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ABSTRACT

Multichannel parametricfilters are currently being studiedas
a meansof reducing the dimensionof STAP algorithmsfor in-

terferencerejection in airborne pulsed-Doppleradar systems.

Thesefilters are attractive to use due to the low computational
costassociatedvith their implementationas well as their near
optimal performancewith a small amount of training data for

a stationaryervironment. Howe\er, thesefilters do not perform

well in certain typesof non-stationaryervironments. This pa-
per presentdwo modificationsto the Space-Tme AutoRegressig
(STAR) filter that we previouslyproposedThe first modification
is basedon the ExtendedSampleMatrix Inversion(ESMI) tech-

nigue andis usedin the presenceof rangevarying clutter which

arisesfrom the useof non-linear antennaarraysor bistaticradar
systemsThe secondmodificationto the STAR filter is for usein

the presenceof hot clutter and is a three-dimensionalSTAP al-

gorithm. Using a realistic simulateddata setfor circular array
STAP, we shaw that the modificationsto the STAR filter improve
the performancewhenin the presenceof the non-stationaryin-

terference.

1. INTRODUCTION

The use of space-timeadaptve processingSTAP) for airborne
radarinterferencenmitigationis usuallylimited by the lack of sta-
tionary secondarydatausedfor training the filter. This problem
is madeworsewhentheradarplatformis operatingundercircum-
stanceghat leadto additionalnon-stationarycomponentgo the
interference.Suchcircumstanceicludethe useof a non-linear
or non-side-lookingarraywhich leadsto a rangevariationof the
clutter statisticsor the presenceof an airbornejamming source
which leadsto hot clutteror terrainscatterednterference.
Partially adaptve STAP filters alleviate this problemto a de-
gree by taking adwantageof the low-rank nature of the clutter.
The partially adaptve STAP filters usefewer degreesof freedom
andthereforneedfewer training sampleshanthe fully adaptve
STAP filter. Onesuchpartially adaptve STAP filter thatis dis-
cussedin this paperis the Space-ime AutoRegressie (STAR)
filter [1]. The partially adaptve STAP filters offer an improve-
mentoverthefully adaptve STAP filter but arestill dervedbased
uponthe assumptiorthatthe interferences stationary Whenthe
non-stationarycomponenof the interferenceollows a specified
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model, this modelmay be taken into accountto derive a filter to
cancelthe non-stationanjnterference. A few partially adaptve
STAP algorithmshave beenderived to accountfor range-arying
interferencg2] andhotclutter[3].

Parametridilters (suchasthe STAR filter) have beenshavn to
achieze nearoptimal performancavith a smallamountof training
datawhentheinterferencds stationary{4]. However, the perfor
mancewhenthe interferencds non-stationaryeavesmuchroom
for improvement. In this paper two extensionsof the STAR fil-
ter to accountfor both range-arying interferenceand hot clutter
arepresentedTheimprovementghattherange-arying Extended
STAR (ESTAR) filter offersover thestandardSTAR filter is illus-
tratedwith a syntheticdatasetgeneratedy MIT Lincoln Labora-
tory thatsimulategheoutputof a 20 elementantennarraywhose
elementdie alonga circular arc of 120° [2]. This ESTAR filter
is alsoshawn to have betterperformancehanarange-arying ex-
tendedpost-Dopplerlgorithm.

Thethree-dimension&TAR filter usedto mitigatehot clutter
is testedusing the samedataset as above augmentedvith syn-
thetic hot clutter The 3D-STAR filter achieves a significantim-
provementin signal-to-interferencelus noiseratio (SINR) over
thestandardSTAR approachln comparinghe 3D-STAR filter to
athree-dimensionaptimizedpre-Doppleralgorithm,it is shavn
thatthe performancef thetwo filters arenearlythe samebut that
the 3D-STAR filter hasa narrawer clutternotch. This narraw clut-
ter notchallows for improved detectionof slowly moving tamgets.

In the next sectionwe briefly presenthe standaralatamodel
usedfor STAP problemsandintroducethe notationusedthrough-
outthepaper The STAR filtering techniqués describedn Section
3 asabackgroundor the extensionspresentedherein. Section4
presentsherange-arying extendedSTAR filter thatis usedwhen
the clutter statisticsare range-arying. Section5 derves a 3D-
STAR filter usedfor the mitigation of hot clutter and Section6
shavs theresultsof severalnumericalsimulationsof thefilters.

2. DATA MODEL

A tarmgetpresentn aparticularangebin duringsomecoherenpro-
cessingntenal (CPI) maybemodeledasproducingthefollowing
basebandrector signal (after pulse compressiorand demodula-
tion) [5]:

xo(t) = ba()e’" 4+ ny(t) € C™,

where/ is the rangebin in which the tamet is located,b is the
complex amplitudeof the signal,w is the Dopplershift dueto the

tzl:"'aN: (1)
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relative motion betweerthe arrayplatformandthetarget,a(d) is
the responseof the array to a unit amplitudeplanewave arriv-
ing from direction # (azimuthand elevation angles),and n,(t)
containscontritutionsfrom clutter, jamming, and thermalnoise.
In (1), we areassumingan arrayof m elementsanda total of v
transmittecpulsescovering R rangebins.

If we stackthe N arrayoutputsinto asinglemN x 1 space-
time snapshotwe mayre-write(1) as

x(1)
x(N)
where
s(9,w) = V(UJ) ® a(g)
V(o.)) = [ 1 el ed (N—1)w ]T
n = [n@)" n(N)? "

and® representshe Kronecler product. The vectory, contains
thestacledvectorsample®f theclutterandinterferencdor range
bin ¢, andhasanunknavn covariancematrix denotedoy

E{neni} =R.

The clutteris neithertemporallynor spatially white; in fact, the
rankof R is typically muchlessthanmN. Therank(p) of R is
importantbecauseét determineshov mary secondarydatasam-
plesarerequiredto accuratelyestimateR. Accordingto [6], the
numberof requiredsampless onthe orderof 2p to 5p. Thefully
adaptve approacho whiteningthis type of datais to multiply the
databy theinversesquare-roobf anestimateof thematrix R. Be-
causethe sizeof this matrix canbecomequite large, its low rank
natureis exploited to derive reduced-dimensiowhitening algo-
rithms. The next sectionsummarizeghe work in [1] asa back-
groundfor extendingthe STAR filter.

3. SPACE-TIME AUTOREGRESSIVE FILTERING

Following thederivationin [1], the STAR approactassumethata

setof L matricesHo, Hy, - - -, Hz—; of dimensionn’ x m exist
thatsatisfy
L-1
> Hin(t+i)=0, t=1,---,N—-L+1, (3)
=0

for theinterferenceandclutterin the primary rangebin. We may
alsowrite (3) in thefollowing two differentways:

n(1) n(N —L+1)
(Ho --- Hp_4] : : =0 (4
—_————
e n(L) n(N)
N
or
H'n=0, (5)
where
Hy H;_,;
H, H,
H = ) ) . (6
Ho - Hp

In casesvheretheclutteris stationarywe assumehatequationg4)
and(5) alsoholdfor the secondarylataaswell:

H'N, = 0 )
Hme = 0, (8)
for k = 1,---, Ng, where N; is the numberof secondarydata

snapshotsisedto train thefilter.

Thematrix#H ismN xm’(N—L+1). If (3) holdsandm' and
L arechosersothatm'(N — L + 1) is largeenoughthecolumns
of H form a basisfor the spaceorthogonalto the clutter andin-
terferencesubspace Although this relationshipdoesnot hold in
practicedueto the presencef thermalnoise,a leastsquaresso-
lution is appliedto approximatethe subspace This suggestshe
following space-timdilter (similarto thematchedsubspaceetec-
torsin [7]) beusedfor interferenceaejection:

WAR(67W) = P';.[S(e,(/.)) ) (9)
whereP4 is the projectionontothe columnsof H:
Pu=HMHH) "H . (10)

We refer to the implementatiorof STAP with the weight vector
of (9) asSpace-ime AutoRegressie (STAR) filtering. The STAR
filter weightsare“adaptive” in thesensehat? mustbeestimated
from the secondarygataprior to computatiorof w4 .

4. RANGE-VARYING EXTENDED STAR FILTER

The STAR filter of the previous sectionis not designedto han-
dle non-stationarynterferenceof ary kind. This sectiondervesa
STAR-basedfilter that assumeshe clutter statisticsvary linearly
with range.This assumptioris reasonablé thetrainingregionis
keptshort. Theideaof usingtime-varyingweightsin aSTAP algo-
rithmwasintroducedn [8] asanextendedsamplematrixinversion
algorithmandthis ideawasusedfor range-arying STAP weights
in [2]. Thistechnigueincreaseshe dimensionof the problemby
afactorof two but doesimprove the performancavhenthereis a
rapidly changingclutterlocus.
Theideabehindrange-aryingweightsis thatthe weightvec-
tor is afunctionof range(r) to accounfor thenon-stationarglut-
terlocus. Expandingheweightvectorinto a power seriesyields

2V,

w(r) = w, + rw, + 4+ (11)

The assumptioris madethatthe clutterlocusis changingslowly

enoughthat for a given collectionof rangesthe weight vectoris

linearin r. Ignoringthe higherordertermsin the Taylor series,
theweightvectorasa functionof the £** rangebin becomes

Wi = W, + akAw,, (12)

whereq is anormalizationconstantDefining

~ Wo
w = [ Aw ] (13)
theoutputof thefilter maybewritten as

Z:VTI*|: Xk

X | = 14)



wherey, is theextendeddatavector

Using this sameideafor the STAR filter (i.e., assuminghat
the STAR filter coeficientsthatnull the cluttervary linearly with
range)we canrewrite (3) usinganextendeddatavector:

L—-1 .
ST[H: AH; ] ny(t — i) =0, t=L+1,---,N.
i—0 aknk (t — Z)

(15)
Letting AH and A# bedefinedsimilarto H in (4) andH in (6)
we mayrewrite (7) and(8) as

* * N
[ H® AH" ] [ akl(}k ] =0 (16)
[ H AN [ aZI:]k ] = 0. )

Thefilter parameter# and AH maythenbeestimatedisingthe
left null spaceof the matrix

TN e

N = [ —a@N_q a@Ng

whereQ = NT Following whatwasdonein [2], the constantx

is choseras
12
= 19
RO Ay (19)

to yield a“flat” noisesubspace.
To definewhattheweightvectoris, let

= [ o ] (20)
sothat
we(b,w) = Py [ s(6,) ] 21)

Filtering the extendeddatavectorwith (21) is referredto asthe
ExtendedSTAR (ESTAR) filter. Whenestimatingarangevarying
weightvectorusingdatathatalsovarieswith range a highernum-
ber of training vectorsmay be usedbeforeperformancestartsto
degrade.

5. STARFILTERING FOR HOT CLUTTER

When the radar platform is operatingin an ervironmentwhere
thereis anairbornejammingsourcepresentfwo mainconsidera-
tionsmustbe made.First, the hot cluttercovariancechangegrom
pulseto pulseandsecondthehot clutterhasnon-zeracorrelations
acrossrangebins[3]. This sectionderivesa STAR basedfilter
thatis effective in cancelinghot clutter The baselineSTAR filter
is first modifiedto handleary type of interferencethat changes
from pulseto pulse(aswith intrinsic clutter motion) andthenan
additionaldimensionis addedo the vectorautorgressie filter to
accounffor thecorrelationsacrosgangebins.

Themodelfor theclutterin (3) is nolongervalid sincethespa-
tial covariancechangegrom pulseto pulse.If thestandardSTAR
modelis usedin a non-stationarervironmentlike hot clutter, it
tries to accountfor the time variationsin the databy increasing
the numberof filter tapsrequiredto achieve clutter cancelation.

A bettermodelfor this is to let the coeficientsof the space-time
predictionerrorfilter changewith time:

Hy(1) Hi 1(1)
H’}V = . . . . ’
Ho (n) HL_1(’I'L)

(22)
wheren = N — L + 1 andwhereeachblock row is a setof
new coeficientsbasedon droppingthe datafrom the oldestpulse
and addingthe datafrom the mostrecentpulse. For this time-
varying STAR filter, agreatemumberof filter parametersustbe
estimatedn timesthedegreef freedonrequiredfor thestandard
STAR algorithm)andtherefore more samplesupportis required
to train thefilter.

To completethe derivation of the 3D-STAR filter, a few defi-
nitions needto be made. To clarify the notation,samplingacross
pulsesis called slown-time samplingand samplingacrossrange
bins is calledfast-timesampling. Let P be the numberof fast-
time samplesover whichthe hot clutteris correlated.

In orderto utilize thefast-timecorrelationof thedata,anextra
dimensionis addedto the STAR filter. We assumédor a moment
that the interferenceis stationaryacrossthe pulses(slow-time).
Thisfilter will modelthefast-timeandslow-time correlationswith
a two-dimensionaVAR filter. For a setof LJ matricesof size
M’ x M, assumehatthe clutterobeysthemodel

J—1L—-1
> O> Hijngy(t+i)=0, t=1,---,N-L+]1
j=0 i=0
k=1,---,P—J+1, (23)

wherek = 0 is therangebin of interestandny (t) is the spatial
snapshotor thett" pulseandthe k" rangebin. This mayalsobe
expressedis

J—-1
> Hjery; =0 k=1,---,P—J+1, (24)

i=0

whereH; is thematrixdefinedin (6) with asubscriptj to indicate
which fast-timesampleit is associatedavith. From this point we
againtake into accounthe slow-time variationscausecy the hot
clutterby replacing; with theslow-time varyingfilter Hrv.;.
Rewriting this sumwith thetime-varyingfilter we get

H" nsq4(k) = 0, (25)

where

[ Nk
nsp(k) = :

Nk+P—1
I ’H;‘V,O ,H’fl’V,J—l
H* =
L Hrv,o Hrv,i—1

Assumingthatthereis targetenegy in thek = 0 rangebin, then
therewill alsobe target enegy in the vectorsnsq(0), nzq(—1),
-+, m3q4(—P + 1) whichmaynotbeusedfor trainingthefilter. In



orderto definethealgorithmto find thefilter coeficientslet

H(t)" = [ Hoo(t) Hp 1,5-1(t) ] (26)
[ ng(t)

ge(t) = : (27)
| ng(t+L—1)

gk (1) gr+p-J(t)

Gi(t) = : : (28)
L 8k+s-1(t) 8k+p—1(t)

Git) = [ G Gn, (1) ]. (29)

The filter coeficients canthen be found by the following least
squaregriterion:

Fi(t) = argminHlﬁl(t)*c;,(t)H2 t=1,---,N—L+1 (30)
) F

subjectto the constraintthat H(¢)*H(t) = I. Fromthis point
them' left singularvectorscorrespondingo the smallestsingular
valuesof eachG () matrixwill beusedto computehe N — L +1
setsof filter coeficientswhichdefineH. With adefinedsubspace,
aweightvectorfor mitigationof hot clutteris

wsp(0,w) = Pussp (4, w), (31)
where
1
0
ssp(f,w) = ® s(4,w). (32)
0

This3D-STAR filter will requiremoretrainingdatathanthe STAR

filter (on the orderof N — L + 1 times more) dueto the non-

stationarypredictionerrorfilter thatis usedin theimplementation.
Thisadditionalsamplesupportrequirements lessof anissuethan
with other3D implementationdbecausehe STAR approachtyp-

ically requiresmuch less secondarydatafor good performance.
The 3D-STAR filter alsoassumeshatthe datais stationaryfor P

fast-timesamples.

6. NUMERICAL RESULTS

Thealgorithmspresentedhereinaretestedusinga datasetcreated
by MIT Lincoln Laboratorythatsimulateshe outputof a 20 ele-
mentarray Theseelementdie alonga circulararcof 120° with
radius2.96mandare assumedo have a cosine-shapedesponse
with a-30dB backlobeor bothazimuthandelevationdimensions.
Theairborneplatformis moving with a velocity of 100m/sabove
a4/3 eathmodelatanaltitudeof 9000m.Theoperatingrequenyg
of theradaris takento be435MHz, theradarbandwidthandsam-
pling frequeng are 3.75 MHz, the pulse-repetitiorfrequeny is
300Hz, and N = 18 pulsesareassumedo be transmitteddur
ing oneCPI. Dataaregeneratedor 9325rangegatesbetweer20
and400km with aclutterto-white-noisgpower ratio of 40dB ata
rangeof 100km.

Hot clutteris includedin thedataby addingatermof theform

Ck(l)
bj : :

ck (V)

whereb; is theamplitudeof thejammey

4
ck(t) = a()z+ Y b(t)zk s

i=1

is the contritution of the hot clutter for a singlepulseat rangek,
¢ is thelongestmultipathdelay 6; is thedirectionof arrival of the
jammersignal,z;, is thejammerwaveform(whitein bothslow and
fast-time) andb; is arandomvectorthatapproximateshe sumof
thespatialsteeringvectorsfor eachof themultipathsignals.When
presentthejammerto-clutterpower ratiois assumedo be 10 dB.
Whensecondarglataareusedto estimatethe cluttercovarianceor
STAR filter parametersqualamountf datafrom rangebinson
eithersideof thetargetrangebin areused.

The true clutter covariancematrix usedto generatethe data
is known for 20 of the 9325 rangebins, and thusthe maximum
achiezable SINR canbe calculatedat theseranges. To illustrate
the performanceof the algorithmswe use either the SINR loss
as a function of Dopplerfor an azimuthof 0° or the “average”
SINR lossascomparedwith the optimal (knowvn covariance)so-
lution. This averageSINR lossis definedasthe areabetweerthe
algorithms SINR curve andthatachivableassumingR. is known.
This is depictedin Figurel. The ESTAR filter will be compared
to the range-arying extendedpost-DopplePRI staggere (S TAP
algorithm[2] andthe3D-STAR algorithmswill be comparedvith
the optimized3D pre-DopplelSTAP algorithm[3]. Forthe STAR
basedfilters, M’ = 20 is usedfor all the examplesandfor the
partially adaptve STAP algorithm,threepulsesat a time arepro-
cessedndadiagonaloadingof aboutfive timesthenoiselevel is
usedfor samplematrixinversion.

A performancesvaluationof the ESTAR filter at a rangeof
20kmis shawvn in Figures2 and3. Figure2 compareshe perfor
manceof the ESTAR filter andthe basicSTAR filter asa function
of L for Ny = 50 (2km training window). This figure shavs
thatthe ESTAR filter doesperformbetterthanthe STAR filter at
closeranges We alsoseethatthe ESTAR filter requiresfewer fil-
tertapsthanthe STAR filter thusoffsettingsomeof theadditional
computationatostassociatedvith the extendedimplementation.
Figure 3 comparedhe performanceof the STAR filters with the
range-arying extendedPRI staggeredand fully adaptve STAP
algorithmsasa function of training length. Note thatthe perfor
manceof the STAR algorithmdegradesquickly asmoretraining
datais used.TheextendedPRI STAP andESTAR filtersbothhave
nearlyflat performances; isincreasedlueto therange-arying
weights. The ESTAR filter alsohasmuchbetterperformancehan
the extendedPRI STAP algorithmbecausét requiresmuchless
trainingdatato convergeto its bestperformance.

Anotheraspeciof performances the computationaload re-
quiredto implementthe algorithms.For the STAR algorithmsthe
implementatioris brokenupinto two steps.Thefirst stepinvolves
takingthe SVD of the2M L x (N — L + 1)N, datamatrix N’
andthe seconds forming the projectionoperator The bulk of the
computatiorinvolvedin this secondstepis finding the inverseof
H*H which is usuallya sparsebandedmatrix. Taking this into
accounthe computationaloadfor the ESTAR algorithmis

O4(ML)*(N — L+1)N,) + O((ML)*(N — L+ 1)M").

For theparametersf thecirculararraydatawith L = 4 andM' =
20, thecomputationatostis

ESTAR = O(3.84 x 10°N) 4+ 0(1.92 x 10°).



Comparinghis with the costof the STAR filter (at L = 5):
STAR O((ML)*>(N — L +1)Ns)

+O((ML)*(N — L+ 1)M'")

0(1.4 x 10°N,) 4+ 0(2.8 x 10°%)

the ESTAR algorithmhasonly a smallincreasen computational
load. TheextendedPRI STAP algorithmhasa computationatost
of

EPRISTAP

O4(MK)*(N — K +1)N,)
+O(4(MK)*(N — K +1)p)
= 0(2.3 x 10°N,) 4+ O(2.0 x 107)

whereK = 3 pulseghatareprocessedtatimeandp = 90 isthe
approximataank of eachsub-CPl.Fromthis we seethatif N; is
nottoo big (IVs < 100), thenthe ESTAR algorithmrequiresmuch
fewer computationshanthe PRI-staggere&TAP algorithm.

Figures4-6 illustrate the performanceof the 3D-STAR filter
whenthereis hotclutterpresenaindwhenthedirectpathjamming
signalis in the mainbeanof the radarsystem.Figure4 compares
the performanceof the 3D-STAR filter to the basicSTAR filter
asa function of L. The 3D-STAR filter outperformsthe STAR
filter with a smallnumberof filter tapsby utilizing the slown-time-
varyingtapsaswell asthe additionalfasttime tap. Figure5 com-
paresthe STAR filters to the 3D optimizedpre-Dopplerandfully
adaptve STAP algorithmsasa function of training data. In this
casehepre-Dopplemand3D-STAR algorithmshave avery similar
performancewith the pre-Doppleralgorithmslightly outperform-
ing the3D-STAR filter. However, Figure6, whichshavstheSINR
at N, = 80 or 3.2 km, illustratesthatthe 3D-STAR filter hasa
narraver clutter notchwhich resultsin a lower detectableveloc-
ity. If the smalllossin performanceaway from the clutter notch
is tolerable the 3D-STAR filter is moredesirabledueto its greater
percentagef usableDopplerspace.

Thecomputationatostof theSTAR (L = 7), 3D-STAR (L =
2, J = 2), and3D-preDoppler(K = 3 pulses)lgorithmsfor the
systemparameterslescribedabore areasfollows:

STAR = 0(2.35 x 10°N,) + O(4.7 x 10°)
3D —-STAR = O((MLJ)>(N—L+1)(P—J+1)N)
+O((MLJ)>(N = L+ 1)(P - J+1)M")
= 0(2.18 x 10°N,) + 0(4.35 x 10°)
pre —Dopp = O((MKP)’(N — K +1)N;)

+O((MKP)*(N — K +1)p)
= 0(5.18 x 10°N;) + O(7.0 x 107)

wherep = 135 is theapproximateankof thesub-CPlcovariance
matrix. Again we seethatthe STAR and 3D-STAR algorithms
have nearly the samecomputationalcost when the filter orders
are chosencloseto the bestvalue. It is also seenthat the pre-
Doppleralgorithmrequiresa large numberof computationsvhen
comparedvith the 3D-STAR algorithm.

7. CONCLUSIONS

This paperhaspresentednodificationsto the space-timeautore-
gressve (STAR) filter for two typesof non-stationarynterference.

Thefirst modifiedfilter (ESTAR) is usedwhentheclutterstatistics
arevaryingwith rangeasis the casefor non-linearantennaarrays
or bistaticradarsystems.The secondmodification(3D-STAR) is

usedin the presencef hot clutterwhich ariseswhenan airborne
jamming sourceis present. Thesetwo modificationsprovide an
increasan performancever the standardSTAR filter whenused
in non-stationanernvironmentswithout a majorincreaseén com-
putationalburden. We have shawvn in numericalexperimentsand
computationahnalysisthatthe ESTAR filter is superiorto the ex-

tendedPRI-staggereg@ost-DopplelSTAP algorithmwhenthereis

arapidly changingclutterlocus. We have alsoshavn thatthe 3D-

STAR filter hasalittle moreusableDopplerspacehanthe 3D op-
timizedpre-DopplelSTAP algorithmandthe3D-STAR algorithm
achiezesthis performancevith muchlesscomputation.
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Figure4: Performancef STAR filters asa functionof filter order

with hotclutterpresent.

20 T T
| — STAR
\ — - 3DSTAR
18- VoL — - Pre-Doppler
\, Full
i
161
'
\
)
14+ N 4

Average SINR loss (dB)
m 5
T T
S

)
[

I
T
!

|

I

|
!
!

~
T

0 L L L L L
0 20 40 60

. .
80 100 120 140 160 180 200
Training length (N,

Figure 5: Corvergenceof STAR, 3D-STAR, pre-Doppler and

fully adaptve algorithmswith hotclutterpresent.

SINR loss (dB)

Optimum 4
3D STAR
Pre-Doppler

L L L L
0.2 0.3 0.4 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
normalized Doppler
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