

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SYNCHRONIZATION ANALYSIS AND SIMULATION OF
A STANDARD IEEE 802.11G OFDM SIGNAL

by

Keith D. Lowham

March 2004

 Thesis Advisor: Frank E. Kragh
 Second Reader: R. Clark Robertson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Synchronization Analysis and Simulation of a Stan-
dard IEEE 802.11g OFDM Signal
6. AUTHOR(S) Lowham, Keith D.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Synchronization of orthogonal frequency-division multiplexed (OFDM) signals is sig-

nificantly more difficult than synchronization of a single-carrier system. The recently approved
IEEE Standard 802.11g specifies a packet-based OFDM system that provides a basis for the
discussion of OFDM synchronization in a packet-based environment. Algorithms that synchro-
nize the receiver carrier demodulation frequency and phase, the data frame, the OFDM symbol
timing, and the data symbol timing are discussed and analyzed in an AWGN channel. System
View simulation is used to implement the frame and carrier frequency synchronization algo-
rithms, where the performance of these algorithms is analyzed and they are shown to be useful
detection algorithms for Standard 802.11g signal reception.

15. NUMBER OF
PAGES

176

14. SUBJECT TERMS
OFDM, Orthogonal Frequency Division Multiplexing, 802.11, 802.11g, AWGN, PBCC, DSSS,
DSSS-OFDM, Synchronization, Carrier Synchronization, Frequency Synchronization, Phase
Synchronization, Symbol Synchronization, System View, FFT, IFFT, Cyclic Prefix, Guard Interval,
wireless LAN

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SYNCHRONIZATION ANALYSIS AND SIMULATION OF A STANDARD IEEE
802.11G OFDM SIGNAL

Keith D. Lowham

Lieutenant Commander, United States Navy
B.S., California State University, Chico, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2004

Author: Keith D. Lowham

Approved by: Frank E. Kragh

Thesis Advisor

R. Clark Robertson
Second Reader

John P. Powers
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Synchronization of orthogonal frequency-division multiplexed (OFDM) signals is

significantly more difficult than synchronization of a single-carrier system. The recently

approved IEEE Standard 802.11g specifies a packet-based OFDM system that provides a

basis for the discussion of OFDM synchronization in a packet-based environment. Algo-

rithms that synchronize the receiver carrier demodulation frequency and phase, the data

frame, the OFDM symbol timing, and the data symbol timing are discussed and analyzed

in an AWGN channel. System View simulation is used to implement the frame and car-

rier frequency synchronization algorithms, where the performance of these algorithms is

analyzed and they are shown to be useful detection algorithms for Standard 802.11g sig-

nal reception.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SCOPE ..1

1. Introduction to OFDM ..2
2. Interference in OFDM...3
3. Synchronization of OFDM Signals ..4

B. THESIS ORGANIZATION..5

II. IEEE STANDARD 802.11G DESCRIPTION...7
A. IEEE STANDARD 802.11...7
B. COMPATIBILITY BETWEEN 802.11 STANDARDS12
C. IEEE STANDARD 802.11G TRANSMITTER...14
D. IEEE STANDARD 802.11G OFDM RECEIVER24
E. OPTIONAL STANDARD 802.11G MODES OF OPERATION26

III. SYSTEM VIEW SIMULATION..31
A. SYSTEM VIEW SYSTEM ANALYSIS TOOL..31
B. TRANSMITTER..33

1. Data Generation...34
2. Coding and Puncturing ...39
3. Constellation Mapping ..45
4. Pilot Tone Generation..48
5. OFDM Symbol Formation ..50
6. IFFT Modulation ...54
7. Preamble and Header Generation..56

C. RECEIVER ..71
1. FFT Demodulation...72
2. Data Extraction ..73
3. Hard Decision Demodulation..74
4. De-Interleaving and De-Puncturing...76
5. Viterbi Decoding ..78

D. BIT ERROR RATE CALCULATIONS..80

IV. OFDM SYNCHRONIZATION ..83
A. PACKET DETECTION..84

1. Optimum Packet Detection in AWGN...87
2. Optimum Packet Detection Using Multiple Samples in AWGN ...91
3. Other Packet Detection Designs ...97

B. FREQUENCY SYNCHRONIZATION...99
1. Non-Data Aided Frequency Synchronizers101
2. Cyclic Prefix Based Frequency Synchronization104
3. Data-Aided Frequency Synchronizers ...106

C. PHASE SYNCHRONIZATION...114
D. TIMING SYNCHRONIZATION...116

 viii

V. SYNCHRONIZATION PERFORMANCE ANALYSIS......................................119
A. PACKET DETECTION PERFORMANCE ...120

1. Sliding-Window Packet Detector..120
2. Delay and Correlate Packet Detector...129

B. FREQUENCY SYNCHRONIZATION PERFORMANCE132
1. Frequency-Domain Frequency Synchronization132
2. Time-Domain Frequency Synchronization....................................138

VI. CONCLUSIONS ..143
A. FINDINGS..143
B. RECOMMENDATIONS FOR FURTHER RESEARCH144

APPENDIX A...147

APPENDIX B ...149

INITIAL DISTRIBUTION LIST ...155

 ix

LIST OF FIGURES

Figure 1 Intersymbol Interference..4
Figure 2 OFDM Transmitter [After Reference 10.] ...16
Figure 3 PPDU Frame Format [After Reference 10.] ..17
Figure 4 Long PPDU Format [After Reference 9.] ..19
Figure 5 Short PPDU Format [After Reference 9.]..19
Figure 6 Standard 802.11g Stage One Interleaver. ..20
Figure 7 Mapping of First Interleaver Stage. ...21
Figure 8 Standard 802.11g Stage Two Interleaver...22
Figure 9 Mapping of Second Interleaver Stage..23
Figure 10 OFDM Receiver [From Reference 10.] ...25
Figure 11 PBCC Bock Diagram [From Reference 9.] ...26
Figure 12 PBCC Constellation Mapping [From Reference 11.]27
Figure 13 Trellis Coded Modulation Block Diagram [After Reference 13.]28
Figure 14 DSSS-OFDM PSDU [From Reference 11.] ..28
Figure 15 OFDM Transmitter Circuit. ...34
Figure 16 Transmitter Data Generation Circuit. ..35
Figure 17 Service Field MetaSystem ...35
Figure 18 Pseudorandom Token Parameters..36
Figure 19 Sampler Token Parameters. ...37
Figure 20 Step Function Parameters. ...38
Figure 21 Switch Token Parameters. ...38
Figure 22 Example Run of the Data Generation Circuit. ...39
Figure 23 Coding and Puncturing Transmitter Circuit...40
Figure 24 Data Scrambler MetaSystem..41
Figure 25 Data Scrambler [From Reference 10.] ...41
Figure 26 Convolutional Encoder Parameters..43
Figure 27 Puncturing Parameters. ..43
Figure 28 Interleaver Parameters. ..45
Figure 29 Transmitter Constellation Mapping. ..45
Figure 30 Transmitter Bit-to-Symbol Parameters..46
Figure 31 Transmitter QAM Mapper Parameters ...47
Figure 32 Transmitter Pilot Tone Generation Circuit. ...48
Figure 33 Transmitter PN Sequence Generator Parameters...49
Figure 34 Transmitter OFDM Symbol Formation Circuit. ..50
Figure 35 Transmitter Zero Insertion Sampler Token Parameters...................................52
Figure 36 Transmitter De-Multiplexer Parameters. ...53
Figure 37 Transmitter Multiplexer Parameters. ...54
Figure 38 Transmitter IFFT Modulation Circuit. ...55
Figure 39 OFDM Modulator Parameters. ..56
Figure 40 OFDM Preamble and Header Generation Circuit..57
Figure 41 Packet Preamble and Header Generation Circuit...57

 x

Figure 42 Preamble Generation Circuit..58
Figure 43 Transmitter Sample Delay Parameters...59
Figure 44 Short Training Sequence Generator Circuit...60
Figure 45 Short Symbol Impulse Parameters...61
Figure 46 Short Training Symbol Linear Filter Parameters...61
Figure 47 Short Symbol OFDM Modulator Parameters. ...62
Figure 48 Short Symbol Training (In-Phase Data). ...63
Figure 49 Long Training Symbol Generation Circuit. ...64
Figure 50 Long Training Symbol OFDM Modulator Parameters....................................65
Figure 51 Long Training Symbol (In-Phase Data)...65
Figure 52 Signal Field Generation Circuit. ..66
Figure 53 Service Field Format..67
Figure 54 Signal Field Interleaver Parameters. ..67
Figure 55 Signal Field BPSK Modulator Parameters. ...68
Figure 56 OFDM Data Symbol Windowing Circuit. ...69
Figure 57 Transmitter OFDM Data Symbol Windowing De-multiplexer Parameters. ...70
Figure 58 Transmitter Output...71
Figure 59 OFDM Basic Receiver Circuit...72
Figure 60 OFDM Demodulator Parameters. ..73
Figure 61 Receiver Data Extraction Circuit. ..74
Figure 62 Receiver Data Demodulation Circuit...74
Figure 63 Receiver QAM De-Mapper Parameters...75
Figure 64 Receiver Symbol-to-Bit Converter Parameters. ..76
Figure 65 De-Coding and De-Puncturing Circuit. ...77
Figure 66 De-Puncture Parameters...78
Figure 67 Decoding and De-scrambling Circuit. ...79
Figure 68 Decoder Parameters. ..79
Figure 69 Data De-Scrambling Circuit. ...80
Figure 70 Bit Error Rate Calculation. ..81
Figure 71 Bit Error Rate Parameters. ...82
Figure 72 OFDM Training Structure [After Reference 10.] ..84
Figure 73 Probabilities of False Alarm and Detection in an AWGN Channel.85
Figure 74 Probability Calculation Circuit. ...90
Figure 75 Change in Probability with Increased Samples. ..92
Figure 76 Multiple Sample Error Rate Calculation Circuit. ..96
Figure 77 Probability of False Alarm vs. Sample Number. ...96
Figure 78 Delay and Correlate Detector [From Reference 3.] ...97
Figure 79 Phase-Locked Loop Configuration. ...101
Figure 80 Maximum-Likelihood Frequency Detector [After Reference 19.]103
Figure 81 Sample Order in an OFDM Symbol [From Reference 21.]...........................105
Figure 82 Guard Interval Based Frequency Detector [After Reference 21.]106
Figure 83 Frequency-Domain Data-Aided Frequency Circuit.......................................107
Figure 84 Time-Domain Data-Aided Frequency Circuit. ..110
Figure 85 Virtual Carrier Synchronization Circuit [After Reference 21.]113
Figure 86 OFDM Nominal Symbol Timing [From Reference 3.]117

 xi

Figure 87 AWGN Simulation Block Diagram. ..120
Figure 88 Sliding-Window Correlation Packet Detector. ..121
Figure 89 Uninterrupted Short Training Symbol Generation Circuit.122
Figure 90 Pulse Train Token Parameters. ..122
Figure 91 Uninterrupted Standard 802.11g Short Training Symbols (In-phase).123
Figure 92 Sliding-Window Correlation Circuit..124
Figure 93 Cross-Correlation Token Parameters. ..125
Figure 94 Comparator Circuit. ...125
Figure 95 Decision Variable Probability Distribution. ..127
Figure 96 Decision Variable Distribution With Reduced AWGN.................................129
Figure 97 Delay and Correlate System View Circuit...130
Figure 98 Frequency-Domain Frequency Synchronization. ..133
Figure 99 Frequency Modulation Token Parameters. ..134
Figure 100 Frequency-Domain Frequency Error. ..135
Figure 101 Frequency-Domain Synchronizer Receiver Frequency.136
Figure 102 Frequency Synchronization Error Performance with AWGN.137
Figure 103 Frequency Synchronization Frequency Performance with AWGN...............137
Figure 104 Time-Domain Frequency Synchronization Circuit..139
Figure 105 Time-Domain Frequency Error..139
Figure 106 Time-Domain Synchronizer Receiver Frequency. ..140
Figure 107 Time-Domain Synchronizer Frequency Error in AWGN..............................141
Figure 108 Time-Domain Synchronizer Carrier Output in AWGN.................................142

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1 Complementary Code Keying DQPSK [From Reference 9.]............................8
Table 2 11 Mbps CCK Encoding [From Reference 9.] ..9
Table 3 OFDM Rate Dependent Parameters [From Reference 10.]18
Table 4 16-QAM Encoding Table [After Reference 10.] ...47
Table 5 Sub-Carrier Frequency Allocation [After Reference 10.]................................51

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

“Never tell people how to do things. Tell them what to do and they will surprise

you with their ingenuity.”

General George S. Patton

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The recent approval of the IEEE Standard 802.11g has increased the use of or-

thogonal frequency-division multiplexing (OFDM) in devices that are in wide use. Cou-

pled with the rapid increase in the use of wireless networking, this widespread technology

has become a major component of wireless devices not only in the consumer electronics

industry, but it is also widely used by the governments and the military of many coun-

tries. With this increase in implementation comes a concern with the ability to receive a

useable signal in the most challenging environments. This means not only in a consumer

electronics environment that is frequently crowded with other wireless devices operating

in the same frequency spectrum, but also in military environments that may include the

use of jamming and interception by a hostile force.

In this thesis, the IEEE Standard 802.11g is closely examined. Physical layer as-

pects of the standard are discussed along with how they interface with the previous IEEE

802.11 standards. Implementation of a receiver and transmitter using the OFDM mode of

Standard 802.11g is detailed and then used in implementing and testing synchronization

algorithms.

There are many aspects to synchronizing the receiver in an OFDM system with

the transmitted signal. In addition, in a packet-based communications system such as

Standard 802.11g compliant systems, the receiver must synchronize with the transmitter

very quickly. Even with the packet length using the maximum allowed number of data

bytes, the entire packet can be at most 627 µs long at a data rate of 54 Mbps. The pream-

ble and the header are a total of 20 µs long, leaving little time to achieve synchronization

before the start of the data. Since the header contains information required for proper de-

modulation of the OFDM signal, synchronization must be accomplished in the time allot-

ted for the long and short training sequences, which is 16 µs. Once synchronization is

achieved, it must be maintained over the duration of the OFDM symbol. If the channel

 xviii

characteristics change significantly during the transmission of the packet, synchronization

and the data can be lost, resulting in retransmission and an overall slower data reception

rate.

Finally, frame and carrier frequency synchronization circuits are built using the

System View simulation software and compared with theoretical expectations.

1

I. INTRODUCTION

The recent approval of the IEEE Standard 802.11g has increased the use of or-

thogonal frequency-division multiplexing (OFDM) in devices that are in wide use. Cou-

pled with the rapid increase in the use of wireless networking, this widespread technology

has become a major component of wireless devices not only in the consumer electronics

industry, but it is also widely used by the governments and the military of many coun-

tries. With this increase in implementation comes a concern with the ability to receive a

useable signal in the most challenging environments. This means not only in a consumer

electronics environment that is frequently crowded with other wireless devices operating

in the same frequency spectrum, but also in military environments that may include the

use of jamming and interception by a hostile force.

One aspect of optimizing the reception of any signal is the synchronization of the

receiver with the transmitter. There are several different types of synchronization needed

to ensure the receiver correctly decodes the transmitted signal. This thesis describes the

synchronization process used in OFDM systems and algorithms that optimize the syn-

chronization in the presence of additive white Gaussian noise (AWGN). The synchroni-

zation algorithms are then implemented using System View simulation software by

Elanix Inc.

A. SCOPE
OFDM has been implemented in several standards, including IEEE Standards

802.11a and 802.11g, HIPERLAN II, and Digital Video Broadcast (DVB) to name only a

few. The optimum methods of synchronization differ, depending on the type of signal be-

ing transmitted. If the signal is being continuously transmitted, as in DVB, a receiver has

a longer time to obtain synchronization, and the addition of dedicated blocks for synchro-

nization only serve to slow down the data transmission. In a packet-based system such as

IEEE Standard 802.11g and HIPERLAN II, the receiver must quickly obtain synchroni-

zation to be ready for the short bursts of data that occur at random intervals. This requires

the use of quick, synchronization-block-based systems that can obtain synchronization

2

quickly at the expense of using some of the packet for the special synchronization blocks.

This thesis focuses on the synchronization issues surrounding the packet-based IEEE

Standard 802.11g.

1. Introduction to OFDM
OFDM is a multi-carrier frequency modulation scheme in which the carrier fre-

quencies used are orthogonal to each other. This means that all the frequencies are uncor-

related and that the signals modulated by these orthogonal frequencies can be recovered

by correlating the received signal with each of the original carrier frequencies. Two sig-

nals ()x t and ()y t are defined as being orthogonal when

 () () 0
t T

t

x s y s ds
+

=∫ (1.1)

where T is the period of the signals. If the transmitted signal is proportional to one of the

orthogonal signals, ()Ax t , for example, then the modulated signal A can be recovered by

correlating the received signal with both ()x t and ()y t and choosing the output with the

largest value. If the received signal is correlated with ()y t then

 () ()
t T

t

r Ax s y s ds
+

= ∫ (1.2)

But from (1.1) the integral of (1.2) is zero. However, if the received signal is cor-

related with ()x t then the output is ()
2 ,

t T

t

A x s ds
+

∫ the desired signal. This is the basis for

OFDM. Although the correlation can be used with all multi-carrier systems, the orthogo-

nality of the signals in OFDM allows the transmitted signals to overlap in the frequency-

domain, reducing the required bandwidth for transmission. For example, the required

null-to-null bandwidth for a binary phase-shift keying (BPSK) signal using a data rate of

6 Mbps and a rate-1 2 encoding scheme requiring a total data rate of 12 Mbps uses a 24-

MHz bandwidth. However, this same signal transmitted using the IEEE Standard 802.11a

or 802.11g OFDM modulation uses only 16.6 MHz of bandwidth. This savings in band-

width allows the transmission of higher data rates over the same bandwidth as the lower

3

frequency data that use different modulation techniques, and is a major factor in the

growth of OFDM based systems.

OFDM was originally conceived by Chang [1] in 1966. Because of the difficulty

in using a bank of modulators to produce a signal that takes full advantage of the or-

thogonality of the sub-carriers, this concept was not implemented in real systems until the

idea of using a discrete Fourier transform to modulate the signals instead of using a bank

of modulators was proposed by Weinstein [2] in 1971. This technique was quickly

adapted to the use of the fast Fourier transform (FFT) to make modern OFDM systems

practical.

2. Interference in OFDM
Interference in high data rate systems revolves around the overlap of data symbols

that are adjacent in frequency or consecutive in time, which only gets worse as the data

rate increases. This occurs because of the channel characteristics between the transmitter

and the receiver, with multipath propagation being one of the major causes of this inter-

ference. This interference is called intersymbol interference when the signal overlap oc-

curs in the time-domain, and it is call intercarrier interference when the interference oc-

curs in the frequency-domain. One of the big advantages of OFDM over other modula-

tion techniques is its reduction in intersymbol interference seen in a multipath environ-

ment. Since the transmitted data can be divided up and modulated onto several different

carriers, the data rate for each carrier is reduced. This lower data rate reduces the inter-

symbol interference in the multipath channel.

An example of intersymbol interference is shown in Figure 1. The transmitted

signal is a sharp square wave, but the channel has distorted the received signal. This has

caused some of the signal from adjacent pulses to leak into the expected time period of

the next pulse. This overlap is called intersymbol interference and can be corrected by in-

creasing the separation between the pulses enough so that the received signals do not

overlap, or correspondingly reducing the data rate so more of the received signal is unaf-

fected by adjacent symbols. This separation with no data between pulses or signals is

called a guard interval.

4

Figure 1 Intersymbol Interference.

The OFDM symbol uses a guard interval to reduce the effects of intersymbol in-

ference between adjacent OFDM symbols, and it uses a cyclic extension of the OFDM

symbol to reduce intercarrier interference. Since the Fourier transform of a square wave

in the time-domain is a sinc function in the frequency-domain, an abrupt cutoff of the sig-

nal in the time-domain causes spectral spreading. The purpose of the guard interval and

cyclic extension of the transmitted signal is to separate OFDM symbols enough to pre-

vent intersymbol interference and to avoid the sharp end to the time-domain signal in

order to prevent intercarrier interference.

3. Synchronization of OFDM Signals
For a packet-based OFDM transmission system, the synchronization of the signals

can be broken down into five different steps. These are frame synchronization, carrier

frequency synchronization, carrier phase synchronization, OFDM symbol synchroniza-

tion, and data symbol synchronization. The frame synchronization involves detecting the

presence of an incoming packet of information. For a packet transmission system, this

must be done quickly to ensure there is enough time to obtain the other required synchro-

nizations before the data is transmitted. The carrier synchronization has been split into

two steps, since typically the frequency is synchronized with a phase-locked loop con-

figuration, which does not synchronize the phase of the transmitted and received signals.

Once the frequencies have been synchronized then the phases can be synchronized to op-

timize the data reception. Finally, the timing of the OFDM symbols and the data symbols

is required to properly demodulate the received data.

Transmitted Signal
t

Received Signal
t

Guard Interval

5

The process of synchronization in an OFDM system differs from the process of

synchronization in a single-carrier system in that OFDM signals have many frequencies

that can potentially interfere with each other if the orthogonality of the signals is lost. In a

single-carrier system it is relatively easy to separate out the signal of interest, filter it, and

compare it to the internally generated clock to achieve a synchronized system. Doing this

with an OFDM signal simply produces several sub-carrier frequencies that are close

enough together that filtering one signal of interest is impractical. The goal with OFDM

systems is to process the received signal in such a way as to produce a single value that is

proportional to the timing error and use this error signal to drive a voltage-controlled

oscillator. This is similar to the single-carrier system, but the algorithms used to produce

the error signal can be quite complex, as will be shown in Chapter IV.

This introduction to OFDM has provided only a cursory description of OFDM

and the many issues involved with transmitting and receiving these signals. However,

References [3] through [7] provide excellent discussions and descriptions of OFDM sig-

naling and are recommended reading for the interested reader needing more details on the

basics of OFDM.

B. THESIS ORGANIZATION
This thesis is organized into an introduction chapter, a conclusion chapter and

four other chapters. Chapter II describes the OFDM packet-based system using the IEEE

Standard 802.11g with a discussion of the other 802.11 standards and how they affect the

design of the Standard 802.11g. Chapter III implements an 802.11g OFDM transmitter

and receiver using the System View simulation software by Elanix. This simulation al-

lows for the analysis of the synchronization algorithms and the possible incorporation of

these designs into a Field Programmable Gate Array (FPGA) design for practical imple-

mentation of a real system. Chapter IV introduces the various algorithms available to

synchronize an OFDM system and performs an analysis of the packet-based frequency

and packet synchronization algorithms in the presence of AWGN. Chapter V takes the

algorithms developed in Chapter IV and implements them using System View. Finally,

this thesis concludes with an overview of the results and a recommendation for further

6

study. Appendix A show the file format for a System View token input, and Appendix B

shows the Mathcad 2001 programming used in this thesis.

7

II. IEEE STANDARD 802.11G DESCRIPTION

This chapter provides a description of the IEEE Standard 802.11g. Since the latest

of the 802.11 standards is based on the previous standards in the 802.11 family, a brief

description of the other standards is also given to form an understanding of how Standard

802.11g is formatted.

A. IEEE STANDARD 802.11
The original wireless local area network (LAN) physical and medium access con-

trol layers standard by IEEE was Standard 802.11-1997 [8], established in June 1997 as a

method to provide wireless connectivity to automatic machinery, equipment, or stations

that required rapid deployment, including portable or hand-held devices, or devices that

could be mounted on moving vehicles within a local area. The data rates supported by the

original standard were 1 Mbps and 2 Mbps using frequency-hopping spread spectrum

(FHSS), direct sequence spread spectrum (DSSS), and infrared transmission with the 2-

Mbps data rate optional when using infrared or FHSS.

The modulation scheme used in the Standard 802.11-1997 FHSS standard in-

cludes binary Gaussian frequency-shift keying (2-GFSK) which uses Gaussian pulse

shaping on a binary frequency-shift keying (BFSK) signal to achieve the 1-Mbps data

rate. The 2-Mbps data rate is achieved by using a 4-GFSK-modulation scheme. In the

DSSS case, differential binary phase-shift keying (DBPSK) is used to transmit the 1-

Mbps data rate and differential quadrature phase-shift keying (DQPSK) is used to trans-

mit at 2 Mbps. For infrared transmission, the 1-Mbps data rate uses a sixteen-position

pulse position modulation (16-PPM) in which four data bits are mapped into one position

of a 16-PPM symbol. The 2-Mbps data rate encodes two data bits into a symbol and then

maps these into one position of a 4-PPM symbol. [8]

In September of 1999, the data rate of the basic standard was extended with IEEE

Standard 802.11b [9], which supports data rates of 5.5 Mbps and 11 Mbps using direct

sequence spread spectrum and complementary code keying (CCK) to extend the data rate

but not increase the occupied bandwidth. Optional capabilities in this standard include the

8

use of frequency agility and packet binary convolutional coding (PBCC). Frequency-

hopping spread spectrum and infrared transmission were not included in this update of

the standard. This high rate extension allows for backwards compatibility with the earlier

standard by keeping the same physical layer preamble and header format so both physical

layers can co-exist in the same basic service set.

Complementary code keying is a modulation scheme using a chipping sequence

that is determined by the incoming data vice a predetermined pseudorandom sequence, as

is performed in traditional direct sequence spread spectrum. In the Standard 802.11-1997,

a fixed 11-chip pseudorandom Barker sequence was used to spread the data. The Stan-

dard 802.11b uses an 8-chip CCK sequence defined as

 () () () () () () (){ }1 2 3 4 1 3 4 1 2 3 1 3 1 31 2 4 1 4 1, , , , , , ,+ + + + + + + + ++ + += − −j j j j jj j jc e e e e e e e eϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ (2.1)

where 1ϕ is the phase differential determined by the first two bits (0d and 1d) of the four

bits used in the CCK symbol for the 5.5 Mbps data rate and is defined in Table 1. The

remaining phases in (2.1) are given by ()2 2 2dϕ π π= + , 3 0ϕ = , and 4 3dϕ π= . [9]

Table 1 Complementary Code Keying DQPSK [From Reference 9.]

Bits d0 and d1 Even Symbol Phase

change

Odd Symbol Phase

Change

00 0 π

01 π/2 3π/2

11 π 0

10 3π/2 π/2

9

For the all-zero data sequence, the chipping sequence becomes

() () ()

{ }

1

1

0 0 02 2 2 2, , , , , , ,1

,1, , 1, ,1, ,1 .

j j j jj j jj

j

c e e e e e e e e

e j j j j

π π π π
ϕ

ϕ

       
       
       

  = − − 
  

= − −

 (2.2)

The chipping sequence of (2.2) is complex and multiplies the DQPSK symbol de-

fined by 1.ϕ This is equivalent to traditional DSSS where the data symbol is multiplied

by a real pseudorandom chipping sequence. The modulated waveform is complex, requir-

ing the real and imaginary parts to be transmitted separately.

To obtain the 11-Mbps data rate, six bits (instead of the two bits used for the 5.5-

Mbps data rate) are used to encode the phase angles 2ϕ , 3ϕ , and 4ϕ as shown in Table 2,

where the bits are grouped into pairs (2d and 3,d 4d and 5 ,d 6d and 7d). In both the

5.5-Mbps and 11-Mbps data rate formats, the first two data bits are DQPSK modulated

(formulating the phase change 1ϕ).

Table 2 11 Mbps CCK Encoding [From Reference 9.]

Bits di and di+1 Phase

00 0

01 π/2

10 π

11 3π/2

The first pair of bits (0d and 1d) are used to encode 1ϕ in accordance with Table

1. The second pair of bits (2d and 3d) are used to encode 2ϕ in accordance with Table 2.

The third pair of bits (4d and 5d) are used to encode 3ϕ in accordance with Table 2, and

the fourth pair of bits (6d and 7d) are used to encode 4ϕ in accordance with Table 2. The

resulting symbol is formed the same as in the 5.5-Mbps data rate case.

10

Since the CCK sequences are uncorrelated by definition, this forms a unique

symbol for each group of four or eight data bits. The chip rate is kept at 11 Mcps, the

same as the Standard 802.11-1997. The result is a signal that is contained within the same

bandwidth but is able to transmit at a higher data rate. [9]

Another way to achieve the higher data rates required by the Standard 802.11b

was accomplished by using packet binary convolutional coding (PBCC). Essentially,

higher data rates are achieved by using convolutional coding combined with BPSK or

QPSK modulation. The data is first encoded with a rate one-half convolutional encoder.

The encoder output is then modulated using BPSK for the 5.5-Mbps data rate and QPSK

for the 11-Mbps data rate. A pseudorandom sequence generator determines the BPSK or

QPSK symbol constellation randomly by choosing one of two possible mapping schemes

determined by one bit of the sequence generator. This encoding allows for a higher data

rate while still achieving the required packet error rate. [9]

Also in September of 1999 the IEEE Standards Committee approved a high-speed

standard for use in the 5 GHz unlicensed national information infrastructure (U-NII)

bands using orthogonal frequency-division multiplexing (OFDM), Standard 802.11a [10].

This standard supports data rates of up to 54 Mbps. This standard later became the basis

for the further extension of the 802.11 standard in the 2.4 GHz frequency range via the

Standard 802.11g. Since the preamble and header formats of this standard are different

than those used before, this format is not backwards compatible with the earlier IEEE

Standard 802.11-1997 and IEEE Standard 802.11b.

The latest extension of the wireless local area network (LAN) Physical Layer

standard (IEEE Standard 802.11) in the 2.4 GHz (Industrial, Scientific, and Medical)

band was approved on 12 June 2003 as IEEE Standard 802.11g [11]. The purpose of this

standard is to extend the original 802.11 standard to data rates greater than 20 Mbps in

the 2.4 GHz band. This was achieved by using the OFDM technique used in IEEE Stan-

dard 802.11a to obtain data rates of up to 54 Mbps. PBCC used in Standard 802.11b was

also used to obtain data rates of greater than 20 Mbps, reaching 22 Mbps and 33 Mbps. In

addition, DSSS was combined with OFDM, which is referred to as DSSS-OFDM in the

Standard 802.11g, to achieve 54-Mbps data rates without additional coordination from

11

those systems that are capable of using the Standard 802.11-1997 and Standard 802.11b

data formats (DSSS-OFDM is also referred to as CCK-OFDM in some of the literature).

This format uses Standard 802.11a OFDM to transmit the data portion of the packets, but

uses the CCK-DSSS of Standard 802.11b to transmit the physical layer preamble and

header information.

Since the preamble and the headers of a Standard 802.11g formatted packet using

the extended rate are sent using OFDM signaling, the use of the extended rate Standard

802.11g is not backwards compatible with the Standard 802.11 and Standard 802.11b

header and preamble formats. However, Standard 802.11g certified equipment must be

able to support the other data formats of Standard 802.11b, enabling Standard 802.11g

devices to work in the same networks as the Standard 802.11b devices. [11]

Although not generally cited in the group of wireless standards, IEEE Standard

802 [12] contains some of the basic requirements that govern not only the wireless stan-

dards but also all the local area network (LAN) and metropolitan area network (MAN)

standards. This includes the error performance of a wireless network interface with other

networks. As specified in the standard, the probability that a medium access control

(MAC) Service Data Unit (MSDU) is not delivered correctly at a MAC service access

point (MSAP) due to the operation of the Physical layer and the MAC protocol shall be

less than 88 10−× per octet of MSDU length. To find the allowed data bit error rate, note

that the probability that eight consecutive bits are received without error is given by

 8 8Pr() (1) 1 8 10−= − = − ×no error p (2.3)

where p is the probability of an error of a single bit, or the desired bit error rate. Solving

(2.3) for the bit error rate yields 81 10p −= × as the allowed data bit error rate in wireless

802 compliant systems. However, as discussed in the following sections, the 802.11 stan-

dard required channel error rates for the physical layers are not as good as this specifica-

tion. This requires the MAC layer to compensate for the decrease in error performance.

This compensation is via the use of cyclic redundancy code error detection in the MAC

layer header.

12

B. COMPATIBILITY BETWEEN 802.11 STANDARDS
With the addition of an OFDM modulation format to the 802.11 standard, a

mechanism for preventing interference between stations operating in a service set at the

same frequency that are not Standard 802.11g capable is required. While a Standard

802.11g extended rate physical layer (ERP) compliant system must be able to operate in

an ad-hoc network with a possible combination of OFDM and DSSS systems, an interfer-

ence problem arises when working with Standard 802.11-1997 or Standard 802.11b sys-

tems and Standard 802.11g systems operating using OFDM packets. The interference

problem is a result of any non-OFDM station not being able to recognize the transmission

of an OFDM signal that Standard 802.11g stations may be using to communicate with

each other. Since the header of a Standard 802.11g OFDM transmission is an OFDM sig-

nal, non-Standard 802.11g compatible receivers will not recognize another station trans-

mitting and may try and send a packet of their own after they sense that the channel is

clear, resulting in a transmission collision between non-OFDM packets and OFDM pack-

ets. [11]

The 802.11 architecture mitigates collisions between transmitting stations using

an algorithm called carrier sense multiple access with collision avoidance (CSMA/CA).

For a station to transmit, it must sense the medium to determine if another station is

transmitting. If the medium is not determined to be busy, both physically and virtually,

then the transmission may proceed. A virtually busy channel is one in which a future

transmission has been predicted, but not yet occurred. This allows replies to be sent by

receiving stations without interference. A minimum interval is specified between packets

that other stations must wait before attempting to transmit to allow for the controlling sta-

tion (referred to as the point controller) to send required, contention-free traffic and also

allow time for stations to send an immediate acknowledgement of received traffic. In ad-

dition, each station selects a random back-off interval to wait after the minimum wait pe-

riod has been completed. This prevents all stations from attempting to transmit at the end

of the mandatory wait period, the most likely time when transmission collision would

otherwise occur. The 802.11 architecture incorporates modifications of this procedure by

allowing stations in a service set to exchange short control frames, specifically request-

to-send (RTS) and clear-to-send (CTS), prior to data transmission. [8]

13

There are three different frame types allowed in the 802.11 architecture. Man-

agement frames are used to support services of the system, such as association, authenti-

cation, and privacy. Control frames are used to support the delivery of data and manage-

ment messages such as specification of the protocol used, the type of frame transmitted,

duration of transmission, number of data fragments in the total transmission, and power

management data frames are used to transmit the actual data. To allow for proper coordi-

nation among the different stations in a service set, all stations must be able to read the

CTS and RTS control frames; therefore, these frames are sent in a format that is recog-

nizable by all stations. This coordination is set up when stations first request to join a ser-

vice set. This is accomplished through the association procedure where the station is as-

sociated with an access point (AP) and the authentication procedure where the station

identifies itself to the AP. To join a service set, a station must first authenticate itself by

exchanging authentication messages (management frame type) with the access point,

which establishes the station’s identity. Next the station associates itself with the AP,

which gives the station’s address to the AP and assigns an association ID to the station. It

is in this association request and response that the AP specifies to the station what rates

are supported in the basic service set and the station specifies to the AP what rates and

capabilities the station supports. The association response is tailored to the format of the

association request modulation format. That is, information on the service set parameters

is tailored to the modulation type of the association request. [8]

The virtual carrier sense mechanism is achieved by distributing medium reserva-

tion information announcing the impending use of the medium. The exchange of RTS

and CTS frames prior to the actual data frame is one means of distribution of this medium

reservation information. The RTS and CTS frames contain a duration/ID field that de-

fines the period of time that the medium is to be reserved to transmit the actual data

frame and the returning acknowledge (ACK) frame. All stations within the reception

range of either the originating station (which transmits the RTS) or the destination station

(which transmits the CTS) will know of the medium reservation. The virtual carrier sense

mechanism provided by the medium access control (MAC) layer is referred to as the

Network Allocation Vector (NAV). The network allocation vector (NAV) maintains a

prediction of future traffic on the medium based on duration information that is an-

14

nounced in RTS/CTS frames prior to the actual exchange of data and is used as an indica-

tor for each station of time periods when the station will not transmit in order to avoid

collisions with other stations. When a station first joins a service set, its network alloca-

tion vector is set to the maximum contention-free period value as specified by the point

controller in a beacon message that is sent to all stations on a regular basis for housekeep-

ing purposes. The network allocation vector is then modified as RTS and CTS and bea-

cons are received. [8]

The result of these coordination issues is that, for Standard 802.11g capable sta-

tions operating in a mixed capability service set, only the data frame may be transmitted

using OFDM. In addition, housekeeping to inform all other stations of the impending

transmission must precede each data frame. [11]

C. IEEE STANDARD 802.11G TRANSMITTER

A Standard 802.11g compliant extended rate physical layer implements all the

mandatory modes of the Standard 802.11a, except it uses the 2.4 GHz frequency band de-

scribed in the Standard 802.11b. In addition, it is mandatory that all Standard 802.11g

compliant equipment be capable of sending and receiving the short preamble as described

in the Standard 802.11b. [11]

Three other changes implemented with the new Standard 802.11g apply to the

DSSS transmission. This includes the ability to detect all the synchronization symbols of

the new standard (including the ODFM symbols). Second, the error rate performance has

been upgraded to achieve a frame error rate (FER) of less than 28 10−× for a PSDU

length of 1024 bytes at a received power level of 20 dBm− measured at the antenna vice

10 dBm− as specified in the Standard 802.11b [11]. Using the same method as before to

calculate the required data bit error rate, we have

 8(1024)1 FER (1) .p− = − (2.4)

Rearranging (2.4) and solving for p, the data bit error rate, we get

()

8192

8192

(1) 1 FER

1 1 FER .

p

p

− = −

= − −
 (2.5)

15

Substituting FER 0.08= into (2.5), the data bit error rate for DSSS-OFDM is then calcu-

lated to be

 51.0178 10 .p −= × (2.6)

Equation (2.6) gives the required error rate of the transmitted data. Finally, synchroniza-

tion of the transmit oscillator and symbol clocks has also been upgraded so that the

transmit frequency oscillator and the symbol clock oscillator must use the same reference

oscillator.

Five other changes implemented with the new Standard 802.11g apply to the

OFDM transmission. This includes the ability to detect all the synchronization symbols

of the new standard (including DSSS). The transmit frequency accuracy and the symbol

clock frequency tolerance has been changed from ± 20 ppm in the Standard 802.11a to

± 25 ppm. The error rate performance has been changed from a maximum packet error

rate (PER) of 10% at a PSDU length of 1000 bytes at a receiver power level of − 30dBm

to a receiver power level of − 20dBm [11]. Converting this to a required channel bit error

rate, using the same method as above, we get

 8(1000)1 PER (1) .p− = − (2.7)

Rearranging (2.7) and solving for p, we get

()

8000

8000

(1) 1 PER

1 1 PER .

p

p

− = −

= − −
 (2.8)

Using the value of PER 0.1= in (2.8) we obtain the required channel bit error rate for

OFDM to be

 51.3170 10 .p −= × (2.9)

Equation (2.9) gives the error rate of the transmitted packet. The slot time, defined as the

sum of the receiver-to-transmitter turnaround time, the MAC processing delay and the

clear channel assessment detect time, which is the smallest wait time required during the

back-off-window required to avoid collisions, is set to 20 µs , the same as required for the

DSSS transmission. However, an option exists that allows this value to be reduced to the

16

9-µs value used by the Standard 802.11a if all stations in the service set support the

Standard 802.11g. The short interframe spacing interval is set to 10 µs , the same used in

the Standard 802.11b, but shorter than the 16-µs short interframe spacing interval re-

quired for the Standard 802.11a. [11]

The general block diagram of the transmitter for the OFDM physical layer is

shown in Figure 2.

Figure 2 OFDM Transmitter [After Reference 10.]

The input data arrives at the physical layer from the MAC layer with header in-

formation and a frame check sequence (FCS) that consists of a 32-bit cyclic redundancy

code (CRC) appended after the data to detect packet errors. This packet is called the

MAC protocol data unit (MPDU) while it resides in the MAC layer, and the physical

layer convergence protocol (PLCP) service data unit (PSDU) as it enters the physical

layer. The frame body can contain a maximum of 2312 octets, or bytes, of data. With a

header size of 30 bytes and a 4-byte CRC, the total maximum number of bytes arriving

from the medium access control layer is 2346 bytes. This is a limitation placed on the

size of the MPDU to support the requirements of the infrared transmission of the packet.

FEC

Encoder

Interleav-
ing
And

Mapping

IFFT

Guard
Interval
Addition

Symbol
Wave shap-

ing

IQ

Modulation

HPA

Data Input
IF

Carrier

17

The actual limitation placed on OFDM transmission of the packet is 4095 bytes. If all the

receivers in the service set support this MPDU size, then sending the larger packets can

reduce the overhead. [8,10]

Once inside the physical layer a preamble, header, tail bits, and pad bits are added

to the PSDU, and the entire packet is referred to as the PLCP protocol data unit (PPDU).

The PPDU is the frame that is then transmitted over the wireless medium to the receiving

station. The PPDU frame format for OFDM transmission is shown in Figure 3. [8]

Preamble
12 Symbols

Rate
4 Bits

Reserved
1 Bit

Length
12 Bits

Parity
1 Bit

Tail
6 Bits

Service
16 Bits

PSDU variable Tail 6
Bits

Pad Bits
variable

Figure 3 PPDU Frame Format [After Reference 10.]

The preamble for the OFDM signal consists of ten short training symbols consist-

ing of one 8-µs long OFDM symbol, and two long training symbols consisting of two

4-µs OFDM symbols (including the guard interval) to aid the receiver in detecting and

synchronizing the OFDM signal. The short training symbols are intended for initial signal

detection, automatic gain control (AGC), and diversity selection. Also, a coarse fre-

quency offset estimation and bit timing synchronization can be obtained from these sym-

bols. The long training symbols are intended for channel estimation and fine frequency

offset estimation. Use of this data considerably shortens the required time to detect and

synchronize the received packet. [10]

The header information contains fields that specify the transmission rate of the

PSDU, its length, and some transmitter initialization bits. This information is used after

reception to specify the receive bit rate of the rest of the PPDU. [10]

The data field consists of a service field that initializes the data scrambler, the

PSDU received from the MAC layer, and six tail bits that are added to the end of the

PSDU to reset the convolutional encoder to the zero state. Finally, enough pad bits are

added to the end so that the number of bits in the data field (Service field + PSDU + tail +

Header

OFDM
BPSK, r=1/2

OFDM vari-
able rate

18

pad) is an integer multiple of required coded bits per OFDM symbol (CBPSN). This en-

sures that a total of 48 values are entered into the Inverse Fast Fourier Transform (IFFT)

modulator as data. [10]

The header is transmitted at 6 Mbps using binary phase-shift keying (BPSK)

modulation and encoded with a rate 1 2r = code to give it the best chance of detection.

The data field is transmitted using one of the specified rates shown in Table 3 for the

Standard 802.11g. [10]

Table 3 OFDM Rate Dependent Parameters [From Reference 10.]

Data rate
(Mbits/s) Modulation Coding

rate (r)

Coded bits
per sub-
carrier
(NBPSC)

Coded bits
per OFDM

symbol
(NCBPS)

Data bits
per OFDM

symbol
(NDBPS)

6 BPSK 1/2 1 48 24
9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48
18 QPSK 3/4 2 96 72
24 16-QAM 1/2 4 192 96
36 16-QAM 3/4 4 192 144
48 64-QAM 2/3 6 288 192
54 64-QAM 3/4 6 288 216

The short preamble and header format was first used in the Standard 802.11b as an option

for networks that did not need to support the older standard with the long preamble and

header. The format is intended to increase data throughput in applications where this is

important, such as video and audio transmission. However, this format is only specified

for the DSSS modulation format. The long PPDU is shown in Figure 4, and the short

PPDU is shown in Figure 5. [9]

The reduction in size is from a total of 192 bits for the long format preamble and

header to a total of 120 bits for the short format preamble and header, a reduction of

37.5%. Standard 802.11g is required to support this short PPDU format. [9]

19

SYNC
128 bits

SFD
16 bits

SIGNAL
8 bits

SERVICE
8 bits

LENGTH
16 bits

CRC
16 bits

PSDU

Figure 4 Long PPDU Format [After Reference 9.]

SYNC
56 bits

SFD
16 bits

SIGNAL
8 bits

SERVICE
8 bits

LENGTH
16 bits

CRC
16 bits

PSDU

Figure 5 Short PPDU Format [After Reference 9.]

Once the service field is appended to the received data in the PSDU packet, it is

scrambled and passed through a constraint length seven, rate 1 2r = convolutional en-

coder. The required coding rates, if different than 1 2r = , can be obtained by puncturing

the data to remove some of the coded bits. This removal of some of the coded bits while

keeping the number of data bits constant increases the code rate (data bits divided by

coded bits) to the desired value. [10]

After coding, the data is interleaved to randomize the errors in the coded data bits

introduced by the wireless channel. This prevents consecutive coded data bits from being

affected by noise bursts in the channel, which improves the performance of the decoding

process. Standard 802.11g uses a two-stage process to interleave the data. The first stage

ensures that adjacent coded bits are mapped onto nonadjacent sub-carriers. This is ac-

complished by reading the coded data bits into a standard (16CBPSN by 16) block inter-

leaver. The second stage ensures that adjacent coded bits are mapped alternately onto less

and more significant bits of the constellation, avoiding long runs of low reliability LSB

bits. The second stage is actually not performed for the first four data rates of Table 1,

since the constellation size for BPSK is one bit and the constellation size for QPSK is two

bits. In these cases, alternating the bits will not change the constellation mapping. How-

ever, for 16-QAM the first stage of interleaving leaves all data bits on the same row of

the block interleaver mapped into the same bit of the 16-QAM constellations. If every

Preamble Header

Preamble Header

20

other column of the block interleaver has every other bit exchanged, this eliminates adja-

cent bits in the same row from being mapped to the same constellation bit. The interleav-

ing process is described with the help of Figure 6. In this example, the 24-Mbps data rate

is used. [10]

A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1 O1 P1

A2 B2 C2 D2 E2 F2 G2 H2 I2 J2 K2 L2 M2 N2 O2 P2

A3 B3 C3 D3 E3 F3 G3 H3 I3 J3 K3 L3 M3 N3 O3 P3

A4 B4 C4 D4 E4 F4 G4 H4 I4 J4 K4 L4 M4 N4 O4 P4

A5 B5 C5 D5 E5 F5 G5 H5 I5 J5 K5 L5 M5 N5 O5 P5

A6 B6 C6 D6 E6 F6 G6 H6 I6 J6 K6 L6 M6 N6 O6 P6

A7 B7 C7 D7 E7 F7 G7 H7 I7 J7 K7 L7 M7 N7 O7 P7

A8 B8 C8 D8 E8 F8 G8 H8 I8 J8 K8 L8 M8 N8 O8 P8

A9 B9 C9 D9 E9 F9 G9 H9 I9 J9 K9 L9 M9 N9 O9 P9

A10 B10 C10 D10 E10 F10 G10 H10 I10 J10 K10 L10 M10 N10 O10 P10

A11 B11 C11 D11 E11 F11 G11 H11 I11 J11 K11 L11 M11 N11 O11 P11

A12 B12 C12 D12 E12 F12 G12 H12 I12 J12 K12 L12 M12 N12 O12 P12

Figure 6 Standard 802.11g Stage One Interleaver.

The rows are numbered one through twelve, and the columns are marked A – P.

The data is read in sequentially across each row. Since 192,CBPSN = a total of twelve

rows of sixteen columns are used to fill the block interleaver. The first stage of the inter-

leaver reads out the data in columns. If the second stage of the interleaver were not used,

the 16-QAM mapping would be as shown in Figure 7. [10]

Note that row one only shows up in bit 0b of the 16-QAM mapping, row two only

shows up in bit 1b of the 16-QAM mapping, etc. This means entire rows are mapped to

the same bit in the QAM mapping.

To randomize the distance between symbols, the second stage of the interleaver

swaps coded bits between rows in every even column of the block interleaver. The result

21

is that only every other bit in each row is mapped to the same bit in the symbol constella-

tion. Figure 8 shows the block interleaver after data bits have been swapped by the sec-

ond stage of the interleaver. [10]

Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3

1 A1 A2 A3 A4 17 F5 F6 F7 F8 33 K9 K10 K11 K12

2 A5 A6 A7 A8 18 F9 F10 F11 F12 34 L1 L2 L3 L4

3 A9 A10 A11 A12 19 G1 G2 G3 G4 35 L5 L6 L7 L8

4 B1 B2 B3 B4 20 G5 G6 G7 G8 36 L9 L10 L11 L12

5 B5 B6 B7 B8 21 G9 G10 G11 G12 37 M1 M2 M3 M4

6 B9 B10 B11 B12 22 H1 H2 H3 H4 38 M5 M6 M7 M8

7 C1 C2 C3 C4 23 H5 H6 H7 H8 39 M9 M10 M11 M12

8 C5 C6 C7 C8 24 H9 H10 H11 H12 40 N1 N2 N3 N4

9 C9 C10 C11 C12 25 I1 I2 I3 I4 41 N5 N6 N7 N8

10 D1 D2 D3 D4 26 I5 I6 I7 I8 42 N9 N10 N11 N12

11 D5 D6 D7 D8 27 I9 I19 I11 I12 43 O1 O2 O3 O4

12 D9 D10 D11 D12 28 J1 J2 J3 J4 44 O5 O6 O7 O8

13 E1 E2 E3 E4 29 J5 J6 J7 J8 45 O9 O10 O11 O12

14 E5 E6 E7 E8 30 J9 J10 J11 J12 46 P1 P2 P3 P4

15 E9 E10 E11 E12 31 K1 K2 K3 K4 47 P5 P6 P7 P8

16 F1 F2 F3 F4 32 K5 K6 K7 K8 48 P9 P10 P11 P12

Figure 7 Mapping of First Interleaver Stage.

The resulting 16-QAM mapping is shown in Figure 9. Note that row one is now

mapped alternately into bit 0b and 1,b avoiding long runs of bits mapped to the same bit.

The constellation mapping uses standard Gray-coded BPSK, QPSK, 16-QAM,

and 64-QAM mapping, depending on the requested rate, as specified in Table 3. The

complex output of the mapping is multiplied by a normalization factor to achieve the

same average power for all mappings, which accounts for changes in modulation during

the transmission of the packet. [10]

22

A1 B2 C1 D2 E1 F2 G1 H2 I1 J2 K1 L2 M1 N2 O1 P2

A2 B1 C2 D1 E2 F1 G2 H1 I2 J1 K2 L1 M2 N1 O2 P1

A3 B4 C3 D4 E3 F4 G3 H4 I3 J4 K3 L4 M3 N4 O3 P4

A4 B3 C4 D3 E4 F3 G4 H3 I4 J3 K4 L3 M4 N3 O4 P3

A5 B6 C5 D6 E5 F6 G5 H6 I5 J6 K5 L6 M5 N6 O5 P6

A6 B5 C6 D5 E6 F5 G6 H5 I6 J5 K6 L5 M6 N5 O6 P5

A7 B8 C7 D8 E7 F8 G7 H8 I7 J8 K7 L8 M7 N8 O7 P8

A8 B7 C8 D7 E8 F7 G8 H7 I8 J7 K8 L7 M8 N7 O8 P7

A9 B10 C9 D10 E9 F10 G9 H10 I9 J10 K9 L10 M9 N10 O9 P10

A10 B9 C10 D9 E10 F9 G10 H9 I10 J9 K10 L9 M10 N9 O10 P9

A11 B12 C11 D12 E11 F12 G11 H12 I11 J12 K11 L12 M11 N12 O11 P12

A12 B11 C12 D11 E12 F11 G12 H11 I12 J11 K12 L11 M12 N11 O12 P11

Figure 8 Standard 802.11g Stage Two Interleaver.

After mapping, the data symbols are partitioned into groups of 48, mixed with

four pilot symbols, and then used as the inputs of an IFFT. The pilot symbols are scram-

bled prior to mixing to avoid the generation of spectral lines. The size of the IFFT is not

specified, but a size of 64 is normally used, since this is the next power of two above 52

(48 data symbols and four pilot symbols). The output of the IFFT is cyclically extended

over a guard interval to prevent intersymbol and intercarrier interference (ISI and ICI).

This output is windowed to smooth the data transitions, heterodyned to the carrier fre-

quency, amplified, and transmitted with a signal bandwidth of 16.6 MHz. [10]

The output of one OFDM symbol can be represented mathematically as [10]

()() ()()

,

1 2

, 1
0

2

()

() exp 2 () exp 2
ST

SD

ST

DATA n

N
N

TSYM k n F GI n k F GI
Nk k

r t

w t d j M k t T p P j k t Tπ π
−

+
= =−

=

 
 ∆ − + ∆ −  
 
∑ ∑

(2.10)

23

Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3

1 A1 A2 A3 A4 17 F6 F5 F8 F7 33 K9 K10 K11 K12

2 A5 A6 A7 A8 18 F10 F9 F12 F11 34 L2 L1 L4 L3

3 A9 A10 A11 A12 19 G1 G2 G3 G4 35 L6 L5 L8 L7

4 B2 B1 B4 B3 20 G5 G6 G7 G8 36 L10 L9 L12 L11

5 B6 B5 B8 B7 21 G9 G10 G11 G12 37 M1 M2 M3 M4

6 B10 B9 B12 B11 22 H2 H1 H4 H3 38 M5 M6 M7 M8

7 C1 C2 C3 C4 23 H6 H5 H8 H7 39 M9 M10 M11 M12

8 C5 C6 C7 C8 24 H10 H9 H12 H11 40 N2 N1 N4 N3

9 C9 C10 C11 C12 25 I1 I2 I3 I4 41 N6 N5 N8 N7

10 D2 D1 D4 D3 26 I5 I6 I7 I8 42 N10 N9 N12 N11

11 D6 D5 D8 D7 27 I9 I19 I11 I12 43 O1 O2 O3 O4

12 D10 D9 D12 D11 28 J2 J1 J4 J3 44 O5 O6 O7 O8

13 E1 E2 E3 E4 29 J6 J5 J8 J7 45 O9 O10 O11 O12

14 E5 E6 E7 E8 30 J10 J9 J12 J11 46 P2 P1 P4 P3

15 E9 E10 E11 E12 31 K1 K2 K3 K4 47 P6 P5 P8 P7

16 F2 F1 F4 F3 32 K5 K6 K7 K8 48 P10 P9 P12 P11

Figure 9 Mapping of Second Interleaver Stage.

where =n the symbol number, TSYMw = the windowing function of duration time T

equal to the symbol duration, SDN = the number of data sub-carriers (48), ,k nd = the

complex number corresponding to sub-carrier k of OFDM symbol n , F∆ = the sub-

carrier frequency spacing (0.3125 MHz), GIT = the guard interval duration (0.8 µs),

np = the scrambling sequence, kP = the pilot sub-carrier sequence, STN = the total num-

ber of sub-carriers (52), and

24

 ()

26 0 4
25 5 17
24 18 23

.
23 24 29
22 30 42
21 43 47

k k
k k
k k

M k
k k
k k
k k

− ≤ ≤
 − ≤ ≤
 − ≤ ≤=  − ≤ ≤
 − ≤ ≤


− ≤ ≤

 (2.11)

Equation (2.11) defines the mapping from the logical sub-carrier number 0 to 47

into frequency offset index − 26 to 26, while skipping the pilot sub-carrier locations and

the 0th (dc) sub-carrier.

The transmitted packet is just a concatenation of the data symbols from (2.10)

(neglecting the preamble and the header) and can be written mathematically as [10]

 ()
1

,
0

()
−

=

= −∑
SYMN

DATA Data n SYM
n

r t r t nT (2.12)

where SYMN = the total number of OFDM symbols transmitted, and SYMT = the symbol

interval (4 µs). Equation (2.12) represents the signal from the OFDM transmitter.

D. IEEE STANDARD 802.11G OFDM RECEIVER

An extended rate physical layer has the capability to detect both the extended rate

preambles and the preambles from a Standard 802.11b or Standard 802.11 compliant sys-

tem whenever a clear channel assessment is requested. Since the protection mechanism is

not required in all cases, the extended rate physical layer must be able to detect all pre-

amble types at all times. [11]

The general block diagram of the receiver for the OFDM physical layer is shown

in Figure 10. For the most part, the receiver blocks are simply inverses of their counter-

parts in the transmitter. However, synchronization plays a significant role in the detection

of the incoming packet. In addition, careful application of the inverse process is required

in many of the receiver blocks to ensure a reproduction of the original signal.

25

Figure 10 OFDM Receiver [From Reference 10.]

Upon packet detection and system synchronization, the data in the guard interval

is removed and then the remaining data is demodulated using the FFT. The received data

can be immediately de-mapped if hard decision decoding is used, or the FFT output can

be used in a soft decision-decoding scheme to improve system error rate performance.

For an excellent discussion of the effect of error correction coding, including the effects

of soft decision decoding, see the discussion in [5].

De-interleaving is simply the inverse of the interleaving process, however this is

one block that requires the incoming data stream to be synchronized in the original block

of coded bits per OFDM symbol (CBPSN). This means the receiver must know exactly

when the data stream starts, or the data will simply be jumbled by the de-interleaver.

Prior to the decoder, the data must be de-punctured in those cases where the code

rate was increased to accommodate increased data rates. Inserting the bits that were

erased during the puncturing process also requires synchronization with the incoming

data stream. Inserting the erasure bits into the wrong positions will significantly affect the

performance of the decoder circuit.

The convolutional decoding circuit of the receiver can use one of three possible

methods [13]: sequential algorithms, threshold decoding algorithms, or the Viterbi decod-

ing algorithm. Sequential algorithms provide fast, but suboptimal, decoding for convolu-

LNA AGC
Amp

IQ Detec-
tor

AFC Clock
Recovery

Remove
GI

FFT

Demapping &
Deinterleaving

FEC De-
coder

26

tional codes, and they are mostly used in applications where the coding constraint length

is greater than ten. Threshold decoding algorithms use a series of parity check equations

in a voting scheme, but are also suboptimal for convolutional codes. The Viterbi algo-

rithm is a maximum-likelihood and a maximum a posteriori decoding algorithm. Since

the constraint length of the convolutional encoder used in the transmitter is seven, this is

the algorithm that is used in most Standard 802.11a and Standard 802.11g receivers. A

significant consideration when using the Viterbi decoding algorithm is the path length

used before a decoding decision is made. The longer the path length, the more likely the

decoding solution will merge with the correct result, but the amount of memory required

to store the path taken and the path metrics becomes too large to be practical. In practice,

the maximum-likelihood path can be determined in a relatively small path length

(≤ 2contraint length). [13]

E. OPTIONAL STANDARD 802.11G MODES OF OPERATION
Two of the original proposals for the Standard 802.11g that did not get adopted as

the primary mode in the standard but were later adopted as optional modes of operation

for the new Standard 802.11g were a design from Texas Instruments called Packet Binary

Convolutional Code (PBCC) and a design from Intersil Corporation called direct se-

quence spread spectrum orthogonal frequency-division multiplexing (DSSS-OFDM)

[14]. PBCC does not use orthogonal frequency-division multiplexing, and DSSS-OFDM

uses partial OFDM.

The basic block diagram of the PBCC modulation scheme is shown in Figure 11.

Figure 11 PBCC Bock Diagram [From Reference 9.]

BCC
Rate 2/3
Encoder

8-PSK
Cover
 Map

Cover
Code

Scrambled
Data In 8-PSK Signal

S

27

Texas Instruments reports a 3-dB coding gain for this configuration over the com-

peting CCK configuration. The data is passed through a 28 state (eight memory element)

binary convolutional encoder (BCC) with a coding rate of 2 3r = . This is a change from

the encoder used in the Standard 802.11b, which used a 26 state (six memory element)

encoder with a coding rate of 1 2r = . The output of the convolutional encoder is mapped

onto an 8-PSK constellation using three of the coded bits. In Standard 802.11b, the en-

coder output is mapped onto a BPSK constellation for the 5.5-Mbps data rate and a

QPSK constellation for the 11-Mbps data rate. The mapping, however, is not constant.

The mapping is determined pseudo randomly by the cover code, a 256-bit sequence. This

means that there are two possible ways to map the coded data, depending on the value of

the cover code bit, S. Figure 12 shows the two possible mappings for the 8-PSK modes.

[11]

Figure 12 PBCC Constellation Mapping [From Reference 11.]

This mapping is used for both the 22-Mbps and the 33-Mbps data rates offered by

the PBCC mode. The increased data rate is accomplished by changing the clock that

drives the PBCC circuit from 11 Msymbols/s to 16.6 Msymbols/s. Since the preamble is

sent using an 11-Mbps signal to make it backwards compatible with the Standard 802.11b

standard, the 33-Mbps rate inserts a clock switching sequence between the preamble and

the PSDU. This allows the clock to reset and resynchronize before receiving the data.

[11]

The PBCC coding scheme is very similar to using Trellis Coded Modulation

(TCM) with interleaving. TCM also uses convolutional encoding and multidimensional

001

101

010
110

011

111

100

000 000

100

001
101

010

110

111

011

S=0 S=1

28

signal constellations to modulate a signal. Figure 13 shows a typical TCM coding

scheme. This coding scheme matches the PBCC scheme of Figure 11 if all data inputs are

passed through the convolutional encoder (i.e., 1kd + through md are all set to zero in

Figure 13). The cover sequence in PBCC acts as a random interleaver, preventing long

strings of similar data bits from being mapped to the same constellation symbol. [13]

Figure 13 Trellis Coded Modulation Block Diagram [After Reference 13.]

The intent of using DSSS-OFDM was to extend the data rates to those offered by

OFDM while reusing the preambles associated with the Standard 802.11 and Standard

802.11b. Since the preamble associated with the new data rate is the same preamble used

with the old data rates, no protection mechanism to prevent transmission collisions is re-

quired and all data rates will understand the preamble without modification. The DSSS-

OFDM option uses the complementary code-keying mode of the Standard 802.11b with

the physical layer service data unit (PSDU) packaged as a modified OFDM packet.

Figure 14 shows the PSDU for the DSSS-OFDM option. [11]

Long Training Se-

quence

OFDM Signal

Field

OFDM Data Symbols Signal Extension

Figure 14 DSSS-OFDM PSDU [From Reference 11.]

Convolutional
Encoder

Select
Signal

Partition

Select
Signal
Within

Partition

d0

dk

dk+1

dm

#

##

29

The long training sequence, the signal field and the data symbols are the same as

those described in Figure 3.The signal extension is used to provide additional processing

time (specifically the convolutional decoding) for the OFDM demodulator and is a period

of no transmission. [11]

The difficult part of DSSS-OFDM is the transition from a single-carrier DSSS

system to a multiple carrier OFDM system without forcing any parameter reacquisition.

The parameters of concern are spectrum, power, timing, frequency and phase. [11]

Pulse shaping and windowing are used to achieve spectrum coherency. DSSS-

OFDM uses a sinc pulse and a Hanning window to approximate the spectrum of the

OFDM signal and provide frequency coherency within the packet. Timing coherency is

achieved by noting that the 11-MHz clock of DSSS and the 20-MHz clock of OFDM

align at every 1 µs boundary. This means that both sequences line up after every eleven

DSSS data symbols and 20 OFDM symbols. Simply replacing the DSSS symbol with the

OFDM symbol at this 1 µs boundary achieves timing alignment. Power coherency is

achieved by requiring the transmit power levels for both signals to be the same. The car-

rier frequency is kept coherent by using the same carrier waveform for both signal types.

To achieve phase coherency, the phase of the first OFDM symbol must be 45 degrees

more than the phase of the last DSSS Barker symbol. Since all Barker symbols are trans-

mitted at a phase of 45± degrees or 135± degrees to maximize transmitted power, the

first OFDM symbol must be multiplied by 1± or ,j± respectively, to achieve the re-

quired phase. [11]

The extension of the 802.11 standard to data rates above 20 MHz involves several

aspects of previous 802.11 standards. Standard 802.11g brings all of these aspects to-

gether to achieve the required data rates and still maintain backwards compatibility with

previous standards.

With the details of the Standard 802.11g specified, the next chapter will show

how the OFDM portion of the Standard 802.11g can be simulated in order to study opti-

mum receiver and transmitter designs.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

III. SYSTEM VIEW SIMULATION

A. SYSTEM VIEW SYSTEM ANALYSIS TOOL

The software chosen for the synchronization simulation was SystemView, devel-

oped by Elanix Incorporated. SystemView is a systems analysis simulator that provides a

graphical user interface that can potentially save significant amounts of time required to

build and run engineering and scientific simulations. No code writing or command entry

is required by the user to run a system simulation. An entire system can be conceived, de-

signed and tested using only the mouse. This simulation software is designed for use with

the Microsoft Windows family of operating systems.

The basic system building blocks are called tokens. Each token performs a spe-

cific function. SystemView allows general parameter entries for each token, allowing for

significant flexibility in system design. In addition to the parameters allowed for each in-

dividual token, a large number of system timing parameters can be specified, allowing for

various simulation run scenarios depending on the results of the outputs of specified to-

kens. In addition, the system includes filter design in the operator token’s linear filter

area.

SystemView uses two windows. The system window is where the system is de-

signed and the various tokens can be accessed. In addition to the rich library of tokens

provided by SystemView, custom tokens can be developed using C++ or C program-

ming. The designer can simply develop a function that executes once during each cycle

of the system clock and use that function as a token in the project design. SystemView

also allows what it calls meta-tokens which allow the consolidation of several tokens into

a single token. This simplifies the look of complex circuits and allows for modular design

of complex systems. The second window is the analysis window where all the graphs and

statistics of the data within the system can be analyzed. Analysis can be performed in the

time and frequency domains. An analysis calculator is included which allows various cal-

culations (e.g., correlation) to be performed on the results of the data runs.

Despite its potential for allowing quick and easy system design and analysis, Sys-

temView can be challenging to employ. The biggest problem is the limited documenta-

32

tion provided. Even seasoned engineers with significant background working with prob-

lems solved by the tokens will have a difficult time understanding exactly how the token

arrives at its final value. The equations used are often left out of the token descriptions. In

addition, the exact effect of the input parameters on the token output is often in question.

Only after repeated trials are many of the token characteristics mastered. This tends to de-

feat the advantages that System View could have over a programming simulation, such as

MatLab.

A second challenging aspect of using SystemView is tracking the clock for each

token. The maximum clock speed is specified before running the system simulation, but

this is only the maximum speed of any part of the system, not the clock that runs the en-

tire system. For example, if the number of output bits is greater than the number of input

bits for a token, the system clock will speed up at that token output to get the data out in

the same amount of time that it takes to input the data. This is a particular challenge with

the multiplexer and de-multiplexer tokens, which place additional constraints on the

clock speed of each of their inputs. Each token, in general, reads one data point at each

clock cycle. However, source tokens output data at the system (maximum) clock fre-

quency and, therefore, need to be sampled in most cases to allow the proper input to fol-

low-on tokens.

A third challenging aspect of using SystemView is the delay introduced by some

tokens in the data flow. Some tokens will not output any data until a certain number of

data points have been entered. A good example of this is the de-multiplexer token. The

output is zero until all of the inputs have read in their data points. Once this is completed,

the output is enabled. System View also inserts a one-sample delay at the output of all

feedback loops. While some delay is natural in circuit design, the fact that not all tokens

have a delay can make design somewhat challenging. In addition, adding a token with

built-in delay in a circuit where the system timing is critical can have a significant effect

on the operation of the system.

After SystemView has been mastered, design is quick and easy. This allows a de-

tailed analysis of complicated systems in a relatively short amount of time, and it is the

basis for the OFDM analysis used in this thesis. The final design, once developed and

33

analyzed can also be used to develop a Field Programmable Gate Array (FPGA) imple-

mentation. FPGA implementation holds the promise of rapid design, analysis and imple-

mentation of optimum designs.

The system designed in this thesis is used to support the analysis of the different

OFDM synchronization techniques, and it is based on a design developed by Elanix in its

web site list of potential applications of System View as Application Note 140 [15]. The

entire list of application notes can be view on the Elanix web site at

http://www.elanix.com/html/products.asp.

B. TRANSMITTER
The entire SystemView transmitter circuit is shown in Figure 15. The transmitter

simulation uses a data stream of a continuous random bit sequence to allow accurate bit

error rate measurements on the order of 51 10−× . The number of data samples required to

generate bit error rate curves is at least ten times the inverse of the anticipated bit error

rate. This means that an anticipated bit error rate of 51 10−× requires a minimum of

()510 1 10× × or 61 10× data samples. A minimum of two system samples per clock pe-

riod are required to generate an alternating clock signal; otherwise the clock is always

sampled at the same phase and its value never changes. This transmitter circuit uses the

36-Mbps data rate that requires a maximum system clock frequency of 72 MHz. To de-

tect an error rate of 51 10−× , 62 10× system samples are used.

If the circuit is modified to send the OFDM packet on a carrier frequency of 2.5

GHz, the maximum system clock rate will be 5 GHz. Since about one hundred forty

()2 2.5 GHz 36 MHz× system clock cycles are now needed to generate one data sample,

the number of required system samples jumps to 6140 10× (an increase by a factor of 35).

Since it takes roughly 4.5 minutes to run 1,000,000 (220) system sample points, it will

take approximately 4.5 140 630× = minutes on an Intel Pentium IV processor running at

2.0 GHz, or 10 hours and 30 minutes to run the simulation with the signal modulated at

the carrier frequency. This is too long to run a reasonable number of simulations, and it

gives no additional insight. Therefore, all the simulations run in this Chapter of the thesis

34

were done at baseband. Only the baseband signal is used in the design to avoid lengthy

run times with the higher frequencies required in the Standard 802.11g.

Figure 15 OFDM Transmitter Circuit.

1. Data Generation
The data generation portion of the transmitter circuit is shown in Figure 16. It in-

cludes the random data generator and the service field generator, which is the portion of

the Standard 802.11g header that performs scrambler initialization in the receiver. This

portion of the packet header is always transmitted at the data rate, requiring it to be in-

serted at the beginning of the data. The service field MetaSystem is expanded in Figure

17. It generates a short pulse (16 data bits long) at one output (token 180) to control the

switch between the data generation token (token 0) and the service field generation token

(token 173). The second output (token 181) generates the service field in accordance to

Reference [10] consisting of sixteen zeros.

35

Figure 16 Transmitter Data Generation Circuit.

Figure 17 Service Field MetaSystem.

The parameters used to generate the pseudorandom sequence representing the

packet data are shown in Figure 18. The data rate is set to 36 Mbps, which is the data rate

used in both the example of Reference [10] and in the Application Note 140 from Elanix

[15]. This data rate shows the most aspects of the OFDM portion of the Standard 802.11g

as compared to the other possible data rates. The amplitude and offset are used to produce

a square wave where bit zero is represented by zero volts and a bit one is represented by

36

one volt. Since this is a binary sequence, only two levels are used. Figure 19 shows the

parameters for the sampler token (token 1).

Figure 18 Pseudorandom Token Parameters.

The sampler is required to change the clock seen by the follow-on tokens to the

data rate of 36 Mbps. Otherwise two data bits would be entered for every one data bit

generated, since the system clock is running at 72 MHz. The same parameters are used

for all the samplers positioned after a source token since all sources are generated at bit

rates equal to the system time. This can also be seen after the unit step functions of the

service field MetaSystem.

37

Figure 19 Sampler Token Parameters.

Figure 20 shows the parameters of one of the step function generators used in the

service field MetaSystem. This step function and the step function of token 176 are com-

bined to produce a pulse of duration equal to 16 times the bit duration (i.e., output =

(0) ()u u τ−). Figure 21 shows the parameters for the switch used to insert the service

field. The switch can have up to twenty inputs; however, only two are used in this case.

The control voltage selects which input is connected to the output. A control voltage of

zero volts connects the service field to the output. A control voltage of one volt connects

the random data to the output.

38

Figure 20 Step Function Parameters.

Figure 21 Switch Token Parameters.

Figure 22 shows an example of the data produced by the data generation circuit

with each circle representing one data point. The depicted signal represents 16 service

field bits followed by the random data bits. Note the sixteen zeros leading the random

data.

39

Figure 22 Example Run of the Data Generation Circuit.

2. Coding and Puncturing

The coding and puncturing section of the transmitter circuit is shown in Figure 23.

It consists of a data scrambler (token 198) to randomize the incoming data, a convolu-

tional encoder (token 7) and a puncturing circuit (token 8). The data scrambling is the re-

sult of the data exclusive or-ed (token 6) with a pseudorandom sequence produced by to-

ken 198.

SystemView

0

0

500e-9

500e-9

1e-6

1e-6

1.5e-6

1.5e-6

2e-6

2e-6

1

800e-3

600e-3

400e-3

200e-3

0

A
m

pl
itu

de

Time in Seconds

40

Figure 23 Coding and Puncturing Transmitter Circuit.

The pseudorandom generating MetaSystem (token 198) is shown in Figure 24.

This circuit uses a seven-stage, 127-bit length, m-sequence generator with a random, non-

zero initialization. Even though the communications token library of System View in-

cludes a PN generator token, the m-sequence generator used in this circuit was designed

using individual flip-flops to allow for random initialization. The PN token in the source

library cannot be used, since the length of the sequence cannot be specified.

The scrambler is made up of seven flip-flops from the System View logic library.

The basic circuit design for the m-sequence generator is shown in Figure 25. This basic

circuit is performed by tokens one through eight in the MetaSystem of Figure 24 in com-

bination with token 6 in the transmitter circuit of Figure 23.

41

Figure 24 Data Scrambler MetaSystem.

Figure 25 Data Scrambler [From Reference 10.]

The rest of the tokens in the MetaSystem are used to initialize the m-sequence

generator and provide a clocking signal. MetaSystem token 16 provides an enabling sig-

nal for the initialization sequence. The step function start time is set for six clock cycles

to allow the random sequence generated by token 15 to be shifted into the flip-flops. The

flip-flops are initially all set to the logic one state to avoid the possibility of initializing all

X7 X5 X3 X2 X1 X6 X4

Data In

Scrambled
Data Out

42

the registers to zero. Once initialized, the AND gate (token 9) is enabled and the circuit

works as shown in Figure 25.

Token 17 of Figure 24 is an inverter used to enable the AND gate (token 14) for

the random sequence intializer. Token 10 is an OR gate used to let in either the initializa-

tion sequence or the feedback from the exclusive-or gate (token 8). Since the system

clock is at 72 MHz and the data rate is at 36 MHz, the sampler (token 11) is used to step

the scrambler sequence down to the data rate. Token 21 is the output token to connect the

MetaSystem to the transmitter circuit.

Token 7 of the transmitter circuit (Figure 23) performs convolutional encoding of

the scrambled data to support error correction in the receiver. The parameters used for

this token are shown in Figure 26. The default encoder polynomials are automatically

chosen by SystemView based on the coding rate (coding rate = information bits/output

bits) and the constraint length. SystemView chooses the codes with the maximum free

distance and, therefore, the best error performance capabilities. The polynomials can be

changed by the user, if required. Since the encoder produces two output code bits for

every input data bit, the data rate at the output of the encoder is 72 MHz. This illustrates

the importance of knowing the clock rate at each point in the circuit, and it is one of the

confusing aspects of using SystemView. Also, the encoder token inserts a two-sample de-

lay in the output of the token.

Token 8 of the transmitter circuit (Figure 23) performs puncturing of the coded

data bits to achieve the required code rate for the data rate being transmitted. As is shown

in Table 3 of Chapter II, the required coding rate changes depending on the required data

rate. This could be accomplished by using a separate encoder for each data rate, or it can

be accomplished by using the same encoder for all data rates and then using puncturing to

remove some of the coded bits to achieve the required coding rate. The Standard 802.11g

specifies the later method. Specifically, the standard specifies the use of a rate 1 2r =

encoder flowed by puncturing, if required. The parameters used for the puncturing token

are shown in Figure 27.

43

Figure 26 Convolutional Encoder Parameters.

Figure 27 Puncturing Parameters.

As per Table 3, the required code rate is 3 4r = which requires a value of 3N = .

SystemView assumes the input to the puncturing token comes from a rate 1 2r = convo-

44

lutional encoder. The constraint length of this encoder is the required parameter entry.

Note again that the number of coded input bits is different than the number of coded out-

put bits, since the token removes some of the coded bits. Since two out of every six bits

of the input coded bit stream are removed, four out of every six coded bits remain. These

four coded bits correspond to three input (pre-coding) bits; therefore the resulting code

rate is 3 4r = . Therefore, the clock rate is reduced by a factor of 2 6 1 3= . The resulting

output frequency is therefore () ()2 3 72 MHz 48 MHz× = . The Standard 802.11g speci-

fies that every fourth and fifth coded bit is discarded in every group of six coded bits to

obtain the required 3 4r = code rate. This token introduces a delay equal to six input

data points at the output (i.e., the group of six inputs are read in before the group of four

output bits are sent to the output).

Token 9 of Figure 23 performs the interleaving process in the transmitter. The in-

put to token 9, as discussed above, is a 48-MHz unipolar encoded bit stream. The

parameters used for this token are shown in Figure 28. The SystemView communications

library originally only contained an interleaver capable of interleaving the 24-Mbps and

the 36-Mbps data rates where the number of coded bits per symbol (CBPSN) is 192. The

SystemView wireless library contains an interleaver token that will correctly interleave

all Standard 802.11a and Standard 802.11g OFDM data rates. However, later updates to

System View changed the allowed data rates of the communications library interleaver to

include all the allowable Standard 802.11a and Standard 802.11g data rates. The circuit

of Figure 23 uses the communications library interleaver vice the wireless library inter-

leaver. The interleaver inserts a 192-sample delay at the output. No interleaved data is

read out until the entire block of 192 samples are read into the interleaver.

45

Figure 28 Interleaver Parameters.

3. Constellation Mapping
The 16-QAM constellation-mapping portion of the transmitter circuit is shown in

Figure 29. It consists of a bit-to-symbol converter (token 10) and a QAM mapper (token

11).

Figure 29 Transmitter Constellation Mapping.

The bit-to-symbol converter token converts a group of bits into an integer. In this

circuit, a group of four bits is converted into integers from zero to fifteen. These integers

are the required input for the QAM mapper token. The parameters used for this token are

shown in Figure 30.

46

Figure 30 Transmitter Bit-to-Symbol Parameters.

The bit-to-symbol converter token allows the specification of the relative signifi-

cance of the incoming bits. The requirement specified in the Standard 802.11a is that the

first received bit is the most significant bit (MSB) and the last bit received is the least

significant bit (LSB). Comparison to the threshold determines if the incoming bit is logic

one (above the threshold) or logic zero (below the threshold). In this circuit, 0.5 volts is

the threshold used. Note that this token reduces the data rate by a factor of four to 12

MHz, and it introduces a delay of four input samples, or one output sample. The output of

this token cannot be displayed in the analysis window as voltage levels, since the output

is an integer, not a voltage level. Changing the sink token receiving this token’s output to

receive numerical data will allow the output to be displayed.

The QAM mapper (token 11) of Figure 29 maps the integers provided by the bit-

to-symbol converter (token 10) to in-phase and quadrature values specified by a mapping

table. The parameters of the bit-to-symbol converter (token 10) are shown in Figure 30.

The parameters used for the QAM mapper are shown in Figure 31. Since the transmitter

circuit is using a data rate of 36 Mbps, the required QAM constellation size is sixteen, as

specified in Table 3 in Chapter II. The required mapping is specified in Standard 802.11g

and is shown in Table 4.

47

Figure 31 Transmitter QAM Mapper Parameters.

Table 4 16-QAM Encoding Table [After Reference 10.]

Input

Symbol

In-

Phase

Output

Quadrature

Output

Input

Symbol

In-

Phase

Output

Quadrature

Output

0 −3 −3 8 3 −3

1 −3 −1 9 3 −1

2 −3 3 10 3 3

3 −3 1 11 3 1

4 −1 −3 12 1 −3

5 −1 −1 13 1 −1

6 −1 3 14 1 3

7 −1 1 15 1 1

The file containing the mapping is specified in the parameter listing. No specific

file format is shown in the documentation, however an example of the use of this token is

provided in the example folder provided with the SystemView installation. It includes an

48

input file with the required format. The example table provided by SystemView was sim-

ply duplicated into the example file used in the simulation. The first line of the mapping

file is ignored by the token and is provided as a header line. The second line of the file

contains the number of constellation points. The third line contains labeling, and the rest

of the lines contain the required mapping. The actual file used for this simulation is pro-

vided in Appendix A.

The gain tokens (token 12 and 53 in Figure 29) are used to normalize the power

between the different mappings. The normalization factor achieves the same average

power for all constellation mappings. For 16-QAM, this normalization factor is 1 10

which is used to multiply the amplitude of the coded data bits.

4. Pilot Tone Generation

Standard 802.11g adds pilot tones to each OFDM symbol to aid in maintaining

the phase synchronization during the long packet transmission. If this did not occur, the

carriers used in the OFDM symbol would slowly rotate out of phase, causing an error in

the demodulation. The pilot tone is 250 kHz, which is added to each OFDM symbol in

the form of pilot data spaced at an interval of 250 kHz.

The pilot tone generation circuit is shown in Figure 32. The pilot tones are placed

in the data stream at IFFT input indices 21n = − , 7n = − , 7n = , and 21n = , with unity

IFFT input value for indices 21, 7,n = − − and 7 and minus one for 21n = . [10]

Figure 32 Transmitter Pilot Tone Generation Circuit.

To avoid the formation of spectral lines, the pilot symbol polarity is scrambled by

the same pseudorandom sequence used to scramble the data. In this case, however, one

49

chip of the m-sequence scrambles all the pilot tone sequence values used in same OFDM

symbol making the four pilot tone inputs to the IFFT (1,1,1 1−) or (1, 1, 1,1)− − − . Since the

pilot sub-carriers are all ones (except the last one which is a minus one), the pilot tone

sub-carriers can be generated with the random number generator at the symbol rate. The

symbol interval specified by Standard 802.11g is 4 µsT = , making the OFDM symbol

rate 250 kHzf = . Token 62 of Figure 32 is a 250-kHz square wave clock for the PN se-

quence generator (token 63). Token 63 is a seven-stage shift register m-sequence genera-

tor, the same one as used in the data scrambler. The parameters used for token 63 are

shown in Figure 33.

Figure 33 Transmitter PN Sequence Generator Parameters.

Note that the data produced is bipolar, non-return to zero with a true output at one

volt and a false output at negative one volt. The clock is a square wave at 1± volt, allow-

ing the clock threshold to be set at zero volts. The register taps come at the output of reg-

ister four and register seven, as they did in the data scrambler.

The sampler (token 64) is used to bring the data rate down from the system rate of

72 MHz to the required rate of 250 kHz. The last of the four pilot sub-carriers is negated,

50

and all the sub-carriers are then multiplexed into the OFDM symbol. The pilot sub-carrier

values for the in-phase and quadrature inputs to the IFFT are equal.

5. OFDM Symbol Formation
The OFDM symbols are formed by de-multiplexing the data symbols from the

QAM mapper, inserting the pilot sub-carriers and the required zero sub-carriers to obtain

a 64 sub-carrier OFDM symbol, and then multiplexing all the data together to input to the

Inverse Fast Fourier Transformer (IFFT) used to modulate the data. The transmitter

OFDM symbol formation circuit for the in-phase data is shown in Figure 34. An identical

circuit is used for the quadrature data.

Figure 34 Transmitter OFDM Symbol Formation Circuit.

Standard 802.11g requires fifty-three data and pilot sub-carriers into the IFFT as

shown in Table 5. Zeros are added on either side of the required sub-carrier allocation to

make the IFFT symbol a full sixty-four sub-carriers long. Tokens 58 – 61 from Figure 34

51

insert these zeros into the data stream. Token 58 is a unit step function of zero and is the

source of the zero sub-carriers.

Table 5 Sub-Carrier Frequency Allocation [After Reference 10.]

Sub-

carrier

Index

-32 -31 … -27 -26 -25 … -22 -21 -20 -19 … -8 -7 -6 -6 … -1 0

Sub-

carrier

value

0 0 0 0 d0 d1 … d4 P0 d5 d6 … d17 P1 d18 d19 … d23 0

Sub-

carrier

Index

0 1 2 … 6 7 8 … 20 21 22 … 25 26 27 28 29 30 31

Sub-

carrier

value

0 d24 d25 … d29 P2 d30 … d42 P3 d43 … d46 d47 0 0 0 0 0

Sampler token 59 is used to produce the six zeros required before the beginning of

the data stream. The parameters used are shown in Figure 35. The sample rate specified

for the sampler is the rate required by the multiplexer to insert six out of sixty-four inputs

at the symbol rate of 250 kHz. Since 6 250 kHz 1.5 MHz× = , the required data rate into

the multiplexer is 1.5 MHz.

The other required zeros are produced in the same manner. Sampler token 60 is

used to insert the one zero at the carrier frequency (zero sub-carrier), and sampler token

61 is used to insert five zeros after the data sequence at a frequency of 5 250 kHz× =

1.25 MHz .

52

Figure 35 Transmitter Zero Insertion Sampler Token Parameters.

The de-multiplexer (token 13) is used to separate the data into the sequences

specified in Table 5. The parameters used are shown in Figure 36.

The coded data symbols are split up into six segments as specified in Standard

802.11g. The slot boundary offset input parameter for the de-multiplexing token is used

to start the de-multiplexing after a certain number of received data samples. In this cir-

cuit, the slot boundary is left at the default value of zero. As mentioned before, the de-

multiplexer token introduces a delay equal to the number of input samples, and it changes

the data rate of the samples at each one of its outputs. The output rate is given by

 # of input samplesRate .
Total Frame Duration

= (3.1)

For the first segment of data (0 4d d−), the number of samples specified for the token in-

put is five, and the total frame length is ()648 12 10 4 µs× = . Equation (3.1) gives us a

data rate of ()65 4 10 1.25 MHz−× = for the first output of the de-multiplexer. The other

output data rates can be calculated in the same manner.

53

Figure 36 Transmitter De-Multiplexer Parameters.

The general multiplexer (token 14) is used to put the entire OFDM symbol to-

gether. The parameters of this token are shown in Figure 37. A total of thirteen inputs are

multiplexed together to form the OFDM symbol. With all the inputs coming in at differ-

ent rates, it is easy to get the incorrect data rates and cause an error during execution of

the system. Although not specifically written in the documentation for SystemView, the

incoming data must satisfy (3.1) and the following equivalent rate

 # of input samplesRate .
Total Samples Output Rate

=
∗

 (3.2)

54

Figure 37 Transmitter Multiplexer Parameters.

Equation (3.2) is the easier one to use in this case since we know that the required

output data rate must be ()664 4 10 16 MHz−× = . The input rates can then be checked to

ensure they meet the requirements of (3.2). Note that the data rate changed from 12 MHz

at the input to the de-multiplexer and multiplexer portion of the circuit to 16 MHz at the

output. The multiplexer also delays the samples by the time required to gather all the in-

puts.

6. IFFT Modulation
The IFFT modulation of the coded data is shown in Figure 38. The data is modu-

lated with an IFFT of the OFDM modulator (token 17). This token takes the IFFT of the

55

sixty-four data points and cyclically extends it by the required guard interval. The cyclic

extension is placed at the beginning of the sixty-four-point output, as required by Stan-

dard 802.11g. The inputs are the complex coded data symbols, and the outputs are com-

plex also, requiring real and imaginary data streams.

Figure 38 Transmitter IFFT Modulation Circuit.

The parameters used in the OFDM modulator token are shown in Figure 39. The

symbol time and the guard interval are specified by Standard 802.11g [11]. The token has

sixty-four inputs and 64 16 80+ = outputs in the symbol interval of 4 µs. This gives an

output data rate of ()680 4 10 20 MHz−× = . However, since the token output is not ex-

actly as required by Standard 802.11g, corrections to the output data stream are made

during the windowing process following the modulation.

The remainder of the tokens used in the IFFT modulation portion of the circuit are

required to zero the output during the transmission of the preamble and header of the

OFDM packet. The unit step function (token 70) is used to enable the multiplexer output

after the transmission of the header and preamble. The time to transmit the short training

symbols is 8 µs and the time to transmit the long training symbols is also 8 µs for a total

56

of 16 µs per Standard 802.11g [11]. The unit step function is enabled at 12 µs , account-

ing for the 4 µs delay of the OFDM modulator token. The unit step function is changed

to the required data rate of 16 MHz and multiplies the output from the multiplexer as a

window for the outgoing data stream. The signal into the OFDM token is divided by the

number of data points, 64N = , by the gain tokens (tokens 16 and 57) to match the test

data output used for comparison in Appendix G of Reference 10. The normalization is

not required by Standard 802.11g but is customary in the applications using the IFFT and

FFT.

Figure 39 OFDM Modulator Parameters.

7. Preamble and Header Generation

The preamble and header portions of the transmitter circuit are shown in Figure

40. The generation of the short and long training symbols is done with the MetaSystem

token 84. This is added to the windowed OFDM data symbols to produce the OFDM

packet. Tokens 18 and 43 window the in-phase and quadrature signals, respectively.

57

Figure 40 OFDM Preamble and Header Generation Circuit.

The token 84 MetaSystem is shown in Figure 41. The preamble consisting of the

long and short training symbols is formed by the MetaSystem token 0. The header con-

sisting of the signal field is formed by the MetaSystem token 240. The service field por-

tion of the header is formed and modulated with the data. These two data fields are sim-

ply added together to form the preamble and the header. Since the output is formed with

quadrature and in-phase data, two channels are required.

Figure 41 Packet Preamble and Header Generation Circuit.

The preamble MetaSystem (token 0) is shown in Figure 42. The MetaSystem of

token 185 forms the short training symbols, and the MetaSystem of token 204 forms the

58

long training symbols. Since the short training symbols are transmitted first in the packet,

the start of the long training symbols must be delayed by 8 µs , the length of the short

training symbols. Again, two channels are used to form training symbols for both the

quadrature and in-phase data streams. The parameters for the sample delay (token 234)

are shown in Figure 43. The parameters for token 235 are the same. The sample delay is

not equal to the total length of the short training symbols, since the long training symbols

take longer to generate. The sample delay was adjusted until the last short training sym-

bol overlapped with the first long training symbol, in this case 144 samples.

Figure 42 Preamble Generation Circuit.

The short training symbol generation circuit is shown in Figure 44. The short

training symbols are generated by the short training sequence given by S = {0, 0, 1+ j ,

0, 0, 0, − 1 j− , 0, 0, 0, 1+ j , 0, 0, 0, 1 j− − , 0, 0, 0, 1 j− − , 0, 0, 0, 1+ j , 0, 0, 0, 0, 0, 0,

0, 1 j− − , 0, 0, 0, 1 j− − , 0, 0, 0, 1+ j , 0, 0, 0, 1+ j , 0, 0, 0, 1+ j , 0, 0, 0, 1+ j , 0, 0}.

This sequence is formed by an impulse function (token 0) and linear filter (token 2) with

an impulse response equal to the required data sequence.

59

Figure 43 Transmitter Sample Delay Parameters.

The parameters for the impulse source (token 0) are shown in Figure 45. The pa-

rameters for the linear filter (token 2) are shown in Figure 46. The impulse source token

generates a single pulse of width equal to the system clock period and amplitude of the

inverse of the system clock period, producing a pulse with unit area. This pulse is attenu-

ated to unit amplitude by the gain input parameter. The linear filter produces the 64 in-

puts for the OFDM modulator (token 13). Since the real and imaginary input values to the

modulator are the same, one filter can drive both inputs. The desired values are simply

entered as the numerator z-coefficients of the desired impulse response. Although not re-

alistic in practice to generate, it provides a quick and easy way to generate a desired se-

quence. This could be implemented in a real circuit with a ROM chip that has the re-

quired sequence stored in memory. Since the purpose of this thesis is to test different re-

ceiver designs, the transmitter just needs to generate the required signal, not be built us-

ing real circuit components.

60

Figure 44 Short Training Sequence Generator Circuit.

The output of the linear filter is normalized by dividing by 64N = with the gain

token 3, the number of data points used in the IFFT of the OFDM modulator (token 13).

The remainder of the short symbol circuit is used to window the short symbol and over-

come a bug in the OFDM modulator token that prevents cyclically extending the output

beyond half the IFFT length. Tokens 17 19− are used to produce the required window in

the same way that the short sequence was generated by tokens zero through two. The

window in this case multiplies the first and last data points by 0.5 and does not affect the

other data points. This is the recommended windowing to limit the spectrum of the

transmitted signal. Tokens 5, 6 and 15 for the in-phase data and 9, 10, and 16 for the

quadrature data piece together the entire short data symbol.

61

Figure 45 Short Symbol Impulse Parameters.

Figure 46 Short Training Symbol Linear Filter Parameters.

62

The OFDM modulator (token 13) parameters are shown in Figure 47. No guard

interval is specified, since cutting and pasting the output of the token form the required

symbol. The output is added to a sixty-four-sample delay of the output (token 15), which

is added to a 128-sample delay (token 5). The output of the adder is the cyclic repetition

of the OFDM modulator output extended over three periods. Since only two and one-half

periods are required, the result is windowed to provide the desired signal. The window

size is 161 samples, and the required short symbol preamble is shown in Figure 48. Note

that there is a delay of 4 µs before the output of the short symbol due to the inherent de-

lay of the OFDM modulator token. The output of the short training symbol MetaSystem

matches the short symbol data generated in Table G.4 of Reference 10.

Figure 47 Short Symbol OFDM Modulator Parameters.

63

Figure 48 Short Symbol Training (In-Phase Data).

The long training symbol MetaSystem, token 204 of Figure 42, is shown in Figure

49. It is generated in the same manner as the short training symbol: an impulse drives a

linear filter with an impulse response equal to the desired training sequence.

The long training sequence is given by L = {1, 1, − 1, − 1, 1, 1, − 1, 1, − 1, 1, 1,

1, 1, 1, 1, − 1, −1, 1, 1, − 1, 1, − 1, 1, 1, 1, 1, 0, 1, − 1, − 1, 1, 1, − 1, 1, − 1, 1, − 1, − 1,

− 1, − 1, − 1, 1, 1, − 1, − 1, 1, − 1, 1, − 1, 1, 1, 1, 1}. Note that the values are all real,

requiring a zero imaginary value input to the OFDM modulator token. These values are

produced by the linear filter (token 2) of Figure 49, normalized by dividing by 64N = ,

and fed into the real input of the OFDM modulator. The parameters used for this OFDM

modulator (token 4) are shown in Figure 50. The data leaving the OFDM modulator has

the correct guard interval of 1.6 µs , but only half (3.2 µs) of the long training symbol.

The tokens forming the inputs of the adders (tokens 7 and 12) of Figure 49 cut and paste

the OFDM modulator output to obtain the required long training symbol. The step func-

tions (tokens 20 and 26) are used to filter out unwanted data form the output of the modu-

lator. The sample delays (tokens 6, 11, 16, and 18) delay by 64 and 128 samples to place

the data in the required position. The remainder of the tokens in Figure 49 window the

SystemView

4.5e-6

4.5e-6

6.5e-6

6.5e-6

8.5e-6

8.5e-6

10.5e-6

10.5e-6

150e-3

100e-3

50e-3

0

-50e-3

-100e-3

-150e-3

Am
pl

itu
de

Time in Seconds

64

output as was accomplished in the short training symbol generation circuit. The resulting

long training symbol is shown in Figure 51.

Figure 49 Long Training Symbol Generation Circuit.

65

Figure 50 Long Training Symbol OFDM Modulator Parameters.

Figure 51 Long Training Symbol (In-Phase Data).

This data output from the long training symbol generation circuit matches the

long training symbol generated in Table G.6 of Reference [10].

SystemView

4.5e-6

4.5e-6

6.5e-6

6.5e-6

8.5e-6

8.5e-6

10.5e-6

10.5e-6

12.5e-6

12.5e-6

150e-3

100e-3

50e-3

0

-50e-3

-100e-3

-150e-3

Am
pl

itu
de

Time in Seconds

66

The signal field MetaSystem (token 240) of Figure 41 is shown in Figure 52 and

is similar in structure to the transmitter circuit of Figure 15. This is due to the fact that the

header is transmitted using the 6-Mbps data rate. Since the rest of the OFDM packet is

sent using the 36-Mbps data rate, a separate circuit must be used to support the generation

of the header.

Figure 52 Signal Field Generation Circuit.

The service field format is shown in Figure 53. With the rate for this circuit cho-

sen as 36 Mbps, the length chosen as the maximum of 4095 octets, the parity bit is cho-

sen to obtain even parity, and the tail bits are used to reset the transmitter circuit, the sig-

nal field sequence is S = {1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

[10]. This sequence is produced in the same manner as the required sequences for the

short and long training symbols with the unit impulse source, the sampler, and the linear

filter combination (tokens 0, 1, and 2 of Figure 52). The sequence is encoded with the

same rate 1 2r = convolutional encoder as is used in the transmitter circuit of Figure 15.

Since the data rate is 6 Mbps, the coding rate out of the encoder is at the required coding

rate of Table 3 and no puncturing is required. The interleaver (token 4) is not the same

67

one as used in the transmitter circuit, since the number of coded bits per symbol is

48CBPSN = for the 6-Mbps data rate, and the Standard 802.11g interleaver was originally

designed to work only with the 36-Mbps data rate. For the 6-Mbps data rate only the first

stage of the Standard 802.11g interleaver is required, which is a straightforward block in-

terleaver. The parameters for this interleaver are shown in Figure 54. Sixteen columns is

the required block length per Reference [10], and since 48CBPSN = , then this results in

48 16 3= rows used in the interleaver.

Rate
4 bits

Reserved
1 bit

Length
12 bits

Parity
1 bit

Tail
6 bits

Figure 53 Service Field Format.

Figure 54 Signal Field Interleaver Parameters.

After interleaving, the data is binary phase-shift keying (BPSK) modulated by the

polynomial token (token 5). The parameters for this token are shown in Figure 55. This

token does a linear shift of the one and zero volt inputs to produce a one and minus one

output. The parameters specify the equation 2 1output input= × − .

68

Figure 55 Signal Field BPSK Modulator Parameters.

After BPSK modulation, the pilot symbols and zeros are added to obtain sixty-

four inputs for the IFFT operation of token 10 in the same manner as the transmitter cir-

cuit of Figure 15. The output of the IFFT is then windowed in the same fashion as the

transmitter circuit.

Tokens 18 and 43 of the transmitter circuit of Figure 15 are used to window each

OFDM data symbol generated by the transmitter. Since this windowing process must oc-

cur on a continuous basis, the one time windowing used in the preamble and header gen-

eration will not work and a different technique of windowing is needed. Both windowing

tokens are identical. The MetaSystem of token 18 is shown in Figure 56.

The window function is [10]

1 1 79

[] 0.5 0, 80.
0 otherwise

T

n
w n n n

≤ ≤
= = =



 (3.3)

The last (80n =) data point of (3.3) is added to the first (0n =) data point of the next

symbol.

69

Figure 56 OFDM Data Symbol Windowing Circuit.

The de-multiplexer (token 4) parameters are shown in Figure 57. This de-

multiplexing allows the first number of the OFDM symbol sequence, representing the

first value in the guard interval, and the first value of the original IFFT without extension

to be removed from the data stream and modified for windowing.

The first bit in the OFDM symbol sequence is multiplied by 0.5, as shown in

(3.3), by the gain token. This value is added to the last value of the previous symbol by

delaying the de-multiplexer output two by 4 µs (the length of one OFDM symbol) and

dividing it by two. The composite signal is then recombined by the multiplexer (token 8).

This windowing technique also modifies the OFDM modulator token output so it

produces the correct Standard 802.11g OFDM symbol. In effect, it takes the first data

point after the guard interval and puts a copy of it at the end of the symbol. This produces

a total of 81 (0n = to 80n =) data points, and follows the packet formation example in

Appendix G of Reference [10]. The first and last data points of the sample are multiplied

by 0.5 and added to the previous and subsequent OFDM symbols.

70

Figure 57 Transmitter OFDM Data Symbol Windowing De-multiplexer Parameters.

An example output of the transmitter is shown in Figure 58. It shows the short and

long training sequences and the first data OFDM symbol. This is the in-phase data from

the output of the transmitter. The output has a delay of one OFDM symbol (4 µs) that is

due to the inherent delay of the OFDM modulator used in the generation of the short

training symbol.

71

Figure 58 Transmitter Output.

C. RECEIVER

The basic OFDM receiver used in this thesis is shown in Figure 59. Since no syn-

chronization circuitry is required, the design is relatively simple.

The basic functions of the receiver are OFDM demodulation, stripping off the

header information, de-modulating the 16-QAM symbols, de-interleaving, de-puncturing,

and decoding the received signal to recover the original scrambled data bits. This signal

is then descrambled and the output is compared to the generated data input to obtain a bit

error rate (BER). With no noise input into the system, this receiver combined with the

OFDM transmitter of Section B produces no bit errors, validating the proper demodula-

tion of the OFDM data. Several system runs using 220 samples, able to detect bit error

rates of 510− , returned no errors. Additional runs at 224 samples and 227 samples, able to

detect bit error rates of 10-6 and 10-7 were also run with no errors in the system.

SystemView

0

0

2e-6

2e-6

4e-6

4e-6

6e-6

6e-6

8e-6

8e-6

10e-6

10e-6

12e-6

12e-6

14e-6

14e-6

16e-6

16e-6

18e-6

18e-6

300e-3

200e-3

100e-3

0

-100e-3

-200e-3

-300e-3

A
m

pl
itu

de

Time in Seconds

72

Figure 59 OFDM Basic Receiver Circuit.

1. FFT Demodulation

The OFDM demodulator (token 26) parameters are shown in Figure 60. The

24-µs input delay strips off the 4-µs transmitter delay, the short training symbol (8 µs),

the long training symbol (8 µs), and the OFDM symbol containing the signal data

(4 µs). The OFDM demodulator strips off the data contained in the guard interval of the

received data and performs an FFT on the remaining 64 data points. The output clock

73

frequency is reduced by a factor of 64 80 4 5= due to the number of input data points

being equal to 80 and the number of output data points being equal to 64. Since the input

frequency is 20 MHz, the token output frequency is ()4 5 20 MHz 16 MHz× = . The out-

put is delayed by another 4 µs while the input data is being read into the token.

Figure 60 OFDM Demodulator Parameters.

2. Data Extraction

The circuit of Figure 61 performs the removal of the extra zeros and the pilot

tones. The de-multiplexer divides the data up into the thirteen segments used in the

transmitter’s multiplexer to divide the incoming data stream into the desired data bits and

the undesired zeros and pilot tones. The five segments from the de-mulitplexer that con-

tain the desired data are fed into the multiplexer. The other outputs from the de-

multiplexer are not used. This is the reverse process performed by the multiplexer and de-

mulitplexer in the transmitter.

74

Figure 61 Receiver Data Extraction Circuit.

3. Hard Decision Demodulation
The demodulation section of the receiver is shown in Figure 62.

Figure 62 Receiver Data Demodulation Circuit.

Demodulation consists of mapping the in-phase and quadrature data onto the con-

stellation provided by an input file, in this case the same one used in the transmitter cir-

cuit shown in the Appendix A. The parameters used in the QAM de-mapper are shown in

75

Figure 63. Since the 36-Mbps data rate uses 16-QAM modulation, the constellation size

is 16. The output of the QAM de-mapper is an integer corresponding to the closest I and

Q in the constellation.

Figure 63 Receiver QAM De-Mapper Parameters.

The symbol-to-bit converter (token 31) takes the integer provided by the de-

mapper and converts it to a stream of four bits. The parameters for the converter are

shown in Figure 64. The ordering of the bits is as specified in Reference [10].

76

Figure 64 Receiver Symbol-to-Bit Converter Parameters.

4. De-Interleaving and De-Puncturing

Once the incoming data has been converted back to binary digits, the interleaving

and puncturing operations performed in the transmitter must be reversed. Figure 65

shows the circuit used to perform this process. The first operation preformed is the de-

interleaving by token 33. Since this token begins de-interleaving upon commencement of

the data run, a sample delay token must be used to ensure the received data enters the de-

interleaver at the beginning of a 192 sample de-interleaving process. To compute the re-

quired delay, the individual delays from each token can be calculated, or the cross-

correlation of the interleaver output and the de-interleaver input can be performed. The

sample delay with the greatest correlation will be the required sample delay at the input

to the de-interleaver. Performing this operation on this circuit results in a maximum cor-

relation at 1156 samples. Since 1156 6 192 4= × + , the de-interleaver input is delayed by

192 4 188− = samples. This means the data will reach the input of the de-interleaver at

the start of the seventh de-interleaving cycle. Any change in the signal path between the

interleaver and de-interleaver will require a recalculation of this delay.

77

Figure 65 De-Coding and De-Puncturing Circuit.

One the data has been de-interleaved, it must be scaled to allow the de-puncture

operation to insert a zero (or null value) wherever data was removed from during the

puncturing operation. The equation used in the polynomial token is 2 1output input= × − ,

the same as was used for BPSK modulation of the signal field in the transmitter.

The parameters used in de-puncturing (token 35) are shown in Figure 66. The pa-

rameters are the same as entered for the puncturing operation, except the input delay. In

order to decode correctly, the punctured data points must be inserted into the correct posi-

tions in the data stream. In this circuit, the input delay was also used to zero out the noise

produced from the QAM demodulation process. With zero input, QAM demodulation

produces an alternating output. To ensure the decoder started in the zero state when the

data first reaches it, the de-puncturing is delayed until the first data arrives (coded zeros).

Doing this, however, can make placing the inserted bits tricky. It could also be ignored,

since enough bits are used in the transmitter to zero out the decoder prior to real data ar-

riving by design. However, this circuit was designed to produce a zero output from the

decoder until the data arrives.

78

Figure 66 De-Puncture Parameters.

5. Viterbi Decoding

The decoding process uses a soft decision Viterbi decoder. The soft decision de-

coding allows the insert bits from the de-puncture operation to be weighted at a value of

something other than a zero or one. However, the complete decoding process is hard de-

cision, since the value of the input symbol has already been evaluated during the QAM

de-mapping process of token 30. The circuit used for decoding and de-scrambling the

data is shown in Figure 67.

The parameters for the decoder (token 36) are shown in Figure 68. For the most

part, the parameters are the same as the convolutional encoder used in the transmitter cir-

cuit. The path length chosen is the same used in Reference [15]. Although for this circuit,

with no channel or system noise, a path length of one worked just as well. With channel

noise, the best path length would be 28 ()4 7× . The parameters chosen for the soft deci-

sion decoding follow those recommended in Reference 15.

79

Figure 67 Decoding and De-scrambling Circuit.

Figure 68 Decoder Parameters.

80

The offset is used to zero the output until the transmitted data is received. A corre-

lation between the convolutional encoder output and the decoder input was used to calcu-

late the sample delay required.

The descrambler is shown in Figure 69. The descrambler is the same basic circuit

as was used in the scrambler in the transmitter circuit. The same seven-stage m-sequence

generating circuit is used. The difference is that the data from the decoder is run through

the flip-flops until the seven bits from the service field are entered as an initialization for

the sequence. The step function then turns off the data input from the decoder and the m-

sequence generator runs on its own, decoding the incoming data by exclusive-oring the

sequence with the received data.

Figure 69 Data De-Scrambling Circuit.

D. BIT ERROR RATE CALCULATIONS
The circuit to calculate the bit error rate in the receiver is shown in Figure 70. To-

ken 4 is the bit error rate counter token from the communications library. It takes two in-

puts and compares binary values over a certain number of trials. The parameters for the

BER token are shown in Figure 71. The number of trial bits is set to one so that bits are

81

compared one by one. The threshold is the value that separates logic one from logic zero.

The offset is used to ignore initial data, which is set to zero in this case. The sample delay

token is used to delay the original data the same amount as the receiver and transmitter

circuit so that initial data bits transmitted are compared with initial data bits received. As

in the de-puncture and de-interleave operations, the easiest way to obtain this value is to

use the sink calculator in the System View Analysis window to calculate the correlation

between the data output from the PN generator in the transmitter and the data output from

the decoder in the receiver. The time delay of maximum correlation is the desired sample

value. The value obtained in this circuit was 1607 samples.

Figure 70 Bit Error Rate Calculation.

82

Figure 71 Bit Error Rate Parameters.

Although the receiver presented in this section is very basic, it serves as a basis

for building receiver circuits that will optimize synchronization of an OFDM signal.

Small modifications of the receiver are made to accommodate the various synchroniza-

tion techniques.

83

IV. OFDM SYNCHRONIZATION

There are many aspects to synchronizing the receiver with the transmitted signal

in an OFDM system. In addition, in a connectionless, packet-switched communications

system such as Standard 802.11g compliant systems, the receiver has very little time to

synchronize with the transmitter. Even with a packet length of 4096 bytes, the maximum

allowed, the entire packet could be at most 627 µs at a data rate of 54 Mbps. The pream-

ble and the header are a total of 20 µs, leaving little time to achieve synchronization be-

fore the start of the data. Since the header contains information required for proper de-

modulation of the OFDM signal, synchronization must be accomplished in the time allot-

ted for the long and short training sequences, which is 16 µs. Once synchronization is

achieved, it must be maintained over the duration of the OFDM symbol. If the channel

characteristics change significantly during the transmission of the packet, synchronization

and the data can be lost, resulting in retransmission and an overall slower throughput.

The synchronization of the OFDM signal is broken down into four different steps.

The first is packet detection, or the ability of the receiver to detect all the incoming pack-

ets and reject all the spurious signals caused by noise or other communications operating

in the same frequency band. The second is received frequency synchronization, or ensur-

ing that the receiver local oscillator frequency is the same as the carrier frequency of the

received signal. The third is the carrier phase-offset synchronization, or ensuring that the

receiver local oscillator phase is the same as the carrier phase of the received signal. The

last is OFDM symbol synchronization, or the sampling of the data symbols at the correct

time and entering the correct data into the FFT to demodulate the OFDM signal, which

includes synchronizing the data clocks between the receiver and transmitter.

The communication signals that follow the 802.11 wireless standards contain sev-

eral segments meant to enhance and aid synchronization. In particular, Standard 802.11g

uses the short and long training symbols for synchronization as illustrated in Figure 72.

84

Short Training Symbols Long Training Symbols Signal Service Data

Figure 72 OFDM Training Structure [After Reference 10.]

The first six or seven short training symbols are intended to be used for the

OFDM packet detection, setting the automatic gain control, and diversity antenna selec-

tion. The last three or four short training symbols are intended for coarse frequency esti-

mation and initial timing synchronization. This coarse estimation is required by the re-

ceiver to perform small corrections without losing synchronization with the long training

symbols. In addition to the long and short training symbols, the OFDM packet contains a

pilot tone sequence interspersed with the data to maintain synchronization during the

packet reception. [10]

There are many methods used to synchronize with OFDM signals, depending on

the signal characteristics and the channel characteristics. Here we examine the optimum

synchronization based on a channel model subject to additive white Gaussian noise

(AWGN). The fundamentally different characteristics of an OFDM signal compared to a

single-carrier signal make synchronization with OFDM signals a difficult problem.

A. PACKET DETECTION

The detection of an incoming packet in the presence of noise in the transmitting

channel can be optimized by using binary hypothesis testing [16]. Hypothesis zero is

when the input to the receiver is noise only. Hypothesis one is when the input to the re-

ceiver is a Standard 802.11g packet plus noise. It is assumed that the noise is AWGN.

Mathematically this can be represented as

 0

1

: () ()
: () () ()

H r t n t
H r t s t n t

=
= +

 (4.1)

Signal
Detect,
AGC,
Diversity
Selection

Coarse
Frequency
Offset
Estimation,
Timing
Synchronize

Channel and Fine Frequency
Offset Estimation

85

where 0H is hypothesis zero, 1H is hypothesis one, ()r t is the received signal, ()s t is

the transmitted signal, and ()n t is the noise.

The goal is to maximize the probability that the signal is detected in the presence

of noise, and to minimize the probability that the receiver falsely detects noise only as a

transmitted signal. Unfortunately both of these probabilities cannot be optimized simulta-

neously. If the decision threshold is changed to improve the probability of detecting a

signal when present then the probability of false alarm also increases. The converse is

also true. This can be seen graphically in Figure 73 using AWGN as the noise in the

channel.

Figure 73 Probabilities of False Alarm and Detection in an AWGN Channel.

The curve on the left, () ,of r or the probability density function of the input ()r t

given hypothesis 0H , is shown as a Gaussian distributed, zero mean signal. It describes

the input at the receiver under hypothesis 0H , when only the channel noise is present.

10 5 0 5 10 150

0.05

0.1

0.15

0.20.199

0

f 1 r()

f 0 r()

1510− r
Tγ

DP

FAP

86

The curve on the right, ()1 ,f r or the probability density function of the input ()r t given

hypothesis 1H , is shown as a Gaussian distributed signal with an arbitrary mean value of

six which separates the two curves enough to demonstrate the tradeoffs made when se-

lecting a receiver threshold. It represents the input at the receiver under hypothesis 1H ,

when the signal and the noise are present. The parameter ()r t represents the decision

statistic at the receiver, and the parameter Tγ represents the threshold between the re-

ceiver declaring that the receiver input represents noise only (hypothesis 0H) or signal

and noise (hypothesis 1H). If the receiver detects a decision statistic below ,Tγ it decides

that no signal is present and does not start the detection and demodulation process. If the

decision statistic exceeds Tγ , the receiver assumes that a signal is present at the input and

commences with detection and demodulation. If the decision statistic exceeds Tγ because

of the noise level, but no signal was transmitted, then a false alarm results. The area un-

der the blue curve to the right of the threshold Tγ represents the probability of this occur-

ring. If we increase the threshold ,Tγ then the probability of false alarm is reduced as de-

sired. However, the area under the red curve to the right of the threshold ,Tγ representing

the probability of signal detection when a signal is present, is also reduced. Increasing the

threshold reduces the probability of false alarm, but also reduces the probability of detect-

ing a signal when it is present. [16]

Likewise, the probability of detection can be increased at the expense of increas-

ing the probability of a false alarm. This minimizes transmission interruptions due to the

signal not being detected. The receiver can quickly recognize the false alarms if the an-

ticipated training sequences are not received. The false alarms do not affect data trans-

mission as long as the receiver can recognize a false alarm before the next packet is re-

ceived. In Standard 802.11g compliant systems, the minimum spacing between packets,

or the short interframe spacing interval (SIFS), is 16 µs. This is the length of the short

and long training symbols. Therefore, if the receiver realizes that the signal it is trying to

process is a false alarm before a time interval of 16 µs has passed, the chance of a packet

87

being transmitted during this interframe spacing will be minimized and packets missed

due to the receiver being busy processing the false alarm will be reduced.

1. Optimum Packet Detection in AWGN

The optimum threshold is found by choosing a value such that hypothesis 1H is

chosen when the probability of hypothesis 1H is greater than hypothesis 0H given a de-

cision statistic mr [16]. Mathematically, this is expressed as

 () ()

1

1 0

0

Pr | Pr |m m

H

H r H r

H

>
<

 (4.2)

where mr is the decision statistic at time t m= . Using the definition of probability and

the probability distribution function of mr under 0H as ()0 mf r and the probability distri-

bution function of mr under 1H as ()1 mf r , Reference [16] shows that (4.2) can be repre-

sented as

 () ()
()

1

1

0

0

m
m

m

H
f r

r
f r

H

λ
>

Λ =
<

 (4.3)

where λ is the required threshold and ()mrΛ is the likelihood ratio.

The optimum value for the threshold of (4.3) depends on the criteria, or definition

of optimum, used. Since in this case the concern is the detection of an incoming packet,

the Neyman-Pearson criteria [16] is used. In the Neyman-Pearson criteria, the threshold

λ is determined by the false alarm or detection probabilities. The probability of detection

is defined as

 1()
T

D m mP f r dr
γ

∞
= ∫ (4.4)

where Tγ is the desired threshold.

88

Note that λ and Tγ are not necessarily equal. The decision is based on comparing

the likelihood ratio to λ , or equivalently comparing mr to Tγ .

If we assume that the noise is AWGN with a mean value of zero and a variance of
2
nσ and channel fading is negligible, then 1()mf r is Gaussian distributed with a mean

value offset by the value of () ms t m s= = , and the variance remains unchanged. This

means 1()mf r is given by

()2

22
1 2

1()
2

m m

n

r s

m

n

f r e σ

πσ

−
−

= (4.5)

where ms is the value of ()s t m= . The probability density function under hypothesis 0H

is the same as that for the AWGN and is given by

()2

22
0 2

1() .
2

m

n

r

m

n

f r e σ

πσ

−

= (4.6)

The likelihood ratio, or the ratio of the two density functions, is given by

()

()

() ()

2

2

2 2
2

2

2

2
12

21

0
2

2

1
2()() .

() 1
2

m m

n

m m m
n

m

n

r s

r r s
n

r

n

e
f rr e
f r

e

σ

σ

σ

πσ

πσ

−
−

 − −  

−

Λ = = = (4.7)

Taking the log of both sides and simplifying, we get

() ()()

()

2

2

1ln ()
2

1 2 .
2

m m m m m m
n

m m m
n

r r r s r r s

s r s

σ

σ

Λ = − + + −  

= −  

 (4.8)

Inserting (4.8) into inequality (4.3) and solving for ,mr we obtain

89

1
2

0

ln .
2

n m
m T

m

H
sr

s
H

σ λ γ
>

+ =
<

 (4.9)

Inequality (4.9) specifically shows that the threshold chosen for the decision statistic mr

is not the same as λ . If we let () ()2 ln 2 ,T n m ms sγ σ λ= + then (4.9) reduces to

1

0

.m T

H

r

H

γ
>
<

 (4.10)

Since the probability distribution of the received signal is known under both hy-

potheses, Tγ of (4.10) can be determined by specifying the desired probability of false

alarm or the probability of detection. Using (4.4) to solve for the threshold ,Tγ we get

 ()1T m
D T m n D

n

sP Q s Q Pγ γ σ
σ

− −
= ⇒ = + 

 
 (4.11)

where ()Q x is known as the Q-function and is defined as () ()

2

21 2
u

x

Q x e duπ
∞

−
= ∫ .

Note that the probability of false alarm is defined as

 0 () .
T

FA m mP f r dr
γ

∞
= ∫ (4.12)

Combining (4.12) and (4.11), we have

 () ()
1

1 .m n D mT
FA D

n n n

s Q P sP Q Q Q Q P
σγ

σ σ σ

−
− +   

= = = +    
    

 (4.13)

Assuming the AWGN is zero mean and variance of 2 0.1nσ = and that the desired

DP is 0.9, we get a threshold of 0.40526 0.5947T msγ = − = for 1ms = . If the transmitted

signal, sm, has a value of one, this results in a 0.0300FAP = .

90

In practice, a probability of detection greater than 0.9 must be used, since some

errors will also occur when a packet presence is correctly detected, resulting in a loss of

the packet.

The results of (4.10) can be implemented with a comparator circuit. Figure 74

shows a simple circuit set up in System View to demonstrate this packet detection tech-

nique.

Figure 74 Probability Calculation Circuit.

The error rates shown in the final value sink windows are for a threshold value of

0.5947Tγ = when the signal is 1.0.ms = The simulated probability of detection is 90.4%,

close to the value of 90% used in the analysis. The simulated probability of false alarm is

3.3%, matching the analysis earlier. When this system is run with a threshold value of

0.2Tγ = , the probability of false alarm is 27.3% and the probability of detection is

91

99.4%. This demonstrates the trade off between probability of detection and probability

of false alarm.

2. Optimum Packet Detection Using Multiple Samples in AWGN
The detection capabilities of this circuit can be improved by separating the two

probability density curves of Figure 73. Since changing the receiver design to decrease

noise power is not an acceptable option due to cost or complexity, then the noise only

density function (left) cannot be changed. However, the curve on the right can be shifted

by proper design of the receiver and transmitter. The easiest way to separate the two

curves is simply to increase the transmitted power. This increases the mean value ()ms of

the curve and separates the two probability densities. Simply increasing ms from 1.0 to

2.0 in the circuit of Figure 74 and keeping the detection threshold at 0.5947Tγ = keeps

the probability of false alarm unchanged at 3.3%, but increases the probability of detec-

tion to 99.9%, a sizeable improvement over the 90.4% from the lower signal level.

Signal detection can also be improved by taking several samples of the input. This

has the effect of shifting the signal plus noise density function (right hand side of Figure

73) to the right, but it also increases the variance, spreading both distributions out, as

shown in Figure 75 where two samples are taken using the same parameters of Figure 73.

This reduces the effectiveness of the curve shift in increasing the probability of detection

or reducing the probability of false alarm.

For multiple sample values, the noise is uncorrelated because it is assumed white.

This allows the resulting probability density function under each of the hypotheses to be

factored into a product of the probability densities for each sample used in the receiver

decision function. Reference [16] details the derivation of the resulting likelihood func-

tion when the noise is AWGN. Inequality (4.3) can then be modified to read

 () () ()
() () ()

1

1 1 1 2 1

0 1 0 2 0

0

() .k

k

H
f r f r f r
f r f r f r

H

λ
>

Λ =
<

r
"
"

 (4.14)

92

Figure 75 Change in Probability with Increased Samples.

The two hypotheses of (4.1) are rewritten to take into account the use of multiple signals:

0

1

:
 1

:

m m

m m m

H r n
m k

H r s n
=

≤ ≤
= + (4.15)

where mn is the AWGN sample at t m= . Substituting the Gaussian distributions consis-

tent with (4.15) into (4.14), we get

 () ()
1

2 2

1 1

0

1ln .
2

k k

m m n m
m m

H

r s s

H

σ λ
= =

>
+

<∑ ∑ (4.16)

As before, the threshold on the right hand side of (4.16) can be consolidated into

() () ()2 2

1
ln 1 2 ,

k

n m
m

sη σ λ
=

= + ∑ resulting in

10 5 0 5 10 150

0.02

0.04

0.06

0.08

0.10.1

0

f 1 r()

f 0 r()

1510− r
Tγ

FAP

DP

93

1

1

0

.
k

m m
m

H

r s

H

η
=

>
<∑ (4.17)

The threshold is calculated as before using the definitions for probability of detec-

tion, DP , and the probability of false alarm, FAP , to calculate the threshold η . For the DP ,

(4.4) becomes

 () 1D xP f x dx
η

∞
= ∫ (4.18)

where
1

k

m m
m

x r s
=

= ∑ is the decision statistic and () ()
()2

222
1 1 2

x

x

x m

x xf x e σπσ
−

−

= is the prob-

ability distribution under hypothesis 1H , since the sum of Gaussian random variables is

Gaussian.

Using the same AWGN example as used in (4.11), we obtain

 ()11
1

x
D x x D

x

mP Q m Q Pη η σ
σ

− −
= ⇒ = + 

 
 (4.19)

where xm is the mean value of the decision statistic x under hypothesis 1H and xσ is the

standard deviation of the decision statistic under hypothesis 1H . Taking the expected

value of the decision statistic under hypothesis 1,H we get

 () { }()2 2
1

1 1 1

k k k

x m m m m m m m m
m m m

m E r s E s n s s s E n ks
= = =

   = = + = + =   
   
∑ ∑ ∑ (4.20)

where the last step holds if ms s= is a constant. The variance of the decision statistic is

94

()

()

2
2

1
1

2
2 2

1 1

2

1

k

x m x
m

k k

m
m m

k

m
m

E s n s m

E s sn ks

E sn

σ
=

= =

=

   = + −  
   
   = + −  
   
   =   
   

∑

∑ ∑

∑

 (4.21)

{ }

{ }()
()

2 2

1 1

2

1 1

2 2
,

1 1

2 2

2 2

k k

x l m
l m

k k

l m
l m

k k

m l m
l m

n

n

s E n n

s E n n

s E n

s k

k s

σ

δ

σ

σ

= =

= =

= =

 =  
 

 
=  

 
  =    
 =  

=

∑∑

∑∑

∑∑

where ,

1 if
0 if l m

l m
l m

δ
=

=  ≠
 is the Kronecker delta function.

Using (4.21) and (4.20) in (4.19), we find a threshold value of

 ()2 1 .n Dks k s Q Pη σ −= + (4.22)

Under hypothesis H0, the mean value of the decision statistic is

 0
1

0.
k

x m m
m

m E n s
=

 = = 
 
∑ (4.23)

The variance does not change from (4.21).

The probability of false alarm for the decision variable x is given by

 () 0FA xP f x dx
η

∞

= ∫ (4.24)

95

where () ()
2

222
0 1 2 x

x

x xf x e σπσ
−

= is the probability distribution for x under hypothesis

0H . Using (4.22) and (4.23) in (4.24), we get the probability of false alarm as

 ()

()

2 1

1 .

FA
x

n D

n

D
n

P Q

ks ks Q P
Q

ks

sQ k Q P

η
σ

σ
σ

σ

−

−

 
=  

 
 +

=   
 
 

= + 
 

 (4.25)

Arbitrarily setting 1ns σ= = for illustrative purposes and using two sample val-

ues to demodulate the received signal (2k =) results in a threshold of 2 1.8124η = − or

0.1876η = when the probability of detection is 90%. Figure 76 shows a circuit that im-

plements this detector using two samples of the generated random data sequence. The

probability of detection for this simulation run is 89.5% when 8192 trials were used,

close to the prescribed value of 90%. The simulated probability of false alarm calculated

by the circuit of Figure 76 is 45.1%, which is better than the 61.7% we achieved when us-

ing only one sample of the received data sequence.

Equation (4.25) suggests that the probability of false alarm can be made arbitrar-

ily small by increasing the number of samples used in the signal demodulation. For a con-

stant DP , the argument of the Q-function increases with increasing k, which causes FAP to

approach zero. Figure 77 shows this graphically.

96

Figure 76 Multiple Sample Error Rate Calculation Circuit.

Figure 77 Probability of False Alarm vs. Sample Number.

In practice the number of samples that can be used to determine the existence of a

signal is limited. This is especially true in packet-based systems such as the 802.11 stan-

0 5 10 15 200

0.2

0.4

0.6

0.80.611

7.099 10 4−×

P FA b N, γ, σ,()

201 N

97

dards. Reference [10] suggests using the first seven short training symbols for packet de-

tection.

3. Other Packet Detection Designs
Two other packet-detection schemes mitigate the noise received to enhance the

performance while maintaining the form of the optimum detection algorithms developed

so far.

The first scheme uses multiple samples as detailed in Section 2 above, but uses

two adjacent sliding windows to obtain the samples and then divides the output of the

two windows to obtain the decision statistic [3]. Specifically,

1 12

0

2

1 0

M

m
m
L

M l
l

H
r

r
H

η

−

=

+
=

>
<

∑

∑
 (4.26)

where M is the length of the first sliding window and L is the length of the second (adja-

cent) sliding window. The advantage of this detector is that it gives a sharp pulse at the

packet start time.

The second scheme uses a method similar to the first, but the incoming data is

correlated with the known training data in the standard instead of just the sum of magni-

tudes squared. Since the short training symbols are periodic with a period of 16 samples

in Standard 802.11g, a delayed version of the received signal is correlated with the re-

ceived signal where the delay is 16 samples for Standard 802.11g signals. The structure

of the receiver is shown in Figure 78.

Figure 78 Delay and Correlate Detector [From Reference 3.]

Z-D ()2

()*

| |2C

P

xn rn

98

In Figure 78,
1

0

L

n k n k D
k

C r r
−

∗
+ + −

=

=∑ and
1 1

2

0 0

L L

n k D n k D n k D
k k

P r r r
− −

∗
+ − + − + −

= =

= =∑ ∑ . The output from this

circuit is given by

()

21
1*

2
0

2 21
*

00

.

L

n k n k D
k

n L

n k D n k D
k

H
r r

C
x

P
r r H

η

−

+ + −
=

−

+ − + −
=

>
= =

< 
 
 

∑

∑
 (4.27)

The probability analysis of these two schemes is similar, since both deal with a ra-

tio of sums of squares of Gaussian random variables. However, making a Gaussian ap-

proximation for nx of (4.27) makes the analysis simpler [17]. Assuming the received sig-

nals are corrupted with Gaussian noise and that the variance of the noise is much smaller

than the mean, we can approximate the probability distribution of nx by

()2

22
2

1() .
2

x

f x e
µ
σ

πσ

−
−

= (4.28)

Schmidt and Cox [17] show that the mean value of the Gaussian approximation to nx of

(4.28) is given by

()

4

22 2

s

s n

σµ
σ σ

=
+

 (4.29)

where 2
nσ is the variance of the AWGN. Schmidt and Cox [17] define []{ }22 Res mE sσ =

and []{ }22 Ims mE sσ = , where the signal ms is the value of the training data. The variance

of (4.28) is given by

() ()

()

4 2 2 4
2

42 2

2 1 1 2
.

16
s s n n

s n

σ µ σ σ µ σ
σ

σ σ

 + + + =
+

 (4.30)

The threshold, probability of detection, and probability of false alarm are calculated using

(4.29) and (4.30) in the same manner as in Sections one and two.

99

B. FREQUENCY SYNCHRONIZATION

Frequency error sensitivity is a weakness of OFDM systems, since small changes

in the sub-carrier frequency caused by distortions in either the channel or the receiver can

make the sub-carriers loose their orthogonality. Once this occurs, the interference be-

tween adjacent sub-carriers becomes significant and the received signal level is reduced.

The complex envelope of the transmitted Standard 802.11g OFDM symbol has the form

of [10]

 () ()
2

2
,

2

()
ST

GUARD

ST

N

j k f t T
n n k n

Nk

r t w t C e π ∆ −

=−

= ∑ (4.31)

where ()nw t is the windowing function for the thn OFDM symbol, ,k nC is the coded

symbol modulating the thk sub-carrier in the thn OFDM symbol, STN is the total number

of sub-carriers, f∆ is the sub-carrier frequency spacing, and GUARDT is the guard interval

that created the circular prefix used to avoid inter-symbol interference (ISI) and inter-

carrier interference(ICI).

In order for the sub-carriers to be orthogonal, the following relationships must ap-

ply [1]:

 () () 0 n mr t r t dt n m
∞ ∗

−∞
= ≠∫ (4.32)

 () ()() ()()
2 2

, , 0 for .GUARD GUARDj k f t T j l f t T
n k n l nw t C e C e dt k lπ π ∗∞ ∆ − ∆ −

−∞
= ≠∫ (4.33)

Equation (4.32) ensures that adjacent OFDM symbols are orthogonal, and (4.33) ensures

the sub-carriers in each OFDM symbol are orthogonal. This mitigates ISI in the time-

domain and ICI in the frequency-domain. Defining the windowing function in (4.31) and

(4.33) as
1 for

() ,
0 for all other

GUARD
n

T t T
w t

t
≤ ≤

= 


 we get a simplification of (4.33) as

 ()() ()()
2 2

, , 0 for .GUARD GUARD

GUARD

T
j k f t T j l f t T

k n l n
T

C e C e dt k lπ π∆ − − ∆ −∗ = ≠∫ (4.34)

Equation (4.34) is only satisfied when

100

 () () () ()2 1 0 or 2 =2 for some 1, 2,GUARDj k l f T T
GUARDe k l f T T m mπ π π− ∆ − − = − ∆ − = ± ± … (4.35)

Equation (4.35) is true for all k l≠ if and only if there exists a positive integer m such

that

FFT

mf
T

∆ = (4.36)

where 3.2 µsFFT GUARDT T T= − = for Standard 802.11g. The minimum spacing between

sub-carriers occurs when 1m = , and (4.36) simplifies to

 1 0.3125 MHz.
FFT

f
T

∆ = = (4.37)

Equation (4.37) gives the required frequency spacing between sub-carriers for the trans-

mitter of a Standard 802.11g compliant system. The required bandwidth for a Standard

802.11g system is

 ()()52 1 0.3125 MHz .T dataB BW= − + (4.38)

This accounts for the bandwidth of the signals contained within the 52 sub-carriers, 48 of

which carry data, of each OFDM symbol. The data bandwidth is the same for all data

rates because of the change in coding rates. At the 6-Mbps data rate using BPSK (or

equivalently 12 Mbps using QPSK, or 24 Mbps using 16-QAM, etc.), the null-to-null

data bandwidth is twice the data rate in one channel of transmitted data. Since the 6-Mbps

data is coded using a rate 1 2r = encoder (with no puncturing), the coded data rate is 12

Mbps. Dividing this data signal between 48 sub-carriers, we obtain a data bandwidth of

()62 12 10 48 0.5 MHz.dataBW  = × =  Using this value of null-to-null bandwidth in

(4.38), we get a total null-to-null bandwidth of 16.4375 MHz,TB = which is less than the

maximum bandwidth of 16.6 MHz specified in the standard. The 16.6 MHz must include

most of the power in the spectral tails that extend beyond the null-to-null bandwidth.

Frequency recovery schemes for OFDM signals can be divided into three catego-

ries: non-data aided algorithms that are based on the spectral characteristics of the re-

ceived signal, cyclic prefix based algorithms that use the structure of the signal in an

101

OFDM system provided by the cyclic prefix, described in Chapter I Section 2, and data-

aided algorithms that are based on known information embedded in the received signal

[18]. Most frequency synchronization systems are similar to the phase-locked loop, as

shown in Figure 79. The difficulty the OFDM systems present is that the multiple sub-

carriers present in the received signal make it difficult to generate a single discrimination

signal at the output of the multiplier that can be filtered and used as an error signal. Most

of the algorithms used in optimum frequency synchronization generate an error signal

proportional to the frequency offset that is used to drive a voltage-controlled oscillator

(VCO). For OFDM frequency synchronization, the loop filter (()H f) is much more

complicated than the simple loop filter that can normally be used in a single-carrier

phase-locked loop.

Figure 79 Phase-Locked Loop Configuration.

1. Non-Data Aided Frequency Synchronizers
The non-data aided synchronizers can be classified as open loop and closed loop.

In an open loop synchronizer, a non-linear element, such as a squaring circuit, is used to

generate a frequency component at a harmonic of the carrier frequency. The signal is then

filtered to isolate this harmonic and stepped down to the desired carrier frequency. This

type of synchronizer is generally used with signals in which the carrier has been sup-

pressed and contains no spectral line at the carrier frequency, such as M-ary phase-shift

keying (M-PSK). An unavoidable tracking error is always present in open loop systems.

The advantage of these systems is their simplicity and low cost of implementation. How-

ever, because of the sensitivity of OFDM signals to frequency offset, open loop synchro-

nizers are generally not practical for OFDM receivers.

()H f

VCO

()s t

102

Closed-loop synchronization uses comparative measurements on the incoming

signal and a locally generated signal to bring the locally generated signal into synchroni-

zation with the incoming signal. Examples include phase-locked loops and delay-locked

loops. For OFDM synchronizers that use closed-loop, non-data aided techniques, the ba-

sic process is to obtain the probability density function of the received signal for a given

frequency offset, ()|rp r f∆ . Once this is obtained, the maximum-likelihood of the fre-

quency offset for a given received signal is calculated by finding the value of f∆ for

which the conditional probability density function, ()|rp r f∆ , is a maximum. This fre-

quency error signal is then fed into the voltage-controlled oscillator to adjust the esti-

mated frequency. The analysis of the receiver is quite complex, and the acquisition range

of these detectors is usually limited to 1 2± of the sub-carrier frequency spacing due to

the local maximum and minimum in the conditional probability density function,

()|rp r f∆ . The many variations of this technique attempt to reduce the calculations re-

quired and increase the acquisition range while still maintaining optimum or near opti-

mum estimates.

Reference [19] presents an example of an algorithm that uses this maximum-

likelihood technique. The block diagram of this synchronizer is shown in Figure 80. All

signals in the diagram and accompanying analysis are complex envelope (i.e., equivalent

lowpass) signals. Daffara and Chouly [19] derive the error signal at the output of the cor-

relator, which is given by:

 { }
2

1

*
, ,Re

L

n n k n k
k L

q qε
=

= ∑ � (4.39)

where n is the time index, ()1 2 1uL N N= − +   is the lowest index of the OFDM sub-

carriers with N equal to the total number of sub-carriers used in the OFDM symbol and

uN equal to the number of non-zero sub-carriers, ()2 2uL N N= + is the highest index of

the OFDM sub-carriers, { }Re x is the real part of x, ()

22
, () r rk

j f tj f t
n k T

q r t e e dtπ φπ − +−= ∫
� �

 with

rf� and rφ� representing the received frequency and phase errors, and

103

() ()

22
, 2 tr r rk

j f tj f t
n k T

t nTq j r t e e dt
T

π φππ − +−− = −  
 ∫

� �
� where T is the OFDM symbol dura-

tion. The triangle function ()tr x is defined as
1 1

tr()
0 1

x x
x

x
 − <=  >

.

Figure 80 Maximum-Likelihood Frequency Detector [After Reference 19.]

Figure 80 shows how the frequency error signal is obtained. The correlator block

computes the summation over k of { }, ,Re n k n kq q∗� given by (4.39).

This example serves to illustrate the complexity of an optimum detector using

non-data aided techniques. The author does offer some simplifications by using FFTs and

smoothing the likelihood function, again with a loss of optimization. Daffara and Chouly

show practical implementations of their algorithm and the characteristic curves for their

designs in Reference [19].

Luise and Reggiannini in Reference [20] use a somewhat different approach to

generate the error signal that drives a numerically controlled oscillator (NCO). The re-

ceived signal is first demodulated with an FFT and an offset between the carrier fre-

quency and the local oscillator frequency is estimated using a differential detector. This

signal is corrected by the estimated frequency offset, modulated using an IFFT and com-

2 r rj f t
e

π φ 
  
 

− +� �
() 1

2 Lj f t

T
e dt

π−
•∫

() 2
2 Lj f t

T
e dt

π−
•∫

() 2
2 Lj f t

T
e dt

π−
•∫

() 1
2 Lj f t

T
e dt

π−
•∫

C
o
r
r
e
l
a
t
o
r

VCO LPF

()2
t nT

j tr
T

π
−

− ⋅

#

#

()r t Demodulation

1,n Lq

2,n Lq

1,n Lq�

2,n Lq�

nε

104

pared to the received signal to obtain a residual frequency error estimate. This residual

frequency error estimate then drives a numerically controlled oscillator.

Non-data aided algorithms do not need special synchronization blocks, increasing

the data throughput and reducing the time needed to achieve synchronization by eliminat-

ing the wait for synchronization blocks to appear in the data. For these reasons, these al-

gorithms are well suited for continuous broadcast OFDM signals. However, performance

is poor in the presence of multipath interference, frequently encountered in mobile radio

environments. Packet-based OFDM signals are also not well suited to this kind of syn-

chronization, since the accuracy is not great enough to ensure orthogonality during the

entire packet transmission time.

2. Cyclic Prefix Based Frequency Synchronization

Cyclic prefix algorithms are based on an analysis of the sampled received signal

before it is passed through the FFT for demodulation. They make use of the redundancy

introduced by the inserted guard interval in the OFDM symbol. Since the guard interval

is a repetition of the transmitted OFDM symbol over some fraction of the OFDM symbol

period, these algorithms simply compare the samples from the data portion of the symbol

and the corresponding samples from the guard interval portion of the symbol. If there is a

frequency offset of f∆ in the receiver frequency, the two values will be different by a

factor of 2j fTe π∆ where T is the time difference between the two values. This phase dif-

ference is proportional to the magnitude of the frequency-offset error and can then be

used as the error signal that drives a voltage-controlled oscillator. The computational

complexities of these algorithms are less than the other two categories, therefore provid-

ing faster synchronization with lower hardware cost.

Reference [21] is an example of this type of algorithm. The data samples of the

received OFDM symbol are designated as shown in Figure 81 where N is the number of

data samples and Ng is the number of samples used in the guard interval. The guard inter-

val is the cyclic extension of the N-value IFFT. This means that 1 1 2 2, N Nc c c c− − − −= = , etc.

In general i N ic c− −= when the signal leaves the transmitter. If no frequency offset exists

105

between the transmitted and the received signal, then a sample in the guard interval (ic−)

multiplied by the conjugate of its corresponding sample value within the N-value IFFT

(N ic −) is a real number (2*
i N i N i N i N ic c c c c∗

− − − − −⋅ = ⋅ =). This also assumes that the received

signal inside the guard interval has not been corrupted by intersymbol interference. If a

frequency offset of f∆ is introduced in the channel, then the product between the two re-

ceived samples is () 222 * j f t Tj ft
i N i i N i N ir r c e c e cππ − ∆ +∗ ∆

− − − − −= ⋅ = × 2j fTe π− ∆ . This means the

product i N ir r∗− −⋅ is no longer real and it contains a phase offset proportional to .f∆ Daf-

fara and Adami [21] derive an error signal in the presence of AWGN given by

 () { }1
0
ImL

N i iL i
l r rε ∗

− −=
= ∑ (4.40)

where 1 gL N≤ ≤ is the number of guard interval samples used in the calculation and N ir −

and ir− are the received samples. Using (4.40), we obtain the error signal ()lε propor-

tional to the sine of the scaled frequency offset 2 fTπ∆ .

Figure 81 Sample Order in an OFDM Symbol [From Reference 21.]

The number of samples that can be used to generate the error signal is limited to

those that have not been corrupted by intersymbol interference. One potential problem

with this detector is its inability to compensate for frame synchronization error. The algo-

rithm depends on knowing where the guard interval stops and the normal data sequence

begins. This information may not be very accurate at the receiver. In addition, using too

few samples of the guard interval can drastically affect the output. The frequency offset

of this algorithm is limited 1 2± of the sub-carrier spacing. The block diagram imple-

mentation of this algorithm is shown in Figure 82, where the input to the frequency detec-

time
0c 1c1c− 1Nc −gNc−

N samples
T

Ng samples
Tg

106

tor can be either before the FFT (designated method A and described in the paragraph

above) or after the FFT (designated as method B).

Figure 82 Guard Interval Based Frequency Detector [After Reference 21.]

Some of these concerns are addressed in the algorithms of Reference [22] and

Reference [23]. Both of these algorithms incorporate frame timing to help estimate when

the guard interval ends and when the normal sequence starts.

These algorithms are also more suited to a continuously transmitting OFDM sig-

nals. Since it takes several guard intervals to obtain synchronization, several OFDM

symbols need to be transmitted, something that is not available in a Standard 802.11g

packet-based system before synchronization must take place. However, this does elimi-

nate the need for any special synchronization symbols, increasing the data throughput.

3. Data-Aided Frequency Synchronizers

Data-aided frequency synchronization provides the best frequency tracking with

the widest acquisition range, but at the cost of requiring the use of synchronization

blocks. This increases the required overhead and reduces the data throughput. However,

for packet-based transmission systems, such as Standard 802.11g, they are required to ob-

tain synchronization quickly before the data information is passed to the receiver. For

Standard 802.11g systems, synchronization must occur within the short and long training

symbols, which make up the first 16 µs of the packet. The basic algorithm assumes a se-

dk A/D
S
/
P

Remove
Guard

Interval

F
F
T

Freq.
Det.

D/ALPF VCO

()r t

Method B

Method A

107

quence of repeated training symbols. Similar to the method used in the cyclic prefix algo-

rithms, a comparison is made of the phase difference between adjacent, repeated data

symbols. This phase difference is used to generate an error signal that drives a voltage-

controlled oscillator.

Reference [3] details one example of a data-aided algorithm. Figure 83 shows a

block diagram of this receiver. This technique compares the phase between demodulated

values of successive repeated data symbols, making the assumption that the channel im-

pulse response is stationary during the 8 µs OFDM symbol transmission interval of the

training sequence. Since the training symbols do not change during the acquisition se-

quence, any difference in phase must be due to a frequency offset in the receiver.

Figure 83 Frequency-Domain Data-Aided Frequency Circuit.

The equation for the nth transmitted Standard 802.11g OFDM training symbol is

given by (4.31). This signal is modulated with the carrier frequency to produce

 ()
2

2 2

2

1()
1

ST

d t s

ST

N

j k fnT j f mT
n s n s k

NST k

r mT w mT C e e
N

π π∆

=−

 
= ⋅ + 

∑ (4.41)

where tf is the carrier frequency of the transmitter, dT is the data symbol period, sT is

the sample period, and m is the sample index (st mT=). The other terms have been de-

fined in (4.31). Rearranging (4.41) and assuming the channel is noise free, we obtain the

received signal

 () ()
2

2 2

2

1 .
1

ST

t s d

ST

N

j f mT j k fnT
n s k

NST k

r mT e C e
N

π π ∆

=−

 
=   + 

∑ (4.42)

F
F
T

Delay ()*

()r t ε̂ ()•∑

2 rj f te π

Φ

108

The window function ()sw mT has been dropped, since only one received OFDM symbol

is being considered (i.e., () ()()1 1 1ST d ST dn N T t n N T+ ≤ ≤ + +) and () 1sw mT = in this

interval. The signal of (4.42) is demodulated with the receiver’s estimate of the carrier

frequency (rf) to produce

()

()
2

2 2

2

1
1

ST

t r s d

ST

N

j f f mT j k fnT
n k

NST k

x e C e
N

π π− ∆

=−

 
=   + 

∑ (4.43)

where rf is the receiver estimate of the carrier frequency. Making the substitution of

t rf f f∆ = − into (4.43), we get

()

2
2 2

2

1 .
1

ST

s d

ST

N

j f mT j k fnT
n k

NST k

x e C e
N

π π∆ ∆

=−

 
=   + 

∑ (4.44)

If the training symbols kC are repeated every OFDM symbol, then the received signal for

the thn data sample in the adjacent OFDM symbol is given by

()

()
()

()

2
2 2

2

2
2 2 2 2

2

1
1

1 .
1

ST

d d

ST

ST

d d d d

ST

N

j f n N T j k f n N T
n N k

NST k

N

j f NT j f nT j k fnT j k fNT
k

NST k

x e C e
N

e e C e e
N

π π

π π π π

∆

∆ ∆

+ ∆ +
+

=−

∆ ∆

=−

 
=   + 

   =    +   

∑

∑
 (4.45)

If the receiver is designed such that the sample period, sT , is an integer multiple of the

data symbol period, dT , then this enables the simplification of s dt mT nT= = to be substi-

tuted in the phase error term. But the definition of orthogonality requires ()1 df NT∆ =

and ()2 12 2d dd j k NT NTj k fNT j ke e eππ π ∆  = = and 2 1j ke π = . This allows a simplification of (4.45)

to

()

2
2 2 2

2

1 .
1

ST

d d d

ST

N

j f NT j f nT j k fnT
n N k

NST k

x e e C e
N

π π π∆ ∆ ∆
+

=−

   =    +   
∑ (4.46)

109

Comparing (4.46) and (4.44), we get

 2 .dj f NT
n N nx e xπ ∆
+ = (4.47)

Equation (4.47) shows that the data in adjacent OFDM symbols are offset in

phase from each other equal to the phase error. Since the FFT is a linear process

(2

2

2
NST

d
NST

j k fnT
k nk

y x e π− ∆
=−

=∑), the demodulated data symbols will also be offset in phase

from each other and 2 dj f NT
k N ky e yπ ∆−
+ = . The contribution to the phase of the data sym-

bols can be removed by complex multiplication 22 dj f NT
k k N ky y e yπ ∆∗

+⋅ = . Taking a sum-

mation over all the data symbols in one OFDM symbol, 1

0

N
k k kk

z y y− ∗
=

= ⋅∑ , we average

out the effect of any noise in the system. Since the only contribution to the phase of kz is

due to the frequency offset, the phase of kz is used to produce the estimated frequency

offset to the voltage-controlled oscillator. Reference [3] gives the final frequency esti-

mate as

2 1

1

2 1

Im
1ˆ tan

2 Re

K

k k
k K

K

k k
k K

Y Y

Y Y
ε

π

∗

− =−

∗

=−

      =   
       

∑

∑
 (4.48)

where ˆ df NTε ∆= , 2kY is the demodulated data symbol from the second OFDM symbol,

and 1kY is the demodulated data symbol from the first OFDM symbol. Reference [3] also

shows that this algorithm is a maximum-likelihood algorithm in the presence of AWGN.

As can be seen from (4.48), the acquisition is limited to ˆ1 4 1 4ε− ≤ ≤ or equiva-

lently () ()1 4 1 4d dNT f NT∆− ≤ ≤ , which is a span of 1 2 the sub-carrier spacing.

Reference [3] applies the same algorithm to the received data before it is demodu-

lated with an FFT. Figure 84 shows a block diagram of this receiver.

110

Figure 84 Time-Domain Data-Aided Frequency Circuit.

In this algorithm, the data symbols in the frequency-domain are repeated every l data

symbols. This means

()

()
() ()

2
2 2

2

2
2 2

2

1
1

1 .
1

ST

t s d

ST

ST

t d d

ST

N

j f mT j k fnT
n k

NST k

n l

N

j f n l T j k f n l T
k

NST k

r e C e
N

r

e C e
N

π π

π π

∆

=−

+

+ ∆ +

=−

 
=   + 

=

 
=   + 

∑

∑

 (4.49)

Demodulation of (4.49) with the carrier frequency and simplification results in the

same results as (4.44). For the repeated data symbol at an offset of l from the demodu-

lated ,nx we obtain

 ()

()
()

2
2 2

2

1 .
1

ST

d d

ST

N

j f n l T j k f n l T
n l k

NST k

x e C e
N

π π∆ + ∆ +
+

=−

 
=   + 

∑ (4.50)

Equation (4.50) can be rearranged to obtain

()

()
2

22 2

2

1 .
1

ST

dd d

ST

N

j k f n l Tj f lT j f nT
n l k

NST k

x e e C e
N

ππ π∆ ∆ ∆ +
+

=−

   =    +   
∑ (4.51)

However, since the received data symbols repeat every l samples, then

 ()
2 2

2 2

2 2

ST ST

d d

ST ST

N N

j k f n l T j k fnT
k k

N Nk k

C e C eπ π∆ + ∆

=− =−

=∑ ∑ (4.52)

Delay ()*

2 r dj f nTe π−

()r t ε̂ ()•∑ Φ

111

which allows (4.51) and (4.52) to be combined into

 ()
2

2 2 2

2

2

1
1

ST

d d d

ST

d

N

j f lT j f nT j k fnT
n l k

NST k

j f lT
n

x e e C e
N

e x

π π π

π

∆ ∆

∆

∆
+

=−

   =    +   
=

∑ (4.53)

where nx is taken from (4.44).

As was done in the frequency-domain case, the dependence of the data on the

phase of nx is removed by multiplying by the complex conjugate, and the noise is aver-

aged out by summing all the data points between the repeated data symbols. The resulting

frequency offset estimation is

1

1 0
1

0

Im
1ˆ tan

2 Re

L

n n l
n
L

n n l
n

x x

x x
ε

π

−
∗
+

− =
−

∗
+

=

     = −  
     

∑

∑
 (4.54)

where ˆ df lTε ∆≈ .

This same algorithm can be applied to both the long and short training symbols.

For Standard 802.11g systems, the maximum frequency offset that can be corrected using

the short training symbols is () ()()9
max 1 2 1 2 16 50 10 625 kHz.df lT s−

∆
 = = × =  The

maximum frequency offset that can be corrected using the long training symbols is

() ()()9
max 1 2 1 2 64 50 10 156.25 kHz.df lT s−

∆
 = = × =  The maximum allowed frequency

error for a Standard 802.11a system is 20± parts per million. With a transmitter fre-

quency of 5.3 GHz, this equates to a frequency error of 212 kHz. This is within the acqui-

sition range of the short training symbols, but outside the acquisition range for the long

training symbols. For Standard 802.11g, the maximum allowed frequency error is 25±

parts per million. With a transmitter frequency of 2.4 GHz, this equates to a frequency er-

ror of 120 kHz, well within the tolerance of the short and long training symbol accuracy.

The longer time between the long training symbols gives its frequency tracking more

accuracy, but with less tolerance for initial offset error. The short training symbols

provide the improved accuracy required by the long training symbols.

112

Both the frequency-domain estimator and the time-domain frequency estimator

have the same performance, however, the time-domain algorithm does not require an FFT

calculation, saving time in the frequency estimation step. Also, the larger frequency in-

terval between the repeated data symbols in the frequency-domain estimator (N l>) re-

sults in a smaller tolerance for input frequency error.

A different approach to the data aided technique of synchronization can be found

in Reference [24]. This technique uses virtual sub-carriers to estimate frequency offset

and symbol timing. The virtual sub-carriers are those sub-carriers that contain no data and

no signal power. This applies to Standard 802.11g, since only 52 of the 64 sub-carriers

are used to transmit data or pilot signals. However, this algorithm is designed around a

system that has multiple users (vice one user for a Standard 802.11g transmitter), with

each user allocated some predetermined number of sub-carriers to use for data transmis-

sion. In either case, some sub-carriers are used for data and pilot tones and the rest are set

to zero. If, after processing the signal through the FFT, any of the virtual sub-carriers

contain a signal, then there is a frequency offset in the receiver. This algorithm adjusts

the receiver frequency until the measured signal in the virtual sub-carriers is a minimum.

Figure 85 shows a block diagram of this system. The advantage of this approach com-

pared to the other data-aided algorithms is that it does not require synchronization sym-

bols to be transmitted, similar to the guard interval synchronization methods mentioned

earlier.

To find the value of frequency offset that minimizes the signal energy within the

virtual sub-carriers, a cost function is defined that represents the average energy within

all the virtual sub-carriers over several OFDM symbols as

 () ()
1 1 1 2

0 0

1 ,
b

b

a

N M J

N k m
q m M lb

Y q l
N

ν
− − −

′
′ ′= = =

′ℑ ≡ ∑ ∑ ∑ (4.55)

where bN is the number of OFDM symbols used to compute the cost function, kν is the

frequency estimate, aM is the number of users multiplexed in each OFDM symbol, M is

the maximum number of users that can be accommodated by the system (aM M>), J is

the total number of sub-carriers allocated to each user, and (),mY q l′ ′ is the FFT output of

113

the thl sub-carrier in the thq OFDM symbol for user m′ . Equation (4.55) sums the FFT

output over the unused sub-carriers (user am M′ ≥ with each user assigned J sub-

carriers) for bN OFDM symbols. The zero insertion in this algorithm is different than the

zero insertion used in the Standard 802.11g circuit of Chapter III. This algorithm inserts

zeros when there are not enough users to take up all the sub-carrier frequency allocations.

Figure 85 Virtual Carrier Synchronization Circuit [After Reference 21.]

The desired frequency is the value of kν such that (4.55) is minimized with re-

spect to kν , or ()ˆ arg min
b

k
k N kν

ν ν= ℑ . The iterative process starts by setting ˆ 0kν = and

calculating the next frequency estimate as

 () () ()()
()

ˆ
ˆ ˆ1

ˆ
k

k k
k

n
n n

n
δ ν

ν ν µ
δν
ℑ

+ = − (4.56)

where ()ˆk nν is the carrier offset estimate at step n and µ is chosen to maximize con-

vergence speed without loosing tracking capability.

The cost function block of Figure 85 computes the average, over a finite number

of OFDM symbols, of the cost function (4.55), and its gradient and uses them to calculate

a new frequency offset value from (4.56). If the new estimate exceeds a predetermined

Compute
cost

function

NCO
Frequency

Offset
Calculation

S
/
P

F
F
T

Equalize
and

Detect

Timing
Offset

Calculation

Up-
date?

Yes No

()r t

114

threshold, the frequency estimate is updated. A similar method is used to calculate a tim-

ing offset. This algorithm assumes the initial frequency estimate is less than 1 2 ,NT

where N is the total number of sub-carriers used in each OFDM symbol and T is period

of each data sample, and also makes use of a frequency-hopping scheme, where the

channel allocation to each user is changed over each OFDM symbol, to average out the

frequency characteristics of the channel. Because of the iterative method used in this al-

gorithm, it is not well suited for packet-based transmission systems such as Standard

802.11g.

C. PHASE SYNCHRONIZATION

The frequency estimation and correction algorithms presented in the previous sec-

tion reduce the frequency error between the receiver and the transmitter to a level that

achieves acceptable signal level reception. However, even the small residual frequency

error present after frequency estimation can cause the receiver to loose synchronization

after only a few OFDM symbols. To compensate for these slow constellation rotations,

pilot tones are inserted between the data samples to allow the receiver to track and correct

for these small phase errors during the transmission. Two methods are used to estimate

the frequency-shift [3]: data aided and non-data aided. The data aided technique uses the

pilot tones, four 1+ and 1s− inserted in sub-carriers 21, 7,7, and 7− − , to estimate the

phase error. The non-data aided method uses the fact that all sub-carriers are rotated the

same by the phase error.

The FFT of the received data sample is given by

 2j nf T
nk k nkR H P e π ∆= (4.57)

where n is the OFDM symbol number, T is the period of one OFDM symbol, k is the

sub-carrier number, nkR is the received pilot tone, kH is the channel frequency response

at sub-carrier frequency k , nkP is the known pilot symbol, and f∆ is the frequency offset

between transmitter and receiver defined in the last section. Multiplying the received sig-

nal by an estimate given by , ,
ˆ ˆ

n k k n kR H P= where ˆ
kH is the receiver estimate of the chan-

115

nel frequency response, we get
2 2

, , ,
ˆ ˆ j nf T

n k n k k k n kR R H H P e π ∆∗ ∗= . This can be simplified to

2 2
, ,

ˆ ˆ j nf T
n k n k kR R H e π ∆∗ = if it is assumed that the estimated channel response is perfect and

noting that
2

, 1n kP = . This means the phase of , ,
ˆ

n k n kR R∗ gives the desired phase offset.

With AWGN and an imperfect estimate of the channel impulse response, the resulting

noise can be averaged out with a summation.

The phase estimate from the received pilot tones of (4.57) is

()

()
11

1

ˆIm
ˆ tan

ˆRe

p

p

N

nk k nk
k

n N

nk k nk
k

R H P

R H P

∗

=−

∗

=

  
⋅     Φ =  

  ⋅     

∑

∑
 (4.58)

where ˆ
kH is the estimated channel frequency response and pN is the number of pilot

tones used in the OFDM symbol, which is four for Standard 802.11g. [3]

This same method can be used without the use of the pilot symbols by removing

the influence of the data symbols on the received signal. The received data samples after

the FFT are given by

 2j nf T
nk k nkR H X e π ∆= (4.59)

where nkX is the thk received data symbol from the thn OFDM symbol.

Using the same technique as above, we estimate the resulting phase offset from

(4.59) as

2 2 2

1

2 2 2

ˆ ˆIm
ˆ tan

ˆ ˆRe

K
j nf T

k k
k K

n K
j nf T

k k
k K

H X e

H X e

π

π

∆

∆

=−−

=−

  
    Φ =  

      

∑

∑
 (4.60)

where ˆ
kX is the estimated data symbol.

116

If the data symbols used are BPSK modulated (as is the preamble in Standard

802.11g), then 2
kX is known, and (4.60) can be evaluated after estimating the channel

frequency response, as in (4.58).

Both of these methods require the use of an estimated channel frequency re-

sponse. This estimate can be made from the training data. Standard 802.11g provides the

long training symbols to help with this estimate. After the FFT, the received training

symbols can be represented as

 k k k kR H X W= + (4.61)

where kX are the transmitted training symbols for the thk sub-carrier, kH is the channel

frequency response, and kW is the additive noise in the channel.

The channel frequency response is estimated as

 ()
ˆ

k k k

k k k k

k k k

H R X

H X W X

H W X

∗

∗

∗

= ⋅

= +

= + ⋅

 (4.62)

where 2 1kX = is designated by Standard 802.11g, as per the training symbol circuits

used in Chapter III.

D. TIMING SYNCHRONIZATION
Timing synchronization has two aspects. The first is synchronization with the

OFDM symbols, and the second is the synchronization with the data symbols within each

OFDM symbol. The synchronization of the OFDM symbols requires more than just

matching the symbol timing of the transmitter. The effect of timing error or jitter must

also be taken into account. Figure 86 shows the effect of a symbol timing offset in the re-

ceived signal.

In the top diagram, the receiver symbol timing is in exact synchronization with

the transmitted symbol. Unfortunately, any variance from this timing could shift the sym-

bol into the cyclic prefix for the next symbol, causing interference and signal degrada-

117

tion. In the bottom diagram, the symbol timing has been shifted into the cyclic prefix for

the symbol. In this case, any variance of the symbol timing will result in a shift within the

symbol’s own cyclic prefix, preventing intersymbol interference. The drawback with

shifting the symbol timing into the cyclic prefix is that multipath propagation in the

channel could result in intersymbol interference if the timing is shifted too far into the

cyclic prefix.

Figure 86 OFDM Nominal Symbol Timing [From Reference 3.]

Many of the algorithms used to synchronize the receiver with the transmitted car-

rier frequency also synchronize the receiver to the transmitted OFDM symbol. The algo-

rithms used are the same: correlate the received signal with a known training sequence or

correlate the received signal with a portion of its cyclic prefix. Using the cross-correlation

between the received symbol and the known training symbols, as was done in part IV.C,

we obtain

1

0

ˆ arg max
L

s n k kn k

T r t
−

∗
+

=

= ∑ (4.63)

where ŝT is the estimated OFDM symbol start time, nr is the thn received OFDM sym-

bol, kt is the value of the thk training symbol, and L is the number of training symbols

used in the calculation.

Sample clock tracking synchronizes the receiver data symbol clock with the

transmitter’s data symbol clock. The majority of algorithms designed to correct the sam-

ple clock tracking error use the pilot sub-carriers. Reference [25] details an algorithm that

Cyclic Prefix
for symbol 1

Symbol 1 Cyclic Prefix
for symbol 2

Symbol 2

Cyclic Prefix
for symbol 1

Symbol 1 Cyclic Prefix
for symbol 2

Symbol 2

Symbol Timing

Symbol Timing

118

uses this approach. The pilot tones between consecutive OFDM symbols are correlated to

produce

222

, , 1, ,
u

Tj kt l
T

l k l k l k k l kZ R R H P e
π ∆∗

−= = (4.64)

where ,l kR is the FFT of the received pilot tone for OFDM symbol l at sub-carrier k, kH

is the channel impulse response for the kth sub-carrier, ,l kP is the pilot symbol for the kth

sub-carrier in the lth OFDM symbol, ()r tt T T T∆ = − is the timing offset, where rT is the

receiver sampling period and tT is the transmitter sampling period, T is the OFDM sym-

bol duration, and Tu is the duration of the OFDM symbol without the guard interval.

Equation (4.64) is used for the lowest frequency pilot tone, yielding

, 1

1 1, ,
l kj

l k l kZ Z e φ= , and the highest frequency pilot tone, yielding , 2

2 2, ,
l kj

l k l kZ Z e φ= . The

timing estimate can then be written as

() ()2 1, ,

2 1

1 1ˆ
2

u
l k l k

Tt
T k k l

φ φ
π∆ = ⋅ ⋅ ⋅ −

−
 (4.65)

where 1k is the smallest pilot tone index and 2k is the largest pilot tone index.

This chapter has analyzed several techniques used to synchronize an OFDM re-

ceiver with a transmitted OFDM signal. In the next chapter packet and frequency syn-

chronization will be simulated and compared with the theoretical results obtained in this

chapter.

119

V. SYNCHRONIZATION PERFORMANCE ANALYSIS

With the large number of synchronization techniques available, the designation of

the best performing algorithm depends on the communication channel used by the system

and the type of transmitter used. This chapter evaluates the different frame and frequency

synchronization techniques developed in the last chapter using System View simulation

and the Standard 802.11g transmitter developed in Chapter III. All 802.11 systems are

packet transmission systems; therefore, the concentration is with the data aided tech-

niques that can obtain an accurate synchronization in the short time available with the

16-µs packet preamble. A Standard 802.11g packet construction is assumed for all the

simulations.

The channel model used is the AWGN channel, simulated with two uncorrelated

Gaussian noise sources and adders, which allows a comparison with the optimum zero

noise channel. The two noise sources are required to simulate the transmission of the in-

phase and quadrature signals in an actual Standard 802.11g system since the analysis in

this thesis uses a baseband signal, i.e., the complex envelope. Although only the AWGN

case is considered here, System View includes six different channel models in its com-

munication library. In addition, the System View communications library contains pa-

rameter files that model different environments for fading channels, such as commercial,

indoor and outdoor environments. This rich library of channel modeling allows the simu-

lation of the developed circuits in many different types of environments with only small

changes in the models developed here.

The block diagram of the AWGN channel model used is shown in Figure 87. The

noise is zero mean with a variance that is changed to obtain channel bit error rates be-

tween 0.1 and 61 10−× .

120

Figure 87 AWGN Simulation Block Diagram.

A. PACKET DETECTION PERFORMANCE
Two different designs are considered for packet detection. The first is a sliding-

window packet detector in which the received signal is correlated with a known training

sequence as introduced in Chapter IV. This not only detects a received signal, but it dif-

ferentiates between non-Standard 802.11g signals and the desired signal since a correla-

tion of the received data takes place. The second design is the delay and correlate detector

discussed in Chapter IV where two adjacent sliding windows are compared to detect an

incoming packet.

1. Sliding-Window Packet Detector
As discussed in Chapter IV, the sliding-window detector correlates the received

data with a known sequence. The System View circuit that performs this detection is

shown in Figure 88. The known sequence in this case is the Standard 802.11g short train-

ing sequence. Since the short training sequence for this standard contains 16 data sam-

ples, the length of the sliding window is also 16 samples.

The circuit of Figure 88 consists of a short training sequence generator for the

transmitter, the AWGN channel, a correlation of the received signal and the locally gen-

erated (in the receiver) short training sequence, a comparator section to make a decision

on the presence of a valid signal, and finally a section to compute the probability of de-

tection. The decision variable is modified from that calculated in Chapter IV, since the

known short training sequence numbers are not all identical.

Xmitter

Zero
Mean

AWGN

Receiver

Zero
Mean

AWGN

In-phase

Quadrature

121

Figure 88 Sliding-Window Correlation Packet Detector.

The short training symbol sequence generator has been modified from the one

used in Chapter III to allow a continuous generation of the short training symbols. The

sequence generator portion of this circuit is shown in Figure 89. The pulse train generator

(token 0) is used to generate the impulses needed to drive the linear filter (token 2) in the

same manner as was done in Figure 44 of Chapter III. The pulse train consists of a pulse

of 50 nanoseconds duration repeated every 3.2 µs. The parameters for token 0 are shown

in Figure 90. Tokens one through four perform the same function as those in Figure 44.

The result is an uninterrupted sequence of short training symbols, as shown in Figure 91.

This uninterrupted sequence generation allows an analysis of the detection circuit per-

formance during the first portion of the OFDM preamble. The circuit can easily be modi-

fied to conduct the same analysis over the long training symbols.

122

Figure 89 Uninterrupted Short Training Symbol Generation Circuit.

Figure 90 Pulse Train Token Parameters.

123

Figure 91 Uninterrupted Standard 802.11g Short Training Symbols (In-phase).

The correlation circuit is shown in Figure 92. The MetaSystem of token 18 is the

local short training sequence generator of the receiver used to correlate with the received

signal. The cross-correlation tokens (token seven and 17) perform the cross-correlation of

the locally generated short training sequence with the received signal. The parameters of

these tokens are shown in Figure 93. The summation in (4.17) can be modeled using the

cross-correlation of the received signal and the generated training symbols, where the

summation corresponds to the position where the two signals are aligned in time, yielding

maximum correlation. The signal received on the in-phase channel is correlated with the

in-phase training sequence, and the signal received on the quadrature channel is corre-

lated with the quadrature training sequence. The final result is converted into a magnitude

and compared to the threshold. When the received signal and the training symbols are

aligned in time, (4.17) for the in-phase signal is

()

1 1

2

1 1

k k

mi mi mi mi mi
m m

k k

mi mi mi
m m

r s s n s

s s n

= =

= =

= +

= +

∑ ∑

∑ ∑
 (5.1)

SystemView

0

0

2e-6

2e-6

4e-6

4e-6

6e-6

6e-6

8e-6

8e-6

150e-3

100e-3

50e-3

0

-50e-3

-100e-3

-150e-3

A
m

pl
itu

de

Time in Seconds

124

where mis is the in-phase component of the training symbol and min is the in-phase chan-

nel noise. Similarly, the equivalent of (5.1) for the quadrature signal can be written as

()

1 1

2

1 1

k k

mq mq mq mq mq
m m

k k

mq mq mq
m m

r s s n s

s s n

= =

= =

= +

= +

∑ ∑

∑ ∑
 (5.2)

where mqs is the quadrature component of the short training symbol and mqn is the quad-

rature channel noise. Since the noise in both channels is Gaussian with zero mean and

variance 2
nσ , the correlations of (5.1) and (5.2) for each channel are also Gaussian with

mean 2 2

1 1

k k

mi mq
m m

s s
= =

=∑ ∑ and variance 2 2 2 2

1 1

k k

n mi n mq
m m

s sσ σ
= =

=∑ ∑ .

Figure 92 Sliding-Window Correlation Circuit.

125

Figure 93 Cross-Correlation Token Parameters.

The comparator section of the packet detection circuit of Figure 88 is shown in

Figure 94. Token nine converts the complex signals received from the adders into polar

coordinates, i.e., a magnitude and phase. In the presence of the AWGN in the channel,

this token converts the Gaussian distributed signals at the outputs of the adders to a

Ricean distributed variable for the magnitude output of the token when a packet is present

and a Rayleigh distributed variable when no packet is present. This output is then com-

pared with a fixed threshold (token 35) to determine if a packet has been detected.

Figure 94 Comparator Circuit.

126

To compute the desired threshold, the probability distribution of the magnitude

output from token eight of Figure 88 must be determined under the two hypotheses of

(4.15). If X is defined as the Gaussian random variable from the output of the in-phase

correlation token seven of Figure 88 and Y is defined as the Gaussian random variable

from the output of the quadrature correlation token seventeen of Figure 88, then the mag-

nitude output of token eight is 2 2R X Y= + , if a signal is present. The random variable

R is a Ricean distributed random variable with a distribution function of

 ()
()2 2

22
02 2 if 0

0 if 0

r s

R

r rse I rp r

r

σ

σ σ

+
−

  ≥ =   


<

 (5.3)

where 2 2 2 2 2

1 1

k k

n mi n mq
m m

s sσ σ σ
= =

= =∑ ∑ is the variance of the random variables X and Y,

2 2 2
X Ys m m= + , and I0 is the modified Bessel Function of the first kind and order zero de-

fined as () () ()
2 2

0
0

!2
k

k

xI x k
∞

=

    =       
∑ where 0x ≥ . A graph of (5.3) is shown in

Figure 95 where the noise variance has been set at 2 1nσ = , resulting in

()
16

2 2

1
1 0.10156mi

m
sσ

=

= =∑ , and
16 16

2 2

1 1

0.14363mi mr
m m

s s s
= =

= + =∑ ∑ for the Standard 802.11g

short training symbols of Figure 91. The Gaussian distribution of the input variable X and

Y is shown as the dashed blue line and the Rayleigh distribution (i.e., (5.3) with 0s =) of

X and Y is shown as the dashed black line for comparison.

127

Figure 95 Decision Variable Probability Distribution.

Combining (5.3) with Equations (4.4) and (4.12) that define the probability of

false alarm and the probability of detection, we obtain the probability of detection as

()

2 2

22
02 2

r s

D
r rsP e I drσ

η σ σ

+∞ −  =  
 ∫ (5.4)

where ()22 0.14363s = and ()2 2 0.10156nσ σ= for the Standard 802.11g short training se-

quence.

The probability of false alarm is given by

()

2 2

22
02 2

r s

FA
r rsP e I drσ

η σ σ

+∞ −  =  
 ∫ (5.5)

where 2 0s = and ()2 2 0.10156nσ σ= . Since 0,s = and ()0 0 1,I = (5.5) reduces to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.5

1

1.5

21.903

0

P r σ,()
P G r()

P R r σ,()

1.50 r

128

2 2 2

2 2 22 2 2
2 .

r r

FA
rP e dr e e

η
σ σ σ

η η
σ

∞
∞ − − −

= = − =∫ (5.6)

Solving (5.6) for the threshold ,η we get ()22 ln 1 FAPη σ= .

Equation (5.4) has the solution

 0 ,D
n n

sP Q η
σ σ
 

=  
 

 (5.7)

where ()0 ,Q a b is Marcum’s Q-function and is defined as

() () ()

2 2 2
0 0, x a

b

Q a b xe I ax dx
∞

− +
= ∫ . Equation (5.7) was solved numerically using the Math-

cad 2001 Professional program, as shown in Appendix B. To obtain a probability of de-

tection of 0.9000DP = requires a threshold of 0.1539η = under the conditions of Figure

95. This threshold value results in a probability of false alarm of 0.8900FAP = .

The value of 0.1539η = was used in the circuit of Figure 88. Running the pro-

gram five times with a total of 4096 possible detections for each trial with a noise vari-

ance of 2 1nσ = , the probability of detection averaged 0.9003. Using these values in (5.6)

resulted in a calculated 0.8900FAP = . Figure 88 was also modified to change the short

training symbol input to zero, and the simulation was run again five times with 4096 tri-

als per run. The result was a 0.8930FAP = , close to the predicted value of 0.8900. This

seems like a large false alarm probability, but it is more the result of the choice of noise

variance used in the calculation than representative of the performance of the algorithm.

If the noise variance is changed to 2 0.1nσ = and the probability of detection is kept con-

stant at 0.9000 (this changes the threshold to 0.0750η =), the numerical evaluation of the

threshold gives a probability of false alarm of 0.7579. At 2 0.01nσ = with the probability

of detection kept at 0.9000 (the threshold in this case is 0.1069η =), the probability of

false alarm falls to 33.5955 10−× . This significant improvement in the probability of false

alarm can be seen in Figure 96 where the distribution for the probability of false alarm is

129

shown with the black dashed line and the probability of detection is shown with the red

solid line. The separation between the two curves caused by the reduction in the AWGN

variance, 2
nσ , reduces the probability of false alarm for a given detection threshold, η .

Figure 96 Decision Variable Distribution with Reduced AWGN.

2. Delay and Correlate Packet Detector
The System View circuit used to perform the delay and correlate packet detection

simulation of the AWGN channel is shown in Figure 97, which is an implementation of

the block diagram of Figure 78.

To find the detection threshold for this circuit, a Gaussian distribution in the form

of (4.28) is assumed for the decision statistic (4.27). The mean value of this distribution is

given by (4.29) and the variance is given by (4.30). The 2
nσ used in (4.29) is the channel

noise variance. The signal power 2s is defined by Reference [17] as (){ }22 Re ms E s=   

0 0.05 0.1 0.15 0.2 0.25 0.30

5

10

15

2019.032

0

P r σ,()
P G r()

P R r σ,()

0.30 r

130

and (){ }22 Im ms E s=    . For the Standard 802.11g training samples, (){ }2
Re mE s =  

()
1

2

0
1

L

m
m

L s
−

=
∑ and with L = 16, (){ }2

Re 0.1015625 16mE s =   or 2 36.3477 10s −= × .

Figure 97 Delay and Correlate System View Circuit.

With no noise input, the signals generated by the C-sliding window portion of the

circuit are equal to the signals generated by the P-sliding window portion of the circuit

when the short training symbols are being received. This is seen by examining (4.27) and

realizing that in the case of training symbols received with no noise, n k n k Dr r+ + −= due to

the repetition of the training symbols. Therefore, in this case, C P= . If noise is present,

but no short training symbols are being received, then the P-sliding window portion of

the circuit generates a significant signal because of the zero lag correlation, but the C-

sliding window portion of the circuit only generates a small signal since the noise data is

uncorrelated and the correlation lag is non-zero. When training symbols are received, the

C-sliding window signal increases because of the correlation of the repeated training

symbols.

131

The circuit of Figure 97 has a similar construction to the circuit of Figure 88. The

first section consists of a continuous short training symbol generation circuit. Tokens 5,

25, 29, and 34 are the Gaussian noise channel. The cross-correlation and adder tokens

35 - 41 provide the C-sliding window and 21, 42 - 45 the P-sliding window calculations.

The correlations are sampled by tokens 10 and 22 every 16 clock cycles and compared to

determine if a detection has occurred. The output of the comparator (token 12) is con-

nected to a probability of detection calculation circuit, as performed in the previous cir-

cuit.

The threshold of token 28 is calculated using the Gaussian distribution of (4.28).

The mean value of the distribution, using (4.29) and a noise variance of 2 51 10nσ −= × is

()

()

23

23 5

6.3477 10
0.9969

6.3477 10 1 10
µ

−

− −

×
= =

× + ×
 (5.8)

The noise variance is reduced significantly to allow for a Gaussian approximation. The

previously used noise variance value of 2 1nσ = gives a poor prediction of the required

threshold. The decision statistic’s variance, given by (4.30), is

 () ()()() ()()()
()

2

2 23 3 5 5

4
45 3

2 6.3477 10 1.9969 6.34 10 10 1 2 .9969 10
3.9168 10

16 1 10 6.3477 10

σ
− − − −

−

− −

=

 × × + +   = ×
× + ×

(5.9)

Using the mean and variance given in (5.8) and (5.9), we now calculate the

threshold to obtain a probability of detection of 0.9000DP = to be 0.9964η = . Simula-

tion using this threshold yielded 4096 detections in 4096 trials. The threshold value that

actually obtains an average 0.9DP = in the simulation with the number of trails at 4096

in the circuit of Figure 97 is 0.999918η = . It is conjectured that this discrepancy is at-

tributable to the Gaussian approximation.

132

B. FREQUENCY SYNCHRONIZATION PERFORMANCE
The circuits built to test the frequency synchronization algorithms of Chapter IV

are split up into the frequency-domain and the time-domain. The biggest difference be-

tween the two is the frequency resolution of the algorithms. In the frequency-domain

(i.e., after the receiver FFT) the separation between repeated training symbols is 64 clock

cycles, whereas in the time-domain (i.e., before the receiver FFT), the separation is 16

clock cycles for the short training symbols and 64 clock cycles for the long training sym-

bols. As discussed in Chapter IV and from (4.54), this results in a maximum frequency

resolution of either 625 kHz for a separation of 16 samples or a maximum frequency

resolution of 156.25 kHz with a separation of 64 samples.

1. Frequency-Domain Frequency Synchronization
The System View circuit diagram showing frequency synchronization using the

correlation between the data in adjacent OFDM symbols to estimate the frequency error

is shown in Figure 98.

Tokens zero through four are used to generate the short training sequence, the

same as for the packet detection systems of Figure 97 and Figure 88. However, with this

circuit the system clock is set at 4.8 GHz, which is twice the carrier frequency of 2.4

GHz. This allows the analysis of the carrier frequency synchronization. The sampler to-

ken (token one) is used to step down the pulse train (token zero) to the required frequency

of 312.5 kHz. The resample tokens (tokens five and 39) are used to change the sample

frequency to 4.8 GHz from the 20 MHz used to generate the short training pulses, allow-

ing correct operation with the multiplier tokens (tokens 6 and 40). The short training

symbols are then modulated with 2.4-GHz in-phase and quadrature carriers (token 42)

and sent to the receiver through an AWGN channel.

133

Figure 98 Frequency-Domain Frequency Synchronization.

At the receiver, the signal is demodulated with the complex signal 2 rj f nTe π− by to-

ken eight. The resulting signal is then stepped down to the data rate of 20 MHz with the

sampling tokens (tokens nine and 38). At the output of the OFDM demodulator, token 10,

are the short training symbols, which are repeated each OFDM symbol. Since the trans-

mitter and receiver carrier frequencies are offset, these symbols should only be different

from each other by a phase offset proportional to the difference in frequencies of the

transmitter and receiver if we neglect the noise.

The gain tokens (tokens 11 and 35) remove the normalization factor used in the

transmitter. The correlation of the received symbols with the symbols delayed by one

OFDM symbol is accomplished by the cross-correlator tokens 13, 26, 33, and 37. The

correlation of the two symbols is given by

() () ()()

() () () ()

64 64

1 1

64 64 64 64

1 1 1 1
.

n n D nr ni n D r n D i
n n

nr ni ni nrn D r n D i n D r n D i
n n n n

r r r jr r jr

r r r r j r r r r

∗
∗
− − −

= =

− − − −
= = = =

= + +

   
= + + −      

∑ ∑

∑ ∑ ∑ ∑
 (5.10)

The summations of (5.10) are implemented by tokens 13, 37, 26, and 33 respec-

tively. The delay tokens are set to 64 samples (the number of samples per OFDM symbol,

i.e., 64D =).

134

The sampler tokens (tokens 15 and 28) at the output of the adder tokens sample

the summation output once every OFDM symbol (312.5 kHz). This error signal is con-

verted from Cartesian coordinates into polar coordinates by token 19. The phase of the

error signal is then converted to a frequency error by the gain token (token 20) by divid-

ing by 2 NTπ where 64N = and 50 nsT = .

The frequency error is resampled by token 22 to convert it to the system sample

rate. This is fed into the input of the frequency modulator token (token 23). The parame-

ters used in this token are shown in Figure 99. The token frequency has been deliberately

set to 100 kHz below the transmitter frequency to evaluate the effect of a 100-kHz fre-

quency offset. The output from the frequency modulator can then be used as the system

clock to demodulate the signal used by the receiver circuit or as part of a feedback circuit

used in a phase-locked loop.

Figure 99 Frequency Modulation Token Parameters.

The error signal produced by this circuit for a 100-kHz receiver frequency offset

with no channel noise is shown in Figure 100. As shown, the frequency error is detected

and corrected 12.8 µs into the run, which is 9.6 µs (3.2 µs each for the OFDM demodu-

135

lator, the sample delay, and correlation token) after the signal has been received. This de-

lay is due to the OFDM modulation and demodulation processes and the cross-

correlation, all of which take 3.2 µs to calculate their outputs.

Figure 100 Frequency-Domain Frequency Error.

The output of the frequency modulator is shown in Figure 101. The beat fre-

quency output for the first 12.8 µs is caused by the difference in the receiver frequency

and the received frequency. Since the received frequency is 2.4 GHz and the receiver fre-

quency is 2.3999 GHz, the difference is 100 kHz. As can bee seen from Figure 101 the

period of the beat frequency is 10 µs corresponding to a frequency difference of 100

kHz. The frequency of the voltage-controlled oscillator is stable at the received frequency

after the 12.8 µs required for the circuit to begin working. However, the output is attenu-

ated from the expected value of one volt to a value of 0.1872 volts. This corresponds to

an offset in phase from the received signal by ()1cos 0.1872 79.2− = D . Sampling the re-

ceived signal at times other than the maximum and minimum voltage levels causes this

SystemView

0

0

10e-6

10e-6

20e-6

20e-6

30e-6

30e-6

0

-20e+3

-40e+3

-60e+3

-80e+3

-100e+3

A
m

pl
itu

de

Time in Seconds

136

phase offset. This also demonstrates the requirement for a phase synchronization circuit

after frequency synchronization has been accomplished.

Figure 101 Frequency-Domain Synchronizer Receiver Frequency.

The effect of noise in the circuit is demonstrated in Figure 102 and Figure 103.

The same frequency offset of 100 kHz was used with a noise standard deviation of

0.01nσ = . The bit energy-to-noise power spectral density in this circuit can be calculated

from the average short training symbol energy of the transmitted training symbol divided

by the noise power spectral density as shown in (5.11):

0

Average bit energy[dB] 10log
Noise power spectral density

bE
N

 
=  

 
 (5.11)

SystemView

0

0

10e-6

10e-6

20e-6

20e-6

30e-6

30e-6

1

500e-3

0

-500e-3

-1

A
m

pl
itu

de

Time in Seconds

137

Figure 102 Frequency Synchronization Error Performance with AWGN.

Figure 103 Frequency Synchronization Frequency Performance with AWGN.

SystemView

0

0

10e-6

10e-6

20e-6

20e-6

30e-6

30e-6

0

-20e+3

-40e+3

-60e+3

-80e+3

-100e+3

-120e+3

A
m

pl
itu

de

Time in Seconds

SystemView

0

0

10e-6

10e-6

20e-6

20e-6

30e-6

30e-6

1

500e-3

0

-500e-3

-1

A
m

pl
itu

de

Time in Seconds

138

The average signal power for the Standard 802.11g short training samples was

calculated in Section A.2 as 2 36.3477 10s −= × . This means the average bit energy is
2

avgb bE s T= where bT is the duration of one bit. Since 950 10 secbT −= × for the transmit-

ted Standard 802.11g short training samples, this results in an average bit energy of
103.1739 10 J

avgbE −= × . Since 2
0 nN Wσ= where 16.6 MHzW = is the bandwidth of the

Standard 802.11g transmitted signal, the bit energy-to-noise power spectral density of

this simulation is

()()

()
()

3 9

2
0 0

6

6.3477 10 50 10
[dB] 10log 10log 17.2169 dB.

0.01
16.6 10

b bE E
N N

− −

 
 × ×   = = =      
 × 

 (5.12)

Equation (5.12) shows that a fairly large bit energy-to-noise power spectral den-

sity ratio is required to track the incoming signal in this simulation and provide for a rea-

sonably stable output.

2. Time-Domain Frequency Synchronization
The circuit used for the time-domain frequency synchronization is shown in

Figure 104. This circuit is closely modeled after the frequency-domain synchronizer of

Figure 98, with the exception of the lack of OFDM demodulation and the delay of 16

samples used in the correlation instead of the 64 sample delay used in the previous cir-

cuit. This difference in samples used is caused by the time it takes for the timing samples

to repeat themselves. The timing samples transmitted by the Standard 802.11g transmitter

repeat every 16 samples, as shown in Figure 48 in Chapter II. Once the received training

samples are demultiplexed by the FFT, the training samples repeat only every 64 sam-

ples.

The error signal output for this circuit with no noise input is shown in Figure 105.

The frequency of the receiver was set to 100 kHz below the frequency of the transmitter,

as was done previously in Figure 100. The frequency error converges to the correct error

of 100 kHz at 4.8 µs which is 1.6 µs after the signal is received. This is much quicker

139

than the 9.6 µs required by the frequency-domain synchronizer and well within the short

training OFDM symbol duration of 8 µs .

Figure 104 Time-Domain Frequency Synchronization Circuit.

Figure 105 Time-Domain Frequency Error.

SystemView

0

0

5e-6

5e-6

10e-6

10e-6

15e-6

15e-6

0

-20e+3

-40e+3

-60e+3

-80e+3

-100e+3

A
m

pl
itu

de

Time in Seconds

140

The output of the voltage-controlled oscillator token for this circuit is shown in

Figure 106. Again, the beat frequency output for the first 4 µs is caused by the difference

in the receiver frequency and the received frequency. Since the received frequency is 2.4

GHz and the receiver frequency is 2.3999 GHz, the difference is 100 kHz. As can be seen

from Figure 105, the period of the beat frequency is 10 µs corresponding to a frequency

difference of 100 kHz. The frequency of the voltage-controlled oscillator is stable at the

received frequency after the 4 µs required for the circuit to begin working. However, the

output is attenuated from the expected value of one volt to a value of 0.9921 volts. This

corresponds to an offset in phase from the received signal by ()1cos 0.9921 7.2− = D . Sam-

pling the received signal at times other than the maximum and minimum voltage levels

causes this phase offset.

Figure 106 Time-Domain Synchronizer Receiver Frequency.

The performance of this circuit with AWGN is better than the performance of the

frequency-domain synchronizer. The time-domain frequency synchronization with a

noise standard deviation of 0.1nσ = resulted in a widely varying output frequency. At a

SystemView

0

0

5e-6

5e-6

10e-6

10e-6

15e-6

15e-6

1

500e-3

0

-500e-3

-1

A
m

pl
itu

de

Time in Seconds

141

noise deviation of 0.02nσ = the output was more stable. The error signal for this case is

shown in Figure 107 and the voltage-controlled oscillator output is shown in Figure 108.

This value of noise deviation corresponds to a bit energy-to-noise power spectral energy

ratio of 0 11.1963 dB,bE N = giving a better performance in a noisy environment.

Figure 107 Time-Domain Synchronizer Frequency Error in AWGN.

The time-domain synchronization circuit achieves synchronization faster than the

frequency-domain synchronizer, and the time-domain synchronizer gives a stable output

frequency at a lower bit energy-to-noise energy ratio under AWGN conditions. The faster

synchronization of the time-domain circuit is expected, since the time-domain circuit

does not perform an FFT on the data before correlation of the received signal. However,

the better performance under AWGN conditions was not something predicted before run-

ning the simulation. It is conjectured that the synchronization error present while per-

forming the FFT in the frequency-domain circuit results in a loss of orthogonality be-

tween the sub-carriers and increased interference between the sub-carriers, resulting in

reduced performance.

SystemView

0

0

5e-6

5e-6

10e-6

10e-6

15e-6

15e-6

0

-200e+3

-400e+3

-600e+3

A
m

pl
itu

de

Time in Seconds

142

Figure 108 Time-Domain Synchronizer Carrier Output in AWGN.

This chapter has implemented and analyzed some of the circuits developed in

Chapter IV and showed how the theory matches with the practical implementation of the

circuit. The next chapter will summarize this thesis and recommend further areas of re-

search required.

SystemView

0

0

5e-6

5e-6

10e-6

10e-6

15e-6

15e-6

1

500e-3

0

-500e-3

-1

A
m

pl
itu

de

Time in Seconds

143

VI. CONCLUSIONS

The goal of this thesis was to describe the methods that can be used to provide

synchronization in an OFDM system and then use these methods in the design of actual

circuits. As described in Chapter IV, there are many algorithms available to synchronize

OFDM systems. This thesis focused on the algorithms useful for a packet-based system

to limit its scope. However, even with this limited scope, this thesis was limited to frame

and carrier frequency synchronization in an AWGN environment. Even so, there are

enough different algorithms available that not all can be adequately covered in a single

thesis. In addition to the small number of synchronization algorithms considered, the

channel environment was limited to the AWGN case, even though most OFDM systems

are used in an environment where multipath is a significant problem and the channel

characteristics can change frequently, as in a mobile environment. However, the concepts

and circuit designs used in this thesis can easily be extended to the multipath, fading

channel environment.

A. FINDINGS
Although the performance of the different algorithms analyzed in an AWGN en-

vironment were satisfactory, a common theme emerged in the synchronization of OFDM

signals. The received signal must be correlated with some known data to obtain easily an

error signal. This was true for both packet-based systems and continuous transmission

systems. The unique construction of the Standard 802.11g OFDM symbol using a cyclic

prefix and virtual sub-carriers allows use of the known data to get optimum synchroniza-

tion results.

Based on the analysis in Chapter IV and the simulation discussed in Chapter V,

the best performing algorithm discussed in this thesis for frame synchronization was the

sliding-window correlator packet detector illustrated in Figure 88 since it provided packet

detection with low probability of false alarm with a noise variance of 2 0.1nσ = . The delay

and correlate packet detector illustrated in Figure 97 appears to have the potential for

good performance. However, the Gaussian approximation did not accurately predict the

144

desired threshold. With further analysis, a better detection probability may allow a

threshold detection prediction that will allow a comparison with the sliding-window cor-

relator.

The best performing carrier frequency synchronization algorithm analyzed in this

thesis was the time-domain frequency synchronizer illustrated in Figure 104. Its im-

proved performance in AWGN and its ability to achieve synchronization in a shorter time

compared to the frequency-domain synchronizer illustrated in Figure 98 make it the bet-

ter performing circuit.

System View simulation proved to be a useful tool, not only in conceptualizing

the practical design of the required circuits, but also in verifying the analytical solutions

derived in Chapter IV. Although the software can be challenging to learn and use, its

analysis capability is a strong reason to use this software during initial circuit analysis

and design.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

Due to the breadth of the synchronization subject area and the dependence of the

best algorithm on the standard used to transmit the OFDM signal, there are many oppor-

tunities to expand upon this research.

First, the analysis and performance of the algorithms for carrier phase offset

tracking, OFDM symbol timing, and data symbol timing could be performed and simu-

lated using System View.

Second, the analysis performed in Chapter IV could be expanded from the

AWGN channel to include a mulipath channel. This significantly increases the difficulty

of the analysis, but would provide a useful comparison with the actual environment ex-

pected to be present when using OFDM systems.

Third, the algorithms described in Chapter IV that are more suited to continuous

transmission systems could be analyzed and simulated with System View. The cyclic pre-

fix correlation and the virtual carrier algorithms may provide interesting results.

145

Fourth, the System View designs implemented in Chapter V could be imple-

mented with an FPGA card and compared to current receiver cards available commer-

cially. System View offers an HDL design studio to convert a System View circuit design

into synthesizable VHDL or Verilog source code. The FPGA lab in the Cryptologic Re-

search Lab at the Naval Postgraduate School has the required software and hardware to

use the VHDL source code to program an FPGA card.

Finally, the physical layer designs implemented could be used as a starting point

for a higher layer, software implemented analysis of the received OFDM signals.

146

THIS PAGE INTENTIONALLY LEFT BLANK

147

APPENDIX A

The file used as the input to the QAM mapper token is shown below. No header

was provided, and line one of the file starts with 16n = , as shown below. It follows the

exact format provided in the 16QAM notepad file, 16QAM.txt, provided in the Commlib

folder in the System View Example folder. This usually can be found in the C drive un-

der System View folder in the Program Files folder.

n=16
Symbol I Q
0 -3.0 -3.0
1 -3.0 -1.0
2 -3.0 3.0
3 -3.0 1.0
4 -1.0 -3.0
5 -1.0 -1.0
6 -1.0 3.0
7 -1.0 1.0
8 3.0 -3.0
9 3.0 -1.0
10 3.0 3.0
11 3.0 1.0
12 1.0 -3.0
13 1.0 -1.0
14 1.0 3.0
15 1.0 1.0

148

THIS PAGE INTENTIONALLY LEFT BLANK

149

APPENDIX B

This worksheet from Mathcad 2001 shows the calculation of the probability of de-

tection and the probability of false alarm for the Ricean and Rayleigh distributions used

in the sliding-window correlation detector in Section 1 of Chapter V.

r 0 0.001, 1.6..:= s 2 0.1015625()2
⋅:= σ 1 0.1015625⋅:= η 0.1538905:=

P r σ,() r

σ
2

e

r2 s2+()−

2 σ
2

⋅
⋅ I0 r

s

σ
2

⋅





⋅:= s 0.1436310649=

PD r σ,()

η

2

r
r

σ
2

e

r2 s2+()−

2 σ
2

⋅
⋅ I0 r

s

σ
2

⋅





⋅

⌠



⌡

d:=
PD r σ,()
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

PFA η σ,() e

η
2

−

2 σ
2

⋅
:= PFA η σ,() 0.8899502509=

PG r()
1

2 π⋅
e

r s−()2−
2

⋅:=

PR r σ,() r

σ
2

e

r2−

2 σ
2

⋅
⋅:=

150

THIS PAGE INTENTIONALLY LEFT BLANK

151

LIST OF REFERENCES

1. Robert W. Chang, “Synthesis of Band-Limited Orthogonal Signals for Multi-
channel Data Transmission,” The Bell System Technical Journal, Vol. XLV, No.
10, pp. 1775-1796, December 1966.

2. S. B. Weinstein and Paul M. Ebert, “Data Transmission by Frequency-Division
Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on
Communication Technology, Vol. Com-19, No. 5, pp. 628-634, October 1971.

3. Juha Heiskala and John Terry, OFDM Wireless LANs: A Theoretical and Practi-
cal Guide, Sams Publishing, Indianapolis, Indiana, 2002.

4. Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia
Communications, Artech House, Boston, Massachusetts, 2000.

5. Patrick A. Count, “Performance Analysis of OFDM in Frequency-Selective,
Slowly Fading Nakagami channels,” Master’s Thesis, Naval Postgraduate School,
Monterey, California, 2001.

6. Donovan I. Oubre, “Capabilities and Limitations of Orthogonal Frequency-
Division Multiplexing in Wireless Applications,” Master’s Thesis, Naval Post-
graduate School, Monterey, California, 2001.

7. Chi-han Kao, “Performance of the IEEE 802.11a Wireless LAN standard over
Frequency-Selective, Slow, Ricean Fading Channels,” Master’s Thesis, Naval
Postgraduate School, Monterey, California, 2002.

8. Institute of Electrical and Electronics Engineers, 802.11, Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, 18 March 1999.

9. Institute of Electrical and Electronics Engineers, 802.11b, Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed
Physical Layer Extension in the 2.4 GHz Band, 16 September 1999.

10. Institute of Electrical and Electronics Engineers, 802.11a, Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed
Physical Layer Extension in the 5 GHz Band, 16 September 1999.

11. Institute of Electrical and Electronics Engineers, 802.11g, Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4:
Further Higher Data Rate Extension in the 2.4 GHz Band, 12 June 2003.

12. Institute of Electrical and Electronics Engineers, 802, IEEE Standard for Local
and Metropolitan Area Networks: Overview and Architecture, 08 March 2002.

13. Stephen B. Wicker, Error Control Systems for Digital Communication and Stor-
age, pp.264-265, Prentice Hall, Upper Saddle River, New Jersey, 1995.

152

14. William Carney, “IEEE 802.11g New Draft Standard Clarifies Future of Wireless
LAN,” White paper, Texas Instruments Incorporated, 11 January 2002,
http://focus.ti.com/pdfs/vf/bband/802.11g_whitepaper.pdf last accessed 29 Janu-
ary 2004.

15. Maurice L. Schiff, “802.11a System Simulation Using System View by Elanix,”
AN 140, Elanix Incorporated, Westlake Village California, November 2002,
http://www.elanix.com/pdf/an140.pdf last accessed 29 January 2004.

16. Ralph D. Hippenstiel, Detection Theory: Applications and Digital Signal Process-
ing, pp. 63-159, CRC Press, Boca Raton, Florida, 33431,2002.

17. Timothy M. Schmidt and Donald C. Cox, “Robust Frequency and Timing
Synchronization for OFDM,” IEEE Transactions on Communications, Vol. 45,
No. 12, pp. 1613-1621, December 1997.

18. Meng_Han Hsieh and Che-Ho Wei, “A Low-Complexity Frame Synchronization
and Frequency Offset Compensation Scheme for OFDM Systems over Fading
Channels,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 5, pp.1596-
1609, September 1999.

19. Flavio Daffara and Antoine Chouly, “Maximum Likelihood Frequency Detectors
for Orthogonal Multicarrier Systems,” Proc. of IEEE Trans. On Communications,
Geneva, Switzerland, pp. 766-771, May 1993.

20. Marco Luise and Ruggero Reggiannini, “Carrier Frequency Acquisition and
Tracking for OFDM Systems,” IEEE Transactions on Communications, Vol. 44,
no. 11, pp.1590-1598, November 1996.

21. Flavio Daffara and Ottavio Adami, “A New Frequency Detector for Orthogonal
Multicarrier Transmission Techniques,” Proc. of IEEE Veh. Technol. Conf., Chi-
cago, IL, pp.804-809, July 1995.

22. Minoru Okada, Shinsuke Hara, Shozo Komaki and Norihiko Morinaga, ”Opti-
mum Synchronization of Orthogonal Multi-Carrier Modulated Signals,” Proc.
IEEE PIMRC, Taipei, Taiwan, pp. 863-867, October 1996.

23. Paul H. Moose, “A Technique for Orthogonal Frequency Division Multiplexing
Frequency Offset Correction,” IEEE Transactions on Communications, Vol. 42,
No. 10, pp. 2908-2914, October 1994.

24. Sergio Barbarossa, Massimiliano Pompili, and Georgios B. Giiannakis, “Channel-
Independent Synchronization of Orthogonal Frequency Division Multiple Access
Systems,” IEEE Journal on Selected Areas in Communications, Vol. 20, No. 2,
pp. 474-486, February 2002.

153

25. Michael Speth, Stefan Fechtel, Gunnar Fock, and Heinrich Meyr, “Optimum Re-
ceiver Design for OFDM-Based Broadband Transmission-Part II,” IEEE Transac-
tions on Communcations, Vol.49, No. 4, pp. 571-578, April 2001.

154

THIS PAGE INTENTIONALLY LEFT BLANK

155

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

4. Professor Frank Kragh Code EC/Kh
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

5. Professor R. Clark Robertson Code EC/Rc
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

6. Professor Ronald Pieper
Department of Electrical Engineering
University of Texas
Tyler, TX

7. Director, National Security Agency

ATTN: Robert Eubank
Fort Meade, MD

8. Nick Triska

SAIC
Monroe, CT

9. Nathan Beltz
Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA

10. Commanding Officer, Space and Naval Warfare Systems Center
ATTN: Mr. Dale Bryan Code 2371
San Diego, CA

156

11. Commanding Officer, Space and Naval Warfare Systems Center
ATTN: Dr. Rich North Code 2846
San Diego, CA

12. LCDR Keith Lowham

Chief of Naval Operations, Code N77
Arlington, VA

