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Preface 
This report describes a new target acquisition performance model which uses the 
Targeting Task Performance (TTP) metric. Like its predecessor, the famous Johnson 
criteria, the new model assumes that range performance is proportional to image quality. 
Simplicity of implementation is therefore maintained. However, the TTP model predicts 
image quality in a different fashion. In addition to overall better accuracy, the TTP metric 
can be used to model sampled imagers, high frequency boost, non-white noise, and other 
features of modern imagers which cannot be accurately modeled with the Johnson 
criteria. 

The Johnson criteria are used almost universally to predict range performance. Johnson 
uses the resolving power of an imager as a metric of sensor “goodness” for target 
acquisition purposes. For a given target to scene contrast, resolving power is the highest 
spatial frequency passed by the sensor and display and visible to the observer. He 
multiplies the resolving power of the imager (in cycles per milliradian) by the target size 
(in milliradians) to get “cycles on target.” Johnson published a table of the number of 
cycles on target needed to detect, recognize, identify, or perform other target acquisition 
tasks; these are his “criteria” for target acquisition. The basic assumption underlying the 
Johnson metric is that all electro-optical imagers are the same in some broad sense. The 
performance of the imager can be determined solely by the highest spatial frequency (fJ) 
visible at the average target to background contrast. When the Johnson method works, it 
is not because fJ is important per se, but rather because an increase in fJ represents an 
improvement in the contrast rendition at all spatial frequencies. However, with sampled 
imagers, fJ  is more an indicator of sample rate than image quality. Also, because the 
Johnson metric is based on the system response at a single frequency, it cannot predict 
the effect of tailoring the image frequency spectrum through digital processing. For 
example, the benefits of edge sharpening by high frequency boost cannot be predicted. 

In Appendix A of this report, the predictions of the Johnson criteria are shown to be 
fundamentally flawed due to its insensitivity to imager characteristics below the limiting 
frequency. This flaw makes predictions for many modern imaging systems inaccurate. 
Experimental data show the problems with the Johnson criteria and illustrate the robust 
performance of the TTP metric. The simplicity of implementing a range performance 
model with the Johnson criteria is retained by the new metric while extending 
applicability of the model to sampled imagers and digital image enhancement. 

The new target acquisition model includes another fundamental change, also described in 
this report. The current models to predict Minimum Resolvable Temperature and 
Minimum Resolvable Contrast were introduced in 1995. Products like the NVTherm 
thermal model and the SSCAM (Solid State Camera) TV model differ from their 
predecessors because the contrast limitations of vision are incorporated into these models. 
Incorporating the eye contrast limitations allows the modeling of image intensifiers, TV, 
and sensitive thermal imagers which were previously not accurately modeled. However, 
the 1995 model set continued the use of the “matched eye filter.” Since this filter does not 
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reflect psychophysical reality, those models are only accurate when the noise is spectrally 
flat (white) compared to the signal. Digital image processing, particularly high frequency 
boost or image restoration, can lead to a distinctly non-white noise spectrum. The 
modeling of modern imagery requires a change in the eye filters. 

Because the Johnson-based models have been widely used for so long, considerable 
attention is paid in this report to the history and assumptions underlying the older model. 
In addition, the new TTP model is described in detail. Also, the theory predicting human 
contrast threshold when using an EO imager is thoroughly documented.

 vi
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Introduction 
In Figure 1.1, the soldier is using an imaging sensor, hoping to quickly identify whether 
the tank is a threat. This report describes a model which predicts the probability that he 
correctly identifies the target. The problem is tackled in two parts. First, the soldier’s 
quality of vision when using the sensor and display is quantified. Most of the report is 
devoted to this topic. Second, the relationship between quality of vision and performing a 
visual task, such as identifying the tank, is discussed. 

Figure 1.1  Soldier Trying to Identify a Tank as Friend or Foe 

The theory in this report is couched in terms of the observer viewing the world through 
the imager. The imager extends the observer’s vision because it provides advantages over 
human eyesight. The target can be magnified; that is, the angle subtended by the target at 
the eye can be greatly increased, making it easier to see. The imager also lets the observer 
see light outside the visible wavelengths, often a great advantage because the target 
signatures are more robust. There is more night illumination at near infrared wavelengths 
than the visible, for example, so that image intensifiers work better in that spectral band. 
Another example is thermal imagery, which does not depend at all on natural 
illumination. On the negative side, however, the imager blurs the target and adds noise to 
the viewed scene. 

The degradation due to imager noise and blur are in addition to the natural limitations of 
human eyesight. If the imager were perfect—no blur from the optics, detector, or display 
and no noise from the photo-detection process—the observer’s range performance would 
still be limited by his vision. Image quality results from the inherent limitations of human 
vision in combination with imager blur and noise. The limitations of human vision 
depend, in turn, upon the display luminance and contrast.   

The most widely used measures of image quality are visual acuity and resolving power.  
Visual acuity has the connotation that high contrast (black on white) letters or symbols 
are used to check vision. The observer who reads the smallest letters has the best visual 
acuity. With sensors, the term resolving power has the same connotation. Bar patterns are 
generally used for imagers; the best imager displays the smallest bar pattern. Although 
commonly used and easy to test, these high-contrast measures do not adequately quantify 
how well a person can see with the naked eye or through the imager. 
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A scene consists of many luminance levels. The eye achieves an integrated view of 
objects by connecting lines and surfaces. These lines and surfaces do not share a 

rasts of 0.04, 0.08, 0.16, and 0.32 with average luminance 

e apparent as the report proceeds. For the present, we 
quote Lucien Biberman who is quoting G.C. Brock (Chapter 8 in Biberman, 1973; Brock, 

necessary to bypass two obstacles, the first of which is the existence and 

particular brightness throughout their extent. For example, the background immediately 
behind a target might not be uniform, and yet the eye sees a full or partial silhouette. 
Perspective is gained from converging lines which might vary in both sharpness and 
luminance with increasing range. Slight changes in hue or texture can provide an 
excellent cue as to the distance and orientation of an object and possibly indicate the 
nature of the surface characteristics. Acute vision requires the ability to discriminate 
small differences in gray shade, not just the ability to discriminate small details which 
happen to have good contrast.  

In Figure 1.2, the picture of Goldhill has an average modulation contrast of 0.22. The 3-
bar charts to the right have cont
equal to the average of the picture. When noise is added and the picture blurred, as shown 
at the bottom of Figure 1.2, high contrast details are still visible, but low contrast details 
disappear. This is illustrated by the bar charts at the bottom which were degraded in the 
same way as the Goldhill picture. A quantification of visual performance requires that 
resolution be measured for all shades of gray in the image. The means of achieving this 
quantification is described later.  

The model proposed here is more complex than resolving power; hopefully the need for 
this added complexity will becom

Figure 1.2.  Picture of Goldhill and 3-bar Charts of Various 
Contrasts   Measuring resolution for the average or peak contrast 

does not adequately quantify picture quality. 

1965). 

“Before we can make progress in the use of our new techniques it will be 
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firm establishment of resolving power, and the second is the belief that 
science will give us one number quality index that will supplant all 

osed, we at once ask ‘How does it relate 

The im on. In 
EO ima ss the 
display ed. A 
picture ppear grainy when presented at high display luminance and not noisy at all 

tantaneous field of view. Summing the light from different points in 

magnification is used so that the tank appears to be the same size, but 

previous evaluation techniques. 

“Resolving power has been in use for so long that it has come to be 
thought of as something fundamental which determines other aspects of 
image quality and has some very special significance. Whenever a new 
criterion of image quality is prop
to resolving power?’ instead of considering it in more general terms. And 
because resolving power is used for so many different purposes, and gives 
a one number answer, it is assumed that any new technique must be 
inferior if it does not do the same. As we have already seen, resolving 
power can serve many purposes because it does not serve any of them 
well.” 

ager model must account for both hardware characteristics and human visi
gers, blur, noise, and contrast all limit our ability to see details. Further, unle
 is big and bright, the physiological limitations of the eye cannot be ignor
 might a

when presented at low display luminance. This does not mean that the picture is better in 
some quantitative sense when presented at low display luminance; our inability to see the 
noise infers an equivalent inability to see contrast gradations within the scene itself. 
Hardware characteristics do not, by themselves, establish image quality. Rather, hardware 
characteristics interact with human vision to establish how well the scene is perceived 
through the imager. 

Depending on scene conditions and sensor control settings, the dominant hardware factor 
limiting performance can be blur, noise, or contrast. Blur results primarily from factors 
like diffraction or aberrations in the objective lens and summing of the incoming light 
over the detector ins
the scene results in the blurring of scene detail. Noise is generally associated with the 
photo-detection process. In the theoretical limit, signal is proportional to the number of 
photo-electrons generated in the detector. Noise is proportional to the square root of the 
number of photo-electrons. Contrast can be degraded by the atmosphere. For example, 
sunlight scattered by the atmosphere into the sensor line-of-sight can seriously degrade 
contrast. Contrast can also be degraded by the glare of ambient light reflecting off the 
display or by improper display settings. Blur, noise, and contrast limit our ability to see 
detail and therefore limit our ability to identify targets or to discriminate between target 
and background. 

Figure 1.3a is a thermal image of a tank. The tank has been exercised, and the road 
wheels and engine are hot, giving the tank a thermal signature which is distinct from the 
background. In Figures 1.3b and 1.3c, the tank is viewed from progressively greater 
distance. Optical 
diffraction in the objective lens has blurred the tank’s details. Noise is not visible in the 
image; the tank is difficult to identify at the longest range because of the blur. In Figure 
1.3d, the tank has cooled off. In order to see the tank, the gain on the imager is increased. 
Increasing imager gain in Figure 1.3e makes the tank visible, but also makes the detector 
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noise visible. In Figure 1.3f, noise associated with photo-detection obscures the tank 
image. 

Blur and noise also affect the performance of reflected light sensors. Generally, 
performance is limited by blur or contrast under good illumination conditions and by 
noise under poor illumination. This is because, in the theoretical limit, signal to noise is 
proportional to the square root of photo-current. As illumination decreases, photo-current 

Figure e tank is 

appears to b
ngest 

range becau  not 
visible. In im
low illum

 

itations are especially important when 

decreases, and noise becomes more dominant.  

 1.4a shows a visible band image of a tank. In Figures 1.4b and 1.4c, th
viewed from progressively greater distance. Optical magnification is used so that the tank 

e the same size, but diffraction in the objective lens has blurred the tank’s 
details. Noise is not visible in the image; the tank is difficult to identify at the lo

se of the blur. In Figure 1.4d, illumination has decreased and the tank is
age 1.4e, the camera gain is increased and the tank is again visible, but the 

ination makes the picture noisy. In Figure 1.4f, illumination has decreased to 
the point that the tank is not visible in the noise. 

A third factor important in determining performance of night vision sensors is display 
contrast, especially when display luminance is less than photopic. In Figure 1.5, the
picture of Lena becomes clearer from left to right because contrast increases; neither 
signal to noise nor blur changes. Contrast lim

d e fd e f

a b ca b c

Figure 1.3 Thermal Image of a Tank Showing Effects of Blur and Noise 
  At top, pristine image in (a) is blurred by imager in (b) and further blurred in (c). At 

bottom, pristine but low-contrast image in (d) becomes noisy images in (e) and (f) 
because increased gain amplifies detector noise. 

display luminance is low; the eye’s ability to discriminate gray levels in an image 
degrades as display luminance decreases. 
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Figure 1.4  Visible Image of a Tank Showing Effects of Blur and Noise 
Figure 1.5  Picture of Lena Showing Contrast Increasing from Left to Right 

splay luminance might occur because of imager limitations. For example, due to 
ient light gain, early image intensifiers provided less than 0.01 foot Lamberts (fL) 
e luminance under starlight scene illumination. (10 fL is considered low photopic 
ce.) Early attempts to model image intensifier performance failed because the 
as based on signal to noise in the image. However, at the low display luminance, 

the signal nor the noise was clearly visible to the observer. Image intensifiers 
t accurately modeled until the contrast limitations of the eye were incorporated 

 model.  

splay luminance is not uncommon. Display luminance might be low because the 
r chooses to maintain dark adaptation. During night flight, for example, military 
ying without goggles set instrumentation displays to between 0.1 and 0.3 fL; this 
 reasonable viewing of the instruments while maintaining dark adaptation in order 
utside the aircraft. Regardless of the reason for a non-optimized display, the result 
ded human performance when using an imager. It is common and even typical for 
lay luminance of a night vision device to be less than a foot Lambert, and this low 
luminance is an important factor in determining the performance of the night 

mager.  

 factors affecting performance—the blur, noise, and contrast of the imager as well 
hysiological limitations of the eye in adjusting to a non-optimized display—must 
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be handled by the model. All four factors affect the targeting performance expected from 
the imager. For both reflective and thermal imagery, performance is generally limited 
simultaneously by a combination of factors. That is, the image is not less blurred just 
because noise is present. 

The theory in this report covers all types of EO imagers. Imagers of reflected light like 
sunlight or starlight operate in the spectral band between 0.4 and 2 microns. Thermal 
imagers sense emitted light (that is, heat). Thermal imagers operate in the mid-wave 
infrared (3 to 5 microns) or the long-wave infrared (8 to 12 microns). These  spectral 
bands are defined by atmospheric “windows” with good transmission. The units used to 
describe signal and noise for thermal imagers are different than the units used when 
modeling reflected light sensors. However, aside from the details of calculating signal 
and noise, the basic target acquisition theory is exactly the same. In both cases, the 
observer is looking at a display of the blurred and noisy image of a target. The model 
predicts the effect of blur, noise, and display characteristics on target acquisition task 
performance. 

That is not to say that interpreting thermal imagery is as easy as understanding a picture 
in the visible spectral band. For most people, imagery becomes progressively harder to 
interpret as the wavelength increase from visible to near infrared to short-wave infrared. 
Thermal imagery, which is emissive rather than reflective, is very difficult to interpret for 
the untrained observer. However, the difficulty of the observer’s task is included in the 
target acquisition model, not in the image quality model. The same image model is used 
for all imagers. 

Traditionally, thermal scenes are characterized with absolute, blackbody temperature 
differences, and thermal imager frequency response is measured with 4-bar patterns. 
Illuminated scenes are characterized by contrast, and the frequency response of reflected 
light imagers is characterized with 3-bar patterns. An absolute temperature difference in 
the scene can, of course, be converted to a contrast, just as a contrast can be algebraically 
converted to an absolute illumination difference. The main difference in the historical 
treatment of thermal and reflected light imagers is that the two are characterized using 
different bar patterns.  

In this report, all imagers are treated the same. The choice between absolute differences 
in the scene or scene contrast is arbitrary. However, as discussed in Part III, contrast is 
normally used to characterize the eye. The use of contrast when modeling EO imagers 
simplifies the presentation of the theory. Further, it is customary to use sinewave patterns 
for eyeball measurements, and the use of sinewaves is consistent with our sensor model. 
Fourier theory is used to model system blur and noise. The development of a target 
acquisition metric is made easier by characterizing human vision with sinewaves; this 
allows easy integration of the eye behavior into the Fourier frequency domain model. 

It is understood that sinewave measurements are not practical in the laboratory. However, 
there is a known relationship between bar chart response (either 3- or 4-bar) and 
sinewave response. These conversions are described where appropriate in the theory 
sections on specific imaging technologies. 
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Most of the report is devoted to predicting how well the observer can see through the 
imager. Our ultimate goal, however, is to predict how well the observer can detect, 
recognize, or identify targets. To meet that goal, an image quality metric is needed as a 
link between quality of vision and task performance.  

The Johnson criteria are used almost universally to predict range performance based on 
sensor resolution. Johnson proposed that an imager’s utility for target acquisition 
purposes was proportional to its resolving power (Johnson, 1958). That is, for a given 
target to scene contrast, the highest spatial frequency passed by the sensor and display 
and visible to the observer determines the probability that an observer can correctly 
identify a tactical vehicle or perform other visual discrimination tasks. He used his 
limiting-resolution metric to establish criteria for target acquisition tasks. 

Johnson performed some engineering experiments using image intensifiers to 
simultaneously view bar-charts and scale models of tactical vehicles. He published a 
table giving the required “cycles on target” for a 0.5 probability of detecting, recognizing, 
identifying, and other levels of target discrimination. “Cycles on target” is the imager’s 
bar resolution in cycles per milliradian multiplied by the angular subtense of the target in 
milliradians. Johnson used the target’s critical dimension to determine its angular size; 
critical dimension corresponds, more or less, to the minimum of the target’s height or 
width as viewed by the sensor. D’Agostino later substituted the square root of viewed 
area for critical dimension, and updated the cycle criteria needed for target 
discriminations (Howe, 1993). 

The Johnson metric uses limiting bar-chart resolution as an indicator of sensor goodness 
for target acquisition purposes. Predictive accuracy of this metric is best when comparing 
“like” sensors and conditions. The metric is not compatible with many features found in 
modern sensors. For example, it is not compatible with sampled imagers. Further, the 
Johnson metric fails to predict the impact of  frequency boost on range performance. 

The basic assumption underlying the Johnson methodology is that all electro-optical 
imagers are the same in some broad sense. The performance of the imager can be 
determined solely by the limiting resolution frequency (fJ) visible at the average target to 
background contrast. When the Johnson criteria work, it is not because fJ is important per 
se, but rather because an increase in fJ represents an improvement in the contrast 
rendition at all spatial frequencies. However, with sampled imagers, fJ  is more an 
indicator of sample rate than image quality. Further, as pointed out persistently by Fred 
Rosell, the Johnson metric fails to accurately predict the effect of noise on task 
performance. The observer appears to require more sensor resolution when the resolution 
is noise limited as opposed to spatial frequency response limited (Rosell, 1979 & 2000).  

The desired approach to modeling sampled imagers is to incorporate a targeting metric 
that does not have the problems associated with the Johnson metric. Work on a 
replacement metric started several years ago (Vollmerhausen, 07/2000 and Driggers, 
2000). This report describes how the new TTP (Targeting Task Performance) metric is 
calculated and used. The logic of this metric is discussed by Barten; TTP is similar to 
Barten’s SQRI (Square Root Integral), except that linear rather than logarithmic 
integration is used (Barten, 1999). It is also similar to van Meeteren’s Integrated Contrast 
Sensitivity (Task, 1976 and Tannas, 1985). A variety of experiments were performed 
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showing the problem with the Johnson criteria and illustrating the robust behavior of the 
new TTP metric (Vollmerhausen, 2003 and Appendix A).  

The organization of this report is outlined as follows. The next two sections provide 
needed background. Part 2 is on model history; this section discusses the assumptions 
upon which models of the last half-century were based. Part 3 discusses some of the 
remarkable properties of human vision and describes how vision is characterized in our 
model. Part 4 describes how the hardware characteristics of the sensor and display are 
combined with the limitations of the eye to form a model of threshold vision through an 
imager. The target acquisition tasks predicted by the model are defined in Part 5. Part 6 
describes how an image quality metric is used to relate the quality of threshold vision 
through an imager to the probability of acquiring a target at range. Part 7 discusses how 
sampled-image artifacts affect performance. Parts 8 and 9 present details on the models 
for reflected-light and thermal imagers, respectively.   

Appendix A summarizes ID experiments which show the problems with the Johnson 
criteria and the robust performance of the TTP metric. Experiments included both 
thermal and visible imagery. Further, experimentation was done with well sampled 
images and a variety of MTF and noise, poorly sampled imagers, and imagers with high 
frequency boost and colored (spectrally non-uniform) noise. Appendix B discusses 
experiments run with very low contrast targets. Appendix C describes a recognition 
experiment. This experiment was done for two reasons. First, to check the TTP metric 
with a task difficulty easier than target identification. Second, the experiment checked 
that the sampling range adjustment is correct for target recognition. Appendix D 
describes an ID experiment where the images were corrupted by laser speckle. The 
experiment is significant because laser speckle has a very non-uniform power spectrum; 
the imagery is highly corrupted with low frequency, very high contrast noise. Appendix E 
provides some details needed to implement the target acquisition model. 
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History of Target Acquisition Modeling 
Electro-optics (EO) technology has flourished since World War II; even a brief mention 
of all the important contributors and events would require volumes. The present 
discussion is focused on human-in-the-loop target acquisition models, and only the major 
threads of model development history are followed. 

The history of modeling EO imagers traces back almost 60 years to the pioneering work 
of Otto Schade. In the introduction of his four-part paper “Electro-Optical Characteristics 
of Television Systems,” Schade noted that the standard which must be met by an EO 
image was established by the capabilities and optical characteristics of the eye (Schade, 
1948). He pointed out, for example, that the visibility of “grain” fluctuations decreases 
with brightness, so a comparison of the signal to noise characteristics of different imaging 
technologies should be made at the same display brightness level. The following is a 
quote from the conclusion of Part IV. 

“The quality of television and photographic images depends in a large 
measure on three basic characteristics of the imaging process: the ratio of 
signals to random fluctuations, the transfer characteristic, and the detail 
contrast response. These characteristics are measured and determined by 
objective methods which apply equally well to all components of 
photographic and electro-optical imaging systems.” He states that 
hardware can be rated on an objective numerical basis, and then continues: 
“An interpretation of the numerical values obtained by calculation or 
measurement of the three characteristics that determine image quality 
requires correlation with the corresponding subjective impressions: 
graininess, tone scale, and sharpness. This correlation has been established 
by analyzing the characteristics of vision and by including these 
characteristics in an evaluation of the over-all process of seeing through an 
image-reproducing system.” 

In 1956, Schade published a model of the eye (Schade, 1956). The visual system was 
treated as an analog camera; performance of the camera was quantified using sinewave 
response, contrast sensitivity, and other psychophysical data. Schade combined the 
physical data on hardware and psychophysical data on human vision and created a 
holistic model of the observer’s aided vision. Schade postulated that, for each retinal 
illumination, information transfer could be calculated by a knowledge of threshold signal 
to noise ratio and signal transfer characteristics. Over-all transfer characteristics were 
obtained by integration of intensity steps and by considering the sampling efficacy of the 
rods and cones; this integration of “statistical units” constituted his passband metric. He 
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used this model to compute the degradation in visual performance when the imager was 
inserted between the scene and eye.  

“One of the objects for constructing an analog [of the eye] is its use for 
obtaining visual evaluations for image characteristics by calculation, to 
eliminate subjective observations. This calculation is done by computing 
the degradation in visual response when an external process is inserted 
between the object and the eye. The degradation in resolution, for 
example, is given by the ratio of two line numbers obtained at a given 
small response factor; one with the eye alone, and the other for the eye in 
cascade with the external imaging process. The total degradation may be 
rated by the logarithm of the ratio of the equivalent passbands [the normal 
visual passband and the combination eye-imager passband].” 

Schade’s work provided fundamental and widely accepted design guidelines for 
television and other EO systems. However, Schade’s sensor performance model was 
complex and difficult to adapt to changing conditions. Although his model was widely 
studied, it was not widely used. To our knowledge, the ability of Shade’s analog eye 
model to predict target acquisition performance was never assessed. However, based on 
the form of the passband model, our experiments indicate that it would not be a good 
predictor of target acquisition performance. Shade later simplified his passband metric to 
include only integration over the sensor MTF (Shade, 1973). The simplified version of 
the passband metric was evaluated by Task and did not accurately predict target 
acquisition performance (Task, 1976; Tannas, 1985). 

Meanwhile, the model that was eventually used by virtually everyone for the next fifty 
years was being developed by Coltman (1954). Coltman developed a model to predict the 
resolving power of fluoroscopes. Richards adopted Coltman’s model to predict the 
resolving power of night vision imagers (Richards, 1967). Johnson postulated that target 
acquisition performance using an imaging sensor was proportional to the resolving power 
of the imager (1958). A modified version of the Coltman/Richards model for the imager 
and the Johnson model for predicting target acquisition range were brought together by 
Ratches, Lawson, and others in the Night Vision Laboratory Static Performance Model 
(Ratches 1975, 1976, and 2001). The NVL model used Fourier transform theory and 
communications theory concepts which were fully developed for imaging sensors by 
Lawson (1971).  

Derivatives of Coltman’s model are so widespread that the model is generally presented 
without attribution. The simple assumptions which are the basis for the model are seldom 
questioned. This is unfortunate. Coltman’s focus was fluoroscopy, and his model requires 
that the display be optimized. He reasoned as follows.  

“The advent of electronic devices for brightening images has made it 
possible in principle to remove the optical and physiological deficiencies 
of the eye. In the limit there will remain only the quantum noise inherent 
in the signal itself.” 

Coltman based his model on ideas put forward by Barnes and Czerny (1933), de Vries 
(1943), and fully developed by Rose (1948). Rose assumed that the absorption of 
luminous flux by photoreceptors of the retina would be accompanied by the same 
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statistical fluctuations (shot noise) as occurs in any square-law detector. He considered 
only low light level circumstances where quantal fluctuations could be expected to 
dominate the detection process. Further, he considered circular disks of sufficient size to 
be resolved by the eye. Under these circumstances, Rose assumed that the eye would 
integrate the signal and noise over the disk area. The result predicts Piper’s law; for a 
given adapting luminance, the product of signal threshold and the angular size of the disk 
is a constant. When compared to experimental data, Rose’s theory worked for 
intermediate sized disks but failed for both small and large disks. The detection of small, 
circular disks is predicted by Ricco’s law; for small objects, the product of signal 
threshold and disk area is a constant. For large objects, detection occurs at a constant 
contrast.  

Coltman postulated that shot noise in the eye would not be significant compared to the 
photo-detection noise associated with the fluoroscope. He assumed a big, bright display 
and that noise in the sensor photo-detection process would dominate the perceptual signal 
to noise because of the gain provided by the display. Realizing that bar-pattern detection 
might be mediated by different perceptual processes than circular disk detection, Coltman 
assumed that the visual system acted as a spatial integrator over an area related to the 
object to be detected and admitting noise from the same area. He did not assume signal 
and noise integration over a single bar. Finally, he followed Rose’s assumption that, for a 
detection to occur, a constant signal-to-noise ratio threshold must be achieved at some 
point in the visual processing chain. In Figure 2.1, the eye is summing both signal and 
noise over an area related to the bar size. Once the integrated signal exceeds the noise by 
a fixed threshold, the observer can differentiate between the bar and the space.  

Coltman sen
noise ov

Coltman tested his t
conclusively demonstra
that his assumptions w
Coltman model. That 
proportion to the squar
to see than small bars.  

 

Figure 2.1  The Eye as a Spatial Filter  
sor model assumed that the eye integrates signal and 
er some area of the image related to the bar size.  
heory experimentally. Observer variability was too great to 
te the validity of his assumptions, but neither did the data indicate 
ere in error. Most analysts accepted the tenets put forward in the 
is, the signal contrast needed to detect a bar pattern varied in 
e root of bar area. In the presence of noise, large bars were easier 
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Coltman did not postulate that the eye was integrating over a single bar of the pattern; he 
could not determine the actual shape or size of the area being integrated. In Coltman’s 
experiment, the eye could be using any fraction or multiple of the bar or bars to establish 
signal to noise. The signal to noise ratio threshold (SNRT) required by the eye to see the 
bar is an experimental result. Increasing integrated area by a factor of four reduces SNRT 
by a factor of two. Since SNRT is not known independent of the experiment, the 
integration area cannot be predicted. By the same logic, for white noise, the shape or 
spatial weighting of the integrated area cannot be predicted. The nature of the spatial 
filter was not established by Coltman’s experiment.  

Richards (1967) adopted Coltman’s theory to model night vision devices. He simplified 
Coltman’s equation, and made it appear more definitive, by assuming that the eye 
integrated over the area of a single bar. Coltman explicitly included an arbitrary 
multiplier that flagged the ambiguous nature of his results. In simplifying Coltman’s 
equation, Richards set the arbitrary multiplier equal to one. This theory, that the eye is 
integrating over the bar area, later became known as the “matched filter” model. 

Experiments like those of Coltman and later Rosell (Rosell, 1973 and Rosell, 1979) 
demonstrate that the eye filters noise, but do not definitively establish a filter function. 
The calibration constant (SNRT) adapts the model to any shape and placement of the 
filters in the frequency domain, providing that bandwidth is proportional to bar frequency 
and that the noise is white.  

The matched filter model was simple and seemed to explain observed behavior. The 
eye’s remarkable ability to see objects in noise has been experienced by many engineers 
over the years; this lends credence to the idea that the eye is spatially integrating over the 
object being viewed. This model became the basis of the NVL (later the Night Vision and 
Electronic-Sensors Directorate or NVESD) performance models until 1995. In the 1975 
to 1995 model, the eye acted as a matched filter, integrating signal over the bar area, and 
admitting noise from the same area. The bar was detected (threshold reached) when the 
peak signal to RMS noise ratio exceeded a fixed value (SNRT) independent of bar size. 
The noise arose solely from the detector; as detector approached zero, so did predicted 
threshold. 

The NVL model did include a pupil-dependent eye MTF factor that was added to account 
for vision limitations; the model also included a factor representing temporal signal 
integration by the eye that depended on display luminance. These factors were added to 
overcome the assumption of an “optimized” display. However, pupil dilation plays a 
minor role in luminance adaptation. These additions did not change the fundamental 
nature of the model; the contrast threshold limitations of the eye were ignored. 

The models predicted Minimum Resolvable Temperature (MRT) for thermal imagers and 
Minimum Resolvable Contrast (MRC) for imagers of reflected light. However, these 
models were only accurate for some imagers. Early thermal imagers, for example, were 
noisy and had sufficient gain that the noise itself could generate a photopic or near 
photopic display luminance. These sensors met the assumptions laid down by Coltman; 
the display could be sufficiently optimized that the imager was detector noise limited.  
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Other technologies, however, could not be modeled. Early attempts to model image 
intensifiers failed, because the eyepiece luminance of the device was low mesopic. The 
display could not be optimized, and eye limitations could not be ignored. Further, the 
performance of day sensors could not be modeled. Daylight illumination provided plenty 
of signal and detector noise became insignificant; performance was contrast limited. 
Since the early NVL models were strictly based on a signal to detector noise calculation, 
contrast limited situations were not correctly modeled. 

Alternative assumptions about the nature of the eye filter received some attention. 
Sendall and Rosell proposed substituting the synchronous integrator model (Sendall, 
1979; Rosell, 2000). However, under practical conditions, the predictions of the matched 
filter model and the synchronous integrator model differ only slightly (Lawson, 1979). 
Overington (1976) proposed using the signal and noise associated with the boundary 
rather than the area. He suggested that gradients in the contour are important and should 
be weighted by their visibility. The static predictions in British Aerospace’s Orcale 
Model use these concepts, but the details of the Oracle Model implementation have not 
been published to our knowledge. 

It was recognized by a number of researchers that the Coltman model ignored 
fundamental limitations of the eye. Schnitzler (1973) modeled the “noise-required input 
contrast” of a displayed target by cascading the quantal limitations of the EO imager and 
eye. Overington paid a great deal of attention to the workings of the eye, emphasizing the 
presence of noise and blur both external and within the eye. He proposed an equation of 
vision which was a function of the threshold intensity difference divided by adapting 
luminance (the psychometric contrast). Object detection depended upon intensity 
gradients in the displayed image, with the gradient spacing defined by eye receptors and 
gradient amplitude scaled by the psychometric contrast. Overington provides alternate 
formulas for small, intermediate, and large objects and for the effect of the blur 
associated with visual aids. However, he does not model the effect of system related 
noise.  

Because of the failure of the “standard” model to predict image intensifier performance, 
model development continued at NVL also. The work was probably done by Kornfeld 
and Lawson using ideas put forward by van Meeteren (1986), but the available working 
papers are not signed and do not cite references. In this model, “eye noise” is assumed to 
be proportional to the contrast threshold function of the eye. The eye noise is root-sum-
squared with the signal to noise term used in the Ratches model. This addition to the 
NVL model was significant because the modified model provided correct results in the 
limit of zero detector noise. That is, as the system noise decreased to zero, the eye 
became the limiting factor. However, this addition made little difference in model 
predictions; image intensifier predictions were still quite inaccurate. An image intensifier 
model was eventually published by NVL; the IIV4 Image Intensifier model was 
published in 1995. However, that model used empirical fits to laboratory data in an 
attempt to correct the problems with the theory.   

One concept fundamental to all of the above theories is that the signal was detected when 
it exceeded the shot noise by a fixed amount. The noise was sometimes only the shot 
noise associated with the sensor photo-detection, and sometimes the shot noise was 
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modeled as the combined noise from sensor and eye neural noise. The signal might 
represent detecting a bar or circular disk against a bland background; in this case, the 
models were called Minimum Detectable Temperature or Minimum Detectable Contrast. 
When calculating Minimum Resolvable Temperature and Minimum Resolvable Contrast, 
the signal was the bar-space-bar modulation of a bar pattern. Whether the model was 
predicting the presence of an object in noise or detection of bar modulation, both types of 
model employed the same assumptions. First, the visual system integrated over the bar or 
simple object. Second, the SNRT was constant regardless of the size of the object or bar 
pattern. Third, the eye noise, when considered, was associated with primary photo-
detection by the eye; therefore, the eye noise was proportional to the square root of 
display luminance.  

The history above has focused on the detection of simple, circular disks or bar-patterns 
through and imager. An equally important factor in target acquisition is relating the 
detection of simple patterns to the process of interpreting real, complex images. Although 
the Johnson criteria is used almost universally, many alternatives have been proposed. 

Rosell used the matched filter concept to calculate sensor resolution; however, he felt that 
the Johnson criteria range predictions were imprecise (Rosell, 1979; Rosell, 2000). The 
Johnson metric tends to be optimistic when the image is noisy. That is, more “cycles on 
target” are needed to perform an acquisition task when the imagery is limited by noise 
rather than blur. Rosell suggested adjusting the Johnson range predictions based on the 
signal to noise established by target contrast at range and the sensor’s noise equivalent 
temperature difference. The resulting range model was somewhat clumsy to implement. 
The validity of Rosell’s criticism was widely understood, however, and alternatives to the 
Johnson model were pursued by Rosell, Biberman, and others for many years (Biberman, 
2000). The model by Roberts, Biberman, and Deller is described here as an example.  

A fixed resolution on the target is selected; this is the cycles across target to achieve a 0.5 
probability of task performance. For each range, the known target size and required 
number of cycles across the target yields a spatial frequency. The MRT curve is used to 
find the threshold contrast needed to resolve that frequency. A signal to noise ratio is 
formed based on target apparent contrast and the MRT threshold contrast. The probability 
of task performance is then based on that signal to noise ratio. However, according to 
well documented but unpublished evaluations by Lawson and Johnson, these alternatives 
never proved as successful as the Johnson criteria in estimating field performance. 
Models based on Rosell’s concept tend to predict very high probability out to the range 
where the Johnson criteria would predict 0.5 probability. At that range, probability drops 
abruptly to zero. While it has been argued that this is realistic for poor weather, clear 
weather predictions follow the same trend. A sharp drop in acquisition probability is not 
observed in practice. 

There are a number of MTF-based measures of image quality. The Johnson metric is one 
of these, as are Modulation Transfer Function Area, Integrated Contrast Sensitivity, 
Square Root Quality Index, and many others. The Target Task Performance (TTP) Metric 
described later in this report is also an MTF-based measure of image quality. The idea for 
these metrics started with Shade’s equivalent passband. See Task (1976), Tannas (1985), 
Snyder (1973, 1988), Beaten (1991), and Biberman (1973, 2000/Chapter 22) for surveys 
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of this area. These metrics share the concept that image quality can be quantified by some 
weighted integral of signal modulation which exceeds the eye contrast threshold. For 
example, the Johnson frequency is defined by the spatial frequency range over which the 
apparent target contrast exceeds the eye threshold. For the other metrics, the amount that 
the signal modulation exceeds threshold at each spatial frequency is important. All of 
these metrics share the virtue that range prediction is easily implemented; in every case, 
range is simply proportional to the value of the metric. 

Researcher’s in the field have found that, in general, MTF-based metrics account for 
more than half the variance in performance across the various displays tested. Although 
the correlation between a particular metric and performance varies greatly from 
experiment to experiment and task to task, limiting resolution measures like the Johnson 
metric are generally among the worst performers. However, prior to the TTP metric, 
experiments at NVL have shown the Johnson criteria to perform better than Modulation 
Transfer Function Area, Integrated Contrast Sensitivity, and other metrics evaluated 
(Vollmerhausen, 07/2000).  

The discrepancy in experimental conclusions appears to be based on the form of the 
analyses. Most researchers change one or more calibration “constants” to fit calculated 
metric values to experimental data. They argue that changes in task, observation 
conditions, and observer-to-observer physiology requires that the metric be uniquely 
adapted to each experiment. From the standpoint of a target acquisition model, however, 
such a procedure cannot be used to predict performance; the procedure requires 
experimental data on which to base a fit. While all models have one or more calibration 
constants, those constants must be determined once and then used for all predictions. 
Under those constraints, the Johnson criteria have proven to be a reasonable predictor of 
performance, better than other MTF-based metrics like MTFA, ICS, and SQRI. 

Overington (1976) and van Meeteren (1990) both theorized that targets are recognized by 
a process of detecting critical features. This general concept has been the focus of several 
researchers (Biederman, 1987; O’Kane, 2000). The van Meeteren model, as summarized 
by Vos and van Meeteren (1991), will be described as it is the most complete in terms of 
predicting range performance. 

Target acquisition is determined by a process of detecting characteristic details. The size, 
contrast, and number of characteristic details visible to the observer determines the 
probability of acquisition. Each detail is treated as a circular disk with detection based on 
a Minimum Detectable Contrast model. In van Meeteren’s model, eye noise is 
represented as a fixed fraction of the contrast threshold at each luminance level. 
Detection of the critical detail is based on the contrast signal exceeding the quadrature 
combined detector and eye noise by a fixed amount. One continuing problem with these 
models is the pre-determination of critical features. It is difficult to adapt the model to a 
new target set. 

One important aspect of van Meeteren’s work is explicit task definition. In his 1990 
JOSA paper, he describes target recognition as choosing an object from a known 
confusion set. That is, targets are recognized by differentiating them from the possible 
alternatives. This means that the features which uniquely define a target are those which 
differentiate that target from others in the set. Most researchers ignore the important step 
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of defining the experimental task. By not recognizing that all discriminations are 
comparisons, many researchers fall into the trap of analyzing experimental data one-
target-at-a-time. The result is that a model which appears to predict one experiment 
beautifully fails to predict subsequent experiments. This distinction—that target 
acquisition models predict the ability to choose one target of a set, rather than predicting 
the absolute probability of recognizing or identifying a particular target—is particularly 
important when trying to assess the success of feature-based models. 

The logic of critical-feature recognition is intellectually appealing, but a practical model 
which incorporates target-set features to predict range performance has not been offered. 
It should be noted, however, that accepting the idea that high level visual discriminations 
are required to recognize targets does not invalidate image quality models. Accepting an 
image quality model like the Johnson criteria does not infer that we are not looking at 
internal target features. The target is not in the model; no judgment is being made about 
what is being viewed. 

The inclusion of overall target–set dimensions and average contrast in range predictions 
tends to confuse this point. Those parameters are used to decrease variance in range 
predictions. For example, for ship identification, the “critical dimension” is found to be 
the vertical height of the ships to be discriminated, and this is included in the model. 
Tactical military vehicles have more observable features with a side view than front 
view; the road wheels and gun, for example, are better viewed from the side. The current 
use of square root of target area when making predictions for tactical vehicles has been 
found to adjust model output in the correct way. In general, larger, higher contrast targets 
are easier to see, and including these factors in the model decreases variance in the 
predictions. However, the fundamental concept behind an image quality model is: see 
better, see further. Of course target details are used to recognize and identify targets. 
Better image quality lets the observer make these discriminations at longer range.  

The fluctuation theory developed by Rose provides a limiting criterion for detection 
under low luminance conditions. The basic assumption, quite correct for very low display 
luminance, is that liminal vision is established by the shot noise associated with the 
retinal photo-detection mechanism. In virtually all cases where target acquisition 
modelers have considered the nature of the eye, they have assumed that shot noise 
established the significant limitations of eyesight. This is not the case. The target 
acquisition task is dependent on the characteristic behavior of higher-order visual 
processing within the brain.  

For any practical display luminance, the contrast limitations of the human eye are 
established by the visual cortex, not the retina. In 1995, the NVL model which predicts 
threshold resolution versus spatial frequency was modified to account for these contrast 
limitations (Vollmerhausen, 1995 and 2000; Driggers, 1999). The modified model 
accurately predicts image intensifier performance over a wide range of scene illumination 
and eyepiece luminance conditions. Further, as will be discussed, this model does an 
outstanding job of predicting the results of experiments using thermal, visible, and laser 
imagery.  The model is applicable to the whole range of EO imagers.  

However, the 1995 NVL model continued to use the matched filter concept. Like all 
models using this filter assumption, it can only be used with sensors where the noise is 
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essentially white (flat) over the frequency spectrum of the signal. While this can be a 
serious limitation with modern sensors, the limitation was not serious for previous 
generations of EO imagers. 

Prior to the widespread use of sampled imagers and digital processing, one could assume 
sensor noise to be essentially white in comparison to the signal. The scene was filtered by 
the optics and detector as well as the electronics, display, and eye. The noise was only 
filtered by the electronics, display, and eye. The white noise assumption was valid for the 
vast majority of sensors. It is still true today that the noise in most EO imagers is white 
compared to the signal spectrum. In modern sensors, however, digital enhancement of the 
image can make the noise distinctly non-white. An upgrade to the model is needed. 

An upgrade to the 1995 NVL model to correct the eye filters is presented in this report. In 
this model, the matched filters are replaced with bandpass filters. The new eye filters are 
based on  psychophysical data collected over the last three decades. The combination of 
the new eye filters and the TTP metric provides complete flexibility in modeling modern 
EO imagers. 

 17



 

3  
Modeling Human Vision 
In this section, some of the marvels, complexities, and limitations of human vision are 
described. The nature of the immediate task requires us to focus on limitations. However, 
recognizing the capability and the resulting complexity of eyesight provides a needed 
insight: the nature of vision cannot be encompassed in a simple model. As shown in the 
charts below, eye behavior changes significantly with luminance and with angular 
eccentricity from the fovea. This explains why the theory in this report treats the human 
visual system as a “black box.” The threshold response of the eye to sinewave gratings is 
used to characterize vision; this is experimental data collected by psychophysicists. 

The eye provides some quality of vision over a billion to one range of scene illumination. 
To accomplish this, the eye has cones for photopic or daytime vision and rods for 
scotopic or night vision. The distribution of rods and cones within the eyeball is shown in 
Figure 3.1. The highest density of cones is at the center of the fovea, called the foveal pit. 
There are no rods in the foveal pit, a region in the center of the retina about 200 microns 
in diameter. The foveal pit subtends about a quarter inch on a display viewed from 15 
inches. 

Figure 3.1 Distribution of rods and cones in the retina of the eye. 
 (Figure courtesy Webvision) 

Rods and cones are not equally sensitive to visible wavelengths of light. Unlike the 
cones, rods are more sensitive to blue light and are not sensitive to wavelengths greater 
than about 640 nanometers, the red portion of the visible spectrum.  

Although factors like retinal processing and pupil dilation play important roles, photo-
pigment bleaching is the primary means for adapting both rods and cones to varying 
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illumination. A threshold versus intensity (tvi) curve can be obtained by testing observers 
using a small disk of light against a uniform luminance background. When rods or cones 
are isolated, four sections of the tvi curve are apparent: dark light, Square Root Law (de 
Vries-Rose Law), Weber's Law, and saturation (Aguilar and Stiles, 1954). Figure 3.2 
shows a tvi curve for rod vision. The figure plots the just-visible difference in luminance 
(ordinate) versus the display luminance (abscissa). “Dark light” is  internal, neural noise. 
The second part of the tvi curve is limited by quantal fluctuation; this is the square root 
law or de Vries-Rose Law region. The next section of the curve follows Weber’s Law; 
the threshold is a constant fraction of luminance. Given sufficient light, the eye operates 
on the principle of contrast constancy; this is an important feature of our visual system. In 
a natural scene, object to background contrast is fairly independent of ambient 
illumination. The final part of the tvi curve is saturation at high light levels. 

According to Ricco's Law, the eye sums quanta over an area. Threshold is reached when 
the product of luminance and stimulus area exceeds a constant value. In other words, 
when luminance is halved, a doubling in stimulus area is required to reach threshold. 
Summation area varies with eccentricity. In the fovea, complete summation occurs over 
about 0.1 degree. Ricco's Law holds for an area of a half degree at 5o eccentricity 
increasing to an area of about 2o at an eccentricity of 35o (Davidson, 1990). Spatial 
summation occurs due to the convergence of photoreceptors onto ganglion cells; clearly, 
spatial summation limits resolution. 

Visual acuity is the greatest at the center of fixation and decreases with eccentricity. See 
Figure 3.3 for a plot of visual acuity versus eccentricity. There is a close correlation 
between cone density and visual acuity out to about 2 degrees (Green, 1970).   

Figure 3.3 Plot of visual acuity versus 
eccentricity for photopic luminance. 

(Figure courtesy Webvision) 
Figure 3.2  Threshold versus intensity curve 
for rods; similar results are found for cones. 

(Figure courtesy Webvision) 
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The illumination range where both rods and cones work together is called mesopic vision. 
The rods saturate at illumination levels above 10 fL; the cones cease to be important in 
mediating vision at just below 0.01 fL. The luminance from 0.01 to 10 fL is essentially 
the range of display luminance used in military night vision systems. Displays used in 
daylight would be brighter, of course. As shown in Figure3.4, visual acuity varies greatly 
over the mesopic range of display luminance. (The milliLamberts units used in the figure 
are almost equal to fL.)  
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Figure 3.4  Visual Acuity at 
Mesopic Light Levels 

(Figure courtesy Webvision) 
gh the variation in visual acuity with display luminance has been measured, it is 
lt to predict. The interaction between rods and cones is not well understood. Rods 
nes are distributed differently over the retina. Rods and cones have different 
l responses, use different photo-pigment chemistry, saturate at different light 
and employ different neural summation and processing schemes.  

itations of human vision are important when predicting the targeting performance 
EO imager. However, a reliable theory for predicting visual behavior is not 
le. In the target acquisition model, experimental data collected by 
physicists are used to describe human vision.  

Contrast Threshold Function 
ntrast Threshold Function (CTF) is one of the most common and useful ways of 
erizing human vision. Objects and their surroundings are of varying contrast. 
ore, the relationship between visual acuity and contrast allows a better 
tanding of visual perception than acuity measured only with high contrast (black 
te) charts.  

ure 3.5, the observer is viewing a sine-wave pattern. While holding average 
nce to the eye constant, the contrast of the bar pattern is lowered until no longer 
 to the observer. That is, the dark bars are lightened and the light bars darkened, 
 the average constant, until the bar-space-bar pattern disappears. A decrease in 
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contrast from left to right is shown at top, right in the figure. The goal of the experiment 
is to measure the amplitude of the sinewave that is just visible to the observer.  

Most published CTF data is tak
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Figure 3.5  Measuring CTF
en with two alternative, forced choice (2afc) experiments. 
rver is shown one blank field and one with the sinewave. 
ch field has the sinewave. These experiments measure the 
observer chooses correctly half the time independent of 
periment provides the threshold which yields a 0.75 
he procedure is repeated for various bar spacings—that is, 
. See the bottom, right of the figure for an illustration of 
requency is at the left, lower spatial frequency to the right. 
 versus spatial frequency at each light level is called the 
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Few real-world objects are totally reflective or totally absorptive; contrast is seldom unity 
in a real-world scene. A typical scene consists of an infinitude of contrast gradations. The 
eye’s ability to see small contrast differences is critical to quality vision. From the figure, 
note that the eye loses its ability to see small contrast changes as cone vision is lost. The 
CTF curve rises as light level decreases. This rise in the CTF curve results in lower 
limiting resolution and also results in loss of the ability to see small contrast differences 
at any spatial frequency. An interesting aspect of the CTF curves is that at the higher light 
levels, people have better threshold vision at middle spatial frequencies than at low 
spatial frequencies. 

3.2 Contrast Threshold Function in Noise 
Our model for predicting the effect of display noise on CTF was first described by 
Vollmerhausen (1995, 2000). This CTF model is currently used in the thermal model and 
other EO imager models published by the U.S. Army. However, those previous 
references did not provide a detailed discussion of the CTF model itself. This section 
starts with some history on modeling CTF in the presence of display noise, describes the 
van Meeteren model which is used quite often, and then provides a discussion of the 
current CTF model. 

Nagaraja did experiments where he found that noise had an effect on detection threshold 
which could logically be explained by assuming that the brain was taking the root-sum-
square (RSS) of display noise and some internal eye noise (Nagaraja, 1964). In the 
following equations, CTFn is measured threshold modulation in the presence of noise, N 
is display noise modulation (RMS noise divided by twice the display luminance), and κ 
and Neye are parameter fits. 

( )2222
eyen NNCTF += κ    (3.1) 

Nagaraja then observed that, if Neye and κ are constant, then plotting the square of 
threshold in noise versus the square of external noise amplitude, a straight line with slope 
κ2 and intercept CTF2 should result. CTF is the measured threshold modulation without 
external noise. 

2222 CTFNCTFn += κ .  (3.2) 

When Nagaraja plotted the experimental data, he found that the plot of N2 versus CTFn
2 

was linear at 1 fL but that the plots for 0.1 fL and 0.01 fL were not. So Equation 3.1 was 
correct for 1 fL but was less accurate at lower display luminance. Other investigators 
have found that Equation 3.1 is approximately true for a wide range of conditions and 
tasks (Pelli 1981, Legge 1987, Van Meeteren 1988, Pelli 1999). Different tasks include 
detecting small disks against a uniform background, reading letters, detecting bar 
patterns, and sinewave threshold detection. 

Both κ and Neye are often stated in the literature to be constants fit to the experimental 
data implying that they are constants relative to both the observer and to the stimulus 
used in the experiment. If either is changed, both of these factors can change as well. This 
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means that if an experiment is conducted with several different sinusoidal gratings, κ and 
Neye will be different for each grating and each observer.  

For a limited range of spatial frequency gratings and for photopic luminance, van 
Meeteren has demonstrated that κ in Equation 3.2 varies slowly; he treats κ as a constant. 
See Barten (1999) for additional discussion on Van Meeteren’s treatment. However, this 
is the same assumption as used by Lawson to develop the IIV4 Image Intensifier Model; 
this model does not provide good predictions when display luminance is mesopic, which 
is almost always the case (Vollmerhausen, 1995). 

The current model is derived as follows. From Equation 3.1, at each specific frequency 
and light level, 

222
eyeNCTF κ=       (3.3) 

2

2
2

eyeN

CTF
=κ .       (3.4) 

Using (3.4) in (3.2) 
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where σ is the RMS noise on the display and neye is the RMS eye noise expressed at the 
display.  

Using Weber’s Law, assume that eye noise is proportional to display luminance (L). This 
proportionality holds over most of the functional luminance range of the human eye 
(Pelli, 1999; Blackwell, 1958; Section 1.632 of Boff, 1988; Webvision, 2003). For 
display luminance above the de-Vries-Rose Law region and for statically presented 
stimuli, the visibility of foveally presented signals is limited by noise arising in the cortex 
after spatiotemporal and binocular integration (Raghavan, 1989). 
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                                               (3.7) 

It should be remembered that eye noise is a concept used to explain non-zero thresholds. 
The actual reason that the liminal signal is greater than zero is not known. Rose and de 
Vries correctly assumed that the statistics associated with photo-detection limits 
psychometric contrast at low luminance. In this case, signal is proportional to luminance 
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and noise is proportional to the square root of luminance, so psychometric contrast 
decreases in inverse proportion to the square root of luminance. However, this 
assumption only holds for the lowest absolute luminance needed for rod or cone 
operation. At higher luminance levels, signal detection threshold is proportional to 
luminance, and psychometric contrast is constant. The reason for this change in behavior 
as luminance increases might not actually be noise, but rather an adaptation of the visual 
system to aid the brain in interpreting imagery. Whatever the cause, Figure 3.2 does 
indicate that threshold is proportional to display luminance over most of the luminance 
range usable by the eye.  

Once the calibration constant (α) is determined by experiment, Equation 3.7 provides an 
accurate means of predicting the effect of display noise on contrast threshold. As 
described in the next section, however, some of the frequency spectrum of the display 
noise is filtered out by the eye. The value of α is given after the noise filter is discussed. 

3.3 Visual Bandpass Filters 
It is important to note that the signal and noise in Equation 3.7 are taken with respect to 
the bandpass properties of the human visual system. In other words, the noise that affects 
a particular visual process does not include all frequencies of noise capable of being 
represented on the display. Figure 3.7 provides an illustration of the eye filter acting on 
the incoming signal and noise. This figure is provided as an aid to understanding that the 
RMS noise in Equation 3.7 must be spatially filtered in order to get accurate predictions 
of CTFn.  

The eye exhibits behavior that seems to imply the presence of selective spatial frequency 
channels. Exposure to one bar pattern or sinewave grating can affect the visibility of a 
second pattern. This effect is termed masking. Masking only occurs, however, if the bar 
patterns are close to the same size and oriented in the same direction (Legge, 1987).  

The extent to which noise masks a signal depends on the spatial frequency of the signal 
and the spectral content of the noise (Stromeyer, 1972; van Meeteren, 1988; Greis, 1970). 
That is, the noise spectral density might not be constant over the frequency limits being 
considered. If the noise spectral density is not constant, then the noise is “colored.” The 
ability of colored noise to mask a signal depends on the relative position of the signal and 
noise in the frequency domain. CTFn depends on the power spectral density of the noise 
rather than total noise power (Raghaven, 1989). 
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Figure 3.7  Spatial Filter Acts Upon Incoming Signal and Noise 

Figure 3.8 shows the visual filters proposed by Barten (1999) based on fit to 
psychophysical data. The filters shown are for 0.125, 0.25, and 0.5 cycles per milliradian 
sinusoidal gratings. Equation 3.8 gives the formula for the Barten eye filter B(ξ). ξ0 is the 
frequency of the sinewave grating. When using Barten’s formulation, the signal is 
expressed as modulation.  
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tion 3.8, the bandwidth of Barten’s filters 

  (3.8) 

As verified by numerical integration of Equa
increases in proportion to ξ0. Given a level of white noise, signal to noise increases in 
proportion to the square root of bar size. This is because, with noise power spectral 

8; Stromeyer, 1972). 
Barten’s eye filters also predict the results of Chen (1994).  

Figure 3.8  Illustration of 
Three Barten Eye Filters  
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density constant over the frequency band of interest, the noise associated with a filter is 
proportional to the square root of bandwidth. So Barten’s filters work in lieu of the 
matched filters for white noise. This has also been verified by using both types of filters 
with Equation 3.7 to predict the image intensifier experiment reported by Vollmerhausen 
(1995). Both eye filters give identical results in white noise. 

However, the Barten filters also work with colored noise. Barten compares predicted and 
experimental results from two researchers (van Meeteren, 198
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To illustrate the benefit of the Barten filters over the matched filters, consider the Air
Force 3-bar chart shown in Figures 3.9a through c. In Figure 3.9b, low frequency no
superimposed on the chart patterns. In Figure 3.9c, the im

 
ise is 

age is corrupted with high 

a ed 
s are viewed from a distance five times the width of one chart; Figure 
s wide. The smallest 3-bar pattern is group –1 pattern 6 with a spatial 

 with the Equation 3.9 eye filters provides the foundation for 
redicting the image quality of imaging sensors. 

frequency noise; low spatial frequency noise has been filtered out. The standard deviation 
of the noise is the same for both Figures 3.9b and 3.9c. Looking at the high frequency 
bars (the small bars to the right, center of the picture), the high frequency noise masks the 
bars more than the low frequency noise. If the eye were simply integrating over a bar 
area, the low frequency noise would actually be more effective in masking the high 
frequency bars.  

that the bar chart
3.9 is three chart

a b ca b c

This is illustrated by Figure 3.10. That figure shows the spectra for both the low and high 
frequency noise. Also shown are both the matched bar filter and the Barten eye filter 

Figure 3.9  Air Force 3-bar Chart Corrupted by Low (b) and High (c) Frequency Noise

ssociated with the smallest 3-bar pattern in Figure 3.9. For this discussion, it is assum

frequency of about 0.275 cycles per milliradian when viewed from a distance five times 
the width of one chart. 

 

Because the matched filter represents an integration over the bar area, the matched filter 
has a better response at DC than at higher spatial frequencies. The matched filter cannot 
explain masking. However, the Barten filters are consistent with observed masking 
behavior. Equation 3.7

low freq noise
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Richards eye filter
Barten eye filter
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Figure 3.10  Plot of Noise Spectra and Eye 
Filters  The low frequency noise associated with 
Figure 15b and the high frequency noise 
associated with Figure 15c are plotted. Also 
shown are the Richards and Barten eye filters 
associated with the smallest bar pattern. 

p
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3.4 Validity of Weber’s Law 
The CTFn model assumes contrast constancy. That is, threshold luminance increases in 
proportion to display luminance; this is Weber’s Law. Many researchers would object 
that this is not the behavior of a normal square law detector. Further, certainly a system as 
highly evolved as the human eye would better approach the theoretical limits represented 
by the de-Vries-Rose Square Root Law. Perhaps, however, the eye is not a normal square 
law detector. And perhaps it is not optimized for liminal photon detection. 

From a purely physical standpoint, photo-chemicals in the eye are leached out by light; 
absolute quantum efficiency of the eye decreases as illumination increases. Further, it is 
certainly not unreasonable to assume that the eye-brain system is optimized for higher 
order discriminations. Perhaps contrast constancy and color constancy provide the visual 
system a way of adapting to changing environments. In an evolutionary sense, it may be 
that a visual system which responds uniformly at sunrise, noon, sunset, in the open, in a 
cave, or under the shade of a tree is more important than the absolute level at which a 
faint light is detected on a dark night.  

Unfortunately, experimental support for Weber’s Law is mixed; some experiments 
support the idea of contrast constancy over a large variation in illumination, other 
experiments do not. It is necessary, therefore, to discuss this assumption in more detail as 
it relates to our CTFn model. 

Figure 3.11 plots absolute threshold versus display luminance for spatial frequencies 
between 0.1 and 1.5 cycles per milliradian (cy/mrad). The threshold predictions are based 
on Barten’s CTF numerical fit (Barten, 2000) and on a numerical fit to eye MTF (see 
Appendix E). The figure also shows a straight line; if Weber’s Law were exact, then all 
of the CTF data would lie on a straight line.  A dotted line representing the de-Vries-Rose 
Square Root Law is also shown. The exact ordinate position of the lines is not relevant, 
because experimental data are used to calibrate the model. The question addressed here is 
the functional relationship between CTF and luminance. 

The CTF data are adjusted to remove the effect of MTF variations which result from 
differences in pupil dilation as luminance changes. A correction for pupil dilation is 
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included in the eventual model which is described in Part 4; the pupil-related changes in 
CTF should not be included in the current discussion. 

igure by the 
absence of high spatial frequency predictions for low luminance.  

Because of eyeball MTF and the functioning of the visual cortex, each spatial frequency 
transitions at a different light level from the Square Root Law region to the Weber’s Law 
region and eventually to saturation. Low frequencies are seen at very low luminance 
levels. High spatial frequencies require more light. So Weber’s Law is applicable to 
different spatial frequencies at different light levels. This is reflected in the f

Weber’s Law is not exact, but it better fits our needs than the Square Root Law. Looking 
at Figures 3.2, 3.4, and 3.11, the CTFn model can be expected to provide accurate 
predictions for display luminances between 0.01 and 100 fL and approximate predictions 
from about 0.001 to about 1,000 fL. 
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4  
 

CONTRAST THRESHOLD FUNCTION OF AN IMAGER 
The observer in Figure 4.1 is viewing the scene through an imager and trying to identify 

 imaging system. The system Contrast Threshold 
Function (CTFsys) is the naked-eye CTF degraded by the amount necessary to account for 
the blur and noise added by the imager.  

As an aid in understanding the formulas for CTFsys, a simple imaging system is illustrated 
in Figure 4.2. An objective lens focuses light onto a focal plane array (FPA) of detectors. 
Photo-current is generated over the active area o  
indicated by the hatched areas shown in th
diffraction and aberrations in the objective lens
finite size of the active detector
detector; shot noise is added to the signal by the st
process. The individual detector samples ar  

the target. The imager helps her by magnifying the target and by permitting the 
observation of illumination not normally visible to the eye. However, the camera and 
display add noise and blur. This section describes the observer’s Contrast Threshold 
Function when looking through the

View in imager

scene

View in imager

scene

Figure 4.1  Observer viewing 
scene through an imager is 
trying to identify the target. 

f an individual detector; the active area is
e inset. The scene is blurred because of 

; the scene is also blurred because of the 
 area. The signal is the total photo-current in each 

atistical nature of the photo-detection 
e electronically formatted, perhaps filtered

or array

Eye

or array

Eye

Focal plane detect

active detector 
areas

Optics
Display

Focal plane detect

active detector 
areas

Optics
Display
Figure 4.2  Illustration of a staring imager. Optics, detector, display, electronics, 
and eye all blur the image. Noise is added to the signal during photo-detection. 
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electronically, and then displayed. So blur can be added by the electronics. The display 
pixels have a finite size, and this also adds blur to the image.  Finally, the eyeball adds 

al is blurred by every component in the image processing chain; the noise is only 
by components subsequent to photo-detection. In the model, the Fourier 

transform of the total, signal blur is called system MTF, whereas the Fourier transform of 
s a 

component of system MTF. 

 magnification and that the telescope MTF 
is Hsys(ξ). In 4.3c, the displayed modulation has been increased so that the sinewave is 
once again visible. The display modulation must be increased by the amount lost in the 
optics. Equation 3.7 for CTFn is modified as shown in Equation 4.1 to yield CTFsys. 
CTFsys is the Contrast Threshold Function through the imager; it degrades naked-eye 
CTF by the amount necessary to account for imager noise and blur. 

blur.  

The sign
lurred b

the blur which filters noise is called the noise filter MTF. Noise filter MTF i

4.1 Effect of Blur on Imager CTF 
The effect of noise on CTF has been discussed, but the effect of blur has not yet been 
quantified. In Figure 4.3a, the sinewave chart is just visible to the observer. In 4.3b, an 
optical system has been introduced between the display and the eye, reducing the visible 
modulation to below threshold. Assume unity

 

e increased for the sinewave to once again be 
visible in (c). 
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   (4.1) 

agery has two dimensions. In our models, sensors 
tal directions separately, and a summary 

parate analyses. The point spread function, psf, and 
parable in Cartesian coordinates. The 
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Equation 4.1 is one-dimensional, but im
are analyzed in the vertical and horizon
performance calculated from the se
the associated MTF are assumed to be se

Figure 4.3  Just-visible sinewave modulation 
in (a) is decreased by the introduction of the 

telescope in (b). The display modulation must 
b

 

telescope 

telescope 



 

separability assumption reduces the analysis to one dimension so that complex 
calculations that include cross-terms are not required. This approach allows 
straightforward calculations that quickly determine sensor performance. 

parable; for example, diagonal dither cannot be modeled 
correctly, nor can diamond shaped detectors. 

olution characteristics in the horizontal 

ifferent than unity; the scene is magnified and 
r. In our models, the calculations are done in 
th object space. Spatial frequency at the eye 
 space (ξ) by:  

The separability assumptions are almost never satisfied, even in the simplest cases. There 
is generally some calculation error associated with assuming separability. Generally, the 
errors are small, and the majority of scientists and engineers use the separability 
approximation. However, care should be taken not to apply the model to circumstances 
which are obviously not se

Since most imagers do not exhibit the same res
and vertical directions, the CTF in each direction must be modeled separately. The 
sinewave pattern at the left in Figure 4.4 is used to generate horizontal CTF modulation; 
the pattern to the right is used to generate vertical CTF modulation.  

Figure 4.4  Charts Used to Generate CTF 
Modulation   The left-hand chart is used  for 
horizontal CTF; the right-hand chart is used  
for vertical CTF. 

Horizontal CTF Vertical CTFHorizontal CTF Vertical CTF
Also, most imagers have a magnification d
objects look bigger than without the image
the spatial frequency domain associated wi
(ξeye) is related to spatial frequency in object

SMAGeye ξξ =    (4.2) 

where SMAG is the system magnification. 

Equations 4.3 and 4.4 give the horizontal a
which are associated with calculating horizontal system  
CTFHsys is given in Equation 4.5. 
oise bandwidths, respectively, for vertical syst

the calculation of CTFVsys. In these equations, ξ  
of cycles per milliradian in object space

nd vertical noise bandwidths, respectively, 
 CTF (CTFHsys ). The formula for

Equations 4.6 and 4.7 show the horizontal and vertical 
em CTF (CTFVsys). Equation 4.8 shows 
’ and η’ are dummy variables with units

rations are over all frequencies.
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In

ξ = -1  
η 
ρ = detector noise power spectral density in units of fL2-second-milliradian2  
L = display luminance in fL 
SMAG = angular magnification 
B(ξ or η) = the Equation (3.9) eye filters  
Heye(ξ or η) = eyeball MTF 

Hsys(ξ) = horizon
Vsys(η) = vertica

Hsys 
QVhor = vertical noise bandwidth for CTFHsys 

ons in 
the scene. If the imager has independent gain and level controls, this proportionality can 
be lost. In fact, since gain enhancement can improve target acquisition
likely that proportionality will not exist under low contrast conditions. 

Contrast enhancement is achieved by gaining the signal and then lowering the display 
brightness back to the original value. This is illustr
display luminance is proportional to scene variations in luminance (or temperature for 
thermal imagers). The figure shows an average luminance (L) and a change in luminance 

 these equations,  

 horizontal spatial frequency in (milliradian)
= vertical spatial frequency in (milliradian)-1 

Helec(ξ) = horizontal electronics MTF 
Velec(η) = vertical electronics MTF 
Hdsp(ξ) = horizontal display MTF 
Vdsp(η) = vertical display MTF 

tal system MTF 
l system MTF 

QHhor = horizontal noise bandwidth for CTF

QHver = horizontal noise bandwidth for CTFVsys 
QVver = vertical noise bandwidth for CTFVsys 

4.2 Effect of Contrast Enhancement on Imager CTF 
An assumption used in the derivation of Equations 4.1, 4.5, and 4.8 is that the luminance 
variations on the display are proportional to the luminance or temperature variati

 performance, it is 

ated in Figure 4.6. In panel (a), the 
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(∆L). In panel (b), the display luminance is gained by a factor κcon. All display luminance 
values increase, including the average display luminance. 
brightness control is used to decrease average display brightness back to the original 
value (L). However, the change in luminance (∆L) is now (κcon ∆L). The contrast has 
increased by κcon. 

ses in 
pact of eye 

κcon, 

In panel (c), the display 

While gain enhancement does increase perceived noise, noise only increa
fect of gain enhancement is to reduce the im

h an electronic contrast improvement of 

D
i

Display Space

D
i

Display Space

roportional to scene variations in 
a gnal gain of κcon. In (c), average 
contra  has increased by κ   

proportional to signal. The net ef
contrast limitations on performance. Wit
Equation 4.1 becomes: 
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4.3 The Effect of Display Glare on Imager CTF 
In Figure 4.7, the soldier’s ability to see the display depends on the environment; sunlight 
reflecting off the display surface can hide the image. Display glare can also be caused by 
maladjustment of the display brightness control. Whatever the cause, glare can seriously 
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Figure 4.6  Panel (a) shows display luminance p
  siluminance or temperature. Panel (b) shows

luminance is the same as in (a), and display st con.
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degrade targeting performance. Glare represents a reduction in contrast at all spatial 
frequencies. The display modulation loss is: 

glare
dsp LL

LL
M

+

−
=

glare
  (4.12) 

where Lglare is the glare luminance and L is the average display luminance. Equations 4.1, 
4.5, and 4.8 now become: 














+= 2

22
222

22 1

)(

)()(
LHM

CTFCTF
consysdsp

sys
σα

κξ

ξξ . (4.13) 

2/1

2

2

2
)(1

)(
)( 










+








=
L

QVQH
HM

SMAGCTF
CTFH horhor

con
sys

ξρα
κξ

ξ

ξ  (4.14) 
sysdsp

2/12 )(1 






QVQHSMAGCTF ηρα
η

)(  +=CTFV ververη 22)( 



 LVM consysdsp

sys
κξ

Equations 4.14 and 4.15 describe quality of vision when using an imager. Different types 
of electro-optical senso

. (4.15) 

rs are modeled by analyzing the blurs and noise associated with 
the particular technology. Specific formulations for CTFHsys and CTFVsys for various 
types of imagers are derived later in thi

, 
improving the displayed representation of scene detail and enhancing target acquisition 

s report. 

clouds sunclouds sunsun

Figure 4.7  At left, clouds are obscuring the sun, and the soldier sees the display clearly. 
t  right, the sun is out, and glare from the display hides the underlying image. A

 
4.4 Limit on Modulation Gain 
Electronic or digital processing can boost intermediate and high spatial frequencies
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performance. An example of high frequency boost is discussed in Appendix B; in
example, the high frequencies of a blurred im

 that 
age are boosted by a factor of eight, and the 

peak “after boost” image modulation is a factor of 1.7 greater than in the original, un-
blurred image. In that particular experiment, boost increased the probability of correctly 
identifying targets by abou
type of realistic image improvement can now be modeled.  

how modulation gain is handled in NVL and NVESD models. 
The confusion can be clarified by describing how sensor system gain is established in the 
model.  

Sensor gain is established by specifying display minimum and average luminance. For 
reflected-light sensors, this tells the model the delta display luminance that corresponds 
to the scene illumination and target to background reflectance differences. For thermal 
imagers, the system gain is established by specifying scene contrast temperature; this is 
the scene delta temperature that generates the average display luminance. 
method of specifying system gain is much simpler for the model user than requiring that 
actual gain state be input. 

The model user could be asked to specify component-by-component absolute gain. This  
would mean inputting the responsivity of the detector, the actual gain o
gain-control electronics, and the gain of the display (voltage input to luminance output). 

2

ce. Using the model, however, required 
providing information about electronics and display design not normally available to 
systems analysts. 

Modern imagers, including current I2 CCD cameras, provide sufficient gain that the 
operational user can set the display luminance as desired. By understanding the 
operational user’s environment and needs, the systems analyst can make a good estimate 
of the display luminance which will be chosen by the hardware user. That is, an aviator 
flying without a pilotage aid will keep luminance from instrumentation displays at 0.1 to 
0.3 fL in order to maintain dark adaptation; he wants to see outside as well as see his 
instruments. On the other hand, if the aviator is using a pilotage aid like the Aviator’s 
Night Vision Imaging System (I2 goggles) or the Pilot’s Night Vision System (a thermal 

 10 
tion and the 

outside scene better. Generally, the systems analyst can make a reasonable estimate of 
isplay luminance if he understands the operational user’s task and environment. 

, the average display luminance was 5 fL. A 
atial frequency means that a fully modulated 

peak-to-peak displayed luminance of 17 fL and an average luminance of 8.5 fL. This is 

t 0.2. Because of the TTP metric and the new eye filters, this 

Since the Static Performance Model was first published in 1975, however, there has been 
a general confusion about 

This indirect 

f any automatic-

A version of the image intensifier CCD (I CCD) model used this method of specifying 
system gain; the method was universally hated by model users. The I2CCD model used 
this approach because, at very low illumination levels, the early I2 cameras could not 
output sufficient voltage to drive video displays to the desired output luminance; the 
model had to estimate available output luminan

imager and helmet display system), then display luminance is typically set in the 1 to
fL region; with the higher display luminance, he sees both instrument informa

d

In the experiment described in Appendix B
display signal modulation of 1.0 at any sp
sinewave in the scene would be displayed with a peak-to-peak luminance of 10 fL. 
Suggesting that the modulation could be 1.7 would mean that the sinewave would have a 
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not true; the average luminance is 5 fL. A display modulation greater than one makes no 
physical sense. 

So system gain is established by display luminance; it is not established by multiplying 
the various component MTF. The purpose of component MTF is to establish the relative 
frequency spectrum of the displayed image. Hsys and Vsys in Equations 4.14 and 4.15 are 
normalized to a peak MTF of 1.0.  

 
4.5 Example Calculation of CTF   sys

This section presents an example to illustrate how the contrast threshold function through 
the imager is calculated; this is done using the blur and noise characteristics of the 
imager. A staring imager is shown in Figure 4.8. Light is focused on the focal plane array 
(FPA) by the objective lens; the image is blurred by both the lens and the finite size of the 
detectors on the FPA. Noise is added by the photo-detection process. The signal and 
noise are filtered by the electronics and display.  

The imager ha
 Focal l

. 

Lens

array of detectors

FPA
Video Display

Lens

array of detectors
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Video Display

Two dimensional Two dimensional 

 Apertu
 Array 
 Detect
 Instant
 Half-s
 System

The system M

     )(ξH sys

where ξ is sp
electronics an

)(ξ =H post

The display 
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Figure 4.8  Schematic diagram of a staring imager
h = 30 centimeters (cm), 
s the following characteristics: 
engt
re diameter = 10 cm, 
size = 640 horizontal by 480 vertical detectors, 
or size = 20 microns on 20 micron pitch (100% fill factor), 
aneous field of view = 0.067 milliradians 
ample frequency = 7.5 milliradian-1, 
 magnification = 10. 

TF (including optics, detector, and display MTF) is: 
207.0 ξ−= e    4.16 

atial frequency in cycles per milliradian (cy/mrad). Post-filter MTF from 
d display is: 

2035.0 ξ−e .   4.17 

luminance is 5 fL; at this luminance, Equation 4.18 provides a good 
 for eye MTF, and Equation 4.19 is a good approximation for eye CTF. 
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See the appendix of Chapter 12 in Vollmerhausen (2000) for numerical fits for other 
displays luminances.  

     
SMAG

eye eH /2.2)( ξξ −= .   4.18 

     1   4.19 
SMAGSMAG ee

CTF
/7/7 06.01
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=
−
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     ( )
22

522

/237/5.8119

10/216.2/76.006544.0

SMAGSMAG

SMAGSMAG

ξξ

ξξβ
++

++
= .  4.20 

Equation 4.21 gives the formula for the eye filters E(ξ) proposed by Barten.  ξ is the 
frequency of the sinewave grating; ξ’ is a dummy variable used to integrate over noise 

multiplied by the noise bandwidths.  

bandwidth. The eye MTF in Equation 4.18 is from the eyeball; Equation 4.21 represents 
the bandpass filters associated with higher-order visual processing in the visual cortex.  
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ξξE          4.21 

In order to calculate CTFsys, the RMS display noise σ must be determined. Since σ is the 
noise as sensed by the eye, the hardware display noise must be filtered by the eye 
temporal integ  4.21. To calculate 
σ, the power spectral density associated with the display noise is found and then 

 average pixel is 8:1. The power spectral 
e for one second and one milliradian in each 

imens per second and 15 pixels per milliradian in each 
er of independent samples 

 a 5 fL display 
mina  to the number of samples. The 

sd is t

ration, eye MTF, and by the bandpass filter in Equation

Assume that the signal to noise ratio for the
density (psd) is the square of the RMS nois
d ion. There are 60 frames 
direction. Noise increases as the square root of the numb
summed. The signal integrated over the same angle and time results in
lu nce. The integrated signal increases in proportion
p herefore:   

222

2

niradia
151560

8 ⋅⋅=








⋅⋅

= millsecondfL )0054.0(psd
1515605





 ⋅⋅⋅

.  4.22 

The spatial psd is two-sided; that is, frequency integrations are taken from minus infinity 
to infinity. 

Contrast threshold of the imager (CTFsys) can now be calculated. 
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where γ is a unitless calibration constant which is not the same as the parameter α in 
ations 4.5, 4.8, 4.9, etcetera. The relationship between γ and α will be ex

Qt(L) is the eye temporal filter at luminance L. Equations 4.24 and 4.25 provide the 
spatial filters for horizontal and vertical, respectively. 

Equ plained. 

∫=
'

2 ')'()'()/'()(
ξ

ξξξξξξ
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eyepostH dHHEQ .  4.24 

∫ ==
ξ

ξξξ
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eyepost dHH 2.3)()(
2

VQ 4.25 .  

n 
time varies with light level. This is a naturally occurring process, and this is one factor 
that helps to establish the CTF at a given light level. The resulting variations in temporal 

pact on signal to noise is the s
whether the noise is external or internal. As a result, the natural CTF variation with light 
level adjusts the noise term in Equation 4.23 in the correct manner without further 

gery is not difficult; see Section 8.1.2. 

The unit of Qt is Hertz and the unit for QV and QH is milliradian-1. 

Qt is not explicitly evaluated. Variations in Qt directly affect the CTF of the eye, so the 
effect of varying Qt is subsumed by the CTFeye factor in Equation 4.23. Eye integratio

bandwidth affect both signal and noise, and the im ame 

intervention. This means that the product γ2 Qt can be treated as a constant which we 
define as α2 Hertz. As described below, the value of α is 169.6 root-Hertz. Note that α is 
not the temporal bandwidth of the eye. Note also that Equation 4.23 only applies to 
continuously varying, temporal noise such as occurs with framing imagers. Adapting the 
theory to single frame (snapshot) ima

An array of (frequency,CTFsys) values can now be calculated to be used in a numerical 
integration to find TTP. Table 4.1 gives values for CTFsys, CTFeye, Heye, Hsys, Hpost, and 
QH for several values of spatial frequency.  

Table 4.1 Calculated values for CTF and MTF versus spatial frequency. 

frequency CTFsys CTFeye Heye Hsys Hpost QH 

0.5 .0062 5.9E-03 0.90 0.98 0.99 .67 

1 .0039 3.4E-03 0.80 0.93 0.97 .98 

1.5 .0035 2.8E-03 0.72 0.85 0.92 1.04

2 .0037 2.7E-03 0.64 0.76 0.87 .97 

2.5 .0044 2.7E-03 0.58 0.65 0.80 .83 

3 .0057 2.9E-03 0.52 0.53 0.73 .68 
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3.5 .0078 3.2E-03 0.46 0.42 0.65 .54 

4 .011 3.6E-03 0.41 0.33 0.57 .42 

4.5 .017 4.1E-03 0.37 0.24 0.49 .32 

5 .027 4.6E-03 0.33 0.17 0.42 .25 

5.5 .043 5.1E-03 0.30 0.12 0.35 .19 

6 .072 5.8E-03 0.27 0.08 0.28 .14 

6.5 .13 6.5E-03 0.24 5.2E-02 0.23 .10 

7 .23 7.3E-03 0.21 3.2E-02 0.18 .08 

7.5 .42 8.2E-03 0.19 0.019 0.14 .06 

 

4.6 Model Calibration  
The calibration factor (α) in Equations 4.5 and 4.8 is 169.6 (root-Hertz). This value does 

. This value is constant 
regardless of the system or environment modeled. The value of α was obtained from an 

This was an 

s determined limiting resolution using Air 
1.0 contrast 

k n  a d ithout e ear protection for three tubes, three gains, 
l n en t tubes, one gain, and five 

illu tion 4 tras t a  ear. A modified version of 
Equation 10 was used to predict limitin ue is for each illumination, tube, 
tube gain, eyewear, and chart contrast condition. The model modification involved 
cor g the  t f bar us n us sinewaves assumed when 
mea ing C 31  r f 1 oo z ided the best fit based on 
average error between model and data.  

Fig .9 co s a dat o
abscissa plots the observed bar resolution and the ordinate is model resolution 

not change experiment by experiment or for different sensor types

image intensifier (I2) experiment (Vollmerhausen, 1995). During the experiment, Air 
Force 3-bar charts were viewed through image intensifiers to determine limiting 
resolution versus chart illumination. The experiment was done with both high contrast 
(near 1.0) and moderate contrast (0.3) charts. This was an excellent experiment for 
determining α for several reasons. The physical characteristics of the sensors were 
accurately measured. The measurements were made at illumination levels from 2.88 E-6 
foot candles to 3.39E-3 foot candles. This variation in illumination means that the tubes 
were operated from noise limited to resolution limited conditions. Measurements were 
made both with and without laser eyewear protection that reduced the light to the eye by 
a factor of ten. Also, the tubes used represented both typical and very good MTF, and 
each tube was operated at three gain levels (25000, 50000, and 75000). Light to the eye 
varied from as little as 3.6E-4 foot Lamberts (fL) to as much as 12.4 fL. 
excellent data set because of the controlled nature of the physical sensor data, the wide 
range of scene illuminations, and the large variation of light to the eye. 

Three experienced, dark-adapted observer
Force 3-bar charts. Charts with contrast of 1.0 and 0.4 were used. With the 
chart, data w
and five il

ere ta e
umina

 with n
 leve

 w
Da

 ey w
tio ls. ta were tak  for hree 

mina levels with the 0.  con t char nd no eyew
g freq ncy v ible 

rectin  theory o predict or 3- s vers the co tinuo
sur TF.  A value fo  α o 69.6 r t-Hert  prov

ure 4 mpare the labor tory a to m del results for all 105 data points. The 
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predictions. If the m fec  i s  to noise, gain, and MTF 
measurement e  s w erf h ll the points in Figure 3.11 
would lie on ra  mo ed s excellent; the square of the 
Pearson coefficient is 0.98 and the RMS error is 0.057.  

 

Figure 4.9  Plot showing 
experimental I2 data versus model 
predictions. Perfect predictions 
would lie on the diagonal line. 
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5 
 

Definition of Target Acquisition Tasks 
This section defines target acquisition tasks and discusses model assumptions about 
accomplishing those tasks. A model is an algorithm or group of inter-related equations 
based on a set of assumptions. Mathematical models are rigid in their application; they 
app tch the assumptions. This is certainly true for the 
targ

Tw ection. First, the basic targeting tasks are defined; these 
tasks include target detection, recognition, and identification (ID). Next, the meaning of 
the probabilities predicted by the model is described. 

The meaning of target detection varies with operational circumstance. Sometimes a 
target is detected because it is in a likely place; sometimes a target is detected because it 
looks like a target (target recognition). Target detection is many things, and therefore not 
asy to model. Some analysts associate a degree of certainty with target detection; to 
em, detection means the object is of military interest. This is not consistent with current 

war game modeling; hopefully the war games reflect operational practice. 

Search is a process, not a single event, and finding the target generally occurs only after a 
series of false alarms. The observer searches with the imager in a wide field of view; 
when an interesting place or object is seen, potentially a target, he switches to a narrower 
field of view for a closer examination. In our search experiments, with a high density of 
targets and a good imager, the field of view is typically switched three times before a 
target is found. With a poorer sensor or a lower density of targets, the field of view is 
switched many times. When a target is finally confirmed in the narrow field of view,  it is 
credited as a detection in the wide field of view. When analyses are performed to 
determine the resolution requirements needed to detect the target, the characteristics of 
the wide field of view are used. The result is that, experimentally, very few “cycles on 
target” are needed for detection. It must be remembered, however, that the low cycle 
criteria are associated with a high false alarm rate. 

Further, it often occurs that the target and sensor together play a minor role in 
determining the probability of detection. On the left in Figure 5.1, the target is easily 
found. This is a thermal image, and the target is much hotter than anything else in the 
scene. On the right in that figure, the same target is in the same location with the same 
target to background contrast; only the background objects have changed. The target is 
hard to find because of clutter. Clutter can affect target acquisition range by a factor of 
four. Very few sensor design parameters have that much influence on range performance.  

ly only where circumstances ma
et acquisition model.  

o topics are discussed in this s

e
th
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 and detection are important sensor functions, and the war-game community pays a 
eal of attention to modeling search. However, search modeling is very complex 
volves many factors beyond sensor performance. These factors will not be 

iscussed further. 
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Figure 5.1  On left, hot target in uncluttered background viewed with thermal 
imager. On right, same target but background has become much hotter. 
42

cific 
get set. These trained observers are shown the targets at range (so the images are 

ays com
n in Figure 5.2 

uch more 
e tanks th  task is 
ually a com inations with 

cognition involves discriminating which class of vehicle the target belongs in. In 
ure 5.2, there are two trucks, two Armored Personnel Carriers (APC) and two tanks. 
a recognition experiment, the observers (subjects) are trained and tested on the spe

rred, noisy, perhaps poorly sampled) and asked to specify tank, truck, or APC. If the 
server gets the class correct, the task is scored as correct. That is, the observer might 
stake the T72 tank in Figure 5.2 for the Sheridan tank. He has correctly “recognized” 
t the target is a tank. It does not matter that he incorrectly identified the vehicle. 

APC Truck Tank
T72

APC Truck Tank
T72

ure 5.2  Side views of a group of vehicles that might be used in a recognition test. 
te two important things about recognition. First, the difficulty of recognizing a vehicle 

pends on the vehicle itself and on the alternatives or confusers. Discriminations are 
parisons. Task difficulty is established by the set, not by an individual 

mber of the set. Second, a recognition set of targets like the one show
olves easy discriminations and more difficult discriminations. APCs look m

an either tanks or APCs look like trucks. So the typical recognition
bination of easy discriminations and more difficult discrim

SheridanSheridan
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the results averaged. In terms of range performance, the tasks should be modeled 
separately. 

Target identification requires the observer to make the correct vehicle choice. A set of 
targets which might be used in an ID experiment is shown on the left in Figure 5.3. Only 

group of targets selected, not the individual 
nsor FOV. The model does not predict the 

ividual vehicles; the model predicts the 
embers of the group at range. The 

 the members of the group look alike. In 
 three vehicles. If the first observer gets 

all three vehicles correct, the second observer gets two correct, and the third observer gets 
one correct, then the probability of correct ID is 0.67. That is, six total correct calls 
divided by nine total calls. This average over both observers and targets in the group is 
what the model predicts. 

one aspect of each vehicle is shown; experiments use several aspects of each vehicle. 
Twelve aspects of the T62 Russian tank are shown to the right in Figure 5.3. Again, the 
observers are well trained and tested that they can correctly identify each individual 
vehicle. The targets are put at range (blurred, noisy, perhaps corrupted by poor sampling) 
and the observer must indicate which target he is shown. In this case, the observer must 
correctly identify the target, not just the class. Calling a T72 tank a T62 tank is scored as 
an incorrect choice.  

M109 M113

2S3 M551

M2 M60

ZSU T55

Figure 5.3  Target set for ID experiments. 
The difficulty of the ID task depends on the 
target which happens to be within the se
probability of identifying or recognizing ind
average probability of correctly identifying all m
difficulty of the task depends on how much
Figure 5.4, three observers are trying to identify

BMP M1A T62 T72
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Figure 5.4  Illustration of How Probabilities are Calculated 

Observers 

Observers at range (R) 
from target vehicles 

Target vehicles 



 

To achieve prediction accuracy, the model requires a group of observers (ten to twenty) 
and a group of “like” targets. The group of vehicles in Figure 5.3 are sufficiently alike 

 Tanks in the 1991 war. One U.S. ally in that war was Egypt; 
because of the vagaries of the cold war era, Egypt owns both T62 Russian Tanks and 
U.S. built M60 Tanks. The three tanks are shown in Figure 5.5. Because Russian tanks 
tend to look alike, if our ally used a T62 Tank, the friend-versus-foe decision would be 
more difficult than if our ally used an M60 Tank. So the range at which a T72 can be 
reliably identified depends on the alternative. 

nd T55 ha
T55 look like the T72; the M109 looks a lot kes 
identifying the remaining targets eas

that model accuracy is good (less than 0.05 average error in the predicted probabilities, 
with the biggest errors occurring at the 0.5 point in the curve where statistical variability 
is expected).  

A target acquisition discrimination is always a comparison. Is it target A or target B or 
target C? Is it a target or background? It is quite common for an analyst to be asked the 
question: “Using this sensor, at what range can I identify a T72 Russian Tank?” That 
question cannot be answered; it is only partly formulated. The examples below might 
clarify this statement. 

The Iraqi’s used T72

 

ID experiments have been performed using the target set shown in Figure 5.3. Probability 
of ID versus range is shown in Figure 5.6 by the curve labeled “full target set.” The curve 
labeled “partial target set” shows the results of an ID experiment using nine of the twelve 
targets; the M109, T62, a

M60T62

T72

M60T62

T72

Figure 5.5  Images of three tanks 
illustrating that the probability of correct 
ID depends on the alternatives presented. 
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ve been removed from the target set. The T62 and 
like the 2S3. Removing these vehicles ma

ier, and this results in a higher probability of ID. 
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Figure 5.6  Probability of ID versus
range for the full set of target shown
in Figure 5.3 and for an easier
identify, partial set where the 
T55 and M109 vehicles are not used.
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Target detection, recognition, or identification is determined by a process of seeing 
viewpoint-invariant details. The size, contrast, and number of characteristic details visible 
to the observer determines the probability of target acquisition. Our model predicts the 
quality of the image and therefore the ability of the observer to acquire the target. 
However, targets are acquired by differentiating them from the possible alternatives. This 
means that the features which uniquely define a target are those which differentiate that 
target from other targets or from background. Therefore, task difficulty depends on how 
alike the targets look or the level of target-like clutter in the background. 
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6 
 
PREDICTING TARGET ACQUISITION PERFORMANCE 
FROM IMAGER CTF 
Both the Johnson criteria and the Target Task Performance (TTP) metric are MTF-based 
metrics. These metrics share the concept that image quality can be quantified by a 
weighted integral over spatial frequency of the ratio between signal and CTF. It is 
assumed that the excess modulation over threshold provides the information acted upon 
by the visual system. A great virtue of MTF-based metrics is the simplicity of 
implementing a range performance model; for a specific task, it is assumed that range is 
proportional to the metric value. 

The Johnson criteria uses the limiting frequency visible at the average target contrast to 
quantify image quality and therefore range performance. The Johnson metric is defined 
by the spatial frequency range (FJ) over which the apparent target contrast (CTGT) 
exceeds the system contrast threshold [CTFsys(ξ)]. See Figure 6.1 for an illustration of the 
Johnson metric.  

The TTP metric gives weight to the amount that threshold is exceeded at each spatial 
frequency; this makes the TTP metric sensitive to image qualities not quantified by the 
Johnson methodology. The TTP metric is calculated as shown in Equation 6.1. In this 
equation, ξcut is the high spatial frequency where CTFsys exceeds CTGT; ξcut equals FJ. ξlow 
is the spatial frequency below which CTFsys exceeds CTGT. Lateral inhibition in the eye 
results in CTFsys having a spatial bandpass response; the eye sees intermediate spatial 
frequencies better than either very low or high frequencies. However, ξlow is very nearly 
zero. Because of the square root, contrast that is well in excess of threshold is not as 
important as contrast that just exceeds threshold. The TTP value calculated using 
Equation 6.1 is used in lieu of FJ to quantify image quality and predict range 
performance.  
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Figure 6.1 Johnson criteria uses
intersect of target apparent contrast
and CTFsys as measure of image
quality for targeting purposes. In
this figure, the intersection occurs at
frequency FJ. 
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   (6.1) 

 the Johnson criteria provides reasonable performance estimates in many 
ircumstances, applying that criteria to sampled imagers generally results in pessimistic 

riggers, 2000; Wittenstein, 1999; Bijl, 1998). These 
fixes have limited application, however, because they are empirical adjustments of a 

nd illustrating the problems with the Johnson criteria is 

e image quality metric. That is, the range at which a task can be 
performed is proportional to the TTP value calculated in Equation 6.2. For a given target 
contrast and size, a given task like target ID, and a selected probability of accomplishing 
th n in Equation 6.2.  

W
c

hile

predictions. In recent years, modelers have developed “work arounds” to use the Johnson 
criteria with sampled imagers (D

basically flawed model. The Johnson criteria “work arounds” do not permit the modeling 
of digital image enhancement, for example, because variations in CTFsys below the cutoff 
frequency do not affect the metric value. The TTP metric does an excellent job of 
predicting the performance of both well-sampled and under-sampled imagers. It also 
predicts the performance impact of frequency boost, colored noise, and other 
characteristic features found in modern imagers. A summary of some of the experimental 
data supporting the TTP metric a
provided in Appendices A, B, and C. 

6.1 Predicting Probability versus Range  
A range performance model is created by assuming that target acquisition range is 
proportional to th

e task, the range is calculated as show

required

TGT
N

TTPA
Range =  

or tactical veh

 (6.2) 

F icle targets, size is usually taken as the square root of the viewed target 
area (ATGT). Nrequired represents task difficulty and desired probability of success; the 
value of Nrequired is established experimentally for a particular target set and task. For 
vehicle images, the zero range target to background contrast is defined by: 

scene

tgt
TGTC

µ

σµ

2

)( 22

0
+∆

=−    (6.3) 

where µscene is the average scene luminance (or temperature) in the vicinity of the target, 
∆µ is the difference in average luminance (temperature) between the target and local 
background, and σtgt is the standard deviation of the target luminance (temperature). 

While range is proportional to image quality, the probability of accomplishing a task is 
not. To calculate probability with the target at a given range, first use Beer’s law or 
MODTRAN to calculate the atmospheric transmission (τ), then calculate the apparent 
target contrast at the sensor (CTGT). 

0−= TGTTGT CC τ    (6.4) 
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CTGT is found using Equation 6.4, the TTP value is calculated using Equation 6.1, and 
then resolved cycles is calculated using Equation 6.5. 

TTPTGTA
resolvedN =

Range

An empirically derived Target Transfer Probability Function (TTPF) is used to relate 
probability of task performance to the ratio of Nresolved to V50, where V50 is the metric 
value needed to accomplish the task with a 0.5 probability. Again, V50 is established 
experimentally. The TTPF curve is a logistics function as defined by Equation 6.6. 

    
1

50

50
Eresolved

Eresolved

V
N

V
N

P





+








=    (6.6) 

where  
Nresolved  

   (6.5) 

5024.051.1 VE +=   (6.7) 

obability versus range function 

 

Target area in Equation 6.5 and target contrast in Equation 6.1 refer to averages 
group of targets involved in the experiment or scenario. The reasoning behind this is 

ften 

The process is repeated at range intervals to generate a pr
as shown in Figure 6.2. If the goal is to predict the outcome of a field experiment, then 
the probabilities generated with Equation 6.6 are corrected to add chance and to add the 
0.1 probability associated with observer mistakes; the probability corrections are 
described in Section 6.2. 

over the 

discussed in Section 6.3.  

Many imagers have different resolution characteristics in the horizontal and vertical 
dimensions. In scanning thermal imagers, for example, the horizontal resolution is o
much better than the vertical resolution. As discussed in Section 4, CTFsys is calculated 
for the two dimensions using Equations 4.5 and 4.8. Then the TTP metric is calculated 
separately for each direction. 

ξ 2/1

( )


sys
T dξ

ξ    (6.8) ∫
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( )low syCTFVη η∫ 





=
cut TGT dCTTPV

η
η

2/1

  
s

 (6.9) 

The TTP value to use in Equation 6.5 to find Nresolved at each range is then the geometric 
mean of the horizontal and vertical TTP values. 

TTPVTTPHTTP =      

This mean value of TTP is used in Equation 6.6 to find probability of target acquisition. 

6.2 Meaning of Model Probabilities  
The probabilities predicted by the m ntended to be used to assess
“goodness” for target acquisition. Model probabilities have been adjusted to remove the 
influence of factors which affect target acquisition probability but which are independent 

r design. The model probabilities have been corrected for chance and corrected 
for non-ideal observer perfor een model probabili
observed data is explained in 

 probability of getting the answer correct just by chance is 0.33. 
In a wheeled-versus-tracked classification experiment, probability of correct choice by 
chance is 0.5 because there are only two choices. 

Th oved before using experimental data to calibrate the 
mo

odel are i  sensor 

of senso
mance. The relationship betw ties and 
this section. 

If an ID experiment is conducted using four vehicles, then there is a 0.25 probability of 
correct ID just by chance. As range increases, the measured probability drops to 0.25, not 
to zero. If twelve targets are used in the experiment, then the probability drops to 0.083 at 
long range. If a recognition experiment is performed using three classes of targets (tank, 
truck, and APC), then the

e probability of chance is rem
del.  

Measure
chanceP - 1

chanceP -y Probabilit d y Probabilit Model =     (6.11) 

Where Pchance is the probability of correctly identifying the target or target class just by 
hance. If four targets or target classes are used in the experiment, then Pchance is 0.25. 
 twelve targets or target classes are used, then Pchance is 0.083. To compare model 

c
If
predictions with field data, the above formula is inverted. 

P  )P - (1y Probabilit Model  y  Probabilit Measured Predicted +=  (6.12) chancechance

Another correction is made to experimental data before comparing it to model 
predictions. Even well trained, conscientious people make mistakes. We observe a 0.1 
error rate which cannot be correlated to image quality, training, or apparent motivation. 
This error rate is fairly consistent across the various target acquisition tasks (search, 
recognition, identification). Some observers do achieve 1.0 probabilities on clean target 
image sets, but when an average over twenty observers is made, the top probability is 0.9. 
Our data asymptotes to 0.9 probability at close range. 
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Whether this error rate is observed under field conditions is not known by the authors. 
Whether that error rate should be represented in the model is a matter of ju
Traditionally, however, this drop in pr e to mistakes has not been inc
performance models. 

te field measured probabilities to model 
probabilities. 

dgment. 
obability du luded in 

If it is desired to include the base mistake rate for an ensemble of observers, then use 
Equation 6.13 rather than Equation 6.12 to rela

chanceP  )chanceP - (0.9y Probabilit Model  y  Probabilit Measured Predicted +=    

6.3 Field Test Example 
re available: M1, BMP, T72, M109, 

ented. If the vehicle has a rear mounted 
engine, then the aspects are front, side, and opposite side-rear oblique. If the vehicle has a 

 consists of 18 target views at five ranges for a total of 90 images. 

Images are collected for viewing in the lab, or observer
data taking is simplified if the observers are not in the field. The observer must be 
deprived of any clues other than the sensor imagery which might help him identify the 

The observers are trained to ID the vehicles used in the experiment. The observers must 
pass a test to prove they can correctly ID all the vehicles before participati

bservers. Otherwise, use Equation 
6.13. 

  (6.13) 

In a hypothetical field test, eight tactical vehicles a
M113, M2, 2 1/2 ton truck, and a HMMWV. Since six are tracked vehicles, one is a truck, 
and the other a HMMWV, the decision is made to drop the truck and HMMWV as being 
too dissimilar from the rest of the vehicles. The average dimension (square root of area) 
and average contrast for the six tracked vehicles are 3 meters and 4o C, respectively. A 
V50 of 20 for identifying this particular group of vehicles is established by experience 
and expert judgment. 

The model is run to predict probability versus range for the sensor system being 
evaluated. Five ranges are selected which span ID probabilities from high to very low.  
Because of the vagaries introduced by mistakes, chance, and the many factors which bias 
real field data, a system should not be evaluated using only close range, high probability 
data. 

At each range, three aspects of all targets are pres

front mounted engine, then the aspects are rear, side, and opposite side-front oblique. The 
total test

s are taken to the field. Certainly, 

target. The observer’s situational awareness is best limited by separating him from the 
test site. However, the output of some sensors is not easily recorded for later display, and 
the experiment is best performed in the field. 

ng in the 
experiment. The observers are asked to ID the targets from the sensor imagery. The 
average correct ID probability for each range is calculated based on observer responses. 
The total experiment yields five (5) data points. To compare the model probabilities to 
the actual data collected in the field, model probabilities are adjusted using Equation 6.12 
or 6.13 above with 0.167 substituted for Pchance. The choice of which equation to use 
depends on the number, experience, and motivation of the observers. Use Equation 6.12 
if the experiment involved a few, highly experienced o
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If the above steps are followed, the model accurately predicts observer performance. 

6.4 Estimating Task Difficulty (V50) 
There is currently no objective way to establish V50 for a target group other than by 

le target groupings, comparative judgment can be used to estimate the V50 
for a related group of targets.  

This sections provides some example target sets and the associated V50 values. Examples 
n, and ID. Since V50 values are based on experience, 

ful in establishing values to be used in the new model. 

 

nt contrast exceeds the threshold needed for visibility at a particular frequency, 

low

cut J

experiment. We have found, however, that a careful process of comparative judgment can 
provide good estimates for V50. That is, knowing the experimentally established value of 
V50 for examp

are given for detection, recognitio
historical data should also be use
However, there are several issues to consider when making comparisons between new 
V50 and old N50 values. In addition to giving V50 examples, this section discusses the 
differences between historical values of N50 used with the Johnson criteria and values of 
V50 used with the new TTP metric.  

The Johnson metric can be thought of as an integral over spatial frequency. 

JF
[ ] ξdFJ ∫=

0
1     

where FJ is the frequency where CTGT equals CTFsys; see Figure 6.1. The “1” in the 
integral is to emphasize that each frequency increment counts equally; if the target 
appare
then that frequency increment is counted in the Johnson bandwidth. 

The TTP metric value is also an integral over essentially the same frequency range. The 
value of ξlow in Equation 6.1 is always small; to a good approximation, ξ  is zero. 
Remembering that ξ  equals F : 

( )∫











=

JF

sys
TGT d

CTF
CTTP

0

2/1

ξ
ξ .   (6.15) 

The ratio CTGT/CTFsys is always greater than one. This means that the value of TTP is 
always greater than FJ. The ratio between the Johnson metric and the TTP metric is not 

storical value of N50 for discriminating wheeled vehicles from tracked is 1 to 2 
cycles, a 0.5 probability of success is actually achievable with zero cycles. Since there are 

fixed; if the ratio were fixed, then the two metrics would provide identical performance 
predictions. However, for those cases where both metrics predict performance well, the 
ratio of TTP value to Johnson metric value is approximately 2.7:1.  

This does not mean that the Johnson N50 values can be multiplied by 2.7 to obtain an 
V50 for the new model. In the new model, V50 represents the resolved cycles needed to 
achieve a 0.5 probability independent of chance. Historically, the data used to establish 
N50 were not corrected for chance.  

It is not clear how N50 values for two-class discriminations were established. Although 
the hi
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only two classes, success half of the time is guaranteed. For 3-class recognition (tank-
truck-APC), most of the 0.5 probability is attributable to the 0.33 probability of being 

es increases, the impact of using 

t chance to the N50 needed when chance is included. For 

correct just by chance. As the number of choic
uncorrected data to establish N50 decreases.  

Table 6.1 shows how an N50 based on uncorrected data must be increased to be used in a 
model which does remove probability due to chance. This table is based on the TTPF 
associated with the Johnson metric. The multiplier values are the ratio of N50 needed to 
achieve 0.5 probability withou
example, if a 3-choice recognition experiment (tank-truck-APC) yields an N50 of 3 based 
on uncorrected data, then the N50 for corrected data would be 3 * 1.79 or 5.37. It is easier 
to achieve 0.5 probability when chance is included, so the N50 for uncorrected data is 
smaller than the N50 for corrected data. As the number of choices increases, the impact 
of chance on the data decreases, and the ratio of the N50 values approaches one. 

  
Table 6.1 

Number of choices 3 4 5 6 8 10 12 20 

N50 Multiplier 1.79 1.43 1.3 1.23 1.16 1.12 1.1 1.05

 

odel. 

 then by 2.7 yielding 19.9. Table 6.2 gives Johnson 
N50 and TTP V50 values for a selection of target acquisition tasks. 

Table 6.2 

Task description 
w/ chance 

TTP V50 
w chance 

TTP V5
w/o chance 

Two examples will illustrate how V50 values for the new model can be derived from N50 
values used with the Johnson model. With the Johnson metric, tank-truck-APC 
recognition is modeled using an N50 of 3. The N50 for data with chance removed is 5.37. 
Multiplying by 2.7, the value of 14.5 is the V50 for use in the new m

Although details are not available on how the “standard” N50 of 6 for ID was established, 
assume that a 6-choice experiment was used. A equivalent V50 for the new model is 
found by multiplying 6 by 1.23 and

N50 0 

Low clutter thermal detect; Figure 6.3 0.75 2 2 

Medium clutter thermal detect; Figure 6.4 1.7 4.6 4.6 

Recognize tank-truck-APC; Figure 6.5 3 8.1 14.5 

Recognize truck/wheeled- 3.5 9.45 
armored/tracked-armored 
Figure 6.6  (Reference Devitt, 2001) 

16.9 

ID 12-target set; Figure 6.7 7.8 21.2 23.3 

ID 9-target set; Figure 6.8 6.5 17.6 20.0 
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Figure 6.3  Example of Low 
Clutter, Thermal Detect 

vehiclevehicle Figure 6. mple of Moderate 
Clutter, Thermal Detect 

4  Exa

APC Truck Tank
T72

APC Truck Tank
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re 6.5  Recognition Tank-

erer

Figu
Tru veral aspects of 
each uld be used in a 
recognition experiment. 
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Figure 6.6  Recognition Tracked-armored/Wheeled-armored/Soft-truck  
Experiment involved many vehicles and aspects; these are examples. 
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Figure 6.7  Twelve Tracked Milita

Figure 6.8  Nine Tracked Military Vehicles  Three of the vehicles 
in Figure 6.7 have been removed; since those vehicles look like 
some of the remaining vehicles, this target set is easier to ID. 

ry Vehicles 
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Modeling Sampled Imagers 
The sampling limitations associated with focal plane array (FPA) imagers cause an 
aliased signal that corrupts the image. Aliasing can cause distortion of scene detail; for 
example, fence posts can be fatter, thinner, or disappear completely. Aliasing can also 
cause display artifacts like line raster. The aliased signal is a function of input image, pre-
sample blur, sampling frequency, and image reconstruction at the display. The model 
used to predict the amount of sampling artifacts present in an imager is described by 
Vollmerhausen (2000, 04/2000).  

Aliasing can degrade target acquisition performance. Experiments to calibrate the 
decrease in performance based on the aliased signal present are described in several 
references (Vollmerhausen, 1999; Krapels, 1999, Krapels, 2001; Devitt, 1999). The 
technique for predicting sampling artifacts and the resulting degradation in range 
performance is summarized here. Examples showing the predictive accuracy of the 
technique are described in Appendices A and C. 

It has become common practice among engineers to use the term aliasing to refer only to 
spurious frequency content that overlaps and corrupts the signal in the original (pre-
sampled) frequency band. Sampling actually causes aliasing at all spatial frequencies. 
However, to avoid confusion about the meaning of aliasing, the term spurious response is 
used in this paper. The part of the image spectrum which results from sampling, other 
than the original frequency content, is referred to as spurious response. That is, in 
frequency space, spurious response is the Fourier transform of the sampling artifacts.  

The spurious response of a sensor corresponds to artifacts in the sensor imagery; it is a 
much better indicator of sampling efficacy than the half sample rate. The spurious 
response of a sensor can be described in a manner very similar to the sensor Modulation 
Transfer Fun esponse may 
be plotted s us response to 
characterize ion to spurious 
response.  

The amount of spurious response in an image is dependent on the spatial frequencies that 
comprise the scene and on the blur and sampling characteristics of the sensor. However, 
the spurious response capacity of an imager can be determined by characterizing the 
imager response to a point source. This characterization is identical to the MTF approach 
for continuous systems. MTF is a trusted indicator of optical quality. But the need for 
good MTF cannot be established until the scenario and task are defined. Good MTF is not 
always needed; it is prized because of the potential is provides. The same is true for the 

ction (MTF) in that, the frequency components of the spurious r
imilar to an MTF. The greatest barrier in the use of spurio
 sensor performance is the calibration of human react
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spurious response characteristics of an imager. The actual amount of aliasing cannot be 
known without specifying the scene, but the tendency of an imager to generate sampling 
artifacts is significant in the same sense that good MTF is significant. 

The ef
First, t
shift-v
purio

fect of sampling on target acquisition is modeled with the following procedure. 
he spurious response of the imager is analyzed; this is done by characterizing the 
ariant response of the imager to a point source. Once the amount and nature of the 
us response is known, experience from target acquisition experiments with sampled 

imagery is used to establish the expected drop in performance. 

r milliradian) 

s

 

7.1 Response Function of a Sampled Imager 
The response function Rsp(ξ) for a sampled imager is found by examining the impulse 
response of the system. This procedure is identical to that used with non-sampled 
systems. The function being sampled is hpre(x), the point spread function of the pre-
sampled image. Assume the following definitions: 

   ξ   =  spatial frequency (cycles pe
        ν    =  sample frequency  (samples per milliradian) 
        d    =   spatial offset of origin from a sample point (in milliradians) 
 Hpre(ξ) is the pre-sample MTF (optics and detector) 
 Pix(ξ) is the display MTF (crt spot, sample and hold, eyeball MTF) 

   Then the response function Rsp(ξ) is given by the following equation. 
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 (7.1) 

The response function has two parts, a transfer term and spurious response term. The n=0 

 7.1 are filtered by the display MTF, Pix

term in Equation 7.1 is the transfer response (or baseband response) of the imager. The 
transfer response does not depend on sample spacing, and it is essentially the only term 
that remains for very small sample spacing. A very well sampled imager has the same 
transfer response as a non-sampled imager.  

However, a sampled imager always has the additional response terms (the n≠0 terms). 
These terms mathematically describe the spurious response. The spurious response terms 
in Equation (ξ ), in the same way that the transfer 
response is filtered. However, the position of the spurious response terms on the 
frequency axis depends on the sample spacing. Also, the phase relationship between the 
transfer response and the spurious response depends on the sample phase. See Figure 7.1 
for a graphical illustration of the transfer and spurious response terms. 
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sample MTF H(ξ) is replicated at multiples of the sample frequency. The transfer
response is the pre-sample MTF multiplied by the display and eye MTF Pix(ξ).
The spurious response is the pre-sample replicas filtered by Pix(ξ). 

function. The pre-
frequencyfrequency

Figure 7.1  Notional plot of the sampled imager response 
2 Impact of Sampling on Range Performance 
m

ime
nu ber of experiments have been performed to discover the impact of spurious 

nts, spurious response at 
quen little effect on 

ng ranges where 
quisition probabilities are low; this is logical because, at long range, there are very few 
xels on target. However, at ranges of practical interest, in-band corruption tends to 
fect minor details but does not change the basic presence or location of important cues. 

t-of-band spurious response, however, tends to mask the underlying im
ster, pixel edges, and other spurious high-frequency content does degrade targeting 
rformance. The amount of performance degradation depends on the ratio of spurious 
ntent to image content. The spurious response ratio (SRR ) of integrated out-of-band 

sponse on targeting performance. Based on these exper
cies less than the half-sample rate (that is, in-band aliasing) has 

cognition or ID performance. It appears that some effect occurs at lo

age. Line 

out
urious response to the integrated transfer response is a good indicator of performance 
gradation. 

∫
∞

response Spurious ξd
2/ν

∫

=
∞

0
responseTransfer ξd

SRRout       (7.2) 

any imagers have different sample spacings horizontally and vertically; for example, 
ost scanning thermal imagers have better sampling in the horizontal direction. SRRout is 
lculated in the two dimensions independently, and the geometric mean is used to 
timate performance degradation.  

 real imagers, the display and eye MTF limit the frequency content visible to the 
server. When doing numerical integrals, a practical limit for the upper frequency is 2.5 

57



 

times the sample frequency. Also, the replicas centered on frequencies above twice the 
sample frequency are effectively filtered out. Quite often, the replicas of the pre-sample 
MTF overlap in the frequency domain; in Figure 7.1, there is a small overlap between the 
first and second replicas. In the overlap region, the signals from different replicas are 
root-sum-squared before integration. 

( ) ( )
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dVnV post

n
pre∫ ∑ −

−−=

5.2

2/ 2,1,1,2

( )
µSRRVout = 5.2    (7.4) 

ηη dVsys∫
0

When predicting the probability of accomplishing a task at range, sampling artifacts 
reduces the resolved cycles.  

outoutresolvedsampled SRRVSRRHNN 58.0158.01 −−=   (7.5) 

Nresolved is the resolved cycles on target calculated using Equation 6.5. Nsampled is used in 
lieu of Nresolved in Equation 6.6 to calculate probability.  

In these equations,  

SRRHout = out-of-band spurious response ratio in horizontal dimension 
SRRVout = out-of-band spurious response ratio in vertical dimension 
Hpre(ξ) = horizontal pre-sample MTF 
Vpre(η) = vertical pre-sample MTF 
ξ = horizontal spatial frequency in (milliradian)-1  
η = vertical spatial frequency in (milliradian)-1 
ν = horizontal sample frequency in (milliradian)-1 
µ = vertical sample frequency in (milliradian)-1 
Heye(ξ or η) = eyeball MTF 
Helec(ξ) = horizontal electronics MTF 
Velec(η) = vertical electronics MTF 

H (ξ) = H (ξ)H (ξ)H (ξ) 

 

Hdsp(ξ) = horizontal display MTF 
Vdsp(η) = vertical display MTF 
Hsys(ξ) = horizontal system MTF 
Vsys(η) = vertical system MTF 

post elec dsp eye

Vpost(η) = Velec(η)Vdsp(η)Heye(η) 
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7.2.1 Discussion 
A sampling model which ignores corruption of the baseband signal would seem to be 
counter-intuitive. There must be a point at which the original signal is so corrupted by 
aliasing that a performance impact results. Experiments 36 and 44 were run to examine 
this case. These experiments are described in detail in Appendices A and C. Experiment 
36 used an ID task and Experiment 44 used a recognition task. A large amount of aliasing 
at frequencies less than the half-sample frequency was created b
detector fill factor. These experiments support the conclusion that range degradation is 
predicted based on the out-of-band spurious response. 

As described in the appendices, F/2, diffraction limited optics were used with a 256 by 
256 staring array which had a 0.0016 fill factor (one micron square detector on a 25 
micron square pitch). The sampled imagery appeared corrupted; the internal details and 
shape of the target vehicles were significantly distorted. Intuitive
it appeared that scene structure was destroyed, not that raster or display pixel structure 
was obscuring the underlying scene details. 

Nonetheless, experimental results support the conclusion that performance degradation 

 when it is realized that the small detectors were generating 
large amounts of out-of-band energy; the in-band signal was being aliased in a way that 
created significant high frequency content that was not filtered out by ev is

e pe

experiments have involved either identifying or recognizing targets; 
he model for the detection task has not been verified. As discussed in 

 when the targets 
g appears to have a 

when the targets are at long range and are poorly 
etection task, which involves few cycles on target, is 

ition. 

 is the level of discrimination at 
e . The low cycle criteria associated with 

any false alarms. It is possible 
d to accurately predict detection, but that is not 

tion thermal imagers in search experiments, 
ased false alarms, not an increase in the number of 

 

y using a very small 

ly, viewing the images, 

due to sampling is predicted by the amount of out-of-band spurious response. This result 
might be more understandable

en good d play 
pixel interpolation. The small fill factor did result in a 27% loss in rang rformance, 
but the performance loss was predictable from the out-of–band Spurious Response Ratio. 

All of the sampling 
the applicability of t
Appendices A and C, the sampling adjustment appears to be optimistic
are at long ranges and have few samples on target. That is, samplin
greater effect on ID and recognition 
resolved. This might infer that the d
more affected by sampling than either ID or recogn

It should be remembered, however, that recognition
twhich the observer knows he is looking at a targ

cause of the acceptance of mthe detection task occurs be
that Equation 7.5 needs to be adjuste

rta 1st generace in. Based on experience using 
repoor vertical sampling lead to inc

cycles needed to detect the target. 
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Modeling Reflected-Light Imagers 
Imagers of reflected light operate in the spectral band between 0.4 and 2.0 microns. This 

s on a moonless night. The figure shows 
illumination through the atmosphere; the moon and sun are both at a 60 degree zenith 

spectral region constitutes the visible band from 0.4 to 0.75 microns and the near infrared 
(NIR) band from 0.75 to 3.0 microns. Quite often, light with wavelengths between one 
and two microns is called short wave infrared (SWIR). Natural light is abundant in the 
0.4 to 2.0 micron spectral band. Figure 8.1 shows illumination from sunlight, moonlight, 
and starlight (including airglow). The visible band is especially bright in the day, and the 
SWIR is the brightest of the three band

angle. There are four distinct atmospheric absorption bands apparent in the illumination 
spectra; these are at 0.95, 1.1, 1.4, and 1.9 microns. These absorption bands also affect 
atmospheric transmission; transmission over a one kilometer, horizontal path is shown in 
Figure 8.2. In addition to abundant natural illumination, the clear atmosphere is fairly 
transparent over most of the 0.4 to 2.0 micron spectral band.  

Sun Moon Stars
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0.4 0.9 1.4 1.9

Wavelength in microns

Figure 8.2  Atmospheric 
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Target and background reflectivities tend to vary with wavelength in this spectral region; 
natural and manmade objects tend not to be gray bodies. Figure 8.3 shows the spectral 
reflectivity of a foreign paint, sand, gravel, a mixed soil, and dead grass. The paint 
closely matches the gravel and soil out to about 1.2 microns and closely matches the sand 

d 1.2 microns. The paint has very different reflectivity properties from dead grass 
p curve in the figure) over the entire spectral range. The apparent contrast seen by 
ager depends on the background and also on the spectral band chosen 

. A diagram of a solid state 
s light onto a two-dimensional focal plane 

array of detectors (the FPA). Photo-current is generated in each detector for a fraction of 
each frame or field interval; the stored charge is read out and formatted for display. 

The calculation of photo current is described in references such as the Electro-Optics 
Handbook (Burle Industries, 1974). The detector current from a scene element is 
calculated as follows.  

beyon
(the to
the im
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where 

λ = Wavelength in µm 
F0 =  focal length of objective lens in centimeters 

 

8.1 Staring Focal Plane Arrays 
The theory for a solid state camera is developed in this section
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Figure 8.3  Spectral 
reflectivities of a foreign, 
tactical-vehicle paint and 
various kinds of dirt and grass.

Figure 8.4  Diagram of a solid state imager. 

imager is shown in Figure 8.4. A lens focuse

0.8

( ) ( ) ( ) ( ) ( ) λλλλλλ dCRRTIntphotocurre sp     
4F#

HV
02

detdet
∫= ∞  (8.1) 
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Two dimensional 
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VIDEO DISPLAY 



 

F# = focal length FO divided by aperture diameter 
I(λ) = Illumination in watts cm–2 micron–1 
T(λ) = Transmission of atmosphere as a function of λ 
R(λ) = Spectral reflectance of the scene element as a function of λ 
Rsp(λ) = Detector response in amperes per watt as a function of λ 
C(λ) = Objective lens and spectral filter transmission as a function of λ 
Vdet and Hdet are vertical and horizontal dimensions of detector active area in 

centimeters 

Let RT and RB represent the detector photocurrent spectral integral for targets and 
backgrounds, respectively. Because the signal is prop o-current and 
noise is proportional to the square root of the photo-current, the average electron flux per 
solid angle is used in the model. The spatial frequency ian. We 
want to calculate the average number of electrons pe ian 
(Eav); this is because noise power spectral density has units of (second-milliradian2)-1. 
Power spectral density is in the frequency domain; the calculation here is in the space 
domain. 

    Eav = 0.5 10-6 (RT+RB) FO2 / (Vpit Hpit e-)  (8.2)  

here 

mbs per electron) 

-6 
 

as a one-dimensional calculation, done twice. Calculations are not really done in two-
dimensional space. 

Equations 4.14 and 4.15 for CTFHsys and CTFVsys can now be written for a solid state 
imager. In the following equations, ξ’ and η’ are dummy variables of integration. 

ortional to the phot

 unit is cycles per millirad
r second in a square millirad

w

e- = charge on an electron (1.6E-19 Coulo
Hpit and Vpit are horizontal and vertical detector pitch in centimeters 

The ratio FO
2 / (VpitHpit) gives the number of photo-detectors in a square radian; the E

factor converts this to the number in a square milliradian. The unit “square radian” rather
than steradian seems strange; remember, however, that the model treats two dimensions 
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where 

.6 root-Hertz (a proportionality factor) 
ξ = horizontal spatial frequency in (milliradian)-1  
η = y in (milliradian)-1 

α = 169

 vertical spatial frequenc
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CT n; see Appendix E  
κcon

B(ξ
Heye

Hele ) = horizontal electronics MTF 
Vel

Hds

Vds

Hsys(ξ) = ystem MTF 

F(ξ/SMAG) = naked eye Contrast Threshold Functio
  = contrast enhancement 
 or η) = the Equation (3.9) eye filters  
(ξ or η) = eyeball MTF; see Appendix E 
c(ξ
(η) = vertical electronics MTF ec

(ξ) = horizontal display MTF p

p(η) = vertical display MTF 
 horizontal s

Vsys(η) = vertical system MTF 
QHhor = horizontal noise bandwidth for CTFHsys defined by Equation 8.5 
QVhor = vertical noise bandwidth for CTFHsys defined by Equation 8.6 
QHver = horizontal noise bandwidth for CTFVsys defined by Equation 8.7 
QVver = vertical noise bandwidth for CTFVsys defined by Equation 8.8 
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Equations 8.3 and 

 (8.7) 

8.4 assume ideal shot noise; other noise sources are ignored. This 
 as 

Figure 8.5 illustrates the read-out of a CCD imager. Photo-charges are clocked down, line 
by line, until they reach the horizontal shift register. After each line is entered into the 
register, it is shifted out at high speed through the video amplifier. In this mann
imagery collected in parallel at each detector becomes a serial stream. The benefit is a 
single output line, generally formatted as RS-170 standard video. The penalty is that the 
high speed video amplifier is noisy. 

Figure 8.5  Diagram of Video Read-out  
High bandwidth video amplifier adds 

o the signal. 

assumption is realistic for most cameras under high illumination conditions. However,
the light fails, noise sources other than shot noise begin to dominate.  

er, the 

noise t
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The video amplifier noise is typically specified in terms of noise electrons per pixel per 
noise actually arises in the amplifier or read-out circuitry, 

umber of noise electrons in order to make 
asier.  

ise is dark current. Dark current is often specified 
metimes, dark current is specified as current density; 

ight be specified as 100 microamperes per square 
e detector area and frame time are used to calculate dark 
 noise associated with dark current is the square root of 

rons. 

e square 

field or frame. Although the 
manufacturers provide the equivalent n
calculation of dynamic range and total noise e

A second common source of excess no
as electrons per pixel per frame. So
for example, the dark current m
centimeter. In that case, the activ
electrons per pixel per frame. The
the number of dark current elect

All noise sources are added in quadrature. The noise in one second and on
milliradian is: 

( ) 2
0

2 + DCampCCD FEET 610−+=
pitpit

avnoise VH
EE   (8.9) 

where  
Eamp = the amplifier noise in electrons per pixel per frame 
EDC = dark current electrons per pixel per frame 
TCCD = fields or frames per second. 

The equations for threshold vision through the imager now become: 
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Since amplifier noise can completely dominate performance at low illumination levels, 
techniques have been developed to provide signal gain prior to the read-out electronics. 
Generally, however, the electron gain is non-ideal in the sense that the gain itself 
generates excess noise. Sometimes the amount of excess noise depends on the gain 
applied. For example, avalanche silicon diodes have excess noise equal to the square root 
of the gain; a gain of 100 comes at the cost of increasing shot noise by a factor of 10. 

L s always greater than one. Nf  might be a fixed 
v the equation 

et Nf represent the noise factor which i
alue or might depend on gain through 

γGainN f =  

where γ is an exponent which depends on the technology used; for silicon avalanche 
diodes, γ is 0.5. Then Enoise in Equations 8.10 and 8.11 becomes: 
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If both gain and noise factor are unity, then Equation 8.12 reduces to 8.9. 

8.1.1 Interlace 
Display interlace is used to reduce electronic bandwidth while maintaining a high 
resolution image. Electronic interlace, also called standard interlace or simply interlace, is 
illustrated in Figure 8.6. The FPA operates at 60 Hertz. However, the display operates at 
a 30 Hertz frame rate. The first, third, fifth, every odd line from the FPA is displayed in 

 field. 
lace does not degrade resolution, the displayed signal to noise is affected 

because half the available signal from the FPA is discarded.  

 

Pseudo interlace is a me  
reduced bandwidth benefits of interlace. In  
pixels in rows one and two ar
three and four are added and presented on disp
odd lines to even lines and di
re added and presented on di

displayed on the even lin

the first field. The even lines (two, four, six, etcetera) are displayed in the second
Although inter

480 rows

640 columns
FPA DISPLAY

480 rows

640 columns

FIELD 1
FIELD 2

Data taken 

30 Hz. 
frame rate

ans for using all of the signal electrons while maintaining the
the first display field, photo-electrons from

e added and presented on display line 1. P
lay line 3. The process cont

splaying on odd lines. In field two, FPA lines two and three 
splay line 2. Even FPA lines are added to odd lines and 

es. This process is illustrated in Figure 8.7. Pseudo interlace uses 

ixels on lines 
inues, adding 

a

all of the available signal electrons and therefore maintains image sensitivity. Also, field 
alignment is properly maintained; samples are in the correct location. The penalty paid is 
a decrease in the vertical MTF of the imager. 
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FPA DISPLAY

at 60 Hz.at 60 Hz.
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Figure 8.6  Illustration 
of Electronic Interlace 

480 rows 480 rows

FIELD 1Data taken 

30 Hz. 
frame rate

FIELD 2at 60 Hz. FIELD 2at 60 Hz.

480 rows 480 rows

FIELD 1Data taken 

30 Hz. 
frame rate

Figure 8.7  Illustration 
of Pseudo Interlace 



 

In Equations 8.10 and 8.11, Eav is divided by two for standard interlace but is not affected 
by pseudo interlace. Enoise in Equation 8.12 is affected as shown in Equation 8
Isignal and Iamp are defined: 

I   =  I  =  1   for non-interlace 

ronic interlace and 
         = 1   for pseudo interlace. 

.13 where 

amp signal 
Iamp  = 2   for any interlace 
Isignal = 2   for elect
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8.1.2 Snapshot and Frame Integration 
Temporal integration of the eye varies with light level. As illumination decreases, the eye 
integrates for a longer period. If detector noise is temporally varying at a fairly rapid rate 
(50 or 60 imager fields per second is adequate), then the eye temporally filters detector 
noise in the same way as eye noise. However, if a snapshot (single frame) is taken, or if 
fram then the effect of eye integration time must be explicitly 
cons

The dependence of eye integration time on display luminance is: 

teye = .0192 + .0625 (L / 1.076)-.17 

where L is display luminance and teye is integration time.  

For snapshot imagery, define tact as: 

 = frame time for non-interlace and pseudo interlace 

e integration is used, 
idered. 

tact

     = half of a frame time for electronic interlace. 

Then Enoise for snapshot (Enoi-snap) is related to Enoise for framing shown in Equation 8.9 
by: 

noiseE
actt
eyet

snapnoiE =−   (8.14)  

If frame integrate is used, then the effect depends on whether the imager is in framing or 
snapshot mode. If in snapshot mode, then the benefit of integrating FINT frames is: 

noise
actINT

eye
snapnoi E

tF
t

E =−    (8.15) 

If the imager is in framing mode, then the benefit of frame integration is moderated by 
the fa y integrating temporally.  ct that the eye is alread

noise
CCDeyeINT

eyeCCD
frm E

ttF
tt

E
)(int +

=−    (8.16) 

 66



 

8.2 Direct View Image Intensifiers  
Im e inte ifiers amplifyag ns  moonlight and starlight at spectral wavelengths between 0.5 
and 1.0 micron. To the left in Figure 8.8, a pilot is wearing the Aviator’s Night Vision 

sists of two oculars, one for each eye. A schematic 
own at right. The objective lens forms an inverted 

2 tube amplifies the brightness of 
 The fiber-optic twist erects the brighter image. The 

eyepiece creates a unity magnification, virtual image of the scene, allowing the pilot to 
fly at night without lights. By modifying the eyepiece to create image
single ocular can also be an effective rifle sight. 

mi

single channel at t

n the photo-el
accelerated, strike t
is controlled by var
are accelerated by
Brightness gain re
acceleration betwe
sensitive to a much

Brightness gain is s
on the cathode. T
excessive gain lead
tube is controlled 
brightness is limite
ratio (not all photo-
Bender (2000) for 
intensifiers. 

Imaging System (ANVIS) which con
o e direct view goggle ocular is sh

e image intensifier tube. The I
f on

image of the scene on th
the image as described below.

 magnification, a 

Operation of the I

cro channel pla
photo-electrons in 

channels are about 
to diameter ratio is

accelerated by a hi
whe

 

t 
iagram of a single ocular. 

Figure 8.8  ANVIS goggle shown at left; at righ
is a schematic d
rate 

 

f a 
he bottom of the figure. Photo-electrons enter the channel and are 

ed 
ectrons strike the channel wall. The secondary electrons are then 
he wall, and create more electrons. Electron gain through the channel 
ying the voltage across the MCP. Channel electrons exit the MCP and 
 another high voltage to the phosphor where an image is formed. 
sults from the MCP electron gain, the energy gained from electron 
en the MCP and phosphor, and from the fact that the cathode is 
 broader range of light wavelengths than the eye. 

pecified by the ratio foot Lamberts from the phosphor to foot candles 
ypical gain is 30,000 but gains to 100,000 are possible; however, 
s to bothersome scintillation in the image. Brightness output of the I2 
by limiting the current available to the MCP; generally, goggle 

d to about 3 fL. Tube noise factor is ideally 1.4 based on the open area 
electrons get through the MCP); typical noise factor is about two. See 
a more thorough discussion of the theory and specification of image 

2 tube is illustrated in Figure 8.9. Photons from the scene gene
igh voltage accelerates the photo-electrons to the 

te (MCP). The MCP consists of millions of tiny channels; these
f six microns. The channel length 

the MCP is shown by the blowup o

the cathode. A h

five microns in diameter on a pitch o
 about seventy. Operation of 

gh voltage across the channel plate. Secondary electrons are emitt
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Equation 8.17 is used to find the photocurrent for one square centimeter of cathode area. 

( ) ( ) ( ) ( ) λλλλλ dCRR sp     (8.17) 

                                                                            (8.18) 

Figure 8.9  Illustration 
of I2 Tube Operation 

( )λ TIntphotocurre  
4F#

1
2 ∫= ∞

∞−

    Eav = 3.13E12 (RT+RB) FO
2 Bio  

In Equation 8.18, RT and RB are the photocurrent integrals in amperes per square 
centimeter for target and background, respectively. The 3.13E12 factor is the product of 
0.5 to average target and background flux, 1E-6 to convert radians to milliradians, and 
divide by the charg tron). The Bio factor 
accounts for the im  systems with two image 

2

T + RB) Gelec τeye  + EBI Gtube τeye      (8.22) 

e on an electron (1.6E-19 Coulombs per elec
proved signal to noise available from

intensifier tubes. 

Bio = 1 for monocular or biocular (one I2 tube) 
 = 2 for binocular (two I2 tubes) 

In image intensifiers, dark current is called equivalent background input (EBI). Although 
generally not important at room temperature, EBI can be significant in very hot 
environments or if the I2 tube is enclosed with other hardware. The unit for EBI is foot 
candles (lumen per square foot) of 2856 K light. Tube specification sheets generally list 
the responsivity of the tube (Resp) in uamps per lumen of 2856K light. So the dark current 
(DCEBI) per square centimeter of cathode area is: 

DCEBI = EBI Resp 1E-6 / 929.03       (8.19) 

where the 929.03 factor converts square feet to square centimeters. The noise electrons 
(Enoise) in one second and one square milliradian is: 

 Enoise = Eav + 6.25E6 DCEBI  FO  Bio         (8.20) 

In order to establish the eye CTF, the output brightness of the tube (Bout) must be 
calculated. First the current to light gain (Gelec fL cm2/uamp) is calculated from a 
knowledge of tube gain (Gtube) in fL/fc and tube responsivity. 

Gelec = Gtube 929.03 / Resp         (8.21) 

For an eyepiece transmission of τeye, the output brightness is: 

Bout = 0.5(R
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The equation for horizontal and vertical threshold vision through the imager is: 
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where Eav / Enoise is the contrast degradation Mdsp due to EBI. For direct view I2 systems, 
MTF loss is associated with the optics (Hopt), the tube (Htube), and the eyepiece (Hep).  
Since little of the tube MTF is associated with the cathode, tube MTF filters the noise. 

Hsys = Vsys = Hopt Htube Hep       (8.24) 

 SMAGeyeeptube∫ = '')'()'()/'()(
2

ξξξξξξξ dHHHBQH   (8.25) 

= ηηηη dHHHQV
2

)()(∫  SMAGeyeeptube   (8.26)  

l relay lens is used because the image intensifier format is generally 
twi .10 for a schematic diagram of an I2 
CCD ca

ex

 
8.3  I2 Optically Coupled to CCD or CMOS 
The eyepiece in Figure 8.8 can be replaced by a CCD or CMOS imager and display; this 
allows the image intensifier to be mounted remotely from the observer. A fiber-optic 
minifier or optica

ce as large as the CCD image array. See Figure 8
mera.  

Th
VC
by
ad

E

 

I CCD or CMOS 

Figure 8.10  Illustration of 
I2 Tube Optically Coupled 
to CCD or CMOS FPA 
d 
th  that CCD noise must be 

pressed in terms of cathode photoelectrons.  

e MTF of the CCD and display is applied to the I2 tube signal and noise. HCCD and 
CD are the horizontal and vertical CCD MTF, respectively. The CCD noise is filtered 

 the CCD MTF, display MTF, the eyeball, an the perceptual filter. The CCD noise is 
ded in quadrature with e other noise terms; this means

( ) 2222    RFKK

tube

espovh
CCD ( )2    −eG

  +
=

ATRRBE pixCCDCCDCCDoutampcstκ
 (8.27) 

69

^: fiber optic 
^"'"    reducer 

|2 tube 
display 



 

where 

ECCD = CCD noise expressed as I2 cathode photo-electrons 
κcst = 4.53E13 = constant factors (charge on electron, units convrsion) 
Eamp = Amplifier noise per CCD pixel per field in electrons, 
TCCD = field rate of CCD 

 ot

out
ed to represent th

state imager is not relevant. Also, optical coupling can be by coherent, fiber optic reducer 
as shown in the figure, or a relay lens can be used.  

All calculations for the I2 tube remain the same as in Equations 8.18 through 8.26 except 
for the addition of CCD and display MTF. The noise now has two terms because CCD 
noise is filtered differently than I2 tube noise. EHhor
calculating horizontal CCD noise. EHver and EVver are the spatial filters for calculating 
ertical CCD noise. In the following, ξ’ and η’ are dummy variables of integration. 

RCCD = fo candle to generate one electron in a CCD pixel each second 
Apix = area of a CCD pixel = Hpit Vpit 
Kh and Kv are horizontal and vertical reduction ratios 
B  = light output from I2 tube in fL 

The shorthand “CCD” is us e array, but the technology used for the solid 

 and EVhor are the spatial filters for 

v

Hsys = Hopt Htube Hep HCCD Hdsp     (8.28) 

sys opt tube ep CCD dsp    (8.29) 
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tively.  

ntrast 
 40 percent 

overcast starlight illumination. 

Under low target-illumination conditions, some I2 CCD cameras will output only 
millivolts of video signal. Cathode ray tubes have a power law relationship betw
input voltage and the output luminance. At maximum gain and with no brightness control 
offset, typical displays will provide very little output luminance when the input voltage is 
only a few millivolts. Typical gamma correction circuits do not correct inp

Adding display brightness with the brightness control will move the image up the power 
law curve, providing a larger luminance change for a given change in input voltage. 
Adding brightness will also make the whole display brighter, improving
response. As a result of the two properties together, the display mi
subjective appearance with minimum display luminance greater than zero. The operator 
will choose poor contrast over no or very low luminance. Since, in this instance, CTF is 
inversely proportional to display contrast, the display 
factor in determining system performance. 

 

8.4  CCD or CMOS Array inside I2 Tube 
The array can be inside the vacuum of the image intensifier tube. Electrons are directly 
gathered by the CCD rather than optically coupling the CCD to the 
output. This is illustrated in Figures 8.11 and 8.12. In 8.11, electrons are accelerated from 
the cathode to the CCD by a high voltage. The photo-electrons are giv
energy to create 100 to 200 secondary electrons when the CCD silicon is
provides near-ideal electron gain. In Figure 8.12, an MCP is used. The MCP adds 
complexity but provides advantages. The MCP provides gain control; the cathode to 
CCD voltage in Figure 8.11 cannot be lowered too much, or the image will blur. Also, 

Vollmerhausen (1996) provides three validation examples; these show a good match 
between model predictions and experimental data. Appendix E provides details on how to 
model CCD MTF and fiber-optic taper MTF, respec

It is important to realistically assess display performance when modeling I2 CCD 
cameras. This is particularly true when modeling low illumination levels, because the 
camera electronic output might not be sufficient to properly drive the display. As a result, 
the best “operator optimized” image might have poor display contrast. During the valida-
tion experiments described in Vollmerhausen (1996), operator-selected display co
ranged between 10 percent and when the various cameras were used under 

een the 

uts this low. 

 the human visual 
ght have the best 

characteristics can be a dominant 

I2 tube phosphor 

en sufficient 
 struck. This 
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with the MCP, secondary electrons at the CCD are not necessary; the CCD (or CMOS 
array) is just a collector of electrons and need not provide gain. The arrangement in 
Figure 8.12 is expected to prolong CCD array lifetime. 

 

CCD noise ECCD is calculated differently from that used with optically coupled 
arrangement. Otherwise, Equations 8.30 through 8.39 are used to calculate CTF for these 
imagers. Using the same RT and RB as in Equation 8.18 for the photo-current per square 
centimeter of cathode area, the ECCD is:  

( )( )
2

2
detdet

2

 

 5.061

elecpitpit

oCCDelecBTamp
CCD

GVH

FTGVHRREE
E

++−
=  (8.40) 

where Gelec is the electron gain. This ECCD is used in Equations 8.34 and 8.39. 

 

8.5 Predicting Probability versus Range 
8.5.1 Contrast Transmission through the Atmosphere 
When predicting contrast transmission, certain assumptions are made to simplify 
calculations. These assumptions constrain the scenario for which the model is 
appropriate. 

a) The target and background are co-located; the target is viewed against local 
terrain. Range to the target and range to the background are the same. From a 

Figure 8.11  CCD array 
inside I2 tube vacuum.  

Figure 8.12  CCD array inside I2 
tube vacuum; this arrangement 
also has an MCP. 
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military standpoint, this is not an unreasonable assumption, and it relieves the 
necessity to consider some complex situations where target to background 
contrast can actually reverse.  

b) Contrast loss through the atmosphere is from scattering. Contrast is not 
affected by absorption in the atmosphere. As shown in Figures 8.2 and 8.3, the 
atmospheric absorption bands remove light from the illumination. Most of the 
atmospheric path occurs before the light hits the target and background. 
Atmospheric absorption is considered when predicting spectral illumination.  

c en by the imager does not change with range. Target-to-
background signal disappears into the average luminance established by the target 
and background reflectivities. CTFsys (or MRC) depends on the light entering the 
sensor; noise, for example, is proportional to the square root of average 
luminance. In order to use a single, pre-calculated CTFsys to represent imager 
performance, the assumption must be made that luminance does not change with 
range. 

d) Contrast is reduced by scattering of target signal out of the line of sight and by 
sunlight, moonlight, or starlight scattered by the atmosphere into the imagers field 
of view. See Figure 8.13 for an illustration. In most scenarios, path radiance 

 sensor’s path is the most serious cause of target–
he atmospheric path can appear brighter at the 

ero range target and background; this results in substantial loss 
of contrast. This part of the model is not completely self-consistent, since the 
luminance viewed by the imager is increasing with range under these 
circumstances. However, the approximation that the luminance is constant does 
not generally lead to serious errors. The most important factor is that contrast is 

s, path becomes brighter. At some point, the path 
becomes “optically thick.” That is, only light from the path is seen, and increasing 
the path length does not change the path radiance because as much light is 
scattered out as in. The SGR is the ratio between the maximum 
the zero range radiance. SGR does not vary with range because the peak, long 
range value is used in the ratio. Table 8.1 gives values of SGR for a range of 

nsmission. 
Equation 8.41 is used to calculate contrast loss for range Rng, Beer’s Law 

) Average luminance se

caused by light scattered into the
to-background contrast loss. T
imager than the z

greatly reduced by the atmosphere. 

e) Path radiance is quantified by the Sky-to-Ground-Ratio (SGR). As the 
atmospheric path lengthen  the 

path radiance and 

environments. Figure 8.14 shows the effect of SGR on contrast tra

coefficient β, and target zero-range contrast CTGT-0. 

C
(8.41) 








−+ 1exp1 ngSGR

 

−
−= 0

R
TGT

TGTC
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Figure 8.13  Sunlight scattered from atmosphere 
degrades target-to-background contrast. 
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Figure 8.14  Effect of SGR on Contrast Transmission   Left shows effect 
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effect with 0.4 per Kilometer transmission.
. In use, an 
may not have the contrast opt
one option that 
earch, for example, the  is set to see the environment; th

nd. When a likely location is found, however, then the imager might be 
if a target is present. So contrast enhancement might not be used in the 
 during search, but would be employed for the target identification task.  

e same for CTFHsys and CTFVsys, so horizontal calculations are used as 
Equation 8.3 for CTFHsys: 

 Contrast Enhancement 
ples like Equations 8.3, 8.4, 8.34, and 8.39, each CTFHsys and CTFVsys 
terms. One of the terms represents eye contrast limitations and depends 
 term(s) depend on sensor noise and  in f κ

Desert                 1.4            7.0
Forest                  5               25
Typical                3.0    

es for SGR 

 are dependent o con
imized to view the target, so contrast 

can be changed when calculating probability versus 
 sensor e target 

Typical SGR Values
Terrain      Clear      Overcaste 8.1  Typical 
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  (8.44) 

Similar equations can be written for CTFVsys. Models like SSCAM, I2MRC, and I2CCD 
output four arrays for each illumination and target-background combination modeled. 
Those arrays are CTFHeye, CTFHsen, CTFVeye, and CTFVsen. The value for κcon 
determines how the four arrays are combined to predict the system CTF.  

The options provided in the reflective model are: no contrast enhancement (Cdsp = CTGT), 
display contrast of 0.25 (Cdsp = 0.25), and display contrast of 0.5 (Cdsp = 0.5). The value 
of 0.5 was determined by optimizing a set of 144 tactical vehicle image (twelve aspects 
of twelve different vehicles). Each image was individually optimized to bring out the 
particular cu pieces 
of the pictu mum for 
identification plete, the contrast of the set was 
measured at 0.5. We feel that it is impossible for an automated process to duplicate this 
degree of optimization, and that 0.5 therefore represents an extreme for modeling 
purposes. 

The 0.25 option resulted from applying histogram equalization, local area processing, and 
allowing some non-linear suppression of bright areas. The process was “by hand” in the 

nse that we ensured that no cues were lost due to the histogram equalization placement 
f gray levels. The measured contrast of the resulting target set was 0.25. This represents 

atically.  

es needed to ID that vehicle at that aspect. Linearity was not enforced; 
re were subdued or enhanced as necessary to provide an opti
. Once the optimizing process was com

se
o
the contrast that can probably be achieved autom

When doing range calculations,  

TGTC
dspC

con =κ    (8.45) 

As range to the target increases and target contrast (CTGT) decreases, contrast 
enhancement maintains the displayed contrast at a high level. Of course, while the eye 
term in CTFsys can be moderated by contrast enhancement, the noise term cannot. Noise 
must be low for contrast enhancement to help range performance. 
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8.5.3 Calculating Probability of Task Performa
At each range, apparent contrast CTGT is established based on zero range contrast CTGT-0 

g Beer’s Law or MODTRAN. Contrast enhancement model is selected, and then 
κcon is calculated using Equation 8.45. CTFHsys and CTFVsys can then be calculated. The 
TTP metric is calculated for both the horizontal and vertical dimensions. 

nce 

by usin
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“Cycles on target” N  is found using Equation 8.48. 

(8.47) 

resolved

Range
VTTPHTTPTGTA

resolvedN =   (8.48) 

The out-of-band Spurious Response Ratio (SRR ) is found for both out horizontal and 
vertical, and Nresolved is corrected for the presence of sampling artifacts; see Part 7.  

outoutresolvedsampled SRRVSRRHNN 58.0158.01 −−=   (8.49) 

The TTPF is used to find the probability of task performance. 
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where  

5024.051.1 V
N

E sampled+=    (8.51) 

 
8.6  Minimum Resolvable Contrast 
In the laboratory, sensors are characterized using Air Force 3-bar charts; a chart is shown 
in Figure 8.15. E
Generally, charts 
lower contrast (but generally the contrast is above about 0.2). A plot of threshold contrast 

t, the amplitude 
ifference between the center bar and the adjoining spaces is used in place of the system 
TF. The amplitudes are calculated as follows. 

ach bar pattern is five times longer than the width of a single bar. 
with 1.0 contrast are used in the laboratory, but charts are available with 

versus spatial frequency is called Minimum Resolvable Contrast (MRC). A plot of 
limiting frequency versus illumination level for a particular contrast is called a limiting 
light measurement. 

When predicting the results of an MRC or limiting light experimen
d
M
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Figure 8.15  Air Force 3-bar 
chart used to characterize 
reflected-light imagers.
( ) ( ) ')]'4cos(21[ ' ' ξξπξξ dWHHW Wsys += ∫
∞
∞−  (8.52) 

 (8.53) 

 (8.54) 

ummy variable for integration 
/(2ξ) 

 
, the bar-length MTF, is sin (πfL) / (πfL) 
, the bar-width MTF, is sin (πfW) / (πfW) 
ractional intensity due to blur of bar length 
onship between CTFsys and MRC is:  
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Modeling Thermal Imagers 
Thermal imagers sense heat energy with wavelengths between three and twelve microns. 

he three to five micron band is called mid-wave IR (MW
icron band is called long-wave IR (LWIR). Figure 9.1

transmission for a one Kilometer, horizontal path; there are three clear windows from 3 to 
4.2, 4.4 to 5, and 8 to 13 microns. 

Figure 9.2 shows a schematic diagram of a thermal imager which uses a staring focal 
plane array (FPA) of detectors. The thermal scene is
the FPA. The individual detector signals are time multiplexed and converted to a video 

gnal for display.  

Figure 9.3 shows a parallel scan thermal imager. The afocal provides a magnified image 
at the scanner. The scene is scanned over a linear array of detectors by an oscillating or 
rotating mirror. The time that each detector dwells on a point in the scene is less than that 
of the staring sensor; as a result, sensitivity is reduced.  

T IR) and the eight to twelve 
m  shows typical atmospheric 

Figure 9.1  Atmospheric Transmission over 1 Kilometer Path 

 imaged by the objective lens onto 

si

light

Lens FPA display

light

Lens FPA display

Figure 9.2  Illustration of Thermal Staring Sensor
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Everything near room temperature radiates at these wavelengths. The emissivity of 
natural objects is generally above 70 percent; most manmade objects are also highly 
emissive. Thermal sensors derive their images from small variations in temperature and 
emissivity within the scene. Typically, the thermal scene is very low contrast.  

on

detector signals 
formatted for display

on

detector signals 
formatted for display

n of Scanning Thermal Sensor 

Figure 9.4 shows the spectral radiance fr
difference between the two curves is also show
change in blackbody temperature results in only 
energy. However, a 3
represents very good thermal 
image under these conditions. The therm
imaging conditions. 

om blackbodies at 300 K and 303 K. The 
n. As can be seen from the figure, a 3 K 

a small relative change in the radiated 
 K average for the apparent temperature difference within a scene 

imaging conditions. A thermal imager will provide a good 
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he relative 
difference is small.  

Thermal radiation 
from 300 K and 303 K 
blackbodies; both are near 
room temperature. Although 
the difference represents good 
thermal contrast, t
Although the typical thermal scene is very low contrast, exceptions do exist. For 
example, the radiance difference between sky and ground can be quite large on a clear 
day. Also, the classic “burning tank” can overload a thermal imager. In general, however, 
thermal sensors are adiant energy into a 

he spectral radiance of an object 

designed to map small differences in the scene’s r
usable displayed image. 

In the above example, scene thermal contrast was generated by the temperature 
difference between two blackbodies. In the more general case, the spectral radiance from 
 thermal scene will depend upon a number of factors. T
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will depend upon its surface temperature and emissivity and upon the nature of the light 
being reflected or scattered from its surface. The apparent spectral radiance of an object 
as seen by an imager is also affected by the spectral transmission of the atmosphere. 
These factors, coupled with the spectral sensitivity of the imager itself, will determine the 
effective thermal contrast within the scene as sensed by a particular imager. 

Apparent temperature (also called equivalent blackbody temperature) is often used as a 
radiometric unit. A radiometer is calibrated in terms of its response to a change in 
*blackbody temperature. The radiometer is then used to measure the thermal contrast of a 
scene, and its output is expressed as “temperature.” The radiometer does not measure the 
temperature state of the scene; that is, the kinetic energy of the molecules in the scene 

described in Part 8. 

The dominant noise in thermal photon detectors is generation recombination (GR) noise. 
In the theoretical limit, GR noise is the equivalent of the shot noise found in I2 devices. 
However, noise can be increased by charge-carrier-phonon interactions. Thermal 
d und Limited in Performance (BLIP); noise decreases in 
proportion to the square root of detector photon flux. However, part of the background 
fl  imager itself, not just the scene. Even with perfect cold 
s tics can be significant. Also, the read-out electronics adds 
n -number cold shields. Predicting the effect of reduced 
s  difficult. The noise from a thermal detector is very much 
dependent on system design and mounting factors as well as scene thermal flux. 
Generally, a thermal detector’s noise characteristics are specified for a 300 K background 
temperature and a unique cold shield configuration.  

Spectral detectivity (Dλ) is used to specify the noise in a thermal detector.  

objects is not measured. The radiometer is detecting the in-band energy from the scene, 
as weighted by the spectral response of the instrument itself. The effective blackbody 
temperature measured in one spectral band cannot be assumed for a different spectral 
band. When comparing MWIR to LWIR sensors, some knowledge is required of the 
relative signatures in the two spectral bands.  

 
9.1 Signal and Noise in Thermal Imagers 
The units used to describe signal and noise for thermal imagers are very different than the 
units used when modeling reflected-light sensors. However, aside from the details of 
calculating signal and noise, the basic CTFsys theory is exactly the same as the theory 

D NEPλ λ= 1   

etectors are generally Backgro

ux arises from within the
hielding, emission from the op
oise, particularly with high F
cene temperatures on noise is

 (9.1)  

NEPλ is the spectral noise-equivalent power; it is the monochromatic signal power 
necessary to produce an RMS signal to noise of unity. Spectral D-star (Dλ*) is a 
normalization of Dλ to unit area and bandwidth.  

( )D D A fλ λ* det= ∆ 1 2   (9.2) 

where 
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∆f = temporal bandwidth and 
Adet = Active area of a single detector on the FPA = Hdet Vdet 

The thermal model uses peak spectral D-star and relative detector response at other 
wavelengths to characterize detector performance. 

D*λpeak = Dλ* at wavelength of peak response and 
S(λ) = Response of detector at wavelength λ relative to peak response. 

The spectral radiant power on the focal plane array is calculated as follows. 

E L Ffpa scene= π τ   #4 2
   (9.3) 

where 

Efpa = watt cm−2 u–1 on the detector array, 
Lscene = watts cm–2str–1u−1 from the thermal scene, and 
τ = transmission of optics. 

The parameters τ, Lscene, and Efpa are all functions of wavelength λ. The spectral 
diant power on a single detector of the array is: ra

E A L Fscenedet det     #= π τ 4 2    (9.4) 

The signal to noise in one pixel (SNpix) in one second can now be calculated. 
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det   (9.6) 

where ∆λ is the spectral band of the sensor, and 2 Hertz is the bandwidth ∆f. 

To estimate the differential spectral radiance resulting from a delta temperature near 300 
K, the following equation is used. As long as the bars are at a temperature close to 300 K, 
the spectral nature of the difference signal is closely approximated by the partial 
derivative of the blackbody equation with respect to temperature evaluated at 300 K. 

( )L L T T= Γ  ,  ∂ λ ∂   scene
Temp( )

 (9.7) 

where the partial derivative is evaluated at 300 K and 

L(λ,T) = Plank’s Equation for blackbody radiation, 

Using the Equation 9.7 expression for the spectral radiance based on temperature 
difference, the signal

T = Temperature, and 
Γ = Amplitude of apparent blackbody temperature difference. 

 to noise on one detector in one second is now: 
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(*  ADδΓ )
2

2/1 πτdetSN peak
pix

λ=   (9.8) 
# 24 F

where 

( )= λλ∂λ∂∫∆λδ d )S(TT)/,L(    (9.9) 

2/HpitVpit)1/2 
where FO is the effective focal length of the afocal or objective lens. The signal to 
detector noise in one second and : 

In one square radian, the signal to noise would increase by an amount (F0

 one square milliradian is

2#2 4*   )61( FDFE peakstareo πτηδ λΓ−=detSN   (9.10) 

Vdet/(Hpit Vpit). Equation 9.10 
r temperature difference Γ. Noise modulation at the display is 

needed to find CTF . Setting signal to noise to unity, Γ  is noise variance in units of 

where ηstare is the square root of the fill factor ratio Hdet 
gives the signal to noise fo

sys det
(K-milliradian)2. 

]   )61/[(#2 4 2
det πτηδ ko DFEF −=Γ *λpeastare (9.10)   

9.2 CTFsys for Thermal Imagers 
Calculating CTFsys requires that detector noise be expressed as display luminance noise. 
This in turn requires a mapping between radiometric temperature changes in the scene 
and the matching luminance changes on the display. The gain through the imager must be 
established in terms of foot-Lamberts per Kelvin. As with reflected-light imagers, the 
average and minimum display luminance is a model input. 

Scene contrast temperature (SCNTMP) is the delta radiometric temperature in the scene 
nce is zero. 

age. 
SCNTMP is used rather than κc . A large SCNTMP mea s
is low, a small SCNTMP means the gain is high.  

 be calculated. 

 

needed to generate the average display luminance when minimum lumina
Recall that the thermal image arises from small variations in temperature and emissivity 
within the scene, and these small variations are superimposed on a large background flux. 
Zero luminance on the display corresponds to the minimum scene radiant energy, not to 
zero radiant energy. SCNTMP is not the absolute background radiometric temperature; it is 
the temperature contrast needed to raise the display luminance from zero to aver

on to indicate sensor gain state n  gain 

With display noise modulation established, CTFsys can

2/1
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where 

α = 169.6 root-Hertz (a proportionality factor) 

e Appendix E  
SCNTMP  = scene temperature which generates average display luminance  
B(ξ or η) = the Equation (3.9) eye filters  
Heye(ξ or η) = eyeball MTF; see Appendix E 

dsp display MTF 
Hsys(ξ) = horizontal system MTF 
Vsys(η) = vertical system MTF 

Hhor = horizontal noise bandwidth for CTFHsys defined by Equation 8.5 
V  = vertical noise bandwidth for CTFHsys defined by Equation 8.6 

TFVsys defined by Equation 8.7 

ξ = horizontal spatial frequency in (milliradian)-1  
η = vertical spatial frequency in (milliradian)-1 

CTF(ξ/SMAG) = naked eye Contrast Threshold Function; se

Helec(ξ) = horizontal electronics MTF 
Velec(η) = vertical electronics MTF 
Hdsp(ξ) = horizontal display MTF 
V (η) = vertical 

Q
Q hor
QHver = horizontal noise bandwidth for C
QVver = vertical noise bandwidth for CTFVsys defined by Equation 8.8 
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η  is currently detector fill factor. Howevestare r, due to limitations in photo-electron 
ime. The efficiency 

factor used in Equation 9.10 should be adjusted for detector integration time. 
storage capacity, the FPA might not integrate signal for a full field t

)(/detdetint pitpitCCDstare VHVHTt=η   

where 

tint = detector integration time < = 1/TCCD 
TCCD = field rate (probably 60 Hertz) 

(9.17) 
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Hdet = horizontal active area of detector 
Vdet = Vertical active area of detector 
Hpit = horizontal detector pitch 
Vpit = vertical detector pitch 

rom slightly different MTF considerations discussed below, the only change 
he noise for the reduced dwell time. For 

sed. The dwell time is reduced by 
rea at the detector focal plane. Also, 

nner, either to look at thermal references or 
eff is used in 

  (9.18) 

lly 0.4 to 0.75), 
s, either in parallel or in Time Delay and Integrate, 
4 in TDI FPA, Ndet = 960 

ystem MTF for 
ght due to lack of 

stabilization, vibration of the display relative to the eye, and digital processing. For 
staring sensors, no MTF is associated with detector integration time. 
scanning imagers, however. During photo-electron integration, the scene is scanned over 
the detector, so image blur results from temporal integration of the detector signal. This is 
an important source of blur in scanning imagers. 

 

9.3 Predicting Probability versus Range 
9.3.1 Contrast Transmission through the Atmos
Certain assumptions are made to simplify calculations. These assumptions constrain the 
scenario for which the model is appropriate. 

a) The target and background are co-located; the target is viewed against local 

e target-to-
background signature is defined by 
included in the MODTRAN implementation. 

c) Average radiance seen by the imager does not change with range. The 
 300K blackbody. Target-to-background signal 

Aside f
needed to model scanning imagers is to adjust t
scanning sensors, a different efficiency factor (ηeff) is u

e athe amount of detector area divided by the imag
the scene is generally over-scanned by the sca
for turn-around, so scan is less than unity. For scanning thermal imagers, η η
Equation 9.10 rather than ηstare.  

2
0FVHdetdetdetscaneff / FOVFOVVHNηη =

where 

ηscan = scan efficiency (genera
Ndet = total number of detector

by             Example: for a 240 
FOVH = horizontal field of view of the imager in radians, and 
FOVV = vertical field of view of the imager in radians. 

MTF of the optics, detector, and display are the primary contributors to s
thermal imagers. Other likely sources of blur are jitter in the line-of-si

This is not true for 

phere 

terrain. Range to the target and range to the background are the same.   

b) Absorption as well as scattering in the atmosphere can be important. An 
interface to MODTRAN is provided. Since the spectral nature of th

Equation 9.9, this spectral weighting is 

background flux is from a
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disappears into the average radiance. The 300 K radiance establishes sensor noise 

s from predicting the apparent radiometric temperature 
g by twice the scene contrast temperature. SCNTMP is 

those 
e 

ee 

s 
se. Since larger SCNTMP results in lower contrast, an 

optimistic assumption is that SCNTMP is three times larger than the target contrast. 

b) When searching for a target, the imager gain is adjusted based on scene 
content and not changed. Thermal contrast between 0.1 and 0.3 K represents poor 
th contrast is between 1 and 3 K; first 

al 
al 

when modeling search, 
ic (zero range) thermal 

 to be 1.25 K, then SCNTMP 

lf of the target to background thermal 
contrast. Given the realities of thermal signatures, SCNTMP will realistically be 
three to five times the target RSS thermal signature as suggested above. 

airly humid day with a 0.7 per kilometer 
transm
about 0 re is taken 
as five tim
conten
observ
adjuste TMP
become is 0.1. Of course, the benefit of the 
improv
contras

The following “rule of thumb” is suggested. 

characteristics.  

Apparent target contrast res
difference and then dividin

ult

determined by hardware setup and the environment viewed. It is possible for 
intimate with specific hardware designs to accurately determine SCNTMP. However, som
simplifying assumptions are sufficient for most modeling purposes. 

a) When the imager is optimized on a specific target, SCNTMP is between thr
and five times the target apparent RSS contrast. If an observer is attempting to 
identify a target, for example, it is reasonable to assume that the imager i
optimized for the purpo

ermal scene contrast. Moderately good 
generation thermal imagers (circa the mid 1980’s) work well with therm
contrast in the 1 to 3 K range. Likely values for SCNTMP are 1 K for poor therm
scenes and 5 to 10 K for good thermal contrast. However, 

t intrinsdo not input SCNTMP less than three times the targe
contrast. That is, if the target contrast is assumed
would be at least 3.75 K even if poor weather is assumed.  

c) There are cases like thermal line-scanners where the total field of view is 
extremely wide. In these cases, SCNTMP is likely to be 20 K or larger when 
thermal conditions are good. 

d) Since SCNTMP represents display average luminance, it is not physically 
possible for SCNTMP to be less than ha

 
9.3.2 Effect of Contrast Enhancement 

Contrast enhancement can significantly boost performance. As an example, an observer 
is searching using a LWIR imager on a f

ission. If a 2 K target is at four kilometers, then apparent contrast is (.7)4 2/20 or 
.024 contrast on the display. In this example, scene contrast temperatu

es the target temperature or 10 K. It is assumed that the background scene 
t is fairly hot, and this really establishes the scene contrast temperature. If the 
er detects the target and then optimizes the imager for target ID, SCNTMP is 
d (gain is increased) to a value five times the apparent temperature (SCN  
s 2.4 K), so that the contrast on the display 
ed contrast depends on the noise characteristics of the sensor, but the improved 
t could be significant. 
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a) When search is modeled, SCNTMP is set based on scene contrast or at least 
three times the target signature, whichever is bigger. Atmospheric transmission 

ture, then SCNTMP = 

 

9.3.3 C
At each

reduces the apparent thermal signature (TTGT) as range increases, and CTGT is 
modeled as  CTGT = TTGT/(2 SCNTMP). 

b) When modeling target ID or any circumstance where contrast enhancement 
can be assumed, then CTGT is fixed at the zero range value. If SCNTMP-0 is the 
input value (the zero range value) of scene contrast tempera
TTGT SCNTMP-0 / TTGT-0. 

alculating Probability of Task Performance 

 range, apparent thermal contrast T GT
TTGT-0 
CTGT =
enhanc
CTFHs
and CT
vertica

T is established based on zero range contrast 
by using Beer’s Law or MODTRAN. If no contrast enhancement is assumed, then 
 TTGT/(2SCNTMP) and SCNTMP remains constant at SCNTMP-0. If contrast 

ement is used, then CTGT = TTGT-0/(2SCNTMP-0) but the SCNTMP used to calculate 
ys and CTFVsys decreases with range: SCNTMP = TTGT SCNTMP-0 / TTGT-0. CTFHsys 
FVsys are calculated and the TTP metric is found for both the horizontal and 

l dimensions. 

( )∫











=

cut

low

d
sysCTFH

TGTCξ

ξ
ξ

ξ

2/1
  (9.19) HTTP

( ) η
η

η

η
∫











cut

low sys

TGT d
CTFV

C
2/1

  (9.20) =VTTP

“Cycles on target” Nresolved is found using Equation 9.21. 

Range
VTTPHTTPTGTA

ved =   (9.21) resolN

he out-of-band Spurious Response Ratio (SRRout) is found for both horizontal and 
e of sampling artifacts; see Part 7.  

T
vertical, and Nresolved is corrected for the presenc

outoutresolvedsampled SRRVSRRHNN 58.0158.01 −−=   (9.22) 

The TTPF is used to find the probability of task performance. 

    
1

50

50

Esampled

Esampled

V
N

V
N

P







+










=    (9.23) 

where  
Nsample   (9.24) 24.051.1E d+= 50V  
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9.4 M
In the 
arrange  in re  ba are c to a blackened, metal plate 
is mounted in front of a blackbody. The temperature difference between the plate and 
blackbo
bar. A
frequen

ion is permitted. Display d 
or measured. The imager’s settings are not mo t viewed 
in a fashion that correlates to fie ars s
that only a gross estimate of laboratory MRT can e used 
as an indicator that the system is operating at so

The bar pattern positions for which the mo n by 
the dotted lines in Figure 9.5 Th  used in place of the sy
MTF. Assume that the white area is hotter and is called the bar. The amplitudes are 

 

inimum Resolvable Temperature 
laboratory, thermal sensors are characterized using 4-bar patterns. The bar-target 
ment is shown  Figu  9.4. The rs ut in which 

dy is controlled. Each bar pattern is seven times longer than the width of a single 
 plot of temperature difference between the bars and spaces versus spatial 
cy is called Minimum Resolvable Temperature (MRT).  

MRT is a poorly controlled measurement. The imager gain and level are “optimized” for 
each bar size; saturat

the openings of metal plate. 

Plate with bar-pattern 
cut-outs

Plate with bar-pattern 
cut-outs

blackbodyblackbodyblackbody
Figure 9.4  4-bar pattern used for 
MRT. Blackbody is viewed through 

luminance and contrast are not controlle
nitored, and the bar targets are no

rience over many ye
 be predicted. MRT should only b

me acceptable level. 

dulation difference is calculated are show

ld performance. Expe uggests 

is modulation difference is stem 

calculated as follows.

 ( ) ( ) cos(2)'2cos(2[ ' ' ξπξξ WHHWH +∫= ∞ ')]'64 ξξπ dWWsysbar ∞−−

Figure 9.4  4-bar pattern showing 
positions where difference 
modulation is calculated. 

 (9.25) 

( ) ( ) ')' ' 4 ξξπξξ dHHWA sysbar −
∞
∞−∫= 2cos(' Wbar  (9.26) 

( ) ( ) ')'4cos(' ' 4 ξξπξξ dWHHWA barsysspace −
∞
∞−∫=  (9.27) 

 (9.28) 

where 

( ) ( ) ( ) ' ' /' ' ξξξξ dHSMAGHH LeyesysL ∫
∞
∞−LS =
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ξ’ = dummy variable for integration 
W = 1/(2ξ) 
L = 7W 
HL(ξ), the bar-length MTF, is sin (πfL) / (πfL) 
HW(ξ), the bar-width MTF, is sin (πfW) / (πfW) 
SL = Fractional intensity due to blur of bar length 

The relationship between CTFsys and MRT is:  

( ) 







=
)(

)()(
)(

ξ
ξξ

ξ syssys CTFH
MRT

 − )()( ξξ Lspacebar SAA
  (9.29) 
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Appendix A:  Description of Validation Experiments 
A robust performance metric must provide accurate predictions for various shape and size blurs, good and 

s applicable to both framing and snapshot imagers. Experiments with white 

tance was not constrained with a chin rest or bit-bar. A high resolution, black and white 

ay are shown in Table A1. 

poor intrinsic target contrast, various levels and types of noise, and must accurately predict the performance 
of sampled imagers. A series of experiments was designed to ensure the metric is accurate for a wide 
variety of image characteristics. Some of the experiments are not reported here. Experiments which 
demonstrated that the model works with both fixed spatial noise and temporally random noise are reported 
in Reference 23. The model i
noise which had both uniform and Gaussian amplitude distributions are also reported in that reference. We 
found that only the RMS noise level mattered; the nature of the amplitude distribution did not matter. This 
paper describes experiments to test the TTP metric with various types and levels of blur, noise, and 
contrast. Experiments with sampled imagery are also reported in this paper. 

Two displays were used in these experiments. The color display was a high quality CRT, computer 
monitor. On this display, a 200 pixel image measured 3 inches. The color display was operated in a mode 
with 8 bit quantization of the video. Typically, subjects viewed this display from about 18 inches; however, 
the viewing dis
display was also used. This display provided 10 bit quantization of the output video. On this display, 591 
pixels measured 3.25 inches. Typically, subjects viewed the black and white display from about 15 inches. 
The viewing distance was not constrained except in Experiment 25. In all of the experiments, the average 
display luminance was five fL. Gamma correction was not used for either display. The estimated MTF for 
the color display and the measured MTF for the black/white displ

Table A1   Display MTF 

Spatial frequency cycles/milliradian 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.4 

Black/white horizontal MTF .98 .94 .86 .77 .66 .56 .35 .20 .10 .04 

Black/white vertical MTF .98 .92 .83 .71 .59 .47 .26 .12 .05 .02 

Color horizontal MTF .96 .85 .69 .52 .36 .22 .06 .01   

Color vertical MTF .97 .89 .77 .63 .48 .35 .15 .05 .02  

 

A.1 Target Acquisition Task 
ll of the experiments reported here involved target identification (ID). In these experiments, the observers 
ere trained to identify twelve targets. Images of the targets were then degraded by blurring, adding noise, 

or reducing contrast, and the observers were asked to identify the target based on the degraded image. 

The twelve targets are shown in Figures A1 and A2. Both thermal images and visible images were used; 
only examples of the thermal imagery are shown here. Figure A1 shows only a side aspect of each target, 
but twelve aspects of each of the twelve targets were used during the experiments. Figure A2 shows these 
aspects for the T55 Russian tank. Pristine image sets were collected in both the thermal and visible spectral 
bands. The size of the images was 401 by 590 pixels. The square root of target area, averaged over all 
aspect angles, is 3.11 meters. The target range during imagery collection was 125 meters.  

A
w

 

M109 M113

2S3 M551

BMP M1A

M2 M60

ZSU T55

T62 T72

 

Figure A2. Illustration of the 12 aspects used for each target 
shown in Figure A1. Target shown is a T55 Russian tank. 
Figure A1. Illustration of the 12 targets 

used for experiments. 
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These images were processed to generate the experiments. In all of the exper
was created for each combination of MTF, noise, contrast, or range. Each cell 

iments, a cell of 24 images 
contained two aspects of all 

The subjects were all active military and experienced in the use of thermal imagers. In addition, each 

 the images; 
 in Figure A3. Noise levels varied from zero to levels that completely 

e magnification varied, depending on the experiment, from 0.63 to 2.8. 
  r o s g f 0  205. In some cases 

pled, n a  t   r t ” or electronically 
 needed  c t o n f provides 

 white-no x . l e (0 pl e is used to define 
quency is in  p i d n e a e. R S noise is in units of 

fL. Noise was random with a Gaussian amplitude distribution. Noise was added to the imagery at run time; 
red noise frame s d c d to  t mage at the 60 Hertz 

isplay rate. None of the imagery in these experiments exhibited sampling artifacts. Pre- and post-filtering 
was always sufficient that no sampling artifacts were visible.  

Table A2.  MTF, noise, and contrast experiments 

Experiment  MTF 
Type 

MTF 0.043 cutoff   
object space cy/millirad 

Contrast Down- 
sample 

RMS  
noise 

zoom Display & 
Magnification 

twelve targets. Each of the aspects shown in Figure 6 was represented twice in each cell. This aspect 
distribution was chosen to make task difficulty as uniform as possible between cells. With 144 total images 
and 24 images per cell, up to six blur and noise combinations were created without repeating the use of an 
original image; these six cells created a “line” in the experiment. In all of the experiments, comparisons 
between different MTF types or different noise or contrast levels used the same original images to create 
the cells to be compared. This means that the same image was viewed three to five times in one experiment. 
Since the experiments contained between 432 and 720 images, it was doubtful that subject learning 
occurred because of repeating the images. Cell presentation was random based on a pre-selected order; all 
subjects saw the images in the same order. All of the images in one cell were presented sequentially.  

observer was trained to ID the tactical vehicles used in these tests. All observers passed a pre-test with at 
least 95% correct; most observers passed with a 100% score. The average number of subjects for an 
individual experiment was 15 but varied from a minimum of 9 to a maximum of 23. The perception 
laboratory was moved between Army bases in order to maintain a large subject pool. 

A.2 Description of Experiments 
A.2.1 Experiments with well-sampled imagery 

Gaussian (G), exponential (E), rect, and Difference of Gaussian (DOG) MTF were applied to
these MTF types are illustrated
obscured the targets. Th
Experiments were also performed with average ta get c ntra t ran ing rom .013 to 0.
the images were down-sam
zoomed. This process was

oise 
 to in

dded
creas

, and
e the

then 
impa

he im
t of 

ages
he n

were
ise o

“inte
 per

pola
orma

ed up
nce. Table A2 

details for the MTF and ise e periments  In the tab e, th  e-π .043) am itud
frequency cutoff. Fre units of cycles er m llira ian i  obj ct sp c M

one of 240 pre-sto s wa  ran omly sele ted and a ded  the targe  i
d

6a line 1 G .11,.14,.17,.23,.34,.68 0.205 By 2 0.0 No Color  (2.85) 
6a line 2 E .18,.21,.27,.36,.54,1.1 0.205 By 2 0.0 No Color  (2.85) 
6b line 1 G .11,.14,.17,.23,.34,.68 0.205 By 2 0.0 No Color  (2.85) 
6b line 2 E .11,.14,.17,.23,.34,.69 0.205 By 2 0.0 No Color  (2.85) 
6b line 3 E .1,.12,.14,.19,.29,.57 0.205 By 2 0.0 No Color  (2.85) 
9 line 1 G .18,.21,.26,.35,.53,1.05 0.205 By 2 0.0 No Color  (2.85) 
9 line 2 E .07,.08,.1,.13,.2,.41 0.205 By 2 0.0 No Color  (2.85) 
9 lin 91 e 3 DOG .14,.19,.23,.31,.46,. 0.205 By 2 0.0 No Color  (2.85) 
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frequency cutoff in the table.  Frequency in cycles
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Figure A.3  Various types of MTF are shown. The
dotted line indicates the 0.05 value used to indicate
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9 line 4 Rect .23,.28,.34,.46,.71,1.4 0.205 By 2 0.0 No Color  (2.85) 
13 line 1 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0 By 2 Color (1.42) 
13 line 2 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0.37 By 2 Color (1.42) 
13 line 3 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0.74 By 2 Color (1.42) 
13 line 4 G .23,.27,.34,.46,.68,1.4 0.205 By 8 1.1 By 2 Color (1.42) 
19 line 1 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 0 By 2 Color (1.42) 
19 line 2 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 1.1 By 2 Color (1.42) 
19 line 3 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 1.83 By 2 Color (1.42) 
19 line 4 E .36,.43,.54,.72,1.1,2.2 0.205 By 8 2.44 By 2 Color (1.42) 
20 line 1 G .23,.27,.34,.46,.68,1.4 0.205 By 8 0 By 2 Color (1.42) 
20 line 2 G .23,.27,.34,.46,.68,1.4 0.205 By 8 1.1 By 2 Color (1.42) 
20 line 3 G .23,.27,.34,.46,.68,1.4 0.205 By 8 1.83 By 2 Color (1.42) 
20 line 4 G .23,.27,.34,.46,.68,1.4 0.205 By 8 2.44 By 2 Color (1.42) 
33 line 1 G .2,.23,.27,.34,.46,.69 0.11 By 4 0 No Mono (.63) 
33 line 2 G .2,.23,.27,.34,.46,.69 0.055 By 4 0 No Mono (.63) 
33 line 3 G .2,.23,.27,.34,.46,.69 0.036 By 4 0 No Mono (.63) 
33 line 4 G .2,.23,.27,.34,.46,.69 0.02 By 4 0 No Mono (.63) 
38 line 1 G .42,.45,.48,.51,.55,.61 0.205 By 4 0 No Mono (.63) 

 

A.2.2  Experiments with sampled imagery 

Sampling experiments were performed to show that the new metric works when a half-sample cutoff is 
imposed. That is, the TTP metric bases image quality on the un-corrupted frequency spectrum. Current 
models using the Johnson criteria cannot impose the half-sample cutoff, since this results in pessimistic 
performance predictions. In the sampling experiments, the blur, sampling, and display size were varied to 
represent the effect of increasing range.  

Two experiments were performed. Experiment 25 examined the impact on range performance of different 
display interpolations. Visible display-pixel structure, like line raster or the edges of square pixels, tends to 
mask the underlying image and decrease range performance. Visible pixel structure is minimized by a good 
display interpolation which filters out spectrum beyond the half-sample frequency. In Experiment 25, 
aliased signal at less than the half-sample frequency was minimized. Experiment 36 was performed to 
explore the impact of large amounts of in-band aliasing on targeting performance. A small detector fill-
factor was used to generate aliased signal at frequencies less than the half-sample rate. 

The sensor simulated in Experiment 25 had the following characteristics. The mid-wave IR, staring focal 
plane array had 256 by 256 detectors. The active detector area was 28 microns on a 30 micron pitch. The 
sens had a 22 centimeter focal length. The simulated 
rang rements.  

The or. Experiment 25 consisted of six lines each with 
six t calls per cell. Each line used different interpolations to increase image size 
(electronically zoom the image); this changed the character is the displayed image by adding variable 
amounts of pixel structure. The display interpolations for each line are shown in Table A3. The kernel 
shown in Equation (A-1) provided the least amount of display structure; this kernel provides a good filter at 
the half-sample rate. 

Kernel = [.011   0   -.089   0   .58   0   .58   0   -.089   0   .011]   (A-1) 

ct of large amounts of in-band aliasing on targeting 
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0Sen ue−=

25 line 1 None Replicate Replicate 4 9 Large 0.9 
25 line 2 None Bilinear Replicate 4 9 Large 0.94 
25 line 3 None Equation Replicate 4 9 Large 0.97 

(23) 
25 line 4 Replicate Replicate Replicate 8 18 Large 0.82 
25 line 5 Bilinear Bilinear Replicate 8 18 Large 0.93 
25 line 6 Equation 

(23) 
Equation 
(23) 

Replicate 8 18 Large 0.97 

36 line 1 None None Bicubic 11 10.6 Large 0.96 
36 line 2 None None Replicate 11 10.6 Large 0.8 
36 line 3 None None Bicubic 11 10.6 Small 0.73 
36 line 4 None None Replicate 11 10.6 Small 0.62 
 
Viewing distance is a problem with sampling experiments. In terms of performance degradation, the most 
serious type of sampling artifact is visible pixel structure. That is, display raster, pixels edges, and other 

 be strictly controlled. This station 

ith Colored Noise 

Two experiments tical ex pt that ed 

ncy cutoffs at the eye were 

periodic modulation beyond the half-sample frequency prevents the visual system from integrating the 
underlying picture. But eye MTF is a significant post filter. When sampling artifacts are present, the image 
can generally be seen better by moving the eye position away from the display. As viewing distance 
increases, eye MTF filters out the sampling artifacts. This behavior ruins the experiment.  Unfortunately, in 
our facility, there is only one display station where viewing distance can
was used for Experiment 25. The subjects were seated in a reclined chair such that the display viewing 
distance could be controlled at 18 inches. Viewing distance was not as well controlled for Experiment 36. 
The subjects were placed in fixed–back chairs without coasters and warned about excessive head 
movement. However, the subjects were not continually challenged to maintain head position. We did 
observe subjects sometimes lean back in an apparent effort to better discern the image. 

A.2.3  Experiments w

 with colored noise were performed; the experiments were iden ce  one us
thermal images and the other used visible images. The contrast of the visible image set was 0.37; the 
contrast of the thermal set was 0.205. Each experiment consisted of four lines of six blurs each. The six 
blurs were created with a Gaussian kernel with e-π object-space frequency cutoffs of  0.2, 0.23, 0.27, 0.34, 
0.46, and 0.69 cycles per milliradian. Magnification was 0.63, so that freque
0.32, 0.37, 0.43, 0.54, 0.73, and 1.1. The images were blurred and then down-sampled by four. Frames of 
static, white noise were filtered and then added to the down-sampled images for display on the black and 
white monitors. The first line had no noise added, the second line had white noise added, the third line had 
low frequency noise added, and the forth line had high frequency noise added. The MTF of the noise filters 
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are shown in Figure A4. The RMS of the white noise before filtering was 0.98 fL for the white and high 
frequency noise lines. Before filtering, the RMS of the low frequency noise was 18 fL.  
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ach metric. The TTPF curves are logistics functions as define
JC50 is 6.98. For the TTP metric, N50 is 20.8. 
Figure A6.  Results of MTF, contrast, and
noise experiments for TTP metric. 
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d by Equation (A-3). For the Johnson metric, 
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data. That is, the data are adjusted to remove the one in twelve chance that the subject w

where for the TTP metric 
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The PID data represent the average number of correct calls for all observers for each cell of 24 target 
images. The experimental data are corrected in two ways. First, the probability of chance is taken out of the 

ill correctly ID the 
target by accident. The data are also corrected for mistakes. Experimentally, the ID probabilities asymptote 

 0.9 rather than 1; there is a 10% mistake rate that does not correlate to cycles on target. Equation (A-6) is to
used to correct the measured data.  

chance

PP −
        

9.0 P
chancemeasured

IDP
−

=
  (A-6) 

(PSQ) is 0.94. Also, the sampling cutoff applied in the noise experiments does not affect model accuracy. 
Experiments 13, 19, and 20 had a half-sample frequency of 0.42 cycles per milliradian. The image content 
beyond the half-sample frequency was mainly aliased content and represented image corruption. To 
generate Figure 9, the integral for the TTP metric was taken from 0.0 to 0.42 cycles per milliradian. The 
TTP metric was not affected by a half-sample frequency cutoff. 

The Johnson criteria are less accurate. In Figure A-5, there is a general scatter of the data. The PSQ is 0.72, 
the average error is 0.1, and the maximum error is 0.32. There is also a vertical line of values at N = 10.5 
and again at N = 22 which result from limiting ξcut to the half-sample frequency. Figure A-7 shows results 
for the Johnson criteria without the half-sample limit. Prediction accuracy improves somewhat. For the 
experiments shown, the average error without the frequency limit is 0.096 and the maximum error is 0.36. 
The PSQ is 0.75.  

Figure A-7. Johnson predictions 

It is observed that some subjects do approach 1.0 probability with good imagery, but averages over a group 
of subjects do not. The subjects are trained and tested before the experiment, and the subjects are given rest 
periods. Prizes are awarded  for the best performance, and this appears to motivate the subjects. Whether 
performance would improve or degrade in actual combat is not known. Certainly motivation would 
increase. However, these are difficult experiments, and it would seem that getting nine out of ten calls 
correct would indicate reasonable motivation on the part of the subjects. Whatever the source of these 
errors, they do not correlate to image quality. 

As seen in Figure A-6, the TTP metric provides an excellent fit to the data. The new metric predicts 
accurately for various shape and size blurs, good and poor intrinsic target contrast, and various levels of 
noise. The average error is 0.046 and the maximum error is 0.21. The square of the Pearson’s correlation 

without the half-sample frequency 
limit imposed. 
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A.3.2 Results of sampled imagery experiments 

N  and N  are decreased by an amount that depends on the sampling artifacts predicted to be 
e model used to predict the amount of sampling artifacts is described by 

Vollmerhausen (2000) el prediction e 
Johnson criteria and th resolved (or NJCresolved d 
the ordinate is PID. As seen in Figure A-8, the Johnson criteria predictions are consistently pessimistic 

A-9, the TTP metric does provide a good fit between model and data with a 
PSQ correlation above w metric valu is 
occurs because of the n ally derived, fractional 
decrease in range performance. As the target gets further from the sensor and therefore smaller on the 

rate th
ow

herm
va

resolved JCresolved
present in the image. Th

. Figures A-8 and A-9 show Experiment 25 results and mod s for th
e TTP metric, respectively. In both figures, the abscissa is N ) an

However, as seen in Figure 
 0.9. Sampling predictions are pessimistic at long ranges (lo es). Th
ature of the sampling correction. The correction is an empiric

display, sampling actually has a greater impact on performance. However, this is currently not modeled. 

Figures A-10 and A-11 show results from Experiment 36. Again, the Johnson criteria is pessimistic. The 
TTP metric accurately predicts performance with a PSQ of 0.93.  In Figure A-11, TTP model predictions 
are accurate at long range but pessimistic at short range; this is the opposite of the Experiment 25 behavior 
shown in Figure A-9. Remember, however, that the subjects moved their heads, optimizing performance in 
a way not predicted by the model. 
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Johnson criteria results are shown in Figures A-14 and A-15 for the thermal and visible images, 
spectively. The N50 for the visible images is 5 based on fitting the curve to the no noise and white noise 

ata. There are systematic errors, particularly for the low frequency noise. 
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Figure A-12. TTP metric results of colored 
noise experiment with thermal imagery.  
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Appendix B: Experiments with Low Contrast and Boost 
In all of the validation experiments, the single largest error associated with TTP 

applied. It initially appeared that the error might be systematic, so further evaluations 
were performed. The results of those evaluations provide some insights into the workings 
of the model and the pitfalls associated with this type of experimentation. 

Experiment 34 used Gaussian blurs with e-π MTF cutoffs in object space of  0.2, 0.23, 
0.27, 0.34, 0.46, and 0.69 cycles per milliradian. This was an ID experiment as described 
in Appendix A. The black and white display was used. The system magnification was 
0.63. Since the images were minified compared to object space, frequency cutoff at the 
eye is proportionally greater than the cutoff in object space. The experiment consisted of 
applying the six Gaussian blurs to the 590 by 401 pixel, thermal images. Four sets of 
im  of 0.11 and two with contrast of 0.033. One 
im equency noise 

F compar n 
corrected for chance (0.083 probability  
error is for low blur, low contrast

 
.3 and B.4. These figures show

predicted well, but absolute predic
all. 

predictions occurred for low contrast (0.033), no-noise images with high-frequency boost 

was added to the imagery. The imagery was down-sampled by four before presentation.  

low contrast predictions, particularly with boost applied. The d

ages were created, two with contrast
age set at each contrast had high fr boost applied; see Figure B.1. No 

ed to the observer data. The data have bee
Frequency cycles/milliradian

igure B.2 shows the TTP predictions 
) and for mistakes (0.1 probability). The largest

, with boost. There appears to be a systematic error for 
ata is re-plotted in Figures

 that the performance improvement due to boost is 
tions are pessimistic for low contrast when the blur is 
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Figure B.1  Plot showing 
relationship between Gaussian 
blur, applied boost, and final 
“after boost” MTF. 

Figure B.2  Results of 
Experiment 34 showing model 
and observer data.  
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Figure B.3  Re-plot of the 0.11 
contrast data and model. The 
“frequency cutoff number” 
refers to blur size, with small 
blur at cutoff 1.  
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contrast data and model. The 
“frequency cutoff number” 
refers to blur size, with small 
blur at cutoff 1.  
ilar results were obtained for Ex
Appendix A. This experime  

.

periment 33; details for this experiment are described 
nt used Gaussian blur and explored the effect of changing

11 to 0.018. The data are plotted in Figure B.5 Again, 
aller blurs. In this case, boost was not used.  

number
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Figure B.5  Results of 
Experiment 33 showing model 
TTPF and observer data for 
0.11, 0.06, 0.033, and 0.018 
he images from Experime
s needed to ID the targets were availab
 not statistical. Remember that th
play used had unusual contrast dynam
h observer probability did have good target cues. 

ntrast changes, the same target set is used as contrast as 
 avoid many repetitions of showing the same image set, a different 

age set is used for each blur (each frequency cutoff). Experiment 39 was run to 
ermine whether the model errors can be explained by a change in task difficulty. That 
if the model error is systematic, then changing the order in which blur is applied to the 
eriment cells should not affect the results. In Experiment 39, the cells which in 

periments 33 and 34 had small blur were given large blur.  

en t
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le in the small blur image sets. The data errors 

ese images were not corrupted by noise, and that the 
ic range (10 bit). The images associated with 

 compare performance as co
nged. In order to
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The results of experiment 39 are shown in Figure B.6. The model pessimism did 
disappear. In Figure B.7, the results of Experiments 33 and 39 for the same contrast and 
blur are averaged. No attempt was made to establish the most difficult target set and 
average that with the easiest set; the matching occurred by chance. Clearly, a systematic 
model error does not exist. 

This evaluation points up two problem
predicted  until we can predic
image quality. Second, because human observers  

s. First, target acquisition cannot really be 
t task difficulty. The target is not in the model; we model 

 learn quickly, the same target image set
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Figure B.6  Results of Experiment 
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Figure B.7  Average of observer 
results from Experiments 33 and 
39. Averaging task difficulty by 
mixing the targets viewed at each 
blur and contrast makes the 
model more accurate.  

cannot be used over and over. But comparing performance based on different target 
groupings leads to errors because of the change in task difficulty. 
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Appendix C: Recognition Experiment 
The experiments used to develop the TTP metric used the ID task. The task was kept 
consistent so that the model did not change between experiments. With a fixed and 
known N50, the TTPF model curve is known and fixed. That same model curve is then 
compared to the results of numerous experiments, showing that the model can predict the 
impact of changing blur shape and size, noise, contrast, and sampling.  

The primary reason for performing a recognition experiment is to verify that the sampling 
easier target acquisition task than ID. The recognition 

heck on the TTP metric. 

 involved discriminating between tanks, trucks, and 
C). An N50 of 3 for the Johnson criteria and 14.5 for the 
this type of recognition task. However, trucks are much 

e from tanks or APC than APC from tanks. This recognition task is a 
mixture of easy and hard discriminations, and does not constitute a good target 
acquisition experiment for model validation.  

Devitt (2001) describes a new recognition set consisting of tracked-armored, wheeled-
armored, and wheeled-truck. She demonstrated that the three classes were equally 
difficult to discriminate. Further, this new recognition task has operational significance 
because wheeled combat vehicles are becoming more common. The target set used for 
this experiment is shown in Table C.1. Figure C.1 illustrates the three types of vehicles. 

A 256 
micron
black a
kilome
active 
changi
active 
the det

adjustments are applicable to an 
experiment is also a further c

Previously, target recognition
armored personnel carriers (AP
TTP metric is associated with 
easier to discriminat

The Jo
therefo
root of
contras

 

Figure C.1  Recognit
Experiment involved many vehicles and aspects; these are examples. 

ion Tracked-armored/Wheeled-armored/Wheeled-truck  
by 256 focal plane array was used for this experiment. The detector pitch was 25 
s. The F/2 optics had a 7.33 centimeter focal length. Imagery was displayed on the 
nd white monitor. Simulated ranges were 0.43, 0.64, 0.97, 1.3, 1.6, and 2.15 

ters. Various amounts and types of aliasing were created by changing detector 
area (detector fill factor) and display technique. In-band aliasing was varied by 
ng the detector fill factor. Low in-band aliasing resulted from setting the detector 
area to 25 microns (100% fill factor). High in-band aliasing resulted from setting 
ective active area to 1 micron (fill factor of 1/25 in both directions).  

hnson N50 for the new recognition task is 3.5 (Devitt, 2001); the TTP N50 is 
re 16.9. The conversion between N50 values is discussed in Section 6. The square 
 target area averaged over all targets and aspects is 2.93 meters. Average target 
t is 4.1 K.  
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To change out-of-band aliasing (visibility of pixels), different display interpolations were 

r lines: (1) no in-

resolved e sampling artifacts predicted to be 

Figure C.2  Model (solid line) and observer data 

used in the experiment; these are shown in Table C.2. In all cases, sensor imagery was e-
zoomed by 11 in both horizontal and vertical. Low out-of-band aliasing resulted from 
using the MATLAB bicubic image resize function to resize by eleven. The bicubic 
interpolation filtered out-of-band aliasing; no raster or pixel effects were visible. High 
out-of-band aliasing was created by using pixel replicate to e-zoom by eleven. In this 
case, the pixels were readily visible. The experiment consisted of fou
band and no out-of-band aliasing, (2) no in-band with out-of-band, (3) in-band but no 
out-of-band, and (4) both in-band and out-of-band aliasing. 

N  is decreased by an amount that depends on th
present in the image; this is discussed in Section 7. The amount that Nresolved is decreased 
for each line of the experiment is shown as the “sampling factor” in Table C.2. 

Figure C.2 shows the observer data and the model predictions. The fit between model and 
data is excellent. Both the TTP metric and the adjustment for sampling artifacts are 
applicable to the recognition task. 
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Table C.1  Vehicles and aspects used in the recognition experiment
 

 

TRACKED WHEELED TRUCK (SOFT) WHEELED ARMORED 

Target Aspect Target Aspect Target Aspect 

2S1  3NE,  7NG 
2S3  0NG,  7NG,  

HEMMT  0NG, 2NG, 4NG,  
  6NG 

BR
 

ACRV  2NE,  6NG 
AVLB  1DE 
BMP-1   6NG, 7NE 
M1064  2NG  
M109A5  1DG 

M35  0NG, 2NG, 4NG,  
  6NG 
ASTROS  3DG,  4NE, 5NE,  
  1DG, 6NG 
FMTV/Lt  3NE, 5NE, 7NE 

BRDM-2 AT 0NE, 3NE, 5NE,  
  4NG, 6NE 
BTR-70  4NE, 5NG, 1DG,  
  6DG, 1N
LAV-25  0DG, 3D

M109A6  3DE, 5NG 
M113  4NG 
M1A1  0NE 
M1IP  4NG, 5DE 
M2  2NE, 3NE 

FMTV/Md  0NG, 2NG 
FROG-7  1DE,  4DG, 5DG,  
  1DG, 6DE 
GAZ-66  
  

LAV-AD  0DG , 5DE, 1NG, 6NE 
LAV-AT  0DG, 1DE, 2DE, 7DG 
LAV-CC  4NE, 5NG, 2DG, 6DG 

M
M

48  1DG 
548  2NE, 3DG 

M551  4NE, 1NE 
M577  0NE, 7DG 
M578  5DE 
M60A3  0NG, 7NE 
M728  0DE, 6DG 
M88  5DG, 7DE 
M901  4DE, 5DE 
M992  4NE  
MTLB  3NG, 6NE 
T-55  2NG, 6NG 
T-62  4DG, 1NE 
T-72  3NE, 6NG 
T-72 (Reac) 1NG  
ZSU-23/4   0NG, 2NE 
M41  5DE 

0NG, 3NE, 2NG,  
5NE, 7NE 

GRAD-1  4DG, 5DG, 1DG,  
  6NE, 7NE 
HMMWV  0NG, 3NG, 2NE,  
  7NG, 1NE 
HMMWV  6NE, 7NE, 1DG,  
         -TOW 4DE, 5NG 
STYX  4NG, 5NE, 1DE,  
  6DG, 3NE 
 

DM-2  4NE, 5NG, 1 DG,  
 6DG, 0NE, 2NG 

G, 3NG, 7NG 
E, 6DG, 7NG 

LAV-M  4DG, 3DG, 2NG, 7DE 
LAV-Rc  4DE, 5NG, 7DG, 3DE 
M-93A1  0NG, 3DE, 2NE, 7DG, 
  2DE, 5NE 
 
ASPECT KEY 
FIRST CHARACTER 
0= front, 1=left front, 2=left flank,  
3=left rear, 4=rear, 5=right rear 
6=right flank, 7=right front 
 
SECOND CHARACTER 
N= night 8-12 micron thermal 
D= day 8-12 micron thermal 
 
THIRD CHARACTER 
G = 0 elevation 
E = 7 degree elevation 
 

Table C.2  Interpolations, fill factors, and Nresolved 
sampling factor for each experiment line 
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line interpolate E-zoom System 
magnification 

Detector  
fill-factor 

Sampling 
factor 

1 Bicubic 11 10.6 Large 0.96 
2 Replicate 11 10.6 Large 0.8 
3 Bicubic 11 10.6 Small 0.73 
4 Replicate 11 10.6 Small 0.62 



 

Appendix D. ID Performance with speckle imagery 
 

The ability of the TTP metric to predict performance of humans viewing images produced by laser range 
gned and an image set was 

simulated. The simulated sensor was modeled on current electron bombarded CCD (EBCCD) technologies. 
Because nology of la x of cohere
types of processes had to be represented in the imaging chain. Figure D.1 shows where in a representative 

the tran acter  the sens alculated as tensity ( ) or power 
rent).  

gated (LRG) imagers was investigated. A perception experiment was desi

 the phenome ser range gated sensors is a mi nt and incoherent effects, both 

imager sfer char istics of or are c  field in coherent
(incohe
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Figure D.1 Imaging chain in LRG s

e the c t portion of the imaging chain, the field from gh the 
optics d onto the image plane of the camera.  Ta ay level 

ati  the target simulated the amplitude of the  the sensor 
aperture. The phase of each pixel in the object was chosen from a uni riable over 
the interval [0,2π) since the target was considered to be rough com h of the laser 
illumination.  For each point on the source object, a coherent impul  response (blur) was created in the 

age plane.  Since the source points had random phases, the resulting image was formed through the 
terference of a number of impulse responses at the image plane. The resulting output field at the image 

lane was the complex input (electric field) convolved with the coherent impulse response.  The field was 
then converted to irradiance by squaring the magnitude of the field at the focal plane. All other blurs in the 
sensor, including the electron proximity focus and detectors of the EBCCD, were linear with respect to the 

wer.  

iven in Table D.1. Using these characteristics, the coherent 
n n ons for t n  w re created.  

m ameters. 

ensor 

To simulat oheren the object was propagated thro
ing the square root of the gr

u
collection and image k
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irradiance and were applied as point spread functions in po

The characteristics of the simulated sensor are g
and i coherent impulse respo se functi he optics a d detectors

Table D.4. Si ulated sensor par

Parameter 

Wavele 1.57 mngth 

e

Value 

icrons 

Aperture diameter (centrally obscured) 125 mm 

Aperture obscuration fraction .3125 

Focal length 1250 mm 

Detector size 13 microns square 
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The coherent impulse response or point spread function (PSF) of the optics was calculated using the 
following equation 

( ) 





Ω
−





Ω
= 2 rsombrsombrPSFOptics εε    (D.1) 

 00

where r is an angular subtense measured from the sensor and Ω0 is the ratio of the aperture diameter to the 
focal length. The incoherent impulse response of the electron proximity focus was implemented as a filter 
in the spatial frequency domain. The filter function was modeled by fitting a supergaussian to measured 
MTF data. The resulting MTF is given by 

 

( )












−=
γ

β
ffMTFProx exp      (D.2) 

where γ was found to be 1.64 and β was found to be 25.5 cycles per milliradian of angle measured from the 
sensor.  The incoherent detector PSF was calculated using  

( ) 





=

w
rrectrPSFDet      (D.3) 

where w is the angular subtense of a detector measured at the sensor. After application of all blurs, the
imagery was downsampled by ving 295 horizontal pixels and 
200 vertical pixels.  

t included these 12 targets with 12 aspects 

were collected using 
35mm cameras with color film ed, converted to grayscale, and 
processed to have a re 8 cm per sample in both hori nd vertical directions.  The images 
were used as the sour at was converted to an electric field in the simulation. Examples of the 
simulated images are s re D.3. 

 
a factor of two, which resulted in imagery ha

The system described above was simulated under four conditions.  The first condition was incoherent 
(spatial and temporal incoherence).  Under this condition, no random phase was applied to the pristine 
image. The second condition was a single shot LRG-SWIR mode where temporal coherence was 
maintained and spatial phase was randomized, thus creating a speckle image.  The third condition was a 
two-pulsed average image and the third condition was an eight-pulsed average image.  The averaging 
decreased the effect of the laser speckle. 

The sensor simulation was applied to 576 images that were presented to U.S. Army soldiers as part of a 
perception experiment.  The primary purpose of the experiment was to determine the impact of speckle on 
target identification performance.  The standard NVESD identification target set is shown in Figure D.2.  
“Probability of identification” (PID) was established by NVESD as the ability of an observer to identify 
one of these targets from the other eleven targets.  The target se
resulting in 144 pristine images that were processed four different ways to produce the 576 perception test 
images.  The targets were chosen for their relative confusability and tactical significance.  The left flank of 
each vehicle in the visible target set is shown in Figure D.2.  The visible images 

at a range of 25 meters.  The film was digitiz
solution of 1.
ce power th

zontal a

hown in Figu
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2S3 BMP M113M109

T55 T62 ZSUT72

M1A M2 M60M551

 
Figure D.2. Target set used in perception experiment. 

 

 

 
Figure D.3. Simulated speckle images at 5km. 1. Incoherent.  2. Coherent – no averaging.  3. 

Coherent – 2 speckle average. 4. Coherent – 8 speckle average. 
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The perception experimental design is outlined in Table D.2.  From the pristine image sets of Figure D.2, 
12 targets with 12 aspects (144 images total) were distributed evenly across the columns of the table 
shown.  This distribution resulted in only two of the same target image in each column and two of the same 
aspect in each column yielding 24 pristine images associated with each column.  The 24 images were 
processed with a prescribed range.  In the column labeled “1,” 24 pristine images were blurred to 
correspond to a 1-km range through an incoherent sensor model and placed in cell “AA.”  Also, 24 pristine 
visible images (the same targets and aspects as those in AA) were processed with a 1-km range through a 
single laser range-gate shot sensor model and placed in cell “AB” and so on. 

Table D.2. Experiment Design 

Range(km)
1              3               5            7.5           10    15

Incoherent

Single Shot

AA BA CA DA EA FA

AB BB CB DB EB FB

Two Shot
Average

Eight Shot
Average

AC BC CC DC EC FC

AD BD CD DD ED FD

 
 

The standard NVESD target set was processed in a manner depicted in Table D.2.  A comparison of 
speckle images is shown in Figure D.3.  The images shown were simulated at 5 km with an incoherent 
process, a single-shot laser pulse, a 2-shot image average, and an 8-shot image average.  Image averages 
were obtained by adding independent speckle images.   The incoherent image was taken as a baseline for 
imagery comparison.  It can be easily seen that the speckle from the single-shot image can degrade the 
identification performance significantly. 

Fifteen soldiers were trained to identify targets with 99% proficiency prior to participating in the 
experiment.  The experimental cells were randomized to vary the level of target identification difficulty.  
The images were displayed on high-resolution grayscale monitors. The monitors have Gaussian MTFs with 
equivalent spot sizes of 0.306 mm horizontally and 0.237 mm vertically. There were approximately 70.9 
pixels per centimeter on the displays. The images were displayed with an average luminance of 5 fL and 
were viewed from a nominal distance of 15 inches. After correcting for chance guesses and mistakes, the 
average probability of ID for each cell in Table D.2 is given in Table D.3.  The probability of a chance 
guess was 1 in 12 and the probability of mistake was 1 in 10. 
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Table D.3. Percent Correct Identification 

In order to predict the performance  experiment, the contrast threshold 
function (CTF) of the system (includi ted. The system CTF would then be 
used to compute the target task performance (TTP) metric from which the probability of identification 
(PID) could be derived. To simplify these performance predictions, it was assumed that all the spatial 
distortions of the sensor could be applied incoherently and that speckle acted as additional display noise.  

In computing the system CTF, distinctions must be made in the definition of spatial frequency. This is due 
to the different ways of measuring angles in the system. From a sensor point of view, angles can be 
determined by the size of the target and the range. From the observer’s point of view, angles are determined 
by the size of the target on the display and the observation distance. The two angles are related by the 
magnification of the system. The relationship between the two spatial frequencies is given by  

 A B C D E F 

A 96.6% 99.5% 81.2% 83.3% 87.7% 72.4% 

B 99.0% 67.7% 26.2% 15.8% 10.9% 1.6% 

C 99.7% 71.0% 40.1% 21.3% 17.9% 5.1% 

D 99.3% 83.7% 64.7% 45.9% 32.7% 20.2% 

 for each cell in the perception
ng the observer) had to be compu

et fMf *=       (D.4) 

where ft  is spatial frequency measured at the sensor, M is the magnification, and fe is spatial frequency 
measured at the eye. In this experiment, all images were displayed at the same size with the blur from the 
system increasing with increasing range. Therefore, for the image sizes and display characteristics used in 
this experiment, the relation between range and magnification was given by  

RM *01028.0=      (D.5) 

where R is the range in meters. 

The system CTF was computed in spatial frequency measured at the eye. The equation used for the system 
TF is given by   C

( ) ( )
( ) 2

2
21

* LfMMTF
fCTF

fCTF
eSYS

eeye
eSYS

σα+=     (D.6) 

where CTFeye is the CTF of the observer’s unaided eye, MTFsys is the system MTF, α is a calibration 
constant which has been found to be 169.6, σ is the standard deviation of the display noise, and L is the 
average display luminance.  The system MTF is found from  

( ) ( ) ( ) ( ) ( )eDispeDeteProxeOpticseSYS fMTFfMMTFfMMTFfMMTFfMMTF **** =  (D.7) 

The MTF of the proximity focus (MTFProx) is given by equation D.2. The incoherent MTF of the optics is 
given by  

( ) 21−
++

=
CBAfMTFOptics     (D.8a) 
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The parameters φ and f0 are given by 



2























−+

= −

ε

ε
φ

2

21
cos 0

2

1 f
f

     (D.8e) 

and 

λ
df =0       (D.8f) 

ewhere d is th  aperture diameter. The detector MTF is given by  

( ) = ffMTFDet sinc 
 w     (D.9) 

where w is the angular subtense of the detector.  The display MTF is assumed Gaussian and given by 

( ) ( )[ ]2exp ffMTF ρ−=     (D.10) Disp

where, for f measured in eye space, ρ is the angular subtense of the Gaussian blur size of the display 
measured at the eye. 

 

The display noise is found from  

N
vh
22

2 σσ
σ =      (D.11) 

where N is the number of frames averaged (1,2, or 8),  
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( ) ( ) ( ) ( ) ( ) ( )∫
∞

∞−

= dvvMTFvMTFvMTFvMTFvMTFvS PerEyeDizpProxDetnh

22σ , (D.12) 

and 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

= dvvMTFvMTFvMTFvMTFvS EyeDizpProxDetnv

22σ  . (D.13) 

Sn(v) is the power spectral density (PSD) of the noise. For speckle, the PSD is found from 

( ) ( )

( )∫
∞=

0

duuMTF

vMTF
LvS

Optics

Optics
n      (D.14) 

where L is the average display luminance.  

 
Two new MTFs are introduced in Equation (D.12) and (D.13). The first is the MTF of the eye which is 
given by  

( ) ( ) ( ) ( )vMTFvMTFvMTFvMTF tremorretinaopticseyeeye _=    (D.15) 

where  

( ) 













−=

b

opticseye M
avvMTF exp_     (D.16) 



( )

















−=

21.1

375.0exp
M
vvMTFretina     (D.17) 

( )







−=

2

4.0exp
M
vvMTFtremor 



441     (D.18) 



The values of a and b in equation (D.16) are found from 

( )}] 1ln −D   (D.19) {[ 20216.0663.3exp69.43 −= pupilpupilDa

and 
2

277.0









pupilD
7155.0 



 +=b     (D.20) 

ith Dpupil being the diameter of the pupil. Pupil diameter is dependent upon light level and can be w
calculated from 

( )LDpupil




+−=

082.21
logexp23.12011.9 ( )mm−   (D.21) 

where L is the luminance in foot-Lamberts. 
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The second new MTF in equation D.16 is a perceptual filter that describes the spatial frequency
the visual cortex channel and is given by 

 response of 

( )
















−=

f
vvMTFPer log2.2exp    (D.22) 

where f is the frequency at which the CTF is being evaluated. This filter is only applied in the horizontal 

Once the system CTF is calculated for a given range, the TTP metric can be computed. The TTP metric is 
given by  

direction. 

( ) e

f

f eSYS

tt df
fCTF

C
R
A

TTP ∫=
2

1

    (D.23) 

where f1 and f2 are defined as the points where the va e Ct intersects CTFSYS. The average size of a target 
in pixels was 7021. With an observation distance of 3 1 cm and approximately 70.9 pixels per cm on the 

.23) was evaluated for every cell in the test matrix. The results are shown in Table D.4. 

Table D.4. TTP Metric Values for Perception Experim

 A B C D E F 

A 193.29 143.12 106.16 76.97 58.50 37.44

B 75.28 31.97 18.79

C 89.86 23.84 23.84 14.93 10.06 4.71

D 121.87 59.19 36.88 23.98 17.16 10.03

 

The metric values in Table D.4 were converted to PID using the target transform probability function 
(TTPF). The TTPF is given by  

lu
8.

display, the target critical dimension (the leading term in equation (D.23) ) was 31 mrad. Using this value, 
equation (D

ent. 

10.98 6.76 2.09









+=









+







50

50

*23.033.1

1

V
TTPE

V
TTP

V
TTP

E

= 50P E

   

where V50 is the value of the metric necessary for the task to be performed 50% of the time. For 
identification, the value of V50 has been determined to be 28.  

mpared 
values in Figure D.4  

The TTPF explains approximately 94% of the variance in the measured data.  

 (D.24) 

Using the values from table D.4 with the TTPF, the PID values were predicted. These values are co
with the measured PID 
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Figure D.4. Comparison of predicted and measured PID values. 
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Appendix E. Model Details 
1. EYE MTF 

The eye MTF is taken from Overington (1976). The eye MTF includes factors for 
refraction optics, retina, and tremor; each of these is calculated with a numerical fit to the 
data in Overington. Eye MTF varies with light level because it depends on pupil 
diameter. See Table E–1 for pupil diameter versus display light level. These pupil 
diameters are for one eye; the pupil diameter for two eyes is about 0.5 mm smaller. 

Table E-1. Pupil Diameter Versus Light Level 

Pupil Diameter (mm) 7.0 6.2 5.6 4.9 4.2 3.6 3.0 2.5 

Light Level (LOG fL) -4 -3 -2 -1 0 +1 +2 +3 

 

        fr = frequency at the eye in cycles per milliradian 

      bb = LOG10(display luminance)  

        dpul = -9.011 + 13.23 * EXP(-bb / 21.082) 

        dpul = dpul - (eye# - 1) * .5 

        e0 = (.7155 + .277 / dpul ^ .5) ^ 2 

        fi = EXP(3.663 - .04974 * dpul ^ 2 * LOG10(dpul)) 

        fe = 43.69 * fr 

        eye MTF = EXP(-(fe / fi) ^ e0) * EXP(-.375 * (fr) ^ 1.21)* EXP(-.4441 * fr * fr) 

 
2. CONTRAST THRESHOLD FUNCTION 

The numerical approximation provided by Barten (1992, 2000) is used to predict sine-
wave CTF. 

 CTF(u) = (a u EXP(−b u) (1 + c EXP(b u)) 0.5)–1 

 num = 540 (1 + 0.7/L)−0.2 

 denom = 1 + 12/(w (1 + u/3)2) 

 a = num/denom 

 b = 0.3 (1 + 100/L)0.15 

 c = 0.06 

where 

u = Spatial frequency in cycles per degree, 
w = Square root of picture area in degrees, and 
L = Display luminance in cd/m2. 
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The CTF values for a monocular display are increased by the √2 [see Volume I, Section 
coln (1988)].  

Vint = Spacing of pseudo interlace in milliradians , 
CTE = Charge transfer efficiency, 

arge tra rs, 
utoff as actio f 1/ pitc

Ep = Number of poles in electronic filter, and 

 by taking a thousand times the dimension in 
reduction ratio, and then dividing by the 

objective focal length. 

The MTF associated with spatial integration by the detector is 

 MTF  = sin(π D  D  F ) / (π Dpit Dfil Freq).  

This applies both horizontally and vertically. The horizontal MTF associated with the 
d hold is 

SAMP/HOLD pit req pit req

D camera normally has an electronic 
and is modeled as: 

MTFfilter = 1 / (1 + (Freq / (Ecut / (2 Hpitch))) )  

e MTF loss due to 
a charge transfer efficiency less than 1 is modeled as follows. 

 MTFCTE = NH (1 – CTE) (1 – cos(2  Dpit Freq)).  

Pseudo interlace involves adding adjacent vertical detectors starting with detector row 1 
ond field. During video field 1, the 

etector row 2 added 
together. The second video line in field 1 consists of detector row 3 and detector row 4 

sists of 
r row 2 and detector row 3 added together. The vertical MTF associated with 

pse

 int Freq).  

 

1.802 in Boff and Lin

3. CHARGE-COUPLED DEVICE MTF  

The following parameters are used in the equations: 

Dpit = Pitch of detector in milliradians, 
Dfil = Fill factor, 

NH = Number of ch nsfe
Ecut = Electronic c a fr n o (2⋅H h), 

Freq = Spatial frequency in cycles/mrad. 

Dimensions in milliradians are found
centimeters, multiplying by the fiber-optic taper 

detector pit fil req

electronic sample an

 MTF  = sin(π D  F ) / (π D  F ).  

In addition to the electronic sample and hold, a CC
filter. The filter roll-off is applied to the horizontal 

 2EP 1/2. 

A CCD normally has both horizontal and vertical transfer registers. Th

π

on the first field and with detector row 2 for the sec
first video line consists of the signals from detector row 1 and d

added together, etc. During video field 2, the signal on the first video line con
detecto

udo interlace is 

MTFinterlace = cos(π V
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4. MTF OF FIBER-OPTIC TAPER 

According to Schott (Siegmund, 1989), the limiting resolution of a fiber-optic taper is 
in µm. Assume that limiting resolution 

ussian. If taper input end pitch is in 
 

 reducer  (–Coef Freq2) 

  / (600 F0)2.  

5.  I2 CCD AND CRT DISPLAY 

The d display is 

 gama + Lmin 

wh

D AGC, 

K = (L /D )1/gama. 

ED OPTICS MTF 

Q = λ ⋅ Freq/D, 

approximately 600 divided by the fiber pitch 
occurs at 3-percent contrast, and that the MTF is Ga
µm and objective focal length is in centimeters, then:

MTF  = EXP

Coef = 10,000 Pitch2 LOGe (.03)

OUTPUT BRIGHTNESS FOR

 output brightness for an I2 CCD an

B  = D  (B  C  G  + K)disp gain out volt CCD

ere: 

Bout is defined above except EPtr is reducer transmission, 
Cvolt = volt out of CCD per footcandle input, 
GCCD = Gain of CC
Dgain = fL out of display per input (volt)gama, 
gama = gamma (intensity power law exponent), and 

min gain

6. DIFFRACTION-LIMIT

The diffraction-limited optics MTF is given by: 

 MTFdif = (2/π) (cos−1 (Q) − (Q) (1 − Q2)1/2) or 

 MTFdif = (2/π) (tan–1 (Q′) − (Q) (1 − Q2)1/2) 

 

where 

λ = Wavelength in µm, 
Freq = Spatial frequency in milliradians, 
D = F0/F# (Optics aperature diameter in millimeters), and 
Q′ = (1 − Q2)1/2/Q. 
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