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LONG-TERM GOALS 

The primary goal of this project is to substantially reduce the computational complexity of the adap- 
tive beamformer employed in real-time passive sonar systems for underwater surveillance. The main 
methodology for achieving this computational reduction is reduced-rank adaptive filtering via the 
method of Conjugate Gradients. Reduced-rank adaptive filtering is vitally important for underwater 
surveillance due to the large number of hydrophones typically employed, coupled with issues of sample 
support related to target mobility and the high degree of nonstationarity of the underwater environ- 
ment. The Dominant Mode Rejection (DMR) algorithm is also under investigation for its efficacy in 
combating the pejorative effects of low sample support. 

EXECUTIVE SUMMARY 

A key focus of this one year effort involved assessing the efficacy of Signal-Independent Adaptive 
Beamforming versus Signal-Dependent Adaptive Beamforming (ABF). The scenario assumes the for- 
mation of multiple adaptive beams, each pointed to a different "look" direction. For a Hnear array 
of N sensors, somewhere between 3N and 4iV adaptive beams are formed encompassing end-fire to 
end-fire. In Signal-Dependent ABF, a GeneraUzed Sidelobe Canceler (GSC) is formed for each "look" 
direction. Mathematically, the GSC serves to convert the constrained (quadratic) MVDR optimization 
problem to an unconstrained optimization problem. Prom an implementation point of view, the GSC 
essentially forces adaptation to occur in a subspace orthogonal to the steering vector for the particular 
"look" direction. This ostensibly serves to prevent "desired" signal cancellation, especially in cases of 
moderate to low sample support. Implementation of the GSC at each "look" direction requires the 
construction and application to the data of a blocking matrix for each "look" direction. The attendant 
computational complexity is substantial. Methods for reducing this complexity for both CG and DMR 
were the focus of this past year's effort. 

When only a hmited number of snapshots is available for estimating the spatial correlation matrix, 
a low-rank solution of the MVDR equations, obtained via a small number of iterations of Conjugate 
Gradients (CG), can yield a higher SINR than the full-rank MVDR beamformer. A primary issue 
addressed in this effort is whether the unity gain constraint in the look direction should be enforced a- 
priori via the use of a blocking matrix, constituting Steering Dependent Conjugate Gradients (SD-CG), 
or effected a-posteriori through simple scaling of the beamforming vector, constituting Steering Inde- 
pendent Conjugate Gradients (SI-CG). A major contribution was that the two methods yield exactly 
the same low-rank beamformer. This is an important result since the construction, and application to 
the data, of a blocking matrix for each "look" direction represents a very substantial computational 
burden. A simpUfied expression for the power estimate obtained with the SI-CG beamformer was 
also developed. Extensive simulations were conducted to verify the efficacy of the theory. While it 
is previously known that the optimal number of steps of SI-CG varies with look direction, simula- 
tions presented here reveal that the optimal number of principal eigenvectors for the PCI beamformer 
varies substantially with look direction. Simulations also indicate that the SI-CG compared with PCI 
presents smoother SINR curves as a function of rank implying in less degradation of the SINR if the 
optimal rank is not chosen. The SI-CG curves also presented slightly higher SINR peaks than the 
PCI. 

APPROACH 

When only a Umited number of snapshots is available for estimating the spatial correlation ma- 
trix, a low-rank solution of the MVDR equations can yield a higher SINR than the full-rank MVDR 
beamformer. There are several methods of computing low rank MVDR beamformers, e.g.. Principal 
Component Inverse (PCI) , Dominant Mode Rejection (DMR), and the Multi-Stage Wiener Filter 
(MWF) of Goldstein et al. We previously proved an equivalence between MWF and Conjugate Gra- 
dients (CG). 

The relationship between Steering-Independent Adaptive Beamforming and Steering-Dependent 



Adaptive Beamforming (ABF) was also investigated. The scenario assumes the formation of mul- 
tiple adaptive beams, each pointed to a different "look" direction. In Steering-Dependent ABF, a 
Generalized Sidelobe Canceler (GSC) is formed for each "look" direction. Mathematically, the CSC 
serves to convert the constrained MVDR optimization problem to an unconstrained optimization 
problem, thereby enforcing a-priori the unity gain constraint in the "look" direction. In contrast, in 
Steering-Independent ABF, a scaled version of the Wiener-Hopf equations is solved, and the unity 
gain constraint is enforced a-posteriori through simple scaling of the resulting ABF weight vector. 

Implementation of a GSC for each "look" direction requires the construction and apphcation to 
the data of a blocking matrix for each "look" direction. The attendant computational complexity 
is quite substantial. In this paper, we prove a very important and somewhat surprising result: the 
low-rank beamformer obtained with Steering Dependent Conjugate Gradients (SD-CG) is exactly the 
same as the low-rank beamformer obtained with Steering Independent Conjugate Gradients (SI-CG). 
Thus, the performance of SD-CG can be obtained without having to form blocking matrices for each 
"look" direction! 

Through simulation results we showed that the optimal rank of the PCI beamformer is a function 
of the "look" direction. In current practice, the PCI method is apphed employing all the dominant 
eigenvectors of the correlation matrix, which of course does not depend on the look direction and 
therefore cannot contemplate all "look" directions with an optimal SINR. In the simulations we show 
that the SINR can undergo expressive variations depending on the rank which is chosen. In the 
simulations we show that a significant degradation of the SINR occurs if a sub-optimal rank is selected. 
In addition we observed that the SINR curves using the SI-CG beamformer are much smoother than 
using the PCI beamformer, much less erratic and they tend to peak a little higher and at a lower rank. 

WORK COMPLETED 

A key discovery made during the past year effort is that Signal-Independent CG yields the exact same 
performance as Signal-Dependent CG. This claim is substantiated in the illustrative simulations pre- 
sented in the next section entitled Results. Indeed, the equivalence was first observed in simulations, 
and then subsequently proven mathematically. This is a very important discovery as it dictates that 
there is no exphcit need for a blocking matrix; this represents a huge savings in computation in terms 
of avoiding both the construction of the blocking matrix and the application of the blocking matrix 
to the data. Heretofore, it was thought that both were necessary in order to avoid desired signal 
cancellation, especially in cases of moderate to low sample support. It turns out that the operation of 
a blocking matrix is imphcitly effected as CG is iterated. 

It was also thought that the blocking matrix approach was necessary to obtain an accurate reading 
on the power at a given source direction, since it expHcitly enforces a-priori the constraint of unity gain 
in the "look" direction. Another very important discovery made during the past year is that once the 
reduced-rank ABF weight vector is obtained at terminal step K of CG, the power in the corresponding 
"look" direction may be simply estimated as the reciprocal of the inner product between the ABF 
weight vector and the steering vector for that "look" direction. That is, we have mathematically 
proved that this simple calculation yields exactly the same power estimate as that obtained with 
Signal-Dependent CG wherein the blocking matrix is used to enforce the unity gain constraint a- 
posteriori. Due to the aforementioned equivalence, it also yields the same exact power estimate as 
Signal-Independent CG, wherein the unity gain constraint is enforced by a-posteriori scaling of the 
ABF weight vector obtained at terminal step K. Prior to this discovery, the power obtained with a 
given ABF weight vector was estimated by computing a quadratic form involving the multiphcation of 
the sample correlation matrix with the ABF weight vector. Thus, this second key discovery represents 
another major reduction in the computational complexity of CG based reduced-rank ABF. 

This is in contrast to DMR where for each "look" direction, computing the ABF weight vector 
involves computing the inner product between each dominant eigenvector and the steering vector for 
that "look" direction.  Again, CG directly outputs the ABF weight vector (no further computation 



needed), and the power in the corresponding "look" direction is simply estimated as the reciprocal of 
the inner product between the ABF weight vector and the steering vector for that "look" direction. 

We also mathematically proved that if there are K sources in the array data, only K+1 steps of 
CG are needed to obtained the best SINK, if you have an ideal correlation matrix and white noise; 
taking additional CG teps yields the same ABF vector. This result has theoretical implications with 
respect to convergence. Note, though, it often takes substantially less than K+1 steps to obtain the 
"best" performance with either moderate to low sample support. Other key accomphshments during 
the past one year effort are related in the next section entitled Results. 

RESULTS 

Simulations were conducted employing a Unear array of M = 24 elements with half-wavelength 
spacing.   The noise was spatially and temporally white Gausian.   Two scenarios were used in the 
simulations. In the first scenario there were 17 incident signals with the arrival angle directions and 
respective SNRs (as ordered pairs): (-70°, 23); 
(-51°, 12); (-47°, 20); (-41°,20); (-35°, 29); (-27°, 25); 
(-26°, 13); (-19°, 23); (0°, 10); (6.8°,30); (12°, 29); 
(20°, 22); (24°, 11); (24°,23); (38°, 14); (48°, 22); (87°, 11). 
For this scenario Figs. 1 to 3 illustrate the directions of the signals as well as the array power pattern 
for the CBF for the directions of 0°, 6.8° and 14°. At the direction of 0° there is a low SNR signal; at 
6.8° there is a high SNR signal and at 14° there is no signal. 

In the second scenario there were also 17 incident signals with the arrival angle directions and 
respective SNRs (as ordered pairs): (-70°, 23); 
(-51°, 12); (-47°, 20); (-41°, 20); (-35°, 29); (-27°, 25); 
(-26°, 13); (-19°, 23); (5°, 22); (20°, 21); (21°, 30); 
(24°, 11); (24°, 23); (38°, 14); (55°, 29); (60°, 10); (87°, 11). 
For this scenario Figs. 4 to 6 illustrate the directions of the signals as well as the array power pattern 
for the CBF for the directions of 60°, 55° and 30°. At the direction of 60° there is a low SNR signal; 
at 55° there is a high SNR signal and at 30° there is no signal. 

For scenario 1, Figs. 7 and 8 plot the SINR versus the rank of the beamformer for the signal at 
0° for sample supports of 2M and IM, respectively. The beamformers used were the SI-CG, SD- 
CG and DMR. There are 2 strong interferes located on the first and second sidelobes of the CBF as 
shown in Fig. 1, with powers approximately 20 dB above the power of the desired signal. In order 
to minimize the effect of these interferes ABF is used. It can be observed from the plots that ABF 
provides a substantial improvement of the SINR over the CBF, i.e. the rank 1 beamformer. For the 
DMR beamformer the optimal rank is 10 when the sample support is of 2M and the optimal rank is 7 
when the sample support is of IM. For the CG beamformer for both sample supports of 2M and IM 
the optimal rank is 3. For purposes of comparison, the horizontal line indicates the optimal SINR that 
would be achieved with the MVDR beamformer computed from the true (ideal) correlation matrix. 

Figs. 9 and 10 plot the SINR for the high SNR signal at 6.8°, also for sample supports of 2M and 
IM, respectively. Even though there is a interferent signal in the first sidelobe of the CBF (see Fig. 
2); the CBF is the beamformer that yields the higher SINR. This because the power of this interfereiit 
signal is 20 dB below the desired signal and the low sample support of the correlation matrix is 
insufficient for a gain using ABF. The CBF is the best beamformer for both sample supports of 2M 
and IM. The the SINR degrades for higher rank beamformers. These examples show that the best 
rank depends on the look direction and on the sample support of the correlation matrix. This stresses 
the importance of selecting the optimal rank. Fig. 9 reveals that when using the DMR beamformer 
there can be a difference of 30 dB in the output SINR, depending on which rank is selected. 

Figs. 11 and 12 plot the estimated power arriving from the direction 14°, also for a sample support 
of 2M and IM, respectively.   There is no signal arriving from this direction, therefore the desired 



value of the estimated power is the power of the white noise. The horizontal Une indicates the output 
power obtained using a full rank MVDR beamformer with knowledge of the true (ideal) correlation 
matrix. Ideally, this represents the noise floor. For the sample support of 2M the optimal rank of 
the CG beamformer is 13, while for the sample support of IM the optimal rank is around 10. It is 
observed that the CG beamformer converges to its minimum power at a significantly lower rank than 
the DMR beamformer. In general, the optimal number of principal eigenvectors required by the DMR 
beamformer for non-signal look directions is a large fraction of the number of sensors, M. It is also 
observed that a sample support level of 2M snapshots yields an output minimum power that is closer 
to the noise floor than that obtained with IM snapshots. 

It is observed that SI-CG and SD-CG yield the same SINK at each rank, as expected since it was 
herein proven that they yield the exact same beamformer. It is also observed that the optimal rank 
varies with sample support as well as with look direction. While it is well known that the optimal 
number of steps of CG varies with look direction, it was not heretofore known that the optimal number 
of principal eigenvectors for the DMR beamformer varies substantially with look direction. 

For scenario 2, Figs. 13 and 14 plot the SINR versus rank for the low SNR signal at 60° for sample 
supports of 2M and IM, respectively. As shown in Fig. 4 there is a strong interferent signal in the 
main lobe of the CBF with a power of 19 dB above the power of the desired signal. With ABF the 
effect of this interferent signal can be minimized. The optimal rank of the CG beamformer is 6 for 
both sample supports of 2M and IM. For the DMR beamformer the optimal rank is 11 for both 
sample supports. Because the CBF tends to have a wide mainlobe when it's look direction is close to 
the extremity of the array, the probability of having a interferent signal within the mainlobe increases. 

Figs. 15 and 16 plot the SINR for the high SNR signal at 60° for sample supports of 2M and IM, 
respectively. Here also there is a interferent signal in the mainlobe of the CBF. However this signal 
has a power of 19 dB below the power of the desired signal and therefore the CBF yields the highest 
SINR for the both sample supports of 2M and IM. 

Figs. 17 and 18 plot the estimated power arriving from the direction 30°, also for sample supports 
of 2M and IM, respectively. There is no signal arriving from this direction. 

We have observed that if when estimating the covariance matrix we suppress the desired signal 
then there is a significant gain in the SINR with ABF. For scenario 1, Figs. 19 and 20 plot the SINR 
versus rank of the beamformer when the desired signal is suppressed from the correlation matrix for 
the signal arriving at 0° and for sample supports of 2M and IM, respectively. Comparing with Figs. 
7 and 8, where the desired signal is not suppressed from the correlation matrix; we can observe a gain 
of approximately 3 dB for the 2M sample support case and approximately 4 dB for the IM sample 
support case. 

Figs. 21 and 22 plot the SINR when the desired signal is suppressed from the correlation matrix 
for the signal arriving at 6.8° of scenario 1 and for sample supports of 2M and IM, respectively. 
Comparing with Figs. 9 and 10, where the desired signal is not suppressed from the correlation 
matrbc; we can observe a considerable gain in the SINR. Different from Figs. 9 and 10 the CBF is 
no longer the optimal beamformer and there is a gain of approximately 8 dB in the maximum SINR 
from Fig. 9 to Fig. 21. 

For scenario 2, Figs. 23 and 24 plot the SINR when the desired signal is suppressed from the 
correlation matrix for the signal arriving at 60° for sample supports of 2M and IM respectively. 
Comparing with Figs. 13 and 14 where the desired signal is not suppressed from the correlation 
matrix we can also observe a substantial gain in the SINR. 

Also, with the desired signal suppressed from the correlation matrix, Figs. 25 and 26 plot the 
SINR for the signal at 55° for the sample supports of 2M and IM, respectively. Comparing with Figs. 
15 and 16 where the desired signal is not suppressed from the correlation matrix we can also observe 
a substantial gain in the SINR. 



IMPACT/APPLICATIONS 

This work will yield substantial reductions in the computational complexity associated with imple- 
menting adaptive beamformers in real-time passive sonar systems for underwater surveillance. 

• Take-Aways: 

- The optimal number of dominant eigenvectors for SI-PCI (DMR) varies substantially from 
beam to beam; using the same number of dominant eigenvectors for each "look" direction 
in DMR is highly sub-optimal. 

- Fig. 1(b) reveals that DMR should only use a single eigenvector for a source direction 
corresponding to a moderately strong signal arrival, else the error in estimated power for 
that direction can be as much as 30 dB. 

- Figures 1(c) and 1(d) reveal that a large number (15) of dominant eigenvectors for SI-PCI 
(DMR) are needed for non-source directions, else Fig. 1(d) reveals that the estimated signal 
power can be off from the noise floor by over 20 dB (false alarms.) 

- The optimal number of CG steps is significantly less than optimal number of dominant 
eigenvectors for SI-PCI (DMR), for both source and non-source directions, implying CG 
has lower computational complexity. 

TRANSITIONS 

We continue to inform Dr.  Norm Owlsey of research progress on this project and look forward to 
processing real data from his experimental system in the near future. 

RELATED PROJECTS 

There is a synergism between this work and research being conducted in parallel for a National 
Science Foundation project entitled "Reduced-Dimension Decision Feedback Equahzers (DFE's) for 
4G High-Speed Wireless Digital Communications." This is a single Principal Investigator grant funded 
by the Computing and Communications Research Division of the CISE Directorate at NSF. (Grant 
Number: CCR-0118842. Duration: 1 Sept. 2001 - 31 Aug. 2004.) Equalization of Digital TV is an 
ideal appUcation for CG based adaptive filtering due to the high dimensionality of the DFE; current 
receiver chips have 576 DFE taps that need to be adapted with time. 
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Fig. 1.   Scenario 1, array pattern of the CBF for the direction 0° and arriving 
signals. High power interferent signals in the first and second sidelobes. 

Fig. 4.  Scenario 2, array pattern of the CBF for the direction 60° and arriving 
signals. High power interferent signal in the mainlobe. 
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Fig. 2.     Scenario 1, array pattern of the CBF for the direction 6.8° and 
arriving signals. Low power interferent signal in the first sidelobe. 

Fig. 5.  Scenario 2, array pattern of the CBF for the direction 55° and arriving 
signals. Low power interferent signal in the mainlobe. 
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Fig. 3.  Scenario 1, array pattern of the CBF for the direction 14° and arriving 
signals. Direction with no signal. 

-50 
Angle (degrees) 

Fig. 6.   Scenario 2, array pattern of the CBF for the direction 30° and arriving 
signals. Direction with no signal. 
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Fig. 7. SINR performance for signal at 0°, 2M snapshots, 
scenario 1. High power interferent signals in the first and second 
sidelolKS of the CBF. 

Fig. 8. SINR performance for signal at 0°, IM snapshots, 
scenario 1. High power interferent signals in the first and second 
sidelobes of the CBF. 
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Fig. 9.     SINR performance for signal at 6.8°, 2M snapshots, 
scenario 1. Low power interferent signals in the first sidelobe. 
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Fig. 10.    SINR performance for signal at 6.8°, IM snapshots, 
scenario 1. Low power interferent signals in the first sidelobe. 
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Fig. 11.     Power estimation for direction 14°, 2M snapshots, 
scenario 1. Direction with no signal. 

Fig. 12.     Power estimation for direction 14°, IM snapshots, 
scenario 1. Direction with no signal. 
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Fig. 13.     SINR performance for signal at 60°, 2M snapshots, 
scenario 2. High power interferent signal in the mainlobe. 

Fig. 14.     SINR performance for signal at 0°, IM snapshots, 
scenario 2. High power interferent signal in the mainlobe. 
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Fig. 15.     SINR performance for signal at 55°, 2M snapshots, 
scenario 2. Low power interferent signal in the mainlobe. 

Fig. 16.     SINR performance for signal at 55°, IM snapshots, 
scenario 2. Low power interferent signal in the mainlobe. 
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Fig. 17.     Power estimation for direction 30°, 2Af snapshots, 
scenario 2. Direction with no signal. 

Fig. 18.     Power estimation for direction 30°, IM snapshots, 
scenario 2. Direction with no signal. 
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Fig. 19. SINK performance with desired signal suppressed from 
estimate of correlation matrix for signal at 0°, 2M snapshots, 
scenario 1. Compare with fig. 7. 

Fig. 20. SINK performance with desired signal suppressed from 
estimate of correlation matrix for signal at 0°, IM snapshots, 
scenario 1. Compare with fig. 8. 
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Fig. 21. SINR performance with desired signal suppressed from 
estimate of correlation matrix for signal at 6.8°, 2M snapshots, 
scenario 1. Compare with fig. 9. 

Fig. 22. SINR performance with desired signal suppressed from 
estimate of correlation matrix for signal at 6.8°, IM snapshots, 
scenario 1. Compare with fig. 10. 
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Fig. 23. SINK performance with desired signal suppressed from 
estimate of correlation matrix for signal at 60°, 2M snapshots, 
scenario 2. Compare with fig. 13. 

Fig. 24. SINR performance with desired signal suppressed from 
estimate of correlation matrix for signal at 60°, lAf snapshots, 
scenario 2. Compare with fig. 14. 
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Fig. 25. SINR performance with desired signal suppressed from 
estimate of correlation matrix for signal at 55°, 2M snapshots, 
scenario 2. Compare with fig. 15. 

Fig. 26. SINR performance with desired signal suppressed from 
estimate of correlation matrix for signal at 55°, \M snapshots, 
scenario 2. Compare with fig. 13. 


