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(4)     Introduction 

At present, biopsy is the gold standard in breast lesion characterization. However, the 

positive breast biopsy rate is only about 15-30%. This means that 70-85% of breast biopsies are 

performed for benign lesions. In order to reduce patient anxiety and morbidity, as well as to 

decrease health care costs, it is desirable to reduce the number of benign biopsies without 

missing malignancies. Mammography and sonography are two low-cost imaging modalities that 

may be improved so that radiologists can obtain more accurate diagnostic information to 

differentiate malignant and benign lesions. Computerized analysis of the lesions on these images 

is one of the promising tools that may improve the radiologists' accuracy in characterizing these 

lesions by providing a consistent and reliable second opinion to radiologists. 

In this project, our goal is to analyze volumetric images to improve the accuracy of computerized 

sonographic breast lesion characterization, and to combine these characterization results with 

those obtained by computerized analysis of mammograms. Computerized image analysis, 

feature extraction, and classification methods will be developed to characterize breast masses on 

three-dimensional or volumetric ultrasound images. The output of the classifier will be a 

computer rating related to the likelihood of malignancy of the mass. The accuracy of this rating 

will be studied by comparing it to the biopsy results. We will then combine this rating with a 

similar rating obtained by computerized analysis of the mammograms of the same patient. The 

combined classifier is expected to be more accurate than either classifier alone. 

(5)    Body 

In the current project year (9/6/02-9/5/03), we have performed the following studies: 

(A)      Collection of Database 
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(a) Volumetric sonograms: Up to the end of the second year of the project, have collected 

134 volumetric scans from 92 patients. We are working hard on reminding the 

radiologists to save these images and providing them feedback on the quality of the data 

that has been collected. 

(b) 2D sonograms: Since February 2002, we have collected 795 2D sonograms from the 92 

patients included in our volumetric sonogram data set. 

(c) Build a database of mammograms of the corresponding manmiograms: In the second year 

of the project, we have started collecting a database of mammograms corresponding to 

the 3D sonogram sets. From patient folders, we have selected mammograms that are 

closest in time to the acquisition of ultrasound images in our data set, and also prior to 

biopsy. Up to this point, we have digitized mammograms of more than 60 patients in our 

3D data set. 

(d) Identify and rank the lesions by radiologists: For the ultrasound data set, we have 

developed a graphical user interface (GUI) to facilitate the identification and rating of the 

lesions. An example of the GUI is shown in Fig. 1, The biopsied mass in each volume 

was identified by the expert radiologist. Dr. Marilyn Roubidoux, using clinical US and 

mammographic images to confirm that the 3D images contained the clinically suspicious 

mass. Four other radiologists ranked the lesions in terms of their shape, margins, 

echogenecity, through transmission, other findings (such as ductal extension and 

calcifications), likelihood of malignancy, and the overall impression. In order to ensure 

that all radiologists ranked the same lesion, an arrow pointing to the identified lesion was 

provided. The radiologists could navigate through the slices of the 3D set, adjust 

brightness and contrast, and view the images as a cine-loop with a desired delay between 

slices. 
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For the mammography data set, the expert mammographer in this project, Dr. Mark 

Helvie, has read cases from 60 patients, which involves the identification of the biopsied 

lesion, and its rating for malignancy and visibility. 

Fig. 1. The GUI developed for the identifying and rating the ultrasound lesions. The same GUI 

was used by the radiologists in the first part of the ROC experiment described in Section 

(C) for ranking the likelihood of malignancy of the lesions without CAD. 

(B)      Evaluation of Computer Classification Accuracy on the 3D Ultrasound Data Set 

As explained in our first yearly report, we developed computerized image segmentation, 

feature extraction, and classification methods for the 3D ultrasound data in the first year of the 
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project. In the second year of the project, we evaluated the developed computerized mass 

characterization method by (i) comparing its accuracy to that of experienced radiologists, and (ii) 

investigating its robustness with respect to the accuracy of the segmentation method. In the rest of 

this section, we summarize these two evaluation studies. For details on these studies, please refer 

to Appendix 5. 

Our data set for the evaluation consisted of 3D ultrasound images from 102 who had a solid 

mass deemed suspicious or highly suggestive of malignancy. AH patients underwent biopsy or 

fine needle aspiration as part of their clinical management. Fifty-eight masses were malignant and 

44 were benign. 

In the first evaluation study, we compared the accuracy of the designed computerized mass 

characterization method to that of four experienced breast radiologists (RAD1-RAD4), who were 

either fellowship-trained in breast imaging or had over 25 years of experience in breast imaging. 

All four radiologists were MQSA qualified and had mammographic and US interpretation 

experience ranging from 2 to 25 years (mean: 11.3 years). The location of the center of mass was 

displayed on each slice so that all the radiologists would rank the same mass if more than one mass 

existed in the volume. There was no time limitation for the radiologists to read a case. The case 

reading order was randomized for each radiologist. The malignancy rating was entered by means 

of a slide bar. Before participating in the study, the radiologists were trained on five cases that 

were not part of the data set of 102 cases. The classification accuracy was compared using the area 

under the receiver operating characteristic (ROC) curve, A^, as well as the partial area index, A^^"". 

A^*°" is defined as the area under the ROC curve above a sensitivity threshold of 0.9 (TPF^ = 0.9) 

normalized to the total area above TPF^, which is equal to (l-TPF^) [1]. 

The ROC curves for radiologists' malignancy ratings are shown in Fig. 2. The computer and 

radiologist A^ values and A^""' values are compared in Table 1. The area A^ under the ROC curve 
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for radiologists RAD1-RAD4 varied between 0.84±0.04 and 0.92±0.03, which are lower than or 

equal to that of the 3D computer classifier. The average A^ value, obtained by averaging the slope 

and intercept parameters (a and b in ROC analysis) of the individual ROC curves was 0.87. The 

difference between the A^ values of the individual radiologists and the computer did not reach 

statistical significance (p>0.05). The A^*°" value of the computer classifier was higher than the 

AJ°" values of all four radiologists, and achieved statistical significance for three of the four 

(p=0.02,0.04, and 0.008 for RAD 1, RAD2, and RAD4, respectively). 

0.2        0.4        0.6        0.8 

False-positive fraction 

Fig. 2. ROC curves for the computer and for the four radiologists who participated in the 

malignancy rating experiment. The difference between the computer's A^ value and that of 

any of the four radiologists did not achieve statistical significance. However, the computer 

classifier was significantly (p<0.05) more accurate than three of the four radiologists at 

high sensitivity (TPF>0.9). 
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A. ^(0.9, 

Computer classifier 0.92±0.03 0.65±0.09 

RADl 0.84±0.04 0.41±0.10* 

RAD2 0.86±0.04 0.37±0.11' 

RAD3 0.92±0.03 0.44±0.14 

RAD4 0.84±0.04 0.28±0.ir 

Table 1: The area under the ROC curve (Az), and the area under the ROC curve above a 

sensitivity threshold of 0.9 (A^^°") for the computer classifier and the four radiologists. 

The radiologists' results that are significantly (p<0.05) different from the computer 

results are noted with an asterisk. 

In the second evaluation study, we assessed the robustness of our computerized characterization 

method to the initialization of our segmentation technique. The active contour segmentation 

method that we developed in the first year of the project requires an initial boundary to start 

iterating towards the optimal contour. In our method, the initial boundary was defined by a 3D 

ellipsoid that approximated the mass shape. The ellipsoid was placed in the volume by one of 

the radiologists (RADl) using an interactive graphical user interface (GUI). The robustness of 

the 3D segmentation method to active contour initialization was studied by translating, rotating, 

and scaling the 3D ellipsoid. There are many possibilities as to how these three operations 

(moving, rotating, and scaling) can be combined to modify the initial ellipsoid. In Table 2, the 

classification results are presented when these three operations are performed one at a time. Row 

1 shows the A, value when the original ellipsoid is used. The ellipsoid was scaled in rows 2-3, 

translated in rows 4-6, and rotated in row 7. For the magnitudes of scaling, translation and 

rotation studied in Table 2, the variation of the A^ value was within two standard deviations of A^ 

value provided by the LABROC program [2]. We thus concluded that although the classification 
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accuracy depends on the initialization, the A^ value did not significantly deteriorate when the 

initial contour was scaled, rotated, or translated by a moderate amount. 

Scale Rotation (degrees) x-translation (pixels) y-translation (pixels) K 
1 0 0 0 0.92±0.03 

1.3 0 0 0 0.87±0.04 

0.8 0 0 0 0.89±0.03 

0 10 10 0.89±0.03 

0 10 -10 0.85±0.04 

0 -10 10 0.88±0.03 

0 -10 -10 0.87±0.04 

15 0 0 0.92±0.03 

Table 2: The dependence of the computer classification accuracy on the variation of the initial 

contour. The effects of three transformation parameters, namely, scaling, translation 

and rotation of the initial ellipsoid, was investigated by moving the initial ellipsoid 

using one of these three parameters at a time. A translation by ±10 pixels in the image 

plane corresponded to approximately ±1 mm. 

(C) The Effect of Computer-Aided Diagnosis on Radiologists' Characterization 

Accuracy 

We conducted an ROC study to investigate if the classifier developed in the first year of 

the project would improve radiologists' accuracy in differentiation of malignant and benign 

breast masses on ultrasound images. The data set for the ROC study consisted of the 102 

ultrasound volumes described in Section B. To ensure that all radiologists rated the biopsied 

lesion, the location of the lesion was identified with an arrow. The radiologists were free to 

eliminate he arrow once they recognized the lesion. Five MQSA radiologists participated as 

observers in the ROC study. Each radiologist read the cases first without CAD, immediately 
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followed by reading with CAD. When reading without CAD, a radiologist analyzed the mass in 

the 3D volume using the graphical interface shown in Fig. 1, and provided an estimate of the 

likelihood of malignancy. Subsequently, the radiologist was presented the computer malignancy 

score using the second page of the GUI as shown in Fig. 3, and had an option to revise his/her 

malignancy estimate. In order to enable the radiologists to calibrate the computer scores, two 

Gaussian curves were fitted to the score distributions for the malignant and benign cases in the 

data set, were displayed by the GUI. The reading order of the ultrasound volumes was 

randomized for each observer. The classification accuracy was quantified by using the area under 

ROC curve, Az. The statistical analysis was performed using the MRMC paradigm developed 

by Dorfman et al [3]. 

The computer classifier achieved an Az value of 0.92. The radiologists had an average Az of 

0.83 (range: 0.81 to 0.87) without CAD. The accuracy of every radiologist was improved when 

they read with CAD (range: 0.04 to O.ll), and the average Az of the four radiologists improved 

to 0.89 (range: 0.85 to 0.93). The improvement was statistically significant (p=0.006). The Az 

values of the radiologists without and with CAD are summarized in Table 3. 

Radiologist Without CAD With CAD 

1 0.84±0.04 0.89±0.03 

2 0.81±0.04 0.85±0.04 
■ 

3 0.87±0.03 0.91±0.03 

4 0.82+0.04 0.93±0.02 

5 0.83±0.04 0.90±0.03 

Average 0.83 0.89 

Table 3:   The Az values of the radiologists without and with CAD.   The radiologists were 

statistically significantly more accurate when the read with CAD (p=0.006). 
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Fig. 3.     The GUI page displayed for the radiologists when they ranked the likelihood of 

malignancy of the lesions with CAD. 

(D)      Combination of Computerized Classification Techniques Based on Mammograms 

and 3D Ultrasound Volumes for Improved Accuracy 

The data set used in this study consisted of US and mammogram images of biopsy-proven 

solid breast masses from 60 patients. Thirty of the masses were malignant and 30 were benign. 

The mammogram set of each mass included between one and three views. The steps in the 

computerized mammographic mass characterization method included automated mass 

segmentation, extraction of spiculation features, extraction of morphological features, performing 

the rubber-band straightening transform, extraction of run-length features, and design of a linear 
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discriminant classifier [4, 5]. We investigated three methods (A, B and C) for combining the 

features or scores from different mammographic views and the US volumes. Method A consisted 

of (i) using available mammographic views of a patient to design a view-based mammographic 

classifier, (ii) combining view-based mammographic scores into a case-based mammographic 

score, and (iii) combining cased-based scores from US and mammography. In methods B and C, 

we first combined the features from different mammographic views of the same patient into a 

case-based feature for the patient. In method B, case-based features from US and mammograms 

were combined into a malignancy score using a single classifier. In method C, case-based 

mammographic features were used to obtain a case-based malignancy score that was combined 

with the US score as in method A. The leave-one-case-out method was used to obtain test scores 

for the classifiers. Classifier scores were analyzed using the ROC methodology and the area A^ 

under the ROC curve. 

The A^ values of the classifiers based on US alone and mammography alone were 0.88±0.04 

and 0.84±0.05, respectively. In comparison, the average A^ value of four MQSA radiologists in 

characterizing the same 3D US data was 0.88. The A^ values of methods A, B, and C were 

0.91±0.04,0.9010.04, and 0.90±0.04, respectively. Using the scores obtained by method A, 40% 

of the benign masses could be correctly identified without missing a malignancy. However, none 

of the differences in the A^ values between any two of the classifiers reached statistical 

significance, possibly due to the limited size of the data set. 

(6)     Key Research Accomplishments 

•   Collect databases of 2D and volumetric ultrasound images and a database of corresponding 

mammograms (Tasks lb and Ic) 
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• Identify and rank the lesions for their visibility and likelihood of malignancy by radiologists 

(Task Id). 

• Compare computerized mass classification methods with radiologists' classification (Task 3) 

• Evaluate the effect of the developed classifier on radiologists' characterization of breast 

masses on ultrasound images (Task 3). 

• Perform   preliminary   studies   for   combining   the   manmiographic   and   sonographic 

computerized mass characterization methods (Task 4). 

(7)     Reportable Outcomes 

In the second year of the project, we have submitted three conference abstracts on computer- 

aided characterization of breast masses on ultrasound images, all of which have been accepted 

for publication. Additionally, we have published one conference proceeding paper, and have 

submitted one journal manuscript on the same topic. We are in the process of writing a 

manuscript for journal submission on the effect of the developed classifier on radiologists' 

characterization of breast masses on ultrasound images. 

Conference Abstracts: 

Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Paramagul C, Helvie MA, Zhou C, "Multi- 

modality CAD: Combination of computerized classification techniques based on mammograms 

and 3D ultrasound volumes for improved accuracy in breast mass characterization," to be 

presented at the 2004 SPIE Medical Imaging Conference, San Diego, CA, Feb. 14-19,2004. 

Sahiner B, Chan HP, Roubidoux MA, Helvie MA, Bailey J, Hadjiiski LM, "An ROC study on 

characterization of malignant and benign breast masses in 3D ultrasound volumes: The effect of 
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computer-aided diagnosis on radiologists' characterization accuracy," to be presented at the 59* 

Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, 

IL, Nov. 30-Dec 5, 2003. 

Sahiner B, Chan HP, Paramagul C, Nees AV, Blane CE, Ramachandran A, "Development of a 

computer classifier for computer-aided characterization of breast masses in 3D ultrasound 

volumes," to be presented at the 59"" Scientific Assembly and Annual Meeting of the Radiological 

Society of North America, Ci^icago,JL, Now. 30-Dec 5, 2003. 

Conference Proceedines: 

Sahiner B, Ramachandran A, Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paramagul 

C, Nees A, Blane C, Petrick N, Zhou C, "Three-dimensional active contour model for 

characterization of solid breast masses on three-dimensional ultrasound images," Proc. SPIE 

Medical Imaging, 2003, 5032: 405-413. 

■Tournal Publications; 

Sahiner B, Chan HP, Roubidoux MA, Helvie MA, Hadjiiski LM, Ramachandran A, 

LeCarpentier GL, Nees A, Paramagul C, Blane C, "Computerized characterization of breast 

masses on 3-D ultrasound volumes," Med Phys, (submitted) 2003. 

(8)    Conclusions 

As a result of the support by the USAMRMC BCRP grant, in the second year of this project, we have 

(1) compared the accuracy of the developed computer classifier to that of experienced radiologists; (2) 
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conducted studies on the effect of the developed classifier on radiologists' characterization of breast 

masses on ultrasound images; and (3) investigated methods for combining computer classification 

methods based on ultrasound and mammogram images. We have also continued database collection, 

and we are aware that we need to do our utmost to enlarge our data set in the third year of the project. 

The results obtained so far are encouraging. We have shown that the accuracy of the classifier designed 

in the first year of this project is similar to that of experienced breast radiologists on our data set. We 

have also shown that experienced radiologists can significantly improve their mass characterization 

accuracy on sonograms when they are aided by our computer algorithm. The comparison of the 

classifiers based on US alone and manmiography alone agrees with the clinical experience that US can 

be more accurate than mammography for characterization of masses. The results in Section (D) indicate 

that combining the two modalities can further improve the classification accuracy, although the 

improvement so far has not achieved statistical significance. Further improvement of the 3D ultrasound 

characterization methods and improved methods for combination with mammographic computer image 

analyses can provide radiologists with a powerful aid for decision making, which may help reduce 

unnecessary biopsies and improve patient care 
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APPENDIX 1 
Multi-modality CAD: Combination of computerized classification techniques based on mammograms 

and 3D ultrasound volumes for improved accuracy in breast mass characterization 

Berkman Sahiner, Heang-Ping Chan, Lubomir M. Hadjiiski, Marilyn A. Roubidoux, 
Chintana Paramagul, Mark A. Helvie, Chuan Zhou 

The University of Michigan Health System, Ann Arbor, MI 48109-0904 

PURPOSE: Mammography and ultrasound (US) are two low-cost modalities that are conunonly used by 
radiologists for evaluating breast masses and making biopsy recommendations. The potential of computer- 
aided diagnosis (CAD) has recently been investigated for both modalities. In order to improve the accuracy 
of computerized breast mass characterization, we investigated methods for combining information extracted 
from these two modalities using a data set of corresponding 3D US images and mammograms from the same 
patients. 
METHODS: Our data set consisted of US and mammogram images of biopsy-proven solid breast masses 
from 60 patients. Thirty of the masses were malignant and 30 were benign. The mammogram set of each 
mass included between one and three views. The US image volumes were obtained by using an experimental 
3D image acquisition system that consisted of a commercially available ultrasound scanner and a mechanical 
transducer guiding system. The steps in the computerized US mass characterization method included 
automated 3D mass segmentation, extraction of texture features related to margin characteristics of the mass, 
extraction of features related to the shape and attenuation characteristics of the mass, and design of a linear 
discriminant classifier. The steps in the computerized mammographic mass characterization method included 
automated mass segmentation, extraction of spiculation features, extraction of morphological features, 
performing the rubber-band straightening transform, extraction of run-length features, and design of a linear 
discriminant classifier. We investigated three methods (A, B and C) for combining the features or scores 
from different mammographic views and the US volumes. Method A consisted of (i) using available 
mammographic views of a patient to design a view-based mammographic classifier, (ii) combining view- 
based mammographic scores into a case-based mammographic score, and (iii) combining cased-based scores 
from US and mammography. In methods B and C, we first combined the features from different 
mammographic views of the same patient into a case-based feature for the patient. In method B, case-based 
features from US and mammograms were combined into a malignancy score using a single classifier. In 
method C, case-based mammographic features were used to obtain a case-based malignancy score that was 
combined with the US score as in method A. The leave-one-case-out method was used to obtain test scores 
for the classifiers. Classifier scores were analyzed using the Receiver Operating Characteristic (ROC) 
methodology and the area A^ under the ROC curve. 
RESULTS: The A^ values of the classifiers based on US alone and mammography alone were 0.88±0.04 and 
0.84±0.05, respectively. In comparison, the average A^ value of four MQSA radiologists in characterizing 
the same 3D US data was 0.88. The A, values of methods A, B, and C were 0.91±0.04, 0.90±0.04, and 
0.90±0.04, respectively. Using the scores obtained by method A, 40% of the benign masses could be 
correctly identified without missing a malignancy. However, none of the difference in the A^ values between 
any two of the classifiers reached statistical significance, possibly due to the limited size of the data set. 
NEW OR BREAKTHROUGH WORK: Although computerized breast mass classification methods have 
been previously developed separately for mammography and for US, no studies to date have investigated 
computerized combination of information from 3D US images and mammograms. Our study proposes and 
compares different methods for combining these two modalities for improved accuracy. 
CONCLUSION: The comparison of the classifiers based on US alone and mammography alone agrees with 
the clinical experience that US can be more accurate than mammography for characterization of masses. Our 
results indicate that combining the two modalities can further improve the classification accuracy. 



APPENDIX 2 

AN ROC STUDY ON CHARACTERIZATION OF MALIGNANT AND BENIGN 
BREAST MASSES IN 3D ULTRASOUND VOLUMES: THE EFFECT OF COMPUTER- 

AIDED DIAGNOSIS ON RADIOLOGISTS' CHARACTERIZATION ACCURACY 

Berkman Sahiner, Heang-Ping Chan, Marilyn A Roubidoux, Mark A Helvie, Janet Bailey, Lubomir M Hadjiiski 
Department of Radiology, The University of Michigan, Ann Arbor MI 

Purpose: We have previously developed an automated computer classifier for characterization of breast masses in 
3D ultrasound volumes. Our purpose in this study was to investigate if this classifier would improve radiologists' 
accuracy in differentiation of malignant and benign breast masses. 

Methods and Materials: The 3D volumes were recorded digitally as cine-clips when the transducer was translated 
across the lesion while conventional 2D images were acquired at each transducer location. Compared to 2D images, 
3D ultrasound may provide additional information both to the radiologist and the computer. To take advantage of 
the additional information, the computer algorithm was designed to automatically delineate the mass boundaries in 
3D, and to automatically extract features based on the segmented mass shapes and margins. The features were 
merged into a malignancy score using a computer classifier. The data set for the ROC study consisted of 102 
ultrasound volumes from different patients containing biopsy-proven masses (44 benign and 58 malignant). None of 
the masses were simple cysts. The location of the biopsied lesion was identified by an experienced radiologist on all 
images. Five other MQSA radiologists participated as observers in the ROC study. Each radiologist read the cases 
first without CAD, immediately followed by reading with CAD. When reading without CAD, a radiologist analyzed 
the mass in the 3D volume using a graphical interface, and provided an estimate of the likelihood of malignancy. 
Subsequently, the radiologist was presented the computer malignancy score and had an option to revise his/her 
malignancy estimate. The reading order of the ultrasound volumes was randomized for each observer. The 
classification accuracy was quantified by using the area under ROC curve, Az. 

Results: The computer classifier achieved an Az value of 0.92. The radiologists had an average Az of 0.84 (range: 
0.82 to 0.86) without CAD. The accuracy of every radiologist was improved when they read with CAD (range: 0.04 
to 0.11), and the average Az of the four radiologists improved to 0.90 (range: 0.87 to 0.93). The improvement was 
statistically significant (p=0.006). 

Conclusion: A well-trained computer algorithm may improve radiologists' accuracy in characterizing breast masses 
as malignant and benign on ultrasound images. 
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DEVELOPMENT OF A COMPUTER CLASSIFIER FOR COMPUTER-AIDED 
CHARACTERIZATION OF BREAST MASSES IN 3D ULTRASOUND VOLUMES 

Berkman Sahiner, Heang-Ping Chan, Chintana Paramagul, Alexis V Nees, Caroline E Blane, Aditya Ramachandran 
Department of Radiology, The University of Michigan, Ann Arbor MI 

3D US volumes were recorded by translating the transducer across the lesion while conventional 2D images were 
acquired in the image planes. The basic steps in computer classifier design include lesion segmentation, feature 
extraction, and feature classification. We have developed 2D and 3D segmentation methods to delineate the mass 
boundaries in 3D US images. We extracted features that mimic those used by radiologists for malignant-benign 
classification, such as the width-to-height ratio and shadowing, as well as features that are less intuitive, such as the 
texture within the mass margins. Features were merged into a malignancy score using a linear classifier. 3D volumes 
containing biopsy-proven solid breast masses were collected from 102 patients (44 benign and 58 malignant). The 
area Az under the receiver operating characteristic curve for testing the computer classifier was 0.92. In comparison, 
the average Az for four MQSA radiologists who read the same cases without computer aid was 0.86. Our results 
indicate that an accurate computer classifier can be designed for differentiation of malignant and benign solid breast 
masses in 3D US volumes. 
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Three-dimensional active contour model for characterization of solid 
breast masses on three-dimensional ultrasound images 
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HadjiiskiM^ark A. Helvie^ Nicholas Petrick^ Chuan Zhou'' 
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ABSTRACT 

The accuracy of discrimination between malignant and benign solid breast masses on ultrasound images may be 
improved by using computer-aided diagnosis and 3-D information. The purpose of this study was to develop automated 
3-D segmentation and classification methods for 3-D ultrasound images, and to compare the classification accuracy 
based on 2-D and 3-D segmentation techniques. The 3-D volumes were recorded by translating the transducer across the 
lesion in the z-direction while conventional 2-D images were acquired in the x-y plane. 2-D and 3-D segmentation 
methods based on active contour models were developed to delineate the mass boundaries. Features were automatically 
extracted based on the segmented mass shapes, and were merged into a malignancy score using a linear classifier. 3-D 
volumes containing biopsy-proven solid breast masses were collected from 102 patients (44 benign and 58 malignant). 
A leave-one-out method was used for feature selection and classifier design. The area A^ under the test receiver 
operating characteristic curves for the classifiers using the 3-D and 2-D active contour boundaries were 0.88 and 0.84, 
respectively. More than 45% of the benign masses could be correctly identified using the 3-D features without missing a 
malignancy. Our results indicate that an accurate computer classifier can be designed for differentiation of malignant 
and benign solid breast masses on 3-D sonograms. 

Keywords: Computer-aided diagnosis, 3-D ultrasound, breast masses, segmentation, lesion classification 

1.   INTRODUCTION 

The positive predictive value of biopsy recommendations for mammographically suspicious nonpalpable breast masses 
is between 20-30%.'-^ Ultrasound imaging is a safe and inexpensive modality for further evaluation of masses detected 
mammographically or by palpation. Sonography has been shown to provide excellent accuracy for characterization of 
masses as cystic or solid.^ In the 1980's and early 1990's, the overlap between malignant and benign features for non- 
cystic breast masses has prompted many investigators to recommend sonographic analysis only to determine whether the 
mass is cystic or solid.'"' However, a number of recent studies with state-of-the-art sonographic scanners have 
demonstrated that the characterization of non-cystic masses can be significantly improved by using ultrasound as an 
adjunct to mammography.*"* 

Computer-aided diagnosis (CAD) methods can potentially improve the accuracy of breast cancer diagnosis by providing 
an unbiased and accurate second opinion to radiologists. It has been shown that the use of CAD can significantly 
improve radiologists' characterization of breast masses' and microcalcifications'" as malignant or benign on 
mammograms. The increasing use of sonography to further evaluate and characterize both cystic and solid breast 
masses has prompted a number of researchers to investigate the application of CAD to breast ultrasound images to 
improve the characterization accuracy."" 

3-D ultrasonography is rapidly gaining popularity as it moves out of the research environment and into the clinical 
setting.'* Current technology allows radiologists to obtain 3-D or volumetric sonograms during clinical examination. 
We believe that computerized analysis of 3-D ultrasound images is important for two reasons. First, 3-D or volumetric 
ultrasound data may be more time-consuming for a radiologist to interpret, thus making CAD more desirable. Second, 
3-D or volumetric ultrasound provides more data and better statistics, which should improve statistical image analysis. 

* berki@umich.edu, phone 734-647-7429, CGC B2102, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0904 



At our institution, a 3-D ultrasound image acquisition system was developed and was applied to imaging studies of 
several organs including the breast."" In our previous work using a limited data set, we investigated the use of texture 
features extracted from 3-D ultrasound images for characterization of breast masses as malignant or benign," and the 
segmentation of these lesions using a 2-D active contour model." In this study, we investigated the use of a 3-D active 
contour model for improved segmentation, and compared the computer characterization results based on segmentation 
using the 2-D and 3-D models on a larger data set. 

2.   METHODS 

2.1 Image Acquisition 
A 3-D ultrasound image acquisition system was previously developed and tested at our institution. The 3-D system 
consists of a commercially available ultrasound scanner (GE Logiq 700 with a M12 linear array transducer), a 
mechanical transducer guiding system, and a computer workstation. The 3-D data were acquired by translating the 
transducer in the cross-plane, or the z-direction, while acquiring conventional 2-D images in the x-y plane. The 2-D 
images were obtained at approximately equal incremental translations, which were measured and recorded using a 
translation sensor. The number of 2-D slices that were obtained was typically around 90, and varied depending on the 
lesion size. The maximum distance between two 2-D slices was 0.5 mm. The linear array transducer was operated at 11 
MHz. 

Before 3-D image acquisition, scout images were acquired to localize the lesion. During 3-D image acquisition, the 
technologist manually translated the transducer, while the image acquisition system recorded B-mode images into a 
buffer in the ultrasound scanner. After data acquisition, the images and the position data were transferred digitally to a 
workstation. The depth of the scans was kept constant at 3 or 4 cm for most of the patients. The technologist was free to 
set the focal distance and the overall gain adjustment to obtain the best possible image. 

2.2 Data Set 
Ultrasound images from 102 patients were included in this study. Patients were selected after identification of a mass 
based on mammography and/or clinical examination. Masses that proved to be simple cysts based on ultrasonography 
were excluded. All patients underwent biopsy as part of their clinical management after ultrasound imaging. Fifty-eight 
of the masses were malignant and 44 were benign. 

The likelihood of malignancy for each mass, based on the 3-D ultrasound image, was rated by an expert radiologist on a 
scale of 1 to 100. In order to identify the biopsied mass, the radiologist was free to use the clinical ultrasound images 
and mammograms of the patients, as well as the radiology and pathology reports. However, the radiologist's malignancy 
rating was based on the appearance of the mass on the 3-D ultrasound image alone. This allowed us to compare the 
distribution of the malignancy ratings by the computer and by the radiologist based on the same information. The 
distribution of the ratings for the malignant and benign masses is shown in Figure 1. 

In addition to providing a likelihood of malignancy rating, the radiologist was asked to fit a three-dimensional ellipsoid 
to the identified lesion. The best fit was obtained by scaling, rotating, and translating an ellipsoid superimposed on the 
3-D data set using a dynamic object manipulation tool developed for this purpose. Figures 2a and 2b show five original 
consecutive slices and the radiologist-fitted ellipsoid for a mass that was seen in 14 slices in the 3-D volume. 

2.3 2-D Active Contour Model 
An active contour is a deformable continuous curve, whose shape is controlled by internal forces (the model, or a-priori 
knowledge about the object to be segmented) and external forces (the image)." The internal forces impose a smoothness 
constraint on the contour, and the external forces push the contour towards image edges. To solve a segmentation 
problem, an initial boundary is iteratively deformed so that the energy due to internal and external forces is minimized 
along the contour. 
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Figure 1:    The distribution of the malignancy ranking of the masses in our data set, by an experienced radiologist. 1: very likely 
benign, 100: very likely malignant. 

The internal energy components in our current active contour model are the continuity and curvature of the contour. The 
external energy components are the negative of the smoothed image gradient magnitude, and a balloon force that exerts 
pressure at a normal direction to the contour. The contour is represented by an //-point polygon whose vertices are 
v(i) = {x(i), y(i)), i = l,...N. The energy E(i) for a vertex i is defined as a weighted average of the energy terms due 

to curvature, continuity, gradient and the balloon force at that vertex 

EU) = W^^rv^curv (0 + W,„„,£„„,(/) + WgradEgrad^i) + Wbal^baliO (1) 

where w represents the weight, and the individual energy terms are defined in the next paragraph. The total energy to be 
N 

minimized for the contour is defined as the sum of the energies for all vertices, i.e., £ = X £(0- 
i=l 

The curvature energy term is approximated by the second derivative of the contour, 

^curv (0 = k(l -1) - 2v(0 + v(/ +1)1. This term is large when the angle at vertex i is small. By discouraging small 

angles at vertices, this term attempts to smooth the contour. The continuity term is represented by the deviation of the 

length of the line segment under consideration from the average line segment length d . Therefore this term helps the 
vertices maintain regular spacing along the contour. The image gradient magnitude is obtained by first smoothing the 
image with a low-pass filter, then computing a partial derivative vector whose components are the derivatives in the 
horizontal and vertical directions, and finally computing magnitude of the partial derivative vector. Since the gradient 
energy is defined as the negative of the gradient magnitude, minimizing this term attracts the contour to image edges. 
The balloon energy term is required to prevent the contour from collapsing onto itself, which is a well-known 
phenomenon in active contour models.^" 

To minimize the contour energy, we used a greedy algorithm that was first proposed by Williams and Shah.^' In this 
algorithm, the contour was iteratively optimized starting with an initial contour. At each iteration, a neighborhood of 
each vertex was examined, and the vertex was moved to the location that minimizes the contour energy. The algorithm 
was terminated when there was no movement of the vertices, or when the ratio of moved vertices to the total number of 
vertices was less than an input threshold. The algorithm was initialized with the radiologist-fitted ellipsoid discussed in 
Section 2.2. Figure 2c shows the final contours obtained with the 2-D model. 

2.4        3-D Active Contour Model 
Since the 2-D active contour model acts on each slice of the 3-D volume independently, the segmented regions on 
neighboring slices can be quite different, as seen in Figure 2c. However, it is known that the shape of the mass is 



unlikely to change dramatically from one slice to the next, because the spacing between these slices is relatively small 
(at most 0.5 mm). This discontinuity in the mass shape across adjacent slices is a result of the fact that the 2-D active 
contour does not make full use of the 3-D data. Our 3-D active contour model is aimed at using the shape information 
across the 3-D slices to improve upon the 2-D active contour model. 

Figure 2: Five consecutive slices of a 3-D mass from our data set. This mass was seen on 14 slices in the 3-D data set. (a) The 
original image (b) Radiologist-fitted ellipsoid, (c) The result of the 2-D active contour segmentation, (d) The result of the 
3-D active contour segmentation. 

Our 3-D active contour model is defined by including in the curvature energy term an additional component related to 
the smoothness of the mass in the z-direction. Let v(i,j) denote the j* vertex in image slice j. The curvature energy in 
our 3-D active contour model is defined as 

Ecurvih J) = H',Jv(f -1, ;•) - 2v(/, j) + y{i +1, ;)| + w,„>(f,; -1) - 2v(i,;) + v(/,; +1)|, (2) 

where the subscripts cip and cop stand for "curvature in-plane", and "curvature out-of-plane", respectively. The second 
component in the curvature energy term forces the contour to be smooth in the z direction. Figures 2c and 2d compare 
the 2-D and 3-D active contour segmentation results. Figure 3 shows the entire 3-D object segmented on 14 slices. 



2.5 Feature extraction and classification 
The features used in this study were extracted from spatial gray level dependence (SOLD) matrices derived from 2-D 
slices of the 3-D data set. Features extracted from SOLD matrices of ultrasound images have been shown to be useful in 
classification of malignant and benign breast masses in previous studies.^^ Six texture feature measures that are 
invariant under linear, invertible gray scale transformations were extracted. These features were information measures 
of correlation 1 and 2 (IMCl and IMC2), energy (ENE), entropy (ENT), sum entropy (SME) and difference entropy 
(DFE). Although many gray scale transformations will not be invertible due to pixel saturation or roundoff, these 
features will reduce the effect of gray-level adjustments on the classification accuracy. 

Figure 3:    The segmented mass object using the 3-D active contour model   All 14 slices of the mass shown in Figure 2 are included. 

It is known that the margin characteristics of a mass are very important for its characterization. For this reason, the 
texture features were extracted from two disk-shaped regions containing the boundary of each mass, as well as mass and 
normal tissue adjacent to the boundary of the mass. These regions followed the contour determined by the active contour 
model, as shown in Figure 4. The areas for the upper and lower disk-shaped regions were chosen to be equal, and their 
sum was equal to the area of the segmented mass. The pixel-pair distances used for SOLD matrix computation were 
d=2, 4, and 6. Two pixel-pair angles, 6=0° and 9=90° were evaluated for both regions. After a given texture feature was 
extracted from the different 2-D slices of a given mass, a 3-D feature was obtained by averaging the feature values for 
the 2-D slices. The final feature space for the classifier therefore contained 6 feature measures from 2 regions at 3 pixel- 
pair distances and 2 pixel-pair angles, which resulted in a 72-dimensional feature space. 

Figure 4:    The active contour segmentation, and the upper and lower disk-shaped regions for two masses in our data set. 



Stepwise feature selection and linear discriminant analysis were used for classifier design. A leave-one-case-out 
methodology was used to train and test the classifier with N=102 cases. The training included feature selection and the 
computation of classifier coefficients for the selected features using N-1 cases. The test scores were analyzed using 
receiver operating characteristic (ROC) methodology. The classification accuracies using features obtained from the 2- 
D and 3-D active contour segmentation were compared. 

3.   RESULTS 

The stepwise feature selection method selected an average of 5 and 7 features for 2-D and 3-D active contour 
segmentation, respectively. Figures 5a and 5b show the distribution of the classifier test scores for the malignant and 
benign cases using the two segmentation methods. By choosing an appropriate threshold on the test scores of the 
classifier designed using the 2-D segmentation model, 11% of the benign masses could be correctly identified without 
missing a malignant mass. This number was improved to 45% with the use of the 3-D segmentation model. Figure 6 
shows the ROC curves for the classifiers designed using features extracted from contours provided by the two 
segmentation methods. The area A^ under the ROC curve was 0.84 and 0.88 for 2-D active contour segmentation and 3- 
D active contour segmentation, respectively. When the radiologist's malignancy rating was used as the decision variable 
in ROC analysis, an A^ value of 0.84 was obtained. 
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Figure 5:    The distribution of the classifier scores for the malignant and benign cases using (a) 2-D active contour segmentation, and 

(b) 3-D active contour segmentation. 
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4.   DISCUSSION AND CONCLUSION 

Our results indicate that solid breast masses can be accurately classified as malignant or benign by computerized analysis 
of 3-D ultrasound images. The computer classifier using the 3-D segmentation method achieved an A^ value of 0.88 in 
the task of characterizing solid breast masses. An experienced radiologist's A^ value for the same task and using the 
same information was 0.84. Although the difference between the characterization accuracy of the computer and that of 
the radiologist did not achieve statistical significance, our preliminary analysis indicates that the computer's performance 
may be similar to that of an experienced radiologist. We plan to conduct further observer studies with more radiologists 
to confirm this analysis. 

We have observed that the 3-D active contour model can be more accurate than the 2-D active contour model in the task 
of segmenting masses on 3-D sonograms. An example comparing 3-D segmentation with 2-D segmentation for the 
same mass is provided in Figure 2. In Figure 2c, the 2-D method delineates the upper boundary of the mass adequately 
in the first and last slices shown (leftmost and rightmost columns, respectively). However, in the second, third, and 
fourth columns, the upper boundary overestimates the size of the mass. Since the active contour is optimized 
independently for each slice, the correct information from the first and last slices in this figure cannot be used to improve 
the segmentation for the middle slices. The 3-D model, which uses the information from multiple slices, succeeds in 
delineating the mass boundaries more accurately, as shown in Figure 2d. The characterization results also confirm that 
3-D segmentation may be more accurate, although the difference between the characterization accuracy with features 
extracted from the 2-D active contour segmentation (A2=0.84) and that with the 3-D active contour segmentation 
(Az=0.88) did not achieve statistical significance. 

We plan to perform observer performance studies to investigate the effect of our computer classifier on the radiologists' 
accuracy in characterizing malignant and benign solid masses on 3-D sonograms. The potential of the developed 
classifier cannot be fully realized until the sonographic analysis is used in conjunction with mammographic analysis. 
The combination of the computerized characterization results from these two modalities is under investigation. 
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ABSTRACT 

We are developing computer vision techniques for characterization of breast masses as malignant or 

benign on radiologic examinations. In this study, we investigated computerized characterization of 

breast masses on 3D ultrasound (US) volumetric images. We developed 2D and 3D active contour 

models for automated segmentation of the mass volumes. The effect of the initialization method of the 

active contour on the robustness of the iterative segmentation method was studied by varying the 

contour used for its initialization. For a given segmentation, texture and morphological features were 

automatically extracted from the segmented masses and their margins. Stepwise discriminant analysis 

with the leave-one-out method was used to select effective features for the classification task and to 

combine these features into a malignancy score. The classification accuracy was evaluated using the area 

A^ under the receiver operating characteristic (ROC) curve, as well as the partial area index A *", 

defined as the relative area under the ROC curve above a sensitivity threshold of 0.9. For the purpose of 

comparison with the computer classifier, four experienced breast radiologists provided malignancy 

ratings for the 3D US masses. Our data set consisted of 3D US volumes of 102 biopsied masses (44 

benign, 58 malignant). The classifiers based on 2D and 3D segmentation methods achieved test A^ 

values of 0.88±0.03 and 0.92±0.03, respectively. The difference in the A^ values of the two computer 

classifiers did not achieve statistical significance. The A^ values of the four radiologists ranged between 

0.84 and 0.92. The difference between the computer's A^ value and that of any of the four radiologists 

did not achieve statistical significance. However, the computer's A^""^ value was significantly higher 

than that of three of the four radiologists. Our results indicate that an automated and effective computer 

classifier can be designed for differentiating malignant and benign breast masses on 3D US volumes. 

The accuracy of the classifier designed in this study was similar to that of experienced breast 

radiologists. 

Keywords: computer-aided diagnosis, 3D ultrasound, breast mass characterization, segmentation 



I.       INTRODUCTION 

The importance of early breast cancer detection requires a vigorous approach to characterization of 

breast lesions. At present, the positive biopsy rate for nonpalpable breast lesions as well as for 

nonpalpable breast masses is between 15-30%.'"'' This means that 70-85% of breast biopsies are 

performed for benign lesions. In order to reduce patient anxiety and morbidity, as well as to decrease 

health care costs, it is desirable to reduce the number of benign biopsies without missing malignancies. 

Computer-aided diagnosis (CAD) can provide a consistent and reproducible second opinion to the 

radiologists, and has a potential to assist them in reducing benign biopsies. Recent studies on the 

computerized classification of breast masses based on mammographic image features suggest that 

radiologists' performance may be significantly improved if they are aided by a well-trained CAD 

system.^'^ Breast ultrasound (US) is an important imaging modality for characterization of breast 

masses as malignant and benign. An objective and reproducible second opinion from a computer 

classifier for classification of breast masses based on US image features may be an important addition to 

CAD tools being developed for mammographic image analysis. 

Breast US is widely accepted as a highly accurate modality for the differentiation of cystic and non- 

cystic masses. As a result of technological improvements and more sophisticated utilization by 

radiologists, US has been gaining popularity for characterization of non-cystic, or solid, breast masses. 
Q 

By combining several ultrasonic characteristics, Stavros et al. achieved a specificity of 98.4% and a 

sensitivity of 68.7% on a data set of 750 solid breast masses. Using strict criteria for a benign diagnosis, 

Skaane et al.^ achieved a positive predictive value of 66% and a negative predictive value of 98% for 

differentiation of fibroadenoma and invasive ductal carcinoma on sonograms. Recently, Taylor et al. 

investigated whether the complementary use of US imaging could decrease the biopsy of benign, non- 

cystic masses. On a data set of 761 biopsied masses, they found that the addition of US evaluation to 

mammography alone could increase the specificity from 51.4% to 63.8% while slightly increasing the 

sensitivity from 97.1% to 97.9%.'^ Our study aims at developing techniques for computerized 

characterization of solid breast masses, which may eventually improve radiologists' accuracy in this 

difficult and important task. 
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A number of researchers have recently investigated the application of CAD to breast US images. 

D.R. Chen et al.'^ extracted autocorrelation features from rectangular regions of interest (ROIs) 

containing solid breast masses. Using a neural network classifier, they obtained an area A^ under the 

receiver operating characteristic (ROC) curve of 0.956 for classification of a data set of 140 biopsy- 

proven masses as malignant or benign. Horsch et al. developed an automated segmentation method for 

delineating the mass boundaries, and compared its characterization accuracy on different subsets with 

that obtained from manual segmentation. Using manual and automated segmentation methods, they 

obtained A^ values of 0.91 and 0.87, respectively, in the task of differentiating all malignant and benign 

lesions in their data set, and 0.88 and 0.82, respectively, in the task of differentiating the subset of 

malignant and benign solid lesions. CM. Chen et al. used morphological features extracted from 

manually segmented mass boundaries for classification. Using a neural network classifier, they obtained 

an A^ of 0.959 for classification of a data set of 271 biopsy-proven masses as malignant or benign. 

3D US is rapidly gaining popularity as it moves out of the research environment and into the clinical 

setting.*^ Computerized analysis of 3D US images may be useful for two reasons. First, 3D or 

volumetric US data may be more time-consuming for a radiologist to interpret, thus making CAD more 

desirable. Second, 3D or volumetric US provides more data and better statistics, which should improve 

statistical image analysis. 

In clinical practice, breast US may be performed in different ways. In many breast imaging clinics, 

the US examination is performed by a US technologist. Once the technologist locates the mass, and 

determines the appropriate settings for optimal image quality, representative static US images of the 

mass are printed on hardcopy film. The radiologist only reads the images chosen by the technologist. A 

second possibility is that the US scan is videotaped by the technologist and the radiologist reads the 

examination on video display. In a third method, a radiologist will perform the US examination 

interactively and optimize the image quality by changing the probe angle, direction, and US machine 

settings. Since the US image quality is operator dependent, the way in which the examination is 

performed may have an impact on the diagnostic accuracy. At our institution, the third method is 

employed. As described in the Methods Section, the data acquisition system in this study did not permit 

interactive modification during 3-D image acquisition. As a result, the data that was used by the 

computer and the radiologists for mass characterization in this study may not be as informative as the 



data that the radiologists could have obtained by examining the patient interactively. However, since the 

mass is entirely imaged in the 3D data set, our data should be at least comparable to that obtained by 

using the first method described above. 

In this study, we investigated the computerized characterization of non-cystic breast masses as 

malignant and benign in 3D US images. We developed a 3D segmentation method to delineate the 

masses. Morphological and texture features were extracted from the mass and its margins for 

classification. A linear classifier was used to merge the features into a malignancy score. The 

classification accuracy was evaluated by ROC methodology. The ROC curves of the computer and four 

experienced breast radiologists were compared. To our knowledge, this is the first study on 3D US 

images that investigates a computer segmentation method followed by a computer classifier for breast 

cancer characterization. 

II.     METHODS 

A.      Data Set 

Institutional review board approval was obtained prior to the commencement of this investigation. 

The images used in this study were acquired between 1998 and 2002. Our study group was 102 women 

(average age: 51 years) who had a solid mass deemed suspicious or highly suggestive of malignancy. 

All patients underwent biopsy or fine needle aspiration. Fifty-eight masses were malignant and 44 were 

benign. Forty-five of the malignancies were invasive ductal carcinoma, five were invasive lobular 

carcinoma, one was medullary carcinoma, three were ductal carcinoma in-situ, and four were other 

invasive carcinoma. Of the benign masses, the majority were fibroadenoma (N=17) and fibrocystic 

disease (N=l 1). The mean equivalent lesion diameter was 1.28 cm (standard deviation = 0.78cm). 

The 3D US data were acquired using an experimental system that was previously developed and 
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tested at our institution. ' The 3D system consisted of a commercially available US scanner (GE 

Logiq 700 with an Ml2 linear array transducer), a mechanical transducer guiding system, and a 

computer workstation. The linear array transducer was operated at 11 MHz. The technologist was free to 

set the focal distance and the overall gain adjustment to obtain the best possible image.   Before 3D 



image acquisition, the technologist used cHnical US and mammogram images to identify the suspicious 

mass. . During 3D image acquisition, the technologist manually translated the transducer linearly in the 

cross-plane, or the z-direction, while the image acquisition system recorded 2D B-mode images in the 

image scan plane (x-y plane). The 2D images were obtained at 0.5 mm incremental translations, which 

were measured and recorded using a translation sensor. The number of 2D slices was typically around 

90, and varied depending on the lesion size. The maximum distance between two 2D slices was 0.5 mm. 

The scanned breast region measured typically 4.5 cm long by 4.0 cm wide by 4.0 cm deep. The typical 

pixel size in a slice was approximately 0.11 mm. 

The B-mode images were recorded into a buffer in the US scanner. After data acquisition, the images 

and the position data were transferred digitally to a workstation, where individual planes were cropped 

and stacked to form a 3D volume. The biopsied mass in each volume was identified by an MQSA 

(Mammography Quality Standards Act) qualified radiologist (RADl) using clinical US and 

mammographic images to confirm that the 3D images contained the clinically suspicious mass. The 

likelihood of malignancy for each mass, based on the 3D US image alone, was rated by the same 

radiologist on a scale of 1 to 100, where a higher number corresponded to a higher likelihood of 

malignancy. The distribution of the ratings for the malignant and benign masses is shown in Fig. 1. The 

radiologist was also asked to fit a 3D ellipsoid to the mass. The 3D eUipsoid was used to initialize the 

computerized mass segmentation described in the next section. The best fit was obtained by scaling, 

rotating, and translating an ellipsoid superimposed on the 3D data set using a dynamic object 

manipulation tool developed for this purpose. 

B.      Mass Segmentation 
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We investigated the use of 2D and 3D active contour models for segmentation of mass boundaries. 

An active contour model is a high-level segmentation method that uses energy terms derived from the 

image gray-level information as well as the a-priori knowledge about the object to be segmented for 

accurate segmentation. The segmentation problem is defined as an energy minimization problem. In 

order for the model to lock onto the contours in the image, the image-based energy terms, also referred 

to as the external energy terms, are usually defined in terms of the image gray levels and the image 

gradient magnitude. A-priori knowledge of object shape is used to define internal energy terms related to 

features such as the continuity and the smoothness of the contour to constrain the segmentation problem. 



These terms can compensate for noise or apparent gaps in the image gradients, which often mislead 

segmentation methods that do not use a-priori information. 

In a 2D segmentation problem, the contour of the object can be represented by N vertices, 

v(i) = ((jc(/), y{i)), i = \,...,N. In the discrete formulation of the active contour model, the total energy to 

N 

be minimized is defined as E = ^E{i), where E{i)'\s, the energy at vertex i, defined as the sum of the 
1=1 

internal and external energy terms E^{i), given by E{i) = '^Wi^E,^{i), and w^ is the weight of the i 
k 

energy term. In our 2D active contour model, we used four internal and external energy terms, namely, 

the gradient magnitude, continuity, smoothness, and balloon energy. The image gradient magnitude, 

£, (/), was obtained by first smoothing the image with a low-pass filter, then computing a partial 

derivative vector whose components are the derivatives of the filtered image in the horizontal and 

vertical directions, and finally computing the magnitude of the partial derivative vector. The weight of 

the gradient energy is defined to be a negative number; thus, minimizing w^E^ attracts the contour to 

image edges. The continuity term is represented by the deviation of the length of the line segment d(i) 

between vertices i and /+/ from the average line segment length J, i.e., ^^(O =|d{i)-d\. Therefore 

minimizing this term helps the vertices maintain regular spacing along the contour. The curvature term, 

E3 (/), is approximated by the second derivative of the contour: E^ (/) = |v(/ -1) - 2v(0 + v(/ +1)|. As 

long as I d{i) - ^ | is small, this term will be large when the angle at vertex i is small. By discouraging 

small angles at vertices, this term attempts to smooth the contour. The balloon energy £4 pushes the 

contour outward or pulls it inward, depending on whether w^ is positive or negative, respectively, along 

a path normal to the contour. This energy term helps the active contour traverse spurious, isolated, or 

weak image edges, and counters its tendency to shrink. The resulting snake is reported to be more robust 
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to the initial position and image noise. 

To solve the energy minimization problem, we have chosen the iterative method proposed by 

Williams and Shah.^° The contour is first initialized by defining N vertices v(i), i=l,...,N. At a given 

iteration, the method visits each vertex v(i).    Let D(i) represent the set of    pixels (x',y') in a 



(2M+l)x(2M+l) neighborhood centered around v(i).   For each pixel in D(i), the sum J^w^fj   is 
k 

computed, and the vertex / is moved to the (x',y') location that minimizes this sum. After the 

minimization is performed locally at vertex v(i), the algorithm moves to the vertex v(i+l). The method 

converges when no vertex changes location at a given iteration. In practical implementation, iterations 

may be stopped when a large, predetermined percentage of vertices stop moving. The cross-section of 

the radiologist-defined ellipsoid with each image slice was used for initializing the contour. 

When the 2D active contour model described above is applied to a 3D data set, segmentation is 

performed independently on each slice of the 3D volume. However, this kind of segmentation ignores 

the continuity of the object across slices. When the slice spacing is small compared to the rate of change 

of the object shape, it is known that the shape of the object is unlikely to change dramatically from one 

slice to the next. Our 3D active contour model is aimed at using the shape information across the 3D 

slices to improve upon the 2D active contour model. Our 3D active contour model is defined by 

including in the curvature energy term an additional component related to the smoothness of the mass in 

the z-direction. Let v(i,j) denote the /"" vertex in image slice;. The curvature energy in our 3D active 

contour model is defined as 

E30', j) = W3_,„IvO' -1, j) - 2v(/, ;■) + v(/ +1, i)\ + W3_„„,Iv(/, ;• -1) - 2v(i,;) + vO", 7 +1)|, (1) 

where Wj ,„  and W3 „„, stand for the weights for the in-plane and out-of-plane components of the 

curvature, respectively. The out-of-plane component in the curvature energy term forces the contour to 

be smooth in the z direction. Our implementation of the 3D active contour model starts by optimizing 

the contour on the first slice of the 3D data set (j=l). Since slice y=0 does not exist, we assume that 

v(/,0) = v(/,l) for all i. After the contour is optimized for slice ;=1, the optimization is performed for 

slice7=2, and so on, until the contour has been optimized for all slices. This constitutes one 3D iteration. 

The 3D model repeats 3D iterations until there is no movement of the vertices for the 3D contour, or 

when a predetermined percentage of vertices stop moving. Similar to our 2D active contour, the 3D 

active contour was initialized using the radiologist-defined ellipsoid. 

C.      Feature Extraction 

We have evaluated a number of morphological and texture features for characterization of the 

masses as malignant or benign.   Each of the features described below was extracted from every slice 



where the mass was segmented using either the 2D or the 3D automated segmentation algorithm. The 

features extracted from different sHces of the same mass were then combined to define the feature 

measures (such as mean or maximum) for that mass. 

Extraction of morphological features 
8 

The taller-than-wide shape of a sonographic mass is a good indication of malignancy. This 

characteristic was defined by the ratio of the widest cross section (W) of the automatically segmented 

lesion shape to the tallest cross section (T) in a slice (Fig. 2). Another feature that has been reported to 

be useful for differentiation of malignant and benign masses is posterior shadowing. In order to define a 

posterior shadowing feature (PSF), we first calculated the mean pixel value R(i) in overlapping vertical 

strips R{i), i = l,...,n posterior to the mass, as shown in Fig. 2. The width W, of a strip was equal to 

one fourth of the width of the mass iW/4), and the height of the strip was equal to the height of the mass 

(J). The left and right edges of strips R{i) and /?(/ +1) differed by one pixel. In other words, the strip 

R{i +1) was obtained by moving the strip /?(/) to the right by one pixel, while, of course, the strip 

remained posterior to the mass and its height remained as T. In order to exclude the bilateral posterior 

shadowing artifacts that are sometimes associated with fibroadenomas, the strips were defined only 

posterior to the central 3W/4 portion of the mass (Fig. 2). The minimum value of these averages, 

min{^, i = !,...«}, was the darkest posterior strip. The PSF was defined as the normalized average 

gray-level difference between the interior of the segmented mass and the darkest posterior strip, 

M -min{/?(0,/ = !,...«} 

M 

where M denotes the mean gray level value inside the segmented mass 

PSF = ^-™"t^(0.' = i>--"l (2) 
M 

Extraction of texture features 

The features used in this study were extracted from spatial gray level dependence (SOLD) matrices 

derived from 2D slices of the 3D data set. The (i,j)'^ element of the co-occurrence matrix is the relative 

frequency with which two pixels, one with gray level i and the other with gray level j, separated by a 

pixel pair distance d in a direction 0 occur in the image. Features extracted from SOLD matrices of US 

images have been shown to be useful in classification of malignant and benign breast masses on 

mammograms in previous studies.     In this study, six texture feature measures that are invariant under 



linear, invertible gray scale transformations were extracted. These features were information measures 

of correlation 1 and 2 (IMCl and IMC2), difference entropy (DFE), entropy (ENT), energy (ENE), and 
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sum entropy (SME).   The mathematical definitions of these features can be found in the literature. 

Although many gray scale transformations may not be invertible due to pixel saturation or roundoff, 

these features are largely independent of the gray-level gain adjustments. 

It is known that the margin characteristics of a mass are very important for its characterization, and 

previous studies have indicated that texture features extracted from the mass margins are effective for 

classification.^'' For this reason, the texture features in this study were extracted from two disk-shaped 

regions containing the boundary of each mass, as well as presumably mass and normal tissue adjacent to 

the boundary of the mass. These regions followed the contour determined by the active contour model, 

as shown in Fig. 3. The areas for the upper and lower disk-shaped regions were chosen to be equal, and 

their sum was equal to the area of the segmented mass. The pixel pair distances used for SGLD matrix 

computation were chosen to be d=2, 4, and 6. Two pixel pair angles, 9=0* and 9=90* were evaluated for 

each d in both regions. The number of SGLD matrices computed for a disk-shaped region was therefore 

6, and the number of features extracted from an image containing the segmented mass was 72 (6 

features, extracted from 6 SGLD matrices in the upper disk-shaped region and the lower disk-shaped 

region). 

D.     Classification 

The features extracted from different slices of the same mass were combined to define the feature 

measures for that mass. For the width-to-height feature and the PSF, we computed the mean, variance, 

minimum and maximum of the extracted value from each slice containing the mass. Therefore eight 

morphological feature measures were defined for each mass. For texture features, we only computed the 

mean, hence 72 texture feature measures were defined for each mass. 

Fisher's linear discriminant analysis (LDA) was used for combining the features into a discriminant 

score. Since the number of available features in the feature space was relatively high compared with the 
25 number of available cases, stepwise feature selection was used in order to reduce the number of the 

features and to obtain the best feature subset to design an effective classifier. For partitioning the data 

set into trainers and testers, we used the leave-one-case-out resampling method. Feature selection is 



performed as part of the classifier design such that both the feature selection and the classifier coefficient 

estimation procedures were repeated 102 times, as each case were left out once as the test sample. The 

test discriminant scores were analyzed using ROC methodology. The classification accuracy was 

evaluated using the area under the ROC curve, A^, as well as the partial area index, A^""'. A^""' is defined 

as the area under the ROC curve above a sensitivity threshold of 0.9 (TPFo = 0.9) normalized to the total 

area above TPFo, which is equal to (1-TPFo).^^ 

E.      Malignancy Ranking by Radiologists 

Although all the cases in our data set were suspicious enough to warrant biopsy or fine needle 

aspiration, the degree of difficulty of our cases can best be measured by investigating the accuracy of the 

radiologists in classifying the cases in our data set as malignant or benign. As described in Section II.B, 

one radiologist (RADl) who was familiar with the clinically obtained images had initially provided a 

malignancy rating. To compare with the computer's accuracy, we are interested in measuring the 

accuracy of other radiologists, who would not be biased by memory or familiarity with the cases. For 

this purpose, we have developed an interactive graphical user interface with which the radiologists could 

navigate through 3D volumes, adjust the window and level of the displayed images, and enter a 

malignancy rating between 1 and 100 (higher rating indicating higher likelihood of malignancy) when 

they finish examining a case. Three additional radiologists (RAD2-RAD4) participated in the 

malignancy rating study. The radiologists RAD1-RAD4 were either fellowship-trained in breast imaging 

or had over 25 years of experience in breast imaging. All four radiologists were MQSA qualified and 

had experience ranging from 2 to 25 years (mean, 11.3 years of mammographic and US interpretation). 

The location of the center of mass, as determined by RADl, was displayed on each slice, so that all the 

radiologists would rank the same mass if more than one mass existed in the volume. There was no time 

limitation for the radiologists to read a case. The case reading order was randomized for each 

radiologist. The malignancy rating was entered by means of a slide bar. Before participating in the 

study, the radiologists were trained on five cases that were not part of the test data set described in 

Section II.A. The malignancy rating study was intended to measure the difficulty of the data set, and 

was not intended to measure how the radiologists' interpretation would be affected by CAD. Therefore, 

the computer classification results were not displayed to the radiologists in this study. 

III.    RESULTS 
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We evaluated the accuracy of characterization based on both 2D and 3D active contour segmentation 

methods. Rows 1 to 4 of Fig. 4 show the original images, radiologist-defined ellipsoid, 2D active 

contour results, and 3D active contour results for five consecutive slices of a mass that was visible on a 

total of 10 slices. Fig. 5 shows a 3D rendering of the segmented object using the 2D and 3D active 

contour models. It is seen from Fig. 5 that the shape of the object segmented by the 3D active contour 

model is smoother in the z direction. 

Table 1 shows the range (minimum and maximum) of the A^ values provided by each texture feature 

alone, extracted from the upper and lower disk-shaped regions determined by the 2D and 3D active 

contour models. The ranges in this table are for different pixel pair distances and directions used in 

extracting the same feature (e.g. IMCl). Table 2 shows the range of A, values provided by each 

morphological feature alone, using the 2D and 3D active contour models. The ranges in Table 2 are for 

different methods of combining the features extracted from individual slices, i.e., mean, variance, 

minimum, and maximum. The most discriminatory feature in this study was the IMCl feature (d=6, 

e=0«, extracted from the upper disk-shaped region segmented by the 3D method) with an A^ value of 

0.76. 

When stepwise LDA was used to combine the features into a discriminant score in the 102 leave- 

one-case-out training subsets, an average of 6.09 and 7.98 feature were selected with the 2D and 3D 

segmentation methods, respectively. For the 2D segmentation method, the most frequently selected 

features were two IMCl features, two IMC2 features, one DFE feature, and one width-to-height feature. 

For the 3D segmentation method, the most frequently selected features were two IMCl features, two 

IMC2 features, one DFE feature, one ENT feature, one PSF feature and one width-to-height feature. 

Fig. 6 shows the test ROC curves obtained by the LDA using leave-one-case-out resampling for the 2D 

and 3D segmentation methods. The test A^ values for the 2D and 3D methods were 0.88±0.03 and 

0.92±0.03, respectively, and the A/"" values were 0.51±0.10 and 0.65±0.09, respectively. The 

difference between the two test A^ values did not achieve statistical significance (p=0.16). Fig. 7 shows 

the distribution of the discriminant scores obtained from the 3D method for the malignant and benign 

cases. 

In order to investigate the dependence of the classification accuracy on the initialization of the 3D 

active contour model, we scaled, rotated, and translated the initial 3D ellipsoid and repeated the steps of 
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active contour segmentation, feature extraction and classification for these modified initial ellipsoids. 

The classification accuracies for these experiments are presented in Table 3. None of the differences 

between the A^ values on Table 3 achieved statistical significance. 

The ROC curves for radiologists' malignancy ratings are shown in Fig. 8. The computer and 

radiologist A^ values and A^*"" values are compared in Table 4. The area A^ under the ROC curve for 

radiologists RAD1-RAD4 varied between 0.8410.04 and 0.92+0.03, which are lower than or equal to 

that of the 3D computer classifier. The average A^ value, obtained by averaging the slope and intercept 

parameters (a and b in ROC analysis) of the individual ROC curves was 0.87. The difference between 

the A^ values of the individual radiologists and the computer classifiers (2D and 3D methods) did not 

reach statistical significance (p>0.05). The difference between the Aj"" values of the individual 

radiologists and the classifier based on 2D segmentation also did not reach statistical significance 

(p>0.05) although the A^""' value of the computer classifier was consistently higher than those of all four 

radiologists. The A/"" values of the classifier based on 3D segmentation was again higher than the A^""' 

values of all four radiologists, and achieved statistical significance in three of the four (p=0.02, 0.04, and 

0.008 for RADl, RAD2, and RAD4, respectively). 

IV.    DISCUSSION 

The computer classifier designed in this study to characterize breast masses on US volumes was able 

to discriminate between malignant and benign masses that were suspicious enough to warrant biopsy. 

From Fig. 7, it is observed that if an appropriate decision threshold was chosen for the discriminant 

scores of the classifier based on 3D segmentation, more than 45% (20/44) of biopsied benign masses 

could be correctly identified while no malignant masses were misclassified (at 100% sensitivity). Based 

on 2D segmentation the corresponding percentage of correctly identified benign masses was 36% 

(16/44). 

Lesion segmentation is an important task in computerized lesion characterization. Segmentation of 

US images can be challenging because boundaries are not always conspicuous, due to the noise and 

contrast characteristics, and the speckled nature of US images. For breast US, an additional source of 

difficulty is the presence of posterior shadowing artifacts, a major source of which is the US attenuation 
28 due to the fibrous stroma caused by the tumor.     Previous research on segmentation of breast masses on 

29 30 31 US images includes work by Horsch et al.,    Xiao et al.,    and Madabhushi. et al.   . Their segmentation 
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methods were applied to 2D US images. In our study, we compared the classification accuracy when 2D 

and 3D active contour models were used for segmentation. The 2D model provided reasonable 

segmentation results for many of the masses. However, the 2D model does not take advantage of the 

image information in adjacent slices when a particular slice is being segmented. If the 2D active contour 

is misled on one slice, there is no interaction from adjacent slices to improve the segmentation. This is 

illustrated in Fig. 4, row 3. It can be observed that the 2D segmentation results on slices #45 and #47 are 

reasonable; however, part of the lesion is missed by the 2D active contour model on slice #46. Our 3D 

active contour model uses the smoothness of the segmented shape in the out-of-plane direction as an 

interaction term between adjacent slices. The 3D segmentation results, shown in row 4, are more 

consistent across slices. Figure 5 compares the segmented object using the 2D and 3D methods for the 

entire lesion, which was visible on a total of 10 slices. It is again observed that the lesion shape in the 

out-of-plane direction is smoother for the 3D method. 

The texture features in this study were extracted from disk-shaped regions at the upper and lower 

margins of the mass on each slice. The total area of the two disk-shaped regions was equal to the area of 

the segmented mass. From Table!, it is observed that a texture feature extracted from the upper disk- 

shaped region tended to be more discriminatory than the same feature extracted from the lower disk- 

shaped region. The maximum of the range of A^ values (the second number in each cell) was larger for 

the upper region in 11 of the 12 comparisons that can be made (6 texture features and 2 segmentation 

methods). The lower boundaries of many masses were difficult to perceive and hence difficult to 

automatically segment because of posterior shadowing. This may be contributing to the difference of 

discrimination ability between the features extracted from the upper and lower regions. Another 

possible factor may be the changes in the spatial and gray level resolutions in different regions of the US 

image as the distance from the US probe increases. Further work is underway to investigate the reasons 

for the apparent lower discrimination ability of the features extracted from the lower disk-shaped 

regions. 

Although the disk-shaped region depends on mass segmentation, there can be a large overlap 

between the regions from the 2D and 3D segmentation results if the objects segmented by the two 

methods are not very different. From Table 1, it can be observed that the ranges of A^ values for 2D and 

3D segmentation for each texture measure have a large overlap, especially for the first three feature 

measures in the table (IMCl, IMC2, and DFE), which were relatively more discriminatory. These were 
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also the features most frequently selected during classifier design. As mentioned in the Results Section, 

when the stepwise feature selection method was used for classifier design from 2D segmentation results, 

an average of 6.09 features were selected, where the average was computed over different cycles of the 

leave-one-out partitioning of the data set. Out of the 6 most frequently selected features, 5 were texture 

features and 1 was a morphological feature. The IMCl feature was selected twice (at d=2, e=0« and 

d=6, e=90»), the IMC2 feature was selected twice (at d=2, e=0» and d=6, e=0«), and the DFE feature 

was selected once (at d=6, e=0»). For 3D segmentation, out of the 8 most frequently selected features, 6 

were texture features and 2 were morphological features. The IMCl feature was selected twice (at d=2, 

e=90» and d=4, e=0»), the IMC2 feature was selected twice (at d=2, e=0« and d=6, e=0»), and the DFE 

feature was selected once (at d=6, e=0»). Thus, out of 11 most frequently selected texture features (5 for 

2D and 6 for 3D segmentation), 10 were IMCl, IMC2, or DFE features. The classification accuracy 

with the stepwise LDA for the 3D segmentation (A =0.92) was better than that for 2D segmentation 

(A =0.88). However, the difference did not achieve statistical significance (two-tailed p value = 0.16). 

The active contour method requires an initial boundary to start iterating towards the optimal contour. 

In this study, the initial boundary was defined by a 3D ellipsoid that approximated the mass shape. The 

ellipsoid was placed in the volume by one of the radiologists (RADl) using an interactive graphical user 

interface (GUI). The radiologist thus had to shift and scale a single object to define the initial contour. 

Although the error between the true and approximated shapes can be large when a single object is used 

for approximating the mass, this method was faster than other possible methods that would require 

initialization on each slice separately, and was therefore preferred. The robustness of the 3D 

segmentation method to active contour initialization was studied by translating, rotating, and scaling the 

3D ellipsoid. There are many possibilities as to how these three operations (moving, rotating, and 

scaling) can be combined to modify the initial ellipsoid. In Table 3, the classification results are 

presented when these three operations are performed one at a time. Row 1 shows the A^ value when the 

original ellipsoid is used. The ellipsoid was scaled in rows 2-3, translated in rows 4-6, and rotated in 

row 7. For the magnitudes of scaling, translation and rotation studied in Table 3, the variation of the A^ 

value was within two standard deviations of A^ value provided by the LABROC program. In a step 

towards automating the initialization of the contour, we are currently investigating methods for 

automatically determining an initial contour from a rectangular box containing the mass. 
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The comparison of the ROC curves by the radiologists and the computer indicated that the computer 

can be as effective as the radiologists in differentiating malignant and benign breast masses in this data 

set. In fact, the accuracy of the computer classifier using 3D segmentation was greater than three and 

equal to one of the radiologists, although the difference between the computer and the individual 

radiologists in terms of A^ did not achieve statistical significance. Furthermore, from Fig. 8, it is 

observed that the computer has a tendency to be better at high sensitivity. This was also confirmed by 

the statistically significant difference between the computer classifier (3D segmentation method) and 

three out of four radiologists when the comparison was based on the A^""' values. It should be noted that 

the purpose of our study was not to evaluate our US mass characterization method in a clinical setting. 

As noted in the Introduction and the Methods sections, the semi-automated 3D data acquisition system 

used in this study is still under investigation and was different from that in current clinical practice. The 

first difference is that, in our department, radiologists interactively perform hand-held US examination 

themselves, which may yield better image quality and may result in higher characterization accuracy. 

The second difference is that our study concentrated only on mass characterization of found lesions, 

whereas the actual detection of suspicious masses by US is a very important step in a clinical 

examination. These other aspects of comparing 3D US images to US images acquired with current 

clinical methods are subjects of future investigations. 

In this study, the features were extracted from individual US slices and then combined into object- 

based features, as explained in Section 2.D. Although this method is found to provide effective features 

in this study, it may not have fully utilized the information available in the 3D data set. The potential 

improvement in classification accuracy by using truly 3D features, for example, texture features 

extracted from 3D SOLD matrices, needs to be investigated. Furthermore, in clinical practice, the 

decision about whether the mass is malignant or benign is made using both mammographic and US 

image information, as well as other pertinent patient information. A study is currently underway in our 

laboratory to design a classifier that combines computer-extracted features or scores from these two 

imaging modalities. 

V.      CONCLUSION 

A computer segmentation and classification method has been developed for the task of 

characterization of breast masses on 3D US images. On a data set of 102 biopsy-proven masses the 

classifier achieved an A value of 0.92. The average A^ value of 4 experienced radiologists on the same 
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data set was 0.87. The computer classifier was more accurate than three and equal to one of the four 

radiologists participated in the study. However, the difference between the A^ values of the computer 

and the individual radiologists did not achieve statistical significance for this data set. At high 

sensitivity, the computer classifier was consistently more accurate than all 4 radiologists and achieve 

statistical significance (p<0.05) for the difference in A/"" from three of the four radiologists. The 

robustness of the iterative segmentation algorithm in terms of the initial contour provided to the 

algorithm was studied. The classification accuracy was found to depend on the initialization; however, 

the A value did not significantly deteriorate when the initial contour was scaled, rotated, or translated by 

a moderate amount. Future work includes verifying the results of this study by applying it to a larger and 

independent data set, expanding the feature space by designing truly 3D features, and combining the 

developed US characterization method with mammographic characterization methods. Observer 

performance study will also be performed to evaluate the effects of CAD on the characterization of 

breast masses by radiologists. 
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Texture Feature 
3D Segmentation 

Upper           Lower 

2D Segmentation 

Upper           Lower 

IMCl 0.65-0.76 0.58-0.68 0.65-0.73 0.58-0.66 

IMC2 0.65-0.74 0.58-0.66 0.65-0.73 0.61-0.68 

DFB 0.61-0.70 0.63-0.68 0.58-0.69 0.64-0.70 

ENT 0.58-0.64 0.53-0.60 0.63-0.67 0.57-0.63 

ENE 0.56-0.61 0.50-0.58 0.54-0.61 0.50-0.54 

SME 0.52-0.58 0.51-0.55 0.54-0.62 0.51-0.57 

Table 1: The range of A^ values for different texture features extracted from the lower and upper disk- 

shaped regions using the 3D and 2D segmentation methods. For each particular texture 

feature (e.g., IMCl feature at pixel-pair distance d=2, and direction 0=O»), the feature values 

from all the slices containing the segmented mass were averaged before computing the A^, 

value. The range indicates the minimum-maximum A^ values for a particular feature among 

the parameters d=2,4, 6 and 0=O«, 90*. 

Morphological 

Feature 

3D Segmentation 2D Segmentation 

Width-to-height 0.60-0.71 0.60-0.69 

PSF 0.51-0.66 053-0.61 

Table 2: The range of A^ values for the width-to-height feature and posterior shadowing feature (PSF) 

extracted using the 3D and 2D segmentation methods. The range indicates the minimum- 

maximum Aj, values among the mean, variance, minimum, and maximum of each feature 

extracted from each slice containing the segmented mass. 
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Scale 

1.3 

0.8 

Rotation (degrees) 

0 

0 

0 

0 

0 

0 

15 

x-translation (pixels) 

0 

0 

0 

10 

10 

-10 

-10 

0 

y-translation (pixels) 

0 

0 

0 

10 

-10 

10 

-10 

0 

0.92±0.03 

0.87±0.04 

0.89±0.03 

0.89±0.03 

0.85±0.04 

0.88±0.03 

0.87±0.04 

0.92±0.03 

Table 3: The dependence of the computer classification accuracy on the variation of the initial contour. 

The effects of three transformation parameters, namely, scaling, translation and rotation of the 

initial ellipsoid, was investigated by moving the initial ellipsoid using one of these three 

parameters at a time. A translation by ±10 pixels in the image plane corresponded to 

approximately ±1 mm. 
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A. Ar 
Computer classifier, 2-D segmentation 0.88±0.03 0.51±0.10 

Computer classifier, 3-D segmentation 0.92±0.03 0.65±0.09 

RADl 0.84±0.04 0.41±0.10* 

RAD2 0.86±0.04 0.37±0.ir 

RAD3 0.97+0.03 0.44±0.14 

RAD4 0.84±0.04 0.28±0.ir 

Table 4: The area under the ROC curve (Az), and the area under the ROC curve above a sensitivity 

threshold of 0.9 (A/"") for the computer classifier using the 2-D and 3-D active contour 

segmentation results, and the four radiologists. The radiologists' results that are significantly 

(p<0.05) different from the 3-D computer results are noted with an asterisk. 
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Figure 1. The distribution of the maHgnancy rating of the masses in our data set based on the 

appearance on US images, by an experienced radiologist. 1: Very likely benign, 100: Very 

likely malignant. 



Segmented mass 

Posterior Strips 

Figure 2. The definition of the width-to-height and PSF features. The width-to-height feature was 

defined as the ratio of the widest cross-section of the segmented mass shape in the image 

plane to the tallest cross-section. The PSF feature was defined by first finding the average 

gray value in the posterior strips /?(/), i = l,...,n, then finding the minimum of R{i), and 

finally by normalizing this value by the average gray value within the segmented mass. 
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Figure 3. Left column: The segmented object for a malignant mass (upper row) and a benign mass 

(lower row). Middle and right rows: The lower and upper disk-shaped regions from which 

texture features were extracted. 



~;;;i;;'..;^^«'-««if»i;s 

i ~i-~''" ■■■-•:^     ;. J"•""".„ ■-.-.■■■ ... 

.'*.'-»«^^t^„v^- :2I.J".. ■r'—...-,-1 

- .'i'^r-s-.- .,.,/■ " „■':.■-■'—-' 
.-"■;-:.-   , ., 

I -^ ■„^.^-»rr-__ ■. •*"—--•".■"■ 
'- -ii4Z^-^--..^-^-««^"' 

:r.^< ■>.-;£:■ 
^^I.a;,i^--v:.,:»-j;^i. \:'^>^j 

i "' ■■■*■■■ ^" ■«*■, '*■■"■ 4.;,..^ ■ '-" ^■■■" ^K - 

•   -•■-•-^- '^-   ..M*..**-'.'"^".^"'^"'*^ 

: ,•.'-"■■"""' o''^^^';-'- 

■-^-^-B!.isiB. «fc:.i,..*i. .^,4, ,_^-'/,. 

' "i^5&TT^^ ■G-'^^^^ i /'■■::*!nfv^-i^'-^ 
., >/■•"-"»,i"':*„ ./'ri-'.-'V'?'''"'-''^ 

- -   " - m^,„_, -    ""'■    ^'-*_^'-m>'im'"-   . 

-***« 
'■' ^:X. •""-Ill"■" •"^■-^ '^/.•*'"^ * - ':,:<ZX;. - ■ 

*''.f' 
,■... ■,_ ._^ 

' ■■ ■ - 

Slice Number 45       Slice Number 46      Slice Number 47       Slice Number 48      Slice Number 49 

Figure 4. Row 1: Five original slices of a breast mass that was visible on a total of ten US slices; Row 

2: The cross section of the initial 3D ellipsoid at each slice; Row 3: The result of the 2D 

active contour segmentation method; Row 4: The result of the 3D active contour 

segmentation method. Note that the 2D segmentation method misses part of the mass on 

slice 46. The 3D segmentation method, apparently using the information from slices 45 and 

47, is able to provide better segmentation on slice 46. 
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(a) """(b) 
Figure 5.   3D rendering of the segmented object for the mass shown in Fig. 4. (a) 2D active contour 

segmentation; (b) 3D active contour segmentation. 
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Figure 6. The test ROC curves obtained by the classifiers that were based on features extracted from 

the 2D (Az=0.88) and 3D (Az=0.92) active contour models. The difference between the two 

A, values did not achieve statistical significance (p=0.16). 
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Figure 7. The distribution of the test discriminant scores for the classifier that was based on 3D active 

contour segmentation. By choosing an appropriate decision threshold on these scores, (e.g., 

decision threshold=0.3) more than 45% (20/44) of biopsied benign masses could be correctly 

identified while no malignant masses were misclassified. 
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Figure 8. ROC curves for the computer and for the four radiologists who participated in the 

mahgnancy rating experiment. The difference between the computer's A^ value and that of 

any of the four radiologists did not achieve statistical significance. However, the computer 

classifier was significantly (p<0.05) more accurate than three of the four radiologists at high 

sensitivity (TPF>0.9). 


