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ABSTRACT 
 
 
 
Synchronization of orthogonal frequency-division multiplexed (OFDM) signals is 

significantly more difficult than synchronization of a single-carrier system. The recently 

approved IEEE Standard 802.11g specifies a packet-based OFDM system that provides a 

basis for the discussion of OFDM synchronization in a packet-based environment. Algo-

rithms that synchronize the receiver carrier demodulation frequency and phase, the data 

frame, the OFDM symbol timing, and the data symbol timing are discussed and analyzed 

in an AWGN channel. System View simulation is used to implement the frame and car-

rier frequency synchronization algorithms, where the performance of these algorithms is 

analyzed and they are shown to be useful detection algorithms for Standard 802.11g sig-

nal reception. 
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EXECUTIVE SUMMARY 
 
 
 

The recent approval of the IEEE Standard 802.11g has increased the use of or-

thogonal frequency-division multiplexing (OFDM) in devices that are in wide use. Cou-

pled with the rapid increase in the use of wireless networking, this widespread technology 

has become a major component of wireless devices not only in the consumer electronics 

industry, but it is also widely used by the governments and the military of many coun-

tries. With this increase in implementation comes a concern with the ability to receive a 

useable signal in the most challenging environments. This means not only in a consumer 

electronics environment that is frequently crowded with other wireless devices operating 

in the same frequency spectrum, but also in military environments that may include the 

use of jamming and interception by a hostile force. 

In this thesis, the IEEE Standard 802.11g is closely examined. Physical layer as-

pects of the standard are discussed along with how they interface with the previous IEEE 

802.11 standards. Implementation of a receiver and transmitter using the OFDM mode of 

Standard 802.11g is detailed and then used in implementing and testing synchronization 

algorithms. 

There are many aspects to synchronizing the receiver in an OFDM system with 

the transmitted signal. In addition, in a packet-based communications system such as 

Standard 802.11g compliant systems, the receiver must synchronize with the transmitter 

very quickly. Even with the packet length using the maximum allowed number of data 

bytes, the entire packet can be at most 627 µs  long at a data rate of 54 Mbps. The pream-

ble and the header are a total of 20 µs  long, leaving little time to achieve synchronization 

before the start of the data. Since the header contains information required for proper de-

modulation of the OFDM signal, synchronization must be accomplished in the time allot-

ted for the long and short training sequences, which is 16 µs.  Once synchronization is 

achieved, it must be maintained over the duration of the OFDM symbol. If the channel 



 xviii

characteristics change significantly during the transmission of the packet, synchronization 

and the data can be lost, resulting in retransmission and an overall slower data reception 

rate. 

Finally, frame and carrier frequency synchronization circuits are built using the 

System View simulation software and compared with theoretical expectations. 
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I. INTRODUCTION  

The recent approval of the IEEE Standard 802.11g has increased the use of or-

thogonal frequency-division multiplexing (OFDM) in devices that are in wide use. Cou-

pled with the rapid increase in the use of wireless networking, this widespread technology 

has become a major component of wireless devices not only in the consumer electronics 

industry, but it is also widely used by the governments and the military of many coun-

tries. With this increase in implementation comes a concern with the ability to receive a 

useable signal in the most challenging environments. This means not only in a consumer 

electronics environment that is frequently crowded with other wireless devices operating 

in the same frequency spectrum, but also in military environments that may include the 

use of jamming and interception by a hostile force. 

One aspect of optimizing the reception of any signal is the synchronization of the 

receiver with the transmitter. There are several different types of synchronization needed 

to ensure the receiver correctly decodes the transmitted signal. This thesis describes the 

synchronization process used in OFDM systems and algorithms that optimize the syn-

chronization in the presence of additive white Gaussian noise (AWGN). The synchroni-

zation algorithms are then implemented using System View simulation software by 

Elanix Inc. 

 

A. SCOPE 
OFDM has been implemented in several standards, including IEEE Standards 

802.11a and 802.11g, HIPERLAN II, and Digital Video Broadcast (DVB) to name only a 

few. The optimum methods of synchronization differ, depending on the type of signal be-

ing transmitted. If the signal is being continuously transmitted, as in DVB, a receiver has 

a longer time to obtain synchronization, and the addition of dedicated blocks for synchro-

nization only serve to slow down the data transmission. In a packet-based system such as 

IEEE Standard 802.11g and HIPERLAN II, the receiver must quickly obtain synchroni-

zation to be ready for the short bursts of data that occur at random intervals. This requires 

the use of quick, synchronization-block-based systems that can obtain synchronization 



2 

quickly at the expense of using some of the packet for the special synchronization blocks. 

This thesis focuses on the synchronization issues surrounding the packet-based IEEE 

Standard 802.11g. 

 

1. Introduction to OFDM 
OFDM is a multi-carrier frequency modulation scheme in which the carrier fre-

quencies used are orthogonal to each other. This means that all the frequencies are uncor-

related and that the signals modulated by these orthogonal frequencies can be recovered 

by correlating the received signal with each of the original carrier frequencies. Two sig-

nals ( )x t  and ( )y t  are defined as being orthogonal when 

  ( ) ( ) 0
t T

t

x s y s ds
+

=∫  (1.1) 

where T is the period of the signals. If the transmitted signal is proportional to one of the 

orthogonal signals, ( )Ax t , for example, then the modulated signal A can be recovered by 

correlating the received signal with both ( )x t  and ( )y t  and choosing the output with the 

largest value. If the received signal is correlated with ( )y t  then 

  ( ) ( )
t T

t

r Ax s y s ds
+

= ∫  (1.2) 

But from (1.1) the integral of (1.2) is zero. However, if the received signal is cor-

related with ( )x t  then the output is ( )  
2 ,

t T

t

A x s ds
+

∫  the desired signal. This is the basis for 

OFDM. Although the correlation can be used with all multi-carrier systems, the orthogo-

nality of the signals in OFDM allows the transmitted signals to overlap in the frequency-

domain, reducing the required bandwidth for transmission. For example, the required 

null-to-null bandwidth for a binary phase-shift keying (BPSK) signal using a data rate of 

6 Mbps and a rate-1 2  encoding scheme requiring a total data rate of 12 Mbps uses a 24-

MHz bandwidth. However, this same signal transmitted using the IEEE Standard 802.11a 

or 802.11g OFDM modulation uses only 16.6 MHz of bandwidth. This savings in band-

width allows the transmission of higher data rates over the same bandwidth as the lower 
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frequency data that use different modulation techniques, and is a major factor in the 

growth of OFDM based systems. 

OFDM was originally conceived by Chang [1] in 1966. Because of the difficulty 

in using a bank of modulators to produce a signal that takes full advantage of the or-

thogonality of the sub-carriers, this concept was not implemented in real systems until the 

idea of using a discrete Fourier transform to modulate the signals instead of using a bank 

of modulators was proposed by Weinstein [2] in 1971. This technique was quickly 

adapted to the use of the fast Fourier transform (FFT) to make modern OFDM systems 

practical. 

 

2. Interference in OFDM 
Interference in high data rate systems revolves around the overlap of data symbols 

that are adjacent in frequency or consecutive in time, which only gets worse as the data 

rate increases. This occurs because of the channel characteristics between the transmitter 

and the receiver, with multipath propagation being one of the major causes of this inter-

ference. This interference is called intersymbol interference when the signal overlap oc-

curs in the time-domain, and it is call intercarrier interference when the interference oc-

curs in the frequency-domain. One of the big advantages of OFDM over other modula-

tion techniques is its reduction in intersymbol interference seen in a multipath environ-

ment. Since the transmitted data can be divided up and modulated onto several different 

carriers, the data rate for each carrier is reduced. This lower data rate reduces the inter-

symbol interference in the multipath channel. 

An example of intersymbol interference is shown in Figure 1. The transmitted 

signal is a sharp square wave, but the channel has distorted the received signal. This has 

caused some of the signal from adjacent pulses to leak into the expected time period of 

the next pulse. This overlap is called intersymbol interference and can be corrected by in-

creasing the separation between the pulses enough so that the received signals do not 

overlap, or correspondingly reducing the data rate so more of the received signal is unaf-

fected by adjacent symbols. This separation with no data between pulses or signals is 

called a guard interval. 
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Figure 1 Intersymbol Interference. 

 

The OFDM symbol uses a guard interval to reduce the effects of intersymbol in-

ference between adjacent OFDM symbols, and it uses a cyclic extension of the OFDM 

symbol to reduce intercarrier interference. Since the Fourier transform of a square wave 

in the time-domain is a sinc function in the frequency-domain, an abrupt cutoff of the sig-

nal in the time-domain causes spectral spreading. The purpose of the guard interval and 

cyclic extension of the transmitted signal is to separate OFDM symbols enough to pre-

vent intersymbol interference and to avoid the sharp end to the time-domain signal in 

order to prevent intercarrier interference. 

 

3. Synchronization of OFDM Signals 
For a packet-based OFDM transmission system, the synchronization of the signals 

can be broken down into five different steps. These are frame synchronization, carrier 

frequency synchronization, carrier phase synchronization, OFDM symbol synchroniza-

tion, and data symbol synchronization. The frame synchronization involves detecting the 

presence of an incoming packet of information. For a packet transmission system, this 

must be done quickly to ensure there is enough time to obtain the other required synchro-

nizations before the data is transmitted. The carrier synchronization has been split into 

two steps, since typically the frequency is synchronized with a phase-locked loop con-

figuration, which does not synchronize the phase of the transmitted and received signals. 

Once the frequencies have been synchronized then the phases can be synchronized to op-

timize the data reception. Finally, the timing of the OFDM symbols and the data symbols 

is required to properly demodulate the received data. 

Transmitted Signal 
t

Received Signal 
t 

Guard Interval 
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The process of synchronization in an OFDM system differs from the process of 

synchronization in a single-carrier system in that OFDM signals have many frequencies 

that can potentially interfere with each other if the orthogonality of the signals is lost. In a 

single-carrier system it is relatively easy to separate out the signal of interest, filter it, and 

compare it to the internally generated clock to achieve a synchronized system. Doing this 

with an OFDM signal simply produces several sub-carrier frequencies that are close 

enough together that filtering one signal of interest is impractical. The goal with OFDM 

systems is to process the received signal in such a way as to produce a single value that is 

proportional to the timing error and use this error signal to drive a voltage-controlled 

oscillator. This is similar to the single-carrier system, but the algorithms used to produce 

the error signal can be quite complex, as will be shown in Chapter IV. 

This introduction to OFDM has provided only a cursory description of OFDM 

and the many issues involved with transmitting and receiving these signals. However, 

References [3] through [7] provide excellent discussions and descriptions of OFDM sig-

naling and are recommended reading for the interested reader needing more details on the 

basics of OFDM. 

 

B. THESIS ORGANIZATION 
This thesis is organized into an introduction chapter, a conclusion chapter and 

four other chapters. Chapter II describes the OFDM packet-based system using the IEEE 

Standard 802.11g with a discussion of the other 802.11 standards and how they affect the 

design of the Standard 802.11g. Chapter III implements an 802.11g OFDM transmitter 

and receiver using the System View simulation software by Elanix. This simulation al-

lows for the analysis of the synchronization algorithms and the possible incorporation of 

these designs into a Field Programmable Gate Array (FPGA) design for practical imple-

mentation of a real system. Chapter IV introduces the various algorithms available to 

synchronize an OFDM system and performs an analysis of the packet-based frequency 

and packet synchronization algorithms in the presence of AWGN. Chapter V takes the 

algorithms developed in Chapter IV and implements them using System View. Finally, 

this thesis concludes with an overview of the results and a recommendation for further 
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study. Appendix A show the file format for a System View token input, and Appendix B 

shows the Mathcad 2001 programming used in this thesis. 
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II. IEEE STANDARD 802.11G DESCRIPTION 

This chapter provides a description of the IEEE Standard 802.11g. Since the latest 

of the 802.11 standards is based on the previous standards in the 802.11 family, a brief 

description of the other standards is also given to form an understanding of how Standard 

802.11g is formatted. 

 

A. IEEE STANDARD 802.11 
The original wireless local area network (LAN) physical and medium access con-

trol layers standard by IEEE was Standard 802.11-1997 [8], established in June 1997 as a 

method to provide wireless connectivity to automatic machinery, equipment, or stations 

that required rapid deployment, including portable or hand-held devices, or devices that 

could be mounted on moving vehicles within a local area. The data rates supported by the 

original standard were 1 Mbps and 2 Mbps using frequency-hopping spread spectrum 

(FHSS), direct sequence spread spectrum (DSSS), and infrared transmission with the 2-

Mbps data rate optional when using infrared or FHSS.  

The modulation scheme used in the Standard 802.11-1997 FHSS standard in-

cludes binary Gaussian frequency-shift keying (2-GFSK) which uses Gaussian pulse 

shaping on a binary frequency-shift keying (BFSK) signal to achieve the 1-Mbps data 

rate. The 2-Mbps data rate is achieved by using a 4-GFSK-modulation scheme. In the 

DSSS case, differential binary phase-shift keying (DBPSK) is used to transmit the 1-

Mbps data rate and differential quadrature phase-shift keying (DQPSK) is used to trans-

mit at 2 Mbps. For infrared transmission, the 1-Mbps data rate uses a sixteen-position 

pulse position modulation (16-PPM) in which four data bits are mapped into one position 

of a 16-PPM symbol. The 2-Mbps data rate encodes two data bits into a symbol and then 

maps these into one position of a 4-PPM symbol. [8] 

In September of 1999, the data rate of the basic standard was extended with IEEE 

Standard 802.11b [9], which supports data rates of 5.5 Mbps and 11 Mbps using direct 

sequence spread spectrum and complementary code keying (CCK) to extend the data rate 

but not increase the occupied bandwidth. Optional capabilities in this standard include the 
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use of frequency agility and packet binary convolutional coding (PBCC). Frequency-

hopping spread spectrum and infrared transmission were not included in this update of 

the standard. This high rate extension allows for backwards compatibility with the earlier 

standard by keeping the same physical layer preamble and header format so both physical 

layers can co-exist in the same basic service set. 

Complementary code keying is a modulation scheme using a chipping sequence 

that is determined by the incoming data vice a predetermined pseudorandom sequence, as 

is performed in traditional direct sequence spread spectrum. In the Standard 802.11-1997, 

a fixed 11-chip pseudorandom Barker sequence was used to spread the data. The Stan-

dard 802.11b uses an 8-chip CCK sequence defined as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3 4 1 3 4 1 2 3 1 3 1 31 2 4 1 4 1, , , , , , ,+ + + + + + + + ++ + += − −j j j j jj j jc e e e e e e e eϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ (2.1) 

where 1ϕ  is the phase differential determined by the first two bits ( 0d  and 1d ) of the four 

bits used in the CCK symbol for the 5.5 Mbps data rate and is defined in Table 1. The 

remaining phases in (2.1) are given by ( )2 2 2dϕ π π= + , 3 0ϕ = , and 4 3dϕ π= . [9] 

 

Table 1 Complementary Code Keying DQPSK [From Reference 9.] 
 

Bits d0 and d1 Even Symbol Phase 

change 

Odd Symbol Phase 

Change 

00 0 π 

01 π/2 3π/2 

11 π 0 

10 3π/2 π/2 
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For the all-zero data sequence, the chipping sequence becomes 

 
( ) ( ) ( )

{ }

1

1

0 0 02 2 2 2, , , , , , ,1

,1, , 1, ,1, ,1 .

j j j jj j jj

j

c e e e e e e e e

e j j j j

π π π π
ϕ

ϕ

       
       
       

  = − − 
  

= − −

 (2.2) 

The chipping sequence of (2.2) is complex and multiplies the DQPSK symbol de-

fined by 1.ϕ  This is equivalent to traditional DSSS where the data symbol is multiplied 

by a real pseudorandom chipping sequence. The modulated waveform is complex, requir-

ing the real and imaginary parts to be transmitted separately. 

To obtain the 11-Mbps data rate, six bits (instead of the two bits used for the 5.5-

Mbps data rate) are used to encode the phase angles 2ϕ , 3ϕ , and 4ϕ  as shown in Table 2, 

where the bits are grouped into pairs ( 2d  and 3,d  4d  and 5 ,d  6d  and 7d ). In both the 

5.5-Mbps and 11-Mbps data rate formats, the first two data bits are DQPSK modulated 

(formulating the phase change 1ϕ ).  

 

Table 2 11 Mbps CCK Encoding [From Reference 9.] 
 

Bits di and di+1 Phase 

00 0 

01 π/2 

10 π 

11 3π/2 

 

The first pair of bits ( 0d  and 1d ) are used to encode 1ϕ  in accordance with Table 

1. The second pair of bits ( 2d  and 3d ) are used to encode 2ϕ  in accordance with Table 2. 

The third pair of bits ( 4d  and 5d ) are used to encode 3ϕ  in accordance with Table 2, and 

the fourth pair of bits ( 6d  and 7d ) are used to encode 4ϕ  in accordance with Table 2. The 

resulting symbol is formed the same as in the 5.5-Mbps data rate case. 
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Since the CCK sequences are uncorrelated by definition, this forms a unique 

symbol for each group of four or eight data bits. The chip rate is kept at 11 Mcps, the 

same as the Standard 802.11-1997. The result is a signal that is contained within the same 

bandwidth but is able to transmit at a higher data rate. [9] 

Another way to achieve the higher data rates required by the Standard 802.11b 

was accomplished by using packet binary convolutional coding (PBCC). Essentially, 

higher data rates are achieved by using convolutional coding combined with BPSK or 

QPSK modulation. The data is first encoded with a rate one-half convolutional encoder. 

The encoder output is then modulated using BPSK for the 5.5-Mbps data rate and QPSK 

for the 11-Mbps data rate. A pseudorandom sequence generator determines the BPSK or 

QPSK symbol constellation randomly by choosing one of two possible mapping schemes 

determined by one bit of the sequence generator. This encoding allows for a higher data 

rate while still achieving the required packet error rate. [9] 

Also in September of 1999 the IEEE Standards Committee approved a high-speed 

standard for use in the 5 GHz unlicensed national information infrastructure (U-NII) 

bands using orthogonal frequency-division multiplexing (OFDM), Standard 802.11a [10]. 

This standard supports data rates of up to 54 Mbps. This standard later became the basis 

for the further extension of the 802.11 standard in the 2.4 GHz frequency range via the 

Standard 802.11g. Since the preamble and header formats of this standard are different 

than those used before, this format is not backwards compatible with the earlier IEEE 

Standard 802.11-1997 and IEEE Standard 802.11b. 

The latest extension of the wireless local area network (LAN) Physical Layer 

standard (IEEE Standard 802.11) in the 2.4 GHz (Industrial, Scientific, and Medical) 

band was approved on 12 June 2003 as IEEE Standard 802.11g [11]. The purpose of this 

standard is to extend the original 802.11 standard to data rates greater than 20 Mbps in 

the 2.4 GHz band. This was achieved by using the OFDM technique used in IEEE Stan-

dard 802.11a to obtain data rates of up to 54 Mbps. PBCC used in Standard 802.11b was 

also used to obtain data rates of greater than 20 Mbps, reaching 22 Mbps and 33 Mbps. In 

addition, DSSS was combined with OFDM, which is referred to as DSSS-OFDM in the 

Standard 802.11g, to achieve 54-Mbps data rates without additional coordination from 
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those systems that are capable of using the Standard 802.11-1997 and Standard 802.11b 

data formats (DSSS-OFDM is also referred to as CCK-OFDM in some of the literature). 

This format uses Standard 802.11a OFDM to transmit the data portion of the packets, but 

uses the CCK-DSSS of Standard 802.11b to transmit the physical layer preamble and 

header information.  

Since the preamble and the headers of a Standard 802.11g formatted packet using 

the extended rate are sent using OFDM signaling, the use of the extended rate Standard 

802.11g is not backwards compatible with the Standard 802.11 and Standard 802.11b 

header and preamble formats. However, Standard 802.11g certified equipment must be 

able to support the other data formats of Standard 802.11b, enabling Standard 802.11g 

devices to work in the same networks as the Standard 802.11b devices. [11] 

Although not generally cited in the group of wireless standards, IEEE Standard 

802 [12] contains some of the basic requirements that govern not only the wireless stan-

dards but also all the local area network (LAN) and metropolitan area network (MAN) 

standards. This includes the error performance of a wireless network interface with other 

networks. As specified in the standard, the probability that a medium access control 

(MAC) Service Data Unit (MSDU) is not delivered correctly at a MAC service access 

point (MSAP) due to the operation of the Physical layer and the MAC protocol shall be 

less than 88 10−×  per octet of MSDU length. To find the allowed data bit error rate, note 

that the probability that eight consecutive bits are received without error is given by 

 8 8Pr(  ) (1 ) 1 8 10−= − = − ×no error p  (2.3) 

where p is the probability of an error of a single bit, or the desired bit error rate. Solving 

(2.3) for the bit error rate yields 81 10p −= ×  as the allowed data bit error rate in wireless 

802 compliant systems. However, as discussed in the following sections, the 802.11 stan-

dard required channel error rates for the physical layers are not as good as this specifica-

tion. This requires the MAC layer to compensate for the decrease in error performance. 

This compensation is via the use of cyclic redundancy code error detection in the MAC 

layer header. 
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B. COMPATIBILITY BETWEEN 802.11 STANDARDS 
With the addition of an OFDM modulation format to the 802.11 standard, a 

mechanism for preventing interference between stations operating in a service set at the 

same frequency that are not Standard 802.11g capable is required. While a Standard 

802.11g extended rate physical layer (ERP) compliant system must be able to operate in 

an ad-hoc network with a possible combination of OFDM and DSSS systems, an interfer-

ence problem arises when working with Standard 802.11-1997 or Standard 802.11b sys-

tems and Standard 802.11g systems operating using OFDM packets. The interference 

problem is a result of any non-OFDM station not being able to recognize the transmission 

of an OFDM signal that Standard 802.11g stations may be using to communicate with 

each other. Since the header of a Standard 802.11g OFDM transmission is an OFDM sig-

nal, non-Standard 802.11g compatible receivers will not recognize another station trans-

mitting and may try and send a packet of their own after they sense that the channel is 

clear, resulting in a transmission collision between non-OFDM packets and OFDM pack-

ets. [11] 

The 802.11 architecture mitigates collisions between transmitting stations using 

an algorithm called carrier sense multiple access with collision avoidance (CSMA/CA). 

For a station to transmit, it must sense the medium to determine if another station is 

transmitting. If the medium is not determined to be busy, both physically and virtually, 

then the transmission may proceed. A virtually busy channel is one in which a future 

transmission has been predicted, but not yet occurred. This allows replies to be sent by 

receiving stations without interference. A minimum interval is specified between packets 

that other stations must wait before attempting to transmit to allow for the controlling sta-

tion (referred to as the point controller) to send required, contention-free traffic and also 

allow time for stations to send an immediate acknowledgement of received traffic. In ad-

dition, each station selects a random back-off interval to wait after the minimum wait pe-

riod has been completed. This prevents all stations from attempting to transmit at the end 

of the mandatory wait period, the most likely time when transmission collision would 

otherwise occur. The 802.11 architecture incorporates modifications of this procedure by 

allowing stations in a service set to exchange short control frames, specifically request-

to-send (RTS) and clear-to-send (CTS), prior to data transmission. [8] 
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There are three different frame types allowed in the 802.11 architecture. Man-

agement frames are used to support services of the system, such as association, authenti-

cation, and privacy. Control frames are used to support the delivery of data and manage-

ment messages such as specification of the protocol used, the type of frame transmitted, 

duration of transmission, number of data fragments in the total transmission, and power 

management data frames are used to transmit the actual data. To allow for proper coordi-

nation among the different stations in a service set, all stations must be able to read the 

CTS and RTS control frames; therefore, these frames are sent in a format that is recog-

nizable by all stations. This coordination is set up when stations first request to join a ser-

vice set. This is accomplished through the association procedure where the station is as-

sociated with an access point (AP) and the authentication procedure where the station 

identifies itself to the AP. To join a service set, a station must first authenticate itself by 

exchanging authentication messages (management frame type) with the access point, 

which establishes the station’s identity. Next the station associates itself with the AP, 

which gives the station’s address to the AP and assigns an association ID to the station. It 

is in this association request and response that the AP specifies to the station what rates 

are supported in the basic service set and the station specifies to the AP what rates and 

capabilities the station supports. The association response is tailored to the format of the 

association request modulation format. That is, information on the service set parameters 

is tailored to the modulation type of the association request. [8] 

The virtual carrier sense mechanism is achieved by distributing medium reserva-

tion information announcing the impending use of the medium. The exchange of RTS 

and CTS frames prior to the actual data frame is one means of distribution of this medium 

reservation information. The RTS and CTS frames contain a duration/ID field that de-

fines the period of time that the medium is to be reserved to transmit the actual data 

frame and the returning acknowledge (ACK) frame. All stations within the reception 

range of either the originating station (which transmits the RTS) or the destination station 

(which transmits the CTS) will know of the medium reservation. The virtual carrier sense 

mechanism provided by the medium access control (MAC) layer is referred to as the 

Network Allocation Vector (NAV). The network allocation vector (NAV) maintains a 

prediction of future traffic on the medium based on duration information that is an-
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nounced in RTS/CTS frames prior to the actual exchange of data and is used as an indica-

tor for each station of time periods when the station will not transmit in order to avoid 

collisions with other stations. When a station first joins a service set, its network alloca-

tion vector is set to the maximum contention-free period value as specified by the point 

controller in a beacon message that is sent to all stations on a regular basis for housekeep-

ing purposes. The network allocation vector is then modified as RTS and CTS and bea-

cons are received. [8] 

The result of these coordination issues is that, for Standard 802.11g capable sta-

tions operating in a mixed capability service set, only the data frame may be transmitted 

using OFDM. In addition, housekeeping to inform all other stations of the impending 

transmission must precede each data frame. [11] 

 

C. IEEE STANDARD 802.11G TRANSMITTER 

A Standard 802.11g compliant extended rate physical layer implements all the 

mandatory modes of the Standard 802.11a, except it uses the 2.4 GHz frequency band de-

scribed in the Standard 802.11b. In addition, it is mandatory that all Standard 802.11g 

compliant equipment be capable of sending and receiving the short preamble as described 

in the Standard 802.11b. [11] 

Three other changes implemented with the new Standard 802.11g apply to the 

DSSS transmission. This includes the ability to detect all the synchronization symbols of 

the new standard (including the ODFM symbols). Second, the error rate performance has 

been upgraded to achieve a frame error rate (FER) of less than 28 10−×  for a PSDU 

length of 1024 bytes at a received power level of 20 dBm−  measured at the antenna vice 

10 dBm−  as specified in the Standard 802.11b [11]. Using the same method as before to 

calculate the required data bit error rate, we have 

 8(1024)1 FER (1 ) .p− = −  (2.4) 

Rearranging (2.4) and solving for p, the data bit error rate, we get 

 
( )

8192

8192

(1 ) 1 FER

1 1 FER .

p

p

− = −

= − −
 (2.5) 
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Substituting FER 0.08=  into (2.5), the data bit error rate for DSSS-OFDM is then calcu-

lated to be 

 51.0178 10 .p −= ×  (2.6) 

Equation (2.6) gives the required error rate of the transmitted data. Finally, synchroniza-

tion of the transmit oscillator and symbol clocks has also been upgraded so that the 

transmit frequency oscillator and the symbol clock oscillator must use the same reference 

oscillator. 

Five other changes implemented with the new Standard 802.11g apply to the 

OFDM transmission. This includes the ability to detect all the synchronization symbols 

of the new standard (including DSSS). The transmit frequency accuracy and the symbol 

clock frequency tolerance has been changed from ± 20 ppm in the Standard 802.11a to 

± 25 ppm. The error rate performance has been changed from a maximum packet error 

rate (PER) of 10% at a PSDU length of 1000 bytes at a receiver power level of − 30dBm 

to a receiver power level of − 20dBm [11]. Converting this to a required channel bit error 

rate, using the same method as above, we get 

 8(1000)1 PER (1 ) .p− = −  (2.7) 

Rearranging (2.7) and solving for p, we get 

 
( )

8000

8000

(1 ) 1 PER

1 1 PER .

p

p

− = −

= − −
 (2.8) 

Using the value of PER 0.1=  in (2.8) we obtain the required channel bit error rate for 

OFDM to be 

 51.3170 10 .p −= ×  (2.9) 

Equation (2.9) gives the error rate of the transmitted packet. The slot time, defined as the 

sum of the receiver-to-transmitter turnaround time, the MAC processing delay and the 

clear channel assessment detect time, which is the smallest wait time required during the 

back-off-window required to avoid collisions, is set to 20 µs , the same as required for the 

DSSS transmission. However, an option exists that allows this value to be reduced to the 



16 

9-µs  value used by the Standard 802.11a if all stations in the service set support the 

Standard 802.11g. The short interframe spacing interval is set to 10 µs , the same used in 

the Standard 802.11b, but shorter than the 16-µs  short interframe spacing interval re-

quired for the Standard 802.11a. [11] 

The general block diagram of the transmitter for the OFDM physical layer is 

shown in Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2 OFDM Transmitter [After Reference 10.] 

 

The input data arrives at the physical layer from the MAC layer with header in-

formation and a frame check sequence (FCS) that consists of a 32-bit cyclic redundancy 

code (CRC) appended after the data to detect packet errors. This packet is called the 

MAC protocol data unit (MPDU) while it resides in the MAC layer, and the physical 

layer convergence protocol (PLCP) service data unit (PSDU) as it enters the physical 

layer. The frame body can contain a maximum of 2312 octets, or bytes, of data. With a 

header size of 30 bytes and a 4-byte CRC, the total maximum number of bytes arriving 

from the medium access control layer is 2346 bytes. This is a limitation placed on the 

size of the MPDU to support the requirements of the infrared transmission of the packet. 
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The actual limitation placed on OFDM transmission of the packet is 4095 bytes. If all the 

receivers in the service set support this MPDU size, then sending the larger packets can 

reduce the overhead. [8,10] 

Once inside the physical layer a preamble, header, tail bits, and pad bits are added 

to the PSDU, and the entire packet is referred to as the PLCP protocol data unit (PPDU). 

The PPDU is the frame that is then transmitted over the wireless medium to the receiving 

station. The PPDU frame format for OFDM transmission is shown in Figure 3. [8] 

 

 

Preamble 
12 Symbols 

Rate     
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1 Bit 

Length     
12 Bits 

Parity    
1 Bit 

Tail     
6 Bits 

Service      
16 Bits 
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Bits 

Pad Bits 
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Figure 3 PPDU Frame Format [After Reference 10.] 
 

The preamble for the OFDM signal consists of ten short training symbols consist-

ing of one 8-µs  long OFDM symbol, and two long training symbols consisting of two 

4-µs  OFDM symbols (including the guard interval) to aid the receiver in detecting and 

synchronizing the OFDM signal. The short training symbols are intended for initial signal 

detection, automatic gain control (AGC), and diversity selection. Also, a coarse fre-

quency offset estimation and bit timing synchronization can be obtained from these sym-

bols. The long training symbols are intended for channel estimation and fine frequency 

offset estimation. Use of this data considerably shortens the required time to detect and 

synchronize the received packet. [10] 

The header information contains fields that specify the transmission rate of the 

PSDU, its length, and some transmitter initialization bits. This information is used after 

reception to specify the receive bit rate of the rest of the PPDU. [10] 

The data field consists of a service field that initializes the data scrambler, the 

PSDU received from the MAC layer, and six tail bits that are added to the end of the 

PSDU to reset the convolutional encoder to the zero state. Finally, enough pad bits are 

added to the end so that the number of bits in the data field (Service field + PSDU + tail + 

Header

OFDM 
BPSK, r=1/2

OFDM vari-
able rate 



18 

pad) is an integer multiple of required coded bits per OFDM symbol ( CBPSN ). This en-

sures that a total of 48 values are entered into the Inverse Fast Fourier Transform (IFFT) 

modulator as data. [10] 

The header is transmitted at 6 Mbps using binary phase-shift keying (BPSK) 

modulation and encoded with a rate 1 2r =  code to give it the best chance of detection. 

The data field is transmitted using one of the specified rates shown in Table 3 for the 

Standard 802.11g. [10] 

 

Table 3 OFDM Rate Dependent Parameters [From Reference 10.] 
 

Data rate 
(Mbits/s) Modulation Coding 

rate (r) 

Coded bits 
per sub-
carrier 
(NBPSC) 

Coded bits 
per OFDM 

symbol 
(NCBPS) 

Data bits 
per OFDM 

symbol 
(NDBPS) 

6 BPSK 1/2 1 48 24 
9 BPSK 3/4 1 48 36 

12 QPSK 1/2 2 96 48 
18 QPSK 3/4 2 96 72 
24 16-QAM 1/2 4 192 96 
36 16-QAM 3/4 4 192 144 
48 64-QAM 2/3 6 288 192 
54 64-QAM 3/4 6 288 216 

 

The short preamble and header format was first used in the Standard 802.11b as an option 

for networks that did not need to support the older standard with the long preamble and 

header. The format is intended to increase data throughput in applications where this is 

important, such as video and audio transmission. However, this format is only specified 

for the DSSS modulation format. The long PPDU is shown in Figure 4, and the short 

PPDU is shown in Figure 5. [9] 

The reduction in size is from a total of 192 bits for the long format preamble and 

header to a total of 120 bits for the short format preamble and header, a reduction of 

37.5%. Standard 802.11g is required to support this short PPDU format. [9] 
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Figure 4 Long PPDU Format [After Reference 9.] 
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Figure 5 Short PPDU Format [After Reference 9.] 

 

Once the service field is appended to the received data in the PSDU packet, it is 

scrambled and passed through a constraint length seven, rate 1 2r =  convolutional en-

coder. The required coding rates, if different than 1 2r = , can be obtained by puncturing 

the data to remove some of the coded bits. This removal of some of the coded bits while 

keeping the number of data bits constant increases the code rate (data bits divided by 

coded bits) to the desired value. [10] 

After coding, the data is interleaved to randomize the errors in the coded data bits 

introduced by the wireless channel. This prevents consecutive coded data bits from being 

affected by noise bursts in the channel, which improves the performance of the decoding 

process. Standard 802.11g uses a two-stage process to interleave the data. The first stage 

ensures that adjacent coded bits are mapped onto nonadjacent sub-carriers. This is ac-

complished by reading the coded data bits into a standard ( 16CBPSN  by 16) block inter-

leaver. The second stage ensures that adjacent coded bits are mapped alternately onto less 

and more significant bits of the constellation, avoiding long runs of low reliability LSB 

bits. The second stage is actually not performed for the first four data rates of Table 1, 

since the constellation size for BPSK is one bit and the constellation size for QPSK is two 

bits. In these cases, alternating the bits will not change the constellation mapping. How-

ever, for 16-QAM the first stage of interleaving leaves all data bits on the same row of 

the block interleaver mapped into the same bit of the 16-QAM constellations. If every 
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other column of the block interleaver has every other bit exchanged, this eliminates adja-

cent bits in the same row from being mapped to the same constellation bit. The interleav-

ing process is described with the help of Figure 6. In this example, the 24-Mbps data rate 

is used. [10] 

 

A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1 O1 P1 

A2 B2 C2 D2 E2 F2 G2 H2 I2 J2 K2 L2 M2 N2 O2 P2 

A3 B3 C3 D3 E3 F3 G3 H3 I3 J3 K3 L3 M3 N3 O3 P3 

A4 B4 C4 D4 E4 F4 G4 H4 I4 J4 K4 L4 M4 N4 O4 P4 

A5 B5 C5 D5 E5 F5 G5 H5 I5 J5 K5 L5 M5 N5 O5 P5 

A6 B6 C6 D6 E6 F6 G6 H6 I6 J6 K6 L6 M6 N6 O6 P6 

A7 B7 C7 D7 E7 F7 G7 H7 I7 J7 K7 L7 M7 N7 O7 P7 

A8 B8 C8 D8 E8 F8 G8 H8 I8 J8 K8 L8 M8 N8 O8 P8 

A9 B9 C9 D9 E9 F9 G9 H9 I9 J9 K9 L9 M9 N9 O9 P9 

A10 B10 C10 D10 E10 F10 G10 H10 I10 J10 K10 L10 M10 N10 O10 P10 

A11 B11 C11 D11 E11 F11 G11 H11 I11 J11 K11 L11 M11 N11 O11 P11 

A12 B12 C12 D12 E12 F12 G12 H12 I12 J12 K12 L12 M12 N12 O12 P12 

 
Figure 6 Standard 802.11g Stage One Interleaver. 

 

The rows are numbered one through twelve, and the columns are marked A – P. 

The data is read in sequentially across each row. Since 192,CBPSN =  a total of twelve 

rows of sixteen columns are used to fill the block interleaver. The first stage of the inter-

leaver reads out the data in columns. If the second stage of the interleaver were not used, 

the 16-QAM mapping would be as shown in Figure 7. [10] 

Note that row one only shows up in bit 0b  of the 16-QAM mapping, row two only 

shows up in bit 1b  of the 16-QAM mapping, etc. This means entire rows are mapped to 

the same bit in the QAM mapping.  

To randomize the distance between symbols, the second stage of the interleaver 

swaps coded bits between rows in every even column of the block interleaver. The result 
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is that only every other bit in each row is mapped to the same bit in the symbol constella-

tion. Figure 8 shows the block interleaver after data bits have been swapped by the sec-

ond stage of the interleaver. [10] 

 

Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3 

1 A1 A2 A3 A4 17 F5 F6 F7 F8 33 K9 K10 K11 K12 

2 A5 A6 A7 A8 18 F9 F10 F11 F12 34 L1 L2 L3 L4 

3 A9 A10 A11 A12 19 G1 G2 G3 G4 35 L5 L6 L7 L8 

4 B1 B2 B3 B4 20 G5 G6 G7 G8 36 L9 L10 L11 L12 

5 B5 B6 B7 B8 21 G9 G10 G11 G12 37 M1 M2 M3 M4 

6 B9 B10 B11 B12 22 H1 H2 H3 H4 38 M5 M6 M7 M8 

7 C1 C2 C3 C4 23 H5 H6 H7 H8 39 M9 M10 M11 M12 

8 C5 C6 C7 C8 24 H9 H10 H11 H12 40 N1 N2 N3 N4 

9 C9 C10 C11 C12 25 I1 I2 I3 I4 41 N5 N6 N7 N8 

10 D1 D2 D3 D4 26 I5 I6 I7 I8 42 N9 N10 N11 N12 

11 D5 D6 D7 D8 27 I9 I19 I11 I12 43 O1 O2 O3 O4 

12 D9 D10 D11 D12 28 J1 J2 J3 J4 44 O5 O6 O7 O8 

13 E1 E2 E3 E4 29 J5 J6 J7 J8 45 O9 O10 O11 O12 

14 E5 E6 E7 E8 30 J9 J10 J11 J12 46 P1 P2 P3 P4 

15 E9 E10 E11 E12 31 K1 K2 K3 K4 47 P5 P6 P7 P8 

16 F1 F2 F3 F4 32 K5 K6 K7 K8 48 P9 P10 P11 P12 

 
Figure 7 Mapping of First Interleaver Stage. 

 

The resulting 16-QAM mapping is shown in Figure 9. Note that row one is now 

mapped alternately into bit 0b  and 1,b  avoiding long runs of bits mapped to the same bit. 

The constellation mapping uses standard Gray-coded BPSK, QPSK, 16-QAM, 

and 64-QAM mapping, depending on the requested rate, as specified in Table 3. The 

complex output of the mapping is multiplied by a normalization factor to achieve the 

same average power for all mappings, which accounts for changes in modulation during 

the transmission of the packet. [10] 
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A1 B2 C1 D2 E1 F2 G1 H2 I1 J2 K1 L2 M1 N2 O1 P2 

A2 B1 C2 D1 E2 F1 G2 H1 I2 J1 K2 L1 M2 N1 O2 P1 

A3 B4 C3 D4 E3 F4 G3 H4 I3 J4 K3 L4 M3 N4 O3 P4 

A4 B3 C4 D3 E4 F3 G4 H3 I4 J3 K4 L3 M4 N3 O4 P3 

A5 B6 C5 D6 E5 F6 G5 H6 I5 J6 K5 L6 M5 N6 O5 P6 

A6 B5 C6 D5 E6 F5 G6 H5 I6 J5 K6 L5 M6 N5 O6 P5 

A7 B8 C7 D8 E7 F8 G7 H8 I7 J8 K7 L8 M7 N8 O7 P8 

A8 B7 C8 D7 E8 F7 G8 H7 I8 J7 K8 L7 M8 N7 O8 P7 

A9 B10 C9 D10 E9 F10 G9 H10 I9 J10 K9 L10 M9 N10 O9 P10 

A10 B9 C10 D9 E10 F9 G10 H9 I10 J9 K10 L9 M10 N9 O10 P9 

A11 B12 C11 D12 E11 F12 G11 H12 I11 J12 K11 L12 M11 N12 O11 P12 

A12 B11 C12 D11 E12 F11 G12 H11 I12 J11 K12 L11 M12 N11 O12 P11 

 
Figure 8 Standard 802.11g Stage Two Interleaver. 

 

After mapping, the data symbols are partitioned into groups of 48, mixed with 

four pilot symbols, and then used as the inputs of an IFFT. The pilot symbols are scram-

bled prior to mixing to avoid the generation of spectral lines. The size of the IFFT is not 

specified, but a size of 64 is normally used, since this is the next power of two above 52 

(48 data symbols and four pilot symbols). The output of the IFFT is cyclically extended 

over a guard interval to prevent intersymbol and intercarrier interference (ISI and ICI).  

This output is windowed to smooth the data transitions, heterodyned to the carrier fre-

quency, amplified, and transmitted with a signal bandwidth of 16.6 MHz. [10] 

The output of one OFDM symbol can be represented mathematically as [10] 
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Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3 Symbol b0 b1 b2 b3 

1 A1 A2 A3 A4 17 F6 F5 F8 F7 33 K9 K10 K11 K12 

2 A5 A6 A7 A8 18 F10 F9 F12 F11 34 L2 L1 L4 L3 

3 A9 A10 A11 A12 19 G1 G2 G3 G4 35 L6 L5 L8 L7 

4 B2 B1 B4 B3 20 G5 G6 G7 G8 36 L10 L9 L12 L11 

5 B6 B5 B8 B7 21 G9 G10 G11 G12 37 M1 M2 M3 M4 

6 B10 B9 B12 B11 22 H2 H1 H4 H3 38 M5 M6 M7 M8 

7 C1 C2 C3 C4 23 H6 H5 H8 H7 39 M9 M10 M11 M12 

8 C5 C6 C7 C8 24 H10 H9 H12 H11 40 N2 N1 N4 N3 

9 C9 C10 C11 C12 25 I1 I2 I3 I4 41 N6 N5 N8 N7 

10 D2 D1 D4 D3 26 I5 I6 I7 I8 42 N10 N9 N12 N11 

11 D6 D5 D8 D7 27 I9 I19 I11 I12 43 O1 O2 O3 O4 

12 D10 D9 D12 D11 28 J2 J1 J4 J3 44 O5 O6 O7 O8 

13 E1 E2 E3 E4 29 J6 J5 J8 J7 45 O9 O10 O11 O12 

14 E5 E6 E7 E8 30 J10 J9 J12 J11 46 P2 P1 P4 P3 

15 E9 E10 E11 E12 31 K1 K2 K3 K4 47 P6 P5 P8 P7 

16 F2 F1 F4 F3 32 K5 K6 K7 K8 48 P10 P9 P12 P11 

 
Figure 9 Mapping of Second Interleaver Stage. 

 

where  =n  the symbol number, TSYMw =  the windowing function of duration time T  

equal to the symbol duration, SDN =  the number of data sub-carriers (48), ,k nd = the 

complex number corresponding to sub-carrier k  of OFDM symbol n , F∆ =  the sub-

carrier frequency spacing (0.3125 MHz), GIT =  the guard interval duration ( 0.8 µs ), 

np =  the scrambling sequence, kP =  the pilot sub-carrier sequence, STN =  the total num-

ber of sub-carriers (52), and 
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Equation (2.11) defines the mapping from the logical sub-carrier number 0 to 47 

into frequency offset index − 26 to 26, while skipping the pilot sub-carrier locations and 

the 0th (dc) sub-carrier. 

The transmitted packet is just a concatenation of the data symbols from (2.10) 

(neglecting the preamble and the header) and can be written mathematically as [10] 
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DATA Data n SYM
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r t r t nT  (2.12) 

where SYMN =  the total number of OFDM symbols transmitted, and SYMT =  the symbol 

interval ( 4 µs ). Equation (2.12) represents the signal from the OFDM transmitter. 

 

D. IEEE STANDARD 802.11G OFDM RECEIVER 

An extended rate physical layer has the capability to detect both the extended rate 

preambles and the preambles from a Standard 802.11b or Standard 802.11 compliant sys-

tem whenever a clear channel assessment is requested. Since the protection mechanism is 

not required in all cases, the extended rate physical layer must be able to detect all pre-

amble types at all times. [11] 

The general block diagram of the receiver for the OFDM physical layer is shown 

in Figure 10. For the most part, the receiver blocks are simply inverses of their counter-

parts in the transmitter. However, synchronization plays a significant role in the detection 

of the incoming packet. In addition, careful application of the inverse process is required 

in many of the receiver blocks to ensure a reproduction of the original signal. 
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Figure 10 OFDM Receiver [From Reference 10.] 

 

Upon packet detection and system synchronization, the data in the guard interval 

is removed and then the remaining data is demodulated using the FFT. The received data 

can be immediately de-mapped if hard decision decoding is used, or the FFT output can 

be used in a soft decision-decoding scheme to improve system error rate performance. 

For an excellent discussion of the effect of error correction coding, including the effects 

of soft decision decoding, see the discussion in [5]. 

De-interleaving is simply the inverse of the interleaving process, however this is 

one block that requires the incoming data stream to be synchronized in the original block 

of coded bits per OFDM symbol ( CBPSN ). This means the receiver must know exactly 

when the data stream starts, or the data will simply be jumbled by the de-interleaver. 

Prior to the decoder, the data must be de-punctured in those cases where the code 

rate was increased to accommodate increased data rates. Inserting the bits that were 

erased during the puncturing process also requires synchronization with the incoming 

data stream. Inserting the erasure bits into the wrong positions will significantly affect the 

performance of the decoder circuit. 

The convolutional decoding circuit of the receiver can use one of three possible 

methods [13]: sequential algorithms, threshold decoding algorithms, or the Viterbi decod-

ing algorithm. Sequential algorithms provide fast, but suboptimal, decoding for convolu-
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tional codes, and they are mostly used in applications where the coding constraint length 

is greater than ten. Threshold decoding algorithms use a series of parity check equations 

in a voting scheme, but are also suboptimal for convolutional codes. The Viterbi algo-

rithm is a maximum-likelihood and a maximum a posteriori decoding algorithm. Since 

the constraint length of the convolutional encoder used in the transmitter is seven, this is 

the algorithm that is used in most Standard 802.11a and Standard 802.11g receivers. A 

significant consideration when using the Viterbi decoding algorithm is the path length 

used before a decoding decision is made. The longer the path length, the more likely the 

decoding solution will merge with the correct result, but the amount of memory required 

to store the path taken and the path metrics becomes too large to be practical. In practice, 

the maximum-likelihood path can be determined in a relatively small path length          

(≤  2contraint length). [13] 

 

E. OPTIONAL STANDARD 802.11G MODES OF OPERATION 
Two of the original proposals for the Standard 802.11g that did not get adopted as 

the primary mode in the standard but were later adopted as optional modes of operation 

for the new Standard 802.11g were a design from Texas Instruments called Packet Binary 

Convolutional Code (PBCC) and a design from Intersil Corporation called direct se-

quence spread spectrum orthogonal frequency-division multiplexing (DSSS-OFDM) 

[14]. PBCC does not use orthogonal frequency-division multiplexing, and DSSS-OFDM 

uses partial OFDM. 

The basic block diagram of the PBCC modulation scheme is shown in Figure 11. 

 

 

 

 

 

 
Figure 11 PBCC Bock Diagram [From Reference 9.] 
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Texas Instruments reports a 3-dB coding gain for this configuration over the com-

peting CCK configuration. The data is passed through a 28 state (eight memory element) 

binary convolutional encoder (BCC) with a coding rate of 2 3r = . This is a change from 

the encoder used in the Standard 802.11b, which used a 26 state (six memory element) 

encoder with a coding rate of 1 2r = . The output of the convolutional encoder is mapped 

onto an 8-PSK constellation using three of the coded bits. In Standard 802.11b, the en-

coder output is mapped onto a BPSK constellation for the 5.5-Mbps data rate and a 

QPSK constellation for the 11-Mbps data rate. The mapping, however, is not constant. 

The mapping is determined pseudo randomly by the cover code, a 256-bit sequence. This 

means that there are two possible ways to map the coded data, depending on the value of 

the cover code bit, S. Figure 12 shows the two possible mappings for the 8-PSK modes. 

[11] 

 

 

 

 

 

 

Figure 12 PBCC Constellation Mapping [From Reference 11.] 

 

This mapping is used for both the 22-Mbps and the 33-Mbps data rates offered by 

the PBCC mode. The increased data rate is accomplished by changing the clock that 

drives the PBCC circuit from 11 Msymbols/s to 16.6 Msymbols/s. Since the preamble is 

sent using an 11-Mbps signal to make it backwards compatible with the Standard 802.11b 

standard, the 33-Mbps rate inserts a clock switching sequence between the preamble and 

the PSDU. This allows the clock to reset and resynchronize before receiving the data. 

[11] 

The PBCC coding scheme is very similar to using Trellis Coded Modulation 

(TCM) with interleaving. TCM also uses convolutional encoding and multidimensional 
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signal constellations to modulate a signal. Figure 13 shows a typical TCM coding 

scheme. This coding scheme matches the PBCC scheme of Figure 11 if all data inputs are 

passed through the convolutional encoder (i.e., 1kd +  through md  are all set to zero in 

Figure 13). The cover sequence in PBCC acts as a random interleaver, preventing long 

strings of similar data bits from being mapped to the same constellation symbol. [13] 

 

 

 

 

 

 

 
Figure 13 Trellis Coded Modulation Block Diagram [After Reference 13.] 

 

The intent of using DSSS-OFDM was to extend the data rates to those offered by 

OFDM while reusing the preambles associated with the Standard 802.11 and Standard 

802.11b. Since the preamble associated with the new data rate is the same preamble used 

with the old data rates, no protection mechanism to prevent transmission collisions is re-

quired and all data rates will understand the preamble without modification. The DSSS-

OFDM option uses the complementary code-keying mode of the Standard 802.11b with 

the physical layer service data unit (PSDU) packaged as a modified OFDM packet. 

Figure 14 shows the PSDU for the DSSS-OFDM option. [11] 
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Figure 14 DSSS-OFDM PSDU [From Reference 11.] 
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The long training sequence, the signal field and the data symbols are the same as 

those described in Figure 3.The signal extension is used to provide additional processing 

time (specifically the convolutional decoding) for the OFDM demodulator and is a period 

of no transmission. [11] 

The difficult part of DSSS-OFDM is the transition from a single-carrier DSSS 

system to a multiple carrier OFDM system without forcing any parameter reacquisition. 

The parameters of concern are spectrum, power, timing, frequency and phase. [11] 

Pulse shaping and windowing are used to achieve spectrum coherency. DSSS-

OFDM uses a sinc pulse and a Hanning window to approximate the spectrum of the 

OFDM signal and provide frequency coherency within the packet. Timing coherency is 

achieved by noting that the 11-MHz clock of DSSS and the 20-MHz clock of OFDM 

align at every 1 µs  boundary. This means that both sequences line up after every eleven 

DSSS data symbols and 20 OFDM symbols. Simply replacing the DSSS symbol with the 

OFDM symbol at this 1 µs  boundary achieves timing alignment. Power coherency is 

achieved by requiring the transmit power levels for both signals to be the same. The car-

rier frequency is kept coherent by using the same carrier waveform for both signal types. 

To achieve phase coherency, the phase of the first OFDM symbol must be 45 degrees 

more than the phase of the last DSSS Barker symbol. Since all Barker symbols are trans-

mitted at a phase of 45±  degrees or 135±  degrees to maximize transmitted power, the 

first OFDM symbol must be multiplied by 1±  or ,j±  respectively, to achieve the re-

quired phase. [11] 

The extension of the 802.11 standard to data rates above 20 MHz involves several 

aspects of previous 802.11 standards. Standard 802.11g brings all of these aspects to-

gether to achieve the required data rates and still maintain backwards compatibility with 

previous standards.  

With the details of the Standard 802.11g specified, the next chapter will show 

how the OFDM portion of the Standard 802.11g can be simulated in order to study opti-

mum receiver and transmitter designs. 
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III. SYSTEM VIEW SIMULATION 

A. SYSTEM VIEW SYSTEM ANALYSIS TOOL 

The software chosen for the synchronization simulation was SystemView, devel-

oped by Elanix Incorporated. SystemView is a systems analysis simulator that provides a 

graphical user interface that can potentially save significant amounts of time required to 

build and run engineering and scientific simulations. No code writing or command entry 

is required by the user to run a system simulation. An entire system can be conceived, de-

signed and tested using only the mouse. This simulation software is designed for use with 

the Microsoft Windows family of operating systems.  

The basic system building blocks are called tokens. Each token performs a spe-

cific function. SystemView allows general parameter entries for each token, allowing for 

significant flexibility in system design. In addition to the parameters allowed for each in-

dividual token, a large number of system timing parameters can be specified, allowing for 

various simulation run scenarios depending on the results of the outputs of specified to-

kens. In addition, the system includes filter design in the operator token’s linear filter 

area. 

SystemView uses two windows. The system window is where the system is de-

signed and the various tokens can be accessed. In addition to the rich library of tokens 

provided by SystemView, custom tokens can be developed using C++ or C program-

ming. The designer can simply develop a function that executes once during each cycle 

of the system clock and use that function as a token in the project design. SystemView 

also allows what it calls meta-tokens which allow the consolidation of several tokens into 

a single token. This simplifies the look of complex circuits and allows for modular design 

of complex systems. The second window is the analysis window where all the graphs and 

statistics of the data within the system can be analyzed. Analysis can be performed in the 

time and frequency domains. An analysis calculator is included which allows various cal-

culations (e.g., correlation) to be performed on the results of the data runs. 

Despite its potential for allowing quick and easy system design and analysis, Sys-

temView can be challenging to employ. The biggest problem is the limited documenta-
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tion provided. Even seasoned engineers with significant background working with prob-

lems solved by the tokens will have a difficult time understanding exactly how the token 

arrives at its final value. The equations used are often left out of the token descriptions. In 

addition, the exact effect of the input parameters on the token output is often in question. 

Only after repeated trials are many of the token characteristics mastered. This tends to de-

feat the advantages that System View could have over a programming simulation, such as 

MatLab. 

A second challenging aspect of using SystemView is tracking the clock for each 

token. The maximum clock speed is specified before running the system simulation, but 

this is only the maximum speed of any part of the system, not the clock that runs the en-

tire system. For example, if the number of output bits is greater than the number of input 

bits for a token, the system clock will speed up at that token output to get the data out in 

the same amount of time that it takes to input the data. This is a particular challenge with 

the multiplexer and de-multiplexer tokens, which place additional constraints on the 

clock speed of each of their inputs. Each token, in general, reads one data point at each 

clock cycle. However, source tokens output data at the system (maximum) clock fre-

quency and, therefore, need to be sampled in most cases to allow the proper input to fol-

low-on tokens. 

A third challenging aspect of using SystemView is the delay introduced by some 

tokens in the data flow. Some tokens will not output any data until a certain number of 

data points have been entered. A good example of this is the de-multiplexer token. The 

output is zero until all of the inputs have read in their data points. Once this is completed, 

the output is enabled. System View also inserts a one-sample delay at the output of all 

feedback loops. While some delay is natural in circuit design, the fact that not all tokens 

have a delay can make design somewhat challenging. In addition, adding a token with 

built-in delay in a circuit where the system timing is critical can have a significant effect 

on the operation of the system. 

After SystemView has been mastered, design is quick and easy. This allows a de-

tailed analysis of complicated systems in a relatively short amount of time, and it is the 

basis for the OFDM analysis used in this thesis. The final design, once developed and 
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analyzed can also be used to develop a Field Programmable Gate Array (FPGA) imple-

mentation. FPGA implementation holds the promise of rapid design, analysis and imple-

mentation of optimum designs. 

The system designed in this thesis is used to support the analysis of the different 

OFDM synchronization techniques, and it is based on a design developed by Elanix in its 

web site list of potential applications of System View as Application Note 140 [15]. The 

entire list of application notes can be view on the Elanix web site at 

http://www.elanix.com/html/products.asp. 

 

B. TRANSMITTER 
The entire SystemView transmitter circuit is shown in Figure 15. The transmitter 

simulation uses a data stream of a continuous random bit sequence to allow accurate bit 

error rate measurements on the order of 51 10−× . The number of data samples required to 

generate bit error rate curves is at least ten times the inverse of the anticipated bit error 

rate. This means that an anticipated bit error rate of 51 10−×  requires a minimum of 

( )510 1 10× ×  or 61 10×  data samples. A minimum of two system samples per clock pe-

riod are required to generate an alternating clock signal; otherwise the clock is always 

sampled at the same phase and its value never changes. This transmitter circuit uses the 

36-Mbps data rate that requires a maximum system clock frequency of 72 MHz. To de-

tect an error rate of 51 10−× , 62 10×  system samples are used. 

If the circuit is modified to send the OFDM packet on a carrier frequency of 2.5 

GHz, the maximum system clock rate will be 5 GHz. Since about one hundred forty 

( )2 2.5 GHz 36 MHz×  system clock cycles are now needed to generate one data sample, 

the number of required system samples jumps to 6140 10×  (an increase by a factor of 35). 

Since it takes roughly 4.5 minutes to run 1,000,000 (220) system sample points, it will 

take approximately 4.5 140 630× =  minutes on an Intel Pentium IV processor running at 

2.0 GHz, or 10 hours and 30 minutes to run the simulation with the signal modulated at 

the carrier frequency. This is too long to run a reasonable number of simulations, and it 

gives no additional insight. Therefore, all the simulations run in this Chapter of the thesis 
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were done at baseband. Only the baseband signal is used in the design to avoid lengthy 

run times with the higher frequencies required in the Standard 802.11g. 

 

 
Figure 15 OFDM Transmitter Circuit. 

 

1. Data Generation 
The data generation portion of the transmitter circuit is shown in Figure 16. It in-

cludes the random data generator and the service field generator, which is the portion of 

the Standard 802.11g header that performs scrambler initialization in the receiver. This 

portion of the packet header is always transmitted at the data rate, requiring it to be in-

serted at the beginning of the data. The service field MetaSystem is expanded in Figure 

17. It generates a short pulse (16 data bits long) at one output (token 180) to control the 

switch between the data generation token (token 0) and the service field generation token 

(token 173). The second output (token 181) generates the service field in accordance to 

Reference [10] consisting of sixteen zeros.  
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Figure 16 Transmitter Data Generation Circuit. 

 

 
Figure 17 Service Field MetaSystem. 

 

The parameters used to generate the pseudorandom sequence representing the 

packet data are shown in Figure 18. The data rate is set to 36 Mbps, which is the data rate 

used in both the example of Reference [10] and in the Application Note 140 from Elanix 

[15]. This data rate shows the most aspects of the OFDM portion of the Standard 802.11g 

as compared to the other possible data rates. The amplitude and offset are used to produce 

a square wave where bit zero is represented by zero volts and a bit one is represented by 
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one volt. Since this is a binary sequence, only two levels are used. Figure 19 shows the 

parameters for the sampler token (token 1).  

 

 
Figure 18 Pseudorandom Token Parameters. 

 

The sampler is required to change the clock seen by the follow-on tokens to the 

data rate of 36 Mbps. Otherwise two data bits would be entered for every one data bit 

generated, since the system clock is running at 72 MHz. The same parameters are used 

for all the samplers positioned after a source token since all sources are generated at bit 

rates equal to the system time. This can also be seen after the unit step functions of the 

service field MetaSystem. 
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Figure 19 Sampler Token Parameters. 

 

Figure 20 shows the parameters of one of the step function generators used in the 

service field MetaSystem. This step function and the step function of token 176 are com-

bined to produce a pulse of duration equal to 16 times the bit duration (i.e., output =  

(0) ( )u u τ− ). Figure 21 shows the parameters for the switch used to insert the service 

field. The switch can have up to twenty inputs; however, only two are used in this case. 

The control voltage selects which input is connected to the output. A control voltage of 

zero volts connects the service field to the output. A control voltage of one volt connects 

the random data to the output. 
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Figure 20 Step Function Parameters. 

 

 
Figure 21 Switch Token Parameters. 

 

Figure 22 shows an example of the data produced by the data generation circuit 

with each circle representing one data point. The depicted signal represents 16 service 

field bits followed by the random data bits. Note the sixteen zeros leading the random 

data. 
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Figure 22 Example Run of the Data Generation Circuit. 

 

2. Coding and Puncturing 

The coding and puncturing section of the transmitter circuit is shown in Figure 23. 

It consists of a data scrambler (token 198) to randomize the incoming data, a convolu-

tional encoder (token 7) and a puncturing circuit (token 8). The data scrambling is the re-

sult of the data exclusive or-ed (token 6) with a pseudorandom sequence produced by to-

ken 198. 
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Figure 23 Coding and Puncturing Transmitter Circuit. 

 

The pseudorandom generating MetaSystem (token 198) is shown in Figure 24. 

This circuit uses a seven-stage, 127-bit length, m-sequence generator with a random, non-

zero initialization. Even though the communications token library of System View in-

cludes a PN generator token, the m-sequence generator used in this circuit was designed 

using individual flip-flops to allow for random initialization. The PN token in the source 

library cannot be used, since the length of the sequence cannot be specified. 

The scrambler is made up of seven flip-flops from the System View logic library. 

The basic circuit design for the m-sequence generator is shown in Figure 25. This basic 

circuit is performed by tokens one through eight in the MetaSystem of Figure 24 in com-

bination with token 6 in the transmitter circuit of Figure 23. 
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Figure 24 Data Scrambler MetaSystem. 

 

 

 

 

 

Figure 25 Data Scrambler [From Reference 10.] 

 

The rest of the tokens in the MetaSystem are used to initialize the m-sequence 

generator and provide a clocking signal. MetaSystem token 16 provides an enabling sig-

nal for the initialization sequence. The step function start time is set for six clock cycles 

to allow the random sequence generated by token 15 to be shifted into the flip-flops. The 

flip-flops are initially all set to the logic one state to avoid the possibility of initializing all 
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the registers to zero. Once initialized, the AND gate (token 9) is enabled and the circuit 

works as shown in Figure 25. 

Token 17 of Figure 24 is an inverter used to enable the AND gate (token 14) for 

the random sequence intializer. Token 10 is an OR gate used to let in either the initializa-

tion sequence or the feedback from the exclusive-or gate (token 8). Since the system 

clock is at 72 MHz and the data rate is at 36 MHz, the sampler (token 11) is used to step 

the scrambler sequence down to the data rate. Token 21 is the output token to connect the 

MetaSystem to the transmitter circuit. 

Token 7 of the transmitter circuit (Figure 23) performs convolutional encoding of 

the scrambled data to support error correction in the receiver. The parameters used for 

this token are shown in Figure 26. The default encoder polynomials are automatically 

chosen by SystemView based on the coding rate (coding rate = information bits/output 

bits) and the constraint length. SystemView chooses the codes with the maximum free 

distance and, therefore, the best error performance capabilities. The polynomials can be 

changed by the user, if required. Since the encoder produces two output code bits for 

every input data bit, the data rate at the output of the encoder is 72 MHz. This illustrates 

the importance of knowing the clock rate at each point in the circuit, and it is one of the 

confusing aspects of using SystemView. Also, the encoder token inserts a two-sample de-

lay in the output of the token. 

Token 8 of the transmitter circuit (Figure 23) performs puncturing of the coded 

data bits to achieve the required code rate for the data rate being transmitted. As is shown 

in Table 3 of Chapter II, the required coding rate changes depending on the required data 

rate. This could be accomplished by using a separate encoder for each data rate, or it can 

be accomplished by using the same encoder for all data rates and then using puncturing to 

remove some of the coded bits to achieve the required coding rate. The Standard 802.11g 

specifies the later method. Specifically, the standard specifies the use of a rate 1 2r =  

encoder flowed by puncturing, if required. The parameters used for the puncturing token 

are shown in Figure 27. 
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Figure 26 Convolutional Encoder Parameters. 

 

 
Figure 27 Puncturing Parameters. 

 

As per Table 3, the required code rate is 3 4r =  which requires a value of 3N = . 

SystemView assumes the input to the puncturing token comes from a rate 1 2r =  convo-
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lutional encoder. The constraint length of this encoder is the required parameter entry. 

Note again that the number of coded input bits is different than the number of coded out-

put bits, since the token removes some of the coded bits. Since two out of every six bits 

of the input coded bit stream are removed, four out of every six coded bits remain. These 

four coded bits correspond to three input (pre-coding) bits; therefore the resulting code 

rate is 3 4r = . Therefore, the clock rate is reduced by a factor of 2 6 1 3= . The resulting 

output frequency is therefore ( ) ( )2 3 72 MHz 48 MHz× = . The Standard 802.11g speci-

fies that every fourth and fifth coded bit is discarded in every group of six coded bits to 

obtain the required 3 4r =  code rate. This token introduces a delay equal to six input 

data points at the output (i.e., the group of six inputs are read in before the group of four 

output bits are sent to the output). 

Token 9 of Figure 23 performs the interleaving process in the transmitter. The in-

put to token 9, as discussed above, is a 48-MHz unipolar encoded bit stream. The 

parameters used for this token are shown in Figure 28. The SystemView communications 

library originally only contained an interleaver capable of interleaving the 24-Mbps and 

the 36-Mbps data rates where the number of coded bits per symbol ( CBPSN ) is 192. The 

SystemView wireless library contains an interleaver token that will correctly interleave 

all Standard 802.11a and Standard 802.11g OFDM data rates. However, later updates to 

System View changed the allowed data rates of the communications library interleaver to 

include all the allowable Standard 802.11a and Standard 802.11g data rates. The circuit 

of Figure 23 uses the communications library interleaver vice the wireless library inter-

leaver. The interleaver inserts a 192-sample delay at the output. No interleaved data is 

read out until the entire block of 192 samples are read into the interleaver. 

 



45 

 
Figure 28 Interleaver Parameters. 

 

3. Constellation Mapping 
The 16-QAM constellation-mapping portion of the transmitter circuit is shown in 

Figure 29. It consists of a bit-to-symbol converter (token 10) and a QAM mapper (token 

11). 

 

 
Figure 29 Transmitter Constellation Mapping. 

 

The bit-to-symbol converter token converts a group of bits into an integer. In this 

circuit, a group of four bits is converted into integers from zero to fifteen. These integers 

are the required input for the QAM mapper token. The parameters used for this token are 

shown in Figure 30. 
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Figure 30 Transmitter Bit-to-Symbol Parameters. 

 

The bit-to-symbol converter token allows the specification of the relative signifi-

cance of the incoming bits. The requirement specified in the Standard 802.11a is that the 

first received bit is the most significant bit (MSB) and the last bit received is the least 

significant bit (LSB). Comparison to the threshold determines if the incoming bit is logic 

one (above the threshold) or logic zero (below the threshold). In this circuit, 0.5 volts is 

the threshold used. Note that this token reduces the data rate by a factor of four to 12 

MHz, and it introduces a delay of four input samples, or one output sample. The output of 

this token cannot be displayed in the analysis window as voltage levels, since the output 

is an integer, not a voltage level. Changing the sink token receiving this token’s output to 

receive numerical data will allow the output to be displayed. 

The QAM mapper (token 11) of Figure 29 maps the integers provided by the bit-

to-symbol converter (token 10) to in-phase and quadrature values specified by a mapping 

table. The parameters of the bit-to-symbol converter (token 10) are shown in Figure 30. 

The parameters used for the QAM mapper are shown in Figure 31. Since the transmitter 

circuit is using a data rate of 36 Mbps, the required QAM constellation size is sixteen, as 

specified in Table 3 in Chapter II. The required mapping is specified in Standard 802.11g 

and is shown in Table 4. 
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Figure 31 Transmitter QAM Mapper Parameters. 

 

Table 4 16-QAM Encoding Table [After Reference 10.] 
 

Input 

Symbol 

In-

Phase 

Output 

Quadrature 

Output 

Input 

Symbol 

In-

Phase 

Output 

Quadrature 

Output 

0 −3 −3 8 3 −3 

1 −3 −1 9 3 −1 

2 −3 3 10 3 3 

3 −3 1 11 3 1 

4 −1 −3 12 1 −3 

5 −1 −1 13 1 −1 

6 −1 3 14 1 3 

7 −1 1 15 1 1 

 

The file containing the mapping is specified in the parameter listing. No specific 

file format is shown in the documentation, however an example of the use of this token is 

provided in the example folder provided with the SystemView installation. It includes an 
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input file with the required format. The example table provided by SystemView was sim-

ply duplicated into the example file used in the simulation. The first line of the mapping 

file is ignored by the token and is provided as a header line. The second line of the file 

contains the number of constellation points. The third line contains labeling, and the rest 

of the lines contain the required mapping. The actual file used for this simulation is pro-

vided in Appendix A. 

The gain tokens (token 12 and 53 in Figure 29) are used to normalize the power 

between the different mappings. The normalization factor achieves the same average 

power for all constellation mappings. For 16-QAM, this normalization factor is 1 10  

which is used to multiply the amplitude of the coded data bits. 

 

4. Pilot Tone Generation 

Standard 802.11g adds pilot tones to each OFDM symbol to aid in maintaining 

the phase synchronization during the long packet transmission. If this did not occur, the 

carriers used in the OFDM symbol would slowly rotate out of phase, causing an error in 

the demodulation. The pilot tone is 250 kHz, which is added to each OFDM symbol in 

the form of pilot data spaced at an interval of 250 kHz. 

The pilot tone generation circuit is shown in Figure 32. The pilot tones are placed 

in the data stream at IFFT input indices 21n = − , 7n = − , 7n = , and 21n = , with unity 

IFFT input value for indices 21, 7,n = − −  and 7 and minus one for 21n = . [10] 

 
Figure 32 Transmitter Pilot Tone Generation Circuit. 

 

To avoid the formation of spectral lines, the pilot symbol polarity is scrambled by 

the same pseudorandom sequence used to scramble the data. In this case, however, one 
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chip of the m-sequence scrambles all the pilot tone sequence values used in same OFDM 

symbol making the four pilot tone inputs to the IFFT (1,1,1 1− ) or ( 1, 1, 1,1)− − − . Since the 

pilot sub-carriers are all ones (except the last one which is a minus one), the pilot tone 

sub-carriers can be generated with the random number generator at the symbol rate. The 

symbol interval specified by Standard 802.11g is 4 µsT = , making the OFDM symbol 

rate 250 kHzf = . Token 62 of Figure 32 is a 250-kHz square wave clock for the PN se-

quence generator (token 63). Token 63 is a seven-stage shift register m-sequence genera-

tor, the same one as used in the data scrambler. The parameters used for token 63 are 

shown in Figure 33. 

 

 
Figure 33 Transmitter PN Sequence Generator Parameters. 

 

Note that the data produced is bipolar, non-return to zero with a true output at one 

volt and a false output at negative one volt. The clock is a square wave at 1±  volt, allow-

ing the clock threshold to be set at zero volts. The register taps come at the output of reg-

ister four and register seven, as they did in the data scrambler. 

The sampler (token 64) is used to bring the data rate down from the system rate of 

72 MHz to the required rate of 250 kHz. The last of the four pilot sub-carriers is negated, 



50 

and all the sub-carriers are then multiplexed into the OFDM symbol. The pilot sub-carrier 

values for the in-phase and quadrature inputs to the IFFT are equal. 

 

5. OFDM Symbol Formation 
The OFDM symbols are formed by de-multiplexing the data symbols from the 

QAM mapper, inserting the pilot sub-carriers and the required zero sub-carriers to obtain 

a 64 sub-carrier OFDM symbol, and then multiplexing all the data together to input to the 

Inverse Fast Fourier Transformer (IFFT) used to modulate the data. The transmitter 

OFDM symbol formation circuit for the in-phase data is shown in Figure 34. An identical 

circuit is used for the quadrature data. 

 

 
Figure 34 Transmitter OFDM Symbol Formation Circuit. 

 

Standard 802.11g requires fifty-three data and pilot sub-carriers into the IFFT as 

shown in Table 5. Zeros are added on either side of the required sub-carrier allocation to 

make the IFFT symbol a full sixty-four sub-carriers long. Tokens 58 – 61 from Figure 34 
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insert these zeros into the data stream. Token 58 is a unit step function of zero and is the 

source of the zero sub-carriers. 

 

Table 5 Sub-Carrier Frequency Allocation [After Reference 10.] 
 

Sub-

carrier 

Index 

-32 -31 … -27 -26 -25 … -22 -21 -20 -19 … -8 -7 -6 -6 … -1 0 

Sub-

carrier 

value 

0 0 0 0 d0 d1 … d4 P0 d5 d6 … d17 P1 d18 d19 … d23 0 

Sub-

carrier 

Index 

0 1 2 … 6 7 8 … 20 21 22 … 25 26 27 28 29 30 31 

Sub-

carrier 

value 

0 d24 d25 … d29 P2 d30 … d42 P3 d43 … d46 d47 0 0 0 0 0 

 

Sampler token 59 is used to produce the six zeros required before the beginning of 

the data stream. The parameters used are shown in Figure 35. The sample rate specified 

for the sampler is the rate required by the multiplexer to insert six out of sixty-four inputs 

at the symbol rate of 250 kHz. Since 6 250 kHz 1.5 MHz× = , the required data rate into 

the multiplexer is 1.5 MHz. 

The other required zeros are produced in the same manner. Sampler token 60 is 

used to insert the one zero at the carrier frequency (zero sub-carrier), and sampler token 

61 is used to insert five zeros after the data sequence at a frequency of 5 250 kHz× =  

1.25 MHz . 
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Figure 35 Transmitter Zero Insertion Sampler Token Parameters. 

 

The de-multiplexer (token 13) is used to separate the data into the sequences 

specified in Table 5. The parameters used are shown in Figure 36. 

The coded data symbols are split up into six segments as specified in Standard 

802.11g. The slot boundary offset input parameter for the de-multiplexing token is used 

to start the de-multiplexing after a certain number of received data samples. In this cir-

cuit, the slot boundary is left at the default value of zero. As mentioned before, the de-

multiplexer token introduces a delay equal to the number of input samples, and it changes 

the data rate of the samples at each one of its outputs. The output rate is given by 

 # of input samplesRate .
Total Frame Duration

=  (3.1) 

For the first segment of data ( 0 4d d− ), the number of samples specified for the token in-

put is five, and the total frame length is ( )648 12 10 4 µs× = . Equation (3.1) gives us a 

data rate of ( )65 4 10 1.25 MHz−× =  for the first output of the de-multiplexer. The other 

output data rates can be calculated in the same manner. 
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Figure 36 Transmitter De-Multiplexer Parameters. 

 

The general multiplexer (token 14) is used to put the entire OFDM symbol to-

gether. The parameters of this token are shown in Figure 37. A total of thirteen inputs are 

multiplexed together to form the OFDM symbol. With all the inputs coming in at differ-

ent rates, it is easy to get the incorrect data rates and cause an error during execution of 

the system. Although not specifically written in the documentation for SystemView, the 

incoming data must satisfy (3.1) and the following equivalent rate 

 # of input samplesRate .
Total Samples  Output Rate

=
∗

 (3.2) 
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Figure 37 Transmitter Multiplexer Parameters. 

 

Equation (3.2) is the easier one to use in this case since we know that the required 

output data rate must be ( )664 4 10 16 MHz−× = . The input rates can then be checked to 

ensure they meet the requirements of (3.2). Note that the data rate changed from 12 MHz 

at the input to the de-multiplexer and multiplexer portion of the circuit to 16 MHz at the 

output. The multiplexer also delays the samples by the time required to gather all the in-

puts. 

 

6. IFFT Modulation 
The IFFT modulation of the coded data is shown in Figure 38. The data is modu-

lated with an IFFT of the OFDM modulator (token 17). This token takes the IFFT of the 
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sixty-four data points and cyclically extends it by the required guard interval. The cyclic 

extension is placed at the beginning of the sixty-four-point output, as required by Stan-

dard 802.11g. The inputs are the complex coded data symbols, and the outputs are com-

plex also, requiring real and imaginary data streams. 

 

 
Figure 38 Transmitter IFFT Modulation Circuit. 

 

The parameters used in the OFDM modulator token are shown in Figure 39. The 

symbol time and the guard interval are specified by Standard 802.11g [11]. The token has 

sixty-four inputs and 64 16 80+ =  outputs in the symbol interval of 4 µs.  This gives an 

output data rate of ( )680 4 10 20 MHz−× = . However, since the token output is not ex-

actly as required by Standard 802.11g, corrections to the output data stream are made 

during the windowing process following the modulation. 

The remainder of the tokens used in the IFFT modulation portion of the circuit are 

required to zero the output during the transmission of the preamble and header of the 

OFDM packet. The unit step function (token 70) is used to enable the multiplexer output 

after the transmission of the header and preamble. The time to transmit the short training 

symbols is 8 µs  and the time to transmit the long training symbols is also 8 µs  for a total 
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of 16 µs  per Standard 802.11g [11]. The unit step function is enabled at 12 µs , account-

ing for the 4 µs  delay of the OFDM modulator token. The unit step function is changed 

to the required data rate of 16 MHz and multiplies the output from the multiplexer as a 

window for the outgoing data stream. The signal into the OFDM token is divided by the 

number of data points, 64N = , by the gain tokens (tokens 16 and 57) to match the test 

data output used for comparison in Appendix G of Reference 10. The normalization is 

not required by Standard 802.11g but is customary in the applications using the IFFT and 

FFT. 

 

 
Figure 39 OFDM Modulator Parameters. 

 

 

7. Preamble and Header Generation 

The preamble and header portions of the transmitter circuit are shown in Figure 

40. The generation of the short and long training symbols is done with the MetaSystem 

token 84. This is added to the windowed OFDM data symbols to produce the OFDM 

packet. Tokens 18 and 43 window the in-phase and quadrature signals, respectively. 
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Figure 40 OFDM Preamble and Header Generation Circuit. 

 

The token 84 MetaSystem is shown in Figure 41. The preamble consisting of the 

long and short training symbols is formed by the MetaSystem token 0. The header con-

sisting of the signal field is formed by the MetaSystem token 240. The service field por-

tion of the header is formed and modulated with the data. These two data fields are sim-

ply added together to form the preamble and the header. Since the output is formed with 

quadrature and in-phase data, two channels are required. 

 

 
Figure 41 Packet Preamble and Header Generation Circuit. 

 

The preamble MetaSystem (token 0) is shown in Figure 42. The MetaSystem of 

token 185 forms the short training symbols, and the MetaSystem of token 204 forms the 
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long training symbols. Since the short training symbols are transmitted first in the packet, 

the start of the long training symbols must be delayed by 8 µs , the length of the short 

training symbols. Again, two channels are used to form training symbols for both the 

quadrature and in-phase data streams. The parameters for the sample delay (token 234) 

are shown in Figure 43. The parameters for token 235 are the same. The sample delay is 

not equal to the total length of the short training symbols, since the long training symbols 

take longer to generate. The sample delay was adjusted until the last short training sym-

bol overlapped with the first long training symbol, in this case 144 samples. 

 

 
Figure 42 Preamble Generation Circuit. 

 

The short training symbol generation circuit is shown in Figure 44. The short 

training symbols are generated by the short training sequence given by S =  {0, 0, 1+ j , 

0, 0, 0, − 1 j− , 0, 0, 0, 1+ j , 0, 0, 0, 1 j− − , 0, 0, 0, 1 j− − , 0, 0, 0, 1+ j , 0, 0, 0, 0, 0, 0, 

0, 1 j− − , 0, 0, 0, 1 j− − , 0, 0, 0, 1+ j , 0, 0, 0, 1+ j , 0, 0, 0, 1+ j , 0, 0, 0, 1+ j , 0, 0}. 

This sequence is formed by an impulse function (token 0) and linear filter (token 2) with 

an impulse response equal to the required data sequence. 
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Figure 43 Transmitter Sample Delay Parameters. 

 

The parameters for the impulse source (token 0) are shown in Figure 45. The pa-

rameters for the linear filter (token 2) are shown in Figure 46. The impulse source token 

generates a single pulse of width equal to the system clock period and amplitude of the 

inverse of the system clock period, producing a pulse with unit area. This pulse is attenu-

ated to unit amplitude by the gain input parameter. The linear filter produces the 64 in-

puts for the OFDM modulator (token 13). Since the real and imaginary input values to the 

modulator are the same, one filter can drive both inputs. The desired values are simply 

entered as the numerator z-coefficients of the desired impulse response. Although not re-

alistic in practice to generate, it provides a quick and easy way to generate a desired se-

quence. This could be implemented in a real circuit with a ROM chip that has the re-

quired sequence stored in memory. Since the purpose of this thesis is to test different re-

ceiver designs, the transmitter just needs to generate the required signal, not be built us-

ing real circuit components. 
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Figure 44 Short Training Sequence Generator Circuit. 

 

The output of the linear filter is normalized by dividing by 64N =  with the gain 

token 3, the number of data points used in the IFFT of the OFDM modulator (token 13). 

The remainder of the short symbol circuit is used to window the short symbol and over-

come a bug in the OFDM modulator token that prevents cyclically extending the output 

beyond half the IFFT length. Tokens 17 19−  are used to produce the required window in 

the same way that the short sequence was generated by tokens zero through two. The 

window in this case multiplies the first and last data points by 0.5 and does not affect the 

other data points. This is the recommended windowing to limit the spectrum of the 

transmitted signal. Tokens 5, 6 and 15 for the in-phase data and 9, 10, and 16 for the 

quadrature data piece together the entire short data symbol. 
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Figure 45 Short Symbol Impulse Parameters. 

 

 
Figure 46 Short Training Symbol Linear Filter Parameters. 
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The OFDM modulator (token 13) parameters are shown in Figure 47. No guard 

interval is specified, since cutting and pasting the output of the token form the required 

symbol. The output is added to a sixty-four-sample delay of the output (token 15), which 

is added to a 128-sample delay (token 5). The output of the adder is the cyclic repetition 

of the OFDM modulator output extended over three periods. Since only two and one-half 

periods are required, the result is windowed to provide the desired signal. The window 

size is 161 samples, and the required short symbol preamble is shown in Figure 48. Note 

that there is a delay of 4 µs  before the output of the short symbol due to the inherent de-

lay of the OFDM modulator token. The output of the short training symbol MetaSystem 

matches the short symbol data generated in Table G.4 of Reference 10. 

 

 
Figure 47 Short Symbol OFDM Modulator Parameters. 
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Figure 48 Short Symbol Training (In-Phase Data). 

 

The long training symbol MetaSystem, token 204 of Figure 42, is shown in Figure 

49. It is generated in the same manner as the short training symbol: an impulse drives a 

linear filter with an impulse response equal to the desired training sequence. 

The long training sequence is given by L =  {1, 1, − 1, − 1, 1, 1, − 1, 1, − 1, 1, 1, 

1, 1, 1, 1, − 1, −1, 1, 1, − 1, 1, − 1, 1, 1, 1, 1, 0, 1, − 1, − 1, 1, 1, − 1, 1, − 1, 1, − 1, − 1, 

− 1, − 1, − 1, 1, 1, − 1, − 1, 1, − 1, 1, − 1, 1, 1, 1, 1}. Note that the values are all real, 

requiring a zero imaginary value input to the OFDM modulator token. These values are 

produced by the linear filter (token 2) of Figure 49, normalized by dividing by 64N = , 

and fed into the real input of the OFDM modulator. The parameters used for this OFDM 

modulator (token 4) are shown in Figure 50. The data leaving the OFDM modulator has 

the correct guard interval of 1.6 µs , but only half ( 3.2 µs ) of the long training symbol. 

The tokens forming the inputs of the adders (tokens 7 and 12) of Figure 49 cut and paste 

the OFDM modulator output to obtain the required long training symbol. The step func-

tions (tokens 20 and 26) are used to filter out unwanted data form the output of the modu-

lator. The sample delays (tokens 6, 11, 16, and 18) delay by 64 and 128 samples to place 

the data in the required position. The remainder of the tokens in Figure 49 window the 
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output as was accomplished in the short training symbol generation circuit. The resulting 

long training symbol is shown in Figure 51. 

 

 
Figure 49 Long Training Symbol Generation Circuit. 
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Figure 50 Long Training Symbol OFDM Modulator Parameters. 

 

 
Figure 51 Long Training Symbol (In-Phase Data). 

 

This data output from the long training symbol generation circuit matches the 

long training symbol generated in Table G.6 of Reference [10]. 
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The signal field MetaSystem (token 240) of Figure 41 is shown in Figure 52 and 

is similar in structure to the transmitter circuit of Figure 15. This is due to the fact that the 

header is transmitted using the 6-Mbps data rate. Since the rest of the OFDM packet is 

sent using the 36-Mbps data rate, a separate circuit must be used to support the generation 

of the header. 

 

 
Figure 52 Signal Field Generation Circuit. 

 

The service field format is shown in Figure 53. With the rate for this circuit cho-

sen as 36 Mbps, the length chosen as the maximum of 4095 octets, the parity bit is cho-

sen to obtain even parity, and the tail bits are used to reset the transmitter circuit, the sig-

nal field sequence is S =  {1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 

[10]. This sequence is produced in the same manner as the required sequences for the 

short and long training symbols with the unit impulse source, the sampler, and the linear 

filter combination (tokens 0, 1, and 2 of Figure 52). The sequence is encoded with the 

same rate 1 2r =  convolutional encoder as is used in the transmitter circuit of Figure 15. 

Since the data rate is 6 Mbps, the coding rate out of the encoder is at the required coding 

rate of Table 3 and no puncturing is required. The interleaver (token 4) is not the same 
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one as used in the transmitter circuit, since the number of coded bits per symbol is 

48CBPSN =  for the 6-Mbps data rate, and the Standard 802.11g interleaver was originally 

designed to work only with the 36-Mbps data rate. For the 6-Mbps data rate only the first 

stage of the Standard 802.11g interleaver is required, which is a straightforward block in-

terleaver. The parameters for this interleaver are shown in Figure 54. Sixteen columns is 

the required block length per Reference [10], and since 48CBPSN = , then this results in 

48 16 3=  rows used in the interleaver. 

 
Rate  
4 bits 

Reserved 
1 bit 

Length 
12 bits 

Parity 
1 bit 

Tail  
6 bits 

 
Figure 53 Service Field Format. 

 

 
Figure 54 Signal Field Interleaver Parameters. 

 

After interleaving, the data is binary phase-shift keying (BPSK) modulated by the 

polynomial token (token 5). The parameters for this token are shown in Figure 55. This 

token does a linear shift of the one and zero volt inputs to produce a one and minus one 

output. The parameters specify the equation 2 1output input= × − . 
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Figure 55 Signal Field BPSK Modulator Parameters. 

 

After BPSK modulation, the pilot symbols and zeros are added to obtain sixty-

four inputs for the IFFT operation of token 10 in the same manner as the transmitter cir-

cuit of Figure 15. The output of the IFFT is then windowed in the same fashion as the 

transmitter circuit. 

Tokens 18 and 43 of the transmitter circuit of Figure 15 are used to window each 

OFDM data symbol generated by the transmitter. Since this windowing process must oc-

cur on a continuous basis, the one time windowing used in the preamble and header gen-

eration will not work and a different technique of windowing is needed. Both windowing 

tokens are identical. The MetaSystem of token 18 is shown in Figure 56. 

The window function is [10] 

 
1       1 79

[ ] 0.5    0, 80.
0      otherwise

T

n
w n n n

≤ ≤
= = =



 (3.3) 

The last ( 80n = ) data point of (3.3) is added to the first ( 0n = ) data point of the next 

symbol. 
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Figure 56 OFDM Data Symbol Windowing Circuit. 

 

The de-multiplexer (token 4) parameters are shown in Figure 57. This de-

multiplexing allows the first number of the OFDM symbol sequence, representing the 

first value in the guard interval, and the first value of the original IFFT without extension 

to be removed from the data stream and modified for windowing. 

The first bit in the OFDM symbol sequence is multiplied by 0.5,  as shown in 

(3.3), by the gain token. This value is added to the last value of the previous symbol by 

delaying the de-multiplexer output two by 4 µs  (the length of one OFDM symbol) and 

dividing it by two. The composite signal is then recombined by the multiplexer (token 8). 

This windowing technique also modifies the OFDM modulator token output so it 

produces the correct Standard 802.11g OFDM symbol. In effect, it takes the first data 

point after the guard interval and puts a copy of it at the end of the symbol. This produces 

a total of 81 ( 0n =  to 80n = ) data points, and follows the packet formation example in 

Appendix G of Reference [10]. The first and last data points of the sample are multiplied 

by 0.5 and added to the previous and subsequent OFDM symbols. 
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Figure 57 Transmitter OFDM Data Symbol Windowing De-multiplexer Parameters. 

 

An example output of the transmitter is shown in Figure 58. It shows the short and 

long training sequences and the first data OFDM symbol. This is the in-phase data from 

the output of the transmitter. The output has a delay of one OFDM symbol ( 4 µs ) that is 

due to the inherent delay of the OFDM modulator used in the generation of the short 

training symbol. 
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Figure 58 Transmitter Output. 

 

C. RECEIVER 

The basic OFDM receiver used in this thesis is shown in Figure 59. Since no syn-

chronization circuitry is required, the design is relatively simple. 

The basic functions of the receiver are OFDM demodulation, stripping off the 

header information, de-modulating the 16-QAM symbols, de-interleaving, de-puncturing, 

and decoding the received signal to recover the original scrambled data bits. This signal 

is then descrambled and the output is compared to the generated data input to obtain a bit 

error rate (BER). With no noise input into the system, this receiver combined with the 

OFDM transmitter of Section B produces no bit errors, validating the proper demodula-

tion of the OFDM data. Several system runs using 220 samples, able to detect bit error 

rates of 510− , returned no errors. Additional runs at 224 samples and 227 samples, able to 

detect bit error rates of 10-6 and 10-7 were also run with no errors in the system. 
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Figure 59 OFDM Basic Receiver Circuit. 

 

1. FFT Demodulation 

The OFDM demodulator (token 26) parameters are shown in Figure 60. The 

24-µs  input delay strips off the 4-µs  transmitter delay, the short training symbol (8 µs ), 

the long training symbol (8 µs ), and the OFDM symbol containing the signal data 

( 4 µs ). The OFDM demodulator strips off the data contained in the guard interval of the 

received data and performs an FFT on the remaining 64 data points. The output clock 



73 

frequency is reduced by a factor of 64 80 4 5=  due to the number of input data points 

being equal to 80 and the number of output data points being equal to 64. Since the input 

frequency is 20 MHz, the token output frequency is ( )4 5 20 MHz 16 MHz× = . The out-

put is delayed by another 4 µs  while the input data is being read into the token. 

 

 
Figure 60 OFDM Demodulator Parameters. 

 

2. Data Extraction 

The circuit of Figure 61 performs the removal of the extra zeros and the pilot 

tones. The de-multiplexer divides the data up into the thirteen segments used in the 

transmitter’s multiplexer to divide the incoming data stream into the desired data bits and 

the undesired zeros and pilot tones. The five segments from the de-mulitplexer that con-

tain the desired data are fed into the multiplexer. The other outputs from the de-

multiplexer are not used. This is the reverse process performed by the multiplexer and de-

mulitplexer in the transmitter. 
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Figure 61 Receiver Data Extraction Circuit. 

 

3. Hard Decision Demodulation 
The demodulation section of the receiver is shown in Figure 62. 

 

 
Figure 62 Receiver Data Demodulation Circuit. 

 

Demodulation consists of mapping the in-phase and quadrature data onto the con-

stellation provided by an input file, in this case the same one used in the transmitter cir-

cuit shown in the Appendix A. The parameters used in the QAM de-mapper are shown in 
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Figure 63. Since the 36-Mbps data rate uses 16-QAM modulation, the constellation size 

is 16. The output of the QAM de-mapper is an integer corresponding to the closest I and 

Q in the constellation.  

 

 
Figure 63 Receiver QAM De-Mapper Parameters. 

 

The symbol-to-bit converter (token 31) takes the integer provided by the de-

mapper and converts it to a stream of four bits. The parameters for the converter are 

shown in Figure 64. The ordering of the bits is as specified in Reference [10]. 
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Figure 64 Receiver Symbol-to-Bit Converter Parameters. 

 

4. De-Interleaving and De-Puncturing 

Once the incoming data has been converted back to binary digits, the interleaving 

and puncturing operations performed in the transmitter must be reversed. Figure 65 

shows the circuit used to perform this process. The first operation preformed is the de-

interleaving by token 33. Since this token begins de-interleaving upon commencement of 

the data run, a sample delay token must be used to ensure the received data enters the de-

interleaver at the beginning of a 192 sample de-interleaving process. To compute the re-

quired delay, the individual delays from each token can be calculated, or the cross-

correlation of the interleaver output and the de-interleaver input can be performed. The 

sample delay with the greatest correlation will be the required sample delay at the input 

to the de-interleaver. Performing this operation on this circuit results in a maximum cor-

relation at 1156 samples. Since 1156 6 192 4= × + , the de-interleaver input is delayed by 

192 4 188− =  samples. This means the data will reach the input of the de-interleaver at 

the start of the seventh de-interleaving cycle. Any change in the signal path between the 

interleaver and de-interleaver will require a recalculation of this delay. 
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Figure 65 De-Coding and De-Puncturing Circuit. 

 

One the data has been de-interleaved, it must be scaled to allow the de-puncture 

operation to insert a zero (or null value) wherever data was removed from during the 

puncturing operation. The equation used in the polynomial token is 2 1output input= × − , 

the same as was used for BPSK modulation of the signal field in the transmitter. 

The parameters used in de-puncturing (token 35) are shown in Figure 66. The pa-

rameters are the same as entered for the puncturing operation, except the input delay. In 

order to decode correctly, the punctured data points must be inserted into the correct posi-

tions in the data stream. In this circuit, the input delay was also used to zero out the noise 

produced from the QAM demodulation process. With zero input, QAM demodulation 

produces an alternating output. To ensure the decoder started in the zero state when the 

data first reaches it, the de-puncturing is delayed until the first data arrives (coded zeros). 

Doing this, however, can make placing the inserted bits tricky. It could also be ignored, 

since enough bits are used in the transmitter to zero out the decoder prior to real data ar-

riving by design. However, this circuit was designed to produce a zero output from the 

decoder until the data arrives. 
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Figure 66 De-Puncture Parameters. 

 

5. Viterbi Decoding 

The decoding process uses a soft decision Viterbi decoder. The soft decision de-

coding allows the insert bits from the de-puncture operation to be weighted at a value of 

something other than a zero or one. However, the complete decoding process is hard de-

cision, since the value of the input symbol has already been evaluated during the QAM 

de-mapping process of token 30. The circuit used for decoding and de-scrambling the 

data is shown in Figure 67. 

The parameters for the decoder (token 36) are shown in Figure 68. For the most 

part, the parameters are the same as the convolutional encoder used in the transmitter cir-

cuit. The path length chosen is the same used in Reference [15]. Although for this circuit, 

with no channel or system noise, a path length of one worked just as well. With channel 

noise, the best path length would be 28 ( )4 7× . The parameters chosen for the soft deci-

sion decoding follow those recommended in Reference 15. 
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Figure 67 Decoding and De-scrambling Circuit. 

 

 
Figure 68 Decoder Parameters. 
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The offset is used to zero the output until the transmitted data is received. A corre-

lation between the convolutional encoder output and the decoder input was used to calcu-

late the sample delay required.  

The descrambler is shown in Figure 69. The descrambler is the same basic circuit 

as was used in the scrambler in the transmitter circuit. The same seven-stage m-sequence 

generating circuit is used. The difference is that the data from the decoder is run through 

the flip-flops until the seven bits from the service field are entered as an initialization for 

the sequence. The step function then turns off the data input from the decoder and the m-

sequence generator runs on its own, decoding the incoming data by exclusive-oring the 

sequence with the received data. 

 

 
Figure 69 Data De-Scrambling Circuit. 

 

D. BIT ERROR RATE CALCULATIONS 
The circuit to calculate the bit error rate in the receiver is shown in Figure 70. To-

ken 4 is the bit error rate counter token from the communications library. It takes two in-

puts and compares binary values over a certain number of trials. The parameters for the 

BER token are shown in Figure 71. The number of trial bits is set to one so that bits are 
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compared one by one. The threshold is the value that separates logic one from logic zero. 

The offset is used to ignore initial data, which is set to zero in this case. The sample delay 

token is used to delay the original data the same amount as the receiver and transmitter 

circuit so that initial data bits transmitted are compared with initial data bits received. As 

in the de-puncture and de-interleave operations, the easiest way to obtain this value is to 

use the sink calculator in the System View Analysis window to calculate the correlation 

between the data output from the PN generator in the transmitter and the data output from 

the decoder in the receiver. The time delay of maximum correlation is the desired sample 

value. The value obtained in this circuit was 1607 samples. 

 

 
Figure 70 Bit Error Rate Calculation. 
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Figure 71 Bit Error Rate Parameters. 

 

Although the receiver presented in this section is very basic, it serves as a basis 

for building receiver circuits that will optimize synchronization of an OFDM signal. 

Small modifications of the receiver are made to accommodate the various synchroniza-

tion techniques. 
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IV. OFDM SYNCHRONIZATION 

There are many aspects to synchronizing the receiver with the transmitted signal 

in an OFDM system. In addition, in a connectionless, packet-switched communications 

system such as Standard 802.11g compliant systems, the receiver has very little time to 

synchronize with the transmitter. Even with a packet length of 4096 bytes, the maximum 

allowed, the entire packet could be at most 627 µs  at a data rate of 54 Mbps. The pream-

ble and the header are a total of 20 µs,  leaving little time to achieve synchronization be-

fore the start of the data. Since the header contains information required for proper de-

modulation of the OFDM signal, synchronization must be accomplished in the time allot-

ted for the long and short training sequences, which is 16 µs.  Once synchronization is 

achieved, it must be maintained over the duration of the OFDM symbol. If the channel 

characteristics change significantly during the transmission of the packet, synchronization 

and the data can be lost, resulting in retransmission and an overall slower throughput. 

The synchronization of the OFDM signal is broken down into four different steps. 

The first is packet detection, or the ability of the receiver to detect all the incoming pack-

ets and reject all the spurious signals caused by noise or other communications operating 

in the same frequency band. The second is received frequency synchronization, or ensur-

ing that the receiver local oscillator frequency is the same as the carrier frequency of the 

received signal. The third is the carrier phase-offset synchronization, or ensuring that the 

receiver local oscillator phase is the same as the carrier phase of the received signal. The 

last is OFDM symbol synchronization, or the sampling of the data symbols at the correct 

time and entering the correct data into the FFT to demodulate the OFDM signal, which 

includes synchronizing the data clocks between the receiver and transmitter. 

The communication signals that follow the 802.11 wireless standards contain sev-

eral segments meant to enhance and aid synchronization. In particular, Standard 802.11g 

uses the short and long training symbols for synchronization as illustrated in Figure 72. 
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Short Training Symbols Long Training Symbols Signal Service Data 

Figure 72 OFDM Training Structure [After Reference 10.] 

 

The first six or seven short training symbols are intended to be used for the 

OFDM packet detection, setting the automatic gain control, and diversity antenna selec-

tion. The last three or four short training symbols are intended for coarse frequency esti-

mation and initial timing synchronization. This coarse estimation is required by the re-

ceiver to perform small corrections without losing synchronization with the long training 

symbols. In addition to the long and short training symbols, the OFDM packet contains a 

pilot tone sequence interspersed with the data to maintain synchronization during the 

packet reception. [10] 

There are many methods used to synchronize with OFDM signals, depending on 

the signal characteristics and the channel characteristics. Here we examine the optimum 

synchronization based on a channel model subject to additive white Gaussian noise 

(AWGN). The fundamentally different characteristics of an OFDM signal compared to a 

single-carrier signal make synchronization with OFDM signals a difficult problem. 

 

A. PACKET DETECTION 

The detection of an incoming packet in the presence of noise in the transmitting 

channel can be optimized by using binary hypothesis testing [16]. Hypothesis zero is 

when the input to the receiver is noise only. Hypothesis one is when the input to the re-

ceiver is a Standard 802.11g packet plus noise. It is assumed that the noise is AWGN. 

Mathematically this can be represented as 

 0
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where 0H  is hypothesis zero, 1H  is hypothesis one, ( )r t  is the received signal, ( )s t  is 

the transmitted signal, and ( )n t  is the noise. 

The goal is to maximize the probability that the signal is detected in the presence 

of noise, and to minimize the probability that the receiver falsely detects noise only as a 

transmitted signal. Unfortunately both of these probabilities cannot be optimized simulta-

neously. If the decision threshold is changed to improve the probability of detecting a 

signal when present then the probability of false alarm also increases. The converse is 

also true. This can be seen graphically in Figure 73 using AWGN as the noise in the 

channel. 

 

 
Figure 73 Probabilities of False Alarm and Detection in an AWGN Channel. 

 

The curve on the left, ( ) ,of r  or the probability density function of the input ( )r t  

given hypothesis 0H , is shown as a Gaussian distributed, zero mean signal. It describes 

the input at the receiver under hypothesis 0H , when only the channel noise is present. 
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The curve on the right, ( )1 ,f r  or the probability density function of the input ( )r t  given 

hypothesis 1H , is shown as a Gaussian distributed signal with an arbitrary mean value of 

six which separates the two curves enough to demonstrate the tradeoffs made when se-

lecting a receiver threshold. It represents the input at the receiver under hypothesis 1H , 

when the signal and the noise are present. The parameter ( )r t  represents the decision 

statistic at the receiver, and the parameter Tγ  represents the threshold between the re-

ceiver declaring that the receiver input represents noise only (hypothesis 0H ) or signal 

and noise (hypothesis 1H ). If the receiver detects a decision statistic below ,Tγ  it decides 

that no signal is present and does not start the detection and demodulation process. If the 

decision statistic exceeds Tγ , the receiver assumes that a signal is present at the input and 

commences with detection and demodulation. If the decision statistic exceeds Tγ  because 

of the noise level, but no signal was transmitted, then a false alarm results. The area un-

der the blue curve to the right of the threshold Tγ  represents the probability of this occur-

ring. If we increase the threshold ,Tγ  then the probability of false alarm is reduced as de-

sired. However, the area under the red curve to the right of the threshold ,Tγ  representing 

the probability of signal detection when a signal is present, is also reduced. Increasing the 

threshold reduces the probability of false alarm, but also reduces the probability of detect-

ing a signal when it is present. [16] 

Likewise, the probability of detection can be increased at the expense of increas-

ing the probability of a false alarm. This minimizes transmission interruptions due to the 

signal not being detected. The receiver can quickly recognize the false alarms if the an-

ticipated training sequences are not received. The false alarms do not affect data trans-

mission as long as the receiver can recognize a false alarm before the next packet is re-

ceived. In Standard 802.11g compliant systems, the minimum spacing between packets, 

or the short interframe spacing interval (SIFS), is 16 µs.  This is the length of the short 

and long training symbols. Therefore, if the receiver realizes that the signal it is trying to 

process is a false alarm before a time interval of 16 µs  has passed, the chance of a packet 
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being transmitted during this interframe spacing will be minimized and packets missed 

due to the receiver being busy processing the false alarm will be reduced. 

 

1. Optimum Packet Detection in AWGN 

The optimum threshold is found by choosing a value such that hypothesis 1H  is 

chosen when the probability of hypothesis 1H  is greater than hypothesis 0H  given a de-

cision statistic mr  [16]. Mathematically, this is expressed as 

 ( ) ( )

1

1 0

0

Pr | Pr |m m
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H r H r
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 (4.2) 

where mr  is the decision statistic at time t m= . Using the definition of probability and 

the probability distribution function of mr  under 0H  as ( )0 mf r  and the probability distri-

bution function of mr  under 1H  as ( )1 mf r , Reference [16] shows that (4.2) can be repre-

sented as 
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where λ  is the required threshold and ( )mrΛ  is the likelihood ratio.  

The optimum value for the threshold of (4.3) depends on the criteria, or definition 

of optimum, used. Since in this case the concern is the detection of an incoming packet, 

the Neyman-Pearson criteria [16] is used. In the Neyman-Pearson criteria, the threshold 

λ  is determined by the false alarm or detection probabilities. The probability of detection 

is defined as  

  1( )
T

D m mP f r dr
γ

∞
= ∫  (4.4) 

where Tγ  is the desired threshold. 
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Note that λ  and Tγ  are not necessarily equal. The decision is based on comparing 

the likelihood ratio to λ , or equivalently comparing mr  to Tγ . 

If we assume that the noise is AWGN with a mean value of zero and a variance of 
2
nσ  and channel fading is negligible, then 1( )mf r  is Gaussian distributed with a mean 

value offset by the value of ( ) ms t m s= = , and the variance remains unchanged. This 

means 1( )mf r  is given by 
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where ms  is the value of ( )s t m= . The probability density function under hypothesis 0H  

is the same as that for the AWGN and is given by 
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The likelihood ratio, or the ratio of the two density functions, is given by 
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Taking the log of both sides and simplifying, we get 
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Inserting (4.8) into inequality (4.3) and solving for ,mr  we obtain 
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Inequality (4.9) specifically shows that the threshold chosen for the decision statistic mr  

is not the same as λ . If we let ( ) ( )2 ln 2 ,T n m ms sγ σ λ= +  then (4.9) reduces to 
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Since the probability distribution of the received signal is known under both hy-

potheses, Tγ  of (4.10) can be determined by specifying the desired probability of false 

alarm or the probability of detection. Using (4.4) to solve for the threshold ,Tγ  we get 
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where ( )Q x  is known as the Q-function and is defined as ( ) ( )  
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Note that the probability of false alarm is defined as 
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Combining (4.12) and (4.11), we have 
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 (4.13) 

Assuming the AWGN is zero mean and variance of 2 0.1nσ =  and that the desired 

DP  is 0.9, we get a threshold of 0.40526 0.5947T msγ = − =  for 1ms = . If the transmitted 

signal, sm, has a value of one, this results in a 0.0300FAP = . 



90 

In practice, a probability of detection greater than 0.9 must be used, since some 

errors will also occur when a packet presence is correctly detected, resulting in a loss of 

the packet. 

The results of (4.10) can be implemented with a comparator circuit. Figure 74 

shows a simple circuit set up in System View to demonstrate this packet detection tech-

nique. 

 

 
Figure 74 Probability Calculation Circuit. 

 

The error rates shown in the final value sink windows are for a threshold value of 

0.5947Tγ =  when the signal is 1.0.ms =  The simulated probability of detection is 90.4%, 

close to the value of 90% used in the analysis. The simulated probability of false alarm is 

3.3%, matching the analysis earlier. When this system is run with a threshold value of 

0.2Tγ = , the probability of false alarm is 27.3% and the probability of detection is 
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99.4%. This demonstrates the trade off between probability of detection and probability 

of false alarm. 

 

2. Optimum Packet Detection Using Multiple Samples in AWGN 
The detection capabilities of this circuit can be improved by separating the two 

probability density curves of Figure 73. Since changing the receiver design to decrease 

noise power is not an acceptable option due to cost or complexity, then the noise only 

density function (left) cannot be changed. However, the curve on the right can be shifted 

by proper design of the receiver and transmitter. The easiest way to separate the two 

curves is simply to increase the transmitted power. This increases the mean value ( )ms  of 

the curve and separates the two probability densities. Simply increasing ms  from 1.0 to 

2.0 in the circuit of Figure 74 and keeping the detection threshold at 0.5947Tγ =  keeps 

the probability of false alarm unchanged at 3.3%, but increases the probability of detec-

tion to 99.9%, a sizeable improvement over the 90.4% from the lower signal level. 

Signal detection can also be improved by taking several samples of the input. This 

has the effect of shifting the signal plus noise density function (right hand side of Figure 

73) to the right, but it also increases the variance, spreading both distributions out, as 

shown in Figure 75 where two samples are taken using the same parameters of Figure 73. 

This reduces the effectiveness of the curve shift in increasing the probability of detection 

or reducing the probability of false alarm. 

For multiple sample values, the noise is uncorrelated because it is assumed white. 

This allows the resulting probability density function under each of the hypotheses to be 

factored into a product of the probability densities for each sample used in the receiver 

decision function. Reference [16] details the derivation of the resulting likelihood func-

tion when the noise is AWGN. Inequality (4.3) can then be modified to read 
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Figure 75 Change in Probability with Increased Samples. 

 

The two hypotheses of (4.1) are rewritten to take into account the use of multiple signals: 
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where mn  is the AWGN sample at t m= . Substituting the Gaussian distributions consis-

tent with (4.15) into (4.14), we get 
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As before, the threshold on the right hand side of (4.16) can be consolidated into 
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The threshold is calculated as before using the definitions for probability of detec-

tion, DP , and the probability of false alarm, FAP , to calculate the threshold η . For the DP , 

(4.4) becomes 
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ability distribution under hypothesis 1H , since the sum of Gaussian random variables is 

Gaussian. 

Using the same AWGN example as used in (4.11), we obtain 

 ( )11
1

x
D x x D

x

mP Q m Q Pη η σ
σ

− −
= ⇒ = + 

 
 (4.19) 

where xm  is the mean value of the decision statistic x  under hypothesis 1H and xσ  is the 

standard deviation of the decision statistic under hypothesis 1H . Taking the expected 

value of the decision statistic under hypothesis 1,H  we get 
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where the last step holds if ms s=  is a constant. The variance of the decision statistic is 
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 is the Kronecker delta function. 

Using (4.21) and (4.20) in (4.19), we find a threshold value of 

 ( )2 1 .n Dks k s Q Pη σ −= +  (4.22) 

Under hypothesis H0, the mean value of the decision statistic is  

 0
1

0.
k

x m m
m

m E n s
=

 = = 
 
∑  (4.23) 

The variance does not change from (4.21).  

The probability of false alarm for the decision variable x  is given by 

 ( )  0FA xP f x dx
η

∞

= ∫  (4.24) 
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where ( ) ( )
2

222
0 1 2 x

x

x xf x e σπσ
−

=  is the probability distribution for x  under hypothesis 

0H . Using (4.22) and (4.23) in (4.24), we get the probability of false alarm as 
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n D
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−

−

 
=  

 
 +

=   
 
 

= + 
 

 (4.25) 

Arbitrarily setting 1ns σ= =  for illustrative purposes and using two sample val-

ues to demodulate the received signal ( 2k = ) results in a threshold of 2 1.8124η = −  or 

0.1876η =  when the probability of detection is 90%. Figure 76 shows a circuit that im-

plements this detector using two samples of the generated random data sequence. The 

probability of detection for this simulation run is 89.5% when 8192 trials were used, 

close to the prescribed value of 90%. The simulated probability of false alarm calculated 

by the circuit of Figure 76 is 45.1%, which is better than the 61.7% we achieved when us-

ing only one sample of the received data sequence. 

Equation (4.25) suggests that the probability of false alarm can be made arbitrar-

ily small by increasing the number of samples used in the signal demodulation. For a con-

stant DP , the argument of the Q-function increases with increasing k, which causes FAP  to 

approach zero. Figure 77 shows this graphically. 

 



96 

 
Figure 76 Multiple Sample Error Rate Calculation Circuit. 

 

 
Figure 77 Probability of False Alarm vs. Sample Number. 

 

In practice the number of samples that can be used to determine the existence of a 

signal is limited. This is especially true in packet-based systems such as the 802.11 stan-
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dards. Reference [10] suggests using the first seven short training symbols for packet de-

tection. 

 

3. Other Packet Detection Designs 
Two other packet-detection schemes mitigate the noise received to enhance the 

performance while maintaining the form of the optimum detection algorithms developed 

so far. 

The first scheme uses multiple samples as detailed in Section 2 above, but uses 

two adjacent sliding windows to obtain the samples and then divides the output of the 

two windows to obtain the decision statistic [3]. Specifically, 
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−

=
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>
<

∑

∑
 (4.26) 

where M is the length of the first sliding window  and L is the length of the second (adja-

cent) sliding window. The advantage of this detector is that it gives a sharp pulse at the 

packet start time. 

The second scheme uses a method similar to the first, but the incoming data is 

correlated with the known training data in the standard instead of just the sum of magni-

tudes squared. Since the short training symbols are periodic with a period of 16 samples 

in Standard 802.11g, a delayed version of the received signal is correlated with the re-

ceived signal where the delay is 16 samples for Standard 802.11g signals. The structure 

of the receiver is shown in Figure 78. 

 

 

 

 

 
Figure 78 Delay and Correlate Detector [From Reference 3.] 
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In Figure 78, 
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 (4.27) 

The probability analysis of these two schemes is similar, since both deal with a ra-

tio of sums of squares of Gaussian random variables. However, making a Gaussian ap-

proximation for nx  of (4.27) makes the analysis simpler [17]. Assuming the received sig-

nals are corrupted with Gaussian noise and that the variance of the noise is much smaller 

than the mean, we can approximate the probability distribution of nx  by 

 
( )2

22
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1( ) .
2
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f x e
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πσ

−
−

=  (4.28) 

Schmidt and Cox [17] show that the mean value of the Gaussian approximation to nx  of 

(4.28) is given by 
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s n

σµ
σ σ

=
+

 (4.29) 

where 2
nσ  is the variance of the AWGN. Schmidt and Cox [17] define [ ]{ }22 Res mE sσ =  

and [ ]{ }22 Ims mE sσ = , where the signal ms  is the value of the training data. The variance 

of (4.28) is given by 
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42 2
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s s n n

s n

σ µ σ σ µ σ
σ

σ σ

 + + + =
+

 (4.30) 

The threshold, probability of detection, and probability of false alarm are calculated using 

(4.29) and (4.30) in the same manner as in Sections one and two. 
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B. FREQUENCY SYNCHRONIZATION 

Frequency error sensitivity is a weakness of OFDM systems, since small changes 

in the sub-carrier frequency caused by distortions in either the channel or the receiver can 

make the sub-carriers loose their orthogonality. Once this occurs, the interference be-

tween adjacent sub-carriers becomes significant and the received signal level is reduced. 

The complex envelope of the transmitted Standard 802.11g OFDM symbol has the form 

of [10] 

 ( ) ( )
2

2
,

2

( )
ST

GUARD

ST

N

j k f t T
n n k n

Nk

r t w t C e π ∆ −

=−

= ∑  (4.31) 

where ( )nw t  is the windowing function for the thn  OFDM symbol, ,k nC  is the coded 

symbol modulating the thk  sub-carrier in the thn  OFDM symbol, STN  is the total number 

of sub-carriers, f∆  is the sub-carrier frequency spacing, and GUARDT  is the guard interval 

that created the circular prefix used to avoid inter-symbol interference (ISI) and inter-

carrier interference(ICI). 

In order for the sub-carriers to be orthogonal, the following relationships must ap-

ply [1]: 

 ( ) ( )   0    n mr t r t dt n m
∞ ∗

−∞
= ≠∫  (4.32) 

 ( ) ( )( ) ( )( )  
2 2

, , 0  for .GUARD GUARDj k f t T j l f t T
n k n l nw t C e C e dt k lπ π ∗∞ ∆ − ∆ −

−∞
= ≠∫  (4.33) 

Equation (4.32) ensures that adjacent OFDM symbols are orthogonal, and (4.33) ensures 

the sub-carriers in each OFDM symbol are orthogonal. This mitigates ISI in the time-

domain and ICI in the frequency-domain. Defining the windowing function in (4.31) and 

(4.33) as 
1  for 

( ) ,
0 for all other        

GUARD
n

T t T
w t

t
≤ ≤

= 


 we get a simplification of (4.33) as 

 ( )( ) ( )( )  
2 2

, , 0  for  .GUARD GUARD

GUARD

T
j k f t T j l f t T

k n l n
T

C e C e dt k lπ π∆ − − ∆ −∗ = ≠∫  (4.34) 

Equation (4.34) is only satisfied when 
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 ( ) ( ) ( ) ( )2 1 0  or  2 =2   for some 1, 2,GUARDj k l f T T
GUARDe k l f T T m mπ π π− ∆ − − = − ∆ − = ± ± … (4.35) 

Equation (4.35) is true for all k l≠  if and only if there exists a positive integer m  such 

that  

 
FFT

mf
T

∆ =  (4.36) 

where 3.2 µsFFT GUARDT T T= − =  for Standard 802.11g. The minimum spacing between 

sub-carriers occurs when 1m = , and (4.36) simplifies to 

 1 0.3125 MHz.
FFT

f
T

∆ = =  (4.37) 

Equation (4.37) gives the required frequency spacing between sub-carriers for the trans-

mitter of a Standard 802.11g compliant system. The required bandwidth for a Standard 

802.11g system is 

 ( )( )52 1 0.3125 MHz .T dataB BW= − +  (4.38) 

This accounts for the bandwidth of the signals contained within the 52 sub-carriers, 48 of 

which carry data, of each OFDM symbol. The data bandwidth is the same for all data 

rates because of the change in coding rates. At the 6-Mbps data rate using BPSK (or 

equivalently 12 Mbps using QPSK, or 24 Mbps using 16-QAM, etc.), the null-to-null 

data bandwidth is twice the data rate in one channel of transmitted data. Since the 6-Mbps 

data is coded using a rate 1 2r =  encoder (with no puncturing), the coded data rate is 12 

Mbps. Dividing this data signal between 48 sub-carriers, we obtain a data bandwidth of 

( )62 12 10 48 0.5 MHz.dataBW  = × =   Using this value of null-to-null bandwidth in 

(4.38), we get a total null-to-null bandwidth of 16.4375 MHz,TB =  which is less than the 

maximum bandwidth of 16.6 MHz specified in the standard. The 16.6 MHz must include 

most of the power in the spectral tails that extend beyond the null-to-null bandwidth. 

Frequency recovery schemes for OFDM signals can be divided into three catego-

ries: non-data aided algorithms that are based on the spectral characteristics of the re-

ceived signal, cyclic prefix based algorithms that use the structure of the signal in an 



101 

OFDM system provided by the cyclic prefix, described in Chapter I Section 2, and data-

aided algorithms that are based on known information embedded in the received signal 

[18]. Most frequency synchronization systems are similar to the phase-locked loop, as 

shown in Figure 79. The difficulty the OFDM systems present is that the multiple sub-

carriers present in the received signal make it difficult to generate a single discrimination 

signal at the output of the multiplier that can be filtered and used as an error signal. Most 

of the algorithms used in optimum frequency synchronization generate an error signal 

proportional to the frequency offset that is used to drive a voltage-controlled oscillator 

(VCO). For OFDM frequency synchronization, the loop filter ( ( )H f ) is much more 

complicated than the simple loop filter that can normally be used in a single-carrier 

phase-locked loop. 

 

 

 

 

 
Figure 79 Phase-Locked Loop Configuration. 

 

1. Non-Data Aided Frequency Synchronizers 
The non-data aided synchronizers can be classified as open loop and closed loop. 

In an open loop synchronizer, a non-linear element, such as a squaring circuit, is used to 

generate a frequency component at a harmonic of the carrier frequency. The signal is then 

filtered to isolate this harmonic and stepped down to the desired carrier frequency. This 

type of synchronizer is generally used with signals in which the carrier has been sup-

pressed and contains no spectral line at the carrier frequency, such as M-ary phase-shift 

keying (M-PSK). An unavoidable tracking error is always present in open loop systems. 

The advantage of these systems is their simplicity and low cost of implementation. How-

ever, because of the sensitivity of OFDM signals to frequency offset, open loop synchro-

nizers are generally not practical for OFDM receivers. 

( )H f
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( )s t
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Closed-loop synchronization uses comparative measurements on the incoming 

signal and a locally generated signal to bring the locally generated signal into synchroni-

zation with the incoming signal. Examples include phase-locked loops and delay-locked 

loops. For OFDM synchronizers that use closed-loop, non-data aided techniques, the ba-

sic process is to obtain the probability density function of the received signal for a given 

frequency offset, ( )|rp r f∆ . Once this is obtained, the maximum-likelihood of the fre-

quency offset for a given received signal is calculated by finding the value of f∆  for 

which the conditional probability density function, ( )|rp r f∆ , is a maximum. This fre-

quency error signal is then fed into the voltage-controlled oscillator to adjust the esti-

mated frequency. The analysis of the receiver is quite complex, and the acquisition range 

of these detectors is usually limited to 1 2±  of the sub-carrier frequency spacing due to 

the local maximum and minimum in the conditional probability density function, 

( )|rp r f∆ . The many variations of this technique attempt to reduce the calculations re-

quired and increase the acquisition range while still maintaining optimum or near opti-

mum estimates. 

Reference [19] presents an example of an algorithm that uses this maximum-

likelihood technique. The block diagram of this synchronizer is shown in Figure 80. All 

signals in the diagram and accompanying analysis are complex envelope (i.e., equivalent 

lowpass) signals. Daffara and Chouly [19] derive the error signal at the output of the cor-

relator, which is given by: 

 { }
2

1

*
, ,Re

L

n n k n k
k L

q qε
=

= ∑ �  (4.39) 

where n  is the time index, ( )1 2 1uL N N= − +    is the lowest index of the OFDM sub-

carriers with N  equal to the total number of sub-carriers used in the OFDM symbol and 

uN  equal to the number of non-zero sub-carriers, ( )2 2uL N N= +  is the highest index of 

the OFDM sub-carriers, { }Re x  is the real part of x, ( )
 

22
, ( ) r rk

j f tj f t
n k T

q r t e e dtπ φπ − +−= ∫
� �

 with 

rf�  and rφ�  representing the received frequency and phase errors, and 
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( ) ( )
 

22
, 2 tr r rk

j f tj f t
n k T

t nTq j r t e e dt
T

π φππ − +−− = −  
 ∫

� �
�  where T  is the OFDM symbol dura-

tion. The triangle function ( )tr x  is defined as 
1   1

tr( )
0        1

x x
x

x
 − <=  >

. 

 
Figure 80 Maximum-Likelihood Frequency Detector [After Reference 19.] 

 

Figure 80 shows how the frequency error signal is obtained. The correlator block 

computes the summation over k of { }, ,Re n k n kq q∗�  given by (4.39). 

This example serves to illustrate the complexity of an optimum detector using 

non-data aided techniques. The author does offer some simplifications by using FFTs and 

smoothing the likelihood function, again with a loss of optimization. Daffara and Chouly 

show practical implementations of their algorithm and the characteristic curves for their 

designs in Reference [19]. 

Luise and Reggiannini in Reference [20] use a somewhat different approach to 

generate the error signal that drives a numerically controlled oscillator (NCO). The re-

ceived signal is first demodulated with an FFT and an offset between the carrier fre-

quency and the local oscillator frequency is estimated using a differential detector. This 

signal is corrected by the estimated frequency offset, modulated using an IFFT and com-
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pared to the received signal to obtain a residual frequency error estimate. This residual 

frequency error estimate then drives a numerically controlled oscillator. 

Non-data aided algorithms do not need special synchronization blocks, increasing 

the data throughput and reducing the time needed to achieve synchronization by eliminat-

ing the wait for synchronization blocks to appear in the data. For these reasons, these al-

gorithms are well suited for continuous broadcast OFDM signals. However, performance 

is poor in the presence of multipath interference, frequently encountered in mobile radio 

environments. Packet-based OFDM signals are also not well suited to this kind of syn-

chronization, since the accuracy is not great enough to ensure orthogonality during the 

entire packet transmission time. 

 

2. Cyclic Prefix Based Frequency Synchronization 

Cyclic prefix algorithms are based on an analysis of the sampled received signal 

before it is passed through the FFT for demodulation. They make use of the redundancy 

introduced by the inserted guard interval in the OFDM symbol. Since the guard interval 

is a repetition of the transmitted OFDM symbol over some fraction of the OFDM symbol 

period, these algorithms simply compare the samples from the data portion of the symbol 

and the corresponding samples from the guard interval portion of the symbol. If there is a 

frequency offset of f∆  in the receiver frequency, the two values will be different by a 

factor of 2j fTe π∆  where T  is the time difference between the two values. This phase dif-

ference is proportional to the magnitude of the frequency-offset error and can then be 

used as the error signal that drives a voltage-controlled oscillator. The computational 

complexities of these algorithms are less than the other two categories, therefore provid-

ing faster synchronization with lower hardware cost. 

Reference [21] is an example of this type of algorithm. The data samples of the 

received OFDM symbol are designated as shown in Figure 81 where N is the number of 

data samples and Ng is the number of samples used in the guard interval. The guard inter-

val is the cyclic extension of the N-value IFFT. This means that 1 1 2 2,  N Nc c c c− − − −= = , etc. 

In general i N ic c− −=  when the signal leaves the transmitter. If no frequency offset exists 
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between the transmitted and the received signal, then a sample in the guard interval ( ic− ) 

multiplied by the conjugate of its corresponding sample value within the N-value IFFT 

( N ic − ) is a real number ( 2*
i N i N i N i N ic c c c c∗

− − − − −⋅ = ⋅ = ). This also assumes that the received 

signal inside the guard interval has not been corrupted by intersymbol interference. If a 

frequency offset of f∆  is introduced in the channel, then the product between the two re-

ceived samples is ( ) 222 * j f t Tj ft
i N i i N i N ir r c e c e cππ − ∆ +∗ ∆

− − − − −= ⋅ = ×  2j fTe π− ∆ . This means the 

product i N ir r∗− −⋅  is no longer real and it contains a phase offset proportional to .f∆  Daf-

fara and Adami [21] derive an error signal in the presence of AWGN given by  

 ( ) { }1
0
ImL

N i iL i
l r rε ∗

− −=
= ∑  (4.40) 

where 1 gL N≤ ≤  is the number of guard interval samples used in the calculation and N ir −  

and ir−  are the received samples. Using (4.40), we obtain the error signal ( )lε  propor-

tional to the sine of the scaled frequency offset 2 fTπ∆ . 

 

 
Figure 81 Sample Order in an OFDM Symbol [From Reference 21.] 

 

The number of samples that can be used to generate the error signal is limited to 

those that have not been corrupted by intersymbol interference. One potential problem 

with this detector is its inability to compensate for frame synchronization error. The algo-

rithm depends on knowing where the guard interval stops and the normal data sequence 

begins. This information may not be very accurate at the receiver. In addition, using too 

few samples of the guard interval can drastically affect the output. The frequency offset 

of this algorithm is limited 1 2±  of the sub-carrier spacing. The block diagram imple-

mentation of this algorithm is shown in Figure 82, where the input to the frequency detec-
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tor can be either before the FFT (designated method A and described in the paragraph 

above) or after the FFT (designated as method B). 

 

 
 

Figure 82 Guard Interval Based Frequency Detector [After Reference 21.] 

 

Some of these concerns are addressed in the algorithms of Reference [22] and 

Reference [23]. Both of these algorithms incorporate frame timing to help estimate when 

the guard interval ends and when the normal sequence starts. 

These algorithms are also more suited to a continuously transmitting OFDM sig-

nals. Since it takes several guard intervals to obtain synchronization, several OFDM 

symbols need to be transmitted, something that is not available in a Standard 802.11g 

packet-based system before synchronization must take place. However, this does elimi-

nate the need for any special synchronization symbols, increasing the data throughput. 

 

3. Data-Aided Frequency Synchronizers 

Data-aided frequency synchronization provides the best frequency tracking with 

the widest acquisition range, but at the cost of requiring the use of synchronization 

blocks. This increases the required overhead and reduces the data throughput. However, 

for packet-based transmission systems, such as Standard 802.11g, they are required to ob-

tain synchronization quickly before the data information is passed to the receiver. For 

Standard 802.11g systems, synchronization must occur within the short and long training 

symbols, which make up the first 16 µs  of the packet. The basic algorithm assumes a se-
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quence of repeated training symbols. Similar to the method used in the cyclic prefix algo-

rithms, a comparison is made of the phase difference between adjacent, repeated data 

symbols. This phase difference is used to generate an error signal that drives a voltage-

controlled oscillator. 

Reference [3] details one example of a data-aided algorithm. Figure 83 shows a 

block diagram of this receiver. This technique compares the phase between demodulated 

values of successive repeated data symbols, making the assumption that the channel im-

pulse response is stationary during the 8 µs  OFDM symbol transmission interval of the 

training sequence. Since the training symbols do not change during the acquisition se-

quence, any difference in phase must be due to a frequency offset in the receiver. 

 

 
Figure 83 Frequency-Domain Data-Aided Frequency Circuit. 

 

The equation for the nth transmitted Standard 802.11g OFDM training symbol is 

given by (4.31). This signal is modulated with the carrier frequency to produce  
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where tf  is the carrier frequency of the transmitter, dT  is the data symbol period, sT  is 

the sample period, and m is the sample index ( st mT= ). The other terms have been de-

fined in (4.31). Rearranging (4.41) and assuming the channel is noise free, we obtain the 

received signal 
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The window function ( )sw mT  has been dropped, since only one received OFDM symbol 

is being considered (i.e., ( ) ( )( )1 1 1ST d ST dn N T t n N T+ ≤ ≤ + + ) and ( ) 1sw mT =  in this 

interval. The signal of (4.42) is demodulated with the receiver’s estimate of the carrier 

frequency ( rf ) to produce 
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where rf  is the receiver estimate of the carrier frequency. Making the substitution of 

t rf f f∆ = −  into (4.43), we get 
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If the training symbols kC  are repeated every OFDM symbol, then the received signal for 

the thn  data sample in the adjacent OFDM symbol is given by 
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 (4.45) 

If the receiver is designed such that the sample period, sT , is an integer multiple of the 

data symbol period, dT , then this enables the simplification of s dt mT nT= =  to be substi-

tuted in the phase error term. But the definition of orthogonality requires ( )1 df NT∆ =  

and ( )2 12 2d dd j k NT NTj k fNT j ke e eππ π ∆  = =  and 2 1j ke π = . This allows a simplification of (4.45) 

to  
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Comparing (4.46) and (4.44), we get 

 2 .dj f NT
n N nx e xπ ∆
+ =  (4.47) 

Equation (4.47) shows that the data in adjacent OFDM symbols are offset in 

phase from each other equal to the phase error. Since the FFT is a linear process 

( 2

2

2
NST

d
NST

j k fnT
k nk

y x e π− ∆
=−

=∑ ), the demodulated data symbols will also be offset in phase 

from each other and 2 dj f NT
k N ky e yπ ∆−
+ = . The contribution to the phase of the data sym-

bols can be removed by complex multiplication 22 dj f NT
k k N ky y e yπ ∆∗

+⋅ = . Taking a sum-

mation over all the data symbols in one OFDM symbol, 1

0

N
k k kk

z y y− ∗
=

= ⋅∑ , we average 

out the effect of any noise in the system. Since the only contribution to the phase of kz  is 

due to the frequency offset, the phase of kz  is used to produce the estimated frequency 

offset to the voltage-controlled oscillator. Reference [3] gives the final frequency esti-

mate as 
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 (4.48) 

where ˆ df NTε ∆= , 2kY  is the demodulated data symbol from the second OFDM symbol, 

and 1kY  is the demodulated data symbol from the first OFDM symbol. Reference [3] also 

shows that this algorithm is a maximum-likelihood algorithm in the presence of AWGN. 

As can be seen from (4.48), the acquisition is limited to ˆ1 4 1 4ε− ≤ ≤  or equiva-

lently ( ) ( )1 4 1 4d dNT f NT∆− ≤ ≤ , which is a span of 1 2  the sub-carrier spacing. 

Reference [3] applies the same algorithm to the received data before it is demodu-

lated with an FFT. Figure 84 shows a block diagram of this receiver. 
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Figure 84 Time-Domain Data-Aided Frequency Circuit. 

 

In this algorithm, the data symbols in the frequency-domain are repeated every l  data 

symbols. This means 
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 (4.49) 

Demodulation of (4.49) with the carrier frequency and simplification results in the 

same results as (4.44). For the repeated data symbol at an offset of l  from the demodu-

lated ,nx  we obtain 
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Equation (4.50) can be rearranged to obtain 
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However, since the received data symbols repeat every l  samples, then 
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which allows (4.51) and (4.52) to be combined into 
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where nx  is taken from (4.44). 

As was done in the frequency-domain case, the dependence of the data on the 

phase of nx  is removed by multiplying by the complex conjugate, and the noise is aver-

aged out by summing all the data points between the repeated data symbols. The resulting 

frequency offset estimation is 
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 (4.54) 

where ˆ df lTε ∆≈ . 

This same algorithm can be applied to both the long and short training symbols. 

For Standard 802.11g systems, the maximum frequency offset that can be corrected using 

the short training symbols is ( ) ( )( )9
max 1 2 1 2 16 50 10 625 kHz.df lT s−

∆
 = = × =   The 

maximum frequency offset that can be corrected using the long training symbols is 

( ) ( )( )9
max 1 2 1 2 64 50 10 156.25 kHz.df lT s−

∆
 = = × =   The maximum allowed frequency 

error for a Standard 802.11a system is 20±  parts per million. With a transmitter fre-

quency of 5.3 GHz, this equates to a frequency error of 212 kHz. This is within the acqui-

sition range of the short training symbols, but outside the acquisition range for the long 

training symbols. For Standard 802.11g, the maximum allowed frequency error is 25±  

parts per million. With a transmitter frequency of 2.4 GHz, this equates to a frequency er-

ror of 120 kHz, well within the tolerance of the short and long training symbol accuracy. 

The longer time between the long training symbols gives its frequency tracking more 

accuracy, but with less tolerance for initial offset error. The short training symbols 

provide the improved accuracy required by the long training symbols. 
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Both the frequency-domain estimator and the time-domain frequency estimator 

have the same performance, however, the time-domain algorithm does not require an FFT 

calculation, saving time in the frequency estimation step. Also, the larger frequency in-

terval between the repeated data symbols in the frequency-domain estimator ( N l> ) re-

sults in a smaller tolerance for input frequency error. 

A different approach to the data aided technique of synchronization can be found 

in Reference [24]. This technique uses virtual sub-carriers to estimate frequency offset 

and symbol timing. The virtual sub-carriers are those sub-carriers that contain no data and 

no signal power. This applies to Standard 802.11g, since only 52 of the 64 sub-carriers 

are used to transmit data or pilot signals. However, this algorithm is designed around a 

system that has multiple users (vice one user for a Standard 802.11g transmitter), with 

each user allocated some predetermined number of sub-carriers to use for data transmis-

sion. In either case, some sub-carriers are used for data and pilot tones and the rest are set 

to zero. If, after processing the signal through the FFT, any of the virtual sub-carriers 

contain a signal, then there is a frequency offset in the receiver. This algorithm adjusts 

the receiver frequency until the measured signal in the virtual sub-carriers is a minimum. 

Figure 85 shows a block diagram of this system. The advantage of this approach com-

pared to the other data-aided algorithms is that it does not require synchronization sym-

bols to be transmitted, similar to the guard interval synchronization methods mentioned 

earlier. 

To find the value of frequency offset that minimizes the signal energy within the 

virtual sub-carriers, a cost function is defined that represents the average energy within 

all the virtual sub-carriers over several OFDM symbols as 

 ( ) ( )
1 1 1 2

0 0

1 ,
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b

a

N M J

N k m
q m M lb

Y q l
N

ν
− − −

′
′ ′= = =

′ℑ ≡ ∑ ∑ ∑  (4.55) 

where bN is the number of OFDM symbols used to compute the cost function, kν  is the 

frequency estimate, aM  is the number of users multiplexed in each OFDM symbol, M  is 

the maximum number of users that can be accommodated by the system ( aM M> ), J  is 

the total number of sub-carriers allocated to each user, and ( ),mY q l′ ′  is the FFT output of 
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the thl  sub-carrier in the thq  OFDM symbol for user m′ . Equation (4.55) sums the FFT 

output over the unused sub-carriers (user am M′ ≥  with each user assigned J  sub-

carriers) for bN  OFDM symbols. The zero insertion in this algorithm is different than the 

zero insertion used in the Standard 802.11g circuit of Chapter III. This algorithm inserts 

zeros when there are not enough users to take up all the sub-carrier frequency allocations. 

 

 
Figure 85 Virtual Carrier Synchronization Circuit [After Reference 21.] 

 

The desired frequency is the value of kν  such that (4.55) is minimized with re-

spect to kν , or ( )ˆ arg min
b

k
k N kν

ν ν= ℑ . The iterative process starts by setting ˆ 0kν =  and 

calculating the next frequency estimate as 
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where ( )ˆk nν  is the carrier offset estimate at step n  and µ  is chosen to maximize con-

vergence speed without loosing tracking capability. 

The cost function block of Figure 85 computes the average, over a finite number 

of OFDM symbols, of the cost function (4.55), and its gradient and uses them to calculate 

a new frequency offset value from (4.56). If the new estimate exceeds a predetermined 
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threshold, the frequency estimate is updated. A similar method is used to calculate a tim-

ing offset. This algorithm assumes the initial frequency estimate is less than 1 2 ,NT  

where N  is the total number of sub-carriers used in each OFDM symbol and T  is period 

of each data sample, and also makes use of a frequency-hopping scheme, where the 

channel allocation to each user is changed over each OFDM symbol, to average out the 

frequency characteristics of the channel. Because of the iterative method used in this al-

gorithm, it is not well suited for packet-based transmission systems such as Standard 

802.11g. 

 

C. PHASE SYNCHRONIZATION 

The frequency estimation and correction algorithms presented in the previous sec-

tion reduce the frequency error between the receiver and the transmitter to a level that 

achieves acceptable signal level reception. However, even the small residual frequency 

error present after frequency estimation can cause the receiver to loose synchronization 

after only a few OFDM symbols. To compensate for these slow constellation rotations, 

pilot tones are inserted between the data samples to allow the receiver to track and correct 

for these small phase errors during the transmission. Two methods are used to estimate 

the frequency-shift [3]: data aided and non-data aided. The data aided technique uses the 

pilot tones, four 1+  and 1s−  inserted in sub-carriers 21, 7,7,  and 7− − , to estimate the 

phase error. The non-data aided method uses the fact that all sub-carriers are rotated the 

same by the phase error. 

The FFT of the received data sample is given by 

 2j nf T
nk k nkR H P e π ∆=  (4.57) 

where n  is the OFDM symbol number, T  is the period of one OFDM symbol, k  is the 

sub-carrier number, nkR  is the received pilot tone, kH is the channel frequency response 

at sub-carrier frequency k , nkP  is the known pilot symbol, and f∆  is the frequency offset 

between transmitter and receiver defined in the last section. Multiplying the received sig-

nal by an estimate given by , ,
ˆ ˆ

n k k n kR H P=  where ˆ
kH  is the receiver estimate of the chan-
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nel frequency response, we get 
2 2

, , ,
ˆ ˆ j nf T

n k n k k k n kR R H H P e π ∆∗ ∗= . This can be simplified to 

2 2
, ,

ˆ ˆ j nf T
n k n k kR R H e π ∆∗ =  if it is assumed that the estimated channel response is perfect and 

noting that 
2

, 1n kP = . This means the phase of , ,
ˆ

n k n kR R∗  gives the desired phase offset. 

With AWGN and an imperfect estimate of the channel impulse response, the resulting 

noise can be averaged out with a summation. 

The phase estimate from the received pilot tones of (4.57) is 
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 (4.58) 

where ˆ
kH  is the estimated channel frequency response and pN  is the number of pilot 

tones used in the OFDM symbol, which is four for Standard 802.11g. [3] 

This same method can be used without the use of the pilot symbols by removing 

the influence of the data symbols on the received signal. The received data samples after 

the FFT are given by 

 2j nf T
nk k nkR H X e π ∆=  (4.59) 

where nkX  is the thk  received data symbol from the thn  OFDM symbol. 

Using the same technique as above, we estimate the resulting phase offset from 

(4.59) as 
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 (4.60) 

where ˆ
kX  is the estimated data symbol. 
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If the data symbols used are BPSK modulated (as is the preamble in Standard 

802.11g), then 2
kX  is known, and (4.60) can be evaluated after estimating the channel 

frequency response, as in (4.58). 

Both of these methods require the use of an estimated channel frequency re-

sponse. This estimate can be made from the training data. Standard 802.11g provides the 

long training symbols to help with this estimate. After the FFT, the received training 

symbols can be represented as 

 k k k kR H X W= +  (4.61) 

where kX  are the transmitted training symbols for the thk  sub-carrier, kH  is the channel 

frequency response, and kW  is the additive noise in the channel. 

The channel frequency response is estimated as 

 ( )
ˆ

k k k

k k k k

k k k

H R X

H X W X

H W X

∗

∗

∗

= ⋅

= +

= + ⋅

 (4.62) 

where 2 1kX =  is designated by Standard 802.11g, as per the training symbol circuits 

used in Chapter III. 

 

D. TIMING SYNCHRONIZATION 
Timing synchronization has two aspects. The first is synchronization with the 

OFDM symbols, and the second is the synchronization with the data symbols within each 

OFDM symbol. The synchronization of the OFDM symbols requires more than just 

matching the symbol timing of the transmitter. The effect of timing error or jitter must 

also be taken into account. Figure 86 shows the effect of a symbol timing offset in the re-

ceived signal. 

In the top diagram, the receiver symbol timing is in exact synchronization with 

the transmitted symbol. Unfortunately, any variance from this timing could shift the sym-

bol into the cyclic prefix for the next symbol, causing interference and signal degrada-
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tion. In the bottom diagram, the symbol timing has been shifted into the cyclic prefix for 

the symbol. In this case, any variance of the symbol timing will result in a shift within the 

symbol’s own cyclic prefix, preventing intersymbol interference. The drawback with 

shifting the symbol timing into the cyclic prefix is that multipath propagation in the 

channel could result in intersymbol interference if the timing is shifted too far into the 

cyclic prefix. 

 

 
Figure 86 OFDM Nominal Symbol Timing [From Reference 3.] 

 

Many of the algorithms used to synchronize the receiver with the transmitted car-

rier frequency also synchronize the receiver to the transmitted OFDM symbol. The algo-

rithms used are the same: correlate the received signal with a known training sequence or 

correlate the received signal with a portion of its cyclic prefix. Using the cross-correlation 

between the received symbol and the known training symbols, as was done in part IV.C, 

we obtain 
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where ŝT  is the estimated OFDM symbol start time, nr  is the thn  received OFDM sym-

bol, kt  is the value of the thk  training symbol, and L  is the number of training symbols 

used in the calculation. 

Sample clock tracking synchronizes the receiver data symbol clock with the 

transmitter’s data symbol clock. The majority of algorithms designed to correct the sam-

ple clock tracking error use the pilot sub-carriers. Reference [25] details an algorithm that 
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uses this approach. The pilot tones between consecutive OFDM symbols are correlated to 

produce 

 
222

, , 1, ,
u

Tj kt l
T

l k l k l k k l kZ R R H P e
π ∆∗

−= =  (4.64) 

where ,l kR  is the FFT of the received pilot tone for OFDM symbol l at sub-carrier k, kH  

is the channel impulse response for the kth sub-carrier, ,l kP  is the pilot symbol for the kth 

sub-carrier in the lth OFDM symbol, ( )r tt T T T∆ = −  is the timing offset, where rT  is the 

receiver sampling period and tT  is the transmitter sampling period, T  is the OFDM sym-

bol duration, and Tu is the duration of the OFDM symbol without the guard interval. 

Equation (4.64) is used for the lowest frequency pilot tone, yielding 

, 1

1 1, ,
l kj

l k l kZ Z e φ= , and the highest frequency pilot tone, yielding , 2

2 2, ,
l kj

l k l kZ Z e φ= . The 

timing estimate can then be written as 
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u
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φ φ
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−
 (4.65) 

where 1k  is the smallest pilot tone index and 2k  is the largest pilot tone index. 

This chapter has analyzed several techniques used to synchronize an OFDM re-

ceiver with a transmitted OFDM signal. In the next chapter packet and frequency syn-

chronization will be simulated and compared with the theoretical results obtained in this 

chapter. 
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V. SYNCHRONIZATION PERFORMANCE ANALYSIS 

With the large number of synchronization techniques available, the designation of 

the best performing algorithm depends on the communication channel used by the system 

and the type of transmitter used. This chapter evaluates the different frame and frequency 

synchronization techniques developed in the last chapter using System View simulation 

and the Standard 802.11g transmitter developed in Chapter III. All 802.11 systems are 

packet transmission systems; therefore, the concentration is with the data aided tech-

niques that can obtain an accurate synchronization in the short time available with the 

16-µs  packet preamble. A Standard 802.11g packet construction is assumed for all the 

simulations. 

The channel model used is the AWGN channel, simulated with two uncorrelated 

Gaussian noise sources and adders, which allows a comparison with the optimum zero 

noise channel. The two noise sources are required to simulate the transmission of the in-

phase and quadrature signals in an actual Standard 802.11g system since the analysis in 

this thesis uses a baseband signal, i.e., the complex envelope. Although only the AWGN 

case is considered here, System View includes six different channel models in its com-

munication library. In addition, the System View communications library contains pa-

rameter files that model different environments for fading channels, such as commercial, 

indoor and outdoor environments. This rich library of channel modeling allows the simu-

lation of the developed circuits in many different types of environments with only small 

changes in the models developed here. 

The block diagram of the AWGN channel model used is shown in Figure 87. The 

noise is zero mean with a variance that is changed to obtain channel bit error rates be-

tween 0.1 and 61 10−× . 
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Figure 87 AWGN Simulation Block Diagram. 

 

A. PACKET DETECTION PERFORMANCE 
Two different designs are considered for packet detection. The first is a sliding-

window packet detector in which the received signal is correlated with a known training 

sequence as introduced in Chapter IV. This not only detects a received signal, but it dif-

ferentiates between non-Standard 802.11g signals and the desired signal since a correla-

tion of the received data takes place. The second design is the delay and correlate detector 

discussed in Chapter IV where two adjacent sliding windows are compared to detect an 

incoming packet. 

 

1.  Sliding-Window Packet Detector 
As discussed in Chapter IV, the sliding-window detector correlates the received 

data with a known sequence. The System View circuit that performs this detection is 

shown in Figure 88. The known sequence in this case is the Standard 802.11g short train-

ing sequence. Since the short training sequence for this standard contains 16 data sam-

ples, the length of the sliding window is also 16 samples. 

The circuit of Figure 88 consists of a short training sequence generator for the 

transmitter, the AWGN channel, a correlation of the received signal and the locally gen-

erated (in the receiver) short training sequence, a comparator section to make a decision 

on the presence of a valid signal, and finally a section to compute the probability of de-

tection. The decision variable is modified from that calculated in Chapter IV, since the 

known short training sequence numbers are not all identical. 
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Figure 88 Sliding-Window Correlation Packet Detector. 

 

The short training symbol sequence generator has been modified from the one 

used in Chapter III to allow a continuous generation of the short training symbols. The 

sequence generator portion of this circuit is shown in Figure 89. The pulse train generator 

(token 0) is used to generate the impulses needed to drive the linear filter (token 2) in the 

same manner as was done in Figure 44 of Chapter III. The pulse train consists of a pulse 

of 50 nanoseconds duration repeated every 3.2 µs.  The parameters for token 0 are shown 

in Figure 90. Tokens one through four perform the same function as those in Figure 44. 

The result is an uninterrupted sequence of short training symbols, as shown in Figure 91. 

This uninterrupted sequence generation allows an analysis of the detection circuit per-

formance during the first portion of the OFDM preamble. The circuit can easily be modi-

fied to conduct the same analysis over the long training symbols. 
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Figure 89 Uninterrupted Short Training Symbol Generation Circuit. 

 

 

 

 
Figure 90 Pulse Train Token Parameters. 
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Figure 91 Uninterrupted Standard 802.11g Short Training Symbols (In-phase). 

 

The correlation circuit is shown in Figure 92. The MetaSystem of token 18 is the 

local short training sequence generator of the receiver used to correlate with the received 

signal. The cross-correlation tokens (token seven and 17) perform the cross-correlation of 

the locally generated short training sequence with the received signal. The parameters of 

these tokens are shown in Figure 93. The summation in (4.17) can be modeled using the 

cross-correlation of the received signal and the generated training symbols, where the 

summation corresponds to the position where the two signals are aligned in time, yielding 

maximum correlation. The signal received on the in-phase channel is correlated with the 

in-phase training sequence, and the signal received on the quadrature channel is corre-

lated with the quadrature training sequence. The final result is converted into a magnitude 

and compared to the threshold. When the received signal and the training symbols are 

aligned in time, (4.17) for the in-phase signal is  

 
( )

1 1

2

1 1

k k

mi mi mi mi mi
m m

k k

mi mi mi
m m

r s s n s

s s n

= =

= =

= +

= +

∑ ∑

∑ ∑
 (5.1) 

SystemView

0

0

2e-6

2e-6

4e-6

4e-6

6e-6

6e-6

8e-6

8e-6

150e-3

100e-3

50e-3

0

-50e-3

-100e-3

-150e-3

A
m

pl
itu

de

Time in Seconds



124 

where mis  is the in-phase component of the training symbol and min  is the in-phase chan-

nel noise. Similarly, the equivalent of (5.1) for the quadrature signal can be written as 

 
( )

1 1

2

1 1

k k

mq mq mq mq mq
m m

k k

mq mq mq
m m

r s s n s

s s n

= =

= =

= +

= +

∑ ∑

∑ ∑
 (5.2) 

where mqs  is the quadrature component of the short training symbol and mqn  is the quad-

rature channel noise. Since the noise in both channels is Gaussian with zero mean and 

variance 2
nσ , the correlations of (5.1) and (5.2) for each channel are also Gaussian with 

mean 2 2

1 1
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mi mq
m m

s s
= =
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m m

s sσ σ
= =

=∑ ∑ . 

 

 
Figure 92 Sliding-Window Correlation Circuit. 
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Figure 93 Cross-Correlation Token Parameters. 

 

The comparator section of the packet detection circuit of Figure 88 is shown in 

Figure 94. Token nine converts the complex signals received from the adders into polar 

coordinates, i.e., a magnitude and phase. In the presence of the AWGN in the channel, 

this token converts the Gaussian distributed signals at the outputs of the adders to a 

Ricean distributed variable for the magnitude output of the token when a packet is present 

and a Rayleigh distributed variable when no packet is present. This output is then com-

pared with a fixed threshold (token 35) to determine if a packet has been detected. 

 

 
Figure 94 Comparator Circuit. 
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To compute the desired threshold, the probability distribution of the magnitude 

output from token eight of Figure 88 must be determined under the two hypotheses of 

(4.15). If X  is defined as the Gaussian random variable from the output of the in-phase 

correlation token seven of Figure 88 and Y  is defined as the Gaussian random variable 

from the output of the quadrature correlation token seventeen of Figure 88, then the mag-

nitude output of token eight is 2 2R X Y= + , if a signal is present. The random variable 

R  is a Ricean distributed random variable with a distribution function of 

 ( )
( )2 2

22
02 2  if 0

0                              if 0

r s

R

r rse I rp r

r

σ

σ σ

+
−

  ≥ =   


<

 (5.3) 

where 2 2 2 2 2

1 1

k k

n mi n mq
m m

s sσ σ σ
= =

= =∑ ∑  is the variance of the random variables X and Y, 

2 2 2
X Ys m m= + , and I0 is the modified Bessel Function of the first kind and order zero de-

fined as ( ) ( ) ( )
2 2

0
0

!2
k

k

xI x k
∞

=

    =       
∑  where 0x ≥ . A graph of (5.3) is shown in 

Figure 95 where the noise variance has been set at 2 1nσ = , resulting in 

( )
16

2 2

1
1 0.10156mi

m
sσ

=

= =∑ , and 
16 16

2 2

1 1

0.14363mi mr
m m

s s s
= =

= + =∑ ∑  for the Standard 802.11g 

short training symbols of Figure 91. The Gaussian distribution of the input variable X and 

Y is shown as the dashed blue line and the Rayleigh distribution (i.e., (5.3) with 0s = ) of 

X and Y is shown as the dashed black line for comparison. 
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Figure 95 Decision Variable Probability Distribution. 

 

Combining (5.3) with Equations (4.4) and (4.12) that define the probability of 

false alarm and the probability of detection, we obtain the probability of detection as 

 
( )

 

2 2

22
02 2

r s

D
r rsP e I drσ

η σ σ

+∞ −  =  
 ∫  (5.4) 

where ( )22 0.14363s = and ( )2 2 0.10156nσ σ=  for the Standard 802.11g short training se-

quence. 

The probability of false alarm is given by 

 
( )
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where 2 0s =  and ( )2 2 0.10156nσ σ= . Since 0,s =  and ( )0 0 1,I =  (5.5) reduces to 
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2 2 2

2 2 22 2 2
2 .

r r

FA
rP e dr e e

η
σ σ σ

η η
σ

∞
∞ − − −

= = − =∫  (5.6) 

Solving (5.6) for the threshold ,η  we get ( )22 ln 1 FAPη σ= . 

Equation (5.4) has the solution 

 0 ,D
n n

sP Q η
σ σ
 

=  
 

 (5.7) 

where ( )0 ,Q a b  is Marcum’s Q-function and is defined as 

( ) ( ) ( )  

2 2 2
0 0, x a

b

Q a b xe I ax dx
∞

− +
= ∫ . Equation (5.7) was solved numerically using the Math-

cad 2001 Professional program, as shown in Appendix B. To obtain a probability of de-

tection of 0.9000DP =  requires a threshold of 0.1539η =  under the conditions of Figure 

95. This threshold value results in a probability of false alarm of 0.8900FAP = . 

The value of 0.1539η =  was used in the circuit of Figure 88. Running the pro-

gram five times with a total of 4096 possible detections for each trial with a noise vari-

ance of 2 1nσ = , the probability of detection averaged 0.9003. Using these values in (5.6) 

resulted in a calculated 0.8900FAP = . Figure 88 was also modified to change the short 

training symbol input to zero, and the simulation was run again five times with 4096 tri-

als per run. The result was a 0.8930FAP = , close to the predicted value of 0.8900. This 

seems like a large false alarm probability, but it is more the result of the choice of noise 

variance used in the calculation than representative of the performance of the algorithm. 

If the noise variance is changed to 2 0.1nσ =  and the probability of detection is kept con-

stant at 0.9000 (this changes the threshold to 0.0750η = ), the numerical evaluation of the 

threshold gives a probability of false alarm of 0.7579. At 2 0.01nσ =  with the probability 

of detection kept at 0.9000 (the threshold in this case is 0.1069η = ), the probability of 

false alarm falls to 33.5955 10−× . This significant improvement in the probability of false 

alarm can be seen in Figure 96 where the distribution for the probability of false alarm is 
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shown with the black dashed line and the probability of detection is shown with the red 

solid line. The separation between the two curves caused by the reduction in the AWGN 

variance, 2
nσ , reduces the probability of false alarm for a given detection threshold, η . 

 

 
Figure 96 Decision Variable Distribution with Reduced AWGN. 

 

2.  Delay and Correlate Packet Detector 
The System View circuit used to perform the delay and correlate packet detection 

simulation of the AWGN channel is shown in Figure 97, which is an implementation of 

the block diagram of Figure 78. 

To find the detection threshold for this circuit, a Gaussian distribution in the form 

of (4.28) is assumed for the decision statistic (4.27). The mean value of this distribution is 

given by (4.29) and the variance is given by (4.30). The 2
nσ  used in (4.29) is the channel 

noise variance. The signal power 2s  is defined by Reference [17] as ( ){ }22 Re ms E s=     
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and ( ){ }22 Im ms E s=    . For the Standard 802.11g training samples, ( ){ }2
Re mE s =    

( )
1

2

0
1

L

m
m

L s
−

=
∑  and with L = 16, ( ){ }2

Re 0.1015625 16mE s =   or 2 36.3477 10s −= × . 

 

 
Figure 97 Delay and Correlate System View Circuit. 

 

With no noise input, the signals generated by the C-sliding window portion of the 

circuit are equal to the signals generated by the P-sliding window portion of the circuit 

when the short training symbols are being received. This is seen by examining (4.27) and 

realizing that in the case of training symbols received with no noise, n k n k Dr r+ + −=  due to 

the repetition of the training symbols. Therefore, in this case, C P= . If noise is present, 

but no short training symbols are being received, then the P-sliding window portion of 

the circuit generates a significant signal because of the zero lag correlation, but the C-

sliding window portion of the circuit only generates a small signal since the noise data is 

uncorrelated and the correlation lag is non-zero. When training symbols are received, the 

C-sliding window signal increases because of the correlation of the repeated training 

symbols. 
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The circuit of Figure 97 has a similar construction to the circuit of Figure 88. The 

first section consists of a continuous short training symbol generation circuit. Tokens 5, 

25, 29, and 34 are the Gaussian noise channel. The cross-correlation and adder tokens 

35 - 41 provide the C-sliding window and 21, 42 - 45  the P-sliding window calculations. 

The correlations are sampled by tokens 10 and 22 every 16 clock cycles and compared to 

determine if a detection has occurred. The output of the comparator (token 12) is con-

nected to a probability of detection calculation circuit, as performed in the previous cir-

cuit. 

The threshold of token 28 is calculated using the Gaussian distribution of (4.28). 

The mean value of the distribution, using (4.29) and a noise variance of 2 51 10nσ −= ×  is  

 
( )

( )

23

23 5

6.3477 10
0.9969

6.3477 10 1 10
µ

−

− −

×
= =

× + ×
 (5.8) 

The noise variance is reduced significantly to allow for a Gaussian approximation. The 

previously used noise variance value of 2 1nσ =  gives a poor prediction of the required 

threshold. The decision statistic’s variance, given by (4.30), is 

 ( ) ( )( )( ) ( )( )( )
( )

2

2 23 3 5 5

4
45 3

2 6.3477 10 1.9969 6.34 10 10 1 2 .9969 10
3.9168 10

16 1 10 6.3477 10

σ
− − − −

−

− −

=

 × × + +   = ×
× + ×

(5.9) 

Using the mean and variance given in (5.8) and (5.9), we now calculate the 

threshold to obtain a probability of detection of 0.9000DP =  to be 0.9964η = . Simula-

tion using this threshold yielded 4096 detections in 4096 trials. The threshold value that 

actually obtains an average 0.9DP =  in the simulation with the number of trails at 4096 

in the circuit of Figure 97 is 0.999918η = . It is conjectured that this discrepancy is at-

tributable to the Gaussian approximation. 
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B. FREQUENCY SYNCHRONIZATION PERFORMANCE 
The circuits built to test the frequency synchronization algorithms of Chapter IV 

are split up into the frequency-domain and the time-domain. The biggest difference be-

tween the two is the frequency resolution of the algorithms. In the frequency-domain 

(i.e., after the receiver FFT) the separation between repeated training symbols is 64 clock 

cycles, whereas in the time-domain (i.e., before the receiver FFT), the separation is 16 

clock cycles for the short training symbols and 64 clock cycles for the long training sym-

bols. As discussed in Chapter IV and from (4.54), this results in a maximum frequency 

resolution of either 625 kHz for a separation of 16 samples or a maximum frequency 

resolution of 156.25 kHz with a separation of 64 samples. 

 

1. Frequency-Domain Frequency Synchronization 
The System View circuit diagram showing frequency synchronization using the 

correlation between the data in adjacent OFDM symbols to estimate the frequency error 

is shown in Figure 98. 

Tokens zero through four are used to generate the short training sequence, the 

same as for the packet detection systems of Figure 97 and Figure 88. However, with this 

circuit the system clock is set at 4.8 GHz, which is twice the carrier frequency of 2.4 

GHz. This allows the analysis of the carrier frequency synchronization. The sampler to-

ken (token one) is used to step down the pulse train (token zero) to the required frequency 

of 312.5 kHz. The resample tokens (tokens five and 39) are used to change the sample 

frequency to 4.8 GHz from the 20 MHz used to generate the short training pulses, allow-

ing correct operation with the multiplier tokens (tokens 6 and 40). The short training 

symbols are then modulated with 2.4-GHz in-phase and quadrature carriers (token 42) 

and sent to the receiver through an AWGN channel. 
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Figure 98 Frequency-Domain Frequency Synchronization. 

 

At the receiver, the signal is demodulated with the complex signal 2 rj f nTe π−  by to-

ken eight. The resulting signal is then stepped down to the data rate of 20 MHz with the 

sampling tokens (tokens nine and 38). At the output of the OFDM demodulator, token 10, 

are the short training symbols, which are repeated each OFDM symbol. Since the trans-

mitter and receiver carrier frequencies are offset, these symbols should only be different 

from each other by a phase offset proportional to the difference in frequencies of the 

transmitter and receiver if we neglect the noise. 

The gain tokens (tokens 11 and 35) remove the normalization factor used in the 

transmitter. The correlation of the received symbols with the symbols delayed by one 

OFDM symbol is accomplished by the cross-correlator tokens 13, 26, 33, and 37. The 

correlation of the two symbols is given by 
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= + + −      

∑ ∑

∑ ∑ ∑ ∑
 (5.10) 

The summations of (5.10) are implemented by tokens 13, 37, 26, and 33 respec-

tively. The delay tokens are set to 64 samples (the number of samples per OFDM symbol, 

i.e., 64D = ). 
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The sampler tokens (tokens 15 and 28) at the output of the adder tokens sample 

the summation output once every OFDM symbol (312.5 kHz). This error signal is con-

verted from Cartesian coordinates into polar coordinates by token 19. The phase of the 

error signal is then converted to a frequency error by the gain token (token 20) by divid-

ing by 2 NTπ  where 64N =  and 50 nsT = . 

The frequency error is resampled by token 22 to convert it to the system sample 

rate. This is fed into the input of the frequency modulator token (token 23). The parame-

ters used in this token are shown in Figure 99. The token frequency has been deliberately 

set to 100 kHz below the transmitter frequency to evaluate the effect of a 100-kHz fre-

quency offset. The output from the frequency modulator can then be used as the system 

clock to demodulate the signal used by the receiver circuit or as part of a feedback circuit 

used in a phase-locked loop. 

 

 
Figure 99 Frequency Modulation Token Parameters. 

 

The error signal produced by this circuit for a 100-kHz receiver frequency offset 

with no channel noise is shown in Figure 100. As shown, the frequency error is detected 

and corrected 12.8 µs into the run, which is 9.6 µs  (3.2 µs  each for the OFDM demodu-



135 

lator, the sample delay, and correlation token) after the signal has been received. This de-

lay is due to the OFDM modulation and demodulation processes and the cross-

correlation, all of which take 3.2 µs  to calculate their outputs. 

 

 
Figure 100 Frequency-Domain Frequency Error. 

 

The output of the frequency modulator is shown in Figure 101. The beat fre-

quency output for the first 12.8 µs  is caused by the difference in the receiver frequency 

and the received frequency. Since the received frequency is 2.4 GHz and the receiver fre-

quency is 2.3999 GHz, the difference is 100 kHz. As can bee seen from Figure 101 the 

period of the beat frequency is 10 µs  corresponding to a frequency difference of 100 

kHz. The frequency of the voltage-controlled oscillator is stable at the received frequency 

after the 12.8 µs required for the circuit to begin working. However, the output is attenu-

ated from the expected value of one volt to a value of 0.1872 volts. This corresponds to 

an offset in phase from the received signal by ( )1cos 0.1872 79.2− = D . Sampling the re-

ceived signal at times other than the maximum and minimum voltage levels causes this 
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phase offset. This also demonstrates the requirement for a phase synchronization circuit 

after frequency synchronization has been accomplished. 

 

 
Figure 101 Frequency-Domain Synchronizer Receiver Frequency. 

 

The effect of noise in the circuit is demonstrated in Figure 102 and Figure 103. 

The same frequency offset of 100 kHz was used with a noise standard deviation of 

0.01nσ = . The bit energy-to-noise power spectral density in this circuit can be calculated 

from the average short training symbol energy of the transmitted training symbol divided 

by the noise power spectral density as shown in (5.11): 
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Figure 102 Frequency Synchronization Error Performance with AWGN. 

 

 

 
Figure 103 Frequency Synchronization Frequency Performance with AWGN. 
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The average signal power for the Standard 802.11g short training samples was 

calculated in Section A.2 as 2 36.3477 10s −= × . This means the average bit energy is 
2

avgb bE s T=  where bT  is the duration of one bit. Since 950 10 secbT −= ×  for the transmit-

ted Standard 802.11g short training samples, this results in an average bit energy of 
103.1739 10  J

avgbE −= × . Since 2
0 nN Wσ=  where 16.6 MHzW =  is the bandwidth of the 

Standard 802.11g transmitted signal, the bit energy-to-noise power spectral density of 

this simulation is  

 
( )( )

( )
( )

3 9

2
0 0

6

6.3477 10 50 10
[dB] 10log 10log 17.2169 dB.

0.01
16.6 10

b bE E
N N

− −

 
 × ×   = = =      
 × 

 (5.12) 

Equation (5.12) shows that a fairly large bit energy-to-noise power spectral den-

sity ratio is required to track the incoming signal in this simulation and provide for a rea-

sonably stable output. 

 

2.  Time-Domain Frequency Synchronization 
The circuit used for the time-domain frequency synchronization is shown in 

Figure 104. This circuit is closely modeled after the frequency-domain synchronizer of 

Figure 98, with the exception of the lack of OFDM demodulation and the delay of 16 

samples used in the correlation instead of the 64 sample delay used in the previous cir-

cuit. This difference in samples used is caused by the time it takes for the timing samples 

to repeat themselves. The timing samples transmitted by the Standard 802.11g transmitter 

repeat every 16 samples, as shown in Figure 48 in Chapter II. Once the received training 

samples are demultiplexed by the FFT, the training samples repeat only every 64 sam-

ples. 

The error signal output for this circuit with no noise input is shown in Figure 105. 

The frequency of the receiver was set to 100 kHz below the frequency of the transmitter, 

as was done previously in Figure 100. The frequency error converges to the correct error 

of 100 kHz at 4.8 µs  which is 1.6 µs  after the signal is received. This is much quicker 
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than the 9.6 µs  required by the frequency-domain synchronizer and well within the short 

training OFDM symbol duration of 8 µs . 

 

 
Figure 104 Time-Domain Frequency Synchronization Circuit. 

 

 
Figure 105 Time-Domain Frequency Error. 
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The output of the voltage-controlled oscillator token for this circuit is shown in 

Figure 106. Again, the beat frequency output for the first 4 µs  is caused by the difference 

in the receiver frequency and the received frequency. Since the received frequency is 2.4 

GHz and the receiver frequency is 2.3999 GHz, the difference is 100 kHz. As can be seen 

from Figure 105, the period of the beat frequency is 10 µs  corresponding to a frequency 

difference of 100 kHz. The frequency of the voltage-controlled oscillator is stable at the 

received frequency after the 4 µs  required for the circuit to begin working. However, the 

output is attenuated from the expected value of one volt to a value of 0.9921 volts. This 

corresponds to an offset in phase from the received signal by ( )1cos 0.9921 7.2− = D . Sam-

pling the received signal at times other than the maximum and minimum voltage levels 

causes this phase offset. 

 

 
Figure 106 Time-Domain Synchronizer Receiver Frequency. 

 

The performance of this circuit with AWGN is better than the performance of the 

frequency-domain synchronizer. The time-domain frequency synchronization with a 

noise standard deviation of 0.1nσ =  resulted in a widely varying output frequency. At a 
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noise deviation of 0.02nσ =  the output was more stable. The error signal for this case is 

shown in Figure 107 and the voltage-controlled oscillator output is shown in Figure 108. 

This value of noise deviation corresponds to a bit energy-to-noise power spectral energy 

ratio of 0 11.1963 dB,bE N =  giving a better performance in a noisy environment. 

 

 
Figure 107 Time-Domain Synchronizer Frequency Error in AWGN. 

 

The time-domain synchronization circuit achieves synchronization faster than the 

frequency-domain synchronizer, and the time-domain synchronizer gives a stable output 

frequency at a lower bit energy-to-noise energy ratio under AWGN conditions. The faster 

synchronization of the time-domain circuit is expected, since the time-domain circuit 

does not perform an FFT on the data before correlation of the received signal. However, 

the better performance under AWGN conditions was not something predicted before run-

ning the simulation. It is conjectured that the synchronization error present while per-

forming the FFT in the frequency-domain circuit results in a loss of orthogonality be-

tween the sub-carriers and increased interference between the sub-carriers, resulting in 

reduced performance. 
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Figure 108 Time-Domain Synchronizer Carrier Output in AWGN. 

 

This chapter has implemented and analyzed some of the circuits developed in 

Chapter IV and showed how the theory matches with the practical implementation of the 

circuit. The next chapter will summarize this thesis and recommend further areas of re-

search required. 
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VI. CONCLUSIONS 

The goal of this thesis was to describe the methods that can be used to provide 

synchronization in an OFDM system and then use these methods in the design of actual 

circuits. As described in Chapter IV, there are many algorithms available to synchronize 

OFDM systems. This thesis focused on the algorithms useful for a packet-based system 

to limit its scope. However, even with this limited scope, this thesis was limited to frame 

and carrier frequency synchronization in an AWGN environment. Even so, there are 

enough different algorithms available that not all can be adequately covered in a single 

thesis. In addition to the small number of synchronization algorithms considered, the 

channel environment was limited to the AWGN case, even though most OFDM systems 

are used in an environment where multipath is a significant problem and the channel 

characteristics can change frequently, as in a mobile environment. However, the concepts 

and circuit designs used in this thesis can easily be extended to the multipath, fading 

channel environment. 

 

A. FINDINGS 
Although the performance of the different algorithms analyzed in an AWGN en-

vironment were satisfactory, a common theme emerged in the synchronization of OFDM 

signals. The received signal must be correlated with some known data to obtain easily an 

error signal. This was true for both packet-based systems and continuous transmission 

systems. The unique construction of the Standard 802.11g OFDM symbol using a cyclic 

prefix and virtual sub-carriers allows use of the known data to get optimum synchroniza-

tion results. 

Based on the analysis in Chapter IV and the simulation discussed in Chapter V, 

the best performing algorithm discussed in this thesis for frame synchronization was the 

sliding-window correlator packet detector illustrated in Figure 88 since it provided packet 

detection with low probability of false alarm with a noise variance of 2 0.1nσ = . The delay 

and correlate packet detector illustrated in Figure 97 appears to have the potential for 

good performance. However, the Gaussian approximation did not accurately predict the 
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desired threshold. With further analysis, a better detection probability may allow a 

threshold detection prediction that will allow a comparison with the sliding-window cor-

relator. 

The best performing carrier frequency synchronization algorithm analyzed in this 

thesis was the time-domain frequency synchronizer illustrated in Figure 104. Its im-

proved performance in AWGN and its ability to achieve synchronization in a shorter time 

compared to the frequency-domain synchronizer illustrated in Figure 98 make it the bet-

ter performing circuit. 

System View simulation proved to be a useful tool, not only in conceptualizing 

the practical design of the required circuits, but also in verifying the analytical solutions 

derived in Chapter IV. Although the software can be challenging to learn and use, its 

analysis capability is a strong reason to use this software during initial circuit analysis 

and design. 

 

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

Due to the breadth of the synchronization subject area and the dependence of the 

best algorithm on the standard used to transmit the OFDM signal, there are many oppor-

tunities to expand upon this research. 

First, the analysis and performance of the algorithms for carrier phase offset 

tracking, OFDM symbol timing, and data symbol timing could be performed and simu-

lated using System View. 

Second, the analysis performed in Chapter IV could be expanded from the 

AWGN channel to include a mulipath channel. This significantly increases the difficulty 

of the analysis, but would provide a useful comparison with the actual environment ex-

pected to be present when using OFDM systems. 

Third, the algorithms described in Chapter IV that are more suited to continuous 

transmission systems could be analyzed and simulated with System View. The cyclic pre-

fix correlation and the virtual carrier algorithms may provide interesting results. 
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Fourth, the System View designs implemented in Chapter V could be imple-

mented with an FPGA card and compared to current receiver cards available commer-

cially. System View offers an HDL design studio to convert a System View circuit design 

into synthesizable VHDL or Verilog source code. The FPGA lab in the Cryptologic Re-

search Lab at the Naval Postgraduate School has the required software and hardware to 

use the VHDL source code to program an FPGA card. 

Finally, the physical layer designs implemented could be used as a starting point 

for a higher layer, software implemented analysis of the received OFDM signals. 
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APPENDIX A 

The file used as the input to the QAM mapper token is shown below. No header 

was provided, and line one of the file starts with 16n = , as shown below. It follows the 

exact format provided in the 16QAM notepad file, 16QAM.txt, provided in the Commlib 

folder in the System View Example folder. This usually can be found in the C drive un-

der System View folder in the Program Files folder. 

 

n=16 
Symbol    I    Q 
0 -3.0  -3.0 
1 -3.0  -1.0 
2 -3.0   3.0 
3 -3.0   1.0 
4 -1.0  -3.0 
5 -1.0  -1.0 
6 -1.0   3.0 
7 -1.0   1.0 
8  3.0  -3.0 
9  3.0  -1.0 
10  3.0   3.0 
11  3.0   1.0 
12  1.0  -3.0 
13  1.0  -1.0 
14  1.0   3.0 
15  1.0   1.0 
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APPENDIX B 

This worksheet from Mathcad 2001 shows the calculation of the probability of de-

tection and the probability of false alarm for the Ricean and Rayleigh distributions used 

in the sliding-window correlation detector in Section 1 of Chapter V. 

 

 

 
 
 
 
 
 
 
 

r 0 0.001, 1.6..:= s 2 0.1015625( )2
⋅:= σ 1 0.1015625⋅:= η 0.1538905:=

P r σ,( ) r

σ
2

e

r2 s2+( )−

2 σ
2

⋅
⋅ I0 r

s

σ
2

⋅





⋅:= s 0.1436310649=

PD r σ,( )

η

2

r
r

σ
2

e

r2 s2+( )−

2 σ
2

⋅
⋅ I0 r

s

σ
2

⋅





⋅

⌠



⌡

d:=
PD r σ,( )
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

PFA η σ,( ) e

η
2

−

2 σ
2

⋅
:= PFA η σ,( ) 0.8899502509=

PG r( )
1

2 π⋅
e

r s−( )2−
2

⋅:=

PR r σ,( ) r

σ
2

e

r2−

2 σ
2

⋅
⋅:=



150 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



151 

LIST OF REFERENCES 
 

1. Robert W. Chang, “Synthesis of Band-Limited Orthogonal Signals for Multi-
channel Data Transmission,” The Bell System Technical Journal, Vol. XLV, No. 
10, pp. 1775-1796, December 1966. 

2. S. B. Weinstein and Paul M. Ebert, “Data Transmission by Frequency-Division 
Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on 
Communication Technology, Vol. Com-19, No. 5, pp. 628-634, October 1971. 

3. Juha Heiskala and John Terry, OFDM Wireless LANs: A Theoretical and Practi-
cal Guide, Sams Publishing, Indianapolis, Indiana, 2002. 

4. Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia 
Communications, Artech House, Boston, Massachusetts, 2000. 

5. Patrick A. Count, “Performance Analysis of OFDM in Frequency-Selective, 
Slowly Fading Nakagami channels,” Master’s Thesis, Naval Postgraduate School, 
Monterey, California, 2001. 

6. Donovan I. Oubre, “Capabilities and Limitations of Orthogonal Frequency-
Division Multiplexing in Wireless Applications,” Master’s Thesis, Naval Post-
graduate School, Monterey, California, 2001. 

7. Chi-han Kao, “Performance of the IEEE 802.11a Wireless LAN standard over 
Frequency-Selective, Slow, Ricean Fading Channels,” Master’s Thesis, Naval 
Postgraduate School, Monterey, California, 2002. 

8. Institute of Electrical and Electronics Engineers, 802.11, Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications, 18 March 1999. 

9. Institute of Electrical and Electronics Engineers, 802.11b, Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed 
Physical Layer Extension in the 2.4 GHz Band, 16 September 1999. 

10. Institute of Electrical and Electronics Engineers, 802.11a, Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed 
Physical Layer Extension in the 5 GHz Band, 16 September 1999. 

11. Institute of Electrical and Electronics Engineers, 802.11g, Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4: 
Further Higher Data Rate Extension in the 2.4 GHz Band, 12 June 2003. 

12. Institute of Electrical and Electronics Engineers, 802, IEEE Standard for Local 
and Metropolitan Area Networks: Overview and Architecture, 08 March 2002. 

13. Stephen B. Wicker, Error Control Systems for Digital Communication and Stor-
age, pp.264-265, Prentice Hall, Upper Saddle River, New Jersey, 1995. 



152 

14. William Carney, “IEEE 802.11g New Draft Standard Clarifies Future of Wireless 
LAN,” White paper, Texas Instruments Incorporated, 11 January 2002, 
http://focus.ti.com/pdfs/vf/bband/802.11g_whitepaper.pdf last accessed 29 Janu-
ary 2004. 

15. Maurice L. Schiff, “802.11a System Simulation Using System View by Elanix,” 
AN 140, Elanix Incorporated, Westlake Village California, November 2002, 
http://www.elanix.com/pdf/an140.pdf last accessed 29 January 2004. 

16. Ralph D. Hippenstiel, Detection Theory: Applications and Digital Signal Process-
ing, pp. 63-159, CRC Press, Boca Raton, Florida, 33431,2002. 

17. Timothy M. Schmidt and Donald C. Cox, “Robust Frequency and Timing 
Synchronization for OFDM,” IEEE Transactions on Communications, Vol. 45, 
No. 12, pp. 1613-1621, December 1997. 

18. Meng_Han Hsieh and Che-Ho Wei, “A Low-Complexity Frame Synchronization 
and Frequency Offset Compensation Scheme for OFDM Systems over Fading 
Channels,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 5, pp.1596-
1609, September 1999. 

19. Flavio Daffara and Antoine Chouly, “Maximum Likelihood Frequency Detectors 
for Orthogonal Multicarrier Systems,” Proc. of IEEE Trans. On Communications, 
Geneva, Switzerland, pp. 766-771, May 1993. 

20. Marco Luise and Ruggero Reggiannini, “Carrier Frequency Acquisition and 
Tracking for OFDM Systems,” IEEE Transactions on Communications, Vol. 44, 
no. 11, pp.1590-1598, November 1996. 

21. Flavio Daffara and Ottavio Adami, “A New Frequency Detector for Orthogonal 
Multicarrier Transmission Techniques,” Proc. of IEEE Veh. Technol. Conf., Chi-
cago, IL, pp.804-809, July 1995. 

22. Minoru Okada, Shinsuke Hara, Shozo Komaki and Norihiko Morinaga, ”Opti-
mum Synchronization of Orthogonal Multi-Carrier Modulated Signals,” Proc. 
IEEE PIMRC, Taipei, Taiwan, pp. 863-867, October 1996. 

23. Paul H. Moose, “A Technique for Orthogonal Frequency Division Multiplexing 
Frequency Offset Correction,” IEEE Transactions on Communications, Vol. 42, 
No. 10, pp. 2908-2914, October 1994. 

24. Sergio Barbarossa, Massimiliano Pompili, and Georgios B. Giiannakis, “Channel-
Independent Synchronization of Orthogonal Frequency Division Multiple Access 
Systems,” IEEE Journal on Selected Areas in Communications, Vol. 20, No. 2, 
pp. 474-486, February 2002. 



153 

25. Michael Speth, Stefan Fechtel, Gunnar Fock, and Heinrich Meyr, “Optimum Re-
ceiver Design for OFDM-Based Broadband Transmission-Part II,” IEEE Transac-
tions on Communcations, Vol.49, No. 4, pp. 571-578, April 2001. 



154 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



155 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, VA 
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, CA 
 

3. Chairman, Code EC 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 
 

4. Professor Frank Kragh Code EC/Kh 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 
 

5. Professor R. Clark Robertson Code EC/Rc 
Department of Electrical and Computer Engineering  
Naval Postgraduate School 
Monterey, CA 
 

6. Professor Ronald Pieper 
Department of Electrical Engineering 
University of Texas 
Tyler, TX 

 
7. Director, National Security Agency 

ATTN: Robert Eubank 
Fort Meade, MD 

 
8. Nick Triska 

SAIC 
Monroe, CT 
 

9. Nathan Beltz 
Department of Electrical Engineering 
Naval Postgraduate School 
Monterey, CA 
 

10. Commanding Officer, Space and Naval Warfare Systems Center 
ATTN: Mr. Dale Bryan Code 2371 
San Diego, CA 



156 

11. Commanding Officer, Space and Naval Warfare Systems Center 
ATTN: Dr. Rich North Code 2846 
San Diego, CA 

 
12. LCDR Keith Lowham 

Chief of Naval Operations, Code N77 
Arlington, VA 




