

AFRL-IF-RS-TR-2004-84

Final Technical Report
March 2004

A DATA MINING APPROACH FOR BUILDING
COST-SENSITIVE AND LIGHT INTRUSION
DETECTION MODELS

North Carolina State University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K357

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-84 has been reviewed and is approved for publication.

APPROVED: /s/

THOMAS M. BLAKE
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2004

3. REPORT TYPE AND DATES COVERED
Final Aug 00 – Aug 03

4. TITLE AND SUBTITLE
A DATA MINING APPROACH FOR BUILDING COST-SENSITIVE AND
LIGHT INTRUSION DETECTION MODELS

6. AUTHOR(S)
Wenke Lee,
Salvatore J. Stolfo,
and Philip K. Chan

5. FUNDING NUMBERS
C - F30602-00-1-0603
PE - 62301E
PR - K357
TA - 33
WU - B1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
North Carolina State University
College of Engineering
Campus Box 8207
Raleigh North Carolina 27695-8207

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-84

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Thomas M. Blake/IFGB/(315) 330-1482/ Thomas.Blake@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The report provides a summary of the intrusion detection research completed for this effort. The research studied how
to build cost-sensitive and light weight intrusion detection models. The main technical components of the research are:
1) Automatic feature construction by analyzing the patterns of normal and intrusion activities computed from large
amounts of audit data, 2) Using cost-sensitive machine learning algorithms to construct intrusion detection models that
achieve optimal performance on the given (often site-specific) cost metrics, cluster attack signatures and normal profiles
and accordingly construct one light model of each cluster to maximize the utility of each model, and 3) Dynamic (re-)
configuration of the light models to make an IDS effective and efficient, and resilient to IDS-related attacks. Algorithms
and prototype systems were developed and extensive experiment using DARPA datasets and other real-world
datasets were conducted. The results showed that the technologies developed in this project are more advanced and
better than today's state-of-the-art.

15. NUMBER OF PAGES
31

14. SUBJECT TERMS
Intrusion Detection System, IDS, Data Mining, Anomaly Detection Algorithms, Alert Correlation,
Light-Weight Anomaly Detection, Cost Sensitive Modeling, Adaptive IDS, Alert Correlation, Attack
Scenario Analysis, IDS Performance Metrics

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1. Summary... 1

2. Introduction.. 2

3. Methods, Assumptions, and Procedures ... 4

4. Results and Discussion .. 5

4.1 Feature Construction.. 5

4.2 Unsupervised Learning .. 6

4.3 Light-Weight Anomaly Detection.. 7
4.3.1 LEARNING NONSTATIONARY MODELS .. 8
4.3.2 EXPERIMENTAL RESULTS... 11

4.4 Cost-Sensitive Modeling ... 13
4.4.1 Cost Factors and Metrics ... 13
4.4.2 Cost Models ... 16
4.4.3 Reducing Operational Cost .. 18
4.4.4 Reducing Consequential Cost .. 18
4.4.5 Experimental Results ... 18

4.5 Adaptive IDS ... 19
4.5.1 IDS Performance Metrics .. 19
4.5.2 Performance Optimization and Adaptation ... 20
4.5.3 Performance Optimization and Adaptation ... 20

4.6 Alert Analysis and Attack Scenario Analysis... 21

5. Conclusions .. 22

6. Reference.. 23

7. Project Publications ... 25

 1

1. Summary
Intrusion detection systems (IDSs) are currently developed using pure knowledge-
engineering approaches where expert knowledge on network, operating systems, and
attack methods are encoded as detection models. The IDSs are not very effective in
detecting variations of known attacks and novel attacks because expert knowledge is
often incomplete and tends to be too specific to attack instances. Since the manual
development process is very slow and expensive, IDSs are often equipped with only one
centralized detection module, making them unable to keep up with fast (automated)
attacks, and worse, subject to denial-of-service attacks. IDSs are not cost-sensitive
because the cost factors, which include the development and operational costs, and the
intrusion costs (damages), etc., are simply ignored as unwanted complexities in the IDS
life cycle.

The research proposed aims to develop methodologies and tools for building cost-
sensitive and light intrusion detection models. The main technical components of the
research are:

• Automatically constructing features and anomaly detection models by analyzing
the patterns of normal and intrusion activities computed from large amount of
audit data.

• Using cost-sensitive machine learning algorithms to construct intrusion detection
models that achieve optimal performance on the given (often site-specific) cost
metrics, cluster attack signatures and normal profiles and accordingly construct
one light model for each cluster to maximize the utility of each model.

• Dynamic (re-)configuration of the light models to make an IDS effective and
efficient, and resilient to IDS-related attacks.

We have successfully accomplished the goals of the project. We developed several novel
feature construction and anomaly detection algorithms. In particular, we invented very
light-weight anomaly detection algorithms that analyze the frequent values of packet
header fields or protocol commands in packet payloads and detect deviations (anomalies).
Results on DARPA IDS Evaluation data and real-world data showed that these
algorithms can effectively detect new attacks.

We studied the problem of cost-sensitive modeling in intrusion detection. We examined
the cost factors in intrusion detection, namely, damage cost, response cost, and operation
cost. We showed how the performance of an IDS, i.e., a true positive, false positive, true
negative, and false negative, affects the total cost incurred. For example, responding to an
intrusion with higher response cost than damage cost will cost more than not responding
to the intrusion. We developed strategies for an IDS to decide whether (and when) to
“ignore” some intrusions in order to minimize cost.

We studied how to dynamically re-configure a real-time IDS to provide the optimal
protection, and developed a control and optimization approach that decides the optimal
IDS configuration based on resource constraints and traffic and attack conditions. This
problem is modeled as a Knapsack problem. Essentially, an IDS has limited real-time

 2

resources and may not be able to process all packets if the traffic rate and volume is too
high. The solution is for the IDS enable only the most “valuable” set of tasks so that the
corresponding traffic data can be analyzed within the resource constraints. We call such
an IDS an Adaptive IDS. We have modified the open-source Snort and Bro to make them
adaptive. Experiments showed that these IDSs can automatically change its
configurations according to traffic and attack conditions to provide the best values.

In addition to the research tasks outlined in the original proposal, we have also studied
the problem of alert correlation (a topic not included in the original proposal). Instead of
a pattern-matching approach that can only recognized known attack step relationships, we
aim to develop algorithms for detecting new attack step relationships. We developed a
statistical causality analysis approach, based on GCT (Granger Causality Test), which
with very little prior domain knowledge can find out a pair of alerts of the likely related
attack steps. The intuition of this approach is that related attack steps may result in co-
occurrences of their alerts in the alert data streams. Therefore, statistical tools such GCT
can be applied to find such occurrences. Experiments using DARPA’s Grand Challenge
Problem (GCP) dataset showed that this approach can indeed find novel attack step
relationships that other approaches based patter-matching can’t.

The results of this research have been reported in many publications in top conferences
and journals. In addition, we have actively engaged in technology transfer throughout the
course of the project. In particular, the PIs were involved in the founding of System
Detection Inc. The company has been developing commercial products based on findings
of this project and the previous DARPA-funded JAM project.

2. Introduction
Intrusion detection is the process of identifying and responding to malicious actions that
aim to compromise the security of a system, i.e., its confidentiality, integrity, and
availability. The basic premises of intrusion detection are: system activities are
observable, e.g., via auditing; and normal and intrusion activities leave distinct evidence.
Therefore, an ID model has two basic elements: the features, that is, the indicators
(evidence), measured using the audit data; and the modeling algorithms that piece
together and reason about the indicators. The two main intrusion detection techniques
include misuse detection, which uses signatures of specific attacks or system
vulnerabilities to pattern-match and detect intrusions; and anomaly detection, which uses
established normal profiles of users or system resources to detect significant deviation as
probable intrusion. Misuse detection can be very efficient and accurate, however, by
definition, it can detect only the instances of known intrusions. Anomaly detection is the
only weapon to detect new attacks, however, it often cannot determine the nature of an
attack and can have a high false alarm rate. An IDS therefore needs to carefully combine
both misuse and anomaly detection models.

Despite the research and commercial efforts in the past two decades, there are still a large
gap between the capabilities of IDSs and that of cyber attackers. Results from the 1998
DARPA Intrusion Detection Evaluation showed that although several intrusion detection
programs already showed good detection rates on known intrusions and their slight

 3

variations, none of the systems showed acceptable detection rate on “novel” attacks, i.e.,
those that are not modeled in the detection systems. Most IDSs are designed only to
achieve optimal effectiveness (i.e., accuracy). However, for IDSs to be widely deployed,
they need to bring economic benefits to organizations. This requires that IDSs balance the
requirements of both accuracy and costs, which include development costs, operational
costs, damage (intrusion) costs, etc. Real-time IDSs need to avoid becoming a single
point of failure because cyber attackers are beginning to devise attacks that aim to elude
IDSs through evasion tactics or denial-of-service. Multiple light, fast, and cooperative
detection systems are likely to achieve more robust performance than using a monolithic
system. Most IDSs only output alarms on individual steps. When IDSs are deployed in a
large network, the sheer amount of IDS alerts can overwhelm the security staff and
prevent proper and timely response actions. Therefore, we need to develop techniques to
reduce the amount of alerts, correlate the alerts and recognize complex attack scenarios
that are composed of a number of attack steps.

The traditional manual approaches of encoding expert knowledge cannot meet the
challenges of building IDSs that are equipped with the advanced capabilities discussed
above. To effectively detect novel attacks, an IDS needs to provide comprehensive and
systematic coverage, i.e., modeling, of all network elements and their interactions. Expert
knowledge is simply too limited compared with the complexities of a network system.
The delicate balance between accuracy and various cost factors, and the need to construct
multiple cooperative models also add significant complexities in the development
process. In alert analysis and attack scenario analysis the key is to identify the attack
steps that are related. There are potentially many possible attack scenarios. Thus it is
impossible to know a priori what attack step relationships are indicative of attack steps in
a scenario.

We therefore need a new development paradigm. We proposed to build and demonstrate
a novel system for rapid development and deployment of effective and cost-sensitive
IDSs. The key motivation of our research is to automate as much as possible the analysis
tasks in intrusion detection. We consider intrusion detection as a classification problem,
that is, we wish to classify each audit record into one of a discrete set of possible
categories, normal or a particular kind of intrusion. We can thus apply machine learning
approaches to inductively learn classifiers as detection models. Given a set of records,
where one of the features is the class label (i.e., the concept), classification algorithms
can compute a model that uses the most discriminating feature values to describe each
concept. However, before we can apply classification algorithms, we need to first select
and construct the right set of system features that may contain evidence (indicators) of
normal or intrusions. We developed an automatic feature selection and construction
system to systematically discover and construct predictive features that can be used to
build effective misuse and anomaly detection models. We developed cost-sensitive
classification algorithms to construct ID models that are optimized to provide the best
economic benefits (cost-saving). We also studied how to efficiently execute ID models in
real-time. In alert analysis, we developed algorithms to recognize new attack step
relationships.

 4

3. Methods, Assumptions, and Procedures
As academic/university researchers, we aimed to make fundamental contributions, rather
than to develop product prototypes. We therefore focused on theoretical studies,
algorithm developments, and research prototype implementations. As discussed above, a
key motivation is to automate the analysis tasks in intrusion detection. Toward this end,
we applied machine learning, data mining, statistical analysis, and control and
optimization techniques. For example, in alert analysis and attack scenario analysis,
rather than using the approach of pattern-matching of known attack step relationships,
which is straightforward but of limited use against new attack scenarios, we developed a
statistical causality analysis approach that while still preliminary shows great potentials
in its abilities to recognize attack step relationships.

We communicated closely with the program manager and interacted with other research
groups in the community to get feedbacks on our research directions and progress. In
particular, we utilized the scenarios and data sets provided by DARPA and other project
teams as training or validation data sets for our algorithms.

The main goal of our project was to build a development system so that effective, cost-
sensitive and light ID models can be quickly built and deployed. We also developed real-
time IDSs equipped with our ID models to demonstrate the advanced capabilities of our
development system. Our project proceeded as follows.

For the first year, we concentrated on algorithm development. This included: enhancing
and integrating existing components of JAM, e.g., the data mining programs for audit
data analysis, and the pattern encoding and analysis programs; and developing initial
versions of the new algorithmic components. We established the capabilities of
automated feature construction. We studied the cost factors in intrusion detection and
developed a model to evaluate an IDS based on cost. We also developed a light-weight
anomaly detection algorithm that analyzes the frequent values of packet header fields.
Experiments using DARPA dataset showed that this algorithm can detect many new
attacks.

For the second year, we developed an approach for learning an anomaly detection model
over noisy (unclean) data. We studied the problem of dynamically changing the
configuration of an IDS to provide optimal value according to the run-time resource
constraints and attack conditions. We considered it as a control and optimization problem
and developed a solution based on the Knapsack algorithm. We also started to investigate
the problem of alert correlation and attack scenario analysis.

For the third year, we developed a new and light-weight anomaly detection algorithm that
analyzes the frequent values of protocol commands in packet payloads. Experiments
using DARPA dataset showed that this algorithm can detect new attacks. We modified
two open-source IDSs, Bro and Snort, to make them adaptive using our Knapsack based
approach. Experiments showed that these IDSs can dynamically change their
configurations to provide the best detection capabilities according to run-time conditions.
We also developed a statistical causality analysis algorithm, based on the Granger

 5

Causality Test (GCT), for identifying new attack step relationships. Experiments using
the DARPA Grand Challenge Problem (GCP) dataset showed that it can detect new and
stealth attack step relationships that other pattern-matching based approaches can’t.

Throughout the whole project duration, we attended regular PI meetings and visit other
groups to exchange ideas and share technologies. We published our findings in yearly
major conferences so that our work can be reviewed critically from the scientific
communities. We also actively participated in technology transfer. In particular, the PIs
were part of the founding team of System Detection Inc., which is developing
commercial products based on technologies developed in this project and previous
DARPA-funded JAM project.

4. Results and Discussion
We now summarize the main results of the project.

4.1 Feature Construction

Two basic premises of intrusion detection are that system activities are observable, e.g.,
via auditing, and there is distinct evidence that can distinguish normal and intrusive
activities. We call the evidence extracted from raw audit data features, and use these
features for building and evaluating intrusion detection models. Feature extraction (or
construction) is the processes of determining what evidence that can be taken from raw
audit data is most useful for analysis. Feature extraction is thus a critical step in building
an IDS. That is, having a set of features whose values in normal audit records differ
significantly from the values in intrusion records is essential for having good detection
performance.

We have developed a set of data mining algorithms for selecting and constructing
features from audit data [1]. First, raw (binary) audit data is processed and summarized
into discrete records containing a number of basic features, e.g., timestamp, duration,
source and destination IP addresses and ports, and error condition flags. Specialized data
mining programs [2] are then applied to connection records to compute frequent patterns
describing correlations among features and frequently co-occurring events across many
connection records. The consistent patterns of normal activities and the "unique" patterns
associated with an intrusion are then identified and analyzed to construct additional
features for connection records. It can be shown that the constructed features can indeed
clearly separate intrusion records from normal ones. Using this approach, the constructed
features are more grounded on empirical data, and thus more objective than expert
knowledge. Results from the 1998 DARPA Intrusion Detection Evaluation [3] showed
that the ID model constructed using our algorithms was one of the best performing of all
the participating systems.

As an example, let us consider the SYN-Flood attack. When launching this attack, an
attacker uses many spoofed source addresses to open many connections which never
become completely established (i.e., only the first SYN packet is sent, and the connection
remains in the "S0" state) to some port on a victim host (e.g., http). When comparing the

 6

patterns from the 1998 DARPA dataset that contain SYN-Flood attacks with the patterns
from a “baseline” normal dataset (of the same network), by first encoding the patterns
into numbers and then computing “difference” scores. The following pattern, a frequent
episode [4], has the highest “intrusion-only” (i.e., unique for the intrusion): “93% of the
time, after two http connections with S0 flag are made to host victim, within 2 seconds
from the first of these two, the third similar connection is made; and this pattern occurs in
3% of the data”. Accordingly, our feature construction algorithm parses the pattern and
uses the anatomy (or structural) information about an intrusion, e.g., "the same service
(i.e., port) is targeted", and the invariant information, e.g. flag=S0, to construct the
following features: “a count of connections to the same dst_host in the past 2 seconds”,
and among these connections, “the percentage of those that have the same service, and
the percentage of those that have the S0 flag.” For the two “percentage” features, the
normal connection records have values close to 0, but the connection records belong to
SYN-Flood have value above 80%. Once these discriminative features are constructed, it
is easy to generate the detection rules via either manual (i.e. hand-coding) or automated
(i.e., machine learning) techniques. For example, we use RIPPER [5], an inductive rule
learner, to compute a detection rule for syn-flood: if for the past 2 seconds, the count of
connections to the same dst host is greater than 4; and the the percentage of those that
have the same service is greater than 75%; and the percentage of those that have the "S0"
flag is greater than 75%, then there is a syn_flood attack.

We have implemented a system that fully automated the features and model construction
process. The inputs are two sets of connection records, one for normal connections and
the other contains an attack. The connection records contain the basic features. The
system than computes frequent patterns from both sets of connection records, compare
the patterns to identify the to 10% intrusion-only patterns, parses the patterns to construct
features, and invokes RIPPER to learn rules to detect the intrusion. The learned rules are
tested on a given test dataset. If the accuracy is below a pre-defined threshold, the above
process is iterated, with different heuristics in pattern computation, until a set of
sufficiently accurate rules are computed or a pre-defined limit (e.g., on the number of
iterations) is met.

4.2 Unsupervised Learning

Traditional model building algorithms typically require a large amount of labeled data in
order to create effective detection models. One major difficulty in deploying a data
mining-based IDS is the need for labeling system audit data for use by these algorithms.
For misuse detection systems, the data needs to be accurately labeled as either normal or
attack. For anomaly detection system, the data must be verified to ensure it is completely
normal, which requires the same effort. Since models (and data) are specific to the
environment on which the training data was gathered, this cost of labeling the data must
be incurred for each deployment of the system. Ideally, we would like to build detection
models from collected data without needing to manually label it. In this case, the
deployment cost would greatly be decreased because the data would not need to be
labeled. In order to build these detection models, we need a new class of model building

 7

algorithms. These model building algorithms can take as input unlabeled data and create
a detection model. We call these algorithms unsupervised anomaly detection algorithms.

We developed an overview of two unsupervised anomaly detection algorithms that have
been applied to intrusion detection. These algorithms can also be referred to as anomaly
detection over noisy data. The reason the algorithm must be able to handle noise in the
data is that we do not want to manually verify that the audit data collected is absolutely
clean (i.e., contains no intrusions). Unsupervised anomaly detection algorithms are
motivated by two major assumptions about the data which are reasonable for intrusion
detection. The first assumption is that anomalies are very rare. This corresponds to the
fact that normal use of the system greatly outnumbers the occurrence of intrusions. This
means that the attacks compose a relatively small proportion of the total data. The second
assumption is that the anomalies are quantitatively different from the normal elements. In
intrusion detection this corresponds to the fact that attacks are drastically different from
normal usage.

Since anomalies are very rare and quantitatively different from the normal data, they
stand out as outliers in the data set. Thus, we can cast the problem of detecting the attacks
into an outlier detection problem. Outlier detection is the focus of much literature in the
field of statistics [6]. In intrusion detection, intuitively, if the ratio of attacks to normal
data is small enough, then because the attacks are different, the attacks stand out against
the background of normal data. We can thus detect the attack within the dataset.
We have performed experiments with two types of unsupervised anomaly detection
algorithms, each for a different type of data. We applied a probabilistic based
unsupervised anomaly detection algorithm to building detection models over system calls
and a clustering based unsupervised anomaly detection algorithm to network traffic. The
probabilistic algorithm approached detecting outliers by estimating the likelihood of each
element in the data. We partition the data into two sets, normal elements and anomalous
elements. Using a probability modeling algorithm over the data, we compute the most
likely partition of the data. Details and experimental results of the algorithm applied to
system call data are given in [7]. The clustering approach detects outliers by clustering
the data. The intuition is that the normal data will cluster together because there is a lot of
it. Because anomalous data and normal data are very different from each other, they do
not cluster together. Since there is very little anomalous data relative to the normal data,
after clustering, the anomalous data will be in the small clusters. The algorithm first
clusters the data and then labels the smallest clusters as anomalies.

Details and experimental results applied to network data are given in [8].

4.3 Light-Weight Anomaly Detection

Most network anomaly systems such as ADAM [9], NIDES [10], and SPADE [11]
monitor IP addresses, ports, and TCP state. This catches user misbehavior, such as
attempting to access a password protected service (because the source address is unusual)
or probing a nonexistent service (because the destination address and port are unusual).
However, this misses attacks on public servers or the TCP/IP stack that might otherwise

 8

be detected because of anomalies in other parts of the protocol. Often these anomalies
occur because of software errors in the attacking or victim program, because of
anomalous output after a successful attack, or because of misguided attempts to elude the
IDS. Our anomaly detection algorithms have two nonstationary components developed
and tested on the 1999 DARPA IDS evaluation test set [12], which simulates a local
network under attack. The first component is a packet header anomaly detector (PHAD)
which monitors the entire data link, network, and transport layer, without any
preconceptions about which fields might be useful. The second component is an
application layer anomaly detector (ALAD) which combines a traditional user model
based on TCP connections with a model of text-based protocols such as HTTP, FTP, and
SMTP. Both systems learn which attributes are useful for anomaly detection, and then
use a nonstationary model, in which events receive higher scores if no novel values have
been seen for a long time.

4.3.1 LEARNING NONSTATIONARY MODELS

The goal of intrusion detection is, for any given event x, to assign odds that x is hostile,
e.g., odds (x_is_hostile) = P(attack|x) / P(no_attack|x)

By Bayes law, we can write:

P(attack|x) = P(x|attack)P(attack) / P(x)
P(no_attack|x) = P(x|no_attack)P(no_attack) / P(x)

By dividing these equations, and letting odds(attack) = P(attack) / P(no_attack), we have:

odds(x_is_hostile) = odds(attack)P(x|attack) / P(x | no_attack)

We have factored the intrusion detection problem into three terms: odds(attack), the
background rate of attacks; P(x|attack), a signature detection model, and 1 /
P(x|no_attack), an anomaly detection model. In this paper, we address only the anomaly
detection component, 1 / P(x|no_attack). Thus, we model attack- free data, and assign
(like SPADE) anomaly scores inversely proportional to the probability of an event based
on this training. Anomaly detection models like ADAM, NIDES, and SPADE are
stationary, in that P(x) depends on the average rate of x in training and is independent of
time. For example, the probability of observing some particular IP address is estimated
by counting the number of observations in training and dividing by the total number of
observations. However, this may be incorrect. Paxson and Floyd [13] showed that many
types of network processes, such as the rate of a particular type of packet, have self-
similar or fractal behavior. This is a nonstationary model, one in which no sample, no
matter how short or long can predict the rate of events for any other sample. Instead, they
found that events tend to occur in bursts separated by long gaps on all time scales, from
milliseconds to months. We believe this behavior is due to changes of state in the system,
such as programs being started, users logging in, software and hardware upgrades, and so
on. We can adapt to state changes by exponentially decaying the training counts to favor
recent events, and many models do just that. One problem with this approach is that we

 9

have to choose either a decay rate (half life) or a maximum count in an ad-hoc manner.
We avoid this problem by taking training decay to the extreme, and discarding all events
(an attribute having some particular value) before the most recent occurrence. In our
model, the best predictor of an event is the time since it last occurred. If an event x last
occurred t seconds ago, then the probability that x will occur again within one second is
1/t. We do not care about any events prior to the most recent occurrence of x.
In an anomaly detection system, we are most interested in those events that have the
lowest probability. As a simplification, we assign anomaly scores only to those events
that have never occurred in training, because these are certainly the least likely. We use
the PPMC model of novel events, which is also used in data compression [14]. This
model states that if an experiment is performed n times and r different outcomes are
observed, then the probability that the next outcome will not be one of these r values is
approximately r/n. Stated another way, the fraction of events that were novel in training
is r/n, and we expect that rate to continue. This probably overestimates the probability
that the next outcome will be novel, since most of the novel events probably occurred
early during training. Nevertheless, we use it. Because we have separate training data
(without attacks) and test data (with attacks), we cannot simply assign an anomaly score
of 1/P(x) = n/r. If we did, then a subsequent occurrence of x would receive the same
score, even though we know (by our nonstationary argument) that a second occurrence is
very likely now. We also cannot add it to our model, because the data is no longer attack-
free. Instead, we record the time of the event, and assign subsequent occurrences a score
of t/P(x) = tn/r, where t is the time since the previous anomaly. On the first occurrence of
x, t is the time since the last novel observation in training. An IDS monitors a large
number of attributes of a message, each of which can have many possible outcomes. For
each attribute with a value never observed in training, an anomaly score of tn/r is
computed, and the sum of these is then assigned to the message. If this sum exceeds a
threshold, then an alarm is signaled.

anomaly score = ∑i ti ni / ri, where attribute i is novel in training

We next describe two models, PHAD and ALAD. In PHAD (packet header anomaly
detection), the message is a single network packet, and the attributes are the fields of the
packet header. In ALAD (application layer anomaly detection), the message is an
incoming server TCP connection. The attributes are the application protocol keywords,
opening and closing TCP flags, source address, and destination address and port number.

4.3.1.1 Packet Header Anomaly Detection (PHAD)

PHAD monitors 33 fields from the Ethernet, IP, and transport layer (TCP, UDP, or
ICMP) packet header. Each field is one to four bytes, divided as nearly as possible on
byte boundaries as specified by the RFCs (request for comments) that specify the
protocols, although we had to combine fields smaller than 8 bits (such as the TCP flags)
or split fields longer than 32 bits (such as the Ethernet addresses). The value of each field
is an integer. Depending on the size of the field, the value could range from 0 to 232 - 1.
Because it is impractical to represent every observed value from such a large range, and
because we wish to generalize over continuous values, we represent the set of observed

 10

values with a set of contiguous ranges or clusters. Each new observed value forms a
cluster by itself. If the number of clusters exceeds a limit, C, then we merge the two
closest ones into a single cluster. For example, if C = 3 and we have {3-5, 8, 10-15, 20},
then we merge the two closest to form {3-5, 8-15, 20}. For the purposes of anomaly
detection, the number of novel values, r, is the number of times the set of clusters is
updated.

4.3.1.2 Application Layer Anomaly Detection (ALAD)

The second component of our anomaly detection model is the application layer anomaly
detector (ALAD). Instead of assigning anomaly scores to each packet, it assigns a score
to an incoming server TCP connection. TCP connections are reassembled from packets.
ALAD, unlike PHAD, is configured knowing the range of IP addresses it is supposed to
protect, and it distinguishes server ports (0-1023) from client ports (1024-65535). We do
this because most attacks are initiated by the attacker (rather than by waiting for a
victim), and are therefore against servers rather than clients. We tested a large number of
attributes and their combinations that we believed might make good models, and settled
on five that gave the best performance individually (high detection rate at a fixed false
alarm rate) on the DARPA IDS evaluation data set [12]. These are:

1. P(src IP | dest IP), where src IP is the external source address of the client
making the request, and dest IP is the local host address. This differs from PHAD
in that the probability is conditional (a separate model for each local dest IP), only
for TCP, and only for server connections (destination port < 1024). In training,
this model learns the normal set of clients or users for each host. In effect, this
models the set of clients allowed on a restricted service.

2. P(src IP | dest IP, dest port). This model is like (1) except that there is a separate
model for each server on each host. It learns the normal set of clients for each
server, which may be differing across the servers on a single host.

3. P(dest IP, dest port). This model learns the set of local servers which normally
receive requests. It should catch probes that attempt to access nonexistent hosts or
services.

4. P(TCP flags | dest port). This model learns the set of normal TCP flag sequences
for the first, next to last, and last packet of a connection. A normal sequence is
SYN (request to open), FIN-ACK (request to close and acknowledge the previous
packet), and ACK (acknowledge the FIN). The model generalizes across hosts,
but is separate for each port number, because the port number usually indicates
the type of service (mail, web, FTP, telnet, etc.). An anomaly can result if a
connection fails or is opened or closed abnormally, possibly indicating an abuse
of a service.

5. P(keyword | dest port). This model examines the text in the incoming request
from the reassembled TCP stream to learn the allowable set of keywords for each
application layer protocol. A keyword is defined as the first word on a line of
input, i.e. the text between a linefeed and the following space. ALAD examines
only the first 1000 bytes, which is sufficient for most requests. It also examines
only the header part (ending with a blank line) of SMTP (mail) and HTTP (web)
requests, because the header is more rigidly structured and easier to model than

 11

the body (text of email messages or form uploads). An anomaly indicates the use
of a rarely used feature of the protocol, which is common in many R2L (remote-
to-local) attacks.

As with PHAD, the anomaly score is tn/r, where r different values were observed out of n
training samples, and it has been t seconds since the last anomaly was observed. An
anomaly occurs only if the value has never been observed in training.

4.3.2 EXPERIMENTAL RESULTS

We evaluated PHAD and ALAD by running them at the same time on the 1999 DARPA
IDS evaluation data set and merging the results. Each system was trained on week 3 (7
days, attack free) and evaluated on the 180 detectable labeled attacks from weeks 4 and 5.
To merge the results, we set the two thresholds so that equal numbers of alarms were
taken from both systems, and so that there were 100 total false alarms (10 per day
including the missing day) after removing duplicate alarms. An alarm is considered a
duplicate if it identifies the same IP address and the same attack time within 60 seconds
of a higher ranked alarm from either system. We chose 60 seconds because DARPA
criteria allows a detection to be counted if the time is correctly identified within 60
seconds of any portion of the attack period. Also, to be consistent with DARPA, we count
an attack as detected if it identifies any IP address involved in the attack (either target or
attacker). Multiple detections of the same attack (that remain after removing duplicates)
are counted only once, but all false alarms are counted. In Table 1 we show the results of
this evaluation. In the column labeled det we list the number of attacks detected out of the
number of detectable instances, which does not include missing data (week 4, day 2) or
the three attack types (ntfsdos, selfping, snmpget) that generate no inside traffic. Thus,
only 180 of the 201 attack instances are listed. In the last column of Table 1, we describe
the PHAD and ALAD anomalies that led to the detection, prior to removing duplicate
alarms. For PHAD, the anomaly is the packet header field that contributed most to the
overall score. For ALAD, each of the anomalous components (up to 5) is listed. Based on
these descriptions, we adjusted the number of detections (column det) to remove
simulation artifacts and coincidental detections, and to add detections by Ethernet address
rather than IP address, which would not otherwise be counted by DARPA rules. The
latter case occurs for arppoison, in which PHAD detects anomalous Ethernet addresses in
non-IP packets. Arppoison disrupts network traffic by sending spoofed responses to ARP-
who-has requests from a compromised local host so that IP addresses are not correctly
resolved to Ethernet addresses.

The two coincidences are mscan (an anomalous Ethernet address, overlapping an
arppoison attack), and illegalsniffer (a TCP checksum error). Illegalsniffer is a probe by a
compromised local host being used to sniff traffic, and is detectable only in the
simulation because it makes reverse DNS lookups to resolve sniffed IP addresses to host
names. Because the attack is prolonged, and because all of the local hosts are victims,
coincidences are likely.

 12

Table 1. Attacks in the 1999 DARPA IDS data set [12], and the number detected (det) out of the total number in the available data.
Detections are for merged PHAD and ALAD at 100 total false alarms, after removing coincidences and simulation artifacts (TTL field) and
adding detections by Ethernet address (arppoison). Attacks listed do not include the 12 attacks in week 4 day 2 (missing data) or 9 attacks
that leave no evidence in the inside network traffic (selfping, snmpget, and ntfsdos). Hard to detect attacks (identified by *) are those types
which were detected no more than half of the time by any of the 18 original participants [12, Table 4]. Attack descriptions are due to [15].

Type
Probe
Probe
Probe
Probe
Probe
Probe
Probe
Probe
Probe
Probe
Probe
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
R2L
U2R
U2R
U2R
U2R
U2R
U2R
U2R
U2R
U2R
U2R
U2R
U2R
Data
Total

Attack and description (* = hard to detect)
illegalsniffer - compromised local host sniffs traffic
ipsweep (clear) - ping random IP addresses
*ipsweep (stealthy - slow scan)
*ls - DNS zone transfer
mscan - test multiple vulnerabilities
ntinfoscan - test multiple NT vulnerabilities
portsweep (clear) - test multiple ports
*portsweep (stealthy - slow scan)
*queso - malformed packets fingerprint OS
*resetscan - probe with RST to hide from IDS
satan - test multiple vulnerabilities
apache2 - crash web server with long request
*arppoison - spoofed replies to ARP-who-has
back - crash web server with "GET /////..."
crashiis - crash NT webserver
*dosnuke - URG data to NetBIOS crashes Windows
land - identical src/dest addr/ports crashes SunOS
mailbomb - flood SMTP mail server
neptune - SYN flood crashes TCP/IP stack
pod (ping of death) - oversize IP pkt crashes TCP/IP
processtable - server flood exhausts UNIX processes
smurf - reply flood to forged ping to broadcast address
syslogd - crash server with forged unresolvable IP
*tcpreset - local spoofed RST closes connections
teardrop - IP fragments with gaps crashes TCP/IP stack
udpstorm - echo/chargen loop flood
*warezclient - download illegal files by FTP
warezmaster - upload illegal files by FTP
dict (guess telnet/ftp/pop) - dictionary password guessing
framespoofer - trojan web page
ftpwrite - upload "+ +" to .rhosts
guest - simple password guessing
httptunnel - backdoor disguised as web traffic
imap - mailbox server buffer overflow
named - DNS nameserver buffer overflow
*ncftp - FTP server buffer overflow
*netbus - backdoor disguised as SMTP mail traffic
*netcat - backdoor disguised as DNS traffic
phf - exploit bad Apache CGI script
ppmacro - trojan PowerPoint macro in web page
sendmail - SMTP mail server buffer overflow
*sshtrojan - fake ssh client steals password
xlock - fake screensaver steals password
xsnoop - keystrokes intercepted on open X server
anypw - NT bug exploit
casesen - NT bug exploit
eject - UNIX suid root buffer overflow
fdformat - UNIX suid root buffer overflow
ffbconfig - UNIX suid root buffer overflow
*loadmodule - UNIX trojan shared library
*perl - UNIX bug exploit
ps - UNIX bug exploit
*sechole - NT bug exploit
*sqlattack - database app bug, escape to user shell
xterm - UNIX suid root buffer overflow
yaga - NT bug exploit
secret - copy secret files or access unencrypted

Det
0/2
1/4
0/3
0/2
1/1
2/3
1/4
2/11
3/4
0/1
2/2
3/3
3/5
0/4
5/7
4/4
0/1
3/3
0/4
4/4
1/3
1/5
0/4
1/3
3/3
2/2
1/3
1/1
3/7
0/1
0/2
0/3
0/2
0/2
0/3
4/5
2/3
2/4
2/3
1/3
2/2
1/3
0/3
0/3
0/1
2/3
1/2
2/3
1/2
0/2
0/4
0/3
1/2
0/2
1/3
1/4
0/4
70/180

How detected
(1 coincidental TCP checksum error)
1 Ethernet packet size = 52, (1 TTL = 253)
(2 TTL = 253)

1 dest IP/port, flags (1 coincidental Ethernet dest)
2 HTTP "HEAD", 1 FTP "quit", 1 "user", TCP RST, (2 TTL)
1 FIN without ACK, (1 TTL)
2 FIN without ACK, (5 TTL)
2 FIN without ACK (1 TTL)

2 HTTP/ 1 SMTP "QUIT", finger /W, IP length, src IP, (TTL)
3 source IP, 1 HTTP "x" and flags, TCP options in reply
3 Ethernet src/dest address (non-IP packet)

4 source IP address, 1 unclosed TCP connection
3 URG pointer, 4 flags = UAPF

3 SMTP lowercase "mail" (1 TTL = 253)
(2 TTL = 253)
4 IP fragment pointer
1 source IP address
1 source IP address (2 TTL)

1 TCP connection not opened or closed
3 frag ptr
2 UDP checksum error
1 source IP address
1 source IP address
2 FTP "user", 1 dest IP/port (POP3), 1 src IP

4 dest IP/port, 1 SMTP "RSET", 3 auth "xxxx,25"
2 source IP address, (3 TTL)
1 src/dest IP, (1 TTL)
2 source IP, 1 null byte in HTTP header
1 source IP (and TTL)
2 source IP address, 2 global dest IP, 1 "Sender:"
1 source IP address

2 FTP upload (dest IP/port 20, flags, FTP "PWD"), (1 TTL)
1 FTP upload (src IP, flags)
2 FTP upload (src IP, flags, FTP "STOR")
1 SMTP source IP address (email upload)

1 FTP upload (dest IP/port, flags, FTP "STOR"), (1 TTL)

1 FTP upload (source IP, dest IP/port)
1 FTP upload (src IP, FTP lowercase "user")

(39%) ; and 23/65 (35%) of hard to detect attacks

 13

There are 25 attacks detected by anomalous TTL values in PHAD, which we believe to
be simulation artifacts. TTL (time to live) is an 8-bit counter decremented each time an IP
packet is routed in order to expire packets to avoid infinite routing loops.
Although small TTL values might be used to elude an IDS by expiring the packet
between the IDS and the target [16], this was not the case because the observed values
were large, usually 126 or 253. Such artifacts are unfortunate, but probably inevitable,
given the difficulty of simulating the Internet. A likely explanation for these artifacts is
that the machine used to simulate the attacks was a different real distance from the inside
sniffer than the machines used to simulate the background traffic. We did not count
attacks detected solely by TTL. After adjusting the number of detections in the det
column, we detect 70 of 180 (39%) of attacks at 100 false alarms. Among the poorly
detected attacks [12, Table 1], we detect 23 of 77 (30%), or 23 of 65 (35%) of the 180
detectable attacks in our data set, almost the same rate as for the well detected attacks.
This is a good result because an anomaly detection system such as ours would not be
used by itself, but rather in combination with other systems such as those in the original
evaluation that use signature detection or host based techniques. In order for the
combination to be effective, there must be a significant non-overlap, and our results show
that. We should also point out that when we developed PHAD and ALAD, we did so with
the goal of improving the overall number of detections rather than just the poorly
detected attacks.

More detail about algorithms and experimental results is described in [17].

4.4 Cost-Sensitive Modeling

Intrusion detection systems must maximize the realization of security goals while
minimizing costs. In this project, we studied the problem of building cost-sensitive
intrusion detection models. We examined the major cost factors associated with an IDS,
which include development cost, operational cost, damage cost due to successful
intrusions, and the cost of manual and automated response to intrusions. These cost
factors can be qualified according to a defined attack taxonomy and site-specific security
policies and priorities. We defined cost models to formulate the total expected cost of an
IDS, and developed cost-sensitive machine learning techniques that can produce
detection models that are optimized for user-defned cost metrics. Empirical experiments
showed that our cost-sensitive modeling and deployment techniques are effective in
reducing the overall cost of intrusion detection.

4.4.1 Cost Factors and Metrics

In order to build cost-sensitive ID models, we must first understand the relevant cost
factors and the metrics used to define them. Borrowing ideas from the related fields of
credit card and cellular phone fraud detection, we identify the following major cost
factors related to intrusion detection: damage cost, response cost, and operational cost.
Damage cost (DCost) characterizes the amount of damage to a target resource by an
attack when intrusion detection is unavailable or ineffective. Response cost (RCost) is the
cost of acting upon an alarm or log entry that indicates a potential intrusion. Operational

 14

cost (OpCost) is the cost of processing the stream of events being monitored by an IDS
and analyzing the activities using intrusion detection models.

Cost-sensitive models can only be constructed and evaluated when cost metrics are given.
The issues involved in the measurement of cost factors have been studied by the
computer risk analysis and security assessment communities. The literature suggests that
attempts to fully quantify all factors involved in cost modeling usually generate
misleading results because not all factors can be reduced to discrete dollars (or some
other common unit of measurement) and probabilities [18, 19, 20, 21, 22]. It is
recommended that qualitative analysis be used to measure the relative magnitudes of cost
factors. It should also be noted that cost metrics are often site-specific because each
organization has its own security policies, information assets, and risk factors [23].

4.4.1.1 Attack Taxonomy

An attack taxonomy is essential in producing meaningful cost metrics. The taxonomy
groups intrusions into different types so that cost measurement can be performed for
categories of similar attacks. Intrusions can be categorized and analyzed from different
perspectives. Lindqvist and Jonsson introduced the concept of the dimension of an
intrusion and used several dimensions to classify intrusions [24]. The intrusion results
dimension categorizes attacks according to their effects (e.g., whether or not denial-of
service is accomplished). It can therefore be used to assess the damage cost and response
cost. The intrusion techniques dimension categorizes attacks based on their methods
(e.g., resource or bandwidth consumption). It therefore affects the operational cost and
the response cost. Also, the intrusion target dimension categorizes attacks according to
the resource being targeted and affects both damage and response costs.

For example, using the DARPA Intrusion Detection Evaluation dataset, our attack
taxonomy first categorizes the intrusions occurring in the dataset into ROOT, DOS, R2L,
and PROBE, based on their intrusion results. Then within each of these 5 categories, the
attacks are further partitioned by the techniques used to execute the intrusion. The
ordering of sub-categories is of increasing complexity of the attack method. Attacks of
each sub-category can be further partitioned according to the attack targets. For
simplicity, the intrusion target dimension is not shown.

4.4.1.2 Cost Factors

Damage Cost There are several factors that determine the damage cost of an attack.
Northcutt uses criticality and lethality to quantify the damage that may be incurred by
some intrusive behavior. Criticality measures the importance, or value, of the target of an
attack. This measure can be evaluated according to a resource’s functional role in an
organization or its relative cost of replacement, unavailability, and disclosure [21].
Similar to Northcutt’s analysis, we assign 5 points for firewalls, routers, or DNS servers,
4 points for mail or Web servers, 2 points for UNIX workstations, and 1 point for
Windows or DOS workstations. Lethality measures the degree of damage that could
potentially be caused by some attack. For example, a more lethal attack that helped an

 15

intruder gain root access would have a higher damage cost than if the attack gave the
intruder local user access. Other damage may include the discovery of knowledge about
network infrastructure or preventing the offering of some critical service. For each main
attack category in our attack taxonomy, we define a relative lethality scale and use it as
the base damage cost, or baseD. When assigning damage cost according to the criticality
of the target, we can use the intrusion target dimension. Using these metrics, we can
define the damage cost of an attack targeted at some resource as criticality × baseD. For
example, a DOS attack targeted at a firewall has DCost=150, while the same attack
targeted at a Unix workstation has DCost=60. In addition to criticality and lethality, we
define the progress of an attack to be a measure of how successfully an attack is in
achieving its goals. For example, a Denial-of-Service (DOS) attack via resource or
bandwidth consumption (e.g. SYN flooding) may not incur damage cost until it has
progressed to the point where the performance of the resource under attack is starting to
suffer. The progress measure can be used as an estimate of the percentage of the
maximum damage cost that should be accounted for. That is, the actual cost is progress ×
criticality × baseD. However, in deciding whether or not to respond to an attack, it is
necessary to compare the maximum possible damage cost with the response cost. This
requires that we assume a worst-case scenario in which progress = 1.0.

Response Cost Response cost depends primarily on the type of response mechanisms
being used. This is usually determined by an IDS’s capabilities, site-specific policies,
attack type, and the target resource [25]. Responses may be either automated or manual,
and manual responses will clearly have a higher response cost. Responses to intrusions
that may be automated include the following: termination of the offending connection or
session (either killing a process or resetting a network connection), rebooting the targeted
system, recording the session for evidence gathering purposes and further investigation,
or implementation of a packet-filtering rule [26, 23]. In addition to these responses, a
notification may be sent to the administrator of the offending machine via e-mail in case
that machine was itself compromised. A more advanced response which has not been
successfully employed to date could involve the coordination of response mechanisms in
disparate locations to halt intrusive behavior closer to its source. Additional manual
responses to an intrusion may involve further investigation (perhaps to eliminate action
against false positives), identification, containment, eradication, and recovery [23]. The
cost of manual response includes the labor cost of the response team, the user of the
target, and any other personnel that participate in response. It also includes any downtime
needed for repairing and patching the targeted system to prevent future damage. We
estimate the relative complexities of typical responses to each attack type in Table 1 in
order to define the relative base response cost, or baseR. Again, we can take into account
the criticality of the attack target when measuring response cost. That is, the cost is
criticality × baseR. In addition, attacks using simpler techniques generally have lower
response costs than more complex attacks, which require more complex mechanisms for
effective response.

Operational Cost The main cost inherent in the operation of an IDS is the amount of
time and computing resources needed to extract and test features from the raw data
stream that is being monitored1. We associate OpCost with time because a real-time IDS

 16

must detect an attack while it is in progress and generate an alarm as quickly as possible
so that damage can be minimized. A slower IDS which uses features with higher
computational costs should therefore be penalized. Even if a computing resource has a
“sunken cost” (e.g., a dedicated IDS box has been purchased in a single payment), we
still assign some cost to the expenditure of its resources as they are used. If a resource is
used by one task, it may not be used by another task at the same time. The cost of
computing resources is therefore an important factor in prioritization and decision
making. Some features cost more to gather than others. However, costlier features are
often more informative for detecting intrusions. For example, features that examine
events across a larger time window have more information available and are often used
for “correlation analysis” in order to detect extended or coordinated attacks such as slow
host or network scans. Computation of these features is costly because of their need to
store and analyze larger amounts of data. Based on our extensive experience in extracting
and constructing predictive features from network audit data, we classify features into
four relative levels, based on their computational costs:

• Level 1 features can be computed from the first packet, e.g., the service.
• Level 2 features can be computed at any point during the life of the connection,

e.g., the connection state (SYN WAIT, CONNECTED, FIN WAIT, etc.).
• Level 3 features can be computed at the end of the connection, using only

information about the connection being examined, e.g., the total number of bytes
sent from source to destination.

• Level 4 features can be computed at the end of the connection, but require access
to data of potentially many other prior connections. These are the temporal and
statistical features and are the most costly to compute. The computation of these
features may require values of the lower level (i.e., levels 1, 2, and 3) features.

We can assign relative magnitudes to these features according to their computational
costs. For example, level 1 features may cost 1, level 2 features may cost 5, level 3
features may cost 10, and level 4 features may cost 100. These estimations have been
verified empirically using a prototype system for evaluating our ID models in real-time
that has been built in coordination with Network Flight Recorder [27].

4.4.2 Cost Models

A cost model formulates the total expected cost of intrusion detection. It considers the
trade-off among all relevant cost factors and provides the basis for making appropriate
cost-sensitive detection decisions. We first examine the cost trade-off associated with
each possible outcome of observing some event e, which may represent a network
connection, a user’s session on a system, or some logical grouping of activities being
monitored. In our discussion, we say that e=(a,p,r) is an event described by the attack
type a (which can be normal for a truly normal event), the progress p of the attack, and
the target resource r. The detection outcome of e is one of the following: false negative
(FN), false positive (FP), true positive (TP), true negative (TN), or misclassified hit. The
costs associated with these outcomes are known as consequential costs (CCost), as they
are incurred as a consequence of prediction, and are outlined in Table 2.

 17

FN Cost is the cost of not detecting an attack, and is always incurred by systems that do
not install IDSs. When an IDS falsely decides that a connection is not an attack and does
not respond to the attack, the attack will succeed, and the target resource will be
damaged. The FN Cost is therefore defined as the damage cost associated with event e, or
DCost(e).

TP Cost is incurred in the event of a correctly classified attack, and involves the cost of
detecting the attack and possibly responding to it. To determine whether response will be
taken, RCost and DCost must be considered. If the damage done by the attack to resource
r is less than RCost, then ignoring the attack actually reduces the overall cost. Therefore,
if RCost(e) > DCost(e), the intrusion is not responded to beyond simply logging its
occurrence, and the loss is DCost(e). Otherwise, the intrusion is acted upon and the loss is
limited to RCost(e). In reality, however, by the time an attack is detected and response
ensues, some damage may have incurred. To account for this, TP cost may be defined as
RCost(e) + εDCost(e), where ε ∈[0,1] is a function of the progress p of the attack.

FP Cost is incurred when an event is incorrectly classified as an attack, i.e., when
e=(normal,p,r) is misidentified as e=(a,p’,r) for some attack. If RCost(e’)≤DCost(e’), a
response will ensue and the response cost, RCost(e’), must be accounted for as well.
Also, since normal activities may be disrupted due to unnecessary response, false alarms
should be penalized. For our discussion, we use PCost(e) to represent the penalty cost of
treating a legitimate event e as an intrusion. For example, if e is aborted, PCost(e) can be
the damage cost of a DOS attack on resource r , because a legitimate user may be denied
access to r.

TN Cost is always 0, as it is incurred when an IDS correctly decides that an event is
normal. We therefore bear no cost that is dependent on the outcome of the decision.

Misclassified Hit Cost is incurred when the wrong type of attack is identified, i.e., an
event e=(a,p,r) is misidentified as e’=(a’,p’,r). If RCost(e’) ≤ DCost(e’), a response will
ensue and RCost(e’) needs to be accounted for. Since the response taken is effective
against attack type e’ rather than e, some damage cost of εDCost(e), where ε ∈[0,1], will
be incurred due to the true attack.

We can now define the cost model for an IDS. When evaluating an IDS over some
labeled test set E, where each event, e ∈E has a label of normal or one of the intrusions,
we define the cumulative cost of the IDS as follows:

CumulativeCost(E)=∑e(OpCost(e)+CCost(e))

where CCost(e), the consequential cost of the prediction by the IDS on e, is defined in
Table 2.

 18

Table 2: Model for Consequential Cost
Outcome Consequential Cost

CCost(e)
Condition

Miss (FN) DCost(e)
False Alarm (FP) RCost(e’)+PCost(e);

0
If DCost(e’)≥RCost(e’);
Otherwise

Hit (TP) RCost(e) + εDCost(e);
DCost(e)

If DCost(e)≥RCost(e);
Otherwise

Normal (TN) 0
Misclassified Hit RCost(e’) + εDCost(e);

DCost(e)
If DCost(e’)≥RCost(e’);
Otherwise

4.4.3 Reducing Operational Cost

In order to reduce OpCost, ID models need to use low cost features as often as possible while still
maintaining a desired level of accuracy. Our approach is to build multiple ID models, each of
which uses different sets of features at different cost levels. Low cost models are always
evaluated first by the IDS, and high cost models are used only when the low cost models cannot
make a prediction with sufficient accuracy. We implemented this multiple-model approach
using RIPPER [5], a rule induction algorithm.

4.4.4 Reducing Consequential Cost

A traditional IDS that does not consider the trade-off between RCost and DCost will
attempt to respond to every intrusion that it detects. As a result, the consequential cost for
FP, TP, and misclassified hits will always include some response cost. We use a cost-
sensitive decision module to determine whether response should ensue based on whether
DCost is greater than RCost. The decision module takes as input an intrusion report
generated by the detection module. The report contains the name of the predicted
intrusion and the name of the target, which are then used to look up the pre-determined
DCost and RCost. If DCost ≥ RCost, the decision module invokes a separate module to
initiate a response; otherwise, it simply logs the intrusion report.

4.4.5 Experimental Results

Our experiments used data that was distributed by the 1998 DARPA Intrusion Detection
Evaluation Program. We used 80% of the data for training the detection models. The
remaining 20% were used as a test set for evaluation of the cost-sensitive models.

Our results showed that the multiple-model approach can achieve a 78% reduction in
operational cost, and that the consequential cost can be reduced 90%.

 19

4.5 Adaptive IDS

We advocate enabling an IDS to provide performance adaptation, that is, the best
possible performance for the given operation environment. It is extremely difficult, if not
impossible, for an IDS to be 100% accurate. The optimal performance of an IDS should
be determined by not only its ROC (Receiver Operating Characteristics) curve of
detection rate versus false alarm rate, but also its cost metrics (e.g., damage cost of
intrusion) and the probability of intrusion. Accordingly, performance adaptation means
that an IDS should always maximize its cost-benefits for the given (current) operational
conditions. For example, if an IDS is forced to miss some intrusions (that can otherwise
be detected using its “signature base”), for example, due to stress or overload attacks, it
should still ensure that the best value (or minimum damage) is provided according to
cost-analysis on the circumstances. As a simple example, if we regard buffer-overflow as
more damaging than port-scan (and for argument sake all other factors, for example,
attack probability, detection probability, are equal), then missing a port-scan is better than
missing a buffer-overflow. In this research, we developed a framework for considering
the trade-offs of IDS performance objectives. We have developed techniques for run-time
performance measurement and monitoring, and for dynamic adaptation and
reconfiguration of IDS policies and mechanisms. We focused our work on misuse
detection systems.

4.5.1 IDS Performance Metrics

4.5.1.1 Expected Value

The purpose of a real-time IDS is to detect intrusions and prevent damages. Instead of
using mere statistical accuracy, we should evaluate an IDS according to its value (or cost-
benefit). For each attack Ai, an IDS equipped with the detection rule Ri (and the necessary
preprocessing and logging tasks) for Ai provides the expected value:

Vi = Cβ
i pi (1- βi) - Cα

i (1- pi) αi

Cβ

i is the damage cost, pi is the prior priority of the intrusion, βi is the false negative rate,
Cα

i is the false alarm cost, αi is the false alarm rate. The first term is the loss (damage)
prevented because of true detection, and the second term is the loss incurred because of
false alarms. The total value of an IDS depends on its configuration, that is, its collection
of analysis tasks and hence the attacks that it “covers”. It is simply ∑i Vi.

4.5.1.2 Response Time

Upon arrival in the system, audit records are placed in a (common) queue (e.g., the
libpcap buffer). The queue has only one server, the audit data processing and intrusion
analysis unit. The processing and analysis tasks for each audit record are applied

 20

sequentially. That is, each event goes through a sequence of analysis tasks. The process
terminates if a detection rule Ri determines that the event is (part of) an intrusion. Or the
process ends when all analysis is done and the event is deemed normal.

The expected system time of a newly arrived audit record includes the queuing time plus
the service time the record. The queuing time is simply the sum of the service time for the
audit records that are already in the IDS. The service time of an audit record is the sum of
processing time of each task that is applied on the record.

Obviously, if an IDS has a response time that is larger than the inter-arrival-time of audit
records, the queue can be filled up and newly arrived records will be “dropped”. As a
result, the IDS cannot reliable detect intrusions or may output more false alarms.
Therefore, it is important that an IDS operates under the constraint that its response time
is smaller than the inter-arrival-time of audit records.

4.5.2 Performance Optimization and Adaptation

It is not always possible to run an IDS with its “full” configurations, i.e., with all analysis
tasks enabled. For example, if there is a high-volume and high-speed network traffic, the
inter-arrival-time of packets will be very small. If the IDS continues to run in its full
configuration, its response time is likely to exceed the inter-packet-arrival-time.

Our goal is then to configure an IDS to provide the best value while operating under the
above constraints. That is, if an IDS cannot accommodate all desirable analysis tasks
(without violating the constraints), it should just include the more valuable tasks (we also
assume that additional and orthogonal optimization techniques, such as rule-set ordering,
can be used). For example, an IDS should always detect “buffer-overflow” and only
analyze “slow scan” when time permits. More formally, we need to solve the following
performance optimization problem: select a set of analysis tasks for the IDS in such a
way that the total value of the IDS is maximized while it still operates under the
constraint that its response time is smaller than the inter-arrival-time of audit records.

We note that the solution to the above optimization problem depends on the traffic and
attack conditions. This means that in run-time, if we use a pre-computed IDS
configuration, it may not provide the optimal value because traffic and attack conditions
can change. We define performance adaptation as the process of dynamically
reconfiguring an IDS to provide the optimal value given the current run-time constraints.

Performance adaptation relies on performance monitoring in run-time to detect the
conditions (e.g., “stress”) that cause performance degradation and to measure the
parameter values needed for solving the optimization problem.

4.5.3 Performance Optimization and Adaptation

We experimented with two open-source IDSs, Bro and Snort. For both systems, we
showed that an attacker can purposely create stress conditions, by flooding the network

 21

with traffic that will require a lot of processing, and then launch attacks that the IDSs will
miss because of packet drops.

We then modified both Bro and Snort. We added performance measurement and
monitoring codes, and modules for solving the performance optimization problem. Our
experiments showed that the modified systems can dynamically change configurations
when stressed, in such a way that although some types of packets will not be processed,
the more important attacks are still detected. That is, the modified systems have
performance adaptation abilities.

Please see [28] for more detail of this work.

4.6 Alert Analysis and Attack Scenario Analysis

The individual alerts from IDSs alone may not be sufficient to detect or decipher the
stealth or sophisticated attack activities. A higher-level analysis is necessary.
The main focus of this research task was to develop analysis algorithms that can discover
new (or novel) relationships among alerts. Rather than relying on a priori alert
correlation knowledge, our algorithm uses a statistical causality analysis technique call
Granger Causality Test (GCT) to correlate alerts and discover (new) relationship among
attack steps or anomaly activities.

The intuition is that attack steps that do not have well-known patterns or obvious
relationships may nonetheless have some statistical correlations in the alert data.
GCT uses statistical functions to test if lagged information on a time-series variable x
provides any statistically significant information about another time-series variable y. If
the answer is yes, we say variable x Granger-causes y.

We model variable y by the Autoregressive Model (AR Model) and Autoregressive
Moving Average Model (ARMA Model). GCT compares the residuals of both AR Model
and ARMA Model. GCT compares the residuals of the AR Model with the residuals of
the ARMA Model. Specifically, for two time series variables y and x with size N, the AR
Model and ARMA Model of y are defined as:

AR Model: ∑
=

+−=
p

i
i keikyky

1
0)()()(θ ;

ARMA Model: ∑ ∑
= =

+−+−=
p

i

p

i
ii keikuikyky

1
1

1

)()()()(βα

Where p is a particular lag length, and parameters iii θβα ,,)1(pi ≤≤ are computed in
the process of solving the Ordinary Least Square (OLS) problem. The residuals of the AR

Model and ARMA Model are: ∑
=

=
T

k
keR

1

2
00)(and ∑

=

=
T

k
keR

1

2
11)(respectively with T=N-p.

The Null Hypothesis H0 of GCT is H0: βi=0, i=1, 2, …, p. That is, x does not affect y up

 22

to a delay of p time units. We denote g as the Granger Causality Index (GCI):

)12,(~
)12/(

/)(

1

10 −−
−−

−
= pTpF

pTR
pRR

g

Here, F(a,b) is Fisher's F distribution with parameters a and b [29]. F-test is conducted to
verify the validity of the Null Hypothesis. If the value of g is larger than a threshold in
the F-test, then we reject the Null Hypothesis and conclude that x Granger-causes y. The
intuition of GCI g is that it indicates how better variable y can be predicted using histories
of both variable x and than it can using the history of y alone. We say that variable x1(k) is
more likely to be causally related with y(k) than x2(k) if g1 > g2 and both have passed the
F-test, where gi, i = 1, 2 denotes the GCI for the input-output pair (xi,y).

Applying GCT to alert correlation, the task is to analyze the (timestamped) alert streams
and determine which pairs of alerts have causal relationships. In a preliminary recent
study as part of our DARPA Cyber Panel Program project, we applied our algorithms to
the datasets of the DRAPA Grand Challenge Problem (GCP). The GCP dataset includes
multiple stealth worm attack scenarios. Our alert correlation algorithms can correctly
discover both the obvious and hidden pattern of causal relationships among attacks. For
example, in Scenario I, we can also discover the mutual causal relationship between
worm’s malicious activities of illegal file access (to install agent software and collect
sensitive data), uploading the stolen data to an external site, and downloading new agent
software. In Scenario II, we can discover the causality between worm attack and server’s
abnormal service status.

More details can be found in [30].

5. Conclusions
In this project, we studied how to build cost-sensitive and light intrusion detection
models. Our goal was to automate as much as analysis tasks in intrusion detection as
possible. The main research activities were in:

• Automatic feature construction by analyzing the patterns of normal and intrusion
activities computed from large amount of audit data

• Light-weight anomaly detection algorithms using patterns of packet headers and
payloads

• Study of cost factors in intrusion detection. Using cost-sensitive machine learning
algorithms to construct intrusion detection models that achieve optimal
performance on the given cost metrics

• Dynamic (re-)configuration to make IDS more effective and efficient, and
resilient to IDS-related attacks

• Using statistical causality analysis to discover new attack step relationships

We have developed algorithms and prototype systems, and have conducted extensive
experiments using DARPA datasets and other real-world datasets. The results showed
that the technologies we developed in this project are far more advanced and better than
the state-of-the-art.

 23

The aims of the project were met. In fact, we went beyond the original proposal. The
results of this research have been reported in many publications. In addition, we have
actively engaged in technology transfer throughout the course of the project. In particular,
the PIs were involved in the founding of System Detection Inc.

6. Reference
[1] W. Lee. A Data Mining Framework for Constructing Fea-
tures and Models for Intrusion Detection Systems. PhD thesis, Columbia University, June
1999.

[2] W. Lee, S. J. Stolfo, and K. W. Mok. Algorithms for mining audit data. In T. Y. Lin,
editor, Data Mining, Rough Sets, and Granular Computing , T. Y. Lin, Y. Y. Yao, and L.
A. Zadeh (eds), Physica-Verlag, 2002.

[3] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S.
Webster, D. Wyschogrod, R. Cunninghan, and M. Zissman. Evaluating intrusion de-
tection systems: The 1998 DARPA off-line intrusion detection evaluation. In
Proceedings of the 2000 DARPA Information Survivability Conference and Exposition,
January 2000.

[4] H. Mannila and H. Toivonen. Discovering generalized episodes using minimal
occurrences. In Proceedings of the 2nd International Conference on Knowledge
Discovery in Databases and Data Mining, Portland, Oregon, August 1996.

[5] W. W. Cohen. Fast effective rule induction. In Machine Learning: the 12th
International Conference, Lake Taho, CA, 1995. Morgan Kaufmann.

[6] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and Sons, 1994.

[7] E. Eskin. Anomaly detection over noisy data using learned probability distributions.
In Proceedings of the Seventeenth International Conference on Machine Learning
(ICML-2000), 2000.

[8] L. Pornoy. Intrusion detection with unlabeled data using clustering. In Undergraduate
Thesis, Columbia University, Department of Computer Science, 2000.

[9] Barbará, D., N. Wu, S. Jajodia, Detecting Novel Network Intrusions using Bayes
Estimators, First SIAM International Conference on Data Mining, 2001,
http://www.siam.org/meetings/sdm01/pdf/sdm01_29.pdf

[10] Anderson, Debra, Teresa F. Lunt, Harold Javitz, Ann Tamaru, Alfonso Valdes.
Detecting unusual program behavior using the statistical component of the Next
generation Intrusion Detection Expert System (NIDES), Computer Science Laboratory
SRI-CSL 95-06 May 1995. http://www.sdl.sri.com/papers/5/s/5sri/5sri.pdf

[11] SPADE, Silicon Defense, http://www.silicondefense.com/software/spice/

http://www.siam.org/meetings/sdm01/pdf/sdm01_29.pdf
http://www.sdl.sri.com/papers/5/s/5sri/5sri.pdf
http://www.silicondefense.com/software/spice/

 24

[12] Lippmann, R., et al., The 1999 DARPA Off-Line Intrusion Detection Evaluation,
Computer Networks, 34(4) 579-595, 2000.

[13] Paxson, Vern, and Sally Floyd. The Failure of Poisson Modeling. IEEE/ACM
Transactions on Networking (3) 226-244, 1995.

[14] Bell, Timothy, Ian H. Witten, John G. Cleary. “Modeling for Text Compression”.
ACM Computing Surveys (21)4, pp. 557-591, Dec. 1989.

[15] Kendall, Kristopher. A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems. Masters Thesis, MIT, 1999.

[16] Ptacek, Thomas H., and Timothy N. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection. January, 1998.

[17] Matthew V. Mahoney and Philip K. Chan. Learning Nonstationary Models of
Normal Network Traffic for Detecting Novel Attacks. In Proceedings of the SIGKDD
’02, July, 2002.

[18] A. M. Anderson. Comparing risk analysis methodologies. In D. T. Lindsay and W.
L. Price, editors, Information Security. Elsevier Science Publishers, 1991.

[19] R. P. Campbell and G. A. Sands. A modular approach to computer security risk
management. In AFIPS Conference Proceedings. AFIPS Press, 1979.

[20] DARCOM. Engineering Design Handbook: Army Weapon Systems Analysis, Part
Two (DARCOM-P 706-102). US Army Materiel Development And Readiness Command,
1979.

[21] D. Denning. Information Warfare and Security. Addison Wesley, 1999.

[22] S. Glaseman, R. Turn, and R. S. Gaines. Problem areas in computer security
assessment. In Proceedings of the National Computer Conference, 1977.

[23] S. Northcutt. Intrusion Detection: An Analyst's Handbook. New Riders, 1999.

[24] U. Lindqvist and E. Jonsson. How to systematically classify computer security
intrusions. In Proceedings of the IEEE Symposium on Research in Security and Privacy,
Oakland CA, May 1997.

[25] R. Bace. Intrusion Detection. Macmillan Technical Publishing, 2000.

[26] E. Amoroso. Intrusion Detection: An Introduction to Internet Surveillance,
Correlation, Traps, Trace Back, and Response. Intrusion.Net Books, 1999.

 25

[27] Network Flight Recorder Inc. Network _ight recorder. http://www.nfr.com, 1997.

[28] Wenke Lee, Joao B. D. Cabrera, Ashley Thomas, Niranjan Balwalli, Sunmeet
Saluja, and Yi Zhang. Performance Adaptation in Real-Time Intrusion Detection
Systems. In Proceedings of The 5th International Symposium on Recent Advances in
Intrusion Detection (RAID 2002), Zurich, Switzerland, October 2002.

[29] C.W.J. Granger. Investigating causal relations by econometric methods and cross-
spectral methods. Econometrica, 34:424-428, 1969.

[30] Xinzhou Qin and Wenke Lee. Statistical Causality Analysis of INFOSEC Alert
Data. In Proceedingso of the 6th International Symposium on Recent Advances in
Intrusion Detection (RAID), 2003.

7. Project Publications

• Xinzhou Qin and Wenke Lee. Statistical Causality Analysis of INFOSEC Alert
Data. In Proceedings of The 6th International Symposium on Recent Advances in
Intrusion Detection (RAID 2003), Pittsburgh, PA, September 2003.

• Henry H. Feng, Oleg Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo Gong.
Anomaly Detection Using Call Stack Information. In Proceedings of The 2003
IEEE Symposium on Security and Privacy, Oakland, CA, May 2003.

• Wenke Lee, Joao B. D. Cabrera, Ashley Thomas, Niranjan Balwalli, Sunmeet
Saluja, and Yi Zhang. Performance Adaptation in Real-Time Intrusion Detection
Systems. In Proceedings of The 5th International Symposium on Recent
Advances in Intrusion Detection (RAID 2002), Zurich, Switzerland, October
2002.

• Wenke Lee, Wei Fan, Matt Miller, Sal Stolfo, and Erez Zadok. Toward Cost-
Sensitive Modeling for Intrusion Detection and Response. Journal of Computer
Security, Vol. 10, Numbers 1,2, 2002

• Xinzhou Qin, Wenke Lee, Lundy Lewis, and Joao B. D. Cabrera. Integrating
Intrusion Detection and Network Management. In Proceedings of The IEEE/IFIP
Network Operations and Management Symposium (NOMS 2002), Florence, Italy,
May 2002.

• Wei Fan, Matt Miller, Sal Stolfo, Wenke Lee, and Phil Chan. Using Artificial
Anomalies to Detect Unknown and Known Network Intrusions. In Proceedings of
The First IEEE International Conference on Data Mining, San Jose, CA,
November 2001.

• Wenke Lee, Sal Stolfo, Phil Chan, Eleazar Eskin, Wei Fan, Matt Miller, Shlomo
Hershkop, and Junxin Zhang. Real Time Data Mining-based Intrusion Detection.
In Proceedings of The 2001 DARPA Information Survivability Conference and
Exposition (DISCEX II) (selected for presentation), Anaheim, CA, June 2001.

• Wenke Lee and Dong Xiang. Information-Theoretic Measures for Anomaly
Detection. In Proceedings of The 2001 IEEE Symposium on Security and Privacy,
Oakland, CA, May 2001.

• Salvatore J. Stolfo,Shlomo Hershkop, Ke Wang, Olivier Nimerkern and Chia-Wei
Hu. A Behavior-based Approach to Securing Email Systems. "Mathematical

http://www.nfr.com

 26

Methods, Models and Architectures for Computer Networks Security",
Proceedings published by Springer Verlag, Sept. 2003. [PDF]

• Katherine A Heller, Krysta M Svore, Angelos D. Keromytis, and Salvatore J.
Stolfo. "One Class Support Vector Machines for Detecting Anomalous Window
Registry Accesses". 3rd IEEE Conference Data Mining Workshop on Data
Mining for Computer Security, Florida, November 19, 2003. [PDF]

• Salvatore J. Stolfo, Shlomo Hershkop, Ke Wang, Olivier Nimeskern, and Chia-
Wei Hu. ``Behavior Profiling of Email" 1st NSF/NIJ Symposium on Intelligence
& Security Informatics(ISI 2003). June 2-3,2003,Tucson,Arizona,USA. [full
paper, PDF]

• Manasi Bhattacharyya, Shlomo Hershkop, Eleazar Eskin, and Salvatore J. Stolfo.
``MET: An Experimental System for Malicious Email Tracking.'' In Proceedings
of the 2002 New Security Paradigms Workshop (NSPW-2002). Virginia Beach,
VA: September 23rd - 26th, 2002. [full paper, PDF]

• Frank Apap, Andrew Honig, Shlomo Hershkop, Eleazar Eskin, Salvatore J.
Stolfo. ``Detecting Malicious Software by Monitoring Anomalous Windows
Registry Accesses.'' In Proceedings of the Fifth International Symposium on
Recent Advances in Intrusion Detection (RAID-2002). Zurich, Switzerland:
October 16-18, 2002. [full paper, PDF]

• Suhail Mohiuddin, Shlomo Hershkop, Rahul Bhan, Salvatore J. Stolfo.
``Defending against a large Scale Denail of Service Attack'' In Proceedings of the
3rd Annual IEEE Information Assurance Workshop . United States Military
Academy West Point, New York: June 17-19, 2002. [full paper, PDF]

• Leonid Portnoy, Eleazar Eskin and Salvatore J. Stolfo. ``Intrusion detection with
unlabeled data using clustering'' To Appear in Proceedings of ACM CSS
Workshop on Data Mining Applied to Security (DMSA-2001). Philadelphia, PA:
November 5-8, 2001. [full paper, PDF]

• Eleazar Eskin, Wenke Lee and Salvatore J. Stolfo. ``Modeling System Calls for
Intrusion Detection with Dynamic Window Sizes.'' Proceedings of DISCEX II.
June 2001. [full paper, PDF]

• Matthew G. Schultz, Eleazar Eskin, and Salvatore J. Stolfo. ``Malicious Email
Filter - A UNIX Mail Filter that Detects Malicious Windows Executables.''
Proceedings of USENIX Annual Technical Conference - FREENIX Track. Boston,
MA: June 2001. (Best Student Paper Award) [full paper, PDF]

• Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo. ``Data
Mining Methods for Detection of New Malicious Executables''. In Proceedings of
IEEE Symposium on Security and Privacy. Oakland, CA: May 2001. [full paper,
PDF]

• Leonid Portnoy. ``Intrusion Detection with Unlabeled Data using Clustering''
Undergraduate Thesis. Columbia University: December, 2000. [full paper, PDF]

• Eleazar Eskin, Matthew Miller, Zhi-Da Zhong, George Yi, Wei-Ang Lee, Sal
Stolfo. ``Adaptive Model Generation for Intrusion Detection Systems'' Workshop
on Intrusion Detection and Prevention, 7th ACM Conference on Computer
Security, Athens, GR: November, 2000. [full paper]

• Eskin, Eleazar. ``Anomaly Detection over Noisy Data using Learned Probability
Distributions'' ICML00, Palo Alto, CA: July, 2000. [abstract, full paper]

 27

• Wei Fan, Wenke Lee, Sal Stolfo, and Matthew Miller. ``A Multiple Model Cost-
Sensitive Approach for Intrusion Detection'' Eleventh European Conference on
Machine Learning (ECML '00) 2000. [full paper]

• Andrew Honig, Andrew Howard, Eleazar Eskin, and Salvatore Stolfo. “Adaptive
Model Generation: An Architecture for the Deployment of Data Mining-based
Intrusion Detection Systems.” in Data Mining for Security Applications. Kluwer
2002.

• M. Mahoney & P. Chan. Learning Rules for Anomaly Detection of Hostile
Network Traffic. Proc. Third IEEE Intl. Conf. on Data Mining (ICDM), pp. 601-
4, 2003.

• G. Tandon & P. Chan. Learning Rules from System Call Arguments and
Sequences for Anomaly Detection. ICDM Workshop on Data Mining for
Computer Security (DMSEC), pp. 20-29, 2003.

• R. Vargiya & P. Chan. Boundary Detection in Tokenizing Network Application
Payload for Anomaly Detection. ICDM Workshop on Data Mining for Computer
Security (DMSEC), pp. 50-59, 2003.

• P. Chan, M. Mahoney & M. Arshad. Learning Rules and Clusters for Anomaly
Detection in Network Traffic. Managing Cyber Threats: Issues, Approaches and
Challenges, V. Kumar, J. Srivastava & A. Lazarevic (editors), Kluwer, to appear,
2003.

• M. Mahoney and P. Chan. An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection. Proc. 6th Intl. Symp. Recent
Advances in Intrusion Detection, p. 220-237, 2003.

• M. Mahoney and P. Chan. Learning Nonstationary Models of Normal Network
Traffic for Detecting Novel Attacks. Proc. Eighth Intl. Conf. Knowledge
Discovery and Data Mining, p376-385, 2002.

