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ABSTRACT

Thisthesis investigates and compares time and wave et-domain denoising tech-
niques where received sgnas contain broadband noise. We consider how time and
wave et-domain denoising schemes and their combinations compare in the mean squared
eror sense. Thiswork applies Wiener prediction and Median filtering as they do not
require any prior Sgna knowledge. In the waveet-domain we use soft or hard threshold
on the detall coefficients. In addition, we explore the effect of these wavelet-domain
thresholding techniques on the coefficients associated with cycle-spinning and the newly
proposed recursive cycle-spinning scheme. Finaly, we note that thresholding does not
make an attempt to de-noise coefficients that remain after thresholding; therefore we
apply time domain techniques to the remaining detail coefficients from thefirgt leve of
decompogtion in an atempt to de-noise them further prior to recongtruction. Thisthess
gpplies and compares these techniques using a mean squared error criterion to identify
the best performing in arobust test sgnd environment. We find that soft thresholding
with Stein’s Unbiased Risk Estimate (SURE) thresholding produces the best mean
squared error results in each test case and that the addition of Wiener prediction to the
first level of decompaosition coefficients leads to a dightly enhanced performance.

Findly, we illudtrate the effects of denoising agorithms on longer data ssgments.
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EXECUTIVE SUMMARY

Thisthessinvestigates time and wave - domain denoising agorithms in arobust
sggnd environment, and performs a comparative andys's between the various denoising
schemes. Wavel et-based denoising has military applicationsin acoustic signa process-
ing, surveillance and reconnaissance, and various communication gpplications. This
work reviews the basic theory of wavelet denoising leading to the discrete orthogond
wavelet transform. In addition, we present and apply cycle-spinning denoising, which
serves to remove the negative effects of trandation variance found in the orthogona
wavedet trandform. Findly, we investigate recursve cycle-spinning and a combined
time-wave et denoising technique using awindowed Wiener predictor.

Results show that soft thresholding of the trandation-invariant wavelet transform
coefficients with the Stein’s Unbiased Risk Estimate (SURE) threshold outperforms the
other schemes considered in Mean Squared Error (MSE) performance for the shorter
sgnd lengthsfor the Sgnasinvestigated. For the longer data length experimenta
signals considered the trandation-invariant visua threshold showed the best denoising
ability. In addition, no difference could be seen in the performance between orthogona
waveet and trandation-invariant schemes for the long data sets considered. Results
further show recursive cyde-spinning using the SURE threshold for smdler data sets and
the visud threshold for longer data sets, though not yet optimized, have excellent poten
tid asadenoigng dternative. In addition, we found through experimentation that the
window size of the Wiener predictor requires a priori information for optima perform:

ance.



THISPAGE INTENTIONALLY LEFT BLANK



INTRODUCTION

A. THESISOBJECTIVE

This study considers a frequency-based approach to denoisng. The noisy signd
istransformed into the frequency domain using wave et transforms where denoisng is
conducted. Next the denoised signd is obtained by back-transforming the processed
information to the time domain. Further developmentsin this areawill lead to advances
in range and sengtivity with regard to acoustic Sgnd processing, survelllance and re-

connaissance, and various communications gpplications.

Donaho and Johnstone [1,2] introduced severa methods where information in the
wavelet transform domain may be used to de-emphasize the noise- contaminated fre-
guency contributions prior to performing the inverse transform, thereby producing a
cleaner system output. This thesis explores these methods and compares resulting
performances. The god of thisthessisto determine which decomposition type and
combination of sgna processing schemes achieves the cleanest sgnd output.

Figure 1.1 presents the schematic overview of the concepts considered in this
work. 1t methodically outlines and organizes this work into six chapters from the theory
behind the work to the results and conclusons. Chapter I1 introduces the wavelet trans-
form and illustrates its advantages over Fourier analyss. Chapter 111 introduces signd
and noise dements and the associated assumptions that went into producing robust test
ggnas. Chapter 1V first presents various wave et thresholding techniques. Next, it
introduces trandation invariance concepts and shows how they are obtained via processes
caled cycle-spinning and recursive cycle-spinning. Findly, it introduces a windowed
Wiener prediction technique and includes alow computationa cost scheme called
median filtering. Chapter V applies these techniques to test data. Chapter VI presents

conclusions and recommendations.



B. THESISORGANIZATION

| CHIL Multiresolution Analysis |

L

| &0 Wavelet Transform |

[CHIII: Signal Composition |

| 1: Continuaus Yavelet Transform | | 2 Dizcrete Wavekt Transform
|
[&: Bignals| [ B: Hoise |
L
| CHIV: De-noising Methods |
|
! L
| A Waveld Domain | | B: Time and Waveld Domain
! |
| 1: Threshalding |

|
L
1: Wyiener Fitering | | 2 Median Filttering
!

| 2 Tranzldion Invariance |

!

| 3 Cycle Spirning |

| 4: Recursive Cycle Spinning |

L

| CHV: Results |

L

| CH VI Conclusions |

Figure 1.1: Thess outline flow sructure.



[l. MULTIRESOLUTION ANALYSS

A. INTRODUCTION

This chapter presents an overview of Multiresolution Andysis (MRA) asit leads
to an important family of sgnd processing tools. The sgnd processing applications
rooted in MRA have the ditinct ability to span both time and frequency, as multiresolu-
tion anadysis may be viewed as an extenson of the Short Time Fourier Transform
(STFT).

1. Short Time Fourier Transform

The Fourier Transform isawidey used transformation and is defined for a con-
tinuoussgnd f (t) as

+¥

F(w) = f (t)e ™dt. 2.1)

The complex basis function, also referred to as akernd, e ' in Equation (2.1)
operateson f (t) over dl time, cregting a one-dimensond representation of thesgnd in

the frequency domain. Notethat it is often desrable to locdize the specific time a which
specific Sgnd characteristics occurred; however, there is no dlotted time dimensionin
the Fourier Transform. Time dependency capability isintroduced in the Short Time
Fourier Transform (STFT) with a predetermined fixed duration diding window g(t-t)

centered a t. The resulting two-dimengond STFT of thesgnd f (t) isdefined as

+¥

Fwt)=ft)att - t)e™dt. (2.2

Thesgnd f (t) and the Fourier Transform F(w) are contained entirely in one-
dimensional space, whereasthe STFT transform F(w,t ) isrepresented in atwo-dimen

sond space. The magnitude squared of the STFT is called the Spectrogram as shown in
Figure 2.1, which provides a time-localized frequency content of the transformed sgnd



f (t). Figure2.1lillustrates Sgnd presencein red and alack of signa presencein blue,
obtained for the following congtant amplitude linear chirp:

&Zp

f(t) = sing? f (t )z (2.3)

where Fg isset to 8000 Hz, and thefrequency f (t) varieslinearly from 1 to 2000 Hz.

1.57

Frequency (rads)

0 2048
Time (n)

Figure 2.1: Linear chirp spectrogram.

The frequency resolution with afixed duration diding window g(t-t ) isfixed.

In order to get a perfect picture of the signa space from the Spectrogram, it would be
desrable to have infinite time and frequency resolution. Unfortunately, the STFT time
and frequency resolutions are limited by the Heisenberg Uncertainty Principle [3]:

sk (2.4)

NP



wheres 2 and's ,* represent the temporal variance and frequency variance, respectively.

The best case, with equdlity in Equation (2.4), is found when using a Gaussian window
g(t-t) inthe STFT. Thisresultsin the Gabor Transform[4,5]. For discrete time
signals a shortened window leads to fewer samples, and with fewer samples the resultant

frequency space will have fewer bins. Hence, intuitively, frequency resolution islost as
time becomes more locdized.

Note that time-frequency characteristics may change with timewhen asgnd is
trangmitted through various channdls, or the Sgna or channd istime-varying. Asa
result, asmall time window is necessary and frequency resolution is degraded when the
frequency content of asignd or the channd characteridics change repidly withtime. A
larger time window may be sufficient (resulting in better frequency resolution) when the
sgnd frequency characteristics change dowly. For unknown sgnd characteristics an
array of window sizesis required in order to find the ided time window and frequency
resolution combination. Therefore, the fixed window sze of the STFT limitsits ability to
gpan both time and frequency of unknown signals with resolution well matched to the
ggnd characterigtics.

From the above discussion, atransform method that does not utilize a fixed win-
dow gppears atractive, and Multiresolution Andyss (MRA) techniques do not suffer
from such limitations. Next, we discuss MRA techniques, which do not have a fixed

window congtraint.

2. Multiresolution Theory

In much the same way as the STFT, MRA requires an operator to project the Sig-
nd f(f) intoanother domain or vector space. One of the advantagesis that the MRA

operator does not use afixed window Sze.

The Venn Diagram in Figure 2.2 is meant to show that vector space V; isalower
resolution approximation of V;,,. Let W, represent the loss of information due to the
gpproximation, then the vector sum of W, and V; fully condlitutes V. ;. Further, thereis

no overlap or repeet of information if W, and V; are orthogona. Consider the entire
5



frequency domain from O to p as the vector space V,,;, asshowninFigure2.3. Then,
part of the frequency domain is spanned by W, and the other part isspanned by V. A

natural extenson of the above MRA principlesis shown asfollows [6]:

Vi = Vi A W, AW, A--Aw, (2.5)

Appox Detal

Vj+1

Figure 2.2: Venn diagram illustrating MRA basic principle of successve gpproxima:
tions. After Ref [7].

< Vi+1 >
/ Vi X Wi \
0 Freq p

Figure 2.3: Frequency spectrum divided into multi-resolution bands. After Ref [7].

Madlat [3,5] found that MRA could be implemented with minima redundancy by
employing orthonormd filters congsting of alowpassfilter and multiple bandpass filters.
The lowpass filter provides the approximation coefficients and the bandpass filters
provide the detail coefficients.

Figure 2.4 shows the main difference between MRA and the STFT isin thefilter
bandwidths. Another promiang attribute of MRA is that many different conventiond
filters can be used to implement it. An additional advantage isthat the operator itself can
be red, and thus the coefficients will be red resulting in ared-vaued transform. Smple

6



operations such as the gpplication of a Finite-duration impulse response (FIR) filter can
be applied to obtain red-vaued transform coefficientsif needed.

The filters chasen to form the detail and approximation coefficients are cdled
wavelet and scaling functions respectively. These functions will be explored in continu-

ous and discrete time in the following section.

Frequency Frequency

@ (b)
Figure 2.4: Frequency spectrum partitioning for: (a) MRA; (b) STFT.

B. WAVELET TRANSFORM

Rather than developing a different bandpass filter for each scale, MRA theory a-
lows for ascaled and trandated “mother” basis function or wavelet. Wavelet basis
functions act in much the same way asthe kernd in the Fourier Transform and are
orthogond, normdized to unity, have finite time duration or compact support, and their

areasumsto zero.

1. Continuous Wavdet Transform

The continuous wavd et transform (CWT) is similar to the Fourier Transform in-
troduced in Equation (2.1). The wavelet is the basis function or operator for the wavelet

transform, as e " was the operator for the Fourier Transform.

The equation for the wavelet basis function at scale or resolution a and tranda-
tion b of the mother wavelet y (t) isdefined as[3,8,9]:

7



Vo) =y &9
* Ja 8 a g
Figure 2.5 (a) shows how the resolution factor a is used to normdize and scde
the mother wavelet. Note that the upper, middle, and lower figuresin Figure 2.5 (a)
illugtrate the effect on the wavelet when a isO, 1, and 2, respectively. This shows how
the wavelet is“sgueezed” intime as a isincreased. Figure 2.5 (b) demongtrates the

(2.6)

effect of the trandation factor b, where the upper, middle, and lower figures demongrate

the effect on the wavelet when b is0, 1, and 2, respectively. Hence, the wavelet is
trandated to theright intime as b isincreased. Note above that with the CWT the

resolution factor a can be chosen to be any positive real number, and the trandation b
can be any red number. The CWT coefficients are given by:

d,, = ¥(‘)f (ty ., (t)ct. (2.7)

Parsevd’ s Theorem dates that the energy contained in asignd in the time domain
isthe same asin ancther domain if the coefficients are determined by applying a set of
orthonormd basis functions v(t) [6], leading to:
¥ 1 ¥
oftNt)dt =— F(w)V(w)dw. (2.8)
¥ Zi
Note that, Parseval’ s theorem applies both to the orthogona wavelet and Fourier
Transform operations since they both use orthogond basis sets. Thus, the CWT coeffi-
cients may be expressed in terms of the frequency information using Parseva’ srelation-
ship, which leadsto:
1 ¥
d.p =— OF W)Y ap (W)dw. (2.9
i
Parsevd’ srelation helps demondtrate that the CWT  coefficients are representa-

tive of sgnd energy and larger coefficients correspond to greater Signal energy. The
wavelet is ussful in data compression aswedl because rdatively few coefficients hold



mogt of the signd energy [1,2,3,5,8]. Thisattribute is dso very vauable to the art of

denoising.
1 . n v . - 2
0.5 1 1
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15 2
1
1 3
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Figure 2.5: Haar wavelet: () effect of scaling; (b) effect of trandation.

Recdl that the STFT has fixed time and frequency resolution as the time window
length is fixed, while the CWT does not have such congraints. The CWT time window
Size gets continuoudy smaller as the scae increases, while the frequency resolution gets
larger.

Waveets come in different shapes and sizes and can be chosen to meet Situationa
requirements. Figure 2.6 shows examples of popular multi purpose wavelet basis func-
tions. Notice that wavelets have sharper transient characteristics than the snusoida
based Fourier Transform basis function. Thus, the wavelet is better suited for detecting
trangent Sgnds, whereas the STFT isided for snusoidal sgnds.



Haar Daubechies

Coiflet aymmlet

Figure 2.6: Assortment of wavelets. After [10].

The CWT istheoreticdly sgnificant; however the Discrete Wavelet Transform
(DWT) isamenable to fast digital sgna processing gpplications. The DWT takes
discrete time input samples and discrete trandation and scae factors, and diminates high
processing costs associated with redundancy found in the CWT. The DWT isdiscussed
further in the following section.

2. Discrete Waveaet Transform

The DWT isaclever discretization of the CWT that endbles adigitd implemen
tation of the CWT. From Equation (2.5) and its accompanied discusson the gpproxima-
tion coefficients and detail coefficients can be written in terms of the scaling function
f (n- k) and thewavelet function y (2/n- k) respectively, as shown below in Equation
(2.10). Thewavdet function is the highpass filter, while the scaling function isthe
lowpass filter. Orthogondity between dl the basis functions at various scales and

10



trandations prevent redundancy. The fundamental DWT expansion of the discrete signal

f (n), where a =2/ isgiven by:

¥
(=8 6 (n-k)+3 & d,,2"% (2'n- k). (2.10)
k k

=0

Utilizing MRA principles, Mdlat [3] proposed that within the scope of MRA a
filter-bank of highpass and lowpassfilters, g(n) and h(n), to make use of coefficients of
higher resolution to synthesize the lower resolution coefficients as shown:

¥ ..
J+lk a h A k—C j+l,k = é ga_]' kgc],k (211)
&2 &2 o
n=¥

The following recongtruction equation follows as.

¥ ¥
=@ h(k-2n)c .y, + @ g(k- 2n)d .., (2.12)
n=-¥

n=-¥
where h(n) and g(n) are so cdled quadrature mirror filters which are finite impulse

response (FIR) filters that dlow for perfect recongtruction [3] as shown in Figure 2.7.

wmandd;,, ae

Figure 2.7 illustrates a one- step andysis and synthesis process, where ¢
the approximation coefficients and detail coefficients, respectively. The lowpass and
highpass filters are represented by h and g, respectively, and = 2 representsthe
decimation by two operation. Mdlat’s lowpass and highpass filters are smply the
scaling basis function and waved et basis function found in Equetion (2.10). This
decomposition can be expanded into a multi-scale filter bank structure, as shownin
Figure 2.8, where N refers to the decomposition level and “WL” indicates the Wavel et
andyssoperation. Figure 2.8 demondtrates the approximation coefficients from the
previous scale are used to form the detail and approximation coefficients of the following
scde. Note that the number of scalesis not limited to three as shown in Figure 2.8, but is
limited by the length of the data segment. The result isthat the frequency spectrum is
sequentidly cut in haf as shown in Figure 2.4 (a). The highest resolution coefficients
labeled “Detal N = 17 in Figure 2.8 represent the highpass filtering Sgnd contribution.
Then, the next resolution takes the remaining lower haf of the spectrum and splitsitin

two. By using the factor of 2, Mdlat formed what are commonly referred to as dyadic
11



scaes. Hence, orthonorma bandpass filters are formed via Mdlat’ s theorem using only
lowpass and highpass filtering operations. From Equation (2.11) the approximation
coefficients of the previous scale are used to form the gpproximation and detail
coefficients of the next higher scae, and the process continues until the desired scaeis
reached.

d.i" h \L 2 —n.dj__'_l—b

ol

ng_)—

g Va—Cu—f g T2 I

%/_J - ~ J
Analysis Synthesis

Figure 2.7: Mallat’ sfilter bank wavelet andysis and synthesis. After [3].

Time Wavelet
Domain Domain

Detail N=1

f(n) WL

Detail N=2

Detail N=3

Approximation

WL

Figure 2.8: Multi-level wavelet decomposition.

Smilar to the STFT, the resulting DWT coefficients can be represented in two-
dimensiond time and frequency. The resulting time-scale visudization is cdled the
scaogram.

Figure 2.9 presents the scalogram of the chirp from Equation (2.3), to be visualy

compared to Figure 2.1. Decompostion level one shows the presence of high frequency
12



during the second hdf of the signd. The resolution of high frequency components was
chosen to be low by convention since it is assumed that the mgority of the observed
sgnadsresidein the lower hdf of the spectrum. For the case where most of the sgnd
liesin the upper half of the spectrum, a different multiresolution technique can be em-
ployed where the higher frequencies have highest resolution. In thiswork it is assumed
that, due to fast processing and sampling speeds, most observed sgnaswill liein the
lower haf of the spectrum. Hence, Mdlat’s multi-level filter decomposition as discussed
above is applied as the method of choice throughout this work.

The snusoidal based sgna such asthe chirp in Equation (2.3) is more eesily in-
terpreted as a constant amplitude linear chirp by analyzing the spectrogram. Hence, the
spectrogram and scalogram are often used in concert to correctly identify the characteris-

ticsof abroad class of Sgnds.

Decompostion Level - N

N‘H

0 2045
Tirme (n)

Figure 2.9: Linear chirp Scaogram.

The previous chapter introduced Mdlat’ s theory and the use of MRA as afilter
bank structure. Thefilter bank splits the sgnd spectrum into dyadic resolutions with the
highest resolution representing the upper half of the spectrum. When asignd is present,

13



sgnd energy isfound in one or more of the frequency scales. Noise energy can be
present throughout each of the dyadic frequency scales. The following chapter intro-

duces signd processing techniques developed to clean up noisy information.
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I11. SIGNAL COMPOSITION

A vaiety of modulation formats are used in modern communications, which leads
to alarge variety of tranamitted and recelved Sgnds. Although signds come in various
time-varying shapes, sizes, frequencies, and phases, signa processing techniques have
been developed to digitdly format sgnals for losdess recongtruction.

A. SIGNALS

Determinigtic functions convey information, which can be tranamitted in the form
of aggnd usng the dectromagnetic spectrum. Andog or digita sgnds are transmitted
from one point in space to another with the intention of being received and analyzed a
the recaiver. The formation of asigna with the least redundancy is based on the func-
tions' required bandwidth as defined by the sampling theorem [6,9].

In order to form a discrete sgnd from a continuous analog sSignd, the analog sig-
nd issampled a the sampling interva T by multiplying by an impulse train:

foge () = f(t)él¥ d(t- nT). (3.1

n=-¥
Thesamplingintervd T ischosen small enough so the sampled data can be used to
recongtruct the origina sgnd. Intuitively, the fewer data points available and the higher
the sgnd’ s frequency the more difficult it will be to estimate the origind signd.

Transforming Equation (3.1) into the frequency domain by noting that multiplica-
tion in the time domain is equivaent to convolution in the frequency domain leads to the
following expression:

F.%rrpiej (W) =

Uy ol
w) A a— W- —, (3.2
H 81— n§¥ g %

D> D
B

which further evauates asfollows:

13 ;
Fsarrpiej (W) :? §¥ F 8W - ?g (33)



The sampled spectrum found in Equation (3.3) contains F(w) with periodic identical
replicas of itsdlf. The period, which isrelated to the sampling rate Fg =1/T, isimportant
because if it istoo smal then overlap and diasing will occur. Figure 3.1 (a) showsthe
case where the sampling frequency is large enough, and the origind F(w) can befully
recovered with alowpassfilter. Figure 3.1 (b) illustrates an undesirable case where the

origina signa cannot be recovered due to the diasing. Notice that the origind sgnd can
be recovered asin Figure 3.1 (a) when the sampling frequency W, . =2p /T istwice

the sgnal bandwidth. This specid frequency is caled the Nyquigt frequency and results
in the minimum safe sampling rate for red sgnals[11,12].

(a) Wenois ity Wi

Figure 3.1: Sampled frequency spectrum: (8) Sampling frequency above Nyquist
frequency; (b) Sampling frequency below Nyquist frequency.

In thiswork suitable sgnals are congtructed using the sampling theorem in order
to test various denoising dgorithms. The following section describes the method used in
thiswork to form a sne wave with frequency set to a uniform random variable between O

and p radians.

Equation (2.3) is used with frequency f,(n) asauniform random varigble be-

tween 0 and 4000 Hz. Hence, with a sampling frequency set to 8000 Hz we meet the
requirements of the Nyquist rate. Theinput Sgnd for each snusoidd smulation was

therefore a Sne wave with frequency set to avalue between 0 and p radiansfor the
duration of the smulation. Note that the chirp from Equeation (2.3) dso met the require-

ments of the Nyquist Rate; however it only covered frequenciesup to p/2 radians.
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B. NOISE

1. I ntroduction

Received signd's contain noise over the entire received spectrum, while the de-
dred sgnas may be contained in asmall dynamic region of time and frequency. Filters
are used to lower the sgnd-to-noise ratio (SNR) by diminating noise from the parts of
the spectrum not occupied by Sgnd energy. Throughout thisthessit is assumed the
sgnd channd has Additive White Gaussan Noise (AWGN) with avariance equd to
one. Thisisnot asevere redtriction since pre-whitening filters can be employed when the

noiseiscolored [8,13].

2. Noise Power Estimation

When noise power is not known a priori, then it must be determined using noise
power estimation techniques. Once the noise power is determined, then the data can be
normalized. Two techniques, atime-domain technique, and a wavel et-domain technique
are discussed in this section.

The time-domain technique relies on determining a section of the datawith rela-
tively signd free characteristics. This section of data, which contains predominately
noise energy is used to form an estimate of the noise power for the data. Once an esti-
meate of the noise power is determined it is normalized to unity, by dividing the entire
sgnd by the square root of the noise power. Then the resulting signd can be passed asa
whole or in smaller subsactions through the proposed denoising agorithm.

The second method used to measure the noise power utilizes knowledge about the
wavedet coefficients. Mdlat [3: p. 459] showsthat any AWGN at the input to the wavelet
transform is transformed “at the finest scae”’ to AWGN of the same variance. If it can be
assumed the sgnd lies predominantly in the lower haf of the sgnd spectrum, then the
detall coefficients at the first level of decomposition will be primarily AWGN. Conse-
quently, measuring the variance of these coefficients and normdizing the sgnd as
illustrated above aso leads to noise normalized data

In ether case, the result isa signa combined with AWGN with a variance of one,

The thesis flow diagram of Figure 1.1 shows that the next step isto run the Sgna though
17



various wavelet and time-based denoising processes. The following chapter introduces

wave et-based denoising concepts.

18



V. DENOISING METHODS

We now have the tools necessary to delve into severd areas of denoising. This
work focuses primarily on (1) thresholding as ameans of denoising in the wavelet
domain due to some important characteristics present in wavelet coefficients; and (2)
denoising using the minimum Mean Squared Error (M SE) technique of Wiener Filtering
in the time domain. We aso introduce a hybrid denoisng method. Additiondly, trans-
lation+-invariant denoising is explored using the same techniques as those adopted in the
orthogona wavelet domain.

A. WAVELET DOMAIN

The noisy input sgnd can be thought of as the sum of the desired signal compo-
nent (or true signd) and the Additive White Gaussan Noise (AWGN) with variance of
one:

x(n)= s(n) + n(n).
des‘:d,s—'énal noise component
It has been shown that when the wavelet basis selected is well matched to the sgna
characteridics, very few of the wavelet detail coefficients are influenced by the sgnd,
while mogt of them are influenced by the noise. Therefore, an expression for the wavelet
coefficients at each decomposition level can be described by:

yO= w@ + n

desired coefficients  noise component

In addition, the desired signal coefficients are expected to be of larger magnitude

when the SNIR is not too small. Therefore, denoising is accomplished by thresholding
waveet coefficients, thereby diminating noise-only coefficients and keeping the desired
sgnd coefficients for recongtruction.

Upon recondruction, the MSE normdized by the signd power is gpplied in the
following manner for determining how closaly our de-noised sgna compares to the
origind noisdess sgnd:
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Msznorma“md — E[(S(n)_ é(n))Z] (43)
E[s(n)”]

where E[+] isthe expectation operator, and §n) isthe de-noised Sgnd. A visua
comparison can be made between x(n) and §(n) whentheorigind Sgnd s(n) isnot
available. The rest of the chapter defines and illudtrates the various wavel et thresholding
techniques currently available in the literature.

1. Thresholding

Thresholding is an important concept in denoising and compression, because as
previoudy stated, afew detall coefficients hold the sgnd information when the wavelet
bass selected is well matched to signd characteritics, while the effect of AWGN on the
sggnd isthe same over dl the coefficients a each scale. Note that the gpproximeation
coefficients that do not contain signd energy often do not reside at or near zero, as do
their parent detail coefficients. Hence, thresholding schemes will be limited to detail
coefficients.

The god of this section isto define threshold levels that can be used to “kill” de-
tall coefficients at each decomposition level that are likely to contain noise energy [1,2].
To illudrate the above properties and understand their usefulness, it is helpful to compare
and contrast the coefficients w; (i) obtained with no additive noise and the coefficients

y, (i) obtained with noise. Figures4.1 (a) and (b) provide the detal coefficients from top

to bottom starting with the first level of decomposition. Figure 4.1 (a) are the coefficients
used to create the scalogram in Figure 2.9. Note the smilarities between the two figures.

Figure 4.1 (a) provides a plot of the magnitude of the desired detail coefficients w, (i) for
alinear chirp, and Figure 4.1 (b) showsthe noisy coefficients y; (i) . Notice that the first

level of decomposition coefficientsin Figure 4.1 (a) are zero from n = 0 to 250, hence

the thresholded output of any good thresholding scheme will be close to zero in that
region. A horizontd lineis drawn as shown in Figure 4.1 (b) and labeled T for threshold
across the top of the highest coefficient at each level of decomposition produced only by
noise. The height of the line would be the maximum necessary threshold to remove all
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the noise present in noise-only contributed coefficients. Note that noise is not removed
from sgnd plus noise coefficients. This maximum threshold is called the Universal or
Visud threshold and will be described in more detail in the following section.
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Figure 4.1 Magnitude of detail coefficientsat level N from chirp in Equation (2.3)
with sgnd to noiseratio of 6 dB. (&) True noisdess coefficients, (b) Noisy
coefficientswith Threshold =T.

a. Universal Threshold
The visud threshold getsits name from the rdatively noisdess fegture of
§(n) because it guarantees the remova of al noise-only coefficients. However, Snce

this thresholding method “kills’ the greatest number of coefficients, it also may mistak-
enly diminate the most Sgnd. Therefore, this threshold involves the greatest risk of
loosng sgnd-containing coefficdents. (The term risk is used synonymoudy with MSE in

some texts.)

The probakility that the universal threshold is greater than the magnitude
of every noise-only coefficient isequa to one. Recal we have selected the noise to be
AWGN with zero-mean and a variance one; thus the wavelet coefficients distribution
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function is Gaussan. Note that only asmall percentage of coefficients will have large

magnitudes. Hence, asmall percentage of the noise may be mistaken for sgna coeffi-
cients, provided the interference is congructive, if the threshold is not sufficiently high.
Smilarly, a coefficient containing Sgnal energy may be mistaken for noise when de-

structive interference is encountered.

Asthe sample sze increases, the probability or likelihood of encountering
larger magnitude coefficients increases. Hence, alarger threshold is required to ensure

the dimination of noise-only coefficients, as N becomes larger so that:
Pr(max|nj(i)|£T):], (4.4)

where for a Gaussan digribution the threshold T isgiven by:

T=s 1/2In(n). (4.5)

Note that the above threshold value represents the upper bound needed.
Since the threshold vaue does not leve off unlesslarge data Szes are used, asshown in
Figure 4.2, it is not recommended for data sets involving less than severd thousand
samples. Findly, note that each successive levd of detall coefficients contains haf the
number of samplesfound at the previouslevel. Therefore, while the universd threshold
is effective for the firg level of decomposition, there may not be enough samplesin the
next for it to be gpplied. This property limits the number of decomposition levels when
soldy gpplying the universd threshold.
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Figure 4.2 Illugtration of universd threshold calculation of Threshold T asafunction
of n.

b. SURE Threshold

The previous threshold can be thought of as the threshold that produces
the maximum risk, whereas the Stein’s Unbiased Risk Etimate (SURE) threshold results

in the minimum risk. These two thresholding techniques can be thought of as the upper
and lower bounds in thresholding.

Donoho and Johnstone [1,2] first proposed the SURE agorithm as aresult
of the work done by Stein on the unbiased risk estimate of multivariate norma esimeation
problems. They determined that the detail coefficients from each leve of decomposition
could be modeled using independent multivariate estimation problems. At each scale,
through dtatigtica andyds of the coefficients, athreshold is adaptively selected based on
the quantity of signa present in the coefficients. By applying SURE [2] over arange of
thresholds, the minimum risk is determined.

The SURE dgorithm is only effective for SNR's grester than 0 dB

because it rdlies heavily on satigticad information obtained from the desired coefficients
w; (i) . Hence, another thresholding technique such as the universdl threshold should be

adopted if asparse sgnd condition isfound. The Hybrid threshold smply makesa
choice between either the universal Threshold or the SURE threshold based on which
threshold issmadler.
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C. Bayesian Thresholding

Assuming that we can estimate the distribution function of the sgnd coef-
fidents, ardatively new thresholding technique can be applied. This technique of
Bayesian thresholding is not used in thiswork because no a priori 9gnd information is
assumed. However, Bayesan threshol ding has been shown to outperform both universa
and SURE thresholding in image denoising, Snce naturd images often can be modeled
with a heavy tailed Gaussan ditribution [15,16].

d. Hard and Soft Thresholding

The first step in the denoising process was to obtain the wavel et transform
of thesgnd x(n) using asuitable bassfunction. Then, athreshold is obtained usng
one of the above thresholding methods. Once an gppropriate threshold is determined we
must decide how to apply it. Thiswork discusses the hard and soft thresholding tech-
niques as they pertain to a given threshold.

Hard thresholding zeroes out, or shrinks [1,2], the coefficients that have
magnitudes below the threshold, and leaves the rest of the coefficients unchanged [5]:

A id (@ d@)>T
d@=f40 4,0 (46)
i 0 ld; ()] ET.
Soft thresholding extends hard thresholding by shrinking the magnitude of
the remaining coefficientsby T, producing a smooth rather than abrupt trangtion to zero
[5,14]:
~ isign[d. d@|-T d() |>T
i y=|39G 01040 1T 140 @
|

0 otherwise.

The smooth trangition to zero results in noticeably fewer artifacts upon reconstruction,
especialy when dedling with image denoising [14]. Hence, soft thresholding is generdly
better for denoising due to itsinherent smoothing, whereas hard thresholding is better

suited for data compression.
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In either case, perfect recongtruction is not possible since some of the Sig-
na components are thrown away with the undesired noise. Furthermore, any threshold-
ing technique other than the universal threshold will preserve some of the noise-only
coefficients.

A drawback to thresholding is that noise affecting the remaining sgna
coefficientsis not removed. Thiswork explores dgorithms that attempt to clean the
remaining coefficients prior to recongruction. Findly, note that the orthogond wavelet
transform is not trandation-invariant, i.e., the wavelet coefficients change when the
sggnd istrandformed using different time shifts. The next section introduces this impor-
tant concept as an extension of the orthogond wavelet transform denoising.

2. Trandation | nvariance

Trandation-invariant denoising is aterm coined by Donoho and Coifman [17,18],
which illugtrates a wave et- based denoising method that attempts to remove the negetive
attributes associated with individud trandations. There are two important properties
associated with orthonorma wave et coefficients that lead to further devel opments of
waveet denoising theory. Firgt, wavelet coefficients represent a projection of asigna
into its Sgnal subspace. Second, they are trandation variant in that, for any right or left
shifted input sgnd x(n- t ), one can expect adightly different projection into sgnd
subspace. It isthe dignment or trandation combined with the effect of additive noise
that prevents the orthonorma wavelet from obtaining the true Sgnd subspace.

Any one projection will contain artifacts or spurious oscillations caused by the
dignment of adiscontinuity in the Sgnd and thewavdet. Thisis caled the pseudo-
Gibbs phenomena [8,17]. This phenomenon depends on the sgna and basis function and
islocalized to asmall percentage of wave et coefficients. An advantage of denoising
using the wavelet transform vs. the Fourier transform is that the Gibbs phenomenon is
digributed over dl the Fourier domain coefficients wheressiit islocdized to afew
coefficientsin the wavelet domain [17]. Intuitively, we can expect an average of resul-
tant sgna subspace projections to be a closer approximation to the true projection.
Additiondly, depending on aignment, the discontinuities due to sngularities may be
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sparse or frequent, hence an average tends to reduce the magnitude of the artifacts

overdl.

Since each amilar projection contains redundant information this could be
thought of asaform of diversty. Aswith diversty, for the same bit rate, the more
diversty we have, the dower the information flow. Sinceit is desired to optimize the
process, an efficient systematic process caled cyde-spinning was introduced by Doncho
and Coifman [17,18].

3. Cycle-Spinning

Denoising with the addition of cycle-spinning utilizes the orthonorma wavelet
transform, consequently no new transformation is required. The process of cycle-pin-
ning Imply involves right shifting and left shifting by a preset amount prior to the next
levd of decomposition, and shifting back and averaging prior to the next level of recon
gruction. Figure 4.3 (a) illugtrates the true output coefficients a each level of decompo-
gtion of a congant amplitude linear chirp as aresult of cycle-spinning. Notice that each
decomposition level has redundant information in the form of redundant signa subspace
projections. Thefirst decomposition level conssts of the 2048 coefficients from 6145 to
8192 and contains only two projections, each of which consist of 1024 coefficients. Note
the first level detail coefficients of the orthonorma wavelet transform consst of 1024
coefficients. The projections are aresult of the first step of cycle-pinning, which sepa
rately passes right and left shifted versons or trandations of the noise free sgna through
the orthonorma waveet transform. This process resultsin two upper projections or
detail projections and two lower projections or approximation projections. Through a
recursive process, each lower projection resultsin two upper and lower projectionsin the
next level of decompostion. The decomposition levels proceed from right to left in
Figure 4.3 such that the second decomposition level from 4097 to 6144 consigts of four
detail projections. Note that in Figures 4.3 (b) through (d) the approximation coefficients
from 1 to 2048 are not thresholded, asis the case with orthonorma thresholding.

Figure 4.3 (b) shows the result of passng anoisy sgnd through the trandation
invariant wavelet transform. Recall that each projection is a different gpproximation of
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the true sgnd subspace. Therefore, the denoising processis gpplied independently to
each projection prior to averaging and recongtruction. Figures 4.3 (¢) and (d)
demondtrate the outcome of soft thresholding with the visud threshold and hybrid
threshold respectfully. Note that Snce the hybrid thresholding agorithm found
sgnificant evidence of sgnd presence it defaulted to the SURE method of thresholding
rather than to the visua threshold.
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Figure 4.3: Trandation-invariant denoising of congtant amplitude linear chirp with
SNR=9dB and N = 3. (a) Truewavelet coefficients, (b) wavelet coefficientsin
AWGN; (c) waveet coefficients de-noised using soft visua thresholding; (d) wavelet
Coefficients de-noised usng soft SURE thresholding.

In order to enhance the denoising process further, we rely on the convergence
property of subspace projections[18]. This property suggests that the projectioninto a
subspace becomes closer or converges toward the true projection each timeit is recur-
svely passed through the cycle-spinning process. This concept is explored further in the
following section on recursive cycle-spinning [18].
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4, Recursive Cycle-Spinning

Figure 4.4 illustrates the process of passing the output of the trandation+invariant
denoising dgorithm through the identica denoising process i times. This process can be
performed recursively, hence the term recursive cycle-spinning

S(n) &.,(n
Trandation Trandation Trandation
) — Invar_iz_ant > Invar_iz_am L . . Invar_izﬂ L &)
Denoisng Denoisng Denoisng
Figure 4.4: [llugtration of denocising usng multiple passes.

The results of recursve cycle-spinning demondrate that multiple passesresult in
a projection, which converges toward the true projection [18]. The threshold and thresh
olding method will play alarge part in the ahility of the agorithm to converge to the true
projection, however the number of passes a which the recursive cycle-spinning con-
verges to the true subspace depends on the level of the threshold because of inherent
losses the sgnd undergoes in the thresholding process. Absolute convergence to the true
subspace is not possible because of the loss of smaller sgna components through the
course of thresholding. For a properly chosen threshold, each recursive iteration retains
relatively large sgnd energy; however alarge portion of noise is removed. The projec-
tions converge toward the signd subspace, and at the same time away from the noise
subspace at the end of each recursiveiteration. A point will be reached where the re-
mova of noise & each level of decompodition is no longer the dominating factor. At this
point we are close in the mean squared sense to the true projection and any additiond
iterations may prove counterproductive. Hence, making the threshold smdler servesto
increase the number of productive recursiveiterations. The “optimum” threshold will
remove the most noise with the lowest information loss. Note that this work does not
attempt to find the optimum threshold or the number of iterations necessary to reach the
minimum MSE. We take an intuitive gpproach to picking a suitable threshold and
aufficient number of iterations to illudirate the usefulness of the technique.
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Although hard thresholding preserves the most signd energy remaining in the co-
efficients prior to recongtruction, it provides less than a smooth fina result. Therefore,
we choose to gpply ten recursive iterations using hard thresholding followed by an
additiond iteration usng soft thresholding. This method keegps more of the Sgnd energy

from iteration to iteration, while providing a smoother resullt.

Intuitively, the threshold that requires the least fewest number of iterationsisthe
universal threshold since it isthe largest threshold. Further, since the universal threshold
is guaranteed to remove dl the noise on the firdt iteration, any further iterations may

prove counterproductive due to the added risk of signa loss from the higher threshold.

Using the same argument as above, the threshold that requires the largest number
of iterations is the SURE threshold because it is the smallest threshold and removes the
least noise and Signd dike. Recdl that upon reaching a certain point, any additiond
iteration will cause Sgnal degradation as aresult of the additiona loss of Sgna energy.
This effect worsens with higher thresholds, since they impose ahigher risk. Therefore, to
prevent overshooting convergence, SURE thresholding is adopted as a method of choice

for thiswork.

The convergence ability of the agorithm is pointed out with Figures 4.5 (a)
through (d) by comparing two possible recursive cycle-spinning arrangements to the
noiseless and noisy projection. One would expect that as long as there is no overshoot,
the coefficients in the case where the mogt iterations are performed will more closely
represent the noisaless coefficients seen in Figure 4.5 (a). Figure 4.5 (c), which repre-
sents denoising using two iterations of hard thresholding followed by one iteration of soft
thresholding with the SURE threshold gppears to be further from the true projection than
our recursive resultsin Figure 4.5 (d). Notice that the lowest decomposition level detall
coefficients of Figure 4.5 (d) are most similar to their counter parts of Figure 4.5 (a).

The convergence of the upper level coefficients therefore appearsto lag the lower
coefficients in the convergence process. Hence convergence overshoot may occur firg at
the lowest level of decomposition and produce signd degradation of low frequency Sgnd

components. We leave this determination for future study.
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Figure 4.5: Congtant amplitude linear chirp in trandaion-invariant wavelet domain
prior to last recongtruction: (a) True noiseless coefficients, (b) Coefficientsin AWGN
with SNR = 9 dB; (c) Recursive cycle-spinning with two hard iterations followed by one
soft iteration usng SURE threshold; (d) Recursive cycle-spinning with ten hard iterations
followed by one soft iteration usng SURE threshold.

This method will be compared to other denoising schemes using the MSE. Addi-
tiond clean up of the remaining coefficients will Ao be attempted using the time domain
techniques discussed in the next section.

B. TIME AND WAVELET DOMAIN

Time-domain filtering techniques such as Wiener Filtering have been adopted to
minimize the mean squared error of the filtered Sgna. These proven time-domain
techniques will be compared to wavelet-domain thresholding schemes, described previ-
oudy in this chapter. In addition to direct comparison, we consider a combination of

both wavelet and time domain techniques to further improve the denoising process.

The following section describes Wiener filtering principles. The Wiener filter it-
sf isnot used snce we would require a priori knowledge of the sgndl or an accurate
cdculation of AWGN variance. Although this thesi's makes the assumption that the noise
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gatistics are known or can be determined, we sdlect Wiener prediction as a useful Sgnd
processing dternative.
1 Wiener Filtering

Wiener filtering iswel-known in the literature [13]. When the observation is of
the form:

x(n) = s(n) +h(n), (4.8)

wherethesgnd s(n) and noise h(n) are independent, the equations for the optimal filter

ae of the form:
¢R(O) R@® - R(P) aeh@u éR(0)y
RO RO - R(P-Yeh g_eRM g 49
é : : . : ué : u é : u

R(P) R(P-1 — RO HhPE ERPY
where R (1) =R(1)+ R, (1), and R(l) and R, (I) are the autocorrelation function for the

sgnd and noise, respectively. These are the Wiener-Hopf equations.

In order to predict the signal (i.e., estimate s(n+1) instead of s(n)), the Wiener-
Hopf equations change dightly:

¢R(O) RO - R(P) wh@u ¢ RO u
RO RO - R(P-Dgghhy_¢ RA g @.10)
é : ;. f o Géiaé o
BR(P) R(P-) - R(0) gahP)a ER(P+Dy

a. Elimination of Predictor Edge Distortion

The adopted method conssts of flipping the data from front to back, con
volving with the same prediction filter from above, and then flipping back again. Hence,
two representations of the data signa have been determined where one isforward pre-
dicted and the other reverse predicted. The last two accurate samples from the reverse
prediction are put in their respective place in the forward predicted data as shown in

Figure 4.6 to diminate the edge effect cause by the forward predictor. Additiondly, the
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last two samples of the forward predicted data are kept, as shown in Figure 4.6. Note that
h isthe same in both cases; however the predicted values are different. Figure 4.6
illustrates the process demondrating that the remaining samples not affected by the edge
distortion are then averaged together.

Forward Predicted data [f, f, f, f, f fo f, fg

Reverse Predicted data  [r, 1, T, I, r, Loor, 1
Resulting Predicted data 9rl r, ot Tl It s refs f, fglrj
& 2 2 2 2 H

Figure 4.6: Resulting predicted data using forward and reverse prediction.

There are two digtinct advantages found when using the above method.
Firg, the Sze of the output data will be the same asthat of the input data. Next, the edges
will be smooth when the segments are put back together because the end points are fully
predicted with each of the filter coefficients. These properties are advantageous when a
large stream of dataisto be andyzed in smdl incrementa segments. Thus, along data
st can be split up into smdler segments and when reassembled will not have noticegble
edges.

For a non-daionary sgnd such as the congtant amplitude linear chirp, a
windowed verdgon of Wiener Prediction as described above isimplemented on individud
segments of the data stream. If the segment consists of zeroes, then the predictor returns
al zeroesto prevent the formation of asingular matrix. Note that the wavelet-domain
coefficients contain AWGN as previoudy stated; hence Wiener filtering will prove useful
in denoigng the remaining coefficients.

2. Wavelet- and Time-Domain Techniques

For thiswork the above windowed predictor was used, and the most suitable data
input Size to the predictor was determined through experimentation. For thiswork the
prediction window is limited to Sixteen samples for first level decomposition wavel et
denoising and thirty-two samples for time-based denoising. For the signas considered,

we have found through experimentation that the smdler sample interval is necessary in
32



the wavelet domain for best results when gpplied only to thefirst level detail coefficients.
Figures 4.7 (a) and (b) show thefirst 700 points of the noisdless and noisy constant
amplitude linear chirp, and Figure 4.7 (¢) demondgtrates the denoising capability achieved
by implementing the predictor on the constant amplitude linear chirp. Notice thereisno
added distortion at the edges of the waveform segments.

The following sectionimplements alow computationd cost filtering method for
comparison purposes. The Median Filter performs well for nonstationary, but low-
frequency sgnds because of its inherent lowpass filtering characteridtics.

3. Median Filtering

A one-dimengond median filter is chosen because of its smplicity and low com-
putational cost. However, it requires the user to have some a priori knowledge of the
ggnd characteristics because it does not perform well if the Sgna has high frequency
components. The congtant amplitude linear chirp and random sinusoid generated in this
work occupy the high frequency spectrum; so denoising results are expected to be poor.
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Congtant amplitude linear chirp in time domain (Firgt 700 samples): (a)

True noisdesssgnd; (b) Signd in AWGN with SNR= 9 dB; (c) Time domain Wiener
prediction denoising with window size = 128; (d) 3" order Median filter dencising.
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The median filter or medfiltl in Matlab [20] estimates §(n) by looking a s(n- 1),
s(n), and s(n+1), and chooses as output §(n) the median vaue of those 3 values. For

segments this method aso returns the same number of samplesit receives. Figure 4.7 (d)
demondrates the median filtering denoising ability on a constant amplitude linear chirp.
From visua ingpection it gppearsto do fairly well a denoising the low frequency portion
of thesgnd.

This chapter identified severd wavdet- and time-domain denoising schemes. The
following chapter compares the preceding denoising scheme. Firdt, orthonormal wavelet
thresholding techniques are compared to the time-domain techniques, which are followed
by a separate comparison of trandation-invariant thresholding techniques. Next, we
compare the best wavelet thresholding schemes from the orthonorma wavelet and
trandation invariant wavelet trandforms. Findly, we compare results obtained with the
Wiener prediction and Median filter schemes.
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V. RESULTS

A. INTRODUCTION

The previous chapters discussed some important principles and theory which form
the background for time-frequency based denoisng. The following section compares
performances obtained for each scheme considered in thiswork. The signals used are
robust in that they encompass a broad range of the spectrum and no a priori sgnd

information is exploited.

Throughout the following, the result of Wiener prediction on the datain the time
domainis used as abenchmark. Hence, the other denoising techniques will be compared
againg the benchmark set by time-domain Wiener prediction. Indl the following
gmulations the results from one hundred distinct smulations are averaged in order to

produce amore precise atistica comparison.

1 Orthonormal Wavelet Denoising

The firgt smulations compare and contrast orthonorma wavelet domain tech-
niques. Figures 5.1 through 5.3 illustrate M SE results between wave et-based methods
and time-based methods for the constant amplitude linear chirp of Equation (2.3), and
demondtrate the effect of adding additional levels of decomposition N where N = 2, 6,
and 9, respectively. Based on M SE performance, the time-domain Wiener prediction
clearly produced the best results for thissgnal since its average M SE is predominately
less than each of the other methods. Noticethat for N =6 and 9 the MSE for the Or-
thonorma soft SURE thresholding performs better than when N =2. Thisresult isto be
expected since more frequency ranges are being cleaned. Note aso that nine levels of
decompogtion did not provide noticegbly different results than six levels of decompos-
tion. Hence, apoint of diminishing returnsis reached where the added computations (for
implementing further levels of decomposition) do not provide added berefit.
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Recdl that visuad thresholding is less desirable for smdler data segments because
of itslower performance due to the large threshold size rdative to the number of data
samples. However, the benefits of Visud thresholding may outweigh those of SURE

thresholding for longer data samples.
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—S— Time Domain 3rd order Wiener Prediction
Time Domain Size 3 Med Filter

—t+— Orthonormal Soft Visual Thresholding 1
Orthonormal Hard Visual Thresholding

—H— Orthonormal Soft SURE Thresholding

—O— Orthonormal Hard SURE Thresholding

Mean Squared Error
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Figure 5.1 MSE vs. SNR for orthogona wavelet-based denoising of constant ampli-
tude linear Chirp from Equation (2.3) with N = 2 (Average of 100 smulations).
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Figure 5.2: MSE vs. SNR for orthogona wavelet-based denoising of constant ampli-
tude linear Chirp from Equation (2.3) with N = 6 (Average of 100 Smulations).

In addition, results show that Median filtering produces the worst M SE results, as
expected, sSnce the Median filter acts as alowpassfilter. Hence, Median filtering does
not achieve acceptable results for the nongtationary multi-frequency scale signals used.
Median filtering may produce better results in a higher sample rate environment where
changesin sgnd datigics are rdaivey inggnificant over the length of thefilter.
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Figure 5.3 MSE vs. SNR for orthogona wavel et-based denoising of constant ampli-
tude linear Chirp from Equation (2.3) with N = 9 (Average of 100 smulations).

Figure 54 illugtrates one trid of the de-noised sgna §(n) and the origind sgnd

s(n) to demongrate the visud differences found in the various denoising schemes for

N =9. Thesereaults are consstent with those found in Figure 5.3 and illustrate the
difference between hard and soft thresholding. Results show better M SE performances
are obtained with the SURE soft threshold than with the SURE hard threshold for this
sgnd.
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Figure 5.4: First 700 samples of constant amplitude linear Chirp from Equation (2.3)
using orthogona wave et-based dencisng with N = 9 and SNR= 10dB. (a) Time-
domain 3 order Wiener Prediction; (b) Time-domain Size 3 Median Filter; (c) Soft
visud thresholding; (d) Hard visud thresholding; (e) Soft SURE thresholding; (f)

Hard SURE thresholding (Origind noisdess Sgnd is shown in blue).
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Figure 5.5 demondtrates the average effectiveness of soft SURE wavelet denois-
ing over time domain Wiener prediction on snusoidal sgnds. Note thet for thissgnd, a
decrease in the MSE isillustrated for both hard and soft SURE thresholding compared to
the Wiener prediction benchmark. The SURE soft threshold MSE was dightly lower
than the time domain Wiener prediction in this case, whereas for the constant amplitude
linear chirp it was dightly higher. Thus, the overdl M SE performance with regard to the
performance of wavelet and Wiener prediction on both sgnd typesis dmogt identicdl.
The advantage of waveet thresholding in this caseis not in the M SE performance.
Recall that the best-suited Sze of the prediction window was dependent on a priori
experimentation whereas wave et thresholding did not require any a priori information
other than segment Sze to determine the number of levels of decomposition. The next
Section explores the effect of cycle-gpinning using the same comparisons as above.

2. Trandation-Invariant Wavelet Denoising

In this Section cycle-spinning results are reported and compared using the wavel et
threshol ding techniques discussed. For ease of comparison, nine decompostion levels
are used in the comparison. Figures 5.6 and 5.7 average the results for the various de-
noising schemes on the congtant amplitude chirp and random sinusoid, respectively.
Reaults for the congtant amplitude chirp are amilar to those obtained with orthonormal
wavelet denoising; however afew differences are noted. Firg, it appears that trandation
invariance as applied produces dightly enhanced denoising capability for each of the
thresholding schemes. In addition, hard thresholding with the visud threshold shows a

marked improvement, consdering the smal sample space involved.
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Figure 5.5: MSE vs. SNR for orthogona wavel et-based denoising of sine wave with
frequency randomly set to a vaue between 0 and haf sampling frequency with N = 9
(Average of 100 Smulations).
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Figure 5.6: MSE vs. SNR for trandation-invariant wave et- based denoising of con-
gant amplitude linear Chirp from Equation (2.3) with N = 9 (Average of 100
smuléions).
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Figure 5.7 that shows the best MSE peformances are obtained with the soft
SURE threshold. Next, we compare the soft SURE threshold results to those obtained
with cyde-spinning. In addition, we compare combined scheme performances.
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Figure 5.7: MSE vs. SNR for trandation-invariant wave et-based denoising of sine
wave with frequency randomly set to a vaue between 0 and haf sampling frequency with
N = 9 (Average of 100 Smulations).

3. Combined Time and Wavelet Based Denoising

This section compares the best orthonorma and trandation-invariant thresholding
schemes, and provides results for the combined schemes. Recdl that in acombined
scheme either Wiener prediction or median filtering is gpplied to the wavel et coefficients
after thresholding and prior to recongtruction. This technique addresses the fact that no
atempt is made in thresholding to diminate noise in the remaining coefficients. Thresh-

olding continues to be vita in the denoising process because it is able to completely zero
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out a portion of the noise-only coefficients whereas no such guarantee exists with Wiener
prediction and median filtering. Recall, however, that with Wiener prediction one must
make certain the autocorrelation matrix is not Sngular, whereby ensuring any string of
coefficients thresholded to zero remain zero. Verifying whether the matrix isill-condi-
tioned will be |€ft to future work; however in such a case asmdl quantity of noise may
be added to the data segment prior to taking its autocorrdation. Additionaly, recdl that
for thiswork the time-based techniques are restricted to the detail coefficients from the
fird level of decompostion.

Figures 5.8 and 5.9 show that applying Wiener prediction in the prescribed
manner does provide adight advantage over denoising utilizing only thresholding for the
snewavesgnd. Thisresult isencouraging because it illustrates that additiond
denoising can be accomplished in conjunction with thresholding. Additiondly, it shows
that trandation-invariant denoising provides added denoising capability over that of

orthonorma wavelet denoising.

Figure 5.10 provides avisual representation of the first 700 samples of the de-
noised congtant amplitude chirp §(n) and the origind sgnd s(n). The de-noised Sgndl
in Figure 5.10 (e) demondirates the effectiveness of the combined agorithm; we notice
the relaive noise-free neture of the result. Figure 5.10 (f) shows the (huge) degradation
introduced by applying the median filter to the coefficients prior to reconstruction.
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45



[ [ [ [ [ [ [ [ [

—©— Time Domain 3rd order Wiener Prediction
Time Domain Size 3 Med Filter
—t— Orthonormal Soft SURE Thresholding
Translation Invariant Soft SURE Thresholding
—=— Translation Invariant Soft SURE Thresholding with Wiener
—&— Translation Invariant Soft SURE Thresholding with Medfilt

0
10 ¢

Mean Squared Error

10

-10 -8 -6 -4 2 0 2 4 6 8 10
SNR(dB)

Figure 5.9: MSE vs. SNR for combined wavelet and time denoising of sne wave with
frequency randomly set to a vaue between 0 and haf sampling frequency with N = 9
(Average of 100 smulatiors).
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Figure5.10:  First 700 samples of constant amplitude linear Chirp from Equation (2.3)
using combined wavelet and time-based denoisng with N = 9 and SNR= 10dB. (a)
Time domain 39 order Wiener Prediction; (b) Time domain Size 3 Median Filter; (c)
Orthonorma soft SURE thresholding; (d) Trandationtinvariant soft SURE thresholding;
(e) Trandaion-invariant soft SURE thresholding with Wiener Prediction prior to recon-
gruction; (f) Trandation-invariant soft SURE thresholding with Medianfiltering prior

to reconstruction.
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The following Section provides the results for recursive cycle-spinning as defined
in thiswork and includes avariant of recursive cycle-spinning that includes Wiener
prediction just prior to the last recongtruction step.

4, Recursive Trandation-Invariant Wavelet Denoising

This section combines the best results from the above sections and compares them
to recursive cycle-spinning and a combined verson of recursive cycle-spinning and

Wiener prediction.

Figures 5.11 and 5.12 show that at higher SNIR levels the combined recursive
method with Wiener prediction performed prior to the last reconstruction has the best
MSE performance. Notice that in the case of the constant amplitude linear chirp illus-
trated in Figure 5.11, the combined scheme produces better results at lower SNR’ s than
for the random sine wave illustrated in Figure 5.12. Hence, a priori information about
the Sgnd is necessary in the implementation of this combined scheme; therefore it
should not be used in an unknown signd environmertt.

The following section performs the denoising agorithms on experimenta data
sets. No a priori information was available for these data sets. Due to the large sample

rate during data collection these segments contain alarge number of samples.
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Figure5.11: MSE vs. SNR for recursve trandation-invariant wave et denoising of
congtant amplitude linear Chirp from Equation (2.3) with N = 9 (Average of 100 Smula-
tions).
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5. Denoising of Experimental Data Sets

The experimental data we worked with are referred to as data sets A through F.
They are de-noised via severd of the above methods as shown in Figures 5.13 through
5.26. No apriori information has been collected on this data, hence Setistica analyss
was performed on areatively signa-free portion of the signd to determine whether it
could be modded white and Gaussan. Whiteness of the noise was evauated by com+
puting correlaion estimates of noise-only data segments, while the Gaussian assumption
was tested with quantile-quantile plots. Simulations show that the noise segments exhibit
some colored properties and deviate somewhat from the Gaussian assumptions. The
deviations were deemed small enough so that we could Hill attempt to consider the noise
digtortions as white and Gaussian for the purpose of Wavelet denoising. An additiona
pre-whitening step could be introduced for potentialy more accurate results at a higher
computationa cost. Figures 5.13 through 19 compare effects of the visud and SURE
threshold and the orthogona transformation to the trandatior+ invariant transformation.

Inthis caseit is not possible to notice any noticeable difference between denois-
ing techniques that included Prediction and those that did not. A possible explanation is
that the signd did not change significantly during the prediction window duration due to
the large sampling rate. Hence, apriori information about the sgna and the sampling
frequency is necessary to correctly apply Wiener prediction in both time and wavelet

domains.

In addition, note that the visua thresholding technique essentidly diminates al
noise, as expected. Since the data segment is very large in this case the negetive effects
experienced with the smaller data sets are not experienced asilludtrated in Figures 5.13
through 5.15. Unfortunately, visud thresholding still finds the threshold with the grestest
risk of Sgnd loss. For ingtance, the latter half of the data stream in Figure 5.19 may have
amd| amplitude sgnd components that the SURE thresholding technique picks up.

Visud thresholding places the threshold above those components and eiminates them,
however, resulting in greater jeopardy of thresholding desired signal coefficients.

Findly, as seen by comparing Figures 5.13 (€) and (f), thereis no apparent
difference viewed between the orthogona transformation and the trandation-invariant
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transformation for these data sets. Therefore, the added cost of applying the trandation+
invariant transform does not judtify the benefit for these Sgnds.

FHgures 5.20 through 26 illustrate the effect of recurgve cycle-spinning on the
visud and SURE soft thresholding. From top to bottom are placed the origind data s,
Wiener predicted datawith alarger window size of 512, trandation-invariant soft visud,
recursve cycle-spinning with one iteration of hard visud followed by one iteration of
soft visud, trandationtinvariant soft SURE, and recursive cycle-pinning with ten
iterations of hard SURE thresholding followed by one iteration of soft SURE threshold-
ing.

Figures 5.22 (€) and (f) show adight denoising advantage of recursive cycle-spin-
ning over its trandation-invariant soft SURE counterpart. In most cases for these Sgndls,
however, the denoising effect of recursive cyde-spinning was unnoticesble as seenin
Figures 5.21 (e) and (f). Thus, the cost involved in recursive cycle-spinning ismuch
greater than its benefit.

This chapter systemdticdly identified the best denoising schemes for the sgnds
considered and gpplied those schemes to experimenta data. The following chepter
concludes which scheme is the method of choice for the sgnds and signd lengths
congdered. In addition, we make recommendations for further study.
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Figure5.13:  Denoisng of Data segment A. (a) Daaprior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 32; (c) Orthonorml soft visua
thresholding; (d) Trandation-invariant soft visud thresholding; (€) Orthonorma soft
SURE thresholding; (f) Trandation-invariant soft SURE thresholding.
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Figure5.14:  Denoisng of Data segment B. (@) Data prior to denoising; (b) Time
domain 3 order Wiener Prediction with window size of 32; (c) Orthonorml soft visual
thresholding; (d) Trandationinvariant soft visud thresholding; (€) Orthonorma soft
SURE thresholding; (f) Trandation-invariant soft SURE thresholding.
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Figure5.15:  Denoisng of Data segment C. (a) Data prior to denoising; (b) Time
domain 3 order Wiener Prediction with window size of 32; (c) Orthonorml soft visual
thresholding; (d) Trandationinvariant soft visud thresholding; (€) Orthonormal soft
SURE thresholding; (f) Trandation-invariant soft SURE thresholding.
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Figure5.16:  Denoising of Datasegment D. (&) Data prior to denoising; (b) Time
domain 3% order Wiener Prediction with window size of 32; (c) Orthonorml soft visua
thresholding; (d) Trandationinvariant soft visud thresholding; (€) Orthonormal soft
SURE thresholding; (f) Trandation-invariant soft SURE thresholding.
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FHgure5.17:  Denoising of Data segment E. (a) Data prior to denoising; (b) Time
domain 3 order Wiener Prediction with window size of 32; (c) Orthonorml soft visual
thresholding; (d) Trandationinvariant soft visud thresholding; (€) Orthonormal soft
SURE threshalding; (f) Trandation-invariant soft SURE thresholding.
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Figure5.18:  Denoising of Data segment F. (a) Data prior to denoising; (b) Time
domain 3 order Wiener Prediction with window size of 32; (c) Orthonorml soft visual
thresholding; (d) Trandation+invariant soft visud thresholding; (€) Orthonorma soft
SURE thresholding; (f) Trandation-invariant soft SURE thresholding.
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Figure5.19: Denoisng of Datasegment G. (@) Data prior to denoising; (b) Time
domain 3 order Wiener Prediction with window size of 32; (c) Orthonorml soft visual
thresholding; (d) Trandationinvariant soft visud thresholding; (€) Orthonormal soft
SURE thresholding; (f) Trandation-invariant soft SURE thresholding.
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Figure5.20: Denoisng of Data segment A. (@) Data prior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visua thresholding; (d) Trandationinvariant recursive with one hard visud fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.

60



[}
he)
2 4
=
€
©
9
(]
he)
=
i -
€
[
9
[}
he)
p=)
b= 0 4
[=%
€
©
-20 I I I I I I I I
0 1 2 3 4 (© 5 6 7 8 9
20 T T T T T T T T
[}
he)
2
5 O .
£
[
_20 I I I 1 1 I I I
0 1 2 3 4 (@) 5 6 7 8 9
20 T T T T T T T T
[}
he)
p=)
b= 0 4
[=%
€
©
9
[}
he)
2
E -
€
©
9
4
x 10

®

Figure5.21:  Denoisng of Data segment B. (a) Data prior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visua thresholding; (d) Trandationinvariant recursive with one hard visud fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.
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Figure5.22:  Denoisng of Data segment C. (a) Data prior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visud thresholding; (d) Trandation-invariant recursive with one hard visud fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.
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Figure5.23:  Denoising of Datasegment D. (&) Data prior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visua thresholding; (d) Trandationinvariant recursive with one hard visual fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.
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Figure5.24:  Denoising of Data segment E. (a) Data prior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visua thresholding; (d) Trandationinvariant recursive with one hard visud fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.
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Figure5.25:  Denoisng of Data segment F. (a) Data prior to denoising; (b) Time
domain 3% order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visua thresholding; (d) Trandationinvariant recursive with one hard visud fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.
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Figure5.26: Denoisng of Datasegment G. (@) Data prior to denoising; (b) Time
domain 3" order Wiener Prediction with window size of 512; (c) Trandation-invariant
soft visua thresholding; (d) Trandationinvariant recursve with one hard visud fol-
lowed by one soft visud ; (€) Trandation-invariant soft SURE thresholding; (f) Tranda
tion-invariant recursive with ten hard followed by one soft SURE thresholding.
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VI. CONCLUSIONS

A. METHOD OF CHOICE

Thiswork considered and compared the application of time-based and wavel et-
based denoisng schemes in arobust Sgnaing environment. A time-based predictor was
compared againgt time- based median filtering, and various wave et- based techniques
were considered along with a combination of time- and wavelet-based techniques. A
systemnatic process was used to establish which would be the method of choice for the

sgnds consdered.

First, we compared time-based techniques with the orthonorma wavelet thresh
olding techniques. Results show that the soft SURE threshold scheme has best perform-
ance for the sgnd types and length considered. Results dso show that overdl the
Wiener prediction scheme produced the best overall results for the two signal types
considered. Note, however that Wiener predictor performance is window size dependent,
and Wiener prediction performance became smilar to those obtained with the other
schemes for an appropriately chosen window Sze. In addition, the results show that the
visud thresholding technique was inferior to the SURE thresholding schemes for smal
data sets. However, results o indicate that the visual threshold performswell for long
data sets on the data considered in this study.

Second, we compared trandation invariance soft SURE thresholding schemes.
Results show that the soft SURE thresholding scheme produced the best results for the
test dgnads consdered. Results aso show that better performances are obtained for
random sinusoids than for the congtant amplitude linear chirp.

Next, we compared the best thresholding schemes obtained for the orthonormal
and trandation-invariant wavelet domain againgt the combined schemes. We found that
the trandation-invariant soft SURE thresholding outperformed its orthonorma counter-
part consstently over the range of SNR levels for both sgna sets. In addition, Wiener
prediction gpplied to the thresholded first level of decompostion detail coefficients just
prior to recongtruction added dightly to the denoising ability for SNR (levels from two to
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eight dB). However, results show no noticesble difference for our test data for the

window size considered, which may be due to the larger data sample size.

Finaly, we compared recursive wave et-based techniques to the best performing
orthonormal and trandation-invariant schemes. We found that the recursive scheme
combined with Wiener prediction outperformed other schemesfor SNR levels between
gx and eight dB. Thus, results show that the Sgnal power must be known a priori in
order to implement such atechnique. In addition, the Wiener prediction window size

must be optimized for the sampling environment.

Our results suggest that the trandation-invariant soft SURE thresholding schemes
should be employed with ardatively smal data ssgment and no a priori sgnd informe-
tion. However, for larger data segments soft visud thresholding gives the greatest noise-
free reault, yet a the same time presents the greatest risk of loosing smal amplitude
sgna components. In either case wave et thresholding was more robust than time-based
methods. Therefore, thresholding isindeed robust and highly capable denoising instru-
ment. Soft SURE thresholding requires the least quantity of a priori Sgnd information
and is epecidly robust since techniques are available to account for colored noise

environments.

B. RECOMMENDATION FOR FURTHER STUDY

Further study is needed in the area of recursive cycle-pinning and Wiener pre-
dictive denoisng of coefficients. Recdl that Wiener prediction was only performed on
the detall coefficients at thefirs level of decompaosition. It may be possible to implement
an adaptive Wiener prediction scheme that chooses its window size based on statistics
determined from arange of window Szes for each level of decomposition. In addition, it
may aso be possible to de-noise approximation coefficients. They were |eft untouched in
our study.

The visua threshold provides the largest necessary threshold and thereby employs
the greatest risk of sgnd loss, whereas the SURE threshold provides the minimum risk
of 9gnd loss. Recdl that the Hybrid scheme chooses the smdler of the two thresholds
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where the SURE threshold is based on evidence of signd presence and the visud threshr
old is based on the size of the ssgment. We leave for further work another version of the
Hybrid scheme where the visud threshold is chosen if it isless than the SURE threshold,
and an average of the two thresholdsis used as the actual threshold when the SURE
threshold is less than the visud threshold. Hence an average of these thresholds may
provide a good compromise between the two schemes.

Recursve cyde-spinning was not optimized in thiswork, however the results
combined with Wiener prediction showed promise. Therefore, optimization of the

recursve cyde-spinning technique for each level of decomposition may be aviable area
of studly.
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APPENDIX A MATLAB/WAVELAB SOURCE CODE

The Matlab [20] and Wavelab [10] source code devel oped and/or modified re-
spectively for the purposes of this study are presented in this gppendix.

A. MAIN PROGRAM (AVERAGES 100 I TERATIONS)

%6%0%6%0%6%0%6%6%0%6%/0%6%0%6%0%6%6%0%6%0%6%0%6%0%0%0%0%6%0%6%0%6%0%0%6%0%6%0%6%0%e%
%

% ThisMatlab Code performs averaging of 100 separate denoising

% iterationsfor N wavelet decompostion levels.

%
%6%0%6%0%6%0%0%6%0%6%0%6%0%6%0%0%6%0%6%0%6%0%6%0%0%6%0%6%0%6%0%6%0%0%6%0%6%0%6%0%e%

%
%The following lines of code are used to create the congtant
%Linear Chirp from Equation (2.3). Commented out if Random Sine
%is performed.
%

n=1:2048;

F=1:.9765:2000;

Fs=8000;

%

%Create Congtant amplitude linear chirp from O to one fourth sampling
frequency

%

sgl=san(2*pi.*F./Fs*n);

sg2=s3gl/sgrt(mean(sigl."2));
%
%Set median filter Sze
%

medsize=3;
%
%Set Wiener Filter Order
%

order=3;
%
%Set number of decomposition levels to be performed in wavelet routines
%

%

for N=[26 9];

%

for nnn=1:100

71



%
%Creste random sinusoid to be used for this iteration nnn
%
%Random number between 0 and 1
F=rand,
n=1:2048;
Fs=2;
%
%Create Random Sinusoid from O to one haf sampling frequency
%
sgl=sn(2*pi* (F/Fs)*n);
sg2=9gl/sgrt(mean(sigl."2));
%
%Store s and sigma from each run in Matrix form
%
[L,sr(nnn,z),sgmal(nnn,;),agma2(nnn,:),Sgma3(nnn,’),...
sgmad(nnn,;),Sgmab(nnn,:),sgmab(nnn,:),orthohybridwcoef_soft] =...
OrthoDenoising(sg2,order,medsizeN);
%
end
%
figure(N);
%
subplot(1,1,1),semilogy (mean(snr),mean(sigmal),’bo-")
,hold on, semilogy (mean(snr),mean(sgma2),'gx-")
,hold on,semilogy (mean(snr),mean(sgmas),r+-")
,hold on,semilogy (mean(snr),mean(sigmad),'c*-")
,hold on,semilogy (mean(snr),mean(sgmab),'ms-")
,hold on,semilogy (mean(snr),mean(sgmab),'yd-")
,hold on,hold off;
%
legend(sprintf('Time Domain %srd order Wiener Prediction’,num2str(order) ),...
sorintf(‘'Time Domain Size %s Med Filter',num2str(medsize)),...
‘Orthonorma Soft Visud Thresholding','Orthonorma Hard Visua
Thresholding,...
‘Orthonorma Soft SURE Thresholding','Orthonorma Hard SURE Thresholding);

%

subplot(1,1,1) xlabel ('SNR'),ylabel ‘(M ean Squared Error’);
%

end
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B.

DENOISING FUNCTION (ORTHONORMAL)

%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%60%0%6%0%0%0%0%0%60%0%0%0%0%0%0%6%% %0 %%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

This Matlab Function cals wavelab and modified wavelab denoising
functions[10]. Datais one row of normdized 1 dimensiona data

of dyadic length 2048=2"11.

Function passes the sgnd through various

Denoising Schemes and Passes back M SE vs SNIR for each of those schemes

Function Syntax as follows.

[noisearray, sgmal,agma2,9gma3,9gmad,agmab,agmeb)
=OrthoDenoising(sig2,order,medsize,N)

where:
"9g2" = True 9gna passed into function
"order" = Wiener Predictor Order
"medsze’ = median filter 9ze
"N" = Number of levels of decomposition for wavelet transform
"ggmal” = mean squared error of Time Domain Prediction
"sdgma2"’ = mean squared error of Time Domain Size %s Med Filter
"ggma3’ = mean squared error of Orthonormal Soft Visud thresholding
"sgmad” = mean squared error of Orthonorma Hard Visud thresholding
"ggmab"’ = mean squared error of Orthonorma Soft SURE thresholding
"ggmab"’ = mean uared error of Orthonorma Hard SURE thresholding
"noisearray” = SNR levels[-10-6-303 6 10] dB

%0%0%6%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%6%0%0%0%0%60%%6%0%0%0%0%6%% %% %

%

function [noisearray, Sgmal, Sgma2, Sgma3, sgmad, Sgmab, Sgmaf...

%

=OrthoDenoising(sg2,order,medsize,N)

%M ake a copy of sgna

%

%

9g1=992;

%Form array of chosen SNR's

%

%

noisearray=[-10-6-30 3 6 10];

%create noise kernd

%

%

noise = randn(1,length(sigl));

%find noise power

%
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noi sepower=mean(noise."\2);
%
%normaize noise with noisepower
%
noise = noi se/sgrt(noi sepower); %osets noise power to 1
%
%/For loop for each SNR; Noise seed stays the same for each SNR,
%and sgna power changed to meet requirements of noisearray.
%
for count=1:length(noisearray)
%
%Change the signa power assuming unit variance noise for desired SNR
%
sglforsnr=sqrt(10"(.1* noisearray(count)))*sigl,;
%
%Add normalized noise with var=1, thereby generating SNR dictated
%
sl = noise + siglforsnr ;
%
%Perform Time Domain Prediction Denoising
%
[FlteredPredict] = predict_ window_time(sl,order);
%
%Perform Time Domain Median filtering
%
[FilteredMed] = medfilt1(sl,medsize);
%
%Perform Orthonorma Waveet Denoisng
%
%
%Create quadrature mirror filter for Trandation+invariant Transform
%
QMF = MakeONFilter('Coiflet',5);
%
%Determine length of sgnd and number of dyadsin Data usng Wavelab routine
%dyadlength [10]
%
[lengthofsl,Jdyads] = dyadlength(sl);
%
% Using number of dyads and number of levels of decomposition
% find degree of coarsest scale. ie. if N=6 and Jdyads=5; 11-6=5
%
L=Jdyads-N;
%
%Perform Orthonormad Transformations with Shrinkage usng modified
%Wave ab function WaveShrink [10].
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%
[orthovisu_soft, orthovisuwcoef_soft] = WaveShrink_soft(s1, 'Visu', L,
QMF);
[orthovisu_hard, orthovisuwcoef _hard] = WaveShrink_hard(sl, 'Visu, L,
QMF);
[orthosure_soft, orthosurewcoef soft] = WaveShrink_soft(sl, 'SURE, L,
QMF);
[orthosure_hard, orthosurewcoef hard] = WaveShrink _hard(sl, 'SURE',
L, QMPF);
%
%Plot results of the various filter methods over the top of the noise free Sgndl.
%
figure(N-1);
subplot(6,1,1),plot(FilteredPredict(1:700),r"),hold on, plot
(dgiforsnr(1:700), '), hold off;
subplot(6,1,1),ylabe (Amplitude);
subplot(6,1,2),plot(FilteredMed(1:700),'r"),hold on, plot
(dgiforsnr(1:700), '), hold off;
subplot(6,1,2),ylabd ((Amplitude),title('(a)");
subplot(6,1,3),plot(orthovisu_soft(1:700),'r),hold on, plot
(sgiforsnr(1:700),b"),hold off;
subplot(6,1,3),ylabel (Amplitude) title('(b));
subplot(6,1,4),plot(orthovisu_hard(1:700),r"),hold on, plot
(sglforsnr(1:700), 'b),hold off;
subplot(6,1,4),ylabel (Amplitude) title('(c)");
subplot(6,1,5),plot(orthosure_soft(1:700),'r'),hold on, plot
(dglforsnr(1:700), 'b),hold off;
subplot(6,1,5),ylabe (Amplitude) title('(d)");
subplot(6,1,6),plot(orthosure_hard(1:700),'r'),hold on, plot
(sglforsnr(1:700),b"),hold off;
subplot(6,1,6),ylabe (Amplitude), xlabel ('(f)) title('(e)");
%
% Perform Mean Squared Error Caculation.
%
%Time Domain Prediction
[sgmal(count)] = msemed(FilteredPredict,aglforsnr);
Y%Median filtered
[sgma2(count)] = msemed(FilteredMed,sglforsnr);
%Orthonorma Waveet Domain Visua Soft
[sigma3(count)] = msemed(orthovisu_soft,aglforsnr);
% Orthonorma Wavelet Domain Visud Hard
[sgmad(count)] = msemed(orthovisu_hard,sglfors);
% Orthonorma Wavelet Domain SURE Soft
[sigmaS(count)] = msemed(orthosure soft,siglforsnr);
% Orthonorma Wavelet Domain SURE Hard
[sigmab(count)] = msemed(orthosure_hard,sglforsnr);
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end

C.

%

DENOISING (TRANSLATION-INVARIANT)

%0%0%0%0%0%0%0%0%0%0%0%0%0%0%60%0%0%6%0%0%0%0%6%0%6%0%0%0%0%60%0%0%0%0%0%0%6%e% %0 %%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

This Matlab Function cals wavelab and modified wavelab denoising
functions[10]. Datais one row of normalized 1 dimensond daa

of dyadic length 2048=2"11.

Function passes the sgnd through various

Denoising Schemes and Passes back M SE vs SNIR for each of those schemes

Function Syntax as follows.

[noisearray, s gmal,sgma2,5gma3,sgmad,agmab,sgmeabd)
=TransDenoising(sg2,order,medsize,N)

where:

"9g2" = True 9gna passed into function

"order" = Wiener Predictor Order

"meddze’ = median filter 9ze

"N" = Number of levels of decomposition for wavelet transform

"noisearray” = SNR levels[-10-6-303 6 10] dB

"sggmal" = mean squared error of Time Domain Prediction

"sgma2’ = mean squared error of Time Domain Med Filter

"ggma3" = mean squared error of Trandation-invariant Soft Visud thresholding

"sgmad” = mean squared error of Trandation-invariant Hard Visud
thresholding

"ggmas" = mean squared error of Trandation-invariant Soft SURE thresholding

"dgmab"’ = mean squared error of Trandation+invariant Hard SURE
thresholding

%0%0%6%0%0%0%0%%0%0%0%0%0%0%%0%6%6%0%0%0%%6%6%6%0%0%0%0%6%6%6%0%0%0%0%%%6%6 %%

%

function [noisearray,agmal,sgma2,9gma3,9gmad,sgmab,agmab] =...

%

TransDenoisng(sig2,order,medsize,N)

%Make a copy of sgnd

%

%

sgl=4992,

%Form array of chosen SNR's

%

%

noisearray=[-10-6-303 6 10];
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Y%create noise kernel
%
noise = randn(1,length(sgl));
%
%find noise power
%
noisepower=mean(noise."2);
%
%normalize noise with noisepower
%
noise = noise/sgrt(noi sepower); %sets noise power to 1
%
%/For loop for each SNR; Noise seed stays the same for each SNR,
%and signa power changed to meet requirements of noisearray.
%
for count=21:length(noisearray)
%
%Change the sgna power assuming unit variance noise for desired SNR
%
sglforsnr=sqrt(10"(.1* noisearray(count)))*sigl;
%
%Add normalized noise with var=1, thereby generating SNR dictated
%
sl = noise + sglforsr ;
%
%Perform Time Domain Prediction Denoising
%
[FilteredPredict] = predict window_time(sl,order);
%
%Perform Time Domain Median filtering
%
[FilteredM ed] = medfiltl(sl,medsize);
%
%Perform Trandation Waveet Denoising
%
%
%Create quadrature mirror filter for Trandation-invariant Transform
%
QMF = MakeONFilter('Coiflet',5);
%
%Determine length of signd and number of dyadsin Data usng Wavelab routine
%dyadlength [10]
%
[lengthofsl,Jdyads] = dyadlength(sl);
%
% Using number of dyads and number of levels of decomposition
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%

% find degree of coarsest scale. ie. if N=6 and Jdyads=5; 11-6=5
%
L=Jdyads-N;
%
%Perform Trandation-invariant Transformations with Shrinkage usng modified
%Wavelab function FWT_TI [10].

%
[transvisuwcoef soft]=FWT _TI_visuthreshSoft(sl,L,QMF);
[transvisuwcoef _hard|=FWT _TI_visuthreshHard(s1,L,QMF);
[transsurewcoef _soft]=FWT _TI_SurethreshSoft(s1,L,QMF);
[transsurewcoef _hard|=FWT _TI_SurethreshHard(sl,L,QMF);
%

%Perform Inverse Trandation-invariant Transform with Wavelab function

%IWT_TI [10]

%
transvisu_soft=IWT _TI(transvisuwcoef _soft, QMF);
transvisu_hard=IWT _TI(transvisuwcoef _hard, QMF);
transsure_soft=IWT _TI(transsurewcoef soft, QMF);
transsure_hard=IWT _TI(transsurewcoef _hard,QMF);

%Plot results of various filter methods over the top of the noise free Sgnd.

%

%

figure(N-1);

subplot(6,1,1),plot(FilteredPredict(1:700),r"),hold on, plot (siglforsnr(1:700),
'0),hold off;

subplot(6,1,1),ylabe (Amplitude);
subplot(6,1,2),plot(FilteredMed(1:700),r"),hold on, plot (sglforsnr(1:700),
'0"),hold off;

subplot(6,1,2),ylabd ((Amplitude),title('(a)");
subplot(6,1,3),plot(transvisu_soft(1:700),'r"),hold on, plot (siglforsnr(1:700),
'0"),hold off;

subplot(6,1,3),ylabel CAmplitude) title('(b)");
subplot(6,1,4),plot(transvisu_hard(1:700),'r"),hold on, plot
(sgiforsnr(1:700),b"),hold off;

subplot(6,1,4),ylabel (Amplitude) title('(c)");
subplot(6,1,5),plot(transsure_soft(1:700),'r"),hold on, plot (sglforsnr(1:700),
'0’),hold off;

subplot(6,1,5),ylabd (‘Amplitude) title('(d));
subplot(6,1,6),plot(transsure_hard(1:700),r"),hold on, plot (sglforsnr(1:700),
'0’),hold off;

subplot(6,1,6),ylabe (CAmplitude), xlabel ('(f)) title('(e)");

% Perform Mean Squared Error Caculation.

%

%Time Domain Prediction
[sgmal(count)] = msemed(FilteredPredict,aglforsnr);
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%Trandation-invariant Wavelet Domain sure
[sgma2(count)] = msemed(FilteredMed,sglforsnr);
Y%Trandation-invariant Wavelet Domain sure
[sgma3(count)] = msemed(transvisu_soft,aglforsnr);
Y%Trandation-invariant Wavelet Domain Universa
[sgmad(count)] = msemed(transvisu_hard,sig1forsnr);
%Trandation-invariant Wavelet Domain Universa
[sgmab(count)] = msemed(transsure_soft,aglforsnr);
%Time domain Med Filtered
[sgmab(count)] = msemed(transsure_hard,siglforsn);
%
end

D. DENOISING (COMBINED TRANSLATION-INVARIANT AND WIENER
PREDICTION)

%0%6%0%0%0%0%0%6%0%0%0%6%0%6%6%0%0%6%6%0%0%6%0%0%6%0%0%0%0%0% %% %0%6%6%0% %% %%
%

% This Matlab Function cdls waveab and modified waveab denoisng

% functions[10]. Datais one row of normalized 1 dimensond data

% of dyadic length 2048=2"11.

% Function passes the sgnd through various

% Denoising Schemes and Passes back MSE vs SNR for each of those schemes
%

% Function Syntax asfollows:

%

%  [noisearray,sgmal,sgma2,9gma3,sgmad,sgmab,sgmed)

% =CombinedDenoising(sg2,order,medsize,N)

%

% where:

% "9g2" = True 9gna passed into function

% "order" = Wiener Predictor Order

% "meddze’ = median filter Sze

% "N" = Number of levels of decomposition for wavelet transform

% "noisearray” = SNR levels[-10-6-303 6 10] dB

% "sgmal" = mean squared error of Time Domain Prediction

% "sggma2" = mean squared error of Time Domain Med Filter

% "ggma3" = mean squared error of Orthonorma Wavelet Domain sure

% "dgmad” = mean squared error of Trandation-invariant Soft SURE thresholding
% "ggmas" = mean squared error of Trandation-invariant Soft SURE thresholding
% with Wiener Prediction on 1t level decomposition detail coeffs

% "dgmab"’ = mean squared error of Trandation+invariant Hard SURE
thresholding

% with Median Filtering on 1< level decomposition detail coeffs

%
%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%6%0%0%0%0%60%0%6%0%0%0%0%6%% %0 %%
%
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function [noisearray,sgmal,sgma2,sgma3,sgmad,sgmab,agmab] =...
CombinedDenoisng(sig2,order,medsize,N)
%
%M ake a copy of sgna
%
Sg1-5992;
%
%Form array of chosen SNR's
%
noisearray=[-10-6 -3 0 3 6 10];
%
%create noise kernel
%
noise = randn(1,length(sgl));
%
%find noise power
%
noi sepower=mean(noise."2);
%
%normalize noise with noisepower
%
noise = noise/sgrt(noi sepower); %sets noise power to 1
%
%For loop for each SNR; Noise seed stays the same for each SNR,
%and signa power changed to meet requirements of noisearray.
%
for count=1:length(noisearray)
%
%Change the sgnal power assuming unit variance noise for desred SNR
%
siglforsnr=sgrt(10™(.1* noisearray(count)))*sigl,;
%
%Add normalized noise with var=1, thereby generating SNR dictated
%
sl = noise + sgiforar ;
%
%Perform Time Domain Prediction Denoising
%
[FilteredPredict] = predict_window_time(sl,order);
%
%Perform Time Domain Median filtering
%
[FilteredMed] = medfiltl(sl,medsize);
%
%Perform Trandation Wavelet Denoising
%
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%
%Create quadrature mirror filter for Trandation-invariant Transform
%
QMF = MakeONFilter(‘Coiflet',5);
%
%Determine length of Sgna and number of dyads in Data usng Waveab routine
%dyadlength [10]
[lengthofsl,Jdyads] = dyadlength(sl);
%
% Using number of dyads and number of levels of decomposition
% find degree of coarsest scale. ie. if N=6 and Jdyads=5; 11-6=5
%
L=Jdyads-N;
%
%Perform Orthonormal , Trandation-invariant, and combined Transformations
Y%with Shrinkage using modifification of Waveab function FWT_TI [10],
%and our prediction
Y%function.
%
%
%Perform Orthonorma Transformations with SURE Shrinkage using
Ymodifification of
%Waveab function WaveShrink [10].
%
[orthosure_soft, orthosurewcoef_soft] = WaveShrink_soft(s1,'SURE',L,QMF);
%
%Perform Trandation-invariant Transformations with Shrinkage usng modified
%Wavelab function FWT _TI [10].
%
[transsurewcoef _soft]=FWT _TI_SurethreshSoft(s1,L,QMF);
[transsurewcoef _soft w]=FWT _TI_SurethreshSoft weiner(sl,L,QMF,order);
[transsurewcoef _soft m|=FWT_TI_SurethreshSoft_medfilt(sl,L,QMF);
%
%Perform Inverse Trandaiontinvariant Transform with Wavelab function
%IWT_TI [10]
%
transsure_soft=IWT _TI(transsurewcoef _soft, QMF);
transsure_soft w=IWT _TI(transsurewcoef soft w,QMF);
transsure_soft m=IWT _TI(transsurewcoef_soft m,QMF);
%
%Plot results of various filter methods over the top of the noise free Sgndl.
%
figure(N-1);
subplot(6,1,1),plot(FilteredPredict(1:700),'r'),hold on, plot (siglforsnr(1:700),...
'0"),hold off;
subplot(6,1,1),ylabe (Amplitude);
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subplot(6,1,2),plot(FilteredMed(1:700),'r"),hold on, plot (sglforsnr(1:700),...
'0),hold off;
subplot(6,1,2),ylabd ((Amplitude),title('(a)");
subplot(6,1,3),plot(orthosure_soft(1:700),r"),hold on, plot (sglforsnr(1:700),...
'0),hold off;
subplot(6,1,3),ylabel (Amplitude) title('(b)");
subplot(6,1,4),plot(transsure_soft(1:700),'r"),hold on, plot (sglforsnr(1:700),...
'0"),hold off;
subplot(6,1,4),ylabe (Amplitude),title((c)");
subplot(6,1,5),plot(transsure_soft w(1:700),'r"),hold on, plot (sglforsnr(1:700),...
'0"),hold off;
subplot(6,1,5),ylabel CAmplitude) Jtitle('(d));
subplot(6,1,6),plot(transsure_soft m(1:700),'r"),hold on, plot (sglforsnr(1:700),...
'0"),hold off;
subplot(6,1,6),ylabe (Amplitude), xlabel ('(f)) title('(e)");

%

% Perform Mean Squared Error Caculation.

%
%Time Domain Prediction
[sgmal(count)] = msemed(FilteredPredict,aglforsnr);
%Time domain Med Filtered
[sgma2(count)] = msemed(FilteredMed,sglforsnr);
%Orthonorma Wavelet Domain sure
[sigma3(count)] = msemed(orthosure_soft,siglforsnr);
Y%Trandation-invariant Soft SURE thresholding
[sigmad(count)] = msemed(transsure_soft,siglforsnr);
%Trandation-invariant Soft SURE thresholding with Wiener Prediction
[sgmab(count)] = msemed(transsure_soft w,siglforsnr);
Y%Trandation-invariant Soft SURE thresholding with Medfilter
[sigmab(count)] = msemed(transsure_soft_m,siglforsnr);

%

end

E. DENOISING (RECURSIVE, SURE SOFT TRANSLATION-INVARIANT,
AND COMBINED)

%%0%6%0%0%6%0%6%0%6%0%6%0%0%6%0%6%0%6%0%6%0%0%6%0%6%0%6%0%0% %% %% %% %% %0 %%
%

% This Matlab Function cdls wavdab and modified wavelab denoisng

% functions[10]. Datais one row of normalized 1 dimensiond data

% of dyadic length 2048=2"11.

% Function passesthe 9gnd through various

% Denoising Schemes and Passes back MSE vs SNR for each of those schemes

%

% Function Syntax asfollows:

%
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%  [noisearray,sgmal,sgma2,sgma3,sgmad,sgmab,sgmab]

% =Recursve(sg2,order,medsize,N)

%

% where:

% "902" = True 9gnd passed into function

% "order" = Wiener Predictor Order

% "medsze’ = median filter Sze

% "N" = Number of levels of decomposition for wavelet transform

% "noisearray” = SNR levels[-10-6-303 6 10] dB

% "sggmal” = mean squared error of Time Domain Prediction

% "sgma2"’ = mean squared error of Orthonorma Wavelet Domain SURE Soft
% "ggma3’ = mean squared error of Trandation-invariant Soft SURE thresholding
% "sgmad” = mean squared error of Trandation-invariant Soft SURE thresholding
% with Wiener Prediction

% "agmab" = mean squared error of Recursve cyce-spinning 10 hard SURE

% Trandationtinvariant followed by 1 soft SURE Trandation-invariant

% "dgmab"’ = mean squared error of Recursive cycle-spinning 10 hard SURE

% Trandation-invariant followed by 1 soft SURE Trandation-invariant

% with Wiener Prediction on 1t level decomposition detail coeffs

%
%0%0%0%0%0%0%0%6%0%0%6%6%0%0%6%0%0%6%0%0%0%6%0%0%6%0%0%6%0%0%6%6%6%0%6%6%0%6%6 %% %
%
function [L,noisearray,agmal,sgma2,sigma3,sgmad,agmab,agmab] =...
Recursive(sig2,order,medsize,N)

%
%Make a copy of sgnd
%

9g1=992;
%
%Form array of chosen SNR's
%

noisearray=[-10-6 -3 0 3 6 10];
%
Y%creste noise kernel
%

noise = randn(1,length(sgl));
%
%find noise power
%

noi sepower=mean(noise."2);
%
%normalize noise with noisepower
%

noise = noise/sgrt(noi sepower); %sets noise power to 1

%
%fFor loop for each SNR; Noise seed stays the same for each SNR,
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%and signa power changed to meet requirements of noisearray.
%
for count=1:length(noisearray)
%
%Change the Sgnd power assuming unit variance noise for desired SNR
%
sglforsnr=sqrt(10"(.1* noisearray(count)))*sigl;
%
%Add normdized noise with var=1, thereby generating SNR dictated
%
sl = noise + sglforsr ;
%
%Perform Time Domain Prediction Denoising
%
[FilteredPredict] = predict window_time(sl,order);
%
%Perform Time Domain Median filtering
%
[FilteredMed] = medfiltl(sl,medsize);
%
%Perform Trandation Wavelet Denoising
%
%
%Create quadrature mirror filter for Trandation+invariant Transform
%
QMF = MakeONFilter('Coiflet',5);
%
%Determine length of sgnd and number of dyads in Data usng Waveab routine
%dyadlength [10]
[lengthofsl,Jdyads] = dyadlength(sl);
%
% Using number of dyads and number of levels of decomposition
% find degree of coarsest scale. ie. if N=6 and Jdyads=5; 11-6=5
%
L=Jdyads-N;
%
%Perform Orthonorma, Trandation-invariant, and combined Transformetions
%with Shrinkage using modifification of Wavelab function FWT _TI [10], and
our prediction
%function.
%
%
%Perform Orthonorma Transformations with Shrinkage using modified
%Wavdab function WaveShrink [10].
%
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[orthosure_soft, orthosurewcoef soft] =
WaveShrink_soft(sl,' SURE',L,QMF);
%
%Perform Trandation-invariant Transformetions with Shrinkage usng modified
%Wavdab function FWT _TI [10].
%
[transsurewcoef _soft]=FWT _TI_SurethreshSoft(s1,L,QMF);

[transsurewcoef _soft w]=FWT _TI_SurethreshSoft_weiner(sl,L,QMF,order);
%
%Perform Inverse Trandation-invariant Transform with Wavelab function
IWT_TI [10]
%
transsure_soft=IWT _TI(transsurewcoef soft, QMF);
transsure_soft w=IWT _TI(transsurewcoef_soft w,QMF);
%
%Perform Recursve Cyde-spinning with Waveab function IWT _TI [10]
%
transsure_hard r=si,
for n=1:10;
%
%Perform Trandation-invariant Transformations with Shrinkage using
modified
%Waveab function FWT _TI [10].
%
[transsurewcoef]=FWT _TI_Surethresh(transsure_hard_r,L,QMF);
%
%Perform Inverse Trandation-invariant Transform with Wavdab function
IWT_TI [10]
%
transsure_hard r=IWT _TI(transsurewcoef,QMF);
%

%
%
%Perform Trandation-invariant Transformations with Shrinkage usng modified
%Waveab function FWT _TI [10].
%
[transsurewcoef|=FWT_TI_SurethreshSoft(transsure_hard_r,L ,QMF);

[transsurewcoef wiener]=FWT _TI_SurethreshSoft weiner(transsure_hard r,L,Q
MF,order);

%

%Perform Inverse Trandation-invariant Transform with Wavelab function
IWT_TI[10]

%
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transsure_hard r=IWT _TI(transsurewcoef,QMF);
transsure_hard wr=IWT_TI(transsurewcoef_wiener, QMF);
%
%Plot results of various filter methods over the top of the noise free Sgndl.
%
figure(N-1);
subplot(6,1,1),plot(FilteredPredict(1:700),r"),hold on, plot
(dgiforsnr(1:700),'b),hold off;
subplot(6,1,1),ylabe (Amplitude);
subplot(6,1,2),plot(orthosure_soft(1:700),'r'),hold on, plot
(sgiforsnr(1:700),b"),hold off;
subplot(6,1,2),ylabe (Amplitude),title('(a)");
subplot(6,1,3),plot(transsure_soft(1:700),'r"),hold on, plot
(sgiforsnr(1:700),b"),hold off;
subplot(6,1,3),ylabel CAmplitude) title('(b));
subplot(6,1,4),plot(transsure_soft w(1:700),'r),hold on, plot
(sgiforsnr(1:700),b"),hold off;
subplot(6,1,4),ylabe (Amplitude) title('(c)");
subplot(6,1,5),plot(transsure_hard r(1:700),'r'),hold on, plot
(sglforsnr(1:700),b"),hold off;
subplot(6,1,5),ylabd ((Amplitude) title('(d));
subplot(6,1,6),plot(transsure_hard_wr(1:700),'r"),hold on, plot
(sglforsnr(1:700),'b"),hold off;
subplot(6,1,6),ylabe CAmplitude), xlabel ('(f)) title('(e)");

%
% Perform Mean Squared Error Caculation.
%
%Time Domain Prediction
[sgmal(count)] = msemed(FilteredPredict,aglforsnr);
%Orthonorma Wavelet Domain SURE Soft
[sgma2(count)] = msemed(orthosure_soft,siglforsnr);
%Trandation-invariant Soft SURE thresholding
[sigma3(count)] = msemed(transsure soft,siglforsnr);
Y%Trandation-invariant Soft SURE thresholding with Wiener Prediction
[sgmad(count)] = msemed(transsure_soft_w,siglforsnr);
%Recursive cycle-gpinning 10 hard followed by 1 soft
[sgmab(count)] = msemed(transsure_hard r,9glforsr);
%Recurgve cyde-spinning with Wiener Prediction
[sigmab(count)] = msemed(transsure_hard wr,sig1forsnr);

%
end
F MODIFIED WAVELAB FUNCTIONS

1. Orthonormal
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a.

Modified Waveshrink; Waveshrink_hard.[10]

%M odified verson of Waveshrink from Wavelab [10].

function [xh, weoef] = WaveShrink_hard(y,type L ,qmf)

% WaveShrink -- Soft Threshold Shrinkage Applied to Wavelet
%Coefficients

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Usage
[xhxwh] = WaveShrink(y,type, L ,gmf)
Inputs
y 1-dsgnd. length(y)=2"J
Normalized to noiselevel 1! (See NoiseNorm)
type dgtring. Type of shrinkage applied:
Visu','SURE','Hybrid',MinMax',MAD'
Optiond; default == "Visu'
L  Low-Frequency cutoff for shrinkage (e.g. L=4)
Should have L << Jl
gmf  Quadrature Mirror Filter for Wavelet Transform
Optiond, Default = Symmlet 8.
Outputs
xh  edimate, obtained by gpplying soft thresholding on
wavelet coefficients
xwh Wavedet Transform of estimate

Description
WaveShrink smooths noisy data presumed to have noiseleve 1
by transforming it into the wavelet domain, gpplying soft
thresholding to the wavelet coefficients and inverse transforming.

The theory underlying these methods is described in a variety of
papers by D.L. Donoho and |.M. Johnstone.

The different methods of selecting thresholds are detailed
inther articles.

See Also
FWT_PO, IWT_PO, MakeONFilter, NoiseNorm, RigorShrink

if nargin< 2,

type = Vis;

end
if nargin< 3,

L=3;

end
if nargin <4,

gmf = MakeONFilter('Symmlet',8);

end

%
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[n,J = dyadlength(y) ;
wcoef = FWT_PO(y,L,gmf) ;
%
if  sremp(type'Visu),
weoef((2™(L)+1):n) = VisuThresh(wcoef ((2*(L)+1):n)," hard’) ;
dsaf sremp(type,'SURE),
wcoef = MultiSURE(wcoef,L);
esaf sremp(type, ' Hybrid),
weoef = MultiHybridhard(wcoef,L);
esaf gremp(type' MinMax'),
weoef((2MNL)+1):n) = MinMaxThresh(wcoef((2™\(L)+1):n)) ;
elsaif stremp(type'MAD)),
wcoef = MultiMAD(wcoef L);
end
%
xh  =1WT_PO(wcoef L ,gmf);

%

% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho and lain
Johnstone

%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@stat.stanford.edu
%

b. Modified Waveshrink; Waveshrink_soft[10].

function [xh, wecoef] = WaveShrink_soft(y,type L ,qmf)
% WaveShrink -- Soft Threshold Shrinkage Applied to Wavelet
%Coefficients

% Usage

% [xhxwh] = WaveShrink(y,typeL,gmf)

% Inputs

% y 1-dsgnd. length(y)=2"J

% Normalized to noiselevel 1! (See NoiseNorm)
% type gring. Type of shrinkage applied:

% Visu,'SURE','Hybrid,'MinMax',MAD'

% Optiond; default == "Visu'

% L  Low-Frequency cutoff for shrinkage (e.g. L=4)
% Should have L << Jl

% gmf Quadrature Mirror Filter for Waveet Transform
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Optiond, Default = Symmlet 8.
Outputs
xh  edimate, obtained by gpplying soft thresholding on
waveet coefficients
xwh  Wavdet Transform of estimate

Description
WaveShrink smooths noisy data presumed to have noise level 1
by trandforming it into the wavelet domain, gpplying soft
thresholding to the wavelet coefficients and inverse transforming.

The theory underlying these methods is described in avariety of
papers by D.L. Donoho and .M. Johnstone.

The different methods of sdlecting thresholds are detailed
inther aticles.

See Also

FWT_PO, IWT_PO, MakeONFilter, NoiseNorm, RigorShrink

if nargin< 2,

type="Visu;

end
if nargin< 3,

L=3;

end
if nargin <4,

gmf = MakeONFilter('Symmlet',8);

end

%

[n.J = dyadlength(y) ;
wcoef = FWT_PO(y,L,gmf) ;

%

if

sremp(type,'Visy),
weoef((2MNL)+1):n) = VisuThresh(wcoef((2™NL)+1):n)) ;

dsaif stremp(type'SURE),

weoef = MultiSUREsoft(wcoef,L);

esaf sremp(type, ' Hybrid),

wooef = MultiHybrid(wcoef L);

esaf gremp(type' MinMax'),

weoef((2ML)+1):n) = MinMaxThresh(wcoef((2™\(L)+1):n)) ;

dsaf stremp(type MAD?),

wcoef = MultiMAD(wcoef L );

end

%

xh =1WT_PO(wcoef,L ,gmf);
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%

% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho and lain
%Johnstone

%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@dtat.stanford.edu
%

c.  Modified MultSURE; MultiSURESoft [10].

function ws = MultiSUREsoft(wc,L)

% MultiSURE -- Apply Shrinkage to Wavelet Coefficients

% Usage

% ws=MultiSURE(wc,L)

% Inputs

% wc Waveet Transform of noisy sequence with N(O,1) noise
% L low-frequency cutoff for Wavelet Transform

% Outputs

% ws result of goplying SUREThresh to each dyadic block

%
[n,J] = dyadlength(wc);
for j=(3-1)-1L
wc(dyad())) = SUREThreshsoft(wc(dyad()))) ;
end
WS = WC;

%

% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho and lain
%Johnstone

%

%

% Part of Wavel.ab Version 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavd ab@stat.stanford.edu
%
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d. Modified SUREThresh; SUREThreshsoft [10].

function [x,thresh] = SUREThreshsoft(y)
% SUREThresh -- Adaptive Threshold Sdection Using Principle of SURE
% Usage
% thresh = SUREThresh(y)
% Inputs
% vy Noisy Datawith Std. Deviation = 1
% Outputs
% X Estimate of mean vector
% thresh Threshold used
%
% Description
% SURE referesto Stein's Unbiased Risk Estimate.
%
thresh = VASUREThresh(y);
X = SoftThresh(y,thresh);

%

% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho and lain
%Johnstone

%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%

Trandation-lnvariant
a. Modified FWT_TI; FWT_TI_visuthreshHard [10].

function wp = FWT _TI_visuthresh(x,L ,qmf)

% FWT _TI -- trandation-invariant forward wavelet transform
% Usage

% TIWT = FWT_TI(x,L,gmf)

% Inputs

% X array of dyadic length n=2"J

% L degree of coarsest scae

% gmf  orthonorma quadrature mirror filter

% Outputs

% TIWT dationary wavelet transform table

% formaly same data structure as packet table
%
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% SeeAlso
% IWT_TI
%

[n.J] = dyadlength(x);
D=JL;
wp = zerog(n,D+1);
X = ShapeAsRow(X);
%
wp(:,1) = X
for d=0:(D-1),
for b=0:(2"d-1),
s = wp(packet(d,b,n),1)’;
hsr = DownDyadHi(s,gmf);
hd = DownDyadHi(rshift(s),gmf);
|sr = DownDyadL o(s,gmf);
|4 = DownDyadL o(rshift(s),gmf);
wp(packet(d+1,2*b ,n),d+2) = VisuThresh(hs','Hard);
wp(packet(d+1,2*b+1,n),d+2) = VisuThresh(hd','Hard’);
wp(packet(d+1,2*b ,n),1 ) = (Isr');
wp(packet(d+1,2*b+1,n),1 ) = (I19");
end
end

%
% Copyright (c) 1994. David L. Donoho
%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%

b.  Modified FWT_TI; FWT_TI_visuthreshSoft [10].

function wp = FWT_TI_visuthresh(x,L ,gqmf)
% FWT _TI -- trandationrinvariant forward wavelet transform
% Usge
% TIWT = FWT_TI(x,L,gmf)
% Inputs
% X array of dyadic length n=2"J
% L degree of coarsest scae
% gmf  orthonorma quadrature mirror filter
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% Outputs

% TIWT dationary wavelet transform teble

% formaly same data structure as packet table
%

% SeeAlso

% IWT_TI

%

[n,J] = dyadlength(x);
D=JL;
wp = zerog(n,D+1);
X = ShapeAsRow(x);
%
wp(:,1) =X
for d=0:(D-1),
for b=0:(2"d-1),
s = wp(packet(d,b,n),1)’;
hsr = DownDyadHi(s,gmf);
hd = DownDyadHi(rshift(s),gmf);
|sr = DownDyadL o(s,gmf);
|4 = DownDyadL o(rshift(s),gmf);
wp(packet(d+1,2*b ,n),d+2) = VisuThresh(hsr','Soft');
wp(packet(d+1,2*b+1,n),d+2) = Visuthresh(hd','Soft");
wp(packet(d+1,2*b ,n),1 ) = (Isr');
wp(packet(d+1,2*b+1,n),1 ) = (1d");
end

end

%
% Copyright (c) 1994. David L. Donoho
%

%

% Part of WavelLab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@dstat.stanford.edu
%

c.  Modified FWT_TI; FWT_TI_SUREthreshSoft [10].

function wp = FWT_TI_SurethreshSoft(x,L ,qmf)
% FWT _TI -- trandationtinvariant forward wavel et transform
% Usge
% TIWT = FWT_TI(x,L,qmf)
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% Inputs

% X aray of dyadic length n=2"J

% L degree of coarsest scale

% gmf  orthonorma quadrature mirror filter
% Outputs

% TIWT dationary waveet transform table
% formaly same data Structure as packet table
%

% SeeAlso

% IWT_TI

%

[n,J] = dyadlength(x);

D=JL;

wp = zerog(n,D+1);

x = ShapeAsRow(X);

%
wp(:,1) =X
for d=0:(D-1),
for b=0:(2"d-1),
s = wp(packet(d,b,n),1)’;
hsr = DownDyadHi(s,gmf);
hd = DownDyadHi(rshift(s),gmf);
|sr = DownDyadL o(s,gmf);
|9 = DownDyadL o(rshift(s),gmf);
wp(packet(d+1,2*b ,n),d+2) =
SUREThreshTransSoft(hs);
wp(packet(d+1,2*b+1,n),d+2) =
SUREThreshTransSoft(hd");
wp(packet(d+1,2*b ,n),1 ) =Isr’;
wp(packet(d+1,2*b+1,n),1 ) = 14",
end
end

%
% Copyright (c) 1994. David L. Donoho
%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%
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d.  Modified FWT_TI; FWT_TI_SUREthreshHard [10].

function wp = FWT_TI_SurethreshHard(x,L ,gqmf)

% FWT _TI -- trandation+invariant forward wavel et transform
% Usage

% TIWT = FWT_TI(x,L,gmf)

% Inputs

% X aray of dyadic length n=2"J

% L degree of coarsest scae

% gmf  orthonorma quadrature mirror filter

% Outputs

% TIWT dationary wavelet transform table

% formaly same data structure as packet table
%

% SeeAlso

% IWT_TI

%

[n,J] = dyadlength(x);
D=JL;
wp = zerog(n,D+1);
X = ShapeAsRow(X);
%
wp(:,1) =X
for d=0:(D-1),
for b=0:(2"d-1),
s = wp(packet(d,b,n),1)’;
hsr = DownDyadHi(s,gmf);
hd = DownDyadHi(rshift(s),gmf);
|sr = DownDyadL o(s,gmf);
|4 = DownDyadL o(rshift(s),gmf);
wp(packet(d+1,2*b ,n),d+2) = SUREThreshTrans(hs);
wp(packet(d+1,2* b+1,n),d+2) = SUREThreshTrans(hd’);
wp(packet(d+1,2*b ,n),1 ) =Isr’;
wp(packet(d+1,2*b+1,n),1 ) = 14"
end
end

%
% Copyright (c) 1994. David L. Donoho
%

%

% Part of WavelLab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM
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% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@stat.stanford.edu
%

e. Modified FWT_TI; SUREThreshTrans[10].

function [x,thresh] = SUREThreshTrang(y)
% SUREThresh -- Adaptive Threshold Sdlection Using Principle of SURE
% Usage
% thresh = SUREThresh(y)
% Inputs
% vy Noisy Datawith Std. Deviation = 1
% Outputs
% X Edimate of mean vector
% thresh Threshold used
%
% Description
% SURE referesto Stein's Unbiased Risk Estimate.
%
thresh = Va SUREThresh(transpose(y));
X = HardThresh(y,thresh);

%

% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho ad lan
%Johnstone

%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%

f. Modified FWT_TI; SUREThreshTransSoft [10].

function [x,thresh] = SUREThreshTransSoft(y)

% SUREThresh -- Adaptive Threshold Sdection Using Principle of SURE
% Usage

% thresh = SUREThresh(y)

% Inputs
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% vy Noisy Datawith Std. Deviation = 1
% Outputs
% X Estimate of mean vector
% thresh Threshold used
%
% Description
% SURE referesto Stein's Unbiased Risk Estimate.
%
thresh = Va SUREThresh(transpose(y));
X = SoftThresh(y,thresh);

%

% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho and lain
%Johnstone

%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@dtat.stanford.edu
%

Combined
a. Modified FWT_TI; FWT_TI_SurethreshSoft_wiener [10].

function wp = FWT _TI_SurethreshSoft_wiener(x,L,gmf,order)
% FWT _TI -- trandation-invariant forward wavel et transform
% Usge

% TIWT = FWT_TI(x,L,gmf)

% Inputs

% X array of dyadic length n=2"J

% L degree of coarsest scae

% gmf  orthonorma quadrature mirror filter

% Outputs

% TIWT dationary waveet transform table

% formaly same data structure as packet table

%

% SeeAlso

% IWT_TI

%

[n,J] = dyadlength(x);

D=JL;

wp = zerog(n,D+1);
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x = ShapeAsRow(X);
%
wp(:,1) =X
for d=0:(D-1),
for b=0:(2"d-1),
s = wp(packet(d,b,n),1)’;
hsr = DownDyadHi(s,gmf);
hd = DownDyadHi(rshift(s),gmf);
|sr = DownDyadL o(s,gmf);
Id = DownDyadL o(rshift(s),gmf);
Sze(SUREThreshTransSoft(hsr));
if length(hsr')>length(x)/4
wp(packet(d+1,2*b ,n),d+2) =
predict_ window(SUREThreshTransSoft(hs'),order,16);
end
if length(hs')<=length(x)/4
wp(packet(d+1,2*b ,n),d+2) =
SUREThreshTransSoft(hs);
end
if length(hd')>length(x)/4
wp(packet(d+1,2*b+1,n),d+2) =
predict_window(SUREThreshTransSoft(hd"),order,16);
end
if length(hd")<=length(x)/4
wp(packet(d+1,2*b+1,n),d+2) =

SUREThreshTransSoft(hd");
end
wp(packet(d+1,2*b ,n),1 ) =Ils;
wp(packet(d+1,2*b+1,n),1 ) = 14",
end
end

%
% Copyright (c) 1994. David L. Donoho
%

%

% Part of Wavel_ab Version 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m

% Comments? e-mail wavd ab@stat.stanford.edu
%
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b.  Modified FWT_TI; FWT_TI_SurethreshSoft_medfilt [10].

function wp = FWT _TI_SurethreshSoft_medfilt(x,L ,qmf,order)
% FWT _TI -- trandation-invariant forward wavel et transform
% Usage

% TIWT = FWT_TI(x,L,gmf)

% Inputs

% X array of dyadic length n=2"J

% L degree of coarsest scae

% gmf  orthonorma quadrature mirror filter

% Outputs

% TIWT dationary wavelet transform table

% formaly same data Structure as packet table

%

% SeeAlso

% IWT_TI

%

[n,J] = dyadlength(x);

D=JL;

wp = zerog(n,D+1);

X = ShapeAsRow(X);

%
wp(:,1) = X
for d=0:(D-1),
for b=0:(2"d-1),

s = wp(packet(d,b,n),1)’;
hsr = DownDyadHi(s,gmf);
hd = DownDyadHi(rshift(s),gmf);
|sr = DownDyadL o(s,gmf);
|4 = DownDyadL o(rshift(s),gmf);

9ze(SUREThreshTransSoft(hs'))
wp(packet(d+1,2*b ,n),d+2) =

medfiltl(SUREThreshTransSoft(hg'),3);

size(wp(packet(d+1,2*b ,n),d+2))

wp(packet(d+1,2* b+1,n),d+2) =
medfiltl(SUREThreshTransSoft(hd"),3);

size(wp(packet(d+1,2* b+1,n),d+2))
wp(packet(d+1,2*b ,n),1 ) =Isr’;
wp(packet(d+1,2*b+1,n),1 ) = 14",

end
end

%
% Copyright (c) 1994. David L. Donoho
99



%

%

% Part of Wavel.ab Verson 802

% Built Sunday, October 3, 1999 8:52:27 AM

% Thisis Copyrighted Materia

% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%

G. WINDOWED PREDICTOR

%0%0%0%0%0%0%0%6%0%0%6%6%0%6%6%0%0%6%6%0%0%6%0%0%6%0%0%6%60%0%6%6%6%0%6%6%0% %% %%
%

% This Matlab Function performs Windowed Wiener prediction

% tothe given "order" on sequencia segments of Data.

% Input must be 2"Integer, and greater than W in length.

% Wiener Prediction conducted forward in time and reversein time

% The Dataisforward predicted, then reverse

% predicted. Thefirgt (order-1) data bits not fully covered by the forward filter
% are replaced by the data bits found using the reverse filter and vice versa

% The estimate for predicting one sample ahead is S(n+1).

%

% Function Syntax as follows:

%

%  [Filtered] = predict window(Data,order,W)

%

% where:

% "Dad’ = Truesgnd passed into function length 2*Integer
% "order" = Wiener Predictor Order or predictor size

% "W =Window Size

% "Filtered" = Predictor output

%
%
%0%6%0%0%0%0%0%6%0%0%0%6%0%0%6%0%0%6%0%0%0%6%0% 0% %0 %0%0%0%0% 0% %6 %0%6%6%0% %% %%
%
function [Filtered] =predict_window(Data,order,W)
%
% Put Datain proper [1 length(Data)] format
Predictsize = sze(Data);
if Predictsize(1)>1
Data=transpose(Data);

end
%
% Split Data into segments and perform denoising on each segment
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%
for g=0:(length(Data)/W)- 1
%
%Form Rx of Wiener Hopf Equation
%
DataW=Data(1+g* W:W+g*W);
Datasize=sze(Data);
DaaWs ze=sze(DataW);
AutoCorrX=xcorr(Dataw);
%
%Form Rx[0]..Rx[order-1]
%
rx=AutoCorrX (W:W-+order-1)';%r(0),...r(order-1)
%
%Form R9 1]..Rg order]
%
rs=AutoCorrX((W+1):W+order)';
%
%HFind toeplitz Rx
%
R=toeplitz(rx);
%
%Check to ensure matrix not sngular
%
flag=0;
for b=1:length(Dataw)
if DataW(b) ~=0
flag =1;
end
end
if flag ==
Rinv=inv(R);
end
%
%iIf dl vdues are one then sngular
%Future work should aso correct for
%ll-conditioned
%
if flag ==
Rinv=R;
end
%
%Form prediction filter
%
h=Rinv*rs,
%
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%Convolve S(n+1) = h[O]x[n] + h[1]x[n-1] + ... + h[p]X[n-p]
%
for n=1:(W-(order))
FF=DataW(n:(n+order-1)).*fliplr(trangpose(h));
Filtered(n+g* W)=sum(FF);
end
%
%Ensure data il in correct format
%
Filtereds ze=gze(Filtered);
if Filteredsize(1)>1
Filtered=transpose(Filtered);
end
%
%K eep the filtered vaues that touched entire filter
%Hence Keep dl buit first (order-1) values
%
Filtered1(1+g* W:W+g*W)=[DataW(1.order), Filtered(1+g* W:W+ g*W-
order )];
Filtered1lsze=s ze(Filteredl);
%
%Ensure data il in correct format
%
if Filteredlsize(1)>1
Filtered1=transpose(Filteredl);
end
%
%reverse Data
%
Dataw 1=fliplr(flipud(Dataw));
%
%Hlter in reverse direction
%
for n=1:(W-(order))
FF1=Dataw1(n:(n+order-1)).*fliplr(transpose(h));
Filtered3(n+g* W)=sum(FFL1);
end
%
%Ensure data il in correct format
%
Filtered3sze=s ze(Filtered3);
if Filtered3sze(1)>1
Filtered3=transpose(Filtered3);
end
%
%K eep the filtered vaues that touched entire filter
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%
Filtered2(1+g* W:W+g* W)=[DataW1(1:order),...
Filtered3(1+g* W:W+g* W-order)];
Filtered2sze=sze(Filtered?);
%
%Ensure data il in correct format
%
if Filtered25ze(1)>1
Filtered2=transpose(Filtered2);
end
%
%Hlip reversed data back, such that it compares to forward data point
%by point
%
Filtered2(1+g* W:W+g* W)=fliplr(flipud(Fltered2(1+g* W:W+g* W)));
%
%Thefirg (order-1) data bits not fully covered by the forward filter
%are replaced by the data bits found using the reverse filter and vice versa
%
Filtered1(1+g* W:1+g* W+order)=Filtered2(1+g* W:1+g* W+order);
Filtered2(W- (order-1):W)=Filtered1(W- (order-1):W);
Filtered(1+g* W:W+g* W)= .5* (Filtered2(1+g* W:W+ g* W)+
Filtered1(1+g* W:W+g*W));
%
%Ensure data il in correct format
%
if Predictsize(1)>1
Filtered=transpose(Filtered);
end
%
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