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Introduction

For improved care of patients with acute lung injury, existing clinical data sets are
examined to characferize_quantitatively the pulmonary pressure-volume (p—V)‘ curves. A
mechanistic model of the total respiratory system (TRS) is constructed for the inflation
process, making it possible to relate the p-V curve to the corresponding changes in intra,-A
respiratory conditions. The mechanistic model computationally simulates the TRS based
on an application of thé principle of statistical inechanics to a very large number of ele-
ments comprising the TRS. A mechanistic model of the deflation process is currently under

investigation.




Body

Research contents are reported in three chapters:
Chapter 1. Quasi-Static Pressure-Volume Curce: Comprehensive Data Analysis,

reports research results corresponding to Objective 1 (Examination of accuracies
a;nd limitations of the sigmoidal equation) and Objective 2 (Development of a

method for quantitative characterization of p-V curves) in Statement of Work of

Research Proposal. .
Chapter 2. Mechanistic Model: Part I. Model Development for Inflation Process,

reports the derivation of the mechanistic model of the total respiratory'system,

which is part of Objective 3 (Development of a mechanistic respiratory model) in

Statement of Work of Research Proposal.
Chapter 3. Mechanistic Model: Part II. Examination of Clinical Data,

reports examinations of p-V inflation curves based on the mechanistic model.




Chapter 1. Quasi-Static Pressure-Volume Curve:

Comprehensive Data Analysis

Abstract

A p-V model equation with four parameters is used to,.represent various existing (p-V)
cufves. The report is focused on the case in which the equation is applied to two existing
groups of p-V data (one, twenty nine p-V curves of healthy adults and the othef, twenty
one p-V curves of patients with acute respiratory distress syndrome) to determine the
magnitudes of :the parameters for each data set. The equation is found to represent the p-
'V curves of both data groups extrerhely well. It is also conﬁrmed that the magnitudes of the
four parameters of the error function p-V model equation, combined with the corresponding
normalized representation of p-V curves, quantitatively distinguish different respiratory

conditions between the two groups as well as between different data sets in each group.




Vi)
vV
AV

Nomenclature

pressure (interpleural pressure difference)

(volume-) gradient pressure range, Eq.(3)

lower (upper) corner pressure, Eq.(4)

pressure at maximum compliance increase (decrease), Eq.(5)

pressure at the inflection point (at the maximum local c_dmpliance)
where V = (Vy + V)/2

non-dimensional pressure, p/po - 1

volume -

lower (upper) volume asymptbte (Fig.1)

non-dimensional volume, (V — ((Vu + V1)/2)/ (AV/2), (Eq.(1b))

Vu — Vi, (Fig.1) '

Greek symbols:

o
A
w
Acronyms:
ARDS
LIP
TRS
UIP

constant defined in Eq.(1a)
apoAV (non-dimensional parameter) (Eq.(1b))
Ap/2 (Eq.(1b))

acute respiratory distress syndrome -
lower inflection point, Eq.(6)
total respiratory system

upper inflection point, Eq.(6)




Introduction

Quasi-static pulmonary p'—V (pressure - volume) curves ‘provide quantitative informd—
tion on the respiratory system that is important for both research and clinical guidances.
A typical inflation p-V curve, obtained for an 5nesthetized human subject in supine posi-
tion, consists of a near.ly linear region of high compliance (i.e. large dV/dp) sandwiched
between two segments with low compliance At low and high pressure regions. The shape
of the curve is affected by two mechanisms, the distensibn_ of the elastic respiratory wall
tissue components and the recruitment of the alveoli (‘pop-open’ mechanism). The latter
is the opening of alveoli overcoming the surface tension at the interface between the gas
and the liquid film lining the alveolar surface. A pressure increase (i.e. an increase in the
interpleural pressure difference) results in the recruitment of a greater number of alveoli.
-~ The high compliance is believed to be a,ssociatéd with both the distension of open parts

and the (alveolar) recruitment of collapsed parts of the total respiratory system (TRS).

In order to quantify the charactéristié:s of p — V curves as well as their changes ob-
served in clinical settings, various p-V model equatibns have been proposed [1 - 8]. One
commonly used model equation is developed by dividing the entire p-V curve into three
regions, a high-pressure, low-compliance upper region, a high-compliance midregion and
a low-pressure, low-compliance lower region. The midregion is represented by a linear
equation between p and V; while, the’ twé low-compliance regions are approximated by
an exponential function of pressure [9, 10]. The linear-exponential model eQuation. is a
piecewise continuous function with >the compliance abruptly changing its magnitude at the
intersects of the linear and the exponential regions. Venegas, Harris and Simon [8], on
the other hand? showed that a single continuous fgnction in a form of sigmoidal (tangent
hyperbolic) equation represents varioué p-V curves extremely well. Parameters in model
equations (both piecewise—continﬁous and cc;ntinuous equations) are determined from sta-
tistical processing of clinical data. More recently the clinical usefulnéss of the sigmoidal

model equation over piecewise-continuous representations is also reported by the same
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group of researchers {11].

Accurate and quantitative. determinations of the form of p-V model equation and
its parameters are prerequisite to the clinical interpretations of p-V curves, including an
establish;nent of ventilator strategy with the p-V curve guidance in intenéive care for
patients with acute lung injury as well as its more severe form, acute respiratory distress
syndrome (ARDS) [12 - 14]. Our objective is to test a hypothesis that the continuous
p-V model equation, particularly in a form of an error function equation, is effective in
representing p-V curves from different sources, and of different respiratory conditions (a
group of patients with ARDS [8] and a group of healthy adults [9]). The former covers both
. inflation and deflation processes, and the latter includes the inflation p-V curves before and
after alveolar recruitment maneﬁver with a total of fifty p-V curves. The report examines
differences and similarities (1) between patients with ARDS and healthy adults, (2) among
patients with ARDS as well as among healthy adults, both in terms of parametérs of the
error function p-V modei equation.

Equations for Quasi-Static p-V Curves

A model equation, originally proposed by Venegas, Harris and Simon [8] and subse-

quehtly shown to represent p-V curves well for both inflation and deflation processes {11},

has the following sigmoidal (tangent hyperbolic) form;

v

av V-V
dp_

Ay = [ +ep(-aAV(p-po))]7 (o)

—a(V - VU)‘(V -VL),

where AV = Vy — VL', Vu = upper volume asymptote, Vi, = lower volume asymptote, a =
positive constant and py = pressure at the midpoint (inflection point) of the curve. The

corresponding non-dimensional form of the sigmoidal equation is [15],

dv A 2 — eY—e™v
where : : o
- _ V-(Ww+V.)/2 _Ap _ _p o
V = AV/2 , W= p—po 1, A= apyAV.
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Venegas, Harris and Simon suggested that a p-V equation in terms of the error function
is also effective in representing p-V data [8].

The error function, er f(z), is defined as
; /z 2 o U |
erf(z)=— e " dt with erf(o0) =1, erf(—z)=—erf(z).
f@) == [ floo) =1, erf(~2) = ~erf(x)

The error function model equation may be expressed as

v _ a_(_é_‘/_)zemp[;-(%—;aAV(p - po)>2], V-Vi _ -;—[1 -Feff(ﬁA'ﬁ)], (2a)

dp 4 AV 4
dV. A T o 5 NZ3 .
=3 @) V=erf(Gw) | (@)

Fig.1 is a sketch of a typical p-V model equation (either the sigmoidal or the error-ﬁmction
model equation). The curve varies smoothly between the low pressure asymptote, VL, and
the high pressure asymptote, Vu. The midpoint of the curve where the volume is equal to
(Vu+V5)/2is the inflection point with its pressure denoted by po. Both the sigmoidal and
the error-function model equations are antisymmetric with respect to the inflection point;
that is, V(p — po) — V(po) = —(V(po — p) = V(p0)) or V(p) = —V(~P). The compliance,
dV/dp, increaseé along the p-V equation as pressure increases, until the inflection point
(= the point of maximum compliance) is reached. Then the compliance decreases with a
further increase in pressure. A tangent to the model equation curve at the inflection point
has the compliance of oz(AV)2 /4. The two points of intersection between the tangent
and the two volume asymptotes, V = Vi and V. = V, are referred to as the upper and
lower corner pressure, Peu(cl), respectively. The pressure difference between the two corner
pressures is defined as the (volume-) gradient pressure Yra.nge, Pgrad- Also, the pressuré at
the point of maximum compliance increase (decrease) of the p-V curve, pmci (Pmed ), may
be specified as the points where the third derivative of V with respect to P is zero.

For both the sigmoidal and the error-function model equations,

Dgrad AV 4 — | DPeulel N 2
; (— >= = Paw(= =2 - =) (34

o \  po(dV/dD)maz. ] A’ Do
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On the other hand,

_ Pmed(mei) (=)1.317/A for sigmoidal equation; |
Prmed (mei) (= e 1) = { (=)1.596/A for error-function equation. (5)
Fig.2 is the (non-dimensional) p — V curve, corresponding to the p-V curve of Fig.1.
The origin (p = 0, V = 0) represents the point of antisymmetry (po, (Vu +V1)/2) of Fig.1.
The non-dimensional pressure, P, is the pressure difference, p — pg, as a fraction of pg
(Eq.(1b). The normalization of volume shifts the upper and the lower volume asymptotes,
Vv and Vi, in Fig.1 into +1 and —1 respectively in Fig.2. With both the location of pgy
and the volume asymptotes made common to all p-V curves, the resulting non-dimensional
representations characterize p-V curves in general in terms of a single non-dimensional
parameter, A. (Egs.(1b,2b)) From Eq.(3) the parameter, A, is four times the ratio of the
pressure at the maximum compliance, pg, to the volume-gradient pressure range, pgrad-
Since the complianée is maximum at the origin, ,the first quadrant (V, 7 > 0) in Fig.2is a
region of decreasing local compliance with pressure; while, the third qﬁadrant (V,p < 0)
is a region of increasing local compliance with pressure. The origin (p = 0, V = 0) of
dimensional p-V curves is transformed into (f = —1, V(V = 0)) on a p-V curve; hence, |
the physioiogical lower limit ,Of P is —1. Various pressure locations on p — V diagram are
proportional to 1/A as shown in Egs.(3-5). Egs.(3-5) also imply over the preésure rangé
of p > 0 that there is no lower corner pressure (i.e 1 +p, < 0) if A < 2, and that there
is no pressure for maximum compiiance increase (i.e. 1+ P,,,; < 0) if A < 1.317(1.596)
for the sigmoidal (error—functiovn)» model equation. Both the sigmoidal and the error-
function model equations are capable of representing p-V curves over their entire ranges
as continuous functions.
Piecewise-continuous model equatiohs are also used to represent p-V curves. Shown
below is a three-region model equation [9], relevant to the present study, consisting of a
linear midregion (Vzrp < V < Vyrp) and two exponential regions at high (Vyrp < V) and

low pressure (V < Vp;p) ranges. (.The subscripts, L(U)IP (lower (upper) inflection point),
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indicate the points where the linear midregion equation intersect with the exponential
equations.)

. | Vma:z - V
Vinaz = V(p) = (Vimaz — Vuip) - exp(___?l'__”_fﬂ (p - PUIP))

for Vurp £V < Vinsugs,
V(p) = Vorp = Cuin (p -~ pLIP) for Viip £V < Vyrp, (6)

. Viip — Vini |
Vmin — V(@) = (Vmin — ViIP) - ewp(—é%f—ﬂ—n (p— PLIP)) for V < Vpip,
. m

where Cl;, = compliance at the linear midregion, Vi,in(maz) = volume asymptote of the
’lower (upper) exponential region,
Data Analyses
The two data sources with a total of 50 p-V data sets consists of (A) ARDS patients
by Harris et al (2000) [11], and (B) healthy adults by Svantesson et al (1998) [9]. For the
data source A, p-V data points were made available to us by the authors. The data source
B provides model parameters of the piecewise-continuous model equation, Eq.(6), as well
as data ranges for each data set. Information on the data sources relevant to the present
study is summarized below.
Data Source A ‘ »
21 data sets of ARDS patients by Harris, Hess, Venegas [11], Original p-V data points
made available by the authors, Inflation and deflation data in supine position.
Data Source B |
29 data sets of healthy adults (both male and female) by ’Svantesson, Sigurdsson,
Larsson, Jonson [9], 14 data sets before and 15 data sets after alveolar- recruitment
maneuver, Inflation data in supine position
The parameters of Eq.(6) (Vimin, Vimaz, Viip, Vuip, Vinsuf s, Clin, PLIP, PUIP) are
tabulated for all data sets in [9]. A
Data sets from the source A are analyzed by minimizing the diﬁ"efence between data

points and the model equation (either the sigmoidal or the error-function model equation)
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through the application of the method of least squares to obtain the parameters, A, AV, po
and. Vy (or V1). To analyze the data source B, ten to twenty five computational data
points, depending on the data range, are generated from Eq.(6). Then, the method of
- least squares is applied to determine the parameters, A, po, AV and Vi (or Vi) of the
error function model equation. Parameters of p-V model equations are determined for all
data sets in Data Source A (fof both inflation and deflation data) and B (for both before-
and after-recruitment maneuver). Discussion beyond the validity test of the error function
model équation, however, is focused on the inflation data sets of the two data sources.
Results of data analyses are summarized in Table.1 (for Data Source ‘A) and in Table.2
(for Data Source B).
Results and Discussion

Fig.3 shows a typical data set of an ARDS patient from the data source A as well
as the sigmoidal and the error function model equations, Eqgs.(1a)(2a), determined by the
method of least squares. The parameters bf the model equations, (A, po, AV, Vi), are
(1.470, 13.308, 3.491, 2.750) for the sigmoidal equation and (1.627, 13.324, 3.156, 2.584)
for the error function equation. Both eciuations répresent the data points well over the
entire data range. Substantial differences between the two equationé occur in high and
low pressure regions away from the data range as they approach diffefent asymptotes of
V = .VU and V. It should also be noted that there is no lower corner pressure for the data
 set since A is less than 2 (Eq.(4)), and that the pressure at maximum compliance increase,
Dmei, is very low at 1.385 emH,O for the sigmoidal model equation and at 0.254 cmH,0
for the error function equation (Eq.(5)). |

An example of the analysis of the data source B is shown in Fig.4. The dotted curve
represents the piecewise continuous equation, Eq:(6), with

(Vmmin, Vmaz, Voip, Vurp, Vinsuss, Clin, PLIP, PUIP)

= (—2230 [mL], 5870, 1513, 2884, 4125, 157 [mL/cmH,0], 14.4 [emH,0], 23.1),

reported in [9]. The solid curve is the corresponding error function model equation, Eq.(2a),

13




obtained by applying the metho_d of least squares to computational data points generated
over the data range of 0 < V' < Vjueusy. Since “true” data points are unknown in the
linear region of Eq.(6), we imposed a constraint that the inflection point, pg, of the error
function equation is located in the midregion of Eq.(6). The parameters of the error
function equation thus determined are (A, ﬁo, AV, Vy) =(2.0800,18.224,5.58750, 4.9114).
Due to the error minimization Eq.(2a) is nearly identical to Eq.(6) over the data range
indicated by the two triangle ma’rké; which is valid for other 28 data sets from Data Source
B. A continuous change of the compliance (i.e. non-linear p-V change) in the region near
po has been described previously in terms of the sigmoidal (tangent hyperbolic) model
equation [15]. It should also be mentioned here that, ofi twenty nine inflation data sets,
po (the inflection point) is between prrp and pyrp i_n eighteen data sets, equal to py;p in

eight data sets, equal to py;p in one data set, and po = pyrp = prLsp in two data sets.

Fig.5. is a plot of the error function equation, Eq.(2a), with /7 A(p/po — 1)/4 and
(V — V1)/AV as x- and y- axis respectively. All (both inflation and deflation) data points
of Data Source A are also shown in the figure, confirming very good agreements with
the eQuation. The coefficient of determination, R?, is O.99A9247, which is comparable in
magnitude to that of the sigmoidal equation, R? = 0.9992 reported in [11], thus indicating
that both the sigmoidal (tangent hyperbolic) p-V equation, Eq.(1a), and the error function |
equation, Eq.(2a), are very effective in representing quasi-static p-V curves. Shown in Fig.6
are comparisons between the sigmoidal eqﬁation and the error funcfion equation in terms
of two parameters in the equations, A (Fig.6(a)) and po (Fig.6(b)) for twenty one data sets
from Daté Source A. Due to differences in functional form the magnitude of Ais slightly
higher for the error function equation than for the sigmoidal equation. On the other
hand, the inflection point, po, being the point of antisymmetry, should be identical in
theory for both model equations. Fig.6(b) confirms it as the magnitudes of py determined
by the method of least squares are very close between the two ,équations. Differences Vin

the magnitudes of A and py between the two continuous-function model equations would
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result in function-specific values for such quantities as Pey (cl)s Pmed (mei) Of Eas.(4,5) which
characterize p-V curves, indicating the importance of using the same p-V model equation

in order to analyze clinical data in a consistent manner.

Although quantitative comparisons of parameters cannot be made among different
p-V model equations in a mathematically rigorous manner, a comparison between the
linear-exponential model equation, Eq.(6), and the error function equation, Eq.(?a), is
presented in Fig.7 in a form of pye; vs prrp in Fig.7 »(a) and Ped VS PUIP ih Fig.7 (b) for
Data Sourcé B. It may be seen that the parameters from both equafions distinguish two
data groups, Before recruitment manéuver and After recruitment maneﬁver, successfully
and also that pmeq of Eq.(2a) and pysp of Eq.(6) distinguish the two groups more élearly
than pme; and prrp. Values of pyrp (yrp) must be loéated directly from p-V curves; while,
Dmei (med) aT€ automatically generated from the model equation once parameters of the

model equation are determined.

~ As shown in Egs.(2a,b), when p and V are made non-dimensional the resulting non-
dimensional p-V equation, Eq.(2b), contains A (=the ratio of (pey, — Pet) to po) as the only
parameter representing a shape of $ — V curves with A/2 being the gradient, dV/ dp, at
the origin (where p = 0 i.e. p = po.). The pdV work associated Wifh the process from
the initial to the end-of-inflation pressure was suggested as a quantity representing the
pressure range actually covered by a specified p-V curve [15]. .However, in analyzing data
sets from different sources we found that the end-of-inflation pressure (volume) is data-(or
investigator-) dependent, and may not be appropriate as a comprehensive indicator for
data interpretation. Here we selected two volume differences to distinguish p-V data sets
accounting for the range of data relative to the entire range covered by the p-V equation;
one is Vy — V(p = 0) as a volume scale indicating the total available volume of a specified
TRS, and the other is V(p = 20 cmH,0) — V(p = 0) as a volume scale representing volume
range covered by the specified TRS. The volume at p = 20 cmH;0 is.selected arbitrarily;

however, in all the data sets we analyzed, p-V curves were obtained beyond p = 20 cmH>O.
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Fig.8 shows A vs po in (a) and [Viy — V(p = 0)] vs [V(p = 20cmH,0) — V(p = 0)] in (b)
obtained from the error function model equation for all inflation data sets. In terms of A,
a wide range (1 < A < 6) is covered by ARDS patients; while, the range of A for healthy
adults is ~ 1.5 — 3.5. The alveolar recruitment maneuver lowers the magnitude of A of
the group of healthy adults as a whole. A similar observation may be made on pd. Both
[Vu — V(p = 0)] and [V(p = 20cmH;0) — V(p = 0)] in Fig.8(b) are low in magnitude for
patients with ARDS. On the other hand, the recfuitment maneuver shifts the location of
the whole group to the right in Fig.8(b). Two data sets, No.20 and 5, representing exfreme
points in Fig.8 (a) and (b) respectively, clearly show they are quite different from those of

healthy adults, if Fig.8(a) and (b) are examined together.

According to Data Source B [9], after a p-V curve before the recruitment maneuver
is recorded, the lungs are inflated to an airway pressure of 40 cmH2O and maintained for
15 s, followed by six pressure-controlled breaths (six breaths/min.) delivered at an airway
pressure of 30 cmH,0. Then a second large insufflation is delivered before recording a
. p-V curve after recruitment maneuver. To examine the p-v curves of healthy adults as -
well as effects of the alveolar recruitment maneuver in more detail, a ratio of the pressure
at the inflection point, (po (before maneuver)/po (after maneuver)), is plotted against
a ratio of A (A (before maneuver)/A (after maneuver)) in Fig.9. Each data point is
accompanied by two numbers indicating the data set number and his or her age in the
bracket (unfilled circle for male and filled circle for female). Thé data sets of the younger
may be seen to be located to the left half of the figure, compared to the older, implying
that, for the healthy young adults, A after the maneuver eithef ihcreases slightly or remains
roughly the same as A before the maneuver. In order to discuss implications of Fig.9
further, Figs.10 and 11 show the error function p-V equations before- and after-maneuver
along with the correspondiﬁg non-dimensional 7—V equations for three data sets in Fig.10
from the region of A (before maneuver) J/A(a fier maneuver) <~ 1.2, and for three data

sets in Fig.11 from the region of A (before maneuver)/A (after maneuver) >~ 1.2. The
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equations are plotted over the measurement range covered by Data Source B. Numerical

values of these data sets are tabulated below.

Data No. (Age) 1(33) 6(25 7(60) 11 (55) 13 (50) 15 (58)
A(before)/A (after) ~ 0.730 0.982 1.143 1390 1.303  1.625
po (before)/po (after) 1726 1196 1.840 1.312 2.083  1.753

Referring to Fig.10, the high py ratios of Data 1 and 7, compared to Data 6, are résults of
substantial reduction in po after the maneuver for these data sets as observed in the p-V
equations. The triangular marks on the P — V curves in Figs.10 and 11 indicate locations
of p = 20cmH,0; hence, on p— V diagrams, a largeichange in pg is reflected by a large
shift of the triangle from the before-recruitment location to the after-recruitment location.
Different degrees of changes in the magnitﬁde of A over the alveolar recruitment maneuver
for the three data sets cannot directiy be observed from the p-V diagrams. However, on the
p—V diagrams, A/2 is the slope of 5~ V equation at the origin.( See Eq.(2b).) Therefore,
the before-recruitment (solid) curve lies above the after-recruitment (dotted) curve in the
third quadrant (7 < 0, V < 0) for Data 1 for which A (before) = 0.730 - A (after). For
Data 6 with A (before) being close to A (a fter) two curves are nearly identical. In Data 7
the after-recruitment curve lies slightly above the before-recruitment curve as A (before) =
1.143- A (after). The data sets in Fig.11 all have the two ratios well above unity with the
high A ratios resulting in the after-recruitment curves to lie above the before-recruitment
curves, and the high pg ratios of Data 13 and 15 being reflected in the large shifts in

triangles between the two curves in the 5 — V diagram.

From Eq.(2a) the maximum local compliance (= dV/dp at p = pp) may be expressed as

p=m)= S0 ")

av
dp

Fig.12 is a plot of [dV/dp (p = po) after recruitment maneuver] vs [dV/dp (p = po) before
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recruitment maneuver] of Data Source B. Changes in the maximum local compliance (=
compliance at the inflection point) are small between before- and after-recruitment. data
with a maximum change of less than 0.035 [L/cmH30]. It should be mentioned again that
the local compliance like other parameters may be obtained mathematically in a continuous
p-V model equation, once the parameters of thé equation are determined for a specified
p-V curve. | ‘

Depicted in Fig.13 are p-V curves and the corresponding 7 — V curves of four rep-
resentative data sets of patients with ARDS, drawn over their measurement ranges. The
non-dimensional $ — V curves in Fig.13(b), which, we believe, are more useful for data
examinations and interﬁfetations, yield the following. observations:

(1.) The magnitude of A, which is represented by the slope of a — V curve, is the largest
for Data 20, and the smallest for Data 4.

(2.) Since the origin of a p —V curve is Vf;he location where the local compliance is the
maximum (i.e. p = pg), Data 4 and 17 extend well into the region of decreasifxg compliance,
while, the pressure range of Data 13 is limited to the region of increasing compliance.
(3.) At p = 20 cmH,0 (shown as a triangle), the compliance is still increasing for Data 13
and 20, close to the' maximum for Data 17 and decreasing for Data 4.

(4.) The two volume asymptotes, Vi and Vi, are transformed respectively into V = 1.0
-and —1.0; hence, the volume range of Data 13 is closer to the lower asymptote, while,
the o{feréll volume change of Data 4 is small compared to AV (difference between the
asymptotes).

Furthermore the magnitude of A in Table 1 indicates that there is no lower corner
pressure for Data 4. For each inflation data set, Table 1 lists the maximum local compli-
ance. Its value ranées between 0.03 and 0.11 [L/¢cmH,0); much smaller values compared
to the data from healthy adults shown in Fig.12. The maximum local compliance, as
shown in Eci.(7), is proportiénal to the product of A and AV, and inversely proportional

to pressure at the inflection point. Since both A and po are roughly in the same order of
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magnitude as healthy adults (Fig.8), the factor contributing most to smaller values of the
maximum local compliance for patients with ARDS is AV as evidenced by its values listed
in Table 1 and 2. |
Summary and Conclusions

The sigmoidal (tangent hyperbolic) equation is known to represent various quasi-static
p-V . curves very closely [11]. In the present study it has been shown that the error function
médel equation also represents “quasi-static p-V curves well (Figs.4,5). Major parameters
of both the sigmoidal (tangent hyperbolic) and the error functjon model equations are
the non-dimensional compliance, A, the maximum local compliance, pg, the upper (or
lower) volume asymptote, Vy (V1), and the maximum volume available for inﬂatioh AV.
Although both contmuous model equations are antisymmetric with respect to pg, the non-
dlmen51onal parameter, A, as well as two volume asymptotes shghtly differ between the
two equatlons as those function-specific parameters are selected to follow a spec1ﬁed p-
V curve as closely as possible (Fig.6). Two inflation data sources, patients with ARDS ‘
(Data Source A) and healthy adults (Data Source B), are analyzed in detail using the error
function p-V model equation with the following results;
1. The alveolar recruitment maneuver lowers the pressure at the maximum compliance,
po; while, A remains roughly the same or decreases in magnitude -(Figs.S(a), 9). It also
reduces the upper volume asymptote, Vi, substaﬁtially (Fig.8(b)). The combined effects
of these parametric changes due to the maneuver extend the range of p-V curves after the
maneuver further into the region beyond the location of the maximum éompliance (Figs.10,
11).
2. | The range of pp and A covered by the patients with ARDS is wider than the corre-
sponding ranges of healthy adults (Fig.8(a)). Substantially lower magnitudes of the upper
volume asymptote, V7, and the actual volume change (Fig.8(b)) result in lower values for
the maximum local compliance (Table 1) compared to that of healthy adults (Fig.12).

3. The non-dimensional 7 — V curves combined with the magnitudes of the four parame-
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ters of the model equation are shown to help undersfand quantitatively the effects of the
recruitment maneuver as well as differences among patients with ARDS (Figs.11, 13).

4. An important advantage of the continuous model equations is that various parameters
characterizing the shape and the range of p-V curves, such as the maximum local compli-
ance, the preséure at thé maximum local compliance and the upper and the lower corner
pressures, may be evaluatred readily from the model equation once the parameters of the
equation are determined from p-V curve data. The mathematically exact relations among
the parameters also implies thét the magnitude of either pressure or volume at a certain
location aleng a p-V curve may only be interpreted correctly when compared to a char-
acteristic pressure or volume of the p;V curve, as demonstrated, for example, in Figs.11
and 13 when we discussed the location of p = 20 emH,O relative to the pressure at the

maximum local compliance.
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Captions for Tablés and Figures

Table 1. Parameters of Error Function Equation for Data Source A
Table 2. Parameters of Error Function Equation for Data Source B

Fig; 1. Continuous p-V model equation.

Fig. 2. Non-dimensional p-V curve corresponding to Fig.1.

Fig. 3. Example of p-V curve from Data Source A. filled circle = Data D,
solid = error function p-V equation, dotted = sigmoidal p-V equation.

Fig. 4. 'Exa.mble of p-V curve from Data Source B. Dotted curve = piecewise _continuous.
equation, Eq(6), Solid curve = error function equation, Eq.(2a),
‘Triangle = upper and lower data limits.

Fig. 5. (V = V)/AV wvs (v/7/4)A(p/po — 1) of Data Source A. . . .
Unfilled circle = inflation, Filled c1rcle = deflation. | ‘
Fig. 6. (a) A, (sigmoidal model equation) vs A, (error function model equation),

(b) pos (sigmoidal quatjon) vs pg e (error functlon equation).
for inflation data sets of Data Source A.
Fig; 7. (a..) pLIP [emH20] vs Pmei [qugO] .
(filled (unfilled) circle = before (after) recruitment manéuver).
| (b.) 'p’UIp [emH20] V8 pmed [cmH>0) bf Data Source B.
(unfilled (filled) circle = before (after) recruitment maneuver).
" (Pmei and Pmed evaluafed from error-function equation.)

Fig. 8. (a.) A vs po, (b)[Vy — V(p = 0)] vs [V(p = 20cmH;0) — V(p = 0)]
for inflation data séts from Data Source A and B. :
Square = patients with ARDS, Cross = he:_a.lthy adults before recruitment maneuver,
Triangle = healthy adults after recruitrhent maneuver.

Fig. 9. po (before maneuver)/po (after maneuver)) vs AA(before) / A‘(after)

Two numbers are Data Set No., followed by his or her age in the bracket.
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unfilled circle = male, filled circle = female.

Fig.10. p — V curve and the corresponding 7-V curve of error function model equation.
Data No.1 (top), No.6 and No.7 (bottom) of Data Source B (healthy adults).

- Solid = Befor;a recruitment maneuver, Dotted = After recruitment maneuver.

Triangle = location of p = 20 [em H,0).

Fig.11. p — V curve and the correspénding 7-V curve of error function model equation.
Data No.11 (top), 13 and 15 (bottom) of Data Source B.
Solid = Before recruitment maneuver, Dotted = After recruitment maneuver.
Triangle = locatidh of p = 20 [emH2O). | |

Fig.12. dV/dp (p = po) (maximﬁm local compliance) before recruitment maneuver
vs dV/dp (p = po) after recruitment maneuver of Data Source B. | |

Fig.13. (a) p— V curve and (b) the corresponding -V curve of error function model
equation for Data No.4, 13, 17 and 20 of Data Source A (patients with ARDS).

’Iﬁahgle = location of p = 20 [emH,O].
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Table 1. Inflation Parameters of Error Function Equation for Data Source A
Data No A Do AV VL (dV/dp) at po
1. 2.9652, 22.39, 2.3726, -0.0709 0.0785
2. 2.7173, 21.98, 1.5612, -0.0762 0.0482
3. 3.3532, 25.08, i.6193, -0.0365 0.0541
4. 1.6273, 13.32, 3.1567, -0.5727 0.0963
5. ‘ 2.7160, 30.36, 1.6216, --0.0768 0.0362
6. 2.6029, © 23.88, 1.5066, -0.0962 0.0410
7. 1.7288, 20.15, 3.0989, - -0.3645 0.0664
8. 1.8901, - 14.95, 1.7905, © -0.2185 0.0565
9. 3.5379, : 25.24, | 2.7570, -0.0350 0.0965
10. 2.7981, 26.20, 3.7326, -0.1583 0.0996
11. 2.4296, 17.89, 1.3424, -0.0997 0.0455
12. 1.2500, 11.59, 1.2470, -0.2829 0.0336
13. 3.2725, | 29.86, 3.9075, -0.0861 0.1070
14. 2.7915, 15.31, 1.6284, -0.0705 0.0742
15. 1.9487, 18.37, | 1.8797, -0.2423 | 0.0498
16. 2.4566, 26.98, 1.3277, -0.0787 0.0302
17. 2.1027, - 19.31, 1.3316, -0.1279 0.0362
18. 1.1672, 13.98, 2.0685, -0.5149 | 0.0431
19. 3.1381, 26.80, 3.1306, -0.0851 0.0916
20. 5.4709, 30.03, 1.7695, -0.0097 0.0805
21. 3.2818, . 2443, 2.8956, -0.2075 0.0972

po in [cmH,0], AV and V; in [L], dV/dp in [L/emEL0).

23




Table 2. Parameters of Error Function Equation for Data Source B

Data No A Do ' AV VL Vv
1LF
1 B. 1.5136 25.00 5.1043 -0.8889 4.2154
' A. 2.0711, 14.48 2.7130 - -0.2700 2.4430
2.F ' . '
B. 2.5520 31.70 5.4303 : -0.2863 . . 5.7166
\ A 1.7587 18.17 4.1416 -0.6590 3.4826
| 3.F :
‘ B. 2.0979 21.76 3.7676 -0.3399 o 3.4277
A. 2.2060  18.19 3.1331 -0.2300 2.9031
4.M
B. 2.1491 21.11 4.5443 -0.3726 4.1717
A. 2.1887 18.57 - 4.4023 : -0.3554 4.0469
5.F
B. 2.2192 24.60 6.4953 -0.4971 5.9982
A 1.5729 13.46 5.2884 -0.8895 4.3989
6.M
B. 2.3950 23.21 4.2092 -0.2567 3.9525
A. 2.4387 19.40 3.9049 ' -0.2722 3.6327
7™M o
B. 2.6997 31.00 7.3180 -0.2167 7.1013
A. 2.3615 16.85 - 5.5288 - -0.5641 - 4.9647
8.F
a 2.2901 30.80 8.2489 -0.5185 . 7.7304
A. 1.9974 - 17.20 5.0638 -0.5478 4.5160
9.F ‘
B. ———  ——— = - S
Al 2.0340 15.90 : 3.7392 -0.4068 3.3324
10.M ' '
B. 3.4081 28.80 7.211". -0.0491 ’ 7.1627
A. 2.3998 17.92 5.7276 -0.5502 5.1774
11.M '
B. 3.1746 25.86 7.0726 -0.1361 6.9365
A. 2.2828 19.70 6.79820 . -0.8620 © 5.9362
12.F ' . : ,
B. 2.5060 - 23.20 5.0810 -0.2476 4.8334
A. 2.3844 16.36 4.3799 -0.3799 4.0000
13.F _
B. 2.3600 29.17 6.81755 -0.4353 6.3822
A. 1.8107 14.00 4.03567 -0.6883 3.3472
14.M : ' ‘
B. 2.2260 24.55 6.7170 -0.4828 . 6.2342
FA. 2.0800 18.22 5.5875 -0.6761 4.9114
15.
B. 3.5047 25.70 4.5022 -0.0027 4.4995
A. 2.1561 14.65 3.3016 -0.4836 2.8180
B = Before recruitment maneuver, A = After recruitment maneuver.

po in [emH,0], AV, Vi, and Vy in [L].
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Fig.6. (a) A (sigmoidal model equation) vs A, (error function)
model equation.(b) p, ;(sigmoidal equation) vs p, , (error function
equation) for inflation data sets of Data Source A.
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Vu-Ve=0)[L]
' o

N

V(p=20)-V(p=0) [L]

Fig.8. (@) Avs p, , (b)) [V, =V(p =0)] Vs [V(p = 20cmH,0) -V (p =0)]

for inflation data sets from Data Source A and B.
Square = patients with ARDS, Cross = healthy adults before recruitment maneuver,

Triangle = healthy adults after recruitment maneuver.
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A Fig.10. p-V curve and the corresponding p-V curve of error function model equation.
Solid =Before recruitment maneuver, Dotted = After recruitment maneuver, Triangle = location
of p=20 [cmH20].
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Fig.13. (a) p - V curve and (b) the corresponding p—V curve of

error function model equation for Data No.4, 13, 17 and 20 of Data Source
A (patients with ARDS). Triangle = location of p=20[cmH20]
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Chapter 2. A Mechanistic Model for Quasi-Static Pulmonary Pressure-Volume

Curves: Model Development for Inflation Process

Abstract

‘A mechanistic model of a total respiratory system is proposed to understand differences
in quasi-static pressure-volume (p — V) curves of the inflation process in terms of the alve-
olar recruitment and the elastic distehsion of the wall tissues. In the model, based on the
Boltzmann statistics, the total respiratofy systerh consists of a large number of elements,
each of which is a subsystem of a cylindrical chamber fitted with a piston attached to
a spring. The alveolar recruitment is simulated by allowing a distribution of the critical
pressure at which an element opens; while the wall distension is represented by the piston
displacement. Various parameters in the error-function‘ p — V model equation are related
to the properties of the mechanistic model. The parameters of the model-based p-V equa-
tion are determined for each clinical'data set for a total of twenty one p — “V data sets of
patients with acute respiratory distress syndfome by a computational minimization procé—
dure between the equation and the data points, results of which show excellent agreements

between the two.
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Nomenclature

(k/As)io = po

piston surface area on which pressure is acting (Fig.4)
(k/As)Jr = po - ro, threshold pressure for onset of saturation
(B/2)!% - po = V/TA/4

distribution functions (Egs.(6) & (13c))

functions defined in Eq.(13b)

. spring constant [N/m] (Fig.4)

total number of TRS elements

number of elements at energy level j

pressure (interpleural pressure difference)
non-dimensional pressure, p/pp — 1

critical pressure at which an element, j, ‘pops open’.
Pos/po (Eq.(13¢))

pressure at the end of inflation process

pressure at the inflection point in p-V equation, Eq.(1)
total energy of TRS at p=p

=U(p=ps) -~ U(p=0)

volume

volume change from the state of p =0

lower (upper) volume asymptote (Fig.1)
non-dimensional volume, (V — ((Vu + V1)/2)/(AV/2), (Eq.(2))
volume of an element j

Vo — Vi = NV(@ro + 1)

‘pop-open’ volume (= A,¥yo) (Fig.4)

piston displacement of an element j (Fig.4)
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Yo
yr

Yo

‘pop-open’ displacement, (= Vo/As) (Fig.4)
piston stroke limit (Fig.4)

gr/%

Greek symbols:

™) ™ R

oM

w
Superscript:
Acronyms:
ARDS
TRS

constant of proportionality (Eq.(1a))
constant in the distribution function (Eq.(4))

= (A%/k) B (Eq.(5))

energy stored in an element j (Eq.(3))
apoAV (non-dimensional parameter) (Eq.(1))
(8/m)/2/A, Standard deviation (Eq.(13c))

Ap/2 (Eq.(2))

related to a single TRS element

acute respiratory distress syndrome

total respiratory system
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Introduction

Quasi-static pulmonary p — V (pressure - volume) curves are used routinely to obtain
quantitative information on the respiratory system that is important for both research and
clinical guidances, as the conditions of gas exchange, the primary role of the respiratory
system, are related to the characteristics of the curve. During the inflation (inspiration) and
the deflation (exhalation) processes, the respiratory system changes its volume (measured
in L (= 1073m?®) or mL), lung (alveolar) pressure as well as the pleural pressure (the
pressure of the thin liquid film that couples the lungs and the chest- wall pleurae). The
pressure, p, refers to the interpleural pressure difference (i.e. the difference between the lung
pressure and the pleural pressure) measured in water head [em-H30] (1ecmH,0 = 98 Pa).
Clinical p-V curves are commonly obtained for an anesthetized human subject in supine
position by sequentially adding (or withdrawing) incremental gas volumes (~ 50-100 mL)
in a stepwise manner (with a duration of ~ 5 seconds per step)[1,2]. Fig.1 is a typical
inflation p-V curve, consisting of a nearly linear region of high compliance (i.e. large
dV/dp) sandwiched between two segments with low compliance at low and high pressure
regions. The shape of the p—V curve is affected By two mechanisms, the distension of the
elastic respiratory wall tissue components and the recruitment (‘pop-open’ mechanism)
of the alveoli. The latter is the opening of alveoli overcoming the surface tension at
the interface between the gas and the liquid film lining the alveolar surface. A pressure
increase (i.e. an increase in the interpleural pressure difference) results in the recruitment
of a greater number of alveoli. The high compliance is believed to be associated with both
the distension of open parts of the lungs and the (alveolar) recruitment of collapsed parts
of the lungs [3]. Some protective ventilation strategies, based on patients’ quasi-static p-V
curves, have been proposed for lung disease patients in intensive care units. Amato and
~ coworkers [4,5] demonstrated, based on their clinical study involving patients with acute
respiratory distress syndrome (ARDS), that a ventilator strategy guided by the p-V curve

resulted in reduced lung trauma, a high weaning rate and improved survival compared with
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a conventional ventilator strategy without the p-V curve guidance. Also, a recent ARDS
Network report [6] on a clinical study involving 861 patients shows lower mortality in the
group treated with lower tidal volume than in the group treated with traditional higher
tidal volumes. Although a use of p-V curves is not mentioned, the report underscores the
importance of optimized ventilator strategy.

In order to quantify the characteristics of p—V curves as well as their changes observed
in clinical settings, various p-V model equations have been proposed [7-12]. Parameters in
model equations are determined from statistical processing of clinical data. It is important
that these parameters should have some physiological interpretations. Also, to understand
the shape of p-V curves in terms of mechanical behavior of lungs, multi-compartment lung
models were developed and used to obtain information on the effects of lung elasticity and
a degree of alveolar recruitment on p-V curves [3,13]. Although these analyses serve to
relate the internal elastic conditions of the total respiratory system (TRS) to general p-V .
curve behavior, there has been no attempt to interpret individual differences in p-V curves
directly in terms of internal elastic properties, alveolar recruitment and their changes.
From an analytical viewpoint the quasi-static p-V curves are more amenable to theoretical
studies because at each state we may be able to apply equilibrium principles. An overall
objective of this report is to test the hypothesis that a mechanistic model, based on the
continuous alveolar recruitment and the elastic distension of the wall tissues, is effective in
understanding a relation between the observed pulmonary behavior (as p-V curves) and
the corresponding internal respiratory response (in terms of the mechanistic model).
Continuous Equation for Quasi-Static p-V Curves

In the past piecewise-continuous equations were used to generate such quantities as
compliance, the lower and upper inflection points that may reflect the internal conditions
of TRS [7-12]. There are two continuous model equations that simulate various p-V curves
accurately over the entire range of p-V data. One is a sigmoidal (tangent hyperbolic)

equation, and the other an error-function equation, both originally proposed by Venegas
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and his coworkers [1]. Since the analytical development to follow utilizes the error function
representation of p-V curves, its characteristics are discussed below in some detail.

The error function p-V equation, plotted in Fig.1, may be expressed as

=% aven[-(F4) (2 1)) (1a)
Vv _é;+(ézz).erf(_7@,x(;%_1))f 1)

where AV = Vy — Vi, Vy = the upper asymptote, V;, = the lower asymptote, a =
positive constant, pp = a pressure at the midpoint (inflection point) of the curve and A

(non-dimensional) = ape AV [1,2,14] with

2 [“’ 2
erf(z) =— e " dt erf(0) =1, erf(—z)=—erf(z).
fo)=— | (c0) (~2) = —erf(z)
The corresponding non-dimensional forms are,
Vv A T o - N3
pal ezp( 7Y ),  V=erf( 5 w). (2)

where V = [V — (Vu + V1)/21/(AV/2), P = (p/po) —1, w=APp/2.
Eq.(2) satisfies the following conditions: |

V(@=0) =0, V(p) = —V (—p) (antisymmetry with respect to p = po),

dV/dp(E=0)=A/2, V(p— +oo)==1, dV (p— +00)/dp =0. |

A clinical data source of p-V curves we use in the present analyses are twenty one data
sets of ARDS patients (both inflation and deflation data) in supine position by Harris et
al [2], made available by the authors. Data sets are analyzed by minimizing the difference
between data points and the error function model equation through the application of the
method of least squares to obtain the parameters, A, AV,pg and Vy (or V). Plotted in
Fig.2 (Fig.3) are 264 inflation data points (225 deflation data points) in terms of Eq.(1b),
(V —=V5)/AV vs /TA(p/po — 1)/4. Agreement is excellent between the data and the p-V
equation with R? (the coefficient of determination) = 0.99938 for the inflation- and =

0.99907 for the deflation- data points.
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Development of a Mechanistic Model

An overall objective of the development of a mechanistic TRS model is to derive an
equation for the volume participating in the p-V variations. We consider a TRS comprised
of a very large number of elements with N = total number of elements. Based on the char-
acteristics of a single element that are common to all elements, a distribution of elements
is derived over a distribution parameter. The mechanistic model of an element is shown
in Fig.4. An arbitrary element, j, consists of a cylindrical chamber containing a piston
(with its surface area, A, [m?]), which is attached to a spring with its spring constant,
k [N/m]. The element is closed when the piston is located at the left end of the cylinder in
Fig.4. When pressure acting on the left end of the piston reaches a certain critical value,
the piston suddenly moves to a new position (‘pop-open’ mechanism) with the elemental
volume, 170, in the figure indicating an elemental volume increase due to the sudden piston
displacement of 7. Once the element is open with its volume of ‘70, any further increase in
pressure. results in a volume increase as the piston moves to the right until it reaches the
end of the cylinder. (The symbol,”, indicates an elemental quantity.) In the model the
pop-open volume, ‘70 (= As %), and a further volume increase due to piston displacement
represent the opening of alveoli and the elastic distension of the wall tissues respectively.

We define p. ; as the critical pressure at which the element, j, ‘pops open’.

Referring to Fig.4, the elemental volume, I7j, at p (= pc;) is equal to %% + A,¥;; which,
upon application of a quasi-static force balance across the piston, A (p—pc;) = k¥j, may
be expressed as, 171 = Vot (A2/k) (p—pc ;). Also the piston position of an element reaches
its stroke limit of 7 when pressure, p, reaches (pc; + (k/As)¥yr). The mechanistic model of
an element, therefore, goes through three stages in the inflation process — closed, open &
unsaturated (i.e. §J; < gr) and open & saturated (i.e. 3; = §r). The model assumes that
the critical ‘pop-open’ pressure, p, ;, as well as the location of the piston for open elements,
7;, vary from element to element at an arbitrary quasi-static state (p, V), and that other

quantities such as k, A, 17}) and 7 are constant and common for all elements. The energy

45




level of an open and unsaturated element, j, consists of the activation energy required to
pop open the element, €; 4, and the energy stored in the spring, €;s: For €; 4, we assign
the compression/expansion work under constant pressure; ie. €A =Dc jl’;b; while, € g is
equal to k §2/2, which may be expressed in terms of pcj‘ as €55 = (A%/2k)(p — pc;)? from
an application of the force balance.

In summary, at a quasi-static (-equilibrium) state at p = p, a TRS element, j, belongs to
one of the following states: -

~

if p<pecy, the element, j, is closed with 173 =0, & =0.
if pcj=mn, the element, j, pops open with 17; = Vb, € =D j170.
if p—(k/As)yr <pcj < p, the piston of the open and unsaturated element, j,
moves to a location, J;, with \73 = 170 + AT, € = pcjvo + (A2%/2k)(p — pc;)?.
if pej <p-—(k/As)yr, the piston of the open and saturated element, j,
remains at the stroke limit, 37, with 17'] = Vo + As yr, € = pcjf}o + (k/2)7%.
The state of an element follows the sequence above during the inflation process as p in-
creases. To obtain an explicit form of the distribution function of TRS elements over the

distribution parameter, p.;, we focus on open and unsaturated elements, for which the

elemental energy shown above may be rewritten as,

) 4 o oy Ky
¢; (open, unsaturated) = Sk [pcj ~(p— 71?)] + 5 (2p Y ) (3)

According to the Boltzmann statistical model ([15,16] for example), which assumes that
there is no limit in the number of elements per energy state, the most probable distribution

N;/N (a fraction of elements at an energy level, €;), may be expressed as
N; /N = e’ﬁef/z e~ B (B = unspecified constant) (4)
J

A substitution of Eq.(3) into Eq.(4) with the summation replaced by an integral over the

whole range of p.; for a large number of elements, yields

aN;  _ B k5N * B k52 |
NdeJ - exp( 2 (p pc] Ag VO) >/~/—oo emp( 2 (p ch Ag VO) dpcy (5)
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where 8 = (A2/k) 8. It should be noted that the integration in the denominator ranges
from — oo and + oco. As summarized above, any arbitrary element remains active (open
and unsaturated) only in a certain range of p.j; therefore, the application of Eq.(5) over
the entire range of —oo < p.; < o assumes that the distribution function that is valid for
active elements is also applicable in evaluating the number of closed as well as saturated
elements. Then, upon performing the integration of the denominator in Eq.(5), we obtain

for dN;/N (= a number fraction of elements, for which the magnitude of p. ; ranges between

Pej and pej + dpcj),

=

dN; 3 3 ko
7\,1 = f-dpcjy [ = (5;) -ewp(—-g-(p—pcj— A—gVo)"‘) (6)

Noting that elements, j, with p.; in the range of 0 < p.; < p, are open at p = p, and
that (k/As) Jr (= B) is the pressure at which an element j with p.; = 0 reaches the piston
stroke limit of 7, the volume change with pressure needs to be evaluated for the following
two pressure ranges; pressure range 1: 0 < p < B and pressure range 2: B <p.
Pressure Range 1: 0<p<B

Since the pressure is below B (the threshold pressure for the onset of saturation), all
open elements are active (unsaturated) with 7; < yr. Then the total volume, V(= V(p =
p) —V(p =0); i.e. avolume change from the state of p = 0), participating in the inflation

process is,

-

flp=p) dpci] :

o0

p ~~
V(p) = N [ / o+ A5) £ = D) s + AT /
Pci=

Pcji=pP

The first term on the right hand side represents a volume increase due to the elements that
pop-open, followed by a piston displacement (; = A%(p — p.;)/k from the force balance)

during the inflation process from p = 0 to p = p; while, the second term, noting

/p " fe=nd= [ 1p=0dn;,

cj =P Pcj=0

accounts for the elements that are already open at p =0 and the piston displacement

7; (= A2p/k) is the only mechanism available for the volume increase.
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After expressing 7; in terms of p and p.; as shown above, the equation may be written as,

~\ 3 p—A 42 0o 42 ~
Vo =N (5’8%—) [/_ 2V + ft) exp(— —tz)dt-i—/A -?sp-e:cp(— —g-zz)dz (7)

where A = (k/As)§o, t=—2 = (p—pe;— kVo/A2).
Pressure Range 2: B <p
In this pressure range, the elements with 0 < p.; < p— B as well as the elements that
are already open at p =0 are saturated (i.e. §; = Jr for the elements); while, the elements

with p — B < p.; < p remain unsaturated (i.e. §; < yr); therefore,

V, =N / (Vo+ Adr) - =P dpes +N [ (Dot Asdy) - F(p =) dpes
o 14
LN / A - f(p = p) dpes. (®)
p
Eqs.(7)(8), after integration, become,
V,(0<p<B)= NVo[Il+——(1—I) 2\"’/(%“3(17)], (9a)
-1 I Jro + 1
V,( B<p )=N¥ [11 + @(1 ~ L)+ gro—1, I Uro Is(p)] (9b)

2 2y/7C 2
where |
Li=erf(C), L(p)= e:vp(—Cz(% —1)%) —exp(-C?), Is(p) =erf(C (% - 1)),
Is = erf(C(1 —710)), Is = exp(—C*(Fro — 1)?) — exp(— C?),
— (3/2)" - A, ro=r/do=B/A.

Therefore, the mechanistic model yields the following p-V equation;

V(0<p<B)=W

~ (1-5L),p . Yro+1 Yro—1 Is — I1(p)
+NV0( 5 (A Jro) 5 5 Tt 2 /nC +13(P)), (10a)
NVo(@ro+1)  NVol@iro +1 '
V(B<p ) =vy— Molrotl)  N@rtl) ;. (100)

2 2
48




In order to relate the present TRS model, intended to describe the internal respira-
tory conditions, to the p-V curve that quantitatively describes overall variations in TRS
conditions, an additional condition that needs to be satisfied is conservation of energy. For
a quasi-static process from an initial state of (p = 0,V = V(p = 0)) té a final state of
(p = ps,V = V(p = ps)) (py = the pressure at the end of a measured p-V curve), the
conservation of energy neglecting any dissipative mechanisms may be written as,

V(p=ps)
AU(=UGp=p) - Up=0) = [ ~ " pav, (11)
V(p=0)

where U(p) represents the total energy of TRS at p = p to be evaluated from our mecha-
nistic model; while the right hand side of the equation is work associated with the inflation
process that must be evaluated from the p-V model equation. A further development of
the energy equation will be discussed in the next section.
Mechanistic Model vs Error Function p-V Equation

Relations between the parameters in the error function p — V' equation and the pa-
rameters in our mechanistic model are derived based on the observation that the p — V

relation, Eq.(10b), for the high pressure region as well as the corresponding equation for

the local compliance,

NVo(@ro+1) | NVo(firo + 1
V(B<p) = Vy-— o(fro+1)  NVo(yro+ )

erf(C (% - 1)),

2 2
dv NVo(ro+1) 2C 2D a2
— (B<p) = . . (P _
dp(B_p) 5 Trro exp C'(A 1) ,

become identical to the error function model equation, Eq.(1),

V=VU—A—V+(ﬂ) -erf(ﬁA(£—1)>,

2 2 4 Po
Y 3 v enl-(F)'(2 )]
if we set
NDo(Fro+1) = AV, A(= (k/A)T0) =r0, C(= (g)‘” A) =YTA ()
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Before further developments are made on the mechanistic model, our results are summa-
rized below, based on the parametric relations, Eq.(12), between the error function p-V

equation and the model.

Pressure - Volume (p — ) Equation:
AV @+1)(1-1L) 2L(p) »
< < = —_—
Vp (0 < p < po - §ro) (I + 5 - + I3(p) |,

Uro — 1
Vp (po - Jro < p) = (1+yﬂ(1— )-i'yTO2 Iy

2Isy  yro+1 _
Y + 5 | -Ig(p)). (13a)

Pressure - Volume (p — V') Equation:

~ Vu +V,
V((0<p<po ¥ro) = U2 L
AV . (1-5), _\ Gro-1 2(Is — I(p))
I 1 — o) — 2O, 4 28 2P
+?7T0+ 1 ( 3(p)+ 5 (P+1—7Yyro) 5 Lt Yy ,
. Vu+V, AV
V(po-Yro <p) = U2 g I3(p) (13b)

where I =erf(C),  I(p) = exp(—C?P%) — exp(—C?),
L) =erf(CP), Ii=erf(C(1-7r0)),
Is = exp(—C? (Jro — 1)%) — exp(— C?), C =/mA/4.

Distribution Function:

dN;
N -dp.;

—F),  FO) = o en(- 3R s

where Dej = Pcj/Pos o= (8/1r)%/A.
The model-based p-V equation, Eq.(13b), consists of two regions. The solution for the
high pressure region is identified with the error-function p-V equation. The p-V equation

for the lower pressure region as well as the boundary pressure between the high- and

low-pressure region contain the parameters of the p-V equation, A, po, AV, Vy (orV5)),
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and an additional parameter, 3. Conservation of energy, Eq.(11), is utilized to find the
magnitude of §ro. Similar to the p-V model equation, Eq.(13b), the evaluation of Eq.(11)
depends on the magnitude of the final pressure, py, relative to the boundary pressure,
Do Jro, between the high and the low pressure regions of the model-based p-V equation.
As will be shown later in the analyses of clinical data, the magnitude of Y7o is less than
unity; hence, the conservation of energy is further developed for the case of po -Yro < py (i-e.
Yro — 1 < Ps(=ps/po — 1)). Accordingly the left hand side of Eq.(11) may be evaluated
from the elemental distribution function, F(7) of Eq.(13c), along with the elemental energy
summarized in the paragraphs preceding Eq.(3), yielding,

N A2 Ps+1-yTo N 1. o "
AU = pk [ /0 (Pej + 5y.?po)-F(p=pf)dpcj

Ps+1 R 1 2 .

4 [ et 50+ 1= 5es)) P =) s
Pr+l-yro

Np A?

Pr+l-yro N R
Mo [* " s -5 P =) s

g%o §f+1—yTo 51"*‘1
+'—2—/0 F(ﬁ=5f)dpcj +5f/ F(ﬁ=ﬁf)dpcj
0

+§/ R F(ﬁ=]_3f)dpcj+§/ _ (Pe; —Dy) F(ﬁ'—_l—?f)dpcj
Py+l-yro Pr+l-y1o ‘

2
Npk 4, [——[15 - L(P;)] + yTo[Is(I_’f) + Iy) + ';'Z—Of[fl + I3(p;)]
-1+ 2 (k-1 + Boa-n)
- %[(emp(—cz) — (1= Fro) - exp(—C*(1 - ﬁTo)z)D] : (14a)

The right hand side of Eq.(11) becomes,
V(p=py) PoYTO 'A Ps R
/ pdV =psV(p=rps) - [/ V(0 < p < poyro)dp + / . V(poyro < pf)dp]
V(p=0) 0 PoyYTO

Uro - Is

poAV | (Gro+1),_ _ gro(Yro — 1) 2
= . I g e L e
Gro+1 [ 7 st L)+ = m oy
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/ " LaB) B+~ (1 1) ~ o - exp(—C?)

- p) dp - I‘/ €ETp

—1 3 A 1 4 A TO

gro+1 [P

SIetl [ hgyap+ Tea-m). (140
yro—1

It should be noted that the factors, N pZ A2/k, in Eq.(14a) and poAV/(yro + 1), in
Eq.(14b) are identical, thus dropping out of the conservation of energy, Eq.(11), as common
factor.

The p-V equation constructed from the mechanistic model, Eq.(13b), contains five
unknowns (A, po, AV, Viy (or VL), §1o), the magnitudes of which are determined by min-
imizing the differences between Eq.(13b) and a specified data set based on the method
of least squares, under the constraint imposed by the conservation of ‘energy, Eq.(11) and
Eq.(14). Because the p-V equation consists of two equations, one for the high pressure
region and the other for the low pressure region, and also because algebraic equations re-
sulting from the application of the method of least squares are non-linear, a computational
program is developed to find the five unknowns. The program requires a set of initial guess'
values for the five unknowns. The parameters, A, po, AV, Vy, of the error function p-V
equation, Eq.(1b), are used for initial values with the initial value for the fifth unknown,
o, being set to zero. The program employs the Newton-Raphson iterative technique
around the value of ¢ to minimize the errors between Eq.(13b) and the data points
while conservation of energy is satisfied exactly, until the five unknowns converge to a set
of solutions.

Discussion of Results
We begin with physical interpretations of parameters of p-V equations in terms of the
mechanistic model. The first equation in Eq.(12) is,
AV = NVo(Gro +1)
=‘N(176 + As Ur)-
Noting that o is a ratio of the piston displacement by elastic tissue distension to that

by alveolar recruitment, AV of the error function p-V equation is the maximum possible
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volume available for inflation, and is related to the mechanistic model as a product of the
total number of elements, N, and the elemental volume available for inflation through both
the ‘pop-open’ mechanism, Vo (corresponding to the volume; increase due to the alveolar
opening), and the piston displacement, AJr (corresponding to the elastic wall distension of
TRS). Vy is related only to the solution of the high pressure region as Vy = V (p — 00).
On the other hand, under the two-region p-V equation of the mechanistic model, the
definition of AV needs to be elaborated. Since V;, # V (p — —o0) in the lower pressure
solution of the mechanistic model, AV should be interpreted as the maximum possible

volume change when the high pressure solution is extended into the low pressure region.

The second equation, po = (k/As) Yo, indicates that the pressure at the midpoint of the
p-V curve is an equivalent pressure required to displace the piston against the spring force
over the pop-open displacement of . It may be rewritten as poV(j = k y2; therefore, po 170 /2
is the spring energy required to displace the piston by the amount, . This observation
implies that the pressure, po, is related to both the alveolar recruitment (through Yo) and
the elastic tissue distension (through k). A higher magnitude of py implies a larger value
of the spring constant 9wall elasticity) and/or a greater amount of energy required to

pop-open the elements.

The non-dimensional parameter, A, is related to the parameter, C, of the mechanistic
model through the third equation in Eq.(12), C = (y/7/4) A. As may be seen from Eq.(9),
the parameter, C, appears as a factor in the function, I3(p). Since the function, I3(p), is a
monotonically increasing function of p, an increase in volume, V, becomes more sensitive
to a change in pressure when the magnitude of A is larger. The observations above 'may
be further extended in terms of the distribution of elements over the critical pop-open
pressure, Eq.(13c). The number distribution of elements is a normal distribution with its
mean at P(= p/po — 1) and a standard deviation, o, which is proportional to 1/A. Since
the peak of the distribution is located at p.; = B, the rate of increase in the number of

open elements increases (decreases) for p < po(p > po); an observation consistent with
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the fact that po is a pressure at the inflection point of the error function p-V equation.
A larger value of A indicates a smaller standard deviation, indicating a higher peak in

number density and a sharper distribution.

The p-V equation, Eq.(13b), of the mechanistic model consists of the low pressure
solution in which all open elements are unsaturated, and the high pressure solution where
some elements are saturated (fully-distended). The equation has three pressure -dependent
terms. A term proportional to P in the equation for the low pressure region (the third
term) is due to the elastic distension of the elements that are open at p=0. Two other
pressure-dependent functions are I5(P), originating from volume changes due to the piston
displacement, and I3(P), which results from both the pop-open volume and the piston
displacement. The former is symmetric with respect to (= p/po — 1) = 0, i.e. Io(p) =
I,(—P); while, the latter is antisymmetric, i.e. I3((p) = — I3(—P). Furthermore, the p-V
equation in the high pressure region, V (po - Jro < p), is independent of the magnitude of
Jro; while, the solution V,, is sensitive to the magnitude of Yro in both the low and the
high pressure regions.

Fig.5 shows six representative data sets of patients with ARDS as well as the cor-
responding p-V equation, Eq.(13b), derived from the mechanistic model for the inflation
(I) process. Fig.6 is a plot of [the volume predicted by model-based p-V equation at a
specified pressure] vs [the corresponding data volume] for all inflation data points from
the twenty one data sets. Both figures show very good agreements between the model and
the clinical data with R? for Fig. 6 being equal to 0.9993. (Various parameters for all
data sets are summarized in Table 1.) The solid (dotted) curves in Fig.5 are the solution
of the low (high) pressure region (i.e. the first (second) equation in Eq.(13b)) with the
composite solution indicating that the p-V curve is not antisymmetric with respect to po.
However, since the error minimization is applied between the antisymmetric error function
p-V equation, Eq.(1b), and the mechanistic model equation, Eq.(13b), the two curves are

very close to each other in the low pressure region of 0 < p < poYro. Ranges of various
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parameters listed in Table 1 are,
A =15-55 po = 13-31 [emH;0],
AV =1-4[L}, Yro = 0.289 - 0.695.

Since the boundary pressure between the low- and the high- pressure solution, po - §ro0, is
low compared to the end-of inflation pressure for most data sets, the antisymmetric high
pressure solution is applicable over a major part of the data sets analyzed. It is also noted
here that if the condition of ¢ = 0 (negligible elastic tissue distension) is imposed, the
solution of the mechanistic model, consisting solely of the solution for the high pressure
region becomes identical to the (antisymmetric) error functioﬁ p-V equation although the
conservation of energy is not satisfied by the condition. Fig.? is presented to show the
magnitude of the left hand side of conservation of energy divided by poAV as the abscissa,
and (—1)-(the right hand side of conservation of energy divided by ppAV') as the ordinate
for all data sets when 1o is set to zero and the parameters (A, po, AV, V1) of the error
function p-V equation are used for the evaluation. The figure shows that the left and right
hand side of conservation of energy have opposite signs for all data sets, indicating that
conservation of energy is not satisfied at yro = 0.
The range of Jro obtained by the mechanistic model indicates that the fraction of total
volume available for the pop-open mechanism (alveolar recruitment), N 170 /AV, which is
equal to 1/(1 + ¥ro), ranges between 0.59 and 0.78.
Summary

A mechanistic model of TRS elements, each consisting of a piston-spring system, is
developed to analyze quasi-static pressure-volume curves for the inflation process. The
model accommodates both the alveolar recruitment (in terms of the critical pop-open
pressure) and the elastic distension of wall tissues (in terms of the piston displacement).
Model-based relations (Eq.(12)) are established between the parameters in the p—V curve
represented by the error function equation, Eq.(1), and in the mechanistic model. Under

the constraint imposed by conservation of energy, the parameters of the model-based p-V
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equation is determined for each clinical data set by a computational minimization proce-
dure between the equation and the data points, results of which show excellen‘t agreements
between the two (Figs.5 and 6). The p-V equation thus derived, Eq.(13b), consists of two
equations; one for the low pressure region where all open elements are active (= unsatu-
rated) as the piston of an element is yet to reach its stroke limit, and the other for the high
pressure region where some open elements are saturated. The elemental distribution over
the critical pop-open pressure, Eq.(13c), is a normal distribution with its shape (the mean
and the standard deviation) affected substantially by the magnitudes of two parameters
in the mechanistic model, A and pop.

The present analysis is for the inflation process. The deflation process is different
from the preceding inflation because of the absence of the pop-open mechanism, and also
becasue of a possibility of airway closure. However, a certain aspect of the deflation process
may be predicted from the inflation analysis; which will be discussed in Prat II as a validity
test of the mechanistic model. Wide ranges covered by the parameters, A, po, AV and
7o, of the p-V equation and the mechanistic model need to be interpreted in terms of the
shape and the range of the p-V curves as well as in terms of the elemental distribution and

its changes along the corresponding p-V curve; which will also be discussed in Part IL
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Figure/Table Captions

Table 1. Sumniary of inﬁation Data Analyses.
Fig.1. A typical quasi-static pulmonary pressure-volume curve.
Fig.2. Error-function p-V equaﬁion and inflation data points.
Fig.3. Error-function p-V equafion and deflation data points.
Fig.4. A schematic 'diagram of mechanistic model of TRS elenient;
Fig.5. Modei-based p-V eqﬁation, Eq.(_13bj, Vs ‘dat.a points for inﬂation process.
~ solid: solution for low pressure region, | | | |
dotted: solution for high pressure regiqn.
Fig.6. V (voiume predicted by model-based p-V equation) vs V (volumé of data)
fof a specified pressufe.

Fig.7. AU/po - AV vs (=1)- [pdV/po - AV when Jro =0
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Table 1. Summary of Inflation Data Analysis.

Data No A Po AV Vi 'ZiTO
[emH,O] [L] (L]
1. 2.9652 22.398 2.3726 -0.0709
2. 2.9578 22.411 2.3772 -0.0723 . 0.347
1. 2.7173 21.981 1.5612 -0.0762
2. 2.7304 21.999 1.5559 -0.0728 0.359
C.1. 3.3532 25.082 1.6193 -0.0365
2. 3.3664 25.073 1.6139 -0.0342 0.329
D.1. 1.6273 13.324 3.1567 -0.5727
2. 1.9257 13.999 2.8392 -0.3542 0.379
E.1. 2.7160 30.361 1.6216 -0.0768
2. 2.6497 30.817 1.6847 -0.0923 © 0.480
F.1. 2.6029 23.880 1.5066 -0.0962
2. 2.6423 23.863 1.4874 -0.0873 0.365
G.1. 1.7288 20.156 3.0989 -0.3645
2. 1.9277 20.731 2.8704 -0.2138 0.447
H.1. 1.8901 14.959 1.7905 -0.2185
2. 2.0421 15.405 1.7129 -0.1563 0.431
I 1. 3.5379 25.248 2.7570 -0.0350
2. 3.5449 25.232 2.7508 -0.0333 0.368
J. 1. 2.7981 26.208 3.7326 -0.1583
2. 2.7364 26.830 3.9129 -0.1887 . 0474
K.1. 2.4296 17.895 1.3424 -0.0997
2. 2.4708 17.951 1.3304 -0.0916 0.440
L.1. 1.2500 11.592 1.2470 -0.2829
2. 1.5318 13.213 1.1256 -0.1678  0.695
- M. 3.2725 29.865 3.9075 -0.0861
2. 2.9972 30.327 4.2463 -0.2179 0.626
N.1. 2.7915 15.310 1.6284 -0.0705
2. 2.8046 15.297 1.6219 -0.0681 0.358
O.1. 1.9487 18.374 1.8797 -0.2423
2. 2.1412 18.837 1.7753 -0.1696 0.389
P.1. 2.4566 26.982 1.3277 -0.0787
2. 2.4553 27.032 1.3278 -0.0773 0.467
Q.1. 2.1027 19.314 1.3316 -0.1279
2. 2.2041 19.583 1.2941 -0.1004 0.389
R.1. 1.1672 13.986 2.0685 -0.5149
2. 1.6209 16.352 1.7396 -0.2530 0.406
S.1. 3.1381 26.802 3.1306 -0.0851
2. 3.0894 26.925 3.1878 -0.1030 _0.407
T.1. 5.4709 30.038 1.7695 -0.0097
2. 5.4708 30.037 1.7694 -0.0097 0.289
U.1. 3.2818 24.439 2.8956 -0.2075
2. 3.2819 24.349 2.8956 -0.2075 0.327

1. Obtained by applying the method of least squares
along with error function p-V equation.
2. Results from the mechanistic model.
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Chapter 3. A Mechanistic Model for Quasi-Static Pulmonary Pressure-Volume

Curves: Examination of Clinical Data

Abstract

A p—V equation is developed in Part I based on a mechanistic model of a total respiratory
system. In Part II, twenty one p — V data sets of patients with acute respiratory distress
syndrome are examihed using the mechanistic model, relating the quasi-static j)ulmonary
p-V curve to the corresponding réspiratory conditions in terms of a vblUme increase due
to alveolar recruitment and due to elastic tissue distension, the. elemental distribution
ranging from the closed elements to the saturated (open and fully-distended) elements
and its changes with pressure. The compliance (local gradient) of p-V curves is shown
to represent the change in the total Volume; of saturated elements; while the pressure at -
' the maxiﬁum compliance is identified as the location where a mé.ximum rate of increase
occurs both in the vblume increase due to alveolar recruitment and in the volume increase
due to an incrééée in the saturated elements. AVa,lidity of the model ié provided by its
predictions of the ﬁpper volume asymptofe and the maximum possible volume change of

the corresponding deflation process which agree well with the clinical data.
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N
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Noat
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p
Dcj
Dcj
pPs
Do
PID
%4

Vpop-—- open
‘/sat

Nomenclature

piston surface area on which pressure is acting

» (k/As)gT = pO'gTO

= JTA/4
distribuvt'ion functions (Eq.(3))

functions defined in Eq.(2)

spring cbnstant [N/ m]
total number of TRS elements

total number of open elements

~ total number of saturated elements

total number of unsaturated eleménts

number of elements at energy levél J

pressure (interpleural ﬁressure difference)
non-dimensional ‘pressure, p/po — 1

critical pressure at which an element, j, ‘pops open’.
Pe;j/Po

pressure at the end of inflation

pressure at the inflection point in model equaﬁon
pressure at the intersect of inflation and deflation processes
volume A

total ‘pop-open volume’

total volume of saturated elements

Vopen—sat (p = 0) total volume of elements open at p = 0 when they are all saturated.

V,

Vi)
1

volume change from the state of p =0
lower (upper) bound of volume

an (imaginary) upper bound of volume for the deflation process
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Y1o

Greek symbols:
A
.

op

. Superscript:

—

d
Acronym:
ARDS
TRS

non-dimensional volume, (V — ((Vu + V1.)/2)/(AV/2), (Eq.(1b))

volume of an element j

Vu = Vi = NVo(firo + 1)
‘pop-open’ volume (= A,Yo)
piston displacement of an element j
= Vo/As |

piston stroke limit

Ur/%o

constant of proportionality
apoAV (non-dimensional parameter) (Eq.(1b))
(8/m)}/%/A, Standard deviation (Eq.(3b))

0 Po

related to a single TRS element

deflation process

acute respiratory distress syndrome

“total respiratory system
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Introduction
In Part I, the error function p-V model equation is shown to agree well with clinical
p-V data. The equation and the corresponding non-dimensional form are,

V=V - %‘f + (_AQ_V) .erf(c(f;—'l))‘, V = erf(Cp). (1a,b)

where AV = Vy — Vi, Vy = upper volume asymptote, V5, = lower volume asymptote,
po = a pressure at the inflection point of the curve, C = /rA/4,
V=[V- (W +Vi)/A/(AV/2), = (p/po) -1
The mechanistic model of a TRS element developed in Part I is a piston-spring- -
cylinder system with the alveolar recruitment and the elastic tissue distension repfesented
respectively by the critical pop-open pressure, p.;, and by the displacement of piston
against the spring force, §; = A2 (i)——pc i)/ k (As = piston surface area, k = spring constanf).
‘Based on the error function p-V equation and the mechanistic model, a'nd allowing
for a distribution of elements over p. ;, the following model-based p-V equations as well as

the corresponding distribution function Qf TRS elements are derived,

Vv + VL
2

V((0<p<po-Uro) =

s (fa(ﬁ) + g1 gy - Bromly, o Ao f@))), (2a)
V (po - ¥ro S’P) = v ;— 2 sz I5(p), » - (20)
dN. i — (p—
w = 1), 1) = S eop(~ IR
dN; = - 1 1 :Pcj — P2 . :

where _ 7
L =erf(C), I(P)=exp(~C?F?) - exp(-C?), Is(p) = erf(CP),
I =erf(C(1= o)), Is = exp(~C? (fro — 1)%) — ezp(~ C*),
op = (8/m)ipo/A, o= (8/m) /A  Pej=pc;i/Po.
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Following the development of the mechanistic TRS model and the discussion on relations
between the error function p-V equation and the the model-based p-V equation as well as
between parameters of the twb equations in Part I, our discussions here concentrate on
various results that may be dérived from applications‘of the model to thé clinical p—V data
sets. |
Reiationship between Inflation and Deﬁation Pvrcy)cesses '

Although this report is focused on the mechanistic mbdel for the inflation process,
there exist certain relations between the inflation and the deflation process that may be
evaluated from the present inflation analysés. We consider a general case in which a
quasi-static inflation process proceeds to a pre.ssure,. prp (= end-of-inflation preésuré =
initial pressure of the corresponding deflation process), followed by a quasi-static deflation
process. In terms of the mechanistic model, TRS elements at p = p;p with its critical
pop-open pressure less than zero (p.; < 0) are still closed and have not contributed to ‘
the volumg change during the inflation process from p = 0 to p = prp; hence, we may
postulate that only those elements that are open at p = p;p participate in the deflation
process to follow. Therefore, V& (=an. (imaginary) upper bound of volume for the deflation
p-V curve) may be viewed as the volume which would be attained if the elements that are

open at the end of the inflation process, p = prp, were all fully saturatéd; i.e.
o _ ‘
V§ =V(p=prp) + /0 NVo(1 + ¥ro) - F(P=DPip) dpe; — Vo(P = Prp)

The first term on the right hand side is the inflation volume at. p = prp- The second integral
term is the volume summed over all open elements. at p = prp when they are satura,t.ed,
and the last term is the actual volume increase in the inflation process from p = 0 to
p = prp with the two terms in the square bracket together representing a volume increase
above V(p = prp) if a,lll open elements at p;p were saturated. Under the assumption
| that the magnitude of pID is greater than B_(E Po Yro) which is valid for all data sets
analyzed, Egs.(2,3) along with Eq.(9) of Part I for V, are used to evaluate the right hand
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side, yielding
2AV AV

ve = v _ . — -1+ I1(p
v=Vet TA(1 + Yro) Is + 2 1+ L@
+._________[1_(2_" ) I+(l'—A ) I] (4)
31+ ro) Yro 1 Y1o) * L4

The clinical data sets made available to us contain both the inflation and the deflation p-V
curves for each patient with ARDS; however, the p-V curves are obté,ined separately for the
inflation and the deflation process. (See [1] for the procedure of data acquisition.) Fig.l
shows inflation (unfilled) and deﬂatibn (filled) data points, as well as the corresponding .
inflation (I) and deﬂation (D) curves for a ﬁypical data set we examined. The inflation |
curve in Fig.1 is Eq.(2) of the mechanistic model; while, the deflation curve is obtained
by straight applicafions of the method of least squares between data points and the error |
function p-V equation, Eq.(1). As may be observed from Fig.1, the erid—of—inﬂat_ion point is
quite different from the initial deflation point for most data sets. To accommodate the data
into the aﬂalysis based on Eq.(4), the initial deﬂatioﬁ data point is translated horizontally |
until it meets the inflation p-V curve, the pressure value of which is then defined as p;p
in Eq.(4), as indicated in Fig.1, implying that the deflation curve preceded by an inflation
curve is assumed to be the same as the deflation curve of data sets horizontally translated
until the beginning-of-deflation data}poirvlt is on the inflation curve.

Fig.2 presents V¢ of Eq.(4), predicted from the mechanistic model of the inflation
process, plotted against V2 of the error-function p-V equation, Eq.(1). (For a complete
list of numerical results relevant to the analysis, see Table 1.) A maximum and a minimum
of a difference, V¢ (Eq.(4)) — Vi (Eq.(1)), are 0.1113 [L] and -0.0352 [L] respectively with
an average of the differénce = 0.0460 [L]. Agreements are very good in view of the fact
that Eq.(4) predicts the upper volume asymptote of the deflation process in terms of the -
conditions predicted by fhe mechanistic model of the correspondihg inflation process; thus
indirectly supporting a certaih degree of validity of the mechanistic model. Also, the fact

that the magnitude of p;p is determined from the horizontal translation of the deflation
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curve indicates that the deflation process may be felatively insensitive to the inflation
history prior to p = p;p. On the other hand, Eq.(4) for V,ji contains pyp as variable for
specified inflation conditions, indicating that the magnitude of V¢ (i.e. the shape of the
deflation curve) changes as the end-of-inflation pressure is varied. A similar statement
has been made previously by Jonson [2]. A closer examination of Fig.2 indicates that
the mechanistic model Slighﬂy underpredicts V(‘} compared to that of the error-function
equation for most of data sets. This could indicate either a quantitative limitation of thé
mechanistic mbdel or the effects of the inflation process preceding the deﬂafion. If o is

set to zero, Eq.(4) is reduced to

Vi (Fro=0) = Vy — AV (I; - I{i(ﬁm))/z- : (4a)

Fig.3 plots V¢ of Eq.(4a) vs V¢ of the error function p-V équation for the deflation process.
Agreements are fairly good between the two. Results presented in Fig.3 reflects that the
p-V curve is relatively inse:isitive to the magnitude of 7j1o; a reason why the antisyrhmetric
error function p-V'equation (for which ¢ is zero) fits we'll.wi,th p-V curves.

The error function p-V equation fits well ndt only with the inflation but also with the
corresponding deflation processes as shown in Part I. Therefore, regardless of the actual de-
flation pf‘océss, we may define AV? (AV of the deflation process) as the maximum possible -
volume change of a specified TRS during the deflation process; which, in our mechanistic

model, yields the following equation for AV¢ in terms of the inflation parameters:

AV":%(@‘T0+1)/ N - F(p=Dp) dbe;
- 0

-2 0+LEw). )

Fig.4 is AV of deflation, AV¢, predicted by Eq.(5) plotted against the corresponding AV¢
of error-function p-V equation determined by the method of least squares. (See Table 1
for numerical values.) Agreements between the two are reasonably good for a majority

of data sets, except for six data sets shown in filled circles accompanied by alphabetical
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data numbers. Shown in Fig.5 for the six data sets are their deflation datavu points and
two p-V curves; one (dotted) for the erfor function p-V equation with the method of least
squares applied to determine (A4, pg, AV¢, Vi), and the other (solid) for the error function
p-V equation with (AV?, V¢) determined from Egs.(4,5) and (A, pg) determined by the
method of least squares. Two curves are differeﬁt in their approaches to different high and
low asymptofes. Although agreements of the solid curves (with two adjusting p‘arameters)
with the data points are not as good as that of the dotted curves (with four adjusting
parameters), the errors are small for the solid curves in view of the fact that the magnitude
of AV‘i is quite different between the two éurves 'indicating that a better understanding of
relations between the p-V equation and the correspondmg 1ntra-resp1ratory changes helps

interpret various characterisitcs of p-V curves accurately

Interpretation of Inflation p-V Curves based on Mechanistic Model

Fig.6 shows ranges covered by all data sets analyzed in terms of pg (the inflection
pressure of the high-pressure solution), AV (maximum volume available for inflation iﬁ
the high-pressure solution) and 1/(1+#70) (the fraction of total elemental volume available
for the pop-open mechanism (alveolar recruitment), NV,/AV), all plotted against the non- -
dimensional parameter, A. Thé ddta sets with their alphabetical d’ata numbers indicated
in the figure are those to be analyzed in detail in comparative analyses to follow. (Various
parameters of the six data sets are reproduced as Table 2. Parameters of all data sets
are listed ih Table 1 of Part I.) The range of A is between 1.5 and 3.6 except for Data
T (A = 5.47). The six data sets (B, E, M, N, R, T) are different from each other in the

following ways:

1. Data set B, E and N have roughly the same magnitude in both A (—~ 2.65 — 2.80) and
AV (=~ 155 - 1. 68) with 51gn1ﬁcantly different values for pg.

2. Data set E and T have substantially different values of A with py and AV being
approXimately the same in magnitude. |
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3. N and R also show similar characteristics of being different in A and common in py and
AV; however, the pair covers lower range in both A and po compared to E and T.

4. E and M are different in terms of the magnitude of AV with pog ~ pom, Ag ~ A M-
5. T and R represent the data sets with very high and low values of A, respectively.
Figs.7 and 8 are p-V and the corresponding non-dimensional 7—V curves over their ranges
of measurement for Data Set B, E and N in (a), Data Set E and T in (b), Data Set N
and Rin (¢) and Data Set E and M in (d).

Referring to Fig.7 and noting that the dotted (broken) vertical lines are the location
of p = po(po - Uro), it may be observed that the range for the low pressure solution,
0 < p < po - Yro, in which all elements are active (unsaturated), is very narrow compared
to the range for the high pressure solution with an exception of Data set M, for which the
measurement does not reach the inflection pressure, pg, with po - ¥70o > 15 [emH,O].

The corresponding non-dimensional (5 — V) curves, based on the definitions of V and 7 in

Eq.(1), represent Egs.(2a,b) in the following normalized form:

2 TA

(IS(Z_,) LSS OT TP L K YA (LT Iz(ﬁ)))’
V@r-1<p) = k), | | (6)

Thé normalization of volume transforms the two volume asymptotes, Vi and Vj into
Vv = +1 and V = —1 respectively; while, the pressure, p = pg, at the inflection point
is transformed into 7 = 0. With both the location of py and the volume asymptotes
made common to all p-V curves, the resulting non-dimensional representations in Fig.8
are characterized by a single non-dimensional parameter, A. The pai‘ameter, A, is twice
the maximum local compliance at p = py (dV /dp(® = 0) = A/2). Since the compliance
is maximum at the origin of p — V diagram, the first quadrant (V,7 > 0) in Fig.8 is a
region of decreasing local compliance with pressure; while, the third quadrant (V, 5 < 0)

is a region of increasing local compliance with pressure. The origin (p = 0, V=0) of
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dimensional p-V curves is transformed into (7 = -1, V(V = 0)) on a p-V curve; hence,
the physiological lower limit of p is —1.

Fig.8 (a) compares the three data sets, B, E and N, among which the magnitude of po is
substantially different with A and AV being approximately the same in magnitude. Three
curves are very close to each other because values of A are similar, and the difference
between the three appears as the extent to which the p-V curves are measured in the
region of decreasing compliance with pressure. In Fig.8 (b) and (c) differences between
the two data sets occur in the magnitude of A (Ar > Ag, Ay > ARr), resulting in the T-
‘and N- curves above the E- and R- curves respectively in the ﬁrét quadrant. Since the
. magnitude of py for the data set T and E are very high compared to those for N and R,
the region of decreasing compliance covered by the T- and E- curvés are narrower than N
and R. Because both py and AV are similar in magnitudes between the two data sets in
Fig.8(b) and (c) the shape of P —V curves is very similar to the corresponding p-V curves.
In Fig.8 (d) two data sets with a high value of po (~ 30 [cmH>0]) are shown. For the data
set M the high value of py combined with a high value of AV limit the measured range
of thé p-V curve in the region of increasing compliance only, compared to the data set E

with a smaller magnitude for AV.

Although the 7 — V diagram helps distinguish differeﬂces among p-V curves and
effectively bring out various characteristics of each p-V curve, it is the information Erqm
the elemental distribution that relates various parameters of p-V curves to TRS conditions
quantitatively. On the normalizedrﬁ -V plane of Fig.8 the local compliance at p = 0
(dV /dp (p = 0)) increases with A; while, as the standard deviation, o, is proportional to 1/A
in the normalized number distribution, Eq.(3b), the distribution becomes sharper and has
a higher peak as A is increased. Fig.9 is a plot of the number distribution (not normalized)
vs the critical pop-open pressure, p, j in [emH,0], for the six data sets analyz‘ed in Figs.7
and 8. The number distribution, dV; /N -dp, j, is a fraction in the number of elements, the

critical pop-open pressure of which ranges between p. ; and p.; + dp.; in [1/emH30]. The
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corresponding equation is Eq.(3a), which indicates that the maximum number of elements
are present at p.; = p — po with its magnitude equal to 1/V2r-op (= A/4-po). As op
decreases the distribution becomes sharper (x 1/op) and its peak value (x op) larger.
(See Table 2 for the magnitude of op for each data set.) Two distributions are shown in
Fig.9 for each data set; one at p = pp (with ifs peak at p = 0) and the other at p = py (end-
of-inﬂatiori pressure) (with its peak at p = py — po). The vertical line, p = po (py) for the
distribution at p = pg (py) indicates the pressure above‘which the distribution is truncated.
The dotted parts of the curves, as discussed in Part I, correspond to the elements that
are open at p = 0. The normal distribution truncated at p.; = 0 and p.; = p (i.e. the
solid part of the curves in Fig.9) shifts to the right with an increase in p as more elements
become open. When p < pg, the peak of the distribution lies in the negative range of p. ;.
It should be noted that in Data set M (Fig.9 (c)) the distribution at p = py lies below that
at p = pg because the méasured range never reached p = po.
An integral of the distribution function over the critical pop-open pressure in Fig.9 should
yield various fractions in number of elements (depending on the upper and lower limits of
the integral) at each quasi-static state. Also an integral 6f a product of the distribution
function and the elemental volume over the critical pop-open pressure should provide us
with such quantities as the volume change due to alveolar recruitment,ldue to elastic wall
distension and due to an increase in the saturated elements. The following equations may

be obtained for changes in the number fractions:

Fraction of the number of open elements at p = p: Nopen(p = p)/N

_ p/Po
Ropnf 2 2) (E/o F(ﬁ)dﬁci> =[L+L@)/2 for p20, (7a)

Fraction of the number of saturated elements at p = p: Nsqe.(p = p)/N

Nsat.(p = p) _ plpo=ire ~ \ _ [ s+ I3(p)]/2, if po - firo < P,
N\ Jo F@)dpe; | = 1 o, £0<p<po-fro. 'O
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Fraction of the number of unsaturated elements at p = p: Nunsat.(p = p)/N

Nunsat.(p = D) - Nopen — Nsat. — { [, — I4}/2, if po - gTO <p, (7¢)
N N [l + I3(P)]/2, i 0<p<po-Yro.

Fraction of the number of open elements at p = 0: Nypen(p = 0)/N

NopenAI; = 0) (E /000 F(ﬁ= —l)dﬁcj) = []_ - I]_]/z (7d)

It should be noted that (1.) the equation for Nypen(p)/N does not include the elements
that are open'at p = 0. (2.) the equation for Ny, (p)/N does not account for the elements
that are open at p = 0 and saturated subsequently. (3.) Nopen(p = 0)/N is a function of
a single parameter, A. (4.) the number fraction of unsaturated elements, Nynsat.(p)/N, is
independent of pressure for po - §ro < p, indicating that as more elements are recruited in
the region of the high pressure solution the same number of elements are saturated. -
Similarly, the following equations are fpr volume changes as pressure is varied:

Total pop-open volume: Vpop—open (P = D)

~  Nopen (D) AV 1 _
Viop—open (P = P) (_:_ NVp - pN ) =91 ¥ 1o ¥ [11 +13(P)] for p>0. (8a)

Total volume of saturated elements: V¢ (p = p)

i/ o Nsa . D
Vsat.(p = p) ( = NVo(1 + Fro) - th(p))
_ { AV - [+ I(p)]/2, if po¥ro <p, )
0, if 0 < p < po - Fro.

Total volume of elements open at p = 0 when they are all saturated: Vopen—saz.(p = 0)

~_. N, =0
Vopeh—sat.(p = O) ( = NWiro - _'22%'——2)
AV Yro ~
_av (1 — <p.
5 T+om (1-1i) for poyro<p (8¢)

A number fraction of open elements, Nypen total (P = p)/N, may be derived from Eqgs.(7a)
and (7d) as, - -

Nopen total (p = p) — Nopen(p = O) +
N N N

N, en(p=p) _ 1+1 (ﬁ)
P ) = 23 . (9)

78




The function, I3(7) defined in Eq.(2), is an error function, the magnitude of which depends
on A and po. Therefore, the number fraction of all open elements, Nopen total (P = P) /N,
has the point of antisymmetry at p = py with twd asymptotes of 0 and 1. Fig.10 shows
Nopen total (p = p)/N vs p of the six representative data sets in solid lines. Due to the
antisymmetry with respect to p = po, the fraction, Nopen totat (P = p)/N, is exactly equal
to 0.5 when p is equal to py as the peak of the distribution is located at p = 0. (See
Fig.9.) Since the location of p = po¥ro is the boundary betweénvthe low- and high-
pressure solutions of the p-V equation, all open elements are still active and unsaturated
for p < pofro. The fraction of open elements at p = poYro is less than 0.2 for four
data sets other than Data sets R agd M for which the fraction is ~ 0.25. As pressure
increases beyond po¥yr0, some of the open elements begin to be saturated, the fraction
of which, Nyt (p = p)/N of Eq.(7b) is plotted in Fig.10 in broken lines. The number
fraction éaturated depends on 7rg in addition to A and py. The difference between the
two fractions plotted in Fig.10 varies with the magnitudes \of the three parameters with
(Nopen total/N — Nsqat./N) at a speciﬁed pressure ranging from ~ 0.28 for Data R to less
than 0.01 for Data T. It should also be noted that the two curves are parallel, indicating
that the rate of increase in the number of saturated elements is equal to the corresponding

rate of opening elements, once pressure exceeds poYro.

The number fraction of open elements at p = 0, Nopeﬁ(p = 0)/N, of Eq.(7d) rep-
resents the percentage of elements that only experience elastic displacement, which may
be interpreted as the elemental fraction representing a non-alveolar bart of TRS such as
airway tissues as well as a dysfunctional alveolar part which does not respond to the re-
cruitment. Fig.11 depicﬁs the fraction as a function of A, the only parameter aﬂecting the
fraction. As Eq.(7d) shows, the fraction, Nopen(p = 0)/N, has tWo asymptotes of 0 (as
A — o0) and 0.5 (as A — 0). Fig.11 indicates that the numbef fraction of open elements
at p=0 is very sensitive to the magnitude of A as its value drops from 0.5 to ~ 0.1 when A

is changed from 0 to 2. It should also be mentioned here that the total volume of elements
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open at p = 0 when they are all saturated, Vopen—sat.(p = 0) of Eq.(8¢), depends on three
parameters, A, AV and ¥ro, of the mechanistic model. The last column of Table 2 lists
Vopen—sat.(p = 0) for the six data sets. Although their magnitudes are small (0.08 [L] or

less),l the value varies substantially among' the data sets.

As mentioned in Part I, the optimization of the ventilator strategy is required for
patients with acute lung injury in intensive care units in terms of préssure- and volume-
ranges [3 — 5], taking into account such considerations as a change in the recruited volume
with pressure, a rate of recruitment and overdistension of the respiratory tissues. Results
of the mechanistic model analyses relevant to the respiratory ventilation are presented in
Figs.12 and 13. The volume, %op;open of Eq.(8a), represents a volume change of TRS
due to the pop-open mechanism (alveolar recruitment) only (that is, excluding t_he volume
change due to the displacement of piston (elastic tissue distention)); on the other hand,
the volume, V,q:. of Eq.(8b), is the total volume of saturated elements of TRS. They
both increase as pressure increases along an inflation path. Sketched in Fig.12 are p — V
curves (solid, Eq.(2)), p — Vpop—open curves (dotted, Eq.(8a)) and p — .Vsat curves A(broken,
Eq.(8b)) for the six data sets. The vertical broken line in the figure is the location of
p = po. The intersect between the p — Vyq: curve and the x axis in the figure is the pressure
at the boundary (= po Yr0) between the low pressure p-V solution (in which all open
elements are active (unsaturated)) and the high pressure solution (in which a part of open
elements are saturated). Since both the p — Vpop—open and the p — Vi, relations as well as
p—V (p > poTro) equation are represented by a common function, I3 (5) (= erf(Cp),
C = +/7A/4,P = p/po — 1), the pressure at the inflection point, po, is not only the pressure
at which the local compliance, dV/dp, is maximum, but also the pressure location for a
maximum rate of increase in Vpop—open as well as in Vi, with their grédients given by the

following equations;

-exp(— (CP)?) for pofiro <P,

dVsat (D) (= dV(p)) _AVA
dp dp 4po
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dp 1+ %10 4po

- exp(— (CP)?) for p>0. | (10)

The identity between dVyq:/dp and dV/dp implies that the shape of the p-V curves (in the
range of the high pressure solution) closely represents the change in the saturated volume
rather than the pop-open volume. Since the gradient of" Vpop—open i smaller than that of
Vsat by a factor of 1/(1 + gro) (< 1), the magnitude' of Via: eventually becorheé greater
than that of Vpop—open as pressure increases. Also, 1/(1 4+ Jro), a fraction of the pop-open
volume (= pop-open volume/total volume of a single TRS element), may be interpreted
as a gradient ratio of Vjop—open t0 Vsai. A smaller value of Uro (i.e. smaller piston stroke-
limit) means that the element, once it pops open, reaches the séturated state earlier;
hence, for Data T of Fig.12(f) (g0 = 0.289, po 1o = 8.68 [cmH20)) Vq: becomes greater
than Vpop-open at a pressure clbse to po Jro, while, for Data M of Fig.12(c) (yro = 0.626,
poyro = 18.98 [cmH30]) Vsar does not overtake Vpop._opm within the measured pressure
range. The gradients, deop-open /dp between p=20 and p = ps (=final pressure) (solid)
and dV sat/dp between p = po Yo and D = Dps (broken) are plotted in Fig.13 for the six data
sets. The gradients are symmetric with respect to pg. The data sets with high gradients
(Data set M, N, T) show high sensitivity of the gradients to pressure change near py. Other
data sets with low gradients, particﬁlarly Data set E and R, indicate ‘that the gradients
(i.e. the local compliance) do not change too much over a substantial range in pressure
around pg.
Summary

The mechanistic model of TRS developed in Part I is applied to examine p-V curves
(in a form of the error function p-V equation) of patients with ARDS with the following
results:
1. Parameters of the deflation process, V{ in Eq.(4) and AV¢ in Eq.(5), predicted by
the mechanistic model of the corresponding inflation process agree well with those of

the error function p-V equation for the deflation process (Figs.2, 4), indicating that the
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mechanistic model has a certain validity to be used for improving our quantitative un-
derstanding of various intra-respiratory conditions, that the shape and characteristics of
Vdeﬁa,tion curves depend not so much on the inflation history but on the end-of-inflation
(the onset-of-deflation) pressure, and that relations between parameters in p-V equation
and TRS conditions are needed to strengthen our applications of p-V curves in clinical
settings (Fig.5).
2. The non-dimensional p-V curve, p— V curve, is effective in distinguishing differences in
magnitudes of model parameters among different p-V curves (Figs.7, 8).
3. In the mechanistic model, the distribution function, Eq.(3), and its change with pressure
are the basis for evaluating alveolar recruitment and the elastic tissue distension. The shape
of the distribution function (the peak value and the standard deviation) is determined by
the magnitude of the non-dimensional parameter, A; while, the magnitude of the pressure
at the maximum compliance, pg, and its location’ relative to the range of the p-V curve
are the important factors affecting changes of the distribution with pressure (Eqgs.(7)(9),
Figs.9,10,11).
4. Tn addition to A and pg, other parameters of the model, AV, Vi and y7o influence the
magnitude and changes of both Vpop—open (volume increase due to alveolar recruitment)
and Vg (total volume of saturated (fully-distended) elements). The shape of the clinically-
measured p-V curve represent the change in V4. The inflection pressure, po, is not only the
pressure at which the local compliance, dV/dp, is maximum, but also the pressure location
for a maximum rate of increase in Vpop—open as well as in Vyq: (Egs.(8),(10), Figs.11,12).
The mechanistic model of a TRS element presénted in thié report consists of a sim-
ple piston-spring-cylinder system with the critical pop-open pressure of the element as
distribbution parameter. The pop-open volume (= volume that pops open at the critical
pressure) as well asnthe spring constant are assumed constant and common to all elements.
More comprehensive and detailed analyses of clinical data as well as‘ advice from clinical

experts are needed to advance the model further and also to make it a practical tool for
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understanding various respiratory conditions. However, it is believed that the analyses
presented here show the developments and use of a mechanistic model as a possible new

approach to investigate respiratory systems.
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Figure/Table Captions
Table 1. Sunimary of Deflation Data Analysis.

Table 2. Parameters of Inflation Data Sets Examined

Fig. 1. Data points for inflation (unfilled) and deflation (filled), and the corresponding
p-V equation of mechanistic model for inflation (I). and the error function

p-V equation for deflation (D),

prp = pressure at the intersect of the inflation curve and a line parallel to the x-axis
. passing through the initial deflation data point.

(See Table 1 of Part I (II) for numerical values of parameters for inflation (deflation).)

Fig. 2. V¢ (predicted from the mechanistic model) vs V¢ (of error-function p-V equation

for deflation).

Fig. 3. V¢ (predicted from the mechanistic model with Firo = 0) vs Vg (of error-function

p-V equation for deflation).

Fig. 4. AV? (predicted from the mechanistic model) vs AV¢ (of error-function p-V

equation for deﬂation). Letters in the figure = Data No.

Fig. 5. Deflation curves.
triangle = data points, dotted = error function p-V equation with the method of
least squares applied to determine (A%, pd, AV, V),
solid = error function p-V equation with (AV¢, V¢) determined from Egs.(4,5)

and (A%, pd) determined by the method of least squares. |

Fig. 6. Ranges of parameters of inflation data sets.
(a) po vs A, (b) AV vs A, (c) 1/(1+ yro) vs A. Letters in the figure = Data No.

Fig. 7. Model-based p-V equation.
(a) Data Set B, E and N. (b) Data Set E and T.
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(c) Data Set N and R.  (d)Data Set E and M.

Vertical lines: dotted = po, broken = po g’jTo.’

Fig. 8. Non-dimensional (p — V) equation.
(a) Data Set B, E and N. (b) Data Set E and T.
(c) Data Set N and R.  (d)Data Set E and M.

Fig. 9. Distribution of elements.

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).

Fig.10. Number fraction of total open elements, Nopen total (P = p)/N, Vs pressure (solid})
and number fraction of saturated elements, Nyq:. (p = p)/N, vs pressure (broken).

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).
Fig.11. Number fraction of open elements at p = 0, Nopen(p = 0)/N vs A
Fig.12. p— V curve (solid, Eq.(2)), p — V,,,,p_;,pen curve (dotted, Eq.(Sa))

and p — Vsat curve (broken, Eq.(8b)) for six data sets.

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).

Letters in the figure = Data No.

Fig.13. dVpop—open/dp [L/emH20] vs p [emH30] (solid)
and dVsat/dp [L/emH,O] vs p [emH30] (broken) for six data sets.
~ (a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).
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Table 1. Sumﬁlary of Deflation Data Analysis

T Q@ 49 O 9 Q w >

e

AR ®wm @O YO ZZ HOR

Data No A? g AV4 Ve 1%
[emH20] (L] [L] L]
1. 1.4712 11.410 1.9214 -0.1528 1.7685
2. 1.7567 1.7064
1. 1.5528 12.975 1.4115 -0.1227 1.2887
2. 1.3405 1.2808
1. 2.3293 14.808 1.1753 0.0800 1.2599
2. 1.2525 1.2259
1. 1.0772 6.846 2.7012 -0.6096 2.0915
2. 2.5850 - 2.0872
1. 2.2044 15.602 0.7009 10.0703 0.7712
2. 0.7784 . 0.7329
1. 1.7995 14.418 1.0476 -0.0527  0.9948
2. 1.0041 0.9252
1. 0.9839 8.140 1.2811 0.0454 1.3265
2. : 1.6496 1.3455
1. 0.7147 6.472 2.0772 -1.0349 . 1.0423
2. 1.1910 1.0053
1. 2.1010 14.157 1.4798 0.5637 2.0435
2. 1.9943 - 1.9784
1. 1.6600 13.404 1.8960 -0.1250 1.7103
2. 1.7759 1.6858
1. 1.0577 9.778 1.5070 -0.3657 - 1.1412
2. 1.1620 1.0860
1. 0.3107 3.151 1.3930 -0.8076 0.5853
2. 0.8574 ~ 0.6206
1. 2.1702 14.989 1.4322 0.1442 1.5764
2. 1.4921 1.5163
1. 0.7220 6.45 2.4020 -1.1900 1.2140
2. 1.1654 . 11115
1. 1.0558 10.969 1.8684 -0.3195 1.5488
2. 1.6515 1.4375
1. 1.5406 12.231 0.7461 0.0684 0.8145
2. ‘ 0.8679 0.8154
1. 1.1691 10.670 1.1801 -0.1515 1.0285
2. 1.0938 0.9857
1. 0.8643 8.1411 1.8260 -0.4893 1.3366
2. . 1.7784 ‘ 1.2923
1. 2.7458 17.050 2.0015 -0.5673 1.4341
2. 1.4461 1.3962
1. 4.5056 23.619 1.1748 0.1057 1.2805
2. 1.2115 1.2026
1. 2.9735 18.599 2.3404 . 0.0408 2.3812
2. 2.5197 2.3305

1. Obtained by method of least squares with error function p-V equation

for deflation process.

2. Results from the mechanistic model of inflation process.
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Table 2. Parameters of Inflation Data Sets Examined

Data A Po AV 1/(1 + yro) Yro oD Vopen—sat.(p = 0)
B 2.7304 21.999 1.5559 0.736 0.359 12.857  0.01789
| E 2.6497 30.817 1.6847 0.676 0.480 18.559° 0.02645
M 2.9972 30.327 4.2463 o 0.615 0.626 16.147  0.04932
i N 2.8046 15.297 1.6219 0.736 0.358 8.704  0.01685
R - 1.6209 16.352 1.7396 0.711 0.406 16.098  0.07779
T 54708 30.037 1.7694 0.766 | 0.289 8.761  0.00012

po and op in [cmH20], AV and Vopen—sqt.(p = 0) in [L].
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Key Research Accomplishments

1. A representation of p-V curves by a single (non-linear) model équation (either the
error-function p-V model equation or the sigmoidal model equation) is confirmed to
be an effective method for clinical data analyses. |

2. A fnechanistig model for the inﬁat‘:ion’process is constructed; which mé,kes it possible |
to yield information on the internal conditions of the respiratory system from the p-V
curve. _ |

3. The ability of the mechanistic model‘ of the inflation process to yield information
on the deflation process correctly justifies its further development as a new tbol fqr

processing p-V curves in practical environments.
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Conclusions

It is shown that both the sigmoidal (tangent hyperbolic) p-V model equation and the
error function model equation represent quasi-static p-V curves well. Major parameters of
both the sigmoidal and the error function model equations are the non-dimensional com-
pliance, A, the maximum local compliance, po, the upper (or lower) volume asymptote,
Vu (VL), and the maximum volume available for inflation, AV. 'Although béth continuous
model equations are antisymmetric with respect to pg, the non-dimensional parameter,
A, as well as two volume asymptotesi slightly differ between the two equations as thbse
function-specific parameters are selected to follow a specified p-V curve as closely as pos-
sible. The p-V model equation in the form of the error-function (because of its relevance
to the mechanistic model) is applied to data sources of patients with- ARDS as well as of 7
healthy adults to show that the the magnitudes of the model equation parameters distin-
guish various p-V curves clearly. I ‘

A mechanistic model of TRS elements, each cbnsisting of a piston-spring system, =
is developed to analyze p-V curves for the inflation process. The model accommodates
both the alveolar recruitment (in terms of the critical pop-open pressure) and the elastic
distension of wall tissues (in terms of the piston displacement). Model-based relations are
established between the parameters in the p— V cu1;ve represented by the error function
equation, and inAth‘e mechanistic model. The p-V equation derived from the mechanistic
model consists of two equations; one fbr the low pressure 'region where all open elements
are active (= unsaturated) as the piston of an element is yet to reach its stroke limit,

and the other for the high pressure region where some open elements are saturated. The

elemental distribution over the critical pop—open pressure is a normal distribution with its

shape (the mean and the standard deviation) affected substantially by the magnitudes of
two parameters 6f the model, A and pg.

The mechanistic model is applied to p-V curves of patients with ARDS. Parameters

~ of the deflation process, V[}‘ and AV¢, predictéd by the mechanistic model of the corre-
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sponding inflation process agree well with those of the p-V model equation for the deflation
i)rocess (Chapter 3, Figs.2, 4), thus providing justifications fOr its validity to be used for
improving our quantitative understahding of various intra-respiratory conditions. In the
mechanistic model, the distribution of TRS elements and its change with pressure are the
basis for evaluating alveolar recruitment and the elastic tissue distension. The shape of
the distribution function (the peak value and the standard deviation) is determined by the
magnitude of the non-dimensionalA parameter, A; while, the maghitude of the pressure at -
the maximum compliance, po, and its location relative to the range of the p-V curve are
shown to be important factors affecting changes of the distribution with pressure. The
other parameters of the model, AV, V; and yro influence the magnitude and changes of
both Vpop—open (volume increase due to alveolar recruitment) and Vs (tdtal_ volume of
saturated (fully-distended) elements).

We are currently in the process of developing a method of analyzing the deflation curve

based on our mechanistic model. After a mechanistic model is derived for the deflation

process, it is possible to analyze both the inflation and the deflation process together; which
would yield a greater amount of qu#ntitatiire information on the respiratory conditions than
the analyses of the inflation process alone. _

More comprehensive and detailed analyses of clinical data as well as advice from
clinical experts are needed to refine the modél further and also to relate predictions by the
mechanistic model to clinical diagnoses. However, it is believed that the analyses presented
here show the developments and use of a mechanistic model as a new, effective approach

to investigate respiratory systems of patients with acute lung injury.

105




e

References

Chapter 1.

1. Salazar, E., Knowles., J.H., An ana1y31s of pressure—volume characteristics of
the lungs. J Appl. Physml 1964, 19, 97-104.

2. Paiva, M., Yernault, J.C., VanErdeweghe, P., Englert, M., A sigmoidal model of
the static volume-pressure curve of human lung. Respir. Physiol., 1975, 23, 317-323.

3. Murphy, B.G., Engel, L.A., Models of the pressure-volume relatlonshlp of the human
lung. Respir. Physml 1978, 32, 183-194.

4. Gibson, G. J., Pride, J. B., Davis, J., Schroter, R. C., Exponential descnptlon
of the static pressure—volume curve of normal and dlseased lungs. Am. Rev. Respir.
Dis., 1979, 120: 799-811.

5. Greaves, I. A., Colebatch, H. J., Elastic behavior and structure of normal and
emphysematous lungs post mortem. Am. Rev. Respir. Dis., 1980, 121, 127-136.

6. Schroter, R. C., Quantitative comparisons of mammalian lung pressure-volume
curves. Respir. Physiol., 1980, 42, 101-107. '

7. Gugger, M., Wraith, P. K., Sudlow, M. F., A new method of analysing
pulmonary quasi-static pressure-volume curves in normal subjects and in patients with
chronic airflow obstruction. Clin. Sci. (Lond.), 1990, 78, 365-369. '

8. Venegas, J.G., Harris, S.R., Simon, B.A., A comprehensive equation for the pulmonary
pressure-volume curve. J. Appl. Physiol., 1998, 84, 1, 389-395.

9. Svantesson, C., Sigurdsson, S., Larsson, A., Jonson, B., Effects of recruitment of
collapsed lung units on elastic pressure—volume relatlonshlp in ana.esthetlzed healthy
adults. Acta Anaesthesiol. Scand., 1998, 42, 721-728.

10. Jonson, B., Svantesson, C., Elastlc pressure—volume curves: What information do they
convey 7 Thorax, 1999, 54, 82-87.

_11. Harris, S.R., Hess, D.R., Venegas, J.G., An objective analysis of the pressure-volume

curve in the acute respiratory distress syndrome Am.J.Respir.Crit.Care Med. 2000,
161, 432-439.

12. Amato, M.B., Barbas, C.S:, Medeiros, D.M., Schettino, G. D P, Loren21, F. G
Kairalla R.A., Dehemzehn D , Morais, C., Fernandes E.D.O,, Takagakl T.Y.,
Beneficial eﬁ'ects of the “open lung approach” with low distending pressures
in acute respiratory distress syndrome. A prospective randomized study on
mechanical ventilation. Am.J.Respir.Crit.Care Med., 1995, 152, 1835-1846.

13. Amato, M.B., Barbas, C.S., Medeiros, D.M., Magaldi, G.P., Schettino, G.D.P.,
Kairalla R.A., Deheinzelin, D., Munozs, C., Oliveira, R., Takagaki, T.Y.,

Calvalho, C.R., Effect of a protective-ventilation strategy on mortality in the
- acute respiratory distress syndrome. New Engl. J. Med., 1998, 347-354.

14. ARDS Network, Ventilation with lower tidal volumes as compared with traditional
tidal volumes for acute lung injury and the acute respiratory distress syndrome
N. Engl. J. Med., 2000, 342 (18), 1301-1308.

15. Narusawa, U., General characteristics of the sigmoidal model equation representing
‘quasi-static pulmonary pressure-volume curves. J. Appl. Physiol., 2001, 91, 201-210.

106




Chapter 2.

1. Venegas, J.G., Harris, S.R., Simon, B.A., A comprehensive equation for the pulmonary
pressure-volume curve. J. Appl. Physiol., 84, 1, 389-395, 1998.

2. Harris, S.R., Hess, D.R., Venegas, J.G., An objective analysis of the pressure-volume
curve in the acute respiratory distress syndrome. Am.J.Respir.Crit.Care Med., 161,
432-439, 2000. '

3. Jonson, B., Svantesson, C., Elastic pressure-volume curves: what information do they
convey ? Thorax, 54, 82-87, 1999.

" 4. Amato, M.B., Barbas, C.S., Medeiros, D.M., Schettmo G.D.P, Lorenz1 F.G,,
Kairalla R.A., Dehemzehn D Morais, C., Fernandes E.D.O., and Takagaki, T Y.,
Beneficial effects of the “open lung approach” with low dlstendmg pressures in
acute respiratory distress syndrome. A prospective randomized study on mechanical
ventilation. Am.J.Respir.Crit.Care Med., 152, 1835-1846, 1995.

5. Amato, M.B., Barbas, C.S., Medeiros, D.M., Magaldi, G.P., Schettino, G.D.P.,
Kairalla R.A., Deheinzelin, D., Munozs, C., Oliveira, R., Takagaki, T.Y.,
and Calvalho, C.R., Effect of a protective-ventilation strategy on mortality
in the acute respiratory distress syndrome. New Engl. J. Med., 347-354, 1998.

6. ARDS Network, Ventilation with lower tidal volumes as compared with traditional
tidal volumes for acute lung injury and the acute respiratory distress syndrome.

N. Engl. J. Med. 342 (18), 1301-1308, 2000.

7. Salazar, E., and J. H. Knowles. An analysis of pressure-volume characteristics of
the lungs. J Appl. Physiol., 19, 97-104, 1964.

8. Paiva, M., Yernault, J.C., VanErdeweghe, P. and Englert, M., A sigmoidal model of
the static volume-pressure curve of human lung. Respir. Phys1ol 23, 317-323, 1975.

9. Murphy, B.G., Engel, L.A., Models of the pressure-volume relationship of the human
lung. Respir. Physiol. 32, 183-194, 1978. ' o

10. Gibson, G. J., Pride, J. B., Davis, J. and Schroter, R. C.. Exponential description
of the static pressure—volume curve of normal and diseased lungs. Am Rev. Respir.

. Dis., 120: 799-811, 1979.

11. Bogaard J. M., Overbeek,S. E., Verbraak, A. F., Vons, ,C., Folgering, H T.,

Van, D. M. T. C., Roos, M. and Sterk P. J.. Pressure—volume analysis of the lung :
with an exponential and linear-exponential model in asthma and COPD.

Eur. Respir. J., 8, 1525-1531, 1995.

12. Svantesson, C., Sigurdsson, S., Larsson, A., Jonson, B., Effects of recruitment of
collapsed lung units on elastic pressure-volume relationship in anaesthetized healthy
adults. Acta Anaesthesiol. Scand., 42, 721-728, 1998. : ‘

13. Hickling, K.G., The pressure-volume curve is greatly modified by recruitment. A
mathematical model of ARDS lungs. Am.J.Resp.Crit.CareMed., 158, 194-202, 1998.

14. Narusawa, U., General characteristics of the sigmoidal model equation representing
quasi-static pulmonary pressure-volume curves. J. Appl. Physiol., 91, 201-210, 2001.

. 15. Sonntag, R.E. and Van Wylen, G.J., Fundamentals of Statistical Thermodynamics.
John Wiley & Sons, 1966.

16. Fowler, R. and Guggenheim, Statistical Thermodynamlcs Cambridge University

~ Press. 1956.

107




Chapter 3.

1. Harris, S.R., Hess, D.R., Venegas, J.G., An objective analysis of the pressure-volume
curve in the acute respiratory distress syndrome. Am.J.Respir.Crit.Care Med., 161,
432-439, 2000.

2. Jonson, B., Svantesson, C., Elastic pressure-volume curves: What information do they
convey ? Thorax 54, 82-87, 1999. A

.3. Amato, M.B., Barbas, C.S., Medeiros, D.M., Schettino, G. D. P., Lorenzi, F.G.,
Kairalla R.A., Dehemzehn D Morais, C., Fernandes, E.D.O,, and Takagaki, T Y.,
Beneficial effects of the “open lung approach” with low distending pressures in
acute respiratory distress syndrome. A prospective randomized study on mechanical
ventilation. Am.J.Respir.Crit.Care Med., 152, 1835-1846, 1995.

4. Amato, M.B., Barbas, C.S., Medeiros, D.M., Magaldi, G.P., Schettino, G.D.P.,
Kairalla R.A., Deheinzelin, D., Munozs, C., Oliveira, R., Takagaki, T.Y.,
and Calvalho, C.R., Effect of a protective-ventilation strategy on mortality
in the acute respiratory distress syndrome. New Engl. J. Med., 347-354, 1998.

5. ARDS Network, Ventilation with lower tidal volumes as compared with traditional
tidal volumes for acute lung injury and the acute respiratory distress syndrome.

N. Engl. J. Med. 342 (18), 1301-1308, 2000.

108




