

Waynaint

Hover

Speed

Thruster

Waypaoint

| 3D Display | 2D Mission Viewer |

(3) 40 4047 30,40 () 160,40 . 09)240,40

[z20nz0 153100,13

(=)

(1320220 (6)100,24007) 160,220 l___f1 0y 240,220

Figure 29. XML-based mission script display and 2D Mission Planner. The mission
commands are displayed as a list on the left and the positional data are displayed

graphically on the right.

44

r 3D Display r 2D Mission Viewer |

() 40L4%) 80,40 (@ 160,40 (5) 240,40

(2320120 (53 100,13

[m=]

Addd Waypoint

Add Insertion Paint
Bounding Box
Clear

(1) 20,220 (&) 1002307 161 ¥ Show Grid Lines
0l THY, 2 g L

¥ Show Text Labels

[0 Show Watch Radius

¥ Snap to Grid

Figure 30. Right-click popup menu for the 2D Mission Planner. The popup menu provides
the user with additional functionalities (e.g., add a “Waypoint™).

S/N | Name Description
1. | Add Waypoint Add a new waypoint.
2. | Add Insertion Point Add or update start or insertion point.
3. | Bounding Box Defines a rectangular area of interest
4. | Clear Clear the mission script.
5. | Show Grid Lines Display grid lines (25 pixels apart).
6. | Show Text Labels Display the text labels associated to each point.
7. | Show Watch Radius Display the watch area circle around each point.
8. | Snap to Grid Position or align to the grid lines.
9. | Background Color Set the background color.

Table 9. Details of mouse right-click popup menu items.

45

N |
2D Mission Viewer |

(112,58 (2195 55

BT T270 | S (1312272

#1B0,101

Edit
Delete AltFR

Figure 31. Select a point and right-click to either “Edit” or “Delete” a waypoint.

- Mission Point x|
Tywe: [pover ~1
Position X: (200 100 m
Depth: |15

m
Speed {Port/Starboard): ’7 ’:
Course: ’2?’07 degrees
Prapeller Speed: ’7 rpm
Timeout: ’7 seconds
Standoffdistt [| m

Thrusters: [On

Obtain GPS fix:] True

| Cancel || Set Values |

Figure 32. Mission Command Editor showing the Waypoint information.

+*. Mission THRUSTER C¢ x|

Value: [¥] On

| Cancel || Set Values |

Figure 33. Mission Command Editor showing the Thruster information.

A two-dimensional viewer was developed to facilitate mission generation since it
is easier for a user to manipulate in 2D space than 3D space. Depth information can be
displayed alongside each 2D point or through the use of color coding. While the AUV
mission script has a rich set of commands including non-positional ones, only mission
commands that contain positional information are graphically displayed since they
contain x-y coordinates. To address this deficiency, an XML-based Mission List module
was developed to run alongside the 2D Mission Planner. The Mission List module is

46

essentially a list of all mission commands in the current script. The two graphical views
are currently linked dynamically with changes made on either side automatically

reflected on the other.

List [Text [xmL |

& Open gj Save

. Pasition

Add Waypoint
Add Thruster
Add Wait
Add Speed
Delete

Thruster

Figure 34. Right-click popup menu on the Mission List display.

D. EXECUTION AND DYNAMICS PROCESSES

1. Execution

The mission execution module uses the same software that is on board the actual
AUV. Utilization of the actual AUV software facilitates the development of control
equations and algorithms, and enables the realistic rehearsal and fine-tuning of missions
in a benign lab environment prior to attempting their execution in open water. By
querying the mathematical model of the virtual world for telemetry data rather than
onboard sensors, the AUV software can create for itself the illusion that it is operating in

the water and the software will behave accordingly.

The AUV Workbench currently has two versions of the AUV execution software.
The primary differences are the implementation programming language (compiled C
code and Java) and useable command language options. The Java version supports both
simple textual and XML-based mission scripts [Ayala 2002], whereas the compiled C
version only supports text-based scripts. The former is preferred due to its support for
XML-based mission scripts. XML helps to remove any ambiguity in the names of the

commands and provides error-checking through validation.

47

The vehicle behavior can be adapted to other vehicles by adjusting the control
constants and by adding, deleting or changing control equations. The control algorithms
can be tested and visualized with various mission scripts, against known hydrodynamics
models. Any effort to provide precision control for an AUV requires an accurate
estimation of both the vehicle’s physical and hydrodynamic parameters. Here a vehicle
model for controlled steering behaviors was developed and the hydrodynamic parameters

were calculated from actual data obtained from operations. [Johnson 2001]

2. Dynamics

The virtual world dynamics thread implements the AUV hydrodynamics
mathematical model. When passed a telemetry string from the AUV execution thread, the
model is applied, and then a follow-on telemetry string is generated to pass back to the
AUYV. Additionally, a Distributed Interactive Simulation (DIS) packet is broadcast over
the network to drive the visualization thread of the workbench (as well as any other DIS-
enabled visualization application that may be on the network). In addition to
hydrodynamics modeling, the dynamics thread contains classes that are utilized to model
the vehicle’s onboard sensors. Sonar data (or that from any other onboard sensor) can
therefore be derived and encapsulated within the telemetry string and DIS packets to
allow for realistic feedback to the AUV execution software, and accurate mission
visualization by the human operator. As with the execution software, the hydrodynamics
mathematical model and sensor models currently in use were developed to model the
vehicles operated by NPS, but can be arbitrarily adapted to other vehicles simply by

modifying the control constants.

The effects of the surrounding environment on a robot vehicle are unique to
underwater domain. Understanding these forces is a key requirement in the development
and control of the vehicle behavior. The dynamics program Java source code is designed
to substitute for the natural environment effects on the AUV. It also provides an estimate
of the AUV behavior in the water by performing a series of calculations using physical
laws. By communicating with the execution code via a network socket, the telemetry data
or state variables of the vehicle are collected. Dynamics apply several equations of

motions, forces, and accelerations to the hydrodynamics model and the data received
48

from the execution code. The data produced by dynamics is then sent back to execution,
where it is analyzed and appropriate action commands are then given to the respective
actuators based on that data. This is a important and difficult part in the real-time

simulation in a virtual world [Ayala 2002].

The 3D visualization algorithms in the dynamics code allow the update of 3D
scenes developed using X3D-Edit. These scenes are viewed through an Internet browser

using a plug-in VRML viewer.

E. 3D VISUALIZATION

1. Design and Implementation

The visualization portion of the workbench contains a 3D viewer that utilized
X3D or VRML models of the AUV and its virtual environment. The 3D viewer is
developed using an open-source 3D library, Xj3D. By reading and interpreting the
incoming DIS packets from network, the viewer automatically animates the vehicle.
Through the 3D display, the user is provided with visual feedback on control settings,

sensor effectiveness and utilization.

2. User Interface
The 3D display module is located in the upper right pane of the application

window. It is on the tabbed page component alongside the 2D mission viewer module.

49

3D Display

XjJD Viewer for 3D

&[] @ & |£>] ¢ |towarcsote -[>|#|

<] Open X3D Hle : AwvvinBeachtanksNoExtern.wrl

Figure 35. 3D Visualization Display displaying AUVInBeachTank scene.

F. WEB SERVER

1. Design and Implementation

In a collaborative environment, there is always a need to share information. For
example, data such as current position and list of obstacles encountered can be published
and easily accessible to both human operators and other planners who may or may not be
using the Workbench. Dissemination of information via web server is well tested and has
proven to be a stable and efficient solution. One possible way to web-enable the
Workbench is to deploy a full-fledged open-source web server such as Apache Tomcat,
but this approach introduces additional deployment, administrative and maintenance
issues. Therefore a scaled down but fully functional multi-threaded web server has been
incorporated as a module in the AUV Workbench. This allows publishing of information
directly from the Workbench. At the same time, the web server is able to process
uploaded files via HTTP POST. Through the use of HTTP GET and HTTP POST, it is
possible to incorporate message and file sharing capability via HTTP into the
Workbench. It has been proposed that the HTTP file transfer mechanism be used for
“mirroring” of mission data between individual Workbench applications and a central

archival server.

50

S/N | Directory name Description

1. dataweb Default location.
2. dataweb/in Location to store incoming data via HTTP POST.
dataweb/results Location to store XSBC generated AUV mission

telemetry data.

Table 10. Sample web server directory structure.

The web server settings are stored in the XML-based configuration:

<Webserver docroot="../defaultroot/" port="80"
autostart="true" upload="../defaultroot/data/"/>

Figure 36. Web server settings in XML configuration file.

S/N | Name Type Description
1. Webserver Element | Web server parameters.
2. | docroot Attribute | Web server default directory.
3. Port Attribute | Web server port no.
4. | autostart Attribute | Auto-start web server upon application startup?
5. | Upload Attribute | Location to store uploaded files.

Table 11. XML tagset defining the web server configuration.

2. User Interface

The web server module is located on the lower pane of the Workbench
application, on the Web Server tabbed page. A set of default values, such as document
default directory and port number, are given. Simply clicking on the Start button invokes
the web server. To test whether the web server is working, open a hyperlink to the host

or machine that the AUV Workbench application is running on, using an Internet

browser; e.g., http://localhost:80/index.htm.

51

 Execution & Dynamics | Options | Web Server |

Document Root: |..Idatawebr |

Port No.: 50 @)

Upload Directory: |..Idataweb1’ini

Start

[C] Auto-start

Figure 37. Web server module user interface.

S/N | Component Description

1. Document Root Web server default directory.

2. Port No. Web server port number; e.g., 8080

3. Upload directory Location to store uploaded files.

4. “Auto-start” checkbox | Automatically start the web server upon application start-up?
5. “Start” button Start or stop the web server

Table 12. Details of web server user interface.

G. JABBER INSTANT MESSAGING

1. Design and Implementation

To facilitate near-realtime communications, a customized Java-based Jabber
client is incorporated into the Workbench. The customized client is able to handle simple
plain-text messages and binary file data (e.g., images and XML-based mission script).
The XTC Monitor module is built on top of the customized Jabber client. An open-source
Jabber library, JiveSoftware Smack library is used [JiveSoftware 2003]. Section H covers
the XTC Monitor in a greater depth. Worth noting is that the customized Jabber module
is introduced for XTC Event Monitoring and packaging of a binary file. It is not to
replicate the simple human-to-human text messaging capability found in standard Jabber

clients.

S/N | Directory name | Description

1. dataim/in Directory location to store incoming decoded XHTML binary data.

2. dataim/out Directory location to store outgoing binary file data.

Table 13. Workbench instant messaging directory structure.

The Jabber settings are stored in the XML-based configuration:

<Jabber dirIn="../dataim/" domain="surfaris.cs.nps.navy.mil"
port="5222" username="lee" nickname="XJava" resource="Work"
jid="savage@conference.xchat.movesinstitute.org"/>

Figure 38. Jabber settings defined in the AUV Workbench configuration file
52

S/N | Name Type Description
1. | Jabber Element | Web server parameters.
2 dirln Attribute | Directory location to store incoming decoded XHTML
binary data.
3. | dirOut Attribute | Directory location to store outgoing binary file data.
3. | domain Attribute | Jabber host.
4. port Attribute | Jabber port number.
5. | username Attribute | Login user name
6. | nickname Attribute | Nickname.
7. | resource Attribute | Resource.
8. |jid Attribute | JID or chat-room to listen to upon login.
Table 14. XML tagset specifying the Jabber configurations.
2. User Interface

This module is located on the lower pane of the Workbench application, on the

XTC Monitor tabbed page. The application reads in the Jabber settings under the Jabber

stanza of the configuration file (Figure 25). This set of values is populated in the edit-

boxes within the Settings tabbed page (Figure 39). Once the password is set, clicking on

Connect button establishes a session with the Jabber server specified in the domain edit-

box. At the same time, the client will start to listen for messages in the chat room

(specified in Chatroom edit-box).

53

., AUV Workbench - Mission Planning & Visualization
ﬁ ; & o Q < | 30 Display | 2D MissionViewer | -
=] Bh ave 3
J] ¥j3D Viewer for X30 ﬁ
Text | List | g About
o _ 3 Open
Mission Editor 2
Snap
(A ,)
Jabber
f Execution & Dynamics r/ ptions r/Weh Server r/XFSP File Transfer r Event Monitor | Browse
f Setting r Incoming Messages r Send Message r Event Criteria | “
K3ID-Edit
Name: |Iee |
=
Domain: |surTar|a £5.nps. nawy mil | JS‘
NickName: |WnrkElenchDaryl | JEdit
Resource: |Wnrk | Ea
Port na.: 5272 ;
ADS
Password: | | Connect
Chatroom: |savage@cnnference xchat rmovesinstitute org |
SKipfirst N 20 |
Incoming data directory: | Idatairniing |
Outgoing data directon: | Idatairnfouty |

Figure 39. User interface to configure instant messaging (IM) settings.

S/N | Component Description

1. Name User log on name

2. Domain Hostname of Jabber server.

3. Resource User profile.

4. Port no. Port number to be used.

5. Password User log on password.

6. Chat room Chat room to listen to upon log on.

7. Skip first N messages Upon establishing a session, the Jabber server echos the
entire list of messages in that chat room. This setting allows
the customized client to skip some of the old messages.

Incoming data directory | Location to store decoded binary data.
Outgoing data directory | Location to store binary data to be packaged and sent out.

Table 15. Details of customized Jabber user interface.

H. XTC EVENT MONITOR
1. Design and Implementation
The XTC Event Monitor module is comprised of three sub-modules. /MSend and

IMReceive are the two basic ones used for instant messaging. IMSend is responsible for

54

the packaging of binary data and sending it out. It is able to handle single or multiple file
attachments. The outgoing message may be addressed to a specific Jabber user (i.e., peer-
to-peer) or a chat-room. IMReceive listens for posted messages. Again, it is listening to
either a particular Jabber user or a chat-room. When there is an incoming message, it
parses it and using event monitor criteria defined in the /MCriteria sub-module, it
generates the appropriate response or alert. /MReceive is able to re-generate packaged
binary files within a Jabber message (i.e., sent by IMSend or similar programs). A
sample XHTML message with encoded binary file data is shown in Figure 40. See
Chapter IV for details on the design and implementation of the message package module.
Next, this section discusses how the incoming events are processed, how alerts are raised

and ways messages can be sent.

<message id="Seukd-4" to=“savagelfconference.xchat.movesinstitute.org"
type="arounchat" from="auvrobetfsurfaris.cs.nps.navy.mil">
<su.bject>5u.bject</subject><body>l-!ello World (x:-!'mﬂ'..)</body>

<h d:

<1-- Payload --> '
<AgentPavload checksum="1234567" E
content-transfer-encoding="base-64" i
content-type="application/x-zip-compressed" Header information ‘ :
="Description here" filename="GAMMA.bmp" ;
timestamp="20040115235959">

<|I [CDATA [H4s IAARAARAARO3QsUODQRhEA Tsw4FK o gBxyenIRboaABmy qUDNISKs XTE ZWa0bTybDRO / /2 /vws

3PZ§ﬁipbn/fe6fG/rsqu+fZ+/V:|+tv5-H—y'?'?twl/xc4//2zbtan9z+3neeijJl.930gBQABAeg‘DQNlAeAPQAo i

'AcAPQDoAUAPAHoAOAOAHgDOAKAHgPE : equvvoZSJ.lb'JSStdB::W02
XrnbL1TtnGO8 1ADWE6 ANADgB4AIACY Compressed and base-64 encoded UAPAHOAOROAHGDOAKAHADO |
A6 AFADWB6AL Jb5 QMHAds45 ImoAcAP(data (textual & binary) 6ANADGB4AYACYEWASAOQRQ !
.'ABAegDQAdAeAPgnom:n?qc::tvnonm g‘B4AQanBwASAOgBQABAeg

DQA‘IR@M’QAO.‘ACMQDOAU.'APMIonOR.?R+H.‘A/chGu+dY'?5StdBrWO22rn.bI.1'I‘t16p2y9UTheKVvle13ytYTZeu

dsvvozanhoodzqAHADOASAEADwBGnNADgB-lAQacngAQAOnganegDQMnenEQnoAcnrgnoAUAPanAOAoa

UAP AHoAOAOAHgDO AKAHGPHhYYKN JXbP s ddpW++UzX£K1t1652y9UTZeqdsvV0231ilb755£02mddvKvQAA] 1>
<uxl>http://serverl/GAMMA .bmp</uzrl>

. <yrl>http ://serverzfam.bmp</m>} ‘ Hyperlinks to storage locations

: <uxl>http://server3/GAMMA .bmp</uzrl>

</&$§§WA@ :

i</BgentJabber> ;

i</body></html> :

</message>

Figure 40. Sample XHTML message with encoded binary file in CDATA section.

The third sub-module, /MCriteria is for the definition of event monitoring
criteria. For this thesis, regular expressions are used to define the watch events. Watch
Event determines whether an incoming message matches the regular expression patterns.

If a match is found, respective alerts are raised.

55

2. User Interface

As part of the customized Jabber client, XTC Monitor functionalities are found on
the same X7TC Monitor tabbed pages.

e p——————————
:|[3D Display | 2D Mission Viewer
; New &Open Q Sa\ie‘ ;gr r |

X¥j3D Viewer for X3D
i & Open
Mission Editor jg

#: AUV Workbench - Mission Planning & Visualization

Text | List |

Tit | walk |Examine| Jabher
Mission : mission.script.noname X3D File : nofile @
[Execution & Dynamics | Options | WWeb Server | XFSP File Transfer | Event Monitor | Browse
f Setting r Incoming Messages r Send Message r Event Criteria | a
Subject: Subject li
ubje | ubject line R
Messaye Body
hine found at location (100, 100, §)

-

13
% JEdit
st || b

D

ADS
L | @
Attach...
Send to: |savage@cunference.xchat.movesinstitute.org \
List of files:
Files URL: http:irserverts |
Figure 41.

Instant Messaging user interface to package and send text and files

56

7. AUV Workbench - Mission Planning & Visualization

ﬁ New & Open

1

Text [{ List |
Mission Editor

3D Display r 2D Mission Viewer |

¥j3D Viewer for X3D
& Open

Jabber

f Execution & Dynamics romiuns r/Weh Server r/XFSP File Transfer r Event Monitor |

Setting r Incoming Messages r Send Message r Event Criteria |

S

Browse

SIN| Message

From \R| Attachrment |

,Iw

X3D-Edit

e
33
JEdit

&

ADS

Figure 42. Instant Messaging user interface to display list of incoming messages.

AUV Workbench - Mi

% New &Open Q Save‘

Text [{ List |
Mission Editor

3D Display | 2D Mission Viewer |

& Open

XJ3D Viewer for X3D

Jabber

r Execution & Dynamics romiuns rWeh Server rXFSP File Transfer r Event Monitor |

Subiject Keywords

f Setting r Incoming Messages r Send Message r Event Criteria |

JD: |

[»

Ll

Body Keywords

l

S

Browse

&

K3D-Edit

e
33
JEdit

4%

ADS

Figure 43. Instant Messaging user interface to define the criteria to alert the user.

57

3. XTC Event Monitoring Configuration

The settings for the event monitor module are XML-based and included under the
XTCMonitor stanza of the AUV Workbench configuration file. There are two types of
event monitors: There is one instance of default event monitor (MonitorDefault) and
multiple instances of Jabber user-specific event monitors (Monitor). There can be one or
more Alert elements associated to a WatchEvent element. These alerts, if enabled (i.e.,

enabled attribute set to true), will be raised in a consecutive order.

<XTCMonitor>
<MonitorDefault keywordSubject="mine, bomb, torpedo"
keywordBody="nice, mine, bomb, torpedo, location, CVN62, SNN12, DDG51">
<WatchEvent name="Mine" desc="Look out for Mines"
expr="".%* (?1)MINE[s|S]? .*[(1{1,2}(\d*),[1{0,2} (\d*),[1{0,2} (\d*)I[
) . 12+">
<Alert type="visual" src="image/mine.gif" enabled="true"/>
<Alert type="sound" src="sound/alert.wav" enabled="true"/>
<Alert type="url" src="C:/auv/Workbench/doc/index.htm"
enabled="false"/>

</WatchEvent>

<WatchEvent name="Ship" desc="Look out for Ships"
expr="".%*(?1)SHIP[s|S]? .*[(1{1,2}(\d*),[1{0,2} (\d*),[1{0,2} (\d*) [
) .12+">

<Alert type="visual" src="image/ship.gif" enabled="true"/>
</WatchEvent>
<WatchEvent name="Location" desc="Look out for Locations"
expr="".%*(?1) LOCATION[s|S]? .*[(1{1,2} (\d*), [1{0,2} (\d*), [

1{0,2}(\d*) [).]2+" alert=""/>

</MonitorDefault>

<Monitor jid="savage@conference.xchat.movesinstitute.org" desc=""
datetimeStart="" dateTimeEnd="" keywordSubject="mineX, bomb, torpedo"

keywordBody="mineX, bomb, torpedo, location"/>
<Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc=""

datetimeStart="" datetimeEnd="" keywordSubject="urgent, problem"
keywordBody="damage, sinking, surface"/>
</XTCMonitor>

Figure 44. Sample EventMonitor stanza specifying the type of Watch Events and their
corresponding Alerts.

58

S/N | Name Type Description
1. | EventMonitor Element | Root element for Event Monitoring stanza.
2. | MonitorDefault Element | Default event monitor.
Attribute | Watch event to look for. There can be multiple

3. | WatchEvent <WatchEvent> under <MonitorDefault> or <Monitor>
elements.

4. | name Attribute | Name of watch event.

5. | desc Attribute | Description of watch event.

6. | expr Attribute | Regular expression to be match against.

7| Alert Element | Alert to invoke upon a successful match. There can be
multiple <Alert> within a <WatchEvent>.

8. | type Attribute | Type of alert. An enumeration of “visual”, “sound” and “url”.

Attribute | Source of the alert; e.g., image/mine.gif. This will

9. |src determine how the alert rendered; e.g. if it is a visual one, it
is plotted.

10. | Monitor Element | Event monitor associated to a particular Jabber user ID.

11. | jid Attribute | Jabber user ID.

12. | desc Attribute | Description.

13. | datetimeStart Attribute | When to start this event monitor.

14. | datetimeEnd Attribute | When to stop this event monitor.

Table 16. XML tagset to configure XTC event monitoring.
4. How Incoming Events are Handled

Upon application startup, the list of default and user-specific event monitors are

loaded. For each of the monitors, there can be one or multiple watch events (in

WatchEvent tag). The check to determine whether a watch event is matched against an

incoming event is via the regular expression defined within the expr attribute. Once

there is a match, the list of available alerts under the WatchEvent element is raised.

There are three types of alerts: “visual”, “sound” and “url”. The alert type is depicted

under the #ype attribute of the Alert element. In addition, the src attribute defines the

source location of the alert; e.g., image or sound path.

59

<WatchEvent expr="".* (?1)MINE[s|S]1? .*[(1{1,2}(\d*), [1{0,2} (\d*), I
1{0,2y (\d*) [) .]2+">

<Alert type="visual" src="image/mine.gif"/>

<Alert type="sound" src="sound/event.wav "/>
</WatchEvent>

Figure 45. WatchEvent quatrain.

For this thesis, the following alert mechanisms are implemented:
a. Visual Alert
The 2D Mission Planner module handles this alert. A new target object is
added to the list of targets, maintained by the module. Next the target is plotted on the
2D display using the image specified in the src attribute.

<Alert type="visual" src="image/mine.gif"/>

Figure 46. A sample alert of type “visual”.

b. Sound Alert
This alert is handled within the Event Monitoring module. If the source

path of the alert exists, a sound is played back.

<Alert type="sound" src="sound/alert.wav'"/>

Figure 47. A sample alert of type “sound”.

c URL or Hyperlink Alert

The Event Monitoring module opens an application to display the
hyperlink or file specified in the src attribute. The application is chosen based on the
content type of the hyperlink (e.g., .htm) or file (e.g., .bmp or .txt). For example with the
following alert (Figure 48), it is of type “url” and the source file
(“C:/auv/Workbench/doc/index.htm”) is of “text/html” content type (determined from the
file extension). Based on the “text/html” content type, the module then looks for the

associated application to render it.

<Alert type="url" src="C:/auv/Workbench/doc/index.htm"/>

Figure 48. A sample alert of type “url”.
The list of available applications is defined in the AUV Workbench
configuration file under the Application stanzas. A sample of the Application stanza is

given in Figure 49.

60

<Application name="Browse" tooltip="Web Browser"
image="image/browser.gif" show="true"
content-type="text/html">
<Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
<Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
</ Application >

<Application name="NotePad" tooltip="Windows Notepad"
image="image/note.gif" show="false"
content-type="text/plain">
<Command>C:/windows/NOTEPAD.EXE</Command>
</Application>

<Application name="Picture" tooltip="Windows Fax and Viewer"
image="image/graphics.gif" show="false"
content-type="image/bmp, image/gif">
<Command>C:/windows/System32/mspaint.exe</Command>
</Application>

Figure 49. A sample list of applications defined in Application stanzas that can be invoked.

An overview of the process of event monitoring of instant messages and the triggering of

alerts is given in Figure 50.

L= (1) 27 53

Mine is found at (120, 75, 5)

Listen to
P incoming chat
r_m,h:m N messages

— l

If matches,
extract data
and raise alert

20 Mission Planner

&

Play sound

Ciperator at
remate machine

List of .

List of
Watch

Alerts)) -
Events Dizplay in associated application

Figure 50. Instant messaging event monitoring and alert mechanism process via
standard Jabber client.

61

5. How Events/Messages are Generated

a. Free-form Text Using Standard Jabber Clients

Using a standard Jabber client such as Rhymbox, a human operator keys
in the message “A mine is found at position (100, 100, 5)” and sends it. With free-form
text, the receiving party (i.e., X7TC Monitor) needs to extract the necessary pieces of
information from the chatter. For this thesis, a simple sentence parsing module using
Java's Regular Expression Parser was implemented. A more precise and robust
extraction module that utilizes Natural Language Processing can be developed in the
future. This technique is error-prone especially when the operator is under stress. This in
turn leads to additional verification at the software end to ensure that it is tolerable to

minor errors such as missing spaces, characters or misplaced characters.

b. Structured Text

Message generation using a structured format is a preferred approach. The
user is presented with a form (HTML or Java Swing application). This approach
removes the need for a sentence parser and error checking, thus reducing message
processing time. Data from structured text comes formatted and possibly validated at the
server or client end. The receiving party only needs to extract the necessary portions of
data based on a predefined schema. There are various ways that structured text can be

captured:

J Capturing the data in the correct format manually by human

operators. This is a tedious and error-prine process.

o Use of a customized client application to allow capture and

validation of inputs from the operators.

o Use of a web page to allow the operators to key-in the required
information. This method is preferred, as it only requires that there
is access to a web browser and the web page since this will work as
long as the human operator has access to the web page. This

removes the need to deploy customized applications.

62

A AUV Workbench - Event Monitoring - Microsoft Internet ...
File Edit Wiew Favorites Tools Help ':,'

»

(€] @ - u @ _;j /J:\J Search “S/n‘\'g’Favorites G‘Media @ [“:v Links
AUV Workbench - Event

Monitoring
To: |savage@cunference.xchat.muvesinstitute.Drg ‘—|
Target Type: |Mine v|
Location : x| ‘—| Y| ‘—| 7| ‘—|
Send ‘ ‘ Clear ‘ ‘ Reset ‘
&) Done My Caormputer

Figure 51. An event monitoring HTML form to capture target type and location information.
Advantage of using Instant Messaging protocol is that it allows both
human operators and agents to interact in the same environment. Agent-specific data is
stored in the XHTML sections of the message. These are not visible on normal Jabber

clients, but are caught by agents that are listening for them and processed accordingly.

L APPLICATION TOOLBAR

The application toolbar is highly configurable to allow users and developers alike
to add new applications to the AUV Workbench. The toolbar is both floatable (Figure
52) to increase display real estate on the Workbench as well as dock-able to any side of
the Workbench application. This provides a convenient way for users or developers to
bundle frequently used applications. The capability is achieved through the use of an
XML-based configuration file. The current version of the Workbench has two built-in
features: the “About” dialog and the “Screen Capture” capability (i.e., the first two

toolbar buttons). A sample application toolbar is seen below:

a6 0 & a G

About Snap Jabber | Browse | X3D-Edit JEdit ADS

Figure 52. A floating application toolbar.
63

#: AUV Workbench - Mission Planning & Visualization

B

ﬁ N &} 0 @ 5 |/ 3D Display || 2D Mission iewer |
- = o | Xj3D Viewer for X3D

Text | List

A & Open
Mission Editor |

Fiy | Pan | Tt | walk |Examine|

Mission : mission.script.noname X3DFile : nofile
T T T T T T T | B
f Execution & Dynamics ’/ Options rWeh Server rXFSP File Transfer r Event Monitor |

| NoRealTime || Clear || Save |

AUV Execution] Virtual World Dynamics

Figure 53. A docked application toolbar on the left.

S/N | Item Type Description
1. | About Built-in “About” dialog.
2. Screen-shot | Built-in Perform a screen capture.
3. | Jabber External Standard Jabber client.
4. | Browse External Internet browser.
5. | X3D-Edit External X3D Graphics Editor.
6. | jEdit External Open-source Java Editor.
7. | ADS External AUV Data Server.

Table 17. Details of Toolbar Buttons.

The XML-based configuration file is human-readable and nicely partitioned to
allow the user to add or remove applications easily. The procedures to add a new

application are given below:
o Locate and open the configuration file; e.g., AUV WorkbenchConfig.xml.
o Go to the section where the Application tags are defined.

o Make a copy of an existing Application set.

64

o Make the necessary changes to the attributes; e.g., name is the name that
appears in the toolbar button, fooltip is the hint and image defines the

location of the toolbar button image.

o Add the file types that this application can handle under content-type

attribute. Set show attribute to “true” to display in toolbar.

o The param attribute defines the parameter to be passed into the application
upon its startup; e.g., a hyperlink to be a web-page for a Internet browser

application.

o Next add Command elements. These define the actual locations of the
application. Upon clicking on the particular toolbar button, the AUV
Workbench tries to look for the application from the possible list of

Command tags provided. Once found, the application is invoked.

<Application name="Browse" tooltip="Web Browser"
image="image/browser.gif" show="true" content-type="text/html"
param="intranet.nps.navy.mil">
<Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
<Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
</Application>

Figure 54. A sample toolbar application defined in the Application stanza.

S/N | Name Type Description

1. | Application Element | Application to be invoked from toolbar.

2. name Attribute Name of application.

3. | tooltip Attribute | Button tooltip on toolbar.

4 show Attribute | Boolean value (true or false). To display in the toolbar or
| not?

5 content-type Attribute | File types that this application can handle. Delimited by
’ commas; e.g., image/bmp, image/gif

6 param Attribute | Parameter to be passed into application upon
' invocation; e.g., a hyperlink to a web-page.

7. | Image Attribute | Location of image icon on toolbar.

8 Command Element | Command to invoke the application. There can be

multiple <Command> associated to an application.

Table 18. XML tagset for configuring the toolbar module.

65

J.

STORAGE, NETWORKING AND COMPRESSION

1. Naming Convention

Code conventions are important to programmers since 80% of the lifetime cost of

a piece of software goes to maintenance. Software is hardly maintained for its whole life

by the original author. Code conventions improve the readability of the software,

allowing engineers to understand new code more quickly and thoroughly.

Table 19.

S/IN File Type Suffix
1 Java Source Code | .java
2 Java Bytecode .class
3. VRML vrml
4 X3D x3d

File types and their suffixes.

Naming conventions make programs more understandable by making them easier

to read. They can also give information about the function of the identifier-for example,

whether it's a constant, package, or class-which can be helpful in understanding the code.

S/N

Identifier Type

Rules for Naming

Examples

1.

Packages

The prefix of a unique package name is
always written in all-lowercase ASCII
letters and should be one of the top-
level domain names, currently com, edu,
gov, mil, net, org, or one of the English
two-letter codes identifying countries as
specified in ISO Standard 3166, 1981.
Subsequent components of the package
name vary according to an
organization's own internal naming
conventions. Such conventions might
specify that certain directory name
components be division, department,
project, machine, or login names.

org.w3c.dom.*

javax.xml.parsers.*

Classes

Class names should be nouns, in mixed
case with the first letter of each internal
word capitalized. Try to keep your class
names simple and descriptive. Use
whole words-avoid acronyms and
abbreviations (unless the abbreviation is
much more widely used than the long
form, such as URL or HTML).

class WatchEvent;
class Monitor;

Interfaces

Interface names should be capitalized
like class names.

interface RasterDelegate;
interface Storing;

Methods

Methods should be verbs, in mixed case
with the first letter lowercase, with the
first letter of each internal word

run();

runApp();
getStatus();

66

S/N | Identifier Type | Rules for Naming Examples
capitalized.

5. Variables Except for variables, all instance, class, Int i;
and class constants are in mixed case char ¢
with a lowercase first letter. Internal float iSpeed;
words start with capital letters. Variable
names should not start with underscore
_or dollar sign $ characters, even
though both are allowed.

Variable names should be short yet
meaningful. The choice of a variable
name should be mnemonic- that is,
designed to indicate to the casual
observer the intent of its use. One-
character variable names should be
avoided except for temporary
"throwaway" variables. Common names
for temporary variables are i, j, k, m, and
n for integers; c, d, and e for characters.
6. Constants The names of variables declared class static final int FRM_WIDTH = 400;
constants and of ANSI constants should
be all uppercase with words separated static final int MAX_WIDTH = 999;
by underscores ("_"). (ANSI constants
should be avoided, for ease of static final String HTTP_Accept =
debugging.) "Accept:"

Table 20. Java Source Code Naming Convention [after JavaCodeConvention 1999].

S/IN ltem

1. CamelCaseNaming: capitalize each word, never use abbreviations, strive for clarity, and be
brief but complete.

2. Ensure consistent capitalization throughout. Of note: Windows systems are not case sensitive,
but http servers are. Thus mismatched capitalization can hide target files, and this error only is
revealed when placed on a server.

3. Naming conventions apply to .x3d files, image files, and Prototypes. It is also a good idea to
follow them for DEF/USE names.

4, startWithLowerCaseLetter when defining field names for Prototypes and Scripts. This approach

matches the node and field naming conventions in the X3D Specification.
When multiple files pertain to a single entity, start with the same name so that they will
alphabetize adjacent to each other in the catalog and the directory listings. Examples:
WaypointinterpolatorPrototype.x3d WaypointinterpolatorExample.x3d
WaypointinterpolatorExample.png

5. Good choice of directory & subdirectory names can help keep scene names terse.

Figure 55. X3D Naming Convention [X3DHints 2004].

67

K. TOOLS AND PRODUCTS

1. Overview

This section provides a brief description on the applications that are bundled with
the current version of AUV Workbench. There are two built-in functionalities in the
Workbench’s application toolbar, namely the About and Screenshot buttons. As the name
implies, the About button pops up an image that describes the AUV Workbench. The
image can be easily changed by replacing the image named SplashScreen.jpg in the
/image subdirectory. As a collaboration tool, there is always a need to share the current
picture in the AUV Workbench. This may include a view of the mission script and the
3D view of the environment. Thus a fast one-button click screen-capture capability has

been added to the Workbench.

Y Robot Missi@n Pla‘?\r;ing and 3D Via%liz@tion Gi

' " g

A

P

&= \pAUtonomousH

nd

Figure 56. Splash-screen poster image describing the AUV Workbench, produced by the
author.

X

Browse | X3D-Edit | JEdit ADS

Figure 57. Screen-capture button on the Application Toolbar.

68

2. Jabber Instant Messaging (IM) Client

A useful tool to facilitate near-real time text messaging between human operators
is an Instant Messaging (IM) client. Through the Jabber client, a developer can log onto
a AUV Workbench chat-room and post questions or answers to fellow developers.
Similarly, human operators are able to use the Jabber client to post mission related
information (e.g., location of a mine). All messages posted via the Jabber clients can be
logged on the Jabber server. This is useful for post-mission analysis by operational users

or consolidation of a trouble-shooting guide for developers.

<Application name="Jabber"
tooltip="Instant Messaging Client" image="image/jabber.gif">
<Command>C:/Program Files/RhymBox/RhymBox.exe</Command>
<Command>D:/Program Files/RhymBox/RhymBox.exe</Command>
<Command>C:/Program Files/IM/RhymBox/RhymBox.exe</Command>
</Application>

Figure 58. Jabber application setting in the AUV Workbench configuration file
RhymBox is a Jabber client for instant messaging. The Jabber network employs a
distributed and secure infrastructure. The Jabber protocol is based on the IETF supported

XMPP. Jabber is also linked to legacy services (e.g., Yahoo!, MSN, AIM, ICQ, etc).

=0l x|
File Actions Tools Help

% .-'-\-a'ilal:-le

Contacts

@ A G

Figure 59. Rhymbox Jabber client main user interface.

69

i Savage - Conference

=10 x|

I W savage: ¥ML-based Tactical Chat

LdlEyuTy L LTat
To : Brutzman, Don (NPS)
From : Lee, Daryl (NPS)

brutzman.exodus
test

brutzman
test sat

The topic has been set to:

lee has become available

SUgUESIoT

Report : Message sent from Savage Lab... sending...

[

'..“ lee
ﬂ brutzman.exodus

savage: XML-based Tactical Chat

lee
This is a sample test message
Hello Waorld 2
@ Emoticons ﬁ Clear @ Font
Send
| | savage @conference. xchat. movesinstitute.org
Figure 60. Rhymbox Jabber client “Chat-room” interface.
T RhymBox Settings _ = %]
D Aute-away
. r Mes=ages always on top of other windows:
41 Blocking
&) v Popup incoming messages
Connection ¥ Show the message date and time
@ Emoticons ™ Launch automatically at startup
7% Plugns — Show standard messages as
@ Privacy ' Continuous chat
{4 Sound " Single message
g Transports
— Show alerts and headli as
% Tpaster popup
" Standard message
OK | Cancel |
Figure 61. Rhymbox Jabber client “Settings” interface.

70

~1o/x]

MNetwork traffic:
SENT: <message xml:lang="en-us" ;l Debug is on
to="savage@conference. xchat. movesinstitute.org” Clear output

type="groupchat"=<x xmins="rhymbox X jep-
0038"=<name>rhymbox-1 0</name></x><body>Hello
World</body=</message>

' Break lines

RECV: <message xml:lang="en-us"
to="lee@surfaris.cs.nps.navy.mi/RhymBox"
type="groupchat”
from="savage@conference_ xchat. movesinstitute.org/lee"><x
xmins="rhymbox:x:jep-0038"><name>rhymbox-
1.0</name></x><body>Hello World</body></message>

o o

XML input:
<message to=

type=""><body></body></message> send

Figure 62. Rhymbox Jabber client “Console” interface.

3. Internet Browser
One of the essential tools required in a collaboration environment is an Internet
Browser. The browser allows both users and developers to access the World Wide Web

to find information.

3 Extensible Markup Language (XML) 1.0 (Third Edition) - Mi P [Y
File Edit View Favorites Tools Help | ::"
QBack >+ © ~] [&] » |) Search ¢ Favorites @} Media {‘3| R >~ @ >
Address |&] http://www.w3.0rg/ TR/2004/REC-xml-20040204/ |86

=

L]

WsC

Extensible Markup Language (XML) 1.0
(Third Edition)

W3C Recommendation 04 February 2004

c
kel
=]
<
2
@
E
£
o
v}
Q
o
]
g

This version:
http://www.w3.0org/TR/2004/REC-xml-20040204
Latest version:
http://www.w3.org/ TR/REC-xml

| Previous version: | hd
4 3

] [T e moterner 4

Figure 63. Microsoft Internet Explorer 6.0 browser user interface.

Once the “Browser” button is clicked, the application looks for the first available

browser through the list of possible browser applications, i.e., defined in the Command

71

stanza. A default web-page can be specified using the param attribute. This allows users
to be directed to the relevant web-page (e.g., AUV Workbench development) upon

browser startup.

<Application name="Browse" tooltip="Web Browser"
image="image/browser.gif"
show="true" content-type="text/html"
param="intranet.nps.navy.mil">
<Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
<Command>D:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
<Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
<Command>D:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
</Application>

Figure 64. Internet Browser entry in the AUV Workbench configuration file.

4. X3D-Edit

X3D-Edit is a graphics file editor for Extensible 3D (X3D) Graphics that enables
simple error-free editing, authoring and validation of X3D or VRML scene-graph files.
Context-sensitive tooltips provide concise summaries of each VRML node and attribute.

These tooltips simplify authoring and improve understanding for novice and expert users

alike.

X3D-Edit uses the X3D 3.0 tagset defined by the X3D 3.0 Document Type
Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor, and editor

profile configuration files. More information on X3D-Edit can be found at

http://www.web3d.org/x3d/content/README. X3D-Edit.html.

72

B X3D-Edit scene graph editor (v2.4 x3d-3.0.profile.xml)

File Edit Insert Selection Grammar Tools Help

D@ ERR - &X)i bBBPHE Bourdd: ve- 585 FERER 2 W

BIS pratosol NewNodes | Geometry 2D eb3d.org 3 oup d 3 ationfexamplesiD D ed era B
nterchanae profile | GeoSpatial 1.1 | H-Animz.0 -
| Allnodes | pllowed Nodes | Immersive profile (= <Er 13D profile: Immersive i

[= 7 hean

e < weta: name: filename, cortent: AuvinBeachTanks.x3d

< meter neme; description, content: Example showing DIS EspduTransform interface for physics-animated ALY entties
<> meta: name: author, content: Don Brutzman and Duane Davis

= < meter name: translator, cortent: Misusl Ayals

<> mefer name: crested, content: § September 2000

< metar name: transiated, cortert: 16 February 2002

<> mefer neme: revised, content: 1 October 2003

<> meta: name: warning, cortent: under development. AUY in tank 2 is currertly operational with ALY Workbench

< metar hame: reference, contert: hittp:fhwebnns navy mili~brutzmanivrtaidemalauyiduyinBeachTanks. wrl

<> meta: name: reference, cortert: hitp: el nps nawy milf~brut . MPLE wrl

< weta: name: keywords, content: NPS Beach Tanks Autonomous Uncerwater Yehicle (ALY

<> meta: name: url, cortent: hitp: s web3d orgTaskGroup: Distribe i hTanks x3d
< metar name: generator, content: X3D-Edt, hitp: v web3d orgiTaskGroupsixddAranslatiorREADME X30-Edi)
= 582 Seene
= EP ExterProtoDeclare: name: AriesEspdu, url: "SriesEspduPrototype wrizAriesEspeu’

- field: name: marking, accessType: INpLEOUERLE, type: SFString
e field: name: sitelD, sccessType inputOutput, type: SFIE32
- field: name: applicationD, accessType: inputOutpLt, type: SFINt3Z
= field: name: entitylD, accessType: inputQulut, type: SFI32

Comment
B ~= field: name: readirtervel, accessType: inputOutiut, type: SFTime

EEREEE - g - - -

- field: namme: writsinterval, accessType: INBLIOURLE, typs: SFTime

at
LA ~ field: name: networkhode, accessType: inputOutput, type: SFString
ditiule diali ~* field: name: address, accessTyps: inputOulput, type: SFString
ame description
ontert Example showing DI Esp ~e field, name: port, accessType: inpLOUtRUA, type: SFIREIZ
milang <None= ~ figld. name: transkation, accessType: inputOutput, type: SFvec3f
ir <None=
— S - el hame: ratation, accessType: MpULOWA, type: SFRotation
cherne =Nare= = field: name: traceNndeEnabled, accessType: inputOutoLt, type: SFNt32, appinfo: Set to 0 to activete EspduTransformTrace

Messages

Figure 65. X3D-Edit Graphical User Interface (GUI) for developing 3D objects and scenes
using X3D.

<Application name="X3D-Edit"
tooltip="X3D Editor" image="image/x3d.gif">
<Command>C: /www.web3d.org/TaskGroups/x3d/translation/X3D-Edit.bat
</Command>
<Command>D: /www.web3d.org/TaskGroups/x3d/translation/X3D-Edit.bat
</Command>
</Application>

Figure 66. X3D-Edit entry in the AUV Workbench configuration file.

5. jEdit
jEdit is a cross-platform programmer's text editor written in Java, being developed

by Slava Pestov and others. It is available online at http://www.jedit.org. It has an easy to

use interface that resembles that of many other Windows and MacOS text editors. It is
also highly customizable, and contains a “plugin” architecture that allows its features to

be extended by additional programs.

73

jEdit contains a large assortment of features for manipulating source code,

markup text, and other

text files. As a programmer's text editor, it also has many features

to help programmers manage their projects and work with other programming tools.

dit - jEdit_IE.reg.txt

File Edit Search Markers Folding VYiew Utilities Macros Pluging Help

Hes Q2 00488 QX Tl 6] 5 @

< JEdit_IE.req b4 (G:\Program FilesyEdit 410 -

4

| |B="C:%\PathiitoliJEdit.exe /1 %17

REGEDIT4.

; Thiz iz an example of a Vindows registry information file containing.

; registry entries for adding jEdit to the list of applications that.

; is displayed by Internet Explorer for editing the contents of a web page.|
; To use this file, rename the file to jEdit_IE.reg, modify the.

; path to JEdit.exe as indicated below, double-click the entry representing.
; the file in an Explorer window and respond to the prompts accordingly..

; Internet Explorer versiom 5.0 or greater is required, as well as.
; as jEdit 4.0 and jEditLemcher 4.0.4 or greater..

; Direct comments or questions shout this file to John Gellene [jgellenefjedit.org)..

.[I'ECEY_CLASSES_RUUT\.hcm\DpEnWlthLisE\jEdlc 1.
.[H](EY_ELASSES_REIEIT\.th\DpEnHthL)ﬁt\jEdlt \shell].
.[H](EY_ELASSES_REIEIT\.htm\ElpEnIht.hL)st\jEdlt \shelliedit].
Substitute your path to jEdit.exe for the dummy path shown here..

[HKEY_CLASSES_RODTY.htm', OpeniichlisthJEdit yshellyedicycommand].

v]

5,76 Top (ext,none, Cpl252)- - - U

Figure 67. jEdit User Interface running on Windows platform.

Text editing can be different on different operating systems (Carriage Return

versus Carriage Return-Line Feed differences), and also some default text editors are

notoriously poor (e.g.

Windows Notepad), jEdit is bundled with the NPS AUV

Workbench. This tool ensures that users can perform simple editing tasks on

configuration and output files, thus simplifying use and remote debugging support.

A plugin is an application that is designed to work with jEdit by providing

additional features that

can be used from within the main program. Often the plugin will

provide a visible user interface in a window that can be docked to jEdit's main view

window. There are currently over 60 publicly available plugins that provide such

services as a Java source code browser, a command-line shell, templated text insertion,

and source code project management. They can be downloaded, installed, and kept

current from within jEdit's “Plugin Manager”.

74

Installed plugins:

Loaded plugins
Latest Yersion Check
CickMotepad

Plugin name: QuickNotepad
Author. John Gellene
Vergion: 2.0

| Remove Flugins H Update Plugins || Install Pluging || Close |

Figure 68. jEdit Plugin Manager.

<Application name="JEdit" tooltip="JEdit" image="image/jedit.gif'">
<Command>C:/Program Files/jEdit 4.1/jedit.exe</Command>
<Command>D:/Program Files/jEdit 4.1/jedit.exe</Command>
</Application>

Figure 69. jEdit entry in the AUV Workbench configuration file.

The jEdit homepage, located at http://www.jedit.org (Accessed on 28 January

2004) contains the latest version of jEdit, along with plugin downloads. There is also a

user-oriented site, http://community.jedit.org (Accessed on 28 January 2004).

6. AUV Data Server

The NPS AUV Data Server (ADS) is a tool for post-mission analysis. It is able to
read the actual AUV telemetry data from several different AUV sources and generate a
3D view of the mission in VRML or X3D. ADS has processed data retrieved from the
Woods Hole Oceanographic Institution (WHOI), REMUS, Florida Atlantic University
Ocean Explorer (OEX), and NPS ARIES AUVs. ADS parses robot telemetry as well as
mission asset (track), bathymetry and contact reports. These data files are converted into
Message Transfer Format (MTF) message format and imported into Mine Warfare
Environmental Decision Aids Library (MEDAL). The MEDAL format is used by the
US Navy to evaluate asset positions, mine-like contacts, snipped images of those contacts
identified as mines and bathymetry maps. It provides a network message interface to

GCCS MEDAL systems and also produces X3D mission visualizations.
75

& AUV Data Server

File GUI-Options Help

I Source: AUV 1 |
Source Configuration Manual Impaort Data
Source Client Name: |ALY 1 ‘ Load File Data... |
Listening TCP Port: 3000 v ‘ View File Data... |
Source Host: daryllaptop
DataTr
Status:
[Translate Raw Data To MEDAL Messages
Filter Data at Time Interval: | 10 Sec v
‘ Query Raw Data... |
‘ Query Data As MEDAL Messages... |
[Data Archive
Archive Data in X3D...
| GetDataviaMetwork or File Paliing | | i
Load Progress: |

Figure 70. ADS data source panel user interface.

& AUV Data Server

File GUI-Options Help
Destination: MEDAL1 i

Data Destination Configuration

Destination Name: MEDALY
Destination Host NameP Address: |131.120.150.140
Destination TCP Port: 5153
Destination Data Type:

Translated MEDAL Asset Messages

Status:

Figure 71. ADS data destination panel user interface.

76

E B

File Edit WYiew Favorites Toolks Help

@Back 2 Q 2 @ @ {h pSearch *Favomtes QMedia @ B' Q_;.’. E D

&) Dore C) My Carmputer

Figure 72. ADS-generated VRML scene from AUV data.

<Application name="ADS" tooltip="AUV Data Server"
image="image/3cubes.gif" show="true">
<Command>C:/auv/ADS/AuvDataServer.bat</Command>
<Command>D: /auv/ADS/AuvDataServer.bat</Command>
</RApplication>

Figure 73. ADS entry in the AUV Workbench configuration file.

L. SUMMARY

The NPS AUV Workbench has integrated years of work by students and faculty
to form a stable code base whereby continued research and development can be
supported. The flexibility of the Workbench has made it simple enough for day-to-day
users to get started, and at the same time allowed developers to add new tools and
modules with ease. During the course of this thesis, two new modules were added. One
supports Recursive Ray Acoustics (RRA) visualization and was by LT Scott Rosetti,
USN The other module supports the compression of mission data using XML Schema-
based Binary Compression (XSBC) [Serin 2003] created by LCDR Duane Davis, USN,

on.

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

IV. MESSAGE EXCHANGE TECHNIQUES AND
TRANSPORT PROTOCOLS

A. INTRODUCTION

The major advantages of XML for interoperability of data are its extensibility and
its ability to represent all forms of data, including graphics such as Virtual Reality
Modeling Language, VRML or Extensible 3D Graphics (X3D) in text format. As systems
get more complex, the need to transfer binary data as part of the XML document arises.
This chapter presents possible ways to efficiently package and transport both textual and
binary XML-based data via Extensible Messaging and Presence Protocol (XMPP). In
addition, the design and technical implementations of possible applications using this

data exchange technique are discussed.

B. COMPRESSION AND DECOMPRESSION USING JAVA.UTIL.ZIP
Compression and decompression are often applied to data to reduce network
traffic during transportation and improve the performance of client/server applications.
Likely candidates for applying compression and decompression are text-based files such
as Scalable Vector Graphics (SVG), VRML and X3D, along with uncompressed image

formats, for example 24-bit image files.

This section presents a brief introduction to data compression and decompression,
and shows how to compress and decompress data (in physical files and objects)

efficiently and conveniently from within Java applications using the java.util.zip package.

While it is possible to compress and decompress data using tools such as WinZip,
gzip, and Java ARchive (JAR), these tools are used as standalone applications. It is
possible to invoke these tools as separate applications from within a Java application, but
this is not a portable, straightforward or efficient approach. Drawbacks of launching
compression applications are especially problematic if data needs to be compressed and

decompressed on the fly.

The java.util.zip package for zip-compatible data compression provides classes
to read, create, and modify ZIP and GZIP file formats. The package also provides utility

classes for computing checksums of arbitrary input streams that can be used to validate
79

input data. This package provides one interface, fourteen classes, and two exception
classes. For file manipulations, there are three main classes for the manipulation of

objects and two classes for data streams.

1. Zipping Files

The java.util.zip package provides classes for data compression and
decompression. The main classes are ZipInputStream for reading ZIP files and
ZipOutputStream for writing ZIP files. The ZipInputStream class reads ZIP files
sequentially, whereas the class ZipFile reads the contents of a ZIP file using a random

access file internally so that the entries of the ZIP file do not have to be read sequentially.

S/N | Class Type | Description

1 ZipEntry Class | Represents a ZIP file entry

2 ZipFile Class | Used to read entries from a ZIP file

3. ZiplnputStream Class | An input stream filter for reading files in the ZIP file format
4 ZipOutputStream | Class | An input stream filter for writing files to the ZIP file format

Table 21. Classes for File Compression and Decompression.

a. Compressing and Archiving Data to a ZIP File
The ZipOutputStream can be used to compress data to a ZIP file. The
ZipOutputStream writes data to an output stream in a ZIP format. A sample procedure is

given below.

import Jjava.io.*;
import java.util.zip.*;
public class ZipStreamCS ({
static final int BUFFER = 2048;
public static void main (String argv[]) {
try {
BufferedInputStream origin = null;
FileOutputStream dest = new
FileOutputStream("ZipStreamCS.zip") ;
CheckedOutputStream checksum = new
CheckedOutputStream (dest, new Adler32()):;
ZipOutputStream out = new
ZipOutputStream (new
BufferedOutputStream (checksum)) ;

byte data[] = new byte[BUFFER];

// get a list of files from current directory
File £ = new File(".");

// list of files to be zipped

80

String files[] = {"sample.bmp", "links.txt"};
// or retrieve all files in current directory, f.list();

for (int i=0; i<files.length; i++) {
System.out.println ("Adding: "+ files[i]);

FileInputStream fi = new
FileInputStream(files[i]);
origin = new BufferedInputStream(fi, BUFFER) ;

ZipEntry entry = new ZipEntry(files[i]);
out.putNextEntry (entry) ;
int count;
while ((count = origin.read(data, 0, BUFFER)) != -1) {
out.write (data, 0, count):;
}
origin.close() ;
}
out.close();
} catch (Exception e) {
e.printStackTrace () ;
}

}
} // ZipStreamCs

Figure 74. File compression code snippet.

b. Decompressing and Extracting Data from a ZIP File
The java.util.zip package provides classes for data compression and
decompression. The java.util.zip package provides a ZipInputStream class for reading

ZIP files. Below is the sample code to perform decompression:

import java.io.*;
import Jjava.util.zip.*;

public class UnZipStreamCS {
public static void main (String argv([]) {
try {
final int BUFFER = 2048;
BufferedOutputStream dest = null;
FileInputStream fis = new
FileInputStream(argv([0]) ;
CheckedInputStream checksum = new
CheckedInputStream(fis, new Adler32());
ZipInputStream zis = new
ZipInputStream (new
BufferedInputStream(checksum)) ;
ZipEntry entry;

while ((entry = zis.getNextEntry()) != null) {
System.out.println ("Extracting: " +entry);
int count;
byte datal[] = new byte[BUFFER];

// write the files to the disk
FileOutputStream fos = new
FileOutputStream (entry.getName ()) ;

81

dest = new BufferedOutputStream(fos,
zlis.read(data, O,

while

}

((count =
dest.write (data, O,

dest.flush () ;
dest.close () ;

}

zis.close();

} catch (Exception e)

}

} // UnZipStreamCs

{

e.printStackTrace () ;

BUFFER) ;
BUFFER)) != -1) {

count) ;

Figure 75.

File Decompression code snippet.

c ZIP File Properties

The ZipEntry class describes a compressed file stored in a ZIP file. The

various methods contained in this class can be used to set and get pieces of information

about the entry. These methods include retrieving information such as original size,

compressed size and time of compression. This class is used by the ZipFile and

ZipInputStream to read ZIP files, and the ZipOutputStream to write ZIP files.

2. Gzipping Objects

The ZIP format is record-based, thus suitable for file-based compression, but is

not suited to manipulate objects or data streams. The GZIP is more appropriate as it

operates on a single stream of data making it well suited for transferring large objects

over sockets. The objects are compressed before sending across the network and

decompressed upon arrival at their destination.

S/N | Class Type Description
An input stream filter for reading compressed data in the
1. | GZIPInputStream | Class | 5-\5%ie format
An output stream filter for writing compressed data in the
2. | GZIPOutputStream | Class | ~-5aiceoo oy
Table 22. Classes for Object Compression.

// write to GZipMission object to gzipped file

import java.io.*;

import Jjava.util.zip.*;

public class GZipSaveMission {
public static void main (String argv([])

throws Exception {

82

// create some objects
GZipMission auv _dayl = new GZipMission("23 Mar 2004", 1, 2);
GZipMission auv_day?2 new GZipMission ("24 Mar 2004", 29, 67);

// serialize the objects auv_dayl and auv_day2
FileOutputStream fos = new FileOutputStream("gzip db");
GZIPOutputStream gz = new GZIPOutputStream(fos);
ObjectOutputStream oos new ObjectOutputStream(gz) ;

ocos.writeObject (auv_dayl) ;
cos.writeObject (auv_day2) ;

oos.flush () ;
oos.close () ;
fos.close () ;
} // main
} // GZipSaveMission

Figure 76. Object Compression code snippet.

// read from gzipped GZipMission object

import java.io.*;
import java.util.zip.*;

public class GZipReadMission {
public static void main (String argv([]) throws Exception{

//deserialize objects “auvl” and “auv2”
FileInputStream fis = new FileInputStream("gzip db");
GZIPInputStream gs = new GZIPInputStream(fis) ;
ObjectInputStream ois new ObjectInputStream(gs) ;

GZipMission auvl = (GZipMission) ois.readObject () ;
GZipMission auv?2 (GZipMission) ois.readObject () ;

//print the records after reconstruction of state
auvl.print () ;

System . out .println (V=cssessmmmmesesssssssssssssssss==s W) g
auv2.print () ;

olis.close () ;
fis.close () ;
} // main
} // GzipReadMission

Figure 77. Object Decompression code snippet.

3. Java Archive (JAR) Format
The JAR format is based on the standard ZIP file format but adds an optional
manifest file. The java.util jar package provides classes for reading and writing JAR

files. Using the classes provided by the java.util.jar package is similar to using the

&3

classes provided by the java.util.zip package shown earlier. A sample manifest file is

given in Figure 78.

Manifest-Version: 1.0
Main-Class: AMVW

Class-Path:
../lib/xml-apis.jar

../lib/Jama.jar
../1lib/js.jar

max-heap-size: 256m

../lib/smack.jar

../lib/smackx.jar ../lib/xercesImpl.jar
../lib/xmlParserAPIs.jar ../lib/xalan.jar

$JAVA HOMES%/jre/lib/ext/vecmath.jar $JAVA HOMES%/jre/lib/ext/j3dcore.jar
$JAVA HOMES%/jre/lib/ext/j3dutils.jar ../lib/dis-java-vrml.jar
../lib/j3d-org.jar
../1lib/vlc uri.jar ..

../lib/xj3d-all.jar ../lib/uri.jar
/lib/httpclient.jar

Figure 78. Sample Manifest.mf file for Java Archive.

4. Checksums

Checksums can be used to mask corrupted files or messages. Once a compressed

file has been transferred to the remote machine, the checksum value can be used to detect

whether the file was corrupted during the transmission.

The Adler32 and CRC32 classes in the java.util.zip package, which implement

the java.util.zip. Checksum interface, are used to compute the checksums required for data

compression. The Adler32 algorithm is normally preferred as it faster than the CRC32

and it is as reliable. The getValue() and reset() methods are provided to access the current

checksum value or reset it to the default.

S/N | Class Type Description

Represents a data checksum. Implemented by the

1 Checksum Interface classes Adler32 and CRC32

5 Adler3?2 Class Used to compute the Adler32 checksum of a data
stream

3 CheckedInputStream Class An mpu_t stream that maintains the checksum of the
data being read.

4 CheckedOutputStream | Class An outp_ut str(?am that maintains the checksum of the
data being written

5 CRC32 Class Used to compute the CRC32 checksum of a data
stream

Table 23. Classes for Checksum.

84

C. BINARY TO TEXT ENCODING AND DECODING
Embedding the byte values from the binary data file into an XML document will
not work due to the XML specification's valid-character restriction and character

encoding and decoding as the document travels from its source to its parsing destination.

According to the XML 1.0 specification, valid character values include the
following ranges of hexadecimal values: 0x9, 0xA, 0xD, 0x20-0xd7ff, 0xe000-0xftfd,
and 0x10000-0x10ffff. The specification also states that all processors are required to
automatically support (and detect) the UTF-8 and UTF-16 encodings. Therefore if one of
these two encodings is used when serializing XML documents, there is no need for an

XML declaration (unless you need to specify version or standalone information):

<?xml version="1.0" encoding="UTF-8"?2>
<!-- the text ‘encoding="UTF-8"' is optional -->

The ISO/IEC 10646 standard published in 1993 by the International Standards
Organization (ISO) specifies the encoding of characters used to convert every written
language into binary form to provide compatibility between multilingual encodings and
most existing software applications that use the ASCII standard. The ISO has defined
many transformations including the UTF-8 and UTF-16 encodings.

1. Brute-Force Approach

The direct approach to solving this encoding problem converts each binary data
byte into its two-character hexadecimal representation. In doing so, the 256 possible byte
values are encoded using two characters from the hexadecimal character set “0-9”, “A-

F”:

byte[] buffer readFile (filename) ;
int readBytes = buffer.length;
StringBuffer hexData = new StringBuffer () ;
for (int i1i=0; i < readBytes; i++) {
hexData.append (padHexString (Integer.toHexString(0xff & buffer[i]))):
}

A StringBuffer rather than plain String concatenation is used to build the binary
buffer's resulting character representation in order to avoid the unnecessary cost of
repeatedly creating and then releasing String class instances. A possible way to accelerate

the conversion is to use a hexadecimal number lookup table as shown below:
85

public final static String[] hexLookupTable = { "00", "01", .. ,"fe",
"ff" };

for (int i=0; i < readBytes; i++) {
hexData.append(hexLookupTable [0xff & buffer[i]]);
}

With this approach, for each byte in the original binary file, two characters are
generated in the resulting XML document. Algorithmatically, this approach is reasonably
efficient. One of the disadvantages of this approach is that it wastes network bandwidth,

which is an important consideration when transferring large binary data files.

2. Base-64 Encoding Approach
The next approach is the Base-64 encoding conversion. Developers have
historically used this approach to encode binary data within mail messages before

transporting them through mail servers that allow relatively short lines of 7-bit data units.

The Base-64 encoding algorithms is described in Request for Comments (RFC)
2045 - Multipurpose Internet Mail Extensions (MIME). To encode the data, each 3-byte
sequence parcels into four 6-bit numbers. Each 6-bit number is then replaced by the
corresponding US-ASCII character in the Base-64 alphabet to represent binary data and
character ‘=" for padding (i.e., byte stream's last one or two byte portions). The character
set is “A-Z, a-z, 0-9, +, and /”. Carriage Return Line Feed (CRLF) characters are inserted
into the output stream to keep the line lengths less than 76 characters, this line length

restriction does not apply when transmitting binary data as part of an XML document.

byte? bytel bytel

A A A
4 s s !

0101 1010|0011 1111 ({0100 1111 | 8-bit

010110 (100011 | 111101 [001111 | &-bait

\. A A A J
e N e e

Char 3 | Char 2 | Char 1 | Char 0

Figure 79. Base-64 encoding illustrated 3-byte stream converted to four 6-bit data units.

86

The advantage of this approach over the brute force method is that it encodes
three data bytes using four characters resulting in an encoded document that is only 33
percent larger than the original binary document rather than 100 percent longer using the
previous method. Compared to the previous approach, 1.33 characters per byte are

generated instead of two characters per byte.

Another advantage of Base-64 is that it has been widely used and many
implementations are available freely. As an example, this thesis uses the already available
class org.apache.soap.encoding.soapenc.Base64 in the Apache SOAP 2.3.1
implementation. In terms of conversion performance, the approach is fast since it consists
of binary shift and table lookup operations. A sample base-64 encoded document is
given below. The base-64 encoded content is stored in the CDATA section of the XML

document.

<?xml version="1.0" encoding="UTF-8"?2>
<AgentJabber>

<AgentPayload>
<! [CDATA[H4sIAAAAAAAAAO3QsUODQRhE4Tsw4FKogBxyenIRboaABmjquDNISKsXTPZWaOb
TybDRO//2/vW53PZyWpbn/fe6£6/rsqzL+£Z+/Vj+tv5++y77twl/XC4//2zbtnRd9z+3nee
JBWA9AOgBQA8AegDQA4AeAPQACACAPQDOAUAPAHOAOAOAHGD0AKAHgGPHhCYKNjXbPsd4pW++
UrXfK1jt1652y9U7ZeqdsvV023ilb75Std8rWO2XrnbL1TtnGO81ADWB6ANADgB4A9ACgBwWA
9A0gBQA8AegDQA4AeAPQAOCACAPQDOAUAPAHOAOAOAHgDOAKAHADOAG6AFADWB6AL jb5SgMHADO
A6AFADWB6ANADgB4A9ACgBwWA9AOgBQABAegDQA4AeAPQACACAPQDOAUAPAHOAOAOAHGDOAKA
HADOA6AFADWDjwzrBxka7513jv1K13ytY7ZeudsvVO2XgnbL1Ttt4pW++UrX£K1jt1652y9U7
Zeqds451moAcAPQDoAUAPAHOAOAOAHgGDOAKAHADOA6AFADWB6ANADgB4A9ACgBWA9AOgBQAS
AegDQA4AeAPQAOCACAPQCctvnoAUAPAHOAOAOAHgDOAKAHADOAG6AFADWB6ANADgB4A9ACgBwWA
9A0OgBQA8AegDQA4AeAPQACACAPQDOAUAPAHOAOAPA+HA /wcZGu+dY75Std8rWO2XrnbL1Tt1
6p2y9U7beKVvv1K13ytY7ZeudsvV02XgqnbOOdZgAHADOA6AFADWB6ANADgB4A9ACgBWASAOg
BQA8AegDQA4AeAPQAOCACAPQDOAUAPAHOAOAOAHgGDOAKAHADOAPG3z0QOAHgDOAKAHADOAGAF
ADwB6ANADgB4A9ACgBwA9AOgBQAS8AegDQA4AeAPQACACAPQDOAUAPAHOAOAOAHGD0AKAHGPH
hYYKNjXbPsd4pW++UrX£fK1jt1652y9U7ZeqdsvV023i1b75Std8rWO2XrnbL1TtnGO81ADWB
6ANADgB4A9ACgBwASAOgBQABAegDQA4AeAPQACAeADO2mddVKVQAA] | >

</AgentPayload>
</AgentJabber>

Figure 80. Sample XML document with base-64 encoded data in CDATA section.

3. Complex and Proprietary Algorithms

For more efficient binary to text encoding, complex algorithms such as Huffman
can be employed. At the same time, it is possible to treat binary to text encoding as a
form of encryption through the use of a complex and proprietary encoding scheme.
Similarly encryption algorithms can be introduced during the compression process.

Thus, receiving clients will require a proper implementation of the encoding algorithm to

87

decode the binary data from the XML messages necessitating the deployment of
dedicated clients or libraries. This also brings into play the issues of software updates,
correct implementation/program invocation and efficient deployment of new versions.

This is opposed to Base-64 encoding, which is well-known and easily implemented.

In the article “Transfer binary data in an XML document” [Pentakalos 2001], the
author implemented a simple Huffman encoding algorithm that uses the binary data set
statistical properties to compress the encoded character stream. For many data sets, if a
histogram is constructed for each byte value's occurrence frequency within the data set,
an uneven distribution can be observed, where some bytes are used frequently while

others rarely or not at all.

A properly customized Huffman coding can take advantage of this statistical
property to reduce the average code length. Most frequently used bytes are represented in
single characters or short character sequences, and the least frequently used with longer
character sequences. For cases where the distribution is highly skewed towards a byte
value subset, this encoding approach is effective, but it is not as effective for cases where

the distribution is fairly uniform.

D. MESSAGING PROTOCOLS

1. Simple Mail Transfer Protocol (SMTP)

The objective of Simple Mail Transfer Protocol (SMTP) is to transfer mail
reliably and efficiently. SMTP is independent of the particular transmission subsystem
and requires only a reliably ordered data-stream channel. Mail via SMTP is a widely

supported capability that can be used for messaging across firewalls.

An important feature of SMTP is its capability to relay mail across transport
service environments. A transport service provides an inter-process communication
environment (IPCE) that may cover one network, several networks, or a subset of a
network. It is important to realize that IPCEs do not have a one-to-one relationship with
networks. A process can communicate directly with another process through any
mutually known IPCE. Email is one example of an application relying on IPCEs. Mail

can be communicated between processes in different IPCEs by relaying through a process

88

connected to two (or more) IPCEs. More specifically, mail can be relayed between hosts

on different transport systems by a host on both transport systems.

2. File Transfer Protocol (FTP) and Secure FTP (SFTP)

The objectives of FTP are 1) to promote sharing of files, 2) to encourage indirect
or implicit (via programs) use of remote computers, 3) to shield a user from variations in
file storage systems among hosts, and 4) to transfer data reliably and efficiently. FTP,
though usable directly by a user at a terminal, is designed mainly for use by programs.
The FTP specification attempts to satisfy the diverse needs of users of maxi-hosts, mini-

hosts and personal workstations, with a simple and easily implemented protocol design.

Files being transferred by FTP are vulnerable to man-in-the-middle attacks where
data is intercepted and altered before sending it on its way. Various products have been
developed to resolve the security problems with FTP. Some SFTP products use Secure
Socket Layer (SSL) algorithm to perform the encryption, however, worth noting is that
this approach should not be confused with the common use of SSL for browser-based file
transfer encryptions. SSL by itself is limited in its capabilities. FTP and SFTP allow users
to change directories, list directories, and grab entire batches and directories of files in
one fell swoop. SSL is generally used for getting files, and is rather limited when used
for putting batches of raw files in remote locations. While SSL is well-suited for short
online web-based financial transactions, since it requires no special client-side software
except a browser, it is not appropriate for large-scale batch file transfers due to the high

computation costs (and correspondingly long delay times) of encryption/decryption.

3. HyperText Transport Protocol (HTTP) Get/Post and Secure
Hypertext Transfer Protocol (HTTPS)

Currently, HTML forms allow the producer of the form to obtain information
from users. These forms have proven useful in a wide variety of applications in which
user input is necessary, however, this capability is limited because HTML forms do not
provide a way to ask the user to submit files of data. Service providers requiring files
from the user have had to implement custom user applications. Since file upload is a

feature that will benefit many applications, this thesis proposes an extension to HTML to
89

allow information providers to express file upload requests uniformly, and a MIME
compatible representation for file upload responses. Also included is a description of a
backward compatibility strategy that allows new servers to interact with the current

HTML user agents.

HTTPS is a secure message-oriented communications protocol designed for use in
conjunction with HTTP. HTTPS is designed to coexist with HTTP's messaging model
and to be easily integrated with HTTP applications. Syntactically, Secure HTTP
(HTTPS or S-HTTP) messages are the same as HTTP, consisting of a request or status
line followed by a header and body. However, the range of headers is different and the
bodies are typically cryptographically enhanced. HTTPS messages, just as the HTTP

messages, consist of requests from client to server and responses from server to client.

HTTPS does not require client-side public key certificates (or public keys), as it
supports symmetric key-only operation modes. This is significant because it means that
spontaneous private transactions can occur without requiring individual users to have an
established public key. URLs that begin with 'https' are handled using the SSL algorithm
(now commonly termed as Transport Level Security - TLS) that sets up a secure,
encrypted link between a Web browser and a Web server. SSL is the industry standard
protocol for secure, web-based communications and transactions and is implemented as

an optional protocol layer that fits between the TCP and HTTP protocol layers.

4. Messaging Queue System (e.g., Java Messaging Service)
The Java Message Service (JMS) API is an API for accessing enterprise
messaging systems. It is part of the Java 2 Platform, Enterprise Edition (J2EE).

JMS is designed to make it easy to write business applications that
asynchronously send and receive critical business data and events. It defines a common
enterprise messaging API that can be easily and efficiently supported by a wide range of
enterprise messaging products. JMS supports both message-queuing and publish-

subscribe styles of messaging.

JMS messages are asynchronous requests, reports, or events that are consumed by

enterprise applications, not humans. They contain vital information needed to coordinate

90

these systems and contain precisely formatted data describing specific business actions.
Through the exchange of these messages, each application tracks the progress of the

enterprise.

S. Jabber/Chat Using Extensible Messaging and Presence Protocol
(XMPP)

Jabber is a set of streaming XML protocols and technologies that enable any two
entities on the Internet to exchange messages, presence, and other structured information
in near-real time. Jabber is an open, platform independent messaging framework based on
XML for real-time extensible messaging and user presence. The basic Jabber application
is an instant messaging (IM) network that offers functionality similar to legacy IM
services such as AIM, ICQ, MSN, and Yahoo. However, Jabber is more than just IM, and
Jabber technologies offer several key advantages. The Internet Engineering Task Force
(IETF) is currently formalizing the core XML streaming protocols as an approved instant
messaging and presence technology under the name of XMPP. The following sections
explore the use of Jabber protocol for both human and machine message passing such as

agent-to-agent communications.

S/N | Protocol Pros Cons
1. Email (SMTP, Microsoft | Open or proprietary Does not guarantee timely
mail or similar) standards. delivery
Queuing is built-in. Bad for machine-to-machine, or
machine-to-human
Good for human-to-human communications.

communications.
Data is either stored in the
message body or as an
attachment. Additional
processing required to extract
the data from attachments.

Text-only data types. Depending
on applications, rich-text and
HTML formats may be
supported.

By default, message expiry
feature is not available.

2. File Transfer Protocol Open standards. RFC 959. To prevent hackers from
(FTP) and Secure FTP exploiting anonymous/guest
Queuing is not available; i.e., | users, anonymous/guest user
no built-in resend mechanism | IDs are turned off. User

91

Extensible Messaging
and Presence Protocol
(XMPP)

Built-in queuing mechanism.

Near-real time performance
using TCP protocol.

Simple “publish-subscribe”
mechanism can be achieved
through chat-rooms.

Ease of implementation.

Messages are XML-based.

S/N | Protocol Pros Cons
to handle cases when the ID/password is either hard-
receiving party is not coded or via operating systems’
available. specific means of
authentication. The latter is
Near-real time performance good provided the user
using TCP protocol. environment is homogeneous.
Message expiry not available.
3. HyperText Transport Open standards. RFC 1867. Session-less.
Protocol (HTTP)
Get/Post and Secure Built-in queuing mechanism. | Message expiry not available.
HTTP (HTTPS)
Near-real time performance
using TCP protocol.

4, Messaging Queue Sun provides a reference Vendor-specific (IBM Message
System (e.g., Java implementation for its Java Queue or Microsoft Message
Messaging Service) Messaging Service (JMS) Queuing, MSMQ),

specifications.

Built-in queuing mechanism. Proprietary implementations;
e.g., SonicMQ.

Support interchange of Java Requires in-depth knowledge.

objects (JMS only).
Open-source implementation

“Publish-subscribe” available (JBoss), but pay for

mechanism. support.

Message expiry built-in.

Supports data types.

Provides methods and

expectations for Quality of

Service (Q0S).

5. Jabber/Chat using Open standards. RFC 2779. Presence needs to be

established at start time.
Text-only data types.
Workaround by embedding the
data type information within the
XHTML stanza.

Message expiry not available.

Table 24.

92

Comparison of messaging systems and their protocols.

E. MESSAGE REPRESENTATION
Traditional messaging systems (e.g., email) store binary data as an attachment to
the message subject/body. With XMPP, all messages are XML-based making it
necessary to find ways to send binary data via this protocol. The XMPP protocol
includes a base protocol and many optional extensions typically documented as Jabber
Enhancement Proposals (JEPs).
1. Jabber Enhancement Proposals
a. Private Data (JEP-49)
JEP-49 is a mechanism to allow users to store arbitrary XML data on an
XMPP server. Each private data chunk is defined by an element name and XML

namespace. Example private data:

<color xmlns="http://example.com/xmpp/color">
<favorite>blue</blue>
<leastFavorite>puce</leastFavorite>
</color>

A Jabber client can store any arbitrary XML on the server side by sending
an ig chunk of type "set" to the server with a query child scoped by the jabber:iq:private
namespace. The query element may contain any arbitrary XML fragment as long as the
root element of that fragment is scoped by its own namespace. The data can then be
retrieved by sending an ig of type "get" with a query child scoped by the
jabber:iq:private namespace, which in turn contains a child element scoped by the
namespace used for storage of that fragment. Using this method, Jabber entities can store
private data on the server and retrieve it whenever necessary. The data stored might be
anything, as long as it is valid XML. One typical usage for this namespace is the server-

side storage of client preferences.

b. Extensible HyperText Markup Language (XHTML) (JEP-71)

The JEP-71 proposal defines an adaptation of XHTML 1.0 to provide
alternative formatting for a text message. It provides the ability to send and receive
formatted messages using XHTML. This pattern is familiar from email, wherein the
HTML-formatted version of the message supplements, but does not supersede the text-
only version of the message. In Jabber communications, the meaning (as opposed to

formatting) of the message must always be represented as best as possible in the normal
93

body child of the message element. Formatting is then provided by the XHTML

representation of the message content within a html wrapper element.

<message>
<body>hi</body>
<html xmlns='http://jabber.org/protocol/xhtml-im'>
<body xmlns='http://www.w3.0rg/1999/xhtml'>
<hl>hello</h1>
</body>
</html>
</message>

These two JEPs provide two possible ways to package binary data:
o Embed a hyperlink to binary data via out-of-band (0ob) messages.
o Embed the binary data in a CDATA section.

Even though these two methods could be used to represent binary data, one is not
necessarily a good substitute for another. Alternatively, these methods can be applied to

complement each other.

Jabber message packet

Header R Sample payloads

Subject and Body | -

Payload i

Figure 81. Packaging binary data in a Jabber message.

2. Embed Hyperlink to Binary Data via Out-of-band (oob) Messages

An out-of-band message is a message x extension that is embedded in a standard
Jabber message packet (usually a message of type normal). An oob message contains
information, typically a ur/ link that clients can use to conduct direct application-to-
application data transfer that bypasses the normal Jabber message routing via the Jabber

server. The link typically points to a web or FTP server.

94

Sample message format sent by Agent 1

Description and <auv
: <ig type='set' id='file 1'
URL to b!nary file to='recipient@surfaris.cs.nps.mil/ home' >
is stored in <oob> <guery xmlns='jakber:ig:ook'>
message tag <urlzhttp: //files.server/sample . bmp</urls>
<desec>Here is the image file.</desc>
</ query>
</ig>
Agent 1 Agent 2
Extract URL data from
Storage <oob> message tag and
e retrieve binary data via
(files.server) HTTP or F;I'P from stor,age
server “files.server

Figure 82. Overview on file transfer using out-of-band (oob) message.
Out-of-band messages are typically used to arrange transfer of large files that are

impractical to route via the server. A sample oob message is given below:

<iq type='set' id='file 1' to='recipient@surfaris.cs.nps.mil/home'>
<query xmlns='jabber:ig:oob'>
<desc>Here is the image file u requested.</desc>
<url>http://files.nps.mil/sample.bmp</url>
</query>
</ig>

Although this method reduces network traffic on the Jabber server (note: actual
traffic required to transport the binary data from one location to another is still the same),
it introduces a point of failure to the transport mechanism; if the storage server is offline,
there is no way to retrieve the data. This problem can be circumvented through the
introduction of multiple hyperlinks to the same binary data; i.e., each hyperlink pointing

to different storage locations of the same file.

<iq type='set' id='file 1' to='recipient@surfaris.cs.nps.mil/home'>
<query xmlns='jabber:ig:oo0b'>
<desc>Here is the image file u requested.</desc>
<url>http://fileserverl.nps.mil/sample.bmp</url>
<url>http://fileserver2.nps.mil/sample.bmp</url>
<url>http://fileserver3.nps.mil/sample.bmp</url>
</query>
</ig>

95

3. Embed Binary Data in CDATA Section

In order to reduce the time required to retrieve data from another location, binary
data can be embedded within the XML document. This allows the recipient to process
the data immediately upon receipt. By making use of compression and base-64 encoding
techniques discussed earlier, it is possible to reduce the size and at the same time embed
binary data in an XML message. To add another layer of reliability to this method,
multiple hyperlinks to storage locations are added. This is similar to the technique
discussed above. If the encoded/compressed data was corrupted during its delivery, the
recipient will still be able to retrieve it from a storage server via FTP or HTTP. (Note:
Since some firewalls block out FTP traffic, therefore it is better to include links to both
FTP and HTTP servers.) At the same time, a maximum file size limit can be introduced
to prevent overloading the Jabber server. Thus for a large file (e.g., larger than 1MB), the
CDATA section will not be populated with the encoded binary data, and hyperlinks will
be used to retrieve the file. Upon receipt, the client spawns an HTTP or FTP process to
retrieve the file from the storage location. A sample XML message (without the Jabber
message wrapper) and the function to perform base-64 encoding and compression are

given Appendix E.

<AgentJabber>
<!--Payload 1-->
<AgentPayload checksum="1234567"
content-transfer-encoding="base-64"
content-type="application/x-zip-compressed"
desc="The filename is [GAMMA.bmp]"
filename="GAMMA apple.bmp"
filesize="48586"
timestamp="20040026114827">
<! [CDATA[H4sIAAAAAAAAAO3QsUODQRhE4TswidFKogBxyenIRboaABmjquDNISKsXTPZWaOb
TybDRO//2/vW53PZyWpbn/fe6£6/rsqzL+fZ+/Vi+tv5++y77twl/XC4//2zbtnRd9z+3nee
JBWA9AOgBQABAegDQA4AeAPQAOACAPODOAUAPAHOAOAOAHGDOAKAHGPHhCcYKN) XbPsd4pW++
UrXfK1jt1l652y9U07Z2eqdsvV02311b75Std8rWO2XrnbL1TtnGO81ADWB6ANADgB4A9ACgBWA
OAQAPA+HA/wcZGu+dY75Std8rWO2XrnbL1Ttl6p2y9U7beKVvv1iK13ytY7ZeudsvV02XgnbO
OdZgAHADOAG6AFADWB6ANADgB4A9ACGBWAIAOgBOASAegDQA4AeAPQAOACAPQDOAUAPAHOAOA
OAHgDOAKAHADOAPG3z0QOAHgDOAKAHADOAGAFADWB6ANADgB4ASACgBWASAOGBOABAegDQA4
AeAPQAOACAPQDOAUAPAHOAOAOAHgDOAKAHgPHhYYKNJXbPsd4pW++UrXfK1jt1652y9U7Zeq
dsvV0231i1b755td8rWO2XrnbL1TtnGO81ADWB6ANADgB4ASACgBWASAOgBQA8AegDQA4AcAP
QAo0AeAb02mddvKvQAA]] >
<url>http://www.google.com/images/logo.gif</url>
</AgentPayload>
</AgentJabber>

Figure 83. Sample XML message with encoded binary data.

96

S/N | Name Type Description
1. | AgentJabber Element | Root.
2. | AgentPayload Element | One or many <AgentPayload> elements under <AgentJabber>
3 checksum Attribute Numeric checksum value for the byte data stored within CDATA
section.
4. conteqt—transfer— Attribute | Technique used to encode binary data in CDATA section. Valid
encoding values are “base64” and “Huffman”.
5 content-type Attribute | Details o_f binary data that allows the correct application to
process it.
6. | desc Attribute File description.
filename Attribute | Original file name.
8. | filesize Attribute | Original file size in bytes.
9 timestamp Attribute | Date/time value of file c_reation in “yyyymmddhhmmss” format;
e.g., 20040115235959 is 15 Jan 2004 at time 23:59:59.
10. | CDATA Element | Base64 encoded binary data.
11. | url Element | Defines the location where the binary file/data can be found
Table 25. XML tagset to define the XHTML payload in the Jabber message.
F. DESIGN AND IMPLEMENTATION

1. Overview

This section explores possible ways to implement chat clients that enable the data

exchange of both messages and binary files using Jabber protocol. The three approaches

covered in this section are: web-based, standard client and customized Jabber client. This

section discusses how an application that makes use of Jabber protocol for

communications can be implemented. Technical details on the use of compression and

base-64 encoding to facilitate message exchange of both textual (e.g., mission scripts)

and non-textual (e.g., images) data are also covered.

97

e e
storage logging
Storage for uploaded
hinary data
Jabher pratocol
HTML form (peer-to-peer or
. HTTF protocol Serviet on) Jabber
in Internet | gy 4—““ oom type)
web server server
browser
Message subject
and bady are keyed-
inta a pre-formatted Package data and
HTML page perform a HT TP
POST ar retrieve
hinary data via
HTTP GET Jabber protocol
Customized .
. | s————]p| Jabber client
Jabber client
Able to display bath Able to display standard
standard Jabber message Jabher message
and also processidisplay infarmation (e.g. subject
hinary data, if any and hody)

Figure 84. Overview of the three approaches to Jabber instant messaging.

2. Introduction to Jabber Protocol

A full Jabber ID takes the form [user name]@/[Jabber server]/[resource], similar
to an email address. A groupchat/chat room takes the form: /chatroom/group
name]@/[Jabber groupchat server]/[nickname]. There are three core Jabber protocols,

namely:

o Message. This is responsible for the delivering of data. Most of the time,
it accounts for the bulk of the packet traffic on the Jabber network. These
messages can resemble full-scale email messages or form line-by-line
messages in chat sessions. This protocol uses the message packet. A

sample message packet is given below:

<message xml:lang=“en-us”
to=“savagel@conference.xchat.movesinstitute.org”
type=“groupchat”>

<body>This is a test message</body>

</message>

Figure 85. A sample “groupchat” message to “savage” chatroom.

98

<message xml:lang=“en-us”
to=“auvrobot@surfaris.cs.nps.navy.mil”
type=“chat”>
<subject>This is the subject</subject>
<body>This is a test message</body>
</message>

Figure 86. A sample chat message to “auvrobot” Jabber user.

S/N | Name Type Description

1. message Element | Application to be invoked from toolbar.

2. | xml:ilang Attribute | Language used.

3 to Attribute | Receiver of message packet, i.e., another Jabber user
' or Jabber server.

4 type Attribute | An enumeration to indicate message type. Possible
' values are groupchat and chat.

5 subject Element | Message subject. This is available for chat messages
' only.

6. | body Element | Message body.

Table 26. Message packet types and protocol.

o Presence. The basic presence protocol is used in presence update and
presence subscription management. Presence update is to inform people
of the user’s current presence state. Presences subscription management
allows people to subscribe to another user’s presence update packet and
control who has access to their own presence. This protocol uses the
presence packet. A sample presence packet is given below:

<presence from=“auvrobot@surfaris.cs.nps.navy.mil”
to=“savagelconference.xchat.movesinstitute.org”
type= “available”>
<status>I am now logged on to chatroom.</status>
<priority>10</priority>
<show>chat<show>
</presence>
Figure 87. A sample “presence” packet from “auvrobot” to “savage groupchat” server.

99

S/N | Name Type Description

1. Presence Element | Application to be invoked from toolbar.

2. | from Attribute | Sender of presence packet.

3. |to Attribute | Receiver of presence packet, normally a Jabber server.
4. | type Attribute | An enumeration to indicate presence status. Possible

values are “available”, “unavailable”, “subscribe”, “un

subscribe”, “subscribed”, “un subscribed” and “error”.

5. | status Element | User-definable free-form text description to be
displayed.
6. | priority Element | Non-negative integer value to delivery priority for this

current resource. Higher numbers have higher priority.

7. | show Element | Jabber clients typically use this to display presence
icons, sound or alerts. If no show state is indicated,
the user is in normal or online state. The other
possible states are chat, away, xa (extended away)
and dnd (do not disturb).

Table 27. “Presence” packet types and protocol.

o Info/Query (IQ). This handles everything else that does not fall under a
Message or Presence packet. It serves as a catch-all protocol. Ifa
protocol is not sending a message, or managing presence, it is an IQ
protocol. IQ is a generic request-response protocol and it is designed to be
easily extensible with IQ extension protocols. An IQ packet may look like

the following:

<ig type='get’ to=’"handlerJID’>
<query xmlns='jabber:ig-auth’>
<username>auvcontrol</username>
</query>
</ig>

A typical Jabber session:
o Connect with a Jabber server (e.g., xchat.moveinstitute.org).

. Open a Jabber stream by logging in using user account “auvcontrol”,

password “auvpwd” on domain “xchat.moveinstitute.org”.

. Update presence status to “available”.

100

3. Web-based Jabber Client

The components required for this approach are a HTML form running on the
client’s Internet browser and a Java servlet on the web server to process, package and
send out the Jabber messages. An HTML form can be easily implemented using standard
HTML objects. Below are some examples of HTML objects used to generate the HTML

form:

<!-- Creates a single-line text entry control -->
<input type="text" name="edtSubject" value="Message Subject" size="30">

<-- Creates a file upload object with a text box and Browse button. -->
<input type="file" name="edtFile">

For a file upload to take place:
J The INPUT type=file element must be enclosed within a FORM element.

o A value must be specified for the NAME attribute of the INPUT type=file

element.
o The METHOD attribute of the FORM element must be set to post.

° The ENCTYPE attribute of the FORM element must be set to

multipart/form-data.

To handle a file upload, a server-side process must be running that can handle
multipart/form-data submissions. For this thesis, a Java servlet was implemented to parse
and package the uploaded HTML data to be sent out as an XHTML Jabber message. The
servlet uses the O’Reilly multipart file upload library (com.oreilly.serviet) to extract the
uploaded file data.

With a HTML form, user input can be validated before it is sent to the server. If
validation is performed on the client web browser, it is likely to be implemented using
Netscape’s JavaScript or Microsoft’s VBScript. JavaScript syntax is different from
VBScript. Since JavaScript and VBScript are specifically designed to work in browsers,
they do not include features that are normally outside the scope of scripting, such as file

access and printing. JavaScript is preferred for validation code due to compatibility and

101

consistency issues, especially VBScript on different browsers. Specifically, while
VBScript is fully supported by Microsoft Internet Explorer, the same cannot be said for

other browsers.

At the time of this thesis, a “send-only” HTML form has been developed.
Therefore the user will still require a Jabber client to view incoming Jabber messages. A

possible way to implement a message receive module in the Internet browser is as

follows.

o Modify the servlet to listen for incoming messages from one or more chat-
rooms or JIDs.

o Upon receipt of Jabber messages, convert them to HTML format (include
date/time for easy reference). This is to be displayed within a HTML
frame on the client Internet browser.

o HTML is for display purposes, it does not have the means to actively

listen for updated web pages. Thus a simple polling mechanism is
required. This example causes the browser to reload the document every

five seconds, but it causes unnecessary refresh on the web page.

<meta http-equiv="refresh" content="5; ">

Steps involved in sending a message via the web-based Jabber approach:

Client:
o Access to Jabber-enabled website using standard Internet browser.
o Key-in required data in the HTML Form.
Server:
o Servlet receives posted HTML data and files, if any.
o Re-package HTML data to XHTML Jabber format.
o Get list of recipients from configuration file.
° Log into Jabber server.
o Send packaged data as Jabber message to recipients.

102

Storage for uploaded files

e

HTTF POST of hoth
data and files using
HTTF protacal

HTML form
in Internet
browser

Key-in eventin

Data and Files via HTTP-Jabber Protocol

Jabber
Serviet on protocol
web server < >

Jabber
server

Unpack incoming

Package HTML data
and files into XHTML
farmat and send out

HHTML Jabber
message and display
data and files

AUV
Workbench

Audiblefvisual

pre-formatted event alert
HTML page
Cperatar Commander
Figure 88. Data and file transfer via HTTP-Jabber protocol.

i standard - Microsoft Internet Explorer _ o] x|
File Edit View Favorites Tools Help | &
Address |@ http://timah:8080/jabberX/xtc_standard.htm j Go

e ——————on

To : Isavage@oonferenoe.xchat.movesinstitute.org h
Subject : [This is the subject

This is the message body.
Body:

This is the XHTIML portion of message.
XHTML:

Send | Clear ‘
Figure 89. Sample HTML form for posting of data.

103

‘2l Embed Binary Data - Microsoft Internet Explorer _ o] x|

File Edit View Favorites Tools Help | &
Address |@ http://timah:8080/jabberX/xtc_binary.htm j Go
- = - =
Embed Binary Data

To : Isavage@GonferenGe.xchat.movesinstitute.org h

Subject : |

Body:

1. I Browse... Desc Ifile here 1
Binary File Data: 2. I Browse... Desc Ifile here 2
Send | Clear ‘

Figure 90. Sample HTML form for posting of data and files.

§ AUV Workbench - Event Monitoring - Microsoft Internet Explorer
File Edit View Favorites Tools Help

Address I@ http://timah:8080/jabberX/xtc_event.htm

I e e R il
AUV Workbench - Event Monitoring

A

To : Isavage@Gonferenc.‘e.xchat.movesinstitute.org

Target Type: [Mine -

Location : X: R | ‘oz | \
Send | Clear ‘

Figure 91. Sample HTML form for Target Events.

4. Standard Jabber Client

Standard Jabber clients are only able to send and receive standard Jabber

messages (subject and message body). Certain clients (e.g., Rhymbox) have a “Console
interface that allows the user to key-in and send customized Jabber messages, however
the files still need to be compressed, binary-to-text encoded and packaged as XHTML

format before they can be sent out. The user needs to manually invoke the modules (if

104

any) that will perform the conversion, copy-and-paste the textual results into the
“Console” interface and then send it out. This process is tedious and diminishes the

usability of this technique of message exchange, especially when the load increases.

Steps involved in sending a message via the standard Jabber client approach:

Client:
o Log into Jabber server.
o Key-in message subject and body.
° Send to specific user IDs or chat-rooms.

= b9j2_dickdale - Chat _ =10 x|

W8 "5 D

File Profile History Block

b9i2_dickdale is offline (ast online: 2:20:49 PM) |

b9j2_dickdale N
Category : Web Server - IS
To : Don Mcgredo
From : Daryl Lee
Report @ Type bug report here.

@ Emoticons T Clear @ Font

Figure 92. Rhymbox Jabber client.

105

Data Jabber Protocol
Jabber
server
Jabber Jdahbber
protocal protocal
Diata only, no files Keyward parser to detect
can be sent relevant messages
Jabber AUV
Client Workbench
Key-in event in Audiblefvisual
Wessage Subject event alert
and Body
Ciperatar Commander

Figure 93. Data exchange using standard Jabber client.

5. Customized Jabber Client

A customized Jabber client can send and receive standard Jabber messages as well
as messages with embedded binary data. The customized client automatically packages
and sends out XHTML messages. It is also able to mimic an Internet browser and
perform a HTTP POST of data and files to a Jabber-enabled web site (i.e., deployed with
the servlet to receive posted data and files). This ability has been incorporated in the

customized Jabber client for this thesis.

Of the three proposed solutions, only the customized client is able to re-generate
the binary data either by decompressing and decoding the embedded data, or by
retrieving the file from a hyperlink (specified within ur/ tags). Once the data has been re-

generated, it invokes the module or application to display the data.

The third approach functions both as a backup for Jabber communications and as
a storage location for binary data that is referenced (in ur/ tags) in the Jabber XHTML
messages. Although the customized Jabber client is the most complex and takes the
longest to develop, it is the most flexible solution. To enable reuse, the customized client
that has been developed for this thesis is generic. Therefore it can be plugged into any

application for that requires text and binary data message passing.
106

Send Message

Subject: [Subject line

-Message Body

Mine found at location (100, 100, &)

Send-to JID: |savage@cunference.}{u:hat.mwesinatitute.nrg
List of files: |
File path URL: |hﬁp:ﬂsenrer1f

Figure 94. Customized Jabber client user interface to send data and files as Jabber message.

SIN| Message | From Received | Attachment
auvrohot@surfaris.cs.nps.naw.mil | This is atest message 2004-03-0618:21:18
auvrobot@surfaris.cs.nps.naw.mil |[There is a mine at location 1... |2004-03-06 18:21:46
auvrobot@surfaris.cs.nps.naw.mil [Another mine at15, 40, 50 2004-03-06 18:21:47
lee@surfatis.cs.nps.navy.mil Testmessage 1 2004-03-0618:22:06
lee@surfatis.cs.nps.navy.mil Testmessage 2 2004-03-0618:22:049
lee@surfaris.cs.nps.navy.mil Testmessage 3 2004-03-0618:22:11
auvcontrol@surfaris.cs.nps.navy.mil |(Connecting to jabber server... |2004-03-06 18:22:31
auvcontrol@surfans.cs.nps.navy.mil Target found at 10,10, 10 2004-03-06 182245
auvenv@suraris.cs.nps.navy.mil Targetfound at 15, 25,10 2004-03-0618:22:56
auvenv@suaris.cs.nps.navy.mil Ship found at 35, 25,10 2004-03-06 182319
chathot@surfaris.cs.nps.nawve.mil |Ship found at 100,100, 10 2004-03-0618:23:30
chatbot@surfaris.cs.nps.naw.mil [Ships found at 140, 150,10 2004-03-0618:23:36
chathot@surfaris.cs.nps.navemil |Targets found &t 140, 150,10 |2004-03-06 15:23:45
don@E@surfaris.cs.nps.naw.mil Test sample 1 2004-03-06 18:23:47
don@surfaris.cs.nps.nawy.mil Test sample 2 2004-03-0618:23:849
don@E@surfaris.cs.nps.naw.mil Testsample 3 2004-03-0618:24:04

00|~ [0 N e L0 kD —

[iu)

e
=

=
—_

Figure 95. Customized Jabber client user interface to display list of incoming Jabber
messages.

107

Event Criteria |

JID: | savagegiconference.xchat.movesinstitute.org

~Subject Keywords

mine, bomb, torpedo

~Body Keywords

nice, mine, homb, torpedo, location, cvnB2, snnt 2, ddgal

Figure 96. Customized Jabber client user interface — Event Monitoring Criteria.

Data and Files via both HTTP-Jabber and
Jabber Protocol
Storage for uploaded files
Sa—— Janoer Jabb
on abber
storage §§Q{J§; pratocal
web server < > server
Unpack incoming
Fackage HTML data FHTML Jabber
HTTP POST of both and files into XHTML message and display
data and files using format and send out data and files
HTTP protocol
Customized

Jabb AUV

a_ er Package data and Workbench
Client files inta XHTML

farmat and send out
I . Audiblefvisual I
Key-in event
event alert
Operator Commander

Figure 97. Data and file transfer via HTTP-Jabber and Jabber protocol.

The following table provides an overview of the three techniques discussed. For
this thesis, emphasis was placed on the customized client due to the need to integrate into
the AUV Workbench. The web-based solution using HTML form is also a viable

solution provided there is a way to perform “smart” refresh of posted messages.
108

S/IN Description Web-based Standard Client Customized Client

1. Components. HTML Form on client Standard client. Customized client.
Internet browser for Jabber server Message processing
posting of HTML data. communications. and Jabber
Java servlet on a web communications.
server to process
uploaded data and
communications with
Jabber server.

2. Message type. Standard subject-body Standard subject-body | Standard subject-body
message and complex message. message and complex
messages with messages with
embedded binary data embedded binary data.
(able to encode only).

3. Message validation. | Client-side using None. Customized user
JavaScript or at server- interface allows for
end. complex data

validation.

4. Protocol. HTTP-to-Jabber. Jabber only. Jabber and HTTP-to-
Jabber. The web-
based solution can
serve as a backup.

5. Direction of One-way — Able to send | Send and receive Send and receive

communications. message only. messages. messages.

6. Recipients per Able to specify multiple One recipient at a Able to specify multiple

message recipients. time. recipients.

7. Performance. Compared to the other Near-real time. Near-real time.
two, this is slower since it
is going through a web
server.

8. Deployment. Minimal or none. As Required. Periodic Required. Periodic
long as the client has software update. software update.
access to the web site.

9. Uses. Report submission. Human-human Human-human

Posting of
happening/events.

interactions.

Machine-machine and
human-machine
interactions.

Table 28.

6. Interior of a Jabber-enabled Agent

Comparison of the three approaches.

This section provides an overview of how the different pieces of technologies are

put together, using agents as an exemplar. Each agent makes use of its own unique Jabber

ID to identify itself within the Jabber network. There are two ways whereby the agents

can communicate. Peer-to-peer “chat” messages are used for dedicated agent-to-agent

109

communication; whereas “groupchat” messages are used to allow multiple agents to

listen to and react to messages posted on the chatroom. The “groupchat” feature is

similar to a “publish-subscribe”” mechanism.

Once the binary data has been extracted, it can be worked on by other processes

or saved in a database for archival purposes. Components of the agent interior are shown

in Figure 98 and described below.

1...N

Agent can be
connected
simultaneously to

multiple Jabber servers

Agent interior

Agent

Handle Jabber instant messaging

Jabber Server <

Jabber message packet

B N B A N e,
™
"

Jabber
communications

Message

! Packaging of message format
formatting

To reduce the size of the message

Compression and
Header decompression packet
Base-f4 encode To handle non-textual data e.g.
Body and decode images, audio and video
Payload Message Trigger alerts, other events or
- processing archive to databasefflat file
]] Read in settings e.g. watch
Configuration events and alerts
Figure 98. Interior of a Jabber-enabled agent.
a. Jabber Communications

This handles network communications for the Jabber protocol such as

login, joining chatrooms, initiating chat sessions and listening for messages.

b.

Message Formatting

Packaging of the message header and its payload is done in this module.

The message payload includes message subject, body and binary data, if any. This

module is responsible for packaging one or multiple files within the same Jabber

message. An example with two files is show in Figure 99.

110

<?xml version="1.0" encoding="UTF-8"?>
<agent-jabber>
<!--Payload 1-->
<agent-payload checksum="1234567"
content-transfer-encoding="base-64"
content-type="application/x-zip-compressed"
desc="Description here" filename="Tropical Card.svg"
filesize="573677"
timestamp="20040017184631">
<!'[CDATA[]]>
<url>http://serverl/Tropical Card.svg</url>
<url>http://server2/Tropical Card.svg</url>
<url>http://server3/Tropical Card.svg</url>
</agent-payload>
<!--Payload 2-->
<agent-payload checksum="1111111"
content-transfer-encoding="base-64"
content-type="application/x-zip-compressed"
desc="Description here" filename="Cheshire Cat.svg"
filesize="102457"
timestamp="20040017184631">
<! [CDATA[]]>
<url>http://serverl/Cheshire Cat.svg </url>
<url>http://server2/Cheshire Cat.svg</url>
<url>http://server3/Cheshire Cat.svg</url>
</agent-payload>
</agent-jabber>

Figure 99. Two files are packaged within the Jabber message.

C. Message Processing

The message generation process is done prior to sending. Upon receipt,
processes such as archival into database or flat file can be triggered, in addition to
invocation of programs to display the binary data; e.g., JPEG and GIF images. This
module determines whether the binary data will be embedded in the message. This is
based on a predetermined file size (e.g., IMB). This prevents overloading the Jabber
servers and in addition, certain administrators limit the message size. Therefore it is
advisable to send small-sized files via the Jabber protocol. The file data is only stored
within the CDATA section provided its size is less than the preset limit. Otherwise the
CDATA is left empty (See Figure 100), but the header information pertaining to the file,

such as file name and size, are kept in the message payload.

111

<?xml version="1.0" encoding="UTF-8"?>
<agent-jabber>
<agent-payload checksum="1234567"
content-transfer-encoding="base-64"
content-type="application/x-zip-compressed"
desc="Description here" filename="Tropical Card.svg"
filesize="573677"
timestamp="20040017184631">
<! [CDATA[]]>
<url>http://serverl/Tropical Card.svg</url>
<url>C:\temp2\Tropical Card.svg</url>
<url>ftp://ftpserver3/Tropical Card.svg</url>
</agent-payload>
</agent-jabber>

Figure 100. Binary data, if present, is embedded within the highlighted CDATA section.

Upon receipt of a message, this module determines whether it needs to
retrieve from binary data from a hyperlink (i.e., if CDATA section is empty). Storage
locations of the binary data file may reside on a web server (e.g., Apache Tomcat), FTP
server or a dedicated agent with web server functionalities built into it. With an Apache
web-server, it needs to be administered. On the other hand, having web server
functionalities reside in a Jabber-enabled agent reduces the need for additional
administration. It may not be advisable, however to burden the agent with additional

Pprocesses.

Pre-processing activities that are platform or system specific; e.g., image
segmentation on UAV imagery, are not included as part of the message processing
module. This keeps this module generic and thus extensible to other AUV or non-AUV
platforms, as well as improving the performance of the module. Pre-processing modules
are responsible for computation of data, representation (e.g., how to capture continuous
changing information such as change in water pressure due to an explosion), and

generation of results in file or text format.

d. Compression and Decompression

Compression of the message packet to reduce its size is done here.
Similarly, decompression is performed at the receiving end. Some file formats are
already in compressed form; e.g., GIF, JPEG and PNG do not require further

compression. Compress-able file formats include Windows bitmaps and ASCII text. If

112

the zipped form of the file is bigger than the original file size, the original data file is used
instead. For this thesis, standard compression and decompression from Java are used.
For added security, this module can be easily replaced with a cryptographic module here

and on the receiving end.

e Base-64 Encode and Decode
Binary to text encoding is performed in this module to handle non-textual

data; e.g., images, audio, video and compressed data from the compression module.

f XML Parsing
Since Jabber messages are XML-based, XML parsing and transformation
are required. Open-source libraries (Apache Xerces for parsing, Apache Xalan for

transformation) are used.

7. Message Generation

The steps to process an outgoing message are given below.

1. Loop through list of files to be sent.
2 For each file, do the following:

a. Create a <agent-payload> element.

b. Add file information such as name, size and content-type into the <agent-
payload> attributes.

C. Determine file types based on file extension (e.g., .BMP is 24-bit
Windows bitmap and .GIF is Compuserve GIF).

d. If the files types are GIF, JPEG, EXE, do not compress. Otherwise,
perform compression. If compressed data size is greater than original,
encode the original data instead.

e. Check whether the file size exceeds a predefined limit. If no, proceed to
compress and encode into CDATA section of message.

f. If available, always add a list of hyperlinks associated to the file under the
<url> tags.

3. Generate XHTML message.
4. Append to the XHTML portion of Jabber message and send it out to designated
parties.

113

The steps to process an incoming message are given below.

1. Loop through list of <agent-payload> elements.
2 For each <agent-payload> element, do the following:
a. Get file information such as name, size, content-type and content-transfer-
encoding.
b. Check whether there is data in the CDATA section of message.
1. If yes, check type
il. Otherwise, loop through the list of <url> tags and try to retrieve the

file from one of the storage locations specified within the <url>
tag. At the moment, the customize client is able to fetch the file
from a web/HTTP server and local/networked file system.
c. Upon successful retrieval of the file contents, an “AgentPayload” object
shall be created.

<agent-payload ...
<url>http://server2/Cheshire Cat.svg</url>
<url>http://server3/Cheshire Cat.svg</url>
<url>ftp://www.server3.com/Cheshire Cat.svg</url>
<url>file://c://server3/Cheshire Cat.svg</url>
<url>c://server3/Cheshire Cat.svg</url>
</agent-payload>

Figure 101. Links to multiple storage locations.

© 0 O

Load physical files Seta;?irgtftr;t-ttovpe Set"content-type” Savep?esd};r_\lﬂnlégle in
to be packaoed i
R o "applicationi-zip- attnb%tlnztfirt?:ted on temporary lacation
campressed"” for storage pumposes
file siZe L ¢
within
specified Perforrn hasefid | Generate XML
lirnit? encoding il document and fomm-
L up XML string
Is data i ¢
COrrpress- Mo Add hyperlinks -+ Insert XML string as
able? HHTML data in
Jabhermessage
body
Generate XML ¢
document and insert
Perform GZIP basedd encoded send out JABBER
cormpression using data in COATA message to
Java ZIP package section (if any) addresses

Figure 102. Processing of outgoing binary file data before it is sent out via Jabber protocol.

114

! Start)

h

Rﬁ;g;‘fﬁgﬂi? Exdract list of Save as binary data
through chatroom or rlypir“”lks fro;"n . in DYEUEIT'IHE?_
another JID user url= elements ermpatary location
' . I
Extract XHTML data Loop through list and Invoke respective
from Jahber try to download application to
message hody contents process hinary data

:

Create a list of
AgentPayload

Perform GZIP
decompression

objects
b
o | Feriorm base-64 End
decoding
2

Figure 103. Processing of incoming encoded binary data via Jabber protocol.

8. Smack Library

Smack is a library for communicating with XMPP servers to perform instant
messaging and chat. The library provides easy machine-to-machine communication and
it allows the setting of any number of properties on each message, including properties

that are Java objects. The library was developed and maintained by Jive Software, at

www.jivesoftware.com (accessed February 2004) and is open-source under the Apache
Software License, which allows its incorporation into both commercial and non-

commercial applications.

The library is extremely simple to use, yet it has a powerful set of Application
Programming Interfaces (APIs). Sending a text message to a user can be accomplished in

three lines of code:

XMPPConnection connection = new XMPPConnection ("surfaris.cs.nps.navy.mil");
connection.login ("userA", "passwordA");
connection.createChat ("userB@xchat.movesinstitute.org") .sendMessage ("Hello") ;

115

Smack provides the org.jivesoftware.smack package for the core XMPP protocol,

and the org.jivesoftware.smackx package for many of the protocol extensions.

G.

BENCHMARKS

In the benchmark tests, only the timings for packaging (i.e., compression and

base-64 encoding) are captured. Network timings (i.e., Jabber instant messaging) are

excluded since the results will be subjected to the network traffic and the available

bandwidth. The ASCII plain-text data are from GEOnet Names Server (GNS) at

http://earth-info.nima.mil/gns/html (accessed on 15 February 2004). The XML plain-

text data were converted from the ASCII data using the GNS class (see Appendix F). A

sample procedure to convert GNS plain-text data to XML format is given below.

S/N | Original file Encoded file | Percentage Total time to Total time to | Total time
size (in bytes) | size (in of reduction compress (in base-64 taken (in
bytes) (in %) msecs) encode (in msecs)
msecs)

1. 7326956 2380837 67.51 1219 203 1797
2. 5754326 1845969 67.92 1094 250 1657
3. 4378072 395021 90.98 862 440 1642
4. 2106320 652205 69.04 344 141 563
5. 683375 179392 73.75 78 156
6. 489429 153828 68.57 63 78
7. 402650 98732 75.48 47 125
8. 402295 105304 73.82 47 63
9. 333117 86264 74.10 110 16 141
10. 243188 78892 67.56 31 94 172
11. 243188 78892 67.56 31 63
12. 93972 26147 72.18 16 16
13. 63147 19727 68.76 0 0

Figure 104. ASCII Plain-text Files achieved on average 72.09% reduction in size.

116

S/N | Original file Encoded file | Percentage Total time to Total time to | Total time
size (in bytes) | size (in of reduction compress (in base-64 taken (in
bytes) (in %) msecs) encode (in msecs)
msecs)

1 2534082 77473 96.94 240 41 701
2 737564 31412 95.74 80 40 330
3. 900805 226032 74.91 300 30 591
4 328028 74560 77.27 90 0 100
5. 46480 5295 88.61 0 0 10
Figure 105. HTML Plain-text Files achieved on average 86.69% reduction in size.

S/N | Original file Encoded file | Percentage Total time to Total time to | Total time

size (in bytes) | size (in of reduction compress (in base-64 taken (in
bytes) (in %) msecs) encode (in msecs)
msecs)

1 5941238 867565 85.40 516 172 797
2 1889736 244145 87.08 125 0 203
3 1378706 205665 85.08 78 156
4 1120696 147261 86.86 63 0 141
5 1116375 134441 87.96 62 16 156
6 896070 118276 86.80 47 15 156
7 649901 103836 84.02 47 0 63
8 262508 36940 85.93 15 0 31
9 173119 26904 84.46 15 0 15

Figure 106. XML Plain-text Files achieved on average 85.95% reduction in size.

S/N Original file Encoded file | Percentage Total time to Total time to | Total time
size (in bytes) | size (in of reduction compress (in base-64 taken (in
bytes) (in %) msecs) encode (in msecs)
msecs)
1. 3003707 87177 97.10 270 30 590
2. 870106 33792 96.12 80 0 330
3. 891287 224024 74.87 310 20 541
4, 197414 65208 66.97 50 20 80
5. 13134 3039 76.86 0 0 20

Figure 107. X3D Plain-text Files achieved on average 82.38% reduction in size.

117

S/N Original file Encoded file | Percentage Total time to Total time to | Total time
size (in bytes) | size (in of reduction compress (in base-64 taken (in
bytes) (in %) msecs) encode (in msecs)
msecs)
1 3003196 86825 97.11 261 30 591
2 869593 33528 96.14 80 0 330
3. 890645 223820 74.87 300 550
4 174369 64412 63.06 60 20 80
5 11991 2999 74.99 0 0 20

Figure 108. VRML Plain-text Files achieved on average 81.23% reduction in size.

S/N Original file Encoded file | Percentage Total time to Total time to | Total time
size (in bytes) | size (in of reduction compress (in base-64 taken (in
bytes) (in %) msecs) encode (in msecs)
msecs)
1. 4760390 1687945 64.54 2443 501 3335
2. 3830190 1084981 71.67 1452 410 2163
3. 1300052 417709 67.87 311 40 571
4, 854570 171312 79.95 141 30 211
5. 361041 149080 58.70 170 10 200
6. 220866 92392 58.17 70 10 100

Figure 109. SVG Plain-text Files achieved on average 66.82% reduction in size.

H.

SUMMARY

This chapter has proposed a solution to package text and binary data to be sent via

Jabber instant messaging protocol. Compression of data was done using standard Java

classes. The Java classes compressed both text-based (including XML-based file) and

binary files such as images. In general the percentage of compression achieved is 75% of

the original file, higher for text-based files. As for Windows bitmap images, the

compression ratio depends on the type of image that has been stored. Therefore a better

way to ensure optimal compression is to convert the Windows bitmap images to PNG or

JPEG format on the fly. Of note, JPEG is lossy and may cause degradation in image

quality. Therefore PNG format is favored for its lossless’ nature. To achieve better

compression ratio for XML data, XML Schema-based Binary Compression (XSBC)

(Serin2003) can be used to complement the Java classes. XML files are handled by

XSBC, whereas non-XML files such as plain-text or images are handled by the proposed

118

mechanism. Forward Error Correction can be introduced to ensure reliability of data

transmission and receipt over noisy communication channels.

On average, the base-64 encoding of the binary data to text data, for storage in the
CDATA section of the Jabber XML-based message, increased the file size by 33%. A
better binary to text encoding scheme (e.g., using Huffman algorithm), can be pursued in

future work.

It is important to note that besides size, the time taken to run the compression
process also plays an important part. An algorithm may be good at generating a smaller

sized file, but the time taken may be so long that it is unacceptable to the user.

There is a physical message size limit set on the Jabber server. This is to prevent
overloading the Jabber server. Although the proposed mechanism introduces the use of
hyperlinks to circumvent the potential issues, a more robust solution should be pursued;
e.g., if the size is too big, the file is automatically posted on a web server using standard

HTTP POST mechanism.

119

THIS PAGE INTENTIONALLY LEFT BLANK

120

V. TASK COLLABORATION USING AGENTS

A. INTRODUCTION

Multiple vehicles operating in a coordinated manner can be more effective than a
single one. For instance, a cluster of coordinated Autonomous Underwater Vehicles
(AUVs) can search a coastal area for mines more effectively than a single vehicle,
however handling unanticipated events (novel or completely unexpected) is difficult,
since they are sometimes hard to detect, much less diagnose and respond to, even for a
single vehicle. If the AUV is part of a cooperative or collaborative distributed multi-
agent system, the problem is compounded. The AUV controller must now be concerned
about what the event means for the others, the group as a whole, and their shared
mission/goal. Multi-agent event handling is complicated by uncertainty and lack of
knowledge about other agents’ intentions/goals; it is exacerbated by the low bandwidth of

communication channels available for use in the ocean.

An agent also needs to be able to communicate with other agents to fill in the gaps
in its models or hypotheses, to establish mutual beliefs and confirm expectations, and to
negotiate responsibility for the different tasks during event handling. Some key

challenges include:

a. To determine an efficient way to deploy multiple Autonomous
Underwater Vehicles (AUV) for collaborative work such as mine counter-measures

missions.

b. To determine what is the optimal number of AUVs to be used for a

scenario (e.g., based of time of completion).

C. To investigate amount of deviation between real-world dynamics and

simulated ones in a virtual environment.
d. Ability to play out more scenarios at less cost compared to live sea-trials.

This chapter discusses the potential use and design of AUV agents.

121

Following the MAS = {Environment, Objects, Agents, Relationships, Operations,
Laws} approach [Ferber 1999], the various components of the system are discussed in the

following sections.

B. ENVIRONMENT
The AUVs operates in the ocean (sub-surface). The area of operation is

determined by the physical constraints of the AUV, as depicted below:
a. Endurance. The fuel tank size of the AUV is fixed.
b. Speed. The maximum speed of the AUV is fixed.
c. Sensor.
d. Communications.

For purposes of simulation, there is a finite number of AUVs, maximum five.
Similarly the maximum number of Communications Stations (include land, air and sea-
based) is set to five. The need to limit the number of AUVs and Communications
Stations is to better model the real-world environment, where it is impossible to have an
infinite number of resources. For the experimental runs, it is possible that zero or more
obstacles may be placed in the environment.

Comms

§ Station, C, ™
/Mission Plan S [| \"u
/ £
O
T £ ':‘ 4
NG, Y, &7/
A &L/ Start point
AAY Ny
) J ;. 1(launch)
posoid L - ﬁ,'__ o ¥
— AUV, Al _
\ \ End point
Obstacle) Retrieve/Dack /
g E— []
_ [] Ocean _
~~__ Sensor -

Figure 110. Agent Boundary.

122

@

L@ _

Comms on Ship
or Submarine, CS,

AUV,
Comms on
Aircraft, CS,
\ /
\ /
\ / Sea-based
\ Launching, Start,
Sensor \V4
coverage
ALV,
Nl \/\, N
o Comths on s
AUV

Sensor
range

Land-based

Comms Station, CS,
and-based
Ocean Launching, Start, A Land
Figure 111. AUV operating environment.
C. OBJECTS
List of objects and their attributes:
1. AUV
S/N | Attribute Description
a. ID (unique numeric value) This serves as an identifier for each AUV. The identifier is
used to distinguish between multiple AUV agents in a
networked environment. It is generated programmatically
by the AUV Workbench at runtime.
b. Position (numerical value in meters) | Indicates the location of the AUV in 3D space;i.e., X, Y
and Z coordinates.
C. Orientation (numeric value in Indicates the row, pitch and yaw of the AUV.
degrees)
d. Heading (numeric value in degrees) | Determines which direction the AUV is heading.
e. Speed (numeric value in knots) Speed of the AUV.
f. Endurance Based on fuel consumption and the time it has been

operating.

123

S/N

Attribute

Description

Type of Sensor

Type of sensor available on-board the AUV.

List of Comms Stations

Keep a list of communications stations.

List of Obstacles

Historical list of obstacles encountered.

j. Physical Physical dimensions of the AUV, including maneuverability
limitations, which constraint the maximum turning radius of
the vehicle.

k. Status A list of possible status: “Ready”, “Damaged”, “On-shore”,
“Deployed” and “At Comms Station”.

Table 29. AUV Attributes.
2. Sensor

S/N | Attribute Description

a. Name (string value) Description of sensor.

b. Category (string value) Which category does the sensor belongs to; e.g.,
sonar or optical (static picture or motion video)?

c. Range (numeric value in meters) Which category does the sensor belongs to; e.g.,
sonar?

d. Status A list of possible status: “Ready”, “Damaged”, “On-shore”,
“Deployed” and “At Comms Station”.

e. Footprint (numeric value in area per | What is the coverage of the sensor?

square meters)

f. Position of AUV (enumeration) Left, right, up or down. Therefore an AUV can have
4 sensors mounted.

g. Readiness State (Boolean value) Up or down.

Table 30. Sensor Attributes.
3. Communications Station

S/N | Attribute Description

a. Name (string value) Description of comms station.

b. Category (string value) Type of station; e.g., ship-based, land, aircraft or sub-
surfaced vehicle. Also include whether it is stationary or
moving.

C. Position (numerical value in meters) | Indicates the location of the Comms Station in 3D space

i.e., X, Y and Z coordinates.

Table 31.

Communications Station Attributes.

124

4. Obstacle

S/N | Attribute Description
a. Name (string value) Description of obstacle.
b. Category (string value) Type of obstacle (e.g., mines and marine life such as fish
and kelp).
C. Position (numerical value in meters) | Indicates the location of the position in 3D space as
detected by the AUV.
Table 32. Obstacle Attributes.
5. Mission Plan
To be loaded into AUVs. Mission plans are also used to define the initial goal of
the AUVs.
S/N | Attribute Description
a. Name (string value) Description of Mission Plan for identification purposes.
b. AUV specific information. Initial position and orientation of AUV.
C. List of waypoints Positional check-points for the AUV to be at, for a given
time.
d. Start/End points AUV launch position and retrieval/docking positions.

Table 33. Mission Plan Attributes.

6. Launching/Pick-up Point

The position where the AUV is launched and picked up upon completion of goals

or when out of fuel/time.

AGENTS AND ACTORS

The presence of multiple agents impact event handling in several ways. First, an

agent may notice an event that does not directly concern it, but impacts another agent. In

this case, the detecting agent can consider notifying the other agent about it. Second,

there is the possibility that multiple agents detect the same event simultaneously. If this

happens, the agents must coordinate their event-handling activities to avoid confusion

and counter-productive work. Third, other agents can serve as a source of information

(solicited or otherwise). Some agents may be in a better position with respect to the

knowledge they have or can easily obtain to do diagnosis or important assessment, and

others may be better situated to carry out the responses. At the very least, a detecting
125

agent notifies the affected agents of actions it is taking, whether in service, diagnosis, or

in response to an event. Figure 112 illustrates the relationships between inputs/outputs

and the agent interior.

Inputs

Output/Actuators

Figure 112. Agent Overview.

Input Suite

Output/Actuator Suite

Mission Plan.

Percentage of completion of Mission Plan.

Initial position, orientation and speed.

Move the AUV around the environment.

Sensor inputs.

AUV attributes.

Inputs from Communications Stations; e.g., to
change target priority/position.

All attributes can be accessed via “setter” and
“getter” methods; e.g., “getCurrentPosition()”

Unique ID.

To uniquely identify an AUV agent.

Table 34.

Agent input and actuator suite.

Each AUV agent has the following attributes/states stored in the “brain” of the

agent. The agent interior is hidden from other agents unless the information is exposed

via the agent’s output or actuator suite.

o Endurance. Elapsed time is computed at the start of the experiment based

on the amount of fuel available.

° List of obstacles encountered. Obstacles include mines, marine life and
other AUVSs.
. Mission scripts of AUV commands. List of waypoints and the

corresponding arrival/departure time at each waypoint. To improve

126

interaction between both AUV Workbench and other applications, the
mission scripts/commands are defined in XML format (see sample

Mission Script below).

<?xml version="1.0" encoding="UTF-8"?>
<AUVMissions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="C:/AUVWorkbench/bin/scripts/missionScripts/AUVMiss
ion.xsd">
<Mission>
<Profile/>
<Commands>
<Position course="0" depth="5" portPropSpeed="27"
standoff="2" starboardPropSpeed="26" thruster="on"
timeout="50" x="12" y="55"/>
<Waypoint course="180" depth="15" portPropSpeed="27"
standoff="" starboardPropSpeed="26" thruster="on"
timeout="5" x="95" y="55"/>
<Waypoint course="180" depth="15" portPropSpeed="27"
standoff="" starboardPropSpeed="26" thruster="on"
timeout="5" x="122" y="72"/>
<Waypoint course="270" depth="5" portPropSpeed="27"
standoff="" starboardPropSpeed="26" thruster="on"
timeout="5" x="68" y="64"/>
<Hover course="270" depth="5" portPropSpeed="27" standoff=""
starboardPropSpeed="26" thruster="on" timeout="5" x="12" y="70"/>
<Speed speed="0"/>
<Thruster enabled="false"/>

</Commands>
</Mission>
</AUVMissions>
S/IN Element Description Measurement Unit
1. AUVMissions Root element. -
2. Mission There can be many “Mission” -
elements in the same Mission script.
3. Profile To be used to define area of -
interest/operations.
4 Commands List of commands to be sent to the -
AUV.
5. Position, Waypoint, | Positional data. -
Hover
6. Speed Speed of both port and starboard Revolutions per minute.
thrusters.
7. Thruster Rear thrusters. Boolean.
8. Timeout Time period to wait. In seconds

Table 35. Mission script XML tag set.

127

The same mission plan is loaded into all the AUVs. The course of action is

negotiated between the AUV agents. Each AUV is able to determine its location based

on its heading, speed and time elapsed (with reference to the start point). When a

Communications Station is within the AUV’s transmission range, the agent polls the

station for its position. Using the coordinates returned by the Communications Station

and distance between the Communications Station and AUV, the agent tries to check

whether its internally computed position is correct. Here is how the goals are defined:

S/IN | Goal Description/ Course of Action
Measurement Method
1. Movement from | Moving to a specified Update “WAYPOINT REACHED”
point-to-point position (defined in the status in Mission Plan.
Mission Plan) within
stipulated time (with a user- It tries to update the Comms Station
definable tolerance; e.g., 15 or any AUV within its vicinity.
minutes).
2. Movement Move into a predefined -
within Area of region of operations.
Interest
3. Movement by 2 possible scenarios: -
following a . Right from the start,
leader follow a pre-determined
leader.
. Upon receipt of
indication that a detection
has occurred.
4, Object/Obstacle | Based on sensor input, the Slow down and try to identify the
Detection agent is able to know the obstacle (a mine, another AUV or
general location of the fish?).
obstacle and whether it is
moving or stationary. If there is a high probability that it is a
mine, it tries to get another AUV to
It is possible for an obstacle double-check. And at the same time,
to be larger than the sensor’s | it tries to inform the Comms Station.
field of view.
5. Object/Obstacle | Detection is normally -
Identification followed by identification and
confirmation of target
objects.
6. Collision Occurs when the AUV is Locate other AUVs that are close-by.

caught “off-guard” due to
limited sensing capability
(note: the sensors on-board
do not allow the AUV to have
full sensing of its neighboring
environment).

Locate Comms Stations that are
close-by. Surface and/or dock if
necessary.

128

S/IN | Goal Description/ Course of Action
Measurement Method

7. Position Update | When it is within range of If position is wrong (outside a
another AUV or Comms Tolerable limit; e.g., 25m), it makes
Station, it checks whether adjustment and tries to move to the
the position it has computed desired position.
is correct.

Once at the correct position or along
the way, it checks whether the list of
waypoints it had supposedly
completed is correct (within a
tolerable limit; e.g., 25m).

8. Endurance Based on the time remaining, | Speed up or slow down so that all its
it extrapolates whether there | targets/waypoints can be achieved.
is enough time to complete
its task.

9. Communications | Transmission of data backto | -

comms stations.

Table 36. Agent goal definition.

For each of the goals defined, there is a priority (similar to “traffic-light” system)

assigned to them. The priority shall have three states — low, medium and high.

data/new orders (Communication Stations <> AUV).

RELATIONSHIPS
1. Define initial goals and update status as required (Mission Plan <> AUV).
2. Encounter or detect an obstacle (Obstacle > AUV).

3. Sensor Input (Sensor = AUV).

4. Transmit findings to Communications Stations or receive positional

PROCESSES AND OPERATIONS

1. Follow waypoints defined in Mission Plan.

2. Compute its position internally based on its speed and elapsed time.

3. Update “waypoint reached” status upon arriving or bypassing a waypoint.
4. Upon obstacle detection or encounter, look for closest AUV agent and/or

Communications Stations to share information.

129

5. When within range of another AUVs, share the following information; 1)

own percentage of Mission Plan completion; 2) own position.

6 When within range of Communications Station, the AUV checks whether
its own computed position is correct by referencing the Communications Station’s
position (pre-loaded into AUV). If not, perform compensatory action. In addition, it

checks whether the list of waypoints that it thought it passed is correct.

G. SUMMARY OF LAWS
1. Communications between AUV-AUV and AUV-Communication Stations

are possible only when within range. This is a “Many-to-Many” relationship.

2. Communications shall be initiated by the AUV or Communications
Stations.
3. Communications Stations are manned or remotely operated by humans.

Therefore their locations are always precise since additional equipment is available to
geo-reference them (GPS-enabled). All Communications Stations’ coordinates are pre-

loaded or made known to AUV agents.

4. To simplify the system, there are two types of sensors, namely sonar and
optics. Both types of sensors shall operate ideally with the given range and coverage. In
the real-world, these sensors rarely operate to their optimal performance due to oceanic

conditions.
5. The launching point and the retrieval point of the AUV may differ.

6 The team of vehicles is moving in an environment of known dimensions,
searching for target of interest. The vehicles are assumed to be equipped with: 1) target
sensing capabilities for obtaining a limited view of the environment; 2) wireless
communication capabilities for exchanging information and cooperating with one
another; and 3) computing capabilities for processing the incoming sensor data and

making dynamic guidance decisions.

7. For each AUV agent, there is only one Mission Plan.

130

8. Fuel consumption by the AUV is constant; therefore the AUV is able to

operate for a fixed time period; e.g., 3 hours.

0. The agents are equipped with sensors to view a limited region of the
environment they are visiting, and are able to communicate with one another to enable
cooperation. The agents are assumed to have some “physical” limitations including

maneuverability limitations, fuel/time constraints and sensor range and accuracy.

H. AGENT IMPLEMENTATION

1. Concept of Connector-Ticket Pair

Packaging and Tagging of Raw Inputs. Raw inputs from sensors (e.g., sonar or
video feed) are first packaged. Packaging involves formatting the data into an agent-
readable form (e.g., following a particular XML schema or template). This is followed
by tagging. The tagging process is to add connectors and/or tickets to the packaged data.
The connector-ticket pairs allow the data to interact with the agent’s set of connector-
ticket pair of goals. Finally the tagged data is passed into agent’s space for interaction.
Integration networks (IN) are formed as related (in terms of time and event) tagged data
is grouped together. In addition, if double-scope blending takes place, new generic
spaces can be created [Turner 2002]. With the creation of new generic spaces, the agent

is in fact shaping its perception of the environment.

External environment Agent Interior

Raw inputs to 5 5 Tagged data
e ﬂ Packaging }—»{ Tagging }—’
Obstacles -
e.g. 00100111010 or * encountered

<xml>message</xml>
List of

Templates,
XML
schemas or
database

Figure 113. Connector-Ticket - Packaging and Tagging.

Matching tagged data. At the end of each tagged data, there are either one or
many connectors that match the ones that are extended from the agent’s goals (See Figure
108). Tagged data and connectors form a ticket. When there is a match, the agent may
choose to retract the fulfilled goal or trigger a new set of goals. At the moment, these
actions are defined as a template within the agent. With better understanding of the

131

conceptual blending principles, it may be possible to get the agent to formulate new goals

that will aid in its fulfillment of goals/functions.

Below is a possible scenario on how goals can be altered based on the agent’s
perception of the environment and its interaction with other agents through the use of

connectors and tickets.

At the start of the run, agents are given basic goals; e.g., “Move along a
predefined path or an area of interest within a given time”. If the AUV sensors detect an
object, the basic goals are either upgraded or replaced (i.e., retracted) by more complex
ones. The complex goals may vary from getting another AUV to perform identification
or confirmation of contact, or to track the object/obstacle for a predefined time period, or

surface and transmit data back to communications stations.

encountered

Arrived at
Waypoint
Obstacles

Connectors — may
be retracted when
there is a matching
ticket or list of
matching tickets

.<
< -

- [+

New goals Q

may be

introduced |

and existing o
c
=
[*]
=
'_
E
S
‘t
[7]
o

goals may he
replaced

a path
Detection

—

Surface and
Transmit ﬂndings

Identification

Movement within
predefined region
Movement along

Basic Goals Complex Goals

Figure 114. Connector-Ticket Matching.

L. AGENT-TO-AGENT COMMUNICATIONS

1. Agent Identifier

The system makes use of the chat/Jabber ID (e.g.,
XTCServiet@xchat.MoveslInstitute.org) to distinguish between multiple agents across a
list of networked AUV Workbench applications.

For each workbench, there is one agent identifier. The user is able to change the
agent’s identifier from within the workbench. Note: the workbench must have

connectivity to a chat/Jabber server.

132

2. Communications
Extensible Messaging and Presence Protocol (XMPP) is used as the means for
communications between agents. The techniques for packaging and transporting agent

messages via XMPP are the same as those discussed in Chapter IV.

Client Server Client

HTML Form by HTML

human operator AUV Workbench I
g

/ >
Virtual AUV on XM | &

Workbench
[Muti-AgentSystem | | £/
Agent-to-agent communications
N using chat protocol
Actual AUV using
data comms

HMPP - Extensitle Messaging and Presence Protocal (chat protocal)

F 3

Figure 115. Agent-to-agent communications using XMPP.

Peer-to-peer IM interaction
hetween people

Human] - Human

"Publish-Subscribe” mechanism ta
enable multiple agents to listen and
Chat-room react to messages posted.

Chat-room resides on Jabher server

chat-room for Agent 1 Agent 2

specific messages

database

3
- Peer-to-peer IM interaction
Agent monitoring between agents
=3

Unique Jabber |D to identify each agent Archival of messages

e g. agentl@surfaris cs.nps nawvy mil

Figure 116. Human and Agent interaction via Jabber chat room.

3. Strategy for Data Collection

. Compute number of AUVs and Communications Stations available.
. Compute the percentage of completion of Mission Plan.
. Keep track of obstacles encountered (mines and AUVs).

133

4. Data Analysis
a. Initialization Phase
The system randomly assigns a unique ID for each of the AUV agent. The
mission plan is loaded into the AUVs together with start and end locations, and

Communications Station locations.

Once the Mission Plan has been loaded, the agent computes the feasibility
of completing the plan, within the required time allowed (or fuel constraint). If not, it
informs the user to make changes to the Mission Plan. If the plan is feasible, the agent
generates an internal “Search Map”. Unvisited waypoints (in RED, Figure 117) are
marked. Similarly for Start/End points (in GRAY, see Figure 117) and the locations of
Communications Stations (in CYAN, see Figure 117).

b. Start/During the Run (AUV Execution)

J When a waypoint is reached, it is marked (in GREEN, Figure 117).

The time is recorded and compare against the time specified in the
Mission Plan. A tolerance of 5-10 minutes is allowed. If the time
discrepancy is too great, the agent tries to compensate by

increasing speed to the next waypoints.

o When the agent senses an obstacle, it slows down and tries to
identify what it is (e.g., by shape and size). To identify the
obstacle, it instructs the vehicle to move around the obstacle to
gather more data. If a particular type of obstacle (e.g., mine) has
been found, it tries to inform the Communications Stations and
other AUVs. And if neither an AUV nor Communications Station
is within its vicinity, it proceeds to the closest Communications
Stations and/or moves towards a previously known AUV's
direction. The obstacle is marked in the agent’s internal “Search
Map”. Additional information on the obstacle such as size,
moving/stationary and type are also captured in the corresponding

grid square in the “Search Map”.

134

When in contact with another AUV or within the transmission
range of Communications Station, it shares its position, orientation,
heading and speed with it. Similarly the other AUV shares the

same attributes.

Possible Strategies

Follow the path where there is minimum overlap with other agents.
Since the agents are able to share their new information about the
search region, it is natural that they may select the same search
path as other agents (especially since in general they will be
utilizing the same search algorithm). This will be more pronounced
if two agents happen to be close to each other. However, in order
to minimize the global uncertainty associated with the emergent
knowledge of all agents, it is crucial that there is minimum overlap
in their search efforts. This can be achieved by including a cost
function component that penalizes agents being close to each other
and heading in the same direction. This component of the cost
function can be derived based on the relative locations and heading

direction (angle) between pairs of agents. [Polycarpou 2001]

Follow the path that maximizes coverage of the highest priority
targets. In mission applications where the agents have a target
search map with priorities assigned to detected targets, it is
possible to combine the search of new targets with coverage of
discovered targets by including a cost component that steers the
agent towards covering high priority targets. The cost component
is based on the target’s characteristics such as shape, size, mobility
and its overall effect on the mission (e.g. mines have a higher
priority). This leads to a coordinated search where both coverage

and priorities are objectives.

Follow the path toward highest priority targets with most

certainty. In some applications, the energy of the agent is limited.
135

In such cases it is important to monitor the remaining fuel and
possibly switch goals if the fuel becomes too low. For example, in
search-and-engage operations, the agent may decide to abort
search objectives and head towards engaging high priority targets
if the remaining fuel is low. Environment factors such as sea state
will also affect the operational effectiveness of the AUV sensors as

well as its maneuverability.

Follow the path toward targets where there will be minimum
overlap with other agents. Cooperation between agents is a key
issue not only in search patterns but also in engagement patterns. If
an agent decides to engage a known target, there needs to be some
cooperation such that no other agent tries to go after the same
target; i.e., a cooperative engagement strategy is utilized. On the
other hand, this strategy will depend on the availability of the
weapon systems onboard the AUV. Multiple attacks will increase
the cumulative probability of kill, but this has to be weighted
against the probability of not having resources to search for other
targets or even to react in time to another target once the AUVs are
on-route to the first known target. At the same time, there is also a
probability of losing the first target and reacquisition will be

required before engagement can commence.

136

i
m.E D
Remaining Path 5_’ ="\i_)
8 S
\\\ij a ‘-%‘ s
i 1
i JJ
Y L
='§I ! B L
,_-P- _Ei__ Completed Path
- :

|8

START

.

END

Search Map stored in AUV agent’s “brain”

Waypoints reached Area of Operation

Remaining Waypoints Current Position of AUV

Obstacles/AUVs encountered O Commes Stations

Figure 117. AUV Agent - Search Map.

J. SUMMARY
This chapter discusses the design of the AUV agent attributes and possible

strategies to define the agents’ goals. Means of communications between agents using

Jabber instant messaging were presented. An example application to construct a search

map is described.

137

THIS PAGE INTENTIONALLY LEFT BLANK

138

VI. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

The main purpose of this work was to design and implement a common platform
for AUV mission planning and analysis. The end product is the AUV Workbench. Using
Java-based open-source libraries for functionality, Extensible Markup Language (XML)
for data storage and exchange, and a component-based framework, the AUV Workbench
provides an intuitive cross-platform-capable tool with extensibility to provide for future
enhancements such as agent-based control, asynchronous reporting and communication,

and loss-free message compression.

In addition, this thesis has explained the suitability of Jabber instant messaging
for text and file messaging in a tactical environment. Exemplars have shown that the
XML backbone of this open-standards technology can be leveraged to enable both human

and agent messaging, providing powerful improvements over current systems.

B. RECOMMENDED FUTURE WORK

1. Overview

This thesis established the foundation for future work for modeling and
simulation of AUVs. This work has demonstrated that the AUV Workbench provides a
test-bed for emergent AUV technologies and can assist in the development of traditional
and agent-based methodologies. Additionally, the flexible design of the Workbench
facilitates potential extensions to serve operational needs. A list of recommendations is

given in this section.

139

Dynamics User Interface
Plug-in Manager
JabherfXMPP —
;L\;\TE: Application 3D Mission Manager -
Toolbar Visualization Mission Planner Monitoring
. Agent
Application Interfaces
Execution
. Obstacle
Multi-agent System Framework r——»
Janher}MPP Agent
or Weh DIS
Service XFSP/Compression and Encoding
Forward Error Correction Environment
Agent
Multicast Jabber Web
Execution | Dynamics XMPP HTTPMHTTPS T
D Future Work Weather
web service

Figure 118. Modular overview of future work.

2. AUV Multi-Agent System Framework

Most AUV missions neither require nor permit constant human oversight.
Operating conditions, adverse environmental conditions or inherent limitations of
underwater communications paths can cut off communications with the vehicles. For
example, a covert surveillance or reconnaissance mission precludes all but the most
minimal communication with the vehicle. Therefore if a virtual AUV agent is able to
simulate the real AUV in water, it is able to provide human operators with a visual or
audible cue on its whereabouts. When the real AUV surfaces, the virtual AUV
synchronizes its position and status (e.g., sensor data or equipment failure). While the
actual AUV is in water, the human operator may re-task the AUV using AUV agent, with

the re-tasked orders transmitted to the actual AUV.

Ideally, AUVs are capable of acting truly autonomously for long periods of time
in challenging, unpredictable environments. As the missions undertaken by the AUV
become more complex, it becomes difficult for the human to keep up, making agents
potentially useful. A set of rules is given to the agents. The human operator intervenes
when there is a conflict or when a critical condition arises (i.e., system failure or mine

detection).

140

Just as the XML-based mission script provides low-level commands to the AUV,
the same mission script can be extended to define goals in an agent system. This is
similar to strategic level commands. (Duane 1996) The agents can be developed using

Connector-based MultiAgent System (CMAS) library. (Hiles2004)

AUV reactions are based on its onboard suite of sensors (e.g., when a mine is
encountered, loiter to verify, or surface to report). Picture the following: an AUV is in
water, a human controller on ship or shore running the AUV Workbench, introduces
(drag-and-drop) a virtual obstacle into the virtual environment; a daemon agent pushes
this piece of information out to the real AUV’s sensors to “simulate” the detection of an

obstacle; the AUV in water reacts accordingly.

Instead of having cardboard enemies, we have a more realistic agent that models
the enemy. This would help blur the line between simulation and real world operations
and give a “practical” use of simulations. Of note, there are still issues such as bandwidth
and latency with AUV communications that needs to be solved. Bolder AUV
deployment concepts can be tried out; e.g., perform dynamic re-tasking once the AUV is
in the water. The agent system provides data to support or confute. At the same time, the
system provides details on what is the “cost” involved (in terms of potential loss of target

and its endurance) when an AUV is directed to another supposedly higher priority target.

3. Development of Collaborative Sensing Strategy Using Dissimilar
AUVs

The current robot execution module is based on the NPS ARIES AUV. This
software can be replaced by another AUV from an industry partner or academic
institution. Once implemented, NPS will have a wide variety of AUVs to try out
different scenarios with dissimilar AUVs, instead of just the NPS-specific vehicles.
Picture a tactical scenario whereby a planner defines the area of operations, its conditions
and constraints. From a library of AUV models (which includes the virtual 3D
representation and the robot software), the system comes out with a list of
recommendations. The list may comprise dissimilar AUVs. The most important point is

not who’s AUV is better, but how can the mission best be accomplished.

141

The posting of the AUV Workbench application online as open source with
executeable binaries makes this vision more realizable, now that developers and partners

from other research institutions or industry, can download the application and work on it.

4. Simulation of Targets/Obstacles

The topic of AUV obstacle avoidance is a well-researched area. The challenge is
to develop an obstacle avoidance agent that runs alongside the Workbench. At the same
time, it is necessary to develop an obstacle generation or simulation module. The
obstacle-simulation module dynamically introduces obstacles such as marine life or
mines into the virtual environment. At the moment, under the Event Monitoring module,
obstacles are displayed as targets. These targets contain only static information and are
not “live”. This will cause issues when multiple sightings of the same target (e.g., mine)
are reported. These will be plotted multiple times in the Workbench. A better approach
is to make “live” targets, i.e., link them to a centralized agent that is responsible for the
tracking and aggregation of data pertaining to targets. There can be an agent for each
type of obstacles or targets, one for mines and another for ships. A target representation

language using XML can be defined. A mine target may look like the one below:

<?xml version="1.0" encoding="utf-8"?2>
<Target category="mine" type="subsurface"
classification="unknown" reportedBy="AUV1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:noNamespaceSchemalocation="C:\auv\Workbench\Targets\auvTargetLangu
age.xsd">
<Report dateTime="20040101103000">
<Position x="100" y="100" depth="15"/>
<Size length="1" breadth="1" height="1"/>
</Report>
<Report dateTime="20040101104500">
<Position x="100" y="103" depth="13"/>
<Size length="1" breadth="1" height="1"/>
</Report>
<Report dateTime="20040101104500">
<Position x="100" y="103" depth="13"/>
<Size length="1" breadth="1" height="1"/>
</Report>
<Details desc="More details here">
<Url>http://tacticalsvr/sightingMine.htm</Url>
<Url>http://tacticalsvr/video.jpg</Url>
</Details>
</Target>

Figure 119. Proposed XML-based representation of Mine Target.

142

5. Simulation of Environmental Conditions

The real world conditions are more dynamic and unpredictable. An environment
agent is responsible to feed environmental data such as sea-state and ocean current to the
Workbench. To lend more realism to the virtual environment, a web service that
subscribes to real weather data can be developed. A potential sub-module is to simulate

interference and unreliability in communications due to weather conditions.

6. Plug-in Framework

To facilitate further development and use of the Workbench, an important
addition is to have a robust component plug-in framework. This framework would
consist of a plug-in manager that allows the user to add, remove or configure plug-in
modules. This approach is more flexible and robust compared to compiling everything
into the Workbench, which may or may not get used. The set of rules and configurations

are defined in an XML schema. A sample representation is given below:

<?xml version="1.0" encoding="utf-8"?>
<Class name="Plugin" returnType="String">
<Method name="display" returnType="void">
<Parameter type="int" default=""/>
<Parameter type="String" default="Description"/>
</Method>
<Argument value="mine.xml"/>
<Argument value="mine.gif"/>
</Class>

Figure 120. XML-based representation of Plug-in Class

One approach to develop the plug-ins framework is the use of Java Reflections
whereby introspection of classes (plug-in module) can be performed at runtime.
Reflection enables Java code to discover information about the fields, methods and
constructors of loaded classes, and to use reflected fields, methods, and constructors to
operate on their underlying counterparts on objects, within security restrictions. This is
an advanced topic in Java programming. Another possible approach is to use Jabber
instant messaging for the communications between the plug-in modules and the
Workbench application. Again, the messages are defined in an XML schema. The
Jabber instant messaging solution developed in this thesis will be useful as it handles data

as well as binary files.

143

7. AUYV Mission Manager

An AUV Mission Manager should be introduced to handle the definition and
execution of multiple AUV mission plans. The Mission Manager is responsible for the
invocation and message passing between the various AUVs in the 3D display and agent

environment.

A good approach to implementing the Mission Manager is to have decentralized
“Execution” and “Dynamics” processes. These processes might be written as web

services or agents using the Jabber protocol for data and file message exchange.

8. User Interface Enhancements

a. Manipulate Multiple Missions in 2D Mission Planner

At the moment, the underlying software architecture supports multiple
missions, but the 2D Mission Planner graphics display does not. A mission layer
manager has to be added to facilitate an intuitive way for manipulating multiple missions.
At the same time, it must support the ability to tie the mission scripts to specific virtual
AUVs via DIS application, site and entity ID fields. A possible representation of the
mission layer manager is given in Figure 121. The “eye” icon allows the user to show or

hide the mission on the display.

Show or hide -| Layers —]E Current active
mission = BoALN T O He mission
&® Bl 2 (9]
Locked mission to z P ALY 3 <
prevent editing P | P AU 4 O |
4 Layers o

Figure 121. Mission Layer Manager in 2D Mission Planner module.

b. Animated Icons in 2D Mission Planner and Mission Command
List

To promote a more intuitive user interface, animated icons can be
introduced to depict the status of a command; e.g., when the propeller is turned on, it is

animated. This gives a user a better appreciation of the current status of the mission

144

commands. Similarly, the concept can be used in the 2D Mission Planner to depict
important targets with a glowing red boundary. The concept of target decay (i.e.,
freshness of data) can be introduced using colors too; e.g., a new target has a solid color

and as time passes, it becomes grayed out.

0. Distributed Robot (Execution) and Virtual Environment (Dynamics)
Processes

At the moment, “Execution” and “Dynamics” processes are running on the same
machine and Java Virtual Machine (JVM). The two processes use DIS multicast packets
to talk to each other. In principle, both these processes are already network-capable. If
both the processes are shifted to a server, it is possible to achieve a performance gain as it
will offload the JVM. One approach is to implement the robot execution and virtual
environment hydrodynamics using web services. The Workbench can toggle between
running them on a server or local. Another approach is to use Jabber instant messaging.
The AUV Workbench will package the active mission script using the method discussed
in this thesis. The packaged mission script is then posted in a pre-defined chat-room.

The “Execution” and “Dynamics” processes are Jabber-enabled so that they will pick up

the packaged mission script and execute it.

With the server setup, the Execution and Dynamics processes are consolidated at

a central location. This aids in development and testing.

The same server that functions as a Jabber server (for agent-to-agent
communications through chat protocol) can also be configured as a web server

(specifically Apache Tomcat).

10. Compression and Error-Correction Algorithms
Data compression is important in the operation of AUVs. Water density inhibits
transmission of radio and light waves. Although sound travels quite well, currently

achievable data transmission rates are poor in comparison to land-based communications.

145

A likely candidate for data compression is an in-house developed compression
scheme, Cross Format Schema Protocol (XFSP) [Serin 2003] or XML Schema-based
Binary Compression (XSBC). XSBC is schema-based XML binary serialization and

compression.

In addition to compression, data error correction and recovery schemes can be
introduced as acoustic shallow-water data transmissions are known to be unreliable and
an autonomous entity will often experience problems when passing a message to its
intended receiver. According to thesis work performed in 1995, Forward Error
Correction (FEC) can reduce the number of required retransmissions by 3 to 15 percent.
FEC is a “method of data encoding that gives the receiver the ability to correct data
received in error up to a preset bound.” FEC can be easily implemented, the most basic
implementation requiring the use of a simple Hamming code. [Reimers 1995] As with the
implementation of an XML-based mission control language, one goal of FEC is
standardization of the underwater acoustic data communications community (after

Reimers, 1995).

The study and introduction of encryption and decryption algorithms is important

as AUVs are tasked to perform covert missions.

11. Mapping Capability in Mission Planner

The current version of the mission planner does not have any mapping capability.
There are several commercial and Open Source products available to add mapping and
geo-referencing capability to the Workbench. OpenMap is an Open Source Java Beans
based toolkit for building applications and applets needing geographic information. Using
OpenMap components, you can access data from legacy applications, in-place, in a
distributed setting. At its core, OpenMap is a set of Swing components that understand
geographic coordinates. The technology base underlying OpenMap was developed under
government funding. From 1987 - 1992, BBN was involved in a DARPA collaborative
mapping research project http://openmap.bbn.com/ (Accessed February 2004). Another

open-source product is GeoTools. GeoTools is an open source Java toolkit for developing

interactive geographical maps. The emphasis is on client side mapping applets that

146

require little or no server side support. The main file format for the moment is the ESRI

Shapefile (.shp). http://geotools.sourceforge.net/ (Accessed February 2004). There are

two commercial solutions identified. They are iLog Jviews and ESRI Java MapObjects.
ILOG JViews Maps Package provides a full range of features, including geo-referencing
for easy placement of assets in proper locations, mix-and-match vector and raster data in
the same map and the ability to handle multiple projections of the earth's surface It has
built in load-on-demand for efficiently handling large sets of map data www.ilog.com
(Accessed February 2004). An important feature as the Workbench acquires Geographic
Information Systems (GIS) capability. ESRI Java MapObjects is a powerful collection of
pure Java components that allows developers to build custom, cross platform, mapping
and spatially enabled applications. With a robust collection of pure Java GIS and
mapping components, including a suite of pre-defined visual JavaBeans, MapObjects—
Java Edition provides developers with the tools to create client or server-side applications
for stand-alone deployments or delivery over the Web www.esri.com (Accessed February
2004). A list of open-source and free GIS related software projects are available on

http://opensourcegis.org/ (Accessed February 2004).

C. SUMMARY

Conclusion and future work recommendations are collected in this chapter. The
goal of implementing a common platform for AUV mission planning and analysis has
been achieved. At the same time, this thesis has shown that Jabber, an open-standards
technology for instant messaging, is a viable solution to facilitate text and file messaging
for humans as well as agent communications. Exemplars have demonstrated how in-
mission and post-mission event monitoring by human operators can be achieved via
simple web page, standard clients, or custom instant messaging client. Finally, the AUV
Workbench is a potential tool for the development of multiple-AUV deployment

concepts, tactics and doctrine.

147

THIS PAGE INTENTIONALLY LEFT BLANK

148

APPENDIX A. ACRONYMS AND ABBREVIATIONS

Acronym / Notation Definition

2D 2 Dimensional

3D 3 Dimensional

API Application Programming Interface

ARIES Acoustic Radio Interactive Exploratory Server — NPS AUV
AUV Autonomous Underwater Vehicle

DTD Document Type Definition — XML

M&S Modeling and Simulation

NPS Naval Postgraduate School

REMUS Remote Environmental Measurement UnitS
RF Radio Frequency

URI Uniform Resource Identifiers

URL Uniform Resource Locator

URN Uniform Resource Names

uuv Unmanned Underwater Vehicle

X3D Extensible 3D Graphics

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol
XMSF Extensible Modeling and Simulation Framework
XSD XML Schema Definition

XSL Extensible Style Language

XSLT Extensible Style Language Transformation
XTC XML-based Tactical Chat

Table 37. Acronyms and abbreviations

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

A.

APPENDIX B.

INTRODUCTION
This appendix consists of the list of ARIES AUV-specific execution level

LIST OF ARIES AUV-SPECIFIC EXECUTION-
LEVEL COMMANDS

commands along with attribute types and example values. This language remains under

developed; particularly with respect to in-water exception handling.

B. XML-BASED EXECUTION LEVEL COMMANDS
1. <Depth> Element
<Depth> sets commanded vehicle depth. Sample given below:
<Depth value="10"/>
S/N | Command Description Format/Type Default | Required
1. value Depth value Decimal 0.0 N
2. <EnterTube> Element

<EnterTube> commands the vehicle to enter a specified recovery tube. Vehicle

initial position needs to be directly in front of opening, but heading can be off. Sample

given below:

<EnterTube

recoveryRange="5" recoveryHeading="270"/>

S/IN Command Description Type Default Required
1. recoveryRange Range from vehicle's current location to | Decimal - Y
final recovery position.
2. recoveryHeading | Recovery heading (must match - Y
orientation of the tube).
3. timeout Specifies a max allowable time for the Decimal -1.0 N
command (negative means no limit)
before failure.

151

3.

<FollowLight> Element

<FollowLight> commands the vehicle to follow a light source to a recovery

location. Sample given below:

<FollowLight/>

S/IN Command | Description Type Default Required
1. timeout Specifies a max allowable time for the command | Decimal | -1.0 N
(negative means no limit) before failure.
4. <GpsFix> Element

<GpsFix> orders the vehicle to surface for a GPS fix or resume mission after a

obtaining a GPS fix. Sample given below:

<GpsFix status="complete” timeOut="5.0"/>

S/N | Command Description Format/Type Default | Required
1. status Operational status of | GpsFixStatus = {“start”, start N
GPS unit. “inProgress”, “complete”, “failed”}
Enumerated list of possible GPS
fix statuses.
2. timeout Specifies a max Decimal -1.0 N
allowable time for the
command (negative
means no limit)
before failure.
S. <Heading> Element

<Heading> sets commanded vehicle heading (disables waypoint or recovery

control). Sample given below:

<Heading value="270"/>

S/N

Command

Description Format/Type

Default

Required

value

Course heading. Decimal

0.0

N

152

6.

<Help> Element

<Help> causes a list of valid commands to be printed to the console (if

available). Sample given below:

7.

<Help/>

<Hover> Element

<Hover> commands the vehicle maintain position at a specified (x,y) position.

It can include heading and depth command. Sample given below:

<Hover x="

200" y="100" z="15" heading="270"

standoff="2.5"/>

S/N | Attribute Description Format Default | Required
1. X x-coordinate. decimal - N
2. y y-coordinate. decimal - N
3. z z-coordinate. decimal - N
4. heading Course heading. decimal - N
5. standoff Stand-off distance. decimal - N
6. altitudeControl Determines whether z is depth or height | boolean | false N
above the bottom.
7. timeout timeOut attribute specifies a max allowable | decimal -1.0 N
time for the command (negative means no
limit) before failure.
8. <Lateral> Element

<Lateral> sets both lateral thrusters to cause vehicle to slide right or left

(turns off all automatic control modes). Sample given below:

<Lateral speed="10"/>

S/N | Command

Description Format/Type

Default

Required

1. speed

Speed of thrusters. Decimal

0.0

N

153

9.

<MissionScript> Element

<MissionScript> loads a new mission script from a specified file. Sample

given below:

<MissionScript fileName="sample.xml"/>

S/IN | Command Description Format/Type Default Required
1. path Directory or full path information. | String N
2. filename File name. String Y

10. <Pause> Element

<Pause> temporarily suspends vehicle operation (for bench test or virtual world

use only), useful for getting evaluation checkpoints during testing. Sample given below:

control modes). Sample given below:

11.

<Planes > Element

<Pause/>

<Planes> sets bow and/or stern plane deflection angle (turns off all automatic

<Planes which="stern" value="-25"/>

S/N | Command | Description Format/Type Default | Required
1. which Set planes AvailablePlanes = {*bow”, “stern”, | both N
“both”}
Enumerated list of manually
settable control planes.
2. value Angle of deflection. | Decimal 0.0 N
12. <Position> Element

<Position> updates of vehicle position in the world (new navigation fix has

been obtained). It sets GPS zero point if not previously done. Sample given below:

<Position x="12" y="55" depth="5"/>

154

S/N | Attribute Description Format Default | Required
1. X x-coordinate. decimal - Y
2. y y-coordinate. decimal - Y
depth Depth data. decimal - N
13. <Propeller> Element
<Propeller> manually set one or both propeller speeds. Sample given below:
<Propeller which="port” rpm="10"/>
S/IN Command | Description Format/Type Default Required
1. which Location. AvaﬂablePr()peHers = {“port”’ both N
“starboard”, “center”, “both”}
Enumerated list of manually
settable propellers.
2. Rpm Speed. Decimal - Y
14. <Quit> Element

<Quit> ends the vehicle mission after zeroing all control settings (does not

initiate surfacing procedure). Sample given below:

<Quit/>

S/N

Command

Description

Format/Type

Default

Required

mode

ExitModes = {*normal’,

“recallAbort” }
Enumerated list of possible
mission ending modes.

“missionAbort”, “systemAbort”,

N

15.

<RealTime> Element

<RealTime> causes execution to run in realtime (or turns realtime execution

off). Sample given below:

<RealTime/>

155

S/N | Command Description Format/Type Default Required
1. set Turn on or off. Boolean true N

16. <ResetTime> Element

<ResetTime> resets the vehicle clock time to a specified value. Sample given

below:
<ResetTime value="1.0"/>

S/N | Command Description Format/Type Default | Required
1. Value Decimal 0.0 N

17. <Rotate> Element

<Rotate> sets both lateral thrusters to cause vehicle to rotate (turns off all

automatic control modes). Sample given below:

<Rotate speed="-10"/>

S/N | Command Description Format/Type Default Required
1. speed Speed of thrusters. Decimal 0.0 N

18. <Rudder> Element

<Rudder> sets rudder deflection (turns off all automatic control modes).

Sample given below:
<Rudder value="0.5"/>

S/IN | Command Description Format/Type Default | Required
1. value Angle of deflection. Decimal 0.0 N

156

19. <Sonar> Element

<Sonar> commands the vehicle to assume a specified fixed station relative to a

sonar target. Sample given below:

<Sonar sonarHardware="ST1000"
bearingType="relative"/>

scanMode="manual" bearing="180"

S/N | Command Description Type Default Required
1. sonarHardware Sonar models that may be | SonarHardwareModels = | st725 N
installed. {*ST1000", “ST725;
2. Mode Sonar scan modes. SonarScanModes= scan N
{“scan”, “track”,
“trackWhileScan”,
“manual’}
bearing Direction. decimal 0.0 N
4. bearingType Angles measured from BearingTypes= relative N
bow/north clockwise when {“relative”, “true”,
viewed from above. “magnetic”}
Matches a standard
compass rose.

20. <Standoff> Element

<Standoff> resets the acceptable standoff radius in meters around hover-points

and waypoints. Sample given below:

<Standoff range=”15.0"/>

S/N

Command

Description

Format/Type

Default

Required

Range

Stand-off distance.

Decimal

2.5

N

157

21. <TakeStation> Element

<TakeStation> commands the vehicle to assume a specified fixed station

relative to a sonar target. Sample given below:

<TakeStation sonarScanMode="target" targetRange="5"
targetBearing="90" commandRange="5" commandBearing="45"
heading="270"/>

S/N | Command Description Type Default Required
1. sonarScanMode Determines whether the TargetTrackModes = targetEdge | N
vehicle will maintain station | {“targetEdge”, “target”}
by sonar scanning the
entire target or just the Enumerated list of
edge. sonar target tracking
modes.
2. targetRange Approximate range to Decimal - N
target to enable sonar to
initially acquire (not
required if vehicle is
already tracking).
3. targetBearing Approximate bearing of Decimal - N
target to enable sonar to
initially acquire (not
required if vehicle is
already tracking).
4, commandRange Commanded range to for Decimal - Y
vehicle to remain from the
target.
5. commandBearing | Commanded bearing to the | Decimal - Y
target for the vehicle to
maintain.
6. heading Course heading. Decimal - N
7. timeout Specifies a max allowable | Decimal -1.0 N

time for the command
(negative means no limit)
before failure.

158

22. <Thrusters> Element
<Thrusters> enables or disables the vehicle's vertical and lateral thrusters (can

be overridden by some control commands). Sample given below:

<Thrusters on="true”/>

S/IN Command Description Format/Type Default | Required
1. On Specifies a max allowable | Boolean true N

time for the command

(negative means no limit)

before failure.
2. which Location. AvailableThrusters = - N

{“lateral”, “vertical”,
“bowlLateral”, “sternLateral”,
“bowVertical”,
“sternVertical”}

Enumerated list of manually
settable thrusters.

23. <TimeStep> Element
<TimeStep> resets the elapsed time for each closed loop control cycle (default

is 0.1sec or 10 hz). Faster on-board computers and faster analog-to-digital (A/D and D/A)

conversions permits shorter timestep periods. Sample given below:

<TimeStep period="0.5"/>

S/N | Command Description Format/Type Default | Required
1. Period Loop interval. Decimal 0.1 N
24, <Trace> Element
<Trace> turns vehicle trace feature on or off. Sample given below:
<Trace/>
S/N | Command Description Format/Type Default Required
1. set Turn on or off. | Boolean true N

159

25. <Wait> Element
<Wait> causes the vehicle to wait a specified time before beginning execution of

the next command. Sample given below:

<Wait time="10"/>

S/IN | Command Description Format/Type Default | Required
1. absolute Relative or absolute Boolean false N
2. time Time to wait. Decimal - Y

26. <Waypoint> Element
<Waypoint> commands the vehicle to transit to a specified location. Vehicle

will not stop when location reached. Sample given below:

<Waypoint x="25" y="50" z="75" obtainGpsFix="false"/>

S/N | Attribute Description Format Default Required
1. X x-coordinate. decimal - Y
2. y y-coordinate. decimal - Y
3. z z-coordinate. decimal - Y
4. rpm Speed decimal - N
5. altitudeControl Determines whether z is depth or height | boolean false N

above the bottom.

6. timeOut timeOut attribute specifies a max allowable | decimal -1.0 N
time for the command (negative means no
limit) before failure.

7. obtainGpsFix Cause the vehicle to surface to obtain a | boolean false N
GPS fix enroute to the next waypoint.

8. fixDuration determines how long the vehicle will remain | decimal - N
surfaced to obtain a gps fix if the
obtainGpsFix attribute is true.

160

APPENDIX C.

CDROM MATERIAL

A. DIRECTORY AND FILE STRUCTURE
1. Documentation
Directory location: <CDRom>\documentation
S/N | Directory Filename Description
1. \ 04Mar_Lee AUVWorkbench.doc Thesis (in Microsoft WinWord format).
\ 04Mar_Lee AUVWorkbench.pdf Thesis (in Adobe Acrobat format).
3. \ AUVWorkbench.ppt AUV Workbench presentation (in
Microsoft Powerpoint format).
AUV Workbench icons and
component chart (in Microsoft
Powerpoint format).
4. \ AgentJabber.ppt Presentation slides using Agent
Seminar on 17 Feb 2004 (in Microsoft
Powerpoint format).
5. \ XTC.ppt XML-based Tactical Chat presentation
(in Microsoft Powerpoint format).
6. \reference * Reference material used in the
conduct of this thesis.
2. AUYV Workbench Application
Directory location: <CDRom>\auv\Workbench\
S/N | Directory Sub-directory Description
and files
1. \src im Java source code to the Jabber Instant
Messaging and XTC Event Monitor modules.
2. main Java source code to the main user interface and
3D Visualization module.
3. mission Java source code to the two-dimensional mission
planner module.
4, util Java source code for Common utilities.
web Java source code to the web server
\bin im Java classes to the Jabber Instant Messaging
and XTC Event Monitor modules.
7. main Java classes to the main user interface and 3D
Visualization module.
8. mission Java classes to the two-dimensional mission
planner module.

161

S/N | Directory Sub-directory Description
and files
9. util Java classes for Common utilities.
10. web Java classes to the web server
11. image Icon and splash-screen image files (in GIF,
JPEG and PNG formats).
12. sound Sound files (in .WAV).
13. META-INF\ Contains mani fest .mf for the JAR.
14. | \doc * HTML documentation.
15. | \dynamics * Java application to the hydrodynamics for the
virtual environment.
16. | \execution * C++ application to the AUV robot execution.
17. | \Java Execution * Java application to the AUV robot execution.
18. | \javadocs ., \im, \main, Java documentation of the source code.
\mission, \util,
\web, \xsbc
19. | \lib * Java libraries.
20. | \Models * Sample VRML examples.
21. | \Scripts * Mission scripts.
B. MAIN APPLICATION

The main package is the main user interface for the rendering of the entire user

interface including the placements of the user interfaces for the various modules and the

3D visualization.

Directory location: <CDRom>\auv\Workbench\src\main

S/N | Filename Description

1. AMVW java Main user interface for AUV Workbench.

2. AUV java Data structure for AUV information (not used).
This is to be used for multiple AUVs in the same
scene.

AUVWorkbenchConfig.java AUV Workbench configuration data structure.
4. ConfigApp.java Application configuration data structure. Used by
configurable toolbar
Const.java Application global constants.
DynamicsExecutionThread.java Invoke a separate process dynamics (located in
..\dynamics\dynamics).
7. UlTable.java User interface to display data in a tabular format.

162

S/N

Filename

Description

VrmlLoader.java

Xj3D loader for VRML models.

X3DLoader.java

Xj3D loader for X3D models (not used).

C. MISSION PLANNING

The mission package is responsible to render two-dimensional mission planner

view on the top-right display pane.

Directory location: <CDRom>\auv\Workbench\src\mission

SIN

Filename

Description

1.

Mission.java

Data structure to store Mission information.

2.

MissionBoundBoxView.java

User interface to define the mission bounding
box (area of interest) (Not used).

MissionCommand.java

Generic mission command data structure.

MissionDepth.java

Mission Depth command data structure. It
defines commanded vehicle depth

MissionDialog.java

Mission information dialog user interface.

MissionDrawArea.java

Drawing canvas/area to display Mission Script
graphically.

MissionEnterTube.java

Mission EnterTube command data structure. It
commands the vehicle to enter a specified
recovery tube. Vehicle should be directly in front
of opening, but heading can be off.

MissionFollowLight.java

Mission FollowLight command data structure. It
commands the vehicle to follow a light source to
a recovery location.

MissionHeading.java

Mission Heading command data structure. It
sets commanded vehicle heading (disables
waypoint or recovery control).

10.

MissionHelp.java

Mission Help command data structure. It causes
a list of valid commands to be printed to the
console (if available).

11.

MissionHover.java

Mission Hover command data structure. It
commands the vehicle maintain position at a
specified (x,y) position. It can include heading
and depth command.

12.

MissionlnputOneView.java

User interface to capture a single value input
(boolean, integer) from user. It is invoked by
MissionDialog.

13.

MissionLateral.java

Mission Lateral command data structure. It sets
both lateral thrusters to cause vehicle to slide
right or left (turns off all automatic control
modes).

163

S/N

Filename

Description

14.

MissionListCellRenderer.java

Customized cell rendering in a JList (e.g., loading
of icons and setting of colors).

15.

MissionListView.java

User interface to display Mission commands in a
Listbox. Sends ACTION_PERFORMED event
for double-click and ENTER key.

16.

MissionMissionScript.java

Mission Script command data structure. Loads a
new mission script from a specified file.

17.

MissionPause.java

Mission Pause command data structure. It
temporarily suspends vehicle operation (for
bench test or virtual world use only); useful for
getting evaluation checkpoints during testing.

18.

MissionPlanes.java

Mission Planes command data structure. Set
bow and/or stern plane deflection angle (turns off
all automatic control modes).

19.

MissionPoint.java

Mission Point command data structure.
MissionHover, MissionPosition, MissionWaypoint
inherit from this.

20.

MissionPointView.java

Mission Point user interface to manipulate
MissionPoint data (includes Hover, Position,
Waypoint).

21.

MissionPosition.java

Mission Position command data structure. It
updates of vehicle position in the world (new
navigation fix has been obtained). It sets GPS
zero point if not previously done.

22.

MissionPropeller.java

Mission Propeller command data structure. It
manually set one or both propeller speeds.

23.

MissionQuit.java

Mission Quit command data structure. It ends
the vehicle mission after zeroing all control
settings (does not initiate surfacing procedure).

24.

MissionRealtime.java

Mission RealTime Command Information. It
causes execution to run in realtime (or turns
realtime execution off).

25.

MissionResetTime.java

Mission ResetTime command data structure. It
resets the vehicle time to a specified value.

26.

MissionRotate.java

Mission Rotate command data structure. It sets
both lateral thrusters to cause vehicle to rotate
(turns off all automatic control modes).

27.

MissionRudder.java

Mission Rudder command data structure. It sets
rudder deflection (turns off all automatic control
modes).

28.

MissionSonar.java

Mission Sonar command data structure. It
commands the vehicle to assume a specified
fixed station relative to a sonar target.

290.

MissionSpeed.java

Mission Speed command data structure (not
used).

164

S/N

Filename

Description

30.

MissionStandoff.java

Mission Standoff command data structure. It
resets the acceptable standoff radius in meters
around hover-points and waypoints.

31.

MissionTakeStation.java

Mission TakeStation command data structure. It
commands the vehicle to assume a specified
fixed station relative to a sonar target.

32.

MissionThruster.java

Mission Thruster command data structure. It
enables or disables the vehicle's vertical and
lateral thrusters (can be overridden by some
control commands).

33.

MissionTimeStep.java

Mission Timesetp command data structure.
It resets the elapsed time for each closed loop
control cycle (default is 0.1sec or 10 Hz).

34.

MissionTrace.java

It turns vehicle trace feature on or off.

35.

MissionViewer.java

2D mission script viewer/planner.

36.

MissionViewerConfig.java

2D mission script viewer/planner configuration
file (Not implemented yet).

37.

MissionWait.java

Mission Wait command data structure. It causes
the vehicle to wait a specified time before
beginning execution of the next command.

38.

MissionWaypoint.java

Mission Waypoint command data structure. It
commands the vehicle to transit to a specified
location.

39.

TargetMine.java

Target mine data structure.

D. JABBER INSTANT MESSAGING

The im package is used for standard Jabber instant messaging. It also implements

the XTC Event Monitoring module (including the triggering of watch events and raising

of alerts).

Directory location: <CDRom>\auv\Workbench\src\im

S/N | Filename Description

1. AgentConfig.java Data structure to store agent configuration that
has been loaded from an XML file.

2. Alert.java Data structure to store alert. AlertSound,
AlertURL and AlertVisual inherit from this class.

3. AlertSound.java Data structure for Sound Alerts, e.g., <Alert
type="sound" src="sound/beep.au"/>.

4. AlertURL.java Data structure for Hyperlink Alerts, e.g., <Alert
type="url"
src="http://www.google.com" />

165

AlertVisual.java

Data structure for Visual Alerts, e.g., <Alert
type="visual" src="image/mine.gif"/>

IMConfig.java

Instant messaging session object.

Monitor.java

Event monitoring criteria for Jabber messages.

UlAgent.java

Event Monitoring/Jabber Instant Messaging User
Interface.

WatchEvent.java

Data structure to store Watch Event and its
corresponding alerts/actions.

WEB

The web server module is implemented in the web package.

Directory location: <CDRom>\auv\Workbench\src\web

S/N | Filename Description

1. HandleRequest.java Thread to handle incoming web server requests.

2. HTTPServer.java Web server to receive HTTP requests.

3. PostForm.java HTTP POST data structure.

4. RequestHTTP.java Processing of incoming web server requests.
UTILITIES

Common utilities and procedures are kept in util package.

Directory location: <CDRom>\auv\Workbench\src\util

S/N | Filename Description
1. AgentPayload.java Data structure to store binary file data in XHTML
portion of Jabber message.
2. FileFilterEx.java Define a file filter (extension, description) in drop-
down combo-box
3. FontDialog.java Selection of font type or allow typed-in text string,
e.g., used in drawing application.
IconFileView.java Display an icon for a particular file types.
ImageDisplay.java Image viewer for the following formats: BMP,
GIF, PNG, JPEG and SVG (using Batik).
6. NumericlnputHandler.java To restrict the no. of characters permitted in the

JTextField.

SortedList.java

Sorted JList component.

SplashScreen.java

Splash screen.

SystemMedia.java

System Utilities to manipulate media files e.g.,

166

S/N

Filename

Description

sound.

10. SystemUtil.java

System Utilities to perform file copy, extract file
name, directory, name only, property
management and screen-capture.

11. SystemUtilX.java

retrieval

Extra System Utilities to perform base-64
encoding & decoding, ZIP, GZIP and HTTP file

G. LIBRARIES
List of required libraries provided from external sources.
Directory location: <CDRom>\auv\Workbench\1lib
S/N | Library Version | Filename Description
1. Apache Ant 1.6.0 ant.jar, optional.jar, Java-based build tool.
xerceslmpl.jar, xml-apis.jar
2. Apache SOAP 2.3.1 soap.jar Base-64 encoding and
decoding.
3. Apache Xerces | 2.5.0 xmlParserAPIs.jar, xml- XML parsing.
apis.jar, xerceslmpl.jar
4. Apache Xalan 250 xalan.jar XML transformation,
Batik 1.5.0 batik-awt-util.jar, batik- A Java-based toolkit for
bridge.jar, batik-css.jar, batik- | apps that want to use
dom.jar, batik-ext.jar, batik- images in the SVG format
gvt.jar, batik-parser.jar, batik- | for viewing, creation and
script.jar, batik-svg-dom.jar, manipulation.
batik-svggen.jar, batik-
swing.jar, batik-util.jar, batik-
xml.jar, js.jar
6. Extensible Java | M8 aviatrix3d-all.jar, gnu-regexp- Display of 3D VRML and
3D 1.0.8.jar, httpclient.jar, j3d-org- | X3D models
images.jar, j3d-org.jar,
Jama.jar, js.jar, JXInput.jar,
uri.jar, vic_uri.jar, vrml97 jar,
xj3d-all.jar
7. Jivesoftware 1.21 smack.jar, smackx.jar. XMPP communications.
SMACK APIs
8. dis-java-vrml - dis-java-vrml.jar Distributed Interactive

Simulation.

167

H. CONFIGURATION FILE
The AUV Workbench configuration file,
AUVWorkbenchConfiguration.xml, islocated in directory

<CDRom>\auv\Workbench\bin.

168

APPENDIX D. AUV WORKBENCH DEVELOPER AND USER
GUIDE

A. SETUP
This document explains how to install the current version (as of March, 2004) of
the AUV Workbench application. This setup procedure assumes the user is running in a

Windows environment without any of the needed components installed.

1. Download and install Sun Java SDK 1.4.2 (Available at

http://java.sun.com/j2se/1.4.2/download.html. Accessed on 15 February 2004). Ensure
that "JAVA HOME" is set.

2. Download and install Sun J3D API 1.3.1 (Available at
http://java.sun.com/products/java-media/3D/download.html. Accessed on 15 February

2004).

3. Download and install ANT 1.6.0 or above. This is required to build the
AUV Workbench application. (Available at http://ant.apache.org. Accessed on 15
February 2004).

4. Download and install Distributed Interactive Simulation module. Ensure
that "dis-java-vrml.jar" (only file required) is installed in "C:\vrtp" and it is set in the

"CLASSPATH".

5. Download and unzip AUV Workbench application (source and

executable) into directory "C:\auv\Workbench".

6. Download and install list of applications and tools in Section C.

B. HOW TO RUN IT
By default, the AUV Workbench application shall be located in

C:\auv\Workbench. To run it, go to C:\auv\Workbench\bin directory and

double-click on run.bat.

169

C. HOW TO COMPILE IT

To compile

and build the AUV Workbench application, go to

C:\auv\Workbench\ directory and double-click on antbuild.bat.

D. TOOLS AND APPLICATIONS

List of tools and useful applications:

S/N | Name Version | Description Available at

1. jEdit 4.1 Java text editor. http://www.jedit.org

2. Mozilla 1.6 Internet browser. http://www.mozilla.org

3. ParallelGraphics 4.2 ParallelGraphics http://www.parallelgraphics.com/products/cortona
Cortona browser VRML plugin.

4. Rhymbox 1.6 Jabber instant http://www.rhymbox.com

messaging client.

ParallelGraphics 2.0 Vrml editor. http://www.parallelgraphics.com/products/vrmipad
VrmlPad

5. X3D Edit 2.4 X3D Graphics editor. http://www.web3d.org

6. Xj3D M8 Java-based VRML and | http://www.xj3d.org

X3D loader.

E. FREQUENTLY ASKED QUESTIONS (FAQ)

1.

Unable to Start AUV Application

Install Java JDK 1.4.2 .

Install Java 3D .

Go to AUV's "\bin" directory, double-click on "run.bat".

List of files that are required by Java3D:

J3D.dIl, J3DUtils.dll, j3daudio.dll located in
%JAVA_ HOME/jre/bin.

170

. vecmath.jar, j3dcore.jar, j3dutils.jar, j3daudio.jar located in

%JAVA HOME%/jre/lib/ext.

COMPONENT CHART

| Created by uiMission()

|| Created by uiGraphics() | | Created by create ToolbarApp() |

E Saw‘

[ew | 5 open
[Text [(List |

~— MissignEditor
<'?=<m|version:"1.D"éncoding:"ut‘f—ﬁ"%
=WissionData vehicleMame="aries" xmin
=Mission=
=Fosition x="12" y="5£" depth:
=Haover!=
=Hoverx="100" y="200"=
=Hover standofi="3.0"=
=Hover z="5"=
=Hover heading="180"=
~Hower k="200" y="100" ="1 8"
=Waypoint ="25" y="50" z="75'
=Waypoint ="7a" y="25" z="50'
=Waypoint ="25" y="50" z="75'
=TakeStatlon sonarscanmode
=TakeStation sonarScanhode:
=TakeStation sonarScanMode;_|
= i odei™

#. AUV Workbench - Mission Planning & Visualization

2D Mission\iewer

(3200100

‘ P A

Mission : ®sitRegressionTest.xml /

Jabib

Biuvese

“

X3D-Edil

33

JEdil

G

ADS

- Select Execution Program
) Use C Execution (@) U/é\ra Execution () Use Java Executipn {No Thruster)

- Select AUV Model — /-

' Phoenix D?/ﬂ) Los Angeles @ firies () Remus
rFi

spnMissionX3D

| Created by uiExeDynamics() |

| spniain

Figure 122. Main Application User Interface.

171

tabPnl

(3DDisplay | 2D Mission Viewer |

(5) 75,25 |

Xj3D Viewer for X3D

Add Insertion Point

(3) 20 Bounding Box

Clear

¥ Show Grid Lines

¥ Show Text Labels
[Show Watch Radius
7 100,200 i shap to Grid
Background color

/
/ /

[/
| missionView | | Created by createDrawAreaPopupMenu() |
~
|pnIBoﬂom | | btn | | pniXJ3DViewer | | IbIX3DFile |
Figure 123. 2D Mission Planning and 3D Visualization User Interface.
btnProcessStart | blnReaITmeToggle| blnProcessSave sanxeDyna ||pnlExecutionDynamics|
|
%MM&MX X
pall ime
Al.l\l' Execution Y Virtual World Dynamics
'
-
\ 7 5 i '/
pd |
| pnlExecution | |mmoExecution| |scpExecution| | pniDynamics || mmoDynamics | |schynamlcs|
|pnIRad|DRun | | radRuninExeC | | radRuninExelJava | | radRuninExeNoThrusterJava | | tabPnl | | pnlOptions | | btgRun |
/ /s e |

) Use C Execution (& Us!.lava Execution () lé Java Execution (No Thruster)

™ Select AUV Madel

() Phoenix () SDV-9 (Los Angeles @ Aries () Remus
.l’f *\ \\ t\\ \---.._ ‘\
\ A — o —
-

/
|radModeIPhoenix| |radModeIde9| | radModelLosAngeles | | radModelAnesl |radModeIRemus|

Figure 124. Execution and Hydro-Dynamics User Interface.

172

l _IFontStyles | | _fontStyle I | _fontSize | | _IFontSizes |

& Set Font

Font attributes

Name:
_fontName Pialog

_fontColor |
I _IFontColor |

Castellar

‘Century Gothic
Century Schoolbook
_IFontNames omic Sans WS
‘Copperplate Gothic Bold
Copperplate Gothic Light

Courier New

Curlz MT

Default

Dialog <]
Sample:

_sampleField > AaBbYYZE

o][cmen |

forestgreen

I

Figure 125. Font Dialog User Interface.

| Created by create ToolbarApp() |

- 8

Jabber

\ J -

Hardcoded Dynamically created from <App> stanza

stored in
AUVWorkbenchConfiguration.xml

Figure 126. Application Toolbar.

173

_txtIMName _txtiIMDomain _txtIMNickname Created by uilMConnect()

/

_txtIMResource

|Ie g

¥ |, pniBtns

v
|surraris.cs.nps.naw_mil

/
lJava ¥

_txtIMPort

btnIMConnect

_ixtiMPassword

_txtIMJID

_txtMsglgnore _txtIMDirln _txtIMDirOut

Figure 127. Customized Jabber Client — Message Settings Module.

_ixtIMSubject _txtIMBody scrBody Created by uilMSend ()

Send Messa
Subject: uhjectline
‘Message Body
Mine found at location (100, 100, 5) pniBins

btnlMSend

btnlMAttach

[sa\rﬁe@cunﬁarence.xchal_muvesin stitute.org
F 4 l’
hitp fiservert/ /

_txtiMTo _txtIMFiles _txtiIMURL

Figure 128. Customized Jabber Client — Message Send Module.

174

Created by uilMREecw()

M Test & E/
| Sefting Incoming Messages | SendMessage | Event Criteria | yd
Em Message From [Recelved Attactifient

1 awrohot@E@surtans cs nps.nadmil [This is atest message 2004-03-06 18:21.18
Hawrohot@esurfanis es nps.asvy.mil [Thera is a mine atlocation 1., |2004-03-06 18:21:46
Jawrohot@surtarnis cs nps.naw mil |Another mine at 15, 40, 50 2004-03-06 18:21:47 q _thMEssagE
4/ lee@surfaris.cs nps navy.mil |Test message 1 2004-03-06 182206 |
5| lee@surfaris.cs nps navy.mil |Test message 2 2004-03-06 18:22:09 |
G| lee@surfaris.cs_nps_nawy.mil |Test message 3 2004-03-06 18:22:11 |
7|awcontrol@surfaris cs nps.navy.mil| Connecting to jabber server.. | 2004-03-06 18:22:31 |
g awcontrol@surfaris.cs.nps.navy.mil Target found at 10,10, 10 2004-03-06 18:22:45 |
9 auwveny@surfaris cenps.navemil Targetfound at 15, 25,10 2004-03-06 18:22:56 |

10 auvenv@surfanis cenps.navemil | Ship found &t 35, 25,10 2004-03-06 18:23:19 |

11 chathol@surfaris.cs.nps.navy.mil | Ship found at 100, 100,10 2004-03-06 18:23.30 |

12 chathot@surfaris.cs.nps.navy.mil |Ships found at 140,150, 10 2004-03-06 18:23:36 |

13/ chathol@surfans. cs.nps.navyd.mil |Targets found a1140, 150,10 |2004-03-06 18:23:45 |

14/ don@E@surmans.c5.nps.naw mil Test sample 1 2004-03-06 18:23:57

15/ don@surfaris.cs.nps.navy.mil Test sample 2 2004-03-06 18:23:99

16/ don@suraris,cs,nps,navy mil Test sample 3 2004-03-06 18:24:04

4] | »

Figure 129. Customized Jabber Client — Message Send Receive.

_txtWebRoot

_txtWebPort

_txtWebUpload

Created by uiWeb()

.y

ﬁw

4

_bitnWeb

Document Root: | iatafvebi
Port No.: 80 | g
v
Upload Directory: |./dataweb/in/ | Start <
I:: Auto-start
_chkWebAutostart

Figure 130. Web Server.

175

THIS PAGE INTENTIONALLY LEFT BLANK

176

APPENDIX E. PROCEDURE TO PACKAGE BINARY DATA

* base64 encode data from a file and create XML Document
perform zipping based on file formats (see SystemUtil.fileCanZip)

@param sTagName tag name to be used
@param 1stAP list of AgentPayload objects
(file name, description & URLS)
@param flagZip whether to gzip zippable files
@return created XML document
/
public static org.w3c.dom.Document encodeDataToXML (String sTagName,
ArrayList 1stAP,
boolean flagZip) {

b S T S I

org.w3c.dom.Document xmlDoc = null;
org.w3c.dom.Element eWrapper = null;
org.w3c.dom.Element ePayload = null;
org.w3c.dom.Element eComment = null;

org.w3c.dom.Element eURL = null;

boolean fZipit = false; // false; //
boolean fCdata = false; // false; //
int numPayload = 0g

AgentPayload objAP = null;

String srcFile = "";
String sDesc = "";
String arrURL[];

if (sTagName.length()>0) { // root to append <AgentPayload> elements

//Create an XML Document

try {
DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance () ;

DocumentBuilder docBuilder = dbFactory.newDocumentBuilder () ;
xmlDoc docBuilder.newDocument () ;

} catch (Exception ex) {
System.out.println ("encodeDataToXML () Error " + ex.getMessage());

}
// <AgentJabber> wrapper around 1 or many <AgentPayload> tags
eWrapper = xmlDoc.createElement (sTagName) ;

// loop through list of AgentPayload objects

for (int iAP=0; 1AP<lstAP.size(); 1AP++) {
ObjAP = (AgentPayload) 1lstAP.get (iAP) ;
srcFile = objAP.getFilepath();

sDesc = objAP.getDesc () ;
arrURL = objAP.getURLs () ;
if (srcFile.length()>0) {

// check whether file is zippable
fZipit = SystemUtil.fileCanZip (srcFile);

177

try {
byte[] originalBytes = null;
byte[] zippedBytes null;

originalBytes = SystemUtil.fileRead(srcFile);
if (originalBytes.length<=DEFAULT PAYLOAD SIZE) {
fCdata = true;

// perform Gzip if file format is zippable & flagZip is SET
if (fZipit && flagZip) {
ByteArrayOutputStream baos new ByteArrayOutputStream() ;
GZIPOutputStream zos = new GZIPOutputStream(baos) ;
zos.write (originalBytes) ;
zos.flush () ;
zos.finish () ;
zos.close() ;

zippedBytes = baos.toByteArray () ;

// determine whether the data is too big to be packaged within
// the CDATA section of the JABBER message
// It is possible to produce a ZIP file that is bigger than
// the original file size, if so, do not use ZIPPed data
if (zippedBytes.length>originalBytes.length)
fzipit = false;
else if (ZippedByteS.length<=DEFAULTiPAYLOADisIZE) {
fCdata = true;
}
}
// load through list of files
// file payload
ePayload = xmlDoc.createElement (TAG AGENT PAYLOAD) ;

// set attributes in element
ePayload.setAttribute (ATTR FILENAME,

SystemUtil.extractFileName (srcFile)); // original filename
ePayload.setAttribute (ATTR CONTENT TRANSFER ENCODING,

"base-64"); // encoding technique defaulted to base-64
ePayload.setAttribute (ATTR DESC, sDesc); // description
ePayload.setAttribute (ATTR TIMESTAMP,

SystemUtil.getDateTimeld ()); // time-stamp
ePayload.setAttribute (ATTR CHECKSUM,
"1234567"); // checksum not implemented yet
ePayload.setAttribute (ATTR FILESIZE,
Long.toString(SystemUtil.fileSize (srcFile))); //file size

// 1f performed Gzip, then set "content-type"
// atribute accordingly
// store base-64 encoded data in CDATA section
if (fZipit && flagZip) {
ePayload.setAttribute (ATTR CONTENT TYPE,
"application/x-zip-compressed") ;
if (fCdata)
ePayload.appendChild (
xmlDoc.createCDATASection (Base64.encode (zippedBytes)));

178

else
ePayload.appendChild(xmlDoc.createCDATASection(""));
}
else {
ePayload.setAttribute (ATTR CONTENT TYPE,
SystemUtil.getContentTypeFromName (srcFile)) ;
if (fCdata)
ePayload.appendChild (
xmlDoc.createCDATASection (Base64.encode (originalBytes)
else
ePayload.appendChild(xmlDoc.createCDATASection(""));

}
// append list of URLs e.g.

// <url>http://serverl/GAMMA.bmp</url>
// <url>http://server2/GAMMA.bmp</url>
// <url>http://server3/GAMMA.bmp</url>
if ((arrURL!=null) && (arrURL.length>0)) {

for (int i1i=0; i<arrURL.length; i++) {
if (arrURL[i].length()>0) {
eURL = xmlDoc.createElement (TAG URL) ;
eURL. appendChild(xmlDoc.createTextNode (arrURL[i]));
ePayload.appendChild (eURL) ;
}
}

}
// add <AgentPayload> to <AgentJabber>

eWrapper.appendChild (
xmlDoc.createComment ("Payload "+ (++numPayload)
eWrapper.appendChild (ePayload) ;
} catch (IOException e) {
writeErr ("encodeDataToXML () Error " + e.getMessage());
return null;
}
}
else
return null;
} // loop through list of <AgentPayload> objects

// add wrapper to XML document
xmlDoc.appendChild (eWrapper) ;
return xmlDoc;
}
else
return null;
} // encodeDataToXML

)

)

) ;

) ;

Figure 131. Procedure to encode binary data to XML

179

* read in XML data from a file or a string

and search for a particular tag,

base-64 decode XML string and save as a file.

Note:

if destination filename is specified, the filename in the tag attribute
is used

<AgentJabber filename="hello.bmp">

CDATA maybe kept empty if the file size is too big.
To retrieve the file from

storage location, parse through list of URLs

and perform HTTP GET or FTP GET.

FTP GET is not implemented yet.

@param srcXml source XML file or string

@param destFile destination output file, attribute value used if empty
@param sTagName tag name to be used

@param bFile true if read from file, otherwise it is a string

@return list of destination filenames saved to

@throws IOException XML exception error

/

public static ArraylList decodeXMLToData (String srcXml,

String destFile,

String sTagName,

boolean bFile) throws IOException {

L S S S SR S e . S . S . S . S S

boolean fUnZipit = false;

String valFileName = "";
String valDesc Wk
String valTimeStamp = "r;
String valContentType W g
String valContentEncode

w .
’

long valFileSize = 0;
long valCheckSum = 0;
String destDir =" /";

// determine the destination directory to save the files to
if (new File(getDestDir()) .isDirectory()) {

destDir = getDestDir () ;
}

// list of AgentPayload objects
ArrayList filesDest = new ArrayList():;
ArrayList 1stURL = new ArrayList();

if ((srcXml.length()>0) && (sTagName.length()>0)) {
// read in XML data and create XML document
org.w3c.dom.Document xmldoc = null;
if (bFile)
xmldoc = getXMLDocFromFile (srcXml) ;
else
xmldoc = getXMLDocFromString (srcXml) ;

// go to wrapper tag e.g. <AgentJabber>

180

NodeList nlWrapper = xmldoc.getElementsByTagName (sTagName) ;
for (int idx = 0; idx <nlWrapper.getLength (); idx++) {
Node child = nlWrapper.item(idx);
// get list of child nodes under wrapper
ArrayList cnWrapper = (ArraylList) getTargetChildNodes (
child, new String [] {TAG AGENT PAYLOAD});
for (Iterator i=cnWrapper.iterator(); i.hasNext();) {
Node levell = (Node) 1i.next():;
String nChild = levell.getNodeName (); // child nodes

if (nChild.equalsIgnoreCase(TAG AGENT PAYLOAD)) {
Node nPayload = levell;

try {
// <AgentJabber filename="hello.bmp">...,
// variable 'attrFileName' return "hello.bmp"
if (nPayload!=null) {

// file name
valFileName = nPayload.getAttributes () .
getNamedItem (ATTR FILENAME) .getNodeValue () ;

// file description
valDesc = nPayload.getAttributes/() .
getNamedItem (ATTR DESC) .getNodeValue () ;

// time stamp
valTimeStamp = nPayload.getAttributes().
getNamedItem (ATTR TIMESTAMP) .getNodeValue () ;

// file size
try {
valFileSize = Long.parselLong (nPayload.getAttributes() .
getNamedItem (ATTR FILESIZE) .getNodeValue()) ;

}
catch (Exception ex) {
valFileSize = 0;

}

// check sum
try {
valCheckSum = Long.parselong (nPayload.getAttributes () .
getNamedItem (ATTR CHECKSUM) .getNodeValue()) ;
}
catch (Exception ex) {
valCheckSum = 0O;

}

// content encoding
valContentEncode = nPayload.getAttributes() .
getNamedItem (ATTR CONTENT TRANSFER ENCODING) .getNodeValue () ;

// content type
valContentType = nPayload.getAttributes/() .
getNamedItem (ATTR CONTENT TYPE) .getNodeValue () ;

181

// determine whether decompression is necessary based on the
// "content-type" attribute
if (valContentType.equalsIgnoreCase (
"application/x-zip-compressed"))
fUnZipit = true;

// 1f destination filename is specified,
// the filename in the tag attribute is used
destFile = destDir + valFileName;
}
}
catch (Exception ex) {
ex.printStackTrace () ;

// get list of URLs
1stURL.clear () ;

String strURL = "r,
ArrayList clPayload = (ArrayList)
getTargetChildNodes (nPayload, new String [] {TAG URL});
for (Iterator ii=clPayload.iterator(); ii.hasNext();) {
Node childPayload = (Node) ii.next();
if (childPayload.getNodeName () .equalsIgnoreCase (TAG URL)) {
try {

StrURL = childPayload.getFirstChild () .getNodeValue () ;
1stURL.add (strURL) ;

}

catch (Exception ex) { // set to default directory
strURL = "";

}

} // within "url" tag
} // loop "AgentPayload" children

A e e e ittt
// get CDATA value from element, note "<![CDATA[...]]>"

// are automatically stripped

// if (nPayload.getFirstChild () .getNodeValue () !=null) {

// something in CDATA
if (nPayload.getFirstChild () .getNodeType ()==
nPayload.CDATA SECTION NODE) { // CDATA node?
StringBuffer binaryData = new
StringBuffer (nPayload.getFirstChild () .getNodeValue ());

// perform base64 decoding
byte[] buffer = Base64.decode (binaryData.toString())

if (fUnZipit) {

ByteArrayInputStream bais = new ByteArraylInputStream (buffer);
GZIPInputStream zis = new GZIPInputStream(bais);
ByteArrayOutputStream baos = new ByteArrayOutputStream() ;

int ¢ = -1;

while ((c = zis.read()) != -1) {

baos.write(c) ;

}
baos.flush() ;

buffer = baos.toByteArray();

182

}
else {
writelLn ("No unzipping required.") ;

}

// write out data to predefined filename provided a filename
if (destFile.length()>0) {
File fDest = new File(destFile);
writeln ("writing CDATA to ["+ fDest.getAbsolutePath () +"1");
BufferedOutputStream bos = new BufferedOutputStream (
new FileOutputStream (fDest)) ;
bos.write (buffer) ;
bos.close() ;
}

}
else { // no CDATA available, retrieve from URLs

for (int Jj=0; Jj<lstURL.size(); Jj++) {

StrURL = (String) 1lstURL.get (Jj):;

if (strURL.length()>0) {
A e
// HTTP/web server
if (strURL.toLowerCase () .startsWith ("http://")) {

// e.g. http://www.mango.com/3D.svg
String retFile = urlGetFile (strURL, destFile,
if (retFile.length()>0) {// downloaded file
destFile = retFile;
break;

// FTP server

else if (strURL.toLowerCase () .startsWith("ftp://")) {
// e.g. ftp://ftp.mango.com/3D.svg
// destFile = destDir + "FTP GET";

e e
// Local/networked file server/location
else {

// e.g. ../../../fruit/3D.svg, \\terra\fruit\3D.svg?

File urlFile = new File (strURL) ;
// check that the file can be found

if (urlFile.exists ()) {
if (SystemUtil.filecopy(strURL, destFile))
break;
}
}
[== e e e e e e s e e e e s e e s e s e e e e S S S e S S S S E S S eSS S S S eSS S eSS

} // loop thru' list of URLs
} // no CDATA available, get from storage server/location
} // within "AgentPayload"
String arrURL[] = (String[]) 1lstURL.toArray(new String[0]);
AgentPayload agtP = new AgentPayload(destFile, wvalDesc,
valContentEncode, valContentType,

183

valTimeStamp,
valFileSize, valCheckSum,
arrURL) ;
filesDest.add (agtP) ;
} // loop "AgentJabber" children, looking for "AgentPayload"
} // within "AgentJabber" tag

return filesDest;
// for statistical purposes

/%
double readBytes = buffer.length;
double totalChars = binaryData.toString () .length();
System.out.println ("Encoded " + readBytes + " bytes using " +
totalChars + " characters for an average length of " +
totalChars/readBytes + " characters.");
*/
}
else

return null;
} // decodeXMLToData

Figure 132. Procedure to decode binary data to XML

184

APPENDIX F. GNS.JAVA

The Java class used to convert GEOName Server (GNS) ASCII data files to XML

format.

R i
/‘k *

Filename : GNS.java

* Description : GEOnet Names Server (GNS)

o requires Apache Xerces and util.SystemUtil

*

o e.g. // convert text-based GNS format to XML form

S GNS.convertTextToXML ("C:/test/sn.txt") ;

*

* Created Date : 29 February 2004

* Revised Date : 29 February 2004

* Course : Thesis

* Program : GNS Object and XML converter

* Compiler : JDK 1.4.2 onwards

* Platform : Windows 2000/Windows XP

* @Qauthor Lee, Chin Siong Daryl

* @version 1.0

Y/

A

package main;
import java.io.*;
import Jjava.util.x*;

// JAXP packages

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import org.apache.xml.serialize.*;
import org.w3c.dom.*;

import org.xml.sax.*;

public class GNS {

public static String TAG_GNS = "GNS";

public static String ATTR CTRY = "ctry";

public static String ATTR NUMREC = "numRecords";
public static String TAG FEATURE = "FEATURE";
public static String ATTR LAT = "lat";
public static String ATTR LONG = "long";

public static String ATTR DMS LAT = "dmsLat";

public static String ATTR DMS LONG = "dmsLong";
public static String ATTR UTM = "utm";
public static String ATTR JOG = "jog";

public static String ATTR GENERIC = "generic";
public static String ATTR SHORT FORM "shortForm";
public static String ATTR SORT NAME "sortName";
public static String ATTR FULL NAME "fullName";
public static String ATTR FULL NAME ND = "fullNameND";

185

public
public
public
public
public
public
public
public
public
public
public
public
public
public

String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String

public

sRC

static
static
static
static
static
static
static
static
static
static
static
static
static
static

sRC;

_sUFI;
sUNTI;

sLAT;

SLONG;
sDMS_LAT;
sDMS_LONG;

sUTM;

_sJOG;
SIEE)

_sDSG;
grCg

sCC1;

SADM1;

SADM2 ;

_sDIM;
_B8CC2¢

String
String
String
String
String
String
String
String
String
String
String
String
String
String

ATTR MODIFY DATE
ATTR RC
ATTR UFI
ATTR UNI
ATTR FC
ATTR_DSG
ATTR PC
ATTR ADM1
ATTR ADM2
ATTR CC1
ATTR CC2
ATTR DIM
ATTR NT
ATTR LC

_SNT;

_sLC;

__ SSHORT FORM;

_ SGENERIC;
SSORT NAME;
SFULL NAME;
_SFULL NAME ND;
__sMODIFY DATE;

GNS (String sRC,

String sUFI,
String sUNI,
String sLAT, String sLONG,
String sDMS LAT,
String sUTM, String sJOG,
String sFC, String sDSG,
String sPC, String sCC1,
String sADM1, String sADM2,
String sDIM, String sCC2,
String sNT, String sLC,
String sSHORT FORM,
String sGENERIC,
String sFULL NAME,
String sFULL NAME ND,

= sRC;

"modifyDate";

WegWe
"ufi";
"uni";
WiteW g
"dsg";
"pC";
"adml";
"adm2";
YeelWe g
"cc2 ",.
"dim";
"nt";
WileW g

String sDMS_ LONG,

String sSORT NAME,

String sMODIFY DATE)

{

186

_sUFI = sUFI;
__sUNI = sUNI;
_SLAT = STLATY

_ sLONG = sLONG;
_sDMS LAT = sDMS LAT;
__sDMS LONG = sDMS LONG;
_sUTM = sUTM;
_sJOG = sJOG;

_SFC = sFC;

_sDSG = sDSG;

_ SPC = sPC;

_sCC1 = sCC1;
__sADMI1 = sADMI1;
__SADM2 = sADM2;
_sDIM = SDIM?
_sCc2 = gCC2¢

_SNT = sNT;

_sLC = sLC;
__SSHORT FORM = sSHORT FORM;
_ SGENERIC = sGENERIC;
__SSORT_ NAME = SSORT_ NAME;

_SFULL_NAME
_sFULL_NAME ND
SMODIFY DATE

SFULL NAME;
sFULL NAME ND;
= sMODIFY DATE;

} // GNS

public String getRC() { return sRC; } // getRC ()

public String getUFI() { return sUFI; } // getUFI ()

public String getUNI() { return sUNI; } // getUNI

public String getLAT() { return sLAT; } // getLAT

public String getLONG() { return sLONG; } // getLONG

public String getDMS LAT() { return sDMS LAT; } // getDMS LAT

public String getDMS LONG() { return sDMS LONG; } // getDMS LONG

public String getUTM() { return sUTM; } // getUTM

public String getJOG() { return sJOG; } // getJOG

public String getFC() { return sFC; } // getFC

public String getDSG() { return sDSG; } // getDSG

public String getPC() { return sPC; } // getPC

public String getCCl() { return sCCl; } // getCCl

public String getADM1 () { return sADMl; } // getADMI1

public String getADM2 () { return sADM2; } // getADM2

public String getDIM() { return sDIM; } // getDIM

public String getCC2() { return sCC2; } // getCC2

public String getNT() { return sNT; } // getNT

public String getLC() { return sLC; } // getLC

public String getSHORT FORM() { return sSHORT FORM; } // getSHORT FORM

public String getGENERIC() { return sGENERIC; } // getGENERIC

public String getSORT NAME () { return sSORT NAME; } // getSORT NAME

public String getFULL NAME () { return sFULL NAME; } // getFULL NAME

public String getFULL NAME ND() { return sFULL NAME ND; } //
getFULL_NAME ND

public String getMODIFY DATE() { return sMODIFY DATE; } //
getMODIFY DATE

public String toString() {

return getLAT() +", "+ getLONG() +", "+ getFULL NAME ()+", "+

getMODIFY DATE () ;

187

} // toString

/**

* load from text-based GNS data file and save to XML
* (same filename, different extension)

* @param srcFile GNS text file

* @return true=successful, false if failed

=/
public static boolean convertTextToXML (String srcFile) {
if (new File(srcFile).exists()) {
try {

FileInputStream fis = new FileInputStream(srcFile) ;
BufferedReader dis = new BufferedReader (new InputStreamReader (fis)) ;
int count = 0¢
int countError = 0;

String sBuf;
String arrS[];
ArrayList 1lst = new ArraylList();

while ((sBuf = dis.readLine()) !'= null) {
arrS = sBuf.split ("\t");
// debugging writeIn("["+ arrS.length +"]");

if (count>0) { // skip header
lst.add(new GNS (arrS[0], arrS[l], arrS[2], arrS[3
arrS[5], arrS[6], arrS[7], arrS[8
arrS[10], arrS[1l1l], arrS[1l2], arrS[1l

1, arrS[4],
1, arrS[9],
31,
arrS[1l4],

arrS[15], arrS[l6], arrS[1l7], arrS[1l8],

arrS[19],
arrS[20], arrS([21], arrS[22], arrS[23], arrS[24]
))
}
count++;
}
writeLn ("No. of GNS records read from ["+ srcFile +"] is "+ count);
/=
// save as XML
String fXML = util.SystemUtil.changeFileExt (srcFile, ".xml");

saveAsXML (1st, fXML) ;
writelLn ("Generated GNS XML file ["+ fXML +"]1");

return true;
} catch (Exception e) {
writeErr ("File error: " + e.getMessage() + " on file " + srcFile);
}
}

return false;
} // convertTextToXML

/**

* create an XML document from list of GNS records
* (@param attrCtry abbreviated country name

* @param lst list of GNS objects

* @return XML document

=/

private static Document createXMLDocument (String attrCtry, ArraylList 1lst) {

188

Element main;
Element root;
Element tFeature = null;
Document xmlDoc null;

try {
//Create a XML Document
DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance (); //
DocumentBuilderFactoryImpl.newInstance () ;

//

DocumentBuilder docBuilder = dbFactory.newDocumentBuilder () ;
_xmlDoc = docBuilder.newDocument () ;
} catch (Exception e) {
System.out.println ("Error " + e);
}
// add stylesheet
Map PITable = new HashMap (2, (float)0.5); //try this and see what

happens to the output

) ;

) 3

/= e
root = xmlDoc.createElement (TAG GNS) ;
root.setAttribute (ATTR CTRY, attrCtry); // which country
root.setAttribute (ATTR NUMREC, Integer.toString(lst.size()));
for (int i=0; i<lst.size(); i++) {
tFeature = xmlDoc.createElement (TAG FEATURE) ;
tFeature.setAttribute (ATTR LAT, ((GNS) lst.get(i)).getLAT());
tFeature.setAttribute (ATTR LONG, ((GNS) lst.get(i)).getLONG());
tFeature.setAttribute (ATTR DMS LAT, ((GNS) lst.get(i)).getDMS LAT());
tFeature.setAttribute (ATTR DMS LONG, ((GNS) lst.get(i)) .getDMS LONG ()
tFeature.setAttribute (ATTR UTM, ((GNS) lst.get(i)).getUTM());
tFeature.setAttribute (ATTR _JOG, ((GNS) lst.get(i)).getJOG());
tFeature.setAttribute (ATTR GENERIC, ((GNS) lst.get(i)) .getGENERIC())
tFeature.setAttribute (ATTR SHORT FORM, ((GNS)
lst.get (i)) .getSHORT FORM())
tFeature.setAttribute (ATTR SORT NAME, ((GNS) lst.get(i)) .getSORT NAME ()
tFeature.setAttribute(ATTR_FULL_NAME, ((GNS) lst.get(i)).getFULL_NAME()
tFeature.setAttribute (ATTR FULL NAME ND, ((GNS)
Ist.get(i)) .getFULL NAME ND());
tFeature.setAttribute(ATTR_MODIFY_DATE, ((GNS)

Ist.get(i)) .getMODIFY DATE ());

tFeature.setAttribute (ATTR RC,
tFeature.setAttribute (ATTR UFI,
tFeature.setAttribute (ATTR UNI,
tFeature.setAttribute (ATTR _FC , ;
tFeature.setAttribute (ATTR DSG, lst.get .getDSG())
tFeature.setAttribute (ATTR PC, lst.get .getPC())

((() lst.get(i))
((() (1))
((() (1))
((() (1))
((() (1))
((() (1))
tFeature.setAttribute (ATTR ADM1, ((GNS) lst.get(i)).getADM1 ());
((() (1)))
((() (1))
((() (1))
((() (1))
((() (1))
((() (1))

lst.get
lst.get
lst.get

.getRC());
.getUFI());:
.getUNTI ())
.getFC())

’

tFeature.setAttribute (ATTR ADM2, lst.get .getADM2 ()
tFeature.setAttribute (ATTR CC1, lst.get .getCC1 ())
tFeature.setAttribute (ATTR CC2, lst.get .getCC2());
tFeature.setAttribute (ATTR DIM, lst.get .getDIM())
tFeature.setAttribute (ATTR NT,
tFeature.setAttribute (ATTR LC,

lst.get
lst.get

.getNT ());
.getLC())7

189

root.appendChild (tFeature) ;
// debugging writeln(((GNS) lst.get(i)).toString());

}

//add to the root Element
_xmlDoc.appendChild (root) ;

return xmlDoc;
} // createXMLDocument

/**
* save GNS data in XML form
* @param 1stGNS list of GNS objects
* @param filename file to be saved to
=/
public static void saveAsXML (ArrayList 1stGNS, String filename) {
try {
Document doc =
createXMLDocument (util.SystemUtil.extractFileNameOnly (filename),
1stGNS) ;
if (doc!=null) {
OutputFormat outputFormat = new OutputFormat (doc) ;
outputFormat.setLineWidth (OutputFormat.Defaults.LineWidth) ;
outputFormat.setIndent (OutputFormat.Defaults.Indent) ;

XMLSerializer fileSerializer = new XMLSerializer (new
FileWriter (filename), outputFormat) ;
fileSerializer.serialize (doc) ;
}
else {
writeErr ("unable to save XML to ["+ filename +"]1");
}
}
catch (IOException ioEx) {
writeErr ("Error " + ioEXx);
}
} // saveScriptXML

/**

* write a error messgae to console

* (@param aStr line to be written to console
=/

public static void writeErr (String aStr) {
System.err.println (aStr) ;

} // writeErr

/**

* write a line to console

* (@dparam aStr line to be written to console
=/

public static void writelLn (String aStr) ({
System.out.println (aStr) ;

} // writelLn

} // GNS

190

LIST OF REFERENCES

[Ant 2004] Apache Ant. http://ant.apache.org/fag.html Accessed on 15 January 2004.

[Ayala 2002] Miguel Arnaldo Ayala, “Execution Level Java Software and Hardware for
the NPS Autonomous Underwater Vehicle”, Master’s Thesis, Naval Postgraduate School,
Monterey, California, September 2002. Available at:
http://library.nps.navy.mil/uhtbin/cgisirsi/r3TGkbHCIu/99460007/523/3643 Accessed on
January 2004.

[Brutzman 1994] Brutzman, D.P., A Virtual World for an Autonomous Underwater
Vehicle, PhD Dissertation, Naval Postgraduate School, Monterey, California, December
1994. Available at: http://web.nps.navy.mil/~brutzman/dissertation/ Accessed on
January 2004.

[Brutzman 2004] Don Brutzman. X3D Sonar Visualization and Tactical Web Services for
Undersea Warfare (USW). Available at
http://www.movesinstitute.org/xmsf/projects/sonar-vis/NpsSonarVisualizationTda.ppt.
Accessed on February 2004.

[CML] Chemical Markup Language (CML). http://www.xml-cml.org/ Accessed on
February 2004.

[DAML] Defense Advanced Research Projects Agency (DARPA) Agent Markup
Language (DAML) for agents. http://www.daml.org/ Accessed on February 2004.

[Eclipse 2004] Eclipse Platform. http://www.eclipse.org. Accessed on January 2004.

[Ferber 1999] Ferber, J., Multi-Agent Systems, An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, Harlow, England, 1999.

[Girard] Anouck Renee Girard. An Overview of Emerging results in Networked Multi-
Vehicle Systems.

[GeoML] Geography Markup Language to describe geographic information.
http://www.opengis.org Accessed on February 2004

[Gilles 1998] Gilles Fauconnier, Mark Turner. Conceptual Integration Networks.
Available at http://blending.standford.edu. Accessed on March 2004.

[Grunesien 2002] Adrien Gruneisen, Yann Henriet. 3D Model of the Aries Autonomous
Underwater Vehicle (AUV), JavaDoc for Dynamics, Software, AUV Mission-
Visualization, and AUV Dynamics Control Workbench in Matlab, Naval Postgraduate
School, Monterey, California, October 2002.

191

[Hawkins 2003] Darrin L. Hawkins, Barbara C. Van Leuvan, An XML-based Mission
Command Language for Autonomous Underwater Vehicles (AUVs), June 2003.
Available at: http://library.nps.navy.mil/uhtbin/cgisirsi/kMbLeal39E/99460007/523/4789

[Hiles 2003] John Hiles. “Cognitive Subjects and Operations: Putting Subjects into
Simulations; Moving Agents Out of their Simulation Box”. Available at
http://www.movesinstitute.org/openhouse2003slides/Hilesopenhouse2003.ppt

[Holden 1995] Holden, Michael J., “ADA Implementation of Concurrent Execution of
Multiple Tasks in the Strategic and Tactical Levels of the Rational Behavior Model for
the NPS Phoenix Autonomous Underwater Vehicle (AUV),” M.S. thesis, Naval
Postgraduate School, Monterey, California 93943, September, 1995. Available at,
http://www.cs.nps.navy.mil/research/auv/auv_thesisarchive.html

[Jabber 2004] Jabber. http://www.jabber.org Accessed on September 2003.

[JDK142] Java 2 Platform Standard Edition, v1.4.2 (J2SE). Available at
http://java.sun.com/j2se/1.4.2/download.html. Accessed on September 2004.

[JavaCodeConvention 1999] Java Coding Convention. Available at
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html. Accessed on
March 2004.

[JEP] Jabber Enhancement Proposals. http://www.jabber.org/jeps/ Accessed on October
2003.

[JEP49] JEP-0049: Private XML Storage. http://www.jabber.org/jeps/jep-0049.html
Accessed on January 2004.

[JEP71] JEP-0071: XHTML-IM. http://www.jabber.org/jeps/jep-0049.html Accessed on
January 2004.

[JiveSoftware 2003] Jive Software open-source XMPP client library for instant
messaging and presence. http:/www.jivesoftware.com/xmpp/smack/. Accessed on
September 2003.

[JMS] Sun Java Message Service. http://java.sun.com/products/jms/. Accessed on
October 2003.

[Mahmoud 2002] Qusay H. Mahmoud. Compressing and Decompressing Data using
Java. Accessed on February 2002.

[MathML] MathML for mathematics. http://www.w3.org/Math/ Accessed on February
2004.

[Mozilla 2004] Mozilla Project. http://www.mozilla.org/ Accessed on February 2004.

192

[MsMQ] Microsoft Message Queuing. www.microsoft.com/msmag/default.htm Accessed
on October 2003.

[Netbeans 2004] NetBeans Platform. http://www.netbeans.org. Accessed on January
2004.

[Oceans 2000] David B. Marco, Anthony J. Healey. Current Developments in
Underwater Vehicle Control and Navigation: The NPS ARIES AUV, 2000. Available at
http://web.nps.navy.mil/~me/healey/papers/Oceans2000.pdf

[OSI 2004] Open Source Initiative, Non-Profit Corporation, 2002, “Definition
and Rationale”, http://www.opensource.org (Accessed February 2004).

[Pentakalos 2001] Odysseas Pentakalos. Java Tip 117: Transfer binary data in an XML
document. http://www.javaworld.com/javaworld/javatips/jw-javatipl 17.html (Accessed
on January 2004).

[Polycarpou 2001] Marios M. Polycarpou. Ohio State University. Cooperative Control of
Distributed Multi-Agent Systems.

[RFC 821] RFC 821 - Simple Mail Transfer Protocol.
http://www.fags.org/rfcs/rfc821.html (Accessed on December 2003).

[RFC 959] RFC959 - File Transfer Protocol.
http://www.w3.org/Protocols/rfc959/Overview.html or
http://www.fags.org/rfcs/rfc959.html (Accessed on December 2003).

[RFC 1867] RFC 1867 - Form-based File Upload in HTML.
http://www.tags.org/rfcs/rfc1867.html (Accessed on December 2003)

[RFC 2045] RFC 2045 (Base64 Encoding). http://www.ietf.org/rfc/rfc2045.txt (Accessed
on December 2003).

[RFC 2660] RFC 2660 (Secure HyperText Transfer Protocol)
http://www.ietf.org/rfc/rfc2660.txt. (Accessed on January 2004).

[RFC 2779] RFC2779 - Instant Messaging / Presence Protocol Requirements.
http://www.jabber.org/ietf/ (Accessed on January 2004).

[SFTP 2002] Secure FTP 101.
http://www.intranetjournal.com/articles/200208/se_08 14 02a.html (Accessed on
January 2004).

[Reimers 1995] Reimers, S. “Towards Internet Protocol Over Seawater: Forward Error
Correction Using Hamming Codes for Reliable Acoustic Telemetry”, MS Thesis, Naval

193

Postgraduate School, Monterey, California. September 1995.

[Rhymbox 2004] RhymBox Jabber Client - Instant Messaging For XMPP/Jabber.
http://www.rhymbox.com/. Accessed on 15 January 2004.

[Schema 2004] XML Schema. http://www.w3.org/XML/Schema Accessed on February
2004.

[SensorML] Sensor Markup Language (SensorML) for sensors.
http://vast.uah.edu/SensorML/ Accessed on February 2004.

[Serin 2003] Serin, E., “Design and Test of the Cross-Format Schema Protocol (XFSP)
for Networked Virtual Environment”, Master’s Thesis, Naval Postgraduate School,
Monterey, California, March 2003.

[Shankar 2002] Gowri Shankar. Embed binary data in XML documents three ways.
http://www-106.ibm.com/developerworks/xml/library/x-
binary/?open&I=136.t=gr.p=xb2b Accessed on February 2002.

[SVG 2004] Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG/.
Accessed on January 2004.

[Turner] Roy M. Turner. University of New Hampshire. Handling Unanticipated Events
in Single and Multiple AUV System:s.

[Turner 2002] Gilles Fauconnier, Mark Turner. The Way We Think: Conceptual
Blending and The Mind's Hidden Complexities.

[Websphere] IBM Websphere MQ. http://www-306.ibm.com/software/integration/wmq/

[Wheless] Glen H. Wheless. Old Dominion University. The Use of Collaborative Virtual
Environments in the Mine Countermeasures Mission.

[XMPP 2004] Extensible Messaging and Presence Protocol (XMPP).
http://xml.coverpages.org/xmpp.html. Accessed on December 2003.

[XSL 2004] Extensible Stylesheet Language. http:// www.w3.org/TR/NOTE-XSL.htm.
Accessed on February 2004.

[XML 1999] XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points
Accessed on January 2004.

[XML 2004] Extensible Markup Language (XML) 1.0 (Third Edition).
http://www.w3.0rg/TR/2004/REC-xml-20040204 Accessed on February 2004.

194

[XSLT 2004] Extensible Stylesheet Language Transformation.
http://www.w3.org/TR/xslt. Accessed on February 2004.

[Xalan 2004] Apache Xalan. http://xml.apache.org. Accessed on February 2004.

[X3D] Extensible 3D (X3D) Graphics. http://www.web3d.org/x3d.html Accessed on
February 2004.

[X3DHints 2004] X3D Scene Authoring Hints. Available at
http://www.web3d.org/TaskGroups/x3d/translation/examples/X3dSceneAuthoringHints.h
tml#NamingConventions. Accessed on September 2003.

[XJ3D 2004] The Xj3D Project. http://www.xj3d.org Accessed on February 2004.

[XTC 2004] Don Brutzman, Don McGregor, Daniel A. DeVos and Chin Siong Lee.
XML-based Tactical Chat (XTC): Requirements, Capabilities and Preliminary Progress,
January 2004. Available at
http://www.movesinstitute.org/xmsf/projects/ X TC/XmlTactical Chat2004January28.pdf

195

THIS PAGE INTENTIONALLY LEFT BLANK

196

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Associate Professor Don Brutzman
Naval Postgraduate School
Monterey, California

Research Associate Curt Blais
Naval Postgraduate School
Monterey, California

Research Professor John Hiles
Naval Postgraduate School
Monterey, California

Associate Professor Tony Healey
Naval Postgraduate School
Monterey, California

Research Associate Jeff Weekley
Naval Postgraduate School
Monterey, California

Duane Davis, LCDR USN

Naval Postgraduate School
Monterey, California

197

