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Preface

This report describes a new target acquisition performance model which uses the
Targeting Task Performance (TTP) metric. Like its predecessor, the famous Johnson
criteria, the new model assumes that range performance is proportional to image quality.
Simplicity of implementation is therefore maintained. However, the TTP model predicts
image quality in a different fashion. In addition to overall better accuracy, the TTP metric
can be used to model sampled imagers, high frequency boost, non-white noise, and other
features of modern imagers which cannot be accurately modeled with the Johnson
criteria.

The Johnson criteria are used almost universally to predict range performance. Johnson
uses the resolving power of an imager as a metric of sensor “goodness” for target
acquisition purposes. For a given target to scene contrast, resolving power is the highest
spatial frequency passed by the sensor and display and visible to the observer. He
multiplies the resolving power of the imager (in cycles per milliradian) by the target size
(in milliradians) to get “cycles on target.” Johnson published a table of the number of
cycles on target needed to detect, recognize, identify, or perform other target acquisition
tasks; these are his “criteria” for target acquisition. The basic assumption underlying the
Johnson metric is that all electro-optical imagers are the same in some broad sense. The
performance of the imager can be determined solely by the highest spatial frequency (fy)
visible at the average target to background contrast. When the Johnson method works, it
is not because f; is important per se, but rather because an increase in f; represents an
improvement in the contrast rendition at all spatial frequencies. However, with sampled
imagers, f; is more an indicator of sample rate than image quality. Also, because the
Johnson metric is based on the system response at a single frequency, it cannot predict
the effect of tailoring the image frequency spectrum through digital processing. For
example, the benefits of edge sharpening by high frequency boost cannot be predicted.

In Appendix A of this report, the predictions of the Johnson criteria are shown to be
fundamentally flawed due to its insensitivity to imager characteristics below the limiting
frequency. This flaw makes predictions for many modern imaging systems inaccurate.
Experimental data show the problems with the Johnson criteria and illustrate the robust
performance of the TTP metric. The simplicity of implementing a range performance
model with the Johnson criteria isretained by the new metric while extending
applicability of the model to sampled imagers and digital image enhancement.

The new target acquisition model includes another fundamental change, also described in
this report. The current models to predict Minimum Resolvable Temperature and
Minimum Resolvable Contrast were introduced in 1995. Products like the NVTherm
thermal model and the SSCAM (Solid State Camera) TV model differ from their
predecessors because the contrast limitations of vision are incorporated into these models.
Incorporating the eye contrast limitations allows the modeling of image intensifiers, TV,
and sensitive thermal imagers which were previously not accurately modeled. However,
the 1995 model set continued the use of the “matched eye filter.” Since this filter does not



reflect psychophysical reality, those models are only accurate when the noise is spectrally
flat (white) compared to the signal. Digital image processing, particularly high frequency
boost or image restoration, can lead to a distinctly non-white noise spectrum. The
modeling of modern imagery requires a change in the eye filters.

Because the Johnson-based models have been widely used for so long, considerable
attention is paid in this report to the history and assumptions underlying the older model.
In addition, the new TTP model is described in detail. Also, the theory predicting human
contrast threshold when wusing an EO imager is thoroughly documented.

vi



1

Introduction

In Figure 1.1, the soldier is using an imaging sensor, hoping to quickly identify whether
the tank is a threat. This report describes a model which predicts the probability that he
correctly identifies the target. The problem is tackled in two parts. First, the soldier’s
quality of vision when using the sensor and display is quantified. Most of the report is
devoted to this topic. Second, the relationship between quality of vision and performing a
visual task, such as identifying the tank, is discussed.

Figure 1.1 Soldier Trying to Identify a Tank as Friend or Foe

The theory in this report is couched in terms of the observer viewing the world through
the imager. The imager extends the observer’s vision because it provides advantages over
human eyesight. The target can be magnified; that is, the angle subtended by the target at
the eye can be greatly increased, making it easier to see. The imager also lets the observer
see light outside the visible wavelengths, often a great advantage because the target
signatures are more robust. There is more night illumination at near infrared wavelengths
than the visible, for example, so that image intensifiers work better in that spectral band.
Another example is thermal imagery, which does not depend at all on natural
illumination. On the negative side, however, the imager blurs the target and adds noise to
the viewed scene.

The degradation due to imager noise and blur are in addition to the natural limitations of
human eyesight. If the imager were perfect—no blur from the optics, detector, or display
and no noise from the photo-detection process—the observer’s range performance would
still be limited by his vision. Image quality results from the inherent limitations of human
vision in combination with imager blur and noise. The limitations of human vision
depend, in turn, upon the display luminance and contrast.

The most widely used measures of image quality are visual acuity and resolving power.
Visual acuity has the connotation that high contrast (black on white) letters or symbols
are used to check vision. The observer who reads the smallest letters has the best visual
acuity. With sensors, the term resolving power has the same connotation. Bar patterns are
generally used for imagers; the best imager displays the smallest bar pattern. Although
commonly used and easy to test, these high-contrast measures do not adequately quantify
how well a person can see with the naked eye or through the imager.



A scene consists of many luminance levels. The eye achieves an integrated view of
objects by connecting lines and surfaces. These lines and surfaces do not share a
particular brightness throughout their extent. For example, the background immediately
behind a target might not be uniform, and yet the eye sees a full or partial silhouette.
Perspective is gained from converging lines which might vary in both sharpness and
luminance with increasing range. Slight changes in hue or texture can provide an
excellent cue as to the distance and orientation of an object and possibly indicate the
nature of the surface characteristics. Acute vision requires the ability to discriminate
small differences in gray shade, not just the ability to discriminate small details which
happen to have good contrast.

In Figure 1.2, the picture of Goldhill has an average modulation contrast of 0.22. The 3-
bar charts to the right have contrasts of 0.04, 0.08, 0.16, and 0.32 with average luminance
equal to the average of the picture. When noise is added and the picture blurred, as shown
at the bottom of Figure 1.2, high contrast details are still visible, but low contrast details
disappear. This is illustrated by the bar charts at the bottom which were degraded in the
same way as the Goldhill picture. A quantification of visual performance requires that
resolution be measured for all shades of gray in the image. The means of achieving this
quantification is described later.

The model proposed here is more complex than resolving power; hopefully the need for
this added complexity will become apparent as the report proceeds. For the present, we
quote Lucien Biberman who is quoting G.C. Brock (Chapter 8 in Biberman, 1973; Brock,

——a

Figure 1.2. Picture of Goldhill and 3-bar Charts of Various
Contrasts Measuring resolution for the average or peak contrast
does not adequately quantify picture quality.

1965).

“Before we can make progress in the use of our new techniques it will be
necessary to bypass two obstacles, the first of which is the existence and



firm establishment of resolving power, and the second is the belief that
science will give us one number quality index that will supplant all
previous evaluation techniques.

“Resolving power has been in use for so long that it has come to be
thought of as something fundamental which determines other aspects of
image quality and has some very special significance. Whenever a new
criterion of image quality is proposed, we at once ask ‘How does it relate
to resolving power?’ instead of considering it in more general terms. And
because resolving power is used for so many different purposes, and gives
a one number answer, it is assumed that any new technique must be
inferior if it does not do the same. As we have already seen, resolving
power can serve many purposes because it does not serve any of them
well.”

The imager model must account for both hardware characteristics and human vision. In
EO imagers, blur, noise, and contrast all limit our ability to see details. Further, unless the
display is big and bright, the physiological limitations of the eye cannot be ignored. A
picture might appear grainy when presented at high display luminance and not noisy at all
when presented at low display luminance. This does not mean that the picture is better in
some quantitative sense when presented at low display luminance; our inability to see the
noise infers an equivalent inability to see contrast gradations within the scene itself.
Hardware characteristics do not, by themselves, establish image quality. Rather, hardware
characteristics interact with human vision to establish how well the scene is perceived
through the imager.

Depending on scene conditions and sensor control settings, the dominant hardware factor
limiting performance can be blur, noise, or contrast. Blur results primarily from factors
like diffraction or aberrations in the objective lens and summing of the incoming light
over the detector instantaneous field of view. Summing the light from different points in
the scene results in the blurring of scene detail. Noise is generally associated with the
photo-detection process. In the theoretical limit, signal is proportional to the number of
photo-electrons generated in the detector. Noise is proportional to the square root of the
number of photo-electrons. Contrast can be degraded by the atmosphere. For example,
sunlight scattered by the atmosphere into the sensor line-of-sight can seriously degrade
contrast. Contrast can also be degraded by the glare of ambient light reflecting off the
display or by improper display settings. Blur, noise, and contrast limit our ability to see
detail and therefore limit our ability to identify targets or to discriminate between target
and background.

Figure 1.3a is a thermal image of a tank. The tank has been exercised, and the road
wheels and engine are hot, giving the tank a thermal signature which is distinct from the
background. In Figures 1.3b and 1.3c, the tank is viewed from progressively greater
distance. Optical magnification is used so that the tank appears to be the same size, but
diffraction in the objective lens has blurred the tank’s details. Noise is not visible in the
image; the tank is difficult to identify at the longest range because of the blur. In Figure
1.3d, the tank has cooled off. In order to see the tank, the gain on the imager is increased.
Increasing imager gain in Figure 1.3e makes the tank visible, but also makes the detector



noise visible. In Figure 1.3f, noise associated with photo-detection obscures the tank
image.

Blur and noise also affect the performance of reflected light sensors. Generally,
performance is limited by blur or contrast under good illumination conditions and by
noise under poor illumination. This is because, in the theoretical limit, signal to noise is
proportional to the square root of photo-current. As illumination decreases, photo-current
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Figure 1.3 Thermal Image of a Tank Showing Effects of Blur and Noise
At top, pristine image in (a) is blurred by imager in (b) and further blurred in (c). At
bottom, pristine but low-contrast image in (d) becomes noisy images in (e) and (f)
because increased gain amplifies detector noise.

decreases, and noise becomes more dominant.

Figure 1.4a shows a visible band image of a tank. In Figures 1.4b and 1.4c, the tank is
viewed from progressively greater distance. Optical magnification is used so that the tank
appears to be the same size, but diffraction in the objective lens has blurred the tank’s
details. Noise is not visible in the image; the tank is difficult to identify at the longest
range because of the blur. In Figure 1.4d, illumination has decreased and the tank is not
visible. In image 1.4e, the camera gain is increased and the tank is again visible, but the
low illumination makes the picture noisy. In Figure 1.4f, illumination has decreased to
the point that the tank is not visible in the noise.

A third factor important in determining performance of night vision sensors is display
contrast, especially when display luminance is less than photopic. In Figure 1.5, the
picture of Lena becomes clearer from left to right because contrast increases; neither
signal to noise nor blur changes. Contrast limitations are especially important when
display luminance is low; the eye’s ability to discriminate gray levels in an image
degrades as display luminance decreases.



Figure 1.4 Visible Image of a Tank Showing Effects of Blur and Noise

Figure 1.5 Picture of Lena Showing Contrast Increasing from Left to Right

Low display luminance might occur because of imager limitations. For example, due to
insufficient light gain, early image intensifiers provided less than 0.01 foot Lamberts (fL)
eyepiece luminance under starlight scene illumination. (10 fL is considered low photopic
luminance.) Early attempts to model image intensifier performance failed because the
model was based on signal to noise in the image. However, at the low display luminance,
neither the signal nor the noise was clearly visible to the observer. Image intensifiers
were not accurately modeled until the contrast limitations of the eye were incorporated
into the model.

Low display luminance is not uncommon. Display luminance might be low because the
operator chooses to maintain dark adaptation. During night flight, for example, military
pilots flying without goggles set instrumentation displays to between 0.1 and 0.3 fL; this
permits reasonable viewing of the instruments while maintaining dark adaptation in order
to see outside the aircraft. Regardless of the reason for a non-optimized display, the result
is degraded human performance when using an imager. It is common and even typical for
the display luminance of a night vision device to be less than a foot Lambert, and this low
display luminance is an important factor in determining the performance of the night
vision imager.

All four factors affecting performance—the blur, noise, and contrast of the imager as well
as the physiological limitations of the eye in adjusting to a non-optimized display—must



be handled by the model. All four factors affect the targeting performance expected from
the imager. For both reflective and thermal imagery, performance is generally limited
simultaneously by a combination of factors. That is, the image is not less blurred just
because noise is present.

The theory in this report covers all types of EO imagers. Imagers of reflected light like
sunlight or starlight operate in the spectral band between 0.4 and 2 microns. Thermal
imagers sense emitted light (that is, heat). Thermal imagers operate in the mid-wave
infrared (3 to 5 microns) or the long-wave infrared (8 to 12 microns). These spectral
bands are defined by atmospheric “windows” with good transmission. The units used to
describe signal and noise for thermal imagers are different than the units used when
modeling reflected light sensors. However, aside from the details of calculating signal
and noise, the basic target acquisition theory is exactly the same. In both cases, the
observer is looking at a display of the blurred and noisy image of a target. The model
predicts the effect of blur, noise, and display characteristics on target acquisition task
performance.

That is not to say that interpreting thermal imagery is as easy as understanding a picture
in the visible spectral band. For most people, imagery becomes progressively harder to
interpret as the wavelength increase from visible to near infrared to short-wave infrared.
Thermal imagery, which is emissive rather than reflective, is very difficult to interpret for
the untrained observer. However, the difficulty of the observer’s task is included in the
target acquisition model, not in the image quality model. The same image model is used
for all imagers.

Traditionally, thermal scenes are characterized with absolute, blackbody temperature
differences, and thermal imager frequency response is measured with 4-bar patterns.
[lluminated scenes are characterized by contrast, and the frequency response of reflected
light imagers is characterized with 3-bar patterns. An absolute temperature difference in
the scene can, of course, be converted to a contrast, just as a contrast can be algebraically
converted to an absolute illumination difference. The main difference in the historical
treatment of thermal and reflected light imagers is that the two are characterized using
different bar patterns.

In this report, all imagers are treated the same. The choice between absolute differences
in the scene or scene contrast is arbitrary. However, as discussed in Part III, contrast is
normally used to characterize the eye. The use of contrast when modeling EO imagers
simplifies the presentation of the theory. Further, it is customary to use sinewave patterns
for eyeball measurements, and the use of sinewaves is consistent with our sensor model.
Fourier theory is used to model system blur and noise. The development of a target
acquisition metric is made easier by characterizing human vision with sinewaves; this
allows easy integration of the eye behavior into the Fourier frequency domain model.

It is understood that sinewave measurements are not practical in the laboratory. However,
there is a known relationship between bar chart response (either 3- or 4-bar) and
sinewave response. These conversions are described where appropriate in the theory
sections on specific imaging technologies.



Most of the report is devoted to predicting how well the observer can see through the
imager. Our ultimate goal, however, is to predict how well the observer can detect,
recognize, or identify targets. To meet that goal, an image quality metric is needed as a
link between quality of vision and task performance.

The Johnson criteria are used almost universally to predict range performance based on
sensor resolution. Johnson proposed that an imager’s utility for target acquisition
purposes was proportional to its resolving power (Johnson, 1958). That is, for a given
target to scene contrast, the highest spatial frequency passed by the sensor and display
and visible to the observer determines the probability that an observer can correctly
identify a tactical vehicle or perform other visual discrimination tasks. He used his
limiting-resolution metric to establish criteria for target acquisition tasks.

Johnson performed some engineering experiments using image intensifiers to
simultaneously view bar-charts and scale models of tactical vehicles. He published a
table giving the required “cycles on target” for a 0.5 probability of detecting, recognizing,
identifying, and other levels of target discrimination. “Cycles on target” is the imager’s
bar resolution in cycles per milliradian multiplied by the angular subtense of the target in
milliradians. Johnson used the target’s critical dimension to determine its angular size;
critical dimension corresponds, more or less, to the minimum of the target’s height or
width as viewed by the sensor. D’Agostino later substituted the square root of viewed
area for critical dimension, and updated the cycle criteria needed for target
discriminations (Howe, 1993).

The Johnson metric uses limiting bar-chart resolution as an indicator of sensor goodness
for target acquisition purposes. Predictive accuracy of this metric is best when comparing
“like” sensors and conditions. The metric is not compatible with many features found in
modern sensors. For example, it is not compatible with sampled imagers. Further, the
Johnson metric fails to predict the impact of frequency boost on range performance.

The basic assumption underlying the Johnson methodology is that all electro-optical
imagers are the same in some broad sense. The performance of the imager can be
determined solely by the limiting resolution frequency (f;) visible at the average target to
background contrast. When the Johnson criteria work, it is not because f; is important per
se, but rather because an increase in f; represents an improvement in the contrast
rendition at all spatial frequencies. However, with sampled imagers, f; is more an
indicator of sample rate than image quality. Further, as pointed out persistently by Fred
Rosell, the Johnson metric fails to accurately predict the effect of noise on task
performance. The observer appears to require more sensor resolution when the resolution
is noise limited as opposed to spatial frequency response limited (Rosell, 1979 & 2000).

The desired approach to modeling sampled imagers is to incorporate a targeting metric
that does not have the problems associated with the Johnson metric. Work on a
replacement metric started several years ago (Vollmerhausen, 07/2000 and Driggers,
2000). This report describes how the new TTP (Targeting Task Performance) metric is
calculated and used. The logic of this metric is discussed by Barten; TTP is similar to
Barten’s SQRI (Square Root Integral), except that linear rather than logarithmic
integration is used (Barten, 1999). It is also similar to van Meeteren’s Integrated Contrast
Sensitivity (Task, 1976 and Tannas, 1985). A variety of experiments were performed



showing the problem with the Johnson criteria and illustrating the robust behavior of the
new TTP metric (Vollmerhausen, 2003 and Appendix A).

The organization of this report is outlined as follows. The next two sections provide
needed background. Part 2 is on model history; this section discusses the assumptions
upon which models of the last half-century were based. Part 3 discusses some of the
remarkable properties of human vision and describes how vision is characterized in our
model. Part 4 describes how the hardware characteristics of the sensor and display are
combined with the limitations of the eye to form a model of threshold vision through an
imager. The target acquisition tasks predicted by the model are defined in Part 5. Part 6
describes how an image quality metric is used to relate the quality of threshold vision
through an imager to the probability of acquiring a target at range. Part 7 discusses how
sampled-image artifacts affect performance. Parts 8 and 9 present details on the models
for reflected-light and thermal imagers, respectively.

Appendix A summarizes ID experiments which show the problems with the Johnson
criteria and the robust performance of the TTP metric. Experiments included both
thermal and visible imagery. Further, experimentation was done with well sampled
images and a variety of MTF and noise, poorly sampled imagers, and imagers with high
frequency boost and colored (spectrally non-uniform) noise. Appendix B discusses
experiments run with very low contrast targets. Appendix C describes a recognition
experiment. This experiment was done for two reasons. First, to check the TTP metric
with a task difficulty easier than target identification. Second, the experiment checked
that the sampling range adjustment is correct for target recognition. Appendix D
describes an ID experiment where the images were corrupted by laser speckle. The
experiment is significant because laser speckle has a very non-uniform power spectrum,;
the imagery is highly corrupted with low frequency, very high contrast noise. Appendix E
provides some details needed to implement the target acquisition model.



2

History of Target Acquisition Modeling

Electro-optics (EO) technology has flourished since World War II; even a brief mention
of all the important contributors and events would require volumes. The present
discussion is focused on human-in-the-loop target acquisition models, and only the major
threads of model development history are followed.

The history of modeling EO imagers traces back almost 60 years to the pioneering work
of Otto Schade. In the introduction of his four-part paper “Electro-Optical Characteristics
of Television Systems,” Schade noted that the standard which must be met by an EO
image was established by the capabilities and optical characteristics of the eye (Schade,
1948). He pointed out, for example, that the visibility of “grain” fluctuations decreases
with brightness, so a comparison of the signal to noise characteristics of different imaging
technologies should be made at the same display brightness level. The following is a
quote from the conclusion of Part IV.

“The quality of television and photographic images depends in a large
measure on three basic characteristics of the imaging process: the ratio of
signals to random fluctuations, the transfer characteristic, and the detail
contrast response. These characteristics are measured and determined by
objective methods which apply equally well to all components of
photographic and electro-optical imaging systems.” He states that
hardware can be rated on an objective numerical basis, and then continues:
“An interpretation of the numerical values obtained by calculation or
measurement of the three characteristics that determine image quality
requires correlation with the corresponding subjective impressions:
graininess, tone scale, and sharpness. This correlation has been established
by analyzing the characteristics of vision and by including these
characteristics in an evaluation of the over-all process of seeing through an
image-reproducing system.”

In 1956, Schade published a model of the eye (Schade, 1956). The visual system was
treated as an analog camera; performance of the camera was quantified using sinewave
response, contrast sensitivity, and other psychophysical data. Schade combined the
physical data on hardware and psychophysical data on human vision and created a
holistic model of the observer’s aided vision. Schade postulated that, for each retinal
illumination, information transfer could be calculated by a knowledge of threshold signal
to noise ratio and signal transfer characteristics. Over-all transfer characteristics were
obtained by integration of intensity steps and by considering the sampling efficacy of the
rods and cones; this integration of “statistical units” constituted his passband metric. He



used this model to compute the degradation in visual performance when the imager was
inserted between the scene and eye.

“One of the objects for constructing an analog [of the eye] is its use for
obtaining visual evaluations for image characteristics by calculation, to
eliminate subjective observations. This calculation is done by computing
the degradation in visual response when an external process is inserted
between the object and the eye. The degradation in resolution, for
example, is given by the ratio of two line numbers obtained at a given
small response factor; one with the eye alone, and the other for the eye in
cascade with the external imaging process. The total degradation may be
rated by the logarithm of the ratio of the equivalent passbands [the normal
visual passband and the combination eye-imager passband].”

Schade’s work provided fundamental and widely accepted design guidelines for
television and other EO systems. However, Schade’s sensor performance model was
complex and difficult to adapt to changing conditions. Although his model was widely
studied, it was not widely used. To our knowledge, the ability of Shade’s analog eye
model to predict target acquisition performance was never assessed. However, based on
the form of the passband model, our experiments indicate that it would not be a good
predictor of target acquisition performance. Shade later simplified his passband metric to
include only integration over the sensor MTF (Shade, 1973). The simplified version of
the passband metric was evaluated by Task and did not accurately predict target
acquisition performance (Task, 1976; Tannas, 1985).

Meanwhile, the model that was eventually used by virtually everyone for the next fifty
years was being developed by Coltman (1954). Coltman developed a model to predict the
resolving power of fluoroscopes. Richards adopted Coltman’s model to predict the
resolving power of night vision imagers (Richards, 1967). Johnson postulated that target
acquisition performance using an imaging sensor was proportional to the resolving power
of the imager (1958). A modified version of the Coltman/Richards model for the imager
and the Johnson model for predicting target acquisition range were brought together by
Ratches, Lawson, and others in the Night Vision Laboratory Static Performance Model
(Ratches 1975, 1976, and 2001). The NVL model used Fourier transform theory and
communications theory concepts which were fully developed for imaging sensors by
Lawson (1971).

Derivatives of Coltman’s model are so widespread that the model is generally presented
without attribution. The simple assumptions which are the basis for the model are seldom
questioned. This is unfortunate. Coltman’s focus was fluoroscopy, and his model requires
that the display be optimized. He reasoned as follows.
“The advent of electronic devices for brightening images has made it
possible in principle to remove the optical and physiological deficiencies

of the eye. In the limit there will remain only the quantum noise inherent
in the signal itself.”

Coltman based his model on ideas put forward by Barnes and Czerny (1933), de Vries
(1943), and fully developed by Rose (1948). Rose assumed that the absorption of
luminous flux by photoreceptors of the retina would be accompanied by the same
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statistical fluctuations (shot noise) as occurs in any square-law detector. He considered
only low light level circumstances where quantal fluctuations could be expected to
dominate the detection process. Further, he considered circular disks of sufficient size to
be resolved by the eye. Under these circumstances, Rose assumed that the eye would
integrate the signal and noise over the disk area. The result predicts Piper’s law; for a
given adapting luminance, the product of signal threshold and the angular size of the disk
is a constant. When compared to experimental data, Rose’s theory worked for
intermediate sized disks but failed for both small and large disks. The detection of small,
circular disks is predicted by Ricco’s law; for small objects, the product of signal
threshold and disk area is a constant. For large objects, detection occurs at a constant
contrast.

Coltman postulated that shot noise in the eye would not be significant compared to the
photo-detection noise associated with the fluoroscope. He assumed a big, bright display
and that noise in the sensor photo-detection process would dominate the perceptual signal
to noise because of the gain provided by the display. Realizing that bar-pattern detection
might be mediated by different perceptual processes than circular disk detection, Coltman
assumed that the visual system acted as a spatial integrator over an area related to the
object to be detected and admitting noise from the same area. He did not assume signal
and noise integration over a single bar. Finally, he followed Rose’s assumption that, for a
detection to occur, a constant signal-to-noise ratio threshold must be achieved at some
point in the visual processing chain. In Figure 2.1, the eye is summing both signal and
noise over an area related to the bar size. Once the integrated signal exceeds the noise by
a fixed threshold, the observer can differentiate between the bar and the space.

Figure 2.1 The Eye as a Spatial Filter
Coltman sensor model assumed that the eye integrates signal and
noise over some area of the image related to the bar size.

Coltman tested his theory experimentally. Observer variability was too great to
conclusively demonstrate the validity of his assumptions, but neither did the data indicate
that his assumptions were in error. Most analysts accepted the tenets put forward in the
Coltman model. That is, the signal contrast needed to detect a bar pattern varied in
proportion to the square root of bar area. In the presence of noise, large bars were easier
to see than small bars.
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Coltman did not postulate that the eye was integrating over a single bar of the pattern; he
could not determine the actual shape or size of the area being integrated. In Coltman’s
experiment, the eye could be using any fraction or multiple of the bar or bars to establish
signal to noise. The signal to noise ratio threshold (SNRT) required by the eye to see the
bar is an experimental result. Increasing integrated area by a factor of four reduces SNRT
by a factor of two. Since SNRT is not known independent of the experiment, the
integration area cannot be predicted. By the same logic, for white noise, the shape or
spatial weighting of the integrated area cannot be predicted. The nature of the spatial
filter was not established by Coltman’s experiment.

Richards (1967) adopted Coltman’s theory to model night vision devices. He simplified
Coltman’s equation, and made it appear more definitive, by assuming that the eye
integrated over the area of a single bar. Coltman explicitly included an arbitrary
multiplier that flagged the ambiguous nature of his results. In simplifying Coltman’s
equation, Richards set the arbitrary multiplier equal to one. This theory, that the eye is
integrating over the bar area, later became known as the “matched filter” model.

Experiments like those of Coltman and later Rosell (Rosell, 1973 and Rosell, 1979)
demonstrate that the eye filters noise, but do not definitively establish a filter function.
The calibration constant (SNRT) adapts the model to any shape and placement of the
filters in the frequency domain, providing that bandwidth is proportional to bar frequency
and that the noise is white.

The matched filter model was simple and seemed to explain observed behavior. The
eye’s remarkable ability to see objects in noise has been experienced by many engineers
over the years; this lends credence to the idea that the eye is spatially integrating over the
object being viewed. This model became the basis of the NVL (later the Night Vision and
Electronic-Sensors Directorate or NVESD) performance models until 1995. In the 1975
to 1995 model, the eye acted as a matched filter, integrating signal over the bar area, and
admitting noise from the same area. The bar was detected (threshold reached) when the
peak signal to RMS noise ratio exceeded a fixed value (SNRT) independent of bar size.
The noise arose solely from the detector; as detector approached zero, so did predicted
threshold.

The NVL model did include a pupil-dependent eye MTF factor that was added to account
for vision limitations; the model also included a factor representing temporal signal
integration by the eye that depended on display luminance. These factors were added to
overcome the assumption of an “optimized” display. However, pupil dilation plays a
minor role in luminance adaptation. These additions did not change the fundamental
nature of the model; the contrast threshold limitations of the eye were ignored.

The models predicted Minimum Resolvable Temperature (MRT) for thermal imagers and
Minimum Resolvable Contrast (MRC) for imagers of reflected light. However, these
models were only accurate for some imagers. Early thermal imagers, for example, were
noisy and had sufficient gain that the noise itself could generate a photopic or near
photopic display luminance. These sensors met the assumptions laid down by Coltman;
the display could be sufficiently optimized that the imager was detector noise limited.
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Other technologies, however, could not be modeled. Early attempts to model image
intensifiers failed, because the eyepiece luminance of the device was low mesopic. The
display could not be optimized, and eye limitations could not be ignored. Further, the
performance of day sensors could not be modeled. Daylight illumination provided plenty
of signal and detector noise became insignificant; performance was contrast limited.
Since the early NVL models were strictly based on a signal to detector noise calculation,
contrast limited situations were not correctly modeled.

Alternative assumptions about the nature of the eye filter received some attention.
Sendall and Rosell proposed substituting the synchronous integrator model (Sendall,
1979; Rosell, 2000). However, under practical conditions, the predictions of the matched
filter model and the synchronous integrator model differ only slightly (Lawson, 1979).
Overington (1976) proposed using the signal and noise associated with the boundary
rather than the area. He suggested that gradients in the contour are important and should
be weighted by their visibility. The static predictions in British Aerospace’s Orcale
Model use these concepts, but the details of the Oracle Model implementation have not
been published to our knowledge.

It was recognized by a number of researchers that the Coltman model ignored
fundamental limitations of the eye. Schnitzler (1973) modeled the “noise-required input
contrast” of a displayed target by cascading the quantal limitations of the EO imager and
eye. Overington paid a great deal of attention to the workings of the eye, emphasizing the
presence of noise and blur both external and within the eye. He proposed an equation of
vision which was a function of the threshold intensity difference divided by adapting
luminance (the psychometric contrast). Object detection depended upon intensity
gradients in the displayed image, with the gradient spacing defined by eye receptors and
gradient amplitude scaled by the psychometric contrast. Overington provides alternate
formulas for small, intermediate, and large objects and for the effect of the blur
associated with visual aids. However, he does not model the effect of system related
noise.

Because of the failure of the “standard” model to predict image intensifier performance,
model development continued at NVL also. The work was probably done by Kornfeld
and Lawson using ideas put forward by van Meeteren (1986), but the available working
papers are not signed and do not cite references. In this model, “eye noise” is assumed to
be proportional to the contrast threshold function of the eye. The eye noise is root-sum-
squared with the signal to noise term used in the Ratches model. This addition to the
NVL model was significant because the modified model provided correct results in the
limit of zero detector noise. That is, as the system noise decreased to zero, the eye
became the limiting factor. However, this addition made little difference in model
predictions; image intensifier predictions were still quite inaccurate. An image intensifier
model was eventually published by NVL; the [IV4 Image Intensifier model was
published in 1995. However, that model used empirical fits to laboratory data in an
attempt to correct the problems with the theory.

One concept fundamental to all of the above theories is that the signal was detected when
it exceeded the shot noise by a fixed amount. The noise was sometimes only the shot
noise associated with the sensor photo-detection, and sometimes the shot noise was
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modeled as the combined noise from sensor and eye neural noise. The signal might
represent detecting a bar or circular disk against a bland background; in this case, the
models were called Minimum Detectable Temperature or Minimum Detectable Contrast.
When calculating Minimum Resolvable Temperature and Minimum Resolvable Contrast,
the signal was the bar-space-bar modulation of a bar pattern. Whether the model was
predicting the presence of an object in noise or detection of bar modulation, both types of
model employed the same assumptions. First, the visual system integrated over the bar or
simple object. Second, the SNRT was constant regardless of the size of the object or bar
pattern. Third, the eye noise, when considered, was associated with primary photo-
detection by the eye; therefore, the eye noise was proportional to the square root of
display luminance.

The history above has focused on the detection of simple, circular disks or bar-patterns
through and imager. An equally important factor in target acquisition is relating the
detection of simple patterns to the process of interpreting real, complex images. Although
the Johnson criteria is used almost universally, many alternatives have been proposed.

Rosell used the matched filter concept to calculate sensor resolution; however, he felt that
the Johnson criteria range predictions were imprecise (Rosell, 1979; Rosell, 2000). The
Johnson metric tends to be optimistic when the image is noisy. That is, more “cycles on
target” are needed to perform an acquisition task when the imagery is limited by noise
rather than blur. Rosell suggested adjusting the Johnson range predictions based on the
signal to noise established by target contrast at range and the sensor’s noise equivalent
temperature difference. The resulting range model was somewhat clumsy to implement.
The validity of Rosell’s criticism was widely understood, however, and alternatives to the
Johnson model were pursued by Rosell, Biberman, and others for many years (Biberman,
2000). The model by Roberts, Biberman, and Deller is described here as an example.

A fixed resolution on the target is selected; this is the cycles across target to achieve a 0.5
probability of task performance. For each range, the known target size and required
number of cycles across the target yields a spatial frequency. The MRT curve is used to
find the threshold contrast needed to resolve that frequency. A signal to noise ratio is
formed based on target apparent contrast and the MRT threshold contrast. The probability
of task performance is then based on that signal to noise ratio. However, according to
well documented but unpublished evaluations by Lawson and Johnson, these alternatives
never proved as successful as the Johnson criteria in estimating field performance.
Models based on Rosell’s concept tend to predict very high probability out to the range
where the Johnson criteria would predict 0.5 probability. At that range, probability drops
abruptly to zero. While it has been argued that this is realistic for poor weather, clear
weather predictions follow the same trend. A sharp drop in acquisition probability is not
observed in practice.

There are a number of MTF-based measures of image quality. The Johnson metric is one
of these, as are Modulation Transfer Function Area, Integrated Contrast Sensitivity,
Square Root Quality Index, and many others. The Target Task Performance (TTP) Metric
described later in this report is also an MTF-based measure of image quality. The idea for
these metrics started with Shade’s equivalent passband. See Task (1976), Tannas (1985),
Snyder (1973, 1988), Beaten (1991), and Biberman (1973, 2000/Chapter 22) for surveys
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of this area. These metrics share the concept that image quality can be quantified by some
weighted integral of signal modulation which exceeds the eye contrast threshold. For
example, the Johnson frequency is defined by the spatial frequency range over which the
apparent target contrast exceeds the eye threshold. For the other metrics, the amount that
the signal modulation exceeds threshold at each spatial frequency is important. All of
these metrics share the virtue that range prediction is easily implemented; in every case,
range is simply proportional to the value of the metric.

Researcher’s in the field have found that, in general, MTF-based metrics account for
more than half the variance in performance across the various displays tested. Although
the correlation between a particular metric and performance varies greatly from
experiment to experiment and task to task, limiting resolution measures like the Johnson
metric are generally among the worst performers. However, prior to the TTP metric,
experiments at NVL have shown the Johnson criteria to perform better than Modulation
Transfer Function Area, Integrated Contrast Sensitivity, and other metrics evaluated
(Vollmerhausen, 07/2000).

The discrepancy in experimental conclusions appears to be based on the form of the
analyses. Most researchers change one or more calibration “constants” to fit calculated
metric values to experimental data. They argue that changes in task, observation
conditions, and observer-to-observer physiology requires that the metric be uniquely
adapted to each experiment. From the standpoint of a target acquisition model, however,
such a procedure cannot be used to predict performance; the procedure requires
experimental data on which to base a fit. While all models have one or more calibration
constants, those constants must be determined once and then used for all predictions.
Under those constraints, the Johnson criteria have proven to be a reasonable predictor of
performance, better than other MTF-based metrics like MTFA, ICS, and SQRI.

Overington (1976) and van Meeteren (1990) both theorized that targets are recognized by
a process of detecting critical features. This general concept has been the focus of several
researchers (Biederman, 1987; O’Kane, 2000). The van Meeteren model, as summarized
by Vos and van Meeteren (1991), will be described as it is the most complete in terms of
predicting range performance.

Target acquisition is determined by a process of detecting characteristic details. The size,
contrast, and number of characteristic details visible to the observer determines the
probability of acquisition. Each detail is treated as a circular disk with detection based on
a Minimum Detectable Contrast model. In van Meeteren’s model, eye noise is
represented as a fixed fraction of the contrast threshold at each luminance level.
Detection of the critical detail is based on the contrast signal exceeding the quadrature
combined detector and eye noise by a fixed amount. One continuing problem with these
models is the pre-determination of critical features. It is difficult to adapt the model to a
new target set.

One important aspect of van Meeteren’s work is explicit task definition. In his 1990
JOSA paper, he describes target recognition as choosing an object from a known
confusion set. That is, targets are recognized by differentiating them from the possible
alternatives. This means that the features which uniquely define a target are those which
differentiate that target from others in the set. Most researchers ignore the important step
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of defining the experimental task. By not recognizing that all discriminations are
comparisons, many researchers fall into the trap of analyzing experimental data one-
target-at-a-time. The result is that a model which appears to predict one experiment
beautifully fails to predict subsequent experiments. This distinction—that target
acquisition models predict the ability to choose one target of a set, rather than predicting
the absolute probability of recognizing or identifying a particular target—is particularly
important when trying to assess the success of feature-based models.

The logic of critical-feature recognition is intellectually appealing, but a practical model
which incorporates target-set features to predict range performance has not been offered.
It should be noted, however, that accepting the idea that high level visual discriminations
are required to recognize targets does not invalidate image quality models. Accepting an
image quality model like the Johnson criteria does not infer that we are not looking at
internal target features. The target is not in the model; no judgment is being made about
what is being viewed.

The inclusion of overall target—set dimensions and average contrast in range predictions
tends to confuse this point. Those parameters are used to decrease variance in range
predictions. For example, for ship identification, the “critical dimension” is found to be
the vertical height of the ships to be discriminated, and this is included in the model.
Tactical military vehicles have more observable features with a side view than front
view; the road wheels and gun, for example, are better viewed from the side. The current
use of square root of target area when making predictions for tactical vehicles has been
found to adjust model output in the correct way. In general, larger, higher contrast targets
are easier to see, and including these factors in the model decreases variance in the
predictions. However, the fundamental concept behind an image quality model is: see
better, see further. Of course target details are used to recognize and identify targets.
Better image quality lets the observer make these discriminations at longer range.

The fluctuation theory developed by Rose provides a limiting criterion for detection
under low luminance conditions. The basic assumption, quite correct for very low display
luminance, is that liminal vision is established by the shot noise associated with the
retinal photo-detection mechanism. In virtually all cases where target acquisition
modelers have considered the nature of the eye, they have assumed that shot noise
established the significant limitations of eyesight. This is not the case. The target
acquisition task is dependent on the characteristic behavior of higher-order visual
processing within the brain.

For any practical display luminance, the contrast limitations of the human eye are
established by the visual cortex, not the retina. In 1995, the NVL model which predicts
threshold resolution versus spatial frequency was modified to account for these contrast
limitations (Vollmerhausen, 1995 and 2000; Driggers, 1999). The modified model
accurately predicts image intensifier performance over a wide range of scene illumination
and eyepiece luminance conditions. Further, as will be discussed, this model does an
outstanding job of predicting the results of experiments using thermal, visible, and laser
imagery. The model is applicable to the whole range of EO imagers.

However, the 1995 NVL model continued to use the matched filter concept. Like all
models using this filter assumption, it can only be used with sensors where the noise is
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essentially white (flat) over the frequency spectrum of the signal. While this can be a
serious limitation with modern sensors, the limitation was not serious for previous
generations of EO imagers.

Prior to the widespread use of sampled imagers and digital processing, one could assume
sensor noise to be essentially white in comparison to the signal. The scene was filtered by
the optics and detector as well as the electronics, display, and eye. The noise was only
filtered by the electronics, display, and eye. The white noise assumption was valid for the
vast majority of sensors. It is still true today that the noise in most EO imagers is white
compared to the signal spectrum. In modern sensors, however, digital enhancement of the
image can make the noise distinctly non-white. An upgrade to the model is needed.

An upgrade to the 1995 NVL model to correct the eye filters is presented in this report. In
this model, the matched filters are replaced with bandpass filters. The new eye filters are
based on psychophysical data collected over the last three decades. The combination of
the new eye filters and the TTP metric provides complete flexibility in modeling modern
EO imagers.
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3

Modeling Human Vision

In this section, some of the marvels, complexities, and limitations of human vision are
described. The nature of the immediate task requires us to focus on limitations. However,
recognizing the capability and the resulting complexity of eyesight provides a needed
insight: the nature of vision cannot be encompassed in a simple model. As shown in the
charts below, eye behavior changes significantly with luminance and with angular
eccentricity from the fovea. This explains why the theory in this report treats the human
visual system as a “black box.” The threshold response of the eye to sinewave gratings is
used to characterize vision; this is experimental data collected by psychophysicists.

The eye provides some quality of vision over a billion to one range of scene illumination.
To accomplish this, the eye has cones for photopic or daytime vision and rods for
scotopic or night vision. The distribution of rods and cones within the eyeball is shown in
Figure 3.1. The highest density of cones is at the center of the fovea, called the foveal pit.
There are no rods in the foveal pit, a region in the center of the retina about 200 microns

in diameter. The foveal pit subtends about a quarter inch on a display viewed from 15
inches.
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Figure 3.1 Distribution of rods and cones in the retina of the eye.
(Figure courtesy Webvision)

Rods and cones are not equally sensitive to visible wavelengths of light. Unlike the
cones, rods are more sensitive to blue light and are not sensitive to wavelengths greater
than about 640 nanometers, the red portion of the visible spectrum.

Although factors like retinal processing and pupil dilation play important roles, photo-
pigment bleaching is the primary means for adapting both rods and cones to varying
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illumination. A threshold versus intensity (tvi) curve can be obtained by testing observers
using a small disk of light against a uniform luminance background. When rods or cones
are isolated, four sections of the tvi curve are apparent: dark light, Square Root Law (de
Vries-Rose Law), Weber's Law, and saturation (Aguilar and Stiles, 1954). Figure 3.2
shows a tvi curve for rod vision. The figure plots the just-visible difference in luminance
(ordinate) versus the display luminance (abscissa). “Dark light” is internal, neural noise.
The second part of the tvi curve is limited by quantal fluctuation; this is the square root
law or de Vries-Rose Law region. The next section of the curve follows Weber’s Law;
the threshold is a constant fraction of luminance. Given sufficient light, the eye operates
on the principle of contrast constancy; this is an important feature of our visual system. In
a natural scene, object to background contrast is fairly independent of ambient
illumination. The final part of the tvi curve is saturation at high light levels.

According to Ricco's Law, the eye sums quanta over an area. Threshold is reached when
the product of luminance and stimulus area exceeds a constant value. In other words,
when luminance is halved, a doubling in stimulus area is required to reach threshold.
Summation area varies with eccentricity. In the fovea, complete summation occurs over
about 0.1 degree. Ricco's Law holds for an area of a half degree at 5° eccentricity
increasing to an area of about 2° at an eccentricity of 35° (Davidson, 1990). Spatial
summation occurs due to the convergence of photoreceptors onto ganglion cells; clearly,
spatial summation limits resolution.

Visual acuity is the greatest at the center of fixation and decreases with eccentricity. See
Figure 3.3 for a plot of visual acuity versus eccentricity. There is a close correlation
between cone density and visual acuity out to about 2 degrees (Green, 1970).
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Figure 3.3 Plot of visual acuity versus
eccentricity for photopic luminance.
(Figure courtesy Webvision)
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Figure 3.2 Threshold versus intensity curve
for rods; similar results are found for cones.
(Figure courtesy Webvision)
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The illumination range where both rods and cones work together is called mesopic vision.
The rods saturate at illumination levels above 10 fL; the cones cease to be important in
mediating vision at just below 0.01 fL. The luminance from 0.01 to 10 fL is essentially
the range of display luminance used in military night vision systems. Displays used in
daylight would be brighter, of course. As shown in Figure3.4, visual acuity varies greatly
over the mesopic range of display luminance. (The milliLamberts units used in the figure
are almost equal to fL.)
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Figure 3.4 Visual Acuity at
Mesopic Light Levels
(Figure courtesy Webvision)
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Although the variation in visual acuity with display luminance has been measured, it is
difficult to predict. The interaction between rods and cones is not well understood. Rods
and cones are distributed differently over the retina. Rods and cones have different
spectral responses, use different photo-pigment chemistry, saturate at different light

levels, and employ different neural summation and processing schemes.

The limitations of human vision are important when predicting the targeting performance
of an EO imager. However, a reliable theory for predicting visual behavior is not
available. In the target acquisition model, experimental data collected by
psychophysicists are used to describe human vision.

3.1 Contrast Threshold Function

The Contrast Threshold Function (CTF) is one of the most common and useful ways of
characterizing human vision. Objects and their surroundings are of varying contrast.
Therefore, the relationship between visual acuity and contrast allows a better
understanding of visual perception than acuity measured only with high contrast (black
on white) charts.

In Figure 3.5, the observer is viewing a sine-wave pattern. While holding average
luminance to the eye constant, the contrast of the bar pattern is lowered until no longer
visible to the observer. That is, the dark bars are lightened and the light bars darkened,
holding the average constant, until the bar-space-bar pattern disappears. A decrease in
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contrast from left to right is shown at top, right in the figure. The goal of the experiment
is to measure the amplitude of the sinewave that is just visible to the observer.

e SIS

Figure 3.5 Measuring CTF

Most published CTF data is taken with two alternative, forced choice (2afc) experiments.
In these experiments, the observer is shown one blank field and one with the sinewave.
The observer must choose which field has the sinewave. These experiments measure the
sinewave threshold where the observer chooses correctly half the time independent of
chance. That is, the 2afc experiment provides the threshold which yields a 0.75
probability of correct choice. The procedure is repeated for various bar spacings—that is,
for various spatial frequencies. See the bottom, right of the figure for an illustration of
spatial frequency; high spatial frequency is at the left, lower spatial frequency to the right.

The curve of contrast threshold versus spatial frequency at each light level is called the
CTF at that light level.

Figure 3.6 shows CTF curves for various adapting luminance; the abscissa is spatial
frequency and the ordinate is contrast threshold. Each curve shows CTF for a different
light level to the eye. Remember that these curves use modulation to describe contrast;
that is, contrast equals (bright — dark)/(bright + dark).
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At each light level, the limiting resolution is the frequency where the CTF curve crosses
unity contrast. Limiting resolution provides the smallest detail that will be visible at that
light level, and this detail is only visible at the highest possible contrast. CTF provides

much more information than limiting resolution; CTF provides the threshold contrast
value at all spatial frequencies.
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Few real-world objects are totally reflective or totally absorptive; contrast is seldom unity
in a real-world scene. A typical scene consists of an infinitude of contrast gradations. The
eye’s ability to see small contrast differences is critical to quality vision. From the figure,
note that the eye loses its ability to see small contrast changes as cone vision is lost. The
CTF curve rises as light level decreases. This rise in the CTF curve results in lower
limiting resolution and also results in loss of the ability to see small contrast differences
at any spatial frequency. An interesting aspect of the CTF curves is that at the higher light
levels, people have better threshold vision at middle spatial frequencies than at low
spatial frequencies.

3.2 Contrast Threshold Function in Noise

Our model for predicting the effect of display noise on CTF was first described by
Vollmerhausen (1995, 2000). This CTF model is currently used in the thermal model and
other EO imager models published by the U.S. Army. However, those previous
references did not provide a detailed discussion of the CTF model itself. This section
starts with some history on modeling CTF in the presence of display noise, describes the
van Meeteren model which is used quite often, and then provides a discussion of the
current CTF model.

Nagaraja did experiments where he found that noise had an effect on detection threshold
which could logically be explained by assuming that the brain was taking the root-sum-
square (RSS) of display noise and some internal eye noise (Nagaraja, 1964). In the
following equations, CTF, is measured threshold modulation in the presence of noise, N
is display noise modulation (RMS noise divided by twice the display luminance), and
and Ny are parameter fits.

CTF? = K‘z(NZ + Nezye) G.1)

Nagaraja then observed that, if N¢y and x are constant, then plotting the square of
threshold in noise versus the square of external noise amplitude, a straight line with slope
«” and intercept CTF* should result. CTF is the measured threshold modulation without
external noise.

CTF? =x>N? +CTF?. (3.2)

When Nagaraja plotted the experimental data, he found that the plot of N* versus CTF,”
was linear at 1 fL but that the plots for 0.1 fL and 0.01 fL were not. So Equation 3.1 was
correct for 1 fLL but was less accurate at lower display luminance. Other investigators
have found that Equation 3.1 is approximately true for a wide range of conditions and
tasks (Pelli 1981, Legge 1987, Van Meeteren 1988, Pelli 1999). Different tasks include
detecting small disks against a uniform background, reading letters, detecting bar
patterns, and sinewave threshold detection.

Both k and N.y. are often stated in the literature to be constants fit to the experimental
data implying that they are constants relative to both the observer and to the stimulus
used in the experiment. If either is changed, both of these factors can change as well. This
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means that if an experiment is conducted with several different sinusoidal gratings, k and
Neye will be different for each grating and each observer.

For a limited range of spatial frequency gratings and for photopic luminance, van
Meeteren has demonstrated that k in Equation 3.2 varies slowly; he treats k as a constant.
See Barten (1999) for additional discussion on Van Meeteren’s treatment. However, this
is the same assumption as used by Lawson to develop the IIV4 Image Intensifier Model,
this model does not provide good predictions when display luminance is mesopic, which
is almost always the case (Vollmerhausen, 1995).

The current model is derived as follows. From Equation 3.1, at each specific frequency
and light level,

CTF? = k>N, (3.3)
, CIF?
2
Neye

Using (3.4) in (3.2)

2 2 N?
CTF, =CTF~| 1+— (3.5)
Neye
or
2 2 o :
CTF,; =CTF“| 1+ (3.6)
neye

where o is the RMS noise on the display and n.y. is the RMS eye noise expressed at the
display.

Using Weber’s Law, assume that eye noise is proportional to display luminance (L). This
proportionality holds over most of the functional luminance range of the human eye
(Pelli, 1999; Blackwell, 1958; Section 1.632 of Boff, 1988; Webvision, 2003). For
display luminance above the de-Vries-Rose Law region and for statically presented
stimuli, the visibility of foveally presented signals is limited by noise arising in the cortex
after spatiotemporal and binocular integration (Raghavan, 1989).

2 _2
a“o
CTF? =CTF? [1 + ] (3.7)
L2
It should be remembered that eye noise is a concept used to explain non-zero thresholds.
The actual reason that the liminal signal is greater than zero is not known. Rose and de
Vries correctly assumed that the statistics associated with photo-detection limits
psychometric contrast at low luminance. In this case, signal is proportional to luminance
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and noise is proportional to the square root of luminance, so psychometric contrast
decreases in inverse proportion to the square root of luminance. However, this
assumption only holds for the lowest absolute luminance needed for rod or cone
operation. At higher luminance levels, signal detection threshold is proportional to
luminance, and psychometric contrast is constant. The reason for this change in behavior
as luminance increases might not actually be noise, but rather an adaptation of the visual
system to aid the brain in interpreting imagery. Whatever the cause, Figure 3.2 does
indicate that threshold is proportional to display luminance over most of the luminance
range usable by the eye.

Once the calibration constant (o) is determined by experiment, Equation 3.7 provides an
accurate means of predicting the effect of display noise on contrast threshold. As
described in the next section, however, some of the frequency spectrum of the display
noise is filtered out by the eye. The value of a is given after the noise filter is discussed.

3.3 Visual Bandpass Filters

It is important to note that the signal and noise in Equation 3.7 are taken with respect to
the bandpass properties of the human visual system. In other words, the noise that affects
a particular visual process does not include all frequencies of noise capable of being
represented on the display. Figure 3.7 provides an illustration of the eye filter acting on
the incoming signal and noise. This figure is provided as an aid to understanding that the
RMS noise in Equation 3.7 must be spatially filtered in order to get accurate predictions
of CTF,.

The eye exhibits behavior that seems to imply the presence of selective spatial frequency
channels. Exposure to one bar pattern or sinewave grating can affect the visibility of a
second pattern. This effect is termed masking. Masking only occurs, however, if the bar
patterns are close to the same size and oriented in the same direction (Legge, 1987).

The extent to which noise masks a signal depends on the spatial frequency of the signal
and the spectral content of the noise (Stromeyer, 1972; van Meeteren, 1988; Greis, 1970).
That is, the noise spectral density might not be constant over the frequency limits being
considered. If the noise spectral density is not constant, then the noise is “colored.” The
ability of colored noise to mask a signal depends on the relative position of the signal and
noise in the frequency domain. CTF, depends on the power spectral density of the noise
rather than total noise power (Raghaven, 1989).
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Figure 3.7 Spatial Filter Acts Upon Incoming Signal and Noise

Figure 3.8 shows the visual filters proposed by Barten (1999) based on fit to
psychophysical data. The filters shown are for 0.125, 0.25, and 0.5 cycles per milliradian
sinusoidal gratings. Equation 3.8 gives the formula for the Barten eye filter B(§). & is the

frequency of the sinewave grating. When using Barten’s formulation, the signal is
expressed as modulation.
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B(E) = exp —2.2{@(3]}2 (3.8)

g0

As verified by numerical integration of Equation 3.8, the bandwidth of Barten’s filters
increases in proportion to &. Given a level of white noise, signal to noise increases in
proportion to the square root of bar size. This is because, with noise power spectral
density constant over the frequency band of interest, the noise associated with a filter is
proportional to the square root of bandwidth. So Barten’s filters work in lieu of the
matched filters for white noise. This has also been verified by using both types of filters
with Equation 3.7 to predict the image intensifier experiment reported by Vollmerhausen
(1995). Both eye filters give identical results in white noise.

However, the Barten filters also work with colored noise. Barten compares predicted and
experimental results from two researchers (van Meeteren, 1988; Stromeyer, 1972).
Barten’s eye filters also predict the results of Chen (1994).
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To illustrate the benefit of the Barten filters over the matched filters, consider the Air
Force 3-bar chart shown in Figures 3.9a through c. In Figure 3.9b, low frequency noise is
superimposed on the chart patterns. In Figure 3.9c, the image is corrupted with high
frequency noise; low spatial frequency noise has been filtered out. The standard deviation
of the noise is the same for both Figures 3.9b and 3.9¢c. Looking at the high frequency
bars (the small bars to the right, center of the picture), the high frequency noise masks the
bars more than the low frequency noise. If the eye were simply integrating over a bar
area, the low frequency noise would actually be more effective in masking the high
frequency bars.

Figure 3.9 Air Force 3-bar Chart Corrupted by Low (b) and High (c) Frequency Noise

This is illustrated by Figure 3.10. That figure shows the spectra for both the low and high
frequency noise. Also shown are both the matched bar filter and the Barten eye filter
associated with the smallest 3-bar pattern in Figure 3.9. For this discussion, it is assumed
that the bar charts are viewed from a distance five times the width of one chart; Figure
3.9 is three charts wide. The smallest 3-bar pattern is group —1 pattern 6 with a spatial
frequency of about 0.275 cycles per milliradian when viewed from a distance five times
the width of one chart.
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Because the matched filter represents an integration over the bar area, the matched filter
has a better response at DC than at higher spatial frequencies. The matched filter cannot
explain masking. However, the Barten filters are consistent with observed masking
behavior. Equation 3.7 with the Equation 3.9 eye filters provides the foundation for
predicting the image quality of imaging sensors.
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3.4 Validity of Weber’s Law

The CTF, model assumes contrast constancy. That is, threshold luminance increases in
proportion to display luminance; this is Weber’s Law. Many researchers would object
that this is not the behavior of a normal square law detector. Further, certainly a system as
highly evolved as the human eye would better approach the theoretical limits represented
by the de-Vries-Rose Square Root Law. Perhaps, however, the eye is not a normal square
law detector. And perhaps it is not optimized for liminal photon detection.

From a purely physical standpoint, photo-chemicals in the eye are leached out by light;
absolute quantum efficiency of the eye decreases as illumination increases. Further, it is
certainly not unreasonable to assume that the eye-brain system is optimized for higher
order discriminations. Perhaps contrast constancy and color constancy provide the visual
system a way of adapting to changing environments. In an evolutionary sense, it may be
that a visual system which responds uniformly at sunrise, noon, sunset, in the open, in a
cave, or under the shade of a tree is more important than the absolute level at which a
faint light is detected on a dark night.

Unfortunately, experimental support for Weber’s Law is mixed; some experiments
support the idea of contrast constancy over a large variation in illumination, other
experiments do not. It is necessary, therefore, to discuss this assumption in more detail as
it relates to our CTF, model.

Figure 3.11 plots absolute threshold versus display luminance for spatial frequencies
between 0.1 and 1.5 cycles per milliradian (cy/mrad). The threshold predictions are based
on Barten’s CTF numerical fit (Barten, 2000) and on a numerical fit to eye MTF (see
Appendix E). The figure also shows a straight line; if Weber’s Law were exact, then all
of the CTF data would lie on a straight line. A dotted line representing the de-Vries-Rose
Square Root Law is also shown. The exact ordinate position of the lines is not relevant,
because experimental data are used to calibrate the model. The question addressed here is
the functional relationship between CTF and luminance.
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The CTF data are adjusted to remove the effect of MTF variations which result from
differences in pupil dilation as luminance changes. A correction for pupil dilation is
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included in the eventual model which is described in Part 4; the pupil-related changes in
CTF should not be included in the current discussion.

Because of eyeball MTF and the functioning of the visual cortex, each spatial frequency
transitions at a different light level from the Square Root Law region to the Weber’s Law
region and eventually to saturation. Low frequencies are seen at very low luminance
levels. High spatial frequencies require more light. So Weber’s Law is applicable to
different spatial frequencies at different light levels. This is reflected in the figure by the
absence of high spatial frequency predictions for low luminance.

Weber’s Law is not exact, but it better fits our needs than the Square Root Law. Looking
at Figures 3.2, 3.4, and 3.11, the CTF, model can be expected to provide accurate
predictions for display luminances between 0.01 and 100 fL and approximate predictions
from about 0.001 to about 1,000 fL.
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4

CONTRAST THRESHOLD FUNCTION OF AN IMAGER

The observer in Figure 4.1 is viewing the scene through an imager and trying to identify
the target. The imager helps her by magnifying the target and by permitting the
observation of illumination not normally visible to the eye. However, the camera and
display add noise and blur. This section describes the observer’s Contrast Threshold
Function when looking through the imaging system. The system Contrast Threshold
Function (CTFsy) is the naked-eye CTF degraded by the amount necessary to account for
the blur and noise added by the imager.

Figure 4.1 Observer viewing
scene through an imager is
trying to identify the target.

As an aid in understanding the formulas for CTFy, a simple imaging system is illustrated
in Figure 4.2. An objective lens focuses light onto a focal plane array (FPA) of detectors.
Photo-current is generated over the active area of an individual detector; the active area is
indicated by the hatched areas shown in the inset. The scene is blurred because of
diffraction and aberrations in the objective lens; the scene is also blurred because of the
finite size of the active detector area. The signal is the total photo-current in each
detector; shot noise is added to the signal by the statistical nature of the photo-detection
process. The individual detector samples are electronically formatted, perhaps filtered

Focal plane detector array

Displa
active detector y
areas

Figure 4.2 Illustration of a staring imager. Optics, detector, display, electronics,
and eye all blur the image. Noise is added to the signal during photo-detection.
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electronically, and then displayed. So blur can be added by the electronics. The display
pixels have a finite size, and this also adds blur to the image. Finally, the eyeball adds
blur.

The signal is blurred by every component in the image processing chain; the noise is only
blurred by components subsequent to photo-detection. In the model, the Fourier
transform of the total, signal blur is called system MTF, whereas the Fourier transform of
the blur which filters noise is called the noise filter MTF. Noise filter MTF is a
component of system MTF.

4.1 Effect of Blur on Imager CTF

The effect of noise on CTF has been discussed, but the effect of blur has not yet been
quantified. In Figure 4.3a, the sinewave chart is just visible to the observer. In 4.3b, an
optical system has been introduced between the display and the eye, reducing the visible
modulation to below threshold. Assume unity magnification and that the telescope MTF
is Hyys(€). In 4.3c, the displayed modulation has been increased so that the sinewave is
once again visible. The display modulation must be increased by the amount lost in the
optics. Equation 3.7 for CTF, is modified as shown in Equation 4.1 to yield CTFqy,.
CTF,ys is the Contrast Threshold Function through the imager; it degrades naked-eye
CTF by the amount necessary to account for imager noise and blur.

o I
a1

telescope i

o I

telescope

Figure 4.3 Just-visible sinewave modulation
in (a) is decreased by the introduction of the
telescope in (b). The display modulation must
be increased for the sinewave to once again be
visible in (c).

2 )
CTFS2y5(5)=CT§ ©);, @ - 4.1)
Hgys(S) L

Equation 4.1 is one-dimensional, but imagery has two dimensions. In our models, sensors
are analyzed in the vertical and horizontal directions separately, and a summary
performance calculated from the separate analyses. The point spread function, psf, and
the associated MTF are assumed to be separable in Cartesian coordinates. The
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separability assumption reduces the analysis to one dimension so that complex
calculations that include cross-terms are not required. This approach allows
straightforward calculations that quickly determine sensor performance.

The separability assumptions are almost never satisfied, even in the simplest cases. There
is generally some calculation error associated with assuming separability. Generally, the
errors are small, and the majority of scientists and engineers use the separability
approximation. However, care should be taken not to apply the model to circumstances
which are obviously not separable; for example, diagonal dither cannot be modeled
correctly, nor can diamond shaped detectors.

Since most imagers do not exhibit the same resolution characteristics in the horizontal
and vertical directions, the CTF in each direction must be modeled separately. The
sinewave pattern at the left in Figure 4.4 is used to generate horizontal CTF modulation;
the pattern to the right is used to generate vertical CTF modulation.

Figure 4.4 Charts Used to Generate CTF
Modulation The left-hand chart is used for
horizontal CTF; the right-hand chart is used
for vertical CTF.

Horizontal CTF  Vertical CTF

Also, most imagers have a magnification different than unity; the scene is magnified and
objects look bigger than without the imager. In our models, the calculations are done in
the spatial frequency domain associated with object space. Spatial frequency at the eye
(Eeye) 1s related to spatial frequency in object space (§) by:

Ceye = %MAG (4.2)

where SMAG is the system magnification.

Equations 4.3 and 4.4 give the horizontal and vertical noise bandwidths, respectively,
which are associated with calculating horizontal system CTF (CTFHsy ). The formula for
CTFHysys is given in Equation 4.5. Equations 4.6 and 4.7 show the horizontal and vertical
noise bandwidths, respectively, for vertical system CTF (CTFV,y). Equation 4.8 shows
the calculation of CTF V. In these equations, &’ and n” are dummy variables with units
of cycles per milliradian in object space. The integrations are over all frequencies.

, 2

Ot or (€)= (B Hotee Vo Hose Sipga )| 4 @3
2

OVhor = J- Velec (U)Vdsp (U)Heye(%MA G)‘ drn (4.4)
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In these equations,

& = horizontal spatial frequency in (milliradian)’’
n = vertical spatial frequency in (milliradian)”

p = detector noise power spectral density in units of fL*-second-milliradian’
L = display luminance in fL

SMAG = angular magnification

B(& or n) = the Equation (3.9) eye filters

Heye(§ or ) = eyeball MTF

Heiece(§) = horizontal electronics MTF

Veee(n) = vertical electronics MTF

Hysp(E) = horizontal display MTF

Vysp(m) = vertical display MTF

Hgys(&) = horizontal system MTF

Vgys(n) = vertical system MTF

QHu,or = horizontal noise bandwidth for CTFHiys
QVior = vertical noise bandwidth for CTFHjy
QH,.r = horizontal noise bandwidth for CTF Vg
QV,er = vertical noise bandwidth for CTFV

4.2 Effect of Contrast Enhancement on Imager CTF

4.5)

(4.6)

4.7)

(4.8)

An assumption used in the derivation of Equations 4.1, 4.5, and 4.8 is that the luminance
variations on the display are proportional to the luminance or temperature variations in
the scene. If the imager has independent gain and level controls, this proportionality can
be lost. In fact, since gain enhancement can improve target acquisition performance, it is

likely that proportionality will not exist under low contrast conditions.

Contrast enhancement is achieved by gaining the signal and then lowering the display
brightness back to the original value. This is illustrated in Figure 4.6. In panel (a), the
display luminance is proportional to scene variations in luminance (or temperature for
thermal imagers). The figure shows an average luminance (L) and a change in luminance
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(AL). In panel (b), the display luminance is gained by a factor Kcon. All display luminance
values increase, including the average display luminance. In panel (c), the display
brightness control is used to decrease average display brightness back to the original
value (L). However, the change in luminance (AL) is now (K¢n AL). The contrast has
increased by Kcon.

(a) (b) (c)

Display luminance

1

N

F

|

IO
o
=

Display Space —»

Figure 4.6 Panel (a) shows display luminance proportional to scene variations in
luminance or temperature. Panel (b) shows a signal gain of k., In (c), average
luminance is the same as in (a), and display contrast has increased by .o,

While gain enhancement does increase perceived noise, noise only increases in
proportional to signal. The net effect of gain enhancement is to reduce the impact of eye
contrast limitations on performance. With an electronic contrast improvement of K¢on,
Equation 4.1 becomes:

2 22
CTF (&) = CT; (5){ 21 + 2 J . (4.9)
Hgys(S) \kcon L
Similarly, Equations 4.5 and 4.8 for horizontal and vertical CTFys become:
CTF(g ) ) 1/2
CTFH g5 (£) = 4MAG 21 LapoH horz ()OVhor (4.10)
Hsys <) Kzon L
CTF(T% j 2 1/2
CTFVy(17) = SMAG)| 1 a”pOHyerOVyer (1) @.11)

Viys(S) Kcz’on I

4.3 The Effect of Display Glare on Imager CTF

In Figure 4.7, the soldier’s ability to see the display depends on the environment; sunlight
reflecting off the display surface can hide the image. Display glare can also be caused by
maladjustment of the display brightness control. Whatever the cause, glare can seriously
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degrade targeting performance. Glare represents a reduction in contrast at all spatial
frequencies. The display modulation loss is:

L-L

glare

L+ L

M dsp = (4.12)

glare

where Lgjare 1s the glare luminance and L is the average display luminance. Equations 4.1,
4.5, and 4.8 now become:

CrFds(@)- cTr (&) { . a202} (4.13)
MgvspHgys(f) KGon I
CTF(QV ) 2 12
SMAG 1 H V
CTFH (&)= o+ a”pQ hog(g)Q hor (4.14)
MdspHSyS (&) \Kcon L

CTF(’7 ) > 1z

CTFV, (1) = 4MAG 1 + a”pOH yer QVyer (17) (4.15)
dsp” sys Kcon L

Equations 4.14 and 4.15 describe quality of vision when using an imager. Different types
of electro-optical sensors are modeled by analyzing the blurs and noise associated with
the particular technology. Specific formulations for CTFH,, and CTFVy for various
types of imagers are derived later in this report.

Figure 4.7 At left, clouds are obscuring the sun, and the soldier sees the display clearly.
At right, the sun is out, and glare from the display hides the underlying image.

4.4 Limit on Modulation Gain

Electronic or digital processing can boost intermediate and high spatial frequencies,
improving the displayed representation of scene detail and enhancing target acquisition
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performance. An example of high frequency boost is discussed in Appendix B; in that
example, the high frequencies of a blurred image are boosted by a factor of eight, and the
peak “after boost” image modulation is a factor of 1.7 greater than in the original, un-
blurred image. In that particular experiment, boost increased the probability of correctly
identifying targets by about 0.2. Because of the TTP metric and the new eye filters, this
type of realistic image improvement can now be modeled.

Since the Static Performance Model was first published in 1975, however, there has been
a general confusion about how modulation gain is handled in NVL and NVESD models.
The confusion can be clarified by describing how sensor system gain is established in the
model.

Sensor gain is established by specifying display minimum and average luminance. For
reflected-light sensors, this tells the model the delta display luminance that corresponds
to the scene illumination and target to background reflectance differences. For thermal
imagers, the system gain is established by specifying scene contrast temperature; this is
the scene delta temperature that generates the average display luminance. This indirect
method of specifying system gain is much simpler for the model user than requiring that
actual gain state be input.

The model user could be asked to specify component-by-component absolute gain. This
would mean inputting the responsivity of the detector, the actual gain of any automatic-
gain-control electronics, and the gain of the display (voltage input to luminance output).
A version of the image intensifier CCD (I’CCD) model used this method of specifying
system gain; the method was universally hated by model users. The I*CCD model used
this approach because, at very low illumination levels, the early I* cameras could not
output sufficient voltage to drive video displays to the desired output luminance; the
model had to estimate available output luminance. Using the model, however, required
providing information about electronics and display design not normally available to
systems analysts.

Modern imagers, including current I* CCD cameras, provide sufficient gain that the
operational user can set the display luminance as desired. By understanding the
operational user’s environment and needs, the systems analyst can make a good estimate
of the display luminance which will be chosen by the hardware user. That is, an aviator
flying without a pilotage aid will keep luminance from instrumentation displays at 0.1 to
0.3 fL in order to maintain dark adaptation; he wants to see outside as well as see his
instruments. On the other hand, if the aviator is using a pilotage aid like the Aviator’s
Night Vision Imaging System (I* goggles) or the Pilot’s Night Vision System (a thermal
imager and helmet display system), then display luminance is typically set in the 1 to 10
fL region; with the higher display luminance, he sees both instrument information and the
outside scene better. Generally, the systems analyst can make a reasonable estimate of
display luminance if he understands the operational user’s task and environment.

In the experiment described in Appendix B, the average display luminance was 5 fL.. A
display signal modulation of 1.0 at any spatial frequency means that a fully modulated
sinewave in the scene would be displayed with a peak-to-peak luminance of 10 fL.
Suggesting that the modulation could be 1.7 would mean that the sinewave would have a
peak-to-peak displayed luminance of 17 fL and an average luminance of 8.5 fL. This is
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not true; the average luminance is 5 fL. A display modulation greater than one makes no
physical sense.

So system gain is established by display luminance; it is not established by multiplying
the various component MTF. The purpose of component MTF is to establish the relative
frequency spectrum of the displayed image. Hyys and Vs in Equations 4.14 and 4.15 are
normalized to a peak MTF of 1.0.

4.5 Example Calculation of CTFjy,

This section presents an example to illustrate how the contrast threshold function through
the imager is calculated; this is done using the blur and noise characteristics of the
imager. A staring imager is shown in Figure 4.8. Light is focused on the focal plane array
(FPA) by the objective lens; the image is blurred by both the lens and the finite size of the
detectors on the FPA. Noise is added by the photo-detection process. The signal and
noise are filtered by the electronics and display.

Two dimensional
array of detectors

2wz A7
EPA m Video Display

Lens

Figure 4.8 Schematic diagram of a staring imager.

The imager has the following characteristics:
Focal length = 30 centimeters (cm),
Aperture diameter = 10 cm,
Array size = 640 horizontal by 480 vertical detectors,
Detector size = 20 microns on 20 micron pitch (100% fill factor),
Instantaneous field of view = 0.067 milliradians
Half-sample frequency = 7.5 milliradian™,
System magnification = 10.

The system MTF (including optics, detector, and display MTF) is:
2
—-0.07
Hsys(é:):e d 4.16

where & is spatial frequency in cycles per milliradian (cy/mrad). Post-filter MTF from
electronics and display is:

~0.035¢2
Hpost(g):e g : 4.17

The display luminance is 5 fL; at this luminance, Equation 4.18 provides a good
approximation for eye MTF, and Equation 4.19 is a good approximation for eye CTF.
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See the appendix of Chapter 12 in Vollmerhausen (2000) for numerical fits for other
displays luminances.

—2.2&/SMA
Heye(é:):e o/5 G.

4.18
1
CTF (&) = 4.19
ﬂge—7§/SMAG \/1+0_06e7§/SMAG
where
_ (0.06544 +0.765 / SMAG +2.216£2 | SMAG? )105 420

19+81.56/ SMAG +237£2 | SMAG?>

Equation 4.21 gives the formula for the eye filters E(§) proposed by Barten. & is the
frequency of the sinewave grating; &’ is a dummy variable used to integrate over noise
bandwidth. The eye MTF in Equation 4.18 is from the eyeball; Equation 4.21 represents
the bandpass filters associated with higher-order visual processing in the visual cortex.

2
E(f') = exp —2.2{10g(§ﬂ 421

In order to calculate CTF,y,, the RMS display noise 6 must be determined. Since c is the
noise as sensed by the eye, the hardware display noise must be filtered by the eye
temporal integration, eye MTF, and by the bandpass filter in Equation 4.21. To calculate
o, the power spectral density associated with the display noise is found and then
multiplied by the noise bandwidths.

Assume that the signal to noise ratio for the average pixel is 8:1. The power spectral
density (psd) is the square of the RMS noise for one second and one milliradian in each
dimension. There are 60 frames per second and 15 pixels per milliradian in each
direction. Noise increases as the square root of the number of independent samples
summed. The signal integrated over the same angle and time results in a 5 fL display
luminance. The integrated signal increases in proportion to the number of samples. The
psd 1s therefore:

5-«/60-15-15

psd =| 8 = (0.0054)? L% - second - milliradian?- 4.22
60-15-15

2

The spatial psd is two-sided; that is, frequency integrations are taken from minus infinity
to infinity.

Contrast threshold of the imager (CTF,ys) can now be calculated.
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where v is a unitless calibration constant which is not the same as the parameter o in
Equations 4.5, 4.8, 4.9, etcetera. The relationship between y and o will be explained.
Oy«L) is the eye temporal filter at luminance L. Equations 4.24 and 4.25 provide the
spatial filters for horizontal and vertical, respectively.

CTFsys(ét) =

0i(©)= [ |E@IE) H oy ()Hopel@) a2 424
all &
2
O = | |Hpou @ oyel@)] d=32, 425
all £

The unit of Q, is Hertz and the unit for Oy and Qy is milliradian™.

O is not explicitly evaluated. Variations in Q; directly affect the CTF of the eye, so the
effect of varying O, is subsumed by the CTFcy. factor in Equation 4.23. Eye integration
time varies with light level. This is a naturally occurring process, and this is one factor
that helps to establish the CTF at a given light level. The resulting variations in temporal
bandwidth affect both signal and noise, and the impact on signal to noise is the same
whether the noise is external or internal. As a result, the natural CTF variation with light
level adjusts the noise term in Equation 4.23 in the correct manner without further
intervention. This means that the product y> O, can be treated as a constant which we
define as o Hertz. As described below, the value of o is 169.6 root-Hertz. Note that o is
not the temporal bandwidth of the eye. Note also that Equation 4.23 only applies to
continuously varying, temporal noise such as occurs with framing imagers. Adapting the
theory to single frame (snapshot) imagery is not difficult; see Section 8.1.2.

An array of (frequency,CTF,y) values can now be calculated to be used in a numerical
integration to find TTP. Table 4.1 gives values for CTFsys, CTFeye, Heye, Hsys, Hpost, and
Qpq for several values of spatial frequency.

Table 4.1 Calculated values for CTF and MTF versus spatial frequency.

frequency | CTFgs | CTFeye | Heye Hiys H,os | QH
0.5 0062 | 5.9E-03 {090 | 098 | 0.99 | .67

1 .0039 | 34E-03 080 | 093 | 097 | .98

1.5 .0035 | 2.8E-03 | 0.72 | 0.85 | 0.92 | 1.04

2 .0037 | 2.7E-03 | 0.64| 0.76 | 0.87 | .97

2.5 .0044 | 2.7E-03 | 0.58 | 0.65 | 0.80 | .83

3 .0057 | 2.9E-03 | 0.52| 053 | 0.73 | .68
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3.5 .0078 | 3.2E-03 | 046 | 042 | 0.65 | .54
4 011 |3.6E-03 041 | 0.33 0.57 | 42
4.5 017 | 4.1E-03 | 0.37| 0.24 | 049 | .32
5 .027 | 4.6E-03 | 033 | 0.17 | 042 | .25
55 .043 | 5.1E-03 {030 | 0.12 | 035 ]| .19
6 072 | 5.8E-03 | 0.27| 0.08 | 0.28 | .14
6.5 A3 | 6.5E-03 | 0.24 | 5.2E-02 | 0.23 | .10
7 .23 | 7.3E-03 | 0.21 | 3.2E-02 | 0.18 | .08
7.5 42 | 8.2E-03 10.19| 0.019 | 0.14 | .06

4.6 Model Calibration

The calibration factor (o) in Equations 4.5 and 4.8 is 169.6 (root-Hertz). This value does
not change experiment by experiment or for different sensor types. This value is constant
regardless of the system or environment modeled. The value of o was obtained from an
image intensifier (I?) experiment (Vollmerhausen, 1995). During the experiment, Air
Force 3-bar charts were viewed through image intensifiers to determine limiting
resolution versus chart illumination. The experiment was done with both high contrast
(near 1.0) and moderate contrast (0.3) charts. This was an excellent experiment for
determining o for several reasons. The physical characteristics of the sensors were
accurately measured. The measurements were made at illumination levels from 2.88 E-6
foot candles to 3.39E-3 foot candles. This variation in illumination means that the tubes
were operated from noise limited to resolution limited conditions. Measurements were
made both with and without laser eyewear protection that reduced the light to the eye by
a factor of ten. Also, the tubes used represented both typical and very good MTF, and
each tube was operated at three gain levels (25000, 50000, and 75000). Light to the eye
varied from as little as 3.6E-4 foot Lamberts (fL) to as much as 12.4 fL. This was an
excellent data set because of the controlled nature of the physical sensor data, the wide
range of scene illuminations, and the large variation of light to the eye.

Three experienced, dark-adapted observers determined limiting resolution using Air
Force 3-bar charts. Charts with contrast of 1.0 and 0.4 were used. With the 1.0 contrast
chart, data were taken with and without eyewear protection for three tubes, three gains,
and five illumination levels. Data were taken for three tubes, one gain, and five
illumination levels with the 0.4 contrast chart and no eyewear. A modified version of
Equation 10 was used to predict limiting frequency visible for each illumination, tube,
tube gain, eyewear, and chart contrast condition. The model modification involved
correcting the theory to predict for 3-bars versus the continuous sinewaves assumed when
measuring CTF.*! A value for a of 169.6 root-Hertz provided the best fit based on
average error between model and data.

Figure 4.9 compares the laboratory data to model results for all 105 data points. The
abscissa plots the observed bar resolution and the ordinate is model resolution
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predictions. If the model were perfect (and if the signal to noise, gain, and MTF
measurements of the tube and optics were perfect), then all the points in Figure 3.11
would lie on the straight line. The model predictions are excellent; the square of the
Pearson coefficient is 0.98 and the RMS error is 0.057.

15 -

Figure 4.9 Plot showing 5 o“
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Definition of Target Acquisition Tasks

This section defines target acquisition tasks and discusses model assumptions about
accomplishing those tasks. A model is an algorithm or group of inter-related equations
based on a set of assumptions. Mathematical models are rigid in their application; they
apply only where circumstances match the assumptions. This is certainly true for the
target acquisition model.

Two topics are discussed in this section. First, the basic targeting tasks are defined; these
tasks include target detection, recognition, and identification (ID). Next, the meaning of
the probabilities predicted by the model is described.

The meaning of target detection varies with operational circumstance. Sometimes a
target is detected because it is in a likely place; sometimes a target is detected because it
looks like a target (target recognition). Target detection is many things, and therefore not
easy to model. Some analysts associate a degree of certainty with target detection; to
them, detection means the object is of military interest. This is not consistent with current
war game modeling; hopefully the war games reflect operational practice.

Search is a process, not a single event, and finding the target generally occurs only after a
series of false alarms. The observer searches with the imager in a wide field of view;
when an interesting place or object is seen, potentially a target, he switches to a narrower
field of view for a closer examination. In our search experiments, with a high density of
targets and a good imager, the field of view is typically switched three times before a
target is found. With a poorer sensor or a lower density of targets, the field of view is
switched many times. When a target is finally confirmed in the narrow field of view, it is
credited as a detection in the wide field of view. When analyses are performed to
determine the resolution requirements needed to detect the target, the characteristics of
the wide field of view are used. The result is that, experimentally, very few “cycles on
target” are needed for detection. It must be remembered, however, that the low cycle
criteria are associated with a high false alarm rate.

Further, it often occurs that the target and sensor together play a minor role in
determining the probability of detection. On the left in Figure 5.1, the target is easily
found. This is a thermal image, and the target is much hotter than anything else in the
scene. On the right in that figure, the same target is in the same location with the same
target to background contrast; only the background objects have changed. The target is
hard to find because of clutter. Clutter can affect target acquisition range by a factor of
four. Very few sensor design parameters have that much influence on range performance.
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Search and detection are important sensor functions, and the war-game community pays a
great deal of attention to modeling search. However, search modeling is very complex
and involves many factors beyond sensor performance. These factors will not be
discussed further.

S J Y -
Figure 5.1 On left, hot target in uncluttered background viewed with thermal
imager. On right, same target but background has become much hotter.

Recognition involves discriminating which class of vehicle the target belongs in. In
Figure 5.2, there are two trucks, two Armored Personnel Carriers (APC) and two tanks.
In a recognition experiment, the observers (subjects) are trained and tested on the specific
target set. These trained observers are shown the targets at range (so the images are
blurred, noisy, perhaps poorly sampled) and asked to specify tank, truck, or APC. If the
observer gets the class correct, the task is scored as correct. That is, the observer might
mistake the T72 tank in Figure 5.2 for the Sheridan tank. He has correctly “recognized”
that the target is a tank. It does not matter that he incorrectly identified the vehicle.

Figure 5.2 Side views of a group of vehicles that might be used in a recognition test.

Note two important things about recognition. First, the difficulty of recognizing a vehicle
depends on the vehicle itself and on the alternatives or confusers. Discriminations are
always comparisons. Task difficulty is established by the set, not by an individual
member of the set. Second, a recognition set of targets like the one shown in Figure 5.2
involves easy discriminations and more difficult discriminations. APCs look much more
like tanks than either tanks or APCs look like trucks. So the typical recognition task is
actually a combination of easy discriminations and more difficult discriminations with
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the results averaged. In terms of range performance, the tasks should be modeled
separately.

Target identification requires the observer to make the correct vehicle choice. A set of
targets which might be used in an ID experiment is shown on the left in Figure 5.3. Only
one aspect of each vehicle is shown; experiments use several aspects of each vehicle.
Twelve aspects of the T62 Russian tank are shown to the right in Figure 5.3. Again, the
observers are well trained and tested that they can correctly identify each individual
vehicle. The targets are put at range (blurred, noisy, perhaps corrupted by poor sampling)
and the observer must indicate which target he is shown. In this case, the observer must
correctly identify the target, not just the class. Calling a T72 tank a T62 tank is scored as
an incorrect choice.

BMP MIA T 72
Figure 5.3 Target set for ID experiments.

The difficulty of the ID task depends on the group of targets selected, not the individual
target which happens to be within the sensor FOV. The model does not predict the
probability of identifying or recognizing individual vehicles; the model predicts the
average probability of correctly identifying all members of the group at range. The
difficulty of the task depends on how much the members of the group look alike. In
Figure 5.4, three observers are trying to identify three vehicles. If the first observer gets
all three vehicles correct, the second observer gets two correct, and the third observer gets
one correct, then the probability of correct ID is 0.67. That is, six total correct calls
divided by nine total calls. This average over both observers and targets in the group is
what the model predicts.

Observers Target vehicles

i
a

Figure 5.4 Illustration of How Probabilities are Calculated
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To achieve prediction accuracy, the model requires a group of observers (ten to twenty)
and a group of “like” targets. The group of vehicles in Figure 5.3 are sufficiently alike
that model accuracy is good (less than 0.05 average error in the predicted probabilities,
with the biggest errors occurring at the 0.5 point in the curve where statistical variability
is expected).

A target acquisition discrimination is always a comparison. Is it target A or target B or
target C? Is it a target or background? It is quite common for an analyst to be asked the
question: “Using this sensor, at what range can I identify a T72 Russian Tank?” That
question cannot be answered; it is only partly formulated. The examples below might
clarify this statement.

The Iraqi’s used T72 Tanks in the 1991 war. One U.S. ally in that war was Egypt;
because of the vagaries of the cold war era, Egypt owns both T62 Russian Tanks and
U.S. built M60 Tanks. The three tanks are shown in Figure 5.5. Because Russian tanks
tend to look alike, if our ally used a T62 Tank, the friend-versus-foe decision would be
more difficult than if our ally used an M60 Tank. So the range at which a T72 can be
reliably identified depends on the alternative.

Figure 5.5 Images of three tanks
illustrating that the probability of correct
ID depends on the alternatives presented.

ID experiments have been performed using the target set shown in Figure 5.3. Probability
of ID versus range is shown in Figure 5.6 by the curve labeled “full target set.” The curve
labeled “partial target set” shows the results of an ID experiment using nine of the twelve
targets; the M109, T62, and T55 have been removed from the target set. The T62 and
T55 look like the T72; the M109 looks a lot like the 2S3. Removing these vehicles makes
identifying the remaining targets easier, and this results in a higher probability of ID.

1 _
. - (@]
Figure 5.6 Probability of ID versus — 0.8 -
range for the full set of target shown -? 06 -
in Figure 5.3 and for an easier to 3 )
identify, partial set where the T62, g 04
T55 and M109 vehicles are not used. ©
£ 02-
0 \ ‘

10

o
()]

Range (Kilometers)



Target detection, recognition, or identification is determined by a process of seeing
viewpoint-invariant details. The size, contrast, and number of characteristic details visible
to the observer determines the probability of target acquisition. Our model predicts the
quality of the image and therefore the ability of the observer to acquire the target.
However, targets are acquired by differentiating them from the possible alternatives. This
means that the features which uniquely define a target are those which differentiate that
target from other targets or from background. Therefore, task difficulty depends on how
alike the targets look or the level of target-like clutter in the background.
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6

PREDICTING TARGET ACQUISITION PERFORMANCE
FROM IMAGER CTF

Both the Johnson criteria and the Target Task Performance (TTP) metric are MTF-based
metrics. These metrics share the concept that image quality can be quantified by a
weighted integral over spatial frequency of the ratio between signal and CTF. It is
assumed that the excess modulation over threshold provides the information acted upon
by the visual system. A great virtue of MTF-based metrics is the simplicity of
implementing a range performance model; for a specific task, it is assumed that range is
proportional to the metric value.

The Johnson criteria uses the limiting frequency visible at the average target contrast to
quantify image quality and therefore range performance. The Johnson metric is defined
by the spatial frequency range (F;) over which the apparent target contrast (Crgr)
exceeds the system contrast threshold [CTFy(&)]. See Figure 6.1 for an illustration of the
Johnson metric.

)
Figure 6.1 Johnson criteria uses ]
intersect of target apparent contrast -'é FJ
and CTF,, as measure of image <) CTGT _______________________
quality for targeting purposes. In O 04 -

this figure, the intersection occurs at eXCtesst
frequency F,. 0.2 - contras

0 0.5 1 1.5 2 25
Spatial frequency

The TTP metric gives weight to the amount that threshold is exceeded at each spatial
frequency; this makes the TTP metric sensitive to image qualities not quantified by the
Johnson methodology. The TTP metric is calculated as shown in Equation 6.1. In this
equation, & s the high spatial frequency where CTFys exceeds Crgr; Ecut €quals Fy. Ejow
is the spatial frequency below which CTF,ys exceeds Crgr. Lateral inhibition in the eye
results in CTF,ys having a spatial bandpass response; the eye sees intermediate spatial
frequencies better than either very low or high frequencies. However, &, is very nearly
zero. Because of the square root, contrast that is well in excess of threshold is not as
important as contrast that just exceeds threshold. The TTP value calculated using
Equation 6.1 is used in lieu of F; to quantify image quality and predict range
performance.

46



Cfcut C 12
TTP= | IGT d&

Slow CTFSy S (5)

While the Johnson criteria provides reasonable performance estimates in many
circumstances, applying that criteria to sampled imagers generally results in pessimistic
predictions. In recent years, modelers have developed “work arounds” to use the Johnson
criteria with sampled imagers (Driggers, 2000; Wittenstein, 1999; Bijl, 1998). These
fixes have limited application, however, because they are empirical adjustments of a
basically flawed model. The Johnson criteria “work arounds” do not permit the modeling
of digital image enhancement, for example, because variations in CTFy below the cutoff
frequency do not affect the metric value. The TTP metric does an excellent job of
predicting the performance of both well-sampled and under-sampled imagers. It also
predicts the performance impact of frequency boost, colored noise, and other
characteristic features found in modern imagers. A summary of some of the experimental
data supporting the TTP metric and illustrating the problems with the Johnson criteria is
provided in Appendices A, B, and C.

(6.1)

6.1 Predicting Probability versus Range

A range performance model is created by assuming that target acquisition range is
proportional to the image quality metric. That is, the range at which a task can be
performed is proportional to the TTP value calculated in Equation 6.2. For a given target
contrast and size, a given task like target ID, and a selected probability of accomplishing
the task, the range is calculated as shown in Equation 6.2.

A TP
Range = NOTGT -7 (6.2)

required

For tactical vehicle targets, size is usually taken as the square root of the viewed target
area (Atgr). Nrequired represents task difficulty and desired probability of success; the
value of Niequired 1S established experimentally for a particular target set and task. For
vehicle images, the zero range target to background contrast is defined by:

JAw? +oy,
Crer-o = (6.3)

2 fscene

where pseene 1S the average scene luminance (or temperature) in the vicinity of the target,
Ap is the difference in average luminance (temperature) between the target and local
background, and oy is the standard deviation of the target luminance (temperature).

While range is proportional to image quality, the probability of accomplishing a task is
not. To calculate probability with the target at a given range, first use Beer’s law or
MODTRAN to calculate the atmospheric transmission (t), then calculate the apparent
target contrast at the sensor (Crgr).

Crer =7CrG6T-0 (6.4)
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Crgr 1s found using Equation 6.4, the TTP value is calculated using Equation 6.1, and
then resolved cycles is calculated using Equation 6.5.

NArGr TP (6.5)

Nyesolved = Range

An empirically derived Target Transfer Probability Function (TTPF) is used to relate
probability of task performance to the ratio of Niesoived to V50, where V50 is the metric
value needed to accomplish the task with a 0.5 probability. Again, V50 is established
experimentally. The TTPF curve is a logistics function as defined by Equation 6.6.

(N resolvecV ) E
Vso

P = (6.6)
1+ (N resolvec% j E
Vs
where
E=151+024" resolve%so (6.7)

The process is repeated at range intervals to generate a probability versus range function
as shown in Figure 6.2. If the goal is to predict the outcome of a field experiment, then
the probabilities generated with Equation 6.6 are corrected to add chance and to add the
0.1 probability associated with observer mistakes; the probability corrections are
described in Section 6.2.

Figure 6.2 Typical model
output is probability versus
range as shown in the figure.

Target area in Equation 6.5 and target contrast in Equation 6.1 refer to averages over the
group of targets involved in the experiment or scenario. The reasoning behind this is
discussed in Section 6.3.

Many imagers have different resolution characteristics in the horizontal and vertical
dimensions. In scanning thermal imagers, for example, the horizontal resolution is often
much better than the vertical resolution. As discussed in Section 4, CTFsys is calculated
for the two dimensions using Equations 4.5 and 4.8. Then the TTP metric is calculated
separately for each direction.

1/2
TTPH = gcjm _Grer | 4 (6.8)
| CTFH gy (&) '
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The TTP value to use in Equation 6.5 to find Niesorved at €ach range is then the geometric
mean of the horizontal and vertical TTP values.

ITP =\ TTPH TTPV

This mean value of TTP is used in Equation 6.6 to find probability of target acquisition.

6.2 Meaning of Model Probabilities

The probabilities predicted by the model are intended to be used to assess sensor
“goodness” for target acquisition. Model probabilities have been adjusted to remove the
influence of factors which affect target acquisition probability but which are independent
of sensor design. The model probabilities have been corrected for chance and corrected
for non-ideal observer performance. The relationship between model probabilities and
observed data is explained in this section.

If an ID experiment is conducted using four vehicles, then there is a 0.25 probability of
correct ID just by chance. As range increases, the measured probability drops to 0.25, not
to zero. If twelve targets are used in the experiment, then the probability drops to 0.083 at
long range. If a recognition experiment is performed using three classes of targets (tank,
truck, and APC), then the probability of getting the answer correct just by chance is 0.33.
In a wheeled-versus-tracked classification experiment, probability of correct choice by
chance is 0.5 because there are only two choices.

The probability of chance is removed before using experimental data to calibrate the
model.

Measured Probability - Pchance

Model Probability = (6.11)

1-Pchance

Where Pchance 1S the probability of correctly identifying the target or target class just by
chance. If four targets or target classes are used in the experiment, then Pchance is 0.25.
If twelve targets or target classes are used, then Pchance is 0.083. To compare model
predictions with field data, the above formula is inverted.

Predicted Measured Probability = Model Probability (1- Pchance) + Pchance (6-12)

Another correction is made to experimental data before comparing it to model
predictions. Even well trained, conscientious people make mistakes. We observe a 0.1
error rate which cannot be correlated to image quality, training, or apparent motivation.
This error rate is fairly consistent across the various target acquisition tasks (search,
recognition, identification). Some observers do achieve 1.0 probabilities on clean target
image sets, but when an average over twenty observers is made, the top probability is 0.9.
Our data asymptotes to 0.9 probability at close range.
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Whether this error rate is observed under field conditions is not known by the authors.
Whether that error rate should be represented in the model is a matter of judgment.
Traditionally, however, this drop in probability due to mistakes has not been included in
performance models.

If it is desired to include the base mistake rate for an ensemble of observers, then use
Equation 6.13 rather than Equation 6.12 to relate field measured probabilities to model
probabilities.

Predicted Measured Probability = Model Probability (0.9 - Pchance) + Pchance  (6-13)

6.3 Field Test Example

In a hypothetical field test, eight tactical vehicles are available: M1, BMP, T72, M109,
M113, M2, 2 '/, ton truck, and a HMMWV. Since six are tracked vehicles, one is a truck,
and the other a HMMWYV, the decision is made to drop the truck and HMMWYV as being
too dissimilar from the rest of the vehicles. The average dimension (square root of area)
and average contrast for the six tracked vehicles are 3 meters and 4° C, respectively. A
V50 of 20 for identifying this particular group of vehicles is established by experience
and expert judgment.

The model is run to predict probability versus range for the sensor system being
evaluated. Five ranges are selected which span ID probabilities from high to very low.
Because of the vagaries introduced by mistakes, chance, and the many factors which bias
real field data, a system should not be evaluated using only close range, high probability
data.

At each range, three aspects of all targets are presented. If the vehicle has a rear mounted
engine, then the aspects are front, side, and opposite side-rear oblique. If the vehicle has a
front mounted engine, then the aspects are rear, side, and opposite side-front oblique. The
total test consists of 18 target views at five ranges for a total of 90 images.

Images are collected for viewing in the lab, or observers are taken to the field. Certainly,
data taking is simplified if the observers are not in the field. The observer must be
deprived of any clues other than the sensor imagery which might help him identify the
target. The observer’s situational awareness is best limited by separating him from the
test site. However, the output of some sensors is not easily recorded for later display, and
the experiment is best performed in the field.

The observers are trained to ID the vehicles used in the experiment. The observers must
pass a test to prove they can correctly ID all the vehicles before participating in the
experiment. The observers are asked to ID the targets from the sensor imagery. The
average correct ID probability for each range is calculated based on observer responses.
The total experiment yields five (5) data points. To compare the model probabilities to
the actual data collected in the field, model probabilities are adjusted using Equation 6.12
or 6.13 above with 0.167 substituted for Pcpance. The choice of which equation to use
depends on the number, experience, and motivation of the observers. Use Equation 6.12
if the experiment involved a few, highly experienced observers. Otherwise, use Equation
6.13.
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If the above steps are followed, the model accurately predicts observer performance.

6.4 Estimating Task Difficulty (V50)

There is currently no objective way to establish V50 for a target group other than by
experiment. We have found, however, that a careful process of comparative judgment can
provide good estimates for V50. That is, knowing the experimentally established value of
V50 for example target groupings, comparative judgment can be used to estimate the V50
for a related group of targets.

This sections provides some example target sets and the associated V50 values. Examples
are given for detection, recognition, and ID. Since V50 values are based on experience,
historical data should also be useful in establishing values to be used in the new model.
However, there are several issues to consider when making comparisons between new
V50 and old N50 values. In addition to giving V50 examples, this section discusses the
differences between historical values of N50 used with the Johnson criteria and values of
V50 used with the new TTP metric.

The Johnson metric can be thought of as an integral over spatial frequency.

F
Fj= j][l]dé
0

where Fj is the frequency where Crgr equals CTFy; see Figure 6.1. The “1” in the
integral is to emphasize that each frequency increment counts equally; if the target
apparent contrast exceeds the threshold needed for visibility at a particular frequency,
then that frequency increment is counted in the Johnson bandwidth.

The TTP metric value is also an integral over essentially the same frequency range. The
value of &jw in Equation 6.1 is always small; to a good approximation, oy 1S zero.
Remembering that £ equals F):

1/2

0 CTFsys(ég) ’ :

The ratio Crgr/CTFgys is always greater than one. This means that the value of TTP is
always greater than F;. The ratio between the Johnson metric and the TTP metric is not
fixed; if the ratio were fixed, then the two metrics would provide identical performance
predictions. However, for those cases where both metrics predict performance well, the
ratio of TTP value to Johnson metric value is approximately 2.7:1.

This does not mean that the Johnson N50 values can be multiplied by 2.7 to obtain an
V50 for the new model. In the new model, V50 represents the resolved cycles needed to
achieve a 0.5 probability independent of chance. Historically, the data used to establish
N50 were not corrected for chance.

It is not clear how N50 values for two-class discriminations were established. Although
the historical value of N50 for discriminating wheeled vehicles from tracked is 1 to 2
cycles, a 0.5 probability of success is actually achievable with zero cycles. Since there are
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only two classes, success half of the time is guaranteed. For 3-class recognition (tank-
truck-APC), most of the 0.5 probability is attributable to the 0.33 probability of being
correct just by chance. As the number of choices increases, the impact of using
uncorrected data to establish N50 decreases.

Table 6.1 shows how an N50 based on uncorrected data must be increased to be used in a
model which does remove probability due to chance. This table is based on the TTPF
associated with the Johnson metric. The multiplier values are the ratio of N50 needed to
achieve 0.5 probability without chance to the N50 needed when chance is included. For
example, if a 3-choice recognition experiment (tank-truck-APC) yields an N50 of 3 based
on uncorrected data, then the N50 for corrected data would be 3 * 1.79 or 5.37. It is easier
to achieve 0.5 probability when chance is included, so the N50 for uncorrected data is
smaller than the N50 for corrected data. As the number of choices increases, the impact
of chance on the data decreases, and the ratio of the N50 values approaches one.

Table 6.1

Number of choices | 3 4 5 6 8 10 12 |20

NS50 Multiplier 1.79 1143 1 1.3 | 1.23 | 1.16 | 1.12 | 1.1 | 1.05

Two examples will illustrate how V50 values for the new model can be derived from N50
values used with the Johnson model. With the Johnson metric, tank-truck-APC
recognition is modeled using an N50 of 3. The N50 for data with chance removed is 5.37.
Multiplying by 2.7, the value of 14.5 is the V50 for use in the new model.

Although details are not available on how the “standard” N50 of 6 for ID was established,
assume that a 6-choice experiment was used. A equivalent V50 for the new model is
found by multiplying 6 by 1.23 and then by 2.7 yielding 19.9. Table 6.2 gives Johnson
N50 and TTP V50 values for a selection of target acquisition tasks.

Table 6.2

Task description N50 TTP V50 | TTP V50
w/ chance w chance | w/o chance

Low clutter thermal detect; Figure 6.3 0.75 2 2

Medium clutter thermal detect; Figure 6.4 | 1.7 4.6 4.6

Recognize tank-truck-APC; Figure 6.5 3 8.1 14.5

Recognize truck/wheeled- 3.5 9.45 16.9

armored/tracked-armored

Figure 6.6 (Reference Devitt, 2001)

ID 12-target set; Figure 6.7 7.8 21.2 23.3

ID 9-target set; Figure 6.8 6.5 17.6 20.0
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Figure 6.3 Example of Low
Clutter, Thermal Detect

Figure 6.4 Example of Moderate
Clutter, Thermal Detect

Figure 6.5 Recognition Tank-
Truck-APC Several aspects of
each vehicle would be used in a

recognition experiment. Sheridan

i

Figure 6.6 Recognition Tracked-armored/Wheeled-armored/Soft-truck
Experiment involved many vehicles and aspects; these are examples.
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Figure 6.8 Nine Tracked Military Vehicles Three of the vehicles
in Figure 6.7 have been removed; since those vehicles look like
some of the remaining vehicles, this target set is easier to ID.
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7

Modeling Sampled Imagers

The sampling limitations associated with focal plane array (FPA) imagers cause an
aliased signal that corrupts the image. Aliasing can cause distortion of scene detail; for
example, fence posts can be fatter, thinner, or disappear completely. Aliasing can also
cause display artifacts like line raster. The aliased signal is a function of input image, pre-
sample blur, sampling frequency, and image reconstruction at the display. The model
used to predict the amount of sampling artifacts present in an imager is described by
Vollmerhausen (2000, 04/2000).

Aliasing can degrade target acquisition performance. Experiments to calibrate the
decrease in performance based on the aliased signal present are described in several
references (Vollmerhausen, 1999; Krapels, 1999, Krapels, 2001; Devitt, 1999). The
technique for predicting sampling artifacts and the resulting degradation in range
performance is summarized here. Examples showing the predictive accuracy of the
technique are described in Appendices A and C.

It has become common practice among engineers to use the term aliasing to refer only to
spurious frequency content that overlaps and corrupts the signal in the original (pre-
sampled) frequency band. Sampling actually causes aliasing at all spatial frequencies.
However, to avoid confusion about the meaning of aliasing, the term spurious response is
used in this paper. The part of the image spectrum which results from sampling, other
than the original frequency content, is referred to as spurious response. That is, in
frequency space, spurious response is the Fourier transform of the sampling artifacts.

The spurious response of a sensor corresponds to artifacts in the sensor imagery; it is a
much better indicator of sampling efficacy than the half sample rate. The spurious
response of a sensor can be described in a manner very similar to the sensor Modulation
Transfer Function (MTF) in that, the frequency components of the spurious response may
be plotted similar to an MTF. The greatest barrier in the use of spurious response to
characterize sensor performance is the calibration of human reaction to spurious
response.

The amount of spurious response in an image is dependent on the spatial frequencies that
comprise the scene and on the blur and sampling characteristics of the sensor. However,
the spurious response capacity of an imager can be determined by characterizing the
imager response to a point source. This characterization is identical to the MTF approach
for continuous systems. MTF is a trusted indicator of optical quality. But the need for
good MTF cannot be established until the scenario and task are defined. Good MTF is not
always needed; it is prized because of the potential is provides. The same is true for the
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spurious response characteristics of an imager. The actual amount of aliasing cannot be
known without specifying the scene, but the tendency of an imager to generate sampling
artifacts is significant in the same sense that good MTF is significant.

The effect of sampling on target acquisition is modeled with the following procedure.
First, the spurious response of the imager is analyzed; this is done by characterizing the
shift-variant response of the imager to a point source. Once the amount and nature of the
spurious response is known, experience from target acquisition experiments with sampled
imagery is used to establish the expected drop in performance.

7.1 Response Function of a Sampled Imager

The response function Rg,(¢$) for a sampled imager is found by examining the impulse
response of the system. This procedure is identical to that used with non-sampled
systems. The function being sampled is /,.(x), the point spread function of the pre-
sampled image. Assume the following definitions:

& = spatial frequency (cycles per milliradian)
v = sample frequency (samples per milliradian)
d = spatial offset of origin from a sample point (in milliradians)
H,.(&) 1s the pre-sample MTF (optics and detector)
Pi(¢) is the display MTF (crt spot, sample and hold, eyeball MTF)

Then the response function Ry,(<) is given by the following equation.

Rep(€)="% H ppe(&-nv)e &M p (&)

n=—00

Rsp (‘S&) :Hpre (‘f)e_lfd By (E)+ X2 Hpre (é;_m/)e—i(f—n V) Fix ()

n#0

(7.1)

The response function has two parts, a transfer term and spurious response term. The n=0
term in Equation 7.1 is the transfer response (or baseband response) of the imager. The
transfer response does not depend on sample spacing, and it is essentially the only term
that remains for very small sample spacing. A very well sampled imager has the same
transfer response as a non-sampled imager.

However, a sampled imager always has the additional response terms (the n#0 terms).
These terms mathematically describe the spurious response. The spurious response terms
in Equation 7.1 are filtered by the display MTF, P;( &), in the same way that the transfer
response is filtered. However, the position of the spurious response terms on the
frequency axis depends on the sample spacing. Also, the phase relationship between the
transfer response and the spurious response depends on the sample phase. See Figure 7.1
for a graphical illustration of the transfer and spurious response terms.
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H(&) replicas

amplitude

spurious

frequency
Figure 7.1 Notional plot of the sampled imager response function. The pre-

sample MTF H(¢) is replicated at multiples of the sample frequency. The transfer
response is the pre-sample MTF multiplied by the display and eye MTF Pix(§).
The spurious response is the pre-sample replicas filtered by Pix(&).

7.2 Impact of Sampling on Range Performance

A number of experiments have been performed to discover the impact of spurious
response on targeting performance. Based on these experiments, spurious response at
frequencies less than the half-sample rate (that is, in-band aliasing) has little effect on
recognition or ID performance. It appears that some effect occurs at long ranges where
acquisition probabilities are low; this is logical because, at long range, there are very few
pixels on target. However, at ranges of practical interest, in-band corruption tends to
affect minor details but does not change the basic presence or location of important cues.

Out-of-band spurious response, however, tends to mask the underlying image. Line
raster, pixel edges, and other spurious high-frequency content does degrade targeting
performance. The amount of performance degradation depends on the ratio of spurious
content to image content. The spurious response ratio (SRR,y) of integrated out-of-band
spurious response to the integrated transfer response is a good indicator of performance
degradation.

o0
[Spurious response d&

SRRy =¥ 2 (7.2)

[ Transfer response d&
0

Many imagers have different sample spacings horizontally and vertically; for example,
most scanning thermal imagers have better sampling in the horizontal direction. SRR is
calculated in the two dimensions independently, and the geometric mean is used to
estimate performance degradation.

In real imagers, the display and eye MTF limit the frequency content visible to the
observer. When doing numerical integrals, a practical limit for the upper frequency is 2.5
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times the sample frequency. Also, the replicas centered on frequencies above twice the
sample frequency are effectively filtered out. Quite often, the replicas of the pre-sample
MTF overlap in the frequency domain; in Figure 7.1, there is a small overlap between the
first and second replicas. In the overlap region, the signals from different replicas are
root-sum-squared before integration.

2.5v

] 2 Hpre (ég —n V)Hpost (‘g)dég
v/2 n=-2,-112

SRRH ,,;; = >3y (1.3)
JHsys (f)df
0

2.5u
] ; O 2Vpre (77 - n:u)Vpost (77)0’77

SRRV, = R jé.Sy (7.4)
IVsys (77)d77
0

When predicting the probability of accomplishing a task at range, sampling artifacts
reduces the resolved cycles.

Nsampled = Nresotved 1 — 0-58 SRRH 5,4 \[1-0.58 SRRV, (7.5)

Niesolved 18 the resolved cycles on target calculated using Equation 6.5. Ngampled 1S used in
lieu of Niesoved in Equation 6.6 to calculate probability.

In these equations,

SRRH,, = out-of-band spurious response ratio in horizontal dimension
SRRV, = out-of-band spurious response ratio in vertical dimension
Hpre(€) = horizontal pre-sample MTF

Vore(n) = vertical pre-sample MTF

& = horizontal spatial frequency in (milliradian)

n = vertical spatial frequency in (milliradian)™

v= horizontal sample frequency in (milliradian)”

u = vertical sample frequency in (milliradian)

Heye(§ or ) = eyeball MTF

Heiece(§) = horizontal electronics MTF

Veee(n) = vertical electronics MTF

Hgysp(&) = horizontal display MTF

Vgsp(n) = vertical display MTF

Hgys(&) = horizontal system MTF

V(M) = vertical system MTF

Hypost(&) = Hetec(E)Hasp(E)Heye(E)
Vpost(n) = Velec(n)vdsp(n)Heye(n)
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7.2.1 Discussion

A sampling model which ignores corruption of the baseband signal would seem to be
counter-intuitive. There must be a point at which the original signal is so corrupted by
aliasing that a performance impact results. Experiments 36 and 44 were run to examine
this case. These experiments are described in detail in Appendices A and C. Experiment
36 used an ID task and Experiment 44 used a recognition task. A large amount of aliasing
at frequencies less than the half-sample frequency was created by using a very small
detector fill factor. These experiments support the conclusion that range degradation is
predicted based on the out-of-band spurious response.

As described in the appendices, F/2, diffraction limited optics were used with a 256 by
256 staring array which had a 0.0016 fill factor (one micron square detector on a 25
micron square pitch). The sampled imagery appeared corrupted; the internal details and
shape of the target vehicles were significantly distorted. Intuitively, viewing the images,
it appeared that scene structure was destroyed, not that raster or display pixel structure
was obscuring the underlying scene details.

Nonetheless, experimental results support the conclusion that performance degradation
due to sampling is predicted by the amount of out-of-band spurious response. This result
might be more understandable when it is realized that the small detectors were generating
large amounts of out-of-band energy; the in-band signal was being aliased in a way that
created significant high frequency content that was not filtered out by even good display
pixel interpolation. The small fill factor did result in a 27% loss in range performance,
but the performance loss was predictable from the out-of—band Spurious Response Ratio.

All of the sampling experiments have involved either identifying or recognizing targets;
the applicability of the model for the detection task has not been verified. As discussed in
Appendices A and C, the sampling adjustment appears to be optimistic when the targets
are at long ranges and have few samples on target. That is, sampling appears to have a
greater effect on ID and recognition when the targets are at long range and are poorly
resolved. This might infer that the detection task, which involves few cycles on target, is
more affected by sampling than either ID or recognition.

It should be remembered, however, that recognition is the level of discrimination at
which the observer knows he is looking at a target. The low cycle criteria associated with
the detection task occurs because of the acceptance of many false alarms. It is possible
that Equation 7.5 needs to be adjusted to accurately predict detection, but that is not
certain. Based on experience using 1* generation thermal imagers in search experiments,
poor vertical sampling lead to increased false alarms, not an increase in the number of
cycles needed to detect the target.
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3

Modeling Reflected-Light Imagers

Imagers of reflected light operate in the spectral band between 0.4 and 2.0 microns. This
spectral region constitutes the visible band from 0.4 to 0.75 microns and the near infrared
(NIR) band from 0.75 to 3.0 microns. Quite often, light with wavelengths between one
and two microns is called short wave infrared (SWIR). Natural light is abundant in the
0.4 to 2.0 micron spectral band. Figure 8.1 shows illumination from sunlight, moonlight,
and starlight (including airglow). The visible band is especially bright in the day, and the
SWIR is the brightest of the three bands on a moonless night. The figure shows
illumination through the atmosphere; the moon and sun are both at a 60 degree zenith
angle. There are four distinct atmospheric absorption bands apparent in the illumination
spectra; these are at 0.95, 1.1, 1.4, and 1.9 microns. These absorption bands also affect
atmospheric transmission; transmission over a one kilometer, horizontal path is shown in
Figure 8.2. In addition to abundant natural illumination, the clear atmosphere is fairly
transparent over most of the 0.4 to 2.0 micron spectral band.

1.E+00 -
Fi oo 1.E-01
igure 8.1 Illumination from the <
. S 1.E-02
sun, moon, and starlight. Most of & 1E-03 -
the “starlight” illumination is £ 1 E-04
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actually from air glow. g 1E-05 -
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8 1E07-
= 1.E-08 -
1.E-09 ‘ ‘ ‘
0.4 0.9 14 1.9
Wavelength in microns
1_0-;-”---..‘:‘._‘i.“--: ‘..--‘- :------.‘- :’---------_‘
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=
0.2 Dol
0.5 1.0 15 2.0 25

Wavelength in microns

60



Target and background reflectivities tend to vary with wavelength in this spectral region;
natural and manmade objects tend not to be gray bodies. Figure 8.3 shows the spectral
reflectivity of a foreign paint, sand, gravel, a mixed soil, and dead grass. The paint
closely matches the gravel and soil out to about 1.2 microns and closely matches the sand
beyond 1.2 microns. The paint has very different reflectivity properties from dead grass
(the top curve in the figure) over the entire spectral range. The apparent contrast seen by
the imager depends on the background and also on the spectral band chosen

0.8 -

Figure 8.3 Spectral
reflectivities of a foreign,
tactical-vehicle paint and
various Kinds of dirt and grass.

8.1 Staring Focal Plane Arrays

The theory for a solid state camera is developed in this section. A diagram of a solid state
imager is shown in Figure 8.4. A lens focuses light onto a two-dimensional focal plane
array of detectors (the FPA). Photo-current is generated in each detector for a fraction of
each frame or field interval; the stored charge is read out and formatted for display.

Two dimensional YIDEO DISFLAY
array of detectors -

Z

rigure 3.4 viagram OI a solia state imager.

The calculation of photo current is described in references such as the Electro-Optics
Handbook (Burle Industries, 1974). The detector current from a scene element is
calculated as follows.

photocurrent = Vdet—szet [ 1(2)T(2)R(2) Ry (2)c(2)dAa (8.1)
4F#
where
A = Wavelength in pm
Fo = focal length of objective lens in centimeters
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F# = focal length Fo divided by aperture diameter

I(A) = Illumination in watts cm~2 micron!

T(\) = Transmission of atmosphere as a function of A

R(A) = Spectral reflectance of the scene element as a function of A
Rsp(A) = Detector response in amperes per watt as a function of A

C(L) = Objective lens and spectral filter transmission as a function of A
Vet and Hgye are vertical and horizontal dimensions of detector active area in
centimeters

Let Rr and Rg represent the detector photocurrent spectral integral for targets and
backgrounds, respectively. Because the signal is proportional to the photo-current and
noise is proportional to the square root of the photo-current, the average electron flux per
solid angle is used in the model. The spatial frequency unit is cycles per milliradian. We
want to calculate the average number of electrons per second in a square milliradian
(Eav); this is because noise power spectral density has units of (second-milliradian®)”.
Power spectral density is in the frequency domain; the calculation here is in the space
domain.

E. = 0.5 10° (RT+Rp) Fo? / (Vpit Hpit ©) (8.2)
where

e = charge on an electron (1.6E-19 Coulombs per electron)
H,i and Vi are horizontal and vertical detector pitch in centimeters

The ratio Fo’ / (VpiHpit) gives the number of photo-detectors in a square radian; the E-6
factor converts this to the number in a square milliradian. The unit “square radian” rather
than steradian seems strange; remember, however, that the model treats two dimensions
as a one-dimensional calculation, done twice. Calculations are not really done in two-
dimensional space.

Equations 4.14 and 4.15 for CTFHjys and CTFV,y, can now be written for a solid state
imager. In the following equations, &’ and n)” are dummy variables of integration.

CTF(é/ j o) 1/2
MA
CTFH s (&) = SMAG 21 L O kg OH hgr (£)OVhor 8.3)
MdspHsys (&) \Kcon Egy
CTF(T% ) o) 1/2
CTFV (77) — SMAG 1 + o Eav QHVE}" QVver (77) . (84)
Sys 2 2
MdSP VSJ’S () Kcon Egy
where

o = 169.6 root-Hertz (a proportionality factor)
¢ = horizontal spatial frequency in (milliradian)’’
n = vertical spatial frequency in (milliradian)™
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CTF(&/SMAG) = naked eye Contrast Threshold Function; see Appendix E
Keon = contrast enhancement
B(§ or n) = the Equation (3.9) eye filters
Heye(€ or ) = eyeball MTF; see Appendix E
Heiee(§) = horizontal electronics MTF
V.iee(M) = vertical electronics MTF
Hysp(&) = horizontal display MTF
Vgsp(n) = vertical display MTF
Hgys(&) = horizontal system MTF

V(1) = vertical system MTF
QHyor = horizontal noise bandwidth for CTFH,ys defined by Equation 8.5
QVior = vertical noise bandwidth for CTFH,y defined by Equation 8.6
QH,r = horizontal noise bandwidth for CTFVy defined by Equation 8.7
QV,er = vertical noise bandwidth for CTFVy, defined by Equation 8.8

, 2
O (&) = BE /) H tee € H oy e Fipgac )| 4 53
2
OVhor = [Velec Vdsp (H eye (%MA G)‘ dn (8.6)
2
OH ey = j‘Helec (S)H gsp (f)Heye(%MA GJ‘ dg (8.7)
, 2
OF ser ) = BT I W otee 0 Voo 01 ey Uiy )| 3)

Equations 8.3 and 8.4 assume ideal shot noise; other noise sources are ignored. This
assumption is realistic for most cameras under high illumination conditions. However, as
the light fails, noise sources other than shot noise begin to dominate.

Figure 8.5 illustrates the read-out of a CCD imager. Photo-charges are clocked down, line
by line, until they reach the horizontal shift register. After each line is entered into the
register, it is shifted out at high speed through the video amplifier. In this manner, the
imagery collected in parallel at each detector becomes a serial stream. The benefit is a
single output line, generally formatted as RS-170 standard video. The penalty is that the
high speed video amplifier is noisy.

Two dimensional
array of detectors

Figure 8.5 Diagram of Video Read-out

High bandwidth video amplifier adds B -@
noise to the signal. @.

!%!%!%!@!@!%!%E

| CCD ormux g\l@

Pixel charges are serially
transferred to output

Video
amplifier
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The video amplifier noise is typically specified in terms of noise electrons per pixel per
field or frame. Although the noise actually arises in the amplifier or read-out circuitry,
manufacturers provide the equivalent number of noise electrons in order to make
calculation of dynamic range and total noise easier.

A second common source of excess noise is dark current. Dark current is often specified
as electrons per pixel per frame. Sometimes, dark current is specified as current density;
for example, the dark current might be specified as 100 microamperes per square
centimeter. In that case, the active detector area and frame time are used to calculate dark
electrons per pixel per frame. The noise associated with dark current is the square root of
the number of dark current electrons.

All noise sources are added in quadrature. The noise in one second and one square
milliradian is:

Tcep (Ec%mp +Epc )F02
H

Eppise = Eqy 7 1070 (8.9)
pit ¥ pit

where

Eamp = the amplifier noise in electrons per pixel per frame

Epc = dark current electrons per pixel per frame

Tcep = fields or frames per second.

The equations for threshold vision through the imager now become:

5 1/2
CTF(%MAG) ( 1 n azEnoise QHhor (f)QVhor J (8.10)
MdspHSyS (f)

CTFH (&) =
i Kgon EC%V

CTF(’7 j ) 1/2
CTFVsys (n) = AMAG [ 1 n A" Eppise OH yor OVyer (77)} _ (8.11)

Mdsp Vsys (9] Kczon E(%v

Since amplifier noise can completely dominate performance at low illumination levels,
techniques have been developed to provide signal gain prior to the read-out electronics.
Generally, however, the electron gain is non-ideal in the sense that the gain itself
generates excess noise. Sometimes the amount of excess noise depends on the gain
applied. For example, avalanche silicon diodes have excess noise equal to the square root
of the gain; a gain of 100 comes at the cost of increasing shot noise by a factor of 10.

Let Ny represent the noise factor which is always greater than one. Ny might be a fixed
value or might depend on gain through the equation

Ny = Gain”
where 7 is an exponent which depends on the technology used; for silicon avalanche
diodes, v is 0.5. Then E,ise in Equations 8.10 and 8.11 becomes:
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2 Teep Ebmp Fo
L TecpEpc Ko (-6 N2+ ccp Eamp £

> 10°° ©®12)
pit Vpit Gain le‘t Vpit

Enoise = E av

If both gain and noise factor are unity, then Equation 8.12 reduces to 8.9.

8.1.1 Interlace

Display interlace is used to reduce electronic bandwidth while maintaining a high
resolution image. Electronic interlace, also called standard interlace or simply interlace, is
illustrated in Figure 8.6. The FPA operates at 60 Hertz. However, the display operates at
a 30 Hertz frame rate. The first, third, fifth, every odd line from the FPA is displayed in
the first field. The even lines (two, four, six, etcetera) are displayed in the second field.
Although interlace does not degrade resolution, the displayed signal to noise is affected
because half the available signal from the FPA is discarded.

FPA DISPLAY
640 columns——> 640 columns——>
205858085508 | |mmmmmmmmman
: ; 0O00DDO0O000DnoO
Figure 8.6 Illustration 000000000000 EEEEEEEEEEEE
of Electronic Interlace goooooooooog 0oOooooooooog
O00oooO0o0o0ooo EEEEEEEEEEEE
Bl HHT
EEEEEE EFELD1
ooooog Data taken DE0000 o FIELD 2
ooguooo at 60 Hz. EENEEE
oogpoo ooogpoo 30 Hz.
480 rows 480 rows frame rate

Pseudo interlace is a means for using all of the signal electrons while maintaining the
reduced bandwidth benefits of interlace. In the first display field, photo-electrons from
pixels in rows one and two are added and presented on display line 1. Pixels on lines
three and four are added and presented on display line 3. The process continues, adding
odd lines to even lines and displaying on odd lines. In field two, FPA lines two and three
are added and presented on display line 2. Even FPA lines are added to odd lines and
displayed on the even lines. This process is illustrated in Figure 8.7. Pseudo interlace uses
all of the available signal electrons and therefore maintains image sensitivity. Also, field
alignment is properly maintained; samples are in the correct location. The penalty paid is
a decrease in the vertical MTF of the imager.

FPA DISPLAY
640 columns—> 640 columns——>
0OoO0oDOo0oo0d0 ]l | eSS EEEEEEE
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In Equations 8.10 and 8.11, E,, is divided by two for standard interlace but is not affected
by pseudo interlace. Epqise in Equation 8.12 is affected as shown in Equation 8.13 where
Lsignat and I,mp are defined:

Limp = lsigna = 1 for non-interlace

Limp =2 for any interlace

Lsignat =2 for electronic interlace and
=1 for pseudo interlace.

2 2 g2
2 6
e _| g L TccoEpcFS |46 Ny , Teeo Eamp F5” 10 8.13)
noise av
pit Vpit Lsignal Gain? H it Vi L amp

8.1.2 Snapshot and Frame Integration

Temporal integration of the eye varies with light level. As illumination decreases, the eye
integrates for a longer period. If detector noise is temporally varying at a fairly rapid rate
(50 or 60 imager fields per second is adequate), then the eye temporally filters detector
noise in the same way as eye noise. However, if a snapshot (single frame) is taken, or if
frame integration is used, then the effect of eye integration time must be explicitly
considered.

The dependence of eye integration time on display luminance is:
teye =.0192 +.0625 (L / 1.076)""
where L is display luminance and ty. is integration time.
For snapshot imagery, define t, as:
tact = frame time for non-interlace and pseudo interlace
= half of a frame time for electronic interlace.

Then Eise for snapshot (Enoi-snap) 15 related to Enoise for framing shown in Equation 8.9
by:

leye
Enoi—snap = t_Enoise (8.14)

act

If frame integrate is used, then the effect depends on whether the imager is in framing or
snapshot mode. If in snapshot mode, then the benefit of integrating Finr frames is:

t

TP FINT tacr

E

E (8.15)

noise

If the imager is in framing mode, then the benefit of frame integration is moderated by
the fact that the eye is already integrating temporally.

lccp teye
(FINT + leye tcCD)

E (8.16)

E frm—int =

noise
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8.2 Direct View Image Intensifiers

Image intensifiers amplify moonlight and starlight at spectral wavelengths between 0.5
and 1.0 micron. To the left in Figure 8.8, a pilot is wearing the Aviator’s Night Vision
Imaging System (ANVIS) which consists of two oculars, one for each eye. A schematic
of one direct view goggle ocular is shown at right. The objective lens forms an inverted
image of the scene on the image intensifier tube. The I tube amplifies the brightness of
the image as described below. The fiber-optic twist erects the brighter image. The
eyepiece creates a unity magnification, virtual image of the scene, allowing the pilot to
fly at night without lights. By modifying the eyepiece to create image magnification, a
single ocular can also be an effective rifle sight.

Eyepiece Obiecti
lens Fiber 12 Tube ﬁf,s"'e
optic twist

Figure 8.8 ANVIS goggle shown at left; at right
is a schematic diagram of a single ocular.

Operation of the I* tube is illustrated in Figure 8.9. Photons from the scene generate
photo-electrons in the cathode. A high voltage accelerates the photo-electrons to the
micro channel plate (MCP). The MCP consists of millions of tiny channels; these
channels are about five microns in diameter on a pitch of six microns. The channel length
to diameter ratio is about seventy. Operation of the MCP is shown by the blowup of a
single channel at the bottom of the figure. Photo-electrons enter the channel and are
accelerated by a high voltage across the channel plate. Secondary electrons are emitted
when the photo-electrons strike the channel wall. The secondary electrons are then
accelerated, strike the wall, and create more electrons. Electron gain through the channel
is controlled by varying the voltage across the MCP. Channel electrons exit the MCP and
are accelerated by another high voltage to the phosphor where an image is formed.
Brightness gain results from the MCP electron gain, the energy gained from electron
acceleration between the MCP and phosphor, and from the fact that the cathode is
sensitive to a much broader range of light wavelengths than the eye.

Brightness gain is specified by the ratio foot Lamberts from the phosphor to foot candles
on the cathode. Typical gain is 30,000 but gains to 100,000 are possible; however,
excessive gain leads to bothersome scintillation in the image. Brightness output of the I*
tube is controlled by limiting the current available to the MCP; generally, goggle
brightness is limited to about 3 fL.. Tube noise factor is ideally 1.4 based on the open area
ratio (not all photo-electrons get through the MCP); typical noise factor is about two. See
Bender (2000) for a more thorough discussion of the theory and specification of image
intensifiers.
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Figure 8.9 Illustration
of I* Tube Operation
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Equation 8.17 is used to find the photocurrent for one square centimeter of cathode area.
1
photocurrent = Eﬁoool(l) T(1)R(A) R, (1)C(A)dA (8.17)

E., = 3.13E12 (RT+RpB) Fo’ Bio (8.18)

In Equation 8.18, Rt and Rp are the photocurrent integrals in amperes per square
centimeter for target and background, respectively. The 3.13E12 factor is the product of
0.5 to average target and background flux, 1E-6 to convert radians to milliradians, and
divide by the charge on an electron (1.6E-19 Coulombs per electron). The B, factor
accounts for the improved signal to noise available from systems with two image
intensifier tubes.

Bj, =1 for monocular or biocular (one 12 tube)
=2 for binocular (two 12 tubes)

In image intensifiers, dark current is called equivalent background input (EBI). Although
generally not important at room temperature, EBI can be significant in very hot
environments or if the 12 tube is enclosed with other hardware. The unit for EBI is foot
candles (lumen per square foot) of 2856 K light. Tube specification sheets generally list
the responsivity of the tube (Rep) in uamps per lumen of 2856K light. So the dark current
(DCggi) per square centimeter of cathode area is:

DCggi = EBI Rep 1E-6/929.03 (8.19)

where the 929.03 factor converts square feet to square centimeters. The noise electrons
(Enoise) in one second and one square milliradian is:

Enoise = Eay + 6.25E6 DCgpi Fo’ Bio (8.20)

In order to establish the eye CTF, the output brightness of the tube (Bo,) must be
calculated. First the current to light gain (Gee. fL cmz/uamp) is calculated from a
knowledge of tube gain (Gype) in fL/fc and tube responsivity.

Gelee = Grube 929.03 / Regp (8.21)
For an eyepiece transmission of Ty, the output brightness is:
Bout = O.S(RT + RB) Gelec Teye + EBI Gtube Teye (8.22)
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The equation for horizontal and vertical threshold vision through the imager is:
1/2

CTF(f j 2N2E
4MAG 1 N a” NyEpsise OH(S)OV (8.23)

(Eav /! Enoise )Hsys (&) Kcz’on Ec%v

CTFsys(é:) =

where E,y / Enoise 15 the contrast degradation Mg, due to EBI. For direct view 12 systems,
MTF loss is associated with the optics (Hop), the tube (Huwbe), and the eyepiece (Hep).
Since little of the tube MTF is associated with the cathode, tube MTF filters the noise.

Hsys = Vsys = Hopt Htube Hep (824)
, 2
OH () = [ D Huube € Hep @ Hose Sipga )| (825)
2
or = J‘Htube (U)Hep (U)Heye(%MAG)‘ dn (3.26)

8.3 I? Optically Coupled to CCD or CMOS

The eyepiece in Figure 8.8 can be replaced by a CCD or CMOS imager and display; this
allows the image intensifier to be mounted remotely from the observer. A fiber-optic
minifier or optical relay lens is used because the image intensifier format is generally
twice as large as the CCD image array. See Figure 8.10 for a schematic diagram of an 12
CCD camera.

CCD or CMOS
Figure 8.10 Illustration of /- array p
I* Tube Optically Coupled § .
to CCD or CMOS FPA

_,"‘:fiber optic
~ reducer

The MTF of the CCD and display is applied to the I” tube signal and noise. Hccp and
Vccep are the horizontal and vertical CCD MTF, respectively. The CCD noise is filtered
by the CCD MTF, display MTF, the eyeball, and the perceptual filter. The CCD noise is
added in quadrature with the other noise terms; this means that CCD noise must be
expressed in terms of cathode photoelectrons.

2 2 2 2
Kest (Eamp +Boys /RCCD )RCCD Tcep Apix Ky K, F, Resp 27
Eccp = (8.27)

(Gtube e )2
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where

Eccp = CCD noise expressed as 12 cathode photo-electrons

Kest = 4.53E13 = constant factors (charge on electron, units convrsion)
Eamp = Amplifier noise per CCD pixel per field in electrons,

Tccp = field rate of CCD

Rccp = footcandle to generate one electron in a CCD pixel each second
Apix = area of a CCD pixel = Hpit Vit

K}, and K, are horizontal and vertical reduction ratios

Bous = light output from I? tube in fL

The shorthand “CCD” is used to represent the array, but the technology used for the solid
state imager 1s not relevant. Also, optical coupling can be by coherent, fiber optic reducer
as shown in the figure, or a relay lens can be used.

All calculations for the I? tube remain the same as in Equations 8.18 through 8.26 except
for the addition of CCD and display MTF. The noise now has two terms because CCD
noise is filtered differently than I? tube noise. EHpor and EVy,, are the spatial filters for
calculating horizontal CCD noise. EH,.; and EV,., are the spatial filters for calculating
vertical CCD noise. In the following, &’ and 1’ are dummy variables of integration.

Hsys = Hopt Htube Hep HCCD Hdsp (828)
Vsys = Hopt Hiube Hep Veep Vdsp (8.29)

, 2
OH jor (£) = [|BE'/ ) H e (€ H gy (€ )H cep (6 H gy (§'>Heye[%MAG) dg' (830)

2
OVior = J.‘Htube (U)Hep MVeep () Vdsp (7) Heye (%MA G)‘ dn (8.31)
3 ?
EHpor (€)= [|BE T OHcep @ o @ Hase Vippac | 46 532
2
EVipor = J“ Veep (mMVasp (U)Heye(%MAG)‘ dn (8.33)
CTFH ., (5) = CTF(%MAG) 1 . azN}Enoise OH 1o (£)OV hor N azECCD EH j0y (E)EV oy 12 (834)
T My (©) Ko E2, E2,
£ 2
O yor = 1| Huuhe (€ ep (O ccn (€ asp e S )| 46 (5.39)
, 2
OViver (1) = [|BG7'/ 1) H e (7Y H oy (1) Ve (7') Vasp (n')Heye[%MAGj dr (8.36)
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EH e =1|Hcep(@H oy (é)Heye(%MAG)rdé (837)

, 2
EVyer ) = || BO I mVeen 01 Yy 0 Hose Vi )| 4 (8.39)
1/2
B CTF(%MAGJ 1 azN}Enoise OH ey QVyer (D) o2 E o) EH o EV,or (1) | (8:39)
CTFVsys (m) = 5 + 3 + 2
Mdsp Vsys (m) | Kcon Egy E,

Vollmerhausen (1996) provides three validation examples; these show a good match
between model predictions and experimental data. Appendix E provides details on how to
model CCD MTF and fiber-optic taper MTF, respectively.

It is important to realistically assess display performance when modeling 12 CCD
cameras. This is particularly true when modeling low illumination levels, because the
camera electronic output might not be sufficient to properly drive the display. As a result,
the best “operator optimized” image might have poor display contrast. During the valida-
tion experiments described in Vollmerhausen (1996), operator-selected display contrast
ranged between 10 percent and 40 percent when the various cameras were used under
overcast starlight illumination.

Under low target-illumination conditions, some 12 CCD cameras will output only
millivolts of video signal. Cathode ray tubes have a power law relationship between the
input voltage and the output luminance. At maximum gain and with no brightness control
offset, typical displays will provide very little output luminance when the input voltage is
only a few millivolts. Typical gamma correction circuits do not correct inputs this low.

Adding display brightness with the brightness control will move the image up the power
law curve, providing a larger luminance change for a given change in input voltage.
Adding brightness will also make the whole display brighter, improving the human visual
response. As a result of the two properties together, the display might have the best
subjective appearance with minimum display luminance greater than zero. The operator
will choose poor contrast over no or very low luminance. Since, in this instance, CTF is
inversely proportional to display contrast, the display characteristics can be a dominant
factor in determining system performance.

8.4 CCD or CMOS Array inside I’ Tube

The array can be inside the vacuum of the image intensifier tube. Electrons are directly
gathered by the CCD rather than optically coupling the CCD to the I* tube phosphor
output. This is illustrated in Figures 8.11 and 8.12. In 8.11, electrons are accelerated from
the cathode to the CCD by a high voltage. The photo-electrons are given sufficient
energy to create 100 to 200 secondary electrons when the CCD silicon is struck. This
provides near-ideal electron gain. In Figure 8.12, an MCP is used. The MCP adds
complexity but provides advantages. The MCP provides gain control; the cathode to
CCD voltage in Figure 8.11 cannot be lowered too much, or the image will blur. Also,
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with the MCP, secondary electrons at the CCD are not necessary; the CCD (or CMOS
array) is just a collector of electrons and need not provide gain. The arrangement in
Figure 8.12 is expected to prolong CCD array lifetime.

Photo-electrons

. %
N

CCD array

Cathode
& v -

,,,,,,,,,,,,,,,,, °

Image %g‘?
Figure 8.11 CCD array photons ® o
inside I* tube vacuum. ey ?boga?

30% o
Y Adeo display
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Wi R CCDor CMOS
' array
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[

Figure 8.12 CCD array inside 1
tube vacuum; this arrangement
also has an MCP.
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CCD noise Eccp is calculated differently from that used with optically coupled
arrangement. Otherwise, Equations 8.30 through 8.39 are used to calculate CTF for these
imagers. Using the same Ry and Rp as in Equation 8.18 for the photo-current per square
centimeter of cathode area, the Eccp is:

1E - 6(Eamp2 + O'S(RT +Rp )HdetVdetGelec )TCCD F02

2
H VP” Gelec

Eccp = (8.40)
pit

where Ggpe. is the electron gain. This Eccp is used in Equations 8.34 and 8.39.

8.5 Predicting Probability versus Range
8.5.1 Contrast Transmission through the Atmosphere

When predicting contrast transmission, certain assumptions are made to simplify
calculations. These assumptions constrain the scenario for which the model is
appropriate.

a) The target and background are co-located; the target is viewed against local
terrain. Range to the target and range to the background are the same. From a
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military standpoint, this is not an unreasonable assumption, and it relieves the
necessity to consider some complex situations where target to background
contrast can actually reverse.

b) Contrast loss through the atmosphere is from scattering. Contrast is not
affected by absorption in the atmosphere. As shown in Figures 8.2 and 8.3, the
atmospheric absorption bands remove light from the illumination. Most of the
atmospheric path occurs before the light hits the target and background.
Atmospheric absorption is considered when predicting spectral illumination.

c) Average luminance seen by the imager does not change with range. Target-to-
background signal disappears into the average luminance established by the target
and background reflectivities. CTFys (or MRC) depends on the light entering the
sensor; noise, for example, is proportional to the square root of average
luminance. In order to use a single, pre-calculated CTFy to represent imager
performance, the assumption must be made that luminance does not change with
range.

d) Contrast is reduced by scattering of target signal out of the line of sight and by
sunlight, moonlight, or starlight scattered by the atmosphere into the imagers field
of view. See Figure 8.13 for an illustration. In most scenarios, path radiance
caused by light scattered into the sensor’s path is the most serious cause of target—
to-background contrast loss. The atmospheric path can appear brighter at the
imager than the zero range target and background; this results in substantial loss
of contrast. This part of the model is not completely self-consistent, since the
luminance viewed by the imager is increasing with range under these
circumstances. However, the approximation that the luminance is constant does
not generally lead to serious errors. The most important factor is that contrast is
greatly reduced by the atmosphere.

e) Path radiance is quantified by the Sky-to-Ground-Ratio (SGR). As the
atmospheric path lengthens, the path becomes brighter. At some point, the path
becomes “optically thick.” That is, only light from the path is seen, and increasing
the path length does not change the path radiance because as much light is
scattered out as in. The SGR is the ratio between the maximum path radiance and
the zero range radiance. SGR does not vary with range because the peak, long
range value is used in the ratio. Table 8.1 gives values of SGR for a range of
environments. Figure 8.14 shows the effect of SGR on contrast transmission.
Equation 8.41 is used to calculate contrast loss for range R,,, Beer’s Law
coefficient 3, and target zero-range contrast Crgr.o.

CTGT-0
1+ SGR (exp_'g Rig —1)

Crar = (8.41)
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Figure 8.13 Sunlight scattered from atmosphere
degrades target-to-background contrast.

1- 0.9/Km transmission 1 0.4/Km transmission

Contrast loss

2 4 6 8 10 0 1. . 2
Range in kilometer Range in kilometer
Figure 8.14 Effect of SGR on Contrast Transmission Left shows effect

when the Beer’s Law transmission is 0.9 per Kilometer. Right shows
effect with 0.4 per Kilometer transmission.

Typical SGR Values

Table 8.1 Typical Terrain Clear  Overcast

Values for SGR Desert 1.4 7.0
Forest 5 25
Typical 3.0

8.5.2 Effect of Contrast Enhancement

Looking at examples like Equations 8.3, 8.4, 8.34, and 8.39, each CTFH,ys and CTFVy,
has two or more terms. One of the terms represents eye contrast limitations and depends
on Kcon; the other term(s) depend on sensor noise and are independent of K. In use, an
imager may or may not have the contrast optimized to view the target, so contrast
enhancement is one option that can be changed when calculating probability versus
range. During a search, for example, the sensor is set to see the environment; the target
has not been found. When a likely location is found, however, then the imager might be
optimized to see if a target is present. So contrast enhancement might not be used in the
wide field of view during search, but would be employed for the target identification task.

The process is the same for CTFH,ys and CTF Vg, so horizontal calculations are used as
examples. Using Equation 8.3 for CTFHys:
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CTFH g5(§) =[CTFH 20 (£) + CTFH 2oy (9112 (3.42)

where
CTF[é/ )
SMAG
CTFHeye (&)= (8.43)
Kcon MdSpHsys (&)
CTF(é ) ) 1/2
CTFHsen ('f) _ AMAG a Eav QHhor (5) QVhor (8.44)

2
MdspHS_)/S (5) Eav

Similar equations can be written for CTFVy,,. Models like SSCAM, [2ZMRC, and 12CCD
output four arrays for each illumination and target-background combination modeled.
Those arrays are CTFHeye, CTFHgen, CTFVey, and CTFV,. The value for con
determines how the four arrays are combined to predict the system CTF.

The options provided in the reflective model are: no contrast enhancement (Cqysp = Crar),
display contrast of 0.25 (Cgsp = 0.25), and display contrast of 0.5 (Cgsp = 0.5). The value
of 0.5 was determined by optimizing a set of 144 tactical vehicle image (twelve aspects
of twelve different vehicles). Each image was individually optimized to bring out the
particular cues needed to ID that vehicle at that aspect. Linearity was not enforced; pieces
of the picture were subdued or enhanced as necessary to provide an optimum for
identification. Once the optimizing process was complete, the contrast of the set was
measured at 0.5. We feel that it is impossible for an automated process to duplicate this
degree of optimization, and that 0.5 therefore represents an extreme for modeling
purposes.

The 0.25 option resulted from applying histogram equalization, local area processing, and
allowing some non-linear suppression of bright areas. The process was “by hand” in the
sense that we ensured that no cues were lost due to the histogram equalization placement
of gray levels. The measured contrast of the resulting target set was 0.25. This represents
the contrast that can probably be achieved automatically.

When doing range calculations,

(8.45)

As range to the target increases and target contrast (Cpgr) decreases, contrast
enhancement maintains the displayed contrast at a high level. Of course, while the eye
term in CTF,y can be moderated by contrast enhancement, the noise term cannot. Noise
must be low for contrast enhancement to help range performance.
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8.5.3 Calculating Probability of Task Performance

At each range, apparent contrast Crgr is established based on zero range contrast Crgr-o
by using Beer’s Law or MODTRAN. Contrast enhancement model is selected, and then
Kcon 18 calculated using Equation 8.45. CTFHys and CTFVy, can then be calculated. The
TTP metric is calculated for both the horizontal and vertical dimensions.

bn[ ¢ 1/2
CTFH Sys (SZ )
glow
Ncut C 112
Now CTFVsyS (77)
“Cycles on target” Niesolved 18 found using Equation 8.48.
ArgT TTPHTTPRy
Nyesolved = \/ R (8.48)
ange

The out-of-band Spurious Response Ratio (SRR,y) is found for both horizontal and
vertical, and Nisolveq 18 corrected for the presence of sampling artifacts; see Part 7.

Nsampled = Nresolved J1-0.58SRRH ,,,; \/l - 0.58 SRRV, (8.49)

The TTPF is used to find the probability of task performance.

N sampled/ E
Vs0 (8.50)

P 1+(NsampleV jE
Vs0
where
E =151 +0.24" sampled (8.51)

V50

8.6 Minimum Resolvable Contrast

In the laboratory, sensors are characterized using Air Force 3-bar charts; a chart is shown
in Figure 8.15. Each bar pattern is five times longer than the width of a single bar.
Generally, charts with 1.0 contrast are used in the laboratory, but charts are available with
lower contrast (but generally the contrast is above about 0.2). A plot of threshold contrast
versus spatial frequency is called Minimum Resolvable Contrast (MRC). A plot of
limiting frequency versus illumination level for a particular contrast is called a limiting
light measurement.

When predicting the results of an MRC or limiting light experiment, the amplitude
difference between the center bar and the adjoining spaces is used in place of the system
MTF. The amplitudes are calculated as follows.
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Figure 8.15 Air Force 3-bar

chart used to characterize 3 E l I l IME z
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Acenter =W [ H gy (8') Hy (£)[1 + 2 cos(4zlW EN]dE' (8.52)
Agpace =W 20 H o (E') Hyy (E)[1+ 2 cos(4aWE) | cos(2aWE )dE' (8.53)
Sp =L [ Hys(E) Hope(§'/ SMAG) H [ (£') d&' (8.54)
where

&’ = dummy variable for integration

W =1/(2¢)

L=5W

Hi (&), the bar-length MTF, is sin (nfL) / (nfL)

Hy(§), the bar-width MTF, is sin (nfW) / (nfW)

St = Fractional intensity due to blur of bar length
The relationship between CTFys and MRC is:

MRC(E) - H g, (8)CTF (&)
eonter (&) = Aspace(©))S1.(E)

(8.55)
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9

Modeling Thermal Imagers

Thermal imagers sense heat energy with wavelengths between three and twelve microns.
The three to five micron band is called mid-wave IR (MWIR) and the eight to twelve
micron band is called long-wave IR (LWIR). Figure 9.1 shows typical atmospheric
transmission for a one Kilometer, horizontal path; there are three clear windows from 3 to
42,44 1t05, and 8 to 13 microns.

ATMOSPHERIC TRANSMISSION

2100

gao_

an

'EM)

2 20

Eui | [ | |
2 3 4

-

|
5 6 7 8 9 10111213 141516
Wavelength (microns)

Figure 9.1 Atmospheric Transmission over 1 Kilometer Path

Figure 9.2 shows a schematic diagram of a thermal imager which uses a staring focal
plane array (FPA) of detectors. The thermal scene is imaged by the objective lens onto
the FPA. The individual detector signals are time multiplexed and converted to a video
signal for display.

Figure 9.2 Illustration of Thermal Staring Sensor

Figure 9.3 shows a parallel scan thermal imager. The afocal provides a magnified image
at the scanner. The scene is scanned over a linear array of detectors by an oscillating or
rotating mirror. The time that each detector dwells on a point in the scene is less than that
of the staring sensor; as a result, sensitivity is reduced.
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Figure 9.3 Illustration of Scanning Thermal Sensor

detector signals
formatted for display

Everything near room temperature radiates at these wavelengths. The emissivity of
natural objects is generally above 70 percent; most manmade objects are also highly
emissive. Thermal sensors derive their images from small variations in temperature and
emissivity within the scene. Typically, the thermal scene is very low contrast.

Figure 9.4 shows the spectral radiance from blackbodies at 300 K and 303 K. The
difference between the two curves is also shown. As can be seen from the figure, a 3 K
change in blackbody temperature results in only a small relative change in the radiated
energy. However, a 3 K average for the apparent temperature difference within a scene
represents very good thermal imaging conditions. A thermal imager will provide a good
image under these conditions. The thermal scene is low contrast even under good thermal
imaging conditions.

3.5¢
~ 3 303 K Blackbody
g
Figure 9.4 Thermal radiation < 25 300 K Blackbody
from 300 K and 303 K =
blackbodies; both are near = 2r
room temperature. Although & 15k
the difference represents good ©
thermal contrast, the relative (\Ié 1
difference is small. 0
Z 05

AAAAAAA

Wavelength in pm

Although the typical thermal scene is very low contrast, exceptions do exist. For
example, the radiance difference between sky and ground can be quite large on a clear
day. Also, the classic “burning tank™ can overload a thermal imager. In general, however,
thermal sensors are designed to map small differences in the scene’s radiant energy into a

usable displayed image.

In the above example, scene thermal contrast was generated by the temperature
difference between two blackbodies. In the more general case, the spectral radiance from
a thermal scene will depend upon a number of factors. The spectral radiance of an object
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will depend upon its surface temperature and emissivity and upon the nature of the light
being reflected or scattered from its surface. The apparent spectral radiance of an object
as seen by an imager is also affected by the spectral transmission of the atmosphere.
These factors, coupled with the spectral sensitivity of the imager itself, will determine the
effective thermal contrast within the scene as sensed by a particular imager.

Apparent temperature (also called equivalent blackbody temperature) is often used as a
radiometric unit. A radiometer is calibrated in terms of its response to a change in
*blackbody temperature. The radiometer is then used to measure the thermal contrast of a
scene, and its output is expressed as “temperature.” The radiometer does not measure the
temperature state of the scene; that is, the kinetic energy of the molecules in the scene
objects is not measured. The radiometer is detecting the in-band energy from the scene,
as weighted by the spectral response of the instrument itself. The effective blackbody
temperature measured in one spectral band cannot be assumed for a different spectral
band. When comparing MWIR to LWIR sensors, some knowledge is required of the
relative signatures in the two spectral bands.

9.1 Signal and Noise in Thermal Imagers

The units used to describe signal and noise for thermal imagers are very different than the
units used when modeling reflected-light sensors. However, aside from the details of
calculating signal and noise, the basic CTFy theory is exactly the same as the theory
described in Part 8.

The dominant noise in thermal photon detectors is generation recombination (GR) noise.
In the theoretical limit, GR noise is the equivalent of the shot noise found in I? devices.
However, noise can be increased by charge-carrier-phonon interactions. Thermal
detectors are generally Background Limited in Performance (BLIP); noise decreases in
proportion to the square root of detector photon flux. However, part of the background
flux arises from within the imager itself, not just the scene. Even with perfect cold
shielding, emission from the optics can be significant. Also, the read-out electronics adds
noise, particularly with high F-number cold shields. Predicting the effect of reduced
scene temperatures on noise is difficult. The noise from a thermal detector is very much
dependent on system design and mounting factors as well as scene thermal flux.
Generally, a thermal detector’s noise characteristics are specified for a 300 K background
temperature and a unique cold shield configuration.

Spectral detectivity (D)) is used to specify the noise in a thermal detector.
D, =1/NEP, 9.1)

NEP), is the spectral noise-equivalent power; it is the monochromatic signal power
necessary to produce an RMS signal to noise of unity. Spectral D-star (Dp*) is a
normalization of D), to unit area and bandwidth.

D, *=D, (AdetAf)l/z 9.2

where
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Af= temporal bandwidth and
Adet = Active area of a single detector on the FPA = Hget Vet

The thermal model uses peak spectral D-star and relative detector response at other
wavelengths to characterize detector performance.

D*\peak = DL* at wavelength of peak response and
S(A) = Response of detector at wavelength A relative to peak response.

The spectral radiant power on the focal plane array is calculated as follows.

E wone |4 F# 9.3)

=T T L

where

Efpa = watt cm~2 u~! on the detector array,
Lscene = watts em—2str—lu~1 from the thermal scene, and
T = transmission of optics.

The parameters t, Lgcene, and Efpq are all functions of wavelength A. The spectral
radiant power on a single detector of the array is:

Edet = Adet nt Lscene /4 F#2 (94)
The signal to noise in one pixel (SN,ix) in one second can now be calculated.

D*
SN i =P [ Ege (2)S(A)dA 9.5)

(2 Adet ) AA

1/2
D* ppeak (Aget) ' 77
SN pix = £ B J Lgcene (ﬂ“ )S (/,L)CM (9.6)
42F# A

where AM is the spectral band of the sensor, and 2 Hertz is the bandwidth Af.

To estimate the differential spectral radiance resulting from a delta temperature near 300
K, the following equation is used. As long as the bars are at a temperature close to 300 K,
the spectral nature of the difference signal is closely approximated by the partial
derivative of the blackbody equation with respect to temperature evaluated at 300 K.

L =T 8L(A,T)/oT 9.7)

scene
(Temp)

where the partial derivative is evaluated at 300 K and

L(\,T) = Plank’s Equation for blackbody radiation,
T = Temperature, and
I' = Amplitude of apparent blackbody temperature difference.

Using the Equation 9.7 expression for the spectral radiance based on temperature
difference, the signal to noise on one detector in one second is now:
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1/2
_ I's D >l=/lpeak (Adet) T

SN (9.8)
P 42 F#?

where

6 =], (LA TVETB(A) dA (9.9)

In one square radian, the signal to noise would increase by an amount (F 02/Hpithit)1/ 2
where F( is the effective focal length of the afocal or objective lens. The signal to
detector noise in one second and one square milliradian is:

SNiet =(1E—06)I" 6 F, 1g1qreD >kxlpeak 777/4 V2F#? (9.10)

where Tsuare 1S the square root of the fill factor ratio Haer Vae/(Hpit Vpir). Equation 9.10
gives the signal to noise for temperature difference I". Noise modulation at the display is
needed to find CTF,y,. Setting signal to noise to unity, ['q 1S noise variance in units of
(K-milliradian)*.

Ty, = 4N2F# [[(1E~6) 8 F, NyareD* spear 77] 9.10)

9.2 CTF, for Thermal Imagers

Calculating CTF,ys requires that detector noise be expressed as display luminance noise.
This in turn requires a mapping between radiometric temperature changes in the scene
and the matching luminance changes on the display. The gain through the imager must be
established in terms of foot-Lamberts per Kelvin. As with reflected-light imagers, the
average and minimum display luminance is a model input.

Scene contrast temperature (SCNryp) is the delta radiometric temperature in the scene
needed to generate the average display luminance when minimum luminance is zero.
Recall that the thermal image arises from small variations in temperature and emissivity
within the scene, and these small variations are superimposed on a large background flux.
Zero luminance on the display corresponds to the minimum scene radiant energy, not to
zero radiant energy. SCNyyp is not the absolute background radiometric temperature; it is
the temperature contrast needed to raise the display luminance from zero to average.
SCNrump is used rather than Ko to indicate sensor gain state. A large SCNpyp means gain
is low, a small SCNryp means the gain is high.

With display noise modulation established, CTFy can be calculated.

4 1/2
CTF(éMAGJ 1+ a2rdet QHhor ($) QVhor

CTFHsys(SC) = >
M yopH sys(S) SCNyp

(9.11)
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CTF ’% j ) 1/2
CTFV, = ( SMAG 1 A Tt OHyor OVyer ()
sys ()= + >
M dsp Vsys (&) SCNT\vp
where

o = 169.6 root-Hertz (a proportionality factor)

¢ = horizontal spatial frequency in (milliradian)

n = vertical spatial frequency in (milliradian)”

CTF(&/SMAG) = naked eye Contrast Threshold Function; see Appendix E
SCNtvmp = scene temperature which generates average display luminance
B(& or n) = the Equation (3.9) eye filters

Heye(€ or n) = eyeball MTF; see Appendix E

Heieo(§) = horizontal electronics MTF

Velece(M) = vertical electronics MTF

Hgsp(€) = horizontal display MTF

V4sp(n) = vertical display MTF

Hgys(&) = horizontal system MTF

Vgys(n) = vertical system MTF

QHpor = horizontal noise bandwidth for CTFHys defined by Equation 8.5
QVior = vertical noise bandwidth for CTFH,y defined by Equation 8.6
QH,.r = horizontal noise bandwidth for CTF Vs defined by Equation 8.7
QV,er = vertical noise bandwidth for CTFVy, defined by Equation 8.8

Ot 0r () = [ B Hote &) ap € Hose Vo4 g

2
Velec 1Vdsp (D H eye (%MAGJ‘ dm

OVhor =]
OH yep = I‘Helec (S)H dsp (C.f)Heye(%MAG)‘def

, 2
OF ser 1) = B 10 etee Vot 0 oy Vipg )

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

Nswre 18 currently detector fill factor. However, due to limitations in photo-electron
storage capacity, the FPA might not integrate signal for a full field time. The efficiency

factor used in Equation 9.10 should be adjusted for detector integration time.

Nstare = tint Tcep Hdet Vet / (H pit Vpit)
where

tint = detector integration time <= 1/Tccp
Tcep = field rate (probably 60 Hertz)
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Hget = horizontal active area of detector
Vet = Vertical active area of detector
Hpi = horizontal detector pitch

Vit = vertical detector pitch

Aside from slightly different MTF considerations discussed below, the only change
needed to model scanning imagers is to adjust the noise for the reduced dwell time. For
scanning sensors, a different efficiency factor (nefr) is used. The dwell time is reduced by
the amount of detector area divided by the image area at the detector focal plane. Also,
the scene is generally over-scanned by the scanner, either to look at thermal references or
for turn-around, so Mgy, 18 less than unity. For scanning thermal imagers, nes is used in

Equation 9.10 rather than Mggre.
2
Meff = Mscan Ndet Hdet Vet / FOV FOVy Fjy (9.18)

where

Nscan = scan efficiency (generally 0.4 to 0.75),

Nger = total number of detectors, either in parallel or in Time Delay and Integrate,
Example: for a 240 by 4 in TDI FPA, Nge = 960

FOVy = horizontal field of view of the imager in radians, and

FOVy = vertical field of view of the imager in radians.

MTF of the optics, detector, and display are the primary contributors to system MTF for
thermal imagers. Other likely sources of blur are jitter in the line-of-sight due to lack of
stabilization, vibration of the display relative to the eye, and digital processing. For
staring sensors, no MTF is associated with detector integration time. This is not true for
scanning imagers, however. During photo-electron integration, the scene is scanned over
the detector, so image blur results from temporal integration of the detector signal. This is
an important source of blur in scanning imagers.

9.3 Predicting Probability versus Range
9.3.1 Contrast Transmission through the Atmosphere

Certain assumptions are made to simplify calculations. These assumptions constrain the
scenario for which the model is appropriate.

a) The target and background are co-located; the target is viewed against local
terrain. Range to the target and range to the background are the same.

b) Absorption as well as scattering in the atmosphere can be important. An
interface to MODTRAN is provided. Since the spectral nature of the target-to-
background signature is defined by Equation 9.9, this spectral weighting is
included in the MODTRAN implementation.

c) Average radiance seen by the imager does not change with range. The
background flux is from a 300K blackbody. Target-to-background signal
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disappears into the average radiance. The 300 K radiance establishes sensor noise
characteristics.

Apparent target contrast results from predicting the apparent radiometric temperature
difference and then dividing by twice the scene contrast temperature. SCNryp is
determined by hardware setup and the environment viewed. It is possible for those
intimate with specific hardware designs to accurately determine SCNpyp. However, some
simplifying assumptions are sufficient for most modeling purposes.

a) When the imager is optimized on a specific target, SCNtyp is between three
and five times the target apparent RSS contrast. If an observer is attempting to
identify a target, for example, it is reasonable to assume that the imager is
optimized for the purpose. Since larger SCNtyp results in lower contrast, an
optimistic assumption is that SCNpyp is three times larger than the target contrast.

b) When searching for a target, the imager gain is adjusted based on scene
content and not changed. Thermal contrast between 0.1 and 0.3 K represents poor
thermal scene contrast. Moderately good contrast is between 1 and 3 K; first
generation thermal imagers (circa the mid 1980’s) work well with thermal
contrast in the 1 to 3 K range. Likely values for SCNpyp are 1 K for poor thermal
scenes and 5 to 10 K for good thermal contrast. However, when modeling search,
do not input SCNyp less than three times the target intrinsic (zero range) thermal
contrast. That is, if the target contrast is assumed to be 1.25 K, then SCNyp
would be at least 3.75 K even if poor weather is assumed.

c) There are cases like thermal line-scanners where the total field of view is
extremely wide. In these cases, SCNtwp is likely to be 20 K or larger when
thermal conditions are good.

d) Since SCNrmp represents display average luminance, it is not physically
possible for SCNpyp to be less than half of the target to background thermal
contrast. Given the realities of thermal signatures, SCNtyp will realistically be
three to five times the target RSS thermal signature as suggested above.

9.3.2 Effect of Contrast Enhancement

Contrast enhancement can significantly boost performance. As an example, an observer
is searching using a LWIR imager on a fairly humid day with a 0.7 per kilometer
transmission. If a 2 K target is at four kilometers, then apparent contrast is (.7)* 2/20 or
about 0.024 contrast on the display. In this example, scene contrast temperature is taken
as five times the target temperature or 10 K. It is assumed that the background scene
content is fairly hot, and this really establishes the scene contrast temperature. If the
observer detects the target and then optimizes the imager for target ID, SCNymp is
adjusted (gain is increased) to a value five times the apparent temperature (SCNrvp
becomes 2.4 K), so that the contrast on the display is 0.1. Of course, the benefit of the
improved contrast depends on the noise characteristics of the sensor, but the improved
contrast could be significant.

The following “rule of thumb” is suggested.
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a) When search is modeled, SCNpyp is set based on scene contrast or at least
three times the target signature, whichever is bigger. Atmospheric transmission
reduces the apparent thermal signature (Ttgr) as range increases, and Crgr is
modeled as CTGT = TTGT/(2 SCNTMP)

b) When modeling target ID or any circumstance where contrast enhancement
can be assumed, then Crgr is fixed at the zero range value. If SCNryp. is the
input value (the zero range value) of scene contrast temperature, then SCNyp =
Trar SCN1Mmp-0 / T16T-0.

9.3.3 Calculating Probability of Task Performance

At each range, apparent thermal contrast Trgr is established based on zero range contrast
Trgr0 by using Beer’s Law or MODTRAN. If no contrast enhancement is assumed, then
Cror = T161/(2SCNt1yp) and SCNryp remains constant at SCNmypo. If contrast
enhancement is used, then Crgt = TrgT.0/ (2SCNTMP_0) but the SCNtvp used to calculate
CTFHys and CTFVy, decreases with range: SCNtvp = Trgt SCN1mp-0 / Trgr-0. CTFHjy6
and CTFVy are calculated and the TTP metric is found for both the horizontal and
vertical dimensions.

b ¢ 1/2
CTFH, Sys (SZ )
glow
Ncut C 1/2
Mo CTFVsyS (77)
“Cycles on target” Niesolved 18 found using Equation 9.21.
ArgT TTPHTTPRy
Nyesolved = \/ R (9.21)
ange

The out-of-band Spurious Response Ratio (SRR,y) is found for both horizontal and
vertical, and Ni.solveq 18 corrected for the presence of sampling artifacts; see Part 7.

Nsampied = Nresotved A1 —0-58 SRRH 5, \[1—0.58 SRRV 5,,, (9.22)

The TTPF is used to find the probability of task performance.

N samplecV E
Vs0

P = v (9.23)
1 Samplea/ E
(i
where
N sampled
E=151+0.24 (9.24)

V50
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9.4 Minimum Resolvable Temperature

In the laboratory, thermal sensors are characterized using 4-bar patterns. The bar-target
arrangement is shown in Figure 9.4. The bars are cut into a blackened, metal plate which
is mounted in front of a blackbody. The temperature difference between the plate and
blackbody is controlled. Each bar pattern is seven times longer than the width of a single
bar. A plot of temperature difference between the bars and spaces versus spatial
frequency is called Minimum Resolvable Temperature (MRT).

blackbody

Figure 9.4 4-bar pattern used for
MRT. Blackbody is viewed through
the openings of metal plate.

Plate with bar-pattern
cut-outs

MRT is a poorly controlled measurement. The imager gain and level are “optimized” for
each bar size; saturation is permitted. Display luminance and contrast are not controlled
or measured. The imager’s settings are not monitored, and the bar targets are not viewed
in a fashion that correlates to field performance. Experience over many years suggests
that only a gross estimate of laboratory MRT can be predicted. MRT should only be used
as an indicator that the system is operating at some acceptable level.

The bar pattern positions for which the modulation difference is calculated are shown by
the dotted lines in Figure 9.5 This modulation difference is used in place of the system
MTF. Assume that the white area is hotter and is called the bar. The amplitudes are
calculated as follows.

Figure 9.4 4-bar pattern showing
positions where difference
modulation is calculated.

Hy_par =W [0 H s (£) Hy (£)[2 cos(2aWE") + 2 cos(6aWENAE'  (9.25)
Apar =W %0 H 335 (E') H 4_pgy (§') cos(2aWE") d &' 9.26)
Agpace =W |2 Hyyg (8') Hapay (§')cos(42W N d&' 9.27)
Sp=L[% Hgy (&) Hepe(E'/ SMAG) H ; (£')dE' (9.28)
where
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&’ = dummy variable for integration

W =1/(28)

L=7TW

Hj (&), the bar-length MTF, is sin (nfL) / (rfL)

Hy(&), the bar-width MTF, is sin (/W) / (nfW)

S = Fractional intensity due to blur of bar length
The relationship between CTF,ys and MRT is:

MRT(&) = H 5 (6) CTH 5 (o)
(Aba” (5) o Aspace (5))SL (f)

(9.29)
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Appendix A: Description of Validation Experiments

A robust performance metric must provide accurate predictions for various shape and size blurs, good and
poor intrinsic target contrast, various levels and types of noise, and must accurately predict the performance
of sampled imagers. A series of experiments was designed to ensure the metric is accurate for a wide
variety of image characteristics. Some of the experiments are not reported here. Experiments which
demonstrated that the model works with both fixed spatial noise and temporally random noise are reported
in Reference 23. The model is applicable to both framing and snapshot imagers. Experiments with white
noise which had both uniform and Gaussian amplitude distributions are also reported in that reference. We
found that only the RMS noise level mattered; the nature of the amplitude distribution did not matter. This
paper describes experiments to test the TTP metric with various types and levels of blur, noise, and
contrast. Experiments with sampled imagery are also reported in this paper.

Two displays were used in these experiments. The color display was a high quality CRT, computer
monitor. On this display, a 200 pixel image measured 3 inches. The color display was operated in a mode
with 8 bit quantization of the video. Typically, subjects viewed this display from about 18 inches; however,
the viewing distance was not constrained with a chin rest or bit-bar. A high resolution, black and white
display was also used. This display provided 10 bit quantization of the output video. On this display, 591
pixels measured 3.25 inches. Typically, subjects viewed the black and white display from about 15 inches.
The viewing distance was not constrained except in Experiment 25. In all of the experiments, the average
display luminance was five fL. Gamma correction was not used for either display. The estimated MTF for
the color display and the measured MTF for the black/white display are shown in Table Al.

Table Al Display MTF

Spatial frequency cycles/milliradian | 0.1 | 0.2 | 0.3 | 04 | 05|06 [ 08| 10| 12| 14
Black/white horizontal MTF 98 | 94 | .86 | .77 | .66 | .56 | .35 | .20 | .10 | .04
Black/white vertical MTF 98| .92 | .83 | .71 .59 | 47 | 26 | .12 | .05 | .02
Color horizontal MTF 96 | 85| .69 | .52 | 36| .22 | .06 | .01

Color vertical MTF 97| 89 |.77| .63 | 48 | 35| .15 | .05 | .02

A.1 Target Acquisition Task

All of the experiments reported here involved target identification (ID). In these experiments, the observers
were trained to identify twelve targets. Images of the targets were then degraded by blurring, adding noise,
or reducing contrast, and the observers were asked to identify the target based on the degraded image.

The twelve targets are shown in Figures Al and A2. Both thermal images and visible images were used;
only examples of the thermal imagery are shown here. Figure A1 shows only a side aspect of each target,
but twelve aspects of each of the twelve targets were used during the experiments. Figure A2 shows these
aspects for the TS5 Russian tank. Pristine image sets were collected in both the thermal and visible spectral
bands. The size of the images was 401 by 590 pixels. The square root of target area, averaged over all
aspect angles, is 3.11 meters. The target range during imagery collection was 125 meters.

e T
BMP MIA T62 T72

Figure A2. Illustration of the 12 aspects used for each target

Figure Al. Illustration of the 12 targets shown in Figure Al. Target shown is a TS5 Russian tank.
used for experiments.
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These images were processed to generate the experiments. In all of the experiments, a cell of 24 images
was created for each combination of MTF, noise, contrast, or range. Each cell contained two aspects of all
twelve targets. Each of the aspects shown in Figure 6 was represented twice in each cell. This aspect
distribution was chosen to make task difficulty as uniform as possible between cells. With 144 total images
and 24 images per cell, up to six blur and noise combinations were created without repeating the use of an
original image; these six cells created a “line” in the experiment. In all of the experiments, comparisons
between different MTF types or different noise or contrast levels used the same original images to create
the cells to be compared. This means that the same image was viewed three to five times in one experiment.
Since the experiments contained between 432 and 720 images, it was doubtful that subject learning
occurred because of repeating the images. Cell presentation was random based on a pre-selected order; all
subjects saw the images in the same order. All of the images in one cell were presented sequentially.

The subjects were all active military and experienced in the use of thermal imagers. In addition, each
observer was trained to ID the tactical vehicles used in these tests. All observers passed a pre-test with at
least 95% correct; most observers passed with a 100% score. The average number of subjects for an
individual experiment was 15 but varied from a minimum of 9 to a maximum of 23. The perception
laboratory was moved between Army bases in order to maintain a large subject pool.

A.2 Description of Experiments
A.2.1 Experiments with well-sampled imagery

Gaussian (G), exponential (E), rect, and Difference of Gaussian (DOG) MTF were applied to the images;
these MTF types are illustrated in Figure A3. Noise levels varied from zero to levels that completely
obscured the targets. The magnification varied, depending on the experiment, from 0.63 to 2.8.
Experiments were also performed with average target contrast ranging from 0.013 to 0.205. In some cases
the images were down-sampled, noise added, and then the images were “interpolated up” or electronically
zoomed. This process was needed to increase the impact of the noise on performance. Table A2 provides
details for the MTF and white-noise experiments. In the table, the e™ (0.043) amplitude is used to define
frequency cutoff. Frequency is in units of cycles per milliradian in object space. RMS noise is in units of
fL. Noise was random with a Gaussian amplitude distribution. Noise was added to the imagery at run time;
one of 240 pre-stored noise frames was randomly selected and added to the target image at the 60 Hertz
display rate. None of the imagery in these experiments exhibited sampling artifacts. Pre- and post-filtering
was always sufficient that no sampling artifacts were visible.

Figure A.3 Various types of MTF are shown. The
dotted line indicates the 0.05 value used to indicate
frequency cutoff in the table. Frequency in cycles
per milliradian at the eye.

Table A2. MTF, noise, and contrast experiments

Experiment | MTF MTF 0.043 cutoff Contrast Down- | RMS ' zoom Display &
Type | object space cy/millirad sample | noise Magnification

6a line 1 G .11,.14,.17,.23,.34,.68 0.205 By 2 0.0 No Color (2.85)
6a line 2 E .18,.21,.27,.36,.54,1.1 0.205 By 2 0.0 No Color (2.85)
6b line 1 G .11,.14,.17,.23,.34,.68 0.205 By 2 0.0 No Color (2.85)
6b line 2 E .11,.14,.17,.23,.34,.69 0.205 By 2 0.0 No Color (2.85)
6b line 3 E 1,.12,.14,.19,.29, .57 0.205 By 2 0.0 No Color (2.85)
9line 1 G .18,.21,.26,.35,.53,1.05 0.205 By 2 0.0 No Color (2.85)
9 line 2 E .07,.08,.1,.13,.2,.41 0.205 By 2 0.0 No Color (2.85)
9line 3 DOG | .14,.19,.23,.31,.46,.91 0.205 By 2 0.0 No Color (2.85)
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9line 4 Rect @ .23,.28,.34,.46,.71,1.4 0.205 By 2 0.0 No Color (2.85)
13 line 1 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0 By 2 Color (1.42)
13 line 2 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0.37 By 2 Color (1.42)
13line 3 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0.74 By 2 Color (1.42)
13 line 4 G .23,.27,.34,.46,.68,1.4 0.205 By 8 1.1 By 2 Color (1.42)
19 line 1 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 0 By 2 Color (1.42)
19 line 2 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 1.1 By 2 Color (1.42)
191line 3 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 1.83 By 2 Color (1.42)
191ine 4 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 2.44 By 2 Color (1.42)
20 line 1 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0 By 2 Color (1.42)
20 line 2 G .23,.27,.34,.46,.68,1.4 0.205 By 8 1.1 By 2 Color (1.42)
20line 3 G .23,.27,.34,.46,.68,1.4 0.205 By 8 1.83 By 2 Color (1.42)
20line 4 G .23,.27,.34,.46,.68,1.4 0.205 By 8 2.44 By 2 Color (1.42)
33 line 1 G .2,.23,.27,.34,.46,.69 0.11 By 4 0 No Mono (.63)

33 line 2 G .2,.23,.27,.34,.46,.69 0.055 By 4 0 No Mono (.63)

331line 3 G .2,.23,.27,.34,.46,.69 0.036 By 4 0 No Mono (.63)

33 line 4 G .2,.23,.27,.34,.46,.69 0.02 By 4 0 No Mono (.63)

38 line 1 G 42,.45,.48,.51,.55,.61 0.205 By 4 0 No Mono (.63)

A.2.2 Experiments with sampled imagery

Sampling experiments were performed to show that the new metric works when a half-sample cutoff is
imposed. That is, the TTP metric bases image quality on the un-corrupted frequency spectrum. Current
models using the Johnson criteria cannot impose the half-sample cutoff, since this results in pessimistic
performance predictions. In the sampling experiments, the blur, sampling, and display size were varied to
represent the effect of increasing range.

Two experiments were performed. Experiment 25 examined the impact on range performance of different
display interpolations. Visible display-pixel structure, like line raster or the edges of square pixels, tends to
mask the underlying image and decrease range performance. Visible pixel structure is minimized by a good
display interpolation which filters out spectrum beyond the half-sample frequency. In Experiment 25,
aliased signal at less than the half-sample frequency was minimized. Experiment 36 was performed to
explore the impact of large amounts of in-band aliasing on targeting performance. A small detector fill-
factor was used to generate aliased signal at frequencies less than the half-sample rate.

The sensor simulated in Experiment 25 had the following characteristics. The mid-wave IR, staring focal
plane array had 256 by 256 detectors. The active detector area was 28 microns on a 30 micron pitch. The
sensor field of view was 2 by 2 degrees. The F/2 optics had a 22 centimeter focal length. The simulated
ranges were 0.54 to 3.24 kilometers in 0.54 kilometer increments.

The imagery was displayed on the black and white monitor. Experiment 25 consisted of six lines each with
six ranges (cells) with 24 target calls per cell. Each line used different interpolations to increase image size
(electronically zoom the image); this changed the character is the displayed image by adding variable
amounts of pixel structure. The display interpolations for each line are shown in Table A3. The kernel
shown in Equation (A-1) provided the least amount of display structure; this kernel provides a good filter at
the half-sample rate.

Kernel=[.011 0 -.089 0 .58 0 .58 0 -.089 0 .0l1] (A-1)

Experiment 36 was performed to explore the impact of large amounts of in-band aliasing on targeting
performance. Again, a 256 by 256 focal plane array was used. In this experiment, the detector pitch was 25
microns. The F/2 optics had a 7.33 centimeter focal length. Imagery was displayed on the black and white
monitor. Simulated ranges were 0.43, 0.64, 0.97, 1.3, 1.6, and 2.15 kilometers.

Various amounts and types of aliasing were created by changing detector active area (detector fill factor)
and display technique. In-band aliasing was varied by changing the detector fill factor. Low in-band
aliasing resulted from setting the detector active area to 25 microns (100% fill factor). High in-band
aliasing resulted from setting the detective active area to 1 micron (fill factor of 1/25 in both directions).
Because the small detector fill-factor was associated with a high MTF, the MTF of the sensor used to
collect the pristine images was significant and was modeled in this experiment.

96



1.2
Sensor MTF = ¢~0-82 frequency (A-2)

where frequency is in object space and has units of cycles per milliradian.

To change out-of-band aliasing (visibility of pixels), different display interpolations were used in
Experiment 36 also; these are shown in Table A3. In all cases, sensor imagery was e-zoomed by 11 in both
horizontal and vertical. Low out-of-band aliasing resulted from using the MATLAB bicubic image resize
function to resize by eleven. The bicubic interpolation filtered out-of-band aliasing; no raster or pixel
effects were visible. High out-of-band aliasing was created by using pixel replicate to e-zoom by eleven. In
this case, the pixels were readily visible. The experiment consisted of four lines: (1) no in-band and no out-
of-band aliasing, (2) no in-band with out-of-band, (3) in-band but no out-of-band, and (4) both in-band and
out-of-band aliasing. The decrease in Nresolved due to sampling artifacts is shown in Table A3 as
“sampling factor.”

Table A3 Display interpolations for sampling experiment.

Experiment | 1% 2 34 Total | System Detector | Sampling
& line interpolate interpolate interpolate E- magnification | fill- factor
Z0om factor

25 line 1 None Replicate Replicate 4 9 Large 0.9

25 line 2 None Bilinear Replicate 4 9 Large 0.94

25 line 3 None Equation Replicate 4 9 Large 0.97

(23)

25 line 4 Replicate Replicate Replicate 8 18 Large 0.82

25 line 5 Bilinear Bilinear Replicate 8 18 Large 0.93

25 line 6 Equation Equation Replicate 8 18 Large 0.97
(23) (23)

36 line 1 None None Bicubic 11 10.6 Large 0.96

36 line 2 None None Replicate 11 10.6 Large 0.8

36 line 3 None None Bicubic 11 10.6 Small 0.73

36 line 4 None None Replicate 11 10.6 Small 0.62

Viewing distance is a problem with sampling experiments. In terms of performance degradation, the most
serious type of sampling artifact is visible pixel structure. That is, display raster, pixels edges, and other
periodic modulation beyond the half-sample frequency prevents the visual system from integrating the
underlying picture. But eye MTF is a significant post filter. When sampling artifacts are present, the image
can generally be seen better by moving the eye position away from the display. As viewing distance
increases, eye MTF filters out the sampling artifacts. This behavior ruins the experiment. Unfortunately, in
our facility, there is only one display station where viewing distance can be strictly controlled. This station
was used for Experiment 25. The subjects were seated in a reclined chair such that the display viewing
distance could be controlled at 18 inches. Viewing distance was not as well controlled for Experiment 36.
The subjects were placed in fixed—back chairs without coasters and warned about excessive head
movement. However, the subjects were not continually challenged to maintain head position. We did
observe subjects sometimes lean back in an apparent effort to better discern the image.

A.2.3 Experiments with Colored Noise

Two experiments with colored noise were performed; the experiments were identical except that one used
thermal images and the other used visible images. The contrast of the visible image set was 0.37; the
contrast of the thermal set was 0.205. Each experiment consisted of four lines of six blurs each. The six
blurs were created with a Gaussian kernel with e™ object-space frequency cutoffs of 0.2, 0.23, 0.27, 0.34,
0.46, and 0.69 cycles per milliradian. Magnification was 0.63, so that frequency cutoffs at the eye were
0.32, 0.37, 0.43, 0.54, 0.73, and 1.1. The images were blurred and then down-sampled by four. Frames of
static, white noise were filtered and then added to the down-sampled images for display on the black and
white monitors. The first line had no noise added, the second line had white noise added, the third line had
low frequency noise added, and the forth line had high frequency noise added. The MTF of the noise filters
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are shown in Figure A4. The RMS of the white noise before filtering was 0.98 fL for the white and high
frequency noise lines. Before filtering, the RMS of the low frequency noise was 18 fL.

- High freq - Low freq

Figure A4. MTF of filters used to color
noise. Spatial frequency is in object space.

A.3 Experimental Results
A.3.1 Well-Sampled Imagery

The results of the MTF, noise, and contrast experiments described in Section A.2.1 are shown in Figure A5
for the Johnson criteria and in Figure A6 for the TTP metric. In Figure A6, the abscissa is Nyesolveq based on
Equation (). TTP values are calculated using Equation (_). When calculating the model predictions for
Figure A5, the Johnson frequency (F)) is found by the intersection of target contrast with the CTF
function. Equation () is used to find Njcesoved for the Johnson criteria also, but F; is used rather than the
TTP value. In both figures, the ordinate is probability of ID. In these figures, Experiments 6 and 9 data with
various MTF shapes are designated with a diamond symbol (¢0). Experiment 13 with Gaussian blur and low
amounts of noise is designated by a square (O). Gaussian blur with large amounts of noise is designated by
a triangle (A); these data are from Experiment 20. Experiment 19 data representing exponential MTF with
large amounts of noise are represented by asterisks (*). Gaussian blur on the high resolution display,
Experiment 38, is shown by open circles (O). The low contrast experiment data from Experiment 33 are
shown by filled-in circles (®).
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Figure AS. Results of MTF, contrast, and noise
experiments for the Johnson criteria.

Nresolved

Figure A6. Results of MTF, contrast, and
noise experiments for TTP metric.

The model curves shown in each figure are the Target Transfer Probability Function (TTPF) to use with
each metric. The TTPF curves are logistics functions as defined by Equation (A-3). For the Johnson metric,

Njcso 18 6.98. For the TTP metric, Nsq is 20.8.
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where for the TTP metric

N =Nyesolved — 2.6 (A-4)

_ N
E=133+0.33 %vso
and for the Johnson criteria

N =N jcresolved — 1.6
_ N ’
E=133 +0.23 /JCNSO

The Pjp data represent the average number of correct calls for all observers for each cell of 24 target
images. The experimental data are corrected in two ways. First, the probability of chance is taken out of the
data. That is, the data are adjusted to remove the one in twelve chance that the subject will correctly ID the
target by accident. The data are also corrected for mistakes. Experimentally, the ID probabilities asymptote
to 0.9 rather than 1; there is a 10% mistake rate that does not correlate to cycles on target. Equation (A-6) is
used to correct the measured data.

(A-5)

Preasured — Fchance (A-6)
0.9 - Pehance

Pip =

It is observed that some subjects do approach 1.0 probability with good imagery, but averages over a group
of subjects do not. The subjects are trained and tested before the experiment, and the subjects are given rest
periods. Prizes are awarded for the best performance, and this appears to motivate the subjects. Whether
performance would improve or degrade in actual combat is not known. Certainly motivation would
increase. However, these are difficult experiments, and it would seem that getting nine out of ten calls
correct would indicate reasonable motivation on the part of the subjects. Whatever the source of these
errors, they do not correlate to image quality.

As seen in Figure A-6, the TTP metric provides an excellent fit to the data. The new metric predicts
accurately for various shape and size blurs, good and poor intrinsic target contrast, and various levels of
noise. The average error is 0.046 and the maximum error is 0.21. The square of the Pearson’s correlation
(PSQ) is 0.94. Also, the sampling cutoff applied in the noise experiments does not affect model accuracy.
Experiments 13, 19, and 20 had a half-sample frequency of 0.42 cycles per milliradian. The image content
beyond the half-sample frequency was mainly aliased content and represented image corruption. To
generate Figure 9, the integral for the TTP metric was taken from 0.0 to 0.42 cycles per milliradian. The
TTP metric was not affected by a half-sample frequency cutoff.

The Johnson criteria are less accurate. In Figure A-5, there is a general scatter of the data. The PSQ is 0.72,
the average error is 0.1, and the maximum error is 0.32. There is also a vertical line of values at N = 10.5
and again at N = 22 which result from limiting &, to the half-sample frequency. Figure A-7 shows results
for the Johnson criteria without the half-sample limit. Prediction accuracy improves somewhat. For the
experiments shown, the average error without the frequency limit is 0.096 and the maximum error is 0.36.
The PSQ is 0.75.
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A.3.2 Results of sampled imagery experiments

Niesolved @Nd Njcresoved are decreased by an amount that depends on the sampling artifacts predicted to be
present in the image. The model used to predict the amount of sampling artifacts is described by
Vollmerhausen (2000). Figures A-8 and A-9 show Experiment 25 results and model predictions for the
Johnson criteria and the TTP metric, respectively. In both figures, the abscissa is Nyesorved (OF Njcresolved) and
the ordinate is PID. As seen in Figure A-8, the Johnson criteria predictions are consistently pessimistic
However, as seen in Figure A-9, the TTP metric does provide a good fit between model and data with a
PSQ correlation above 0.9. Sampling predictions are pessimistic at long ranges (low metric values). This
occurs because of the nature of the sampling correction. The correction is an empirically derived, fractional
decrease in range performance. As the target gets further from the sensor and therefore smaller on the
display, sampling actually has a greater impact on performance. However, this is currently not modeled.

Figures A-10 and A-11 show results from Experiment 36. Again, the Johnson criteria is pessimistic. The
TTP metric accurately predicts performance with a PSQ of 0.93. In Figure A-11, TTP model predictions
are accurate at long range but pessimistic at short range; this is the opposite of the Experiment 25 behavior
shown in Figure A-9. Remember, however, that the subjects moved their heads, optimizing performance in
a way not predicted by the model.
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Figure A-8. Experiment 25 results and Figure A-9. Experiment 25 results and
Johnson criteria model predictions. TTP model predictions.
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Figure A-10. Experiment 36 results and Figure A-11. Experiment 36 results and TTP
Johnson criteria model predictions model predictions.

A.3.3 Results of experiments with colored noise

These experiments were performed to illustrate that the TTP metric can be used to predict performance in
the presence of colored noise. Figure A-12 shows the results for thermal imagery and Figure A-13 shows
results for visible imagery. The N50 for the thermal images is 20.8, and the N50 for the visible images is
28. The TTP model fits the data well; the PSQ value is 0.9 in both cases.
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Johnson criteria results are shown in Figures A-14 and A-15 for the thermal and visible images,
respectively. The N50 for the visible images is 5 based on fitting the curve to the no noise and white noise
data. There are systematic errors, particularly for the low frequency noise.
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Figure A-12. TTP metric results of colored Figure A-13. TTP metric results of colored
noise experiment with thermal imagery. noise experiment with visible imagery.
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Figure A-14. Johnson criteria results of colored Figure A-15. Johnson criteria results of
noise experiment with thermal imagery. colored noise experiment with visible imagery.
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Appendix B: Experiments with Low Contrast and Boost

In all of the validation experiments, the single largest error associated with TTP
predictions occurred for low contrast (0.033), no-noise images with high-frequency boost
applied. It initially appeared that the error might be systematic, so further evaluations
were performed. The results of those evaluations provide some insights into the workings
of the model and the pitfalls associated with this type of experimentation.

Experiment 34 used Gaussian blurs with ¢e™ MTF cutoffs in object space of 0.2, 0.23,
0.27, 0.34, 0.46, and 0.69 cycles per milliradian. This was an ID experiment as described
in Appendix A. The black and white display was used. The system magnification was
0.63. Since the images were minified compared to object space, frequency cutoff at the
eye is proportionally greater than the cutoff in object space. The experiment consisted of
applying the six Gaussian blurs to the 590 by 401 pixel, thermal images. Four sets of
images were created, two with contrast of 0.11 and two with contrast of 0.033. One
image set at each contrast had high frequency boost applied; see Figure B.1. No noise
was added to the imagery. The imagery was down-sampled by four before presentation.

8
Figure B.1 Plot showing -
relationship between Gaussian 36
blur, applied boost, and final 8
“after boost” MTF. o 4
S 2
0

I
0 0.2 0.4 0.6 0.8 1

Figure B.2 shows the TTP predictions compared to the observer data. The data have been
corrected for chance (0.083 probability) and for mistakes (0.1 probability). The largest
error is for low blur, low contrast, with boost. There appears to be a systematic error for
low contrast predictions, particularly with boost applied. The data is re-plotted in Figures
B.3 and B.4. These figures show that the performance improvement due to boost is
predicted well, but absolute predictions are pessimistic for low contrast when the blur is
small.

o t
X
Figure B.2 Results of
Experiment 34 showing model
and observer data. n 06 - b
o X
0.4 &
02 ———---mmm
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Figure B.3 Re-plot of the 0.11 O & _ o — model, no boost
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Similar results were obtained for Experiment 33; details for this experiment are described
in Appendix A. This experiment used Gaussian blur and explored the effect of changing
contrast. Contrasts ranged from 0.11 to 0.018. The data are plotted in Figure B.5 Again,
the model is somewhat pessimistic for the smaller blurs. In this case, boost was not used.

Figure B.5 Results of

Experiment 33 showing model 0.8
TTPF and observer data for 0.6 7
0.11, 0.06, 0.033, and 0.018 o
contrast target sets. The six data 0.4 7
points for each contrast are 02
different Gaussian blurs.
O I I 1
0 50 100 150

N resolved

When the images from Experiments 33 and 34 were evaluated, it was determined that the
cues needed to ID the targets were available in the small blur image sets. The data errors
are not statistical. Remember that these images were not corrupted by noise, and that the
display used had unusual contrast dynamic range (10 bit). The images associated with
high observer probability did have good target cues.

To compare performance as contrast changes, the same target set is used as contrast as
changed. In order to avoid many repetitions of showing the same image set, a different
image set is used for each blur (each frequency cutoff). Experiment 39 was run to
determine whether the model errors can be explained by a change in task difficulty. That
is, if the model error is systematic, then changing the order in which blur is applied to the
experiment cells should not affect the results. In Experiment 39, the cells which in
Experiments 33 and 34 had small blur were given large blur.

103



The results of experiment 39 are shown in Figure B.6. The model pessimism did
disappear. In Figure B.7, the results of Experiments 33 and 39 for the same contrast and
blur are averaged. No attempt was made to establish the most difficult target set and
average that with the easiest set; the matching occurred by chance. Clearly, a systematic
model error does not exist.
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Figure B.6 Results of Experiment (0.8 -
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Figure B.7 Average of observer 08 -

results from Experiments 33 and
39. Averaging task difficulty by 06 -
mixing the targets viewed at each g
blur and contrast makes the 0.4 -
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This evaluation points up two problems. First, target acquisition cannot really be
predicted until we can predict task difficulty. The target is not in the model; we model
image quality. Second, because human observers learn quickly, the same target image set
cannot be used over and over. But comparing performance based on different target
groupings leads to errors because of the change in task difficulty.
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Appendix C: Recognition Experiment

The experiments used to develop the TTP metric used the ID task. The task was kept
consistent so that the model did not change between experiments. With a fixed and
known N50, the TTPF model curve is known and fixed. That same model curve is then
compared to the results of numerous experiments, showing that the model can predict the
impact of changing blur shape and size, noise, contrast, and sampling.

The primary reason for performing a recognition experiment is to verify that the sampling
adjustments are applicable to an easier target acquisition task than ID. The recognition
experiment is also a further check on the TTP metric.

Previously, target recognition involved discriminating between tanks, trucks, and
armored personnel carriers (APC). An N50 of 3 for the Johnson criteria and 14.5 for the
TTP metric is associated with this type of recognition task. However, trucks are much
easier to discriminate from tanks or APC than APC from tanks. This recognition task is a
mixture of easy and hard discriminations, and does not constitute a good target
acquisition experiment for model validation.

Devitt (2001) describes a new recognition set consisting of tracked-armored, wheeled-
armored, and wheeled-truck. She demonstrated that the three classes were equally
difficult to discriminate. Further, this new recognition task has operational significance
because wheeled combat vehicles are becoming more common. The target set used for
this experiment is shown in Table C.1. Figure C.1 illustrates the three types of vehicles.

Figure C.1 Recognition Tracked-armored/Wheeled-armored/Wheeled-truck
Experiment involved many vehicles and aspects; these are examples.

The Johnson N50 for the new recognition task is 3.5 (Devitt, 2001); the TTP N50 is
therefore 16.9. The conversion between N50 values is discussed in Section 6. The square
root of target area averaged over all targets and aspects is 2.93 meters. Average target
contrast is 4.1 K.

A 256 by 256 focal plane array was used for this experiment. The detector pitch was 25
microns. The F/2 optics had a 7.33 centimeter focal length. Imagery was displayed on the
black and white monitor. Simulated ranges were 0.43, 0.64, 0.97, 1.3, 1.6, and 2.15
kilometers. Various amounts and types of aliasing were created by changing detector
active area (detector fill factor) and display technique. In-band aliasing was varied by
changing the detector fill factor. Low in-band aliasing resulted from setting the detector
active area to 25 microns (100% fill factor). High in-band aliasing resulted from setting
the detective active area to 1 micron (fill factor of 1/25 in both directions).
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To change out-of-band aliasing (visibility of pixels), different display interpolations were
used in the experiment; these are shown in Table C.2. In all cases, sensor imagery was e-
zoomed by 11 in both horizontal and vertical. Low out-of-band aliasing resulted from
using the MATLAB bicubic image resize function to resize by eleven. The bicubic
interpolation filtered out-of-band aliasing; no raster or pixel effects were visible. High
out-of-band aliasing was created by using pixel replicate to e-zoom by eleven. In this
case, the pixels were readily visible. The experiment consisted of four lines: (1) no in-
band and no out-of-band aliasing, (2) no in-band with out-of-band, (3) in-band but no
out-of-band, and (4) both in-band and out-of-band aliasing.

Nresolved 18 decreased by an amount that depends on the sampling artifacts predicted to be
present in the image; this is discussed in Section 7. The amount that Nyesolveq 15 decreased
for each line of the experiment is shown as the “sampling factor” in Table C.2.

Figure C.2 shows the observer data and the model predictions. The fit between model and
data is excellent. Both the TTP metric and the adjustment for sampling artifacts are
applicable to the recognition task.

S 06 . o line 2
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Figure C.2 Model (solid line) and observer data
for recognition sampling experiment.
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Table C.1 Vehicles and aspects used in the recognition exneriment

TRACKED WHEELED TRUCK (SOFT) WHEELED ARMORED
Target Aspect Target Aspect Target Aspect
281 3NE, 7NG | HEMMT ONG, 2NG, 4NG, BRDM-2 4NE, 5NG, 1 DG,
283 ONG, 7NG, 6NG 6DG, ONE, 2NG
ACRV 2NE, 6NG M35 ONG, 2NG, 4NG, BRDM-2 AT ONE, 3NE, 5NE,
AVLB IDE 6NG 4NG, 6NE
BMP-1 6NG, 7TNE ASTROS 3DG, 4NE, 5NE, BTR-70 4NE, 5NG, 1DG,
M1064 2NG 1DG, 6NG 6DG, ING, 3NG, NG
M109AS IDG FMTV/Lt 3NE, 5NE, 7NE LAV-25 0DG, 3DE, 6DG, 7NG
M109A6 3DE, 5NG FMTV/Md ONG, 2NG LAV-AD 0DG , 5SDE, ING, 6NE
M113 ANG FROG-7 1DE, 4DG, 5DG, LAV-AT 0DG, 1DE, 2DE, 71DG
MI1A1 ONE 1DG, 6DE LAV-CC 4NE, 5NG, 2DG, 6DG
MIIP 4NG, 5DE GAZ-66 ONG, 3NE, 2NG, LAV-M 4DG, 3DG, 2NG, 7DE
M2 2NE, 3NE 5NE, 7NE LAV-Rc 4DE, 5NG, 7DG, 3DE
M48 1DG GRAD-1 4DG, 5DG, 1DG, M-93A1 ONG, 3DE, 2NE, 7DG,
M548 2NE, 3DG 6NE, 7NE 2DE, 5NE
MS551 4NE, INE HMMWV ONG, 3NG, 2NE,
M577 ONE, 7DG 7NG, INE
M578 5DE HMMWV 6NE, 7NE, 1DG, ASPECTKEY
M60A3 ONG, 7NE -TOW 4DE, 5NG FIRST CHARACTER
M728 0DE, 6DG STYX 4NG, 5NE, 1DE, 0= front, 1=left front, 2=left flank,
M88 5DG, 7DE 6DG, 3NE 3=left rear, 4=rear, 5=right rear
M901 4DE, 5DE o .
M992 ANE 6=right flank, 7=right front
MTLB 3NG, 6NE
T-55 2NG, 6NG
T-62 4DG, INE SECOND CHARACTER
T-72 3NE, 6NG N= night 8-12 micron thermal
T-72 (Reac) ING D= day 8-12 micron thermal
ZSU-23/4 ONG, 2NE
M41 5DE

THIRD CHARACTER

G =0 elevation

E =7 degree elevation

Table C.2 Interpolations, fill factors, and N eslved
sampling factor for each experiment line

line | interpolate | E-zoom | System Detector | Sampling
magnification | fill-factor | factor

1 Bicubic 11 10.6 Large 0.96

2 Replicate | 11 10.6 Large 0.8

3 Bicubic 11 10.6 Small 0.73

4 Replicate | 11 10.6 Small 0.62
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Appendix D. ID Performance with speckle imagery

The ability of the TTP metric to predict performance of humans viewing images produced by laser range
gated (LRG) imagers was investigated. A perception experiment was designed and an image set was
simulated. The simulated sensor was modeled on current electron bombarded CCD (EBCCD) technologies.
Because the phenomenology of laser range gated sensors is a mix of coherent and incoherent effects, both
types of processes had to be represented in the imaging chain. Figure D.1 shows where in a representative
imager the transfer characteristics of the sensor are calculated as field intensity (coherent) or power
(incoherent).

< Electric Field Intensity Transfer > Plower Transfgr

<

\/_P_ e 7@ random BCCD

Collection Optics

Figure D.1 Imaging chain in LRG sensor

To simulate the coherent portion of the imaging chain, the field from the object was propagated through the
collection optics and imaged onto the image plane of the camera. Taking the square root of the gray level
in a panchromatic image of the target simulated the amplitude of the coherent field incident on the sensor
aperture. The phase of each pixel in the object was chosen from a uniform distributed random variable over
the interval [0,27) since the target was considered to be rough compared to the wavelength of the laser
illumination. For each point on the source object, a coherent impulse response (blur) was created in the
image plane. Since the source points had random phases, the resulting image was formed through the
interference of a number of impulse responses at the image plane. The resulting output field at the image
plane was the complex input (electric field) convolved with the coherent impulse response. The field was
then converted to irradiance by squaring the magnitude of the field at the focal plane. All other blurs in the
sensor, including the electron proximity focus and detectors of the EBCCD, were linear with respect to the
irradiance and were applied as point spread functions in power.

The characteristics of the simulated sensor are given in Table D.1. Using these characteristics, the coherent
and incoherent impulse response functions for the optics and detectors were created.

Table D.4. Simulated sensor parameters.

Parameter Value
Wavelength 1.57 microns

Aperture diameter (centrally obscured) 125 mm

Aperture obscuration fraction 3125
Focal length 1250 mm
Detector size 13 microns square
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The coherent impulse response or point spread function (PSF) of the optics was calculated using the
following equation

PSFOptics (l") = SOWIb[QL] - 82S0mb(€QLJ (D 1)

0 0

where r is an angular subtense measured from the sensor and € is the ratio of the aperture diameter to the
focal length. The incoherent impulse response of the electron proximity focus was implemented as a filter
in the spatial frequency domain. The filter function was modeled by fitting a supergaussian to measured
MTF data. The resulting MTF is given by

4

f

MTFProx (f) = eXp - ‘_ (Dz)

B

where y was found to be 1.64 and  was found to be 25.5 cycles per milliradian of angle measured from the
sensor. The incoherent detector PSF was calculated using

PSF,,, (r) = rect(%} (D.3)

where w is the angular subtense of a detector measured at the sensor. After application of all blurs, the
imagery was downsampled by a factor of two, which resulted in imagery having 295 horizontal pixels and
200 vertical pixels.

The system described above was simulated under four conditions. The first condition was incoherent
(spatial and temporal incoherence). Under this condition, no random phase was applied to the pristine
image. The second condition was a single shot LRG-SWIR mode where temporal coherence was
maintained and spatial phase was randomized, thus creating a speckle image. The third condition was a
two-pulsed average image and the third condition was an eight-pulsed average image. The averaging
decreased the effect of the laser speckle.

The sensor simulation was applied to 576 images that were presented to U.S. Army soldiers as part of a
perception experiment. The primary purpose of the experiment was to determine the impact of speckle on
target identification performance. The standard NVESD identification target set is shown in Figure D.2.
“Probability of identification” (PID) was established by NVESD as the ability of an observer to identify
one of these targets from the other eleven targets. The target set included these 12 targets with 12 aspects
resulting in 144 pristine images that were processed four different ways to produce the 576 perception test
images. The targets were chosen for their relative confusability and tactical significance. The left flank of
each vehicle in the visible target set is shown in Figure D.2. The visible images were collected using
35mm cameras with color film at a range of 25 meters. The film was digitized, converted to grayscale, and
processed to have a resolution of 1.8 cm per sample in both horizontal and vertical directions. The images
were used as the source power that was converted to an electric field in the simulation. Examples of the
simulated images are shown in Figure D.3.
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Figure D.2. Target set used in perception experiment.

Figure D.3. Simulated speckle images at Skm. 1. Incoherent. 2. Coherent — no averaging. 3.
Coherent — 2 speckle average. 4. Coherent — 8 speckle average.
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The perception experimental design is outlined in Table D.2. From the pristine image sets of Figure D.2,
12 targets with 12 aspects (144 images total) were distributed evenly across the columns of the table
shown. This distribution resulted in only two of the same target image in each column and two of the same
aspect in each column yielding 24 pristine images associated with each column. The 24 images were
processed with a prescribed range. In the column labeled “1,” 24 pristine images were blurred to
correspond to a 1-km range through an incoherent sensor model and placed in cell “AA.” Also, 24 pristine
visible images (the same targets and aspects as those in AA) were processed with a 1-km range through a
single laser range-gate shot sensor model and placed in cell “AB” and so on.

Table D.2. Experiment Design

Range(km)

1 3 5 75 10 15
Incoherent| AA BA CA DA | EA FA
Single Shotf AB | BB CB DB | EB FB
Two Shot
AWO “1 Ac BC cC DC | EC FC
verage
Eight Shot |, | pp CD DD | ED FD
Average

The standard NVESD target set was processed in a manner depicted in Table D.2. A comparison of
speckle images is shown in Figure D.3. The images shown were simulated at 5 km with an incoherent
process, a single-shot laser pulse, a 2-shot image average, and an 8-shot image average. Image averages
were obtained by adding independent speckle images. The incoherent image was taken as a baseline for
imagery comparison. It can be easily seen that the speckle from the single-shot image can degrade the
identification performance significantly.

Fifteen soldiers were trained to identify targets with 99% proficiency prior to participating in the
experiment. The experimental cells were randomized to vary the level of target identification difficulty.
The images were displayed on high-resolution grayscale monitors. The monitors have Gaussian MTFs with
equivalent spot sizes of 0.306 mm horizontally and 0.237 mm vertically. There were approximately 70.9
pixels per centimeter on the displays. The images were displayed with an average luminance of 5 fL and
were viewed from a nominal distance of 15 inches. After correcting for chance guesses and mistakes, the
average probability of ID for each cell in Table D.2 is given in Table D.3. The probability of a chance
guess was 1 in 12 and the probability of mistake was 1 in 10.

111



Table D.3. Percent Correct Identification

A B C D E F
A 96.6% 99.5% 81.2% 83.3% 87.7% 72.4%
B 99.0% 67.7% 26.2% 15.8% 10.9% 1.6%
C 99.7% 71.0% 40.1% 21.3% 17.9% 5.1%
D 99.3% 83.7% 64.7% 45.9% 32.7% 20.2%

In order to predict the performance for each cell in the perception experiment, the contrast threshold
function (CTF) of the system (including the observer) had to be computed. The system CTF would then be
used to compute the target task performance (TTP) metric from which the probability of identification
(PID) could be derived. To simplify these performance predictions, it was assumed that all the spatial
distortions of the sensor could be applied incoherently and that speckle acted as additional display noise.

In computing the system CTF, distinctions must be made in the definition of spatial frequency. This is due
to the different ways of measuring angles in the system. From a sensor point of view, angles can be
determined by the size of the target and the range. From the observer’s point of view, angles are determined
by the size of the target on the display and the observation distance. The two angles are related by the
magnification of the system. The relationship between the two spatial frequencies is given by

fi=M*f, (D.4)

where f; is spatial frequency measured at the sensor, M is the magnification, and f; is spatial frequency
measured at the eye. In this experiment, all images were displayed at the same size with the blur from the
system increasing with increasing range. Therefore, for the image sizes and display characteristics used in
this experiment, the relation between range and magnification was given by

M =0.01028*R (D.5)
where R is the range in meters.

The system CTF was computed in spatial frequency measured at the eye. The equation used for the system
CTF is given by

CTFeye(fe) 20-2
= +a’—
MTFSYS(M*fe) Lz

CTFy(f.) (D.6)

where CTF,,. is the CTF of the observer’s unaided eye, MTF is the system MTF, a is a calibration
constant which has been found to be 169.6, o is the standard deviation of the display noise, and L is the
average display luminance. The system MTF is found from

MTFSYS(M * fe): MTFOptics (M *fe )MTFProx(M * fe)MTFDet (M *fe )MTFDisp (fe) (D7)
The MTF of the proximity focus (MTFp,,) is given by equation D.2. The incoherent MTF of the optics is
given by

(r)=H22E
=&

MTF,

Optics

(D.8a)

where

(D.8b)

112



2
Zi COS_1 [L

B=y 7z &
(D.8¢c)
2 l-¢
-2¢ f < Tf;)
2 ) 1/ ) ) 4 1+¢ ¢ l1-¢ l+e¢
C=<—|esing+—\l+¢&" )-\l-¢” Jtan" | ——tan| — —fo S f<—
2 ssings£l0e)--ehn | Ll 4] | 1522210
1
0 f> *e f
2
(D.8d)
The parameters ¢ and f; are given by
_ ) -
1+&” - [ffj
-1 0
= COS
¢ 2e
= - (D.8e)
and
—d
/o /1 (D.8f)
where d is the aperture diameter. The detector MTF is given by
MTF,()=sind{ 1/ j
Det (f) ( w (Dg)
where w is the angular subtense of the detector. The display MTF is assumed Gaussian and given by
MTF,,,(f)=exp|-(o/) | (D.10)

where, for f measured in eye space, p is the angular subtense of the Gaussian blur size of the display
measured at the eye.

The display noise is found from

o’ = v (D.11)

where N is the number of frames averaged (1,2, or 8),
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o; = [8,0\MTF,, (MTF,,, (v)MTF,,, (WMTF,, ()MTE,, (v ‘dv,  (D.12)
and
o} = [8,0\MTF,, (MTF,,, (v)MTF,,, (VMTF,, () “av (D.13)

Su(v) is the power spectral density (PSD) of the noise. For speckle, the PSD is found from

MTF, .
S,(v)=L- s (V) (D.14)

[ MTF,,,., (u)du

Optics

where L is the average display luminance.

Two new MTFs are introduced in Equation (D.12) and (D.13). The first is the MTF of the eye which is
given by

MTFeye (V) = MTFeyeioptics (V)MTFretina (V)MTF;remnr (V) (D.IS)
where
av o]
MTFeye_optics (V) = eXp|:_ (ﬁj (D.16)
N 121
MTF,, (v)= exp{— 0.375[— (D.17)
M
\% 2]
MTF,,  (v)= exp{— 0.444 l(ﬁ) (D.18)
The values of a and b in equation (D.16) are found from
-1
a = 43.69exp{3.663-0.0216D2,, In(D, ., )l (D.19)
and
2
b= [0.7155 + 0.277 ] (D.20)
\V Dpupil
with Dy,i being the diameter of the pupil. Pupil diameter is dependent upon light level and can be
calculated from
log(L)
D . =-9011+12.23expi————= mm D.21
pt p{ 2ros) ) 2D

where L is the luminance in foot-Lamberts.
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The second new MTF in equation D.16 is a perceptual filter that describes the spatial frequency response of
the visual cortex channel and is given by

MTF,, (v)= exp{— 2.2 log(%]} (D.22)

where f'is the frequency at which the CTF is being evaluated. This filter is only applied in the horizontal
direction.

Once the system CTF is calculated for a given range, the TTP metric can be computed. The TTP metric is

given by
A4 72
TP =" | ¢, df, (D.23)
R 11 CTFSYS(fe)

where f1 and f2 are defined as the points where the value C; intersects CTFys. The average size of a target
in pixels was 7021. With an observation distance of 38.1 cm and approximately 70.9 pixels per cm on the
display, the target critical dimension (the leading term in equation (D.23) ) was 31 mrad. Using this value,
equation (D.23) was evaluated for every cell in the test matrix. The results are shown in Table D.4.

Table D.4. TTP Metric Values for Perception Experiment.

A B C D E F
A 193.29 143.12 106.16 76.97 58.50 37.44
B 75.28 31.97 18.79 10.98 6.76 2.09
C 89.86 23.84 23.84 14.93 10.06 4.71
D 121.87 59.19 36.88 23.98 17.16 10.03

The metric values in Table D.4 were converted to PID using the target transform probability function

(TTPF). The TTPF is given by
(TTPJE
p— Vso

- E
I[TTP] ©24
VSO

E=133+0.23 *(E]

50

where Vs is the value of the metric necessary for the task to be performed 50% of the time. For
identification, the value of Vs, has been determined to be 28.

Using the values from table D.4 with the TTPF, the PID values were predicted. These values are compared
with the measured PID values in Figure D.4

The TTPF explains approximately 94% of the variance in the measured data.
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Figure D.4. Comparison of predicted and measured PID values.
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Appendix E. Model Details
1. EYEMTF

The eye MTF is taken from Overington (1976). The eye MTF includes factors for
refraction optics, retina, and tremor; each of these is calculated with a numerical fit to the
data in Overington. Eye MTF varies with light level because it depends on pupil
diameter. See Table E-1 for pupil diameter versus display light level. These pupil
diameters are for one eye; the pupil diameter for two eyes is about 0.5 mm smaller.

Table E-1. Pupil Diameter Versus Light Level

Pupil Diameter (mm) 7.0 6.2 5.6 4.9 4.2 3.6 3.0 2.5
Light Level (LOG fL) -4 -3 -2 -1 0 +1 +2 +3

fr = frequency at the eye in cycles per milliradian

bb = LOG10(display luminance)

dpul =-9.011 + 13.23 * EXP(-bb / 21.082)

dpul =dpul - (eye# - 1) * .5

e0=(.7155+.277 /dpul ~ .5) " 2

fi = EXP(3.663 - .04974 * dpul * 2 * LOG10(dpul))

fe =43.69 * fr

eye MTF = EXP(-(fe / fi) ~ e0) * EXP(-.375 * (fr) » 1.21)* EXP(-.4441 * fr * fr)

2.  CONTRAST THRESHOLD FUNCTION

The numerical approximation provided by Barten (1992, 2000) is used to predict sine-
wave CTF.

CTF(uw) = (au EXP(-bu) (1 + ¢ EXP(bu)) 0-5)-1
num = 540 (1 + 0.7/L)0-2
denom = 1 + 12/(w (1 +w/3)?)
a = num/denom
b=0.3 (1 +1001L)0-15
c=0.06
where

u = Spatial frequency in cycles per degree,
w = Square root of picture area in degrees, and
L = Display luminance in cd/m2.
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The CTF values for a monocular display are increased by the V2 [see Volume I, Section
1.802 in Boff and Lincoln (1988)].

3. CHARGE-COUPLED DEVICE MTF
The following parameters are used in the equations:

Dpis = Pitch of detector in milliradians,
Dy = Fill factor,
Vint = Spacing of pseudo interlace in milliradians ,
C7r = Charge transfer efficiency,
Npg = Number of charge transfers,
Ecus = Electronic cutoff as a fraction of 1/(2-Hpjscp),
Ep = Number of poles in electronic filter, and
Freq = Spatial frequency in cycles/mrad.
Dimensions in milliradians are found by taking a thousand times the dimension in

centimeters, multiplying by the fiber-optic taper reduction ratio, and then dividing by the
objective focal length.

The MTF associated with spatial integration by the detector is
MTF detector = sin(z Dypit Dfil Freq) /(7 Dypit Dfil Freq)-

This applies both horizontally and vertically. The horizontal MTF associated with the
electronic sample and hold is

MTFsAMP/HOLD = sin(m Dpit Freq) /(7 Dypit Freg)-

In addition to the electronic sample and hold, a CCD camera normally has an electronic
filter. The filter roll-off is applied to the horizontal and is modeled as:

MTFfitter = 1 /(1 + (F req / (Beut/ (2 Hpitch)))ZEP)]/z'

A CCD normally has both horizontal and vertical transfer registers. The MTF loss due to
a charge transfer efficiency less than 1 is modeled as follows.

MTFctE = NH (1 — CTE) (1 — c0s(2 7 Dpit Freg)).

Pseudo interlace involves adding adjacent vertical detectors starting with detector row 1
on the first field and with detector row 2 for the second field. During video field 1, the
first video line consists of the signals from detector row 1 and detector row 2 added
together. The second video line in field 1 consists of detector row 3 and detector row 4
added together, etc. During video field 2, the signal on the first video line consists of
detector row 2 and detector row 3 added together. The vertical MTF associated with
pseudo interlace is

MTFinterlace = cos(7 Vint Freq)-
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4. MTF OF FIBER-OPTIC TAPER

According to Schott (Siegmund, 1989), the limiting resolution of a fiber-optic taper is
approximately 600 divided by the fiber pitch in um. Assume that limiting resolution
occurs at 3-percent contrast, and that the MTF is Gaussian. If taper input end pitch is in
um and objective focal length is in centimeters, then:

MTFreducer = EXP (~Coef Freq?)
Coef = 10,000 Pitch? LOG, (.03) / (600 F)?-
5.  OUTPUT BRIGHTNESS FOR 12 CCD AND CRT DISPLAY
The output brightness for an 12 CCD and display is
Bdisp = Dgain (Bout Cvolt Geep + K)84M4 + Liyin
where:

Bous 1s defined above except EP;,- is reducer transmission,
Cyolr = volt out of CCD per footcandle input,
Gccep = Gain of CCD AGC,
Dggin = L out of display per input (volt)gama,
gama = gamma (intensity power law exponent), and
K= (Lmin/Dgain)l/gama-
6. DIFFRACTION-LIMITED OPTICS MTF
The diffraction-limited optics MTF is given by:

MTFi¢ = (/) (cos™ (Q) —(Q) (1 Q%)) or
MTFgi¢ = (/) (tan! Q) - (Q) (1 —Q%)1?2)

where
Q=M Freg/D,
A = Wavelength in um,
Fyeq = Spatial frequency in milliradians,
D = Fy/F# (Optics aperature diameter in millimeters), and

0'=(1-02)17/0
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