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ABSTRACT 

Closed Form Guidance Laws for Intercepting 
Moving Targets 

by 

Christopher S. Bart ley 

A family of air-to-surface guidance laws designed to intercept moving targets has 

been developed. They include the effect of gravity, as well as constraints on the 

terminal flight path and heading angle, and are designed for tracking moving targets. 

These guidance laws yield equations for the commanded accelerations. They are based 

firmly on optimal control theory and meet the first and second variation necessary 

conditions that originate from Pontryagin's Minimum Principle. In addition, these 

solutions also meet the second variation sufficient conditions for a minimum. They 

have been evaluated in six degree of freedom simulations. The results show that they 

perform as designed, even for airframes which are rather sluggish. 
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Chapter 1 

Introduction 

This thesis presents a family of optimal guidance laws for air-to-surface missiles. This 

work is motivated by a need for increased missile strike capability and the desire to 

minimize the commanded accelerations of a missile on an air-to-surface mission. This 

need arises from increased target maneuver capability, the need to constrain the mis- 

sile to meet certain parameters on impact, and the desire to minimize the commanded 

accelerations that the missile must obtain thus maximizing the terminal velocity. The 

following paragraphs discuss prior work in air-to-surface missile guidance and intro- 

duce the optimal solution for the guidance of air-to-surface missiles. 

Currently there exist many forms of guidance laws that engineers use to solve the 

missile-target intercept problem. The options include proportional navigation, aug- 

mented proportional navigation, proportional navigation command guidance, beam 

rider guidance, and command to line-of-sight guidance. These options can be more 

easily understood realizing that they all originate from one of three categories. The 

first category is proportional navigation. In proportional navigation the rate of change 

of the missile heading is proportional to the rate of rotation of the line-of-sight from 

the missile to the target [11]. Naturally all of these types of guidance assume com- 

plete knowledge of the target. The other category is that of line-of-sight guidance. In 

line-of-sight guidance the line-of-sight originates from an observer not on the missile. 

The observer faces directly toward the target forming the line-of-sight. The missile 

is ordinarily fired from the observer position and the missile steering commands are 

proportional to the angle of the missile off the line-of-sight [11]. In line-of-sight guid- 

ance there is no consideration for the velocity of the target and therefore the missile 



will not orient itself to lead the target by a certain distance in order to anticipate 

its movement. The missile simply follows the line-of-sight exactly and thus will need 

to have greater maneuvering capability in order to intercept a maneuvering target 

than is needed in proportional navigation. Line-of-sight guidance is typically used 

for short-range intercepts. The third category of guidance is called pursuit guidance. 

In pursuit guidance typically a missileborne tracker is assumed which will be used 

to lock on to the target. The only difference in pursuit guidance and line-of-sight 

guidance is that in line-of-sight guidance the observer who supplies the missile with 

target information is not attached to the missile. In pursuit guidance this observer 

is attached to the missile itself and therefore there is no third-party observer. Also, 

pursuit guidance doesn't anticipate the targets movement and simply orients itself 

directly at the target at all times [11]. 

The first missile to use proportional navigation was the Lark missile, which suc- 

cessfully intercepted its first target in December of 1950. Since that time proportional 

navigation guidance has been used in virtually all of the world's tactical radar, in- 

frared (IR), and television (TV) guided missiles [16]. The proportional navigation 

law yields commanded accelerations that are perpendicular to a line of sight vector 

between the missile and the target. The commands are proportional to the rota- 

tional rate of the line-of-sight and the closing velocity [21]. The guidance law can be 

expressed as 

ne = N'VcX (1.1) 

where Uc is the commanded acceleration, N' is the effective navigation ratio (usually 

3-5), Vc is the closing velocity, and A is the rotational rate of the line of sight vector. 

In order to understand proportional navigation consider Figure 1.1. This figure rep- 

resents an inertial coordinate system fixed to the surface of a fiat-Earth model (i.e., 

the X axis is downrange and the y axis can either be altitude or crossrange). Using 

this coordinate frame it is possible to integrate components of the accelerations and 

velocities in terms of x and y directions without having to consider the extra terms 
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-►X 

Figure 1.1: Two-dimensional missile-target engagement geometry [21] 

due to the Coriolis effect. The missile and target travel at constant velocity and the 

effects of drag and gravity are neglected. In the figure the velocity of the missile is 

denoted by the vector VM as the target velocity is characterized by the vector VT- The 

range RTM is the distance down the line of sight separating the missile and the target. 

The commanded acceleration of the missile ric is perpendicular to the instantaneous 

line of sight and the target acceleration UT is perpendicular to the target velocity Vr- 

The angle A represents the angle between the horizontal and the line of sight vector 

and fi represents the flight path angle of the target. Now it is possible to see from 

the figure that the missile is moving with a velocity magnitude VM at an angle ^ -F 0. 

6 is known as the missile lead angle which is theoretically the correct angle for the 

missile to be on a collision triangle with the target. In other words, if the missile is 

on a collision triangle, no further acceleration commands are required for the missile 

to hit the target [21].  The angle 0 is known as the heading error and denotes the 



initial deviation of the missile from the collision triangle. It is desired to make the 

magnitude of the line of sight vector RTM approach zero where target interception 

would occur. The closing velocity Vc is defined as follows 

Vc = -RTM. (1-2) 

It is possible to see that the closing velocity Vc will be zero when the magnitude of 

the line of sight vector RTM is at a minimum. The rate of rotation of the line of sight 

vector can be obtained as follows 

;      RTMIVTMI — RTMTVTMI /-, q\ 
A = ^2 ■ ^^-"^^ 

Now by using the equation for the closing velocity K and the rotational rate of the 

line of sight vector A it is possible to determine the commanded acceleration rtc- 

Depending on the capabiUties of the missile being used, the effective navigation ratio 

will range from a minimum of three to a maximum of five [21]. Keep in mind that 

the effective navigation ratio is an indication of the overall capability of the missile 

that is being used to track the target and relates directly to the acceleration and 

sensor capabilities of the missile. If the effective navigation ratio is three, it means 

that the missile must be able to accelerate at three times the magnitude of the target. 

Proportional navigation does not take the effects of gravity into account, the time to 

target is merely an estimation, and it is not an optimal guidance law that minimizes 

either the total flight time or the commanded acceleration. 

Augmented proportional navigation is another guidance law used in today's missile 

technology. Augmented proportional navigation is proportional navigation with an 

extra term to account for a maneuvering target [16]. The equation to calculate the 

commanded accelerations for the missile using augmented proportional navigation is 

as follows 

nc = N%U^ (1.4) 

where UT is the acceleration of the target. From the analysis performed in [21] it 

is possible to see that the required missile acceleration decreases monotonically with 



time, regardless of the effective navigation ratio, rather than increasing monotonically 

with time as was the case with proportional navigation. Also, it is possible to see that 

the augmented proportional navigation approach requires less overall acceleration of 

the missile than the traditional proportional navigation approach. However, for an 

effective navigation ratio of five the maximum required acceleration for augmented 

proportional navigation is higher than the maximum required acceleration for pro- 

portional navigation. Experience has demonstrated that if the effective navigation 

ratio is five the augmented proportonal navigation technique requires less acceleration 

about seventy-five percent of the time compared to proportional navigation. Although 

augmented proportional navigation has many benefits over proportional navigation 

it still does not take into account gravity, the time to target is still merely an esti- 

mate, and although it for the most part requires less acceleration than proportional 

navigation it is still not an optimal solution. Additionally proportional navigation 

in general was developed for high velocity targets and has been applied to station- 

ary surface targets. Proportional navigation is not well suited for the air-to-surface 

guidance problem. 

Many other guidance laws such as proportional navigation command guidance, 

beam rider guidance, and command to line-of-sight guidance fall under the category 

of line-of-sight guidance systems. Proportional navigation command guidance, also 

known as a manual guided weapon system, implies that the human operator has 

the task of tracking both the target and the missile [9]. Traditionally proportional 

navigation is implemented in a homing loop. In the homing loop all the necessary 

information that the missile needs to intercept the target is obtained by a seeker. A 

seeker is a device that is fixed to the front of the missile that provides target position 

and velocity information. When using a seeker with proportional navigation the 

range to the target is not usually needed to calculate the commanded accelerations. 

In the case when command proportional navigation is being used the range from 

the missile to the target is a necessary component. Since the range from the missile 



to target tends toward zero as the flight progresses, the eff'ective noise on the line- 

of-sight angle will get very large toward the end of the flight. This means that 

command guidance systems generally have to contend with more noise than homing 

systems near the end of the flight [21]. Beam rider guidance systems use a target 

tracker whose purpose is to maintain the antenna boresight pointing at the center of 

the reflecting area of the target. The missile usually carries a sophisticated receiver 

which can detect the missile's angular deviation from the center of the beam [9]. If 

the beam is always on the target and the missile is always on the beam, an intercept 

will result. The beam originates from someone on the ground sighting the target as 

displayed in Figure 1.2. The beam riding guidance principle is probably one of the first 

methods used because of its simplicity and ease of implementation [21]. Also beam 

riding performance can be significantly improved by taking the beam motion into 

account. This is similar to improving proportional navigation by taking into account 

the target motion (augmented proportional navigation). By taking into account the 

beam motion the acceleration required decreases and the accuracy of the intercept 

increases [21]. Beam riding guidance is achieved using semi-automatic systems where 

the human operator only tracks the target [9]. Figure 1.2 indicates some of the well 

known features of the surface-to-air guided weapon system Rapier [8] and should 

give some insight into beam riding guidance. It is important to note that none of the 

guidance systems mentioned consider the effects of gravity, are merely able to estimate 

the overall flight time, and are not able to minimize commanded accelerations or final 

flight times. 

Therefore, a need exists for an optimal air-to-surface guidance law that will take 

the effects of gravity into account, will allow the total time to target to be solved 

analytically, and will minimize the commanded accelerations or the total flight path 

time depending on what is desired. The problem is posed using Figure 1.3 where the 

frame x, y, and z is a reference frame fixed on the Earth's surface. Both the missile 



Figure 1.2: Rapier - a semiautomatic system [9] 

w 
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") 

erititude 
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X  -♦> 

downrange 

Figure 1.3: Proposed reference frame and physical problem setup 



and the target velocities are denoted where M is a velocity in the x direction, t; is a 

velocity in the y direction, and w represents a velocity in the z direction. 

A family of guidance laws has been developed that takes gravity into account, 

allows the time to target to be solved analytically, and is designed for air-to-surface 

missiles tracking moving targets. Additionally the analytic guidance laws allow op- 

tions to simply intercept the target without terminal angle constraints, to enforce a 

terminal flight path angle constraint, to enforce a terminal heading angle constraint, 

or to constrain both as displayed in Figure 1.4. In addition each guidance law has 

the capabiUty, if desired, to minimize the total flight path time. These new guidance 

laws commanded accelerations are in the x, y, and z directions. They have been ob- 

tained using the first variation necessary conditions and the transversality conditions 

from Pontryagin's Minimum Principle [10]. In order to ensure that they are indeed 

optimal it is necessary to ensure that they not only meet the first variation necessary 

conditions for a minimum but also the second variation sufficient conditions for a 

minimum. In optimal control theory the first variation necessary conditions confirm 

that the solution is indeed capable of being a minimum, but is not necessarily a min- 

imum. All minimizing solutions will satisfy the first and second variation necessary 

conditions. The second variation sufficient conditions, if met, will confirm that the 

solution is indeed a minimum. Although the necessary conditions were used to derive 

the guidance laws, and the necessary conditions were satisfied, it is possible that the 

guidance laws are still not minima (they could be a saddle point). The second varia- 

tion sufficient conditions unambiguously verify the minimality of the solutions. All of 

the guidance laws in this thesis satisfy the first and second variation necessary con- 

ditions and the second variation sufficient conditions for a minimum. A consequence 

of these guidance laws is reduced actuator usage, while achieving maximum terminal 

velocity by minimizing commanded acceleration which reduces drag. Also, these laws 

can minimize the total flight time which gives maximum capability to the missile 
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Flight Path Angle Heading Angle 

Figure 1.4: Defined flight path angle and heading angle 

when intercept time is an important factor. These new solutions provide numerous 

options and capabilities that were not previously available. 

In Chapter 2 the guidance laws are developed using the first variation conditions 

that arise out of Pontryagin's Minimum Principle. These conditions state that the 

solution is a minimum, maximum, or a saddle point. Later these conditions are used 
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to also verify the optimality of the solution in Chapter 5. Chapter 3 considers the 

second variation necessary conditions and demonstrates that the guidance laws do 

indeed meet these conditions. The second variation necessary conditions rule out the 

possibility that the candidate solution is a maximum, but do not ensure that it is a 

minimum. Chapter 4 considers the second variation sufficient conditions. The second 

variation sufficient conditions prove that the solution being considered is indeed a 

minimum. In Chapter 5 the first variation conditions are used to verify that the 

family of guidance laws that were derived are indeed correct. Next it is shown that 

the analytic guidance laws meet the second variation sufficient conditions. Also, 

an optimization tool known as DIDO is used to determine the numerically optimal 

trajectories given certain conditions and can be compared with the analytic guidance 

laws. Also, the guidance laws are incorporated into and tested in an existing 6-DOF 

missile simulation. The guidance laws performed extremely well when implemented 

into this missile simulation. Chapter 6 reviews the derivations and analysis performed 

and then draws conclusions about the family of guidance laws based on these findings. 
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Chapter 2 

First Variation Necessary Conditions 

In order to derive optimal control guidance laws there must first exist a foundation 

upon which they are to be built. Therefore it is necessary to derive a set of first order 

necessary conditions that must be satisfied in order to obtain an optimal solution 

[10]. Given the performance index, which is to be minimized, of the form 

-*/ 

'to 

subject to the following dynamics 

J = E{xf,tf)+        F{x,y,r)dT (2.1) 
Jto 

X = f{x, u, t)    x{to) = Xo (2.2) 

with the terminal conditions 

e{xf,tf) = 0 (2.3) 

the constraints are adjoined to the performance index with Lagrange multipliers 

J' = G{xf, tf, u)+        H{x, u, A, r) - X^x dr (2.4) 
Jto 

where the Hamiltonian and Bolza function are 

H{x,u,X,t)   =   F{x,u,t) + X^f{x,u,t) (2.5) 

G{xf,tf,u)   =   E{xf,tf) + u'^e{xf,tf). (2.6) 

Taking variations, the adjoined performance index becomes 

!*=«/ SJ'   =   G:,^5xf + Gt,Stf + GJu + {[H{x,u,X,t)-X'x]St}'i::ti 

+ /    HJx + HJu + Hx6\ - 5X^x - \^5x dr. (2.7) 
Jtn 
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The above variation references Leibnitz's rule with regard to taking variations of an 

integral /, if 

/= rF{z{r),T)dT (2.8) 

the variation of I is 

SI = [FSt]l^,i + r ~5F5T. (2.9) 
Jto 

In addition, the relation between the time fixed variation 5{ ) and the time free 

variation 5() is 

<5() = ^() + i)l (2.10) 

Recalling that G^ = e = 0 and Hx = f{x,u,t) and [f{x,u,r) - x]6X = 0, it follows 

that 

SJ'   =   G,^5xf + Gtf5tf + {[H{x,u,X,t)-X'^x]5t}l^ti 

+ /    HJx + HJu - \^5x dr. (2.11) 
Jto 

Since to is specified, 5to = 0. Also, 5xf is 

5xf = 5xf — Xf6tf. (2.12) 

Now using integration by parts the third term in the integral simplifies to 

f ' X'^6x dr   =   [X'^'Sxt-^l - I ' ^"^^^ dr (2.13) 
Jto ° Jto 

r^f .  - 
=   X]5xj - I    X^5x dr. (2.14) 

Jto 

Now the first variation of the adjoined performance index becomes 

5J'   =   {G,^-X^f)5xf + {Gtf+Hf)5tf 

+ /    {HJx + X^)5x + HJu dr. (2.15) 
Jto 

Up to this point nothing has been said about the Lagrange multipliers or costates, 

A. They are now chosen such that the coefficients of the dependent variations, 5x, 
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vanish. Therefore eliminating all but the independent variations, the first variation 

is 

5J' = {G^j + H})5tf + /    Hu5u dr (2.16) 
Jto 

with 

\ = -Hl   and   A; = G^^. (2.17) 

Finally, the coefficients of 5u and 8tf, the independent variations, must vanish for the 

first variation to vanish, thus 

ff„ = 0   and   H} = -Gtf. (2.18) 

Therefore the first variation necessary conditions (the Euler-Lagrange equations) 

are 

A   =   -H,{x,u,\t) (2.19) 

X   =   f{x,u,t)       Xo = x{to) (2.20) 

H,   =   0 (2.21) 

with the transversality conditions 

A/   =   Gl (2.22) 

Hf   =   -Gt, (2.23) 

e{xf,tf)   =   0. (2.24) 

These necessary conditions fall out of Pontryagin's Minimum Principle. 

By taking the total derivative with respect to time of the Hamiltonian a useful 

result appears 

H   =   H{x,u,t,X) (2.25) 

dH         dH     dH dx     dH du     OH dX ,^ ^^, 
    = 1 1 \ . (2.26) 
dt           dt      dx dt      du dt      dX dt ^      ^ 
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If the Hamiltonian is not explicitly a function of time, ^ = 0. Also, based on the first 

variation necessary conditions jEf„ = 0. Notice that ^ = -A and |f- = a;. Therefore 

—   = 1  (2.27) 
dt dx dt      oX dt 

=   -X'x + x'^X = 0. (2.28) 

From the transversality conditions 

iy = constant = -Gt^. (2.29) 

Now not only is Hf equal to -Gtf but the Hamiltonian at every point in time is 

equal to —Gtj- This result gives an excellent condition that can be used to determine 

if the necessary conditions for a minimum are met at every instance in time, if the 

Hamiltonian is not an explicit function of time. 

2.1    Dynamics of the System 

The equations of motion in Cartesian coordinates are: 

X = u (2.30) 

y = V (2.31) 

z = w (2.32) 

ii = a-c (2.33) 

V = Uy (2.34) 

w   =   a, + g (2.35) 

X refers to the downrange position of the vehicle, y refers to the crossrange position 

of the vehicle, z is the altitude of the vehicle, u is the downrange velocity, v is the 

crossrange velocity, w is the vertical velocity, a^ is the downrange acceleration, ay 

is the crossrange acceleration, and a^ is the vertical acceleration.   In addition the 
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constraints are as follows 

Xf   =   XT — uritf — t) (2.36) 

Vf   =   yT-vritf-t) (2.37) 

Zf   =   ZT — WT{tf — t) (2.38) 

where the subscript T refers to the target. 

2.2    Three Dimensional Moving Target with no 

Additional Constraints 

2.2.1    The Performance Index and Problem Set-up 

This performance index is posed as 

minJ^Ttf + l [\l + al + aldT (2.39) 

subject to the aforementioned dynamics Eqns. 2.30-2.35, with a specified initial state 

Xo, Vo, Zo, Uo, Vo, and Wg. The following enforced terminal constraints are 

e^   =   Xf-XT + uritf -t) = 0 (2.40) 

e y yf-yT + VT{tf-t) = 0 (2.41) 

e^   =   Zf-ZT + writf - t) = 0. (2.42) 

where the subscript T annotates the state of the target. T is a weighting parameter 

on the final time (if it is unspecified). This is a trade-off between the minimum time 

problem and the minimum control effort problem. Normally F is set to zero in order 

to minimize the commanded acceleration. Increasing F to a large number has the 

effect of finding a minimum time trajectory. The Hamiltonian and the Bolza function 

are 

H   =   r(o^ + al + al) + X^u + XyV + \w + Ka^ + Xydy + ^w{o.z + 9) (2.43) 

G   =   Ft/ -h v^Bx -I- VyCy -h v^ez- (2.44) 
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2.2.2    The First Variation Conditions 

The Pontryagin Minimum Principle, along with the transversality condition on the 

final state, yield the following equations 

A;   =   0 (2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

with the terminal conditions 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

If we define 

(2.57) 

A.   = 0 

A.   = 0 

A; = -A, 

A; = -A, 

All) ^= -A. 

A., ^ Vx 

\f 
= 

^y 

K = Vz 

Xuf = 0 

Avf = 0 

Xwf = 0 

t ^ 
90 — */ -i 
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the Lagrange multipliers are found to be 

A. = J^x 

A, = Vy 

A. = ^Z 

^u = Vxigo 

A„ = Vytgo 

Ato = Vztgo 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

and the controls a^, Cj,, a^, obtained from the Euler Lagrange equations, are 

flx   =   -Au = -Vxigo (2.64) 

O-y     =      -A„ = -Uytgo (2.65) 

Oz   =   -Au, = -Vztgo- (2.66) 

The states can now be written as 

X   =   —'^ - Uftgo + XT + uxtgo (2.67) 

y   =   ——-Vftgo + yT + vxtgo (2.68) 

a      +^-'^ft9o + ZT + WTtgo (2.69) 

u   =   '^ + uf (2.70) 

V   =   '^ + vf (2.71) 

w   =   -^^ + Wf-gtgo. (2.72) 

The states in the x, y, and z directions are all independent of each other as well as 

their associated controls a^, ay, and a^. Solving for the Lagrange multipliers in terms 



of the states yields 

VT     = 

u,,   = 

3(M - Mr)     3(a; - XT) 
rt   I O 

a^ a-' 

u. 

3{V-VT)     3(y-yr) 

3{w - WT)     S{Z — ZT) 

a^ a" 

and the controls can be expressed as 

18 

(2.73) 

(2.74) 

(2.75) 

Ox    =     --^{x-XT + tgo{u-UT)) 
''go 
3 

% =  -:^{y-yT + tgo{v-VT)) 
''go 

a. ■ — {Z -ZT + tgo{W - WT)) - Y 
go 

The acceleration can compactly be written as 

where 

a=-^(vtso + r)-Y 

Xv -XT 

Vv -VT 

Zy -ZT 

A 
V    = 

uv- - UT 

vv- -VT 

Wv ■ - WT 

g   =   [0   0   gf 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

Thus, a closed-loop feedback guidance law which is dependent only on the current 

state, the terminal state, and the time to target has been obtained. The variational 

method was used because it allows for a solution of the final time. 
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2.2.3 Solving for the Final Time 

The transversality condition from the Pontryagin Minimum Principle associated with 

the free final time condition {Hf = -Gtp) results in the following equation 

-{al + 4 + al) + Ku + \yV + \zW + Ka^ + Kay + Kiaz + 9) = -Gt;      (2.83) 

where 

-Gtj = -r + VXUT + ^yVT + ^ZWT- (2-84) 

A useful condition is obtained from the first integral (being a constant), since the 

Hamiltonian is independent of time, which can be expressed as 

H = --{al-\-al + al)-\- u^u + VyV + u^w + Xy,g (2.85) 

and after combining the Hamiltonian and the Bolza function the following result can 

be expressed. 

0   =   (2r + ^g ■ g)tj„ - 3( vv + r ■ g)i2^ - 12(v • r) V - 9(r • r)      (2.86) 

In most cases it is desired to minimize the commanded acceleration and thus F should 

be set to zero. However if it is desired to minimize the flight time, then F would be 

set to a large positive number. 

2.2.4 The Analytic Solution for tgo 

The equation for tgo can be solved analytically [7]. First the equation begins in the 

form noted in the previous section. 

At% + Bt% + Ct% + Dtgo + E = 0 (2.87) 

After dividing through by A the equation becomes 

tto + B'tL + C'tl + D'tgo + E' = 0. (2.88) 
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Translate the equation such that the cubic term is eliminated therefore 

y^ + Py-' + Qy + R^O (2.89) 

where 

with 

and 

4 

Next obtain the cubic resolvent 

P   =   6h^ + 3B'h + C' (2.90) 

Q   =   Ah^ + 3B'h^ + 2C'h + D' (2.91) 

R   =   h^ + B'h^ + C'h^ + D'h + E' (2.92) 

x = y + h (2.93) 

h = -^. (2.94) 

or 

where 

t^ + 2Pt^ + {P^-4R)t-Q^ = 0 (2.95) 

Z^ + aZ + b = 0 (2.96) 

a   =   hs{P^ - 4R) - 4P^] (2.97) 
o 

b   =   i-[16P^ - 18P(P2 - 4i2) - 27(3^] (2.98) 

with 

Z   =   i-s (2.99) 

s   =   ~R (2.100) 

Next calculate (A) as 

A = — + -. (2.101) 
27      4 ^        ' 
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If A > 0, solve the resolvent by the Cardan formula so that the roots are 

Zx =   ^-^ + v/A+f ^-VA (2.102) 

Z2 =   complex (2.103) 

Zz =   complex. (2.104) 

If A = 0, the roots of the resolvent are 

Z,   =   2^~ (2.105) 

Z,   =   f- (2.106) 

Z,   =   f-. (2.107) 

If A < 0, the resolvant is solved using the trigonometric technique. Therefore 

Z,   =   EoCos{^) (2.108) 

3 

•t 
-3 

where 

Z2   =   E„cos(^ + 120°) (2.109) 

Zz   =   £;<,cos(| + 240°) (2.110) 

Eo ^ 2^-1 (2.111) 

and the angle 0 is defined by 

cos(<^)   = ^ (2.112) 

sin(0)   =   +Vl - cos2((^) (2.113) 

According to the sign of A, the critical root of the cubic resolvent is 

m = max [realroots(Zi + s,Z2 + s, Z3 + s)]. (2.114) 
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A positive real root will always be found. Now that R' is obtained, the parameters ^ 

and /? can be obtained from 

^=^-[P + B!--9=) (2.115) 

/3=i(P + i2' + -|=) (2.116) 

Knowing ^ and ^, the factorization of Eq. 4.58 is 

(y2 + x/^y + e)(y'-v/^y + /?) = 0. (2.117) 

The solution of the two quadratics yields the yi(z = 1,4) of Eq. 4.58. Therefore the 

roots of Eq. 4.56 are 

Xi = yi + h,    i = l,...,4. (2.118) 

2.3    Three Dimensional Moving Target with a Constraint 

on Final Flight Path Angle 

2.3.1    The Performance Index and Problem Set-up 

This minimum control effort (acceleration) problem can be posed as 

minJ = Ttf + l [\l + al + aldT (2.119) 
^ Jto 

subject to the aforementioned dynamics Eqns. 2.30-2.35, with a specified initial state 

^o, Vo, Zo, Uo, Vo, and Wo- The following terminal constraints will also be enforced 

Cj.   =   Xf — XT + uritf — t) (2.120) 

e y yf-VT + VTitf-t) (2.121) 

Cz   =   Zf — ZT + writf — t) (2.122) 

64   =   Wf — Uftanjf. (2.123) 

Again, T is a weighting parameter on the final time (if it is unspecified), and can be 

used for a minimum time problem. The Hamiltonian and the Bolza function for the 
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case of a three dimensional moving target with a constraint on the final flight path 

angle are 

1 
H     =     x(Ox + % + O'z) + ^xU + XyV + XzW + Xuttx + XyCl; 

2 V 

+XUaz+9) (2.124) 

G    —    rtf + UXBJ: + UySy + UzCz + 1/464. (2.125) 

2.3.2    The First Variation Conditions 

The Pontryagin Minimum Principle, along with the transversality condition on the 

final state, yield the following equations 

A;   =   0 (2.126) 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

(2.131) 

with the terminal conditions 

(2.132) 

(2.133) 

(2.134) 

(2.135) 

(2.136) 

(2.137) 

If we define 

(2.138) 

\ =   0 

A. =   0 

A; =   -A, 

A; =   -A, 

^w =   -A. 

Xxf =z Vx 

\i 
= Vy 

K, = Vz 

Xuf = -1/4 tan 7/ 

Xvf = 0 

Xwf 
___ 

Z^4 

tgo tt^-t 
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the Lagrange multipliers are found to be 

A,.   =   u, (2.139) 

A,   =   uy (2.140) 

K   =   V, (2.141) 

A„   =   ^50-^^4 tan 7/ (2.142) 

A„   =   Vyt,o (2.143) 

A„,   =   v^tgo^y^ (2.144) 

and the controls Oi, Cj,, and o^, again derived from the Euler Lagrange equations, are 

a-x   =   -A„ =-i/xtgo + i/4tan7/ (2.145) 

dy   =   -K = -^ytgo (2.146) 

az   =   -K = -J^ztgo - J^A- (2.147) 

The states can be written as 

X   = -^ + —^-Uftgo + XT-^urtgo (2.148) 
0 I 

y    =     ."^.ytgo + yT + VTtyo (2.149) 
o 

"    -        '^+'^+^-^-Wftgo + ZT + WTtgo (2.150) 

u 

6 2 2 

"90 1/4 tan jftgo + M/ (2.151) 

t;   = 

w 

'^ + Vf (2.152) 

-~^ + u^tgo + Wf- gtgo (2.153) 

The states in the x, y, and z directions are all independent of each other as well as 

their associated controls ax, ay, and a^. Solving for the Lagrange multipliers in terms 
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of the states yields 

3Q;2   ,     3Q;I - 2 ,     2u 
^x    -         ,2   ^  +       i2        « + ^2 

''go                  ''go                ''go 

\   ,     2v 
yy   =   t^'' +t2 

''go          ''go 

Sa2  .     Sa3-2   ,     2w ^  2g 
^^     -          t2    «+       .2        ^+^2    +i 

tpo                    '•90                    ''ffO        ''flo 

(2.154) 

(2.155) 

(2.156) 

where 

tti   =   1 + sin^ 7/ (2.157) 

0!2   =   sin 7/cos 7/ (2.158) 

0:3   =   1 + cos^ 7/ (2.159) 

and the controls can be expressed as 

Q!l   ,       Q!2    ,       2u 
«x   -            u +      w 

''go            "go             ''go 
(2.160) 

«y   =   -—K + 2^^) 

"3   / ,  ^2  ,     2{'w + gtgo) 

tgo             ''go                      ''go 

(2.161) 

(2.162) 

where 

,  3a;     3a;r     ^ 
u    =   u + 3UT 

tgo              tgo 
,               3y     3yT     „ 

tgo           tgo 
,              ,  3z     3ZT     „          gtgo 

w'   =   w + - 3WT f- 
tgo           tgo                                    Z 

(2.163) 

(2.164) 

(2.165) 

and finally 

g^   32.174 ^V (2.166) 

2.3.3    Solving for the Final Time • 

The transversality condition from the Pontryagin Minimum Principle associated with 

the free final time condition {Hf = -Gtp) results in the following equation 

-{al + aj + al) + X^u + XyV + X^tv + XuU^ + XyQy + Az(a^ + g) = -Gt, (2.167) 
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where 

-Gtj = -r + U^UT + VyVT + VZWT- (2.168) 

A more useful condition is obtained from the first integral (being a constant), since 

the Hamiltonian is independent of time, which can be expressed as 

ff = --(4 + oj + a^) + UxU + UyV + v^w + Kg (2.169) 

and after combining the Hamiltonian and the Bolza function the following result can 

be expressed. 

0 = C4, + C^t], + C2tlo + C.tgo + Co (2.170) 
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where 

C,    =    p^(^-|)+r (2.171) 

C3   =0 (2.172) 

Ca     =     (61 - cos^ 7/)w^ + (62 - l)v^ + (&3 - sin^ 7/)«^^ + ^e^w 
3 

-\-?,g[-h{z - ZT) + b&{x - XT) + &9(^ - -ZT) - 2^6(2; - 3;T)] 

+9[6iitr + 62^^T + ^ai^r + SfteWrWr] 

-(661 - 3 cos^ 7/)MrM - (662 - 3)t;TU - (663 - 3 sin^ jf)wTW 

—QbeWru — Qbewur + 3Q;2(W — 3WT)UT — 2UUT 

-{Sai -2){u- 3UT)UT - {V - 3VT)VT - 2VVT 

+3Q;2(« - 3UT)WT - {3as -2){w - 3WT)WT - 2WWT (2.173) 

Ci     =    9[bi{-2xuT + 2XTUT) + b2{-2yvT + 2yTVT) + b3{-2zwT + 2ZTWT) 

+3be{-xwT + XTWT - ZUT + ZTUT)] + (6&1 - 3cos^ lf){x — XT)U 

+(662 - 3) (y - VTJV + (663 - 3 sin^ 7/) [z - ZT)W 

-\-^bQ{z - ZT)U + %^{x - XT)W + 30:2(32; - 3ZT)UT 

-{3ai - 2)(3a; - 3XT)UT - {3y - SyrW + 3a2{3x - 3XT)WT 

-(3^3 - 2){3z - 3ZT)WT (2.174) 

Co    =    9[bi{x^-2xxT + xl) + b2{y^-2yyT + yT) 

bsiz"^ - 2ZZT + ZT) + 3b6{xz - XZT - ZXT + XTZT)] (2.175) 

and 

b, = ^^SIJLZI (2.176) 

h = -I (2.177) 

h = 5^i!!!li^ (2.178) 

be = sin 7/cos 7/ (2.179) 

69 = sin2 7/-2. (2.180) 
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2.4    Three Dimensional Moving Target with a Constraint 

on Final Heading Angle 

2.4.1    The Performance Index and Problem Set-up 

This minimum control effort (acceleration) problem can be posed as 

1   f'f 
mm j = rtf + l f'al + al + aldr (2.181) 

^   Jto 

with a specified initial state Xg, Vo, Zo, Uo, Vo, and «;„. The following terminal con- 

straints will also be enforced 

ex   =   Xf-XT + uritf - t) (2.182) 

e. y yf-yT + VT{tf-t) (2.183) 

e,   =   Zf-ZT + WT{tf-t) (2.184) 

64   =   Vf — Uftanxf- (2.185) 

r is a weighting parameter on the final time (if it is unspecified). This is a trade-off 

between the minimum time problem and the minimum control effort problem. The 

Hamiltonian and the Bolza function for this derivation are 

H   =   -{al + Oy + al) + XxU + XyV + X^w + Xua^ + XyUy 

^X^{a,^g) (2.186) 

G   =   rt/ -f v^e^ -h VyEy -I- z/^ez -I-1/464 (2.187) 
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2.4.2    The First Variation Conditions 

The Pontryagin Minimum Principle, along with the transversality condition on the 

final state, yield the following equations 

(2.188) 

(2.189) 

(2.190) 

(2.191) 

(2.192) 

(2.193) 

with the terminal conditions 

(2.194) 

(2.195) 

(2.196) 

(2.197) 

(2.198) 

(2.199) 

A. = 0 

\ = 0 

K = 0 

Xu = -A, 

K = -K 

^w = -K 

A., = l^x 

Aj// = Uy 

A., = Vz 

Xuf = -r/4tanx/ 

X-Vf = 1^4 

Xyjf = 0. 

If we define 

"-flo tf-t (2.200) 
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the Lagrange multipliers are found to be 

A,   =   V, (2.201) 

A,   =   Vy (2.202) 

X,   =   u, (2.203) 

K   =   M5o-i^4tan7/ (2.204) 

A„     =     Vytgo^-Vi^ (2.205) 

A^   =   u.tgo (2.206) 

and the controls, a^, Oj,, a^ are 

a.x   =   -A„ = -Uxtgo + ^-4 tan(7/) (2.207) 

a. y -A„ = -Uytgo - v^ (2.208) 

flz   =   -A„; = -Vztgo- (2.209) 

The states can be written as 

X 

z   = 

._^ + —y^ _ Uftgo + XT + UTtgo (2.210) 

■^ - ^ - Vftgo + yT + VTtgo (2.211) 

'^+ %-«;/«,„+ ;^T + «;rtso (2.212) 

M 
'^-^Jo 

6 

— 1^4 tan 7/tpo + Uf (2.213) 

^   =   '^ + u,tgo + Vf (2.214) 

^   =   '^ + njj-gt^^. (2.215) 

The states in the x, y, and 2; directions are all independent of each other as well as 

their associated controls ttx, ay, and a^. Solving for the Lagrange multipliers in terms 
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of the states yields 

3 3 9 9 6 
Ux    =    -^OilU - -^OllV + -T^OLzX - TT^^y - TT^ (2.216) 

''go ''go ''go ''go ''go 

3 3 9 9 6 
""y   =   -zr^2U+-^a3V--^a2X+-^a3y--^y (2.217) 

''go ''go ''go ''go ''go 

^^   =   W-^'^ + ^ + latgo) (2.218) 
''go ''go       ^ 

where 

ai   =   l + sin^x/ (2.219) 

^2   =   sin x/cos x/ (2.220) 

as   =   l + cos^x/ (2.221) 

and the controls can be expressed as 

oil Q!2   ,      2M /'0 000^ ax   =   -—w +—V-— (2.222) 
go ''go ''go 

«3/   =   r"'^ ~ r"^ ~ y~ (2.223) 
''go ''go ''go 

a.   =   -^(w + ^ + lgtyo) (2.224) 
''go ''go        ^ 

where 

u'   =   u+f^ (2.225) 
Igo 

v'   =   v + ^ (2.226) 
tgo 
3z     gtg ^-   =   ^ + :^.^ (2.227) 

and 

a;   =   X — XT — tirtgo (2.228) 

y   -   y-yr-vrtgo (2.229) 

z   =   2; - 2;T - wrtgo- (2.230) 
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2.4.3    Solving for the Final Time 

The transversality condition from the Pontryagin Minimum Principle associated with 

the free final time condition {Hf = -Gtp) results in the following equation 

-{al + al + al) + X^^u + XyV + X^w + XuC^ + X^tty + X^ia^ + 9) = -Gtj     (2.231) 

where 

—Gtj = —r + UXUT + VyVT + J^ZWT- (2.232) 

A more useful condition is obtained from the first integral (being a constant), since 

the Hamiltonian is independent of time, which can be expressed as 

H = --{al + al + al) + v^u + VyV + v^w + A^p (2.233) 

and after combining the Hamiltonian and the Bolza function the following result can 

be expressed. 

0 = C^i\, + C^t% + C2t% + C^t,o + Co (2.234) 
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where 

C4   =   |P' + 2r (2.235) 

Cs   =   0 (2.236) 

C2   =   -{ai + 2)u^-{a3 + 2)v'^ + 2a2uv-3w^-3g{z-ZT) 

-9(3 sin^ Xf + l)«r - 9(3 cos^ Xf + 1)4 - ^'^T 

+54a2UTVT + 12aiUTU — 12a2VTU — 12a2UTV 

+12a3VTV + 12WTW — Qaiuux + 6a2VUT + 6a2UVT 

-Qa^vvT - QWWT + 6(3 sin^ Xf + l)^! ~ 36a2VTUT 

+6(3 cos^ Xf + 1)4 + 6w| (2.237) 

Ci   =   -9(3sin^ Xf + l)i-2xuT + 2XTUT) - 9(3cos^ Xf + l)(-2yuT + 2yTVT) 

—9{-2ZWT + 2ZTWT) + Ma2{-xvT + a^r'^r - y^T + yr«r) 

-12Q;i(a; - XT)U + 12Q!2(y - yrju + 12a!2(a; - a;T)w - V2az{y - yT)w 

-12(2; - ZT)W - 6(3sin^ Xf + 1)(^ - XT)UT + 18Q;2(y - yT)uT 

+180:2(3; - XT)VT - 6(3 cos^ Xf + l)(y - VTJVT - 6(2; - ZT)WT (2.238) 

Co   =   -9(3 sin^ Xf + l)(a;^ - 2a;a;T + 4) - 9(3 cos^ Xf + ^W - ^VVT + 4) 

-9(2;^ - 2ZZT + 4) + 54Q!2(a;y - a;yr - yxr + a^T^/T). (2.239) 

2.5    Three Dimensional Moving Target with 

Constraints on Final Heading Angle 

and Final Flight Path Angle 

2.5.1    The Performance Index and Problem Set-up 

This minimum control effort (acceleration) problem can be posed as 

1 r'f 
mm j = Ttf + l [^al + al + aldT (2.240) 
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subject to the aforementioned dynamics (Eqs. (3.1)-(3.6)), with a specified initial 

state Xo, Vo, Zo, Uo, Vo, and Wo- The following terminal constraints will also be 

enforced 

e^, = Xf-XT + UT{tf-t) (2.241) 

ey = yf-yT + VT{tf-t) (2.242) 

e^ = Zf - ZT + writf - *) (2.243) 

64 = Wf — Uftan^f (2.244) 

65 = w/tanx/— t;/sin7/. (2.245) 

r is a weighting parameter on the final time (if it is unspecified). This is a trade-off" 

between the minimum time problem and the minimum control effort problem. The 

Hamiltonian and the Bolza function for this derivation are 

H   =   -^{al + 4 + al) + XxU + XyV + X^w + Xua^ + XyUy 

+A^(a.+p) (2.246) 

G   =   rt/ + v^e^ + VyCy + v^tz + ^-464 + ^^565- (2.247) 

2.5.2    The First Variation Conditions 

The Pontryagin Minimum Principle, along with the transversality condition on the 

final state, yield the following equations 

A; = 0 (2.248) 

Aj, = 0 (2.249) 

A, = 0 (2.250) 

A„ = -A^ (2.251) 

A; = -A, (2.252) 

A„ = -A, (2.253) 
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with the terminal conditions 

If we define 

the Lagrange multipliers are found to be 

Axy — v^ 

\s = Uy 

K, = ^z 

^Uf = —u^ tan 7/ 

^Vf = -u^smjf 

^Wf = V4, + 1^5 tan Xf 

tgo ^tf-t 

Xy     = ^y 

A.   = Vz 

A„   = u^tgo - u^tan^f 

A„   = Uytgo-ussmjf 

"W       ^ U^tgo + U^ + l^S^SiT^Xf 

and the controls, ax, ay, a^ are 

a. y 

(2.254) 

(2.255) 

(2.256) 

(2.257) 

(2.258) 

(2.259) 

(2.260) 

A,   =   i^x (2.261) 

(2.262) 

(2.263) 

(2.264) 

(2.265) 

(2.266) 

ttx   =   -Au =-M9o + i^4tan7/ (2.267) 

a z 

-Xy = -Vytgo H" v^ siu 7/ (2.268) 

-A^ = -v^tgo -u^-v^ tan Xf- (2.269) 
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The states can be written as 

3.   = ^^ —y^ _ Uftgo + XT + UTtgo (2.270) 

y   =   —"-f- + —--Vftgo + VT + VTtgo (2.271) 
D Z 

~   -        ^ ^ ^ + -^ - Wftgo + ZT + wrtgo    (2.272) 
6 2 2 2 

^-rrt 
U 

X' 
- U4 tan jftgo + Uf (2.273) 

y   =   '^-jy^sinjftgo + Vf (2.274) 

w + I'itgo + P-, tan Xftgo + Wf- gtgo (2.275) 
2 

The states in the x, y, and 2; directions are all independent of each other as well as 

their associated controls a^^, Uy, and a^. Solving for the Lagrange multipliers in terms 

of the states yields 

i/^   =   -^aiu' - -^OL2v' - T^asw' - -5- (2.276) 
tgo ''go ''go ''go 

-—a2u' + -^a5v'--^a4w'--f (2.277) 
''go ''go ''go ''go 

3       ,3       .3             -6^+3^ 
-7r«3M - —a^v + -^aew + —  (2.278) 

''go ''go ''go ''go 

V, y 

where 

Ofi = 2 — cos^ 7/ cos^ Xf (2.279) 

Q!2 = sin x/cos x/cos 7/ (2.280) 

0:3 = sin 7/cos 7/cos^ x/ (2.281) 

0:4 = sin 7/sin x/cos x/ (2.282) 

as = l + cos^x/ (2.283) 

as = 2-sin2 7^cos2x/ (2.284) 

a-j = 2-s\u^Xf (2-285) 
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and the controls can be expressed as 

where 

a.T = M H V -\--—w -—- 
tgo            ''go           ''go ''go 

tty 
a!2    ,       Q!7   ,       Q!4     / —       u' y' 4- —ly' 
tgo                    tgo                   tgo 

2v 

tgo 

dz 
as  ,    a4 ,     ae   , 

tgo                    tgo                    tgo 

Zx 
u    =   «+ — 

tgo 

2{w + gtgo) 

tgo 

v'   =   i; + — 
tgo 

3z 
11}    =   iv +  

tgo 

gtgo 

2 

and 

(2.286) 

(2.287) 

(2.288) 

(2.289) 

(2.290) 

(2.291) 

X   =   X — XT — uxtgo (2.292) 

y   =   y-yr-vrtgo (2.293) 

z   =   z — ZT — wrtgo- (2.294) 

2.5.3    Solving for the Final Time 

The transversality condition from the Pontryagin Minimum Principle associated with 

the free final time condition {Hf = -Gtp) results in the following equation 

-{al + 4 + al) + Xa:U + XyV + A^w + A„a^ + XyUy + A^(a^ + g) = -Gtj     (2.295) 

where 

-Gtf = -F + Z/XMT + ^yVT + ^ZWT- (2.296) 

A more useful condition is obtained from the first integral (being a constant), since 

the Hamiltonian is independent of time, which can be expressed as 

H = —-{al + al + al)-^ u^u + UyV + u^w + X^g (2.297) 
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and after combining the Hamiltonian and the Bolza function the following result can 

be expressed 

0 = C,t% + 04, + C^t], + Ctgo + Co (2.298) 
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where 

C4 _   ^,A-sm'jfCos'xf_^^                                                                (2.299) 
8 

Cz =   0                                                                                                          (2.300) 

C2 
cos2x/COs2 7y-4^2 1 sin2x/-4^2 , sin2 7^cos2x/- 4^2 

2                              2                              2 
■I 

+64MW + beuw + hvw - -5[sm^ 7/ cos^ Xfi^ - ^T) 

+ sin 7/ sin %/ cos Xf [v - VT) + sin 7/ sin 7/ cos^ Xf {x - XT)\ 

-6[67«t« + hf,vtv + fegwtw + {UVT + t;Mr)&4 + (^^t;T + VTw)h^ 

-\-{UWT + MT'fw)&6] + 9[6IM| + 62^7- + hzW^ + 364MT^'T 

+365Urt(;T + ZheUrWr] + 3(67« + &4^^ + KW)UT + 3(64M + ^5'"^ + h'")'"T 

+3(66M + 65U + bgw)wT - 9{b7UT + KVT + b&WT)uT - 6u^ 

-9{b4UT + bsVT + b^WT^VT - ^v^ 

—9(b&UT-^ b^VT-\-bgWT)wT - ^w^                                                    (2.301) 

Ci =   Q[{b-r{x - XT)U + b»{y - yT)v ^ bQ{z - ZT)W 

Hiy - yT)u + {x - XT)v)b4 + {{z - ZT)V + {y - yT)w)b5 

+{{z - ZT)U + (X - XT)w)be] + 9[bi{-2xuT + 2XTUT) 

+b2{—2yvT + ^yrvr) + bz{-2zwT + 2ZTWT) 

■\-Zbi{-xvT + XTVT - yuT + yrur) + ^b^i-ywr + VTWT - ZVT + ZTVT) 

3be{—xwT + XTWT - ZUT + ZTUT)] + 9[b7{x — XT) + bi{y - yr) 

+be{z - zr)]uT + G{x - XT)UT + 9[bi{x - XT) + bsiy - yr) 

+b5{z - zr)]vT + 6{y - yrW + 9[be{x - XT) + b^iy - yr) 

+bg{z — ZT)]WT + ^{z - ZT)WT                                                       (2.302) 

Co =   9[bi{x^ - 2XXT + x^) + b2{y'^ - 2yyT + yx) 

+bs{z^ - 2ZZT + z^) + 364(0:2/ - xyx - xry + XTyr) 

+3b5{yz-yzT-yTZ + ZTyT) + ^be{xz-xzT-XTZ + XTZT)]-       (2.303) 
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Chapter 3 

The Second Variation Necessary Conditions 

In order establish whether the proposed guidance laws are optimal solutions the sec- 

ond variation necessary conditions must be satisfied. Once it is determined that the 

proposed guidance laws satisfy the second variation necessary conditions it will then 

be possible to examine the second variation sufficient conditions and definitely estab- 

lish the optimality of the solution. The second variation necessary condition for a 

weak relative minimum, also known as Legendre-Clebsch condition, simply states 

Hun > 0. (3.1) 

The second variation necessary condition for a strong relative minimum is the Weierstrass 

condition which is 

H{t,x,u^,X)-H{t,x,u,X)>0 (3.2) 

where u^, is an admissible comparison control and u is the optimal control. Once these 

two conditions are met it is possible to conclude that the second variation necessary 

conditions have been satisfied. These conditions are not sufficient for a minimum, 

but it is known that the optimal path is not a maximum [10]. 

3.1    Applying the Second Variation Necessary Conditions 

Given the Hamiltonian of the form 

H = -{al + al + al) + XxU + XyV + X^^w + A„a^ + X^ay + X^^ia^ + g)        (3.3) 



41 

where 

a 

u = 

X 

tty 

0.Z 

(3.4) 

" 1  0 o' 

H-uu — 0   1   0 

0   0   1 

(3.5) 

In order to satisfy the Legendre-Clebsch condition the second partial derivative of the 

Hamiltonian with respect to the control must be greater than or equal to zero. Using 

the given Hamiltonian the second partial derivative of the Hamiltonian with respect 

to the control is as follows 

The identity matrix that results satisfies the Legendre-Clebsch condition for all four 

analytic guidance laws. The next condition that must be satisfied is the Weierstrass 

condition. The Weierstrass condition simply states that the Hamiltonian calculated 

using the optimal control subtracted from the Hamiltonian calculated using an ad- 

missible comparison control must be greater than zero. The Hamiltonian calculated 

using the admissible comparison control is as follows 

H* = -{al^ + al^ + «!) + \xU + \yV -f Kw -h A„a^, -f- Xytty^ -\- A^(a^, -I- g).   (3.6) 

Recall from Eqn. 2.64-2.66 that A„ = -a^, A^ = -Cj,, and A^ = -o^. Eqn. 2.64-2.66 

came directly from the derivation for the guidance law considering a three dimen- 

sional moving target with no additional constraints, however, this condition is valid 

for all four guidance laws. Using this knowledge the Hamiltonian calculated using 

the optimal control and the Hamiltonian calculated using the admissible comparison 

control are as follows 

E 

H* =   -(o^^ -h 4^ + al) + AjM + \yv + \w - a^a^. 

o-zQ       (3.7) 

(3.8) 
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In order to check the Weierstrass condition the Hamiltonian with the optimal control 

must be subtracted from the Hamiltonian with the admissable comparison control. 

After performing the necessary algebra the results is as follows 

H*-H   =   ^(ax-a,j2 + i(a,-aj,j2 + i(a^_a,j2 (3.9) 

H*-H   >   0. (3.10) 

Therefore the Weierstrass condition and the Legendre-Clebsch condition are both 

satisfied, thereby satisfying the second variation necessary conditions. Again, these 

conditions must be met in order for an optimal solution to exist, but these conditions 

do not mean that an optimal condition has been found. They do however rule out 

the possibility that the solution is a maximum [10]. This result applies to all four 

guidance laws. 
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Chapter 4 

Establishing Optimality: The Second Variation 
Sufficient Conditions 

Even with the guidance laws being derived using the first variation necessary condi- 

tions, the question must be raised as to the optimality of the solution. This can be 

verified using second order sufficient conditions [10]. If a solution meets the second 

order sufficient conditions then it is verified to be a minimum solution. Given the 

performance index of the form 

r-t/ 
J = E{xf,tf)+ /    F{x,y,T)dT 

Jto 
(4.1) 

with a solution satisfying the Pontryagin Minimum Principle, the solution is a mini- 

mum if the following conditions are satisfied 

Huu   >   0 

S    finite, to <t < tj 

(4.2) 

(4.3) 

where 

s = s- uv-'u ITTT 

The matrices U and V are defined as 

U 

V   = 

R m 

' Q n 

rf a 

(4.4) 

(4.5) 

(4.6) 
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The variables S, R, m, Q, n, and o; are obtained as solutions to the following set of 

first order differential equations 

S = -C-A^S-SA + SBS (4.7) 

R = {SB-A'')R (4.8) 

m = {SB-A^)m (4.9) 

Q = R^BR (4.10) 

n = R^Bm (4.11) 

a = M'^Bm (4.12) 

where 

A   =   f,-fuH-^Hu, (4.13) 

B   =   fuH^^Hu. (4.14) 

C   =   H,,-H,uH-^Hu, (4.15) 

and the final conditions are defined as 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Sf =z ^XfXf 

Rf = 
< 

TUf = ^l 
Qf = 0 

"/ = e/ 

«/ 
= Clf 

where 

Q   =   Lf + G^^ff + Gt,=0 (4.22) 

L{t,x,u)   =   If'al + al + aldr (4.23) 

f{t,x,u)   =   X. (4.24) 
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If the conditions on S and i7„„ are met then the guidance laws are indeed optimal 

solutions of the given performance index. 

4.1    Three Dimensional Moving Target 

with no Additional Constraints 

In order to evaluate the sufficient conditions Eqns.   4.2 and 4.3 recall the Hamil 

-tonian and Bolza functions are 

H   =   -{al + al + al) + XxU + XyV + X^w + Xuttx + Xytty 

+A^(a. + p) (4.25) 

+u,[zf - ZT - writf - t)]. (4.26) 

The terminal constraints for this scenario are defined to be 

Xf — XT — uritf — t) 

Vf-yr- vritf -1) 

Zf — ZT — Wxitf — t) 

and / is equal to x with the following form 

f{x,u,t)'^ = [   u   V   w    ttx    tty    ttz+g   f 

(4.27) 

(4.28) 

The first and second partial derivatives of the Hamiltonian with respect to the control 

are 

(4.29) H^ 

H-uu 

O-x + Xu 

tty + A„ 

_ dz + A„ _ 

1 0   0 

0 1   0 

0 0   1 

(4.30) 
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and also the partial derivative of the Hamiltonian with respect to u and then x yields 

Hux — 0; ux — "3x6- (4.31) 

Huu is a constant identity matrix, which is greater than zero, and fulfills one of the 

second variation conditions for a minimum. The second partial derivative of the 

Hamiltonian with respect to x is 

Hxx — OexB- 

The partial derivatives of / with respect to u and x are respectively 

0 0 0 10   0 

0 0 0 0   10 

0 0 0 0   0   1 

0 0 0 0   0   0 

0 0 0 0   0   0 

0 0 0 0   0   0 

Jx    — 

Ju 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

Evaluating Eqns. 4.13-4.15 using fx, fu, H^u, Hux, and Hxx we get 

A    '=    Jx ~ Ju-t^uu -"ux ^ Jx 

■D     =    JuH^u Ju   ~ JuJu   ~ 

C    =    Hxx ~ HxuH^u Hux = 06x6- 

OsxS -^3x3 

_ OsxS 03x3 

OsxS Osxl 

03 x3  -^3x3 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 
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Using the set of first order differential equations Eqns. 4.7-4.12 with the final condi- 

tions designated by Eqns. 4.16-4.21 the solutions S, R, Q, m, n, and a can be found. 

The solution S is obtained rather simply by integrating Eqn. 4.7 and enforcing the 

final condition 

Sf = G,,,^ = 06x6 (4.38) 

such that the solution S is 

5 = 06.6 (4.39) 

The solution R is obtained by integrating Eqn. 4.8 and applying the final condition 

Rf = el^ = 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

(4.40) 

R (4.41) 

such that the solution R is 

"^1 0 0 

0 1 0 

0 0 1 

tj-t 0 0 

0 tf-t 0 

0 0 tf-t 

Integrating Eqn. 4.10 leads to the solution for Q by applying the final condition 

Qf = 03x3. (4.42) 

The solution Q is 

^-\{tf-tf 0 0 

Q= 0 -Ws-tf 0 . (4.43) 

0 0        -\{tf-tf 



48 

The next solution to be obtained is m which requires the terminal condition m/ 

0 

m/ = nl^ 

0 

0 

Vy 

(4.44) 

After integrating m subject to the final condition the following solution is obtained 

m   =   {SB - J^)m = -£m 

0 

0 

0 

V,, 

(4.45) 

m (4.46) 

nj = 6/ = etf +ej;y// (4.47) 

The next solution that must be obtained is n and the terminal conditions for n are 

«/ — Mr 

Vj — VT 

Wf — WT 

Now enforcing the final conditions on n and integrating h the solution is 

h   =   R^Bm 

-\Vx{tf-tf-\-Uf-UT 

-\fy{tf -ty + Vf-VT 

■\^z{tf - ty + Wf - WT 

The final differential equation that must be solved is a and the final condition for a 

is 

af = Qf = Qtf + ^xfif = ^xO-xf + VyO'yf + u^iazj + g). (4.50) 

n   = 

(4.48) 

(4.49) 
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Finally the resulting solution of a is 

a = -{^l + ^y + ^z)(*/ - *) + ^^«^/ + ^y^yf + ^^(°^/ + 9)- (4-51) 

Using the solutions of S, R, m, Q, n, and a the matrices V and U can be formed 

V   = 

U = [ 

' Q -n 

_rf a 

R m 

(4.52) 

(4.53) 

In order to check the optimality of a solution the matrices U and V must be deter- 

mined at every point of the solution. If U does not go to infinity and V has a nonzero 

determinant then the condition on S will be satisfied. Therefore, if these conditions 

are met, the guidance laws for a three dimensional moving target with no additional 

constraints would indeed be a minimum. 

4.2    Three Dimensional Moving Target 

with a Terminal Flight Path Angle Constraint 

In order to evaluate the sufficient conditions Eqns.   4.2 and 4.3 recall the Hamil 

-tonian and Bolza functions are 

+Kay-^X^{a,-\-g) (4.54) 

G   =   Ttf + Ux[xf -XT- uritf - t)] + Uy[yf -yr- vxitf -1)] 

+Uz[zf - ZT - writf - t)] + U4[wf - Uf tan7/]. (4.55) 

The terminal constraints for this scenario are defined to be 

Xf — XT — Uritf — t) 

e = 
Vf-VT- vritf -1) 

Zf — ZT — 1VT{tf — t) 

Wf — M/tan(7/) 

(4.56) 
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and / is equal to x with the following form 

f{x,u,t)'^ = [   u   V   w   ax   ay   a^ + g   f (4.57) 

The first and second partial derivatives of the Hamiltonian with respect to the control 

are 

dx + ^u 

Hu   = ay + A„ 

ttz + \vj 

1   0   0 

tj-uu     ^^ 0   1   0 

0   0   1 

(4.58) 

(4.59) 

and also the partial derivative of the Hamiltonian with respect to u and then x yields 

Hux — 03x6- (4.60) 

Huu is a constant identity matrix, which is greater than zero, and fulfills one of the 

second variation conditions for a minimum. The second partial derivative of the 

Hamiltonian with respect to x is 

Hxx — Oexe- (4.61) 
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The partial derivatives of / with respect to u and x are respectively 

0 0 0 10   0 

0 0 0 0   10 

0 0 0 0   0   1 

0 0 0 0   0   0 

0 0 0 0   0   0 

0 0 0 0   0   0 

Jx    — 

Ju     — 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

Evaluating Eqns. 4.13-4.15 using f^, /«, Huu, H^x, and H^x we get 

Jx JU-t^uU "MI      Jx 

B 

C 

Ju^uu Ju        JuJu 

iixx ~ -"xtt-"uu -"ux - 

03x3  -^^3x3 

03x3 OsxS 

03x3 Osxl 

03 x3  -^3x3 

(4.62) 

(4.63) 

06x6- 

(4.64) 

(4.65) 

(4.66) 

Using the set of first order differential equations Eqns. 4.7-4.12 with the final condi- 

tions designated by Eqns. 4.16-4.21 the solutions S, R, Q, m, n, and a can be found. 

The solution S is obtained rather simply by integrating Eqn. 4.7 and enforcing the 

final condition 

Sf = Gx.xf = 06x6 (4.67) 

such that the solution S is 

S = 06x6- (4.68) 
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The solution R is obtained by integrating Eqn. 4.8 and applying the final condition 

Rf = el 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

tan 7/ 

0 

1 

such that the solution R is 

R 

1 0 0 0 

0 1 0 0 

0 0 1 0 

tf-t 0 0 — tan 7/ 

0 tf-t 0 0 

0 0 tf-t 1 

(4.69) 

(4.70) 

Integrating Eqn. 4.10 leads to the solution for Q by applying the final condition 

Q/ = 0, 4x4- (4.71) 

The solution Q is 

3''go 0 0 1*90 tan 7/ 

Q = 
0 

0 

aV 

0 

0 

aV 

0 

2V 

5*30 tan 7/ 0 2V -{l+t&H^Jf)tgo 

(4.72) 

where 

tgo       if t. (4.73) 
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The next solution to be obtained is m which requires the terminal condition m/ 

0 

0 

0 
JUf = fi^ Xf 

V^. 

u„ 

u^. 

(4.74) 

After integrating m subject to the final condition the following solution is obtained 

m   =   {SB-A^)m=-A^m 

0 

0 

0 

(4.75) 

m   = 
v^ 

V, y 

(4.76) 

The next solution that must be obtained is n and the terminal conditions for n are 

Uf = ef = etj +exjff 

Uf — UT 

Vf —VT 

Wf — WT 

Now enforcing the final conditions on n and integrating n the solution is 

(4.77) 

n 

n   = 

R^Bm 

-\vx{tf - if + Uf - UT 

-\Uy{tf-t)^+Vf-VT 

-\Vz{tf-tf+Wf-WT 

{vx tan 7/ - Uz)tgo - tan 7/0^^ +02^+5 

(4.78) 

(4.79) 
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The final differential equation that must be solved is a and final condition for a is 

Of = Q,f = ^tf + ^Xfif = ^xO-xj + ^j/%/ + ^zi^zi + 5)- (4.80) 

Finally the resulting solution of a is 

a = -{vl + i/y + u^){tf -t) + Uxttxf + Vyttyj + Vz{azf + g)- (4.81) 

Using the solutions of 5, R, m, Q, n, and a the matrices V and U can be formed 

(4.82) 

(4.83) 

As before, in order to check the optimality of a solution the matrices U and V must 

be determined at every point of the solution. If U does not go to infinity and V has 

a nonzero determinant then the condition on 5" will be satisfied and the solution will 

indeed be a minimum. 

V   = 
Q   n 
T n     a 

u = R   m 

4.3    Three Dimensional Moving Target 

with a Terminal Heading Angle Constraint 

In order to evaluate the sufficient conditions Eqns.   4.2 and 4.3 recall the Hamil 

-tonian and Bolza functions are 

H   =   -{al + al + af) + X^u + XyV + X^w + Xua^ + Xytty 

+X^{a, + g) (4.84) 

G   =   Ttf + Ux[xf-XT-UT{tf-t)] + Uy[yf-yT-VT{tf-t)] 

+u,[zf -ZT- writf - t)] + U4[vf - Uf tan Xf]■ (4.85) 
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e = 

The terminal constraints for this scenario are defined to be 

Xf — XT — Uxitf — t) 

Vf-VT- vritf -1) 

Zf — ZT — Wxitf — t) 

Vf - Uf tan Xf 

and / is equal to x with the following form 

f{x, w, i)^ = [   u   V   w    ax    ay    az + g   f 

(4.86) 

(4.87) 

The first and second partial derivatives of the Hamiltonian with respect to the control 

are 

ttx + Au 

H,   = ay  +  Ay 

Oz   1   Au) 

1   0   0 

H-uu     ^^ 0   1   0 

0   0   1 

(4.88) 

(4.89) 

and also the partial derivative of the Hamiltonian with respect to u and then x yields 

Hux = 03x6- (4.90) 

Huu is a constant identity matrix, which is greater than zero, and fulfills one of the 

second variation conditions for a minimum. The second partial derivative of the 

Hamiltonian with respect to x is 

Hxx — OexB- (4.91) 
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The partial derivatives of / with respect to u and x are respectively 

0 0 0 10   0 

0 0 0 0   10 

0 0 0 0   0   1 

0 0 0 0   0   0 

0 0 0 0   0   0 

0 0 0 0   0   0 

Jx {AM) 

Ju 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

(4.93) 

Jx       Ju^uu ^ux — Jx = 
03x3    -^3 

03x3    O3 

<3 

><3 _ 

(4.94) 

ju^uu Ju   ^^ JuJu 
03x3    Osxl 

03x3     -'^3x3 

(4.95) 

^xx ~ ^xu^uu "vx — 06> <6- (4.96) 

Evaluating Eqns. 4.13-4.15 using f^, /„, Huu, Hux, and H^x we get 

A   = 

B   = 

C   = 

Using the set of first order differential equations Eqns. 4.7-4.12 with the final condi- 

tions designated by Eqns. 4.16-4.21 the solutions S, R, Q, m, n, and a can be found. 

The solution S is obtained rather simply by integrating Eqn. 4.7 and enforcing the 

final condition 

Sf = GxfXf = 06x6 (4-97) 

such that the solution S is 

S = 06x6 (4.98) 
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The solution R is obtained by integrating Eqn. 4.8 and applying the final condition 

Rf -Xf 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 -tanx/ 

0 0 0 1 

0 0 0 0 

(4.99) 

such that the solution R is 

R   = 

1 0 0 0 

0 1 0 0 

0 0 1 0 

tf-t 0 0 -tanx/ 

0 tf-t 0 1 

0 0 tf-t 0 

(4.100) 

Integrating Eqn. 4.10 leads to the solution for Q by applying the final condition 

Qf = 0. '4x4- (4.101) 

The solution Q is 

_i/3 0 0 1*2^ tanx/ 

Q = 
0 

0 0 

0 

_i+3 
3''go 

2''go 

0 

1*2^ tan x/ 2V 0 -(l + tan^x/)^ go 

(4.102) 

where 

TgQ   —   Tf Z. (4.103) 



58 

The next solution to be obtained is m which requires the terminal condition m/ 

0 

0 

0 
^f = ^If = 

VT. 

u,, 

Ur. 

(4.104) 

After integrating m subject to the final condition the following solution is obtained 

rh = {SB 

0 

0 

0 

A^)m = -A^m (4.105) 

m   = 
I'T. 

v„ 

V, 

(4.106) 

The next solution that must be obtained is n and the terminal conditions for n are 

rif = ef = etj + Cxjff = 

Uf — UT 

Vf — VT 

Wf — WT 

- tan Xff^xf + %/ 

Now enforcing the final conditions on n and integrating n the solution is 

(4.107) 

n 

n 

R^Bm 

-2^x{tf - tf +Uf-UT 

-luy{tf - ty + Vf - VT 

~2^z{tf - ty + Wf -WT 

(i/a: tan Xf - ^y)tgo - tan Xf^xj + %/ 

(4.108) 

(4.109) 
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The final differential equation that must be solved is a and final condition for a is 

af = Qf = Qtf + ^xfXf = I'xaxf + ^yO'yj + ^z{o,zj + g)- (4.110) 

Finally the resulting solution of a is 

a   =   -{Vl   +  l^J  +  Vl){tj   -t)-\-  U^ttx^   +  Uyttyj   +  V^itt;,^   + §). (4-111) 

Using the solutions of 5, R, m, Q, n, and a the matrices V and U can be formed 

Q   n 

T 
V   = 

U   =    ^R   m 

(4.112) 

(4.113) 

4.4    Three Dimensional Moving Target with a 

Constraint on both the Terminal Flight Path 

Angle and the Terminal Heading Angle 

In order to evaluate the sufficient conditions Eqns.   4.2 and 4.3 recall the Hamil 

-tonian and Bolza functions are 

+A^(a. + 5) (4.114) 

G   =   Ttf-^Vx[xf-XT-UT{tf-t)] + Uy[yf-yT-VT{tf-t)] 

-\-Vz[zf - ZT - writf - t)] + u^lwf - Uf tan 7/] 

+1/5 [w/ tan Xf - Vf sin 7/]. (4.115) 

The terminal constraints for this scenario are defined to be 

Xf — XT — Uxitf — t) 

yf-yT-vritf-t) 

Zf-ZT- writf - t) (4.116) 

Wf — Uf tan(7/) 

Wf tan Xf — ■y/ sin 7/ 
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and / is equal to x with the following form 

/(x,M,t)^ = [   u   V   w   ttx   tty   a^ + g   f (4.117) 

The first and second partial derivatives of the Hamiltonian with respect to the control 

are 

H„ 0,y  +  Ay (4.118) 

Hu 

1   0 0 

0   1 0 

0   0 1 

(4.119) 

and also the partial derivative of the Hamiltonian with respect to u and then x yields 

Hux = 03x6- (4.120) 

Hun is a constant identity matrix, which is greater than zero, and fulfills one of the 

second variation conditions for a minimum. The second partial derivative of the 

Hamiltonian with respect to re is 

Hxx — Oexe- (4.121) 
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The partial derivatives of / with respect to u and x are respectively 

0 0 0 10   0 

0 0 0 0   10 

0 0 0 0   0   1 

0 0 0 0   0   0 

0 0 0 0   0   0 

0 0 0 0   0   0 

Jx     — 

fu 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

Evaluating Eqns. 4.13-4.15 using f^, fu, Huu, Hux, and H^x we get 

-A     —     Jx       Ju^uu -"ui — JX — 

B 

c 

Ju-t^uu Ju        JuJu 

03x3  ^3x3 

03x3 03x3 

03x3 O3XI 

0 '3x3  -'3x3 

Hxx ~ HxuHy^u Hux — Ogxe- 

(4.122) 

(4.123) 

(4.124) 

(4.125) 

(4.126) 

Using the set of first order differential equations Eqns. 4.7-4.12 with the final condi- 

tions designated by Eqns. 4.16-4.21 the solutions S, R, Q, m, n, and a can be found. 

The solution S is obtained rather simply by integrating Eqn. 4.7 and enforcing the 

final condition 

Sf = G. XfXf — "6x6 (4.127) 

such that the solution S is 

5 = 0, 6x6 (4.128) 
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The solution R is obtained by integrating Eqn. 3.8 and applying the final condition 

1 0 0 0 0 

0 1 0 0 0 

Rf = el = 
0 

0 

0 

0 

1 

0 

0 

— tan 7/ 

0 

0 

0 0 0 0 — sin 7/ 

0 0 0 1 tanx/ 

such that the solution R is 

1 0 0 0 0 

0 1 0 0 0 

R = 
0 0 1 0 0 

tf-t 0 0 — tan 7/ 0 

0 tf-t 0 0 — sin 7/ 

0 c if -t 1 tanx/ 

(4.129) 

(4.130) 

Integrating Eqn. (4.10) leads to the solution for Q by applying the final condition 

Qf — 05x5- (4.131) 

The solution Q is 

0 0 

0 3'-go 0 

Q(l-5,l-3)     = 0 0 3''go 

|*?otan7/ 0 2 V 

0           ii^^sin V -1*2^ tan x/ _ 

It^tanjf 0 

0 |*goSin7/ 

Q(l-5,4-5)     = 2V -it2„tanx/ 

-t,„(l + tan2 7;) -tgotanxf 

-tgo tan Xf -(sin'^'yf + ta.n^Xf )t 

(4.132) 

go 
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where 

tgo=tf-t.                                                                   (4.133) 

The next solution to be obtained is m which requires the terminal condition m/ 

0 

0 

rrif = ^l^ = 
0 

^x 

Uy 

(4.134) 

After integrating rh subject to the final condition the following solution is obtained 

m   =   {SB- A^)m = -A'^m                               (4.135) 

0 

0 

m   = 
0 

Uy 

(4.136) 

The next solution that must be obtained is n and the terminal conditions for n are 

Uf — UT 

Vf —VT 

nf = ef = etj + e^Jj = Wf — WT (4.137) 

- sin 7/aj,^ + tan Xfi^-zf + 9) 
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Now enforcing the final conditions on n and integrating h the solution is 

h   =   R^Bm (4.138) 

n   = 

-l^ytlo + Vf-VT 

■h^ztlo + Wf-WT 2  ^ go 

[vx tan 7/ - Uz)tgo - a^j tan 7/ + a^^ + g 

{uy sin 7/ - i/^ tan X/)^ffo - sin 7/0^^ + tan X/(a^^ + 5) 

The final differential equation that must be solved is a and final condition for a is 

(4.139) 

af = Clf = Qtf + ^xfi^f = ^xOi/ + ^'yOj// + t^zidzf + 5)- (4.140) 

Finally the resulting solution of a is 

tt = -(^1 + ^J + ^f )(^/ - *) + ^xcixf + J^ydyf + M(^zf + g)- (4.141) 

Using the solutions of S, R, m, Q, n, and a the matrices V and U can be formed 

V   = 

U 

' Q n 

n^ a 

R m 

(4.142) 

(4.143) 
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Chapter 5 

Results: Four Optimal Guidance Laws 

5.1    Satisfaction of First Variation Necessary Conditions 

Recall from Eqn. 2.29 the Hamiltonian must be constant at every instant in time and 

the transversality condition must be equal to zero for an optimal solution. Eqn. 2.29 

is restated below as a reminder 

H = constant = —Gtf 

The transversality condition is the sum of the Hamiltonian and the partial derivative 

of the Bolza function with respect to the final time. Using Eqn. 2.29 it is possible 

to check whether the four guidance laws are indeed correct. Since Eqn. 2.29 is 

a necessary condition for a minimum it can be used to determine if the guidance 

laws meet this condition. A simulation was developed in Matlab® in order that 

given a set of initial conditions for the missile and the target, the Hamiltonian and 

transversality condition can be evaluated over time until the missile intercepts the 

target. Over this period of time the Hamiltonian, commanded accelerations, Bolza 

function, and transversality condition were computed. Each of the four guidance laws 

were evaluated. The initial state of the missile used in the simulation was chosen to 



X    = -50,000 ft 

y = Oft 

z   = 50,000 ft 

u   = 1100 « 
sec 

V    = 0^ 
sec 

w   = o". 
sec 
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reflect a realistic scenario and is as follows 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

The target initial state was chosen to exercise all six components of the target state 

(which include a three dimensional position with coordinates in all three axes, and a 

three dimensional velocity vector maneuving the target in all three axes). The target 

initial state, used to create all Hamiltonian and transversality condition results, is as 

follows 

XT   =   -5000 ft (5.7) 

VT   =   3000 ft (5.8) 

ZT   =   500 ft (5.9) 

UT   =   -10— (5.10) 
sec 

VT   =   -10— (5.11) 
sec 

WT   =   10—. (5.12) 
sec 

The results for the situation of a moving target with no terminal angle constraints are 

shown below. The Hamiltonian is shown in Figure 5.1 and is a constant value. A few 

seconds before interception the Hamiltonian displays a sharp curve towards zero and 

then seems to go quickly towards negative infinity. The reason for this behavior is 

that the guidance laws are based on the value of tgo- As the current time approaches 

the final time, tgo approaches zero, the equations calculating the accelerations of 

the missile divide by very small numbers which inevitably approach zero. Since the 
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equations that calculate acceleration must divide by tgo this sharp curve at the end 

of the Hamiltonian curve is expected. In practice, once tgo gets small (i.e. 0.1) it 

is best to stop calculating acceleration commands and simply compute the missile 

acceleration commands based upon the last value calculated for tgo- Also according 

to the previous analysis Eqn. 2.29, the transversality condition should maintain 

a constant value of zero during the interception. The transversality condition will 

maintain a constant value of zero over all time because the derivative of the Bolza 

function with respect to the final time, -Gt^, mirrors the Hamiltonian's behavior as 

tgo approaches zero. This is shown in Figure 5.2. The same target initial state was 

used to perform a simulation using the guidance law that incorporates a constraint 

on the terminal flight path angle which in this scenario is negative eighty-five degrees. 

The Hamiltonian is shown in Figure 5.3. Again, the Hamiltonian behaves erratically 

as tgo moves close to zero. Also, the transversality condition maintains a constant 

value of zero as shown in Figure 5.4.       The results for the constrained heading 

Hamiltonian for 3D Moving Target 

E 

 ' I ! 1^ 1 1 ; \ I ^- 

20 25 30 35 ^ 4S so 
Time (sec) 

Figure 5.1: The Hamiltonian for a three dimensional moving target with 
no additional terminal angle constraints 
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Transversality Condition for 3D Moving Target 

10 IS 20 2S 30 
Time (sec) 

3S       M       4S       so 

Figure 5.2: The transversality condition for a three dimensional moving 
target with no additional terminal angle constraints 

Hamlltonlan of Flight Path Angle Constraint 

30 
Time (sec) 

Figure 5.3: The Hamiltonian for a three dimensional moving target with 
a terminal flight path angle constraint of —85° 
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'a 

!• 

S:-» 

Transversality Condition for Flight Path Angle Constraint 

30 
Time (sec) 

Figure 5.4: The transversality condition for a three dimensional moving 
target with a terminal flight path angle constraint of -85° 

angle, which in this case is sixty degrees, are as follows. The constant Hamiltonian 

is shown in Figure 5.5. The transversality condition is shown in Figure 5.6. Finally 

the results for a constrained heading angle (sixty degrees) and a constrained flight 

path angle (negative eighty-five degrees) are as follows. The Hamiltonian maintains a 

constant value as shown in Figure 5.7. Last, but not least, the transversality condition 

maintains a constant zero as shown in Figure 5.8. 
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Hamiltonlan of Heading Angle Constraint 
 1 !    1      - r ■                      I 

 t   1      - 
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Figure 5.5: The Hamiltonian resulting for a three dimensional moving 
target with a terminal heading angle constraint of 60° 

Transversallty Condition for Heading Angle Constraint 

Figure 5.6: The transversallty condition for a three dimensional moving 
target with a terminal heading angle constraint of 60° 
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Hamiltonlan of Flight PaOi Angle arid Heading Angle Constraint 

to 
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5., 
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Figure 5.7: The Hamiltonian for a three dimensional moving target with 
terminal flight path angle of -85° and terminal heading an- 
gle constraint of 60° 

o 
to 
> .1 

TransversaSty Condition for Final Flight Path and Heading Angle 

40 so 
Time (sec) 

Figure 5.8: The transversality condition for a three dimensional moving 
target with terminal flight path angle of -85° and terminal 
heading angle constraint of 60° 
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5.2    Satisfaction of the Second Variation Conditions 

Recall from the analysis of the second variation necessary conditions in Chapter 3 

that the second variation necessary conditions were met for all four guidance laws. 

In order to ensure that the guidance laws were indeed the optimal solution it was 

necessary to ensure that the conditions in Eqn. 4.2 and 4.3 were satisfied (second 

variation sufficient conditions). The condition listed in Eqn. 4.2 Huu > 0 was easily 

met in all four guidance laws because the resulting matrix of ^^ is in fact the 

identity matrix as shown in Eqns. 4.30, 4.59, 4.89, and 4.119. Recall that from the 

derivation in [10] that in order to test the condition on S represented by Eqn. 4.3 it 

was necessary to incorporate the value of 5', R, m, Q, n, and a throughout the life of 

the simulation. Using these solutions it is possible to construct the matrices U and 

V throughout the simulation. In order to ensure that S is always finite throughout 

the life of the simulation two conditions must be satisfied. First of all the matrix U 

can never go to infinity. Second the determinant of the matrix V must never go to 

zero for {t < tj) thereby making it noninvertible. As long as these two conditions 

are met the second variation sufficient conditions are satisfied. All four guidance laws 

were tested given numerous different initial conditions and the guidance laws did 

indeed satisfy the second variation sufficient conditions. One of the tests conducted 

used the same missile and target initial conditions that were used to conduct the 

Hamiltonian and transversality condition tests and constrained the terminal flight 

path angle to negative eighty-five degrees and the terminal heading angle to sixty 

degrees. Figure 5.9 shows the determinant of the U matrix over the flight time of the 

missile. Clearly the determinant does not go to infinity for {t < tf) and therefore the 

matrix will never be infinity. Again, the sharp turn to negative infinity that occurs 

at the final time is due to the fact that the accelerations are calculated by dividing 

by tgo- As tgo approaches zero the guidance laws are essentially dividing by smaU 

numbers and finally zero. This behavior occurs in every test. Figure 5.10 shows the 
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Second Variation Sufficient Condition (U) 

« 
-5 

-S.S 

-S 

-ftS 

-7 
40 50 
Time (sec) 

Figure 5.9: The determinant of the matrix U for a three dimensional 
moving target with a terminal flight path angle constraint of 
—85° and terminal heading angle constraint of 60° 

determinant of V over the flight time of the missile. The figure shows the determinant 

of V exponentially approaching zero. Figure 5.11 shows the determinant of V in the 

final seconds of testing. In order to give a better perspective of the behavior of the 

determinant of V as tgo approaches zero the exact values of the determinant were 

also monitored in order to check for zero or extremely small values. The determinant 

of V approaches zero as time-to-target approaches zero. Table 5.1 displays the last 

four calculated time-to-targets and the four determinants of V associated with those 

times. Every determinant prior to these four determinants of V are farther from zero 

than the first determinant in the table. Again, this behavior can be attributed to 

the fact that the accelerations are calculated by dividing by time-to-target. As tgo 

approaches zero this behavior of the determinant is an expected result. 
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y ^flH                     Second Variation Sufficient Condition (V) 
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Figure 5.10: The determinant of the matrix V for a three dimensional 
moving target with a terminal flight path angle constraint of 
—85° and terminal heading angle constraint of 60° 

Second Variation Sufficient Condition (V) 

Figure 5.11: The determinant of the matrix V for a three dimensional 
moving target with a terminal flight path angle constraint of 
-85° and terminal heading angle constraint of 60° 
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tgo (sec) 0.30832 0.20832 0.10832 0.024966 
det(y) -199.24 -8.6523 -0.046224 -8.3761 X 10-» 

Table 5.1: Determinant of V vs.   tgo for a three dimensional moving 
target with a terminal flight path angle constraint of -85° 
and a terminal heading angle constraint of 60° 
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5.3    Comparison with Results from DIDO 

Another method that was used to verify the proposed guidance laws was to com- 

pare them with the results of a numerical optimization package. The DIDO/Tomlab 

optimization tool was developed at the Naval Postgraduate School and is used in 

this thesis to develop numerically optimal trajectories (and accelerations). This tool 

solves the same problem as the analytic guidance laws. It is possible to compare the 

numerical optimal solutions from DIDO to the accelerations calculated by the ana- 

lytic guidance laws to see if they agree. The results from the analytic guidance laws 

were created using the same computer simulation and initial states that were used 

to determine if the Hamiltonian was constant and the transversality condition was 

zero. This simulation used the analytic guidance laws to generate the commanded 

accelerations at uniformly distributed points in time. Figure 5.12 shows the com- 

manded accelerations produced by the analytic guidance law for a three dimensional 

moving target with no angle constraints. Figure 5.13 shows the numerically optimal 

commanded accelerations produced by DIDO. Using the trajectories calculated by 

DIDO and the Matlab® simulation it was possible to compare the commanded accel- 

erations calculated by these two methods. Since DIDO doesn't uniformly distribute 

its data points over constant intervals in time and since the Matlab® simulation and 

the DIDO tool have a different total number of data points (at different points in 

time) it is necessary to use linear interpolation to generate points along both curves 

at the same points in time. Once these interpolations are performed it is possible 

to generate data calculating the difference in the commanded accelerations at each 

instant in time. A sizable portion of the magnitude of the calculated differences can 

be attributed to errors with the linear interpolation and different sampling points. 

This is true in all of the test cases using DIDO and the analytic guidance laws. Figure 

5.14 displays the difference in the two commanded accelerations. The errors in the 

data, although the data was generated using a linear interpolation, are still relatively 
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30 Moving Target Commahded Acceleration 

Figure 5.12: The commanded accelerations calculated by the analytic 
guidance law involving a three dimensional moving target 
with no angle constraints 
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Figure 5.13: The commanded accelerations found by DIDO for a three 
dimensional moving target with no angle constraints 
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small and show the accuracy of the analytic three dimensional moving target guidance 

law compared with the numerically optimal results generated by DIDO. Additionally, 

DIDO found that the initial time to target should be 52.2117 seconds whereas the 

analytic guidance law found the initial time to target to be 52.2096 seconds. Figure 

5.15 displays the time to target determined analytically by the proposed guidance 

law over the flight path time of the missile. Figure 5.16 shows the commanded ac- 

celeration numerical results generated by the proposed guidance law that considers 

a three dimensional moving target with a constraint on the terminal flight path an- 

gle. The constrained terminal flight path angle is negative eighty-five degrees. Figure 

5.17 shows the numerically optimized accelerations found by DIDO for a three dimen- 

sional moving target with a constraint on the terminal flight path angle. These results 

match up extremely well with the results found by the analytic guidance law. As be- 

fore, using a linear interpolation scheme the accelerations from DIDO were compared 

Acceleration Errors Comparing DIDO and the Analytic Guidance Law 

Figure 5.14: The difference of the commanded accelerations gener- 
ated by DIDO and the analytic guidance law for the 
three-dimensional moving target guidance law with no an- 
gle constraints 
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Calculated Time to Target fbr 3D Moving Target 
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Figure 5.15: The time to target found analytically using the analytic guid- 
ance law for a three dimensional moving target with no angle 
constraints 
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Figure 5.16: The commanded accelerations calculated by the analytic 
guidance law for a three dimensional moving target with a 
constraint on the terminal flight path angle of -85° 
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Flight Path Angle Constrained Control History 

Figure 5.17: The comanded accelerations found numerically by DIDO for 
a three dimensional moving target with a constraint on the 
terminal flight path angle of —85° 

with the commanded accelerations generated by the analytic guidance law and the 

results are shown in Figure 5.18. The difference between the two solutions, despite 

the interpolation and distribution of points, is still small and gives strong proof that 

the analytic guidance law is indeed optimal. The DIDO optimization tool also found 

the initial time to target to be 62.5970 seconds whereas the analytic guidance law 

found the intial time to target to be 62.5806 seconds. Figure 5.19 displays the time 

to target found analytically using the analytic guidance law. Figure 5.20 displays the 

commanded accelerations found by the proposed guidance law that considers a three 

dimensional moving target with an additional constraint on the terminal heading an- 

gle. The terminal heading angle that was used to generate these results was sixty 

degrees. Figure 5.21 displays the corresponding numerical results found by DIDO for 

a three dimensional moving target with a constraint on the terminal heading angle. 

The results found by the analytic guidance law and the DIDO optimization tool are 
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Acceleration Errors Comparing DIDO and the Analytic Guidance Law 
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Figure 5.18: The difference of the commanded accelerations gener- 
ated by DIDO and the analytic guidance law for the 
three-dimensional moving target guidance law with a con- 
straint on the terminal flight path angle of -85° 
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Figure 5.19: The time to target found analytically using the proposed 
guidance law for a three dimensional moving target with a 
constraint on the terminal flight path angle of —85° 
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Figure 5.20: The commanded accelerations calculated by the analytic 
guidance law involving a three dimensional moving target 
with a constraint on the terminal heading angle of 60° 

almost identical. A linear interpolation was used to create comparable points from 

the results generated by the DIDO optimal tool and the Matlab® simulation. These 

results are plotted in Figure 5.22. The calculated differences from the linear inter- 

polation between the two generated results are small. DIDO found that the initial 

time to target should be 62.9680 seconds while the analytic guidance law gave a time 

of 62.9683 seconds. The time to target found analytically by the proposed guidance 

law is demonstrated in Figure 5.23 and the initial value matches the result found by 

DIDO. Finally, Figure 5.24 displays the commanded accelerations found by the ana- 

lytic guidance law for a three dimensional moving target with a constraint on both 

the terminal flight path angle and the terminal heading angle. The terminal flight 

path angle enforced is negative eighty-five degrees and the terminal heading angle is 

sixty degrees. Figure 5.25 displays the control history found by DIDO for a three 

dimensional moving target with a constraint on both the terminal flight path angle 
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Figure 5.21: The commanded accelerations found numerically by DIDO 
for a three dimensional moving target with a constraint on 
the terminal heading angle of 60° 

Acceleration Errors Comparing DiDO and the Analytic Guidance Law 

30 
Time (sec) 

Figure 5.22: The difference of the commanded accelerations generated by 
DIDO and the analytic guidance law for a three dimensional 
moving target with a constraint on the terminal heading an- 
gle of 60° 
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Catculated Time to Target for Constrainecl Heading Angle 
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Figure 5.23: The time to target found analytically using the analytic guid- 
ance law for a three dimensional moving target with a con- 
straint on the terminal heading angle of 60° 

FPandHA Constrained Commanded Acceleration 

Figure 5.24: The commanded accelerations calculated by the analytic 
guidance law for a three dimensional moving target with a 
constraint on both the terminal flight path angle of —85° 
and the terminal heading angle of 60° 
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and the terminal heading angle. Again, using linear interpolation comparable points 

were generated from the data created by the DIDO optimal tool and the Matlab® 

simulation which is using the proposed guidance law. Using these points it is possible 

to compare the difference between the numerically optimal points from DIDO and 

the commanded accelerations generated by the analytic guidance law. Figure 5.26 

displays the differences in these two results. Also, Figure 5.27 displays the time to 

target found by the analytic guidance law. The initial time to target found by DIDO 

is 88.5154 seconds and the initial time to target found by the analytic guidance law is 

88.5439 seconds. The analytic guidance law matches DIDO very well for this initial 

time to target. 
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Figure 5.25: The commanded accelerations found by DIDO for a three 
dimensional moving target with a constraint on the terminal 
flight path angle of -85° and the terminal heading angle of 
60° 
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Figure 5.26: The difference of the commanded accelerations generated by 
DIDO and the analytic guidance law for a three dimensional 
moving target with a constraint on both the terminal flight 
path angle of —85° and the terminal heading angle of 60° 
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Figure 5.27: The time to target found by the analytic guidance law for a 
three dimensional moving target with a constraint on both 
the terminal flight path angle of —85° and the terminal head- 
ing angle of 60° 
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5.4    Evaluation of the Analytic Guidance Laws in a 6-DOF 

Simulation 

In order to provide real world implementation using the analytic guidance laws, they 

were incorporated into a missile simulation in Simulink/Matlab® used by Draper 

Laboratory. The simulation mentioned earlier in the thesis is a three dimensional 

simulation; consequently errors due to drag effects, discrete time effects, bang-bang 

control, or an actual missile autopilot which commands the canards on the missile 

to achieve certain accelerations were not incorporated. The six degree of freedom 

simulation incorporates all of these neglected effects so that it provides a realistic 

environment for evaluation of the analytic guidance laws. The simulation and its 

structure as implemented in Simulink are illustrated in Figure 5.28. Using this sim- 

ulation numerous tests were run to test the application and implementation of the 

Figure 5.28: 6-DOF simulation environment 
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analytic guidance laws. The missile was given an initial condition as shown below. 

X   =   -50,000 ft (5.13) 

y   =   Oft (5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

The target initial velocities were chosen to represent movement in all three directions 

and signify a vehicle moving at roughly top speed (roughly 60 to 70 mph). The target 

initial state, used to create all of the following results, is as follows 

XT   =   -5000 ft (5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

Figure 5.29 shows the relative position between the missile and the target from the 

6-DOF simulation using the guidance law for a three dimensional moving target with 

no angle constraints. Figure 5.30 shows the relative position between the missile and 

the target from a simulation using the guidance law for a three dimensional moving 

target with a constraint on the terminal flight path angle of —70°. Also, Figure 5.31 

shows the flight path angle history. Clearly from Figure 5.31 it is possible to see that 

the missile satisfied the terminal flight path angle constraint. Figure 5.32 shows the 

relative position between the missile and the target using the guidance law for a three 

dimensional moving target with a constraint on the terminal heading angle of 30°. 

VT = Oft 

ZT = Oft 

UT = 88 ft 
sec 

VT = -10 ft 
sec 

WT = 10 ft. 
sec 
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3D Moving Target 

Figure 5.29: Relative position between the missile and the target for a 
three dimensional moving target with no angle constraints 
in the 6-DOF simulation 

Constrained Final Flight Path Angle 

Figure 5.30: Relative position between the missile and the target for a 
three dimensional moving target with a constraint on the 
terminal flight path angle of -70° 
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Figure 5.31: Flight path angle of the missile for a three dimensional mov- 
ing target with a constraint on the terminal flight path angle 
of -70° 

Also, Figure 5.33 shows the heading angle history. Although the missile is extremely 

close to achieving the commanded terminal heading angle it is noticeably off by a few 

degrees. This is due to the sluggish control capability of the missile. 
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Cohstrainea Final Heading Angle 

Figure 5.32: Relative position between the missile and the target for a 
three dimensional moving target with a constraint on the 
terminal heading angle of 30° 
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Heading Angle 
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Figure 5.33: Heading angle of the missile for a three dimensional moving 
target with a constraint on the terminal heading angle of 30° 
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Finally, Figure 5.34 shows the relative position between the missile and the target 

using the guidance law for a three dimensional moving target with a constraint on both 

the terminal flight path angle of -60° and a terminal heading angle of 5°. Figure 5.35 

demonstrates the flight path angle of the missile over the entire simulation. It is clear 

from Figure 5.35 that the missile achieves the terminal flight path angle constraint. 

Figure 5.36 demonstrates the heading angle of the missile over the entire simulation. 

The heading angle overshoots the five degree mark by roughly three degrees. As 

before, this can be attributed to the sluggish control capability of the missile. 

5.5    Results from the Monte Carlo Analysis 

The 6-DOF simulation was also used to evaluate the family of analytic guidance laws 

in a Monte Carlo fashion. The quantities that were varied were the initial position 

j, ,a< Constrained Final Flight Path and Heading Angle 
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Figure 5.34: Relative position between the missile and the target for a 
three dimensional moving target with both a terminal flight 
path angle constraint of -60° and a terminal heading angle 
constraint of 5° 
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Flight Path Angle 
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Figure 5.35: Flight path angle of the missile for a three dimensional mov- 
ing target with a constraint on the terminal flight path angle 
of —60° and the terminal heading angle of 5° 
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Figure 5.36: Heading angle of the missile for a three dimensional moving 
target with a constraint on the terminal flight path angle of 
—60° and the terminal heading angle of 5° 
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(altitude and range) and the initial roll rate. Using a standard deviation of 1000 ft, 

the initial position (altitude and range) was varied based on a Gaussian distribution 

with a mean of zero. Also, using a standard deviation of 30^, the initial roll rate 

was varied based on a Gaussian distribution with a mean of zero. The eight drop 

points tested are shown in Table 5.2. Figure 5.37 shows the different drop points and 

their parameters. 

Number Release 
Angle 

Speed 
(KTAS) 

Alt (ft) Range 
(ft) 

1 -45 450 8,000 10,000 
2 -45 450 12,000 7,500 
3 -45 450 20,000 16,000 
4 -45 450 20,000 10,000 
5 0 450 8,000 22,000 
6 0 450 12,000 18,500 
7 0 450 20,000 23,500 
8 0 450 20,000 29,000 

Table 5.2: Monte Carlo Drop Points 
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Figure 5.37: Eight drop points considered in Monte Carlo analysis 



XT = 170 ft 

VT = Oft 

ZT = 100 ft 

UT = -10 " 
sec 

VT = -10 « 
sec 

WT z= 10 ". 
sec 

96 

Tests were run using fifty samples for each guidance law from each of the eight 

drop points. Of the eight drop points, point four is typically the hardest on the 

guidance law. It is a high and short drop point and usually causes the vehicle the 

most trouble. The initial conditions for the target are as follows 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

The first results are from the Monte Carlo analysis testing the three dimensional 

moving target guidance law with no angle constraints. Figure 5.38 shows the resulting 

confidence interval for the drop points one through eight. Figure 5.39 shows the 

impact dispersions around the target for all eight drop points. Note the tight spread 

of points about the center of the circle. Although the plot shows an exact altitude, 

that is not necessarily the actual altitude of the target. Since the target is a moving 

target and fifty different initial conditions are being tested varied from eight different 

drop points the flight time of the missile is different in each case and therefore the 

altitude of the target is also different in each case. The target altitude varies from 

roughly three-hundered and twenty feet to approximately four-hundred and fifty feet 

depending on the type of guidance law used and the flight time of the missile. Because 

of the target motion (horizontal and vertical) the dispersions in the plot are due to 

the limitation of the plotting environment. 
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Figure 5.38: Confidence interval for miss distance from drop points one 
through eight for a three dimensional moving target with no 
angle constraints 

Target Impact Points: Target Alt =0 Point 8 

XRange[ft] 
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Figure 5.39: Target impact dispersions from drop points one through 
eight for a three dimensional moving target with no angle 
constraints 



98 

The next guidance law tested constrained the terminal flight path angle to an 

angle of negative sixty degrees. Again, the Monte Carlo tests were run from all eight 

drop points. Figure 5.40 shows the confidence interval for miss distance for drop 

points one through eight. Figure 5.41 shows the impact dispersions around the target 

for drop points one through eight. Finally, Figure 5.42 shows the confidence interval 

for the terminal flight path angle considering all eight drop points. It is possible to see 

from these results that the missile is meeting its terminal flight path angle constraint 

very well. 

Miss Distance: Point 1 TO 8 

20 30 40 SO 60 TO to 90 100 
Confidence Interval pi] 

Figure 5.40: Confidence interval for miss distance from drop points one 
through eight for a three dimensional moving target with a 
terminal flight path angle constraint of —60° 
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Target Impact Points: Target Alt =0 Point 8 
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Figure 5.41: Target impact dispersions around the target from drop 
points one through eight for a three dimensional moving tar- 
get with a terminal flight path angle constraint of -60° 

Flight Path Angle at Impact Point 1 TO 8 
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Figure 5.42: Confidence interval for terminal flight path angle from drop 
points one through eight for a three dimensional moving tar- 
get with a terminal flight path angle constraint of —60° 
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The next guidance law tested constrained the terminal heading angle to an angle of 

five degrees. Again, the Monte Carlo tests were run from all eight drop points. Figure 

5.43 shows the confidence interval for miss distance from drop points one through 

eight. Figure 5.44 shows the impact dispersions around the target considering all 

eight drop points. Also, Figure 5.45 shows the confidence interval for the terminal 

heading angle for all eight drop points. Although the missile is rather sluggish, it still 

does a good job of meeting its terminal heading angle constraint. 

Miss Distance: Point 1 TO 8 
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i 
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Figure 5.43: Confidence interval for miss distance from drop points one 
through eight for a three dimensional moving target with a 
terminal heading angle constraint of 5° 



101 

Target Impact Points: Target Alt =0 Point 8 
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-30   -•" Down Range [tt] 

Figure 5.44: Target impact dispersions from drop points one through 
eight for a three dimensional moving target with a termi- 
nal heading angle constraint of 5° 
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Figure 5.45: Confidence interval for terminal heading angle from drop 
points one through eight for a three dimensional moving tar- 
get with a terminal heading angle constraint of 5° 
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The final guidance law tested constrained the terminal flight path angle to an angle 

of negative sixty degrees and the terminal heading angle to an angle of five degrees. 

Again, the Monte Carlo tests were run from all eight drop points. Figure 5.46 shows 

the confidence interval for miss distance for all eight drop points. Figure 5.47 shows 

the impact dispersions around the target from all eight drop points. Figure 5.48 

shows the confidence interval for the terminal flight path angle at each drop point 

considering all eight drop points. It is possible to see from these results that the 

missile is meeting its terminal flight path angle constraint very well. Finally, Figure 

5.49 shows the confidence interval for the terminal heading angle considering all eight 

drop points. As expected, the missile has trouble meeting its heading angle constraint. 

Miss Distance: Point 1 TO 8 

30 40 SO SO 70 
Confidence lnten/al[%] 

Figure 5.46: Confidence interval for miss distance from drop points one 
through eight for a three dimensional moving target with a 
terminal flight path angle constraint of -60° and a terminal 
heading angle constraint of 5° 
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Figure 5.47: Target impact dispersions around the target from drop 
points one through eight for a three dimensional moving tar- 
get with a terminal flight path angle constraint of -60° and 
a terminal heading angle constraint of 5° 
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Figure 5.48: Confidence interval for terminal flight path angle from drop 
points one through eight for a three dimensional moving tar- 
get with a terminal flight path angle constraint of —60° and 
a terminal heading angle constraint of 5° 
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Figure 5.49: Confidence interval for terminal heading angle from drop 
points one through eight for a three dimensional moving tar- 
get with a terminal flight path angle constraint of -60° and 
a terminal heading angle constraint of 5° 
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Chapter 6 

Conclusion 

In this thesis a family of optimal control guidance laws were presented. These optimal 

control guidance laws minimize the commanded acceleration or could be used to 

minimize the total flight time of the missile depending on the desire of the user. It 

was shown using the first and second variation necessary conditions along with the 

second variation sufficient conditions that the family of guidance laws were minima. 

All four guidance laws were implemented in a six degree of freedom missile simulation 

to evaluate their performance. Monte Carlo analysis with this simulation was used 

to develop statistical properties of the missile's capability to meet target, flight path 

angle, and heading angle constraints. 

In Chapter 2, the first variation necessary conditions were used to derive the four 

guidance laws. The four guidance laws were: (1) three dimensional moving targets 

with no angle constraints; (2) three dimensional moving targets with a terminal flight 

path angle constraint; (3) three dimensional moving targets with a terminal head- 

ing angle constraint; and (4) three dimensional moving targets with both a terminal 

flight path angle constraint and a terminal heading angle constraint. The transver- 

sality condition placed on the Hamiltonian was also strengthened by testing the total 

derivative of the Hamiltonian. Since the total derivative of the Hamiltonian of each 

guidance law was zero, this set up a framework to later test whether or not each 

guidance law had been derived correctly. 

Chapter 3 demonstrated that the family of guidance laws satisfied the second 

variation necessary conditions for a minimum. This proved that the guidance laws 

were not maximums.  It was still possible that the guidance laws could be minima 
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or saddle points and therefore it was necessary to proceed to the second variation 

sufficient conditions. 

Chapter 4 established the optimality of the family of guidance laws by applying 

the second variation sufficient conditions. Using these conditions it was possible to 

determine that the family of analytic guidance laws were in fact minima. 

Chapter 5 validated the derived guidance laws by testing the Hamiltonian of each 

guidance law to ensure that it remained constant. The Hamiltonian is constant due 

to the fact that the total derivative of the Hamiltonian is equal to zero from the 

first variation necessary conditions obtained in Chapter 2. Next the optimality of the 

analytic guidance laws were established by applying the second variation sufficient 

conditions. Based on the second variation sufficient conditions, the analytic guidance 

laws are minima. A particular test case was presented using a three dimensional mov- 

ing target guidance law constraining the terminal flight path angle and the terminal 

heading angle and it was shown that the second variation sufficient conditions were 

satisfied. Next the commanded accelerations found by the analytic guidance laws 

were compared with the commanded accelerations found by the DIDO optimization 

tool. This comparison further validated the optimality of the analytic guidance laws 

along with the fact that the initial time-to-target found by DIDO matched the ini- 

tial time-to-target solved analytically by the guidance laws. The analytic guidance 

laws were then implemented in a six degree of freedom missile simulation in order 

to test their performance using various initial conditions. These tests proved highly 

successful and led to a more in depth analysis of the capabilities of the missile using 

the analytic guidance laws and Monte Carlo analysis. Monte Carlo tests were run on 

each guidance law varying the initial position and velocity of the missile along with 

the initial roll rate and delivered impressive results. 

The analytic guidance laws described in this thesis have several benefits to today's 

guidance technology. First of all the effects of gravity are considered in all four of 

the analytic guidance laws and as a result of minimizing commanded acceleration 
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they reduce actuator usage. Another benefit of the analytic guidance laws is that the 

time-to-target is solved analytically at every instance in time. The time to target is 

an integral part of the analytic guidance laws. 

The most important benefit of the analytic guidance laws is that they minimize the 

commanded accelerations or total flight time depending on the desire of the user. By 

minimizing the commanded accelerations it is possible to achieve maximum velocity 

which comes as a result of reducing the amount of drag. These new guidance laws 

also give the missile the capability to strike a target with a specified flight path angle 

or heading angle or both. With the freedom that these new guidance laws provide 

with respect to constraining the terminal flight path angle, heading angle, or both 

it will give the system the increased capability that is necessary to make precision 

strikes in civilian surroudings. 

In conclusion, the fact that the new guidance laws include the effect of gravity, 

allow for four different types of terminal constraints, solve the time to target ana- 

lytically so that it is known at every instant in time, and are proven to be optimal 

solutions demonstrates their superior performance and capability compared to what 

is currently available in air-to-surface missile technology. 
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