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ABSTRACT
An approach is developed for adaptive beamforming for
mobile sonars operating in an environment with moving
interference from surface shipping. It is assumed that the
sound source of each ship is drawn from an ensemble o f
Gaussian random noise, but each ship moves at constant
speed along a deterministic course.  An analytic expression
for the ensemble mean covariance is obtained.  In practice
the location, course, speed, mean noise level, and
transmission loss of each interferer are not known with
sufficient precision to use the modeled ensemble mean as a
basis for adaptive beamforming.  The problem is thus to
accurately estimate the ensemble mean based on data
samples.  The analytic ensemble mean is not stationary, and
thus is not well estimated by the sample mean.  The ensemble
of covariance samples consists of rapidly varying random
terms associated with the emitted noise and more slowly
oscillating deterministic terms associated with the source
and receiver motion.   The non-stationary ensemble
covariance mean can be estimated by filtering out the
rapidly varying noise while retaining the slow oscillatory
terms. Performance of the filters can be visualized and
assessed in the "epoch” frequency domain, the Fourier
transform of the covariance samples.  In this domain, higher
bearing rates show up at higher frequencies.  The
traditional sample mean estimator retains only the zero-
frequency bin corresponding to stationary interference. 
Techniques that can identify and include the appropriate
non-zero frequency contributions are better non-stationary
estimators than the sample mean.   Several such techniques
are offered and compared.  Simulations are invaluable in
evaluating the filter performance, since the ensemble mean
can be precisely calculated analytically in the simulation,
and compared directly with the sample estimates. 
Simulations of adaptive beamformers using covariance
filtering will be shown to yield improved robustness to
shipping motion.

1. INTRODUCTION

At low frequencies, underwater noise is dominated by
shipping sources.  These sources can be extremely loud,
and can dominate the performance of low-frequency
passive sonar systems.  Since these sources are typically
spatially discrete, adaptive techniques ought to apply to
eliminate their influence when surveillance is performed in
locations in between the loud ships.  Unfortunately, the

shipping sources are moving, and hence violate the
stationary noise assumptions of current adaptive
techniques.   Current implementations of adaptive
beamformers often do not achieve much gain above
conventional, non-adaptive beamformers and hence remain
limited by the loud sources of interference.  Here we
suggest a new class of techniques that may robustly
achieve the rejection of loud sources of moving
interference.

2. PHYSICAL MODEL OF SHIPPING
NOISE

Current adaptive techniques are based on the physical
assumption that the sources of interference are stationary in
space.  This is clearly not valid for the case of moving
ocean shipping sources.  Hence, we must develop a new
physical model for the interference in order to derive the
appropriate adaptive processing.  

2.1 Pressure Field

Begin by assuming an arbitrary set of ships under
deterministic motion in an arbitrary underwater sound
channel.  We focus on a single frequency, with the
assertion that the model can be extended to the broadband
case by a straightforward summation across frequencies.
In the selected frequency bin, it is reasonable to model the
sound source of each ship by a draw from an ensemble of
complex Gaussian random noise, and assume that the
noises of different ships are fundamentally independent.  

These sources are then propagated to each receiver array
element.  The propagation may be described by a coherent
sum over modes [1].   In a range independent
environment, these modes arise naturally with the use of a
normal mode propagation model.  In range-dependent
environments, the propagation can be expanded as a sum
of local modes in the vicinity of the receiver.  This local
mode expansion is explicit via the use of coupled or
adiabatic mode propagation models, but in principle can
be obtained from the field output of any propagation
modeling technique.  The received acoustic pressure pn at
the nth element in an array is a sum across ships of the
sum over the local modes:
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where sj is the source noise sample, Amn is the mode
amplitude and km is the wavenumber of the mth mode,
and rjn is the range from the jth ship to the nth receiver
element.  Note that the mode amplitudes must incorporate
cylindrical spreading and attenuation terms not given
explicitly here.  The pressure consists of random
contributions from the ship noise sources and
deterministic time-varying propagation contributions.

2.2 Covariance

Optimal adaptive processing is determined from the mean
of the covariance among sensor pressures.  This
expectation must be taken across the random ensemble of
ship sources. The ensemble-mean covariance will be a
function of time because of the time varying propagation
terms. Therefore the expected covariance cannot be
obtained directly from a sample mean across time samples
of the covariance.   Using the independence of different
ships an analytic expression for the ensemble covariance is
obtained:
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where the brackets indicate the expectation across the
ensemble.   The term <sj sj*> is the power spectrum of the
jth source.

If the ranges, propagation modes, and source level power
spectra were all known, this model expression could be
calculated at each time and used in a standard minimum
variance distortionless response (MVDR) full-rank ABF
[2, 3].  This approach might be termed the full knowledge
a priori model-based MVDR method.  Such an ABF
would move its nulls in time to optimally reject noise
from all the moving ships.  Unfortunately, it is unlikely
in practice that full knowledge will be available a priori.
Precisely predicting the propagation structure is quite
difficult given the spatial and temporal variability of the
ocean.  It is also unlikely that the exact source power
spectra will be known for every contributing ship.  Thus,
we usually must attempt to estimate the unknowns in the
ensemble mean covariance from data samples.

3. ALGORITHMS

Since the ensemble mean involves deterministic time-
varying terms, it cannot be reliably estimated directly from
a sample mean taken over time.  In particular, the

oscillatory nature of the exponential terms will produce a
sample mean that tends to zero over long estimation
times, while the ensemble mean is significantly larger.  To
avoid underestimating the ensemble mean, alternatives to
the sample mean are considered.

3.1 Fourier Analysis and Synthesis

An alternative to sample averaging is to apply fourier
analysis to covariance samples.  One motivation for this
approach is to separate the differing time scales involved.
The random source noise varies rapidly from one sample
to the next.  This rapid variation produces a sample noise
that is nearly white.  This sample noise will corrupt
estimates of the ensemble mean covariance unless it is
removed.  The deterministic amplitudes and phases from
the propagation terms vary more slowly and continuously
in time.  A low pass filter is expected to separate the
rapidly varying sample noise from the slowly varying
propagation terms.  Since filter behavior is often best
analyzed in the frequency domain, this motivates
transforming the covariance samples to a corresponding
frequency domain.  This domain will be referred to as the
epoch frequency domain to distinguish it from the acoustic
frequency.

A second motivation for considering the Fourier transform
of the covariance samples can be obtained by considering
the time dependence of the propagation terms.  The
propagation amplitudes typically evolve very slowly in
time, and this variation made be neglected for the
moment.  The most rapidly changing term is the phase
term due to the changing ranges to the interference sources.
Expand the ranges in a Taylor series about some reference
time:
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where r0 is the range at the reference time t=0 and r&  is the
initial range rate of the source.  Again for the moment,
higher order terms will be neglected.  The ensemble
covariance can now be approximated by
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In this form, the unknowns: source power spectra and
propagation amplitudes are coefficients of sinusoidal
complex exponentials with epoch frequencies
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. This suggests that these unknown

coefficients can be estimated by Fourier analysis.  Once
the coefficients are estimated then the original time series
for the ensemble covariance is reconstructed via Fourier
synthesis.

ΣΣΣ
( ) ( )trkrkirkrki

nmnm
j m m

jjnn

jnmjnmjnmjnm ee

AAsspp

2211022011

2211

1 2

21
**

&& −−



The overall approach is summarized as follows.  First
obtain time samples of the elements of the covariance
matrix, as is currently done in ABF.  For each matrix
element, transform the time samples of covariance to the
epoch frequency domain.  Identify the appropriate
frequencies associated with the moving ships, and use
those frequency coefficients to synthesize the ensemble
mean time series.  The only portion of the algorithm
remaining to specify is the technique of identifying which
frequencies in the epoch domain are associated with the
shipping noise sources and which are dominated by
sample noise.  Several methods can be employed.

3.2 Covariance Low-pass Filtering Methods

Since ships generally do not change range significantly
within a few time samples, the shipping noise is expected
to nearly always occur in the lowest frequency bins of the
epoch frequency domain, while sample noise is expected
to be nearly white across all bins.  Hence, appropriate low
pass filters are expected to retain much of the shipping
noise energy to be estimated, while rejecting the sample
noise.  The best selection of pass band is made based on
the expected motion of the contributing ships.  Current
ABF algorithms that employ the sample mean are in fact
an example of covariance low pass filtering, since the
sample mean is the low pass filter that retains only the
spectral power in the zero-frequency bin.  The performance
of any low pass filter can be improved by matching the
filter width to the expected epoch frequency widths
associated with typical ship motion.  For rapidly moving
ships, this can be achieved by retaining more frequency
bins in the filter.  In order to further improve over current
algorithms, advantage must be taken of the specifics of the
epoch frequency structure of the shipping noise.

The epoch frequency for each ship given above depends of
the difference of the products of a wavenumber times a
range rate.  Underwater acoustic wavenumbers of the
significant modes generally do not exhibit much spread.
Furthermore, for operational horizontal line arrays, the
interfering ships will almost always occur at ranges
significant relative to the horizontal separation between
array elements.  In these cases the epoch frequency where a
ship contributes can be approximated by

θθ sin0 xk ∆≈Ω

where k0 is a reference wavenumber, ∆x is the horizontal
separation between elements, θ  is the bearing to the ship
(relative to the line between the elements), and 

θ
 is the

bearing rate.  Note that the epoch frequency increases
approximately linearly with separation between elements.
This suggests a second filtering approach, in which the
low pass filter frequency width is increased linearly
proportionally to separation.  Elements near the main

 diagonal of the covariance matrix are less affected by
source motion, and hence can be estimated with narrower
low-pass filters.  The most separated elements at the
farthest corners of the matrix are the most subject to source
motion, and require the highest bandwidth low-pass filter.
The maximum bandwidth can be selected to match the
highest bearing rate typically encountered.

3.2 Covariance Band-pass Filtering Methods

Further improvements in estimation may be potentially
obtained by retaining only those epoch frequency bins
containing significant shipping noise.  One method
involves partial knowledge available a priori.  When the
locations and tracks of the significant ships are
independently known, for example from radar surveillance,
then the bearing rates can be calculated and the epoch
frequency bins identified.  The energy in the identified
bins then represents estimates of the unknown propagation
and source level terms.   Fourier synthesis using only the
identified bins produces the desired covariance time series.
The entire process can be described as a set of band pass
filters, where each narrow pass band is selected based on
the knowledge a priori of the bearing rates.

When no knowledge is available a priori, the potential
exists to take advantage of the linear dependence on
separation.  Energy from each individual ship will lie
along a line in the separation-epoch frequency plane.  Line
detection methods in this plane have the potential to
automatically identify the appropriate bearing rates
associated with significant interfering energy.  Such
methods may include Radon or Hough transforms [4].  
Once the appropriate bins have been identified, band pass
filters can be constructed to filter the shipping noise from
the sample noise.

4. SIMULATION

A simulation was performed to demonstrate the potential
utility of these techniques.   In the simulation, the exact
ensemble mean can be calculated since all quantities are
known.  Adaptive processing based on this exact mean
covariance gives an upper bound to the maximum
performance that could be achieved, if, for example, perfect
knowledge were available a priori.   In addition to the
ensemble mean, the simulation generated time samples of
covariance from four moving ships with Gaussian noise
sources.  The ships were moving at realistic speeds from
between 10 and 20 knots.  The tracks of the ships are
shown in figure 1.  Noise from the ships was propagated
with cylindrical spreading in a single mode underwater
channel.  The noise was received on a line array of 50
elements with a design frequency of 60 Hz.  The
simulation was performed at this design frequency.
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Figure 1.  Tracks of the four ships in the simulation
relative to array at origin

The simulation calculated the conventional beamformer
response and compared with various MVDR beamformer
responses for a set of beams spanning all azimuths.  The
beamformers used various estimates of the ensemble mean
covariance.  In addition to the exact ensemble mean, the
ABF based on the sample mean and the ABF based on an
element dependent low-pass filter were simulated.  Results
of the simulation are summarized by cumulative
distributions of noise across all beams shown in figure 2.

Figure 2.  Cumulative distributions of noise for various
beamformers

The sample mean ABF performed almost no better than
conventional non-adaptive ABF in the simulation.  The
sample mean was unable to properly capture the motion of
the ships, and hence was unable to place nulls in the
proper locations to cancel the ship noise.  The element
dependent ABF filtered sample covariance showed a
median improvement of about 5 dB reduction in the noise
over the sample mean approach.  The perfect ensemble
mean displayed 10 dB reduction in noise beyond the
sample mean method.

5. CONCLUSIONS
The problem of adapting in the presence of moving
sources of interference was considered.  Application was
particularly addressed to the motion of interfering surface
ship noise for passive sonar arrays. The physics of ship
motion was modeled, including the received noise field
and the noise covariance matrix.  An analytic expression of
the ensemble mean covariance was obtained.  This
physical model suggested a new approach of covariance
filtering to better estimate the ensemble mean covariance
from data samples.  

Two paradigms of current adaptive beamforming may need
to be abandoned in the presence of interference motion.
First, the sample mean may not be the appropriate
estimator when the interference sources are in motion.
Second, the covariance matrix may not be treated as a
single entity, since motion affects different elements of the
matrix differently.

The behavior of the covariance under interference motion
can be visualized in the epoch frequency domain.  This
domain is the Fourier transform of the samples of the
covariance matrix.  It was observed that energy from each
moving ship falls along an approximate line in the epoch
frequency / element separation plane.  Several methods for
obtaining improved estimates of the ensemble mean
covariance were suggested.  Preliminary investigations of
relative performance of a few of these methods were
obtained via a simulation.

Much remains to be done to develop these methods
further.  There is great potential for refinement of the
algorithms and development of better filtering techniques.
The epoch frequency domain has only begun to be
explored.  Line detection techniques have yet to be
attempted.  It has been suggested that the covariance
matrix may also have a near-toeplitz structure in the epoch
frequency domain [5].  If so, then toeplitz averaging, or
low-pass filtering along the toeplitz directions may
provide additional rejection of sample noise.  Finally,
applications of this class of techniques to real data are
certainly warranted.
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