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1. Summary 
Intrusion detection systems (IDSs) are currently developed using pure knowledge-
engineering approaches where expert knowledge on network, operating systems, and 
attack methods are encoded as detection models. The IDSs are not very effective in 
detecting variations of known attacks and novel attacks because expert knowledge is 
often incomplete and tends to be too specific to attack instances. Since the manual 
development process is very slow and expensive, IDSs are often equipped with only one 
centralized detection module, making them unable to keep up with fast (automated) 
attacks, and worse, subject to denial-of-service attacks. IDSs are not cost-sensitive 
because the cost factors, which include the development and operational costs, and the 
intrusion costs (damages), etc., are simply ignored as unwanted complexities in the IDS 
life cycle.  
 
The research proposed aims to develop methodologies and tools for building cost-
sensitive and light intrusion detection models. The main technical components of the 
research are:  

• Automatically constructing features and anomaly detection models by analyzing 
the patterns of normal and intrusion activities computed from large amount of 
audit data. 

• Using cost-sensitive machine learning algorithms to construct intrusion detection 
models that achieve optimal performance on the given (often site-specific) cost 
metrics, cluster attack signatures and normal profiles and accordingly construct 
one light model for each cluster to maximize the utility of each model.  

• Dynamic (re-)configuration of the light models to make an IDS effective and 
efficient, and resilient to IDS-related attacks. 

 
We have successfully accomplished the goals of the project. We developed several novel 
feature construction and anomaly detection algorithms. In particular, we invented very 
light-weight anomaly detection algorithms that analyze the frequent values of packet 
header fields or protocol commands in packet payloads and detect deviations (anomalies). 
Results on DARPA IDS Evaluation data and real-world data showed that these 
algorithms can effectively detect new attacks. 
 
We studied the problem of cost-sensitive modeling in intrusion detection. We examined 
the cost factors in intrusion detection, namely, damage cost, response cost, and operation 
cost. We showed how the performance of an IDS, i.e., a true positive, false positive, true 
negative, and false negative, affects the total cost incurred. For example, responding to an 
intrusion with higher response cost than damage cost will cost more than not responding 
to the intrusion. We developed strategies for an IDS to decide whether (and when) to 
“ignore” some intrusions in order to minimize cost. 
 
We studied how to dynamically re-configure a real-time IDS to provide the optimal 
protection, and developed a control and optimization approach that decides the optimal 
IDS configuration based on resource constraints and traffic and attack conditions. This 
problem is modeled as a Knapsack problem. Essentially, an IDS has limited real-time 
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resources and may not be able to process all packets if the traffic rate and volume is too 
high. The solution is for the IDS enable only the most “valuable” set of tasks so that the 
corresponding traffic data can be analyzed within the resource constraints. We call such 
an IDS an Adaptive IDS. We have modified the open-source Snort and Bro to make them 
adaptive. Experiments showed that these IDSs can automatically change its 
configurations according to traffic and attack conditions to provide the best values. 
 
In addition to the research tasks outlined in the original proposal, we have also studied 
the problem of alert correlation (a topic not included in the original proposal). Instead of 
a pattern-matching approach that can only recognized known attack step relationships, we 
aim to develop algorithms for detecting new attack step relationships. We developed a 
statistical causality analysis approach, based on GCT (Granger Causality Test), which 
with very little prior domain knowledge can find out a pair of alerts of the likely related 
attack steps. The intuition of this approach is that related attack steps may result in co-
occurrences of their alerts in the alert data streams. Therefore, statistical tools such GCT 
can be applied to find such occurrences. Experiments using DARPA’s Grand Challenge 
Problem (GCP) dataset showed that this approach can indeed find novel attack step 
relationships that other approaches based patter-matching can’t. 
 
The results of this research have been reported in many publications in top conferences 
and journals. In addition, we have actively engaged in technology transfer throughout the 
course of the project. In particular, the PIs were involved in the founding of System 
Detection Inc. The company has been developing commercial products based on findings 
of this project and the previous DARPA-funded JAM project. 
 
2. Introduction 
Intrusion detection is the process of identifying and responding to malicious actions that 
aim to compromise the security of a system, i.e., its confidentiality, integrity, and 
availability. The basic premises of intrusion detection are: system activities are 
observable, e.g., via auditing; and normal and intrusion activities leave distinct evidence. 
Therefore, an ID model has two basic elements: the features, that is, the indicators 
(evidence), measured using the audit data; and the modeling algorithms that piece 
together and reason about the indicators. The two main intrusion detection techniques 
include misuse detection, which uses signatures of specific attacks or system 
vulnerabilities to pattern-match and detect intrusions; and anomaly detection, which uses 
established normal profiles of users or system resources to detect significant deviation as 
probable intrusion. Misuse detection can be very efficient and accurate, however, by 
definition, it can detect only the instances of known intrusions. Anomaly detection is the 
only weapon to detect new attacks, however, it often cannot determine the nature of an 
attack and can have a high false alarm rate. An IDS therefore needs to carefully combine 
both misuse and anomaly detection models.  
 
Despite the research and commercial efforts in the past two decades, there are still a large 
gap between the capabilities of IDSs and that of cyber attackers. Results from the 1998 
DARPA Intrusion Detection Evaluation showed that although several intrusion detection 
programs already showed good detection rates on known intrusions and their slight 
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variations, none of the systems showed acceptable detection rate on “novel” attacks, i.e., 
those that are not modeled in the detection systems. Most IDSs are designed only to 
achieve optimal effectiveness (i.e., accuracy). However, for IDSs to be widely deployed, 
they need to bring economic benefits to organizations. This requires that IDSs balance the 
requirements of both accuracy and costs, which include development costs, operational 
costs, damage (intrusion) costs, etc. Real-time IDSs need to avoid becoming a single 
point of failure because cyber attackers are beginning to devise attacks that aim to elude 
IDSs through evasion tactics or denial-of-service. Multiple light, fast, and cooperative 
detection systems are likely to achieve more robust performance than using a monolithic 
system. Most IDSs only output alarms on individual steps. When IDSs are deployed in a 
large network, the sheer amount of IDS alerts can overwhelm the security staff and 
prevent proper and timely response actions. Therefore, we need to develop techniques to 
reduce the amount of alerts, correlate the alerts and recognize complex attack scenarios 
that are composed of a number of attack steps. 
 
The traditional manual approaches of encoding expert knowledge cannot meet the 
challenges of building IDSs that are equipped with the advanced capabilities discussed 
above. To effectively detect novel attacks, an IDS needs to provide comprehensive and 
systematic coverage, i.e., modeling, of all network elements and their interactions. Expert 
knowledge is simply too limited compared with the complexities of a network system. 
The delicate balance between accuracy and various cost factors, and the need to construct 
multiple cooperative models also add significant complexities in the development 
process. In alert analysis and attack scenario analysis the key is to identify the attack 
steps that are related. There are potentially many possible attack scenarios. Thus it is 
impossible to know a priori what attack step relationships are indicative of attack steps in 
a scenario.  
 
We therefore need a new development paradigm. We proposed to build and demonstrate 
a novel system for rapid development and deployment of effective and cost-sensitive 
IDSs. The key motivation of our research is to automate as much as possible the analysis 
tasks in intrusion detection. We consider intrusion detection as a classification problem, 
that is, we wish to classify each audit record into one of a discrete set of possible 
categories, normal or a particular kind of intrusion. We can thus apply machine learning 
approaches to inductively learn classifiers as detection models. Given a set of records, 
where one of the features is the class label (i.e., the concept), classification algorithms 
can compute a model that uses the most discriminating feature values to describe each 
concept. However, before we can apply classification algorithms, we need to first select 
and construct the right set of system features that may contain evidence (indicators) of 
normal or intrusions. We developed an automatic feature selection and construction 
system to systematically discover and construct predictive features that can be used to 
build effective misuse and anomaly detection models. We developed cost-sensitive 
classification algorithms to construct ID models that are optimized to provide the best 
economic benefits (cost-saving). We also studied how to efficiently execute ID models in 
real-time. In alert analysis, we developed algorithms to recognize new attack step 
relationships. 
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3. Methods, Assumptions, and Procedures 
As academic/university researchers, we aimed to make fundamental contributions, rather 
than to develop product prototypes. We therefore focused on theoretical studies, 
algorithm developments, and research prototype implementations. As discussed above, a 
key motivation is to automate the analysis tasks in intrusion detection. Toward this end, 
we applied machine learning, data mining, statistical analysis, and control and 
optimization techniques. For example, in alert analysis and attack scenario analysis, 
rather than using the approach of pattern-matching of known attack step relationships, 
which is straightforward but of limited use against new attack scenarios, we developed a 
statistical causality analysis approach that while still preliminary shows great potentials 
in its abilities to recognize attack step relationships.  
 
We communicated closely with the program manager and interacted with other research 
groups in the community to get feedbacks on our research directions and progress. In 
particular, we utilized the scenarios and data sets provided by DARPA and other project 
teams as training or validation data sets for our algorithms. 
 
The main goal of our project was to build a development system so that effective, cost-
sensitive and light ID models can be quickly built and deployed. We also developed real-
time IDSs equipped with our ID models to demonstrate the advanced capabilities of our 
development system. Our project proceeded as follows. 
 
For the first year, we concentrated on algorithm development. This included: enhancing 
and integrating existing components of JAM, e.g., the data mining programs for audit 
data analysis, and the pattern encoding and analysis programs; and developing initial 
versions of the new algorithmic components. We established the capabilities of 
automated feature construction. We studied the cost factors in intrusion detection and 
developed a model to evaluate an IDS based on cost. We also developed a light-weight 
anomaly detection algorithm that analyzes the frequent values of packet header fields. 
Experiments using DARPA dataset showed that this algorithm can detect many new 
attacks. 
 
For the second year, we developed an approach for learning an anomaly detection model 
over noisy (unclean) data. We studied the problem of dynamically changing the 
configuration of an IDS to provide optimal value according to the run-time resource 
constraints and attack conditions. We considered it as a control and optimization problem 
and developed a solution based on the Knapsack algorithm. We also started to investigate 
the problem of alert correlation and attack scenario analysis. 
 
For the third year, we developed a new and light-weight anomaly detection algorithm that 
analyzes the frequent values of protocol commands in packet payloads. Experiments 
using DARPA dataset showed that this algorithm can detect new attacks. We modified 
two open-source IDSs, Bro and Snort, to make them adaptive using our Knapsack based 
approach. Experiments showed that these IDSs can dynamically change their 
configurations to provide the best detection capabilities according to run-time conditions. 
We also developed a statistical causality analysis algorithm, based on the Granger 
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Causality Test (GCT), for identifying new attack step relationships. Experiments using 
the DARPA Grand Challenge Problem (GCP) dataset showed that it can detect new and 
stealth attack step relationships that other pattern-matching based approaches can’t. 
 
Throughout the whole project duration, we attended regular PI meetings and visit other 
groups to exchange ideas and share technologies. We published our findings in yearly 
major conferences so that our work can be reviewed critically from the scientific 
communities. We also actively participated in technology transfer. In particular, the PIs 
were part of the founding team of System Detection Inc., which is developing 
commercial products based on technologies developed in this project and previous 
DARPA-funded JAM project. 
 
4. Results and Discussion 
We now summarize the main results of the project. 

4.1 Feature Construction 

Two basic premises of intrusion detection are that system activities are observable, e.g., 
via auditing, and there is distinct evidence that can distinguish normal and intrusive 
activities. We call the evidence extracted from raw audit data features, and use these 
features for building and evaluating intrusion detection models. Feature extraction (or 
construction) is the processes of determining what evidence that can be taken from raw 
audit data is most useful for analysis. Feature extraction is thus a critical step in building 
an IDS. That is, having a set of features whose values in normal audit records differ 
significantly from the values in intrusion records is essential for having good detection 
performance. 
 
We have developed a set of data mining algorithms for selecting and constructing 
features from audit data [1]. First, raw (binary) audit data is processed and summarized 
into discrete records containing a number of basic features, e.g., timestamp, duration, 
source and destination IP addresses and ports, and error condition flags. Specialized data 
mining programs [2] are then applied to connection records to compute frequent patterns 
describing correlations among features and frequently co-occurring events across many 
connection records. The consistent patterns of normal activities and the "unique" patterns 
associated with an intrusion are then identified and analyzed to construct additional 
features for connection records. It can be shown that the constructed features can indeed 
clearly separate intrusion records from normal ones. Using this approach, the constructed 
features are more grounded on empirical data, and thus more objective than expert 
knowledge. Results from the 1998 DARPA Intrusion Detection Evaluation [3] showed 
that the ID model constructed using our algorithms was one of the best performing of all 
the participating systems. 
 
As an example, let us consider the SYN-Flood attack. When launching this attack, an 
attacker uses many spoofed source addresses to open many connections which never 
become completely established (i.e., only the first SYN packet is sent, and the connection 
remains in the "S0" state) to some port on a victim host (e.g., http). When comparing the 
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patterns from the 1998 DARPA dataset that contain SYN-Flood attacks with the patterns 
from a “baseline” normal dataset (of the same network), by first encoding the patterns 
into numbers and then computing “difference” scores. The following pattern, a frequent 
episode [4], has the highest “intrusion-only” (i.e., unique for the intrusion): “93% of the 
time, after two http connections with S0 flag are made to host victim, within 2 seconds 
from the first of these two, the third similar connection is made; and this pattern occurs in 
3% of the data”. Accordingly, our feature construction algorithm parses the pattern and 
uses the anatomy (or structural) information about an intrusion, e.g., "the same service 
(i.e., port) is targeted", and the invariant information, e.g. flag=S0, to construct the 
following features: “a count of connections to the same dst_host in the past 2 seconds”, 
and among these connections, “the percentage of those that have the same service, and 
the percentage of those that have the S0 flag.” For the two “percentage” features, the 
normal connection records have values close to 0, but the connection records belong to 
SYN-Flood have value above 80%. Once these discriminative features are constructed, it 
is easy to generate the detection rules via either manual (i.e. hand-coding) or automated 
(i.e., machine learning) techniques. For example, we use RIPPER [5], an inductive rule 
learner, to compute a detection rule for syn-flood: if for the past 2 seconds, the count of 
connections to the same dst host is greater than 4; and the the percentage of those that 
have the same service is greater than 75%; and the percentage of those that have the "S0" 
flag is greater than 75%, then there is a syn_flood attack. 
 
We have implemented a system that fully automated the features and model construction 
process. The inputs are two sets of connection records, one for normal connections and 
the other contains an attack. The connection records contain the basic features. The 
system than computes frequent patterns from both sets of connection records, compare 
the patterns to identify the to 10% intrusion-only patterns, parses the patterns to construct 
features, and invokes RIPPER to learn rules to detect the intrusion. The learned rules are 
tested on a given test dataset. If the accuracy is below a pre-defined threshold, the above 
process is iterated, with different heuristics in pattern computation, until a set of 
sufficiently accurate rules are computed or a pre-defined limit (e.g., on the number of 
iterations) is met. 

4.2 Unsupervised Learning 

Traditional model building algorithms typically require a large amount of labeled data in 
order to create effective detection models. One major difficulty in deploying a data 
mining-based IDS is the need for labeling system audit data for use by these algorithms. 
For misuse detection systems, the data needs to be accurately labeled as either normal or 
attack. For anomaly detection system, the data must be verified to ensure it is completely 
normal, which requires the same effort. Since models (and data) are specific to the 
environment on which the training data was gathered, this cost of labeling the data must 
be incurred for each deployment of the system. Ideally, we would like to build detection 
models from collected data without needing to manually label it. In this case, the 
deployment cost would greatly be decreased because the data would not need to be 
labeled. In order to build these detection models, we need a new class of model building 



 7

algorithms. These model building algorithms can take as input unlabeled data and create 
a detection model. We call these algorithms unsupervised anomaly detection algorithms.  
 
We developed an overview of two unsupervised anomaly detection algorithms that have 
been applied to intrusion detection. These algorithms can also be referred to as anomaly 
detection over noisy data. The reason the algorithm must be able to handle noise in the 
data is that we do not want to manually verify that the audit data collected is absolutely 
clean (i.e., contains no intrusions). Unsupervised anomaly detection algorithms are 
motivated by two major assumptions about the data which are reasonable for intrusion 
detection. The first assumption is that anomalies are very rare. This corresponds to the 
fact that normal use of the system greatly outnumbers the occurrence of intrusions. This 
means that the attacks compose a relatively small proportion of the total data. The second 
assumption is that the anomalies are quantitatively different from the normal elements. In 
intrusion detection this corresponds to the fact that attacks are drastically different from 
normal usage. 
 
Since anomalies are very rare and quantitatively different from the normal data, they 
stand out as outliers in the data set. Thus, we can cast the problem of detecting the attacks 
into an outlier detection problem. Outlier detection is the focus of much literature in the 
field of statistics [6]. In intrusion detection, intuitively, if the ratio of attacks to normal 
data is small enough, then because the attacks are different, the attacks stand out against 
the background of normal data. We can thus detect the attack within the dataset. 
We have performed experiments with two types of unsupervised anomaly detection 
algorithms, each for a different type of data. We applied a probabilistic based 
unsupervised anomaly detection algorithm to building detection models over system calls 
and a clustering based unsupervised anomaly detection algorithm to network traffic. The 
probabilistic algorithm approached detecting outliers by estimating the likelihood of each 
element in the data. We partition the data into two sets, normal elements and anomalous 
elements. Using a probability modeling algorithm over the data, we compute the most 
likely partition of the data. Details and experimental results of the algorithm applied to 
system call data are given in [7]. The clustering approach detects outliers by clustering 
the data. The intuition is that the normal data will cluster together because there is a lot of 
it. Because anomalous data and normal data are very different from each other, they do 
not cluster together. Since there is very little anomalous data relative to the normal data, 
after clustering, the anomalous data will be in the small clusters. The algorithm first 
clusters the data and then labels the smallest clusters as anomalies. 
 
Details and experimental results applied to network data are given in [8]. 

4.3 Light-Weight Anomaly Detection 

Most network anomaly systems such as ADAM [9], NIDES [10], and SPADE [11] 
monitor IP addresses, ports, and TCP state. This catches user misbehavior, such as 
attempting to access a password protected service (because the source address is unusual) 
or probing a nonexistent service (because the destination address and port are unusual). 
However, this misses attacks on public servers or the TCP/IP stack that might otherwise 
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be detected because of anomalies in other parts of the protocol. Often these anomalies 
occur because of software errors in the attacking or victim program, because of 
anomalous output after a successful attack, or because of misguided attempts to elude the 
IDS. Our anomaly detection algorithms have two nonstationary components developed 
and tested on the 1999 DARPA IDS evaluation test set [12], which simulates a local 
network under attack. The first component is a packet header anomaly detector (PHAD) 
which monitors the entire data link, network, and transport layer, without any 
preconceptions about which fields might be useful. The second component is an 
application layer anomaly detector (ALAD) which combines a traditional user model 
based on TCP connections with a model of text-based protocols such as HTTP, FTP, and 
SMTP. Both systems learn which attributes are useful for anomaly detection, and then 
use a nonstationary model, in which events receive higher scores if no novel values have 
been seen for a long time. 

4.3.1 LEARNING NONSTATIONARY MODELS 

The goal of intrusion detection is, for any given event x, to assign odds that x is hostile, 
e.g., odds (x_is_hostile) = P(attack|x) / P(no_attack|x) 
 
By Bayes law, we can write: 
 

P(attack|x) = P(x|attack)P(attack) / P(x) 
P(no_attack|x) = P(x|no_attack)P(no_attack) / P(x) 

 
By dividing these equations, and letting odds(attack) = P(attack) / P(no_attack), we have: 
 

odds(x_is_hostile) = odds(attack)P(x|attack) / P(x | no_attack) 
 
We have factored the intrusion detection problem into three terms: odds(attack), the 
background rate of attacks; P(x|attack), a signature detection model, and 1 / 
P(x|no_attack), an anomaly detection model. In this paper, we address only the anomaly 
detection component, 1 / P(x|no_attack). Thus, we model attack- free data, and assign 
(like SPADE) anomaly scores inversely proportional to the probability of an event based 
on this training. Anomaly detection models like ADAM, NIDES, and SPADE are 
stationary, in that P(x) depends on the average rate of x in training and is independent of 
time. For example, the probability of observing some particular IP address is estimated 
by counting the number of observations in training and dividing by the total number of 
observations. However, this may be incorrect. Paxson and Floyd [13] showed that many 
types of network processes, such as the rate of a particular type of packet, have self-
similar or fractal behavior. This is a nonstationary model, one in which no sample, no 
matter how short or long can predict the rate of events for any other sample. Instead, they 
found that events tend to occur in bursts separated by long gaps on all time scales, from 
milliseconds to months. We believe this behavior is due to changes of state in the system, 
such as programs being started, users logging in, software and hardware upgrades, and so 
on. We can adapt to state changes by exponentially decaying the training counts to favor 
recent events, and many models do just that. One problem with this approach is that we 
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have to choose either a decay rate (half life) or a maximum count in an ad-hoc manner. 
We avoid this problem by taking training decay to the extreme, and discarding all events 
(an attribute having some particular value) before the most recent occurrence. In our 
model, the best predictor of an event is the time since it last occurred. If an event x last 
occurred t seconds ago, then the probability that x will occur again within one second is 
1/t. We do not care about any events prior to the most recent occurrence of x. 
In an anomaly detection system, we are most interested in those events that have the 
lowest probability. As a simplification, we assign anomaly scores only to those events 
that have never occurred in training, because these are certainly the least likely. We use 
the PPMC model of novel events, which is also used in data compression [14]. This 
model states that if an experiment is performed n times and r different outcomes are 
observed, then the probability that the next outcome will not be one of these r values is 
approximately r/n. Stated another way, the fraction of events that were novel in training 
is r/n, and we expect that rate to continue. This probably overestimates the probability 
that the next outcome will be novel, since most of the novel events probably occurred 
early during training. Nevertheless, we use it. Because we have separate training data 
(without attacks) and test data (with attacks), we cannot simply assign an anomaly score 
of 1/P(x) = n/r. If we did, then a subsequent occurrence of x would receive the same 
score, even though we know (by our nonstationary argument) that a second occurrence is 
very likely now. We also cannot add it to our model, because the data is no longer attack-
free. Instead, we record the time of the event, and assign subsequent occurrences a score 
of t/P(x) = tn/r, where t is the time since the previous anomaly. On the first occurrence of 
x, t is the time since the last novel observation in training. An IDS monitors a large 
number of attributes of a message, each of which can have many possible outcomes. For 
each attribute with a value never observed in training, an anomaly score of tn/r is 
computed, and the sum of these is then assigned to the message. If this sum exceeds a 
threshold, then an alarm is signaled. 
 

anomaly score = ∑i ti ni / ri, where attribute i is novel in training 
 
We next describe two models, PHAD and ALAD. In PHAD (packet header anomaly 
detection), the message is a single network packet, and the attributes are the fields of the 
packet header. In ALAD (application layer anomaly detection), the message is an 
incoming server TCP connection. The attributes are the application protocol keywords, 
opening and closing TCP flags, source address, and destination address and port number. 

4.3.1.1 Packet Header Anomaly Detection (PHAD) 

PHAD monitors 33 fields from the Ethernet, IP, and transport layer (TCP, UDP, or 
ICMP) packet header. Each field is one to four bytes, divided as nearly as possible on 
byte boundaries as specified by the RFCs (request for comments) that specify the 
protocols, although we had to combine fields smaller than 8 bits (such as the TCP flags) 
or split fields longer than 32 bits (such as the Ethernet addresses). The value of each field 
is an integer. Depending on the size of the field, the value could range from 0 to 232 - 1. 
Because it is impractical to represent every observed value from such a large range, and 
because we wish to generalize over continuous values, we represent the set of observed 
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values with a set of contiguous ranges or clusters. Each new observed value forms a 
cluster by itself. If the number of clusters exceeds a limit, C, then we merge the two 
closest ones into a single cluster. For example, if C = 3 and we have {3-5, 8, 10-15, 20}, 
then we merge the two closest to form {3-5, 8-15, 20}. For the purposes of anomaly 
detection, the number of novel values, r, is the number of times the set of clusters is 
updated. 

4.3.1.2 Application Layer Anomaly Detection (ALAD) 

The second component of our anomaly detection model is the application layer anomaly 
detector (ALAD). Instead of assigning anomaly scores to each packet, it assigns a score 
to an incoming server TCP connection. TCP connections are reassembled from packets. 
ALAD, unlike PHAD, is configured knowing the range of IP addresses it is supposed to 
protect, and it distinguishes server ports (0-1023) from client ports (1024-65535). We do 
this because most attacks are initiated by the attacker (rather than by waiting for a 
victim), and are therefore against servers rather than clients. We tested a large number of 
attributes and their combinations that we believed might make good models, and settled 
on five that gave the best performance individually (high detection rate at a fixed false 
alarm rate) on the DARPA IDS evaluation data set [12]. These are: 

1. P(src IP | dest IP), where src IP is the external source address of the client 
making the request, and dest IP is the local host address. This differs from PHAD 
in that the probability is conditional (a separate model for each local dest IP), only 
for TCP, and only for server connections (destination port < 1024). In training, 
this model learns the normal set of clients or users for each host. In effect, this 
models the set of clients allowed on a restricted service. 

2. P(src IP | dest IP, dest port). This model is like (1) except that there is a separate 
model for each server on each host. It learns the normal set of clients for each 
server, which may be differing across the servers on a single host. 

3. P(dest IP, dest port). This model learns the set of local servers which normally 
receive requests. It should catch probes that attempt to access nonexistent hosts or 
services. 

4. P(TCP flags | dest port). This model learns the set of normal TCP flag sequences 
for the first, next to last, and last packet of a connection. A normal sequence is 
SYN (request to open), FIN-ACK (request to close and acknowledge the previous 
packet), and ACK (acknowledge the FIN). The model generalizes across hosts, 
but is separate for each port number, because the port number usually indicates 
the type of service (mail, web, FTP, telnet, etc.). An anomaly can result if a 
connection fails or is opened or closed abnormally, possibly indicating an abuse 
of a service. 

5. P(keyword | dest port). This model examines the text in the incoming request 
from the reassembled TCP stream to learn the allowable set of keywords for each 
application layer protocol. A keyword is defined as the first word on a line of 
input, i.e. the text between a linefeed and the following space. ALAD examines 
only the first 1000 bytes, which is sufficient for most requests. It also examines 
only the header part (ending with a blank line) of SMTP (mail) and HTTP (web) 
requests, because the header is more rigidly structured and easier to model than 
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the body (text of email messages or form uploads). An anomaly indicates the use 
of a rarely used feature of the protocol, which is common in many R2L (remote-
to-local) attacks. 

 
As with PHAD, the anomaly score is tn/r, where r different values were observed out of n 
training samples, and it has been t seconds since the last anomaly was observed. An 
anomaly occurs only if the value has never been observed in training.  

4.3.2 EXPERIMENTAL RESULTS 

We evaluated PHAD and ALAD by running them at the same time on the 1999 DARPA 
IDS evaluation data set and merging the results. Each system was trained on week 3 (7 
days, attack free) and evaluated on the 180 detectable labeled attacks from weeks 4 and 5. 
To merge the results, we set the two thresholds so that equal numbers of alarms were 
taken from both systems, and so that there were 100 total false alarms (10 per day 
including the missing day) after removing duplicate alarms. An alarm is considered a 
duplicate if it identifies the same IP address and the same attack time within 60 seconds 
of a higher ranked alarm from either system. We chose 60 seconds because DARPA 
criteria allows a detection to be counted if the time is correctly identified within 60 
seconds of any portion of the attack period. Also, to be consistent with DARPA, we count 
an attack as detected if it identifies any IP address involved in the attack (either target or 
attacker). Multiple detections of the same attack (that remain after removing duplicates) 
are counted only once, but all false alarms are counted. In Table 1 we show the results of 
this evaluation. In the column labeled det we list the number of attacks detected out of the 
number of detectable instances, which does not include missing data (week 4, day 2) or 
the three attack types (ntfsdos, selfping, snmpget) that generate no inside traffic. Thus, 
only 180 of the 201 attack instances are listed. In the last column of Table 1, we describe 
the PHAD and ALAD anomalies that led to the detection, prior to removing duplicate 
alarms. For PHAD, the anomaly is the packet header field that contributed most to the 
overall score. For ALAD, each of the anomalous components (up to 5) is listed. Based on 
these descriptions, we adjusted the number of detections (column det) to remove 
simulation artifacts and coincidental detections, and to add detections by Ethernet address 
rather than IP address, which would not otherwise be counted by DARPA rules. The 
latter case occurs for arppoison, in which PHAD detects anomalous Ethernet addresses in 
non-IP packets. Arppoison disrupts network traffic by sending spoofed responses to ARP-
who-has requests from a compromised local host so that IP addresses are not correctly 
resolved to Ethernet addresses.  
 
The two coincidences are mscan (an anomalous Ethernet address, overlapping an 
arppoison attack), and illegalsniffer (a TCP checksum error). Illegalsniffer is a probe by a 
compromised local host being used to sniff traffic, and is detectable only in the 
simulation because it makes reverse DNS lookups to resolve sniffed IP addresses to host 
names. Because the attack is prolonged, and because all of the local hosts are victims, 
coincidences are likely. 
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Table 1. Attacks in the 1999 DARPA IDS data set [12], and the number detected (det) out of the total number in the available data. 
Detections are for merged PHAD and ALAD at 100 total false alarms, after removing coincidences and simulation artifacts (TTL field) and 
adding detections by Ethernet address (arppoison). Attacks listed do not include the 12 attacks in week 4 day 2 (missing data) or 9 attacks 
that leave no evidence in the inside network traffic (selfping, snmpget, and ntfsdos). Hard to detect attacks (identified by *) are those types 
which were detected no more than half of the time by any of the 18 original participants [12, Table 4]. Attack descriptions are due to [15]. 

Type 
Probe 
Probe 
Probe 
Probe 
Probe 
Probe 
Probe 
Probe 
Probe 
Probe 
Probe 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
DOS 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
R2L 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
U2R 
Data 
Total 

Attack and description (* = hard to detect) 
illegalsniffer - compromised local host sniffs traffic 
ipsweep (clear) - ping random IP addresses 
*ipsweep (stealthy - slow scan) 
*ls - DNS zone transfer 
mscan - test multiple vulnerabilities 
ntinfoscan - test multiple NT vulnerabilities 
portsweep (clear) - test multiple ports 
*portsweep (stealthy - slow scan) 
*queso - malformed packets fingerprint OS 
*resetscan - probe with RST to hide from IDS 
satan - test multiple vulnerabilities 
apache2 - crash web server with long request 
*arppoison - spoofed replies to ARP-who-has 
back - crash web server with "GET /////..." 
crashiis - crash NT webserver 
*dosnuke - URG data to NetBIOS crashes Windows 
land - identical src/dest addr/ports crashes SunOS 
mailbomb - flood SMTP mail server 
neptune - SYN flood crashes TCP/IP stack 
pod (ping of death) - oversize IP pkt crashes TCP/IP 
processtable - server flood exhausts UNIX processes 
smurf - reply flood to forged ping to broadcast address 
syslogd - crash server with forged unresolvable IP 
*tcpreset - local spoofed RST closes connections 
teardrop - IP fragments with gaps crashes TCP/IP stack 
udpstorm - echo/chargen loop flood 
*warezclient - download illegal files by FTP 
warezmaster - upload illegal files by FTP 
dict (guess telnet/ftp/pop) - dictionary password guessing 
framespoofer - trojan web page 
ftpwrite - upload "+ +" to .rhosts 
guest - simple password guessing 
httptunnel - backdoor disguised as web traffic 
imap - mailbox server buffer overflow 
named - DNS nameserver buffer overflow 
*ncftp - FTP server buffer overflow 
*netbus - backdoor disguised as SMTP mail traffic 
*netcat - backdoor disguised as DNS traffic 
phf - exploit bad Apache CGI script 
ppmacro - trojan PowerPoint macro in web page 
sendmail - SMTP mail server buffer overflow 
*sshtrojan - fake ssh client steals password 
xlock - fake screensaver steals password 
xsnoop - keystrokes intercepted on open X server 
anypw - NT bug exploit 
casesen - NT bug exploit 
eject - UNIX suid root buffer overflow 
fdformat - UNIX suid root buffer overflow 
ffbconfig - UNIX suid root buffer overflow 
*loadmodule - UNIX trojan shared library 
*perl - UNIX bug exploit 
ps - UNIX bug exploit 
*sechole - NT bug exploit 
*sqlattack - database app bug, escape to user shell 
xterm - UNIX suid root buffer overflow 
yaga - NT bug exploit 
secret - copy secret files or access unencrypted 

Det 
0/2 
1/4 
0/3 
0/2 
1/1 
2/3 
1/4 
2/11 
3/4 
0/1 
2/2 
3/3 
3/5 
0/4 
5/7 
4/4 
0/1 
3/3 
0/4 
4/4 
1/3 
1/5 
0/4 
1/3 
3/3 
2/2 
1/3 
1/1 
3/7 
0/1 
0/2 
0/3 
0/2 
0/2 
0/3 
4/5 
2/3 
2/4 
2/3 
1/3 
2/2 
1/3 
0/3 
0/3 
0/1 
2/3 
1/2 
2/3 
1/2 
0/2 
0/4 
0/3 
1/2 
0/2 
1/3 
1/4 
0/4 
70/180 

How detected 
(1 coincidental TCP checksum error) 
1 Ethernet packet size = 52, (1 TTL = 253) 
(2 TTL = 253) 
 
1 dest IP/port, flags (1 coincidental Ethernet dest) 
2 HTTP "HEAD", 1 FTP "quit", 1 "user", TCP RST, (2 TTL) 
1 FIN without ACK, (1 TTL) 
2 FIN without ACK, (5 TTL) 
2 FIN without ACK (1 TTL) 
 
2 HTTP/ 1 SMTP "QUIT", finger /W, IP length, src IP, (TTL) 
3 source IP, 1 HTTP "x" and flags, TCP options in reply 
3 Ethernet src/dest address (non-IP packet) 
 
4 source IP address, 1 unclosed TCP connection 
3 URG pointer, 4 flags = UAPF 
 
3 SMTP lowercase "mail" (1 TTL = 253) 
(2 TTL = 253) 
4 IP fragment pointer 
1 source IP address 
1 source IP address (2 TTL) 
 
1 TCP connection not opened or closed 
3 frag ptr 
2 UDP checksum error 
1 source IP address 
1 source IP address 
2 FTP "user", 1 dest IP/port (POP3), 1 src IP 

4 dest IP/port, 1 SMTP "RSET", 3 auth "xxxx,25" 
2 source IP address, (3 TTL) 
1 src/dest IP, (1 TTL) 
2 source IP, 1 null byte in HTTP header 
1 source IP (and TTL) 
2 source IP address, 2 global dest IP, 1 "Sender:" 
1 source IP address 

2 FTP upload (dest IP/port 20, flags, FTP "PWD"), (1 TTL) 
1 FTP upload (src IP, flags) 
2 FTP upload (src IP, flags, FTP "STOR") 
1 SMTP source IP address (email upload) 

1 FTP upload (dest IP/port, flags, FTP "STOR"), (1 TTL) 
 
1 FTP upload (source IP, dest IP/port) 
1 FTP upload (src IP, FTP lowercase "user" ) 
 
(39%) ; and 23/65 (35%) of hard to detect attacks



 13

There are 25 attacks detected by anomalous TTL values in PHAD, which we believe to 
be simulation artifacts. TTL (time to live) is an 8-bit counter decremented each time an IP 
packet is routed in order to expire packets to avoid infinite routing loops. 
Although small TTL values might be used to elude an IDS by expiring the packet 
between the IDS and the target [16], this was not the case because the observed values 
were large, usually 126 or 253. Such artifacts are unfortunate, but probably inevitable, 
given the difficulty of simulating the Internet. A likely explanation for these artifacts is 
that the machine used to simulate the attacks was a different real distance from the inside 
sniffer than the machines used to simulate the background traffic. We did not count 
attacks detected solely by TTL. After adjusting the number of detections in the det 
column, we detect 70 of 180 (39%) of attacks at 100 false alarms. Among the poorly 
detected attacks [12, Table 1], we detect 23 of 77 (30%), or 23 of 65 (35%) of the 180 
detectable attacks in our data set, almost the same rate as for the well detected attacks. 
This is a good result because an anomaly detection system such as ours would not be 
used by itself, but rather in combination with other systems such as those in the original 
evaluation that use signature detection or host based techniques. In order for the 
combination to be effective, there must be a significant non-overlap, and our results show 
that. We should also point out that when we developed PHAD and ALAD, we did so with 
the goal of improving the overall number of detections rather than just the poorly 
detected attacks.  
 
More detail about algorithms and experimental results is described in [17]. 

4.4 Cost-Sensitive Modeling 

Intrusion detection systems must maximize the realization of security goals while 
minimizing costs. In this project, we studied the problem of building cost-sensitive 
intrusion detection models. We examined the major cost factors associated with an IDS, 
which include development cost, operational cost, damage cost due to successful 
intrusions, and the cost of manual and automated response to intrusions. These cost 
factors can be qualified according to a defined attack taxonomy and site-specific security 
policies and priorities. We defined cost models to formulate the total expected cost of an 
IDS, and developed cost-sensitive machine learning techniques that can produce 
detection models that are optimized for user-defned cost metrics. Empirical experiments 
showed that our cost-sensitive modeling and deployment techniques are effective in 
reducing the overall cost of intrusion detection. 

4.4.1 Cost Factors and Metrics 

In order to build cost-sensitive ID models, we must first understand the relevant cost 
factors and the metrics used to define them. Borrowing ideas from the related fields of 
credit card and cellular phone fraud detection, we identify the following major cost 
factors related to intrusion detection: damage cost, response cost, and operational cost. 
Damage cost (DCost) characterizes the amount of damage to a target resource by an 
attack when intrusion detection is unavailable or ineffective. Response cost (RCost) is the 
cost of acting upon an alarm or log entry that indicates a potential intrusion. Operational 



 14

cost (OpCost) is the cost of processing the stream of events being monitored by an IDS 
and analyzing the activities using intrusion detection models.  
 
Cost-sensitive models can only be constructed and evaluated when cost metrics are given. 
The issues involved in the measurement of cost factors have been studied by the 
computer risk analysis and security assessment communities. The literature suggests that 
attempts to fully quantify all factors involved in cost modeling usually generate 
misleading results because not all factors can be reduced to discrete dollars (or some 
other common unit of measurement) and probabilities [18, 19, 20, 21, 22]. It is 
recommended that qualitative analysis be used to measure the relative magnitudes of cost 
factors. It should also be noted that cost metrics are often site-specific because each 
organization has its own security policies, information assets, and risk factors [23]. 

4.4.1.1 Attack Taxonomy 

An attack taxonomy is essential in producing meaningful cost metrics. The taxonomy 
groups intrusions into different types so that cost measurement can be performed for 
categories of similar attacks. Intrusions can be categorized and analyzed from different 
perspectives. Lindqvist and Jonsson introduced the concept of the dimension of an 
intrusion and used several dimensions to classify intrusions [24]. The intrusion results 
dimension categorizes attacks according to their effects (e.g., whether or not denial-of 
service is accomplished). It can therefore be used to assess the damage cost and response 
cost. The intrusion techniques dimension categorizes attacks based on their methods 
(e.g., resource or bandwidth consumption). It therefore affects the operational cost and 
the response cost. Also, the intrusion target dimension categorizes attacks according to 
the resource being targeted and affects both damage and response costs.  
 
For example, using the DARPA Intrusion Detection Evaluation dataset, our attack 
taxonomy first categorizes the intrusions occurring in the dataset into ROOT, DOS, R2L, 
and PROBE, based on their intrusion results. Then within each of these 5 categories, the 
attacks are further partitioned by the techniques used to execute the intrusion. The 
ordering of sub-categories is of increasing complexity of the attack method. Attacks of 
each sub-category can be further partitioned according to the attack targets. For 
simplicity, the intrusion target dimension is not shown.  

4.4.1.2 Cost Factors 

Damage Cost There are several factors that determine the damage cost of an attack. 
Northcutt uses criticality and lethality to quantify the damage that may be incurred by 
some intrusive behavior. Criticality measures the importance, or value, of the target of an 
attack. This measure can be evaluated according to a resource’s functional role in an 
organization or its relative cost of replacement, unavailability, and disclosure [21]. 
Similar to Northcutt’s analysis, we assign 5 points for firewalls, routers, or DNS servers, 
4 points for mail or Web servers, 2 points for UNIX workstations, and 1 point for 
Windows or DOS workstations. Lethality measures the degree of damage that could 
potentially be caused by some attack. For example, a more lethal attack that helped an 
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intruder gain root access would have a higher damage cost than if the attack gave the 
intruder local user access. Other damage may include the discovery of knowledge about 
network infrastructure or preventing the offering of some critical service. For each main 
attack category in our attack taxonomy, we define a relative lethality scale and use it as 
the base damage cost, or baseD. When assigning damage cost according to the criticality 
of the target, we can use the intrusion target dimension. Using these metrics, we can 
define the damage cost of an attack targeted at some resource as criticality × baseD. For 
example, a DOS attack targeted at a firewall has DCost=150, while the same attack 
targeted at a Unix workstation has DCost=60. In addition to criticality and lethality, we 
define the progress of an attack to be a measure of how successfully an attack is in 
achieving its goals. For example, a Denial-of-Service (DOS) attack via resource or 
bandwidth consumption (e.g. SYN flooding) may not incur damage cost until it has 
progressed to the point where the performance of the resource under attack is starting to 
suffer. The progress measure can be used as an estimate of the percentage of the 
maximum damage cost that should be accounted for. That is, the actual cost is progress × 
criticality × baseD. However, in deciding whether or not to respond to an attack, it is 
necessary to compare the maximum possible damage cost with the response cost. This 
requires that we assume a worst-case scenario in which progress = 1.0. 
 
Response Cost Response cost depends primarily on the type of response mechanisms 
being used. This is usually determined by an IDS’s capabilities, site-specific policies, 
attack type, and the target resource [25]. Responses may be either automated or manual, 
and manual responses will clearly have a higher response cost. Responses to intrusions 
that may be automated include the following: termination of the offending connection or 
session (either killing a process or resetting a network connection), rebooting the targeted 
system, recording the session for evidence gathering purposes and further investigation, 
or implementation of a packet-filtering rule [26, 23]. In addition to these responses, a 
notification may be sent to the administrator of the offending machine via e-mail in case 
that machine was itself compromised. A more advanced response which has not been 
successfully employed to date could involve the coordination of response mechanisms in 
disparate locations to halt intrusive behavior closer to its source. Additional manual 
responses to an intrusion may involve further investigation (perhaps to eliminate action 
against false positives), identification, containment, eradication, and recovery [23]. The 
cost of manual response includes the labor cost of the response team, the user of the 
target, and any other personnel that participate in response. It also includes any downtime 
needed for repairing and patching the targeted system to prevent future damage. We 
estimate the relative complexities of typical responses to each attack type in Table 1 in 
order to define the relative base response cost, or baseR. Again, we can take into account 
the criticality of the attack target when measuring response cost. That is, the cost is 
criticality × baseR. In addition, attacks using simpler techniques generally have lower 
response costs than more complex attacks, which require more complex mechanisms for 
effective response. 
 
Operational Cost The main cost inherent in the operation of an IDS is the amount of 
time and computing resources needed to extract and test features from the raw data 
stream that is being monitored1. We associate OpCost with time because a real-time IDS 
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must detect an attack while it is in progress and generate an alarm as quickly as possible 
so that damage can be minimized. A slower IDS which uses features with higher 
computational costs should therefore be penalized. Even if a computing resource has a 
“sunken cost” (e.g., a dedicated IDS box has been purchased in a single payment), we 
still assign some cost to the expenditure of its resources as they are used. If a resource is 
used by one task, it may not be used by another task at the same time. The cost of 
computing resources is therefore an important factor in prioritization and decision 
making. Some features cost more to gather than others. However, costlier features are 
often more informative for detecting intrusions. For example, features that examine 
events across a larger time window have more information available and are often used 
for “correlation analysis” in order to detect extended or coordinated attacks such as slow 
host or network scans. Computation of these features is costly because of their need to 
store and analyze larger amounts of data. Based on our extensive experience in extracting 
and constructing predictive features from network audit data, we classify features into 
four relative levels, based on their computational costs: 

• Level 1 features can be computed from the first packet, e.g., the service. 
• Level 2 features can be computed at any point during the life of the connection, 

e.g., the connection state (SYN WAIT, CONNECTED, FIN WAIT, etc.). 
• Level 3 features can be computed at the end of the connection, using only 

information about the connection being examined, e.g., the total number of bytes 
sent from source to destination. 

• Level 4 features can be computed at the end of the connection, but require access 
to data of potentially many other prior connections. These are the temporal and 
statistical features and are the most costly to compute. The computation of these 
features may require values of the lower level (i.e., levels 1, 2, and 3) features. 

 
We can assign relative magnitudes to these features according to their computational 
costs. For example, level 1 features may cost 1, level 2 features may cost 5, level 3 
features may cost 10, and level 4 features may cost 100. These estimations have been 
verified empirically using a prototype system for evaluating our ID models in real-time 
that has been built in coordination with Network Flight Recorder [27]. 

4.4.2 Cost Models 

A cost model formulates the total expected cost of intrusion detection. It considers the 
trade-off among all relevant cost factors and provides the basis for making appropriate 
cost-sensitive detection decisions. We first examine the cost trade-off associated with 
each possible outcome of observing some event e, which may represent a network 
connection, a user’s session on a system, or some logical grouping of activities being 
monitored. In our discussion, we say that e=(a,p,r) is an event described by the attack 
type a (which can be normal for a truly normal event), the progress p of the attack, and 
the target resource r. The detection outcome of e is one of the following: false negative 
(FN), false positive (FP), true positive (TP), true negative (TN), or misclassified hit. The 
costs associated with these outcomes are known as consequential costs (CCost), as they 
are incurred as a consequence of prediction, and are outlined in Table 2. 
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FN Cost is the cost of not detecting an attack, and is always incurred by systems that do 
not install IDSs. When an IDS falsely decides that a connection is not an attack and does 
not respond to the attack, the attack will succeed, and the target resource will be 
damaged. The FN Cost is therefore defined as the damage cost associated with event e, or 
DCost(e). 
 
TP Cost is incurred in the event of a correctly classified attack, and involves the cost of 
detecting the attack and possibly responding to it. To determine whether response will be 
taken, RCost and DCost must be considered. If the damage done by the attack to resource 
r is less than RCost, then ignoring the attack actually reduces the overall cost. Therefore, 
if RCost(e) > DCost(e), the intrusion is not responded to beyond simply logging its 
occurrence, and the loss is DCost(e). Otherwise, the intrusion is acted upon and the loss is 
limited to RCost(e). In reality, however, by the time an attack is detected and response 
ensues, some damage may have incurred. To account for this, TP cost may be defined as 
RCost(e) + εDCost(e), where ε ∈[0,1] is a function of the progress p of the attack. 
 
FP Cost is incurred when an event is incorrectly classified as an attack, i.e., when 
e=(normal,p,r) is misidentified as e=(a,p’,r) for some attack. If RCost(e’)≤DCost(e’), a 
response will ensue and the response cost, RCost(e’), must be accounted for as well. 
Also, since normal activities may be disrupted due to unnecessary response, false alarms 
should be penalized. For our discussion, we use PCost(e) to represent the penalty cost of 
treating a legitimate event e as an intrusion. For example, if e is aborted, PCost(e) can be 
the damage cost of a DOS attack on resource r , because a legitimate user may be denied 
access to r. 
 
TN Cost is always 0, as it is incurred when an IDS correctly decides that an event is 
normal. We therefore bear no cost that is dependent on the outcome of the decision. 
 
Misclassified Hit Cost is incurred when the wrong type of attack is identified, i.e., an 
event e=(a,p,r) is misidentified as e’=(a’,p’,r). If RCost(e’) ≤ DCost(e’), a response will 
ensue and RCost(e’) needs to be accounted for. Since the response taken is effective 
against attack type e’ rather than e, some damage cost of εDCost(e), where ε ∈[0,1], will 
be incurred due to the true attack. 
 
We can now define the cost model for an IDS. When evaluating an IDS over some 
labeled test set E, where each event, e ∈E has a label of normal or one of the intrusions, 
we define the cumulative cost of the IDS as follows: 
  

CumulativeCost(E)=∑e(OpCost(e)+CCost(e)) 
 
where CCost(e), the consequential cost of the prediction by the IDS on e, is defined in 
Table 2. 
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Table 2: Model for Consequential Cost 
Outcome Consequential Cost 

CCost(e) 
Condition 

Miss (FN) DCost(e)  
False Alarm (FP) RCost(e’)+PCost(e); 

0 
If DCost(e’)≥RCost(e’); 
Otherwise 

Hit (TP) RCost(e) + εDCost(e); 
DCost(e) 

If DCost(e)≥RCost(e); 
Otherwise 

Normal (TN) 0  
Misclassified Hit RCost(e’) + εDCost(e); 

DCost(e) 
If DCost(e’)≥RCost(e’); 
Otherwise 

 

4.4.3 Reducing Operational Cost 

In order to reduce OpCost, ID models need to use low cost features as often as possible while still 
maintaining a desired level of accuracy. Our approach is to build multiple ID models, each of 
which uses different sets of features at different cost levels. Low cost models are always 
evaluated first by the IDS, and high cost models are used only when the low cost models cannot 
make a prediction with sufficient accuracy. We implemented this multiple-model approach 
using RIPPER [5], a rule induction algorithm. 

4.4.4 Reducing Consequential Cost 

A traditional IDS that does not consider the trade-off between RCost and DCost will 
attempt to respond to every intrusion that it detects. As a result, the consequential cost for 
FP, TP, and misclassified hits will always include some response cost. We use a cost-
sensitive decision module to determine whether response should ensue based on whether 
DCost is greater than RCost. The decision module takes as input an intrusion report 
generated by the detection module. The report contains the name of the predicted 
intrusion and the name of the target, which are then used to look up the pre-determined 
DCost and RCost. If DCost ≥ RCost, the decision module invokes a separate module to 
initiate a response; otherwise, it simply logs the intrusion report. 

4.4.5 Experimental Results 

Our experiments used data that was distributed by the 1998 DARPA Intrusion Detection 
Evaluation Program. We used 80% of the data for training the detection models. The 
remaining 20% were used as a test set for evaluation of the cost-sensitive models. 
 
Our results showed that the multiple-model approach can achieve a 78% reduction in 
operational cost, and that the consequential cost can be reduced 90%. 
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4.5 Adaptive IDS 

We advocate enabling an IDS to provide performance adaptation, that is, the best 
possible performance for the given operation environment. It is extremely difficult, if not 
impossible, for an IDS to be 100% accurate. The optimal performance of an IDS should 
be determined by not only its ROC (Receiver Operating Characteristics) curve of 
detection rate versus false alarm rate, but also its cost metrics (e.g., damage cost of 
intrusion) and the probability of intrusion. Accordingly, performance adaptation means 
that an IDS should always maximize its cost-benefits for the given (current) operational 
conditions. For example, if an IDS is forced to miss some intrusions (that can otherwise 
be detected using its “signature base”), for example, due to stress or overload attacks, it 
should still ensure that the best value (or minimum damage) is provided according to 
cost-analysis on the circumstances. As a simple example, if we regard buffer-overflow as 
more damaging than port-scan (and for argument sake all other factors, for example, 
attack probability, detection probability, are equal), then missing a port-scan is better than 
missing a buffer-overflow. In this research, we developed a framework for considering 
the trade-offs of IDS performance objectives. We have developed techniques for run-time 
performance measurement and monitoring, and for dynamic adaptation and 
reconfiguration of IDS policies and mechanisms. We focused our work on misuse 
detection systems. 

4.5.1 IDS Performance Metrics 

4.5.1.1 Expected Value 

The purpose of a real-time IDS is to detect intrusions and prevent damages. Instead of 
using mere statistical accuracy, we should evaluate an IDS according to its value (or cost-
benefit). For each attack Ai, an IDS equipped with the detection rule Ri (and the necessary 
preprocessing and logging tasks) for Ai provides the expected value: 
 

Vi = Cβ
i pi (1- βi) - Cα

i (1- pi) αi 
 
Cβ

i is the damage cost, pi is the prior priority of the intrusion, βi is the false negative rate, 
Cα

i is the false alarm cost, αi is the false alarm rate. The first term is the loss (damage) 
prevented because of true detection, and the second term is the loss incurred because of 
false alarms. The total value of an IDS depends on its configuration, that is, its collection 
of analysis tasks and hence the attacks that it “covers”. It is simply ∑i Vi. 
 

4.5.1.2 Response Time 

Upon arrival in the system, audit records are placed in a (common) queue (e.g., the 
libpcap buffer). The queue has only one server, the audit data processing and intrusion 
analysis unit. The processing and analysis tasks for each audit record are applied 
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sequentially. That is, each event goes through a sequence of analysis tasks. The process 
terminates if a detection rule Ri determines that the event is (part of) an intrusion. Or the 
process ends when all analysis is done and the event is deemed normal.  
 
The expected system time of a newly arrived audit record includes the queuing time plus 
the service time the record. The queuing time is simply the sum of the service time for the 
audit records that are already in the IDS. The service time of an audit record is the sum of 
processing time of each task that is applied on the record. 
 
Obviously, if an IDS has a response time that is larger than the inter-arrival-time of audit 
records, the queue can be filled up and newly arrived records will be “dropped”. As a 
result, the IDS cannot reliable detect intrusions or may output more false alarms. 
Therefore, it is important that an IDS operates under the constraint that its response time 
is smaller than the inter-arrival-time of audit records. 

4.5.2 Performance Optimization and Adaptation 

It is not always possible to run an IDS with its “full” configurations, i.e., with all analysis 
tasks enabled. For example, if there is a high-volume and high-speed network traffic, the 
inter-arrival-time of packets will be very small. If the IDS continues to run in its full 
configuration, its response time is likely to exceed the inter-packet-arrival-time. 
 
Our goal is then to configure an IDS to provide the best value while operating under the 
above constraints. That is, if an IDS cannot accommodate all desirable analysis tasks 
(without violating the constraints), it should just include the more valuable tasks (we also 
assume that additional and orthogonal optimization techniques, such as rule-set ordering, 
can be used). For example, an IDS should always detect “buffer-overflow” and only 
analyze “slow scan” when time permits. More formally, we need to solve the following 
performance optimization problem: select a set of analysis tasks for the IDS in such a 
way that the total value of the IDS is maximized while it still operates under the 
constraint that its response time is smaller than the inter-arrival-time of audit records. 
 
We note that the solution to the above optimization problem depends on the traffic and 
attack conditions. This means that in run-time, if we use a pre-computed IDS 
configuration, it may not provide the optimal value because traffic and attack conditions 
can change. We define performance adaptation as the process of dynamically 
reconfiguring an IDS to provide the optimal value given the current run-time constraints. 
 
Performance adaptation relies on performance monitoring in run-time to detect the 
conditions (e.g., “stress”) that cause performance degradation and to measure the 
parameter values needed for solving the optimization problem. 

4.5.3 Performance Optimization and Adaptation 

We experimented with two open-source IDSs, Bro and Snort. For both systems, we 
showed that an attacker can purposely create stress conditions, by flooding the network 
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with traffic that will require a lot of processing, and then launch attacks that the IDSs will 
miss because of packet drops. 
 
We then modified both Bro and Snort. We added performance measurement and 
monitoring codes, and modules for solving the performance optimization problem. Our 
experiments showed that the modified systems can dynamically change configurations 
when stressed, in such a way that although some types of packets will not be processed, 
the more important attacks are still detected. That is, the modified systems have 
performance adaptation abilities. 
 
Please see [28] for more detail of this work. 

4.6 Alert Analysis and Attack Scenario Analysis 

The individual alerts from IDSs alone may not be sufficient to detect or decipher the 
stealth or sophisticated attack activities. A higher-level analysis is necessary.  
The main focus of this research task was to develop analysis algorithms that can discover 
new (or novel) relationships among alerts. Rather than relying on a priori alert 
correlation knowledge, our algorithm uses a statistical causality analysis technique call 
Granger Causality Test (GCT) to correlate alerts and discover (new) relationship among 
attack steps or anomaly activities.  
 
The intuition is that attack steps that do not have well-known patterns or obvious 
relationships may nonetheless have some statistical correlations in the alert data.  
GCT uses statistical functions to test if lagged information on a time-series variable x 
provides any statistically significant information about another time-series variable y. If 
the answer is yes, we say variable x Granger-causes y.  
 
We model variable y by the Autoregressive Model (AR Model) and Autoregressive 
Moving Average Model (ARMA Model). GCT compares the residuals of both AR Model 
and ARMA Model. GCT compares the residuals of the AR Model with the residuals of 
the ARMA Model. Specifically, for two time series variables y and x with size N, the AR 
Model and ARMA Model of y are defined as:  
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The Null Hypothesis H0 of GCT is H0: βi=0, i=1, 2, …, p. That is, x does not affect y up 
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to a delay of p time units. We denote g as the Granger Causality Index (GCI): 
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Here, F(a,b) is Fisher's F distribution with parameters a and b [29]. F-test is conducted to 
verify the validity of the Null Hypothesis. If the value of g is larger than a threshold in 
the F-test, then we reject the Null Hypothesis and conclude that x Granger-causes y. The 
intuition of GCI g is that it indicates how better variable y can be predicted using histories 
of both variable x and than it can using the history of y alone. We say that variable x1(k) is 
more likely to be causally related with y(k) than x2(k) if g1 > g2 and both have passed the 
F-test, where gi, i = 1, 2 denotes the GCI for the input-output pair (xi,y). 
 
Applying GCT to alert correlation, the task is to analyze the (timestamped) alert streams 
and determine which pairs of alerts have causal relationships. In a preliminary recent 
study as part of our DARPA Cyber Panel Program project, we applied our algorithms to 
the datasets of the DRAPA Grand Challenge Problem (GCP). The GCP dataset includes 
multiple stealth worm attack scenarios. Our alert correlation algorithms can correctly 
discover both the obvious and hidden pattern of causal relationships among attacks. For 
example, in Scenario I, we can also discover the mutual causal relationship between 
worm’s malicious activities of illegal file access (to install agent software and collect 
sensitive data), uploading the stolen data to an external site, and downloading new agent 
software. In Scenario II, we can discover the causality between worm attack and server’s 
abnormal service status.  
 
More details can be found in [30]. 
 
5. Conclusions 
In this project, we studied how to build cost-sensitive and light intrusion detection 
models. Our goal was to automate as much as analysis tasks in intrusion detection as 
possible. The main research activities were in:  

• Automatic feature construction by analyzing the patterns of normal and intrusion 
activities computed from large amount of audit data 

• Light-weight anomaly detection algorithms using patterns of packet headers and 
payloads 

• Study of cost factors in intrusion detection. Using cost-sensitive machine learning 
algorithms to construct intrusion detection models that achieve optimal 
performance on the given cost metrics 

• Dynamic (re-)configuration to make IDS more effective and efficient, and 
resilient to IDS-related attacks 

• Using statistical causality analysis to discover new attack step relationships 
 
We have developed algorithms and prototype systems, and have conducted extensive 
experiments using DARPA datasets and other real-world datasets. The results showed 
that the technologies we developed in this project are far more advanced and better than 
the state-of-the-art. 
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The aims of the project were met. In fact, we went beyond the original proposal. The 
results of this research have been reported in many publications. In addition, we have 
actively engaged in technology transfer throughout the course of the project. In particular, 
the PIs were involved in the founding of System Detection Inc. 
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