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ABSTRACT:  In the future, remote sensing technologies will become an increasingly important and valuable tool 
for military land managers in semiarid regions.  These technologies, when combined with field samples, have the 
potential to accurately monitor rangeland trends from year to year with smaller monetary investments compared to 
field sampling exclusively.  This research attempted to identify and map successional changes on semiarid range-
lands at Yakima Training Center, WA, using remote sensing techniques by developing a model derived from analysis 
of dependent and independent variables chosen from field surveys of vegetation and geomorphic data, along with 
the interpretation of Landsat TM data. 

Preliminary results based on small data sets separated by elevation and slope direction showed both low and some 
reasonable R2 values, including some R2 near 0.70.  The removal of elevation and slope direction and consideration 
of multicollinearity and outliers and influentials provided generally significant relationships among dependent and 
independent variables.  Significant relationships between multiple dependent and independent variables were also 
identified using canonical correlation analysis.  Variability among the releves, collection of field vegetation and soil 
data over the entire summer including many phenophases, and the correction of the raster radiance values for topog-
raphy were assumed to be factors that may have reduced the predictive capabilities of the techniques investigated. 

 

DISCLAIMER:  The contents of this report are not to be used for advertising, publication, or promotional purposes.  
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.  
All product names and trademarks cited are the property of their respective owners.  The findings of this report are not to be 
construed as an official Department of the Army position unless so designated by other authorized documents. 
DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Conversion Factors 

Non-SI* units of measurement used in this report can be converted to SI units as 
follows: 

Multiply By To Obtain 
acres 4,046.873 square meters 

cubic feet 0.02831685 cubic meters 

cubic inches 0.00001638706 cubic meters 

degrees (angle) 0.01745329 radians 
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*Système International d’Unités (“International System of Measurement”), commonly known as the “metric system.” 
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1 Introduction 

Background 

Land managers at U.S. Army training and testing installations require accurate 
and timely resource characterization and assessment of training and testing 
land condition to make informed land management decisions.  Because of the 
significant costs required to properly collect necessary data, land managers are 
often forced to base decisions on less than adequate information that might not 
accurately represent current trends in the installation land condition.  Therefore, 
remote sensing technologies, when combined with traditional field surveys, pro-
vide a valuable source of information to installation land managers. 

Remotely sensed imagery provides synoptic views of the landscape at potentially 
high temporal frequency, and therefore provides an ideal supplement to field 
surveys when attempting to characterize and monitor changes in land condition 
at different scales and levels of detail.  Erosion status and species composition 
have been identified as two of the most critical metrics to assess current land 
condition.  Therefore, erosional and depositional models, and plant community 
dynamic simulation models are currently under development to evaluate and 
predict erosion and secondary succession. 

Succession is defined as a cumulative change in the species composition of vege-
tation at one location over the course of 1 to 500 years (Barbour et al. 1987).  The 
ability to identify successional stages is valuable because it can help land man-
agers identify and map range condition classes and thus describe range trend. 
Range trend can be defined as the direction of successional change toward which 
a plant community assumes/exhibits as it reacts to climatic changes and/or hu-
man uses.  Range trend is important to a manager because it provides evidence 
that a site is moving toward or away from any desired range condition. 

Range condition is defined by Heady and Child (1994) as an inseparable complex 
of location, present vegetation, and potential vegetation.  Presently, range condi-
tion is determined by abiotic factors (i.e., soil, climate, slope, and aspect) and bi-
otic factors (i.e., plant vigor, ground litter, seed germination, and species compo-
sition).  Maintenance of a high standard of plant vigor and an appropriate 
species composition, along with reasonable multiple uses of the range land would 
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be a desirable range condition.   Obviously, the most important attribute of mili-
tary training and testing range condition is its ability to support the primary 
training and testing mission on a sustainable basis. 

While there are a number of remotely sensed data sources that potentially could 
be useful for this study, Landsat Thematic Mapper (TM) data was selected for 
analysis, primarily because it is readily available to installation resource man-
agers.  Both Landsat TM radiance data (the spectral response of individual 
bands) and vegetation indices derived from the radiance data offer an approach 
to relate vegetation/soil parameters to Landsat TM data. 

Previous studies have shown significant relationships using this approach.  For 
example, Tueller and Yuan (1992) were successful using pixel modeling with 
Landsat TM data for measuring vegetation changes of dominant shrubs on arid 
landscapes.  Tueller (1992) had good results identifying annual vegetation pat-
terns using Landsat Multispectral Scanner (MSS) images.  Basavaraju (1994) 
found a significant relationship for predicting east side Sierra Nevada chaparral 
fire types using a combination of Ratio Vegetation Index (RVI), Modified Normal-
ized Difference Vegetation Index (MNDVI), Soil Brightness Index (SBI), and 
TM5.  Keller-Hatzel (1992) was able to characterize the variability within Pin-
yon/Juniper woodlands in western Nevada. 

The ability to accurately assess and predict both erosion status and changes in 
species composition (community dynamics) relative to training load will signifi-
cantly improve the ability to predict changes in land condition based on proposed 
training and testing loads.  This study was designed to develop a model that 
could identify and facilitate the mapping of successional stages of semiarid plant 
communities using remotely sensed imagery and field survey. 

Objective 

The objective of this study was to develop statistical models that would be able to 
identify the difference between high, low and intermediate seral stages on semi-
arid sagebrush dominated rangelands at Yakima Training Center, Washington, 
using both field information alone, and field data combined with remotely sensed 
imagery.  Specifically, three null hypotheses were formulated and tested: 

Ho1:  The development of association tables with relevant Land Condition Trend 
Analysis data cannot define seral arrays on sagebrush/grass rangelands. 
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Ho2:  Various vegetation and surface soil parameters cannot be successfully 
quantified using Landsat Thematic Mapper spectral data. 

Ho3:  Individual bands or vegetation indices based on Landsat Thematic Mapper 
spectral data cannot be used to distinguish among seral stages of sage-
brush/grasslands. 

Approach 

Field measurements within plant communities which were dominated by Ar-
temisia tridentata were derived from Land Condition Trend Analysis (LCTA) 
transect data and soil surveys completed by the Natural Resources Conservation 
Service (NRCS).  A successional array was used to describe the placement of dif-
ferent seral stages of A. tridentata dominated communities upon a gradient in an 
ascending order starting from low seral moving up through high seral (presently 
referred to by many rangeland scientists as a potential natural community). 

Several statistical procedures were used to investigate relationships between 
remotely sensed imagery and field measurements, including multiple linear re-
gression analysis and canonical analysis.  Specifically, statistical procedures 
were used to investigate the utility of remotely sensed imagery for estimating 
vegetation and soil parameters and for distinguishing between seral stages of 
sagebrush/grassland communities. 

Mode of Technology Transfer 

The results of this research will be provided directly to Yakima Training Center, 
Washington. 

This report will be made accessible through the World Wide Web (WWW) at 
URL: 
 http://www.cecer.army.mil 
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2 Study Area and Field Data 

Study Area 

The study area is Yakima Training Center (YTC), which is located in south-
central Washington.  YTC is approximately 330,000 acres or 106,704 hectares.  
The training center resides on subordinate east-west anticline ridges extending 
east from the Cascade Mountains (Fenneman 1931).  Elevations range from 121 
m to 1280 m.  The prevalent vegetation is dominated by sagebrush/grassland 
communities.  The training center’s eastern border is the Columbia River and its 
western border is Interstate Highway 82.  The installation is located within the 
rain shadow of the Cascade Mountains.  The mean annual precipitation ranges 
from 8 to 16 inches and the mean annual pan evaporation from 48 to 64 inches 
per year (USGS 1970).  Furthermore, the vegetation composition of this area is 
similar to millions of acres of semiarid rangelands of the western United States, 
including several other arid and semiarid training and testing installations. 

Field Data 

All ground data were obtained using the U.S. Army Land Condition Trend 
Analysis (LCTA) Plot Inventory Field Methods program.  The LCTA program 
was designed to assist in evaluating the capability of land resources to support 
multiple-use demands on a sustained basis and monitor changes over time 
(Tazik et al. 1992).  The LCTA program is a natural resource inventory and 
monitoring program consisting of permanent plots or releves that are measured 
annually.  LCTA uses standard methods of vegetation measurement such as 
canopy cover (the amount of ground covered by a species for a given area), den-
sity (the number of plants of a given species for a given area), and frequency (the 
number of occurrences of a species per number of quadrants).  The most impor-
tant information in the database for the purpose of this study was species fre-
quency and soil characteristics.  Tueller and Platou’s (1991) previous research 
has suggested that frequency and soil characteristics (e.g., the amount of crypto-
gamic crust and organic matter present) are useful for defining successional gra-
dients in sagebrush/grass ecosystems.  LCTA field data at YTC has been col-
lected yearly since 1989. 
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General soils information was provided from a soil survey completed on the YTC 
by the NRCS.  More in-depth soil analyses were performed by the National Soil 
Survey Laboratory in Lincoln, Nebraska, on soil samples collected by the Corps 
for each releve (Tazik et al. 1992).  These analyses include quantification of the 
organic matter for surface horizons. 
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3 Methodology 

Definition of Seral Arrays on Sagebrush/grass Rangelands 

Researchers have established 202 permanent LCTA plots (releves) at YTC.  
These plots were randomly installed to capture the variety among the plant 
communities on the firing center (Mueller-Dombois and Ellenberg 1974).  LCTA 
site data were grouped according to species dominance, general species composi-
tion, soil characteristics, elevation, and aspect (direction).  In addition, a number 
of sites were visited in the field to provide background information for placing 
the various sites into seral categories.  Several procedures were used to define 
seral arrays of sagebrush/grass rangelands. 

Three major sagebrush/grass types are present on the YTC.  They are dominated 
by Artemisia tridentata, Artemisia tripartita, and Artemisia ridgida.  This study 
emphasized plant communities that had A. tridentata as the dominate shrub.  
All releves within plant communities that had significant amounts of A. tripar-
tita or A. ridgida were excluded.  The key plant species that were used to define 
these arrays in addition to big sagebrush (A. t identate, ARTR), were bluebunch 
wheatgrass (Agropyron spicatum, AGSP), Sandberg’s bluegrass (Poa sandbergii, 
POSA), bottlebrush squirreltail (Sitanion hystrix, SIHY) and cheatgrass (Bro-
mus tectorum, BRTE; Table 1).  Plant communities with a significant amount of 
bluebunch wheatgrass were associated with the high seral end of the array.  
Bluebunch wheatgrass is considered a major component of the make-up of cli-
max vegetation on sagebrush/grass sites (Daubenmire 1970) of the study area.  
Plant communities that had large quantities of Sandberg’s bluegrass and or bot-
tlebrush squirreltail were associated with mid-seral sites because these species 
are good indicators for areas that have not reached a potential natural commu-
nity or near climax vegetation.  Cheatgrass is an invader species that is rou-
tinely associated with sites that have been disturbed (Warg 1983).  Young (1992) 
states that cheatgrass has the ability to truncate natural succession because 
perennial bunchgrass seedlings have limited access to soil moisture.  Although 
cheatgrass commonly forms stable monocultures by truncating natural succes-
sion, it has been documented to precede sagebrush restablishment (Leonard et 
al. 1988, Tueller 1973).  Therefore, communities that have a high composition of 
cheatgrass were associated with a low seral stage.  On YTC, Army maneuvers 

r
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and range fires are the primary disturbances that allow cheatgrass to dominate 
low-seral sites. 

 
Table 1.  How the key plant species help predict seral stages. 

Stage Percent of Plant Species on Site 
High AGSP (+) POSE (=) SYHI (=)  BRTE (-) ARTR (=) 
Med  AGSP (-) POSE (+) SYHI (+) BRTE (+) ARTR (+) 
Low AGSP (-) POSE (-) SYHI (-) BRTE (++) ARTR (+) 
AGSP = Agropyron spicatum  POSE = Poa secunda  SYHI = Sitanion hystrix  BRTE = Bromus 
tectorum  ARTR = Artemisia  tridentate  (+) increasing  (-) decreasing  (=) stable or not changing 

After exclusion of releves that were not dominated by A. tridentata, aspect and 
elevation differences among the selected releves were recorded.  These are im-
portant distinctions due to the differences in climate between elevations and as-
pects.  To account for elevation differences, approximately 20 plots were initially 
selected from a higher elevation and 20 plots from a lower elevation.  Each rep-
resented an array from high seral to low seral.  An arbitrary cutoff elevation was 
used to separate the releves into two sets, placing half the plots on a particular 
direction of slope above that point and half below. 

To help examine and separate the sets of releves, aspect was initially separated 
into categories.  Transects that had an aspect  between 315 and 45 degrees were 
interpreted as being located on north facing slopes, and transects located be-
tween 45 and 135 degrees were considered as east facing.  This pattern was con-
tinued until all 360 degrees of aspect were assigned into four categories. 

Various soil parameters were also used in this analysis, including depth, color, 
thickness of the A and B horizons, texture, and presence of clay in the A and B 
horizons (data collected by the NRCS).  Soil characteristics were considered es-
sential for defining the successional relationships because of the importance of 
the physical (e.g., texture and parent material) and chemical characteristics that 
influence the plant community.  Leonard et al. (1988) have shown that vegeta-
tion soil relationships on semiarid rangelands region strongly influence the seral 
status of the plant community.  For example, a plant’s ability to withstand mois-
ture stress will have an effect on its ability to survive on a arid soil; Wyoming big 
sagebrush (A. tridentata var. wyomingensis) can survive on the drier hillsides, 
whereas basin big sagebrush (A. tridentata var. tridentata) is restricted more to 
drainages and valley floors that have deeper soils capable of holding more mois-
ture. 
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Selected sites were visited during the growing season to obtain a visual impres-
sion of the plant species composition and the associated soil characteristics.  
Photographs and detailed field notes were taken to aid in the interpretation of 
the LCTA data.  To test the first hypothesis, results of matching field notes and 
photos, along with LCTA and soil survey results were examined and compared 
for any indication of significant seral arrays. 

Quantification of Vegetation and Soil Parameters with Thematic Mapper 
Data 

The association tables used to test the first hypothesis were adjusted to create 
four data matrices (May frequency, May cover, August frequency, and August 
cover) by adding radiance and vegetation index values from the May and August 
Landsat TM data.  The ground data was the same for all four matrices and only 
the Landsat-derived data differed for each matrix.  Each matrix was then di-
vided into two elevation and three aspect directions.  To test Ho2, statistical ana-
lysis was performed on independent and dependent variables associated with the 
LCTA data and TM data included in the four data matrices.  Vegetation charac-
teristics (canopy cover, density, frequency, total plant cover, the percent cover of 
individual species, amount of bare ground, etc.), geomorphic characteristics (soil 
depth and texture, thickness of the A and B horizons, and the presence of clay in 
the A and B horizon) and soil organic matter content were considered the 
dependent variables.  The independent variables for the analysis are the in-
dividual radiance values from Landsat TM bands plus vegetation and soil indices 
derived from the satellite data. 

TNT-MIPS (Totally New Technology Map and Image Processing System) and 
Geographical Resources Analysis Support System (GRASS 4.1) software were 
used to extract spectral information from TM data that corresponded to the geo-
graphic location of LCTA releves on the ground.  Twenty picture elements (pix-
els) were selected from homogeneous areas (polygons) associated with each se-
lected releve.  For ease of data manipulation and also to adequately represent 
releve variability, Crippen (1987) suggests using 20 pixels for deriving a mean 
value.  Jensen (1986) defines a pixel as having both spatial and spectral proper-
ties.  The spatial variable defines the apparent size of the resolution cell and the 
spectral properties define the intensity of the spectral response for that cell in a 
particular band.  Each TM pixel represents a 30 m x 30 m area on the ground.  
These homogeneous areas or mixed pixels were selected to represent specific 
seral plant communities from the vegetation.  A pixel or group of pixels can be 
placed into a category of known vegetation components by the brightness value 
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(Tueller 1989).  For example, pixel values from a sagebrush dominated site will 
have different spectral responses than pixels from a grass dominated site.  From 
these homogeneous sites, the mean pixel radiance values from six (bands 1, 2, 3, 
4, 5, and 7) of the seven bands were calculated and included in the statistical 
matrices. 

Topographically corrected images were utilized for reducing the variability 
among pixels due to topography.  These corrected images were used because of 
the rugged terrain and the effects of shadowing on the east-west running ridges.  
Civco (1989) and Kawata et al. (1988) describe the applications and effects that 
topographic corrections can have on Landsat data. 

Landsat Thematic Mapper for Identification of Seral Stages of 
Sagebrush/Grasslands 

It is difficult to define seral stages using satellite imagery alone.  However, mul-
tiple linear regression analysis can be used to determine if the relationships be-
tween satellite and ground derived parameters are sufficient to show that the 
satellite data can be used to identify different seral stages.  To test the third hy-
pothesis, individual TM bands or vegetation indices were included for defining 
the seral arrays.  These data were the same as used in testing the previous hy-
pothesis.  Linear regression models were used to relate the LCTA ground data to 
the spectral data associated with the sites in the arrays defined above. 

Vegetation Indices 

Vegetation indices are mathematical combinations of red and near infrared re-
flectance that have been developed to reduce multispectral scanner data ob-
served by satellites to a single number or index, for the purpose of qualitatively 
and quantitatively assessing vegetation conditions.  On arid and semiarid range-
lands, soil background conditions and shadow effects influence the signals from 
the multispectral scanner. These influences complicate the use of indices for 
evaluating vegetation (Tueller 1987).  According to Jackson et al. (1983), the 
ideal vegetation index would be one that was sensitive to vegetation and insensi-
tive to soil backgrounds.  In addition, vegetation indices can be influenced by 
atmospheric conditions such as clouds and haze and should be adjusted to repre-
sent true values (Kauth and Thomas 1976).  There are two categories of vegeta-
tion indices: ratio-based indices and orthogonal indices. 
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Ratio Indices 

Ratio indices are derived by dividing one spectral band by another to get a ratio 
[e.g., RVI (TM4/TM3)] or by subtracting one band from another.  One of the most 
commonly applied ratio vegetation indexes is the Normalized Difference Vegeta-
tion Index [e.g., NDVI (TM4-TM3/TM4+TM3)].  The ratio based indices of impor-
tance are: ratio vegetation index (RVI, Pearson and Miller 1972), the difference 
vegetation index (DVI, Richardson and Wiegand 1977), the normalized difference 
vegetation index (NDVI, Rouse et al. 1974), the transformed normalized differ-
ence index (TNDVI, Rouse et al. 1974), the weighted difference vegetation index 
(WDVI, Clevers 1986 and 1989), the soil adjusted vegetation index (SAVI, Huete 
1988) and the transformed soil adjusted vegetation index (TSAVI, Baret et al. 
1989).  Table 2 shows the ratio formulas used to derive these indices. 

 
Table 2.  Mathematical abbreviations and definitions of ratio based indicies. 

Name Abbreviation  Mathmatical Formula 
Ratio Vegetation Index RVI NIR / RED 
Difference Vegetation Index DVI NIR – RED 
Normalized Difference Vegetation 
Index 

NDVI (NIR - RED) / (NIR + RED) 

Transformed Normalized Difference 
Vegetation Index 

TNDVI SQRT[(NIR – RED) / (RED + NIR) +.5] 

Weighted Vegetation Index WDVI [NIR – (NIR/RED) * RED 
Soil Adjusted Vegetation Index SAVI (NIR – RED) / (RED + NIR + 0.5) * (1.5) 
Transform Soil Adjustment 
Vegetation Index 

TSAVI a1 * (NIR – a1 * RED – b1) /  
[a1 * NIR + RED - a1 * b1 * (a12 + 1)] 

a1 = Intercept of the Soil Line 
b1 = Slope of the Soil Line 

Orthogonal Indicies 

Orthogonal indices are multidimensional values obtained from a calculated soil 
line.  The calculated soil line is a linear relationship derived by plotting the 
brightest and darkest unvegetated pixel values from a TM data scene.  The or-
thogonal indices that were investigated are the two-dimensional perpendicular 
vegetation index (PVI, Richardson and Wiegand 1977), the green vegetation in-
dex (GVI, Kaulth and Thomas 1976), the yellow vegetation index (YVI, Kauth 
and Thomas 1976), the nonsuch vegetation index (NVI, Kauth and Thomas 
1976), the soil brightness index (SBI, Jackson 1983), and the n-dimensional total 
absorption index (TAI, Ustin et al. 1986). 
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The resulting ratio and orthognal index values were added to the four matricies 
used in multilinear regression analysis to evaluate the potential for predicting 
ground parameters associated with the seral stages. 

Statistical Methods 

Multiple linear regression analysis and canonical analysis were used to evaluate 
the relationship between plant community characteristics and Landsat TM data.  
The association table used to test the first hypothesis was modified and trans-
formed into four data matrices (May frequency, May cover, August frequency, 
and August cover) to test the second and third hypotheses. 

Multiple linear regression analysis is a technique to express the idea that a de-
pendent variable varies with one or a set of independent variables.  It is a mostly 
univariate method because it involves accounting for variation in only one de-
pendent variable (Freund and Littell 1992, Manly 1986).  To use the linear re-
gression analysis appropriately, the assumption that the error term (the differ-
ences between the observed values of the dependent variable and those expected 
from the model) of a model represents natural variation in the data cannot be 
violated, otherwise, the resulting analysis may provide results of questionable 
validity.  Outliers and specification error can violate the assumption.  Outliers 
are unusual observations that do not fit the model.  Because they can bias pa-
rameter estimates and mislead results, it is important to detect and fix or re-
move outliers before doing any analysis.  Specification errors occur when the 
model is incorrectly specified (does not contain all of the necessary terms, such as 
quadratic and cross product terms) and may also result in biased estimates of 
parameters. 

Another statistical approach tested was canonical analysis.  Canonical correla-
tion analysis is a generalization of multiple regression in which several depend-
ent variables are simultaneously related to several independent variables 
(Manly 1986).  It is very useful for identifying relationships between sets of mul-
tiple dependent and multiple independent variables (Hair et al 1992).  The point 
of a multivariate analysis is to consider several related random variables simul-
taneously, each one considered equally important at the start of the analysis.  
This analysis maximizes the correlations between these linear combinations.  In 
some sets of multivariate data, the variables divide naturally into two groups 
(dependent variables and independent variables).  Canonical analysis can be 
used to investigate the relationships between the two groups of variables. 
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Outliers and Model Specification 

Residuals (including Cook’s D) and influence statistics from SAS1 software were 
analyzed to detect the significant outliers.  The partial residual plots (partial op-
tion in model statement) and rsreg procedure from SAS program were used to 
test specification errors of specified models.  A curved pattern in the residual plot 
suggests that a quadratic term in one or more variables should be included in 
the model.  The rsreg procedure builds and evaluates a quadratic response sur-
face model.  The need for linear, quadratic, and cross-product terms is deter-
mined from the output. 

Correlation Analysis 

Because all the independent variables are either Landsat TM data or their 
mathematical derivations, it is necessary to determine if they are correlated.  
Pearsons all-possible correlation analysis was used to examine the correlation 
among independent variables.  Results indicated that many independent vari-
ables were highly correlated.    When variables were highly correlated, one of the 
variables was subjectively removed from the analysis.  Such variables were re-
moved because they did not increase the predictive capability of the model.  This 
method was repeated until all autocorrelation was accounted for among the vari-
ous data matrices.  This procedure reduced the overall number of independent 
variables from 22 down to 14. 

Model Selection 

Since not all independent variables in a regression model contribute significantly 
to the predictive power of the model, it is desirable to identify a suitable subset 
of important variables.  For a given number of variables, a best subset model is 
one that produces the minimum error sum of squares, or the maximum R2.  The 
R-square selection method, C(P) s atistic, and Forward option in SAS were used 
to select useful models.  Best subset regressions were then used to define the 
most appropriate use of various combinations of independent and dependent 

t

                                                 
1Citing trade names and companies does not constitute endorsement by the U.S. Army or the Corps of Engineers.  

Contact information:  SAS Institute Inc., SAS Campus Drive, Cary, NC 27513. 
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variables.  The objective was to identify the most promising independent and de-
pendent variables for the models. 

Multicollinearity 

Multicollinearity is defined as a high degree of correlation among several inde-
pendent variables.  In addition to using Pearson’s all-possible correlation proce-
dure to delete some highly correlated variables, two methods (described below) 
were used to define and remove any remaining multicollinearity.  

Although the existence of multicollinearity is not a violation of the assumptions 
underlying the use of regression analysis, it tends to inflate the variances of pre-
dicted values and the variances of parameter estimates.  Because the use and 
interpretation of regression coefficients are very important for many regression 
analyses, it is important to detect and remove the effects of multicollinearity.  
The highly correlated independent variables (correlation coefficients larger than 
0.9) were adjusted using Pearson’s all-possible correlation analysis as previously 
discussed.  Then variance inflation factors and analysis of structure methods (vif 
and collinoint options in procedures from the SAS program) were applied to de-
tect and remove the multicollinearity.  The number of independent variables was 
reduced from 14 or 15 down to either 5 or 6, depending on the respective data set 
(May cover, May frequency, August cover, and August frequency).  To include the 
direction of slope effect in the analysis, two dummy independent variables were 
created for each data set.  These were called north (NOR) and south (SOU). 

Canonical Analysis 

Given two sets of variables, the cancorr procedure from SAS program was used 
to find a linear combination from each set, called a canonical variable, such that 
the correlation between the two canonical variables was maximized.  The process 
of constructing canonical correlation continued until the number of pairs of ca-
nonical variables equaled the number of variables in the smaller group. 

In the four data sets, the number of dependent variables was smaller than the 
number of independent variables, thus determining seven pairs of canonical 
variables.  The second pair of canonical variables is not related to and is inde-
pendent of the first pair (this is true for all seven pairs) and produces the second 
highest correlation between coefficients.  The cancorr procedure provides multi-
ple regression analysis options to aid in interpreting the canonical analysis.  Af-
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ter deciding which canonical variables are significant, these variables can be in-
terpreted in terms of the original variables with large canonical coefficients. 

Since a certain degree of correlation exists among dependent variables, it may be 
more desirable to examine the relationship between sets of both multiple de-
pendent and independent variables.  Also, because TM pixel radiance values are 
related to ground characteristics, each dependent variable makes a contribution 
to the measurements, thus providing another reason to consider the dependent 
variables equally important and relate them simultaneously to independent 
variables.  In this situation, multivariate analysis methods are appropriate tech-
niques to be employed. 

Multiple linear regression and canonical correlation analyses were performed on 
the four different data sets previously described.  The linear combinations of de-
pendent and independent variables were established (canonical variable) so that 
the correlation between the canonical variables was maximized. 
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4 Results and Discussion 
To test the first hypothesis, plots were sorted by key species (e.g., AGSP) in a de-
scending order within hand-drawn association tables.  The associated species 
values or measurements in the table were then examined for any ascending or 
descending pattern to determine which species and soil surface parameters could 
be used as predictors of seral stage.  It was hypothesized that if there was a de-
crease in AGSP, then there may be a corresponding increase in BRTE or other 
low successional species.  To test this hypothesis, these species were plotted 
against each other and fitted with a best fit line. The line showed a very slight 
increase in BRTE when AGSP decreased, but no concrete assumptions could be 
made (Figure 1).  BRTE, ARTR, and POSA all had higher values than AGSP at 
the low end of the array, which was expected.  This same procedure was pre-
formed on all other mixtures of important species and vegetation measurements 
available in the association tables.  There were no statistical procedures per-
formed on the data from the association tables. 

 
Figure 1.  The relationships of percent cover AGSP, ARTR, BRTE, and POSA when AGSP is 
arrayed from high to low. 
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Multiple Linear Regression 

Uncombined Releves 

Original analysis included multiple linear regression analysis of several arrays 
from the different elevations and different slope or drainage directions.  This 
constituted a statistical test of the second hypothesis.  While many of these re-
sults generally had low R2 values, some appeared reasonable; however, problems 
with multicollinearity persisted.  An example of the original data is summarized 
in Table 3.  Figures 2 and 3 are scatter diagrams showing two of the significant 
relationships from this data set.  Even though the R2 values were low and pre-
clude predictability, the scatter diagrams appear to show relationship that are 
significant. 

All analyses were based on the original methodological approach.  Releves were 
originally categorized by elevation (greater and less than 700 meters) and drain-
age direction in order to group the plots into one of six natural categories or 
releve arrays.  The categories were level, south, and north facing slopes.  All 
releves found on near level slopes (from 0 to 5 percent) were placed in the level 
category.  All releves that positioned on slopes (greater than 5 percent) that 
drained toward the southwest, southeast, south, and east were placed in the 
south facing category.  All releves that were positioned on slopes (greater than 5 
percent) that drained toward the northwest, northeast, north, and west were 
placed in the north facing category.  The aspect direction of the releves did not 
provide a good natural separation. 

 
Table 3.  An example of the original data analysis for 37 releves using the north slope August 
frequency data. 

Dependent 
Variables 

Independent Variables R-square P-value 

AGSP NVI, TM2, TM7, RVI, DVI, 
TNDVI, TM5, NDVI 

0.57 0.2015 

ARTR GVI, NVI, MNDVI,TSAVI, 
TNDVI, TM5, TM7, TM3 

0.62 0.0039 

BRTE WDVI, TM7 0.45 0.0004 
GCLITTER GVI, TSAVI 0.14 0.2321 
GCBARE GVI, TM7, TSAVI 0.15 0.4339 
TOTPER SAVI, TSAVI, NVI 0.09 0.4616 
ORGMATT GVI, TM5, MNDVI, NDVI 0.52 0.0481 
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The lack of significant regressions and the problem of multicollinearity dictated 
an alternate approach for evaluating elevation effects.  It was later concluded 
that sample sizes between 10 and 37 releves were perhaps too small, or that the 
data variance was too great.  For these reasons, all 91 releves with big sagebrush 
as the dominant shrub were used in the analysis. 

 
Figure 2.  A scatter plot showing the actual and predicted ARTR cover for the 37 releves. 

 

 
Figure 3.  A scatter plot showing the actual and predicted ORGMATT cover for the 37 releves. 
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When the three drainage direction categories were separated by elevation, the 
sample size was too small and did not adequately characterize the variability 
within the proposed successional arrays.  Therefore, the drainage direction cate-
gories were removed from the regression analysis.  However, the influence of 
these natural separation categories was again inserted into the analysis as inde-
pendent variables during multivariate regression and canonical analysis. 

Combined Releves 

Analysis of all 91 big sagebrush releves was conducted to initiate a more rigorous 
approach to the analyses.  The following discussion describes the steps taken to 
develop best subsets (using SAS best subset regression) of independent vari-
ables, to test for multicollinearity, and to identify statistical outliers and influen-
tial observations among the releves. 

Multicollinearity 

All independent variables showed some multicollinearity.  Many of the correla-
tions were 0.95 and higher.  This problem was attributed to the fact that all 
vegetation indices were derived from the same six TM bands that are also in-
cluded as independent variables.  To address this problem, the proc corr proce-
dure within SAS was used to identify and examine independent variables with 
high correlations as explained previously. 

The vif (variance inflation factor) and collinoint options in the proc reg statement 
from SAS were used to further combat the multicollinearity problem.  The vif 
option creates values that can be interpreted for multicollinearity.  vif values 
greater than 1/(1-R2) show multicollinearity and were removed (SAS 1988).  The 
collinoint option uses the square root of the ratio between the largest and small-
est eigen values.  This ratio is referred to as a condition number.  Myers (1990) 
recommends that the square of the condition number greater than 1,000 indi-
cates serious multicollinearity.  Hence, variables with condition numbers greater 
than 1000 in this study were removed.  The independent variables were reduced 
via this procedure from 22 to about 6, depending on the data matrix. 

Outlier and Influential Observations 

Four of the 91 observations were identified as either statistical outliers or influ-
ential observations.  Outliers were removed primarily for statistical reasons.  
There was no thread of similarity or outstanding factors associated with those 
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releves removed.  These releves were then removed to improve the strength and 
stability of the model.  This left from 7 to 9 independent variables (Tables 4, 5, 6, 
and 7) for each matrix.  In each case, the same seven dependent variables were 
included in the analysis (Tables 4, 5, 6, and 7). 

Final Linear Regression Analyses 

After the exclusion of outliers and influential observations, the data matrices in-
cluded 87 to 89 releves that contained ARTR and AGSP.  From this, each of the 
seven dependent variables for May cover and frequency and August cover and 
frequency were analyzed using the 7 to 9 independent variables depending on 
the matrix (Tables 4, 5, 6, and 7).  Results from these regressions still showed 
quite low R2 values, although many were highly significant.  The dependent 
variable organic matter throughout this analysis consistently had higher R2 val-
ues that ranged from 0.20 to 0.38 (Tables 4, 5, 6, and 7).  This suggests that the 
variation inherent in the natural vegetation precludes the possibility of obtain-
ing high R2 values with this data set. 

 
Table 4.  Multiple linear regression results for August frequency. 

Dependent 
Variable 

Significant Independent 
Variables 

Mean Square 
Error 

R-square P-value 

AGSP TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

66.41 0.16 0.1051 

ARTR2 TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

25.66 0.26 0.0040 

BRTE TM1, NDVI ,YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

99.12 0.15 0.1354 

TOTPER TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

179.13 0.27 0.0020 

GCBARE TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

190.82 0.26 0.0029 

GCLITTER TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

236.28 0.26 0.0038 

ORGMATT TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

0.35 0.38 0.0001 
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Table 5.  Multiple linear regression results for August cover. 

Dependent 
Variable 

Significant Independent 
Variables 

Mean Square 
Error 

R-square P-value 

AGSP TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

142.98 0.13 0.2080 

ARTR2 TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

43.85 0.22 0.0152 

BRTE TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

111.82 0.14 0.1537 

TOTPER TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

176.93 0.26 0.0029 

GCBARE TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

187.29 0.26 0.0025 

GCLITTER TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

230.55 0.26 0.0030 

ORGMATT TM1, NDVI, YVI, NVI, TSAVI, 
WDVI, SAVI, NOR, SOU 

0.35 0.36 0.0001 

 

 

 
Table 6.  Multiple linear regression results for May frequency. 

Dependent 
Variable 

Significant Independent 
Variables 

Mean Square 
Error 

R-square P-value 

AGSP TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

105.76 0.23 0.0026 

ARTR2 TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

27.33 0.22 0.0048 

BRTE TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

152.59 0.19 0.0158 

TOTPER TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

169.08 0.30 0.0001 

GCBARE TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

189.78 0.23 0.0025 

GCLITTER TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

227.01 0.25 0.0011 

ORGMATT TM2, NDVI, PVI, WDVI, SAVI, 
NOR, SOU 

0.35 0.37 0.0001 
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Table 7.  Multiple linear regression results for May cover. 

Dependent 
Variable 

Significant Independent 
Variables 

Mean Square 
error 

R-square P-value 

AGSP TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

198.13 0.13 0.1107 

ARTR2 TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

45.54 0.16 0.0416 

BRTE TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

179.87 0.08 0.4102 

TOTPER TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

180.87 0.25 0.0011 

GCBARE TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

200.98 0.17 0.0208 

GCLITTER TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

234.96 0.21 0.0055 

ORGMATT TM1, PVI, GVI, TAI, TSAVI, 
NOR, SOU 

0.43 0.20 0.0071 

Predicted versus actual scatter plots were generated for all seven dependent 
variables for each data matrix.  These plots suggest the significance of the rela-
tionships and also show the variation of the data sets precluding high R2 values.  
The scatter plots that visually appear the best are for organic matter (Figure 4) 
and ARTR (Figure 5) for May frequency.  Total percent cover, litter, and bare 
ground also showed significant relationships.  All other scatter diagrams from 
these analyses are shown in the Appendix as Figures A-1 through A-26. 

 
Figure 4.  A scatter plot showing all 91 releves of the actual verses predicted ARTR values from 
the August frequency data matrix. 
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Figure 5.  A scatter plot of 91 releves showing the actual verses predicted ORGMATT values 
form the August frequency data matrix. 

Canonical Analysis 

This analysis maximized the correlations among the several identified linear 
combinations.  The higher the canonical coefficients, the more influence they 
have on the canonical variates.  Only the independent variables used in the lin-
ear regression analysis were used in the canonical analysis.  These variables 
were used because of the absence of any multi-multicollinearity problems. 

May Frequency 

The canonical analysis for the May frequency data matrix shows that 38 percent 
of the total variance is shared by the linear composites of the first pair of de-
pendent and independent variables (Table 8).  The second and third pair of ca-
nonical variables account for 65 percent and 85 percent of the cumulative varia-
tion (Table 8).  All three canonical coefficient pairs are highly significant at 
p=0.0001 for the first pair, p=0.0001 for the second pair, and p=0.0007 for the 
third pair.  Again, each canonical variable is independent from the others.  In 
this case, the first three canonical variables are able to reveal the intercorrela-
tions between the dependent and independent variables and account for 85 per-
cent of the variance on the ground (Table 8). 
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Table 8.  Results of canonical analysis showing the significance of the first three pair of the 
canonical variates for May frequency. 
Bold indicates statistical significance. 

Canonical 
Correlation 

Adjusted 
Canonical 
Correlation 

Squared 
Canonical 
Correlation 

Eigenvalue Cumulative P-value 

0.6844 0.5976 0.4684 0.8814 0.385 0.0001 
0.6167 0.5440 0.3804 0.6140 0.6532 0.0001 
0.5610  0.3147 0.4594 0.8539 0.0007 
0.4176 0.3706 0.1744 0.2113 0.9462 0.0806 
0.2610 0.1515 0.0681 0.0732 0.9782 0.4023 
0.2059  0.0424 0.0443 0.9975 0.4272 
0.0752  0.0056 0.0057 1.0 0.5044 

 

The canonical correlation coefficients for the May frequency data matrix based 
on the groupings of the dependent and independent variables are described as 
follows: 

The linear combination equations for the first pair of canonical variable using 
the coefficients for the dependent and independent variables are: 

Field 1 = (-.06*AGSP) + (.13*ARTR) + (-.39*BRTE) + (.16*GCLITTER) + 
(6*GCBARE) + (.35*TOTPER) + (.60*ORGMATT) 

Index 1 = (.81*TM2) + (1.26*NDVI) + (-.46*PVI) + (-.18*WDVI) + (.44*SAVI) 
+ (.29*NOR) + (.39*SOU) 

For the first field, organic matter was the only influential coefficient and for the 
first index TM2 and NDVI had the most influence (Table 9). 

The coefficients for the second pair of dependent variables are: 

Field 2 = (-.69*AGSP) + (-.58*ARTR2) + (.04*BRTE) + (1.13*GCLITTER) + 
(1.3*GCBARE) + (.36*TOTPER) + (.23*ORGMATT)  

Index 2 = (1.1*TM2) + (-.41*NDVI) + (1.2*PVI) + (.87*WDVI) + (-.58*SAVI) + 
(.57*NOR) + (-.78*SOU) 

In the second field, AGSP, ARTR2, GCLITTER, and GCBARE are identified as 
having influential canonical coefficients.  The influential coefficients for index 2 
are TM2, PVI, WDVI, SAVI, NOR, and SOU (Table 9).  
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The coefficients for the third pair are: 

Field 3 = (.68*AGSP) + (-.58*ARTR2) + (.56*BRTE) +(.36*GCLITTER)  +   
(-.18*GCBARE) +  (-.76*TOTPER) + (.41*ORGMATT) 

Index 3 = (-.80*TM2) + (.03*NDVI) + (.40*PVI) + (-1.58*WDVI) + (-.33*SAVI) 
+ (.53*NOR) + (2.15*SOU)  

For the third pair, the influential coefficients for field 3 are AGSP, ARTR, BRTE, 
and TOTPER.  For index 3, the coefficients are TM2, WDVI, NOR, and SOU.  
Data in Table 9 show the coefficients used in the canonical regression equations 
shown above. 

 
Table 9.  The canonical coefficients of the first, second, and third pair of linear composites of the 
dependent and independent variables for May frequency. 
Bold indicates statistical significance. 

Variables Coefficients of 
the first pair 

Coefficients of 
the second pair 

Coefficients of 
the third pair 

AGSP -0.0688 -0.6956 0.6844 
ARTR2 0.1319 -0.5806 -0.585 
BRTE -0.3953 0.0403 0.5665 
GCLITTER 0.1622 1.1313 0.3624 
GCBARE 0.0604 1.3081 0.1807 
TOTPER 0.3586 0.3687 0.7657 
ORGMATT 0.602 0.2373 0.4115 
TM2 0.8119 -1.1095 -0.8019 
NDVI 1.2682 -0.4154 0.039 
PVI -0.4697 1.2329 0.4093 
WDVI -0.1847 0.8797 -1.5811 
SAVI 0.4457 -0.5843 -0.3348 
NOR 0.2946 0.5712 0.536 
SOU 0.3998 -0.7861 2.1571 

There is a direct linear relationship between the amount of organic matter and 
NDVI.  Higher NDVI values indicate higher organic matter content (Table 9).  
Another example of this linear relationship is illustrated in Figure 6, where the 
amount of organic matter that a releve contains will determine its position on 
the graph. 

For field 2 vs. index 2, there is a linear trend in the location of the releves based 
on the amount of litter, bare ground, AGSP, and ARTR.  The frequency of AGSP 
or ARTR located on a releve has a positive or negative relationship with the 
highlighted independent variables in Table 9.  For example, with a decrease in 
AGSP frequency, the TM2 value will also decrease. 
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For field 3 vs. index 3 the linear trend is defined by the amount of AGSP, BRTE, 
ARTR, and total percent cover.  Here again, the highlighted dependent variables 
will have a positive or negative relationship with the highlighted independent 
variables.  For example, the more AGSP frequency on a releve, the smaller the 
TM2 value will be.  These relationships were all highly significant, but the na-
ture of the canonical analysis tends to preclude biological explanation. 

 

 
Figure 6.  The position of releves according to ORGMATT content in the surface soil for  
field 1 vs index 1. 
The releves pointed to are examples of specific releves and their organic matter content. 
 
 

May Cover 

The canonical analysis for the May cover data matrix shows that 45 percent of 
the total variance is shared by the linear composites of the first pair of depend-
ent and independent variables.  The first and second pair account for 74 percent 
of the cumulative variation.  Both canonical coefficient pairs are significant at 
p=0.0002 for the first pair and p=0.0408 for the second pair.  In this case, the 
first two canonical variables are able to reveal the intercorrelations that account 
for 74 percent of the variance on the ground (Table 10). 
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Table 10.  Results of canonical analysis showing the significance of the first and second  
pair of the canonical variates for May cover. 
Bold indicates statistical significance. 

Canonical 
Correlation 

Adjusted 
Canonical 
Correlation 

Squared 
Canonical 
Correlation 

Eigenvalue Cumulative P-value 

0.6230 0.5339 0.3882 0.6346 0.446 0.0002 
0.5219 0.4403 0.2724 0.3744 0.7410 0.0408 
0.4158 0.3447 0.1729 0.2091 0.8946 0.3827 
0.2634  0.0693 0.0746 0.9494 0.7971 
0.2345  0.0550 0.0582 0.9922 0.797 
0.1016  0.0103 0.0104 0.9998 0.9308 
0.0158  0.0002 0.0002 1.0000 0.8872 

The canonical correlation coefficients for the May cover data matrix based on the 
groupings of the dependent and independent variables are described as follows: 

The linear combination equations for the first pair of canonical variable using 
the coefficients for the dependent and independent variables are: 

Field 1 = (-0.33*AGSP) + (-0.61*ARTR) + (0.09*BRTE) + (1.23*GCLITTER) + 
(1.11*GCBARE) + (.51*TOTPER) (0.34*ORGMATT) 

Index 1 = (0.009*TM2) + (1.77*PVI) + (1.36*GVI) + (-1.95*TAI) +  
(-0.03*TSAVI) + (0.51*NOR) + (0.17*SOU) 

For the first field ARTR, GCLITTER, GCBARE, and TOTPER were the most in-
fluential and for the first index PVI, GVI, TAI, and NOR were the most influence 
canonical coefficients (Table 11). 

The linear combination equations for the second pair of canonical variables using 
the coefficients for the dependent and independent variables are: 

Field 2 = (.61*AGSP) + (0.39*ARTR) + (0.10*BRTE) + (-0.37*GCLITTER) +  
(-.65*GCBARE) + (-0.09*TOTPER) + (0.38*ORGMATT) 

Index 2 = (0.3.46*TM1) + (0.04*PVI) + (3.54*GVI) + (-4.68*TAI) +  
(-0.03*TSAVI) + (0.14*NOR) + (0.41*SOU) 

The influential coefficients for the second pair are AGSP and GCBARE for field 2 
and TM1, GVI, and TAI for index 2 (Table 11). 

There is a linear trend in the location of the releves based on the amount of lit-
ter, bare ground, total percent cover, and ARTR2 for field 1 versus index 1.  The 
percent cover of ARTR2 or the amount of bare ground located on a releve has a 
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positive or negative relationship with the highlighted independent variables in 
Table 11.  For example, with a decrease in ARTR2, the PVI value will increase.  

For field 2 vs. index 2, the linear trend is defined by the amount of AGSP and 
bare ground.  The percent cover of AGSP or the amount of bare ground located 
on a releve has a positive or negative relationship with the highlighted inde-
pendent variables in Table 11.  For example, with an increase in AGSP fre-
quency, the TM1 value will also increase.  Another example of this linear rela-
tionship is illustrated in Figure 7, where the amount of bare ground that a releve 
contains will determine its position on the graph. 

 
Table 11.  The canonical coefficients of the first and second pair of  
linear composites of the dependent and independent variables for May cover. 
Bold indicates statistical significance. 

Variables Coefficients of 
the first pair 

Coefficients of 
the second pair 

AGSP -0.3396 0.6122 
ARTR2 -0.6124 0.3918 
BRTE 0.0992 0.1053 
GCLITTER 1.237 -0.3744 
GCBARE 1.1122 -0.653 
TOTPER 0.5302 -0.0969 
ORGMATT 0.3469 0.3899 
TM1 0.0092 3.4609 
PVI 1.7799 0.0484 
GVI 1.3679 3.5441 
TAI -1.9535 -4.6854 
TSAVI -0.0343 -0.0348 
NOR 0.5185 0.1494 
SOU 0.1766 0.41 
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Figure 7.  The position of releves according to the cover of AGSP for field 2 vs. index 2. 
The releves pointed to are examples of specific releves and their cover values. 

 

August Frequency 

The canonical analysis for the August frequency data matrix shows that 52 per-
cent of the total variance is shared by the linear composites of the first pair of 
dependent and independent variables.  The first and second pair account for 74 
percent of the cumulative variation.  Here, only the first pair off coefficients are 
significant (p=0.0002) while the second pair is insignificant (p=0.1206).  In this 
case the second pair is used because a p-value of 0.1206 is reasonably significant 
in biological terms and its influence adds to the canonical regression.  These first 
two canonical variables are able to reveal the intercorrelations that account for 
74 percent of the variance on the ground (Table 12). 
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Table 12.  Results of canonical analysis showing the significance of the first pair of the 
canonical variates for August frequency. 
Bold indicates statistical significance. 

Canonical 
Correlation 

Adjusted 
Canonical 
Correlation 

Squared 
Canonical 
Correlation 

Eigenvalue Cumulative P-value 

0.6970 0.6276 0.4859 0.9453 0.5216 0.0002 
0.5395 0.4346 0.2911 0.4107 0.7482 0.1206 
0.4088 0.2583 0.1671 0.2007 0.8590 0.5625 
0.3255  0.1059 0.1185 0.9244 0.7576 
0.3039  0.0923 0.1018 0.9805 0.8057 
0.1459  0.0212 0.0218 0.9925 0.9511 
0.1157  0.0133 0.0136 1.0000 0.7904 

The canonical correlation coefficients for the August Frequency data matrix 
based on the groupings of the dependent and independent variables are de-
scribed as follow: 

The linear combination equations for the first pair of canonical variable using 
the coefficients for the dependent and independent variables are: 

Field 1 = (0.02*AGSP) + (0.23*ARTR) + (-0.21*BRTE) +  
(-0.008*GCLITTER) + (-0.22*GCBARE) + (0.31*TOTPER) + 
(0.56*ORGMATT) 

Index 1 = (-0.11*TM1) + (0.19* NDVI) + (-0.02*YVI) + (0.03*NVI) + 
(0.09*TSAVI) + (0.43*WDVI) + (.91*SAVI) + (0.36*NOR) + 
(0.17*SOU) 

For the first field, organic matter was the only influential coefficient, and for the 
first index, SAVI had the most influence (Table 13). 

The linear combination equations for the second pair of canonical variable using 
the coefficients for the dependent and independent variables are: 

Field 2 = (0.19*AGSP) + (-0.85*ARTR) + (0.37*BRTE) + 
(0.97*GCLITTER) + (1.03*GCBARE) + (0.22*TOTPER) + 
(0.33*ORGMATT) 

Index 2 = (-0.85*TM1) + (-0.53* NDVI) + (0.33*YVI) + (0.15*NVI) +  
(-0.28*TSAVI) + (1.04*WDVI) + (0.003*SAVI) + (0.98*NOR) + 
(0.75*SOU) 
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In the second field, ARTR, GCLITTER, and GCBARE are identified as having 
influential canonical coefficients.  The influential coefficients for index 2 are 
TM1, NDVI, WDVI, NOR, and SOU (Table 13). 

 
Table 13.  The canonical coefficients of the first and second pair of linear composites of the 
dependent and independent variables for August frequency. 
Bold indicates statistical significance. 

Variables Coefficients of 
the first pair 

Coefficients of 
the second pair 

AGSP 0.0251 0.1968 
ARTR2 0.2355 -0.8539 
BRTE -0.2128 0.3798 
TOTPER 0.3119 0.2255 
GCBARE -0.2200 1.0311 
GCLITTER -0.0081 0.9743 
ORGMATT 0.5265 0.3379 
TM1 -0.1111 -0.8505 
NDVI 0.1915 -0.5323 
YVI -0.0215 0.3347 
NVI 0.0361 0.1564 
TSAVI 0.0932 -0.2887 
WDVI 0.4374 1.0415 
SAVI 0.9123 0.0030 
NOR 0.3614 0.9849 
SOU 0.1784 0.7588 

 

For field 1 vs. index 1, there is a linear trend in the location of the releves based 
only on the amount of organic matter.  The amount of organic matter located on 
a releve has a positive or negative relationship with the highlighted independent 
variable SAVI (Table 13).  In this case, with an increase in organic matter, the 
SAVI value will also increase.  Another example of this linear relationship is il-
lustrated in Figure 8, where the amount of organic matter that a releve contains 
will determine its position on the graph. 

For field 2 vs. index 2, the linear trend is defined by the amount of litter, bare 
ground, and ARTR.  The percent cover of ARTR2 or the amount of bare ground 
located on a releve has a positive or negative relationship with the highlighted 
independent variables in Table 13.  For example, with an increase in AGSP fre-
quency, the TM1 value will decrease. 
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Figure 8.  Releves according to ORGMATT in the surface soil for field 1 vs. index 1. 
The releves identified are examples of specific releves and their organic content. 

August Cover 

The canonical analysis for the August cover data matrix shows that 50 percent of 
the total variance is shared by the linear composites of the first pair of depend-
ent and independent variables.  Here, only the first pair off coefficients are sig-
nificant at p=0.0018.  In this case, only the first canonical variable is able to re-
veal the intercorrelations that account for 50 percent of the variance on the 
ground (Table 14). 

 
Table 14.  Results of canonical analysis showing the significance of the first pair of the 
canonical variates for August cover. 
Bold indicates statistical significance. 

Canonical 
Correlation 

Adjusted 
Canonical 
Correlation 

Squared 
Canonical 
Correlation 

Eigenvalue Cumulative P-value 

0.6682 0.5873 0.4466 0.8071 0.5093 0.0018 
0.5650 0.4922 0.3192 0.4691 0.8053 0.2609 
0.3666 0.2103 0.1344 0.1553 0.9033 0.9345 
0.2686 0.0942 0.0721 0.0778 0.9524 0.9816 
0.2014  0.0405 0.0423 0.9791 0.9815 
0.1592  0.0253 0.0260 0.9956 0.9569 
0.0836  0.0070 0.0071 1.0000 0.9058 
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The canonical correlation coefficients for the August Cover data matrix based on 
the groupings of the dependent and independent variables are described as fol-
lows: 

The linear combination equation for the canonical variable using the coefficients 
from the dependent and independent variables are: 

Field 1 = (0.05*AGSP) + (-0.01*ARTR) + (-0.04*BRTE) + (0.23*GCLITTER) + 
(0.05*GCBARE) + (0.33*TOTPER) + (.66*ORGMATT) 

Index 1 = (-0.26*TM1) + (0.08*NDVI) + (0.07*NVI) + (0.009*TSAVI) + 
(.63*WDVI) + (.86*SAVI) + (.58*NOR) + (0.38*SOU) 

For the first field, organic matter was the only influential coefficient and for the 
first index WDVI, SAVI, and NOR had the most influence (Table 15). 

For field 1 vs. index 1, there is a linear trend in the location of the releves based 
only on the amount of organic matter.  The amount of organic matter located on 
a releve has a positive relationship with the highlighted independent variables 
found in Table 15.  For example, with an increase in organic matter, the SAVI 
value will also increase.  Another example of this linear relationship is illus-
trated in Figure 9, where the amount of organic matter that a releve contains 
will determine its position on the graph. 

 
Table 15.  The canonical coefficients of the first and second pair of linear composites of the 
dependent and independent variables for August cover. 
Bold indicates statistical significance. 

Variables Coefficients of the 
first pair 

AGSP 0.051 
ARTR2 -0.0161 
BRTE -0.0463 
GCLITTER 0.2339 
GCBARE 0.0554 
TOTPER 0.3373 
ORGMATT 0.6686 
TM1 -0.2608 
NDVI 0.0882 
YVI 0.0714 
NVI 0.0922 
TSAVI 0.0093 
WDVI 0.6313 
SAVI 0.8664 
NOR 0.5822 
SOU 0.38 
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Figure 9.  Releve position according to its amount of ORGMATT for field 1 vs. index 1. 
The releves identified are examples of specific releves and their organic matter content. 
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5 Summary and Conclusions 
Unlike previous work, where combined field observations and remotely sensed 
imagery provided some predictive capabilities in semiarid ecosystems (Tueller 
and Yuan 1992, Tueller 1992, Basavaraju 1994, Keller-Hatzell 1992, Senseman 
1996), the results of this study were not conclusive.  The data sets studied were, 
in most cases, of high statistical significance and seemed to describe relation-
ships of interest.  However, when increased rigor was applied to the analysis us-
ing both multiple linear regression and canonical regression models, the data 
sets that were analyzed turned out to lack the variation required to successfully 
describe the successional stages within the big sagebrush/grass ecosystems at 
the Yakima Training Center.  Specifically, Ho1 was accepted because the asso-
ciation tables of pertinent LCTA data did not show thresholds indicating specific 
seral situations and were therefore not able to define successional arrays.  These 
results were subjective and show that most of the anticipated relationships be-
tween various species in the successional arrays were not strong.  Null hypothe-
sis Ho2 was rejected.  There were strong relationships between individual vege-
tation or soil parameters and TM spectral data.  Null hypothesis Ho3 was 
accepted.  Again, individual bands or vegetation indices based on Landsat TM 
spectral data were not able to distinguish among seral stages of sage-
brush/grasslands with the data set analyzed. 

Several factors may have contributed to the inability to statistically identify suc-
cessional stages within the big sagebrush/grass ecosystems at the Yakima Train-
ing Center using remote imagery and LCTA field surveys.  The topographic cor-
rections, which were applied to reduce shadowing effects, may have equalized 
the pixel radiance values so much that variance within the data set from the 
ARTR/AGSP releves was lost or reduced.  Additional studies using more observa-
tions on north slopes and using all shrub dominated vegetation types might pro-
vide greater among-site variability and thus serve to improve the multiple linear 
regression models.  It may also be that these particular ARTR/AGSP releves 
lacked the overall variation that were found in earlier studies (Tueller and Yuan 
1992, Tueller 1992, Basavaraju 1994, Keller-Hatzel 1992, and Senseman 1996) 
and tended to reduce the R2 values and thus reduce the predictability.  Another 
factor is that hypotheses testing was conducted using either May or August ra-
diance data from satellite images, while LCTA field measurements of vegetation 
were collected throughout the summer months.  Therefore, the field data in-
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cluded a potentially wide variety of phenological expressions that may have in-
fluenced the variance.  In controlled experiments, field measurements are only 
collected in close proximity to image collection dates in order to reduce 
phenological noise.  However, LCTA is an inventory and monitoring program 
that is subject to time and monetary constraints, and therefore, there will always 
be an asynchronous relationship between field survey dates, which typically 
span an entire growing season, and image acquisition dates. 

However, some of the scatter diagrams suggest that there are relationships that 
might be useful for predictive purposes.  For example, there is a general consis-
tent relationship among the data sets with respect to organic matter.  The 
amount of organic matter in the surface soil may be important in defining 
releves in different seral stages within semiarid ecoregions.  

The statistical analyses performed in this research warrant further investigation 
with different data sets.  As higher spatial and spectral resolution satellite im-
agery becomes more readily available to installation resource managers, it is 
likely that the strength of relationships between field data and imagery will im-
prove.  A high percentage of the public land in the United States, including land 
on Army training and testing installations, is located in sagebrush/grass or simi-
lar ecosystems.  Improvement of remote sensing techniques for study and moni-
toring of these ecosystems can be useful for future management strategies, both 
as an independent source of information, and also as input into other spatial and 
temporal models that are under development to help predict future training land 
conditions.  There is still potential to develop models that can predict and map 
successional stages with the use of remote sensing techniques. 
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Appendix:  Scatter Plots 

 
Figure A-1.  Scatter plot of actual versus predicted AGSP values from the May frequency data 
matrix. 
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Figure A-2.  Scatter plot of actual versus predicted ARTR values from the May frequency data 
matrix. 

 

 
Figure A-3.  Scatter plot of actual versus predicted BRTE values from the May frequency data 
matrix. 
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Figure A-4.  Scatter plot of actual versus predicted TOTPER values from the May frequency data 
matrix. 

 

 
Figure A-5.  Scatter plot of actual versus predicted GCBARE values from the May frequency data 
matrix. 
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Figure A-6.  Scatter plot of actual versus predicted GCLITTER values from the May frequency 
data matrix. 

 

 
Figure A-7.  Scatter plot of actual versus predicted ORGMATT values from the May frequency 
data matrix. 
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Figure A-8.  Scatter plot of actual versus predicted AGSP values from the May cover data matrix. 

 

 

 
Figure A-9.  Scatter plot of actual versus predicted ARTR values from the May cover data matrix. 
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Figure A-10.  Scatter plot of actual versus predicted BRTE values from the May cover data 
matrix. 

 

 
Figure A-11.  Scatter plot of actual versus predicted TOTPER values from the May cover data 
matrix. 
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Figure A-12.  Scatter plot of actual versus predicted GCBARE values from the May cover data 
matrix. 

 
Figure A-13.  Scatter plot of actual versus predicted GCLITTER values from the May cover data 
matrix. 
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Figure A-14.  Scatter plot of actual versus predicted ORGMATT values from the May cover data 
matrix. 

 

 
Figure A-15.  Scatter plot of actual versus predicted AGSP values from the August frequency 
data matrix. 
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Figure A- 16.  Scatter plot of actual versus predicted BRTE values from the August frequency 
data matrix. 

 

 

 
Figure A-17.  Scatter plot of actual versus predicted TOTPER values from the August frequency 
data matrix. 
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Figure A-18.  Scatter plot of actual versus predicted GCBARE values from the August frequency 
data matrix. 

 

 
Figure A-19.  Scatter plot of actual versus predicted GCLITTER values from the August 
frequency data matrix. 
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Figure A-20.  Scatter plot of actual versus predicted AGSP values from the August cover data 
matrix. 

 

 

 
Figure A- 21.  Scatter plot of actual versus predicted ARTR values from the August cover data 
matrix. 
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Figure A-22.  Scatter plot of actual versus predicted BRTE values from the August cover data 
matrix. 

 

 
Figure A-23.  Scatter plot of actual versus predicted TOTPER values from the August cover data 
matrix. 
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Figure A-24.  Scatter plot of actual versus predicted GCBARE values from the August cover data 
matrix. 

 
Figure A-25.  Scatter plot of actual versus predicted GCLITTER values from the August cover 
data matrix. 
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Figure A-26.  Scatter plot of actual versus predicted ORGMATT values from the August cover 
data matrix. 

 

 

 

 

 

 

 

Plot of PRED*ORGMATT.  Symbol used is '*' 

FRED    I 
3.0   + 

1.5   + 

1.0   + 

0.5   + 

* ***** 
**   * • * * 

****** * * 
** *   ** * 

***   *   **   *     *   *** * 
*   * * »        * ** 

* * * * 
** * 

*   *   * * * 
* * ** 

R-s<iuare  0.3682     P>F  0.0001 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

ORGHJITT 

NOTE:   9  obs  hidden. 



 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

02-2004 
2. REPORT TYPE 

Final
3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 
  
5b. GRANT NUMBER 
  

4. TITLE AND SUBTITLE 
Identification and Mapping of Sagebrush/Grass Successional Stages with Landsat Thematic 
Mapper Data at Yakima Training Center, Washington 
  

5c. PROGRAM ELEMENT NUMBER 
  
5d. PROJECT NUMBER 
622720A896 
5e. TASK NUMBER 
EN-TS5 

6. AUTHOR(S) 
Craig R. Leedy, Paul T. Tueller, Wei Gao, and Scott A. Tweddale  
 

5f. WORK UNIT NUMBER 
 
8. PERFORMING ORGANIZATION REPORT 

NUMBER 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Army Engineer Research and Development Center (ERDC) 
Construction Engineering Research Laboratory (CERL) 
PO Box 9005 
Champaign, IL  61826-9005 
 

ERDC/CERL TR-04-2 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
DAIM-ED-N Department of the Army 

Office of the Director of Environmental 
Programs 
600 Army Pentagon 
Washington,  DC 20310-0600 
 

  
 
   
 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

  

12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited.  

13. SUPPLEMENTARY NOTES 
Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA  22161. 

14. ABSTRACT 
In the future, remote sensing technologies will become an increasingly important and valuable tool for military land managers in semiarid 
regions.  These technologies, when combined with field samples, have the potential to accurately monitor rangeland trends from year to 
year with smaller monetary investments compared to field sampling exclusively.  This research attempted to identify and map successional 
changes on semiarid rangelands at Yakima Training Center, WA, using remote sensing techniques by developing a model derived from 
analysis of dependent and independent variables chosen from field surveys of vegetation and geomorphic data, along with the interpretation 
of Landsat TM data.  Preliminary results based on small data sets separated by elevation and slope direction showed both low and some 
reasonable R2 values, including some R2 near 0.70.  The removal of elevation and slope direction and consideration of multicollinearity 
and outliers and influentials provided generally significant relationships among dependent and independent variables.  Significant relation-
ships between multiple dependent and independent variables were also identified using canonical correlation analysis.  Variability among 
the releves, collection of field vegetation and soil data over the entire summer including many phenophases, and the correction of the raster 
radiance values for topography were assumed to be factors that may have reduced the predictive capabilities of the techniques investigated. 

15. SUBJECT TERMS 
land management, range lands, remote sensing, Yakima Training Center, WA   
   
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 

OF ABSTRACT 
18. NUMBER 

OF PAGES 
19a. NAME OF RESPONSIBLE PERSON 

Scott A. Tweddale 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
 

SAR 
 

 63 
19b. TELEPHONE NUMBER (in-

clude area code) 
(217) 352-6511, ext 7409 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. 239.18 

 


	List of Figures and Tables
	Conversion Factors
	Preface
	Introduction
	Background
	Objective
	Approach
	Mode of Technology Transfer

	Study Area and Field Data
	Study Area
	Field Data

	Methodology
	Definition of Seral Arrays on Sagebrush/grass Rangelands
	Quantification of Vegetation and Soil Parameters with Themat
	Landsat Thematic Mapper for Identification of Seral Stages o
	Vegetation Indices
	Ratio Indices
	Orthogonal Indicies

	Statistical Methods
	Outliers and Model Specification
	Correlation Analysis
	Model Selection
	Multicollinearity
	Canonical Analysis

	Results and Discussion
	Multiple Linear Regression
	Uncombined Releves
	Combined Releves

	Multicollinearity
	Outlier and Influential Observations
	Final Linear Regression Analyses
	Canonical Analysis
	May Frequency
	May Cover
	August Frequency
	August Cover


	Summary and Conclusions
	Literature Cited
	Appendix:  Scatter Plots

