
ESC-TR-2003-075

Project Report
PCA-APP-1

Polymorphous Computing Architecture (PCA)
Application Benchmark 1:

Three-Dimensional Radar Data Processing

J.M. Lebak
J.S. McMahon

M. Arakawa

19 November 2001
Issued 23 April 2004

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Defense Advanced Research Projects Agency
under Air Force Contract F19628-00-C-0002.

Approved for public release; distribution is unlimited.

This report is based on studies perfomied at lincoln Laboratoiy, a center for
research operated by Massachusetts Institute of Technology. This work was
sponsored by DARPA/ITO under Air Force Contract F1^8-00-CM)002.

This report may be reproduced to satisly needs of U.S. Gkivenunent a^nciw.

The ESC Public Affairs Office has reviewed diis report, and
itisreleasabletotheNationalTechnicallnfonnation Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been revMwed and is approved for publication.

K)R THE COMMANDER

Itui^ian /
Itrative Contract!^ Officer

Plans and Frop-anu DirMtorate
Contracted Support Management

Non-UriE^n Recipient

PLEASE DO NOT RETURN

Permission Is glwn to desM^ flils dooiment
when It Is no longer needed.

Massachusetts Institue of Technology
Lincoln Laboratory

Polymorphous Computing Architecture (PCA) Application
Benchmark 1: Three-Dimensional Radar Data Processing

J.M. Lebak
J.S. McMahon
M. Arakawa
Group 102

Project Report PCA-APP-1

19 November 2001

Issued 23 April 2004

Approved for public release; distribution is unlimited.

Lexington Massachusetts

20040514 025

ABSTRACT

The DARPA Polymorphous Computing Architecture (PCA) program is building advanced
computer architectures that can reorganize their computation and communication structures to
achieve better overall application performance. As part of the PCA program, MIT Lincoln Laboratory
has been asked to provide examples of defense-oriented applications that will challenge the candidate
architectures. This report describes an example airborne radar data processing application. Several
example application parameter sets are given that reflect the range of requirements spanned by
current systems.

TABLE OF CONTENTS

Abstract ij
List of Illustrations iv
List of Tables iv

1. Introduction 1

2. Benchmark Evaluation 2
2.1 Performance 2
2.2 Application Programming Interface 2
2.3 Morphability 3

3. Input Data Set 4

4. Algorithm 5
4.1 Pulse Compression Stage 5
4.2 Doppler Filtering Stage 6
4.3 Beamforming Stage 7
4.4 Detection Stage 8

5. Performance Requirements 11

6. Parameter Sets 12

7. Conclusions 14

References 15

in

LIST OF ILLUSTRATIONS

Figure Page
No.

1 Input data set dimensions. 4

2 Block diagram of benchmark application. 5

3 Input data for the pulse compression stage. 6

4 Input data for the Doppler filtering stage. 7

5 Input data for the beamforming stage. 8

6 Sliding window in CFAR detection. 9

LIST OF TABLES

Table Page
No.

1 Pulse Compression Algorithm Parameters 6

2 Beamforming Algorithm Parameters 8

3 Detection Algorithm Parameters 10

4 Parameter Set Values 12

5 Parameter Set Values 13

IV

1. Introduction

At the PCA Morphware forum meeting in October 2001, the community requested that Lincoln
Laboratory develop a benchmark, including performance requirements, distilled from a realistic
application. The purpose of the benchmark is to provide realistic performance requirements that
will stress the capabilities of PCA hardware and software while remaining simple enough to be
easily understandable. Different application parameter sets are provided, each with their own
corresponding performance requirements. The intent is to allow the designers to explore morphing
the system to meet these different sets of requirements.

After surveying several applications, the authors chose to provide an example from airborne
radar data processing, as these are among the most challenging problems from a performance
standpoint. This particular example involves a three-dimensional data set. Many of the signal
processing and data movement kernel functions described in the kernel benchmark report [1] are
present in this benchmark. The parameter sets included with this example are chosen to represent
actual radar systems and vary widely in order to provide good coverage in application space. The
performance requirements are chosen to represent actual radar systems.

The integrated radar-tracker application [2] is in some ways a superset of the functionality
described here. That application was designed to provide additional computation requirements to
challenge PCAs. Nevertheless, this application is a compact example that can be used to explore
the capabilities of PCAs.

This document first describes rough criteria for evaluating the implementation of the bench-
mark on particular PCA systems. It goes on to describe the benchmark, including the input data
set, algorithm details, and performance requirements. Finally, it describes example morphing sce-
narios for the benchmark.

2. Benchmark Evaluation

There are three important aspects of a PCA system that must be considered in evaluating any im-
plementation of this benchmark: the performance of the benchmark, the application programming
interface, and morphability. In this section, we examine each of these aspects in more detail.

2.1 Performance

The first dimension for PCA evaluation is performance. The most important way this appli-
cation example stresses performance is by providing throughput and latency requirements. The
values supplied are intended to be representative not only of current radar performance require-
ments, but also of those expected in the near future.

The achieved performance on a processing flow is a function of how that flow is mapped to
the available computation and communication resources. In a PCA, the resources are not fixed
but negotiable. Any intermediate abstractions that are used in the realization of the application on
hardware must have several important features. First, the abstractions must insure correctness of
execution. Second, the abstractions must have low overhead so they can be manipulated easily
and quickly. Third, they must be comprehensive and complex enough to result in efficient use of
the hardware, yet simple enough to have low overhead. Finally, the abstractions must be portable
between different PC As.

Since a major purpose of the benchmark is to stress the hardware and software architecture,
performance parameters were chosen so that mappings are non-trivial, forcing the efficient and
robust use of abstraction at each level of translation. An evaluation of any PCA system must
consider the amount of hardware that would be used to meet the requirements and any special
aspects of the configuration of the hardware.

2.2 Application Programming Interface

The next dimension for PCA evaluation is the programming interface. The benchmark assists
in addressing API issues by forcing the designer to think about the different users of the system and
how those users would describe different types of applications to the processor. Issues to consider
in API design include expressive power, portability, isolation of hardware details from high-level
users, roles for compilers, libraries, and operating systems, and differing paradigms such as object-
oriented, functional, etc. In examining the API problem for a specific benchmark example, many
of these issues can be illuminated.

In addition to the "standard" API issues, PCA raises another important API issue: the com-
munication and flow of requirements information from the application or mission to the hardware.
Since PCAs must react to changing mission requirements, the specification of those requirements
must at some level be included in the API. Furthermore, the specification must be able to be given
in a scalable way so that the application will not "break" when run on systems with different
processing power. The benchmark provided contains requirements information not only to set
performance goals, but also to illuminate this API issue. An evaluation of a PCA system must
consider the programming methods that would be used to implement the benchmark and how the
requirements are described to the PCA system.

2.3 Morphability

The final and distinctive dimension for PCA evaluation is the concept of morphability. The
premise of PCA is that hardware architectures will morph, or reconfigure, in response to changing
application requirements and system conditions. One aspect of morphing is the ease, efficiency,
and latency with which machines can morph. Morphing which can be performed in mission ("hot
morphing") is obviously more challenging that morphing performed between missions ("cold mor-
phing"). It should be possible to perform in-mission and between-mission morphing using the
same mechanisms and abstractions, making the distinction between these two types of morphing
largely a matter of timescale.

A more important distinction is the amount of interaction between the application and the
system that morphing requires. Morphing can be regarded as adaptation of the system resources to
meet application requirements. We can describe three different morphing scenarios in terms of the
system aspect that has changed, as described below.

1. Application-driven morphing occurs when the application requirements change but the avail-
able system resources remain the same. The system will morph to meet the new require-
ments. This category includes parameter changes, changes in the amount of workload, and
changes in the type of processing (for example, threading versus streaming). It is assumed
that the system will be able to meet the new requirements.

2. System-driven morphing occurs when the application requirements have not changed but the
system resources have changed for some reason that is not application-visible (for example,
to meet the processing demands of another application, to recover from a system fault, or
for power conservation). The system must reorganize resources and continue to meet the
application requirements.

System-driven morphing can only be performed if the system has some excess capacity
over the minimal application requirements. The application will not need to be directly
involved in this type of morphing, but it will provide requirements limiting how often this
may occur, how long it can take, how much data loss is tolerable, and how much delay is
allowed in processing data sets as a result of system-driven morphing.

3. Cooperative morphing occurs when there is feedback between the system resources and the
application requirements. The application has progressed beyond merely making demands
of the system as in category 1: it queries the system for what is possible and scales its
demands accordingly. This implies that the PCA system provides a feedback or discovery
mechanism.

The minimum level of functionality for PCA is the application-driven morphability, category 1.
Category 2 morphing requires some level of resource management in the PCA system itself. Com-
pared to category 2 morphing, category 3 morphing requires only modest additional functionality
from the PCA system: most of the burden of interaction must be borne by the application developer
in this case.

The benchmark specifies two morphing scenarios, involving application parameter changes
(category 1 morphing) and fault tolerance (category 2 morphing). An evaluation of a PCA system
must consider the process used to perform the morphing, and how quickly such morphing could
be done.

3. Input Data Set

The input data to the appHcation is a three-dimensional data set whose dimensions are channels,
range, and pulses. This data set is shown conceptually in Figure 1. A series of Npri pulses are sent
by the radar, and for each pulse, a set of Nrg range returns is collected on a set of Nch parallel input
channels. The output from the sensor is therefore a vector corresponding to a particular value of
range and a particular pulse in the sequence.

N^h, Channels
Np^i, Pulses

N,g, Range

Figure 1. Input data set dimensions.

For any particular pulse in the sequence, a matrix of size Net x Nrg is collected. Data cor-
responding to a particular pulse is completed before data corresponding to the next pulse begins.
Therefore, range is sometimes referred to as the fast time dimension and pulses as the slow time di-
mension. When referring to individual elements of the data cube C, we refer to them as C(x, y, z),
where x is the channel index, y is the range index, and z is the pulse index.

Input data arrives as 16-bit integer data in two streams, the T and 'Q' or real and imaginary
components of the complex input data. At some point (almost certainly by the beamforming stage),
this input data would need to be converted to floating-point. However, the implementation is free
to do this conversion either before, after, or during either of the initial filtering stages. The choice
of the point of conversion will affect the speed and the accuracy of the implementation.

4. Algorithm

The block diagram of the benchmark processing is given in Figure 2. The application consists
of four stages: pulse compression, Doppler filtering, beamforming, and detection. The first two
stages perform preliminary processing on the data similar to the low-pass filtering stage of the
multi-stage application. The beamforming stage transforms the filtered data to allow detection of
signals coming from a particular set of directions of interest, just as in the multi-stage application.
The detection stage determines whether targets are actually present in the beamformed data and
performs simple grouping and parameter estimation operations on those targets. Each stage is
described in more detail in the following sections.

Pulse
Compression

Doppler
Filtering Beamforming Detection F^

Figure 2. Block diagram of benchmark application.

Most of the processing stages have some algorithm-specific parameters that will vary in differ-
ent processing scenarios. These parameters are summarized in tables at the end of each processing
stage. Table 4 on page 12 summarizes all the data set, algorithm-specific, and performance param-
eters.

4.1 Pulse Compression Stage

The purpose of the pulse compression stage is to apply a decimating finite-impulse response
(FIR) filter operation to the range data for each pulse and channel. The input to each FIR filter
operation is a vector x, as shown in Figure 3. In Matlab notation, this vector can be described as
X = C{i,:, k), that is, a slice of the data cube containing all the range gates for a particular channel
i and pulse k. Additional parameters for the FIR operation are described in Table 1.

The FIR filter has a set of impulse response coefficients w[l], ^ G {0 ... Npc — 1}. It also has
the option to decimate, that is, to reduce the size of the input data used in the operation, by some
factor D. If the size of the input data is N^g, the size of the output data is \NrglD\. The output of
the filter, y, is the convolution of w with the input x\

Nr,c-l

[j]= J2 x[j*D-l]w[l],fon = 0,l,...
1=0

N, rg

D
1. (1)

Although equation (1) gives the mathematical definition of the FIR filter, the most efficient im-
plementation of the filter may not use this formula directly. If the length of the filter Npc is short and

N^h, Channels
N-ri, Pulses pn

N , Range

Figure 3. Input data for the pulse compression stage. The shaded area shows the data
operated on by each FIR filter operation. This operation is performed for each channel and
each pulse.

the data size Nrg is large, then an actual convolution might be explicitly implemented. Otherwise,
a fast convolution using FFTs might be performed, possibly even considering an overlap-and-save
method [3].

Table 1,

Pulse Compression Algorithm Parameters.
Name Description
N Number of taps in the pulse compression filter.
D Decimation factor for pulse compression filter.

4.2 Doppler Filtering Stage

The Doppler filtering stage is a straightforward FFT applied to the pulse data for each range
gate and channel. The specific algorithm for implementing the FFT is not specified. The length of
the FFT is assumed to be equal to the number of pulses. The input data for each Doppler filtering
operation is shown in Figure 4: it is a vector that can be described as C(z, j,:).

There are no algorithm parameters specific to this stage. After the Doppler filtering stage, the
pulse dimension of the data cube is referred to as the Doppler dimension.

Nph, Channels
Np,i, Pulses

N , Range

Figure 4. Input data for the Doppler filtering stage. The shaded area shows the data
operated on by each FFT operation. This operation is performed for each channel and each
range gate.

4.3 Beamforming Stage

In the beamforming stage, the filtered data matrix corresponding to each Doppler is transformed
into a set of beams. Each beam represents the array output for a particular direction. The beam
matrix Y is formed by multiplying the filtered input X by a beamforming matrix W,

Y = WX. (2)

The matrix X is size Nch x N^g, and W is size Nch x A^^m^ where there are A^;,^ beams formed
from the Nch channels and N^m is described in Table 2. An example beamforming matrix W can
be computed from two vectors a and h using the equation

W H J{ab")

Vector a is a simple ramp function:

a\i] = {i-l),i = 0,1,..., Nch-I.

Vector b is a phase ramp function:

b\i] = 27rXsin (-- + ——— ,i = 0,l,...,Ni,m- 1,

(3)

(4)

(5)

where K isa constant related to the wavelength of the radar.
Figure 5 illustrates X, the cross-section of the data cube that is operated on by the beamforming

stage. The matrix represents all the range and channel information for a particular Doppler: it can

be described in Matlab notation as X = C{:,:,k). Note specifically the implications that this has
for data movement. In the previous stage, the Doppler filtering operations were performed in the
direction of the pulse dimension of the data cube. In this stage, all the data corresponding to a
particular Doppler must be used to perform the matrix multiply described by equation (2). This
requires that a rearrangement of the data cube, similar to the comer-turn kernel benchmark [1],
has to be performed. This is not to imply that the matrix multiplication described in equation (2)
must be performed on a single processor: it may be parallelized in range. As in the previous set of
API examples, this particular detail should be transparent to the application programmer.

Nprt, Dopplers

N,., Range

N^h, Channels

Figure 5. Input data for the beamforming stage. The shaded area shows the data
operated on by each matrix multiply operation. This operation is performed for each pulse.

Table 2.

Beamforming Algorithm Parameters.
Name Description
N, bm Number of beams formed.

4.4 Detection Stage

The detection stage adds processing that is data-dependent, compared to the matched filtering
operation shown in the original multi-stage application. This stage consists of three sub-steps,
referred to as constant false-alarm rate detection (CFAR), three-dimensional grouping, and cen-
troiding. Roughly speaking, these three steps can be described as finding targets, eliminating
multiple detections associated with the same target, and estimating the true position of a target.

These three steps are described in more detail in the following sections. See Table 3 for definitions
of parameters used in this stage.

4.4.1 CFAR detection

During CFAR detection, a local noise estimate is computed from the 2Ncfar range gates near
the cell C{i, j, k) under test. A number of guard gates G immediately next to the cell under test
will not be included in the local noise estimate (this number does not affect the throughput). For
each cell C(i, j, k), the value of the noise estimate T{i, j, k) is calculated as

T{i,j,k) =
1

2N, cfar

G+N^far

J] \C{i,j + l,k)\' + \C{z,j-l,k)\\ (6)
l=G+l

The range cells involved in calculating the noise estimate for a particular Doppler bin and beam
are shown in Figure 6. For each cell C{i,j, k), the quantity \C{i,j, k)\'^/T{i,j, k) is calculated:
this represents the normalized power in the cell under test. If this normalized power exceeds a
threshold /x, the cell is considered to contain a target.

C(i,:,k)

TO)

Cell Under Test
C(ij,k)

Figure 6. Sliding window in CFAR detection. The example shows the number of guard
cells G = 1 and the number of cells used in computing the estimate N^-f^r = 3.

The only cells in the data cube that are processed by the following stages are those where a
target is detected.

4.4.2 Three-dimensional grouping

During this step, detections in adjacent cells are grouped to avoid having multiple detections
associated with the same target. The power of each target detected by the CFAR algorithm will

be compared to the power of each cell in a 3 x 3 x 3 cube centered on that cell. Therefore, each
cell under test will be compared to 26 other cells (27 - 1, where 27 = 3^ and 1 is the cell under
test, right in the middle of the cube). If the detection's raw power is the local maximum, it is
retained. Otherwise, the detection is discarded; it is considered grouped with one of the higher-
power detections in the surrounding cells.

4.4.3 Centroiding

During this step, the location of each specific detection that is reported by the three-dimensional
grouping stage will be refined by performing power-weighted centroiding. This operation is per-
formed independently in each of the beam, range, and Doppler bin dimensions in order. The power
of the immediately neighboring cells will be considered in the centroiding operation. For example,
in the beam centroiding operation on element C{i, j, k), the beam estimate B{j, k) is given as

J2{i + l)x\C{t + l,3,k)\

B{j,k) = i=-i
(7)

J2\c{i+i,j,^
i=-i

Similar operations are performed in the range and Doppler bin dimensions.

Table 3.

Detection Algorithm Parameters.
Name Description
Ncfar Number of range gates used in forming the noise estimate

from each side of the cell under test.
G Number of guard cells on each side of the cell under test.

10

5. Performance Requirements

Performance requirements for a typical application can be expressed in terms of latency, defined
as the number of data collection intervals required to complete the processing of a single data set,
and throughput, defined as the number of data samples processed in some time interval. For a PCA
system, we also define a maximum data loss allowable due to a fault.

The throughput for this application is expressed by the sampling rate Rg, the rate at which data
samples come into the processor, and iht pulse repetition frequency or FRF, the frequency at which
pulses are sent out by the radar. ^ The processor must be able to keep up with both the rate at which
samples are received from an individual pulse and with the number of pulses being received.

The latency for the algorithm is expressed in terms of coherent processing intervals (CPIs),
which correspond to the amount of time taken to collect data for a particular set of N^ri pulses.
The CPI time is the product of the pulse repetition interval (the inverse of the pulse repetition
frequency) and the number of pulses.

For fault tolerance, we specify that the system must be able to reconfigure in the event of a fault
without losing more than a certain number of CPIs of data. We call this number the maximum data
loss, q.

'Because the radar cannot transmit and receive simultaneously, there is some time during each pulse repetition
interval that no samples are taken. Therefore, the product of the number of range gates in a pulse repetition interval
and the pulse repetition frequency will not equal the sampling rate.

11

6. Parameter Sets

Table 4 presents the parameter values for three radar scenarios. The parameters are grouped into
three categories: input data set parameters, algorithm parameters, and performance parameters.

Table 4.

Parameter Set Values

Type Name Description

Values

Units Set! Set 2 Set 3

Nch Number of channels. 48 48 16 channels

Nr, Number of range gates. 3500 1909 9900 samples
N ■ 1 ypfi Number of pulses. 128 64 16 pulses

s
•c o

<

N Number of taps in the pulse compres-
sion filter.

667 364 100 taps

D Decimation factor for pulse compres-
sion filter.

1 1 2

Nbm Number of beams formed. 20 20 5 beams

Ncfar Number of range gates used in form-
ing the noise estimate from each side
of the cell under test.

10 10 20 cells

G Number of guard cells on each side of
the cell under test.

2 2 4 cells

O
C

B

1

Rs Sampling rate. 1 1 10 MHz

PRF Pulse repetition frequency. 240 440 1000 Hz

CPI Coherent processing interval. 533 145 16 ms

L Latency. 6 6 6 CPIs

Q Maximum data loss 3 3 3 CPIs

To assist in judging the application workload, we include estimates of the number of floating-
point operations in each stage for each parameter set in Table 5.^ The operation counts assume that
the data set is converted to floating-point before the first stage. In the detection stage, the operation
counts assume that 5% of all cells contain a target and that 50% of all cells survive target grouping.

' Obviously, these counts are not exact, as the operation count will vary based on the exact implementation, when
floating-point conversion is performed, etc.

12

Table 5.

Parameter Set Values

Stage

Operation Counts

Units Setl Set 2 Set 3

Pulse Compression 6.85 1.59 0.61 Gflop

Doppler Filtering 0.75 0.18 0.03 Gflop

Beamforming 3.44 0.94 0.05 Gflop

Detection

CFAR Detection

Grouping

Centroiding

98.6

11.7

8.1

26.9

3.2

2.2

4.4

0.52

0.36

Mflop

xlO^ compares

Mflop

13

7. Conclusions

The intent of this application benchmark is to allow designers of PCA systems to explore the im-
plementation of a reasonably-sized application with realistic parameter sets on their architectures.
The following criteria are suggested for evaluating these implementations.

Mapping. Mapping is the process of assigning tasks to computing engines and defining all
necessary data movement between components. An important item for evaluating the system is
a description of the decomposition and mapping of benchmark functionality onto hardware re-
sources. The hardware resources utilized in aggregate must be capable of meeting performance
requirements as specified in the benchmark: therefore, an implementation description should in-
clude an analysis of how the mapping meets performance requirements. In current systems, such
analyses include estimates of the following performance metrics:

• Achieved throughput in Mflop/s or op/s

• Estimated latency in seconds

• Processing efficiency

Processing efficiency is defined as the ratio of achieved computational throughput to peak through-
put provided by the allocated hardware resources. Processing efficiency affects both form-factor
and system cost and is therefore an extremely important metric for DoD applications.

Programming. Another important consideration for evaluation is a specification of the pro-
gram that implements the benchmark using the language and programming paradigm envisioned
for the particular architecture under study. Such a specification would include a discussion of the
software tools - libraries, compilers, the operating system, etc. - that would be used to create the
application program, and what roles each would play. Especially important would be a discussion
of how the morph state of the hardware is controlled and what abstractions are provided to isolate
the programmer from the hardware.

With a description of the implementation focused on these criteria, it should be possible to
compare PCA systems to current systems to evaluate their capabilities and potential.

14

REFERENCES

1. J. Lebak, A. Reuther, and E. Wong, "Polymorphous Computing Architecture (PCA) Kernel-
Level Benchmarks," MIT Lincoln Laboratory, Lexington, Mass., Project Report PCA-
KERNEL-1, 24 January 2004.

2. J. M. Lebak, "Preliminary Design Review: PCA hitegrated Radar-Tracker Application," MET
Lincoln Laboratory, Lexington, Mass., Project Report PCA-IRT-1, 9 April 2002, issued
6 February 2004.

3. Alan V. Oppenheim and Ronald W. Schafer, Discrete-time signal processing, Prentice-Hall,
Inc., 1989.

15

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for tiiis collection of information is estimated to average 1 itour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed,
and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of infomation, including suggestions for reducing this burden, to Washington
Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Papenwork Reduction Project
(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
19 November 2001

3. REPORT TYPE AND DATES COVERED

Project Report

4. TITLE AND SUBTITLE

Polymorphous Computing Architecture (PCA) Apphcation

Benchmark 1: Three-Dimensional Radar Data Processing

5. FUNDING NUMBERS

C — F19628-00-C-0002
6. AUTHOR{S)

J.M. Lebak, J.S. McMahon, and M. Arakawa

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lincoln Laboratory, MIT

244 Wood Street

Lexington, MA 02420-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

PR-PCA-APP-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA/ITO

3701 Fairfax Drive

Ariington, VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2003-075

11.SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

The DARPA Polymorphous Computing Architecture (PCA) program is building advanced computer

architectures that can reorganize their computation and communication structures to achieve better overall

apphcation performance. As part of the PCA program, MIT Lincoln Laboratory has been asked to provide

examples of defense-oriented applications that will challenge the candidate architectures. This report

describes an example airborne radar data processing apphcation. Several example apphcation parameter

sets are given that reflect the range of requirements spanned by current systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
20

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Same as Report

19. SECURITY CLASSIFICATION
OF ABSTRACT

Same as Report

20. LIMITATION OF
ABSTRACT

Same as Report

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

