
REAL-TIME PATTERN RECOGNITION FOR GUIDANCE OF 
AN AUTONOMOUS UNDERSEA SUBMERSIBLE 

Hoa G. Nguyen Paul J. Heckman, Jr. 

Undersea Artificial Intelligence and Robotics Branch 
Naval Ocean Systems Center 

San Diego, CA 92152-5000 

A. L. Pai 

Department of Computer Science 
Arizona State University 
Tempe,AZ 85287-5506 

ABSTRACT 

This paper reports the initial results of an effort to 
develop simple and fast vision algorithms on compact 
and imoeddaDle hardware for the guidance and control of 
an autonomous underwater vehicle. The specific 
application involves tracking underwater cables and 
chains. Feature points are identified in the underwater 
video images using a technique which combines 
segmentation by gray level and run length. Hough 
transformation is then used to find the straight line in the 
image. The process is performed at a throughput of 
approximately 1 image per second using a PC-bus video 
frame grabber and a PC/AT compatible micro-computer. 

1. INTRODUCTION 

Traditional methods for guidance of submersibles 
employ sonars, magnetic sensors, acoustic transponders 
and optical sensors. Of these, optical imaging sensors 
(e.g. TV cameras) are the systems of choice for 
applications that require high image resolution at close 
range, such as station keeping, control of manipulators, 
or cable following [1]. 

Underwater vision has traditionally been a difficult 
and unique problem because underwater light 
propagation exhibits such phenomena as backscatter, 
which reduces the contrast of the image, and forward 
scatter, which reduces the image resolution. There have 
been only a few research efforts in the area of 
underwater pattern recognition [2], and even fewer have 
been aimed at immediate applications. 

Any vision process which controls the behavior of an 
autonomous submersible must be accomplished in 
real-time. Unfortunately, the trend in computer vision 
research in the last few years has been to produce 
increasingly powerful and complex (and hence 
non-real-time) algorithms. A majority of these 
algorithms require large and power-consuming 
mainframes or special-purpose computers (image- 
processing workstations connected to minicomputers, 
artificial intelligence workstations, and supercomputers) 
to achieve anywhere near real-time performance. These 
computers cannot be conveniently packaged in small 
electronic bottles or compartments. Neither can they be 
supported on the limited energy sources (batteries) which 
are available on current untethered submersibles. 

Therefore a more application-oriented approach was 
considered in this research effort to address these 
problems.     Image processing techniques  incorporating 

simple, elegant, and optimized vision algorithms were 
developed for real-time vehicle control using small 
single-board computers. The Naval Ocean System 
Center's EAVE-WEST (Experimental Autonomous 
Vehicle-West) submersible [3] is being used as the testbed 
(see Figure 1). The vision hardware resides in the 
artificial intelligence/vision electronics bottle of this 
submersible and includes a single-board frame grabber 
and a PC-bus 80286 single-board computer, receiving 
input from an underwater video camera. 
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Figure 1.  The NOSC Experimental Autonomous Vehicle 
(EAVE-WEST) 

The initial software development reported here has 
been performed in the laboratory on an 80286 
microcomputer system with a PC-bus frame grabber 
receiving input from a VCR. The frame grabber will be 
moved to the A.I./vision bottle of EAVE-WEST along with 
an 80286 single-board CPU for in-water testing. Our 
current objective is to demonstrate robust and practical 
image recognition algorithms using simple, off-the-shelf 
hardware. 

2. OPERATIONAL CONSTRAINTS 

The Ocean Engineering division at NOSC is heavily 
involved in developing vehicles for undersea search and 
recovery. The application selected for this project was 
thus geared toward such tasks. The targets chosen are 
the vertical cables and chains which are often connected 
to inflatable buoys, intrumentation buoys, or acoustic 
transponders.    The  operational scenario   calls for the 
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vehicle to be guided to the moored object by sonar or 
directional hydrophones. The image recognition process 
takes over when the object and its cable are visible, and 
guides the vehicle along the cable to a point where the 
recovery process can be initiated. The vision computer 
keeps the vehicle centered on the cable as the cable is 
traversed by sending periodic steering information to the 
vehicle controller. 

Operational constraints for targets such as cables and 
chams under the condition described above—as can be 
seen in Figure 2 (underwater video image of a 
buoy)~incIude: 

a. Straight and elongated shape. The width of the 
target in the image is dictated by the type of cable or chain 
used, the field-of-view of the lens, and the distance from 
the target to the camera. The maximum width should 
account for variations in distance and for the spreading 
due to forward scattering in turbid water; while the 
minimum width should be greater than 1 to eliminate 
single-pixel noise. 

b. Approximately vertical major axis. Arbitrary limits 
of +/- 30 degrees froni the vertical were used for this 
initial effort. These can be refined by calculations using 
specific buoy buoyancy, cable weight and water velocity. 

c. Gray-level segmentable target. Figure 2 shows 
that in natural light the target is darker than the 
background due to the scattering in the background 
water. When directly illuminatea by an artificial spot 
light, the target will be lighter than the background. The 
vehicle controller computer must inform the vision 
computer whether natural or artificial lighting is being 
used. 

d. Blurred boundaries. The images will tend to be 
blurry due to the physical properties of forward and back 
scattering of water. This constraint necessitates the use 
of recognition algorithms which do not require nicely 
defined edges and can tolerate gaps. 

e. Target recognition speed of approximately 1 
image per second. This update rate is necessary to 
control underwater vehicles. 

3. ALGORITHM DEVELOPMENT 

Our algorithm can be divided into three parts: 

a. Identifying feature points. This operation should 
be 1-dimensionaI to allow faster processing. 

b. Linking the feature points into a line. This 
operation should be able to reject extraneous points not 
belonging to the line, and must be able to tolerate gaps. 

c. Determining the location and orientation of the line 
and reporting to a higher-level vehicle controller. 

After these three processes have been accomplished, 
the algorithm is optimized to achieve the necessary speed. 

4. FEATURE POINTS EXTRACTION 

The approach found to be most effective for 
identifying feature points was a combination of 
segmentation by brightness and run length. A gray-level 
threshold is picked irom the histogram of the image. As 
the image is scanned horizontally, continuous horizontal 
groups of pixels are identified which have values below 
this tnreshold (constraint 2c, for natural light images) and 
which have run length between the width limits stated in 
constraint 2a. The centers of these horizontal segments, 
our feature points (which may be part of the skeleton of 
the cable or chain), are marked with white dots in Figure 

Figure 2.    Buoy chain 

Figure 3.   Feature points identified 

The target/background gray-level threshold is 
currently set at the mean of the histogram array. Figure 4 
shows the histogram of Figure 2. The target falls on one 
side of the mean (Mu) of the histogram. Setting the 
threshold at the mean will allow us to discard half of the 
image. Further discrimination is achieved using 
constraint 2a—the target is thinner than other dark areas 
of the background. 

5. STRAIGHT LINE IDENTIFICATION 

Several methods for linking points into a straight line 
were investigated, including chain coding [4,5] and least 
squares fitting [6].    With these methods,   every feature 
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point in the image contributes to the estimation of the 
line. In the present application, variations in the 
brightness of the background contribute extraneous 
clusters of feature points. It is desirable to have only 
those points which form the longest linear cluster 
determining the location of the line. The Hough 
transform was found to be a better method for linking 
feature points. The Hough transform maps each feature 
point in the image space into a line in a new parameter 
space in such a way as to make collinear points map into 
intersecting lines [7,8]. 

Background 
(top) 

Figure 4.   Histogram of buoy chain image 

One approach for using Hough transformation to 
find straight lines involves mapping the feature points 
from the x-y space into the slope/intercept space [9J. The 
equation of^a fine in x-y space is 

y = mx + c 

where m = slope of the line, and c = y-intercept. 

This equation can be rewritten as 

This is also a linear equation in the m-c space, with x = 
slope and y = c-intercept. 

For each feature point identified in the x-y space, the 
coordinates (xi,yi) are used to find the associated line in 
the m-c space (see Figure 5). These lines are kept in a 
cumulative 2-dimensional array (m,c). Each line in the 
m-c space increments the elements in the (m,c) array 
through which it passes. The element with the highest 
value-at (Mn, Co)-is a result of the intersections of the 
largest number of lines in the m-c space. It also 
represents the longest linear cluster of feature points in 
the image, which has slope Mg and y-intercept Cg. The 
accuracy and noise tolerance depend on the resolution 
chosen for m and c. Presently m is the slope of angles at 
1-degree intervals, and the resolution for c is 8 pixels. 

The Hough transform is simple (linear); can tolerate 
gaps; and can accommodate noisy, jagged boundaries (by 
adjusting the resolution of c). Furthermore, the points 
which are not in the vicinity of the cable or chain do not 
influence the formation of the line. It is thus appropriate 
for this application. However, the x- and y-axes have 
been switcned from conventional notation (x is now 
down, and y is across) to prevent infinite slopes since 

approximately vertical lines are being sought. The slope 
m IS computed for angles at 1-degree intervals between 
+ /-25 degrees from the vertical in pixel space 
(approximately +/- 30 degrees on the screen, due to the 
aspect ratio of the pixels). The resulting line with slope = 
MQ and y- intercept = CQ is shown in Figure 6. 

X m 

y = mx + c c = -xm + y 

Figure 5. The Hough transform 

Figure 6.   Chain detected 

6. LINE LOCATION DETERMINATION 

To determine the location of the cable or chain with 
respect to the direction of travel of the vehicle, the first 
and last points which contributed to cell (MQ, CQ) of the 
array can be used. They represent the two visible ends of 
the line in the image. In this particular application, 
however, only left/right steering information is required. 
This can be found by computing the horizontal coordinate 
of the line at the vertical center of the screen. The 
steering information is then reported to the vehicle 
controller computer. 

7. OPTIMIZATION 

Software algorithms implementing the three steps 
mentioned above were developed in FORTRAN, with 
care given to maximizing speed. Look-up tables were 
used in place of floating-point operations to compute the 
slopes of the lines. This resulted in a recognition speed 
on  the order of  12 to 30  seconds,  depending on the 
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complexity of the image. To meet the required processing 
throughput of approximately 1 second per image 
(constraint 2e), two other processes were implemented. 

a. Bypassing Noisy Rows: For the more noisy 
images, a major portion of the processing time is spent on 
the Hough transformation of false feature points which 
resulted from the gradual shift of the oackground 
brightness across the threshold. Therefore, for these 
images, bypassing rows in which too many feature points 
have been identified will improve the processing speed as 
well as the effective signal-to-noise ratio. Figure 7 
shows the result with noisy rows bypassed. The 
implementation of this procedure resultecf in a uniform 10 
to 11 seconds per image processing throughput. 

Figure 7.  Noisy rows bypassed 

b. Skipping Rows: One advantage of the Hough 
transform is its indifference to gaps in the image. Thus, 
another method of speeding up this process is to 
introduce artificial gaps by skipping horizontal rows in 
the image. Figure 8 snows the result with one in every 
five rows processed (at a throughput of 2 seconds per 
image). The required throughput of 1 image per second is 
achieved at one row in ten. Coincidentally, tnis is the rate 
at which the threshold determination process 
(histogramming and finding the mean) becomes 
dominant and limits any further improvement. 

Figure 8.   One in every fi\'e rows processed 

The number of rows that can be skipped depends on 
the type and quality of the image. However, as more 
rows are skipped, the number of available feature points 

decreases. The number of feature points which 
contributed to the determination of the line and the total 
number of feature points are thus reported to the vehicle 
controller computer along with the suggested steering 
information. If the results are deemed unreliable, the 
steering suggestion is ignored and another image is 
processed before any course correction is initiated. 

8. CONCLUSIONS 

The vision algorithm presented here successfully met 
the processing throughput reauirement for guiding an 
autonomous underwater vehicle along vertical cables or 
chains. Other methods for feature points identification 
and linking are currently being investigated for improved 
speed and/or reliability before the system is tested in the 
water. More efficient multiframe processing using 
short-term invariant features (e.g. brightness and 
location of past detection) is also being studied. 

The approach described here can also be adapted to 
other underwater vehicle guidance problems, such as 
automatic docking and following caoles on the ocean 
floor. Preliminary studies indicate that this technique is 
also applicable to acoustic imaging, which is necessary 
for extended range in turbid water. 

This research effort has demonstrated that real-time 
vision-based guidance and control of autonomous 
underwater venicles is possible with off-the-shelf, low 
cost, and imbeddable hardware. Combined with new 
developments in underwater imaging and imbeddable 
computers, this opens up a dynamic area of applications 
for further exploration. 
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