
NUWC-NPT Technical Report 11,512 
23 February 2004 

Optimum Detection of Random Signal in 
Non-Gaussian Noise for Low Input 
Signal-to-Noise Ratio 
Albert H. Nuttall 
Surface Undersea Warfare Department 

IMM/SEA 
Undersea Warfare Center Division 

Naval Undersea Warfare Center Division 
Newport, Rhode Island 
Approved for public release; distribution is unlimited. 

20040306 071 



PREFACE 

The work described in this report was jointly funded under the 
Naval Undersea Warfare Center's "Large-N Strategic Initiative" 
project, principal investigator Clifford M. Curtis (Code 21), and 
the Office of Naval Research's "Large-N Discovery and Invention 
(D&I)" project, principal investigator Stephen G. Greineder (Code 
2121). 

The technical reviewer for this report was Stephen G. 
Greineder (Code 2121). 

Reviewed and Approved: 23 February 2004 

Si/^#- 
Donald A. Aker 

Head (Acting), Surface Undersea Warfare Department 



REPORT DOCUMENTATION PAGE Form Approved 
0MB No. 0704-0188 

Rubric reporting for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviev^ing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperworl< Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
23 February 2004 

3. REPORT TYPE AND DATES COVERED 

4. TITLE AND SUBTITLE 

Optimum Detection of Random Signal in Non-Gaussian Noise 
for Low Input Signal-to-Noise Ratio 

6. AUTHOR(S) 

Albert H. Nuttall 

7. PERFORMING ORGANIZATION NAIVIE(S) AND ADDRESS(ES) 

Naval Undersea Warfere Center Division 
1176 Howell Street 
Newport, Rl 02841-1708 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 
Ballston Centre Tower One 
800 North Quincy Street 
Arlington, VA 22217-5660 

5. FUNDING NUiMBERS 

8. PERFORIVIiNG ORGANIZATION 
REPORT NUMBER 

TR 11,512 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for pubic release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Optimum detection of a weak stationary random signal in independent non-Gaussian noise requires knowledge of the first-order 
probability density function of the noise and the covariance function of the signal. More precisely, the first and second derivatives of the 
Input noise probability density function must be known to realize the optimum processor. When these two derivatives must be estimated 
from a finite segment of noise-only data, a severe demand is placed on the amount of required data. Estimation of higher derivatives of 
histograms is not accomplished reliably without considerable amounts of data. The presence of heavy-tailed noise data exacerbates this 
issue. The situation improves when Gaussian noise is considered, mainly because the second derivative of the noise density is not 
relevant or required for Gaussian noise; all other noise densities must have this information to achieve optimum detection. 

The samples of the random input signal process need not be taken at an independent rate. However, the covariance of the signal 
process must be known for optimum processing. The joint probability density function of the input signal is not required for low input 
signal-to-noise ratios. A simple example of a multipath signal is presented in this report that indicates the need for knowledge of the 
relative path strengths and the multipath delay time. Lack of knowledge of these parameters in this model requires multiple guesses at 
their values and parallel processors; the amount of degradation depends on the uncertainty of the medium characteristics. 

14. SUBJECT TERMS 

Optimum Detection 
Probability Density Function 

Random Signals 
Heavy-Tailed Noise 

Non-Gaussian Noise 
Multipath Signals 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 
48 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



TABLE OF CONTENTS 

Page 

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS ii 

INTRODUCTION 1 

DERIVATION OF LIKELIHOOD RATIO PROCESSOR 2 
Gaussian Noise PDF 5 
Exponential Noise PDF 7 
Cauchy Noise PDF 7 
Alternative Noise PDF (a = p^42ln) 7 
Multipath Example: General Noise Statistics 8 

ESTIMATION OF OPTIMUM NONLINEARITIES FROM DATA 10 

PERFORMANCE OF SEVERAL NONLINEAR PROCESSORS 18 

SUMMARY 25 

APPENDIX A—EFFECT OF SAMPLING INCREMENT ON PERFORMANCE A-1 

APPENDIX B—HIGHER-ORDER TERMS ESf EXPANSION (9) B-1 

APPENDIX C—MODIFICATION OF APPROXIMATE LIKELIHOOD RATIO 
PROCESSOR FOR EXPONENTIAL NOISE DENSITY C-1 

APPENDIX D—TWO IMPULSIVE NOISE MODELS D-1 

APPENDIX E—PROGRAM FOR OPTIMUM q FUNCTIONS E-1 

REFERENCES R-1 

LIST OF ILLUSTRATIONS 

Figure Page 

1 g^Fimctions for 100,000 Gaussian Data Points 11 
2 q Functions for 10,000 Gaussian Data Points 12 
3 Exact q Functions for a = 0.1 13 
4 Estimated q Functions for a = 0.1, le7 Data Points 15 
5 Estimated q Functions for a = 0.1, le6 Data Points 16 
6 Estimated q Functions for a = 0.1, le5 Data Points 17 

1 



LIST OF ILLUSTRATIONS (Cont'd) 

Figure Page 

7 Optimum Nonlinearities and Their Fits 20 
8 Receiver Operating Characteristics for Processor A 21 
9 Receiver Operating Characteristics for Processor B 22 

10 Receiver Operating Characteristics for Processor C 23 
11 Receiver Operating Characteristics for Processor D 24 

A-1    Quality Ratio for 2FT^ 100, Flat Spectrum A-4 
A-2    Quality Ratio for 2FT= 100, Gaussian-Shaped Spectrum A-4 
C-1    Likelihood Ratios for r = 0.1,/3,2 =0.5,c = 0.6,x,/o-„ =-0.6 C-4 

C-2    Likelihood Ratios for r = 0.1,/7,2 =0.5, c = 0.6, x,/o-„ =0 C-5 

C-3    Likelihood Ratios for r = 0.1, yO,2 = 0.0, c = 0.6, x,/o",, =0 C-6 

C-4    Likelihood Ratios forr = 0.1,p,2 =0.8,c = 0.6,x,/o-„ =0.1 C-7 

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

a Ky.\ auxiliary vector, equation (13) 
a{x),b{x)       Auxiliary functions, equation (7) 
c, (x) Cumulative distribution function of x, equation (3 8) 
Cy (>') Cumulative distribution function ofy, equation (3 8) 

d^ Direct path component sample, equation (32) 
EOF Exceedance distribution function 
/, / Nonlinear transformation and its inverse, equation (38) 
FO First order, equation (4) 
//fl, H^ Signal absent, present hypotheses, equation (3) 
k Time index, equation (3) 
K Number of time samples, equation (3) 
L{ ) Likelihoodratio, equations (12), (13), (16) 
LR Likelihood ratio 
m Multipath delay, equation (32) 
n^ Noise sample, equation (3) 

p„ (x) Probability density function of noise, equation (4) 

p„,X ) Joint noise density, equation (4) 
p, ( ) Probability density function of signal, equation (5) 
p,„ ( ) Joint density of signal and noise, equation (4) 
/?, (x) First-order density of x, equation (3 8) 



LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Cont'd) 

p {y) First-order density of j, equation (39) 

PDF Probability density function 
Pr() Probability of (), equation (3 8) 
q{x) log p„ {x), equation (14) 

9i = I'ix)       First derivative ofq, equations (15) and (47) 
^2 = ^'W      Second derivative ofq, equations (15) and (47) 
r Signal-to-noise power ratio, equation (25) 
R^^ Signal-plus-noise covariance matrix, equation (22) 

ROC Receiver operating characteristic 
RV Random variable 
Sj Signal sample, equation (3) 
SNR Signal-to-noise ratio 
t(y) Auxiliary variable, equations (44) and (46) 
X Gaussian random variable, equation (37) 
Xi^ Sample of received data, equation (3) 

X Kxl data vector, equation (19) 
y Transformed random variable, equations (37) and (38) 

a Multipath component relative strength, equation (32) 

y9 Noise parameter, equations (28), (29), (31) 

p Normalized signal covariance matrix, equation (13) 

p Modified signal covariance matrix, equation (13) 

Pi^ Normalized signal covariance element, equation (10) 

p^ Modified signal covariance element, equation (12) 

(Xj Direct path signal standard deviation, equations (33), (35) 

a^ Signal standard deviation, equation (10) 

a„ Noise standard deviation, equation (18) 

boldface Random variable 
prime Derivative 
superscript T Transpose, equation (13) 
superscript -1 Inverse matrix, equation (23) 

iii (iv blank) 



OPTIMUM DETECTION OF RANDOM SIGNAL IN NON-GAUSSIAN NOISE 
FOR LOW INPUT SIGNAL-TO-NOISE RATIO 

INTRODUCTION 

A finite-time observation is made of a weak signal (if present) in a non-Gaussian noise 
background. Optimum detection consists of computing the likelihood ratio (LR) of the observed 
waveform samples and comparing the LR with a fixed threshold, which enables a statement 
about signal presence versus absence in that time interval. The random noise samples are 
denoted by {n^} for ;t = 1 :IL It is presumed that these noise samples are statistically 
independent with common first-order probability density function (PDF) p„ (x). If the signal is 

present, its samples are {s^}. 

For a deterministic signal {5 J, the LR and log LR take the forms 

k=\        Pni^k) k=\ 

where{x^} is the received data, and^(x) = \ogp„{x). For low input signal-to-noise ratio (SNR), 
the approximation 

\0gU^ = -tq'Ms,=-±^s, (2) 
k=\ k=i P„\^k) 

follows. Thus, for low SNR, the dominant term in the optimum processor depends on the 
derivative of the q function and is linear with the signal samples {s^}. 

On the other hand, for a stationary random signal with zero mean, the optimum processor for 
low input SNR must depend on higher-order statistics of the input signal. At the very least, the 
covariance of the input signal will be required or must be estimated. Also, it can be expected 
that higher-order information about the non-Gaussian noise PDF p„ (x) will be required in 
addition to q'{x). This is indeed the case. To make reliable decisions about signal presence or 
absence, these more stringent information requirements for the random signal case require 
additional data on both the received signal and the noise. 



DERIVATION OF LIKELIHOOD RATIO PROCESSOR 

Samples {x^} for A: = 1 :A: are available. Under the hypotheses 

the optimum detector of signal presence versus absence is desired. Noise sequence {n^} consists 

of independent samples, with known first-order (FO) PDF /?„(x), which is arbitrary. Random 

signal sequence {s^} is characterized by joint /^-dimensional PDF p^ (w,,..., u^). The optimum 
LR detector forms the ratio 

/'„„(x.,...,x,)        j^^^^^^^ 

for comparison with a fixed threshold. 

The numerator of equation (4) is given by AT-dimensional convolution: 

For low input SNR and zero-mean processes, the joint PDF p^{u^,...,u^)\s concentrated near 
the origin of AT-dimensional u-space, relative to the spread of the remaining FO noise PDFs 
{PA'^k -"*)}• Therefore, a typical noise-PDF term in equation (5) can be expanded near M^ = 0 
according to 

Pni^k -u,) = p„(^,)-u, pl,ix,) + \ul p:ix,) for k = \:K. (6) 

This expansion is to second order in w^. 

Two auxiliary functions are defined as 

Then, equation (6) becomes 



p„(x,-u,) = p„(x,)[l + u, aix,) + \ul bix,)] for k = l:K. (8) 

Substitution of this expansion in equation (5) and retention of terms through second order in 
{M^}, which is consistent with second-order expansion (6), yields 

p,„(xi,...,x^) = Yl{p„ixi,)} l-ldu,-du^ PM>--'^K) 

1 + 2]Mi a(x^) + ^X"i' bM + m^k Uj a(x^)a{xj) 
k k k*j 

(9) 

(10) 

The three types of integrals in equation (9) can be evaluated as 

|---pM,---C?M^ PXUX,...,U^)U^ = \du^ Psiii^k)^k =0' 

^•■-jdu^■■^du,. p^(Ui,...,Uf,)ul = jdu,^ PsMk)^l =^l^ 

[■■^du,---dui, pXuy,...,Uf,)u^ Uj = jjdu;^ dUj /?,2("*'",)"* ^j=^^ Pkj' 

where a^^ is the common signal variance of samples {s^}, and p^j is the normalized signal 

CO variance coefficient of s^ and s^. 

The use of equation (10) in equation (9), followed by substitution in equation (4), leads to 
the approximation 

hR = \ + ^C7^ X biXk)+^(T^ X P^ a(x,) a{xj) forlow input SNR. (11) 
k k^J 

Since data-independent additive constants and positive scalars do not affect the receiver 
operating characteristics (ROCs) of a processor, an equivalent processor to equation (11) is 

K K 

Lix„...,x^)^Y.^(x,)+Y,Pkj a{x,)a{Xj), (12) 

where modified covariance matrixp = [pi^j] is obtained fromKxKmatrixp = [pi^] by replacing 

all the unity diagonal elements with zeros. This modification enables equation (12) to be 
expressed in the compact form 

K 

1 
k=\ 

Z(x„...,Xj,) = XKx,) + a^pa, (13) 



where K x 1 vector a = [a(x,) • • • a(Xj^ )J. This is the (approximate) optimum detector for low 
input SNR and any joint signal statistics. Although the signal level is not involved in equation 
(13), the normalized signal covariance matrix p must be known to employ equation (13). 

An alternative form for the optimum processor is obtained by defining 

q{.x) = \ogp„{x). (14) 

Then, using equation (7), 

,X.) = ^ = -ai.), ,'(.)= ^"^^^^"^f7"(-)^^(.)-a(.)-. (15) 

The optimum processor in equation (12) can now be expressed as 

K K K 

i:(x,,...,xJ = |^6(x,)-£fl(x,)^ + 2;/7,^ fl(x,)a(x^) 
*=1 k=\ kj=\ 

K K 

= Z^''(^*)+ Z Pkj qX-^k)q\^j)- (16) 
k=\ kj=\ 

An arbitrary constant can be added to q^x) without affecting the performance of this processor. 

As a special case, if the signal samples {s^} are uncorrelated, then matrix ^ = 0, and 
equation (13) reduces to 

K    ^<i 

Io(x„...,x,) = X^(x,) = £^^. (17) 

Nonlinearities q\x) and a{x) are not involved at all in this processor. However, more 
generally, when the signal samples are correlated, then matrix p T^ 0 and the last term in 
equations (12) and (13) allows for interaction between the {x^} terms by means of the nonlinear 
transformation a{x) = - p[{x)lp„{x). 

The noise samples {n^} have been taken statistically independent in the derivation above. 
If the sampling rate used to generate the data is increased, the noise samples will become 
statistically dependent on each other. This effect is investigated in appendix A for a simple 
example. It is shown that the deflection criterion is insignificantly improved through an 
increased sampling rate. Sampling at the highest rate that still results in uncorrelated samples 
will extract all the detection capability that a given data segment length contains. Higher 
sampling rates just require more data processing, with little if any improvement in performance. 



GAUSSIAN NOISE PDF 

P»(x) = 
2;rcr„ 

-exp 
/^ 2   A 

V   2cT„^ 

-X         {  X 1 
p'„(x)=—p„i^), P:(X)=\ — 

<^r>        <^n J 

P„(x), 

a(x) = -^, b(x) = -y (x^ - <T„') 

(18) 

L(X^,...,Xf^ ) — ■ 
_  k k*J 

Discarding additive constants and positive scalars, an equivalent processor is 

K 

Z^* + Z Pkj  ^k  X; =  X PkJ ^k  X,  = XV X, (19) 
k*J kj=\ 

where X = [x, • • • Xj^ ]^. This is a "generalized" energy detector, weighted by the normalized 

signal CO variance matrix/?. 

Alternatively, from equations (14) through (16), 

^(x) = -;^-log(V2^o-J, q'(x) = -^, q\x) = ^, 

K      1    ^ 
Z(x,,...,x^) = —r+^-X Pkj^k^j^ 

(20) 

which is tantamount to processor (19). The q\x) term has no effect on the performance of the 
processor for the case of Gaussian noise. 

The results in equations (19) and (20) hold for low input SNR, c^^V<T„^ and any signal joint 

PDF p^ (w,,...,Uf.). It is informative to compare these results with the exact LR processor for 

Gaussian signal and Gaussian noise. The latter processor is, from equation (4) and discarding a 
positive scalar, 

LR = exp 
2        "        lal 

exp 1 T 

2 

f 

V^« 
2^~^sr, (21) 

where signal-plus-noise covariance matrix 



Kn=<^li + (^]p = (yl 
( .2       A 

/ + 

2/_2 For low input power SNR,cr^Vcr„^ « 1, the inverse of matrix i?„, is 

.-1,  1 
/-^ 

.2     A 

a n     J 

Substituting in equation (21) yields 

LR = exp 1  c^l 
2 a ̂

xvx 

This is simply a monotonic transformation of equivalent processors (19) and (20); this 
equivalence holds under approximation (23). 

More precisely, using the identity 

I-{I + rpr=rp^ + rp)-\ r = cj]lc7l<\, 

equation (21) becomes exactly 

LR = exp 
\     C T 1 

^X'p{I + rprX 

An equivalent exact LR processor is, for this Gaussian noise PDF, 

L{ii„...,x^)=X' p{I + rpy'X = X' p{I-rp + r^p^ -■■■)X 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Terms beyond the first involve additional factors containing powers of input SNR r = ex] I a] 

and matrix^, both of which allow for dropping these terms for low input SNR with negligible 
effect on detection performance. 

Expansion (9) was conducted only through second order. In appendix B, the third- and 
fourth-order expansions are derived for those interested in pursuing these higher-order terms 
numerically. 



EXPONENTIAL NOISE PDF 

PAX) = —exp 
^" 2j3 

(   \xS\ 
, <^l=2P\ 

V    ^ J 

q{x) = -^-j-\og(2p\ 

[-lip   for X>Ol 1 ,  ,      . I  nr 
(28) 

q\x) = —-S{x). 

The difficulty in this example is due to noise PDF p„ (x) not possessing a derivative atx = 0. The 

last term in equation (16) becomes ^-^ A; sgn(x J sgn(x^), which does not appear to have an 
P     kj 

immediate problem. However, the first term involving q\x) obviously needs special treatment 

and is taken up in appendix C. 

CAUCHY NOISE PDF 

P      1 
.2       o /j2 

TT jc'+y? ;r (.^+/^0^ ^(x^+y^^r 

a(x) = 
2x        ,_    6x^-2;^^     _,_       _...   „....^_2(x^-y^ ) 

-, Z,(x) = -, q'(x) = -a(x), q (x) = 

(29) 

Large x^ values are suppressed by both components, ^'and^", ofthe optimum processor: 

gXx,)q'(Xj) 
^k^j 

-, q\x^)-^. (30) 

ALTERNATIVE NOISE PDF (« = p^42l7r) 

a ■Ax' 

^"^^^=777^'^«^^^=>.^^y -,   pl{x) = aAx 
2 5x'-3j3' 

i^'-P'J' 

a(x) = 
4x' 

x'+p' 
,    b(x) = 4x^-^^ ^,  q''{x) = 4x' 

{x'+P'J [x'^p^r 

(31) 



Again, large x^ values are suppressed in a similar fashion to equation (30). But, small x^ values 

are also suppressed by a(x), which has cubic behavior near the origin. Odd function a{x) has a 

peak at x = 3"V ofvalueS^'V^ 

Some additional impulsive noise models are given in appendix D. 

MULTIPATH EXAMPLE: GENERAL NOISE STATISTICS 

Letting the received signal contain a direct path component and a delayed (surface bounce) 
multipath component: 

s* =d,+«d^_„,, m>0, 

where zero-mean sequence {d^} consists of uncorrelated samples, 

Then, signal covariance 

E{Sk Sj} = cj] [8{k,j) + aS(k-m,j) + a d{j-m,k) + a' 5{k -m,j-m)], 

leading to total received signal power ar^ = crj (1 + a^) and 

0    y9    0    ••• 

0 0     y5     0 

(32) 

(33) 

(34) 

P = 

"1 0   • 

0 1 

', 0  • 

0 

/3 0 

0 fi ' 

: 0  ■ 

, p= 
a 

\ + a' 
(35) 

where value y9 = a /(I + or^) appears in the super- and sub-diagonals that are m removed from the 
main diagonal. Optimum processor (12) or (13) now takes the form 

Z(x„...,X J = j;6(x,) +-—^ j; fl(x,) a(x,,„,) 
k=\ \ + a    kT\ 

(36) 

for low input SNR, where nonlinear transformations a{x) and b{x) are given by equation (7). 

The first term in equation (36) is a sum of samples {x^} subject to nonlinearity b{x), while the 

second term is an autocorrelation (at delay m) of distorted samples {a(x^)}. Realization of 

processor (36) requires knowledge of scaling a and delay m in model (32). Lack of this 



information will require several guesses of both parameters and repeated evaluation of the 
second term in equation (36) to realize a maximum ofZ(Xi,...,x^). However, the latter sum in 
equation (36) does not, by itself, require knowledge of a, while its scale factor depends solely 
on a. This observation can be used to simplify the computation of equation (36) for multiple 
guesses of a and m. 

An alternative expression for the optimum processor in equation (36) is available upon use 
of equation (15); namely, 

K K 2o(,       ^~'" 

k=\ k=\ i + «      k=\ 

If signal delay information m and signal strength information a are imknown, a suboptimxmi 
processor is available upon dropping the last term: 

K K 

*:=1 k=l 



ESTIMATION OF OPTIMUM NONLINEARITIES FROM DATA 

To implement the optimum processor in equations (13) or (16), it is necessary to determine 
the nonlinearities q'(x) and q\x). When an analytic expression is available for noise 

PDF p„ (x), as in equations (18), (28), (29), and (31), the appropriate derivatives can be taken and 

used in equation (15). This information is needed in equation (16) in addition to the signal 
covariance matrix p. 

However, when an analytic noise PDF is not available, an estimate of the noise PDF must be 
made from a finite length of noise-alone measured data {n^}. Furthermore, two derivatives of 

the noise PDF must be extracted somehow from this finite data without exacerbating the effect of 
taking differences of noisy estimates. The method adopted here is to obtain a histogram from the 
measured data, fit it by means of a spline with several continuous derivatives, and then take two 
derivatives of the spline fit. In particular, the "spaps" procedure of MATLAB was used for all 
the following examples. 

As a first example, 100,000 independent normalized Gaussian RVs were generated and 
subjected to the spaps procedure. The results for the three fiinctions9 = ^(x), gi^g'ix), and 
^2 = ^'(^) are shown in figure 1. An estimate for each function is displayed, as well as the exact 
nonlinearity from equation (20). The agreement among the three pairs is excellent over the ftill 
range of ±4.25 standard deviations plotted. The corresponding results for the smaller sample size 
of 10,000 data points is given in figure 2; the deviations between the exact and estimated results 
are now obvious but not excessive. Still smaller sample sizes lead to considerably worsened 
estimates of the three q functions. 

The second example of interest is a non-Gaussian RV obtained by means of the nonlinear 
transformation 

y = x + ax\ (37) 

where x is a Gaussian RV. Scale factor a is set equal to 0.1. For a unit-variance RV x, the non- 
Gaussian RV y has the exact q functions displayed in figure 3; the derivations as well as a 
program for these fiinctions are presented in appendix E. The heavier tails of this PDF, relative 
to the Gaussian case, are evident in the upper q fiinction in figure 3, which was plotted over the 
range of ±5 standard deviations. Theq-^ fiinction has a pronounced dip of substantial value at the 

origin, while the ^, fiinction behaves like a limiter for input amplitudes greater than unity. 
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Figures 4, 5, and 6 illustrate the type of stability and accuracy that can be attained from 
independent sample sizes of le7, le6, and le5, respectively, when the PDF and q functions must 
be estimated from finite data segments. The results in figure 4 for le7 samples agree very well 
with the exact results in figure 3, except on the edges near ±5 standard deviations. This edge 
effect is to be expected because of the rarity of encountering these values and the concurrent 
instability of the histogram estimate. 

The results in figures 5 and 6 display much poorer agreement between estimation and truth, 
even though the two upper q functions appear to be fairly well fitted by the spline procedure. 
The problem lies in getting the higher-order derivatives, which accentuate the minor deviations 
in the fits. This non-Gaussian example illustrates that a considerable amount of data is going to 
be required if reliable estimates of the 9, function, and especially of the q^ function, are to be 
obtained directly from the data. This is not an unexpected result; estimation of higher-order 
derivatives from noisy data will always be difficult to accomplish successfully unless a very 
significant amount of independent data is available and is carefully processed. 

Comparison of figures 1 and 6 also reveals that estimation of the q functions for the non- 
Gaussian noise case is considerably less stable; equivalent accuracy in the estimated results for 
the non-Gaussian noise case will require more data than for the Gaussian noise case. 
Furthermore, lack of sufficient data may preclude decent estimation of the q^ function, with the 
attendant degradation of performance of the resultant suboptimum processor. Observe that for 
the Gaussian noise case, the q^ function is a constant and can be totally ignored in the optimum 

processor. This is not the case for any non-Gaussian noise situation, where the q^ contribution 
can be significant in making the proper detection decision. 
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Figure 5. Estimated q Functions for a = 0.1, le6 Data Points 
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PERFORMANCE OF SEVERAL NONLINEAR PROCESSORS 

Suppose that RV x, which has FO PDF p^ {x), is nonUnearly transformed by monotonically 

increasing function/, yielding RVy = /(x). Letting /denote the inverse function of/ the FO 
cumulative distribution fiinction (CDF) of RV y is given by 

S iy) = PKy <y) = Pr(/(x) < >^) = Pr(x < f{y)) = c, (fiy)). 

The corresponding FO PDF is given by 

Py (y^ = j^'y ^y) = jy^. (fiy)) = P. Giy)) f'iy). 

But, since 

y = fix) = fifiy)), 1 = f'ifiy)) f'iy), 

the end result for the FO PDF of RV y follows as 

pAfiy)) 

(38) 

(39) 

(40) 

Py(y) = 
f'ifiy)) 

(41) 

This last step avoids the need to evaluate the derivative of inverse function 7,as in equation 
(39), which is often a much more complicated nonlinear function than/ 

As an example, consider the cubic nonlinear transformation 

y = fix) = x + ax\ a>0;   f'(x) = \ + 3ax\ (42) 

Then, the inverse of this transformation is 

1 
x = fiy) = tiy)- 

3at(yy (43) 

where 

tiy) 
_y_ 
la 

+ . 
^laj 

J/3 

+ - 
27 a' 

for all y. (44) 

The positive square root is taken to ensure increasing monotonicity with>^. Once PDF p^ {x) is 
specified, all the quantities needed in equation (41) are available. 
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The detailed solution of the cubic nonlinear transformation in equation (42) proceeds as 
follows: let X = / + M, where r and M are arbitrary. Substitution in equation (42) yields 

(t + u)(l + 3atu) + a(t^ +u^) = y. 

Now let u = -1/(3at), in which case equation (45) reduces to 

(45) 

Nl/3 

(46) 

u = 
Sat 

, x = t- 
3at 

This is the result quoted in equations (43) and (44). 

The optimum nonlinearities corresponding to PDF;?^ (>^) in equation (41) are 

q(y) = logp^iy), qi(y) = q'iy), q2(y) = ^'(y)- (47) 

Analytic expressions for these quantities are complicated. Appendix E provides a MATLAB 
program using symbolic math for these tasks. Simpler analytic fits to qi{y) and ^2 (y) are also 
included for purposes of significantly reducing the numerical evaluation of equation (47). Figure 
7 depicts the optimum nonlinearities and their fits for an example with a = 0.1 and a Gaussian 
RV X with zero mean and unity standard deviation. 

A comparison was made of the ROCs for several processors, using K = 1000 independent 
data samples and various combinations of nonlinearities q^ and ^2 ^^ figures 8 through 11. For 
these simulation results, 1 million trials were used. Processor A used only the linear term 
^1 = r with ^2 = 0, where r is the received data; processor B used q^ and ^2 equal to the 

optimum fits above; processor C used q^ as the optimum fit and ^2 = 0; and processor D used 

9J = 0 and ^2 equal to the optimum fit. To achieve false alarm probability P^= le-3 and 

detection probability P^ = 0.5, the required input SNRs for processors A through D were -10.1, 

-13.3, -13.1, and -12.4 dB, respectively. Instead, to achieve operating point (le-4,0.9), the 
required input SNRs for the four processors were -7.8, -10.8, -10.5, and -9.9 dB, respectively. 
Finally, for processors B, C, and D, the required input SNRs at operating point (le-5,0.99) were 
-9.2, -8.9, and -8.4 dB, respectively. In all cases, processor B, which used optimum fits 
^1 and ^2, performed the best, although processor C trailed by only 0.3 dB; tiiat is, ignoring the 
contribution of nonlinearity q^ was not very detrimental. However, processor D, which uses 

only ^2 > was more costly in terms of loss of SNR. It should also be observed that processor A, 
which used only a purely linear term, suffered a significant 3-dB loss relative to the best. 
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processor B. Accordingly, it is very important to include the "saturating effect" of the first type 
of optimum nonlinearity ^,, which tends to suppress the large outliers of the cubed Gaussian 
process in equation (42). 

Figure 7. Optimum Nonlinearities and Their Fits 
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SUMMARY 

The optimum processor for a weak stationary random signal in independent non-Gaussian 
noise has been derived to second order in the signal strength. The information required to realize 
the likelihood ratio processor consists of the first-order probability density function of the noise 
process and the covariance function of the signal process. More precisely, the noise density and 
its first two derivatives are required. 

Estimation of these two required derivatives of the noise density, from a finite segment of 
noise-only data, is not a simple task. The approach adopted here is to fit the noise histogram by 
means of a spline v^th several continuous derivatives. Then, analytic derivatives are taken of 
this fit. For a Gaussian noise process, the second derivative need not be utilized, making this a 
simpler special case. For a non-Gaussian noise process, both derivatives of the noise density 
must be estimated, making the estimation task considerably more difficult. 

Attempts were made at dropping the second-derivative term in the optimum processor 
because of its difficulty of reliable estimation. Simulations of the receiver operating 
characteristics for the corresponding suboptimum processors revealed a loss of several decibels 
in detectability performance. Accordingly, to achieve optimality it is necessary to conduct the 
lengthy data collection to enable reliable estimation of the higher-order noise density derivatives 
and characteristics. 
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APPENDIX A 
EFFECT OF SAMPLING INCREMENT ON PERFORMANCE 

The effect of the sampling increment on the deflection criterion in the detection of a 
deterministic signal in colored noise is of interest. The received waveform, for signal present, is 
5(0 + n(0, where s(t) is the knovra deterministic signal waveform and n(0 is a stationary noise 
process. Data processing consists of sampling this received waveform and cross correlating it 
against the stored reference according to 

y = f,s(t,)[s(t,) + n(t,)], (A-1) 
k=l 

where K is the total number of samples utilized. For zero-mean noise, the mean value of RV y 
is, for signal present, 

Ky) = Y^s(t,)\ (A-2) 
k 

The variance of y is, under both hypotheses, 

^' (y) = Z <^*) '(^J) ^« (^* - 0)' (^-^^ 

where R„ (r) is the correlation function of the stationary noise process n(t). The quantity of 
interest here is the dimensionless deflection criterion 

d = ^^. (A-4) 

In the special case of a Gaussian noise process, this statistic completely governs the ROCs; more 
generally, it is a useful, simple measure of detectability performance. 

For equispaced samples with increment A, t^ = kA, equation (A-4) becomes 

H sikAf 
d = -- ^ :^- (A-5) 

Y,s(kA)s{jA)R„{{k-J)^) 
kj 

The signal waveform will be taken to be a constant s„ over the fixed observation interval of 
duration T. Then, sampling increment A = T/K and equation (A-5) simplifies to 
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d = 
K 

K-\ 

K + 2Y,(K-k)p„(kT/K) 
1/2 (A-6) 

where R„ (r) = a^ p„ (r), and /?„ (r) is the normalized correlation function of the noise. For 

example, for white noise over the band {-F,F) of frequencies, equation (A-6) yields 

d = ^ 
K 

K-\ 

K + 2Y^(K-k) sinc(yt 2FT/K) 
k=\ 

1/2 (A-7) 

where sinc(x) - sin(;7x)/(;Ec). 

As the number of samples A: tends to infinity, the second factor in equation (A-7) tends to 
(IFiy^ for very large FT. Accordingly, a meaningful quality ratio is furnished by 

e- K/(2FT) 1/2 

K-l 

■1 
k=\ 

A. —1 

K + 2Y^{K-k) sincik 2FT/K) 
1/2 ■ (A-8) 

For K = 2FT, Q=\. This corresponds to A = TYA: = 1 /(2F), which is just the sampling increment 
that results in uncorrelated samples of this white noise process with normalized correlation 
sinc(2Fr). This can be considered to be the standard sampling increment for this particular 
process. For other values of A:, the summation in equation (A-8) must be carried out in 
numerical detail; the results are presented in figure A-1 for 2FT= 100. It will be observed that 
increasing A: above 2FT^ 100 does not significantly improve the quality ratio. In fact, A: can be 
decreased to about 60 before a significant loss is observed. 

Figure A-2 displays the corresponding quality ratio for a noise process with a Gaussian- 
shaped spectrum. Again, sampling faster than necessary does not increase the detectability of the 
signal in noise; the quality ratio simply saturates very quickly once the sampling increment 
realizes approximately uncorrelated samples. Any higher sampling rate simply requires more 
data processing with no attendant improvement in detectability performance. 

It should be observed that no assumptions have been made about the statistics of the noise 
process n{t), such as a Gaussian PDF. The conclusions above apply to stationary noise with 
arbitrary first-order statistics. It is expected that similar behavior holds for weak random signals 
(rather than deterministic signals) in noise, when correlators or energy detectors are used for 
processing. 
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More generally, as ^ tends to infinity, the second factor in equation (A-6) tends to 

T  i       \ T 

n-1/2 

P„(T) (A-9) 

For very large FT, this quantity approaches 

1 °° 
- jdTp„{T) 

-1/2 
TR„(0) 

. GM J 

nl/2 

(A-10) 

where G„ (/) is the noise spectrum. For the Gaussian-shaped spectrum in figure A-2, the 

normalized correlation function is p„ (T) = exp(-4;r F V^) and the spectrum is 

G„(f) = G„(0)exp 
r 

4 F' 

2^ 
At frequencies / = ±F, the relative spectral value is down by 

exp(-;?z-/4) = 0.456 = -3.41 dB. The second factor in equation (A-6) again tends to (IFTf^ for 
large FT, as K increases. The reason that the curves in figures A-1 and A-2 go just above value 1 
is due to the factor (1 - \T\ IT) in equation (A-9), which slightly attenuates the integral in the 

denominator; the limit of 1 is approached only for very large FT. 
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APPENDIX B 
HIGHER-ORDER TERMS IN EXPANSION (9) 

To determine the third- and fourth-order terms in expansion (9) in the main body of this 
report, the bracketed expansion (8) is extended to 

l + u,a(x,) + \ulb{x,) + lulc(x,) + i^utdM   fork = \:K, (B-1) 

where auxiUary functions 

P„(X) Pn(x) 

The product of the ^ terms of equation (B-1) contains the third-order quantities 

^J^c(x,)ul, \^bMa{Xj)uluj,   J^a(x,)a(x,)a(Xj)UiU,Uj, (B-3) 
k k*j l<k<J 

and the fourth-order quantities 

-Z^K)«,\ l'^c(x,)a(xj)uluj, \Y.b(x,)b(Xj)ulu% 
24,  

k k^j k<j 

(B-4) 

\Y,b{x,) uf Y.a(x,) a(Xj) u, Uj,     ^a(xj a(x,) a(x,) a(Xj) u^ u, u, Uj 
I k<j m<l<k<J 

When the quantities in equation (B-3) are substituted in equation (9) in the main report, the 
averages over the joint signal PDF /?, (w,,..., w^ ) will require knowledge of the general third- 

order signal moment E{s, s^ s^) for all l,kj. If the signal samples in equation (3) in the main 

body of this report are taken from a zero-mean Gaussian process, these third-order moments will 
all be zero. 

On the other hand, the averages over the quantities in equation (B-4) will require knowledge 
of the general fourth-order signal moment £'(s„ s, s^ s^) for all m, I, k, j. For a zero-mean 

Gaussian signal process, this fourth-order moment can be expressed as combinations of second- 
order signal covariances coefficients, namely, 

0-' (pn,l Pkj + Pmk Plj + Pmj Plk \ (^-5) 

For other processes, the fourth-order moment is much more difficult to evaluate. 
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APPENDIX C 
MODIFICATION OF APPROXIMATE LIKELIHOOD RATIO PROCESSOR 

FOR EXPONENTIAL NOISE DENSITY 

When the additive noise in model (3) in the main body of this report has an exponential 
PDF, equation (28) indicates that the q^x) component of the optimum processor (16) becomes a 
delta function. This unacceptable term is due to expansion (6) breaking down in the 
neighborhood of x^ = 0, where the exponential PDF does not have a derivative. A closer look 

at equation (5) reveals that, for low input SNR, the desired operation is a local smoothing of the 
joint noise PDF in the neighborhood of the point x^,...,\f.. This suggests that nonlinearities 
q'(x) and q^x) in equation (28) be smoothed in jc by a function of width approximately that of 

the standard deviation a^ of the signal. Since the smoothing operation in equation (5) would 

tend to retain the shape of the noise PDF, the following candidate replacement functions were 
employed, respectively, instead of q'(x) and q^x): 

^,(x) = -[l-exp(-ix|/g)]sgn(x),   q,(x) = exp(-\x\/g). (C-1) 

These functions are, respectively, odd and even, with q^(x) being the derivative of 9,(x), 
consistent with that same property of original nonlinearities q'(x) and q^x). The positive scalar 

g is taken as c cr^, where c is of the order of 1. Nimierical simulations of optimum processor 
(16), with replacements (C-1), yielded a significant improvement in the ROCs compared with 
those for the qXx) nonlinearity in equation (28); the q"(x) nonlinearity in equation (28) had to 
be completely discarded because it cannot be implemented. A gain of about 4 dB was obtained 
by use of replacements (C-1) in optimum processor (16) using only q'(x). An additional 

experiment, in which the ^jC^) term was discarded, led to a degraded performance in the ROCs; 

accordingly, it is concluded that the ^2(^) term is a significant contributor to the approximate 
optimum processor and must be retained. The ROC performance using replacements (C-1) was 
not very sensitive to the exact value employed for scalar c; thus, exact knowledge of the input 
signal standard deviation cr^ is not a necessity. Also, alternative nonlinearities to those in 

equation (C-1) were tried, without significant changes or degradation, provided the proper 
scaling g was employed. 

This replacement procedure is an ad hoc approach based upon smoothing the original direct 
results in equation (28). To lend credence to this approach, an exact derivation of the LR 
processor (4) for a Gaussian signal and exponential noise was conducted for K=2. The exact 
statistics employed are 
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P«W = ^exp 
^   i^n 

PsiMx,Uj) = 

V    ^ J 

1 

2^c7,^(l-/^^)' 

'       W|^ +^2 -2yOW,M2 

V 2^„'(l-p') 

(C-2) 

The exact LR is given by equations (4) and (5) with A:= 2. To evaluate this double integral, the 
following two integral results are very useful: 

CO 00 

LihXp)=\dx\dy 
h k 24-P') 

177 exp 
^   x^+y^-2pxy^ 

W7J (C-3) 

CO CO 

jdxjdy exp(-{ax^ -^^y^+yxy + ^x + vy) 
a        b 

Vd 
exp 

2d 
^(u,v,p), (C-4) 

where 

d-afi-y ,u 2 „_ [^(^   Pn + yv a-- ,y- 
'dl      av + /ju 

P = 
/ 

lap 

Definition (C-3) is given in reference 1, section 26.3. The result in equation (C-4) is obtained by 
making linear shifts of the variables x and y to eliminate the linear variables in the integrand and 
then scaling to manipulate the double integral into the form of equation (C-3). 

Upon substituting equation (C-2) into equation (5) from the main body of this report, 
splitting the double integral into four parts corresponding to the noise joint-PDF breakpoints at 
its origin, and using equation (C-4) four times, the following result for the exact LR is obtained 
forcr^ >0 (after considerable manipulations): 

'■ = y'y. =^'y2 =j^^ = \y^\+\y2Up =rO+p),t„, =KI-P), 

e, =exp(r/^+a-y,-y2),e2 =exp(r/„,+a + y,-y^), 

e3=exp(/-/^+a + y,+y2),e, =exp(r/,„+a-y,+y2), 

L, = I(/^ -y, /r,t^ -y, /r,p), L, = L{t^ +y, lr,t„, -y, lr-p\ 

L3 = L{t^ +y, lr,t^ +y2 lr,p\ L^ = L(t„, -y, /r,/„, +y, lr-p\ 

M(x,,X2) = e, L, +62 L2 +e3L3+e4L4. 

(C-5) 
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A computer routine for the joint Gaussian exceedance probability distribution L{h, k, p) enables 
rapid numerical evaluation of this LR for any x, ,X2. 

The approximate LR processor, obtained from equation (16) by use of replacements (C-1), is 
given by 

K K 

LR^(x„...,Xf,)^J^q,(x,)+ XA;?I(XJ^I(X;). (C-6) 
k=\ kj=\ 

Several comparisons between exact resuh LR{\^,Xj)and LR^(x,,Xj) are made in figures C-1 

through C-4 for various values of parameters r, /?i2, c, Xj /cr„, Xj /(T„ .  Since additive constants 

and scalmg factors do not affect the ROCs of a processor, LR^ (x,, Xj) was transformed so that it 

had the same values as ZifCxpXj) at the origin and + oo. The close similarity of the two sets of 
numerical results indicates that the modified procedure, obtained by smoothing the nonlinearities 
q'{x) and q\x) when necessary, is an appropriate and viable procedure; this is especially 
pertinent when A: is large and the A:-fold integration of equation (5) is intractable. Then, 
modification (C-6) becomes an attractive and useful alternative. 

It was noted in equation (17) in the main body of this report that the optimum processor 
conducts a single sum of the transformed input data {x^} when the input signal samples {s^} are 

uncorrelated. However, for exponential input noise, equation (28) reveals that the pertinent 
nonlinear transformation involves a negative delta function, which is meaningless. Instead, an 
exact analysis for a Gaussian signal PDF yields LR 

Z(x,,...,Xj,) = fJ 
k=\ 

exp(ir'+|y,| + yja)(-r-y,/r) 

+ exp(|r'+|y,|-yJ<D(-r + y,/r) 
(C-7) 

u 

where <!)(«) = \dt exp(-r V2) l^ln   is the normalized Gaussian cumulative distribution 
—00 

function. Plots of the k-th term on the right-hand side of equation (C-7) versus x^ reveal a 

function that is a continuous approximation to the negative delta function at the origin, with a 
width proportional to signal standard deviation o",. This is further confirmation of the smoothing 

procedure that is recommended earlier in this appendix for nonlinearities that are meaningless or 
cannot be realized in practice. This procedure can be useful for other noise PDFs p„ (x) with 

non-analytic behavior at some argument(s). 
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APPENDIX D 
TWO IMPULSIVE NOISE MODELS 

The first noise model is the square of an exponential RV, followed by a multiplication by an 
equally likely ±1.   This RV can be generated by the operation 

"-aH'-^ 1/4 

(D-1) 

where RV r is uniformly distributed over (0,1), and G is the desired standard deviation of RV u. 
ThePDFofRVuis 

h exp(-Z>^) 
p{u) = j=-  for all M, 

and its even moments are given by 

^     ^     24" 

The odd moments of u are zero. 

The EDF of u is given by 

\ exp(-Z)Vw)  for w > 0 

1 - j exp(-6^|M|) for M < 0 

The characteristic function of u is 

e{u) = 

f{£,) = \du exp(i^) p(u) = -J^r Re (1-0* w 
(l + i)b 

W 
for^#0. 

This is a closed form in terms of the w(z) fimction (see reference 1, chapter 7). 

(D-2) 

(D-3) 

(D-4) 

(D-5) 
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The second noise model is the fourth power of a zero-mean Gaussian RV, followed by a 
muhiplication by an equally likely ±1. Letting q be a ±1 RV with equal probabilities, for an 
arbitrary RV x, the RV y = q x has the following properties: 

/,,(^|q)=£,{exp(/^qx)} = /,(^q), 

/'>.(")= !/?.(")+ !/'.(-") for all M, 

ey(u) = ^e^(u) + \c^(-u)   for all M. 

(D-6) 

For the particular case of RV x = g\ where g is a zero-mean unit-variance Gaussian RV, the 
following functions govern the statistics of RVs x and y: 

L (4) = f du -p= exp(- j w^ + Z^") = -i=lL= exp 
f  i  \ 

v32^y 

r   :   \ 
K 1/4 

v32^y 
for^>0. 

/,(^) = Re- 
1+/    r / ^ 

exp 
7^^    \^2\^\]    "\32|^| ■^1/4 

^      /      ^ 
for^^O, /J0) = 1, 

1 
PM = -7-T^'t>i^    ) forM>0;   e^{u) = 2(^{-u"') forw>0, 

/^.C") = TT^ ^(H'") =   r—\ ,3/4 exp(-i JH) for all« ^ 0, 

(D-7) 

e,(") = 
OC-M"") forw>0 

[(DCIwl"") forM<Oj 

The variance of RV y is 105. All the odd moments are zero. The functions 

X 

^(x) = {In)-'" exp(-x^ II),   (l)(x) = \dt <l>{t), (D-8) 
-00 

are, respectively, the PDF and cumulative distribution flinction of a normalized Gaussian RV. 
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APPENDIX E 
PROGRAM FOR OPTIMUM q FUNCTIONS 

clear all % Optimum ql(y) and q2(y) 
syms y a pi % forY = X + aX^3 
sx=l; % Standard deviation of X 

tl=y/(2*a); 
b=l/(3*a); 
Ktl+sqrt(tl^2+b^3)r(l/3); 
x=simplify(t-b/t); % Solution of y = f(x) = X + a x^3 
^=l+3*a*x^2; % f (x) 
px=exp(-.5*(x/sx)^2)/sqrt(2*pi*sx^2); % Gauss PDF(x) of X 
py-simplify(px/fp); %PDF(y)ofY-f(X) 
q=log(py); 
ql=diff(q,y); % Optimum ql(y) 
ql=simplify(ql); 
qli=inline(ql); %qli(a,y) 
q2=diff(ql,y); % Optimum q2(y) 
q2=siinplify(q2); 
q2i=inline(q2); % q2i(a,y) 

ad=l; %a = 0.1 example 
yd=[0:.02:10]'; 
qld=qli(ad,yd); 
figure(l), elf 
plot(yd,qld,'r') 
grid on, hold on 
q2d=q2i(ad,yd); 
plot(yd,q2d,'b') 

yd=[0:.2:10]'; 
fld=-1.6*yd./(l+.5*yd.^l.6); % Fit to ql(y) for ad=.l 
plot(yd,fl d;r.') % Fit to q2(y) for ad=. 1 
f2d=1.6*((yd/1.79).^2-l)./(l+1.6*yd.^2+.2*yd.M); 
plot(yd,f2d,'b.') 
xlabel(y) 
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