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Abstract

Experimental Study of Sound Waves in Sandy Sediment

Michael W. Yargus

Chair of the Supervisory Committee:
Professor Darrell R. Jackson

Electrical Engineering

This dissertation describes experiments intended to help understand the physics

of sound (compressional waves) propagating through sandy sediments (unconsolidated

porous media).  The theory (using a lumped parameter model) and measurements (using

a reflection ratio technique) includes derivations and measurements of acoustic imped-

ances, effective densities, wave speeds (phase velocities), effective pressures, mode

shapes, pressure reflection coefficients, and material moduli.  The results show the

acoustic impedance divided by the phase velocity, rendering an “effective density,” is

less than the total density of the sediment (effective density = 89% + 3% of total).  The

results also show the fluid in the sediment oscillates back-and-forth 2.2 + 0.4 times far-

ther than the sand in the sediment (mode shape) during the passing of a sound wave.

These facts suggest the existence of Biot waves (two compressional waves) in water-

saturated sand.
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Chapter 1:
INTRODUCTION

This dissertation implements theory and procedures designed to measure physical

parameters of acoustic waves (also called sound waves, compressional waves, bulk com-

pressional waves, and dilatational waves) in sandy sediments.  This experimental study

was done to help understand the mechanics of sound propagating through water-saturated

sand and in particular to look for effects only seen in porous media.  These effects in-

clude different particle oscillation amplitudes of the sand and fluid (pore fluid in the

sediment), a sound wave not “using” the total mass of the sediment, and the existence of

two compressional waves with different speeds.  These are characteristics of the two (fast

and slow) Biot waves.

Sound wave measurements reported in this dissertation are obtained through a re-

flection ratio technique, a new technique that uses a reference surface and a pressure re-

lease surface to measure coherently averaged pressure reflection coefficients from a sur-

face of interest.  In the first of two parts, a signal of interest (reflected from the surface of

interest) is divided by a reflected reference signal.  The reference signal is a measure the

sound wave being transmitted, and by dividing the reference signal into the signal of in-

terest a transfer function is obtained.  This has the advantage of setting a nearly perfect

time reference so the reflections can be averaged coherently.  In addition, the two signals

from the transmitter do not have to be identical (the ringing of the transmitting hydro-

phone was actively canceled and the signal periodically needed to be “reshaped”).  In the

second part, the transfer function from the surface of interest is divided by a transfer

function from a pressure release surface.  The pressure release surface is set up so that the

ratio of the two transfer functions leaves only the pressure reflection coefficient.  This

technique has the advantage of measuring a pressure reflection coefficient without need-

ing to know the acoustic properties (dissipation, damping, spreading loss, etc.) of the me-

dia the sound travels through and without needing to calibrate the transducers (receiver

and transmitter).  With the reflection ratio technique, coherently averaged pressure re-

flection coefficients are measured without calibrating the transducers and without use of
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geometric correction factors.  By knowing pressure reflection coefficients, acoustic im-

pedances of the sand can be obtained.

The mathematical theory is based on a lumped parameter model, a new model

that visibly shows the physics of a Biot medium and facilitates use of free-body diagrams

to find the distribution of pressures and the relative velocities between particles and

acoustic waves, e.g., sand particle velocity to fast wave “effective” velocity.  By knowing

the fast and slow wave “effective” velocities, rigorous derivations of the fast and slow

wave acoustic impedances are obtained for the first time.

1.1  OUTLINE OF DISSERTATION

This chapter includes:  (1) A background of why knowledge of the physics of

sound waves propagating through sand is of practical importance.  (2) A short history of

sound propagating through saturated porous materials.  (3) Previous observations of Biot

waves.  (4) A look at two contemporary controversies.  One is whether slow waves exist

in unconsolidated porous materials, i.e., sediments, and another is whether the claimed

compression waves in sediments at 1200 m/s are slow Biot waves or artifacts from scat-

tering.  (5) A list of key parameters and assumptions that play a role in the dynamic re-

sponse of sediments.  (6) A list of the new contributions published in this dissertation.

The second chapter of this dissertation goes through the mathematical theory and

discusses a lumped parameter model.  The third chapter discusses the acoustic measure-

ments and the reflection ratio technique.  The fourth chapter discusses the analysis and

results; the last chapter gives a discussion with conclusions.

1.2  BACKGROUND

Understanding the physics of sound propagation into a sandy bottom of a shallow

water environment is driven by a need to improve techniques for finding and classifying

objects that are buried.  Sonar, traditionally used to locate objects in water or map the

water-sediment interface, can be used to locate objects such as mines, cables, pipelines

and containers buried in sediment.  The principle reason acoustic wave propagation and
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scattering have been widely used to study processes and detect objects in the ocean is the

limited range of optical and other electromagnetic wave propagation underwater.  For a

wide range of scientific and engineering problems dealing with the ocean environment,

acoustic wave propagation and scattering is the only remote sensing technology avail-

able.  A buried target can be illuminated with maximum intensity by a sonar signal nor-

mally incident on the sediment interface.  However, the time taken to detect buried ob-

jects can become prohibitively large if only normal incidence is used.  Using shallow in-

cidence grazing angles can speed up detection operations considerably.  For sand sedi-

ments, the compressional sound speed in the sediment is faster than in the water and the

wave transmitted into the sediment is refracted at a smaller grazing angle than in the wa-

ter.  At the critical angle, typically at grazing angles of about 20 to 30 degrees, the re-

fracted compressional wave is parallel to the interface and no longer propagates into the

sediment.  There is significant interest in mechanisms by which a compressional wave in

the water can be coupled into the sediment at angles below the critical angle with energy

sufficient enough for finding buried objects [24, 27, 34].  It has been proposed that the

slow Biot wave may provide such a mechanism [34].

This dissertation explores normally incident waves in an attempt to understand the

nature of sound propagating through sandy sediments.  The results of this work are rele-

vant to the general problem including incidence at angles smaller than the critical angle.

1.3  HISTORY

A complete theory for acoustic wave propagation in porous media was developed

by Biot [3, 4, 5] and presented in a series of papers.  Biot has developed a comprehensive

theory for the static and dynamic response of linear, porous materials containing com-

pressible fluid.  This theory was derived by adding inertia terms into the equation of con-

solidation developed in earlier theories.  Biot’s theory predicts that in the absence of

boundaries, three kinds of body waves, two dilatational and one shear, may exist in a

fluid saturated porous medium [36].
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Stoll and Kan [38] derived the complex reflection coefficient of plane acoustic

waves from a poro-elastic sediment half-space.  The boundary condition model is based

on the classical work of Biot that, as previously stated, predicts three different body

waves in the sediment.  As a consequence, when plane waves in water are incident upon

a water-sediment interface, as many as three waves can be generated in the sediment, de-

pending on the angle of incidence.

Stoll and Kan used potentials in their derivation of the boundary conditions.

Johnson and Plona rewrote Stoll and Kan’s boundary conditions using displacements “as

it is simpler than (although equivalent to)” the potential derivation [20].  Johnson and

Plona’s notation for the boundary conditions produces a symmetric determinant when

solving for the eigenvalues and eigenvectors, which can be modeled into a physically re-

alizable system.  Also the density terms in Johnson and Plona’s determinant add up to the

density of the water-saturated sand.  Neither of these are true for Stoll and Kan’s notation

and both are important for the lumped parameter model to be developed here.

1.4  OBSERVATIONS OF BIOT WAVES

Plona observed a second bulk compressional wave that propagated at speeds ap-

proximately 25% of the speed of the normal bulk compressional wave in a fluid-saturated

porous medium [29].  This observation was made using an ultrasonic immersion tech-

nique and a fluid-saturated porous medium consisting of water and sintered glass spheres.

The excitation of the slow wave in the solid was shown to be consistent with the princi-

ples of mode conversion and refraction at plane liquid/solid interfaces.  To Plona’s

knowledge, this type of bulk wave had not been previously observed at ultrasonic fre-

quencies.

Biot’s theory has been used in several applications of acoustic wave propagation

in porous media, such as superfluid/superleak systems [18], slow waves and the consoli-

dation transition [19, 20], gels [21], bones [25], porous solids [15, 23, 30], marine sedi-

ments [17, 35, 41, 43, 45], pressure diffusion through porous media [8], and air-saturated

consolidated porous media [16].
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Johnson et al. [22] observed slow compression waves in consolidated fluid-

saturated porous media, e.g., fused glass beads (called “Ridgefield Sandstone” even

though it was man-made) and ceramic water filters (QF-20), and calculated for the first

time all of the input parameters necessary for a complete description of the acoustic

properties of all the modes over the entire frequency spectrum.

All observed slow Biot waves have been in consolidated porous media.  There

have been no uncontested observations of a slow Biot wave in an unconsolidated, e.g.,

sandy, medium.  See Controversy-2 that follows.

1.5  CONTROVERSY-1 (Do slow Biot waves exist in sediments?)

Even though Biot theory predicts both fast and slow compressional waves, only

the fast compressional wave, the wave of the first kind, and the shear wave have been ob-

served in the vast majority of porous systems.  Johnson and Plona, who observed slow

Biot waves in water-saturated porous media where the solids are bonded together, have

looked for slow Biot waves in unconsolidated water saturated glass beads where they

conclude “both experimentally and theoretically there is only one compressional wave”

[20].

Simpson et al., [34] did an experiment showing the wave fields in sand with

smooth and rough interfaces at all angles of incidence.  They concluded, “This data does

not support the Biot medium model predictions of a second slower compressional wave

in the unconsolidated water saturated porous medium.”

Seifert et al., [33] did an experiment with sand saturated with fluids of different

viscosities (water, two different silicon oils, and castor oil) to measure attenuation.  They

stated, “Biot’s theory shows that acoustic waves create relative motion between the fluid

and the solid matrix due to inertial effects, resulting in viscous dissipation of acoustic en-

ergy.”  But they concluded “The attenuation shows no correlation with the viscosity of

the different pore fluids and thus theories that depend upon fluid flow cannot explain

these data.”  They conclude Biot theory does not explain attenuations measured in fluid

filled sand.
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On the pro side, Stoll et al., [38] say Biot waves exists but, “Waves of the second

kind are difficult to observe in sediments where water is the saturant because of their high

attenuation and the way in which energy is partitioned at the interface.”

1.6  CONTROVERSY-2 (Compressional waves at 1200 m/s are from slow Biot or scat-

tering?)

Recent experimental results (Boyle and Chotiros 1992 [6], Chotiros 1995 [9]) re-

veal acoustic penetration from water into sandy sediments at grazing angles below the

compressional critical angle in relation to the mean surface.  These authors interpret their

results to indicate the excitation of a Biot slow wave at 1200 m/s in the sediment.

But numerous authors disagree.  Analytical derivations show that roughness of

the water-sediment interface causes propagation of acoustical energy from water into the

sediment at grazing angles below the compressional critical grazing angle, and simula-

tions indicate that the experimental results can be explained in terms of diffraction of an

ordinary longitudinal wave.  By modeling sand as a fluid, and including a small amount

of roughness, the simulation results match the acoustical penetration experimental results

by Boyle and Chotiros (1992), both in magnitude and in arrival time [28, 40].  Mellema

[27] demonstrated that significant energy is scattered across a rough fluid-solid interface

at shallow grazing angles and that the received intensity can be accurately modeled using

first order perturbation theory. For the roughened case, it is clear that the later time arri-

val is best described by an assumed ray path in the water to a point above the buried hy-

drophone, scattered from the roughened interface, and then propagation nearly vertically

to the buried hydrophone at the speed of the ordinary compressional wave (1680 m/s).

This can have the appearance of a wave traveling at 1200 m/s [34].

Recent field measurements [17, 26, 34] have strongly supported the conclusion

that subcritical penetration in sands is due to scattering, not Biot slow waves.

To match the 1200 m/s slow compression wave using Biot theory, Chotiros [9]

used structural and material moduli of sand different than previous authors.  Stoll [39]

and other authors used moduli that predict a slow wave having a speed of roughly 400
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m/s.  Stoll argues Chotiros “... is not justified in his claim that a Biot wave of the second

kind, with a wave speed of 1200 m/s, had been detected in a near-bottom sand deposit.

This opinion is based on the fact that the author (Chotiros) has used an unacceptable

value for the bulk modulus of the skeletal frame and a questionable value for the bulk

modulus of the individual grains.”

Chotiros [11] replied that the approach advocated by Stoll to calculate bulk

moduli works well for a porous materials with cemented frames, such as fused glass

beads and sandstone, but it does not work for sand.  Chotiros also contended that the

measured reflection coefficient for normal incidence on a water-sand interface does not

match elementary, Rayleigh, viscoelastic reflection theory but his parameters using Biot

theory do produce a match with the measured coefficient.

1.7  PARAMETERS AND ASSUMPTIONS

A survey of the literature suggests that there are a number of parameters that play

a principal role in controlling the dynamic response of saturated sediments.  Of these,

Stoll suggests the following may be important (not necessarily in the order listed) [37]:

a.  dynamic strain amplitude,

b.  porosity,

c.  static intergranular stress,

d.  gradation of sand size and grain shape,

e.  material properties of individual grains,

f.  degree and kind of lithification (bonding of particles),

g.  structure as determined by the mode of deposition.

In his classic development, Biot produced constitutive relationships for fluid-

saturated granular media and followed these with an analysis of elastic wave propagation

in such media by means of a Lagrangian formulation.  The assumptions underlying this

derivation are that [1]:

a.  The medium is isotropic, quasi-homogeneous and that the porosity is uniform

throughout;
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b.  The pore size is very much less than the wavelengths of interest;

c.  Scattering, in the sense of diffraction around individual grains or particles, can be

ignored;

d.  Pore walls are impervious and the pore size is concentrated around an average

value;

e.  Fluid is compressible;

f.  Fluid may flow relative to the solid.

1.8  NEW CONTRIBUTIONS OF THIS DISSERTATION

The contributions of this dissertation are both theoretical and experimental.  On

the theoretical side the primary contributions include:  (1) Making a lumped parameter

model from the continuous parameter Biot theory, fig. 2.1.  (2) Deriving the fast and slow

acoustic impedances, eqs. (2-35) and (2-37).  (3) Deriving pressure reflection and trans-

mission coefficients from impedances and effective pressures, tables 2.1 and 2.2.  (4) De-

riving mode shapes from effective pressures and effective densities, eqs. (4-27) and (4-

28).

On the experimental side the primary contributions include:  (5) A reflection ratio

technique in which reflection amplitudes are divided leaving only information (pressure

reflection coefficient) about the surface, e.g., eq. (4-1), without calibrating the transduc-

ers or using geometric corrections.  (6) Measuring the fast and slow wave acoustic im-

pedances, fig. 4.1.  (7) Measuring the fast and slow effective densities, fig. 4.2.  (8)

Bounding the slow acoustic wave speed in an unconsolidated medium, fig. 4.3.  (9)

Measuring the fast and slow wave effective pressures from an open pore boundary con-

dition, fig. 4.4.  (10) Measuring the fast and slow wave mode shapes, fig. 4.6.  (11) And

last, measuring the generalized elastic coefficients (intermediate moduli), fig. 4.7.
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Chapter 2:
MATHEMATICAL THEORY

This chapter reviews the continuous parameter equations of motion and boundary

conditions, and then develops a lumped parameter model from which the fast and slow

impedances, moment arms, effective densities, and effective pressures are derived.  Then

pressure coefficients are derived from impedances and effective pressures.  Only nor-

mally incident pressure waves, waves propagating perpendicular to the sediment bound-

ary, are considered in the following continuous parameter review and lumped parameter

development.  This consideration simplifies the equations by removing shear waves (and

coupling between shear and pressure waves), and is sufficient for analysis of the experi-

mental data discussed in the next chapter.

2.1  DIFFERENTIAL EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

From Johnson and Plona [20], eq. (1a) and (1b), the homogeneous differential

equations of motion with waves propagating in the z-direction with no shear displace-

ments are:
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Eq. (2-1) is the equation of force on sand particles per unit area (area of sand plus area of

fluid in sediment) and eq. (2-2) is the force equation on fluid particles per unit area.  The

unknowns, us and uf, are displacements (in the z-direction) of the sand and fluid particles.

P, Q, and R are the generalized elastic coefficients (intermediate moduli).
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Where b is the porosity (volume of fluid per unit volume of sediment), Kb is the bulk

modulus of the sand’s skeletal frame, Ks is the bulk modulus of the sand, Kw is the bulk

modulus of the water, and N is the shear modulus of the skeletal frame.

The density terms are:

( ) ( ) fs brarbr 1111 -+-=                                             (2-6)

fabrr =22                                                           (2-7)

( ) fbrar 112 --= .                                                        (2-8)

Where rs is the density of the sand grains, rf is density of water, and a is a virtual mass

constant, or tortuosity, expressing the apparent increase in the mass of the fluid.  As a

fluid particle oscillates in the z-direction it must translate slightly in the x- and y-

directions to go around sand particles causing it to appear more massive.

The viscous term is:
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The viscous term, F, is equivalent to bF, eq. (4.3) in [4], where b is defined by eq. (6.8)

in [3].  In eqs. (2-9) and (2-10), h is the viscosity of water, k is the permeability of the

medium, J1 and J0 are Bessel functions, and a is the average radius of the pore holes.
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Solving eqs. (2-1) and (2-2) for plane waves, assume the solid displacements and

fluid displacements are:

( ))(exp kztiAus -= w                                                (2-11)

( ))(exp kztiBu f -= w .                                              (2-12)

Here, k is wave number, t is time, A is the sand displacement amplitude and B is the fluid

displacement amplitude.  Put eqs. (2-11) and (2-12) into (2-1) and (2-2) and express the

results in matrix form:
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The square matrix on the right hand side of eq. (2-14) is the density matrix and will be

referred to later.  Solve for the eigenvalues (wave numbers squared) and eigenvectors

(mode shapes).  This will give displacements of the sand and fluid in terms of the wave

numbers and the mode shapes.

( ) ( ))(exp)(exp 2211 zktiAzktiAus -+-= ww                                (2-15)

( ) ( ))(exp)(exp 2211 zktiBzktiBu f -+-= ww                               (2-16)

Where the wave fast and slow numbers are:
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The mode shapes are (water particle displacement divided by sand particle displace-

ment):
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The boundary conditions for the water-sediment (open pore) interface are taken

from Johnson et al. [22] and specialized to normal incidence for which there is no excita-

tion of shear waves.  Combine equations (2.17), (2.18), (2.19), (2.20), (2.21), and (2.25)

from ref. [22] and get:
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Eq. (2-20) says the force in the sand per unit area of interface (note: not the pressure in

the sand because area is of sand and pore water) plus the force in the sediment fluid per

unit area of interface is equal to the pressure in the water above the sediment.  Johnson’s

W is the same as this dissertation’s ui + ur.  The variables ui and ur are the incident and

reflected displacements, assumed to be of the form:

( ))(exp zktiAu wii -= w                                                 (2-21)

( ))(exp zktiAu wrr += w .                                               (2-22)

Combine equations (2.18), (2.20), and (2.23) from ref. [22] and get:
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Eq. (2-23) says the force in the sediment fluid at the interface is equal to the force in the

water above the sediment fluid per unit area of interface.  From equations (2.22) and

(2.25) from ref. [22]:

( ) rifs uuuu +=+- bb1 .                                            (2-24)

Eq. (2-24) says the displacement of sand times the area of sand per unit area of interface

plus the displacement of sediment fluid times the area of fluid per unit area of interface is

equal to the displacements of the incident plus reflected waves in the water per unit area.

This is the so-called open pore boundary condition.  Eq. (2-24) can be rewritten:
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rislowfast uuuu +=+ ,                                             (2-25)

where

( )( ) ( ))(exp1 111 zktiBAu fast -+-= wbb                                  (2-26)

( )( ) ( ))(exp1 222 zktiBAuslow -+-= wbb .                                (2-27)

Eq. (2-26) is the average of the sand and fluid particle displacements during the passing

of a fast wave.  Both previous equations will be used later to derive participation factors.

The closed pore boundary condition for displacements will be used later and is:

,ri uuu +=                                                            (2-27a)

where at z = 0:

( ) ( ) )exp()exp( 2121 tiBBtiAAuuu fs ww +=+===                     (2-27b)

This section (equations of motion and boundary conditions) has given the wave

numbers, mode shapes, and the boundary conditions for a continuous, 2 degrees-of-

freedom, Biot medium having a planar interface and normal incidence.  The next section

develops the lumped parameter model.

2.2  LUMPED PARAMETER MODEL

The lumped parameter method developed here was strongly influenced by the

Dynamic Design Analysis Method (DDAM) introduced by Belsheim and O’Hara [2].

DDAM is used to analyze non-contact, bomb shock on Naval ships.  See Appendix E.

DDAM requires a physical system to be engineered into a lumped mass-spring model.

Then the equations of motion are written in matrix form from the mass-spring model.

The natural frequencies and mode shapes are calculated from the determinant of the ei-

genvalue problem, and the determinant is always symmetrical.  Likewise, even though

Biot’s equations of motion are for continuous parameters, the determinant for the wave

numbers is symmetrical using Johnson and Plona’s notation.  The inspiration for the

lumped parameter model was the question “Can Biot’s continuous parameter, symmetric

determinate be reverse-engineered (through trial-and-error) into a lumped mass-spring
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model?”  A lumped parameter model has the advantage of allowing easy visualization of

movements and drawing free body diagrams of the forces.

The continuous medium homogeneous differential equations of motion and

boundary conditions eqs. (2-13), (2-20), (2-23), and (2-24) can be described by a lumped

mass, linear spring, concentrated force, viscous damp-pot, rigid-bar mechanical system,

see Fig. 2.1 and Appendix D.

In going from the continuous model to the lumped model, stiffness (N/m) and

modulus (Pa), mass (kg) and density (kg/m3), force (N) and pressure (Pa), viscous

damping (Ns/m) and body viscous damping (Ns/m4), difference in displacement of two

points (m) and strain (m/m), acoustic impedance ( s/mPa ◊ ) and mechanical impedance
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(Ns/m) are used interchangeably.  Hopefully this does not cause too much confusion.

Point A in Fig. 2.1 is the “location” of the sand (displacement of point A equals the sand

particle displacement) and point B is the “location” of the fluid in the sediment (also the

displacement of point B equals the sediment fluid particle displacement).  Pi and Pr are

the incident and reflected forces.

To show that the boundary conditions of the mechanical system of Fig. 2.1 are

equivalent to Johnson et al. [22] boundary conditions draw a free body diagram at z = 0,

see Fig. 2.2.  In Fig. 2.2 the positive direction is down.  Eq. (2-20) is the sum of forces in

the vertical direction.  Eq. (2-23) is the sum of moments about point A.  The incident and

reflected displacements, ui and ur, are related to the solid and fluid displacements, us and

uf, by eq. (2-24).  Fig. 2.3 is equivalent to Fig. 2.2 but in Rayleigh notation, i.e., eiwt sup-

pressed (ref. [31], section 270, eq. (11)).
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A force can be positioned that will only excite the fast wave.  As will be seen, this

is a consequence of mode orthogonality.  See Fig. 2.4.  From Fig. 2.4, sum forces in the

vertical direction:

( )111111111 BRkBQkAQkAPkiF +++= .                                   (2-28)

The sum of the moments around point A in Fig. 2.4 is:

( )111111 BRkAQkiF +=d .                                               (2-29)

From equations (2-28) and (2-29) the moment arm for a force to excite only mode 1 is:

1111

11
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RBQA

+++
+

=d .                                         (2-30)

Another way to find d1 is by knowing that a force applied at d2, the moment arm

for mode 2 (slow wave), will cause no work at d1, i.e., the translation at d1 in the z-

direction is zero.  See Fig. 2.5.
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These two relationships for d1, equations (2-30) and (2-31), are equivalent to the

orthogonality relationship:
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From Fig. 2.4 the velocity at point d1 is:
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The impedance of first mode (fast wave) is:
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k

ZK
w=                                                         (2-38)
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the modal stiffnesses (moduli) and masses (densities) of the first and second modes are:
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The following two equations are taken from the matrix equation of (2-14):
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Add equations (2-44) and (2-45) and put in the numerators of (2-42) and (2-43).  Also

multiply equation (2-44) by A and (2-45) by B, add, and put in the denominators of (2-

42) and (2-43).  The results are the modal masses or the effective masses in terms of den-

sity (and viscous) parameters:
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These modal masses, eqs. (2-46) and (2-47), agree with the Dynamic Design

Analysis Method (DDAM), see Appendix E.  Also, Clough and Penzien [14] p. 559,

show that the sum of the modal masses is equal to the sum of all the terms in the mass

matrix, eq. (2-14), i.e., r1  + r2 = r11 + r22 + 2r12 = (1-b)rs + brf = r.  Where r is the total

density of the water filled sand.  With Johnson and Plona’s form of the Biot equations,

eqs. (2-1) and (2-2), the modal masses add up to the total mass, i.e., r1  + r2 = r.

The terms that link particle displacements to effective (or modal) displacements

are called “participation factors” in this dissertation.  For a single degree-of-freedom

system, of course, particle displacements and effective displacements are equal.  Trans-

forming average particle displacement of the sand and fluid during the passing of a fast

wave, eq. (2-26), into a lumped parameter model, Fig. 2.6, shows the average particle
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displacement is located at a distance b from point A.  In Fig. 2.6 points 1 and 2 are the

locations of the first and second modes and points A and B are the locations of the sand

and fluid particles.  The symbols u1 and u2 are the effective or modal displacements.  The

fast wave participation factor is:

.
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12

2

1
1

dd
bd

-
-

=

=
u

u
P

fast

                                                    (2-48)

And likewise the slow wave participation factor is:
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                                                    (2-49)
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Figure 2.6
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Fig. 2.7 is a mechanical system equivalent to Fig. 2.1 but in terms of modal pa-

rameters.  The acoustic impedances for Biot waves are fully described by the impedances

and the impedance moment arms, which are modal parameters independent of the load-

ing of the mechanical system, i.e., they are homogeneous parameters (in a differential

equation sense).  The terms that link loading (boundary conditions) and modal parame-

ters are the modal forces or effective forces.

In the open pore boundary mentioned earlier, the water above the sediment and

the fluid in the sediment are in direct contact.  This is the most commonly used boundary

condition for sediments.  The terms that link external forces to forces on the first and

second mode are called “effective forces.”  The incident and reflected forces act at a dis-

tance b from point A for an open pore interface, see Fig. 2.7.  Let the incident and re-

d2

A

B

d1

1K1

K1 K2

K2

r1

r1

r2

r2

b Pi + Pr

Figure 2.7
Mechanical System Equivalent to Fig. 2.1

But In Terms of Modal Parameters

1 2
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flected forces equal one then from Fig. 2.8, P1 is the “effective force” on mode 1 and P2

is the “effective force” on mode 2.
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=P .                                                      (2-51)

Note that, numerically, open pore effective forces are equal to participation fac-

tors even though their meanings are different.

For a closed pore boundary the sediment is in contact with a non-porous material,

like acrylic.  In a closed pore boundary the sand and fluid particles and the fast and slow

modal displacements move with the same amplitude at the interface, and the modal

points 1 and 2 move equally, see eq. (2-27b).  The forces needed to move these points

equally are the closed pore effective forces.
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Z
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+
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2
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Z
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+
=                                                      (2-53)

The next section calculates the pressure reflection and transmission coefficients

using impedances and effective forces.

b
1

d1 P1 d2
P2

Figure 2.8
Effective Forces P1 and P2

1 2A B
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2.3  REFLECTION AND TRANSMISSION PRESSURE COEFFICIENTS FOR A 

SOUND WAVE IN WATER INCIDENT UPON A SAND INTERFACE (OPEN PORE) 

 This section finds the reflection and transmission coefficients for various bound-

ary conditions of a medium that supports Biot waves.  If the distance from the first to 

second modes, points 1 and 2, are normalized to one, the normalized distances from an 

applied unit force (the force is applied at a position to make the forces on Z1 and Z2 equal 

to P1 and P2) to the locations of the modes are numerically equal to the normalized effec-

tive forces, P1 and P2, see Fig. 2.9.  These normalized forces and normalized distances 

will be assigned the same symbols, P1 and P2.  The impedance of the Biot medium is 

found by applying a force of 1 at a distance P2 from the left in Fig. 2.9.  The springs in 

the figure are labeled as impedances, Z (units of Ns/m in lumped system).  Technically, 

the spring constants should be Zω (N/m), but the frequency terms are dropped.  Veloci-

ties of the first and second modes are: 

2

2
2

1

1
1 ,

Z
Pv

Z
Pv == .                                                (2-54) 

The velocity at the point of unit force is: 

21

2
21

2
12

2211 ZZ
PZPZPvPvv +

=+= .                                    (2-55) 

The impedance “seen” by an incident wave from water to a Biot medium is: 

v
Z 1=  

2
21

2
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21

PZPZ
ZZZ
+

= .                                           (2-56) 

 The pressure reflection coefficient of a sound wave off a Biot medium (water to 

sand) is (where Zw is the impedance of water): 
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 The pressure transmission coefficient for the fast and slow waves combined is: 
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From the free-body diagram of Fig. 2.10 the fast wave transmission coefficient is: 
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wsw TPT 11 =  
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And the slow wave transmission coefficient is: 
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2.4  TRANSMISSION AND REFLECTION COEFFICIENTS OF A FAST WAVE 

FROM SAND TO WATER (OPEN PORE) 

 The impedance diagram for a fast wave in sand incident on a water interface is 

shown in Fig. 2.11.  The water particle velocity at a point P2 from the left from unit force 

at the left is: 

w
w ZP

v 11

1
= .                                                     (2-61) 

The slow wave particle velocity is: 
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Therefore the fast wave particle velocity from a unit force at the fast wave is: 
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The impedance of a fast wave incident on a sand-water interface is: 
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The transmitted pressure coefficient from a fast wave into the water and into the slow 

wave is: 
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From Fig. 2.12 the transmitted wave into the water from an incident fast wave is: 
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The reflected pressure coefficient (reflected fast wave from an incident fast wave, open 

pore, water interface) is: 
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The reflected slow wave pressure coefficient is: 
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2.5  TRANSMISSION AND REFLECTION COEFFICIENTS OF A SLOW WAVE 

FROM SAND TO WATER (OPEN PORE) 

The impedance of a slow wave incident on a sand-water interface is: 
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The transmitted pressure coefficient from a slow wave into the water and into the fast 

wave is: 
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The transmitted wave into the water from an incident slow wave is: 
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The reflected pressure coefficient is (reflected slow wave from an incident slow wave, 

open pore, water interface): 
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The reflected fast wave pressure coefficient: 
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2.6  REFLECTION AND TRANSMISSION COEFFICIENTS OF A FAST WAVE 

FROM SAND TO NON-POROUS (CLOSED PORE) INTERFACE 

 Figure 2.13 is the impedance diagram for a fast wave incident on a non-porous 

interface that has a closed pore surface (e.g., sand on acrylic, sand on Ethafoam, etc.).  

The sand particles, water particles, first mode, and second mode all have the same dis-

placement on a closed pore surface; therefore the fast and slow wave particle velocities, 

v1 and v2, are the same at the interface.  Impedance seen by fast wave (Zc is impedance of 

a closed pore, non-porous medium): 
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cZZZ += 2 .                                                   (2-74) 

The fast, pressure reflection coefficient from a fast incident wave off a closed pore sur-

face is: 
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The transmitted coefficient from a fast incident wave on a closed pore surface is: 
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The slow, pressure reflection coefficient from a fast incident wave off a closed pore sur-
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2.7  REFLECTION AND TRANSMISSION COEFFICIENTS OF A SLOW WAVE 

FROM SAND TO NON-POROUS (CLOSED PORE) INTERFACE 

The impedance seen by slow wave is: 

cZZZ += 1 .                                                   (2-78) 

The slow, pressure reflection coefficient from a slow incident wave off a closed pore sur-

face is: 

2

2)c(
22 ZZ

ZZR
+
−

=  

12

21)c(
22 ZZZ

ZZZ
R

c

c
++
−+

= .                                           (2-79) 

The transmitted coefficient from a slow incident wave on a closed pore surface is: 
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The fast, pressure reflection coefficient from a slow incident wave off a closed pore sur-

face is: 
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2.8  REFLECTION AND TRANSMISSION COEFFICIENTS OF AN INCIDENT 

WAVE FROM A NON-POROUS MATERIAL TO SAND 

 Figure 2.14 is the impedance diagram for a fast wave incident on sand from a 

closed pore surface.  The impedance seen by the incident wave is: 

21 ZZZ += .                                                     (2-82) 

The transmission of the fast wave is: 
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The transmission of the slow wave is: 
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Reflection back into the closed pore material: 
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2.9  SUMMARY OF PRESSURE COEFFICIENTS 

 The Tables 2.1 and 2.2 summarize the pressure coefficients.  The energy balances 

for these coefficients, i.e., pressure times velocity of the incident wave equals pressure 

times velocity of the response waves, e.g., 
( ) ( )

w

w
ww

Z
T

Z
R

Z
R

Z

2
1

2

2)(
12

1

2)(
11

1

1 ++= .  Also the pres-

sures on each side of the interface are equal, i.e., one plus reflected equals transmitted, 

e.g., w
ww TRR 1

)(
12

)(
111 =++  (given P1 + P2 = 1).  Appendix B numerically checks parts of 

Table 2.1.  The closed pore table (Table 2.2) can also be calculated from the open pore 

table by using the effective pressures for closed pore, eqs. (2-52) and (2-53). 

 Pressure coefficients are used in the next chapters where different combinations 

of acoustic measurements are taken to extract impedances, effective densities, wave 

speeds, effective pressures, mode shapes, and intermediate moduli.  Only four of the 18 

pressure coefficients (Rcc, T1c, Tc1, and R11) derived are used in this experiment.  The 

other 14 coefficients are included only for completeness. 
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Chapter 3: 
ACOUSTIC MEASUREMENTS 

 

 The Applied Physics Laboratory has an acoustic water tank system suitable for 

measuring pressure amplitudes of waves transmitted and reflected through various me-

dia.  In this chapter, specifications are reviewed, reflection equations are derived, and 

frequency measurements are discussed. 

 

3.1  SPECIFICATIONS 

The water tank is 1.6 m deep, 2.3 m diameter, and holds 5000 liters of water.  The 

tank has a lid that can be sealed and a vacuum pump can be used to de-gas the contents in 

the tank.  The tank has a piping and filter system that can recirculate and purify the wa-

ter.  A resistivity probe monitors purity and indicates when the filters need to be changed.  

With the de-gassing and purifying systems the water is “pure” and the sand is bubble 

free.  The tank has a positioning system for the transmitter and receiver with an accuracy 

of about 25 µm and a computer based measuring system including a data acquisition sys-

tem and waveform generator.  The data acquisition employs a 12 bit analog-to-digital 

converter and samples at 10 MHz.  An overhead electric crane handles all heavy items 

going in and coming out of the tank. 

 The pulses were shaped so that the residual ringing of the transducer was actively 

canceled (see Appendix G).  Return pulses were windowed with a Gaussian window 30 

µs wide.  Measurements of each surface were taken at 100 different locations with 100 

samples at each location.  The raw data shown in Figs. 3.2, 3.4, 3.6, and 3.8 are the co-

herent time averages of 100 samples at 100 locations (10,000 total samples). 

 The sand used was Ottawa sand, with an average size of 279 µm and a standard 

deviation of about 100 µm.  Appendix H has a more detailed analysis of sand size and 

composition. 
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3.2  REFLECTION EQUATIONS 

 A reflection ratio technique was used to extract desired information.  The strategy 

behind the reflection ratio method is to form a ratio that removes most unknowns from 

measured reflections.  Measurements were taken so that two different acoustic pulses had 

exactly the same propagation path but different reflection surfaces so that dividing the 

two acoustic pulses factored out all unknowns in the transmitter’s signal, the acoustic 

path, and the hydrophone’s reception, leaving only information about the surfaces.  

Jumping ahead a little, if the reflection from the second surface of acrylic-sand, r2s, in 

Fig. 3.1 is divided by the reflection of the second surface of acrylic-air, r2air, in Fig. 3.3 

what remains is only information about the second surface.  Mathematically eq. (3-3) is 

divided by eq. (3-2) and what is left is eq. (4-1), which is greatly simplified and has only 

two unknowns.  These reflection ratios were then used to find selected acoustic parame-

ters in Chapter 4.  To this end, sand was held in a tray where the transmitter and receiver 

could be positioned below the tray.  Then the top surface, of the sand or the tray, could 

be changed without disturbing the path.  Plans of the tray and lid are shown in Appendix 

F. 

 The analysis in Chapter 4 shows there are 14 unknowns with 4 equations from 

reflection ratios and 10 other supporting equations.  The 4 equations from reflection ra-

tios were taken from 6 different interfaces, which are:  (1) water-acrylic, (2) acrylic-air, 

(3) acrylic-sand, (4) sand-air, (5) sand-Ethafoam, and (6) sand-water. 

The complex reflection amplitude from the first surface of acrylic (water-acrylic) 

is (e.g., Fig. 3.1): 

( ))(

1
1 exp a

ww
wa

wa

a

t
a dik

ZZ
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d
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R −
+
−

= .                                     (3-1) 

R1a is the Fourier Transform of r1a (Fig. 3.2), At is the pressure amplitude a unit distance 

from the acoustic center, whose distance from the interface is d1a/2.  Za is the impedance 

of the 4-inch acrylic, Zw is the impedance of water, kw is the wave number of water, and 

dw
(a) is the distance the sound travels through water to the acrylic surface and back.  Due 

to the mechanics of the transducers d1a may not equal dw
(a).  Thorsos et al [40] shows eq. 
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(3-1) is a good approximation when dw
(a)/2 is much larger than the wavelength (dw

(a)/2 

approximately 0.127 m, wavelength approximately 0.006m). 

Assuming the impedance of air is very small compared with acrylic, the reflection 

from the second surface with air (acrylic-air) is (Fig. 3.3): 

( ) ( ) ( )aa
a

ww
wa

w

wa

at
air tkidik

ZZ
Z

ZZ
Z

d
A

R 2expexp
2

1
2 )(

2
2 −−

+
−

+
=          (3-2) 

Where d2 is a transmission loss factor and can be considered as twice the distance from 

the “virtual” acoustic center to the second acrylic surface.  This is not equal to the dis-

tance from the transducer to the second acrylic surface because the propagation through 

two media forms a different focusing point.  The wave number of the acrylic is ka, and 

the thickness of the acrylic is ta.   

The reflection from the second surface with sand (acrylic-sand) is (Fig. 3.5): 
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Where (Rcc)a is the reflection of a wave from a closed pore material back to the closed 

pore material from a closed pore-sand interface where acrylic is the closed pore material.  

Rcc is taken from Table 2.2.   

The reflection of the third surface with water (sand-water) is (Fig. 3.1): 
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Where d3 is a transmission loss factor, (Tc1)a is the transmission coefficient of a wave 

from a closed pore material to a fast wave in sand where the closed pore material is 

acrylic, (T1c)a is the transmission coefficient of a fast wave from sand to a closed pore 

material where the closed pore material is acrylic, R11
(w) is the reflection of a fast wave 

back to a fast wave from a sand-water interface.  Tc1 and T1c are taken from Table 2.2.  

R11
(w) is taken from Table 2.1. 

 The third surface with Ethafoam (sand-Ethafoam) is (Fig. 3.5): 
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Where (R11
(c))E is the reflection of a fast wave to a fast wave from a sand-closed pore in-

terface where Ethafoam is the closed pore material.  R11
(c) is taken from Table 2.2.   

The third surface with air (sand-air) is (Fig. 3.7): 
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Where ts is the thickness of the sand. 

 Reflection ratios are obtained with the lid (2 inch acrylic and Ethafoam) on and 

off.  The weight of the lid underwater with Ethafoam attached is 2.641 kg.  The contact 

area of the lid is 0.4560 m2.  This gives an overburden pressure equivalent to a depth of 5 

mm of water saturated, buoyant sand.  The resulting small stress should not influence the 

reflection ratios. 

 

3.3  FREQUENCY MEASUREMENTS 

 In the following chapters the frequency domain reflections, R, are the Fourier 

transforms of the time domain reflections, r.  The reflection data for each location were 

averaged coherently in the frequency domain of 100 transmissions. 
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Chapter 4: 
ANALYSIS 

 

 This chapter uses the theory in Ch. 2 and the measurements in Ch. 3 and solves 

for various physical parameters and acoustical properties, which include:  fast and slow 

impedances, fast and slow wave speeds, fast and slow effective densities, fast and slow 

effective pressures, fast and slow mode shapes, the three intermediate moduli, and a term 

that will be called the mass factor, which is a combination of viscosity and tortuosity 

terms.  But the measurements for three other parameters, the sand frame modulus, sand 

particle modulus, and shear modulus, were not made successfully and the reasons are 

discussed.  Other parameters that were measured for this chapter’s analysis include:  the 

density of the water saturated sand, the density of the sand particles, the impedance of the 

acrylic, the impedance of the Ethafoam, the thickness of the sand, the porosity of the 

sand, and the volume of the water saturated sand. 

 

4.1  FAST AND SLOW WAVE IMPEDANCES 

Reflection ratios are used to calculate the fast and slow wave impedances.  The 

use of reflection ratios uses relative measurements and removes the need for measuring 

absolute phases and amplitudes (calibrating the transducers and compensating for propa-

gation effects).  From the reflections, the fast and slow wave impedances are calculated 

by the following formulas.  The pressure reflection coefficient ratio of the second surface 

is (combine eqs. (3-3), (3-1), and (3-2)): 
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The subscripts I and II represent acoustic pulses in which the transducer generated ampli-

tude, At, may be slightly different.  R2air and R2s are divided by R1a to normalize the am-

plitudes.  The acoustic centers and distance traveled through water were held the same.  

Unfortunately phase measurements were not accurate.  That is why the absolutes of the 
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reflections and the negative in front of the right hand side are used in eq. (4-1).  It is felt 

the phases were not accurate because of possible disturbances of the top sand surface 

(Ethafoam on and off).  The wavelength of sound in sand was 6.6 mm so a 0.55 mm 

change in sand thickness (travel distance of 1.1 mm) would make a 60° difference in 

phase.  The error from taking absolute reflections is estimated in Appendix C.  Also the 

pressure reflection coefficient of the third surface is (combine eqs. (3-5), (3-1), and (3-

6)): 
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where ZE and Za are measured in Appendix A.  From eqs. (4-1) and (4-2), the imped-

ances of the fast and slow waves are: 
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 The fast and slow impedances were measured in 100 different locations.  The av-

erage fast and slow impedances and their standard deviations are shown in Fig. 4.1.   

The bands or tolerances on the following plots are all sample standard deviations 

and not expected error.  At band center (250 kHz) the measurement errors (Appendix C) 

are about one-third as large as the observed fluctuations in measurements; therefore this 

fluctuation must be ascribed to spatial variability of the sand sample.  At the band edges 

(150 kHz and 350 kHz, the pulse has a bandwidth of 200 kHz), however, the fluctuations 

become larger and in some cases even erratic.  This is from system noise because of the 

low signal-to-noise ratio at the edges.   
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 At 250 kHz, the fast and slow wave impedances are: 
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As can be seen, the impedance of the slow wave is consistent with zero.  This plot does 

not support the existence of the Biot waves. 
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Figure 4.1 
Impedances of Fast and Slow Waves 
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4.2  WAVE SPEEDS AND MODAL MASSES 

 The fast wave number is calculated from eqs. (3-2) and (3-6): 
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Because the natural logarithm of a complex number is the logarithm of the absolute value 

plus i times the angle of the complex number, and the wave phase comes from the imagi-

nary part of i times the wave number, the real part of the fast wave number is: 
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where the thickness is ts = 1.008 in or 0.02560 m.  Using MatLAB, k1 (as a function of 

frequency) is “unwrapped” and adjusted so that its intercept is zero.  The fast wave speed 

is: 

1
1

2
k

fc π= ,                                                        (4-9) 

which is shown in Fig. 4.3. 

 The modal mass (effective density) of the fast wave is: 

1

1
1 c

Z
=ρ .                                                       (4-10) 

 The density of the water filled sand is: 

w

w
s
V

m ρρ +=
)(

                                               (4-11) 

and is plotted in Fig. 4.2.  In eq. (4-11), ms
(w) is the buoyant weight of the sand, V is the 

total volume of the water filled sand, and ρw is the density of water.  The diameter and 

thickness values are averages at 100 different locations measured to the nearest 0.001 in. 
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 The density and speed of the slow wave are: 

12 ρρρ −=                                                      (4-12) 
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 The magnitudes of the modal densities computed from eqs. (4-10) and (4-12) and 

their standard deviations are shown in Fig. 4.2.  The wave speeds, eqs. (4-9) and (4-13) 

and standard deviations are shown in Fig. 4.3.  Porosity and sand density, which will be 

used later, are: 

0.00020.3500
kg004.0076.23sandofmass

1
)(

±=
±==

−−=

β

ρ
β

s

w

w
ss

m
V

mm

                 (4-17) 

3)( 22673
m
kg

mm
m

w
ss

sw
s ±=

−
= ρρ .                                    (4-18) 

The sand density compares to 2650 kg/m3 commonly used for silica. 
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 The densities are: 
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The fast and slow effective density numbers in eq. (4-14) are at 250 kHz.  As can been 

seen, the density of the fast wave is 89% + 3% of the total density.  The difference be-

tween the total density and the fast effective density is 3.9 standard deviations.  This fact 

indicates the existence of Biot waves in water-saturated sand.  This compares favorably 

with Williams [42] who predicts a fast effective density that is 85% of total density (see 

Table 5.2). 
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 At 250 kHz the fast and slow wave speeds are: 
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This is the first time the speed of the slow wave has been bounded in sand.  The speed of 

the slow wave is consistent with zero.  But this is to be expected since Z2 is consistent 

with zero. 

 The fast wave to water speed ratio is: 

11.1
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4.3  EFFECTIVE PRESSURES 

 The effective pressures are calculated from the reflection ratio of the third surface 

consisting of sand-water and the third surface consisting of sand-air (combine eqs. (3-4), 

(3-1), and (3-6)): 
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with Zw = 1.48214e6.  Also: 
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Solve for P1: 
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The plus is used in front of the radical because the answer for a negative radical 

leads to an inconsistency in the mode shape calculation.  In the next step, mode shapes 

are calculated and a negative radical produces a fast wave mode shape of one, i.e., B1/A1 

= 1.0 + 0.5.  Substitute B1/A1 = 1 back into eq. (2-46) the modal mass becomes 2087 

rather than 1850.  Effective pressures and their standard deviations are shown in Fig. 4.4. 
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The effective pressures at 250 kHz are: 
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The effective pressure of the slow wave is consistent with zero.  The measurement of ef-

fective pressures neither supports nor denies the existence of Biot waves. 

 

4.4  A SECOND LOOK AT THE PROPERTIES OF THE FAST WAVE 

 The effective density of the fast wave being smaller than the total density of the 

water-saturated sand is the only indication of the existence of Biot waves.  The two other 

measured parameters that might confirm Biot waves, the slow wave impedance and slow 
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wave effective pressure, are zero within the standard deviation.  The fast density is calcu-

lated from impedance and speed.  The importance of these parameters (fast wave imped-

ance and fast wave speed) justifies another look.   

Fig. 3.4 shows the reflection from the second surface, which is acrylic-air (r2air), 

at 41092.0 −⋅  sec.  But the reflection from the second surface in Fig. 3.2, acrylic-sand 

(r2s), at the same time is practically non-existent.  This implies the total impedance of the 

sand is equal to the impedance of the acrylic.  In a closed pore situation, the total imped-

ance of the sand is equal to the impedance of the fast wave plus the impedance of the 

slow wave.  Therefore the impedance of the fast wave should be slightly less than the 

impedance of the acrylic.  The measured impedance of the acrylic is ,msPa1017.3 6 ⋅⋅  

see eq. (A-6).  Ref [27] measures the speed of sound in cast acrylic at 2705 m/s and the 

density to be 1181 kg/m3, which makes the impedance 61019.3 ⋅ .  The measured imped-

ance of the fast wave in this report is smaller at s/mPa1007.3 6 ⋅⋅ , which is consistent 

with expectations. 

 The speed of the fast wave in Fig. 4.3 was found to be c1 = 1654 m/s by phase 

measurements in the frequency domain.  In the time domain the reflection from the third 

surface in Fig. 3.6, which is a sand-Ethafoam interface (r3E), arrives at a time of 
41023.1 −⋅  sec.  This makes the time difference (r3E minus r2air, r2air from above) of 
41031.0 −⋅  sec.  The distance traveled is 2 times 0.02560 m, which gives a wave speed of 

1650 m/s, consistent with the frequency domain result. 

It can be concluded that the measured values for the fast wave impedance and 

speed of the fast wave are reasonable and consistent with expectations. 
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4.5  MODE SHAPES 

 Fig. 4.5 is a model of a closed pore-sediment interface for the first mode.  If the 

incident and reflected waves on the interface have a combined amplitude of one (which 

makes the first mode displacement u1 = 1·exp(i(ωt – k1z)) ), then from eqs. (2-26), (2-27), 

(2-48), and (2-49): 

( ) 111
~1 PBA =+− ββ ,                                                 (4-23) 

and likewise: 

( ) 222
~1 PBA =+− ββ .                                                (4-24) 

The participation factors, 1
~P  and 2

~P , are independent of boundary conditions but they 

just happen to be (luckily) numerically equal to the open pore effective forces, P1 and P2, 

eq. (4-22).  Getting back to the closed pore interface, A1 + A2 = B1 + B2, which means 

there is no relative movement between sand and fluid in the sediment making viscous 

forces and tortuosity of the fast wave cancel viscous forces and tortuosity of the slow 

wave at the surface.  Therefore the mass that moves is: 

( ) 111 1 ρβρρβ =+− fs BA                                         (4-25) 

( ) 222 1 ρβρρβ =+− fs BA .                                       (4-26) 
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At 250 kHz the fast and slow mode shapes are: 
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Mode Shapes 

Fluid Amplitude divided by Sand Ampli-
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The fast wave mode shape is 3.2 standard deviations from one and helps support the ex-

istence of Biot waves. 

The fast wave mode shape in Fig. 4.6 is an important measurement in this disser-

tation.  This result means that the water in the sediment oscillates with an amplitude (and 

velocity and acceleration) 2.2 times the amplitude of the sand during the passing of a 

sound wave.  A difference in vibration amplitudes between sand and fluid is one of the 

key properties of a Biot wave.  This fact gives a clearer understanding of the physics of 

sound waves propagating through sandy sediment more than any other parameter meas-

ured in this dissertation.  

 

4.6  TORTUOSITY AND VISCOSITY 

 The tortuosity and viscosity terms always appear together and cannot be solved 

for separately.  Eq. (2-14) can be rewritten: 

( )















−

−+−−
=
















B
A

c
B
A

RQ
QP

f

ffs

ααβρ
αβραβρρβ

~~
~~12 .                 (4-31) 

Where the “mass factor” is (units of mass or density): 

ω
αβρα Fif −=~                                                 (4-32) 

and will be solved for in the next section. 

 

4.7  MODULI 

 From eq. (4-31) P, Q, R, and α~  can be solved for: 
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The intermediate moduli are shown in Fig. 4.7.  The mass factor is shown in Fig. 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At 250 kHz values for the moduli are: 

( ) Pa1045.069.2 9⋅±=P                                         (4-34) 

( ) Pa101.17.9 8⋅±=Q                                         (4-35) 

( ) Pa100.18.4 8⋅±=R .                                         (4-36) 

The coupling modulus, Q, is 8.8 standard deviations from zero, which helps support the 

existence of Biot waves. 
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At 250 kHz the mass factor is: 

kg110340~ ±=α .                                                (4-37) 

Using the known values of porosity and water density eq. (4-32) becomes: 

ω
αα Fi−≅ 349~ .                                                  (4-37a) 

If α = 1 and F = 0, i.e., no tortuosity or viscous effects, then α~  in eq. (4-37a) is 0.08 

standard deviations from eq. (4-37).  This agrees with an experiment previously refer-

enced, [33], which concluded “attenuation shows no correlation with the viscosity” of the 

fluid in unconsolidated sand.  
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Note that up to now all graphed parameters are measured.  Starting with the pres-

sure reflection pulses and ending with the generalized moduli and mass factor, all math 

and theory (assuming the equations of motion and boundary conditions are true) are rig-

orous.  But the following sand, frame, and shear moduli formulas are “semiphenome-

nological” [20] and not rigorous. 

 From eqs. (2-5) and (2-4) the sand and sand frame moduli are: 
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K
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The modulus of water, Kw, is ( ) ( ) 922 102012.201.9981.1485 ⋅==wwc ρ  Pa at o9.20 C. 

 From eq. (2-3) the shear modulus is: 
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Moduli at 250 kHz are: 

( ) Pa101.33.7 9⋅±=sK                                          (4-41) 

( ) Pa105.70.9 8⋅±=N                                          (4-42) 

( ) Pa103.76.5 8⋅±−=bK                                       (4-43) 

These calculations do not appear correct.  Ks is 9 standard deviations lower than 

the recognized value for sand modulus (about 36 GPa [32]).  It is interesting that Choti-

ros [13] also calculated a sand modulus of Ks = 7 GPa using a numerical inversion tech-

nique from measured parameters (he concluded 7 GPa was low).  The formulas for the 

generalized moduli, eqs. (2-3), (2-4), and (2-5), assume the bonding of the grains to be of 

the same material as the grains, ref. [20] p. 558.  This assumption may not be correct for 

unconsolidated sand.  The generalized moduli formulas appear correct when the grains 

are bonded [22], but the “bonding” of sand grains may include sliding friction and/or a 

fluid-reinforced frame [7, 11].  Finding good formulas for intermediate moduli of sandy 

sediments is a task for future work. 
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4.8  OPEN PORE PRESSURE REFLECTION COEFFICIENTS 

 The open pore pressure reflection coefficient, Table 2.1 is (Fig. 4.9): 
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At 250 kHz: 

11.034.0 ±=wwR .                                                  (4-45) 

An estimate of the reflection coefficient using the average Z1, which is related to 

the effective density method [42], is: 
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The conventional reflection coefficient using the density of the water saturated 

sand and the speed of sound in sand: 

40.0
1

1 =
+
−

=
w

w
Zc
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R
ρ
ρ

.                                                  (4-47) 

These reflection coefficients compare to a reflection experiment Chotiros et al. 

[12] did on sandy sediment.  His reflection loss was 11 + 2 dB (Rww = 0.28 + 0.08), to be 

compared to a computed conventional reflection loss of 8 + 1 dB (R = 0.40 + 0.05). 
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Chapter 5: 
DISCUSSION 

 

 This was an experimental dissertation to help understand the physics of sound 

propagating through sandy sediments.  The measurements, which were obtained through 

a reflection ratio technique, include acoustic impedances, effective densities, waves 

speeds, effective pressures, mode shapes, intermediate moduli, and pressure reflection 

coefficients.  A lumped parameter model was developed to help aid in the interpretation 

of the measurements.  The results show that the effective density of the fast wave is less 

than the total density of the water-saturated sand.  This fact points to the existence of 

Biot waves in unconsolidated sand. 

Three characteristics of a fast Biot wave are that it produces different water/sand 

oscillation amplitudes, that it does not use the full inertial energy in the sediment, and it 

has a different phase speed from its slower Biot wave even though both are compres-

sional waves traveling through the same medium. 

 

5.1  COMPARISONS 

In the section that follows selected parameters are calculated from Biot theory at 

250 kHz using published input parameters and compared to parameters measured from 

this experiment.  Williams’ parameters, ref. [42] in Table 5.1 are used to calculate se-

lected parameters that are compared to parameters measured in this experiment.  The 

comparisons are tabulated in Table 5.2.  The deviations in Table 5.2 are the number of 

standard deviations the measured differs from theoretical.  No deviations were listed for 

mechanically measured parameters.  As previously mentioned the sand modulus is over 9 

standard deviations lower than expected, presumably due to incorrect intermediate 

moduli formulas.  The result of this is the large deviation of the fast wave speed. 

 The fast effective mass using Williams’ parameters and lumped parameter model 

is (Table 5.2): 

31 m
kg5.62.1692 i−=ρ                                               (5-1) 
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This compares with the effective mass using Williams’ parameters and effective density 

method [42]: 

3m
kg2.12.1674 ieff −=ρ                                                 (5-2) 

The sign on the imaginary part is negative because of the forms of the solutions assumed, 

eqs. (2-21) and (2-22).  The difference between eqs. (5-1) and (5-2) is due to the ap-

proximations used in [42]. 

 

Table 5.1 
Williams’ Parameters ref. [42] 

Physical Constants Symbols Units Values 

Permeability, see note 1. k m2 1e-10 

Porosity β -- 0.40 

Density of fluid ρf kg/m3 1000 

Density of sand grains ρr kg/m3 2650 

Bulk modulus of grains Ks Pa 3.6e10 

Bulk modulus of fluid Kw Pa 2.25e9 

Bulk modulus of frame, see note 2. Kb Pa 4.4e7 + i2.0e6 

Fluid viscosity η Ns/m2 1e-3 

Shear modulus, see note 2. N Pa 2.61e7 + i1.24e6 

Virtual mass for liquid (tortuosity) α -- 1.25 

Pore size (radius) a m 

β
αk8  

Notes: 
1.  Wave number and permeability both use k. 
2.  The signs on the imaginary parts are positive because of the forms of the solu-
tions assumed, eqs. (2-21) and (2-22). 
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Table 5.2 
Comparisons at 250 kHz 

Parameter 

(Symbols) 

Measured Williams’ 

Parameters [42] 

Deviation 

See note 1 

Fast Impedance             (Z1) (3.072 + 0.097)e6 (2.967 – i0.005)e6  -1.1 

Slow Impedance           (Z2) (6.2 + 8.8)e4 (4.66 + i0.26)e4 0.2 

Total Density                    (ρ) 2087 1990 --- 

Fast Effective Density    (ρ1) 1860 + 58 
89%+3% of total 

1692.2 - i6.5 
85% of total 

-1.3 
dev. of % 

Slow Effective Density   (ρ2) 227 + 58 
11%+3% of total 

297.5 + i6.5 
15% of total 

1.3 
dev. of % 

Fast Wave Speed           (c1) 1654 + 6 1753.4 + i3.8 see note 2 

Slow Wave Speed         (c2) 170 + 560 156.7 + i5.4 -0.02 

Fast Effective Force      (P1) 1.044 + 0.046 1.0029 + i0.0002 -0.9 

Slow Effective Force    (P2) -0.044 + 0.046 -0.0029 – i0.0002 0.9 

Fast Mode Shape     (B1/A1) 2.20 + 0.37 2.100 + i0.036 -0.3 

Slow Mode Shape    (B2/A2) -2.37 + 0.47 -1.5235 – i0.0008 1.8 

Intermediate Modulus    (P) (2.69 + 0.45)e9 (1.923 + i0.003)e9 -1.7 

Intermediate Modulus   (Q) (9.7 + 1.1)e8 (1.2320 - i0.0001)e9 2.4 

Intermediate Modulus    (R) (4.8 + 1.0)e8 8.2300e8 + i7e3 3.4 

Mass Factor                  (α~ ) 340 + 110 511 – i12 1.6 

Sand Modulus               (Ks) (7.3 + 3.1)e9 3.6e10 9.3 

Frame Modulus            (Kb) (-5.6 + 7.3)e8 (4.4 + i0.2)e7 0.8 

Shear Modulus               (N) (9.0 + 7.5)e8 (2.61 + i0.12)e7 -1.2 

Porosity                          (β) 0.35 0.40 --- 

Sand Density                 (ρs) 2673 2650 --- 

Water Speed                    (cw) 1485 1500 --- 

Note 1:  deviation = (Williams’ minus measured)/standard deviation 

Note 2:  A better comparison might be the fast speed to water speed ratios.  For Meas-

ured this is 1.11.  From Williams’ parameters it is 1.17.  A difference of 5%. 
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 Table 5.3 shows the units of the parameters. 

 

Table 5.3 
Parameter Units 

Parameter Symbol Continuous Units Lumped Units 

Fast Impedance Z1 Pa·s/m Ns/m 

Slow Impedance Z2 Pa·s/m Ns/m 

Total Mass ρ kg/m3 kg 

Fast Effective Mass ρ1 kg/m3 kg 

Slow Effective Mass ρ2 kg/m3 kg 

Fast Wave Speed c1 m/s m/s 

Slow Wave Speed c2 m/s m/s 

Fast Effective Force P1 Pa/Pa N/N 

Slow Effective Force P2 Pa/Pa N/N 

Fast Mode Shape B1/A1 m/m m/m 

Slow Mode Shape B2/A2 m/m m/m 

Intermediate Modulus P Pa N/m 

Intermediate Modulus Q Pa N/m 

Intermediate Modulus R Pa N/m 

Mass Factor α~  kg/m3 kg 

Sand Modulus Ks Pa N/m 

Frame Modulus Kb Pa N/m 

Shear Modulus N Pa N/m 

Porosity β m3/m3 m/m 

Sand Density ρs kg/m3 kg 
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5.2  SIMPLIFIED EQUATIONS OF MOTION 

 At higher frequencies (250 kHz) for water-saturated sand at normal incidence the 

equations of motion, eqs. (2-1) and (2-2) reduce to (no viscous or tortuosity effects): 
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 These simplified equations only use seven of the 13 Biot parameters listed in Ta-

ble 5.1:  β, ρf, ρr, Ks, Kw, and Kb (complex counts as two). 

 

5.3  FUTURE WORK 

 Future work should include (1) adding shear displacements to the lumped pa-

rameter model (allowing for angle of incidence), (2) deriving good intermediate moduli 

formulas, (3) using the reflection ratio technique on a different unconsolidated medium 

like glass beads.  This may help to derive good moduli formulas.  (4) The development 

of a “calibrated” piece of material, e.g., cast acrylic, that can be taken into the field and 

put on top of the sand.  With a transducer and receiver mounted a fixed distance from the 

acrylic, coherently averaged fast wave impedances can be measured (may have to as-

sume slow wave impedances are small).  That way, together with the speed of sound, ef-

fective densities of the sediment can be measured in the field.  

 

5.4  CONCLUSIONS 

 This dissertation is a data point in favor of Biot waves existing in sandy sedi-

ments because (1) the fast wave effective density is less than the total density, (2) the fast 

wave mode shape is not one, and (3) the coupling modulus, Q, is not zero.  However, 

other measured parameters, e.g., slow wave impedance and speed, slow wave effective 

pressure, tortuosity and viscous effects, are consistent with zero and do not support the 

existence of Biot waves.  Even the Biot open pore pressure reflection coefficient is con-

sistent with the conventional pressure reflection coefficient. 
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The largest contribution toward understanding the physics of sound waves in 

sandy sediments is the measurement of mode shapes, which give relative oscillation am-

plitudes between the saturating fluid and solid particles.  The knowledge that the sand 

and fluid vibrate with different amplitudes helps explain how a sound wave propagates 

without using the full mass of the medium.  But the largest practical contribution is the 

measurement of the effective density of the fast wave.  Effective densities can be used for 

more accurate predictions of scattering [44]. 

This experiment supports the conclusions that subcritical penetration in sandy 

sediment is from scattering and not from the Biot slow waves [17, 26, 34].  This is true 

for two reasons.  The speed of the slow wave is essentially zero and the incident pressure 

wave does not excite the slow wave (participation factor is essentially zero).  In other 

words, no energy goes into a slow wave and if it did it would not propagate. 
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Appendix A: 
IMPEDANCES OF ACRYLIC AND ETHAFOAM 

 

A.1  IMPEDANCE OF ACRYLIC 

 The measurements and calculations for the impedance of the acrylic were accom-

plished using ratios of transfer functions.  The acrylic was purchased from Port Plastics, 

Tukwila WA under the product name of “Clear Acrylic.”  The transfer functions were the 

ratios of reflections shown in Figs. A.1 and A.2.  In these figures the transducer and re-

ceiver are in the water below the acrylic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The received pressure from the transmitter, reflected off the water-acrylic inter-

face, and back to the receiver is: 
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Figure A.1 
Schematic for Acrylic-Air Transfer Function 
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Schematic for Acrylic-Water Transfer Function 
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A is the complex pressure amplitude a unit distance from the acoustic center, d1 is the 

distance from the acoustic center, Za is the impedance of the acrylic, Zw is the impedance 

of water, kw is the wave number of water, and dw is the distance the sound travels through 

water to the acrylic surface and back.  Due to the mechanics of the transducers d1 may 

not equal dw.  R2air is: 
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Where d2 is the spreading loss factor, ka is the wave number of the acrylic, and ta is the 

thickness of the acrylic.  The reflection coefficient R2w is: 
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 The ratio of transfer functions for the acrylic-air surface is: 
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The subscripts 1 and 2 represent acoustic pulses, in which the transducer-generated am-

plitude, A, and the distance through the water, dw, may be slightly different from one 

setup to the next.  Also R2w and R2air are divided by R1a to make the reflection from the 

acrylic surface the t = 0 trigger.  Solving eq. (A-4) for Za: 
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The impedance and standard deviation at 100 locations of the 4” acrylic, Za, are shown in 

Fig. A.3.   
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 For the acrylic, at 250 kHz, the impedance is: 

( ) msPa1005.017.3 6 ⋅⋅±=aZ .                                       (A-6) 

As a comparison, ref. [27] measures the speed of sound in cast acrylic at 2705 m/s and 

the density to be 1181 kg/m3, which makes the impedance 3.19⋅106. 
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A.2  IMPEDANCE OF ETHAFOAM 

 Ethafoam is similar to Styrofoam.  Ethafoam is a little denser but is easier to 

work with and glue.  The transfer functions (ratios of reflections) are shown in Figs. A.1 

and A.4.   

 

 

 

 

 

 

 

 

 The ratio of transfer functions for the acrylic-Ethafoam surface is: 
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Where ZE is the impedance of the Ethafoam and Za is the impedance of the 4” acrylic.  

Solving eq. (A-7) for ZE: 
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The impedance of the Ethafoam, ZE, and its standard deviation are shown with in Fig. 

A.5.   
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Figure A.4 
Schematic for Acrylic-Ethafoam Transfer Function

R1a 
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 For the Ethafoam, at 250 kHz, the measured impedance was: 

( ) msPa102.21.1 4 ⋅⋅±−=EZ                                            (A-9) 

ZE is 0.5 standard deviations from zero.  A ZE of zero is used in the body of this report. 
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Appendix B: 
NUMERICAL CHECKS 

 

The lumped parameter method has two areas of new theory, where the final prod-

ucts are pressure coefficients and mode shapes; these two parameters are calculated from 

continuous and lumped parameter theory using Williams’ parameters.  Even though this 

is not a sufficient proof that the lumped and continuous parameter theories are equivalent, 

it shows the two methods are equivalent in the range of values measured in this experi-

ment. 

 Pressure coefficients computed using Johnson and Plona’s method [20] are calcu-

lated below and compared to pressure coefficients from the lumped parameter method, 

Table 2.1.  Also modes shapes from Biot theory, eqs. (2-18) and (2-19), are calculated 

and compared to modes shapes from the lumped parameter method, eqs. (4-27) and (4-

28).  All pressure coefficients and mode shapes are calculated using the input parameters 

of Table 5.1.   

As the incident pressure from the water acts upon the sediment, the force in the 

sand per unit area of sediment equals the force on the sand from the incident and re-

flected wave per unit area of sediment: 
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And likewise, the force in the fluid (the fluid in the sediment) per unit area of sediment 

equals the force on the fluid from the incident and reflected wave per unit area of sedi-

ment: 
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Another boundary condition is particle displacement below equals particle displacement 

above: 

( ) rifs uuuu +=+− ββ1 .                                       (B-3) 

The forms of the solutions are: 
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The five unknowns, A1, A2, B1, B2, and Ar, are solved in matrix form, assuming Ai = 1.  

The five equations are (B-1), (B-2), (B-3), (2-18), and (2-19), yielding 
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 The equation (B-3) was multiplied by 10e5 to keep the inversion in eq. (B-5) 

from becoming singular.  

The pressure reflection coefficient is 

r
i
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P
P
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The transmitted pressures coefficients of the fast and slow waves are: 
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 Pressure coefficient comparisons are in Table B.1. 
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Table B.1 
Comparisons of Calculated 

Pressure Coefficients 
Pr/Pi eq. (B-7) 0.32564926491560 – i0.00091523022991 

Rww eq. (2-57) 0.32564926491560 – i0.00091523022991 

   

σ1/Pi eq. (B-8) 1.32943502471988 – i0.00069866204680 

Tw1 eq. (2-59) 1.32943502471988 – i0.00069866204680 

   

σ2/Pi eq. (B-9) -0.00378575980428 – i0.00021656818311 

Tw2 eq. (2-60) -0.00378575980428 – i0.00021656818311 

 

 Mode shape comparisons (continuous eqs. (2-18), (2-19) and lumped eqs. (4-27), 

(4-28)) using input parameters in Table 5.1 are in Table B.2. 

Once again, even though these agreements in Tables B.1 and B.2 are necessary, 

they are not a sufficient proof that the lumped parameter method is equal to the continu-

ous parameter method.  It does show the two methods are numerically equivalent in the 

parameter range of interest. 

 

Table B.2 
Comparisons of Calculated 

Mode Shapes 
B1/A1 eq. (2-18) 2.10033988149722 + i0.03549735086698 

B1/A1 eq. (4-27) 2.10033988149741 + i0.03549735086701 

   

B2/A2 eq. (2-19) -1.52352553508303 - i0.00083813014479 

B2/A2 eq. (4-28) -1.52352553508303 - i0.00083813014479 
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Appendix C: 
ERROR ANALYSIS 

 

 All acoustically measured parameters were measured in 100 different locations.  

The bands or tolerances used in the plots in the body of this report are standard devia-

tions.  The following calculates the errors at the center-band frequency (250 kHz) and 

compares them to the standard deviations. 

 Three types of error are calculated, random, bias, and “absolute,” on Z1 and Z2.  

Random error of a random quantity is the standard deviation divided by the square root 

of the number of measurements.  So from eq. (4-5), the random error on the fast and slow 

wave impedances are 9700 and 8800 Paּs/m respectively. 

 The residual ringing of the transmitting transducer caused a bias error, see Ap-

pendix G.  Fig. C.1 is the pulse reflected from the water-air interface along with the en-

velope of the pulse for acrylic-air, r2air, see Fig. 3.4.  The envelope is placed at the same 

time the second pulse from the top acrylic surface would return.  The value under the en-

velope of interest is used for the bias errors for R3E_3air and R2s_2air in eqs. (4-3) and (4-4).  

The bias errors of Z1 and Z2 are calculated using the partial derivatives of eqs. (4-3) and 

(4-4) with respect to R3E_3air and R2s_2air and the bias errors of R3E_3air and R2s_2air.  The 

bias errors of Z1 and Z2 are 17,000 and 7500 Paּs/m respectively. 

 The “absolute” error arises from the absolute values used instead of the complex 

on the reflections in eqs. (4-1) and (4-2).  To obtain absolute errors, William’s parame-

ters are used to calculate complex Z1 and Z2, as in Table 5.2.  The complex reflections are 

calculated from eqs. (4-1) and (4-2), made into absolutes, and absolute Z1 and Z2‘s are 

calculated with eqs. (4-3) and (4-4).  The “absolute” errors are found to be 16,000 and 

21,500 Paּs/m respectively. 

 Assuming these errors are not correlated and can be added in quadrature, the total 

errors of Z1 and Z2 are 25,000 and 24,000 Paּs/m respectively (relative error 0.008 and 

0.39), compared to standard deviations of 97,000 and 88,000 Paּs/m respectively (rela-

tive deviation 0.03 and 1.4). 
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 The total errors are about one-third the standard deviations.  Therefore the stan-

dard deviations are mostly a measure of spatial variability of the sand sample.  
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Appendix D: 
SINGLE DEGREE-OF-FREEDOM LUMPED PARAMETER MODEL 

 

 The first part of this section shows that the motion from a lumped mass, linear 

spring model is identical to the motion of a particle in a continuous medium where there 

are no boundary effects.  The second part does the same for the boundary. 

 

D.1  HOMOGENEOUS (NO BOUNDARY EFFECTS) 

Start by taking a single degree-of-freedom system, i.e., only one wave traveling 

through the medium, and find the homogeneous solution, see Fig. D.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where Kℓ is the linear stiffness, ρℓ is the lumped mass.  The conversions of continuous 

parameters to lumped parameters are: 
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Figure D.1 
Mass-Spring Model 
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Where τ is a time delay.   

 The motions of the masses u-1 and u0 and their differences are shown in Fig. D.2 

as a function of time. 
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The slope at the zero crossing for u-1 and u0 is Aω.  The amplitude at a time τ/2 

from the zero crossing is Aωτ/2 when τ is small.  The difference between u0 and u-1 is: 
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Likewise:                                      
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And:                                   ( ) ( ) ( )tiAuuuu ωτω exp22
1001 −=−−− − .                      (D-6) 

The equation of force on the mass at u0 is (exp(iωt) suppressed): 

( ) ( )[ ] 2
1001 ωρll AKuuuu −=−−− − .                                  (D-7) 

Substitute in eqs. (D-1), (D-2), and (D-5): 
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 The speed of the wave (c) is ∆z/τ, therefore: 

ρ
Kc = .                                                               (D-9) 

This is the speed of a wave in a continuous medium.  The speed of the wave is the 

same for a continuous medium as it is for a lumped medium given ∆z is much smaller 

than the wavelength. 

 

D.2  BOUNDARY 

 The pressure on the boundary (z = 0) for a continuous medium is the modulus 

times the first spatial derivative (strain). 
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This is assuming the movement of a particle in the continuous medium is of the form: 

( ))(exp kztiAu −= ω .                                                (D-11) 
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The force on the boundary for a lumped medium system is the stiffness times the 

difference in displacement of two points ∆z apart. 

( )
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Where:                                            k
cz

==
∆

ωωτ .                                                       (D-13) 

As ∆z → 0, and therefore as τ → 0, the pressure and the force on the boundary are 

the same.  As pointed out earlier stiffness (N/m) and modulus (N/m2), mass (kg) and den-

sity (kg/m3), force (N) and pressure (N/m2), viscous damping (Ns/m) and body viscous 

damping (Ns/m4), difference in displacement of two points (m) and strain (m/m), are 

used interchangeably.  Hopefully this does not cause too much confusion. 

 This appendix shows that the continuous medium and lumped medium are 

equivalent for a single degree-of-freedom system.  This dissertation assumes this equiva-

lency holds for multiple degree-of-freedom systems. 
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Appendix E:
DYNAMIC DESIGN ANALYSIS METHOD

Figs. E.1, E.2, E.3, and E.4 are copies of selected pages of Belsheim and

O’Hara’s NAVSHIPS 250-423-30, Shock Design of Shipboard Equipment, Dynamic De-

sign Analysis Method (DDAM), ref. [2].  DDAM analyzes shock on Naval ships from

non-contact explosions.  Belsheim and O’Hara were the first to derive expressions for

effective mass and participation factors.  Modal mass is also referenced in Clough and

Penzien [14] for earthquake analysis of structures.

Rewriting the effective mass from DDAM ([2] eq. (7)) and Clough and Penzien,

p. 559 [14] to include mass coupling (for the first mode only, second mode similar):
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Which is the same as eq. (2-46) if the mass matrix is:
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The DDAM participation factor ([2] eq. (6)) is:
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This is different than this dissertation’s participation factor.  To find the relation-

ship between the two find the displacement of the sand, mass 1, and fluid, mass 2, from a

first mode displacement of one:
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The displacement of the fast wave from a unit displacement of the first mode is:

( ) 21111 1
~

XXP bb +-=                                                          (E-5)

Which is this dissertation’s participation factor eq. (2-48).

The last column of the Modal Computation Table in Fig. E.4 contains what this

dissertation calls effective forces (Va is the input velocity).

One of the biggest differences in the mathematics between DDAM and Biot The-

ory is that the eigenvalues for DDAM are the natural frequencies squared, whereas in the

Biot Theory the eigenvalues are the wave numbers squared.

As mentioned earlier, DDAM had a big influence in developing the lumped pa-

rameter model.
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equipment. 
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U 

SHOCK DESIGN OF SHIPBOARD EQUIPMENT 
PART I - DYNAMIC DESIGN-ANALYSIS METHOD 

R. O.   Belsheim and G. J.   O'Hara 

INTRODUCTION 

During recent years the Bureau of Ships,  through its laboratories and 
contractors,   has carried out an extensive program to decrease vulnerability 
'of submarines and ships to underwater-explosion attack.    This vulnerability 
has been considered in terms of hull and equipment* shock damage,   each of 
which may cause ultimate loss of the ship (1).    Perhaps because shock 
dam^age is not as definite a concept as hull damage,   or because the war 
damage reports did not show it to be as damaging (2),   the experimental 

.research effort has been directed more toward the understanding of hull 
danriage.    A strong exception to this trend has been the design of nuclear 
power plant components,  which today are stronger on the average than other 
equipment as a result of extensive tests and resultant design procedures 
(3-9).    Another notable exception is the Polaris missile installation,  which 
is designed to protect against relatively severe shock motions,   even though 
the missile itself is very fragile (10).    Overall,  however,   recent predictions 
of damaging radii for pressure hull damage (11) and equipment shock damage 
(12) suggest that equipment is relatively more prone to damage in modern 
submarines.    A similar conclusion in the case of some surface ships,   i. e. , 
destroyers,   is found from study of results of recent tests in the Pacific 
(13).    Only full-scale tests on operational ships and submarines can give 
a definite evaluation of vulnerability. 

Even though many problems remain,   a considerable amount of research 
has been done and the authors believe information is available so that better 
design analyses can be made.    The purpose of this report is to review this 
material and to propose a dynamic design-analysis method for evaluating 
shock resistance of shipboard equipmient which is essentially linear and 
elastic and which does not rest on noise or vibration mounts which often are 
non-linear and/or will bottom.    All of the required information is not yet 
available,   since only realistic underwater explosion tests can give correct 
inputs,  but the missing information can be obtained.    It is not intended that 
this design analysis n^ethod supersede present laboratory shock-test and 
evaluation procedures,  which will always be desirable,  but it should help 

*Equipment,   as used here,   includes machinery,   electronic equipment,   and 
other items which are attached internally to the ship by some intervening 
structure; it does not include items subjected directly to the shock wave in 
the water. 

Figure E.3 
Author's Page of NAVSHIPS 250-423-30 
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<3 

Step 2 - Calculate the set of influence coefficients for these points and 
form the influence coefficient matrix. 

Step 3 - Using the method of matrix iteration,  find the mode shapes and 
natural frequencies of the first few modes,   say two or three,     (There is a 
numerical example worked out in Appendix A for the first three modes of a 
uniform cantilever beam. )    Of course the design analyst may use other proce- 
dures he is more familiar with.    For example,  formulas for the computation 
of the mode shapes and natural frequencies of a two degree of freedom system 
are given in Appendix B. 

Step 4 - For each separate mode "a" complete the following table: 

Modal Computation Table (Mode a) 

Mass 
Number Mass   =  Mi 

Mode       — 
Shape - -^ia MiXia MiXil MiXiaPaVa^^a * 

I Mj ^la ^l^ia ^l^ll MlXi^P^V^o,^ 

2 M2 ^2a MzXza. MzXza ^2X2aPaVa<"a 

n Mn Xna MnXna ^^n^na MnlTnaPaVat^a 

s MiXia MiXil MiXiaPaVaO^a 

Step 5 - Calculate the participation factors for each mode "a" 

X MiXia 

? ^^i. 
(6) 

Step 6 - Calculate the "effective mass" in each mode by means of the 
formula 

[XHXia] 
Ma =  Pa X MiXia = _ 

i 

*See Steps 5,  6,   7,   8,   9,   and 13. 

(7) 

24 

Figure E.4 
Modal Analysis of NAVSHIPS 250-423-30 
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Appendix F: 
PLANS OF TRAY AND LID 

The following AUTOCAD plans show the construction of the foundation, tray, 

and lid used in the reflection ratio method. Fig. F. 1 shows the assembly with the receiver 

and transmitter under the sand. Fig. F.2 is the tray that holds the sand. Fig. F.3 is the hd 

used when the Ethafoam is on the top surface of the sand. And Figs. F.4 and F.5 show 

the profile and plan view of the aluminum foundation. These items were constructed in 

the machine shop at the University of Washington's Apphed Physics Laboratory. 
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Figure F.5 
Plan View of Foundation 
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Appendix G: 
PULSE FORMATION 

 

 A pulse was needed that had no side lobes after 0.03 ms.  This is the time for 

sound to go through 4” of acrylic.  The desired received pulse, y2, eq. (G-1), is shown in 

Fig. G.1.  The desired pulse is comprised of a sine wave at 250,000 Hz with a Gaussian 

envelope.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equation for the desired received pulse centered at 0.35 ms is: 

( ) ( ) ( )tty ⋅⋅



 −⋅−= − 5e5.22sin10e6968.31035.0exp

23
2 π                          (G-1) 
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Fig. 5-1 Desired Received Pulse

y2

Figure G.1 
Desired Received Pulse
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 To find the transfer function of the system the transducers were excited with a 

pulse x1, centered at 0.05 ms, shorter in time than y2, hence with more frequency content. 

( ) ( ) ( )ttx ⋅⋅



 −⋅−= − 5e5.22sin10e6968.31005.04exp

23
1 π                         (G-2) 

The received signal from an excitation of x1 is y1.  The signal y1 is a signal reflected from 

a water-air interface with a travel distance selected so that the pulse returns at 0.35 ms.  

The goal is to manufacture an excitation signal for the transfer function 
1
1
x
y  that will pro-

duce the desired received signal y2.  This was done by converting x1, y1, and y2 into the 

frequency domain and finding the frequency content of x2. 

2
1

1
2 Y

Y
X

X =                                                            (G-3) 

Where X2 is the Fourier transform of x2, etc.  The frequency contents of x1 and y1 are 

shown in Fig. G.2. 

The forcing function fed into the transmitting hydrophone, x2, to produce the de-

sired received pulse, y2, is the inverse Fourier transform of X2.  See Fig. G.3. 

Using the excitation signal x2 the received pulse, y2rec, is close to the desired re-

ceived pulse, y1.  See Fig. G.4.  The received pulse is the coherent average of 100 sam-

ples reflected off a water-air interface. 
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Appendix H: 
SAND SIZE 

 

Sand size and other properties are listed below.  A thanks is given to Kevin 

Briggs of the Naval Research Laboratory (NRL) for providing the sand and the following 

properties.  The sand was obtained from Ward’s Natural Science Establishment, Inc., 

Rochester, NY, and has a product name of “Sand; Ottawa, Sea.”  The sand properties 

measured at NRL (from sand with the same product name) are: 

 

Phi size at percentage levels: 

5   16   25   50   75   84   95 

1.60  1.82  1.92  2.14  2.43  2.62  3.02 

 

Percentages of: 

Gravel   Sand   Silt   Clay. 

0.00   99.68   0.25   0.08 

 

Moment measures: 

Mean   S.Dev.  Skew   KG 

1.84   0.53   2.91   93.83 

 

Post-analytica1 weight: 129.66 

Note that phi units are logarithmic such that the grain size in mm, d, is related to 

the size, φ, in phi units through the expression: 

φ−= 2d                                                        (H-1) 
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Table H.1 
Sand Size Distribution 

phi 
Size 

Frac. 
Wgt. 

Frac. 
% 

Cum. 
% 

 phi 
Size 

Frac. 
Wgt. 

Frac. 
% 

Cum. 
% 

-4.00 0.000 0.00 0.00  1.75 10.939 8.44 10.01 

-3.75 0.000 0.00 0.00  2.00 29.125 22.46 32.48 

-3.50 0.000 0.00 0.00  2.25 40.853 31.51 63.99 

-3.25 0.000 0.00 0.00  2.50 20.163 15.55 79.54 

-3.00 0.000 0.00 0.00  2.75 12.474 9.62 89.16 

-2.75 0.000 0.00 0.00  3.00 7.290 5.62 94.78 

-2.50 0.000 0.00 0.00  3.25 3.887 3.00 97.78 

-2.25 0.000 0.00 0.00  3.50 1.713 1.32 99.10 

-2.00 0.000 0.00 0.00  3.75 0.472 0.36 99.46 

-1.75 0.000 0.00 0.00  4.00 0.277 0.21 99.68 

-1.50 0.000 0.00 0.00  4.50 0.101 0.08 99.75 

-1.25 0.000 0.00 0.00  5.00 0.031 0.02 99.78 

-1.00 0.000 0.00 0.00  5.50 0.031 0.02 99.80 

-0.75 0.000 0.00 0.00  6.00 0.031 0.02 99.83 

-0.50 0.007 0.01 0.01  6.50 0.031 0.02 99.85 

-0.25 0.000 0.00 0.01  7.00 0.031 0.02 99.87 

0.00 0.001 0.00 0.01  7.50 0.031 0.02 99.90 

0.25 0.030 0.02 0.03  8.00 0.031 0.02 99.92 

0.50 0.010 0.01 0.04  9.00 0.017 0.01 99.94 

0.75 0.197 0.15 0.19  10.00 0.017 0.01 99.95 

1.00 0.116 0.09 0.28  11.00 0.017 0.01 99.96 

1.25 0.142 0.11 0.39  12.00 0.017 0.01 99.97 

1.50 1.543 1.19 1.58  13.00 0.017 0.01 99.99 

1.75 10.939 8.44 10.01  14.00 0.017 0.01 100.00 

2.00 29.125 22.46 32.48      
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