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ABSTRACT 

The DARPA Polymorphous Computing Architecture (PCA) program is building advanced 
computer architectures that can reorganize their computation and communication structures to 
achieve better overall application performance. As part of the PCA program, MIT Lincoln Laboratory 
has been asked to provide examples of defense-oriented applications that will challenge the candidate 
architectures. This report describes an example airborne radar data processing application. Several 
example application parameter sets are given that reflect the range of requirements spanned by 
current systems. 
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1.   Introduction 

At the PCA Morphware forum meeting in October 2001, the community requested that Lincoln 
Laboratory develop a benchmark, including performance requirements, distilled from a realistic 
application. The purpose of the benchmark is to provide realistic performance requirements that 
will stress the capabilities of PCA hardware and software while remaining simple enough to be 
easily understandable. Different application parameter sets are provided, each with their own 
corresponding performance requirements. The intent is to allow the designers to explore morphing 
the system to meet these different sets of requirements. 

After surveying several applications, the authors chose to provide an example from airborne 
radar data processing, as these are among the most challenging problems from a performance 
standpoint. This particular example involves a three-dimensional data set. Many of the signal 
processing and data movement kernel functions described in the kernel benchmark report [1] are 
present in this benchmark. The parameter sets included with this example are chosen to represent 
actual radar systems and vary widely in order to provide good coverage in application space. The 
performance requirements are chosen to represent actual radar systems. 

The integrated radar-tracker application [2] is in some ways a superset of the functionality 
described here. That application was designed to provide additional computation requirements to 
challenge PCAs. Nevertheless, this application is a compact example that can be used to explore 
the capabilities of PCAs. 

This document first describes rough criteria for evaluating the implementation of the bench- 
mark on particular PCA systems. It goes on to describe the benchmark, including the input data 
set, algorithm details, and performance requirements. Finally, it describes example morphing sce- 
narios for the benchmark. 



2.   Benchmark Evaluation 

There are three important aspects of a PCA system that must be considered in evaluating any im- 
plementation of this benchmark: the performance of the benchmark, the application programming 
interface, and morphability. In this section, we examine each of these aspects in more detail. 

2.1 Performance 

The first dimension for PCA evaluation is performance. The most important way this appli- 
cation example stresses performance is by providing throughput and latency requirements. The 
values supplied are intended to be representative not only of current radar performance require- 
ments, but also of those expected in the near future. 

The achieved performance on a processing flow is a function of how that flow is mapped to 
the available computation and communication resources. In a PCA, the resources are not fixed 
but negotiable. Any intermediate abstractions that are used in the realization of the application on 
hardware must have several important features. First, the abstractions must insure correctness of 
execution. Second, the abstractions must have low overhead so they can be manipulated easily 
and quickly. Third, they must be comprehensive and complex enough to result in efficient use of 
the hardware, yet simple enough to have low overhead. Finally, the abstractions must be portable 
between different PC As. 

Since a major purpose of the benchmark is to stress the hardware and software architecture, 
performance parameters were chosen so that mappings are non-trivial, forcing the efficient and 
robust use of abstraction at each level of translation. An evaluation of any PCA system must 
consider the amount of hardware that would be used to meet the requirements and any special 
aspects of the configuration of the hardware. 

2.2 Application Programming Interface 

The next dimension for PCA evaluation is the programming interface. The benchmark assists 
in addressing API issues by forcing the designer to think about the different users of the system and 
how those users would describe different types of applications to the processor. Issues to consider 
in API design include expressive power, portability, isolation of hardware details from high-level 
users, roles for compilers, libraries, and operating systems, and differing paradigms such as object- 
oriented, functional, etc. In examining the API problem for a specific benchmark example, many 
of these issues can be illuminated. 

In addition to the "standard" API issues, PCA raises another important API issue: the com- 
munication and flow of requirements information from the application or mission to the hardware. 
Since PCAs must react to changing mission requirements, the specification of those requirements 
must at some level be included in the API. Furthermore, the specification must be able to be given 
in a scalable way so that the application will not "break" when run on systems with different 
processing power. The benchmark provided contains requirements information not only to set 
performance goals, but also to illuminate this API issue. An evaluation of a PCA system must 
consider the programming methods that would be used to implement the benchmark and how the 
requirements are described to the PCA system. 



2.3    Morphability 

The final and distinctive dimension for PCA evaluation is the concept of morphability. The 
premise of PCA is that hardware architectures will morph, or reconfigure, in response to changing 
application requirements and system conditions. One aspect of morphing is the ease, efficiency, 
and latency with which machines can morph. Morphing which can be performed in mission ("hot 
morphing") is obviously more challenging that morphing performed between missions ("cold mor- 
phing"). It should be possible to perform in-mission and between-mission morphing using the 
same mechanisms and abstractions, making the distinction between these two types of morphing 
largely a matter of timescale. 

A more important distinction is the amount of interaction between the application and the 
system that morphing requires. Morphing can be regarded as adaptation of the system resources to 
meet application requirements. We can describe three different morphing scenarios in terms of the 
system aspect that has changed, as described below. 

1. Application-driven morphing occurs when the application requirements change but the avail- 
able system resources remain the same. The system will morph to meet the new require- 
ments. This category includes parameter changes, changes in the amount of workload, and 
changes in the type of processing (for example, threading versus streaming). It is assumed 
that the system will be able to meet the new requirements. 

2. System-driven morphing occurs when the application requirements have not changed but the 
system resources have changed for some reason that is not application-visible (for example, 
to meet the processing demands of another application, to recover from a system fault, or 
for power conservation). The system must reorganize resources and continue to meet the 
application requirements. 

System-driven morphing can only be performed if the system has some excess capacity 
over the minimal application requirements. The application will not need to be directly 
involved in this type of morphing, but it will provide requirements limiting how often this 
may occur, how long it can take, how much data loss is tolerable, and how much delay is 
allowed in processing data sets as a result of system-driven morphing. 

3. Cooperative morphing occurs when there is feedback between the system resources and the 
application requirements. The application has progressed beyond merely making demands 
of the system as in category 1: it queries the system for what is possible and scales its 
demands accordingly. This implies that the PCA system provides a feedback or discovery 
mechanism. 

The minimum level of functionality for PCA is the application-driven morphability, category 1. 
Category 2 morphing requires some level of resource management in the PCA system itself. Com- 
pared to category 2 morphing, category 3 morphing requires only modest additional functionality 
from the PCA system: most of the burden of interaction must be borne by the application developer 
in this case. 

The benchmark specifies two morphing scenarios, involving application parameter changes 
(category 1 morphing) and fault tolerance (category 2 morphing). An evaluation of a PCA system 
must consider the process used to perform the morphing, and how quickly such morphing could 
be done. 



3.  Input Data Set 

The input data to the appHcation is a three-dimensional data set whose dimensions are channels, 
range, and pulses. This data set is shown conceptually in Figure 1. A series of Npri pulses are sent 
by the radar, and for each pulse, a set of Nrg range returns is collected on a set of Nch parallel input 
channels. The output from the sensor is therefore a vector corresponding to a particular value of 
range and a particular pulse in the sequence. 

N^h, Channels 
Np^i, Pulses 

N,g, Range 

Figure 1.    Input data set dimensions. 

For any particular pulse in the sequence, a matrix of size Net x Nrg is collected. Data cor- 
responding to a particular pulse is completed before data corresponding to the next pulse begins. 
Therefore, range is sometimes referred to as the fast time dimension and pulses as the slow time di- 
mension. When referring to individual elements of the data cube C, we refer to them as C(x, y, z), 
where x is the channel index, y is the range index, and z is the pulse index. 

Input data arrives as 16-bit integer data in two streams, the T and 'Q' or real and imaginary 
components of the complex input data. At some point (almost certainly by the beamforming stage), 
this input data would need to be converted to floating-point. However, the implementation is free 
to do this conversion either before, after, or during either of the initial filtering stages. The choice 
of the point of conversion will affect the speed and the accuracy of the implementation. 



4.  Algorithm 

The block diagram of the benchmark processing is given in Figure 2. The application consists 
of four stages: pulse compression, Doppler filtering, beamforming, and detection. The first two 
stages perform preliminary processing on the data similar to the low-pass filtering stage of the 
multi-stage application. The beamforming stage transforms the filtered data to allow detection of 
signals coming from a particular set of directions of interest, just as in the multi-stage application. 
The detection stage determines whether targets are actually present in the beamformed data and 
performs simple grouping and parameter estimation operations on those targets. Each stage is 
described in more detail in the following sections. 

Pulse 
Compression 

Doppler 
Filtering Beamforming Detection F^ 

Figure 2.    Block diagram of benchmark application. 

Most of the processing stages have some algorithm-specific parameters that will vary in differ- 
ent processing scenarios. These parameters are summarized in tables at the end of each processing 
stage. Table 4 on page 12 summarizes all the data set, algorithm-specific, and performance param- 
eters. 

4.1    Pulse Compression Stage 

The purpose of the pulse compression stage is to apply a decimating finite-impulse response 
(FIR) filter operation to the range data for each pulse and channel. The input to each FIR filter 
operation is a vector x, as shown in Figure 3. In Matlab notation, this vector can be described as 
X = C{i,:, k), that is, a slice of the data cube containing all the range gates for a particular channel 
i and pulse k. Additional parameters for the FIR operation are described in Table 1. 

The FIR filter has a set of impulse response coefficients w[l], ^ G {0 ... Npc — 1}. It also has 
the option to decimate, that is, to reduce the size of the input data used in the operation, by some 
factor D. If the size of the input data is N^g, the size of the output data is \NrglD\. The output of 
the filter, y, is the convolution of w with the input x\ 

Nr,c-l 

[j]=  J2 x[j*D-l]w[l],fon = 0,l,... 
1=0 

N, rg 

D 
1. (1) 

Although equation (1) gives the mathematical definition of the FIR filter, the most efficient im- 
plementation of the filter may not use this formula directly. If the length of the filter Npc is short and 



N^h, Channels 
N-ri, Pulses pn 

N , Range 

Figure 3. Input data for the pulse compression stage. The shaded area shows the data 
operated on by each FIR filter operation. This operation is performed for each channel and 
each pulse. 

the data size Nrg is large, then an actual convolution might be explicitly implemented. Otherwise, 
a fast convolution using FFTs might be performed, possibly even considering an overlap-and-save 
method [3]. 

Table 1, 

Pulse Compression Algorithm Parameters. 
Name Description 
N Number of taps in the pulse compression filter. 
D Decimation factor for pulse compression filter. 

4.2   Doppler Filtering Stage 

The Doppler filtering stage is a straightforward FFT applied to the pulse data for each range 
gate and channel. The specific algorithm for implementing the FFT is not specified. The length of 
the FFT is assumed to be equal to the number of pulses. The input data for each Doppler filtering 
operation is shown in Figure 4: it is a vector that can be described as C(z, j,:). 

There are no algorithm parameters specific to this stage. After the Doppler filtering stage, the 
pulse dimension of the data cube is referred to as the Doppler dimension. 



Nph, Channels 
Np,i, Pulses 

N , Range 

Figure 4.    Input data for the Doppler filtering stage. The shaded area shows the data 
operated on by each FFT operation. This operation is performed for each channel and each 
range gate. 

4.3    Beamforming Stage 

In the beamforming stage, the filtered data matrix corresponding to each Doppler is transformed 
into a set of beams. Each beam represents the array output for a particular direction. The beam 
matrix Y is formed by multiplying the filtered input X by a beamforming matrix W, 

Y = WX. (2) 

The matrix X is size Nch x N^g, and W is size Nch x A^^m^ where there are A^;,^ beams formed 
from the Nch channels and N^m is described in Table 2. An example beamforming matrix W can 
be computed from two vectors a and h using the equation 

W H J{ab") 

Vector a is a simple ramp function: 

a\i] = {i-l),i = 0,1,..., Nch-I. 

Vector b is a phase ramp function: 

b\i] = 27rXsin ( -- + ———  ,i = 0,l,...,Ni,m- 1, 

(3) 

(4) 

(5) 

where K isa constant related to the wavelength of the radar. 
Figure 5 illustrates X, the cross-section of the data cube that is operated on by the beamforming 

stage. The matrix represents all the range and channel information for a particular Doppler: it can 



be described in Matlab notation as X = C{:,:,k). Note specifically the implications that this has 
for data movement. In the previous stage, the Doppler filtering operations were performed in the 
direction of the pulse dimension of the data cube. In this stage, all the data corresponding to a 
particular Doppler must be used to perform the matrix multiply described by equation (2). This 
requires that a rearrangement of the data cube, similar to the comer-turn kernel benchmark [1], 
has to be performed. This is not to imply that the matrix multiplication described in equation (2) 
must be performed on a single processor: it may be parallelized in range. As in the previous set of 
API examples, this particular detail should be transparent to the application programmer. 

Nprt, Dopplers 

N,., Range 

N^h, Channels 

Figure 5.    Input data for the beamforming stage. The shaded area shows the data 
operated on by each matrix multiply operation. This operation is performed for each pulse. 

Table 2. 

Beamforming Algorithm Parameters. 
Name Description 
N, bm Number of beams formed. 

4.4   Detection Stage 

The detection stage adds processing that is data-dependent, compared to the matched filtering 
operation shown in the original multi-stage application. This stage consists of three sub-steps, 
referred to as constant false-alarm rate detection (CFAR), three-dimensional grouping, and cen- 
troiding. Roughly speaking, these three steps can be described as finding targets, eliminating 
multiple detections associated with the same target, and estimating the true position of a target. 



These three steps are described in more detail in the following sections. See Table 3 for definitions 
of parameters used in this stage. 

4.4.1    CFAR detection 

During CFAR detection, a local noise estimate is computed from the 2Ncfar range gates near 
the cell C{i, j, k) under test. A number of guard gates G immediately next to the cell under test 
will not be included in the local noise estimate (this number does not affect the throughput). For 
each cell C(i, j, k), the value of the noise estimate T{i, j, k) is calculated as 

T{i,j,k) = 
1 

2N, cfar 

G+N^far 

J]    \C{i,j + l,k)\' + \C{z,j-l,k)\\ (6) 
l=G+l 

The range cells involved in calculating the noise estimate for a particular Doppler bin and beam 
are shown in Figure 6. For each cell C{i,j, k), the quantity \C{i,j, k)\'^/T{i,j, k) is calculated: 
this represents the normalized power in the cell under test. If this normalized power exceeds a 
threshold /x, the cell is considered to contain a target. 

C(i,:,k) 

TO) 

Cell Under Test 
C(ij,k) 

Figure 6.    Sliding window in CFAR detection. The example shows the number of guard 
cells G = 1 and the number of cells used in computing the estimate N^-f^r = 3. 

The only cells in the data cube that are processed by the following stages are those where a 
target is detected. 

4.4.2   Three-dimensional grouping 

During this step, detections in adjacent cells are grouped to avoid having multiple detections 
associated with the same target. The power of each target detected by the CFAR algorithm will 



be compared to the power of each cell in a 3 x 3 x 3 cube centered on that cell. Therefore, each 
cell under test will be compared to 26 other cells (27 - 1, where 27 = 3^ and 1 is the cell under 
test, right in the middle of the cube). If the detection's raw power is the local maximum, it is 
retained. Otherwise, the detection is discarded; it is considered grouped with one of the higher- 
power detections in the surrounding cells. 

4.4.3    Centroiding 

During this step, the location of each specific detection that is reported by the three-dimensional 
grouping stage will be refined by performing power-weighted centroiding. This operation is per- 
formed independently in each of the beam, range, and Doppler bin dimensions in order. The power 
of the immediately neighboring cells will be considered in the centroiding operation. For example, 
in the beam centroiding operation on element C{i, j, k), the beam estimate B{j, k) is given as 

J2{i + l)x\C{t + l,3,k)\ 

B{j,k) = i=-i 
(7) 

J2\c{i+i,j,^ 
i=-i 

Similar operations are performed in the range and Doppler bin dimensions. 

Table 3. 

Detection Algorithm Parameters. 
Name Description 
Ncfar Number of range gates used in forming the noise estimate 

from each side of the cell under test. 
G Number of guard cells on each side of the cell under test. 

10 



5.  Performance Requirements 

Performance requirements for a typical application can be expressed in terms of latency, defined 
as the number of data collection intervals required to complete the processing of a single data set, 
and throughput, defined as the number of data samples processed in some time interval. For a PCA 
system, we also define a maximum data loss allowable due to a fault. 

The throughput for this application is expressed by the sampling rate Rg, the rate at which data 
samples come into the processor, and iht pulse repetition frequency or FRF, the frequency at which 
pulses are sent out by the radar. ^ The processor must be able to keep up with both the rate at which 
samples are received from an individual pulse and with the number of pulses being received. 

The latency for the algorithm is expressed in terms of coherent processing intervals (CPIs), 
which correspond to the amount of time taken to collect data for a particular set of N^ri pulses. 
The CPI time is the product of the pulse repetition interval (the inverse of the pulse repetition 
frequency) and the number of pulses. 

For fault tolerance, we specify that the system must be able to reconfigure in the event of a fault 
without losing more than a certain number of CPIs of data. We call this number the maximum data 
loss, q. 

'Because the radar cannot transmit and receive simultaneously, there is some time during each pulse repetition 
interval that no samples are taken. Therefore, the product of the number of range gates in a pulse repetition interval 
and the pulse repetition frequency will not equal the sampling rate. 

11 



6.  Parameter Sets 

Table 4 presents the parameter values for three radar scenarios. The parameters are grouped into 
three categories: input data set parameters, algorithm parameters, and performance parameters. 

Table 4. 

Parameter Set Values 

Type Name Description 

Values 

Units Set! Set 2 Set 3 

Nch Number of channels. 48 48 16 channels 

Nr, Number of range gates. 3500 1909 9900 samples 
N   ■ 1 ypfi Number of pulses. 128 64 16 pulses 

s 
•c o 

< 

N Number of taps in the pulse compres- 
sion filter. 

667 364 100 taps 

D Decimation factor for pulse compres- 
sion filter. 

1 1 2 

Nbm Number of beams formed. 20 20 5 beams 

Ncfar Number of range gates used in form- 
ing the noise estimate from each side 
of the cell under test. 

10 10 20 cells 

G Number of guard cells on each side of 
the cell under test. 

2 2 4 cells 

O 
C 

B 

1 

Rs Sampling rate. 1 1 10 MHz 

PRF Pulse repetition frequency. 240 440 1000 Hz 

CPI Coherent processing interval. 533 145 16 ms 

L Latency. 6 6 6 CPIs 

Q Maximum data loss 3 3 3 CPIs 

To assist in judging the application workload, we include estimates of the number of floating- 
point operations in each stage for each parameter set in Table 5.^ The operation counts assume that 
the data set is converted to floating-point before the first stage. In the detection stage, the operation 
counts assume that 5% of all cells contain a target and that 50% of all cells survive target grouping. 

' Obviously, these counts are not exact, as the operation count will vary based on the exact implementation, when 
floating-point conversion is performed, etc. 

12 



Table 5. 

Parameter Set Values 

Stage 

Operation Counts 

Units Setl Set 2 Set 3 

Pulse Compression 6.85 1.59 0.61 Gflop 

Doppler Filtering 0.75 0.18 0.03 Gflop 

Beamforming 3.44 0.94 0.05 Gflop 

Detection 

CFAR Detection 

Grouping 

Centroiding 

98.6 

11.7 

8.1 

26.9 

3.2 

2.2 

4.4 

0.52 

0.36 

Mflop 

xlO^ compares 

Mflop 

13 



7.   Conclusions 

The intent of this application benchmark is to allow designers of PCA systems to explore the im- 
plementation of a reasonably-sized application with realistic parameter sets on their architectures. 
The following criteria are suggested for evaluating these implementations. 

Mapping. Mapping is the process of assigning tasks to computing engines and defining all 
necessary data movement between components. An important item for evaluating the system is 
a description of the decomposition and mapping of benchmark functionality onto hardware re- 
sources. The hardware resources utilized in aggregate must be capable of meeting performance 
requirements as specified in the benchmark: therefore, an implementation description should in- 
clude an analysis of how the mapping meets performance requirements. In current systems, such 
analyses include estimates of the following performance metrics: 

• Achieved throughput in Mflop/s or op/s 

• Estimated latency in seconds 

• Processing efficiency 

Processing efficiency is defined as the ratio of achieved computational throughput to peak through- 
put provided by the allocated hardware resources. Processing efficiency affects both form-factor 
and system cost and is therefore an extremely important metric for DoD applications. 

Programming. Another important consideration for evaluation is a specification of the pro- 
gram that implements the benchmark using the language and programming paradigm envisioned 
for the particular architecture under study. Such a specification would include a discussion of the 
software tools - libraries, compilers, the operating system, etc. - that would be used to create the 
application program, and what roles each would play. Especially important would be a discussion 
of how the morph state of the hardware is controlled and what abstractions are provided to isolate 
the programmer from the hardware. 

With a description of the implementation focused on these criteria, it should be possible to 
compare PCA systems to current systems to evaluate their capabilities and potential. 

14 
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