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ANALYTICAL AND EXPERIMENTAL STUDIES INTO 
STRUCTURAL HEALTH MONITORING 

Abstract 

The research objectives were to study and resolve some of the daunting problems that 
hinder the development of reliable general-purpose computer simulation programs, which 
are capable of reflecting precisely the dynamic behavior of distributed nonlinear systems, 
spanning the range from large joint-dominated space structures, to intricate electro- 
mechanical systems, to MEMS, as well as civil infrastructure systems, by conducting a 
comprehensive analytical and experimental study to investigate an important subset of 
the challenging issues. The research was focused on developing methods and.procedures 
suitable for use with structural response measurements, from flexible structural 
components and assemblages that may incorporate elements undergoing significant 
multi-dimensional nonlinear deformations. The research included carefully conducted 
experimental studies of generic types of nonlinearities likely to be encountered in 
aerospace structures. The experimental studies led to a better understanding of the 
physics of the underlying phenomena, thus allowing the development of suitable reduced- 
order mathematical models to characterize the essential features of the dominant 
structural characteristics. High-fidelity models (both parametric as well as nonparametric) 
were created that have the potential to provide predictive descriptions of nonlinear system 
behavior under arbitrary dynamic environments. 

Accomplishments 

Research activities of this project proceeded along two fronts: (1) an experimental phase 
involving the design and fabrication of an adjustable test apparatus for conducting studies 
on a generic "joint" element which incorporates important nonlinear characteristics such 
as nonlinear elastic properties, hysteretic characteristics and deadspace nonlinearities 
involving friction, and (2) an analytical phase focused on the development of a theoretical 
framework for processing experimental structural response measurements to develop 
nonlinear, reduced-order, high-fidelity mathematical models and to determine the 
response of such models under arbitrary dynamic environments. 

1.0 EXPERIMENTAL STUDIES: 

1.1 One-Dimensional Test Apparatus 

An adjustable test apparatus was designed, fabricated, and assembled for the purpose of 
fiimishing a convenient means of generating high-quality experimental measurements 
corresponding to a range of nonlinear phenomena with adjustable levels of polynomial- 
type nonlinearities as well as hysteretic behavior and deadspace nonlinearities 
incorporating Coulomb friction effects. A photograph of the major elements of the test 
apparatus is shown in Figure 1, and some preliminary experimental measurements 
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obtained from the test apparatus are exhibited in Figure 2 in which phase-plane plots of 
the hsyteretic nonlinear force is plotted versus the corresponding displacement for three 
different regimes of the motion. 

Figure 1. General view of one-dimensional re-configurable test apparatus. 

In a subsequent phase of the research, the experimental measurements from the test bed 
were used to investigate the utility of an on-line identification approach developed by the 
PI and collaborators to obtain parametric models for physical systems incorporating 
hysteretic nonhnearities (Smyth et al, 2001).  
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Figure 2. Nonlinear restoring force characteristics in three different ranges of motion. 

The capability of the method under discussion to accurately capture time-varying 
hysteretic behavior is illustrated in Figure 3 where the identified system parameters as 
well as the tracking accuracy of the method are shown for some simulated data. Figure 
3(a) shows the parameter convergence, and Figure 3(b) shows the phase-plane plot of the 
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exact and estimated nonlinear restoring force versus the element displacement. Notice 
that the value of the stiffness parameter Bo drops at t = 5 seconds from its original value 
of 5 towards the new value of 3. 

Identification of Element #1, where stiffness sJiifts from 5 to 3 at t—5 sec. 

I  ' 

Estimated Force 
j4.ctuexl Rest. Force 
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Jnterstory Displacement for Element #7 

Fig. 3. Identification results for a hysteretic system with time-varying stiffness 
parameters. At t = 5 sec, % for the element drops from 5 to 3. 

1.2 Two-Dimensional Nonlinear Element 

By extending the adjustable one-dimensional test apparatus, a muti-axis nonlinear "joint" 
was designed and fabricated. The new apparatus fiimishes a convenient means of 
generating high-quality experimental measurements corresponding to a range of 
nonlinear phenomena with adjustable levels of realistic nonlinearities, including 
hysteretic behavior and deadspace nonlinearities incorporating Coulomb friction effects. 
A photograph of the major elements of the multi-axis test apparatus is shown in Figure 4. 

The experimental measurements from the sliding friction testbed, were used to evaluate 
the efficiency of the on-line identification approach, discussed above, to obtain 
parametric models (based on the generalized Bouc-Wen hysteretic model) for physical 
systems incorporating hysteretic nonlinearities. 

5/13 



AFOSR_FinalReport_14inar04g.doc 6/13 3/17/04 1:59 PM 

Figure 3: Photograph of multi-component hysteretic system with adjustable nonlinear 
characteristics 

2.0 ANALYTICAL STUDIES 

2.1 Equivalent Linearization for Nonlinear Systems Under Nonstationary Excitation 

A new method based on equivalent linearization approaches was developed for 
estimating the nonstationary response of a class of nonlinear multi-degree-of-freedom 
systems subjected to nonstationary excitations. The highly efficient method is based on 
creating a compact analytical approximation of measured nonstationary excitation 
process data through use of a two-stage decomposition procedure. The analytical data 
condensation of the excitation process is performed in two stages; (1) by performing the 
Karhunen-Loeve spectral decomposition on the covariance matrix of the input random 
process to obtain the dominant eigenvectors, and (2) by fitting these eigenvectors with 
orthogonal polynomials to produce a truncated series of analytically approximated 
eigenvectors. The method has been demonstrated through simulation with synthetically 
generated excitation data as well as measured data from a real-world physical process. 
Although the decomposition procedure used can characterize very general input 
processes, because the equivalent linearization technique requires the Gaussian 
assumption of the response process, the constraint on applying this approach is similar to 
the constraints on all other equivalent linearization techniques. However, the additional 
freedom gained from being able to work with data-based nonstationary random processes 
is a significant addition to this area of research. 

To illustrate the utility of the proposed approach, an example nonlinear SDOF system 
with a polynomial-type nonlinearity was simulated to test the proposed probabilistic 
response analysis method. First, a comparison was made with results using a synthetically 
generated nonstationary excitation similar to that in Roberts and Spanos (1990) and 
Sakata and Kimura (1980), and secondly, the system was simulated with a nonstationary 
data set. 
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Figure 5. Nonstationary response of Duffing oscillator to earthquake excitation; 
comparison of analytical solution and Monte Carlo simulation 

Prior decomposition techniques for nonstationary excitation processes have very often 
depended on making the restrictive assumption that the excitation is a stationary noise 
process multiplied by some deterministic envelope fimction. To demonstrate the 
proposed methodology, it was shown (see Fig 5) that the new approach can handle this 
special case of excitation processes. Further details of this study are available in the work 
of Smyth and Masri (2001). 

Further details concerning the results of this research are available in the work of Smyth 
and Masri (2001). 

2.2 Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures 

The motivation for exploring adaptive techniques in the context of the modeling and 
control of nonlinear systems comes from the recognition that since structures behave non- 
linearly at various scale levels, the implementation of conventional fixed controller 
strategies may prove to be naive. Often, the governing response properties only exhibit 
themselves for the first time when subjected to strong excitation. As a resuh of this, 
control strategies should incorporate flexible adaptive identification schemes that can 
quickly capture and emulate the essential response signature of a structural system and 
react accordingly. Furthermore, the availability of estimation/identification techniques is 
crucial for the on-line control and monitoring of time-varying structural systems. 
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Fig 6: Block diagram of Volterra-Weiner Neural Network 

The existing adaptive estimation/identification techniques suffer from two drawbacks: 
they assume that (I) the restoring forces applied to the system's elements are available for 
measurement and that (2) the differential equation driving these restoring forces can be 
parameterized as a linear combination of unknown constant parameters and known 
nonlinear terms. 
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Fig 7: Degrading hysteretic forces and their estimate after neural network training. 

With the above discussion in mind, the PI and collaborators (Kosmatopolous et al, 2001) 
have developed an efficient identification algorithm for handling general structural 
systems incorporating severe nonlinearities, including elements with time-varying 
hysteretic characteristics. This new methodology completely overcomes the above two 
problems. Specifically, a new approach is presented that solves the problem of 
estimating/identifying the restoring forces without assuming that the restoring forces are 
available for measurement, or imposing any restrictions on the nature of structure of the 
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restoring forces dynamics. The new approach uses appropriately adaptive fihering and 
estimation techniques and also makes use of the Volterra/Wienner Neural Network 
(VWNN), shown in Figure 6, which is capable of learning input/output nonlinear 
dynamical behaviors. 

Simulations performed on a chain-like system under random excitation, as well as 
processing of experimental measurements from a reinforced-concrete structure as well as 
a steel structure, verified the efficiency of the proposed technique and demonstrated its 
utility. Sample results are shown in Figures 7 for experimental measurements 
corresponding to degrading hysteretic forces and their estimate after neural network 
training 

Further details of this study are available in the work of Kosmatopoulos et al (2001). 

2.3 Modeling and Analysis of Nonlinear MIMO Systems 

As part of the effort to develop and evaluate a variety of tools and approaches for 
handling nonlinear multi-dimensional problems, a method previously developed by the PI 
and associates was used to analyze the response of a complex nonlinear distributed 
structural system. The structure was a modem long-span bridge in the Los Angeles region 
that was subjected to strong-motion earthquakes in the recent past. Using all the available 
experimental measurements from sensors mounted on and at the base of the bridge, the 
mathematical analysis of the unique data sets developed a reduced-order discrete system 
consisting of 10 inputs and 16 outputs. 

The analysis was conducted in two stages: In the first stage, a least-squares based time- 
domain identification approach was used to develop an equivalent linear MDOF system 
whose order is compatible with the available data set. This phase yielded the system 
matrices (inertia, damping and stiffness). Subsequently, in phase two, a nonparametric 
identification approach was employed to identify the residual nonlinear forces induced in 
the system. Sample identification results are shown in Figure 8. 

Further details regarding this comprehensive study are reported in the work of Smyth et 
al,(2003). 

2.4 Identification of the State Equation in Complex Nonlinear Systems 

Building on the basic idea behind the Restoring Force Method for the nonparametric 
identification of nonlinear systems, a general procedure was developed for the direct 
identification of the state equation of complex nonlinear systems. No information about 
the system mass is required, and only the applied excitation(s) and resulting acceleration 
are needed to implement the procedure. Arbitrary nonlinear phenomena spanning the 
range from polynomial nonlinearities to the noisy Duffing - van der Pol oscillator 
(involving product-type nonlinearities and multiple excitations) or hysteretic behavior 
such as the Bouc-Wen model can be handled without difficulty. In the case of 
polynomial-type nonlinearities, the approach yields virtually exact results for sufficiently 
rich excitations. For other types of nonlinearities, the approach yields the optimum (in 
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least-squares sense) representation in nonparametric form of the dominant interaction 
forces induced by the motion of the system. 
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Fgure 8: Identification of the nonlinear forces in a MIMO nonlinear system having 10 
inputs and 16 outputs, under the action of nonstationary random excitations. 

Several examples involving synthetic data corresponding to a variety of highly nonlinear 
phenomena have been investigated to demonstrate the utility as well as the range of 
validity of the proposed approach. The acceleration of the hysteretic system was modeled 
in a non-parametric way involving the-use of a set of basis functions of the system's 
excitation, velocity and displacement (linear, quadratic and cubic powers). Even though 
the actual (hysteretic) model is not included in the model structure used for identification, 
the results of the identification procedure under discussion yielded fairly accurate 
estimates of the complex nonlinear behavior of the system. 
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To evaluate the validity of the identification results, the same (exact) hysteretic model 
was subsequently subjected to a different excitation than what was used for its 
identification. Results showed that good fidelity is provided by the identified model in 
emulating the nonlinear behavior of the actual (exact) system. 

Further details regarding this study are available in the work of Masri et al (2003). 
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