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Introduction 

For improved care of patients with acute lung injury, existing clinical data sets are 

examined to characterize quantitatively the pulmonary pressure-volume (p-V) curves. A 

mechanistic model of the total respiratory system (TRS) is constructed for the inflation 

process, making it possible to relate the p-V curve to the corresponding changes in intra- 

respiratory conditions. The mechanistic model computationally simulates the TRS based 

on an application of the principle of statistical mechanics to a very large number of ele- 

ments comprising the TRS. A mechanistic model of the deflation process is currently under 

investigation. 



Body 

Research contents are reported in three chapters: 

Chapter 1. Quasi-Static Pressure-Volume Curce: Comprehensive Data Analysis, 

reports research results corresponding to Objective 1 (Examination of accuracies 

and Umitations of the sigmoidal equation) and Objective 2 (Development of a 

method for quantitative characterization of p-V curves) in Statement of Work of 

Research Proposal. 

Chapter 2. Mechanistic Model: Part I. Model Development for Inflation Process, 

reports the derivation of the mechanistic model of the total respiratory system, 

which is part of Objective 3 (Development of a mechanistic respiratory model) in 

Statement of Work of Research Proposal. 

Chapter 3. Mechanistic Model: Part II. Examination of Clinical Data, 

reports examinations of p-V inflation cvirves based on the mechanistic model. 



Chapter 1. Quasi-Static Pressure-Volume Curve: 

Comprehensive Data Analysis 

Abstract 

A p-V model equation with four parameters is used to, represent various existing (p-V) 

cvirves. The report is focused on the case in which the equation is applied to two existing 

groups of p-V data (one, twenty nine p-V curves of healthy adults and the other, twenty 

one p-V curves of patients with acute respiratory distress syndrome) to determine the 

magnitudes of the parameters for each data set. The equation is found to represent the p- 

V curves of both data groups extremely well. It is also confirmed that the magnitudes of the 

four parameters of the error function p-V model equation, combined with the corresponding 

normalized representation of p-V curves, quantitatively distinguish different respiratory 

conditions between the two groups as well as between different data sets in each group. 



Nomenclat ure 

p pressiire (interpleural pressure difference) 

Pgrad (volume-) gradient pressure range, Eq.(3) 

Pci{u) lower (upper) corner pressure, Eq.(4) 

Pmci(d) pressure at maximum compliance increase (decrease), Eq.(5) 

Po pressvue at the inflection point (at the maximum local compliance) 

where y = (Vf/+ y£,)/2 

p non-dimensional pressure, p/po — 1 

V volume 

V^u) lower (upper) volume asymptote (Fig.l) 

V non-dimensional volume, (1^ - {{Vu + VL)/2)/{AV/2), (Eq.(lb)) 

AV Vu - VL (Fig.l) 

Greek symbols: 

constant defined in Eq.(la) 

apo^V'(non-dimensional parameter) (Eq.(lb)) 

Ap/2 (Eq.(lb)) 

a 

A 

U) 

Acronyms: 

ARDS 

LIP 

TRS 

UIP 

acute respiratory distress syndrome 

lower inflection point, Eq.(6) 

total respiratory system 

upper inflection point, Eq.(6) 



Ijitroduction 

Quasi-static pulmonary p-V (pressure - volume) curves provide quantitative informa- 

tion on the respiratory system that is important for both research and chnical guidances. 

A typical inflation p-V curve, obtained for an anesthetized human subject in supine posi- 

tion, consists of a nearly linear region of high compliance (i.e. large dV/dp) sandwiched 

between two segments with low compliance at low and high pressure regions. The shape 

of the curve is affected by two mechanisms, the distension of the elastic respiratory wall 

tissue components and the recruitment of the alveoU ('pop-open' mechanism). The latter 

is the opening of alveoU overcoming the surface tension at the interface between the gas 

and the liquid film lining the alveolar surface. A pressure increase (i.e. an increase in the 

interpleural pressure difference) results in the recruitment of a greater number of alveoli. 

The high compliance is believed to be associated with both the distension of open parts 

and the (alveolar) recruitment of collapsed parts of the total respiratory system (TRS). 

In order to quantify the characteristics oi p — V curves as well as their changes ob- 

served in clinical settings, various p-V model equations have been proposed [1-8]. One 

commonly used model equation is developed by dividing the entire p-V curve into three 

regions, a high-pressure, low-compliance upper region, a high-compliance midregion and 

a low-pressure, low-compliance lower region. The midregion is represented by a Unear 

equation between p and V; while, the two low-compliance regions are approximated by 

an exponential function of pressure [9, 10]. The linear-exponential model equation is a 

piecewise continuous function with the compliance abruptly changing its magnitude at the 

intersects of the linear and the exponential regions. Venegas, Harris and Simon [8], on 

the other hand, showed that a single continuous function in a form of sigmoidal (tangent 

hyperbolic) equation represents various p-V curves extremely well. Parameters in model 

equations (both piecewise-continuous and continuoiis equations) are determined from sta- 

tistical processing of clinical data. More recently the clinical usefulness of the sigmoidal 

model equation over piecewise-continuous representations is also reported by the same 
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group of researchers [11]. 

Acciorate and quantitative determinations of the form of p-V model equation and 

its parameters are prerequisite to the clinical interpretations of p-V ciirves, including an 

establishment of ventilator strategy with the p-V curve guidance in intensive care for 

patients with acute lung injury as well as its more severe form, acute respiratory distress 

syndrome (ARDS) [12 - 14]. Our objective is to test a hypothesis that the continuous 

p-V model equation, particularly in a form of an error function equation, is effective in 

representing p-V curves from different sources, and of different respiratory conditions (a 

group of patients with ARDS [8] and a group of healthy adults [9]). The former covers both 

inflation and deflation processes, and the latter includes the inflation p-V curves before and 

after alveolar recrviitment maneuver with a total of fifty p-V curves. The report examines 

differences and similarities (1) between patients with ARDS and healthy adults, (2) among 

patients with ARDS as well as among healthy adults, both in terms of parameters of the 

error function p-V model equation. 

Equations for Quasi-Static p-V Curves 

A model equation, originally proposed by Venegas, Harris'and Simon [8] and subse- 

quently shown to represent p-V curves well for both iiiflation and deflation processes [11], 

has the following sigmoidal (tangent hyperbolic) form; 

^ = -a{V-Vu){V-VL),     ^^^^ = [l + exp{-a^V{p-po))]-\ (la) 

where AV = VU — VL,VU — upper volume asymptote, VL = lower volimae asymptote, a = 

positive constant and po = pressure at the midpoint (inflection point) of the curve. The 

corresponding non-dimensional form of the sigmoidal equation is [15], 

fiV A      o p'^ — p~'^ 
^ = -:^(F'-l),        V = - ^—{^tanh{uj)) (16) 

where 

^ = ^^-1^. ,^^, ,.z_, ...... 



dV 
dp 

Venegas, Harris and Simon suggested that a p-V equation in terms of the error function 

is also effective in representing p-V data [8]. 

The error function, erf{x), is defined as 

erf{x) = —^       e~* dt       with       erf{oo) = l,    erf{-x) =-erf{x). 
y/T^ Jo 

The error function model equation may be expressed as 

Fig.l is a sketch of a typical p-V model equation (either the sigmoidal or the error-function 

model equation). The curve varies smoothly between the low pressure asymptote, Vx,, and 

the high pressure asymptote, Vu- The midpoint of the curve where the volume is equal to 

(Vt/ -I-Vi)/2 is the inflection point with its pressture denoted by PQ. Both the sigmoidal and 

the error-function model equations are antisymmetric with respect to the inflection point; 

that is, V{p - po) - Vipo) = -{V{po - p) - V{po)) or V{p) = -V{-p). The compUance, 

dV/dp, increases along the p-V equation as pressure increases, until the inflection point 

(= the point of maximum compliance) is reached. Then the compliance decreases with a 

further increase in pressture. A tangent to the model equation curve at the inflection point 

has the compHance of a{AV)^/4:. The two points of intersection between the tangent 

and the two volume asymptotes, V = Vu and V = VL are referred to as the upper and 

lower corner pressure, Pcu(c/)) respectively. The pressure difference between the two corner 

pressmres is defined as the (volmne-) gradient pressure range, Pgrad- Also, the pressure at 

the point of maximmn compliance increase (decrease) of the p-V curve, Pmd {Pmcd )> may 

be specified as the points where the third derivative of V with respect to p is zero. 

For both the sigmoidal and the error-function model equations, 

Pgrad   (_ Ay \ 4 Pcujcl) IN   _   /    N2 .        S 

Po      \^      Po{dV/dp)max.J        A "-   ' PQ A 
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On the other hand, 

/     Pmcdimci)     ^. _   r (-)1.317/A   for sigmoidal equation; , . 
Pmcd{mci){-        p^ ^ ~ I (-)1.596/A   for error-function equation.        ^^ 

Fig.2 is the (non-dimensional) p-V curve, corresponding to the p-V curve of Fig.l. 

The origin {p = 0, V = 0) represents the point of antisymmetry (po, {Vu + VL)/2) of Fig.l. 

The non-dimensional pressure, p, is the pressure difference, p - PQ, os a, fraction of po 

(Eq.(lb). The normalization of volume shifts the upper and the lower volume asymptotes, 

Vu and VL in Fig.l into 4-1 and -1 respectively in Fig.2. With both the location of po 

and the volume asymptotes made common to all p-V curves, the resulting non-dimensional 

representations characterize p)-V cvirves in general in terms of a single non-dimensional 

parameter, A. (Eqs.(lb,2b)) From Eq.(3) the parameter, A, is four times the ratio of the 

pressure at the maximmn compliance, po) to the volume-gradient pressure range, Pgrad- 

Since the comphance is maximum at the origin, the first quadrant (V, p > 0) in Fig.2 is a 

region of decreasing local comphance with pressure; while, the third quadrant (V, p < 0) 

is a region of increasing local compliance with pressure. The origin (p = 0, V = 0) of 

dimensional p-V curves is transformed into (p = —1, V{y = 0)) on a p-V curve; hence, 

the physiological lower Hmit of p is —1. Various pressure locations on p — V diagram are 

proportional to 1/A as shown in Eqs.(3-5). Eqs.(3-5) also imply over the pressure range 

of p > 0 that there is no lower corner pressm-e (i.e I +Pci < 0) if A < 2, and that there 

is no pressure for maximum compliance increase (i.e. 1 +Pmci < 0) if A < 1.317(1.596) 

for the sigmoidal (error-function) model equation. Both the sigmoidal and the error- 

function model equations are capable of representing p-V curves over their entire ranges 

as continuous functions. 

Piecewise-continuous model equations are also used to represent p-V curves. Shown 

below is a three-region model equation [9], relevant to the present study, consisting of a 

hnear midregion {VLIP < V < Vuip) and two exponential regions at high (Vuip < V) and 

low pressure (V < VLIP) ranges. (The subscripts, L(U)IP (lower (upper) inflection point), 
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indicate the points where the Unear midregion equation intersect with the exponential 

equations.) 

' Vmax — Vuip 

for     VuiP <V < Vinsuff, 

Vmax - V{p)  =  (Vmax " Vuip) • exp(   """^^ ^^ {p - pUIp)) 

V{p) - Vup = Ciin (p - PLip) fcrr   VLIP <V < VUIP, (6) 

Vmin -V{p)   =  {Vmin " Vup) ■ expi   ^^^  ^^^ (p - pup))      foT     V < VuP, 

where Cun = compliance at the linear midregion, Vmin{max) = volume asymptote of the 

lower (upper) exponential region, 

Data Analyses 

The two data sources with a total of 50 p-V data sets consists of (A) ARDS patients 

by Harris et al (2000) [11], and (B) healthy adults by Svantesson et al (1998) [9]. For the 

data source A, p-V data points were made available to us by the authors. The data source 

B provides model parameters of the piecewise-continuous model equation, Eq.(6), as well 

as data ranges for each data set. Information on the data sources relevant to the present 

study is summarized below. 

Data Source A 

21 data sets of ARDS patients by Harris, Hess, Venegas [11], Original p-V data points 

made available by the authors. Inflation and deflation data in supine position. 

Data Source B 

29 data sets of healthy adults (both male and female) by Svantesson, Sigurdsson, 

Larsson, Jonson [9], 14 data sets before and 15 data sets after alveolar- recruitment 

maneuver. Inflation data in supine position 

The parameters of Eq.(6) iymin.Vmax, Vup, Vuip, Vinsuff, Cun, PUP, PUIP) are 

tabulated for all data sets in [9]. 

Data sets from the source A are analyzed by minimizing the difference between data 

points and the model equation (either the sigmoidal or the^error-function model equation) 

12 



through the application of the method of least squares to obtain the parameters, A, AV, po 

and Vf/ (or VL). To analyze the data source B, ten to twenty five computational data 

points, depending on the data range, are generated from Eq.(6). Then, the method of 

least squares is applied to determine the parameters, A, po, AV and Vu (or VL) of the 

error function model equation. Parameters of p-V model equations are determined for all 

data sets in Data Source A (for both inflation and deflation data) and B (for both before- 

and after-recruitment maneuver). Discussion beyond the validity test of the error function 

model equation, however, is focused on the inflation data sets of the two data sources. 

Results of data analyses are summarized in Table.l (for Data Source A) and in Table.2 

(for Data Source B). 

Results and Discussion 

Fig. 3 shows a typical data set of an ARDS patient from the data source A as well 

as the sigmoidal and the error function model equations, Eqs.(la)(2a), determined by the 

method of least squares. The parameters of the model equations, (A, po, AV, Vu), are 

(1.470, 13.308, 3.491, 2.750) for the sigmoidal equation and (1.627, 13.324, 3.156, 2.584) 

for the error function equation. Both equations represent the data points well over the 

entire data range. Substantial differences between the two equations occur in high and 

low pressure regions away from the data range as they approach different asymptotes of 

V — Vu and V^,. It should also be noted that there is no lower corner pressure for the data 

set since A is less than 2 (Eq.(4)), and that the pressure at maximum compliance increase, 

Vraci-: is very low at 1.385 cmH20 for the sigmoidal model equation and at 0.254 cmH20 

for the error function equation (Eq.(5)). 

An example of the analysis of the data source B is shown in Fig.4. The dotted curve 

represents the piecewise continuous equation, Eq.(6), with 

{Vmin, Vmax, Vup, VuiP, Vinsuff, Cun, PLIP., PUIP) 

= (-2230 [mL], 5870, 1513, 2884, 4125, 157 [mL/cmiTsO], 14.4 [cmH20], 23.1), 

reported in [9]. The solid curve is the corresponding error function model equation, Eq.(2a), 

13 



obtained by applying the method of least squares to computational data points generated 

over the data range of 0 < V < Vinsuff- Since "true" data points are unknown in the 

Unear region of Eq.(6), we imposed a constraint that the inflection point, po, of the error 

function equation is located in the midregion of Eq.(6). The parameters of the error 

function equation thus determined are (A, po, AV, Vu) =(2.0800,18.224,5.58750, 4.9114). 

Due to the error minimization Eq.(2a) is nearly identical to Eq.(6) over the data range 

indicated by the two triangle maTks; which is valid for other 28 data sets from Data Source 

B. A continuous change of the compliance (i.e. non-linear p-V change) in the region near 

Po has been described previously in terms of the sigmoidal (tangent hyperbolic) model 

equation [15]. It should also be mentioned here that, of twenty nine inflation data sets, 

Po (the inflection point) is between PLIP and puip in eighteen data sets, equal to puip in 

eight data sets, equal to PLIP in one data set, and po = PUIP = PLIP in two data sets. 

Fig.5. is a plot of the error function equation, Eq.(2a), with -/TT A(p/po — l)/4 and 

(V^ - VL)/AV as X- and y- axis respectively. All (both inflation and deflation) data points 

of Data Source A are also shown in the figure, confirming very good agreements with 

the equation. The coefficient of determination, i?^, is 0.999247, which is comparable in 

magnitude to that of the sigmoidal equation, R^ = 0.9992 reported in [11], thus indicating 

that both the sigmoidal (tangent hyperbolic) p-V equation, Eq.(la), and the error function 

equation, Eq.(2a), are very effective in representing quasi-static p-V curves. Shown in Fig.6 

are comparisons between the sigmoidal equation and the error function equation in terms 

of two parameters in the equations, A (Fig.6(a)) and po (Fig.6(b)) for twenty one data sets 

from Data Source A. Due to differences in functional form the magnitude of A is slightly 

higher for the error function equation than for the sigmoidal equation. On the other 

hand, the infiection point, po, being the point of antisymmetry, should be identical in 

theory for both model equations. Fig.6(b) confirms it as the magnitudes of po determined 

by the method of least squares are very close between the two equations. Differences in 

the magnitudes of A and po between the two continuous-function model equations would 

14 



result in function-specific values for such quantities as Pcuici), Pmcd{mci) of Eqs.(4,5) which 

characterize p-V curves, indicating the importance of using the same p-V model equation 

in order to analyze clinical data in a consistent manner. 

Although quantitative comparisons of parameters cannot be made among different 

p-V model equations in a mathematically rigorous manner, a comparison between the 

linear-exponential model equation, Eq.(6), and the error function equation, Eq.(2a), is 

presented in Fig.7 in a form oipmd vs pup in Fig.7 (a) and pmcd vs pujp in Fig.7 (b) for 

Data Source B. It may be seen that the parameters from both equations distinguish two 

data groups. Before recruitment maneuver and After recruitment maneuver, successfully 

and also that Pmcd of Eq.(2a) and puip of Eq.(6) distinguish the two groups more clearly 

than pmci and PLIP- Values oipup{uiP) must be located directly from p-V curves; while, 

Pmci{mcd) ^re automatically generated from the model equation once parameters of the 

model equation are determined. 

As shown in Eqs.(2a,b), when p and V are made non-dimensional the resulting non- 

dimensional p-V equation, Eq.(2b), contains A (=the ratio of {Pcu-Pd) to po) as the only 

parameter representing a shape oip-V curves with A/2 being the gradient, dV/dp, at 

the origin (where p = 0 i.e. p = PQ.). The pdV work associated with the process firom 

the initial to the end-of-inflation pressure was suggested as a quantity representing the 

pressure range actually covered by a specified p-V curve [15]. However, in analyzing data 

sets from different sources we found that the end-of-inflation pressure (volume) is data-(or 

investigator-) dependent, and may not be appropriate as a comprehensive indicator for 

data interpretation. Here we selected two volume differences to distinguish p-V data sets 

accounting for the range of data relative to the entire range covered by the p-V equation; 

one is Vi; — V^(p = 0) as a volume scale indicating the total available volume of a specified 

TRS, and the other is V{p = 20 cmH20) - V{p = 0) as a volume scale representing volume 

range covered by the specified TRS. The volume at p = 20 cmH20 is selected arbitrarily; 

however, in all the data sets we analyzed, p-V curves were obtained beyond p = 20 cmH20. 

15 



Fig.8 shows A vs po in (a) and [Vu - V{p = 0)] vs [V{p = 20 cmHiO) - V{p = 0)] in (b) 

obtained from the error function model equation for all inflation data sets. In terms of A, 

a wide range (1 < A < 6) is covered by ARDS patients; while, the range of A for healthy- 

adults is ~ 1.5 - 3.5. The alveolar recruitment maneuver lowers the magnitude of A of 

the group of healthy adults as a whole. A similar observation may be made on po- Both 

[Vu - V{p = 0)] and [V{p = 20 cmifaO) - V{p = 0)] in Fig.8(b) are low in magnitude for 

patients with ARDS. On the other hand, the recruitment maneuver shifts the location of 

the whole group to the right in Fig.8(b). Two data sets, No.20 and 5, representing extreme 

points in Fig.8 (a) and (b) respectively, clearly show they are quite different from those of 

healthy adults, if Fig.8(a) and (b) are examined together. 

According to Data Source B [9], after a p-V curve before the recruitment maneuver 

is recorded, the lungs are inflated to an airway pressure of 40 cmH20 and maintained for 

15 s, followed by six pressure-controlled breaths (six breaths/min.) delivered at an airway 

pressure of 30 cmH20. Then a second large insufflation is delivered before recording a 

p-V curve after recruitment maneuver. To examine the p-V curves of healthy adults as 

well as eff'ects of the alveolar recruitment maneuver in more detail, a ratio of the pressure 

at the inflection point, (po (before maneuver)/po (after manewOer)), is plotted against 

a ratio of A (A (before maneuver)/A (after maneuver)) in Fig.9. Each data point is 

accompanied by two numbers indicating the data set number and his or her age in the 

bracket (unfilled circle for male and filled circle for female). The data sets of the younger 

may be seen to be located to the left half of the figure, compared to the older, implying 

that, for the healthy young adults, A after the maneuver either increases slightly or remains 

roughly the same as A before the maneuver. In order to discuss implications of Fig.9 

further, Figs. 10 and 11 show the error function p-V equations before- and after-maneuver 

along with the corresponding non-dimensional p — V equations for three data sets in Fig. 10 

from the region of A (before maneuver)/A (after maneuver) < ~ 1.2, and for three data 

sets in Fig.ll from the region of A (before maneuver)/A (after m,aneuver) > ~ 1.2. The 
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equations are plotted over the measiirement range covered by Data Source B. Numerical 

values of these data sets are tabulated below. 

Data No. (Age) 1 (33)     6 (25)     7 (60)    11 (55)   13 (50)   15 (58) 

A (before)/A {after) 0.730      0.982      1.143     1.390       1.303       1.625 

po (before)/po (after)       1.726      1.196      1.840     1.312      2.083      1.753 

Referring to Fig. 10, the high po ratios of Data 1 and 7, compared to Data 6, are results of 

substantial reduction in po after the maneuver for these data sets as observed in the p-V 

equations. The triangular marks on the p — V ctirves in Figs. 10 and 11 indicate locations 

of p = 20cmH2O; hence, onp — V diagrams, a large change in po is reflected by a large 

shift of the triangle from the before-recruitment location to the after-recruitment location. 

Different degrees of changes in the magnitude of A over the alveolar recruitment maneuver 

for the three data sets cannot directly be observed from the p-V diagrams. However, on the 

p-V diagrams, A/2 is the slope of p — V equation at the origin. ( See Eq.(2b).) Therefore, 

the before-recruitment (solid) curve lies above the after-recruitment (dotted) curve in the 

third quadrant (p < 0, V < 0) for Data 1 for which A (before) = 0.730 • A (after). For 

Data 6 with A (before) being close to A (after) two curves are nearly identical. In Data 7 

the after-recruitment curve lies slightly above the before-recruitment curve as A (before) = 

1.143 • A (after). The data sets in Fig. 11 all have the two ratios well above unity with the 

high A ratios resulting in the after-recruitment curves to lie above the before-recruitment 

curves, and the high po ratios of Data 13 and 15 being reflected in the large shifts' in 

triangles between the two cinrves in the p — V diagram. 

From Eq.(2a) the maximum local compliance (= dV/dp at p = po) may be expressed as 

dV .        ,      A-Ay _ 
d^(^ = ^°) = -4^- (^) 

Fig. 12 is a plot of [dV/dp(p = po) after recruitment maneuver] vs [dV/dp(p = po) before 

17 



recruitment maneuver] of Data Source B. Changes in the maximum local compliance (= 

compliance at the inflection point) are small between before- and after-recruitment data 

with a maximum change of less than 0.035 [L/cmH20]. It should be mentioned again that 

the local compliance hke other parameters may be obtained mathematically in a continuous 

p-V model equation, once the parameters of the equation are determined for a specified 

p-V curve. 

Depicted in Fig. 13 are p-V curves and the corresponding p — V curves of four rep- 

resentative data sets of patients with ARDS, drawn over their measurement ranges. The 

non-dimensional p — V curves in Fig.l3(b), which, we believe, are more useful for data 

examinations and interpretations, yield the following observations: 

(1.) The magnitude of A, which is represented by the slope of ap—V curve, is the largest 

for Data 20, and the smallest for Data 4. 

(2.) Since the origin of a p — V curve is the location where the local compliance is the 

maximum (i.e. p = Po), Data 4 and 17 extend well into the region of decreasing comphance, 

while, the pressure range of Data 13 is limited to the region of increasing compliance. 

(3.) At p = 20 cmif2O (shown as a triangle), the comphance is still increasing for Data 13 

and 20, close to the maximum for Data 17 and decreasing for Data 4. 

(4.) The two volume asymptotes, Vu and VL, are transformed respectively into V = 1.0 

and —1.0; hence, the volume range of Data 13 is closer to the lower asymptote, while, 

the overall volume change of Data 4 is small compared to AV (difference between the 

asymptotes). 

Furthermore the magnitude of A in Table 1 indicates that there is no lower corner 

pressure for Data 4. For each inflation data set. Table 1 lists the maximum local compli- 

ance. Its value ranges between 0.03 and 0.11 [L/cmH20]] much smaller values compared 

to the data from healthy adults shown in Fig.l2. The maximum local compliance, as 

shown in Eq.(7), is proportional to the product of A and AV, and inversely proportional 

to pressure at the inflection point. Since both A and po are roughly in the same order of 
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magnitude as healthy adults (Fig. 8), the factor contributing most to smaller values of the 

maximum local compliance for patients with ARDS is AV as evidenced by its values listed 

in Table 1 and 2. 

Summary and Conclusions 

The sigmoidal (tangent hyperbolic) equation is known to represent various quasi-static 

p-V curves very closely [11]. In the present study it has been shown that the error function 

model equation also represents quasi-static p-V curves well (Figs.4,5). Major parameters 

of both the sigmoidal (tangent hyperbolic) and the error fimction model equations are 

the non-dimensional compliance, A, the maximum local compliance, po, the upper (or 

lower) volume asymptote, Vu (VL), and the maximum voliune available for inflation, AV. 

Although both continuous model equations are antisymmetric with respect to po, the non- 

dimensional parameter. A, as well as two volume asyniptotes shghtly differ between the 

two equations as those function-specific parameters are selected to follow a specified p- 

V ciirve as closely as possible (Fig. 6). Two inflation data sources, patients with ARDS 

(Data Source A) and healthy adults (Data Source B), are analyzed in detail using the error 

function p-V model equation with the following results; 

1. The alveolar recruitment maneuver lowers the pressure at the maximum compliance, 

Po; while, A remains roughly the same or decreases in magnitude (Figs.8(a), 9). It also 

reduces the upper voltmae asymptote, Vu, substantially (Fig.8(b)). The combined effects 

of these parametric changes due to the maneuver extend the range of p-V curves after the 

maneuver further into the region beyond the location of the maximum compliance (Figs. 10, 

11). 

2. The range of po and A covered by the patients with ARDS is wider than the corre- 

sponding ranges of healthy adults (Fig.8(a)). Substantially lower magnitudes of the upper 

volume asymptote, Vu, and the actual volume change (Fig.8(b)) result in lower values for 

the maximum local compliance (Table 1) compared to that of healthy adults (Fig. 12). 

3. The non-dimensional p — V curves combined with the magnitudes of the four parame- 
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ters of the model equation are shown to help understand quantitatively the effects of the 

recruitment maneuver as well as differences among patients with ARDS (Figs. 11, 13). 

4. An important advantage of the continuous model equations is that various parameters 

characterizing the shape and the range of p-V curves, such as the maximum local compli- 

ance, the pressure at the maximum local compliance and the upper and the lower corner 

pressures, may be evaluated readily from the model equation once the parameters of the 

equation are determined from p-V curve data. The mathematically exact relations among 

the parameters also implies that the magnitude of either pressure or volume at a certain 

location along a p-V curve may only be interpreted correctly when compared to a char- 

acteristic pressure or volume of the p-V curve, as demonstrated, for example, in Figs. 11 

and 13 when we discussed the location of p = 20 cmH20 relative to the pressure at the 

maximum local compliance. 
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Captions for Tables and Figures 

Table 1. Parameters of Error Function Equation for Data So;irce A 

Table 2. Parameters of Error Function Equation for Data Source B 

Fig. 1. Continuous p-V model equation. 

Fig. 2. Non-dimensional p-V curve corresponding to Fig.l. 

Fig. 3. Example of p-V curve from Data Source A. filled circle = Data D, 

solid = error function p-V equation, dotted = sigmoidal p-V equation. 

Fig. 4. Example of p-V curve from Data Source B. Dotted curve = piecewise continuous 

equation, Eq.(6), Solid curve = error function equation, Eq.(2a), 

Triangle = upper and lower data limits. 

Fig. 5. {V -VL)//^V   VS    (V7r/4) A{p/po - 1) of Data Source A. .   . 

Unfilled circle = inflation. Filled circle = deflation. 

Fig. 6. (a) As (sigmoidal model equation) vs Ae (error function model equation), 

(b) pos (sigmoidal equation) vs poe(error function equation). 

for inflation data sets of Data Source A. 

Fig. 7. (a.) PLIP [cmi?20] vs Pmd [cmH20] 

(fiilled (unfilled) circle = before (after) recruitment maneuver). 

(b.) puip [cmH20] vs Pmcd [cmH20] of Data Source B. 

(unfilled (filled) circle = before (after) recruitment maneuver). 

{pmci and Pmcd evaluated from error-function equation.) 

Fig. 8. (a.) A vs po, (b.)[Vt/ - V{p = 0)] vs [V{p = 20cmH2O) - Vip = 0)] 

for infiation data sets from Data Source A and B. 

Square = patients with ARDS, Cross = healthy adults before recruitment maneuver. 

Triangle = healthy adults after recruitment maneuver. 

Fig. 9. po (before maneuver)/po (after maneuver)) vs A (before)/A (after) 

Two numbers are Data Set No., followed by his or her age in the bracket. 
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unfilled circle = male,       filled circle = female. 

Fig.lO. p-V curve and the corresponding p-V curve of error function model equation. 

Data No.l (top), No.6 and No.7 (bottom) of Data Source B (healthy adults). 

Solid = Before recruitment maneuver. Dotted = After recruitment maneuver. 

Triangle = location of p = 20 [cmH20]. 

Fig.ll. p-V curve and the corresponding p-V curve of error function model equation. 

Data No. 11 (top), 13 and 15 (bottom) of Data Source B. 

Solid = Before recruitnient maneuver. Dotted = After recruitment maneuver. 

Triangle = location of p = 20 [cmH20]. 

Fig.l2. dV/dp {p = po) (maximum local compUance) before recruitment maneuver 

vs dV/dp {p = Po) after recruitment maneuver of Data Source B. 

Fig. 13. (a) p-V curve and (b) the corresponding p-V curve of error function model 

equation for Data No.4, 13, 17 and 20 of Data Source A (patients with ARDS). 

Triangle = location of p = 20 [cmH20]. 
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Table 1. Inflation Pgirameters of Error Function Equation for Data Source A 

Data No       A po AV VL (dV/dp) at po 

1. 2.9652, 22.39, 2.3726, -0.0709 0.0785 

2. 2.7173, 21.98, 1.5612, -0.0762 0.0482 

3. 3.3532, 25.08, 1.6193, -0.0365 0.0541 

4. 1.6273, 13.32, 3.1567, -0.5727 0.0963 

5. " 2.7160, 30.36, 1.6216, -0.0768 0.0362 

6. 2.6029, 23.88, 1.5066, -0.0962 0.0410 

7. 1.7288, 20.15, 3.0989, -0.3645 0.0664 

8. 1.8901, 14.95, 1.7905, -0.2185 0.0565 

9. 3.5379, 25.24, 2.7570, -0.0350 0.0965 

10. 2.7981, 26.20, 3.7326, -0.1583 0.0996 

11. 2.4296, 17.89, 1.3424, -0.0997 0.0455 

12. 1.2500, 11.59, 1.2470, -0.2829 0.0336 

13. 3.2725, 29.86, 3.9075, -0.0861 0.1070 

14. 2.7915, 15.31, 1.6284, -0.0705 0.0742 

15. 1.9487, 18.37, 1.8797, -0.2423 0.0498 

16. 2.4566, 26.98, 1.3277, -0.0787 0.0302 

17. 2.1027, 19.31, 1.3316, -0.1279 0.0362 

18. 1.1672, 13.98, 2.0685, -0.5149 0.0431 

19. 3.1381, 26.80, 3.1306, -0.0851 0.0916 

20. 5.4709, 30.03, 1.7695, -0.0097 0.0805 

21. 3.2818, 24.43, 2.8956, -0.2075 0.0972 

Po in [cmffaO], AV and VL in [L], dV/dp in [L/cmH20\. 
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Table 2. Peirameters of Error Function Equation for Data Source B 

Data No A po AV^ VL VU 

l.F 
B. 1.5136 25.00 5.1043 -0.8889 4.2154 
A. 2.0711, 14.48 2.7130 -0.2700 2.4430 

2.F 
B. 2.5520 31.70 5.4303 -0.2863 . 5.7166 
A. 1.7587 18.17 4.1416 -0.6590 3.4826 

3.F 
B. 2.0979 21.76 3.7676 -0.3399 3.4277 
A. 2.2960 18.19 3.1331 -0.2300 2.9031 

4.M 
B. 2.1491 21.11 4.5443 -0.3726 4.1717 
A. 2.1887 18.57 4.4023 -0.3554 4.0469 

5.F 
B. 2.2192 24.60 6.4953 -0.4971 5.9982 
A. 1.5729 13.46 5.2884 -0.8895 4.3989 

6.M 
B. 2.3950 23.21 4.2092 -0.2567 3.9525 
A. 2.4387 19.40 3.9049 -0.2722 3.6327 

7.M 
B. 2.6997 31.00 7.3180 -0.2167 7.1013 
A. 2.3615 16.85 5.5288 -0.5641 4.9647 

8.F 
a 2.2901 30.80 8.2489 -0.5185 . 7.7304 
A. 1.9974 17.20 5.0638 -0.5478 4.5160 

9.F 
B.  —     — .—  . 

A. 2.0340 15.90 3.7392 -0.4068 3.3324 
lO.M 

B. 3.4081 28.80 7.211- -0.0491 7.1627 
A. 2.3998 17.92 5.7276 -0.5502 5.1774 

ll.M 
B. 3.1746 25.86 7.0726 -0.1361 6.9365 
A. 2.2828 19.70 6.79820 -0.8620 5.9362 

12.F 
B. 2.5060 23.20 5.0810 -0.2476 4.8334 
A. 2.3844 16.36 4.3799 -0.3.799 4.0000 

13.F 
B. 2.3600 29.17 6.81755 -0.4353 6.3822 
A. 1.8107 14.00 4.03567 -0.6883 3.3472 

14.M 
B. 2.2260 24.55 6.7170 -0.4828 . 6.2342 
A. 2.0800 18.22 5.5875 -0.6761 4.9114 

15.F 
B. 3.5047 25.70 4.5022 -0.0027 4.4995 
A. 2.1561 14.65 3.3016 -0.4836 2.8180 

B = Before recruitment maneuver,       A = After recruitment maneuver. 
Po in [cmH20], AV, VL and Vu in [L]. 
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Fig.6. (a)A5(sigmoidal model equation) vs A^ (error function) 

model equation.(b) p,, ^ (sigmoidal equation) vs p^ ^ (error function 

equation) for inflation data sets of Data Source A. 
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Source B.(unfilled (filled) circle = before (after) recruitment maneuver, p^^,. 

and p^^a evaluated from errorfunction equation.) 

31 



* 

o 

(a) 
^ '                                               20 

4 . 

< 

2 

■   ■               ■ %    ■          Xx 

■ ■ 
5 

t              11      

0                           10                          20                          30                          40 

Po [cm H2O] 

0 

(b) 
6 

X              V                                A 
X^ 

> 

> 

2 

.          x^x      X      4            A 

■        X           -^^     A         ^ 
.■■■              4     ■        A 

-                     ^5 

20 S T(" 

u                                                             —  

0                                  1                                  2                                  3 
V(P=20)-V(P=o) [L] 

Fig.8. (a.) AVS p, , (b.) [V^ -V{p = 0)] vs [Vip = 20cmH,O)-V(p = 0)] 

for inflation data sets from Data Source A and B. 
Square = patients witti ARDS, Cross = healthy adults before recruitment maneuv er, 
Triangle = healthy adults after recruitment maneuver. 

32 



(O 

o 
ti. 
CO 

< o 
■«««^ ^ 
0) § o XI 

$ o 
CO A JZ ''^—^ ■•-• 

T- < c 
^ (0 0 
£ > O) 
€ l^ (0 
IB 
< § 0 o x: 

0) (b ^_ 
o 
Q> i h

is
o

 
al

e.
 

< i X3   O 
ffi ■°    II 0    " 
a. ^<^ 

■tr o o 
Qi i o o 
3 
(b 
c 
CO N

o
.,

f 
fil

le
d 

^" S 0 

£ 0) 
o (C •*-*    -" 
0) (0  0 
Si Q (0 

o <i) F tt, (0   II 

O) « 0 

d) 

jm
b

e
 

d
ci

rc
 

LL 
c <^ 
O  5^ 
^ '=; H -* 

h- 
O 

CM 

jeUBOd/aJOiaqod 

33 



3.5 

2.5 

1.5 

X  * 

ft ''S^^^ 
0.5 ^^ 

i    ° 5 15                     25 3 

P[cmH20] 

P[cmH20| 

0.5 

5             -1            -O.S,,---^!               0.5               1               15 

-1 

Data No. 1 

3.5 

2.5 

^yty^ 
-/ 

1.5 
^^>^^ 

0.5 
^,-*<^ 

^-fra- 5 15                        25 _3 

0.5 

5             -1            -0.5      X 

>^-0.5 

-1 

0.5              1               15 

P 

Data No. 6 

3.5 ^ 

2.5 ft  .'* 
.r 

f ^.i 
X 

**      .^ 
1.5 

* 
0.5 

^^0/^"^ 

,       0 5 15  £§ 2 

PIcmH2Pl 

0.5 • 

'*                                 '                                       t 

5             -1            -0.5     v'^ 

-j'*-0.5 

-1 

0.5p       1              1 

Data No. 7 

Fig.10. p-V curve and the corresponding p-V curve of error function model equation. 
Solid =Before recruitment maneuver, Dotted = After recruitment maneuver, Triangle = location 
of p=20 [cmH20]. 

34 



^ 
3.5 

7 
> 

2.5 

1.5 

0.5 

• 

^^^'''f^ 
i    0 5 15              25              ; 

    I 

y 
0.5 . 

5 -1           -0.5     •/!           0.5             1 1 
«tA .^^ 

..'/o^a F 
■"'^           -1 

P[cm H20] 

Data No. 11 

3.5 • 

^^' 
2.5 

Po   .^'> 

/■ 'jT Po 

1.5 JX 
0.5 ^^ 

i   0 5 15 25 i 

P[cm H20] 

1 

V ,.  -"" 
0.5 

^' 

5             -1 -0.5 ^;^ 0.5       1             1 

,-•^^■0.5 P 

-1 ■ 

Data No. 13 

3.5 ■ 

2.5 
-1 ,*J 

> 
Po /     Po 1.5 

0.5 
_^ 

,<^^^ 

■ 
0 5 15 25               : 

y 
0.5 

A' 

5 -1 -0.5   ,y 

-1 

°'p 
1         1 5 

P[cm H20] Data No. 15 

Fig.11 .Solid (Dotted) = Before (After) recruitment maneuver, Triangle = location of p =20[cmH2O]. 

35 



• 
• 

« 
* 

k- 
O > 
3 
0 c 

\      o \     ° 
(0 
E 
c 

CM 
d 

> 

or
e 

re
cr

ui
tm

e 

B.
 

-s g 
3 ^   2 a) ^^    D o c 0)     O 

o\o        o (0 O   03 

o\ 
o     \o 

CQ 

>< 
(0 oc

al
 c

om
pl

i 

u
ve

ro
f 

D
at

 

o  \ S i   ^ 
o \ o a 

^   ^ im
u 

:m
a 

°  B (m
ax

 

m
en

t 

o\ •*-» 
^ E 
a.  t3 o      \ II   2 

CM   I 
D)   D. 
il 5 

> 
T3 

0) 

o 

> 

CM T-                                                                                              < 3 
d d 

jSAnauBiAi JOUV "XBW (dp/Ap) 

36 



Fig. 13. (a) p - V curve and (b) the corresponding p-V curve of 
error function model equation for Data No.4, 13,17 and 20 of Data Source 
A (patients witii ARDS). Triangle = location of p=20[cmH2O] 
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Chapter 2. A Mechanistic Model for Quasi-Static Pulmonary Pressure-Volume 

Curves: Model Development for Inflation Process 

Abstract 

A mechanistic model of a total respiratory system is proposed to understand differences 

in quasi-static pressure-volume {p - V) curves of the inflation process in terms of the alve- 

olar recruitment and the elastic distension of the wall tissues. In the model, based on the 

Boltzmann statistics, the total respiratory system consists of a large number of elements, 

each of which is a subsystem of a cylindrical chamber fitted with a piston attached to 

a spring. The alveolar recruitment is simulated by allowing a distribution of the critical 

pressure at which an element opens; while the wall distension is represented by the piston 

displacement. Various parameters in the error-function p-V model equation are related 

to the properties of the mechanistic model. The parameters of the model-based p-V equa- 

tion are determined for each clinical data set for a total of twenty one p-V data sets of 

patients with acute respiratory distress syndrome by a computational minimization proce- 

dure between the equation and the data points, results of which show excellent agreements 

between the two. 
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Nomenclature 

A {k/As)yo = Po 

As piston surface area on which pressure is acting (Fig.4) 

B {k/As)yT = Po • VTO, threshold pressure for onset of saturation 

C 0/2)^/^-po = V^A/^ 

/, F distribution functions (Eqs.(6) & (13c)) 

/^ (i = 1 - 5)     functions defined in Eq.(13b) 

k spring constant [N/m] (Fig.4) 

N total number of TRS elements 

Nj number of elements at energy level j 

p pressine (interpleural pressure difference) 

p non-dimensional pressure, p/po — 1 

Pcj critical pressure at which an element, j, 'pops open'. 

Pcj Pcj/Po (Eq.(13c)) 

Pf pressure at the end of inflation process 

Po pressure at the inflection point in p-V equation, Eq.(l) 

U{p) total energy of TRS at p=p 

AU = U{p = Pf) - U{p = 0) 

V volume 

Vp volume change from the state of p = 0 

VL(JU) lower (upper) volume asymptote (Fig.l) 

V non-dimensional volume, {V - {{Vu + VL)/2)/{AV/2), (Eq.(2)) 

Vj volume of an element j 

Ay VU-VL = NVoivTo + 1) 

VQ 'pop-open' volume (= AsVo) (Fig.4) 

yj piston displacement of an element j (Fig.4) 
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yo 'pop-open' displacement, (= VQ/AS) (Fig.4) 

yx piston stroke limit (Fig.4) 

yro VT/VO 

Greek symbols: 

a constant of proportionality (Eq.(la)) 

P constant in the distribution function (Eq.(4)) 

0 =iAl/k)P(Eq.{5)) 

tj energy stored in an element j (Eq.(3)) 

A apoAV(non-dimensional parameter) (Eq.(l)) 

a (8/7r)i/VA, Standard deviation (Eq.(13c)) 

a; Ap/2 (Eq.(2)) 

Superscript: 

^ related to a single TRS element 

Acronyms: 

ARDS acute respiratory distress syndrome 

TRS total respiratory system 
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Introduction 

Quasi-static pulmonary p — V (pressure - volume) curves are used routinely to obtain 

quantitative information on the respiratory system that is important for both research and 

clinical guidances, as the conditions of gas exchange, the primary role of the respiratory 

system, are related to the characteristics of the curve. During the inflation (inspiration) and 

the deflation (exhalation) processes, the respiratory system changes its volume (measured 

in L (= 10~^m^) or mL), lung (alveolar) pressure as well as the pleural pressure (the 

pressure of the thin Uquid film that couples the lungs and the chest wall pleurae). The 

pressure, p, refers to the interpleural pressure difference (i.e. the difference between the lung 

pressure and the pleural pressure) measured in water head [cm-H20] (1 cmH20 = 98 Pa). 

Clinical p-V curves are commonly obtained for an anesthetized human subject in supine 

position by sequentially adding (or withdrawing) incremental gas volmnes (~ 50-100 mL) 

in a stepwise manner (with a duration of ~ 5 seconds per step) [1,2]. Fig.l is a typical 

inflation p-V curve, consisting of a nearly Unear region of high compliance (i.e. large 

dV/dp) sandwiched between two segments with low compliance at low and high pressure 

regions. The shape of the p-V curve is affected by two mechanisms, the distension of the 

elastic respiratory wall tissue components and the recruitment ('pop-open' mechanism) 

of the alveoli. The latter is the opening of alveoli overcoming the surface tension at 

the interface between the gas and the liquid film lining the alveolar surface. A pressure 

increase (i.e. an increase in the interpleural pressure difference) results in the recruitment 

of a greater number of alveoli. The high compliance is believed to be associated with both 

the distension of open parts of the Ixmgs and the (alveolar) recruitment of collapsed parts 

of the lungs [3]. Some protective ventilation strategies, based on patients' quasi-static p-V 

cm-ves, have been proposed for lung disease patients in intensive care units. Amato and 

coworkers [4,5] demonstrated, based on their clinical study involving patients with acute 

respiratory distress syndrome (ARDS), that a ventilator strategy guided by the p-V curve 

resulted in reduced lung trauma, a high weaning rate and improved survival compared with 
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a conventional ventilator strategy without the p-V curve guidance. Also, a recent ARDS 

Network report [6] on a clinical study involving 861 patients shows lower mortality in the 

group treated with lower tidal volume than in the group treated with traditional higher 

tidal voltmies. Although a use of p-V curves is not mentioned, the report underscores the 

importance of optimized ventilator strategy. 

In order to quantify the characteristics of p-V curves as well as their changes observed 

in clinical settings, various p-V model equations have been proposed [7-12]. Parameters in 

model equations are determined from statistical processing of cUnical data. It is important 

that these parameters should have some physiological interpretations. Also, to understand 

the shape of p-V curves in terms of mechanical behavior of lungs, multi-compartment lung 

models were developed and used to obtain information on the effects of lung elasticity and 

a degree of alveolar recruitment on p-V ciirves [3,13]. Although these analyses serve to 

relate the internal elastic conditions of the total respiratory system (TRS) to general p-V 

cmve behavior, there has been no attempt to interpret individual differences in p-V curves 

directly in terms of internal elastic properties, alveolar recruitment and their changes. 

Prom an analytical viewpoint the quasi-static p-V curves are more amenable to theoretical 

studies because at each state we may be able to apply equilibrium principles. An overall 

objective of this report is to test the hypothesis that a mechanistic model, based on the 

continuous alveolar recruitment and the elastic distension of the wall tissues, is effective in 

understanding a relation between the observed pulmonary behavior (as p-V curves) and 

the corresponding internal respiratory response (in terms of the mechanistic model). 

Continuous Equation for Quasi-Static p-V Curves 

In the past piecewise-continuous equations were used to generate such quantities as 

comphance, the lower and upper inflection points that may reflect the internal conditions 

of TRS [7-12]. There are two continuous model equations that simulate various p-V curves 

accurately over the entire range of p-V data. One is a sigmoidal (tangent hyperbolic) 

equation, and the other an error-function equation, both originally proposed by Venegas 

43 



and his coworkers [1]. Since the analytical development to follow utilizes the error function 

representation of p-V curves, its characteristics are discussed below in some detail. 

The error function p-V equation, plotted in Fig.l, may be expressed as 

where AV = Vu - VL, Vu = the upper asymptote, VL — the lower asymptote, a = 

positive constant, po — a. pressure at the midpoint (inflection point) of the curve and A 

(non-dimensional) = apoAV [1,2,14] with 

f{x) = ^ r e-*'dt er/(oo) = 1,    er/(- x) = - erf{x). 

The corresponding non-dimensional forms are, 

_ = _.ea;p(--a,2),        y = er/(^a;). (2) 

where V = [V - {Vu + VL)/2\/{AV/2),    p = (p/po) - 1,    u = Ap/2. 

Eq.(2) satisfies the following conditions: 

V{p = 0) =0, yip) = -y{-p) (antisymmetry with respect to p = po), 

dV/dp (p = 0) = A/2, F (p -> ±oo) = ± 1, dF (p -> ±oo)/dp = 0. 

A clinical data source of p-V curves we use in the present analyses are twenty one data 

sets of ARDS patients (both inflation and deflation data) in supine position by Harris et 

al [2], made available by the authors. Data sets are analyzed by minimizing the difference 

between data points and the error function model equation through the appUcation of the 

method of least squares to obtain the parameters, A,AV,po and Vu (or V^)- Plotted in 

Fig.2 (Fig.3) are 264 inflation data points (225 deflation data points) in terms of Eq.(lb), 

(y _ VL)/AV VS 0rA(p/po - l)/4. Agreement is excellent between the data and the p-V 

equation with R"^ (the coefficient of determination) = 0.99938 for the inflation- and = 

0.99907 for the deflation- data points. 
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Development of a Mechanistic Model 

An overall objective of the development of a mechanistic TRS model is to derive an 

equation for the voliune participating in the p-V variations. We consider a TRS comprised 

of a very large nmnber of elements with N = total number of elements. Based on the char- 

acteristics of a single element that are common to all elements, a distribution of elements 

is derived over a distribution parameter. The mechanistic model of an element is shown 

in Fig.4. An arbitrary element, j, consists of a cylindrical chamber containing a piston 

(with its surface area, As, [m^]), which is attached to a spring with its spring constant, 

k [N/m]. The element is closed when the piston is located at the left end of the cylinder in 

Fig.4. When pressure acting on the left end of the piston reaches a certain critical value, 

the piston suddenly moves to a new position ('pop-open' mechanism) with the elemental 

volume, VQ, in the figure indicating an elemental volume increase due to the sudden piston 

displacement of yb- Once the element is open with its volume of VQ, any further increase in 

pressure results in a volume increase as the piston moves to the right until it reaches the 

end of the cylinder. (The symbol,'", indicates an elemental quantity.) In the model the 

pop-open volume, VQ (= AsVo), and a further volume increase due to piston displacement 

represent the opening of alveoli and the elastic distension of the wall tissues respectively. 

We define Pcj as the critical pressure at which the element, j, 'pops open'. 

Referring to Fig.4, the elemental volume, V}, at p (> Pcj) is equal to VQ + ASVJ; which, 

upon apphcation of a quasi-static force balance across the piston. As (p-Pcj) = kyj, may 

be expressed as, V^- = t^o + {-^l/k) (p-Pcj)- Also the piston position of an element reaches 

its stroke Umit of yr when pressure, p, reaches {pcj + {k/As)yT)- The mechanistic model of 

an element, therefore, goes through three stages in the inflation process — closed, open & 

unsaturated (i.e. yj < yr) and open & saturated (i.e. yj = yr)- The model assumes that 

the critical 'pop-open' pressure, pcj, as well as the location of the piston for open elements, 

yj, vary from element to element at an arbitrary quasi-static state (p, V), and that other 

quantities such as fc, Ag, VQ and yr are constant and common for all elements. The energy 
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level of an open and unsatiirated element, j, consists of the activation energy required to 

pop open the element, tjA, and the energy stored in the spring, tjs^ For tj A, we assign 

the compression/expansion work under constant pressure; i.e. tjA = PcjVo; while, tjs is 

equal to kyj/2, which may be expressed in terms ofpcj as tjs = iAl/2k){p-Pcj)'^ from 

an application of the force balance. 

In summary, at a quasi-static (-equilibrium) state at p = p, a TRS element, j, belongs to 

one of the following states: 

if   p < Pcj, the element, j, is closed with Vj = 0,    e} = 0. 

if   p^j = p, the element, j, pops open with Vj = Vo,   tj = PCJVQ. 

if   p - {k/As)yT < Pcj < P,    the piston of the open and unsaturated element, j, 

moves to a location, yj, with Vj = VQ + AS yj,  tj = PCJVQ + {Al/2k){p - Pcj)"^- 

if   Pcj <P- {k/As)yT, the piston of the open and saturated element, j, 

remains at the stroke limit, yr, with Vj =Vo + As yr,   tj = PcjVo + {k/2)y^. 

The state of an element follows the sequence above during the inflation process as p in- 

creases. To obtain an exphcit form of the distribution function of TRS elements over the 

distribution parameter, Pcji we focus on open and unsaturated elements, for which the 

elemental energy shown above may be rewritten as, 

.      . ,^       ^l\ (       ^^0x12     Vo/^       k%\ 
ej {open, unsaturated) =  2J^[Pcj - [P - -^)\   '^Y\~A^)' 

According to the Boltzmann statistical model ([15,16] for example), which assumes that 

there is no limit in the number of elements per energy state, the most probable distribution 

Nj/N (a fraction of elements at an energy level, tj), may be expressed as 

Nj/N = e~^^^ / 2Z^~   ^^        ^^ ~ "^i^sp^cified constant) (4) 
'        3 

A substitution of Eq.(3) into Eq.(4) with the summation replaced by an integral over the 

whole range of Pcj for a large number of elements, yields 

eJ-i{p-Pcj-^vo)yjyp(4{p-^ (5) 
dNj 

Ndpcj 
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where ^ = {Al/k) /3. It should be noted that the integration in the denominator ranges 

from - oo and + oo. As summarized above, any arbitrary element remains active (open 

and unsaturated) only in a certain range ofpcj] therefore, the appUcation of Eq.(5) over 

the entire range of — oo < Pcj < oo assumes that the distribution function that is valid for 

active elements is also appUcable in evaluating the number of closed as well as saturated 

elements. Then, upon performing the integration of the denominator in Eq.(5), we obtain 

for dNj/N{= a number fraction of elements, for which the magnitude oipcj ranges between 

Pcj and pcj +dpcj), 

'4=f-dV.,,        /=(|)*-p(-f.(p-p.,-Av„f) (6) 

Noting that elements, j, with pcj in the range of 0 < Pcj < p, are open at p = p, and 

that (k/As) VT (= B) is the pressure at which an element j with pcj = 0 reaches the piston 

stroke limit of j/r, the voliune change with pressure needs to be evaluated for the following 

two pressiire ranges; pressure range 1:    0 < p < JB and pressure range 2:    B <p. 

Pressure Range 1:        0 < p < B 

Since the pressure is below B (the threshold pressure for the onset of saturation), all 

open elements are active (unsaturated) with yj < yr- Then the total volume, Vp{= V{p = 

p) - y{p = 0); i-e- a volume change from the state of p = 0), participating in the inflation 

process is, 

/       (VQ + Asyj) f{p = p) dpcj + Asyj  /        /(p = p) dpc 

The first term on the right hand side represents a volmne increase due to the elements that 

pop-open, followed by a piston displacement (y^ = i4^(p - Pcj)/k from the force balance) 

during the inflation process from p = 0 to p = p; while, the second term, noting 

/•oo fOO 

/        f{p = P) dpcj = /(P = 0) dpcj, 
Jpcj=P JPC3=0 

accounts for the elements that are already open at p =0 and the piston displacement 

yj (= Agp/fc) is the only mechanism available for the volume increase. 
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After expressing yj in terms of p and pcj as shown above, the equation may be written as, 

^^ = ^l| 
/P-A A2 Ja r°° A^ ft 

(2Vb + ^ t) • exp{- 1*2) dt + J^   ^p- exp{- ^z^)dz (7) 

where A = {k/As)yb,     t = -z = {p-Pcj - k Vo/Aj). 

Pressure Range 2:       B <p 

In this pressm-e range, the elements with 0<pcj <p-B as well as the elements that 

are already open at p =0 are saturated (i.e. yj = yr for the elements); while, the elements 

with p — B < Pcj < p remain unsaturated (i.e. yj < yr); therefore, 

fP-B rP      ^ 
Vp =N (Vo+ ASVT) • f{p = P) dpcj +N (Vb + Asyj) ■ f{p = p) dpcj 

Jo Jp-B 
/•CX) 

+ N       Asyr ■ f{p = p) dpcj- (8) 
Jp 

Eqs.(7)(8), after integration, become. 

hip) VpiO <p<B) = NVo[h + 1^(1 - h) - ^^ +^3(P)], (9a) 

VA   B<p   ) = ivt/o[/i + ^(l-/i) + ^/4 h     +^:i + l73(p)       (96) 
2^/iFC 

where 

h=erf{C),    l2{p)^exp{-C\^-lf)-exp{-C%    h{p) = erf{C{^-l)), 

h = erf {0(1 - y^o)),    h = exp{-C\yTo - I?) - exp{-C^), 

C={pi2)     -A,    yTo = yT/yo = B/A. 

Therefore, the mechanistic model yields the following p-V equation; 

V{0<p<B) = Vu 

+ NVc 
-/(l-/i).p     ^   s     yro + 1     ^ro-1   r   , h-h{p) K (-Z-VTO) h + 

V{B<p   )     =Vu- 

2      M     '''"^ 2 2        "' •     2^C 

NVo{yTo + l) ,   NVo{yTo + l) + /3(P). 

+ /3(p)),    (10a) 

(106) 
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In order to relate the present TRS model, intended to describe the internal respira- 

tory conditions, to the p-V curve that quantitatively describes overall variations in TRS 

conditions, an additional condition that needs to be satisfied is conservation of energy. For 

a quasi-static process from an initial state oi {p = 0,V = V{p - 0)) to a final state of 

(p = py, V^ = V(p = p/)) (p/ = the pressure at the end of a measured p-V curve), the 

conservation of energy neglecting any dissipative mechanisms may be written as, 

pV{p=pj) 
AUi=U{p = pf)-Uip = 0)) = pdV, (11) 

Jvip=o) 

where U{p) represents the total energy of TRS at p = p to be evaluated from our mecha- 

nistic model; while the right hand side of the equation is work associated with the inflation 

process that must be evaluated from the p-V model equation. A further development of 

the energy equation will be discussed in the next section. 

Mechanistic Model vs Error Function p-V Equation 

Relations between the parameters in the error function p-V equation and the pa- 

rameters in oiu- mechanistic model are derived based on the observation that the p-V 

relation, Eq.(lOb), for the high pressure region as well as the corresponding equation for 

the local compliance, 

jj^ (fl < p) = ^^°fa"^° + 1) . J^ . eJ-C^^ - if 
dp^     -^' 2 0rpo \       ^A      ' 

become identical to the error function model equation, Eq.(l), 

if we set 

WoCyro + 1) = Ay,    A{={k/As)yo) =Po.    C (= [^^'^ • A) =^ k.      (12) 
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Before further developments are made on the mechanistic model, our results are summa- 

rized below, based on the parametric relations, Eq.(12), between the error function p-V 

equation and the model. 

Pressure - Volume (p-Vp) Equation: 

T/ /        -      ^    \ ^^     (T<yTOM       r \   ,   yro - 1 r Vp (po • VTo <p) = ^   , 1 h + nrvi - ''i) + —o— ■'4 
VTO +1 \^ -^ ^ 

-|| + ^/3(p)|.      (13a) 

Pressure - Volume (p - V) Equation: 

VU + VL 
V{0<p<po-yTo) = 2 

V{po-yTo<p)        =^^4^ + ^^3(P) (136) 

where   h = erf{C),        hip) = exp{-C^ f) - expi-C^), 

hip) = erfiCp),        h = er/(C(l - y?5)), 

h = exp{-C^ ivTo - 1)') - exp{- C%        C = v^A/4. 

Distribution Function: 

-^ = F®,        F(p) = -^ ■ eM- \ l^^t) (13c) 
N • dpcj VSTT a ^    l^      cr 

where       Pcj =Pcj/Po,        cr = (8/n)^/A. 

The model-based p-V equation, Eq.(13b), consists of two regions. The solution for the 

high pressure region is identified with the error-function p-V equation. The p-V equation 

for the lower pressure region as well as the boundary pressure between the high- and 

low-pressure region contain the parameters of the p-V equation. A, po, AV, Vu (orV/,)), 
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and an additional parameter, yro. Conservation of energy, Eq.(ll), is utilized to find the 

magnitude of yro- Similar to the p-V model equation, Eq.(13b), the evaluation of Eq.(ll) 

depends on the magnitude of the final pressure, pf, relative to the boundary pressure, 

POVTO, between the high and the low pressiu-e regions of the model-based p-V equation. 

As will be shown later in the analyses of clinical data, the magnitude of yro is less than 

unity; hence, the conservation of energy is further developed for the case of po-yro < Pf (i-e. 

yro-l < Pf{= Pf/Po - !))• Accordingly the left hand side of Eq.(ll) may be evaluated 

from the elemental distribution function, F{p) of Eq.(13c), along with the elemental energy 

summarized in the paragraphs preceding Eq.(3), yielding, 

AC/ = 
NplAl L 

Pf+l-yro j 

(Pcj + o^ro) • F{P = Pf) dPcj 

+ r^ ^ (pcj+|(P/+1 - Pcj? )-F{p=Pf) dpcj 
Jpf+l-VTO 

NplAl I 
Py+l-J/TO 

(Pcj - Pf) F{p = Pf) ^ JC] 

+ 
2   Jo 

F{p = Pf) dpcj +Pf F{p = Pf) dpcj 
Jo 

+ 
1   /-Pz+i 

'Pf+l-yro 
/        ^    F{p = pf)dpcj + -   _       ^   iPcj-Pf)^F{p = Pf)dpcj 

NplAl 
-^[h- h{Pf)] + \ yUhiPf) + h] + lpf[h + h{Pf)] 

^\ih-I.)^i-^{iih-I.)-^%^-I^) 

- \ {{expi-C) - (1 - yro) • exp{-C\\ - yro)')]) (14a) 

The right hand side of Eq.(ll) becomes, 

rr.V(p=P/) 

\/(p=0) 
/ pdV = PfV{p = Pf)-   / V(0<p< poyTo)dp + / _   ^(poyro < Pf)dp 

Jv(p=0) Jo JpoVTO 

PoAV 

yro + l 
-—T:—-iPf + 1) • h{Pf) + ^ h-^rVTQ- h TTA 
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/I/T0--1 4 2 9 

yro + l   r^ (14b) 
'yro- 

It should be noted that the factors, NplAj/k, in Eq.(14a) and poAV/{yTo + l), in 

Eq.(14b) are identical, thus dropping out of the conservation of energy, Eq.(ll), as common 

factor. 

The p-V equation constructed from the mechanistic model, Eq.(13b), contains five 

unknowns (A, po, AV, Vu {or VL), VTO), the magnitudes of which are determined by min- 

imizing the differences between Eq.(13b) and a specified data set based on the method 

of least squares, under the constraint imposed by the conservation of energy, Eq.(ll) and 

Eq.(14). Because the p-V equation consists of two equations, one for the high pressure 

region and the other for the low pressure region, and also because algebraic equations re- 

sulting from the appUcation of the method of least squares are non-linear, a computational 

program is developed to find the five unknowns. The program requires a set of initial guess 

values for the five unknowns. The parameters. A, po, AV, Vu, of the error function p-V 

equation, Eq.(lb), are used for initial values with the initial value for the fifth unknown, 

yro, being set to zero. The program employs the Newton-Raphson iterative technique 

around the value of yro to minimize the errors between Eq.(13b) and the data points 

while conservation of energy is satisfied exactly, until the five unknowns converge to a set 

of solutions. 

Discussion of Results 

We begin with physical interpretations of parameters of p-V equations in terms of the 

mechanistic model. The first equation in Eq.(12) is, 

AV = NVoivTo + 1) 

= NiVo + AsyT). 

Noting that yro is a ratio of the piston displacement by elastic tissue distension to that 

by alveolar recruitment, AV of the error function p-V equation is the maximum possible 
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volume available for inflation, and is related to the mechanistic model as a product of the 

total number of elements, N, and the elemental volume available for inflation through both 

the 'pop-open' mechanism, VQ (corresponding to the volume increase due to the alveolar 

opening), and the piston displacement, ASVT (corresponding to the elastic wall distension of 

TRS). Vu is related only to the solution of the high pressure region as Vt; = V {p -^ oo). 

On the other hand, under the two-region p-V equation of the mechanistic model, the 

definition of AV^ needs to be elaborated. Since VL ^ V{p-^ -oo) in the lower pressure 

solution of the mechanistic model, AV should be interpreted as the maximum possible 

volume change when the high pressure solution is extended into the low pressure region. 

The second equation, po = (k/As) yb, indicates that the pressure at the midpoint of the 

p-V curve is an equivalent pressure required to displace the piston against the spring force 

over the pop-open displacement of yo- It may be rewritten as poVo = k yQ-, therefore, poVo/2 

is the spring energy required to displace the piston by the amount, yb- This observation 

implies that the pressure, po, is related to both the alveolar recruitment (through yo) and 

the elastic tissue distension (through k). A higher magnitude of po implies a larger value 

of the spring constant 9wall elasticity) and/or a greater amount of energy required to 

pop-open the elements. 

The non-dimensional parameter. A, is related to the parameter, C, of the mechanistic 

model through the third equation in Eq.(12), C = (\/^/4) A. As may be seen from Eq.(9), 

the parameter, C, appears as a factor in the function, hip)- Since the function, /3(p), is a 

monotonically increasing function of p, an increase in volume, V, becomes more sensitive 

to a change in pressure when the magnitude of A is larger. The observations above may 

be further extended in terms of the distribution of elements over the critical pop-open 

pressure, Eq.(13c). The number distribution of elements is a normal distribution with its 

mean at p{= p/po - 1) and a standard deviation, a, which is proportional to 1/A. Since 

the peak of the distribution is located at Pcj = p, the rate of increase in the number of 

open elements increases (decreases) for p < Po (p > Po); an observation consistent with 

53 



the fact that po is a pressure at the inflection point of the error function p-V equation. 

A larger value of A indicates a smaller standard deviation, indicating a higher peak in 

number density and a sharper distribution. 

The p-V equation, Eq.(13b), of the mechanistic model consists of the low pressure 

solution in which all open elements are unsaturated, and the high pressure solution where 

some elements are saturated (fully-distended). The equation has three pressure -dependent 

terms. A term proportional to p in the equation for the low pressure region (the third 

term) is due to the elastic distension of the elements that are open at p=0. Two other 

pressure-dependent functions are hip), originating from volume changes due to the piston 

displacement, and hip), which results from both the pop-open volume and the piston 

displacement. The former is symmetric with respect to p{= p/po - 1) = 0, i.e. hip) = 

h{-p)\ while, the latter is antisymmetric, i.e. /3((p) = -h{-p). Furthermore, the p-V 

equation in the high pressure region, V (po • yro < p), is independent of the magnitude of 

yro] while, the solution Vp is sensitive to the magnitude of yro in both the low and the 

high pressure regions. 

Fig. 5 shows six representative data sets of patients with ARDS as well as the cor- 

responding p-V equation, Eq.(13b), derived from the mechanistic model for the inflation 

(I) process. Fig.6 is a plot of [the volume predicted by model-based p-V equation at a 

specified pressure] vs [the corresponding data volume] for all inflation data points from 

the twenty one data sets. Both figures show very good agreements between the model and 

the chnical data with R^ for Fig. 6 being equal to 0.9993. (Various parameters for all 

data sets are summarized in Table 1.) The soUd (dotted) curves in Fig. 5 are the solution 

of the low (high) pressure region (i.e. the first (second) equation in Eq.(13b)) with the 

composite solution indicating that the p-V curve is not antisymmetric with respect to PQ. 

However, since the error minimization is applied between the antisymmetric error function 

p-V equation, Eq.(lb), and the mechanistic model equation, Eq.(13b), the two cvirves are 

very close to each other in the low pressure region of 0 < p < POVTO- Ranges of various 
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parameters listed in Table 1 are, 

A = 1.5 - 5.5, po = 13 - 31 [cmH20], 

AV^ = 1 - 4 [L], VTo = 0.289 - 0.695. 

Since the boundary pressure between the low- and the high- pressure solution, po • VTO, is 

low compared to the end-of inflation pressure for most data sets, the antisymmetric high 

pressure solution is applicable over a major part of the data sets analyzed. It is also noted 

here that if the condition of yro = 0 (neghgible elastic tissue distension) is imposed, the 

solution of the mechanistic model, consisting solely of the solution for the high pressure 

region becomes identical to the (antisymmetric) error function p-V equation although the 

conservation of energy is not satisfied by the condition. Fig.7 is presented to show the 

magnitude of the left hand side of conservation of energy divided by poAV as the abscissa, 

and (-l)-(the right hand side of conservation of energy divided by poAV) as the ordinate 

for all data sets when yro is set to zero and the parameters (A, po, AV, VL) of the error 

function p-V equation are used for the evaluation. The figure shows that the left and right 

hand side of conservation of energy have opposite signs for all data sets, indicating that 

conservation of energy is not satisfied at yTo = 0. 

The range of yro obtained by the mechanistic model indicates that the fraction of total 

volume available for the pop-open mechanism (alveolar recruitment), NVQ/AV, which is 

equal to 1/(1 + yro), ranges between 0.59 and 0.78. 

Summary 

A mechanistic model of TRS elements, each consisting of a piston-spring system, is 

developed to analyze quasi-static pressure-volume curves for the inflation process. The 

model accommodates both the alveolar recruitment (in terms of the critical pop-open 

pressure) and the elastic distension of wall tissues (in terms of the piston displacement). 

Model-based relations (Eq.(12)) are established between the parameters in the p- V curve 

represented by the error function equation, Eq.(l), and in the mechanistic model. Under 

the constraint imposed by conservation of energy, the parameters of the model-based p-V 
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equation is determined for each clinical data set by a computational minimization proce- 

dure between the equation and the data points, results of which show excellent agreements 

between the two (Figs.5 and 6). The p-V equation thiis derived, Eq.(13b), consists of two 

equations; one for the low pressure region where all open elements are active (= unsatu- 

rated) as the piston of an element is yet to reach its stroke Umit, and the other for the high 

pressure region where some open elements are saturated. The elemental distribution over 

the critical pop-open pressure, Eq.(13c), is a normal distribution with its shape (the mean 

and the standard deviation) affected substantially by the magnitudes of two parameters 

in the mechanistic model, A and po- 

The present analysis is for the inflation process. The deflation process is different 

from the preceding inflation because of the absence of the pop-open mechanism, and also 

becasue of a possibility of airway closure. However, a certain aspect of the deflation process 

may be predicted from the inflation analysis; which will be discussed in Prat II as a validity 

test of the mechanistic model. Wide ranges covered by the parameters. A, po, AF and 

yxo, of the p-V equation and the mechanistic model need to be interpreted in terms of the 

shape and the range of the p-V curves as well as in terms of the elemental distribution and 

its changes along the corresponding p-V curve; which will also be discussed in Part II. 
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Figure/Table Captions 

Table 1. Summary of Inflation Data Analyses. 

Pig.l. A typical quasi-static pulmonary pressure-volume curve. 

Fig.2. Error-function p-V equation and inflation data points. 

Fig. 3. Error-function p-V equation and deflation data points. 

Fig.4. A schematic diagram of mechanistic model of TRS element. 

Fig.5. Model-based p-V equation, Eq.( 13b), vs data points for inflation process. 

solid: solution for low pressure region, 

dotted: solution for high pressure region. 

Fig.6. V (volume predicted by model-based p-V equation) vs V (volume of data) 

for a specified pressure. 

Fig.7. MJ/PQ • AF vs (-1) • JpdV/po • AV^ when yro = 0 
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Table 1. Summary of Inflation Data Analysis. 

Data No A Po AV VL VTO 
cmH20 L [L] 

A.l. 2.9652 22.398 2.3726 -0.0709 
2. 2.9578 22.411 2.3772 -0.0723 .   0.347 

B.l. 2.7173 21.981 1.5612 -0.0762 
2. 2.7304 21.999 1.5559 -0.0728 0.359 

C.l. 3.3532 25.082 1.6193 -0.0365 
2. 3.3664 25.073 1.6139 -0.0342 0.329 

D.l. 1.6273 13.324 3.1567 -0.5727 
2. 1.9257 13.999 2.8392 -0.3542 0.379 

E.l. 2.7160 30.361 1.6216 -0.0768 
2. 2.6497 30.817 1.6847 -0.0923 0.480 

F.l. 2.6029 23.880 1.5066 -0.0962 
2. 2.6423 23.863 1.4874 -0.0873 0.365 

G.l. 1.7288 20.156 3.0989 -0.3645 
2. 1.9277 20.731 2.8704 -0.2138 0.447 

H.l. 1.8901 14.959 1.7905 -0.2185 
2. 2.0421 15.405 1.7129 -0.1563 0.431 

I. 1. 3.5379 25.248 2.7570 -0.0350 
2. 3.5449 25.232 2.7508 -0.0333 0.368 

J. 1. 2.7981 26.208 3.7326 -0.1583 
2. 2.7364 26.830 3.9129 -0.1887 . 0.474 

K.l. 2.4296 17.895 1.3424 -0.0997 
2. 2.4708 17.951 1.3304 -0.0916 0.440 

L.l. 1.2500 11.592 1.2470 -0.2829 
2. 1.5318 13.213 1.1256 -0.1678 0.695 

M.I. 3.2725 29.865 3.9075 -0.0861 
2. 2.9972 30.327 4.2463 -0.2179 0.626 

N.l. 2.7915 15.310 1.6284 -0.0705 
2. 2.8046 15.297 1.6219 -0.0681 0.358 

0.1. 1.9487 18.374 1.8797 -0.2423 
2. 2.1412 18.837 1.7753 -0.1696 0.389 

P.l. 2.4566 26.982 1.3277 -0.0787 
2. 2.4553 27.032 1.3278 -0.0773 0.467 

Q.l. 2.1027 19.314 1.3316 -0.1279 
2. 2.2041 19.583 1.2941 -0.1004 0.389 

R.I. 1.1672 13.986 2.0685 -0.5149 
2. 1.6209 16.352 1.7396 -0.2530 0.406 

S.l. 3.1381 26.802 3.1306 -0.0851 
2. 3.0894 26.925 3.1878 -0.1030 0.407 

T.l. 5.4709 30.038 1.7695 -0.0097 
2. 5.4708 30.037 1.7694 -0.0097 0.289 

U.l. 3.2818 24.439 2.8956 -0.2075 
2. 3.2819 24.349 2.8956 -0.2075 0.327 

1. Obtained by applying the method of least squares 
along with error function p-V equation. 

2. Results from the mechanistic model. 

58 



o 

o 
-^ 

<D 
^ 
3 
o 
0} 
E 
3 
o 

O'—« > 
coO 2) 

CM 3 
(0 

I 2 
Q. 

b £^ 
o OS c i^^^^ o 

E 
3 

o 
CO 

«p 
(0 
CO 
3 
o- 
(0 o o 

1— ^ 
< 
T^ 

D) 
_l U- 

> 

59 



(0 
c 
o 
Q. 

to 
■D 
C o 
(0 

T3 
C 
<0 
c g 

4—• 
03 
3 

C g 
o c 
3 

Lil 

cvi 
d) 

60 



CM 

-1^ ^ a; 
< 

^ 
-t  -^ 

(0 *^ c 
o 
Q. 
CO 

■♦-• 
CO 

T3 
C 
g 

T3 
C 
(0 
c 
o 
(0 

D- 
0) 
> 

I 
Q. 
C 
O 

B c 
3 

111 

CO 

U- 

61 



Pop-Open Volume 

A 
(Surface Area) 

k (Spring 
Constant) 

Fig.4. A Schematic diagram of meclianistic model of TRS element 
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Chapter 3. A Mechanistic Model for Quasi-Static Pulmonary Pressure-Volume 

Curves: Examination of Clinical Data 

Abstract 

A p-V equation is developed in Part I based on a mechanistic model of a total respiratory 

system. In Part II, twenty one p-V data sets of patients with acute respiratory distress 

syndrome are examined using the mechanistic model, relating the quasi-static pulmonary 

p-V curve to the corresponding respiratory conditions in terms of a volume increase due 

to alveolar recruitment and due to elastic tissue distension, the elemental distribution 

ranging from the closed elements to the satinated (open and fully-distended) elements 

and its changes with pressure. The compliance (local gradient) of p-V curves is shown 

to represent the change in the total volume of saturated elements; while the pressure at 

the maximum compliance is identified as the location where a maximum rate of increase 

occurs both in the volume increase due to alveolar recruitment and in the voliune increase 

due to an increase in the saturated elements. Validity of the model is provided by its 

predictions of the upper volume asymptote and the maximum possible volume change of 

the corresponding deflation process which agree well with the clinical data. 
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I   

•            * 
m 

Nomenclature 

As piston surface area on which pressure is acting 

B {k/As)yT = Po • VTO 

C =   y/^K/A 

f, F distribution functions (Eq.(3)) 

Ii{i = 1-5) functions defined in Eq.(2) 

k spring constant [N/m] 

N total number of TRS elements 

■^^open total nmnber of open elements 

Nsat total mimber of saturated elements 

■i^unsat total number of unsaturated elements 

Nj number of elements at energy level j 

P pressure (interpleural pressiore difference) 

P non-dimensional pressure, p/pQ - 1 

Pcj critical pressure at which an element, j, 'pops open'. 

Pcj Pcj/PO 

Pf pressure at the end of inflation 

Po pressure at the inflection point in model equation 

PID pressure at the intersect of inflation and deflation processes 

V volume 

V 'pop—open total 'pop-open volume'                                              ■ 

Vsat total volume of saturated elements 

'open —sat \P ^^ 0) total volume of elements open at p = 0 when they are all saturated. 

Vp volmne change from the state of p = 0 

VL{U) lower (upper) boimd of volume 

vS an (imaginary) upper boimd of vohime for the deflation process 
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V non-dimensional volume, {V - {{Vu + VL)/2)/{AV/2), (Eq.(lb)) 

% volume of an element j 

l\V VU-VL== NVoivTo + 1) 

% 'pop-open' volume (= Agyo) 

Vi piston displacement of an element j 

yo = VoM, 

VT piston stroke limit 

VTO yr/yo 

Greek symbols 5- 

a constant of proportionality 

A Q;poAy(non-dimensional parameter) {Eq.(lb)) 

a (8/7r)i/2/A, Standard deviation (Eq.(3b)) 

o-D <T-po 

Superscript: 

Acronym: 

ARDS 

TRS 

related to a single TRS element 

deflation process 

acute respiratory distress syndrome 

total respiratory system 
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Introduction 

In Paxt I, the error function p-V model equation is shown to agree well with clinical 

p-V data. The equation and the corresponding non-dimensional form are, 

V = yu-^+(^) • e^/(c'(^ -1)) >   y=^^ficp)-     (!«' b) 

where AV — Vu — VL,VU = upper volume asymptote, VL = lower volume asymptote, 

Po = a, pressure at the inflection point of the curve,        C = y/ixK/A, 

V = [V-{Vu+ VL)/2]/{AV/2),        P= (P/PO) - 1. 

The mechanistic model of a TRS element developed in Part I is a piston-spring- 

cylinder system with the alveolar recruitment and the elastic tissue distension represented 

respectively by the critical pop-open pressure, Pcj, and by the displacement of piston 

against the spring force, yj = A^{p-pcj)/k {Ag = piston surface area, k = spring constant). 

Based on the error function p-V equation and the mechanistic model, and allowing 

for a distribution of elements over pcj, the following model-based p-V equations as well as 

the corresponding distribution function of TRS elements are derived, 

V{0<p<po-yTo) = 7i  

—TT   -^3(p) + ^—7: {p + 1 - VTo) 5—- 
TO + 1 \ 2. I 

+ ^il ( WP) + ^^^(P + 1 - J.0) ----4 + ?^^^^ I,   (2a) 

V{po-yTo<P)= 2 + -^-^3(p), (26) 

^ = m,    m = -jl—eU-\f'^-^-^^r).       (30) ■dpcj V^ncTD \    2'- (7D J 

F{p),        F{p) = -^.exp(-\[?^i^]'\ (36) 

where 

/i = erfiO,    hip) = expi-C^f) - exp{-C%    h{p) = erfiCp), 

h = erf {0(1 - yro)),    h = ex^-C^ (y^o - 1)') - exp{- C^), 

CTD = (8/7r)2 po/A,        a = (8/7r)5/A       Pcj = Pcj/Po- 
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Following the development of the mechanistic TRS model and the discussion on relations 

between the error function p-V equation and the the model-based p-V equation as well as 

between parameters of the two equations in Part I, our discussions here concentrate on 

various results that may be derived from applications of the model to the clinical p-V data 

sets. 

Relationship between Inflation and Deflation Processes 

Although this report is focused on the mechanistic model for the inflation process, 

there exist certain relations between the inflation and the deflation process that may be 

evaluated from the present inflation analyses. We consider a general case in which a 

quasi-static inflation process proceeds to a pressure, pio (= end-of-inflation pressure = 

initial pressiure of the corresponding deflation process), followed by a quasi-static deflation 

process. In terms of the mechanistic model, TRS elements at p = pm with its critical 

pop-open pressure less than zero {pcj < 0) are still closed and have not contributed to 

the volume change during the inflation process from p = 0 to p = piD', hence, we may 

postulate that only those elements that are open at p = piD participate in the deflation 

process to follow. Therefore, V^ {=a.n (imaginary) upper bound of volume for the deflation 

p-V curve) may be viewed as the volume which would be attained if the elements that are 

open at the end of the inflation process, p = pm, were all fully saturated; i.e. 

VS = V{p = piD) + 
/•OO 

/    NVoil + VTo) • F{p = PID) dpcj - V^{p = PJD) 
Jo 

The first term on the right hand side is the inflation volume at p = pio • The second integral 

term is the volume summed over all open elements at p = pm when they are saturated, 

and the last term is the actual volume increase in the inflation process from p = 0 to 

P = PiD with the two terms in the square bracket together representing a volume increase 

above V(p = pw) if all open elements at pio were saturated. Under the assumption 

that the magnitude of piD is greater than B (= po yro) which is valid for all data sets 

analyzed, Eqs.(2,3) along with Eq.(9) of Part I for Vp are used to evaluate the right hand 
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side, yielding 

rd      ..   .        2Ay ,      AV^ 

+ 2(^^)l^-(^-M-h + (l-yTo)-h] (4) 

The clinical data sets made available to us contain both the inflation and the deflation p-V 

curves for each patient with ARDS; however, the p-V curves are obtained separately for the 

inflation and the deflation process. (See [1] for the procedure of data acquisition.) Fig.l 

shows inflation (unfilled) and deflation (filled) data points, as well as the corresponding 

inflation (I) and deflation (D) curves for a typical data set we examined. The inflation 

curve in Fig.l is Eq.(2) of the mechanistic model; while, the deflation curve is obtained 

by straight applications of the method of least squares between data points and the error 

function p-V equation, Eq.(l). As may be observed from Fig.l, the end-of-inflation point is 

quite difi'erent from the initial deflation point for most data sets. To accommodate the data 

into the analysis based on Eq.(4), the initial deflation data point is translated horizontally 

imtil it meets the inflation p-V curve, the pressure value of which is then defined as pm 

in Eq.(4), as indicated in Fig.l, implying that the deflation curve preceded by an inflation 

curve is assumed to be the same as the deflation curve of data sets horizontally translated 

until the beginning-of-deflation data point is on the inflation curve. 

Fig. 2 presents V^ of Eq.(4), predicted from the mechanistic model of the inflation 

process, plotted against V^ of the error-function p-V equation, Eq.(l). (For a complete 

list of numerical results relevant to the analysis, see Table 1.) A maximum and a minimum 

of a difference, V^ {Eq.{4:)) - V^ iEq.{l)), axe 0.1113 [L] and -0.0352 [L] respectively with 

an average of the difference = 0.0460 [L]. Agreements are very good in view of the fact 

that Eq.(4) predicts the upper volume asymptote of the deflation process in ternas of the 

conditions predicted by the mechanistic model of the corresponding inflation process; thus 

indirectly supporting a certain degree of vaUdity of the mechanistic model. Also, the fact 

that the magnitude of pjo is determined from the horizontal translation of the deflation 
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curve indicates that the deflation process may be relatively insensitive to the inflation 

history prior to p = pio- On the other hand, Eq.(4) for Vy contains piD as variable for 

specified inflation conditions, indicating that the magnitude of V^ (i.e. the shape of the 

deflation curve) changes as the end-of-inflation pressure is varied. A similar statement 

has been made previously by Jonson [2]. A closer examination of Fig. 2 indicates that 

the mechanistic model slightly underpredicts V^ compared to that of the error-function 

equation for most of data sets. This could indicate either a quantitative limitation of the 

mechanistic model or the effects of the inflation process preceding the deflation. If yro is 

set to zero, Eq.(4) is reduced to 

VS (VTO = 0) = % - Ay (/i - h (PID))/'^- (4a) 

Fig.3 plots Vy of Eq.(4a) vs V^ of the error function p-V equation for the deflation process. 

Agreements are fairly good between the two. Results presented in Fig.3 reflects that the 

p-V curve is relatively insensitive to the magnitude of yro] a reason why the antisymmetric 

error function p-V equation (for which yro is zero) fits well with p-V curves. 

The error function p-V equation fits well not only with the inflation but also with the 

corresponding deflation processes as shown in Part I. Therefore, regardless of the actual de- 

flation process, we may deflne AV^ (A V of the deflation process) as the maximum possible 

volume change of a specified TRS during the deflation process; which, in our mechanistic 

model, yields the following equation for AV^ in terms of the inflation parameters: 

/•OO 

AV^^VoivTo + l) /    N-F{p = pjD)dpcj 
Jo 

=  ^i^+hiPlD))- (5) 

Fig.4 is Ay of deflation, AV'', predicted by Eq.(5) plotted against the corresponding AV^ 

of error-function p-V equation determined by the method of least squares. (See Table 1 

for numerical values.) Agreements between the two are reasonably good for a majority 

of data sets, except for six data sets shown in filled circles accompanied by alphabetical 
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data numbers. Shown in Fig.5 for the six data sets are their deflation data points and 

two p-V curves; one (dotted) for the error function p-V equation with the method of least 

squares appUed to determine (A'', PQ, AV^, V^), and the other (sohd) for the error function 

p-V equation with {AV^, V^) determined from Eqs.(4,5) and (A**, p^) determined by the 

method of least squares. Two curves are different in their approaches to different high and 

low asymptotes. Although agreements of the solid curves (with two adjusting parameters) 

with the data points are not as good as that of the dotted curves (with four adjusting 

parameters), the errors are small for the solid curves in view of the fact that the magnitude 

of A]/'' is quite different between the two curves, indicating that a better understanding of 

relations between the p-V equation and the corresponding intra-respiratory changes helps 

interpret various characterisitcs of p-V curves accvirately. 

Interpretation of Inflation p-V Curves based on Mechanistic Model 

Fig.6 shows ranges covered by all data sets analyzed in terms of po (the inflection 

pressure of the high-pressure solution), AV (maximum volume available for inflation in 

the high-pressure solution) and l/{l+yTo) (the fraction of total elemental volume available 

for the pop-open mechanism (alveolar recruitment), NVQ/AV), all plotted against the non- 

dimensional parameter, A. The data sets with their alphabetical data niunbers indicated 

in the figure are those to be analyzed in detail in comparative analyses to follow. (Various 

parameters of the six data sets are reproduced as Table 2. Parameters of all data sets 

are listed in Table 1 of Part I.) The range of A is between 1.5 and 3.6 except for Data 

T (A = 5.47). The six data sets (B, E, M, N, R, T) are different from each other in the 

following ways: 

1. Data set B, E and N have roughly the same magnitude in both A (=~ 2.65 - 2.80) and 

AV (=~ 1.55 - 1.68) with significantly different values for po. 

2. Data set E and T have substantially different values of A with po and AV being 

approximately the same in magnitude. 
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3. N and R also show similar characteristics of being different in A and common in po and 

AV; however, the pair covers lower range in both A and po compared to E and T. 

4. E and M are different in terms of the magnitude of AV with PQE '^ POM, ^E ~ AM- 

5. T and R represent the data sets with very high and low values of A, respectively. 

Figs. 7 and 8 are p-V and the corresponding non-dimensional p — V curves over their ranges 

of measurement for Data Set B, E and N in (a),     Data Set E and T in (b),    Data Set N 

and R in (c)    and     Data Set E and M in (d). 

Referring to Fig. 7 and noting that the dotted (broken) vertical lines are the location 

of p = Po (Po • VTO), it may be observed that the range for the low pressure solution, 

0 < p < Po • VTO, in which all elements are active (imsaturated), is very narrow compared 

to the range for the high pressure solution with an exception of Data set M, for which the 

measurement does not reach the inflection pressure, po, with po • yro > 15 [cmH20]. 

The corresponding non-dimensional (p - V) curves, based on the definitions of V and p in 

Eq.(l), represent Eqs.(2a,b) in the following normalized form: 

F(-l<p<yro-l) = 

,        2      /^,,_, ,  (l-/i),_ , ,     ^.     VTO-lr   ,  2(75-J2(p))' 

V{yTo-l<p) =h{p), (6) 

The normalization of volume transforms the two volume asymptotes, Vu and VL into 

y = -1-1 and V = —1 respectively; while, the pressure, p = po, at the inflection point 

is transformed into p = 0. With both the location of po and the volume asymptotes 

made common to all p-V cvirves, the resulting non-dimensional representations in Fig. 8 

are characterized by a single non-dimensional parameter, A. The parameter, A, is twice 

the maximum local compliance at p = po {dV/dp{p = 0) = A/2). Since the compliance 

is maximum at the origin ofp-V diagram, the first quadrant {V, p > 0) in Fig.8 is a 

region of decreasing local compliance with pressure; while, the third quadrant (V, p < 0) 

is a region of increasing local compliance with pressure.   The origin (p = 0, V = 0) of 
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dimensional p-V curves is transformed into {p — —1, V{y = 0)) on a p-V cvirve; hence, 

the physiological lower limit of p is —1. 

Fig.8 (a) compares the three data sets, B, E and N, among which the magnitude of po is 

substantially different with A and AV being approximately the same in magnitude. Three 

curves are very close to each other because values of A are similar, and the difference 

between the three appears as the extent to which the p-V curves are measured in the 

region of decreasing compliance with pressure. In Fig.8 (b) and (c) differences between 

the two data sets occur in the magnitude of A (AT > AE, A^V > A-R), resulting in the T- 

and N- curves above the E- and R- curves respectively in the first quadrant. Since the 

magnitude of po for the data set T and E are very high compared to those for N and R, 

the region of decreasing compUance covered by the T- and E- curves are narrower than N 

and R. Because both po and AV are similar in magnitudes between the two data sets in 

Fig.8(b) and (c) the shape of p-y cmrves is very similar to the corresponding p-V curves. 

In Fig.8 (d) two data sets with a high value of po (~ 30 [cmH20]) are shown. For the data 

set M the high value of po combined with a high value of AV hmit the measured range 

of the p-V cTu-ve in the region of increasing compliance only, compared to the data set E 

with a smaller magnitude for AV. 

Although the p-V diagram helps distinguish differences among p-V curves and 

effectively bring out various characteristics of each p-V curve, it is the information from 

the elemental distribution that relates varioiis parameters of p-V curves to TRS conditions 

quantitatively. On the normalized p-V plane of Fig.8 the local compliance at p = 0 

{dV/dp (p = 0)) increases with A; while, as the standard deviation, a, is proportional to l/A 

in the normaUzed number distribution, Eq.(3b), the distribution becomes sharper and has 

a higher peak as A is increased. Fig.9 is a plot of the number distribution (not normalized) 

vs the critical pop-open pressure, Pcj in [cmffaO], for the six data sets analyzed in Figs.7 

and 8. The number distribution, dNj/N-dpcj, is a fraction in the number of elements, the 

critical pop-open pressure of which ranges between pcj and Pcj + dpcj in [l/cmH20]. The 
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corresponding equation is Eq.(3a), which indicates that the maximum number of elements 

are present at Pcj = p — po with its magnitude equal to l/-\/27r • ao (= A/4 • po)- As ao 

decreases the distribution becomes sharper (oc 1/CTD) and its peak value (a ao) larger. 

(See Table 2 for the magnitude of ao for each data set.) Two distributions are shoWn in 

Fig.9 for each data set, one at p = po (with its peak at p = 0) and the other at p = p/ (end- 

of-infiation pressure) (with its peak at p = p/ - po)- The vertical line, p = po (Pf) for the 

distribution at p = po (p/) indicates the pressure above which the distribution is truncated. 

The dotted parts of the curves, as discussed in Part I, correspond to the elements that 

are open at p = 0. The normal distribution truncated at Pcj = 0 and Pcj = p (i.e. the 

solid part of the curves in Fig.9) shifts to the right with an increase in p as more elements 

become open. When p < po, the peak of the distribution Ues in the negative range of Pcj. 

It should be noted that in Data set M (Fig.9 (c)) the distribution at p = p/ lies below that 

at p = Po because the measured range never reached p = po- 

An integral of the distribution function over the critical pop-open pressure in Fig.9 should 

yield various fractions in number of elements (depending on the upper and lower limits of 

the integral) at each quasi-static state. Also an integral of a product of the distribution 

function and the elemental volume over the critical pop-open pressure should provide us 

with such quantities as the volume change due to alveolar recruitment, due to elastic wall 

distension and due to an increase in the saturated elements. The following equations may 

be obtained for changes in the number fractions: 

Fraction of the number of open elements at p = p: Nopenip = p)/N 

Nopen{p = p) I_ 
N 

(rP/po \ 
= j        F(p)dpejj=[/i+/3(p)]/2,    far   p > 0, (7a) 

Fraction of the number of saturated elements at p = p: Nsat.{P = P)/^ 

if 0 <p <po -VTO- 
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Fraction of the number of unsaturated elements at p = p: Nunsat.iP = P)/^ 

NunsatXP = P) (_ ^open - Nsat 

N \ N 

.\ _ fih- /4]/2,        if Po • VTO < P, (j ■. 
■|-\[/i + /3(p)]/2,  ifo<p<po-yTo.       ^  ' 

Fraction of the nmnber of open elements at p = 0: Nopen{p = 0)/N 

NopenjP =  0) / _ 
N 

(= 1^ F{p=-l)dpcj\ = [1 - /i]/2 (7rf) 

It should be noted that (1.) the equation for Nopen{p)/N does not include the elements 

that are open'at p = 0. (2.) the equation for Nsat.{p)/^ ^o^s not account for the elements 

that are open at p = 0 and saturated subsequently. (3.) Nopen{p = 0)/Ar is a function of 

a single parameter, A. (4.) the number fraction of unsaturated elements, Nunsat.{p)l^^ '^ 

independent of pressure for po • VTQ < P, indicating that as more elements are recruited in 

the region of the high pressure solution the same nmnber of elements are saturated. 

Similarly, the following equations are for volume changes as pressure is varied: 

Total pop-open volume: Vpop-open{p = p) 

V,op-or>en{p^p)(=NVo-^^^^)=^-^^ for   p>0.    (8a) 

Total volume of saturated elements: Vsat. {p = p) 

NsatXp) 
Vsat.iP = P){ =NVo{l + yTo) N 

^{^V- [h + /3(p)]/2,    if PoVTO < P, /g^N 
\0, ifO<p<po-yro. ^   ^ 

Total volimae of elements open at p = 0 when they are all saturated: Vopen-sat. {p = 0) 

Vopen-sat. {p = 0)(^ NVOVTO ' ^°^^"j^ ^ ^^ 

= ^T^^(1-A)    for   poyTo<p. (8c) 
2     1 + t/TO 

A number fraction of open elements, Nopen total {p = p)/N, may be derived from Eqs.(7a) 

and (7d) as, 

Nopen total {P = P) (_ Ngpenip = 0)    ,   NppeniP = P)\  _  1 + hjp) /QS 

 N V" AT + N ;-        2       • ^^^ 
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The function, l3{p) defined in Eq.(2), is an error function, the magnitude of which depends 

on A and po. Therefore, the number fraction of all open elements, Nopentotal ip = p)/N, 

has the point of antisymmetry at p = po with two asymptotes of 0 and 1. Fig. 10 shows 

Nopen total {p = p)/N vs p of the six representative data sets in solid lines. Due to the 

antisymmetry with respect to p = po, the fraction, Nopen total (p = p)/N, is exactly equal 

to 0.5 when p is equal to po as the peak of the distribution is located at p = 0. (See 

Fig.9.) Since the location of p = poyro is the boundary between the low- and high- 

pressure solutions of the p-V equation, all open elements are still active and unsaturated 

for p < POVTO- The fraction of open elements at p = POVTO is less than 0.2 for four 

data sets other than Data sets R and M for which the fraction is ~ 0.25. As pressure 

increases beyond poyroi some of the open elements begin to be saturated, the fraction 

of which, Nsat.iP = P)/N of Eq.(7b) is plotted in Fig.lO in broken lines. The number 

fraction saturated depends on yro in addition to A and po- The difference between the 

two fractions plotted in Fig.lO varies with the magnitudes of the three parameters with 

{Nopentotai/N — Nsat./N) at a Specified pressure ranging from ~ 0.28 for Data R to less 

than 0.01 for Data T. It should also be noted that the two curves are parallel, indicating 

that the rate of increase in the number of saturated elements is equal to the corresponding 

rate of opening elements, once pressure exceeds poyro- 

The number fraction of open elements at p = 0, Nopenip = 0)/A'', of Eq.(7d) rep- 

resents the percentage of elements that only experience elastic displacement, which may 

be interpreted as the elemental fraction representing a non-alveolar part of TRS such as 

airway tissues as well as a dysfunctional alveolar part which does not respond to the re- 

cruitment. Fig. 11 depicts the fraction as a function of A, the only parameter affecting the 

firaction. As Eq.(7d) shows, the fraction, Nopen{p = ^)/N, has two asymptotes of 0 (as 

A —i- oo) and 0.5 (as A —> 0). Fig.ll indicates that the number firaction of open elements 

at p=0 is very sensitive to the magnitude of A as its value drops from 0.5 to ~ 0.1 when A 

is changed fi:om 0 to 2. It should also be mentioned here that the total volume of elements 
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open at p = 0 when they are all saturated, Vopen-sat.{P = 0) of Eq.(8c), depends on three 

parameters, A, AV and yro, of the mechanistic model. The last column of Table 2 lists 

Vopen-sat.(P = 0) for the six data sets. Although their magnitudes are small (0.08 [L] or 

less), the value varies substantially among the data sets. 

As mentioned in Part I, the optimization of the ventilator strategy is required for 

patients with acute lung injury in intensive care units in terms of pressure- and volume- 

ranges [3-5], taking into account such considerations as a change in the recruited volume 

with pressure, a rate of recruitment and overdistension of the respiratory tissues. Results 

of the mechanistic model analyses relevant to the respiratory ventilation are presented in 

Figs.l2 and 13. The volimie, Vpop-open of Eq.(8a), represents a volume change of TRS 

due to the pop-open mechanism (alveolar recruitment) only (that is, excluding the volume 

change due to the displacement of piston (elastic tissue distention)); on the other hand, 

the volimie, Vsat. of Eq.(8b), is the total volume of satiurated elements of TRS. They 

both increase as pressure increases along an inflation path. Sketched in Fig. 12 are p - V 

curves (soHd, Eq.(2)), p-Vpop-open curves (dotted, Eq.(8a)) a.ndp-Vsat curves (broken, 

Eq.(8b)) for the six data sets. The vertical broken hne in the figure is the location of 

p = PQ. The intersect between the p-Vsat curve and the x axis in the figure is the pressure 

at the boundary (= poyro) between the low pressure p-V solution (in which all open 

elements are active (unsatinrated)) and the high pressure solution (in which a part of open 

elements are saturated). Since both the p - Vpop-open and the p - Vaat relations as well as 

p — V{p > POVTO) equation are represented by a common function, I3 (p) (= erf{Cp), 

C = V7rA/4, p = p/po — 1), the pressure at the inflection point, po, is not only the pressure 

at which the local compliance, dV/dp, is maximum, but also the pressure location for a 

maximum rate of increase in Vpop-open as well as in Vsat with their gradients given by the 

following equations; 

dVsatip) f    dV{p)\     Ay A ,    ,^_.2N    r -    ^ 
^^^'   = —r-^   =-; exp{- {CpY)    for   poVTo <P, 
dp      \       dp   J       4po 
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dp 1 + yro    4po 

The identity between dVsat/dp and dV/dp implies that the shape of the p-V curves (in the 

range of the high pressure solution) closely represents the change in the saturated volume 

rather than the pop-open volume. Since the gradient of Vpop-open is smaller than that of 

Vsat by a factor of 1/(1 + yro) (< 1), the magnitude of Vgat eventually becomes greater 

than that of V^op-open as pressure increases. Also, 1/(1 +yTo)) a fraction of the pop-open 

voliune (= pop-open volimae/total volume of a single TRS element), may be interpreted 

as a gradient ratio of Vpop-open to Vgat- A smaller value of yro (i-e. smaller piston stroke 

limit) means that the element, once it pops open, reaches the saturated state earlier; 

hence, for Data T of Fig. 12(f) {yro = 0.289, poyro = 8-68 [cmH20]) Vgat becomes greater 

than Vpop^open at a pressure close to po yrO) while, for Data M of Fig.l2(c) (yro = 0.626, 

Poyro = 18.98 [cmH20]) Vsat does not overtake Vpop-open within the measured pressure 

range. The gradients, dVpop-open/dp between p = 0 and p = Pf (=final pressure) (solid) 

and dVsat/dp between p = Po yro and p = Pf (broken) are plotted in Fig. 13 for the six data 

sets. The gradients are symmetric with respect to po- The data sets with high gradients 

(Data set M, N, T) show high sensitivity of the gradients to pressure change near po- Other 

data sets with low gradients, particularly Data set E and R, indicate that the gradients 

(i.e. the local compliance) do not change too much over a substantial range in pressure 

around po- 

Summary 

The mechanistic model of TRS developed in Part I is applied to examine p-V curves 

(in a form of the error function p-V equation) of patients with ARDS with the following 

results: 

1. Parameters of the deflation process, Vj^ in Eq.(4) and AV^ in Eq.(5), predicted by 

the mechanistic model of the corresponding inflation process agree well with those of 

the error function p-V equation for the deflation process (Figs.2, 4), indicating that the 
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mechanistic model has a certain validity to be used for improving our quantitative un- 

derstanding of various intra-respiratory conditions, that the shape and characteristics of 

deflation curves depend not so much on the inflation history but on the end-of-inflation 

(the onset-of-deflation) pressure, and that relations between parameters in p-V equation 

and TRS conditions are needed to strengthen our applications of p-V curves in clinical 

settings (Fig.5). 

2. The non-dimensional p-V curve, p-F curve, is effective in distinguishing differences in 

magnitudes of model parameters among different p-V curves (Figs.7, 8). 

3. In the mechanistic model, the distribution function, Eq.(3), and its change with pressure 

are the basis for evaluating alveolar recruitment and the elastic tissue distension. The shape 

of the distribution function (the peak value and the standard deviation) is determined by 

the magnitude of the non-dimensional parameter. A; while, the magnitude of the pressure 

at the maximum comphance, po, and its location relative to the range of the p-V curve 

are the important factors affecting changes of the distribution with pressure (Eqs.(7)(9), 

Figs.9,10,11). 

4. In addition to A and po, other parameters of the model, AV, Vy and yro influence the 

magnitude and changes of both Vpop-open (volume increase due to alveolar recruitment) 

and Vsat (total volume of saturated (fully-distended) elements). The shape of the chnically- 

measured p-V curve represent the change in Vsat- The inflection pressure, po, is not only the 

pressure at which the local comphance, dV/dp, is maximum, but also the pressure location 

for a maximum rate of increase in Vpop-open as well as in Vsat (Eqs.(8),(10), Figs.11,12). 

The mechanistic model of a TRS element presented in this report consists of a sim- 

ple piston-spring-cyhnder system with the critical pop-open pressure of the element as 

distribution parameter. The pop-open volume (= volume that pops open at the critical 

pressure) as well as the spring constant are assumed constant and common to all elements. 

More comprehensive and detailed analyses of clinical data as well as advice from clinical 

experts are needed to advance the model ftirther and also to make it a practical tool for 
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understanding various respiratory conditions. However, it is believed that the analyses 

presented here show the developments and use of a mechanistic model as a possible new 

approach to investigate respiratory systems. 
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Figure/Table Captions 

Table 1. Summary of Deflation Data Analysis. 

Table 2. Parameters of Inflation Data Sets Examined 

Fig. 1. Data points for inflation (unfilled) and deflation (filled), and the corresponding 

p-V equation of mechanistic model for inflation (I), and the error function 

p-V equation for deflation (D), 

PiD — pressure at the intersect of the inflation curve and a line parallel to the x-axis 

passing through the initial deflation data point. 

(See Table 1 of Part I (II) for numerical values of parameters for inflation (deflation).) 

Fig. 2. Vy (predicted from the mechanistic model) vs Vy (of error-function p-V equation 

for deflation). 

Fig. 3. Vy (predicted from the mechanistic model with yro = 0) vs Vjy (of error-function 

p-V equation for deflation). 

Fig. 4. AF'' (predicted from the mechanistic model) vs AV^ (of error-function p-V 

equation for deflation). Letters in the flgure = Data No. 

Fig. 5. Deflation cmrves. 

triangle = data points, dotted = error function p-V equation with the method of 

least squares applied to determine (A**, PQ, AV*^, VJy), 

solid = error function p-V equation with (AV'^, Vy) determined from Eqs.(4,5) 

and (A*', pg) determined by the method of least squares. 

Fig. 6. Ranges of parameters of inflation data sets. 

(a) po vs A,    (b) AF vs A,    (c) 1/(1 -I- j/ro) vs A. Letters in the figure = Data No. 

Fig. 7. Model-based p-V equation. 

(a) Data Set B, E and N. (b) Data Set E and T. 
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(c) Data Set N and R.     (d)Data Set E and M. 

Vertical lines: dotted = po) broken = po yro- 

Fig. 8. Non-dimensional (p - V) equation. 

(a) Data Set B, E and N. (b) Data Set E and T. 

(c) Data Set N and R.     (d)Data Set E and M. 

Fig. 9. Distribution of elements. 

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)). 

Fig.lO. Nimaber fraction of total open elements, Nopentotai ip = p)/N, vs pressure (solid) 

and nmnber fraction of saturated elements, Nsat. {p = p)/N, vs pressure (broken), 

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)). 

Fig.ll. Number fraction of open elements at p = 0, Nopen{p = 0)/-^ vs A 

Fig.l2. p-V curve (solid, Eq.(2)), p - Vpop-open curve (dotted, Eq.(8a)) 

and p — Vsat curve (broken, Eq.(8b)) for six data sets, 

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)). 

Letters in the figure = Data No. 

Fig.13. dVpop-open/dp [L/cmH20] vs p [cmH20] (solid) 

and dVsat/dp [L/cmH20] vs p [cTnH20] (broken) for six data sets, 

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)). 
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Table 1. Summary of Deflation Data Analysis 

Data No ^d Pi AV'^ VI VS 
[C111H2O] [L] [L] L 

A 1. 1.4712 11.410 1.9214 -0.1528 1.7685 
2. 1.7567 1.7064 

B 1. 1.5528 12.975 1.4115 -0.1227 1.2887 
2. 1.3405 1.2808 

C 1. 2.3293 14.808 1.1753 0.0800 1.2599 
2. 1.2525 1.2259 

D 1. 1.0772 6.846 2.7012 -0.6096 2.0915 
2. 2.5850 2.0572 

E 1. 2.2044 15.602 0.7009 0.0703 0.7712 
2. 0.7784 0.7329 

F 1. 1.7995 14.418 1.0476 -0.0527 0.9948 
2. 1.0041 0.9252 

G 1. 0.9839 8.140 1.2811 0.0454 1.3265 
2. 1.6496 1.3455 

H 1. 0.7147 6.472 2.0772 -1.0349 1.0423 
2. 1.1910 1.0053 

I 1. 2.1010 14.157 1.4798 0.5637 2.0435 
2. 1.9943 1.9784 

J 1. 1.6600 13.404 1.8960 -0.1250 1.7103 
2. 1.7759 1.6858 

K 1. 1.0577 9.778 1.5070 -0.3657 1.1412 
2. 1.1620 1.0860 

L 1. 0.3107 3.151 1.3930 -0.8076 0.5853 
2. 0.8574 0.6206 

M 1. 2.1702 14.989 1.4322 0.1442 1.5764 
2. 1.4921 1.5163 

N 1. 0.7220 6.45 2.4020 -1.1900 1.2140 
2. 1.1654 1.1115 

0 1. 1.0558 10.969 1.8684 -0.3195 1.5488 
2. 1.6515 1.4375 

P 1. 1.5406 12.231 0.7461 0.0684 0.8145 
2. 0.8679 0.8154 

Q 1. 1.1691 10.670 1.1801 -0.1515 1.0285 
2. 1.0938 0.9857 

R 1. 0.8643 8.1411 1.8260 -0.4893 1.3366 
2. 1.7784 1.2923 

S 1. 2.7458 17.050 2.0015 -0.5673 1.4341 
2. 1.4461 1.3962 

T 1. 4.5056 23.619 1.1748 0.1057 1.2805 
2. 1.2115 1.2026 

U L 2.9735 18.599 2.3404 0.0408 2.3812 
2. 2.5197 2.3305 

1. Obtained by method of least squares with error function p-V equation 
for deflation process. 

2. Results from the mechanistic model of inflation process. 

86 



Table 2. Paxameters of Inflation Data Sets Examined 

Data A Po AV l/il + VTo) VTO o-D Vopen-sat.iP = ^) 

B  2.7304 21.999 1.5559 0.736 0.359 12.857 0.01789 

E  2.6497 30.817 1.6847 0.676 0.480 18.559 0.02645 

M  2.9972 30.327 4.2463 0.615 0.626 16.147 0.04932 

N  2.8046 15.297 1.6219 0.736 0.358 8.704 0.01685 

R  1.6209 16.352 1.7396 0.711 0.406 16.098 0.07779 

T  5.4708 30.037 1.7694 0.766 0.289 8.761 0.00012 

Po and an in [cmH20],   AV and Vopen-satXP — 0) ^ W- 
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Key Research Accomplishments 

1. A representation of p-V curves by a single (non-linear) model equation (either the 

error-function p-V model equation or the sigmoidal model equation) is confirmed to 

be an effective method for clinical data analyses. 

2. A mechanistic model for the inflation process is constructed; which makes it possible 

to yield information on the internal conditions of the respiratory system from the p-V 

curve. 

3. The abihty of the mechanistic model of the inflation process to yield information 

on the deflation process correctly justifies its further development as a new tool for 

processing p-V curves in practical environments. 
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Conclusions 

It is shown that both the sigmoidal (tangent hyperboUc) p-V model equation and the 

error function model equation represent quasi-static p-V curves well. Major parameters of 

both the sigmoidal and the error function model equations are the non-dimensional com- 

pliance, A, the maximum local compliance, po, the upper (or lower) volume asymptote, 

Vu (VL), and the maximimi volume available for inflation, AV. Although both continuous 

model equations are antisymmetric with respect to po, the non-dimensional parameter, 

A, as well as two volume asymptotes slightly differ between the two equations as those 

function-specific parameters are selected to follow a specified p-V curve as closely as pos- 

sible. The p-V model equation in the form of the error-function (because of its relevance 

to the mechanistic model) is applied to data sources of patients with ARDS as well as of 

healthy adults to show that the the magnitudes of the model equation parameters distin- 

guish various p-V curves clearly. 

A mechanistic model of TRS elements, each consisting of a piston-spring system, 

is developed to analyze p-V curves for the inflation process. The model accommodates 

both the alveolar recruitment (in terms of the critical pop-open pressure) and the elastic 

distension of wall tissues (in terms of the piston displacement). Model-based relations are 

estabhshed between the parameters in the p-V curve represented by the error function 

equation, and in the mechanistic model. The p-V equation derived from the mechanistic 

model consists of two equations; one for the low pressure region where all open elements 

are active (= unsaturated) as the piston of an element is yet to reach its stroke Umit, 

and the other for the high pressure region where some open elements are saturated. The 

elemental distribution over the critical pop-open pressure is a normal distribution with its 

shape (the mean and the standard deviation) affected substantially by the magnitudes of 

two parameters of the model, A and po- 

The mechanistic model is applied to p-V curves of patients with ARDS. Parameters 

of the deflation process, V^ and AV^, predicted by the mechanistic model of the corre- 
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spending inflation process agree well with those of the p-V model equation for the deflation 

process (Chapter 3, Figs.2, 4), thus providing justifications for its validity to be used for 

improving our quantitative understanding of various intra-respiratory conditions. In the 

mechanistic model, the distribution of TRS elements and its change with pressure are the 

basis for evaluating alveolar recruitment and the elastic tissue distension. The shape of 

the distribution function (the peak value and the standard deviation) is determined by the 

magnitude of the non-dimensional parameter, A; while, the magnitude of the pressure at 

the maximum compliance, po) and its location relative to the range of the p-V curve are 

shown to be important factors affecting changes of the distribution with pressure. The 

other parameters of the model, AV, Vu and yro influence the magnitude and changes of 

both Vpop-open (volume incre&se due to alveolar recruitment) and Vaat (total volume of 

saturated (fully-distended) elements). 

We are currently in the process of developing a method of analyzing the deflation curve 

based on our mechanistic model. After a mechanistic model is derived for the deflation 

process, it is possible to analyze both the inflation and the deflation process together; which 

would yield a greater amoimt of quantitative information on the respiratory conditions than 

the analyses of the inflation process alone. 

More comprehensive and detailed analyses of clinical data as well as advice from 

clinical experts are needed to refine the model further and also to relate predictions by the 

mechanistic model to clinical diagnoses. However, it is believed that the analyses presented 

here show the developments and use of a mechanistic model as a new, effective approach 

to investigate respiratory systems of patients with acute lung injury. 
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