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This report outlines the results of a two quarter Total Ship Systems Engineering 

(TSSE) Capstone design project undertaken by the students at the Naval Postgraduate 

School.  The project was under the direction of Professors C.N. Calvano and R.Harney.  

The design team consisted of: LT Joe Keller, USN; LCDR Rabon Cooke, USN; CDR 

(sel) James Ivey, USN; LT Brad Stallings, USN; LT Scot Searles, USN; LT Ryan 

Kuchler, USN; Ivan Ng, Singapore Defense Science and Technology Agency; LTjg 

Orhan Okan, Turkish Navy; LTjg Mersin Gokce, Turkish Navy; LT Antonios Dalakos, 

Helenic Navy; LT Pete Lashomb, USN.   

 

ABSTRACT 

Currently, no system exists that provides a sea-based distributed aviation platform 

capability.  The emergence of Unmanned Air Vehicles (UAVs) / Unmanned Combat Air 

Vehicles (UCAVs), the continued U.S. Navy focus on the littorals, the desire for force 

distribution, the need for operational cost reductions, and the advent of Network Centric 

Warfare (NCW) all combine to support the requirement to re-evaluate how littoral 

operations will be conducted in the future.  Given this background, a bottom-up design of 

a ship supporting a primarily UAV / UCAV air wing in a low to medium threat 

environment, is of significant interest.  SEA ARCHER meets this interest. 

This report outlines a design that meets the future needs for distributed aviation 

with a high-speed, highly automated platform.   Large gains in reduced manning through 

automated systems for both operation and damage control help meet the demanding 

needs for the future of the Navy at reduced operational costs. 

The report will outline both the Mission Needs Statement (MNS) and Operational 

Requirements Document (ORD) for the ship that was developed.  The analysis of 

alternatives that was conducted to determine relative size requirements for the ships is 

presented in the next section.  The concept design that resulted as a result of the Total 

Ship Systems Engineering process is then presented.  Finally, a detailed look at the 

analysis and trade studies that were conducted is presented in order to show the more 

detailed analysis that was conducted in designing the ship. 
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FACULTY COMMENTS 
By 

Professors C. N. Calvano, and R. C. Harney, NPS 
 

TSSE PROGRAM 
 

A purpose of the TSSE capstone design project is to give experience in the design 

process as applied to a large, complex system, using a Navy ship as the system of 

interest.  An additional major goal is to require the students to develop and exercise the 

leadership and cooperative skills needed to perform a complex task as a team.  It is also 

hoped that the design produced will be interesting, innovative and, possibly, spur 

discussion and thought in Navy and industry circles. 

The program is made up of students enrolled in three curricula: Mechanical 

Engineering, Electrical and Computer Engineering, and Combat Systems.  The faculty 

strives to ensure that all design projects provide an opportunity for students from each of 

these curricula to apply what they have learned in their individual domains while 

participating in a wider-scope team design. 

The 2001 capstone design project was the 10th since the program’s inception, but 

the first to be run within a broader, campus-wide collaborative environment.  The project 

grew out of a Naval War College initiative exploring a concept called CORSAIR, a small 

aviation-capable ship carrying STOVL JSFs for littoral operations.  CORSAIR was 

envisioned as contributing to a USN capability to defeat an adversary’s access-denial 

capability and, in this role, would essentially be providing air cover for small littoral 

combatants, such as the SEA LANCE, which was the subject of the 2000 TSSE capstone 

project, a response to another NWDC initiative.   

 
CAMPUS-WIDE COLLABORATIVE PROJECT 

 

The lead in the operational aspects of this collaborative project went to students in 

the Systems Engineering and Integration curriculum.  They were tasked to explore the 

concept operationally, and their analysis resulted in a FORCE-level approach that had the 

following salient features: 
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• The FORCE was intended for operation in low to moderate threat areas in the 
littorals (where it could relieve or substitute for a CVBG that was needed elsewhere 
where the threat was high). 

• Unmanned air vehicles (UCAVs and UAVs), were employed exclusively to permit 
exploration of their utility.  The air vehicles provide a primarily reconnaissance, 
surveillance, and target acquisition (RSTA) mission capability, though it was seen as 
useful to give the UCAVs the ability to carry a limited amount of ordnance. 

• The aviation capability of the force would be widely distributed across a number of 
platforms (notionally quantified as eight).  The loss or incapacitation of any platform 
would not result in the loss of a major part of the aviation capability.   

• Because strike capability was not a major part of the force’s purpose and because 
the aviation capability of the FORCE was the capability of interest, individual platforms 
would not conduct high-tempo air ops (if several aircraft needed to be launched or 
recovered in a short period of time, several of the eight platforms would share the task). 

• Survivability of the FORCE’s capability is the survivability characteristic of 
interest.  The individual platforms would be looked upon as “combat consumable”.  
(This, of course, played a big part in the thinking that minimum manning was needed.  
And, frankly, the idea of considering individual platforms to be “combat consumable” 
arose when it was hoped the aviation ships would be less than 8000 MT; our design 
showed that size to be unachievable, given the requirements.) 

• The force would be capable of significantly higher speed than current forces, with 
exploration of a 60 knot maximum speed capability as a prime feature of interest. 

• The force would consist of 8 aviation platforms carrying a combination of UCAVs, 
UAVs and, in very small numbers, helos.  There would be 20 escorts, based on a notional 
extension of the 2000 TSSE SEA LANCE design (with increased displacement, 
additional missiles for strike and defense, and speed comparable to the aviation platform), 
referred to as SEA LANCE II.  There would be a replenishment capability, hoped to be 
high-speed-capable, as well. 

 
It was decided to approach this collaborative project in the following manner: 
 

• The SEI students would continue to explore operational matters and would 
explore the technological developments necessary to make the concept work (e.g. 
C2 for large numbers of unmanned air vehicles).  The SEI team would coordinate 
the preparation of a top-level report of the collaborative project.   

• The Aeronautical and Astronautical Engineering Department’s students, in their 
capstone aircraft design project, would design the UCAV that would be part of the 
force. 

• The TSSE students would design the aviation ship platform. 
• The logistic support system would be defined by participating students from the 

Operations Logistics curriculum.  The logistics ship would be notionally 
described, but not designed. 
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• The combatant escort would be SEA LANCE II, notionally described, but not 
designed. 
 

The teams decided to use the following project names: 
 

• The FORCE would be called CROSSBOW 
• The UCAV would be called SEA ARROW 
• The aviation ship would be called SEA ARCHER (the subject of this report) 
• The escorts, as mentioned, would be SEA LANCE II 
• The logistics ship system would be called SEA QUIVER. 

 

THE TSSE SEA ARCHER DESIGN 

Based on SEI mission analyses, the TSSE faculty established a Design Reference 

Mission to guide the design process.  The Design Reference Mission for SEA ARCHER 

called for: 

• An unreplenished transit leg of  4000 nm @ 50 kts 

• SEA ARCHER to refuel 2 SEA LANCEs at 2000 nm 

• SEA ARCHER to have 20% fuel remaining after 4000 nm 

• At 4000 nm the force would be replenished.  (There might be an identical second 
4000 nm transit leg.) 

• After replenishment, 7 days in littoral combat operations, to include:  

a.  2 refuelings of 2 SEA LANCEs 
b.  Normal aircraft sortie rate operations (as defined in the ORD and AOA) 
c.  2 days @ 20 kts 
d.  1 day @ 25 kts 
e.  3 sprints of 2 hours at 60 kts  
f.  Remaining time at loiter speeds (10-15 kts) 
 

It was clear from the beginning that the 60kt maximum speed capability for SEA 

ARCHER would be a major driver.  It quickly became evident that 60 knots could not be 

sustained for extended periods due to excessive fuel consumption.  However, the 

advantage in maneuver warfare provided by a limited duration sprint capability was 

deemed important enough to keep 60 knots as the top speed requirement.  This led to the 

choice of the HARLEY SES hull form over the other alternatives seriously considered 

(high speed catamaran and pentamaran).  The result of the design process also 

highlighted the significant penalty that must be paid for such speed.  Indeed, the 

propulsion system required to propel the nominal 15,000 LT SEA ARCHER at 60 knots 
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is larger than the propulsion system required to propel a nominal 100,000 LT aircraft 

carrier at 35 knots.  In light of this penalty, the necessity of 60 kt top speed remains a 

question for further analysis. 

Because the SEA ARROW UCAV had the ability to take off (with 40 kts wind 

over deck) in 400 ft, it was desired to provide that take off length on the flight deck so 

that UCAV operation would not be dependent on launcher availability.  Also, the only 

resistance and powering data available to the team for this hull type was based on specific 

combinations of naval architectural characteristics, such as length-to-beam ratio.  In order 

to enhance the validity of the major “scaling up” required for the hull, the same ship 

geometry was maintained and this, coupled with the 400 ft take off length resulted in a 

ship that has excess volume for its payload.  (The payload of 8 UCAVs, 10 notional 

UAVs and 2 helos, with minimal ordnance, is relatively small.) 

While the payload was light, the fuel load required to meet the mission profile for 

the SEA ARCHER (and to refuel its escorts) was a major weight challenge.  In the end, 

the ship is weight (not volume) limited – and further design integration would be 

expected to reduce the excess volume in the ship. 

The design turned out to be one of the most challenging faced yet by a TSSE 

student team – and one of the most educationally effective.  The goals of an unmanned 

flight and hangar deck introduced the need to consider how automation could replace 

crew in the aircraft and ordnance handling functions.  These automated systems, in turn, 

made arrangements of ordnance handling and aircraft movement paths crucial design 

considerations.  When coupled with the fact that the high speed capability required an 

enormous engineering plant, with large volumes devoted to air handling, the ship’s 

arrangements proved to be highly inter-dependent.  One of the team members was 

overheard to say “every time he changes something in the propulsion plant, I have to re-

design the hangar deck”.  While this is a slight overstatement, the sentiment is valid and 

is indicative of the fact that the students had to make numerous tradeoffs at the “total 

ship” level – a major goal of the TSSE program. 

The final design produced by the TSSE team has several innovative and unique 

features that deserve special mention.  These include: 
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• A large displacement ship incorporating surface effect technology to permit 

attainment of high speeds and acceptable endurance. 

• The incorporation of numerous advanced sensors along the edges of the hull has 

eliminated the need for an island.  This significantly eases design for reduced 

observability (stealth).  It also increases survivability by eliminating an obvious 

aimpoint loaded with sensors that represent single points of failure. 

• Aircraft are not stored on the flight deck.  This is possible due to the reduced sortie 

rate (from each platform) permitted by distributing the aviation assets over many 

platforms coupled with reduced numbers of aircraft on each platform.  The normally 

empty flight deck further reduces observability and enhances survivability. 

• The flight deck is completely unmanned.  Robotic transport equipment handles all 

movement of aircraft.  This permits elimination of a major driver of manpower.  It 

also eliminates the most dangerous jobs associated with naval aviation. 

• Operations in the hangar deck are also mostly automated with minimal manpower 

requirements.  Only highly specialized maintenance will involve human interaction.  

Refueling, rearming, and much avionics maintenance will be performed by robotic 

actors at specialized pit stops.  

• All handling of ordnance (from withdrawal from the magazines to uploading onto 

aircraft) will be performed by automated systems.  This eliminates another large 

manpower driver that is present on current aircraft carriers. 

• The aircraft elevators are fully enclosed.  When they are in the down position, a cover 

may be moved into position to seal the elevator both from the flight deck and from 
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the hangar deck.  This improves the ability of this smaller ship to conduct operations 

in high sea states.  It also permits the elevators to act as airlocks for a full ship 

collective protection system and as locations for nuclear, chemical, and biological 

(NBC) agent decontamination to be performed on aircraft when they return from 

missions.  The SEA ARCHER is the first aviation capable ship design that has the 

potential for sustained and unrestricted combat operations in continuously 

contaminated NBC environments.  This is a major deficiency in current naval forces. 
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I. EXECUTIVE SUMMARY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEA ARCHER was designed as part of a wider
interdisciplinary project, with teams from the Systems
Engineering and Integration Program, the Department of
Aeronautics and Astronautics, and the Total Ship Systems
Engineering program.  Students from the Logistics Management
and Aviation Maintenance Curricula also participated. 

 
  CROSSBOW – Is the force level structure that includes: 
      SEA ARCHER – Aviation ship 
      SEA ARROW – Unmanned Combat Air Vehicle  
      SEA LANCE – Small Combatant (2000 TSSE design) 
      SEA QUIVER – Logistics Support Subsystem 

Currently, no system exists that provides a sea-based distributed aviation platform capability.
The emergence of Unmanned Air Vehicles (UAVs) / Unmanned Combat Air Vehicles (UCAVs), the
continued U.S. Navy focus on the littorals, the desire for force distribution, the need for operational cost
reductions, and the advent of Network Centric Warfare (NCW) all combine to support the requirement to
re-evaluate how littoral operations will be conducted in the future.  Given this background, a bottom-up
design of a ship supporting a primarily UAV / UCAV air wing in a low to medium threat environment, is
of significant interest.  SEA ARCHER meets this interest. 

R

SEA ARCHER Characteristics 
 
� Displacement            13,500 mT 
� Length                              181 m 
� Beam                                  59 m 
� Draft – w/air cushion            2m 
                   off air cushion          4m 
� Installed HP             327,000 HP 
� Manning                 128 
SEA ARCHE
Operational Requirements   

• Range:  4000 nm @ 50 kts 

• Maximum speed: 60 kts 

• Maximum manning:  150  

• Airwing: 8 UCAVs, 2 Helos,
10 UAVs 
Reductions in manning were
achieved through a high degree
of  automation, including the
damage control architecture. In
further support of reduced
manning, a maintenance
concept that calls for much of
SEA ARCHER’s maintenance
to be performed by outside
activities is utilized.  
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II.  REQUIREMENTS  

A. MISSION NEEDS STATEMENT 

 

1.  Defense Planning Guidance Element. 

This Mission Needs Statement (MNS) provides requirements for a platform to 

deliver distributed aviation for access assurance in the littorals.  It addresses the 

Department of Defense “Defense Planning Guidance, FY-1997-2001,“ dated 9 May 

1995, which states: 

 “The primary mission of the United States military forces has 
always been, and will continue to be, to protect the nation from direct 
threats and to deter, and, if necessary, fight and win the nation’s wars … 
deter and, if required decisively defeat aggression by projecting and 
sustaining U.S. power in two nearly simultaneous Major Regional 
Conflicts (MRCs); … Some U.S. forces must be forward-deployed or 
stationed in key overseas regions in peacetime … This demands highly 
qualified and motivated people, modern, well maintained equipment, 
viable joint doctrine, realistic training, strategic mobility and sufficient 
support and sustainment capabilities.” (pp. 4&5) 

This mission need also addresses the guidance and requirements validated by the 

Naval War College and Navy Warfare Doctrine Command in the “CORSAIR Concept”. 

The planning, guidance, and mission needs for the “CORSAIR” initiative amplify new 

mission roles and priorities which the Navy and Marine Corps must meet to ensure 

success in 2010 and beyond.   

Key demands on the future United States military capability requires assured 

access to all regions of the world.  The concepts and doctrine to maintain this access 

include:  

The ability for “knock down the door” (i.e., opposed entry) initial access using the 

combined capabilities of strike and power projection with reduced risk. 

Denying enemy's targeting sequence through: 

• Speed, maneuver, stealth, and distributed counter targeting.  
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• Enhanced Anti-Ship Missile Defense (ASMD), Cruise Missile Defense, Anti 
Submarine Warfare (ASW), and Mine Counter Measure (MCM). 

• Defensive warfare strategies used by the total force in a fully Network Centric 
Warfare (NCW) environment.  

Some level of active self-defense may still be required. 

This MNS should guide initiatives to investigate potential solutions to include 

design, research, development, and acquisition of a new platform for the attainment of 

distributed sea-based tactical air. 

 

2.  Mission Threat Analyses. 

Mission.   

The general missions of distributed sea-based tactical air are to: 

Provide credible, sustainable, and independent forward presence during peacetime 

without access to land bases, 

Operate primarily in the littoral environment as a complement to the Carrier 

Battle Group (CVBG) and yet be capable of operations independent of the CVBG during 

certain Military Operations Other Than War (MOOTW) and low intensity conflicts to 

ensure access to littoral regions. 

Provide a credible force to harass and suppress enemy forces, while awaiting 

CVBG arrival. 

Carry the war to the enemy through joint multi-mission offensive operations by: 

• being able to operate and support aircraft in attacks on enemy 
forces ashore, afloat, or submerged independent of forward-based 
land facilities, 

• protecting friendly forces from enemy attack, through the 
establishment and maintenance of battlespace dominance 
independent of forward-based land facilities, 

• engaging in sustained operations in support of the United States 
and its Allies independent of forward-based land facilities. 
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Capabilities. 

The primary function of a sea-based distributed aviation platform is to shelter, 

transport, launch, recover, and maintain multi-mission aircraft and tactical airborne 

systems suitable for sea-based operations.  The core capabilities required for this platform 

to perform the above missions include: 

Strategic mobility – it must have the ability to independently 

deploy/respond quickly and operate with sufficient tactical flexibility, whenever 

and wherever required, to enable joint maritime expeditionary force operations. 

Sustainability – it must have the capacity to sustain itself, its aircraft and 

escort for extended periods without direct access to shore facilities. 

Survivability – it must be able to operate aircraft in hostile environments, 

protect itself from attack by threat weapons, and if hit, degrade gracefully. 

Firepower –it must be able to operate sufficient numbers of tactical 

aircraft, and carry sufficient ordnance and fuel to conduct, in concert with other 

platforms in the distributed sea-based tactical aviation force, simultaneous power 

projection, battle space dominance and surveillance operations for extended 

periods and to deliver precise, high-volume firepower. 

Joint command and control – while not envisioned to be a command and 

control flagship, it must be interoperable and its communications suite must be 

fully compatible with other naval, expeditionary, interagency, joint, and allied 

forces.  In addition, it must be able to operate as a Command and Control center, 

integrate information to develop a coherent tactical picture to support Joint Force, 

Battle Force, Battle Group and Air Wing planning, coordinate actions with other 

forces, and communicate the force’s actions to appropriate commanders.  

Connectivity must include seamless integration of both organic and off-ship 

sensor inputs for power projection actions. 

Flexibility and growth potential – it must have the versatility to operate 

manned aircraft, unmanned aerial vehicles (UAVs), unmanned combat aerial 

vehicles (UCAVs), short take-off and vertical landing (STOVL) and short take-
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off and landing aircraft (STOL).  It must have the ability to perform simultaneous 

multi-mission tasking and readily adapt to changing operational needs.  In 

addition, it must have the flexibility to adapt to changes in future threats, missions 

and technologies. 

Threat 

The anticipated threat to naval forces in 2020 will be the proliferation of 

high-tech/low-cost weaponry and sensors.  These systems will be employed to inflict 

maximum damage by simple saturation of own-ship sensors and defensive measures.  

Anticipated threat objectives will be the coordinated effort to use all target acquisition 

and force support agencies available for the purpose of denying the combat power of the 

littoral force during the initial stages of ship movement.  Central to the threat’s defensive 

plan is the early identification and rapid denial in the littorals.  Enemy systems will be 

found in multiple major threat areas.  These include threats from space, air, surface, 

undersea, and info-sphere. 

Common threads amongst these threats include: 

• Enhanced multi-source intelligence collection and Information Warfare 
Operations 

• Enhanced tactical mobility systems that reduce reaction time, protect the 
littorals, and improve firepower and sea protection. 

• Higher-volume, longer-range targeting, command, control, and 
communications. 

• Enhanced counter mobility capability by using land and shallow water mines.  

• Increased availability, numbers, and accuracy of precision-guided munitions. 

• Increased lethality and reliability of weapon systems, and the possible use of 
Weapons of Mass Destruction (WMD) / Nuclear, Biological, and Chemical 
(NBC) weapons. 

• Electronic Warfare (EW) capabilities to monitor, direct, find, jam and deceive 
in the Radio Frequency (RF) and electro-optical spectrums. 

• Early attack and disruption of supplies and logistics. 
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• The ability to reach outside the littorals with submarines, smart mines and 
aircraft carriers. 

• Ability to take advantage of the sea and land terrain. 

• With numerous aircraft, missiles, and rockets in the air at the same time, the 
probability of attrition is high. 

Current Deficiencies – Shortfalls 

There is no existing system to provide the sea-based distributed aviation 

platform capability.  The emergence of UAVs / UCAVs, the continued U.S. Navy focus 

on the littorals, the desire for force distribution, the need for operational cost reductions, 

and the advent of Network Centric Warfare (NCW) all combined to support a 

requirement to re-think how future warfare will be waged in the littoral.  A ship has never 

before been designed, from the bottom up, to support the operation of a primarily UAVs / 

UCAVs air wing in a low to medium threat environment.  The sea-based distributed 

aviation platform will be the first.  The object of the distributed aviation battle group is to 

augment CVBG capabilities in the contested littorals of the world. 

Current programs and acquisitions fail to: 

• Maintain required force levels for forward presence, crisis response and warfighting, 

• Maintain an effective industrial base to assure continued support for sea-based 
tactical aviation, and 

• Take advantage of new technologies and design concepts that offer opportunities to 
develop sea-based platforms that are capable, but more affordable than current platforms. 

 

Timing and Priority 

Low intensity conflicts throughout the world have increased dramatically 

in the past decade.  In addition, the gross domestic products (GDP) of potential threat 

countries have increased at rates faster than that of the United States.  Future conflicts 

will be fought against countries with credible defensive and offensive capabilities, 

especially in the littorals.  The need for high tech/low cost, quick response air platforms 

is essential for ensuring access to the littoral regions of the world.  Currently there are no 

programs being developed and funded that meet these needs for littoral access assurance.  
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Therefore, high priority must be placed on developing a sea-based distributed aviation 

system. 

3.  Non-material Alternatives. 

US or Allied Doctrine. Doctrinal changes would include: Acceptance of a 

decreased quick response capability to deter/contain regional crises; A greater risk 

involved in placing high value assets in littoral regions; no customized naval platform to 

leverage on unmanned air systems; and, inability to increase US presence in low level 

conflicts. 

Operational Concepts. The possibility of converting LHAs or LHDs was 

deliberated.  The payload criteria could be fulfilled without major conversions to the 

platform but the higher speeds required cannot be achieved by the LHA/LHD, which 

have a maximum speed of well under 30 knots.  Notwithstanding, the platforms are 

already currently utilized for other Operational Requirements and nearing the end of their 

life cycle. 

The utilization of CVBGs to respond to lower levels of conflicts was also 

considered but this would entail increasing the current number of CVBGs. 

Tactics. Multiple conflicts, calling for the application of sea-based forces into the 

littorals to enable US follow on forces and to ensure US presence, will place naval assets 

at greater risk with increased technological improvements in the enemy’s offensive 

weaponry. Deployment of capital assets or High Value Units (HVUs) is unacceptable 

since the risk is very high and the mission would not be accomplished without accepting 

the loss of the HVUs.  

Training. No training solutions were found to be feasible to fulfill requirements.  

Organization. Organizational changes, such as to forward deploy air assets and 

increasing forward bases, have been considered. This would then reduce the response 

time for US action in the region of conflict.  However, trends indicate an inability to 

forward base air assets due to base closures. It also raises complications such as increased 

defense spending and the dependence on allies for deployment but most of all, the 

acceptance that there would be insufficient assets to engage in two simultaneous MRCs. 
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 All the alternatives considered were deemed not viable and as such justify 

a need for distributed sea-based tactical aviation platforms. 

4.   Potential Material Alternatives. 

Alternative design concepts. 

• New ship, aircraft or space-based designs, which may include nuclear or non-nuclear 
propulsion or advanced/unconventional hull forms 

• Deployed space based designs including future pulsed laser or missile weapons 
systems 

• Mobile Offshore Basing (MOB) Concepts 

Modification of current assets 

• Upgrade or modification of current naval/commercial assets 

• Modification/increased procurement and employment of current Air Force assets 

Cooperative allied programs. 

     Various allies have combat, hull, mechanical and electrical system 

programs ongoing or under development that offer possible cooperative opportunities.  

These subsystem designs will be examined.  All meaningful cooperative opportunities 

can be realized without a formal cooperative development program for a 21st century sea-

based distributed-air platform. 

 

5. Constraints. 

Overarching Constraints. 

Operations.  The ship design must extend the operational envelope beyond 

the capabilities of current sea-based aviation platforms to include significant increases in 

the distribution of aviation assets and in maximum and sustained speeds.  Consideration 

should be given to ease risk management of assets in the littoral warfare environment.  

The platform must provide landing facilities and at least minimal hangar facilities 

commensurate with mission needs and cost, and ammunition storage for operational 

support of required aviation assets.    

Architecture.  The ship design must employ a total ship, aircraft, and 

weapons system architecture/engineering approach that optimizes total ownership cost 

and performance; allows computational and communications resources to keep 
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technological pace with commercial capabilities and allows for full realization of the 

“Command, Control, Communications, Computers and Intelligence (C4I) for the 

Warrior” (C4IFTW) concept; and provides the capability to survive and fight hurt in all 

operational environments.  More specifically this implies physical element modularity; 

functional sharing of hardware (across all services); open systems information 

architecture; ship-wide resource management; automation of C4I, combat, aircraft 

support, ordnance and aircraft handling; automation and minimization of maintenance 

and administrative functions; integrated systems security; and embedded training. 

Design.  Consideration should be given to the maximum use of modular 

construction design in the platform’s infrastructure.  Emerging technologies through 2012 

must be accounted for and incorporated during the developmental phase to support an 

Initial Operational Capability (IOC) date of 2021.  Modern, flexible information 

processing must be built into any new weapons system.  Since communication and data 

systems hold the greatest potential for future growth, and therefore obsolescence, their 

installations must be modularized as much as possible to allow for future upgrades.  The 

inherent vulnerabilities of communications and data systems require information systems 

security to be engineered into the design.  Use standard man-to-machine interfaces 

among the systems onboard.  The man-to-machine interfaces should be standardized to 

the maximum extent possible to be consistent with existing user-friendly systems.  For 

comparable capabilities, the total life cycle cost of the design should not exceed that of 

existing sea-based aviation platforms. 

Personnel.  The platform should be automated to a sufficient degree to 

realize significant manpower reductions in engineering, damage control, combat systems, 

ship support and Condition III watchstanding requirements.  Reduced manning concepts 

used by other Navies should be reviewed to leverage advanced technologies and future 

advanced technology concepts in an effort to minimize shipboard manning requirements.  

Preventive maintenance manpower requirements must be reduced by incorporating self-

analysis features in equipment designs, and by selecting materials and preservatives that 

minimize corrosion.  The design should exploit the use of technology to reduce 

Manpower, Personnel and Training (MPT) requirements.  Trade-offs that reduce MPT 

requirements shall be favored during design and development. 
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Infrastructure.  The platform shall be able to use current U.S. Navy port 

facilities and shipyards. 

Interoperability.  All ship and combat systems elements must make use of 

standard subsystems and meet required development practices.  The platform must be 

fully integrated with other U.S. Navy, Marine Corps, joint and allied forces, and other 

agencies in combined, coordinated operations.  Joint goals for standardization and 

interoperability will be achieved to the maximum feasible extent.  The platform must be 

able to embark Special Operations Forces (SOF) and Joint Forces when required for 

selected missions. 

Logistics and Environmental, Safety, and Occupational Health 
Concerns.   

The platform must be able to operate in U.S., foreign, and international 

waters in full compliance with existing U.S. and international pollution control laws and 

regulations.  Consideration must be given to logistics that support meeting the constraints 

of high operational speeds and reduced manning. 

Survivability.  

The platform must meet the survivability requirements of Level III as 

defined in OPNAVINST 9070.1. A system capable of decontaminating the platform 

topsides after exposure to a Chemical, Biological & Radiological (CBR) warfare agents 

must be provided. 

Operational environment.  

The platform must remain functional and operational in all environments 

regardless of time of day, whether operating independently, in heavy weather or in the 

presence of electromagnetic, nuclear, biological and chemical contamination and/or 

shock effects from nuclear and conventional weapon attack. 
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B. OPERATIONAL REQUIREMENTS DOCUMENT 

 

1.  General Description of Operational Capability 

Mission Area 

The U.S. National Security Strategy has shifted from a focus on a global 

threat to a focus on regional challenges and interests in the littoral.  While the prospect of 

global war has receded, we are entering a period of enormous uncertainty in regions 

critical to our national interests.  Our forces can help to shape the future in ways 

favorable to our interests by underpinning our alliances, precluding threats, and helping 

to preserve the strategic position we won with the end of the Cold War.  Naval forces will 

be full participants in the principal elements of this strategy--strategic deterrence and 

defense, forward presence, crisis response, and reconstitution. The Naval White Papers, 

“Forward From the Sea” and Operational Maneuver From the Sea (OMFFTS), provide 

direction to the U.S. Navy (USN) and the U.S. Marine Corps (USMC) concerning the 

challenges of the post-Cold War world and shift the operational focus of naval forces 

from the open ocean to the world's littorals. The concept of Littoral Warfare emphasizes 

the capability of naval forces as a forward deployed crisis response force to deter conflict 

in the littorals, and to prevent escalation and restore stability where deterrence has failed. 

These naval forces will meet far greater threats in number, quality and intelligence of 

weapons. As simultaneous coordinated attacks come with larger numbers of all types of 

weapons (from subsurface, surface, air and space), any naval force will have far less time 

to plan and carry out defensive and offensive operations.  This view of a combat 

operation in the time frame of 2020 will require a mix of all types of airborne platforms 

both manned and unmanned operating from the SEA ARCHER class ship.  All new 

missions, technologies, equipment, and operations strategies must have Follow on 

Operational Test and Evaluation completed by the summer of 2021. 

With a far greater emphasis on joint and combined operations, the Navy, 

Marine Corps, Army and Air Force will provide unique capabilities of indispensable 

value in meeting our future security challenges especially in the littorals.  Ready, 

relevant, and capable American Naval Expeditionary Forces provide:  a powerful yet 

unobtrusive presence, strategic deterrence, control of the seas, extended and continuous 
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on-scene crisis response, precise power projection from the sea, and sea lift if larger scale 

war-fighting scenarios emerge.  These maritime capabilities are particularly well tailored 

for the forward presence and crisis response missions articulated in the emerging 

National Security Strategy.  The requirement for the capability to deploy, transport, and 

project landing forces in sufficient strength and capacity for the conduct of amphibious 

operations, up through Marine Expeditionary Force (MEF) level, without nearby land 

bases for support has been identified in the Marine Corps Master Plan (MCMP) 1996-

2006. 

Our ability to command the seas in areas where we anticipate future 

operations allows us to resize our naval forces and to concentrate on those capabilities 

required in the complex operating environment of the littoral or coastlines of the earth.  

Naval Expeditionary Forces maneuver from the sea using their dominance of littoral 

areas to amass forces rapidly and generate high intensity, precise offensive firepower at 

the time and location of their choosing, under any weather conditions, day or night.  

Operating in the Littorals requires mobility, flexibility and technology to amass strength 

against weakness in a timely manner. 

Our National Security Strategy requires a strong forcible entry capability 

into the littoral areas and adjacent land.  As discussed in detail in the Department of the 

Navy’s concept of “From the Sea”, America’s interests will continue to dictate the 

necessity to influence events on the other side of our protective oceans.  While even the 

viability of political reinforcement, by uncontested forward-presence forces, requires a 

credible forcible entry capability, the requirement to respond against an invader or 

international outlaw requires the unquestionable ability to place power in the littorals and 

ashore.  In 2020 with few adjacent land bases in the world, the requisite sustainable, 

forcible entry capability can only come from the sea.  In this time frame, allied forces will 

be required to enter areas defended by integrated systems of modern space, air, sea, and 

ground weapons.  While some defenses will consist of relatively immobile forces and 

fixed positions, others will include mobile, combined-arms units backed by space 

weapons, naval and air craft (manned and unmanned) and employing the newest 

unmanned vehicles, missiles and mines against our planes, ships, and landing forces. 
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Design of operations and forces to defeat these opponents must accommodate our societal 

intolerance of attrition and demands for victory. 

“Forward From the SEA”(FFTS) is a concept for projecting naval power 

in the littorals and ashore in support of a strategic objective.  Essentially, FFTS is the 

application of maneuver warfare principles to the maritime portion of a theater campaign, 

capitalizing on the ever-expanding capabilities of modern naval airborne forces (manned 

and unmanned) to project power in an increasingly sophisticated and lethal environment. 

Operations are designed to break the cohesion and integration of enemy defenses while 

avoiding attrition oriented attacks.  Emphasis will be placed on speed, mobility, 

deception, surprise, and other measures of battlefield preparation that confuse or create 

uncertainty and delay in the enemy’s actions. Our ultimate desire is to destroy his will to 

fight or carry out actions contrary to the interests of the United States. 

FFTS is a single, seamless operation extending from homeports to secure 

sea bases across the littoral to dominate a critical enemy center of gravity.  The FFTS 

concept requires a single force that can change its character with its environment but 

always operate with a single objective. FFTS brings all facets of sea power to bear; it 

replaces our recent history of separately controlled movement, supporting operations, 

landings, and maneuver ashore.  The next generation of technology provides our 

opportunity to close the batt1efield mobility gap between space assets, airborne 

operations, ship firepower and on shore forces, to link maneuver in ships, space assets, 

airborne operations with maneuver ashore. 

Increased operational speed will be the sum of more rapid decisions of 

command, faster methods of control, quicker execution, higher speed of sea borne 

systems, and blurring distinction between maneuver at sea and maneuver in the littorals.  

Relative operational speed (the difference between our speed and that of the enemy) will 

increase as enemy operations are degraded by simultaneous surprise, deception, strikes, 

fires, and special and information operations.  The moment of achieving superior 

operational tempo will be reached when the frequency of our operations do not allow our 

opponent to respond effectively or maintain cohesion of his forces. 
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While strike and special operations are complementary forms of sea power 

projection, new technologies, equipment, and tactics will be required to allow the Navy 

after Next to gain superiority in the littorals.  The conduct of a littoral operation 

encompasses almost all types of ships, aircraft, weapons, and landing forces of the U.S. 

Navy and Marine Corps in a collaborative military effort. The salient requirement of the 

littoral operation is the necessity of rapidly building up combat power from an initial 

level of zero to full coordinated striking power to gain success and maintain objectives. 

Future naval forces will be structured and equipped to project combat 

power in the littorals to seize control of the crisis arena for follow-on joint operations. 

Power projection requires air, space and water mobility, speed, firepower, and a versatile 

mix of survivable vehicles that enable launch in nearly all weather from a sea base of 

versatile ships.  The force provides standoff (Battlespace) for the Naval Task Force to 

enable the effective employment of active / passive defense systems against enemy air 

and surface-fired weapons, avoids the major sea mine threat and avoids attrition.  The 

Battlespace will be very complex around the task force with large numbers of enemy and 

friendly manned and unmanned vehicles in the air. 

Type of System Proposed 

Title 10, U.S. Code, directs the Navy to develop equipment used for 

maritime operations.  This ORD addresses the specific operational capabilities and design 

considerations for SEA ARCHER, the centerpiece ship of the CROSSBOW Battle 

Group. 

Operational Concept 

 As part of the Navy after Next initiative, the Navy is considering a new 

Battle Group concept called CROSSBOW (Figure 1), designed from the bottom up for 

littoral operation. This new force should operate primarily in the littoral environment as a 

complement to the Carrier Battle Group (CVBG) and yet be capable of operations 

independent of the CVBG during certain Military Operations Other Than War 

(MOOTW) and low intensity conflicts.  CROSSBOW should provide additional assets to 

assist in the penetration of the littorals to suppress and soften enemy Integrated Air 

Defenses (IAD) and area denial capability to provided CVBG access.  When low 
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intensity or MOOTW activities lead to escalation, CROSSBOW provides a credible force 

to harass and suppress enemy forces, while awaiting CVBG arrival.  CROSSBOW forces 

may consist of squadrons of SEA ARCHERs, small expeditionary aircraft carriers, 

operating in concert with up to 20 SEA LANCE, which are small, low cost, high-speed 

combatants capable of deploying the Expeditionary Warfare Grid (EWG) and providing 

offensive and defensive missile fires.   By using distributed sea based air assets, 

CROSSBOW should be capable of supporting continuous, rather than pulsed, air 

operations.  The SEA ARCHER air wing, CV air wing, SEA LANCE, and other escorts 

operating in the area of action will provide force protection and offensive firepower. One 

or more SEA QUIVERs, which are high-speed support ships, should provide logistic and 

maintenance support for the CROSSBOW Battle Group.  The smallest CROSSBOW 

operational element is envisioned to consist of two SEA ARCHERs and four SEA 

LANCEs capable of operating independently.  

 The SEA ARCHER air wing should consist of manned aircraft and 

Unmanned Air Vehicles (UAVs), and Unmanned Combat Air Vehicles (UCAVs).  For 

air vehicle quantities and other planning factors see Table 1  Flight deck design should 

focus on automation.  High-speed launch and recovery operations should take place from 

an unmanned flight deck. The SEA ARCHER air wing provides the eyes and ears of the 

CROSSBOW force.  Targeting and reconnaissance information should be provided via 

appropriate data links to SEA LANCE and armed airborne units for a coordinated 

engagement.  A significant number of airborne missions must be launched from the SEA 

ARCHER to support a CROSSBOW Battle Group operating in the littoral environment.  

No single airborne platform is expected to accomplish all of the required missions and all 

missions do not need to be launched from a single SEA ARCHER.  It is recognized that 

some missions may require the simultaneous operation of more than one airborne 

platform type. 

  SEA ARCHER may have the ability to act as a “Lily pad” 

(recover, refuel, & launch) for AV-8s, VTOL JSFs, and helicopters under 30,000 pounds 

maximum gross weight.  SEA ARCHER is not intended to deploy without an air wing 

aboard. 
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Figure 1 SEA ARCHER’s role in the CROSSBOW FORCE 
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Air Vehicle 

Type 

No. Unit 

Weight 

(lbs) 

Total – 

Type 

Weight  

(lbs) 

Sortie* 

Rate  

 

Per Day 

Sortie* 

Rate 

(Surge) 

Per Day 

Aircrew / 

Seat 

Factor 

Total 

Aircrew 

Helicopter 

• Utility 

or 

• Attack 

 

2 

or 

3 

 

23K 

or 

15K 

 

46K 

or 

45K 

 

8 

 

12 

 

12 

 

18 

 

2.5 

 

2 

 

5 

 

6 

UCAV 

• Sea 

Arrow 

 

8 

 

 

15K 

 

120K 

 

28 

 

42 

 

1.5 

 

12 

UAVs 

•  

 

 

10 

 

3.5K 

 

35K 

 

32 

 

50 

 

.25 

 

3 

TOTAL 20 

 

21 

 

 201K 

 

200K 

68 

 

72 

104 

 

110 

 20 

 

21 

Table 1 Aircraft Planning Factors 
 
 
 
2.  Threat 

The anticipated threat to naval forces in 2020 will be the proliferation of high-

tech/low-cost weaponry and sensors.  These systems will be employed to inflict 

maximum damage by simple saturation of own-ship sensors and defensive measures.  

Anticipated threat objectives will be the coordinated effort to use all target acquisition 

and force support agencies available for the purpose of denying the combat power of the 

littoral force during the initial stages of ship movement.  Central to the threat’s defensive 

plan is the early identification and rapid denial in the littorals.  Enemy systems will be 

found in multiple major threat areas.  These include threats from space, air, surface, 

undersea, and info-sphere. 



19 

Common threads amongst these threats include: 

• Enhanced multi-source intelligence collection and Information Warfare Operations 

• Enhanced tactical mobility systems that reduce reaction time, protect the littorals, and 
improve firepower and sea protection. 

• Higher-volume, longer-range targeting, command, control, and communications. 

• Enhanced counter mobility capability by using land and shallow water mines.  

• Increased availability, numbers, and accuracy of precision-guided munitions. 

• Increased lethality and reliability of weapon systems, and the possible use of 
Weapons of Mass Destruction (WMD) / Nuclear, Biological, and Chemical (NBC) 
weapons. 

• Electronic Warfare (EW) capabilities to monitor, direct, find, jam and deceive in the 
Radio Frequency (RF) and electro-optical spectrums. 

• Early attack and disruption of supplies and logistics. 

• The ability to reach outside the littorals with submarines, smart mines and aircraft 
carriers. 

• Ability to take advantage of the sea and land terrain. 

• With numerous aircraft, missiles, and rockets in the air at the same time, the 
probability of attrition is high 

 

3.  Shortcomings of Existing Systems 

There is no existing system to provide the sea-based distributed aviation platform 

capability.  The emergence of UAVs / UCAVs, the continued U.S. Navy focus on the 

littorals, the desire for force distribution, the need for operational cost reductions, and the 

advent of Network Centric Warfare (NCW) all combined to support a requirement to re-

think how future warfare will be waged in the littoral.  A ship has never before been 

designed, from the bottom up, to support the operation of a primarily UAVs / UCAVs air 

wing in a high threat environment.  The sea-based distributed aviation platform will be 

the first.  The object of the distributed aviation battle group is to augment CVBG 

capabilities in the contested littorals of the world. 

Current programs and acquisitions fail to: 

• Provide support for UAV and UCAV fixed wing aircraft. 

• Provide large capacity, highly distributed, sea based combat aviation. 

• Maintain required force levels for forward presence, crisis response and war fighting. 
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• Maintain an effective industrial base to assure continued support for sea-based 
tactical aviation. 

• Take advantage of new technologies and design concepts that offer opportunities to 
develop sea-based platforms that are capable, but more affordable than current platforms. 

 

4.  Capabilities Required 

Key Performance Parameters. 

The SEA ARCHER squadron of ships must have certain performance 

requirements in order to facilitate the key concept of distributed aviation in a littoral 

warfare environment. The requirements of Table 2are deemed Key Performance 

Parameters (KPP) and must be met within threshold requirements for the SEA ARCHER 

platform to be deemed effective. 
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KPP Threshold Objective
Speed

Endurance 40 knots. This assures the ship can meet an 
aggressive sustained transit speed in order to 
reach the theater of operations quickly.

50 knots.  This will allow unprecedent response 
times to regional conflicts.

Max operational 40 knots. This is the minimum speed allowable 
for launching Sea Arrow aircraft in a zero wind 
condition.

60 knots.  This assures maximum speed for 
aircraft operations as well as for in theater tactical 
manueveribility.  

Manning 150 personnel.   This includes the airwing 
onboard and is in keeping with the goal of 
significantly reducing manning requirements 
on future naval ships.

120 personnel.  This will require an aggressive 
step toward reliance on automation and increases 
in reliability of equipement on the ship.

Range 4000 nm.  This range is based on transiting to 
regional conflicts with minimal need to stop 
and refuel.

4500 nm 

Sortie Rate
Sustained 80 sorties per day.  Need to have ability to 

sustain this rate for 7 days.
note:see Table 1 for more detailed sortie 
breakdown

Surge 120 sorties per day.  Need to have the ability to 
maintain this rate for 3 days.

note:see Table 1 for more detailed sortie 
breakdown

Operational 
Availability*

0.9.  Based on concepts of distributed air each 
ship can have a reduced availibility as long as 
the Crossbow system has an overall higher 
availibility.

0.99. 

Sustainability
Combat Loadout capable of supporting 7 days 

sustained combat operations.
Loadout capable of supporting 7 days surge rate 
combat operations.

Peacetime 30 days self sustained operations. 90 days self-sustained operations.
  

Table 2 Key Performance Parameters 

Operational Availability is defined by the ability to launch and recover aircraft. 
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Design Philosophy 

In conjunction with meeting the above key performance parameters the 

ship design should incorporate the following into the design philosophy.  Factors are 

listed in order of priority: 

Category                                                                   Weight 

Survivability                   HI 

Automation                   HI  

Reduced manning     HI  

Upgradeability                                       HI 

Maintainability     MED 

Reliability      MED 

Manufacturability      MED 

COTS       LOW 

Affordability                  LOW  

 

The following are additional system performance requirements: 

Humanitarian Operations 

SEA ARCHER should provide empty shelter space for accommodating 

30-50 non-combatants in an emergency. This space may be used for crew recreation or 

enhanced survivability; it must not interfere with the ability of the ship to conduct normal 

functions, even with the additional passenger load onboard.  At the Battle Group 

commander’s earliest convenience, these non-combatants should be ferried to a SEA 

QUIVER, CV(N), or other large combatant for longer-term support and transport. 
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Survivability / Vulnerability 

SEA ARCHER must be able to operate aircraft in hostile environments, 

protect itself from enemy attack, and if hit, degrade gracefully and remain afloat 

(threshold).  The desired objective is to be able to remain afloat and launch air wing for 

recovery on sister ships, a SEA QUIVER, or a CV(N).  The ship survivability 

performance must support damage control operations in a reduced manning environment. 

To reduce vulnerability in the littorals, the ship should be equipped with enhanced 

survivability features, such as in-stride mine avoidance capability and full-spectrum 

signature reduction (Radio Frequency/Infra-Red/Electro-Optical/Communications 

Conformal Apertures, reduced clutter, geometric shaping). Attention should be given to 

acoustic quieting and magnetic signature reduction for both equipment and propulsion 

systems.  Inclusion of a damage-tolerant design, and an integrated magazine protection 

system should also be considered. 

Self-protection 

The ability to assess terminal threat situations quickly and correctly will 

be an essential element of SEA ARCHER’s weapon systems.  Shipboard defense 

capabilities should provide a protective shield against cruise missiles, submarines, 

torpedoes, mines, aircraft and other future threats. The defensive weapon systems 

selected must have high precision and accuracy, high probability of kill and high 

repetitive fire rates.  The generation after next (2020) Close In Weapon System (CIWS) 

replacement and a shipboard version of something akin to the new Rapid Airborne Mine 

Clearance System (RAMICS) could be candidates for consideration.  SEA ARCHER 

should have integrated Electronic Warfare (EW) capability to support ship defense. 

Special Operations 

SEA ARCHER should have the capability to embark one SEAL platoon 

and their equipment.  SEAL platoons should be embarked as required by the operational 

scenario.  When SEALs are embarked, the multi-mission helicopters (e.g. H-60) needs to 

be a part of the air wing (rather than the attack helicopters) to provide an airborne 

insertion capability. 
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Inport Force Protection, Mooring, and Ship Access 

SEA ARCHER should have the means to provide adequate Inport Force 

Protection and ship access control.  SEA ARCHER should be able to be made fast to the 

ground, buoy, or pier and safely remain made fast in up to 30 knots of wind.  These 

systems should be as automated as possible to minimize manning requirements. 

 

Information exchange requirements 

 

Network Centric Warfare (NCW).  NCW is an information superiority-

enabled concept of operations that generates increased combat power by networking 

sensors, decision makers, and shooters to achieve shared awareness, increased speed of 

command, higher tempo of operations, greater lethality, increased survivability, and a 

degree of self-synchronization. In essence, NCW translates information superiority into 

combat power by effectively linking knowledgeable entities in the battlespace.  

Incorporation of NCW concepts is necessary for CROSSBOW to be an effective force. 

The Distributed Sea-based Air concept demands a highly flexible command and control 

architecture with system multiplicity, and redundancy built-in to ensure total system 

availability and enhanced survivability during combat and non-combat operations.  

Therefore, all SEA ARCHER ships should have the same command and control 

capability. SEA ARCHER C4ISR should share tactical and administrative information 

using advanced networks and technologies. These new resources will continue to 

automate manual processes, but should also improve decision support functions through 

advanced modeling and simulation. SEA ARCHER’s information architecture should be 

designed to optimize interoperability, data access, information sharing, managed security 

and reliability of service while reducing data redundancy and costs. 

Interoperability. SEA ARCHER’s communications architecture must be 

fully interoperable with other naval, expeditionary, interagency, joint and allied 

information systems.  A coherent tactical picture is necessary to support Joint Force, 

Battle Force, Battle Group and Air Wing planning, coordinate actions with other forces, 
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and communicate the force’s actions to appropriate commanders.  SEA ARCHER must 

have the necessary command and control architecture to communicate with a Joint Force 

Commander (JFC).  Additionally, it is necessary to leverage NCW to fully integrate 

sensor and shooter into an effective and potent fighting force. All Integrated Information 

Systems (IIS) must be compatible with the Defense Information Infrastructure (DII) 

Common Operating Environment (COE). 

Control of UAVs & UCAVs. The SEA ARCHER should have 

responsibility for control of unmanned air vehicles within its air wing.  Direct control 

may be transferred to other elements or other SEA ARCHERs depending on the mission.  

Commander of Task Force (CTF).  The size of any given operation will 

determine who the CTF is and where the CTF and staff are located.  All SEA ARCHERs 

should be equipped to handle command and control, but should not be designed to 

accommodate a CTF staff. 

 Information Warfare (IW).  IW is the ability to exploit, corrupt, deny, or 

destroy an adversary’s information base while leveraging friendly information and 

information systems to achieve dominant Battlespace Awareness. As information 

technology continues to proliferate and as our susceptibility to offensive IW increases, 

defensive IW enables full spectrum protection.  The SEA ARCHER must be capable of 

1) protecting its own information systems and 2) leveraging U.S. and allied information 

to gain a decisive advantage.  

 

Logistics and Readiness 

Historically, defined requirements for system logistics and maintenance 

support have been left until far too late in the acquisition cycle.  Early and rigorous 

logistics analysis is needed to prevent excessive Operations and Support (O&S) costs.  

Weapon system capability rates have been in a steady decline due to system operation 

beyond intended design life, inaccurate failure rate projections, and closed/proprietary 

architectures.  SEA ARCHER design must facilitate rapid and cost-controlled 

incorporation of new technologies as they become available. 
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Supportability, maintainability, and reliability should be designed into 

SEA ARCHER.  The ship should have an embedded logistics and maintenance system to 

improve readiness throughout its lifecycle.  Significant O&S cost reductions may be 

realized through decreased repairs, spares, repair man-hours, and support infrastructure.  

Additionally, adequate bandwidth must be provided to support Network Centric 

Logistics. 

 Recognizing that a Level Of Repair Analysis (LORA) has not been 

completed, the CROSSBOW concept calls for SEA ARCHER to conduct only 

organizational level maintenance.  All higher levels of maintenance are anticipated to be 

the responsibility of the SEA QUIVER support ship or other force asset, which should act 

like a tender, Intermediate Maintenance Activity (IMA) or Depot Repair Facility (DRF) 

for major repairs.  Aircraft onboard SEA ARCHER may follow a similar plan and only 

conduct organizational level servicing, repair and troubleshooting.  Remove and replace 

activities should be the emphasis.  The SEA QUIVER should be capable of recovering 

any SEA ARCHER aircraft on its flight deck. 

The following outlines some of the key logistic and support concepts that 

must be incorporated into the SEA ARCHER design: 

• Prognostic and Diagnostic capability for ship and airborne assets through remote 
sensing and virtual presence. 

• Minimize Special tools 

• Remote access to Intermediate and Depot level repair information via secure data 
network. 

• Remote access to requisitioning and material support information. 

• Maximum use of automation and robotics for aviation support to include movement 
to/from the flight deck, storage of aircraft, fueling, arming, and other “yellow gear” 
functions. 

• Replenishment at Sea Capability (RAS) to include: 

• Port and Starboard RAS staging stations 

• Weapons and Munitions Storage for all airborne and ship defensive systems. 

• Food stores (dry provisions, chill and freezers): 

• Located near food preparation facilities 

• Capacity – Enough for crew for 3 months 
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• Refuse devices to reduce trash maintained onboard 

• Biodegradable meal containers 

• Self-service crew services to include: 

• Laundry, Ship’s store, Email center, A/V room… 

• Workload reductions to include: 

• Wax-less floors, Endurance paints, Paint-less surfaces 

 

Environmental Safety and Occupational Health and Other System 
Characteristics 

• Given the requested speed requirements of the ship, consideration must be given to 
personnel safety. 

• Given the nature of a highly automated, electric ship environment, ship must be 
designed with appropriate considerations for electromagnetic safety for both personnel 
and weapons. 

• Consideration shall be given to all technologies that will reduce or minimize the 
impact on the maritime environment.   

• The design should employ, to the maximum extent possible, all hazardous material 
reduction practices. 

 

5.  Force Structure 

The typical CROSSBOW squadron will consist of 8 SEA ARCHER ships each 

capable of limited independent operation; or multiple ships operating in a collaborative 

effort to provide force projection and rapid response capability throughout the world.  

 

6.  Schedule 

Initial Operating Capability must occur in 2021.  An initial technology 

development date for the first designed SEA ARCHER is established at 2012. 

 

7.  Program Affordability 

While design and development of this new platform must at all times keep cost as 

a consideration, many new concept designs will have to be explored and developed, in 

order to meet the Key Performance Parameters outlined in this ORD.  Sea Archer should 
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be designed in conjunction with current acceptable cost guidelines in order to assure that 

the program does not become cost prohibitive. 
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III. ANALYSIS OF ALTERNATIVES 

A.  ALTERNATIVES UNDER REVIEW  

In order to meet the requirements defined by the SEA ARCHER Operational 

Requirements Document (ORD) it is necessary to consider which alternatives are 

available to meet these requirements.  In an effort to determine the optimal hull platform 

and architecture, as well as the proper support concept, an Analysis of Alternatives 

(AOA) was conducted. This AOA explores the effects of varying the air-wing size per 

ship, the type of aircraft carried, as well as the level and type of logistics support.   

The alternatives considered were divided between two teams of engineers. The 

first team explored the options of having one squadron of aircraft, while the second team 

explored a ship capable of carrying two squadrons of aircraft (See Table 3for definition 

of a squadron of aircraft). Each team then had three alternatives to consider.  For the first 

alternative, the notional Unmanned Combat Air Vehicle (UCAV) SEA ARROW was to 

be utilized in the squadron. In the second alternative, the SEA ARROW was replaced by 

an equivalent number of Joint Strike Fighter (JSF) aircraft. The third alternative would 

once again include SEA ARROW but would take away the notional SEA QUIVER 

logistics support defined in the ORD.    

 

    

Aircraft Type Number of Aircraft
SEA ARROW or JSF 8
Helicopters 2
Unmanned Air Vehicle (UAV) 10
Maneuver Air Support (MAS) 3  

Table 3 Notional SEA ARCHER Air Wing, 1 Squadron 
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B. PAYLOAD 

 

Payload Definition 

For the AOA, payload was considered the key variable among the six 

alternatives.  Payload was defined as the following:  aircraft, aircraft ordnance, aircraft 

fuel, combat systems, and C4ISR infrastructure, and logistics load out.  A breakdown of 

the payload for each of the alternatives is listed in Table 4.   

1 Squadron 2 Squadron
w/Sea 
Arrow w/JSF 

w/o Sea 
Quiver

w/Sea 
Arrow w/JSF

w/o Sea 
Quiver

Aircraft (mT) 80 135 80 160 270 160
Aircraft Ordnance(mT) 200 1200 200 400 2400 400
Aircraft Fuel (mT) 1050 1950 1050 2100 3900 2100
Combat Systems (mT) 170 170 170 170 170 170
Logistics (mT) 400 410 780 420 430 800
Total Payload (mT) 1900 3865 2280 3250 7170 3630

 

Table 4 Payload Summary  

 

Assumptions: 

The calculated payload was based on the known number of aircraft listed 

in Table 3and their known weights. The aircraft ordnance and fuel weights were 

calculated based on carrying enough fuel and ordnance to support 7 days of operations at 

the normal sortie rates listed in the SEA ARCHER ORD. The logistics load out was 

calculated based on carrying enough stores and parts for 90 days of operations. 

Some of the assumptions that went into the above calculations are: 

Aircraft Weights:  MAS and UAV aircraft were not defined at the time of 

this study, therefore a study of UAV’s was conducted and a weight of 3500 lbs was 

assumed. The MAS aircraft was chosen to be of similar weight to that of the SEA 

ARROW with a penalty for having to man the aircraft going to a reduced payload.   The 

Helicopter chosen for this payload model was the SH-60 for which accurate weights were 

attained.  Weights for the Marine STOVL version of the JSF were also attained, and the 

SEA ARROW design weights were used for that aircraft   
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Aircraft Fuel: For fuel estimation, each aircraft was assumed to have 

consumed all available fuel for each sortie flown.  This is not the expected operational 

scenario for the aircraft.  However, it assists in making a conservative estimate for the 

payload.   The UAV chosen was assumed to have 33% of take-off weight in fuel. The 

JSF, SEA ARROW, and Helicopters all had known fuel payloads.  MAS were considered 

to carry a 30% reduction in the SEA ARROW fuel payload so as to account for the 

penalty in having to man the aircraft. 

Aircraft Ordnance:  The aircraft ordnance calculations are based on the 

assumption that for each sortie, each aircraft would drop its entire payload. This is more 

accurate than the fuel assumption since during combat operations it is likely the aircraft 

will drop all ordnance during each sortie. The UAV’s were considered to carry no 

ordnance payload and the MAS were considered to have a similar ordnance payload as 

the SEA ARROW aircraft. 

Logistics:  Logistics was broken down to stores and parts.  The stores load 

out was based on a typical TRIDENT submarine load out of 0.425 tons/man, which is a 

load out for 90 days.  The parts load out was based on a carrying 25 percent of the weight 

of one aircraft of each type if there was SEA QUIVER support. One hundred percent of 

the weight of one of each aircraft was utilized if there was no SEA QUIVER support.  

For the ship’s parts load out, 3.5 percent of total expected ships weight was utilized to 

calculate the parts weight with SEA QUIVER support and 7 percent without SEA 

QUIVER support. The parts load out is based on a similar parts load out percentage for a 

10,000-ton ship. 

 

C. RESULTING HULL SIZES 

At the time of this AOA the most promising hull form appeared to be a 

Pentamaran design (as will be shown in the final concept design the Pentamaran hull 

form was not ultimately chosen).  In order to compare the relative effects on size for the 

differing payloads, a common Pentamaran was modeled and utilized to compare these 

effects.  The resulting hull parameters are listed in Table 5 
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Table 5 AOA Ship sizes 

 

The results clearly show the effects on size of the ship by going from carrying the 

SEA ARROW UCAV’s to carrying the JSF aircraft.  These however are not equivalent 

aircraft and bring very different capabilities to the ship.   The effect of carrying two 

squadrons  vice one squadron of aircraft also significantly impacts ship size. 

 

D.  MEASURES OF EFFECTIVENESS 

Due to the fact we are trying to determine the optimal size ship and which size 

and type of aircraft will be carried the alternatives listed in Table 5need to be compared 

against a set of Measures of Effectiveness.   

The following Measures of Effectiveness where chosen: 

Flexibility -  Flexibility is defined as how well any given mission is 

performed.  Some criteria we considered in rating flexibility of the different ship options 

were as follows. 

Number of possible missions that can be performed by the platform.  The 

total possible number of missions a platform can perform is based on the ability to 

perform any randomly chosen mission.  This would be related from the versatility table 

on a weighting scale as follows.   

JSF is an option that opens possibilities we thought were the cornerstone 

of flexibility.  Independent of its added abilities for strike missions alone, JSF is a 

manned aircraft. As such, it allows the opportunity for changing mission targeting based 

on pilot visual perception of the space.  Secondary targets and/or targets of opportunity 
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become an open option.  Additionally, JSF adds air-to-air capability for targets of 

opportunity along the mission path as necessary.  Due to its viewed importance, JSF 

received the highest relative rating of (0.4). 

“Split-ability” refers to the ability to split the forces for several smaller 

mission areas.  It relates to the ability to spread out the forces for multiple tasking.  Also 

it adds to the improvement in survivability, which will certainly be considered later.  

Then, for this category, ship options were weighted with respect to their overall numbers.  

“Split-ability” was given a relative rating of (0.3). 

SEA QUIVER option.  When considering the relative weight SEA 

QUIVER included options should have, we first must consider the question of what SEA 

QUIVER ultimately brings to the table.  If SEA QUIVER is to be a measured 

compilation of existing assets, it brings nothing new to the table.  There would then be no 

relative difference between with or without SEA QUIVER.  Certainly any ship designed 

as “with SEA QUIVER” would be designed to max out the capability, stores, etc., as 

would the one “without”.  However, if SEA QUIVER is to be some new designed ship 

with the speed capability of SEA ARCHER, and, for example, one SEA QUIVER 

operates in conjunction with each pair or four SEA ARCHERs, then it brings a great deal 

to the table.  In short, it brings replenishment on demand.  It would most certainly carry 

stores, fuel, ammunition, possibly manpower, maintenance capabilities etc.  As such, it 

adds to the flexibility of the squadron as a whole.  We gave SEA QUIVER a relative 

rating of (0.2). 

A platform’s draft is an indication of its ability to go deep into the littorals.  

Then also, it is a measure of the percentage of battle-space coverage possible.  Draft was 

given a relative rating of (0.1). 

Each option was graded within each category (except for the number of 

missions category) on a scale of high to low (3 to 1) regarding its ability.  We multiplied 

each grade by its respective relative rating percentage.  Then for each option, the grades 

were added to achieve a cumulative grade for the options.  The cumulative grade was 

then applied to the versatility chart which details total number of missions each option is 

able to perform.  It was applied by multiplying the total number of missions the option is 
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capable of.  This produced an overall score for the option.  The overall score for each 

option was normalized to the 3-point scale used for the project as a whole.  Appendix A.4 

is a complete data analysis. 

Versatility - Versatility is defined as a measure of how many different 

missions could be performed by any option.  Twenty-four distinct missions were chosen 

as a baseline to evaluate each alternative.  The set was not exhaustive but was determined 

to be representative of the entire spectrum of missions expected to be performed by the 

CROSSBOW force.  The mission areas considered were each equally weighted.  Each 

alternative was evaluated on its ability to perform a given mission.  If an alternative was 

determined to be capable of performing a mission a unit value was awarded.  The sum of 

all points, over all missions, defined each alternative’s cumulative score.  Analysis of the 

options indicated there was no difference in mission versatility between the forces 

comprised of one or two squadrons of aircraft.  An additional evaluation factor was 

applied to account for the difference in squadron size.  This weighting factor adjusts for 

the increase in mission versatility afforded by more air platforms.  A summary table is 

included in the appendix.   

The primary mission of the SEA ARCHER platform is to support sea 

based aviation assets.  Therefore, the choice of air platform will have the most significant 

impact on the type of missions capable of being performed by the CROSSBOW force.  

Logistic support to the SEA ARCHER platform or the aircraft was not used as a criterion 

for assessment of versatility.  The assessment assumes that all solutions would have 

sufficient provisions for completion of any of the reference missions.   

When squadron size was not considered the Sea Arrow alternative proved 

to be slightly more versatile than the JSF platform.  The difference in versatility was 

based on the ability of the Sea Arrow to perform more missions in the C4ISR, Electronic 

Warfare (EW), and Information Warfare (IW) areas.  The advantage of Sea Arrow over 

JSF is slightly offset when squadron size is considered.  Even when two squadrons were 

considered, the Sea Arrow platform was considered more versatile.  However, the two 

squadrons of SEA ARROW or JSF aircraft will produce an improvement in overall force 

versatility.   
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Lethality - The team defined lethality as a measure of the ability of the 

CROSSBOW force to inflict damage to another vessel(s) or land target(s) and the extent 

to which that vessel(s) or land target(s) mission(s) are degraded/ eliminated by the 

damage inflicted. This MOE evaluates the CROSSBOW force for all six CROSSBOW 

options.  An explanation precedes the table.  

To quantitatively evaluate lethality, the total aircraft weapons payload for 

each CROSSBOW force option was calculated, and the total aircraft weapons payload for 

each individual ship was calculated.  Each option was rated according to the calculated 

weights.  A weighted sum of the force and ship results was used to determine the overall 

lethality of each option.  The primary concern is the lethality of the force, more than the 

lethality of an individual ship.  Therefore, the force lethality rating was weighted by 0.75, 

and 0.25 was used to weight the ship lethality rating. 

All options meet the SEA ARCHER requirements.  All platforms perform 

well.  However, JSF provides far more firepower per sortie.  Although SEA ARROW 

appears to have better endurance, JSF offers far more weapon yield than Sea Arrow for 

both 5 and 7-day missions.  It is for this  reason that JSF receives a High for the one- and 

two-squadron configurations and Sea Arrow receives a Medium for the two-squadron 

configuration and a Low for the one-squadron configuration.  Of the 6 options listed, JSF 

with 1 or 2 squadrons is considered most lethal.   

Survivability-  Survivability is defined as a measure of how well a vessel 

could survive in a high threat environment.  Survivability can be subdivided into three 

areas: 

• Susceptibility: Probability that an enemy can detect, classify, target, and 
successfully engage the vessel. 

• Vulnerability: The ability to survive and continue to conduct combat operations 
after being hit. 

• Recoverability: The ability to recover and continue to conduct operations after being 
hit. 

Deployability: This assesses the ability of the SEA ARCHER squadron to 

arrive on station expeditiously and quickly.  It will also cover the capability to operate in 

the littoral environment.  The potential of independent operation will also be assessed.  
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The most critical criterion is the time of arrival, since all the vessels will be designed with 

similar transit speeds.  It will negate all differences between the options.  The only 

mitigating factor would be the potential for independent operation and as such, SEA 

ARCHER without SEA QUIVER has the highest score, as it can operate without 

logistical support. 

All the above measures were evaluated for the CROSSBOW force level.  

Throughout the analysis of alternatives, most of the ship characteristics (Combat 

Systems, hull-form, floodable length and others) remained constant.  Only two of the 

main ship characteristics of the different alternatives were considered to have any 

significant impact on the measures of effectiveness.  These are the displacement and the 

number of ships. The different alternatives were sorted by size and a relative grade from 

one to three was given to each one. When it was decided that size was beneficial the 

number three was given to the largest and vice versa. A weighting factor was assigned to 

the different abilities to adjust for the increased value of reduced susceptibility, which is 

the main reason behind the distributed air platform. 

Evaluations of Measures of Effectiveness 

The evaluation of each of the six alternatives studied was completed and 

each MOE was given an appropriate weighting factor to account for the relative 

importance in meeting the SEA ARCHER ORD requirements.  Each alternative was then 

evaluated based on its ability to meet each MOE.  An absolute score system of High-3, 

Medium –2, or Low –1, was utilized to evaluate each alternative against each MOE.  The 

totals were then calculated as a weighted total based on the weighting factors chosen for 

each MOE.  Table 6summarizes the results. 
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Weighting Factor 0.25 0.25 0.25 0.15 0.1
Options Totals
1 Squadron

w/Sea Arrow 3 3 1 3 1 2.3
 w/JSF 3 2 3 3 1 2.55

w/o Sea Quiver 2 3 1 2 3 2.1
2 Squadron

w/Sea Arrow 2 2 2 2 1 1.9
 w/JSF 2 1 3 2 1 1.9

w/o Sea Quiver 1 2 2 1 3 1.7  
Table 6 MOE Matrix Evaluation. 

 

E.  RECOMMENDATIONS AND ALTERNATIVE SELECTION 

The mission needs statement stated the ship would be required to support only 

SEA ARROW aircraft. However, upon review of the possible alternatives, A SEA 

ARCHER with a single squadron of JSF was determined to be the alternative that 

produced the most effective total system.  The design team recommends that further 

study to evaluate the potential of a composite platform.  This platform would be primarily 

designed to support JSF aircraft.  However, SEA ARROW operations would be fully 

supported.  This alternative has the potential to provide an operational mix between 

platforms with improved system effectiveness.   

 

F. FACULTY DECISION FOR DESIGN 

Due to the fact this project was coordinated with two other curricula 

(Aeronautical Engineering and Systems Engineering Integration) the decision was made 

to design the ship primarily to operate the newly designed SEA ARROW aircraft.  The 

one squadron SEA ARROW alternative was the next highest scored alternative in terms 

of Measures of Effectiveness.  In addition, the requirement to support the Manuever Air 

Support Craft was taken away, and the ability to refuel improved SEA LANCE craft was 

added. 
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Since the concept of distributed aviation warfare in the littorals has no well-

defined operational concepts it was necessary to define a design base operational 

scenario.   In addition to meeting the mission needs and operational requirements for the 

SEA ARCHER ship (see Chapter II – Requirements Documents), SEA ARCHER is 

required to show the ability to meet the following design reference mission: 

Design Reference Mission 

The SEA ARCHER will: 

Leave port and transit 4000 nm at a speed of 50 kts.  Carry sufficient fuel to re-

fuel two improved SEA LANCE ships (SEA LANCE ships as defined by the 2000 SEA 

LANCE report with twice the payload capacity, and transit speeds of 50 kts) that will act 

as escorts during the transit.  Reach the 4000 nm transit limit with 20% fuel remaining.   

At the end of the 4000 nm leg of the transit, replenishment of SEA ARCHER and SEA 

LANCEs will be provided by outside assets.  This 4000 nm leg could be repeated one or 

two additional times. 

At the end of the final 4000 nm transit leg, the task force will arrive in the 

intended operating area.   Here it will be capable of operating unsupported for 7 days of 

combat operations, including two refuelings of each of the two SEA LANCE escorts per 

SEA ARCHER (4 total SEA LANCE refuelings in a 7 day period).   

The speed profile will be: 

• 2 days at 20 kts 

• 1 day at 25 kts 

• 3 sprints of 60 kts, each for 2 hours duration. 

Remaining time at “loiter speeds” in the 10 to 15 kt range. 

At the end of the 7 days in the operating area, SEA ARCHERs and SEA 

LANCES will be replenished by outside assets or withdrawn.  All other capacity/ 

sustainment capabilities of SEA ARCHER will be as discussed in the SEA ARCHER 

ORD, under Key Performance Parameters. 
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IV. CONCEPT DESIGN 
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A. HULL 
 
1. Hull Design 

The SEA ARCHER hull design is based on the patented Harley Surface Effect 

Ship (SES) design as shown in Figure 2 below.  The design combines the advantages of 

several different hull forms in order to achieve superior performance.  The twin hull 

arrangement provides the stability and low wave-making resistance of catamarans, 

shallow draft and low hull resistance of an SES, and the above average seakeeping 

performance of a wave-piercing planing hull.  Unlike typical SES ships this design has 

eliminated the flexible seals that were troublesome and significantly affected 

performance at higher sea states.  Twin pressurized air cavities are used to statically lift 

approximately 85% of the vessels weight while additional lift at higher speeds is 

achieved through the planing bow and the airflow across the centerbody.   With a larger 

portion of the ship out of the water the required installed propulsion power is 

significantly reduced at higher speeds. 

 
Figure 2 Harley SES Design from Vibtech Website 

 

The SEA ARCHER hull design is shown in Figure 3 below with some 

modifications to the original Harley SES design.  The hull design added a narrow wave-

piercing bow to each sidehull and a broad wave-piercing bow to the centerbody section 
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for better seakeeping performance at higher sea states.  The planing shape bow of each 

sidehull was maintained for dynamic lift.  The structural part of the SEA ARCHER 

design is built of composite materials largely due to the reduced weight and better 

mechanical properties of these materials. 

 
Figure 3 SEA ARCHER Hull Design 

 

Shown in Figure 4is the speed verses power required for SEA ARCHER.  The 

data was determined from model data provided by the Harley’s engineering design 

agency Vibtech.  The power curve includes the fan power above approximately 40 knots.  

The SEA ARCHER would operate primarily in three distinct modes: off-cushion, on-

cushion, and partial-cushion.  In the off-cushion mode the ship would operate much like 

existing catamaran designs although there may be increased hull resistance due to the 

additional wetted surface area in the air cavity.  This mode allows for efficient operation 

at low speeds while operating in congested areas where precise low speed control is 

required or when patrolling.  The SEA ARCHER design should achieve a maximum 

speed of approximately 50 knots in this configuration.  In the on-cushion mode the ship is 
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designed to have 85% of the ships displacement supported by an air cushion located in 

each side hull.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4 SEA ARCHER Speed verses Power Curve 
 

Supporting most of the ship’s weight, the cushion pressure acts as a frictionless 

planing surface.  Without the air cushion the design would require far more propulsion 

power than the additional fan power required to reach the same speed.  After the lift 

pressure reaches full lift pressure of 32.7 KPa additional airflow will continue to lower 

resistance.  This effect is significant at first and then gradually reduces.  The optimum 

airflow as defined for a SES by Reference [1] is “that [airflow] which the power required 

to increase flow is greater than the reduction in propulsion power needed to maintain a 

constant speed.”  As speed and seastate increase, the optimum flow also increases slowly 

until the power requirement is from 10 to 15 % of propulsion power at maximum speed. 

By lifting the ship out of the water the hull resistance is significantly reduced resulting in 

the objective speed of 60 knots.  The on-cushion mode would also be used for littoral 

operations in shallow areas where the reduced draft would be needed or in high sea state 

conditions where the cushion may act as a motions-damping system for the ship.  The 
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partial-cushion mode allows the amount of lift to be varied from 0 to 100 % in order to 

optimize the design performance during each unique operating condition.  The ship 

would operate in the on-cushion or partial-cushion modes during high-speed operations 

or where the operational need requires it.    

The SEA ARCHER design characteristics are shown in Table 7 below.  The size 

of the ship is driven by the amount of payload and fuel required for the 4000 nm and 50 

knot desired range and transit speed respectively.  

 

Displacement 13,500 mT 

Length 181 m 

Beam 59 m 

Side-Hull Beam 22 m 

Range (50 Knots) 4000 nmi 

Draft On/Off Cushion 2/4 m 

Table 7 SEA ARCHER Design Characteristics 
 

Consideration was given to the Panama Canal maximum beam constraint of 32.9 

meters but this limited the design selection to only slender monohulls and was therefore 

deemed too restrictive for the desired high-speed requirements.  In addition the team 

examined building size limitations at existing U.S. shipyards and found that if the beam 

could be maintained less than 52.7 meters at least 8 shipyards would be capable of 

building this design Reference [2].  However since the design was based completely on 

the performance data of a single model, deviation from geometric similarity was deemed 

to bring reduced credibility to the design.   The decision was made to maintain geometric 

similarity with the model and on subsequent design iterations with future model or built 

data the vessel could be more appropriately dimensioned for shipyard size constraints.  

With this consideration the SEA ARCHER beam of 59m limits the current number of 

U.S. shipyard that could construct this size vessel to only three.   
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2. Lift System 

The SEA ARCHER has 56 two-staged centrifugal blowers installed in parallel on 

14 fan modules in each sidehull.  Each fan module as shown in Figure 5 consists of two  

 
Figure 5 Fan Module General Arrangement 

 

Number of Blowers 2 Continental 60002 Series Centrifugal (Reference [3]) 

Pressure Rise per Blower 41.4 KPa 

Combined Flow Rate 1133 m3/min 

Speed 3550 RPM 

Impeller Diameter 915 mm 

Inlet/Outlet Diameter 612/511 mm 

Weight per Blower 4.8 MT 

Number of Motors 1 Reliance Q5808s Series AC Motor (Reference [4]) 

Power Rating 821 KW (1100 HP) 

Weight per Motor 2.676 MT 

Total Fan Module Weight 12.3 MT 

Table 8 Fan Module Specifications 
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fans designed to deliver 42 KPa at 1133 m3/min powered in pairs by a single a 821 KW 

(1100 HP) AC electrical motor mounted on a common foundation. Table 8lists the 

specifics of each fan module.  The combined flow in both sidehulls is approximately 

27,000 m3/min at 42 KPa.  The number of lift fans required is a function of the ship’s 

current displacement and speed.  The design allows for an approximately 22% pressure 

loss due to ducting and header loss and two extra fan modules are provided in each 

sidehull for redundancy and to permit maintenance. The blowers take suction from the 

outboard side of each sidehull and discharge directly into the top of each air cavity.  The 

lift system requirements are based in part on SES technology because this part of the 

design has not matured at this point.  The concept has been tested on a small scale but has 

not been optimized for large ships. 

The SEA ARCHER lift system is designed to minimize ship motions by operating 

as a dynamic system.  SES and catamarans usually are equipped with a ride control 

system that reduces the heave accelerations through the use of trim tabs in the case of 

catamarans or regulation of the cushion pressure for SESs.  The pumping action of waves 

passing through the air cavity can cause heave motions that result in crew discomfort.  

The SEA ARCHER design relies on fan inlet guide vanes (ICVs) located on the suction 

side of each blower to regulate the cushion pressure.  Lift fan ICVs regulating at around 5 

Hz have been shown to maintain a constant ship attitude and minimize the vertical 

accelerations on SES type ships. (Reference [1]).   

 

3.  Space Upgradeability 

The SEA ARCHER design allows for a significantly enhanced upgrade capability 

with its large open area under the wetdeck.  The operations level below the hanger deck 

and above the wetdeck was designed to have these as modular spaces.  Although a few 

countries can provide mission flexibility through modular change out of some weapon 

systems this capability has never been fully exploited in the United States.  The design 

allows for entire spaces to be lowered out through the bottom of the wetdeck either 

waterborne or in drydock.   
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Each module is a “plug and play” configuration that is easily isolated and quickly 

tagged out for efficient removal and installation.  This offers many advantages over 

conventional manufacturing, overhaul, damage/repair and mission flexibility.  From the 

Navy standpoint the ship is operationally available more time since the ship’s overhaul 

time is reduced. The ship will not have to be torn apart to gain assess to replacement 

components nor will the ship have to be present until the space has completed testing and 

is ready for installation.  The reduced manning of this size vessel requires more efficient 

work practices such as this.   

The shipyard would have significantly improved access and could manufacture 

the modules in a controlled environment where major testing is completed before ship 

arrival.  This would give improved control of shipyard manning and improve overall 

quality control. The disadvantage of modular construction is the stringent requirement to 

maintain system design constraints and the additional structural weight requirements for 

the system.  The targeted spaces are those that require frequent upgrades like the CIC and 

computer systems.   

 

4.  Hull Characteristics 

The Harley SES is a new design for which there is little actual seakeeping 

performance data.  Many of the attributes of the SEA ARCHER performance and 

seakeeping characteristics could be inferred by examination of current catamarans and 

SES designs and where possible the limited working prototype built by Harley 

Shipbuilding Corporation is used.  The twin hull SES catamaran (SECAT) concept ship 

that conducted model testing during the 1980’s also offers some estimate of seakeeping 

performance.   

The volume and area efficiency of this design is similar to other SES and 

catamaran designs.  These designs typically result in significantly improved volume and 

area efficiencies compared to standard monohulls.  This is primarily due to the box-like 

shaped centerbody section that runs the length of the ship.  The box like shape of the 

superstructure greatly simplifies design and fabrication of a major portion of the hull.  

This is balanced by increased complexity of the air cavity sidehulls. The wide design 
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allows more flexibility in payload and weapon systems arrangement and for the SEA 

ARCHER design a large wide flight and hanger deck provided more flexibility to the 

design.   

The shallow on-cushion draft of two meters will allow the vessel to operate in the 

shallow littoral areas and enter harbors and rivers where a standard monohull could not.  

The air cushion will act as a buffer from underwater explosions and results in a 

significantly reduced portion of the hull being exposed to shock damage.  The results 

would be similar to the response of the US Navy SES experiments conducted on the Bell 

Aerospace-Textron SES during the 1980’s as shown in Figure 6.   

 
Figure 6 Bell Aerospace-Textron SES Underwater Shock Test and Keel Shock Response 

from Reference [1]. 

These experiments showed that the SES type hull experienced 60 to 80% less 

shock than a typical monohull.  From this perspective the additional structure required to 

prevent shock damage is significantly less than for other full displacement designs.  In 

addition the air cushion is expected to act as sound barrier to prevent acoustic 

transmission of machinery noise into the water.  These attributes will enable the SEA 

ARCHER to operate with less risk in the littorals where mines are of more concern.   

The design should be very maneuverable due to the widely spaced sidehulls and 

because two of the three propulsion units located on the outboard side of each sidehull 

are equipped with steering and reversing systems as shown in Figure 7. 
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Figure 7 SEA ARCHER Propulsion Unit Locations 

This aspect of the design along with the redundancy built into the propulsion 

systems will allow the SEA ARCHER to not only turn in its own length at slow speeds 

but also enter port unassisted without tugs.  This not only reduces operational cost but 

also supports the reduced manning concept for the design.  Vessels with waterjets and 

similar steering and reversing systems are shown in Figure 8. 
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Figure 8 Maneuvering waterjet equipped vessels with Steering and Reversing Systems 

from Reference [5]. 

 

SEA ARCHER should have a reduced wake compared to similar sized monohulls 

operating at high speeds.  This assessment is a qualitative assumption based on the 

slender experimental US Navy SES XR-5 built during the 1970’s.  The XR-5 was a high 

length to beam ratio SES that is shown in Figure 9.  This photograph shows the 

significantly reduced wake of the SES compared to a conventional monohull operating at 

similar speeds.  SEA ARCHER twin hull design could be viewed as two slender SES 

hulls operating in parallel with a similar reduction in wake.  The reduction in radar cross- 

section from special materials and design could quickly be lost if the wake becomes 

substantial. 
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Figure 9 High Length/Beam Ratio SES Wake Comparison to Monohull from Reference 

[6]. 

 

The SEA ARCHER offers advantages in terms of the freeboard height when 

compared to monohull designs.  The ship is designed to normally operate with no 

exposed passageways or manned operating stations.  However during special evolutions 

such as underway replenishment, manned stations are exposed to the exterior 

environment.  Under these condition when the vessel is operating in the off-cushion mode 

the available freeboard is similar to a monohull design.  However with the ability to vary 

the draft by 2.1 meters the available freeboard is dramatically improved.  This is viewed 

as particularly advantageous in higher sea states and offers some flexibility when loading 

and unloading during docking.   

The stability advantages currently exhibited by catamarans also applies to the 

SEA ARCHER design.  The stability curves shown in the Appendix demonstrate the 

stability characteristics of this design.  The “SECAT” model testing showed improved 

roll stiffness and damping because the heave stiffness and damping of each cushion acts 

on the cushion separation arm.  The model data also showed that the center of gravity 

could be considerably higher than a single cushion SES because of the higher static roll 



51 

stability Reference [1]. The design does not require a fuel compensating system since the 

lift system compensates for any changes in weight.  The SEA ARCHER also does not 

require dead weight ballast because of the wide twin hull separation.  These advantages 

also carry over into the damage stability conditions requiring less counterflooding to 

maintain acceptable list and roll angles as compared to a monohull.  The SEA ARCHER 

has eight transverse bulkheads of which the forward most is designated the collision 

bulkhead.  The engine room is further divided by a single longitudinal bulkhead for 

increased survivability. The bulkhead arrangement is shown is Figure 10below. 

 
Figure 10 SEA ARCHER Bulkhead Arrangement 

 

 The floodable length calculations show that the vessel will float even without 

bulkheads with over 120 meters of a sidehull’s 180 meters flooded centered at the mid-

station.  The floodable length drops to a minimum value of 40 meters centered at the 

stern.  Depending on the location of hull damage, the lift system may be used to 

compensate for flooded areas.  The twin hull design of SEA ARCHER also has built in 

redundancy for damage control since most major systems are divided equally between the 

two hulls and simultaneous damage of both hulls is unlikely because of the wide spacing 

between the two hulls.  The additional longitudinal and transverse structural support 



52 

required for this design allows the ship to sustain more damage than a monohull design. 

The SEA ARCHER like typical catamaran designs should start to experience hull 

slamming when the significant wave height exceeds the wet deck height.  With an off-

cushion and on-cushion height of 4.5 and 6.6 meters respectively this would translate to a 

sea state of 6 to 7.  Thus the design should be capable of full power operation up to these 

values without a significant reduction in speed.  The wave-piercing bow similar to the 

one shown in Figure 11was added to improve the performance at higher sea states.  With 

an active ride control system operating, the vertical accelerations would be significantly 

lower than a standard monohull. 

 
Figure 11 Typical Wave Piercing Bow from Reference [7] 

 

 The SEA ARCHER hull design allows for a reduced radar cross section because 

of the rectangular sloped sides and lack of compound curves.  Additionally, systems 

requiring exposure to the outside were recessed behind faired enclosures that are opened 

only when the system is operated. The SECAT model data also showed that an active ride 

control system operating in each hull could also effectively control roll. 

5. Hull Construction 

The hull is constructed primarily of carbon fiber because of its high strength to 

weight ratio and corrosion resistance compared to high strength steels.  The use of 

composite hulls has the potential to reduce the structural material weight by half when 

compared to steel construction (Reference [8]).  Bonded to the carbon fiber is a fiberglass 
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layer that protects the carbon fiber from ultraviolet light.  The outermost layer is a bonded 

pigment layer for coloring that provides a permanent maintenance-free surface that will 

serve the life of the ship.  This significantly reduces the hull life cycle cost and works 

with the reduced manning requirements.  Certain high impact and critical design areas 

requiring ballistic protection would also have additional layers of Kevlar for added 

protection.  In some instances the Kevlar may be bolt-on components that could be 

changed out after damage.  Although carbon fiber does not burn and can be made to be 

self-extinguishing the material will start to break down at 116°C.   For those areas that 

may be susceptible to high temperatures, such as the flight deck, a thermal barrier layer 

of silicon based polymer is used to protect the carbon fiber.  An insulator layer is used to 

separate the carbon fiber and thermal barrier.   The primary disadvantages of carbon fiber 

are the high material cost and the low impact resistance.  The material cost is offset by 

the smaller ship size resulting from the better material properties and the reduced weight 

handling requirements during construction.  
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B. PROPULSION 

 

1. Propulsion 

Selection of the propulsion plant was driven by SEA ARCHER's requirement to 

do 60-knot sprints and the large ship's service electric load requirement.  It is anticipated 

that SEA ARCHER will require ~34MW of continuous ship's service power (with a peak 

requirement of ~44MW) and up to ~188 MW for propulsion (blowers included in 

electrical load). 

The final propulsion system, in its simplest form, is illustrated in Figure 12 below, 

with the reasons for its selection discussed in detail in Chapter (V).  The Trent 50 

(50MW) and Trent 30 (36MW) Gas Turbine Engines (GTEs) manufactured by Rolls-

Royce were the prime movers selected for SEA ARCHER.   Two 36MW Alstom 

Induction Propulsion Motors (PMs) were also selected.  Kamewa waterjet variants rated 

at 36MW were selected as propulsors for the Trent 30 GTEs while 50MW waterjets were 

selected for the Trent 50 GTEs.    The converters (Conv in Figure 12) along with the 

motor/generator sets are discussed in the Electrical section of this report. 
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Figure 12 SEA ARCHER Propulsion Plant. 

  

The propulsion box volume requirements are illustrated in Figure 13. Sufficient 

allotted space was left between prime movers to ensure that maintenance and upkeep 

could be performed.  As indicated in Figure 13, 5242.27m3 of volume is required for the 

propulsion plant engine rooms (includes both hulls).  Figure 14 illustrates SEA 

ARCHER's engineroom. 
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Figure 13 Propulsion Plant Volume Requirements. 

 
Figure 14 SEA ARCHER's Engineroom. 
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 2. Propulsors 

 As indicated in Figure 15, Waterjets/Hydro-Air Drives propel SEA ARCHER. 

Figure 15 illustrates the maneuvering buckets attached to the ends of the 

Waterjets/Hydro-Air Drives.  These buckets steer SEA ARCHER and are attached only 

to the 36MW units.  The 50MW units are for boost only and require no bucket.  Chapter 

(V) details the Waterjet/Hydro-Air Drive parameters and selection process.  Cost data 

was not provided from the manufacturer for the Waterjets/Hydro-Air Drive so the team 

assumed that costs were based on rated horsepower, similar to the Gas Turbine Engine.  

A cost of 200 dollars per horsepower was assumed for all propulsors (Gas Turbines are 

≈ $225/HP).  Figure 16 illustrates the inlet piping for the propulsors while Figure 17 

pictures SEA ARCHER's stern view. 
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Figure 15 SEA ARCHER Steering (From Ref [9]) 
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Figure 16 Waterjet/Hydro-Air Drive Inlet Duct. 

 

 
Figure 17 Waterjet/Hydro-Air Drive Stern View. 
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3. Propulsion Plant Cost And Weight Data 

A summary of the final propulsion plant weight and cost estimates are listed in 

Table 9Detailed data and References are offered in Chapter (V). 

 
Table 9 Propulsion Weight And Cost Data. 

 
4. Fuel Requirements  

Fuel requirements were calculated based on the speed profile given in the design 

reference mission (refer to Table 10).  The assumption used for fuel calculations was that 

SEA ARCHER maintained constant displacement.  These are worst-case "static" 

calculations.  Fuel burn will be "dynamic" based on the fact SEA ARCHER will not use 

seawater compensated fuel systems and therefore will become lighter as fuel is burned.  

Horsepower requirements attained from model test data for various ship speeds are listed 

in Table 11  Equation (4-1) below is a sample calculation in determining a fuel 

requirement at 20 knots for 48 hours (refer to chapter (V) for SFC determination): 
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0.28lbs 1mT68210SHP 48hrs 416mT
SHP hr 2205lbs

× × × ≈
−

  (4-1) 

Equation (4-1) was repeated for the entire speed profile, Table 12 illustrates required fuel 

burn for the speed profiles given in the design reference mission and highlights the 50-

knot case as the most limiting case. 

 
Time Event Speed 
0  Leave Port 40/50 kts 
End of day 2 Refuel Escorts (20 kts during refueling 

ops) 
End of day 4 Force Replenished from 

outside; arrive at op area 
40/50 kts 

Days 5-11 Ops in op area; Conduct 4 
SEA LANCE refuelings 

2 days @ 20 kts 
1 day @ 25 kts 
3 sprints at 60 kts, 2 hours 

each 
rest at "loiter speeds" @ 10-

15 kts 
Day 12 Force Replenished or 

withdrawn 
 

Table 10 Speed Profile For SEA ARCHER. 
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Table 11 Speed Versus Horsepower Requirements. 
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Table 12 Fuel Required at Various Speeds. 

 
5. Engine Changeout 

Finally, Figure 18 illustrates an engine change out process.  The GTE will 

traverse the intake system up to the hangar deck.  In the hangar, the intake will be 

removed and the engine brought out onto the hangar deck.  If deployed or at sea, the 

engine can be placed on the aircraft elevator and transported to the flight deck.  From the 

flight deck, the GTE can be flown off to a maintenance facility. 
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Figure 18 Engine Changeout. 
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C. ELECTRICAL 

The electrical system has been broken down into four subsystems.  These 

subsystems are power loads, power conversion, power distribution, and power 

generation.  The following section describes each category for SEA ARCHER. 

1. Power Loads 

Based on the requirements from the other components of the SEA ARCHER 

design, Table 13shows the required power for each major design subsystem, and whether 

the demand is continuous or intermittent.  Baseline continuous operation is defined as the 

power required to operate SEA ARCHER at 60 knots, without launching aircraft, 

recovering aircraft, or using the Free Electron Laser (FEL).  The total installed electrical 

power on SEA ARCHER is 83.2 MW. 

 

Table 13 Required Electrical Power 

 

Three intermittent operations have been specified.  These include launching 

aircraft, recovering aircraft, and firing the FEL.  Launching and recovery of aircraft are 

exclusive operations.  The intermittent options in Table 13show some possible 

combinations of the three intermittent operations.  It is not anticipated that all three of the 
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intermittent evolutions will occur at the same time.  The FEL, however, can be fired at 

the same time as launch or recovery. 

At 60 knots, 187 MW is required to power the waterjets, and the four dedicated 

propulsion turbines can provide 172 MW of that power.  This leaves only 15 MW that 

needs to be supplied by the electrical plant to the electric drive propulsion, leaving 68.2 

MW available for the non-propulsion drive electrical loads.  It can be seen in Table 

13that there is enough electrical power at 60 knots to shoot the FEL and conduct launch 

and recovery simultaneously, though launching and recovery are exclusive operations. 

Besides the total power required, each major ship subsystem’s power 

requirements have been qualitatively categorized into “dirty” AC power, “clean” AC 

power, and DC power.  “Clean” AC power is AC power that has a smooth waveform that 

can be used by sensitive equipment, such as combat system computers or lighting.  

“Dirty” AC power is AC power that has a choppy waveform that is unsuitable for use in 

sensitive systems.  Rugged equipment, like EMALS and the power conditioner for the 

FEL, can use and transform the “dirty” AC into a useable form of power.  Table 14shows 

a simple qualitative breakdown of major components. 

 

Table 14 Power Types for Major Components 

 

AC (dirty) AC (clean) DC
4160 VAC 450 VAC 900/860 VDC

Electrical
Propulsion Blowers
Hull
Combat Systems FEL Misc
Aviation EMALS Misc

EARS
Elevators

Auxiliary Lighting Drain Pump
Outlets

Emer Lights
Pumps
Fans



67 

“Dirty” medium voltage AC power is being used because of the high power 

requirements of some of the aviation and combat system loads.  This enables smaller 

currents than the DC system and thus less cabling.  The Total Harmonic Distortion 

(THD) of the “dirty” AC power needs to be less than 12% to be useful, and this AC 

power will feed the AC zonal bus as described in the “power distribution” paragraph 

below.  The THD specification will be achieved through passive filtering, the use of 

multilevel architectures, and potentially active filtering approaches (particularly with the 

blower drives). 

2. Power Distribution 

AC and DC power is distributed through the ship via a combined AC and DC 

zonal distribution system.  The zonal system allows the ship to be sectioned into multiple 

zones that are powered from port and starboard AC and DC bus ties, minimizing the 

number of electrical penetrations through the watertight bulkheads.  The zonal system 

also allows for modular construction and testing. 

SEA ARCHER has been broken down into 21 zones, corresponding to the 

eighteen watertight compartments and three zones for the hangar bay.  Figure 19 shows a 

notional layout for one zone.  Redundancy within a zone is ensured through diode 

auctioneering of the port and starboard busses.  Through diode auctioneering, if the 

primary 900 VDC power source is lost, the secondary 860 VDC power source will 

automatically start powering the loads.  This power transfer occurs in microseconds, 

which is much faster than standard mechanical ABT devices which take on the order of 

milliseconds. 

The power conversion modules are described in the “power conversion” 

paragraph below. 
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Figure 19 Notional Layout for One Zone 
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Power to the AC and DC bus ties is derived from two primary gas turbine 

generators and one emergency/backup gas turbine generator.  These generators are 

described in section 4 below.  The emergency/backup generator can be tied to either the 

port or starboard busses via the appropriate breaker.  This allows flexibility in case of an 

electrical casualty to one of the primary gas turbine generators or bus ties.  Figure 20 

shows a notional breakdown of the electrical power source plant layout. 

 

Figure 20 Notional Layout of Electrical Source Components 
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A notional ship layout is provided in Figure 21 for visualization of a combined 

AC and DC zonal distribution system. 

 

 

Figure 21 Notional Ship Layout 

 

 

3. Power Conversion 

There are four major power conversion modules used in the electrical distribution 

system.  These are the Power Motor Module (PMM-1) and the Power Conversion 

Modules (PCM-1, PCM-2, and PCM-4).  Their functional characteristics are described 

below.  The range of longitudinal DC bus voltage is constrained from 1000 VDC to 1100 

VDC to accommodate existing power device technology while also keeping grounding 

and converter complexity issues at a minimum.  Higher values would be an advantage 

particularly in reducing the main bus current, thereby reducing the cost and weight of the 
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conductors.  The output of the port and starboard PCM-1 modules in each zone will have 

slightly different voltages to allow for diode auctioneering.  That is, if the primary PCM-

1 power flow is disrupted, the diode connected to the alternate PCM-1 becomes forward 

biased and that unit quickly picks up the load.  This occurs in microseconds. 

The calculations for the weights and volumes stated in the following paragraphs 

are contained in Chapter 5. 

Power Motor Module (PMM-1):  PMM-1 is used to provide AC power to 

propulsion motors. 4160 VAC, 3-phase, 60 Hz power is supplied to PMM-1, which then 

converts the power to 0-3700 VAC, 15-phase, 0-15 Hz for propulsion motor operation.  

The predicted weight for a 30 MW PMM-1 in 2012 is 90 mT, with a volume of 54 m3.  

There are two PMM-1s on SEA ARCHER.  Each powers one propulsion motor.  Only 

two of the six water jets are powered with electric drive.  The two electric drive 

propulsion motors allow SEA ARCHER to operate the gas turbine generators at optimum 

efficiency under almost all conditions. 

The PMM-1 will consist of 15 conventional H-bridge pulse-width 

modulation inverters, though some advantages are accrued by developing a multi-level 

solution.  In particular, lower rated devices can be used, dv/dt is minimized, and Total 

Harmonic Distortion (THD) as seen by the motor can be more readily reduced.  

Currently, 30 MW multi-level converters would pose additional technical risk since 

commercial units are only at approximately the 5 MW level. 

AC-DC Power Conversion Module (PCM-4):  PCM-4 is used to convert 

“dirty” 4160 VAC to 1100/1000 VDC, which is then fed to the DC bus tie for 

distribution.  There are three PCM-4s on SEA ARCHER rated at 15 MW, one for each 

gas turbine generator.  One PCM-4 weighs approximately 52 mT and has a volume of 50 

m3.  These units require a transformer to match the 4160 VAC to the lower 1000 VDC 

requirement plus multiple 6-pulse rectifiers to minimize the THD of the currents drawn 

from the generators. 

DC-DC Power Conversion Module (PCM-1):  PCM-1 is used to convert 

1100/1000 VDC to 900/860 VDC for use by DC electrical loads or for conversion to 

“clean” AC power through PCM-2.  Each zone has two PCM-1s rated at 1 MW each to 
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allow for diode auctioneering between the port and starboard DC busses, to protect the 

vital loads.  One PCM-1 weighs 2.5 mT and has a volume of approximately 4.5 m3. 

DC-AC Power Conversion Module (PCM-2):  PCM-2 is used to convert 

900/860 VDC to “clean” 450 VAC or variable-voltage and variable-frequency for use by 

AC electrical loads.  Each zone may have one or more PCM-2s to handle the anticipated 

variety of loads.  A 1 MW PCM-2 weighs an estimated 8 mT and has a volume of 

approximately 12 m3. 

4. Power Generation 

Two Trent 30s and a GE 10 power the electrical distribution system.  These gas 

turbine generators provide a maximum power of 83.2 MW.  A Trent 30 powers each 

electrical bus, port and starboard.  The GE 10 is capable of powering either bus through 

the appropriate breaker.  A Trent 30 weighs 200 mT and occupies 276 m3 of volume.  

The GE 10 weighs 66 mT and occupies 82 m3 of volume. 

Three generators were chosen for flexibility throughout the range of possible uses.  

Due to their large power output, the Trent 30s are not optimally suited for low power 

usage, such as inport operations or anchorage.  The GE 10 can be more optimally loaded 

in low power usage conditions.  In addition, the GE 10 provides an emergency generator 

that can power enough electrical loads, in particular the propulsion blowers, to allow the 

SEA ARCHER to return to port, if a major electrical casualty occurs.  Table 15shows a 

breakdown of possible electrical casualties and their effects on propulsion and the 

electrical system.  A table of propulsion casualties has also been included in Table 

16below. 

 

Table 15 Electrical Generator Casualties 
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As an example of Table 15, if one Trent 30 was shutdown due to a casualty, the 

available electrical power would 47.2 MW.  The ship would be able to go 60 knots, but 

would only have 13.28 MW available for electrical loads.  In a reduced electrical 

condition, this is enough electrical power.  If full electrical power (15 MW) was desired; 

the ship would have to reduce speed to 55 knots to shift electrical power from the blowers 

and propulsion to all the electrical loads. 

 

Table 16 Propulsion Casualties 

 

As an example of Table 16, if two propulsion Trent 30s were to fail, the total 

propulsion power, excluding the electrical system Trent 30s, would be 100 MW.  In a 

reduced electrical condition, this would still allow the ship to travel at 45 knots.  If full 

electrical power was desired, then the ship would only be able to travel at 40 knots. 
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5. Weight and Volume Data 

Table 17lists all the weight and volume requirements for the electrical distribution 

system.  Year 2012 weights and volumes were calculated using predicted technology 

developments.  The calculations are contained in Chapter 5. 

 

Table 17 Electrical Weights and Volumes 
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D.  AVIATION OPERATIONS 

Just as unmanned aviation is making a foothold in the combat aviation world, we 

foresee that the Navy will also move towards unmanned support of aircraft.  The high 

cost of manpower, the increasing concern for quality of life at sea and in port, and the 

rapid pace of affordable technology growth, point towards a future in which unpleasant, 

dangerous, manpower-intensive work aboard ships is performed by automated systems.  

The next step towards that future is the SEA ARCHER.  The SEA ARCHER has a fully 

automated aircraft launch and recovery system.  The fully automated flight deck is 

coordinated with an unmanned hangar deck in which aircraft are moved, refueled and 

rearmed under computerized automated control.  The use of robotic technology, most of 

which is available now, and a hyper-accurate positioning system will make the unmanned 

movement of ordnance and aircraft a reality.  All aircraft are stored in the hangar bay, 

reducing topside radar signature. 

1. Flight Deck 

The flight deck environment is one of the most hazardous in the Navy today.  

Every year valuable lives are lost in flight deck mishaps.  Flight deck operations are also 

extremely manpower intensive.  The distributed aviation concept of CROSSBOW 

removes the time crunch on the flight deck (and the associated hazards of rushed 

operations) and opens the window of opportunity for automating launch, recovery, and 

movement of aircraft.   

Figure 22 shows the flight deck arrangement of the SEA ARCHER.  The flight 

deck runs the length of the ship, nearly 183 meters.  Forward, angling back to port at an 

angle of ~5 degrees, is the single, 61 meter electromagnetic aircraft launching system 

(EMALS) catapult.  The angle of the catapult eliminates the need for jet blast deflectors 

by angling the jet blast away from any aircraft parked along the starboard side.  The 

danger area for a jet engine at military power extends less than 6 meters to either side of 

the exhaust and 64 meters behind the aircraft [12].  The EMALS has an average power 

requirement of ~1 MW, delivers a peak power of ~14 MW to the aircraft being launched, 

and has a 45 second cycle time, more than sufficient to meet the required sortie rates.  
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The trough for the catapult extends 0.6 meters into the hangar bay, preventing the 

folding/unfolding of aircraft wings when underneath the catapult.   

The need for a single ship to launch large numbers of aircraft is obviated by the 

distributed aviation concept.  This eliminates the need for multiple catapults.  

Redundancy for aircraft launch is provided by the SEA ARCHER’s ability to launch 

aircraft without a catapult when operating at speeds over 40 knots [13]. 

The single landing area is also on the port side and is approximately 27 meters 

wide and runs the length of the ship, parallel to centerline.  This simple arrangement 

prevents simultaneous launch and recovery of aircraft, but given the distributed aviation 

concept, there is no need for that.  Aircraft recovery is through a two-wire 

electromagnetic aircraft recovery system (EARS).  The EARS has an average power 

demand of less than 1 MW.  The need for a 4-wire landing system is eliminated by the 

increased accuracy of unmanned, computer-controlled landings.  The recovery wires are 

spaced 12 meters apart with #1 wire located 30.5 meters from the stern ramp.  The 

emergency barricade is centered between the two wires.  The emergency barricade is 

provided for inflight emergencies such as flap or tailhook failure. 

Figure 22 Flight Deck Layout 

On the starboard side of the flight deck are two 18-m by 21-m aircraft elevators.  

The elevators have an installed power of 140 hp and are capable of lifting 13600 kg in 

under 30 seconds [14].  The elevators’ normal position will be down on the hangar deck 

level.  The totally enclosed elevators have a reinforced “garage door” which will close 

when the elevator departs the flight deck allowing aircraft on the flight deck to traverse 

unimpeded over the elevator pit.  Centered on the flight deck, all the way aft is a Jet Blast 
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Collector (JBC) which funnels the jet blast of STOVL/VTOL aircraft overboard.  The 

JBC is as envisioned by the May 1998 TSSE design group [15]. 

Flight Deck Aircraft Movement:  Towbots 

After the recovered aircraft disengages from the recovery wire, a “towbot” 

will go to the aircraft, engage the nose gear and control aircraft movement on deck.  A 

scheduling computer will ensure all aircraft/towbot movement is deconflicted, as well as 

scheduling aircraft for resupply in the hangar and associated movement including 

elevator runs.  The towbot, Figure 23, is a 730-kilogram, computer-controlled, diesel-

powered robot.  The towbot triangulates its position from an in-deck grid of small 

electromagnetic beacons.  It will also use onboard positioning sensors while engaging the 

nose gear of the aircraft.  An uplink to the aircraft will be provided in the hook-up.  The 

towbot was sized by comparing sizes and requirements of existing “yellow gear” [16] to 

the requirements imposed upon the towbot by the smaller, lighter, SEA ARROW 

unmanned combat air vehicle. 

 

Figure 23 Flight Deck Towbot 

Once successfully uplinked, the aircraft will receive an engine-shutdown 

command and weapons safe command from the shipboard computer via the towbot.  

Engine wind-down occurs while the aircraft is being towed from the landing area.  The 

towbots can also provide tie-down capability by strong electromagnets in the base of the 

towbot for temporarily securing the aircraft (e.g. while waiting for an elevator).  SEA 

ARCHER will be fitted out with four towbots.  Additionally, the ship will have a 1600 kg 
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firefighting towbot with a 760-liter AFFF tank, a water cannon, and a bulldozer-type 

blade to push damaged aircraft out of the way or if necessary overboard. 

Aircraft Securing:  Chainbots 

After engaging the recovered aircraft, the towbot will position the aircraft 

on the elevator for its trip to the hangar bay.  Proper lineup on the elevator is critical to 

interface with the tracked system in the hangar bay.  Coming up from the hangar bay with 

the elevator are two “chainbots,” one for each of the main gear.  Each 114-kg battery 

powered, chainbot has a robotic arm and two tie-down chains.  Using the same position-

sensing grid as the towbots, the chainbots are programmed with the location of all the 

deck tie-down cloverleafs in the flight deck and hangar bay.  The chainbot’s robotic arm 

attaches the tie down chains to the landing gear and, when signaled, attaches the chains to 

the nearest cloverleafs.  After the aircraft is secured on the elevator, the towbot 

disengages the nosegear and remains on the flight deck to await the next aircraft.  When 

not at Flight Quarters, the towbots are stowed in the hangar bay.   

The chainbots stay with the aircraft throughout its stay in the hangar bay.  

Chainbots automatically recharge themselves by a recharging probe in the tip of the arm.  

Recharging sockets are located throughout the deck of the hangar bay.  The chainbots 

have electric motors to give them the ability to move under their own power.  Once 

attached to the aircraft, however, the chainbots allow themselves to be towed around by 

the aircraft’s landing gear to conserve battery power.  Although attached to the landing 

gear for parasitic movement, the chainbots will not be load bearing insofar as securing 

the aircraft.  This will allow the chainbots to remain relatively small and lightweight.  

SEA ARCHER will be equipped with 44 chainbots; one pair for each of the twenty 

aircraft, plus four spares. 

2. Hangar Bay 

 SEA ARCHER’s hangar bay arrangement is depicted in Figure 24.  SEA 

ARCHER has a totally enclosed hangar bay.  The aircraft elevators are also totally 

enclosed and are equipped with spray nozzles for routine washing of aircraft and CBR 

decontamination.  Vertically sliding doors seal the hangar bay from the elevators.  

Throughout the hangar bay is a tracked system for aircraft movement as shown in Figure 
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24.  The hangar bay uses the pit-stop method of resupply.  The plane is refueled from an 

overhead-refueling rig; a robotic refueling arm in the overhead of each pit stop connects 

to the refueling port in the top of the aircraft fuselage.  Ordnance is uploaded and 

downloaded from the wings through an automated ordnance handling system that comes 

up through the deck.  The ordnance handling system is discussed later.  All pit stops have 

refueling capability.  Pit stop #2 and #3 have ordnance capability while pit stop #1 can 

only change out avionics packages.  The space located directly underneath pit stop #1 

contains the equipment used to download intelligence gathered from the avionics 

payloads. 

 

Figure 24 Hangar Bay Layout 
 

Hangar Bay Aircraft Movement:  Trackbots 

Robots are used to tow the aircraft around the hangar bay track system.  

These ‘trackbots,’ pictured in Figure 25, are similar to the towbots used on the flight deck 

except that they are electrically powered through connections in the track system rather 

than by a diesel engine.  When an elevator arrives in the hangar bay from the flight deck, 

the trackbot scheduled by the computer will meet it.  The trackbot’s uplink to the aircraft 

will provide feedback to the control system computer on aircraft status.  The aircraft is 

taken via the track to the scheduled pit stop where it is either prepared for storage or 

resupplied for launch.   
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Figure 25 Hangar Bay Trackbot 
 

Pit Stops 

As discussed above the aircraft is refueled from overhead while ordnance 

is simultaneously being loaded from below.  Figure 26 shows a diagram of the layout of 

the ordnance pit stop.  Proximity switches in the deck will ensure aircraft alignment in the 

pit stop.  Positioning sensors on the automated weapons loading system will account for 

slight misalignments as the ordnance is mounted on the aircraft.  Separate weapons bays 

are provided for the helos and UCAV’s.  The weapons bays are placed such that all 

attachment points can be loaded simultaneously once the aircraft is in position.   

Figure 26 Pit Stop Layout 

The weapons bays occupy the top half of the deck directly beneath the pit 

stop.  The remainder of the space below the pit stop weapons bays contains the weapons 

shuttle.  The weapons shuttle transfers ordnance from the magazine to the pit stop 
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weapons bays.  The bays are loaded individually from below by the weapons shuttle on a 

schedule determined by the scheduling computer.  Initially, the weapon holding bay is 

facing downward.  When the shuttle arrives beneath the holding bay, the mechanism 

telescopes downward to retrieve the weapon.  After retrieving the round from below, the 

mechanism will reposition itself for mounting by rotating 180 degrees, so that the 

mechanism now faces upward.  Once the aircraft is positioned, the mounting mechanism 

will telescope up from the weapons bay to the attachment point.  Using infrared 

positioning sensors, the mechanism will mount the weapons to the aircraft. 

The scheduling computer ensures that the time spent in the pit stop is 

optimized.  For example if the aircraft only needs a small amount of fuel and the time-

limiting factor will be the time required to mount the ordnance, the computer will ensure 

that the weapons are in the bays waiting when the aircraft arrives in the pit stop.  

However, if the aircraft will require longer to fuel than to transfer and mount the 

weapons, the computer will consider this when assigning priority to the scheduled tasks. 

3. Magazines and Ordnance 

 The two weapons magazines are located one deck below the hangar bay and 

inboard of the respective pit stop they supply.  The magazines are 12 meters long by 13 

meters wide.  The weapons are stored in racks that line the forward and aft bulkheads of 

the magazine.  An articulated robotic arm mounted on a track occupies the open area in 

the center of the magazine.  The robotic arm removes the round from its rack canister and 

places the weapon in the Ammunition Transfer Station (ATS).  The ATS serves as an 

airtight/explosion tight boundary between the magazine and the weapons shuttle.  The 

weapons shuttle accepts the round from the ATS and transports it to the weapons bay via 

a 2-D translating shuttle.  Each component of the computerized ordnance handling 

system retains positive control of the weapon until the feedback loop confirms the next 

component has positive control, thus maintaining handling safety.  The magazine layout 

is depicted in Figure 27. 
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Figure 27 Magazine Layout 
 

Aircraft Missions 

For each of the SEA ARROW’s possible missions there is a tailored 

ordnance loadout.  For SEA ARROW, the ordnance loadout is constrained to the six 

attachment points and the 1500-pound payload capacity [13].  For the helo, current SH-

60 weapons loadouts were used [17].  The possible ordnance-expending UCAV missions 

are defined as follows: 

• Battlefield Interdiction (BI) – Hard targets such as tanks, bunkers 

• Close Air Support (CAS) – Light fire in support of ground forces 

• Combat Air Patrol (CAP) – Air-to-air patrol and combat  

• Suppression of Enemy Air Defenses (SEAD) – Self explanatory 

• Maritime Patrol (MarPat) – Air-to-surface patrol and combat 

• Multipurpose Mission – Undefined target 

Similarly for the helo: 

• Maritime Patrol (MarPat) – Air-to-surface patrol and combat 

• Anti-Submarine Warfare (USW) – Self-explanatory 

• Strike – Air-to-surface attack (similar to BI, but not as limited in scope) 
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To determine an ordnance loadout, it was necessary to assume what 

percentage of the given sortie rate was dedicated to each mission type and the percentage 

of those missions in which ordnance was expended.  To size the ordnance loadout, it was 

assumed SEA ARCHER is operating in a hot war environment at maximum sustained 

sortie rates.  The basic assumption in the percentages is that SEA ARROW will be 

expending the most ordnance in her designed missions and only a fraction of the 

ordnance in the missions that she is not designed for.  Based in part on the mission 

profiles described in the SEA ARROW design team’s final report [13], the following 

breakdown was assumed: 

UCAV 

% of Missions                % of Time Ordnance Expended 
25%  Multipurpose Mission    75% 
20%  Battlefield Interdiction   100% 
20%  SEAD      100% 
15%  Close Air Support    100% 
10%  Combat Air Patrol    25% 
10%  Maritime Patrol    25% 
 

HELO 

% of Missions     % of Time Ordnance Expended 
37.5%  Maritime Patrol   25% 
37.5%  USW     25% 
25%  Strike     25% 
 

Aircraft Weapons Payloads  

The weapons payload was tailored for each mission type.  Only weapons 

currently in the inventory were used.  The only assumption made for the weapons is that 

by 2012 the AGM-88 HARM missile’s weight will be less than 750 pounds, thus 

allowing SEA ARROW to carry two of them.  The AGM-88 currently weighs in at 800 

pounds [18].  The tailored weapons loadout for each of the missions is as follows: 

Multipurpose Mission 1 AMRAAM 
    1 Sidewinder 
    1 JDAM 
    1 Maverick 
    2 Hellfire 
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Battlefield Interdiction 2 Maverick 
    2 JDAM 
 
Suppression of Enemy Air Defenses 2 HARM 
 
Close Air Support  1 JSOW 
    2 Hellfire 
    1 JDAM 
 
Combat Air Patrol  4 Sidewinder 
    2 AMRAAM 
 
UCAV Maritime Patrol 1 Maverick 
    3 JDAM 
    2 Hellfire 
 
Helo Maritime Patrol 1 Penguin 
 
Helo USW   3 Torpedoes 
 
Helo Strike  4 Hellfire 
 

The magazine racks are optimized for the varying sizes of the weapons.  

The weapons are onloaded to the ship already finned so that the round requires no 

maintenance before being loaded onto the aircraft.  Table 18 summarizes what types of 

weapons are carried onboard for the airwing, how many of those weapons are in each 

magazine and the total carried onboard.  Refs [19] through [22] provided details on 

weights and sizes of the various weapons to assist in sizing the magazine racks and the 

mission payloads. 
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Table 18 Airwing Weapons Loadout 

 
4. Cyclic Operations 

In typical cyclic operations, the aircraft will all start out in the hangar bay.  

Operators enter the flight plan into the scheduling computer and the computer will 

automatically schedule fueling and arming of the aircraft to meet the scheduled launch 

time.  The computer will select aircraft for the missions to ensure equal flight hours on all 

aircraft (or in accordance with some other criterion).  When scheduled, the aircraft will be 

repositioned to the pit stop, with other aircraft being repositioned as necessary to allow 

repositioning of the designated aircraft.   

After launch preparations are completed the aircraft will be repositioned to the aft 

aircraft elevator.  In similar fashion, all the aircraft scheduled for launch are prepared and 

repositioned in the hangar bay.  In this manner the entire first launch cycle is prepared 

and stored in the hangar bay.  When scheduled, elevator runs begin with the first run 

taking the first aircraft for launch (and its towbot and chainbots) to the flight deck.  The 

Weapon Port Magazine Starboard Magazine Total Onboard 

AGM-154 JSOW 14 21 35 

AGM-88 HARM 39 39 78 

AIM-120 

AMRAAM 
24 24 48 

AGM-119 Penguin 5 5 10 

AIM-9 Sidewinder 30 30 60 

MK-54 Lightweight 

Hybrid Torpedo 
7 7 14 

AGM-65 Maverick 60 60 120 

GBU-29 JDAM 80 80 160 

AGM-114 Hellfire 81 81 162 
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aircraft is immediately taken to the catapult for launch, leaving the chainbots on the 

elevator for return to the hangar bay.  The engine startup command and weapons arm 

command occur once the aircraft is topside.   

While the first aircraft is respotting to the catapult, the elevator returns to the 

hangar bay for the next aircraft.  This pattern continues until all the aircraft for that air 

plan event have launched.  A typical event would have five aircraft:  2 UCAV’s and 3 

UAV’s.  When scheduled, the next event will launch aircraft followed immediately by 

recovery of the first event’s aircraft.  This launch/recovery process continues until the end 

of the cycle, which ends with two successive recoveries with no launches.  A sample air 

plan is shown in Table 19.  The normal flow of operations is depicted graphically in the 

flow chart in Figure 28. 

 

SQUADRON               EVENT                              EVENT                              EVENT                             EVENT                        

   0700               
1

                 0900                
2

                 1100                
3  

              1300                 
4            

    1500  

UCAV A --A1 2 STK--> --A1 2 CAP--> --A1 2 STK--> --A1 2 STK-->  

UAV B --B1 3 RCN-> --B1 3 RCN-> --B1 2 RCN-> --B1 3 RCN->  

HELO C         ---H1 ASW---------------®-------------------------®--------------------1 

LAUNCH:LAND  L1-5                    L2-5 R1-2                     L3-4 R2-5                     L4-5 R3-5                    R4-7  

 
Table 19 Hypothetical Airplan 
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Figure 28 Aircraft Flow from Recovery to Launch 

If a surge sortie is required, all eight UCAV’s can be positioned on the flight deck 

for successive launches as pictured in Figure 29.  The aircraft not secured by towbots 

must retain their chainbots plus an extra chainbot for the nose gear until ready to launch.   

   

   



88 

Figure 29 Flight Deck Arrangement for Surge Operations 
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E. COMBAT SYSTEMS 

 

1. Combat Systems Overview 

SEA ARCHER will utilize a layered defense concept for protecting the 

taskforce and its assets.  It will leverage on technology that is being currently developed 

for the U.S. Navy, while certain systems that will be specific to SEA ARCHER’s MNS 

and ORDs are also being proposed. 

 
 Range SEA LANCE II SEA ARCHER 

Outer Layer Defense 200 km  SEA ARROW 

Middle-Layer Defense 50 km   

Inner-Layer Defense 30km Super Sea Sparrow 
Missile 

Super Sea Sparrow 
Missile / USC Missiles 

Point Defense 5 km RAM FEL 

Table 20 Layered Air Defense for CROSSBOW Taskforce  
 
 

 Range SEA LANCE II  SEA ARCHER 

Outer Layer Defense >200 km  SEA ARROW 

Middle-Layer Defense >50 km Harpoon / Medium 
Range Missile  

Inner-Layer Defense 30km Super Sea Sparrow 
Missile 

Super Sea Sparrow 
Missile / Unmammned 
Surface Craft Missiles / 

Helo Missiles 

Point Defense 5 km Small Caliber Gun 
System  

Free Electron Laser / 
Small Caliber Gun 

System 
Table 21 Layered Surface Defense for CROSSBOW Taskforce 

 
 

 
 Range SEA LANCE II SEA ARCHER 

Middle-Layer Defense >50 km  Helicopters 

Inner-Layer Defense 15km Torpedoes  
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Point Defense 5 km   

Table 22 Layered Sub-Surface Defense for CROSSBOW Taskforce 
 

It can be seen that SEA ARCHER will be heavily dependant on the long-range 

defenses of SEA LANCE II.  This ship will be different from the original SEA LANCE 

[23], in that it will match the speed and endurance of SEA ARCHER.  It will also have a 

larger complement of missiles to provide a higher capability in both self and task force 

protection, coupled with sensor suites to match the missile and threat environment   

SEA ARCHER’s combat system will be limited to self-protection for up to 30km.  

It must be understood that a family of SEA ARCHER vessels will leverage on the 

advantage of distributed platforms while having the ability to share information 

seamlessly.  This will then effectively increase the coverage of the complete taskforce, 

enhancing combat effectiveness and finally increasing survivability. Figure 30 provides 

an overview of the complete SEA ARCHER combat system layout. 
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Figure 30  SEA ARCHER Combat System Layout 
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Command & Control 

Enhanced Cooperative Engagement Capability (ECEC) - This is the core 

backbone of the entire Crossbow taskforce, it is expected that every platform will have 

this system installed. It will be a generation beyond the CEC that is being introduced into 

the US Fleet in 2002.  ECEC will take the concept of sharing fire control information into 

the next level. Instead of sharing only air target tracks, ECEC will exchange information 

in the surface and subsurface environment.  Fire control quality data will be exchanged 

among all CROSSBOW assets (including SEA ARROW).  This will effectively increase 

the area coverage and situational awareness of the taskforce.  The combat effectiveness of 

the taskforce is enhanced as one vessel can fire its weapons utilizing information and/or 

control from another taskforce member.  Electronic warfare can also be conducted on a 

grander scale, as all vessels will then be able to assist each other and provide extra 

electronic protection.  A taskforce commander will also be able to control all assets 

within his command in a more precise and expeditious manner.  The system will utilize 

Link XX to communicate among all taskforce components and will have sufficient 

bandwidth to handle the necessary information exchanges.  The system will also 

overcome all time latency issues. 

Enhanced Ship Self Defense Capability (ESSDS) – SSDS will be installed 

on future and current large ships (LPD-17, CVN).  It integrates the hardkill and softkill 

weapons onboard a vessel against air targets.  The generation beyond that, hereafter 

called ESSDS, will also provide an automated self-protection capability but against all 

threats. Encompassing air, surface and subsurface threats it will utilize all the weapon 

systems and electronic warfare suite to provide enhanced survivability.  It will also be 

integrated with ECEC, and as such provide a superior “umbrella” as all assets are then in 

a unified system. In a target rich environment, this automated system will be an enclosure 

barrier in which all unidentified threats will be engaged, with veto capability from the 

command group.  To ensure rapid control of all installed assets, the system will reside on 

a fiber optic Local Area Network.   
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Electronic Warfare – Future Electronic Warfare will undertaken by the 

SLY2 system that is undergoing development.  SEA ARCHER will employ this system 

in conjunction with decoy systems  It will integrate the following subsystems  

• radar/threat warning 

• missile attack and laser illumination warning 

• transmission of various jamming 

Active decoys for SEA ARCHER will be the Nulka system, which will be fired from 

standard 5.125 inch tubes (Mk 36 Launchers).  Once fired it will hover on the surface and 

emit signals similar to the SEA ARCHER, thus seducing the incoming Anti-Ship Cruise 

Missile (ASCM).  Passive decoys will include chaff and infra-red emitters.  Infra-red 

emitters are envisaged to be a necessary requirement in the future littoral environment as 

low cost missiles which utilize heat seeking guidance systems will be employed by the 

enemy.  Since SEA ARCHER will be a low radar cross section ship, decoys like chaff 

and Nulka will prove to be effective when used in conjunction with jammers.  The system 

installation will include the following – 

• Advance Multi-Function Active Apertures (AMFAR) – This is to 

minimize the number of antennas and maintain a low radar cross 

section.  It will handle both jammers and receivers.  Will also be 

used as communication portals. 

• 5.125” Launchers – installed with Small Caliber Gun Systems 

which can fire either Nulka, Chaff or Infra-Red emitters 

AN/SLY-2(V) AIEWS is intended to replace the AN/SLQ-32(V) radar warning and 

jamming system (see separate entry) aboard US Navy (USN) surface ships during the 

early part of the 21st century. When fully implemented, AIEWS is intended to 

incorporate Electronic Support (ES), Electronic Attack (EA), Infra-Red Search and Track 

(IRST) and IR jamming capabilities that are fully integrated with a host vessel's combat 

information system. As of early 2001, it is expected that AIEWS applications will take 

the form of full capability or ES/IRST only systems according to perceived individual 

platform requirements. 
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Integrated Weapons Control – All current weapons systems require specific fire 

control systems to enable the weapons employment.  SEA ARCHER will employ a 

common architecture that integrates all fire control systems for all weapons.  This will 

allow easier cross platform exchanges in an ECEC environment.  Within SEA ARCHER, 

it allows a central system to control weapon fire control solutions and enables a more 

seamless common console in the Combat Information Center (CIC).  

 
Sensor Suite 

Multi-Function Radar (MFR) – this 3 dimensional system will be able to 

perform air/surface detection and tracking.  It will be act as a fire control radar and 

provide missile control for the SEA ARCHER’s missile complement. It will operate in 

the X-Band and will have a maximum detection range of 76km against ASCM threats.  

It’s placement on SEA ARCHER will allow it to have a radar horizon of 22 km.  The 

system will also be optimized for the littoral environment and provide superior clutter 

rejection.  This system is essentially the SPY 3 radar currently undergoing development. 

Volume Search Radar (VSR)– as the MFR will be optimized for target 

tracking and missile control, it will be necessary for a Volume Search Radar to provide 

early warning detection.  It would be a 3 dimensional radar that would search, detect and 

track aircraft, missiles and UAVs, while providing target cueing to the MFR.  It will 

operate in the L-band to provide a longer detection range utilizing solid-state, active array 

radar technology. The system will be placed on the same level as the MFR and as such 

the surface detection capability will be similar to the MFR but the maximum detection 

capability will be 250km for aircraft.  It would also perform air traffic control 

requirements for the SEA ARROW, UAVs and helicopters. 

 

Infra-Red Search and Track – The littoral environment will degrade the 

detection  capabilities of all radar systems regardless of type; this is exacerbated  by the 

physical radar horizon that all systems experience.  Future ASCMs will be more stealthy 

and be able to skim even closer to the surface of the ocean. This will severely reduce the 

reaction time for defending against incoming ASCMs.  SEA ARCHER will overcome 

this shortfall by introducing an IRST system onboard.  This passive system will scan the 
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horizon at 1 Hz rate; even if the threat missile utilizes low RCS material, the missile 

plume will be detectable.  The heat signature of a missile plume is also unique and the 

system will be able to detect the plume out to the physical horizon.  It will only provide a 

bearing but not range information, nonetheless this will be adequate so that the self-

defense systems have proper forewarning and can be brought to bear.  The system will 

operate in the  3 to 5 µm and 8 to 12 µm ranges. 

Electro Optical Systems (EOS) – will provide SEA ARCHER with day 

and night capability. It will have a high resolution TV camera and thermal imager 

operating in the 3-5 µm range.  This system will also be optimized for all naval 

environments.  The EOS will allow the commander to obtain visual identification of all 

surface and air threats.  It can also act as a secondary fire control director for the missile 

systems by providing bearing and elevation.  Range information will be provided by a 

built-in Laser range finder system. 

Navigation Radar  - This will be included as part of the sensor suite to 

allow SEA ARCHER to switch off the high power (and distinctive) radar suites and 

utilize a simple system for navigation.  Coupled with the low RCS nature of the platform, 

the Navigation radar will enhance the deception capability of the ship by giving it an 

emission signature comparable to commercial vessels.   

Identification Friend-Foe System (IFF) – IFF will allow SEA ARCHER to 

process the targets obtained from the radar systems and properly identify all tracks on the 

system.  This system will be the standard IFF system that is to be installed on the US 

warships in 2020.   

Offboard Sensors – The embarked components of SEA ARCHER will 

have sensor suites onboard each platform.  SEA ARCHER will be able to obtain this 

information for target detection and tracking of surface/air threats, thus increasing the 

detection range of the taskforce.   

• SEA ARROW Radars  - Each SEA ARROW UCAV will have onboard air 

to air and air to ground radar capability. 
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• UAV Reconnaissance Sensors – The UAVs are designed to carry a variety 

of reconnaissance and surveillance sensors.  Information from these 

sensors will be integrated into a common operational picture. 

• Helicopter – onboard mine detection suites are available.  Helicopters will 

utilize LIDAR systems for mine detection and have towed sonars for Anti-

submarine warfare. 

• Unmanned Surface Craft (USC) – it will be equipped with optical sensors 

and a low cost infra-red thermal imager for night operations.  A low cost 

IRST will also be used for early warning detection of incoming sea 

skimming ASCMs.  

 
Shipboard Weapons 

Vertical Launch System (VLS) – to provide a 360° coverage a 16 cell 

vertical launch system (not the current MK 41 VLS) for the missiles will be installed.  

Each cell will contain 4 missiles to bring the missile complement to 64 missiles.  The 

launcher will be downsized to accommodate the shorter missiles envisioned. 

Super Sea Sparrow Missile (SSSM) – This missile will be both air and 

surface capable with a maximum range of 30 km.  It will be essentially a  4th generation 

of the Sea Sparrow missile with similar airframe, speed and warhead. Though the 

fragmentation pattern will be similar to current Sparrow warheads it will have dual 

detonation modes instead.  For air targets it will use a proximity fuze with a 

fragmentation pattern to increase its lethal radius against ASCMs or UAVs/aircrafts.  For 

surface targets the missile can again employ a fragmentation pattern or have a delayed 

detonation to allow the missile to explode within the target, thus enhancing chances of a 

kill. It will have an active seeker for terminal guidance, while obtaining initial target 

information and mid-course correction from the MFR.  This will allow SEA ARCHER to 

engage up to 32 separate targets (if one missile is fired against each target).  Terminal 

guidance can be active radar homing, IR homing, Home-On-Jam or Laser Guided.  SSSM 

will be able to switch automatically if any one of the modes have lost track of the target. 

For surface engagements beyond the radar horizon, the SSSM will receive approximate 
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target bearing and range prior to launch; once beyond the radar horizon, it will open the 

seeker and start target scanning and lock onto the radar cross section/heat 

signature/jamming signal of the enemy vessel.  It is envisaged that the signal processing 

capabilities of the seeker head will be such that it can discriminate specific portions of the 

ship and as such will be able to target relevant portions of the ship to ensure highest 

mission kill.  For instance, if the weapon is programmed for a sensor kill, it can target the 

radar mast or if necessary the bridge or the ASCM launchers.  It will also be able to 

utilize the Laser Designator on the Unmanned Surface Craft to engage the surface vessel.  

Speed Mach 3.6 

Range Max 30 km 
Min 1.5 km 

Length 3.85 m 
Diameter 25.4 cm 

Warhead 

38.7 kg Annular blast 
fragmentation warhead,  
Proximity fuzed or delayed 
detonation 

Launch Weight 245 kg 
Table 23 Super Sea Sparrow Missile Characteristics 

 

Free Electron Laser System (FEL) – The final layer of defense will be this 

directed energy weapon.  It will engage air and surface targets up to 8 km, this system 

will be highly effective against missile threats and compliment the SSSM.  Firing a 1.5 

MW beam of light, it will take up no more than 3 seconds to destroy a missile target.  The 

system will be operated continuously when required.  A FEL provides coherent, tunable, 

high power radiation.  Systems can be designed to operate anywhere from millimeter to 

ultraviolet wavelengths. It is also capable of the high spatial coherence and a near 

diffraction limited radiation beam characteristic of conventional lasers. The difference 

from conventional lasers is in using a relativistic electron beam as its lasing medium, as 

opposed to bound atomic or molecular states, hence the term free-electron. The main 

advantage of FELs compared to chemical or CO2 lasers is the tunability of the laser 

beam.  This allows users to select the wavelength of light to suit the application.  The 

caveat for this system is that there is still a large amount of developmental work that 

would still be required and as such would not likely be fielded with the 2020 IOC.  

Nonetheless, SEA ARCHER has been sized with the necessary footprint and power 
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requirements to met this future growth weapon.  In the interim, the space allocated can be 

used for Rolling Airframe Missiles to provide the inner-layer defense. 

Small Calibre Gun System – This stabilized gun system will have a caliber 

of 30mm.  Effective range of the system will be between 3 to 5km (depending on threat), 

it will employ automated target tracking and engagement.  Target cueing will be from the 

ESSDS.  It will also have its own automatic tracking optical system.  This system will 

utilize centroid tracking and will be able to predict future target position even when firing 

the gun.  This is necessary as firing 30mm shells on the surface will cause large splashes 

around the target which will then cause the system to lose track.  It will be highly 

effective against fast moving surface vessels.  On each side of the gun system will be 

5.125 launchers that fire the decoy systems for SEA ARCHER.  Thus it can also be 

employed as a trainable launcher to enhance the electronic warfare capability when 

compared to fixed launchers. 

Range Max 5 km 
Weight 1 200 kg 
Gun 30mm Chain Gun 
Ammunition 
Load 200 rounds  

Table 24 Small Caliber Gun System Specifications 
 

OffBoard Weapons 

Unmanned Surface Craft (USC) – this will employ a jet ski-like platform 

with weapons and sensors emplaced and be remotely controlled from SEA ARCHER.  

The role envisaged for the USC will be  

• To ensure a forward presence and maintain a barrier for the SEA ARCHER. By 

utilizing the USC as a reconnaissance platform, SEA ARCHER has another asset 

that can ensure more effective situational awareness.  It will be armed and can 

engage both surface and low flying air threats; this will allow SEA ARCHER to 

engage more threats in case saturation attacks occur. 

• To provide early warning for sea skimming missiles.  The current radar horizon 

for sea skimming ASCMs at 5ft is only 23km. Having a platform, such as the 
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USC, that is beyond the physical horizon will allow SEA ARCHER more reaction 

time for the shipboard weapons to react to incoming threats. 

• Forward mine detection capability.  Due to its small size it will not detonate 

moored or subsurface mines (except floating mines).  It will tow a small towed 

array sonar optimized for mine detection.  The size of this towed array sonar will 

be 80kg in weight and it will be optimized for high speed mine detection. 

The USC will have a maximum speed of 70 knots while the optimum cruising speed 

is 50 knots.  The speed will allow it to maintain contact with SEA ARCHER while being 

able to surge ahead of SEA ARCHER if necessary.  Operating range will be 200 nm.  

The conformal weapons payload will be 210 kg.  The USC will be controlled controlled 

from SEA ARCHER using the Advance Multi-Function Apertures, it will relay its optical 

video back for feedback and control.  These sighting system will have both a standard 

CCD camera and a thermal imaging senor in a 3 to 5 µm range for night and day 

operation.  A wide field of vision, low cost scanning IR detector will also be installed to 

provide early warning detection of missile plumes and jet exhaust.  The USC will have a 

high resolution GPS receiver to allow the operator to know its precise location.  Coupled 

with a Laser Range Finder (LRF), it can reveal the exact location of an enemy surface 

vessel.  If necessary, the LRF can act as a laser designator and allow SEA ARCHER to 

fire the SSSM at 30km and utilize the reflections off the designator to engage the enemy. 

Weapons payload will include small IR Stinger type missiles optimized for both 

surface and air threats. Each USC is envisaged to carry four missiles with a combined 

weight of 40 kg.  These IR missiles will be able to engage targets up to 8km in range and 

will have a small point detonating fragmentation warhead.  For surface engagements, it 

will not have sufficient capability to sink vessels but will provide degradation of enemy 

capability.  This will allow other missiles from other platforms to further destroy the 

target if required.  

The USC maneuverability ensures that this target will be difficult to engage while the 

low RCS signature will allow it to be stealthy and prevent its own detection by the 

enemy.  The USC will have a significant amount of autonomous operation capability.  It 

will be capable of performing most mission functions under control of an autopilot.  Only 
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changes in mission or handling of exceptions (such as detection of a threat) wil involve 

operator interaction.  The high degree of autonomous control will allow minimal 

operational impact on the SEA ARCHER crew size as any personnel within the CIC will 

be able to control the USC.  

The USC can be deployed while SEA ARCHER is traveling at its maximum speed.  It 

will be lowered from between the hulls of the ship onto the surface and then released 

through the center of the ship.  Retrieval will be the reverse process; the USC will enter 

through the center of SEA ARCHER where it will then lock on a retrieval probe (much 

like a probe for mid air refueling) and be winched onboard SEA ARCHER.  Due to the 

high speed nature of SEA ARCHER, the wake generated may make retrieval at 60 knots 

difficult.  At this juncture, there has been no modeling done on the wake generated at 

high speeds so these methods are just proposals for consideration.  Another possible 

retrieval method would be through the helicopters which could winch the USC up and 

lower the craft onto the deck elevator.  The elevator would then lower into the ship and 

the USC recovered. 

 Helicopters – these platforms will be able to perform anti-surface, -submarine and 

-mine warfare.  They can be equipped with up to 4 Penguin type missiles for anti-surface 

warfare or 3 anti-submarine torpedoes. They will also have a RAMICS (Rapid Airborne 

Mine Clearance System) onboard; this includes a Light Detection and Ranging System 

(LIDAR) coupled with a 20mm Gatling gun.  LIDAR will be able to detect floating and 

subsurface mines.  Once a mine is located, the gun will fire projectiles optimized for 

traversing the water and will detonate the mine. 

  

Combat Systems General Arrangement Plan 

The arrangement of combat systems onboard SEA ARCHER utilizes the 

design principles that were used throughout the design process.  They are ranked 

according to importance : 

Surviability, Automation, Reduced Manning, Upgradeability, 

Maintainability, Reliability, Manufacturability, COTS, Affordability 



101 

The most controversial element was the elimination of the shipboard 

superstructure and placement of all sensors on the sides of the ship.  Initial designs 

considered a normal island for installation of a sensor suite but survivability was deemed 

primary, and placement on the sides of the ship provided the following benefits: 

- Maintain a low radar cross section when compared to an island design 

- Provide graceful degradation in sensor capabilities if SEA ARCHER has been hit, 

compared to a complete sensor loss if a missile hit the island. 

The losses incurred with this design were:  

- Increased cost – one extra array for the VSR and MFR were required to ensure a 

proper 360° sensor coverage.  Two extra IRSTs were also required to provide a 

detection capability for ASCMs.   

- Reduced surface detection capability. Lowering the antenna from a proposed 24  

to 20m meant a surface detection capability of 18km.   

The VSR will be placed at opposing corners of SEA ARCHER, with the MFR beside 

it to optimize coverage.  The small caliber guns will be placed at the 4 corners of the ship 

to allow a good minimum engagement range and coverage.  The VLS will be placed at 

the aft portion of the ship.  Though its placement is not in the direction of flight flow, it 

will be prudent not to conduct flight operations when firing the SSSM due to the inherent 

back blast from the rocket plume. 

For the C4ISR and EW portals, the AMFAR will be simply aligned along the port and 

starboard sides of the ship.  Due to the size of SEA ARCHER more apertures can be 

added if needed. 

The FEL system was placed port and starboard as the weapons were placed in the 

optimum position to provide maximum 360° coverage. 

Survivability Analysis 

At 200km, it has been assumed that the UCAV can engage the threat 

aircraft that launches the missiles. Furthermore, the UCAV has the probability of killing 

half of these aircraft and half of any launched missiles, then the total kill probability of 

the UCAV against targets is:  
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PK-UCAV = 1- 0.5 × 0.5 = 0.75 

It is assumed that missile reliability encompasses 3 components - tracking 

of target, the seeker’s ability to guide itself and the fuse detonating properly.  For this 

scenario, the SSSM is assumed to have reliability of 85% and a warhead lethality (given a 

hit) of 0.70. Therefore Single Shot Kill Probability against an ASCM is 

PSSK = 0.85 × 0.7 = 0.595 

Since killing an incoming missile is not assured, it may be prudent to fire  

two SSSMs to ensure a higher kill probability, this will then enable the  Standard missiles 

to have the kill probability against an ASCM  of- 

PK-SSSM = 1-(1- 0.595)2 =0.835975 

For an FEL system, the “reliability” will be based on the beam director’s 

ability to track the target and the proper functioning of each individual component. A 

figure of 85% has been assigned to it, which is similar to the rest of the combat systems. 

The lethality will be assumed to be 100% (FEL ensures destruction on the ASCM)   

Therefore the total kill probability of the FEL will be - 

Pk-FEL = 0.85 × 1.0 = 0.85 

The electronic warfare systems has been given a Pk-EW = 0.5 effectiveness against 

ASCMs. 

Therefore the total effectiveness of the layered defense is defined as -  

1 (1 )(1 )(1 )(1 )− − − −= − − − − −KTOTAL K AC K SSSM K RAM K EWP P P P P  (2.1) 

PKtotal=1- (1-0.75 (1-0.835975)(1-0.85)(1-0.5) 

             =0.99692 

A maximum credible attack would involve 1000 ASCM fired against a SEA 

ARCHER Taskforce.  It is reasonable to assume that at most, 100 missiles would target 

any one vessel. Assuming 100 incoming ASCMs, the possibility of 1 or more missiles 

leaking through the defensive layer is  

PLeakage = 1- 0.99692100 = 0.2654 
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Given this value, 6 of the 8 SEA ARCHERS would escape unhit; 2 would be damaged.  

The squadron would remain a viable fighting force even after a maximum credible attack.

 It has been assumed that there will be sufficient number of missiles to engage 

each ASCM 

 

2. Combat Engagement Flow 

The proposed concept for employing the combat systems and sensor suites 

onboard SEA ARCHER when enemy targets are detected is decribed below.  

Air Defense – The target is first detected by either the UAVs, VSR, MFR, IRSTs 

or SEA ARROWs.  If it has been identified by the IFF system as a threat, fire control 

information (range, bearing and velocity) must then be obtained.  If this data is 

unavailable, more sensors must then be allocated to synergize the location.  For instance, 

UAVs, SEA ARROWs or USCs, may be vectored in to meet the threat.  Once the target 

information is obtained, the ESSDS will propose the most appropriate weapon system to 

engage the target.  The ESSDS will also propose a heading to minimize the RCS of the 

ship based on target bearing.  Once the air target is within the SSSM firing range, 

missiles will be fired. The number fired will be based on the target characteristics and the 

number of threats.  If the target is not destroyed with the salvo of missiles and is within 

5km, the SSDS will designate the FEL weapon to engage the target.  During the entire 

sequence, the system is providing bearing and speed directions to optimize the RCS of 

the ship.  Decoys like chaff, Nulka and IR emitters are fired in proper sequences while 

jamming the incoming targets.  Due to the low RCS of the ship, decoys employed will 

prove to be more effective.  The complete engagement can be fully automated or placed 

in the operational command of the Tactical Officer with suggestions from the ESSDS.  If 

the entire taskforce is being attacked, each platform will ensure that the self defense 

mechanisms are optimized force-wide and prevent systems from conflicting with each 

other. 

Surface Engagements – Similar to air defense sequence, surface targets are 

detected by either, the MFR, VSR, IRST, UAVs, USCs.  If it has been identified as a 

threat, fire control information must be obtained from the target.  Once obtained, the 
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ESSDS will allocate the most appropriate weapon system to engage the threat.  Long 

range engagement (>30km) may be possible if the helicopters or Sea Arrows are in the 

vicinity.  Air to surface missiles and Penguin type missiles may be fired to destroy the 

target.  USCs will be able to engage the threat if it is within the firing range of the Stinger 

missiles of the USC.  If the target enters the lethal range of the SSSM, the ESSDS will 

decide if the target has high enough priority to utilize the SSSM to engage.  If the enemy 

target is beyond the radar horizon of the MFR, the ESSDS will obtain target information 

from the other sensors or USC and fire the SSSM in the direction of the bearing.  As 

mentioned earlier, terminal engagement is provided by active homing, IR homing, HOJ 

and laser designation from USC.  

For targets from 0 to 8km, the SSDS will be able to employ the FEL weapon 

system to destroy the target also.  At 5km and below, the SCGS will be made available to 

engage the surface threats.  SSDS will select the firing gun based on optimum firing 

position and range.    

 Subsurface warfare  Submarine warfare will be conducted by either the SEA 

LANCE or the helicopters.  If a torpedo is fired against SEA ARCHER, the SSDS will 

employ sound generators to seduce the incoming torpedo.   



105 

Figure 31 Ship Self Defense Sequence 
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3.   C4ISR 

The strength and payoffs of CROSSBOW as a distributed sea based air asset can 

only be realized if the C4ISR demands can be adequately met by means of a robust and 

resilient communications backbone architecture that provides interconnecting links 

amongst all these distributed assets within the theater of operations. The CROSSBOW 

communications architecture is defined as an Airborne Communications Node (ACN), 

which is essentially a network hub operating in the sky, that can circumvent most Line-

of-Sight (LOS) related problems and bandwidth congestion problems associated with 

MILSATCOM usage. The detailed analysis of this requirement is outlined in MAJ Foo 

Khee Loon’s Report1. The other key aspect of the entire CROSSBOW communication 

system is the shipboard communications systems. This paper seeks to provide an 

overview of the key considerations for the communications systems that we need for 

CROSSBOW ships.  

 

Key Considerations 

In determining the communications system specifications that are essential for 

CROSSBOW operations, the CVNX/CVN communications requirements are used as the 

baseline requirements for initial bandwidth and bit rate estimation. It is recognized that 

the overall requirement for CROSSBOW would be smaller due to the lower user 

terminals and information needs.  

 

CROSSBOW Communications Suite   

Similar to the CVNX/CVN basic infrastructure, CROSSBOW will require 

a substantially different C4ISR capability to operate in a complex and changed 

information environment. CROSSBOW will operate with information gathered from 

military, government, commercial, and coalition sources. This will create Multi-level 

Security (MLS) challenges regarding the source, content and reliability of the 

information. Information transfer sources will also become more diverse.  

                                                 
1 Requirement Analysis for An Airborne Communications Node (ACN), Specialized Supporting Study 

by MAJ Foo Khee Loon. NPS (2001). 



107 

Information will be transferred via voice, video, and data formats over 

military and commercial RF channels, Internet, LANs and WANS. The transmission 

media frequency spectrum that CROSSBOW will use ranges from acoustic frequencies 

for ASW through the traditional communications bands (HF, VHF, UHF, SHF, and EHF) 

and the higher commercial satellite bands (Ka, Ku, and V). In addition, there are other 

high bandwidth imagery and data files transfers that are required for Intelligence, 

Surveillance, Reconnaissance and Targeting (ISRT) operations. Voice communications 

will be emphasized less, while data transfer will assume a much greater importance 

because of the increased operational tempo and rate of information exchange. Data 

especially imagery and file transfer, requires larger bandwidths. This means that higher 

frequency will be required to carry the larger bandwidths.  

 

Communications Architecture - Functional Groupings  

The architecture can be broadly organized into five functional groupings: 

• Shipboard Operations 

  Onboard ship control, navigational function and other shipboard 

operations will be highly automated onboard CROSSBOW. One of the key 

elements in information transfer is the Ship Automated Communications Control 

System (SACCS). This system provides an advanced ship radio communications 

network and circuit management tool. This system provides automated, reliable 

and robust circuit connectivity and HF, VHF, UHF, SHF radio network 

monitoring and reconfiguration.  

• CIC Operations 

 Global Command and Control System (GCCS) will provide the common 

operational picture (COP) to CROSSBOW for theater-level battle space 

situational awareness. In addition, the Global Broadcast Service (GBS) will be the 

service that provides intelligence, warning, common operational picture, target 

information, ATO dissemination, weather, imagery, maps, database updates, and 

other tactical and administrative information. 
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• Intelligence, Surveillance and Reconnaissance (ISR) 

 Integrated Broadcast Service (IBS) will provide current air, ground, 

surface, and subsurface information on threats, indications of enemy intentions, 

and resolution of Identification Friend and Foe (IFF). 

• Fire Control and Coordination 

 Cooperative Engagement Capability (CEC) provides for a real-time 

capability to extend the CROSSBOW horizon by combining, on a pulse-by-pulse 

basis, data from many sources to enable earlier detection and tracking of air 

contacts. 

• Logistics Support Functions 

Central to all combat mission, CROSSBOW will need to cater for coordination of 

logistics replenishment, supplies, personnel affairs, medical needs, maintenance 

and repairs onboard CROSSBOW forces and other support bases.  

 
 

Bandwidth Requirement: 

 The overall bandwidth demand for CROSSBOW will be estimated based on the 

envisaged requirement of the CVNX. This is summarized in Table 1 as follows: 

 
 

Transmission 
Medium 

Bandwidth 
Requirement 

Data rate 

Requirement  

Purpose 

VHF band 32 kHz 9.6 kbps Tactical voice communications 

UHF band 48 kHz 2.4 kbps 

4.8 kbps 

IXS, CUDIXS, NAVMACS 

TACINTEL 

SHF band 128-1024 MHz 9.6 kbps 

19.2 kbps 

64 kbps 

128 kbps 

384 kbps 

GCCS 

SIRRNET 

NIPRNET 

Voice and VTC 

JWICS 



109 

Ku band 15.15–15.35 GHz 
(Uplink) 

14.4-14.83 GHz 

(Downlink)  

200 kbps – 45 
Mbps 

UCAV control through TCDL 

Ka/Ku band 1.55 MHz–24 MHz 6-24 Mbps GBS Video 

Commercial 
band 

1.55 MHz  9.6 kbps 

56 kbps 

128 kbps 

352 kbps 

772 kbps 

WWMCCS 

Medical 

STU III and VTC 

STU III 

Imagery 
Table 25 Estimated Bandwidth Requirement 

 

Tactical Data Links 

Naval tactical command and control is primarily conducted over voice and three 

data networks; the Joint Planning Network (JPN) that is used for planning, strategic 

awareness, and command of forces; the Joint Data Network (JDN) used for tactical 

control of forces and weapons employment; and the Joint Composite Tracking Network 

(JCTN) that is used for the computer-to-computer tracking of fast moving (air and 

missile) contacts. Each of these networks is designed to provide a level of situational 

awareness through the tracking of aircraft, ships, land units, and other objects of interest. 

The situational awareness picture in the JPN uses overlays to provide commander’s 

intentions and planning in graphical format. The JPN is the primary net the commander 

uses to transmit intentions and plans. 

 

4. UAV Control & Communications 

A key attribute of the proposed CROSSBOW Force is the ability to deploy 

Unmanned Air Vehicles (UAV) for Surveillances, Air-to-Air Strike and Air-to-Ground 

Strike.  The fundamental command and control functional requirement of UAVs consists 

of an uplink and downlink channel.  The uplink channel must be able to send command 

and control instructions for the maneuver of the UAVs telling them where to go, what to 

see or track and whether to fire its ammunition. The downlink channel must be able to 
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provide the operator with the data gathered by the UAVs, be it image of the EO/IR, SAR 

sensor or its location, altitude, direction or target track data.  Based on the developmental 

trends, the uplink data rate requirement is expected to be less than or at worse equals the 

existing 200 kbps rate used by Predator or Global Hawk.  The downlink data rate is 

expected to follow the MPEG 2 compression/transmission standard dictated by the 

Motion Imagery Standards Profile (MISP) in Joint Technical Architecture (JTA) 4.0.    

MPEG 2 requires a transmission bandwidth of 6-8 Mbps for full color motion image at 

30 frames/second. It can be reduced to about 1.5 to 2 Mbps for gray scale motion image. 

The functional requirement identified will require three physical components.   A 

Ground Control Station (GCS) on board Sea Archers that will allow the Commander to 

command and control the UAVs, a Communication Link that can handle the required 

data rate and a Transceiver unit for both the Ship and the UAV.   Operationally, each Sea 

Archer will be able to control at least 8 UAVs simultaneously. Control of the UAVs willl 

be  interchangeable among the Sea Archers when required. Information downlink from 

the UAVs will be accessible to all surface combatants within CROSSBOW and be able to 

hand over UAV control to land-based GCS for ground support missions.     

The command, control and communication of the UAVs carried by the 

CROSSBOW Forces will fall within the Navy’s C4ISR vision of Joint and Naval 

Warfare laid out in the Navy “ Copernicus Concept…Forward”. Two of these 

developments is to integrate UAV operations with the Services joint C4ISR 

infrastructure, they are the Tactical Control System (TCS) and Tactical Common Data 

Link (TCDL).   
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A proposed system architecture using TCS and TCDL for CROSSBOW UAV 

command and control communication is shown below. 

Figure 32 UAV Communications and Control 

The number of platforms that the TCDL is able to accommodate will depend on 

the communication scheme and required data rate.  Although the proposed 

communication scheme is able to accommodate up to 60 UCAVs and 20 ISR UAVs 

uplink at 200Kbps, 60 UCAVs downlink of 2 Mbps and 20 ISR UAVs downlink of 10.71 

Mbps, it must be known that TCDL has to serve other platforms that could exist within 

the theater operation, like the Hawklink.  Hence, the possibility of saturation must be 

taken seriously.   Tactically, UCAVs should be grouped as a single task force wherever 

possible and cut down on channel requirement. 

The communication and control of the UAVs/SEA ARROWs will be through the 

Multi-Function Apertures that are dispersed across the hull of the ship.   
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F. DAMAGE CONTROL 

An Automated Damage Control System (ADCS) will assist in SEA ARCHER 

achieving the requirement for reduced manning. Considering that a large number of 

personnel is assigned to damage control organizations onboard ships of today, a 

significant reduction will be permitted by ADCS. 

The damage control system, including the chemical, biological and radiation 

warfare system is described below. 

 

1. Detectors 

The available and proposed fire detection systems, smoke detectors, carbon 

monoxide detectors, fire and flame detectors, CCTV system, heat detectors, smart micro 

sensors, humidity detectors, and liquid level detectors are analyzed for the best selection 

for SEA ARCHER. 

A ship-wide array of sensors allows continuous monitoring compartment by 

compartment. Pinpoint detection will indicate the exact location of the damage. 

Progressive damage or changes in damage will be updated or reported in real time. 

Controlling actions can be directed to the exact area where required. The speed of the 

response will be greatly increased by eliminating the need to search for the damage 

within present detection zones.  

Multi-sensor fire detectors will monitor each compartment. Fiber optical, or 

ionization, or electrostatic smoke detectors, triple wavelength infrared flame, carbon 

monoxide, closed circuit television, and high performance optical, or fiber optical heat 

sensors will detect smoke and fires. Monitoring of a fire's progression from the first 

smoke, through the initiation of the flame, until ultimately the detector is physically 

damaged, is accomplished, with this detector array. Various alarm thresholds can depict 

different conditions from the same sensor. Safety of Life at Sea (SOLAS) guidelines were 

used in determining the type of fire and smoke detectors required in each space.  

Compartments located below the damage control deck will also be monitored for 

flooding by liquid level detectors. Flooding detectors consist of multiple sensors located 

from bilge level to overhead. Stability information can be calculated by the use of seven 



114 

detectors per compartment. The detectors are located to indicate the presence of liquid, at 

2 and 6 inches, and monitor flooding at 10%, 25%, 50%, 75%, and 100% of the 

compartment height.  

Important parameters about ship status will be monitored as well. All the remote 

operated valves and compartment accesses will be monitored for exact material condition 

present. 

Paint lockers and pump rooms will be monitored for explosive gases and lack of 

oxygen. Sewage spaces will be monitored for hydrogen sulfide gas. Air conditioning and 

refrigeration rooms will be monitored for refrigerants and low oxygen levels. Other 

appropriate monitoring will be conducted in spaces subjected to localized hazards.  

Immediate notification to control stations will prevent unaware watch standers 

from entering the compartments.  

The type of detectors installed in each type of compartment is shown in Table 26 

Compartment 3IR CCTV HPO FO Smart Humidity Liquid Level 
Machinery spaces X X X -- X -- X 
Engine enclosures X -- X -- X -- -- 
Magazine areas -- -- -- X X X X 
Electronics 
equipment rooms 

X -- -- X X X -- 

Hangar X X -- -- X -- -- 
Flight deck -- X -- -- -- -- -- 
CIC X -- -- X X -- -- 
Bridge -- -- X -- X -- -- 
Accommodations -- -- X -- X -- -- 
Kitchens&Galley -- -- X -- X -- -- 
Offices -- -- X -- X -- -- 
Passageways -- -- -- -- X -- -- 
Paint lockers -- -- -- -- X -- -- 
Pump rooms -- -- -- -- X X X 
A/C&Refrigeration 
rooms 

-- -- -- -- X X -- 

Table 26 Installation of the Detectors Onboard 
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2. Data Network, Processing Centers, and Evaluation Tools 

All sensors will be connected to a data network allowing the various processing 

centers to access the information. The processing centers in turn pass the information to 

the control centers for display and decision-making. Multiple interconnected data 

networks are strategically routed throughout the ship. The redundant networks enhance 

the survivability of the system. All data networks will carry the same information, 

providing backup in the event of loss of a network. Each single network is capable of 

handling the entire system requirements. The recommended data network would be a 

Thin Ethernet based upon the report "Ethernet Options for the EX-USS Shadwell" by 

David Tate and Dr. Frederick Williams of the Naval Research Lab. [30] 

Multiple distributed processing centers are located throughout the ship, with one 

center per zone. Each processing center is a hardened PC capable of independently 

supporting the system. Processing centers send information to the control centers, pass 

the information to evaluation tools, or initiate action based upon the sensor alarms.  

3. Control Station Display and Interface 

Control stations will be located at the main watch stations including the Bridge, 

CIC, Damage Control Lockers, and Engineering Control Center. All control stations will 

have full control and display capabilities. However, they do not have processing 

capability and therefore loss of a control station does not affect the system. Watch 

standers will be able to monitor the alarms and sequence of events that follow. Colorful 

graphical displays will provide easy-to-understand plots of the damage. This 

representation allows the control station operators to make faster, better-informed 

decisions in relation to their areas of control. The watch stander will be able to analyze 

where in the related compartment the fire is by looking at the display and determining 

which detector in the compartment alarms. Damage control plotting would be 

automatically performed from the known sensor information. Actions performed by 

damage control personnel could be added manually to the display at any control station. 

On scene personnel would have wireless hand held input/output into the ADCS.  

Control stations can allow the system to act automatically or in a manual mode. In 

the automatic mode all preprogrammed events will be carried out without crewmember 
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involvement. In manual mode, the system will prompt a watch stander with the suggested 

action but will wait for the approval before carrying out the action.  

 

4. Isolation System 

The first reaction to any reported damage will be to isolate the damaged 

compartment to control or limit the spread of the damage. Remote closure of main 

personnel accesses will be controlled through the use of hydraulically and pneumatically 

operated watertight doors and hatches. Remote watertight actuators and fan settings will 

control ventilation. By concentrating on these main closures, damage is restricted to the 

smallest area possible. The ventilation closures may be kept open to facilitate certain 

procedures. The various arrangements will allow compartment de-smoking or the 

establishment of a buffer zone.  

The automatic watertight doors and hatches will be located on the damage control 

deck and below. The watertight closures are located primarily for control of flooding. 

Automatic watertight hatches will prevent the vertical rise of damage, while; hydraulic 

doors will prevent horizontal damage progression. These automatic closures can be 

controlled remotely by the ADCS, allowing material condition to be set remotely and 

quickly. The watertight doors can, in emergency, be forced shut even in flooding 

situations. Required secondary escape scuttles will be still be available for egress. The 

scuttles are normally closed, but will be monitored to assess closure. Personnel will be 

responsible for these closures. The electric power will be rerouted around the fire 

boundary. 

 

5. Reactive System 

The available and proposed fire suppression systems, FM-200, FE-13, NAFS-III, 

inert gas, carbon dioxide, AFFF, and water mist are considered the best selection for SEA 

ARCHER. 

Active damage control measures will be required to keep the damage contained 

and from progressing. Fire extinguishing methods include the use of a ship-wide water 

mist sprinkler system, AFFF flooding, FM 200 system and carbon dioxide flooding.  
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Independent extinguishing agents, such as carbon dioxide flooding for the paint 

locker and FM 200 for the electronics equipment compartments will protect specialized 

spaces. Water mist sprinklers will protect machinery spaces. Combinations of the water 

mist sprinklers and AFFF sprinklers will be used to combat fuel fires in the machinery 

spaces and the hangar bay. 

 The type of fire suppression systems installed in each type of compartment is 

shown in Table 27 

Compartment FM 
200 

CO2 Water 
Mist 

AFFF 

Machinery spaces -- -- X X 
Engine enclosures -- X -- -- 
Magazine areas -- -- -- -- 
Electronics 
equipment rooms 

X -- -- -- 

Hangar -- -- X X 
Flight deck -- -- -- X 
CIC X -- -- -- 
Bridge X -- -- -- 
Accommodations X -- -- -- 
Kitchens&Galley X -- -- -- 
Offices X -- -- -- 
Passageways X -- -- -- 
Paint lockers -- X -- -- 
Pump rooms -- X -- -- 
A/C&Refrigeration 
rooms 

-- X -- -- 

 

Table 27 Installation of the Fire Suppression Systems Onboard 

 

There will be a safety area on the flight deck where burning aircraft will be 

extinguished by AFFF system installed on the deck. This burning aircraft will be pushed 

to that safe area by a Towboat, which is capable of both pushing and extinguishing with a 

portable AFFF system. 
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6. Chemical, Biological and Radiation (CBR) System 

SEA ARCHER will be capable of performing launching and recovering of the 

aircraft for all types of CBR contaminated environments.  

Long-range detection systems for chemical, biological and radioactive agents will 

be installed on SEA ARCHER. Also, portable chemical and biological mass 

spectrometers, joint chemical agent detectors, radiac equipment, and CBR protective 

clothes will be available at each damage control locker, and hangar bay.  

A collective protection system will protect the manned areas against CBR warfare 

in SEA ARCHER. All aircraft will be decontaminated in the elevators, which are a part 

of the collective protection system, after recovery. In case of emergency, one elevator 

will be adequate to operate and decontaminate the contaminated aircraft, although for 

redundancy purposes two of the elevators will have the capability. 

7. Personal Locator Device (PLD) 

The ship’s crew will be issued a PLD. The PLD is a kind of electronic bracelet, 

transmitting the identity of the crew. Receivers around the ship will detect the signals 

from the PLDs, and a data network will be connected to the damage control data network.  

There will be three modes of operation of PLD: (1) personal location, (2) personal 

paging, and (3) emergency notification. From the damage control displays, the location of 

each person will be monitored. Emergency notification mode will be used by the 

crewmember him/herself, if he/she is in an emergency situation, to notify the watch 

stander.[31] 

8. Damage Control Party Organization 

As a consequence of ADCS, the number of the personnel in a damage control 

party is reduced to fourteen personnel consisting of one unit locker leader (repair party 

leader), one scene leader, two investigators, two nozzle men, four hose men, and four 

boundary men (repair men).  

Also, a thirteen men flight deck damage control party, formed by the aircrew, will 

be ready for the manned flights and for both manned and unmanned flights against a 

probable damage on the flight deck. This damage control party consists of one unit locker 
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leader (repair party leader), one scene leader, two nozzle men, four hose men, two rescue 

men (protection clothed), two divers, and one medic. 

 

9. Damage Control Elements and Scenarios 

The habitability deck is chosen as the damage control deck. The ship is divided 

into three damage control zones. One damage control party is assigned for each damage 

control zone. Three damage control lockers are placed on the damage control deck. 

Fire and smoke boundary settings take two forms: (1) material condition, (2) 

manned boundaries. 

Material condition settings is such that all watertight as well as non-watertight 

boundaries that require setting as a result of material conditions Y or Z should be fully 

mechanized such that no personnel are required to open or shut them. The ability to open 

or shut these closures will be performed by remote control via the damage control 

displays. 

In the event of damage, manned boundaries will be provided in the compartments 

surrounding the primary damaged area in order to contain the damage to a box, in case of 

the failure of the ADCS. 

The hangar bay will have two fire-resistant curtains. These curtains will be in two 

parts, each rolled to the tumblehomes of the hangar bay. The bottoms of the curtains will 

slide on wire tracks. 

A probable peacetime fire-fighting scenario is thought to be as follows. The 

nearest detector to the fire will detect the smoke of the fire. Immediately, the watch 

stander will be warned by the alarm. He/she can detect where the fire is in that 

compartment by the location of the detector. The personal locator device network will 

inform if there is a person in that compartment or nearby. As he/she will be able to see 

the composition of the combustion products, it will also be possible to determine the fire 

class. Automated fire suppression, rerouting the electrical power and ventilation, closing 

or opening the appropriate hatches will be done at the same time via the remote controls. 

During all of these, the damage control party will be getting ready to take over the fire 
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fighting. If the detectors in that compartment are damaged, or not working properly, the 

detectors around that compartment will inform the watch stander that something unusual 

is happening. Eventually the damage control party will engage the fire. 

Another scenario is envisioned for wartime, missile hit situation. The sensors 

detect the missile, and can determine where it is going to hit. If there are any personnel in 

or around that compartment, he/she will be warned by both the personal locator assistant 

and the interior communication system. The automated fire suppression system in the 

target compartment(s) to be hit will be activated. At the same time, rerouting the 

electrical power and ventilation, closing or opening the appropriate hatches will be done 

via the remote controls. As this is a wartime scenario, the damage control parties are 

already ready for action. 

In both scenarios, the electronic devices, on the valuable electrical equipments, 

will inform about the status of that equipment in the compartment. 

10. Crew Egression 

Five on each side of the ship, a total of ten, throw over board life rafts with 

twenty-five personnel capacity, will be installed. The total capacity of the life rafts is 250, 

being ten percent more than the crew size. They will be evenly distributed and will be 

inside a shield to reduce their contribution to radar cross section. 

 
Figure 33 A Typical Life Raft for Sea Archer 
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G. AUXILIARIES 

The goal of auxiliary systems selection was to improve reliability and 

maintainability of fluid, electrical, and mechanical systems, support reduced manning, 

and reduce ship magnetic signature and vulnerability to mines. 

Magnetic Sensors 

As an innovation to SEA ARCHER, a magnetic sensor will be placed on 

an electrical equipment to detect the power consumption to provide information if there is 

any other failure or whether the equipment is damaged or not. 

A network will provide all the information from these magnetic sensors to 

the damage control and engineering department displays. 

Variable Speed Pumps 

Another innovation will be variable speed pumps, to reduce the weight, 

maintenance, and power and to increase efficiency, which allows the use of those pumps 

at different speeds. 
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H. HABITABILITY 

1. Accommodations 

SEA ARCHER incorporates the latest quality of life standards including the sit-up 

berth, with the flexibility to accommodate mixed gender as a part of the crew and 

aviation personnel. 

Individual staterooms for the commanding officer, executive officer, and one flag 

officer on board will be available, with integrated shower and toilet. 

Officer staterooms can accommodate two officers. A typical arrangement of an 

officer stateroom is shown at Figure 34. Three officer toilet and shower compartments, 

each with three toilets and three showers, will be installed. 

 

 

 

 

 

 

 

 

Figure 34 Typical Officer Stateroom Arrangement 

 

A typical CPO stateroom can accommodate six CPOs, which is shown in Figure 

35.  Three CPO toilet and shower compartments, each containing for three toilets and 

three showers, will be provided. 

The sit-up berth will be used in SEA ARCHER for the ability to sit upright in the 

bank, and shown in Figure 36.   This provides forty percent more stowage space than a 

classical bank; a writing/reading surface, electrical outlet, shelf for small items and 

personal fan units are provided. Three sit-up berths in each of the eight enlisted 

compartments can accommodate a total seventy-two. 
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Figure 35 Typical CPO Stateroom Arrangement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 Sit-up Berth 

 

 

Accommodation arrangement including personnel, area and volume is shown in 

Table 28 
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Table 28 Accommodation Arrangement 

 

Available spaces for other habitability compartments intended for recreation of 

the personnel are shown in Table 29. 

 

 

Compartment Area m2 Volume m3 

Officers’ Wardroom 90 270 
CPO Mess 60 180 
Enlisted Mess 70 210 
Galley 60 180 
Gym 30 90 
Others (Offices, Work Shops) 200 600 
TOTAL 510 1530 
 

Table 29 Habitability Compartments Other Than Accommodations 

 

2. Food Services 

The decision was made to have cook and chill technology, which is an innovation 

in LPD-17, for food preparation at the initial phase of the cruise or deployment, for 

Rating Number of Per 
stateroom 

# 
stateroom  

Area 
m2 

Total 
Area 
m2 

Volume 
m3 

CO 1 1 1 15 15 45 
XO 1 1 1 10 10 30 
Flag Officer 1 1 1 15 15 45 
Officer 32 2 16 8 128 384 
CPO 30 6 5 15 75 225 
Enlisted 72 9 8 12 96 288 
Maintenance 9 9 1 12 12 36 
Transients 45 15 3 15 45 135 
Officer Toilets 3 -- -- 6 18 54 
CPO Toilets 3 -- -- 6 18 54 
Officer Showers 3 -- -- 6 18 54 
CPO Showers 3 -- -- 6 18 54 
Enlisted&Transient 
Toilets&Showers 

4 -- -- 6 24 72 

TOTAL 211 -- -- -- 408 1224 
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reduced manning. All the food will be prepared in one galley, and the food storages will 

be near the galley for reduced manning again. On the rest of the cruise, frozen food will 

be maintained to reduce manning and also the need for storage. Also, biodegradable meal 

containers will be used for reduced trash onboard. 

 

3. Other Services for Reduced Manning 

Shipboard Wide Area Network (SWAN) will be installed onboard the ship. All 

staterooms will have computers available for the inhabitants. The time for the daily 

scheduled briefs will be reduced by sending e-mails daily, or when needed.  

Utilities like laundry, and ship’s store will be self-service to the crew. Coin 

operated vendoring machines will be available.  

The material for the deck will be selected, as mentioned in chapter IV, part A, 

such that it will demand less waxing. Also, the paints will be long endurance paints, and 

as the surfaces are not metallic, less paint will be needed. 
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I. TOTAL SHIP SYSTEM 

Figure 37 illustrates the complex nature of ship design. The ship integration and 

engineering aspect of the SEA ARCHER design involved bringing the individual pieces 

and subsystems of the ship together to ensure a synergistic relationship among the 

components.  The ship systems are integrated and function to compliment the various 

missions that must be performed.  The integration processes began with developing an 

understanding of how the ship would function with in the CROSSBOW force and how 

each mission the ship performs influences specific system requirements.  Once the basic 

system requirements were understood the methods required to effectively construct, 

maintained, upgraded, and operated SEA ARCHER were determined.  Specific areas of 

consideration included:  

1. Ship construction and methodology 

2. Operational Supportability to include  

a. Manning,  

b. Logistics and Resupply  

c. Maintenance Support 

3. Modularity and Upgradeability 

4. Survivability 

Each of these areas is addressed below.   

To facilitate implementation of the SEA ARCHER concept a ship design 

philosophy was employed to manage competing priorities.  The design philosophy was 

not intended to substitute or replace sound engineering judgment but instead assist in 

focusing the integration process to ensure that any differences between competing 

mission needs were settled in favor of meeting the top level objective of the SEA 

ARCHER design and the CROSSBOW force.  The design philosophy with their relative 

priority is listed in Table 30   
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Figure 37 Wireframe View of SEA ARCHER 
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SHIP DESIGN PHILOSOPHY PRIORITY SET 

SURVIVABILITY HIGH 

AUTOMATION HIGH 

REDUCED MANNING HIGH 

UPGRADEABILITY MEDIUM 

MAINTAINABILITY MEDIUM 

RELIABILITY MEDIUM 

MANUFACTURABILITY LOW 

COMMERCIAL OFF THE SHELF 

TECHNOLOGY 

LOW 

Table 30 Ship Design Philosophy Priorities 

 

 

1. Construction and Methodology 

The large beam of SEA ARCHER requires a large dock facility for construction 

and outfitting.  To expedite ship construction a modular building method will be 

employed.  The ship will be built in functional groups and segments that will facilitate 

local outfitting and testing.  The internal bulkhead separation of the ship allows efficient 

module development for the engineering plant.  The engine-room gas turbine layout and 

cushion air inlet fan duct arrangement are split between both side hulls and are easily 

segmented into building/construction zones.  The AC and DC zonal electrical power 

distribution system also facilitate this design approach.  Each zone built will include 

standard interface connections for power, ship monitoring system (SWAN), and any 

other support service required to ensure interoperability with each adjoining zone.     

The modular construction zones will be determined based on best practices of 

commercial industry.  Zones will be designed to allow a variety of commercial 

shipbuilders to participate in construction. 
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2. Operations Support 

The SEA ARCHER interior and exterior designs were developed to maximum 

operational flexibility while keeping with the priorities of the design principles.  The 

basic profile of the ship was governed by the need to conduct unmanned aerial vehicle 

flight operations.  Figure 38and Figure 39are exterior profile views of the hull.  The large 

flat deck area is the essential component here.  Similarly the integrated flight and hangar 

decks required a large interior volume, which controls the basic profile for the ship.   

 
Figure 38 Hull Exterior Profile 

 

The most prominent feature of the ship is the lack of a single integrated mast or 

superstructure.  The mast structure was eliminated through the use of multiple planar 

arrays, which are discussed in the combat systems section of this report.  Additional 

special communications requirements are supplemented by the use of small dome arrays 

located in the flight deck region on the starboard side of the bow and stern.  The dispersal 

of the command, control, sensing and communications assets contributes to the reliability 

and survivability of the ship by preventing a single point of failure.   
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The lack of a superstructure is a unique feature of the SEA ARCHER design.  

This feature necessitates performing the ship control, piloting and navigation functions in 

a different manner.  The design includes a bridge/pilothouse located at the bow just 

forward of the hangar deck and below the flight line.  The ship propulsion controls and 

navigation functions are fully automated and may be performed by two people.  

Additionally, all functions can be performed either from the bridge/pilothouse or the 

integrated ships operations center.  A closed circuit camera system will be employed to 

support lookout functions, and to maintain a virtual presence in areas of obstructed 

visibility.   

 

  
Figure 39 Hull Profile Aft View 
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3. Arrangements  

The SEA ARCHER design incorporates a single deck, which runs the length of 

the ship, to support mission operations and habitability functions.  Similar mission 

functions are grouped in close proximity to facilitate work flow and operations.  Figure 

40through Figure 42 show the internal arrangements of SEA ARCHER.  Some of the 

special features in the arrangement plan include: 

a. The co-location of ship and aircraft operations spaces.  This was done 

to provide an efficient support for the ships primary mission.  The space 

is located centerline between the side hulls.   

b. One galley to support all meal preparation functions.  The officer, chief 

petty officer and enlisted dining facilities are collocated to allow easy 

meal service.  Additionally, all dry food and refrigerated storerooms are 

located within close proximity to support meal preparations.   

Storerooms are located along the sides of the hull in areas under the 

hangar deck that will support ease of restocking.  

c. Extensive repair and auxiliary machinery spaces are provided to support 

onboard maintenance.   

d. Multiple damage control spaces, each capable of managing all of the 

ships damage control resources.   

e. Multiple ship control stations.  SEA ARCHER may be piloted from 

either the Ships Combat Operations Center or bridge. 

f. Dispersal of vital resources, such as electrical generation, to improve 

reliability in cases of battle damage.  

g. Integrated support for modular replacement of ship systems.  The 

primary combat systems and ship operations stations are located on 

modular frame construction grid built into the centerline area of the 

ship.  This facilitates rapid and easy reconfiguration and upgrade.  
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Figure 40 Internal Arrangements 
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Figure 41 Internal Arrangements - Forward 
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Figure 42 Internal Arrangements - Aft 
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4. Manning 

The manning requirement for SEA ARCHER is 75 for ship’s company, 53 for Air 

Wing.  The shipboard total is 128 personnel.  SEA ARCHER is manned with 27 officers, 

27 Chief Petty Officers, and 74 enlisted.  Fifty additional temporary berths are provided 

for evacuees or for “tiger team” personnel as necessary.   

Manning levels were determined primarily based on General Quarters 

requirements for watch stations and fire fighting parties.  To achieve manpower 

reduction, we began with an assessment of watchstations and determined an appropriate 

set for SEA ARCHER.  We assumed the personnel required for SEA ARCHER would be 

more highly skilled on average than personnel on a typical navy ship today.  A 

significantly higher number of the personnel would be required to carry on multiple tasks 

and be able to think on their feet.  As such, our manpower profile is more “top heavy” 

than traditionally observed on U.S. navy combatants.  Table 31 and Table 32 reflects the 

watchteam profiles and manpower assignment considered for SEA ARCHER.  A 

breakdown of how manhours are apportioned is included in chapter V. 

To achieve these manpower requirements, each piece of equipment placed 

onboard the ship must be given careful consideration of its workforce impact.  There is 

no way to achieve these manpower requirements given the standard set of navy 

equipment in use today.  Even some of the simplest pieces of equipment in use today are 

manpower intensive and must be re-designed with reduced manning at the forefront of 

consideration.   

The CV(X) manpower study presented CVN 76 manning and some assumptions 

on how much manning could reasonably be reduced for CV(X) [32].  The study detailed 

weekly manpower estimates for CVN 76 totaling 245,000 manhours for 3,246 billets not 

including airwing requirements.  Assuming technology and automation advances take 

reduce manpower requirements by 90 percent as in manufacturing plant conversions, then 

the CVN shipboard manpower requirement of 245,000 manhours per week could be 

presumed reduced to 24,500 manhours per week for SEA ARCHER.  The design 

assumes that manpower reductions due to technology advances and automation can be 

applied linearly across all manhours.   
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With SEA ARCHER, given 75 personnel and presumed 12 hour workdays, the 

ship achieves 6300 manhours maximum.  Tiger teams of 50 personnel for maintenance 

could be arranged to arrive once a month and work for a period of 7 days.  At 12 hours a 

day of labor, that would bring an additional 4200 manhours per month or equivalent of 

1050 manhours per week.  This would have to be traded off with the logistics required to 

support the movement of the tiger teams for one round trip each month and their lodging 

onboard ship for the week.   

With the tiger teams accounted, we amass approximately 7350 manhours per 

week.  Our goal was 24,500 manhours in the best-case scenario.  The difference of 

17,150 manhours must be accounted for by a reduction in major maintenance 

requirements and re-categorizing some of what is considered today, routine ships force 

maintenance, to intermediate or depot level maintenance.  To achieve the manning 

specified, manhour requirements for ships force would need to be reduced by 97 percent 

over a current CVN. 

SEA ARCHER’s manning was determined to be 128.  However, further research 

would need to be conducted in order to refine and validate the number of shipboard 

personnel required to operate and maintain the ship.  To achieve our manning objectives, 

we required that non-essential functions currently performed by shipboard personnel such 

as program overhead and collateral assignments be shifted to shore support facilities.  

Some of the assumptions, for automation, may not come to fruition due the fact that 

automated equipment itself requires some maintenance.  Additional maintenance 

personnel have been included to account for automation, however further research would 

be needed to refine and validate the number.  
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Table 31 Ships Manning Matrix 
 

AIR Operations
Ops Maintenance Logisitics Helo

FLT DK CTRL 1
HGR DK CTRL 1
A/C Handler 2
FLT OPS 5

Air Boss 1 Ops O 1 Maint O 1 SUPP O 0 Pilots 5
Air XO 0 Ops CPO 1 Maint CPO 1 Supp CPO 1 Air Crew 3
Admin 1 OPS Support 1 Air Mech 2 Supp Clerk 1 Maint 10

Air ET 2 AV QA 1

0 9 0 0 0 9
0 2 Section 18 2 Section 0 2 Section 0 0 Air

Sub-total
2 3 6 3 18

1 Section 2 2 Section 6 1 Section 6 1 Section 3 18

2 24 6 3 18 53
 

Table 32 Aviation Manning Matrix 

SHIP Operations
Bridge Ops Engineer Service

Watch OOD 1 TAO 1 EOOW 1 Galley (WC) 1
JOOD/Driver 0 CICWO 0 Mn Plant Rover 2 Galley 2
NAV 1 Air Control 0 Aux Sys Rover 2
BMOW 0 Air 1 Eng Plant Ctr 1
F L/O 0 Surf/Guns 1
A L/O 1 Subsurf 0

EW 1
Mine CM 0
Deck Ops 1

Support CO 1 Intel/OPS su 1 Aux/DC Sys 2 SUPP 1
XO 1 ET/EW 1 Electrical 2 SUPP 2

Comms 1 ET/IT 2 ADMIN 2
Laundry/FS Su 1

GSM 3 Med 1
helm 0

Deck 

Watch Section 3 5 6 3 17
Watch Total 9 15 18 9

Maint/Support 2 3 9 7
Maint/Support Total 1 Section 2 2 Section 6 1 Section 9 1 Section 7 Ship

Sub-total
Sub Total 11 21 27 16 75
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5. Logistics and Maintenance 

The operational requirements document for the CROSSBOW system stated the 

minimum sustainment capability for SEA ARCHER.  The SEA ARCHER design 

includes provisions as listed in Table 33 

 

Provisions Capacity 

Dry Food Stores 90 days 

Ship Ordnance 30 Days 

Aviation Ordnance 7 Days 

Fuel 4500 mT 

Table 33 Provisions Capacity 

 

Provisions for refueling at sea are incorporated in the SEA ARCHER design.  

Four refueling at sea stations, two port and two starboard, are provided.  Each station is 

capable of transferring fuel to or from the ship.  The stations are located on the hangar 

deck level aft of the aircraft maintenance area and aft of the aircraft elevators.  The 

forward stations are located in the frame bay/hull deck support area and are positioned to 

prevent interference with aircraft operations within the hangar bay.   

Dry stores and ammunition will be provided by vertical replenishment methods.  

To support the minimal manning requirements of the SEA ARCHER platform, all stores 

and supplies are provided in palletized or containerized form.  Modern commercial 

practice for warehouse management and inventory control, which include barcode and 

automated scanner technology, will be employed.  This will allow automation of supply 

provision procurement and management.  Storerooms are located with in the ship to 

support direct restocking from areas on the hangar deck. 

Minimum manning for this ship required a new maintenance approach.  The SEA 

ARCHER platform draws upon commercial maritime experience in determining the type 

of maintenance required and the mix of personnel required to perform the maintenance.  
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The ships basic manning includes personnel, whose full time duties, and primary function 

is to maintain the ship.  Maintenance man-hour reductions will be essential to achieve the 

manning reductions for SEA ARCHER.  To support this, system reliability and 

supportability will be included from initial component selection.   

Ships force personnel will be expected to perform operational level maintenance 

only.  This capability will be limited to functional unit fault isolation and swap out repair.  

Although the ship has significant repair capability included on the hangar deck and 

operations deck level, the requirement for major maintenance to be performed by ships 

force has been eliminated.  “Tiger teams” of 50 personnel, which will come aboard at 

least every 30 days.  They will provide any maintenance beyond the operational level.  

These additional support personnel will be provided from the carrier battle group, a shore 

based intermediate maintenance activity, or a dedicated support vessel such as the 

notional SEA QUIVER in the CROSSBOW concept.   Sufficient berthing and 

habitability provisions have been include for these personnel in the SEA ARCHER 

design.   

 

6. Modularity/Upgradeability 

Modularity and the ability to rapidly upgrade and reconfigure the SEA ARCHER 

system have been design into the platform.  Modularity begins with the hull construction, 

where the hull section will be built in integrated modules.  This modular concept is 

extended to provide a means to upgrade and improve the ship over its operational 

lifetime.  Centerline sections along the ship, in between the side hulls, are provided with 

modular power, data and auxiliary service interfaces.  These interfaces are built in a 

standard configuration to allow rapid replacement of operations compartment systems.  

This will allow development and testing of new complete systems prior to insertion in the 

ship.   

Significant use has been made of commercial off the shelf technology and open 

systems architecture.  Commercial “best practices” and industry standards are employed 

whenever possible to allow systems to capitalize on new technology as they emerge. 
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The large internal volume of the ship provides significant growth potential for 

other mission and ship systems.   

 

7. Survivability 

The SEA ARCHER design team assigned survivability as the highest priority.  To 

support this objective some survivability features built into the ship include: 

a. Reduced radar cross-section.  The ship employs signature suppression and 

geometric based radar cross-section reduction techniques.   

b. Infrared signature suppression methods.  Hot discharge gases from the ships 

7 gas turbine engines are discharged in between the side hulls and cooled 

with sea spray.  This reduction in hot gas temperature also provides the 

added advantage of reducing hot gas impingement on the composite hull. 

c. Redundant and fully functional ship systems.  Specifically the damage 

control stations and the ship control stations. 

d. Combat survivability is enhanced by locating vital spaces between the side 

hulls and away for the exterior of the ship. 

e. Distributed communications, sensors, and command and control 

capabilities.  This is accomplished by removing the single point of failure of 

a mast structure. 

f. High damage stability of the hull form 

g. Propulsive plant reliability and redundancy.   

 

The SEA ARCHER design allows the graceful degradation of ships capabilities 

through survivability and system redundancy.  The systems integration has attempted to 

prevent a single point failure from causing a “mission kill” in any area.     Every major 

functional system has been designed with at least one contingency mode of operation.  
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8. Cost Estimation 

In estimating SEA ARCHER’s acquisition cost, we produced a weight scaled 

model similar to that employed in the S-CVX study [33]. The resulting model 

incorporates the non-traditional weight fractions, the high cost for materials not 

commonly associated with large ship construction, and the cost for highly specialized 

equipment required to meet SEA ARCHER’s mission.  Cost estimates for SEA 

ARCHER’s specialized equipment included in the cost model are summarized in Chapter 

V. 

The lead ship cost for SEA ARCHER is estimated at $1.41 billion and its 

accompanying airwing cost is $388.4 million.  When equivalent weight only cost models 

for current warships designs are utilized, SEA ARCHER’s cost is $1 billion.  In our 

opinion, the weight only cost estimate is low based on the specialized materials and non-

standard weight fractions inherent to the SEA ARCHER design.  Cost was driven by 

several factors including hull material selection, combat systems, command and control 

systems and automation.  For this iteration of our design cost minimization was given the 

lowest priority to allow maximum exploration of potential new technologies.      

SEA ARCHER contains some innovations precluding a simple comparison to 

current ships whose primary mission is aviation operations.  First, in an effort to reduce 

manning, automation was included in the design wherever feasible.  A significant effort 

was given to automation of the aircraft handling, weapons handling and damage control 

functions of the ship.  These are traditionally manpower intensive operations.  

Automation cost includes the hardware necessary such as robotic arms, conveyers, 

elevators and the software needed to orchestrate the operation.  In our cost estimate, the 

cost of such software was estimated to be 75 percent as much as the cost of the hardware.  

In reality, that number can vary.  For simple systems, generally the hardware is 

significantly more expensive than the software operating it.  For example, a robotic arm 

serving one particular function in the auto industry may cost $250,000 and have a control 

program which cost the owner $50,000 in Intellectual Property (IP) services provided by 

programmers.  However, for more complex systems, i.e. those requiring complex 

decision matrices such as in our automated Damage Control System, the number can 
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easily be twice and three times the cost of the hardware.  The SEA ARCHER system is 

intended to have a lot of autonomous functions.  With respect to overall automation costs, 

our estimate takes the conservative lower middle ground based on the idea that once such 

software is developed, its use can be replicated such that the impact on a single ship 

would average to the lower end. 

SEA ARCHER’s combat system and weapons suite were compared to that 

employed in Arleigh Burke class ships.  As seen in the weapons/sensors section of this 

report, some of SEA ARCHER’s sensor and weapons systems include high-end 

equipment including a volume search radar, multi-function radar, electronic warfate suite, 

infra-red search and track, electro-optical system, chain gun/chaff launcher, free-electron 

laser, and a 16 cell vertical launch system with quad missile bays among others.  Though 

these systems do not give our ship the same capability as a Burke in terms of mission 

profile, they do carry the same relative cost for the capability required.  The combat 

systems and weapon suite also have secondary cost impacts on the SEA ARCHER 

system.  The sensing and free-electron laser systems require a significant amount of 

electricity.  This energy demand forced a requirement of more power generation and 

hence higher electric plant cost.    

The single biggest cost-driving factor in our design was speed.  Speed drove a 

number of design elements from hull selection to propulsion system.  The high-speed 

objective required a non-conventional hull form and material selection that resulted in the 

added cost of carbon fiber for weight reduction.  Our cost estimate includes $100 million 

addition for carbon fiber construction.  Although some commercial industry sources 

suggest this was twice the current cost, we assess the military unique requirement, to 

include an armor plating (Kevlar), and a thermal boundary layer, as major cost additions.  

The carbon fiber material costs are potentially as expensive as $10 per pound.  This 

yields a total raw material cost of just over $62 million.  The blowers required for the air 

cavity added to the ship’s weight, and electrical burden.  Overall, the hull brought direct 

costs of its form and material as well as the cost of required blowers.  Selection of a high 

technology engine and propulsor combination brought an estimated $140 million for 

material alone, based on manufacturers cost data.     
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The true cost of speed was not fully studied in our design process.  However, 

there are some observations worth noting.  First, as mentioned previously, speed drove 

hull form selection, propulsion, additional equipment, and indirectly electrical plant 

selection among others.  The consolidation of such modifications compared to a weight 

scaled version of cost presented by the S-CVX study suggests that $400 million was 

added to the ship design to meet speed requirements.  That is roughly estimated based on 

the additional cost presented by the hull form, propulsion system, air cushion blowers, 

and a scaled amount for the electric plant and fuel.   

Though a complete life-cycle cost assessment was not conducted as part of this 

design process, we would speculate that in a squadron’s entire life, all the automation 

systems could be fully replaced roughly 7 times before reaching the manning cost of a 

CVN(X).  In that sense, over the life of the ship, the automation equipment more than 

compensates its added cost. 

Although SEA ARCHER squadrons are not intended as a direct replacement for 

CVN(X) and do not provide the same firepower or power projection, the mission types 

are relatively comparable and provide a viable alternative to consider for cost analysis 

and comparison.  SEA ARCHER squadron, air assets can easily be apportioned to meet 

the needs of a given situation.  With CVN(X), these assets are an all or nothing provision.  

With CVN(X), if a smaller crisis should break out, a decision must be made whether it is 

significant enough to commit the assets of CVN(X) entirely and whether the such risk is 

worthwhile.  The same argument is presented in terms of force level survivability.  The 

loss of a CVN(X) results in the loss of its entire air assets whereas with a SEA ARCHER 

squadron, the loss of one SEA ARCHER removes only 1/8th of its air assets.  Thus, there 

is less assumed risk in sending the necessary level of force to meet a given situation. 
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V. ANALYSIS AND TRADE STUDIES 

A. HULL 

1. Hull Type Selection 

Hull-Type Candidates 

The SEA ARCHER Mission Needs Statement and Operational Scenarios 

illustrate the requirements for high-speed transport in the littorals, with above the average 

seakeeping abilities. The very high maximum speed requirement of 60 knots by itself it 

was a major challenge since there are no existing ships of a considerable size that reach 

more than 40 or 45 knots. This fact along with the non-existence of a tool that could 

provide, with some level of accuracy, power requirements from first principles required 

the design team to base the calculations on geometric and dynamic similarity while 

extrapolating existing data. This is known to be a high-risk approach but it was 

considered to be the only option for the amount of time that the design team had 

available. 

The design team considered as candidates all the hull forms for which a 

reasonable amount of engineering data was available. A basic characterization of the hull 

form candidates based on their means of support can be seen in Figure 43 

 
Figure 43 Hull Form Candidates Characterization Based on Means of Support 
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Given the data that were available in the naval engineering and maritime 

community the design team soon realized that some hull forms could not be considered because 

of the very high power requirement. A generic power versus speed curve for the basic hull forms 

can be seen in Figure 44. 

 
Figure 44 Generic Power versus Speed Curve 

 

For this reason Monohulls and Planing Monohulls (although some supporters of the 

Planing Craft will argue) were not considered to be viable options since the demand in power was 

found to be extremely high for the SEA ARCHER speed.  SLICE and SWATH (small water plane 

area hulls) were considered for their very good seakeeping characteristics but they were ruled out 

by the design team because of their poor ability to operate in the littorals as a consequence of their 

relatively deep draft. Hydrofoils were considered for their low resistance characteristics at high 

speeds but the design team soon ruled them out because of their very low efficiency when 
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operating in the mid-speed range. The SES (Surface Effect Ships) were considered for their low 

overall resistance but there was a concern because of the decay in their seakeeping performance in 

moderate sea state as can be seen in Figure 45. 

 
Figure 45 Speed Degradation with Sea State for Various Hullforms. 

 

Promising candidates for the SEA ARCHER hull were considered to be the Wave 

Piercing Catamarans and the Trimarans.  For the former a lot of existing data were available and 

ships are operating successfully at speeds between 40 and 45 knots. INCAT from Australia kindly 

provided the design team with additional data as well as with some design concepts of larger and 

faster vessels. Recently, the U.S. Navy contracted for tests for seaway performance and power 

requirements with an INCAT design vessel.  From those tests and the data collected a power 

curve for Wave Piercing Catamarans was created.  For the Trimaran on the other hand not a lot of 

data were available for high-speed vessels. Recently the Royal British Navy has shown interest in 

building future ships with Trimaran hulls.  A test ship was built and is still in testing. Data was 
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collected from different existing Trimarans and concept designs to create a power curve for 

Trimarans. 

 Another candidate considered was the Pentamaran, designed by Nigel Gee and 

Associates Ltd. This hull-type consists of a very slender monohull with four struts on the sides, 

two forward and two aft. The very slender hull has a high length to beam ratio that makes the 

vessel operate in high speeds with low resistance.  

The candidates that were chosen to be considered for further analysis were the 

Wave Piercing Catamaran, Trimaran, SES and the Pentamaran. 

 

Further Narrowing of the Possible Candidates - AOA 

As next step in the selection of SEA ARCHER hull form the resistance of each 

candidate was found for different speeds. Data were collected from existing ships and designed 

concepts. Where model test data were available the resistance was calculated based on standard 

model theory. The calculations and the data were then compared and validated. Finally, power 

curves were created for comparison. In the power curves, the volumetric Froude number was used 

as the basis for comparison since the design team considered it to permit comparison among 

different kinds of multihulls. 

The main tool used in this phase of the hull selection was a series of spreadsheets 

created by the Maritime Applied Physics Corporation from Maryland. This tool was created for 

the Massachusetts Institute of Technology (MIT) as a “first cut” tool for different hullforms 

evaluation. This tool was intended for relatively small vessels with speeds up to 40 knots. This 

tool allows the comparison of Hydrofoils, HYSESs, SWATHs, SESs, Planing Monohulls, 

Catamarans, and Trimarans. The design team found the tool useful but there were a lot of 

limitations because of SEA ARCHER’s high speed and considerable payload requirements. To 

overcome this difficulty the design team modified the spreadsheets so that reasonable results 

could be generated. Validation of the results was made against existing and concept designs with 

very good level of accuracy (less than 10% error). 

In the AOA phase of the design, sensitivity studies were conducted so that further 

narrowing down of the possible candidates could be made.  The design team was able to relate 
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ship size to payload, range and speed. Graphs were created by keeping constant either the speed 

or the range, using all the hullform candidates.  From those graphs the design team determined the 

best possible candidate between the Wave Piercing Catamarans, Trimaran, SES and Pentamarans. 

A sample of these graphs can be seen in Figure 46.  In this figure the speed and range were kept 

constant (50 knots and 4500 nm) while the payload was varied. It can easily be seen that the 

Pentamaran gives the least displacement.  Similarly the rest of the graphs created show the same 

result. From the above, the design team considered the Pentamaran as the best candidate at that 

stage. 
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Figure 46 Displacement vs. Payload Graph Comparing SES, Catamaran, Trimaran and Pentamaran. 

 

Payload Considerations 

Before any additional progress could be made, the design team had to  concentrate 

on finding SEA ARCHER’s payload. The team decision on the payload was based on the ORD 

and the additional Operational Scenarios that were given at the beginning of the second design 



 150 

quarter. In the Analysis of Alternatives phase the design team defined the payload as can be seen 

in Table 34 (only the one squadron version is shown here).  

Sea Archer AOA Study Results    
    

  

 1 Sqd   
w/Sea 
Arrow  

1 Sqd  
w/JSF 

1 Sqd w/o 
Sea 

Quiver 

Sea Archer Payload       
Airwing       

Sea Arrow (LT) 30   30.4 
JSF (LT)   85.7   

UAV's (LT) 16 15.6 15.6 
MAS (LT) 0 0.0 0.0 

Helicopters (LT) 21 20.5 20.5 
Airwing Ordnance (LT) 169 1180.0 156.1 

Airwing Fuel (LT) 653 1527.5 652.5 
Aircraft Landing and  Recovery (LT) 227     

Automatic Aircraft Handling 15     
Ship's Weapons Systems (LT) 379 378.6 378.6 

Added Electic Load 600     
        

Logistics       
Stores (LT) 0 0.0 0.0 

Airwing Parts (LT) 5 6.5 19.4 
Ship Parts (LT) 350 350.0 700.0 

        
TOTAL 2464 3565 1973 

  
Table 34 AOA Payload Summary 

 

The six different alternatives were given by the faculty requirements setters and 

were not a product of a design process by the team. As can be seen from Figure 46 in all the three 

different alternatives the Pentamaran gave the least displacement. In Table 35 the size of the SEA 

ARCHER Pentamaran hull can be seen for the six different alternatives under consideration. The 

spreadsheet outputs of the calculation tool used for the AOA can be found in Appendix A.  

Operational Scenarios given after the Analysis of Alternatives changed the payload 

requirements considerably. The requirement for transit was decoupled from the maximum speed 

and there was the additional requirement for SEA LANCE refueling.  Because of the way that our 
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tool understands payload and range we had to define as payload, despite the traditional Navy 

definition, additional weights such as fuel for SEA LANCE, additional engine weight to achieve 

60 knots in addition to the 50 knot range speed, and the requirement for 20% remaining fuel.  
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Table 35 AOA Hull Dimensions Results 

 
 

New SEA LANCE Concept 

The team, after reviewing the SEA LANCE refueling requirement, as described in 

the Operational Scenarios, decided that it was going to be a major driver for the SEA ARCHER 

size and cost. So after discussion with the faculty a new notional SEA LANCE Concept was 

created based on the same hull form as the SEA ARCHER. The team had to calculate a ship with 

the same speed requirements as the SEA ARCHER but with the payload of the SEA LANCE and 

with a range of 2000 nm. After a quick design procedure the new characteristics of the SEA 

LANCE were created and can be seen Table 36. 

Speed (knots) 50 

Displacement (MT) 1030 

Range (nm) 2000 

Fuel (MT) 197 

  
Table 36 New SEA LANCE Concept Characteristics 
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The new payload requirements for SEA ARCHER can be seen Table 37. Two different 

missions were considered, the transit and the operations, both of them with the new SEA 

LANCE fuel requirement. Also a 10% margin would be included in the final calculations 

for design and growth. 

 
MISSION 1: 

TRANSIT 
MISSION 2: 

OPERATIONS 
Sea Lance Refueling   (MT) 315 631 
Remaining Fuel (20%)  (MT) 419 419 
Additional Weight for 60 knots  (MT) 57 35 
   
Fuel Required for 7 days operations 

(MT)  1537 
   
Total Additional Payload  (MT) 793 521 
Fuel Required for the 50 Knot Transit 

(MT)  2099 
Initial Payload  (MT) 2558 2558 
TOTAL (no margin)  (MT) 3351 3081 

  
Table 37 Final Payload for SEA ARCHER Design. 

 
 

Final Hull Selection and Calculations 

At the end of the AOA phase new data for two similar hullforms, were found by the 

design team, which caused the team to consider them as very promising candidates. A Harley SES 

hull-type, which is based on technology patented by Vibtech, Inc. of Rhode Island, became a 

candidate. The hull is a Wave Piercing Catamaran; however it differs from a catamaran in that 

there are air cavities built into the underside of each sidehull.  Blower pressurized air is supplied 

to the cavities to form an air cushion, similar to a surface effect ship, which supports about 80% 

of the vessel weight. As in the SES case this results in a decrease in draft and a reduction of the 

wetted area resistance. There is another air-cushion catamaran hull-type, similar to the Harley 

SES with some modifications in the sidehull shape that was designed by Air Ride Craft Inc. of 

Miami Florida and referred to as Air Cushioned Catamaran (ACC). The performance of this 

vessel is similar to Harley SES and since more structural information was accessible for the 

Harley SES it was chosen over the ACC. 
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Initially the ACC was considered and was compared with the Pentamaran, which was the 

preferred choice after the AOA. Similarly with the sensitivity study contacted in the AOA phase, 

graphs were created to show the size of the vessel as we increased the payload and kept 

everything else constant. Two of these graphs created can be seen in Figure 47 and in Figure 48. 

In those figures the range and the speed were kept constant while the payload was increasing.  
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Figure 47 Graph Displaying the Displacement Crossover Point Between Pentamaran and ACC 
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HP vs PAYLOAD FOR 50 KNOTS AND 4500 MILES 
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Figure 48 Graph Displaying the Required Horsepower Crossover Point Between Pentamaran and 

ACC 

Both the payload and the power required show the same trend. Clearly there is a crossover 

point where the one hullform is preferred over the other. In our case the preferred choice is the 

ACC.  Another reason that caused the design team to choose the ACC instead of the Pentamaran 

is that the power curve created for the Pentamaran was based on only one existing ship whose 

speed is only 30 knots. The extrapolation procedure here is very weak and does not create any 

confidence. As previously mentioned the design team chose to proceed with the Harley SES 

design since considerably more resistance data, structural information and model descriptions 

were found. 

As mentioned above, the Harley SES is essentially a combination of a Wave Piercing 

Catamaran and a skirt-less SES. A vessel with this type of hull can have two major operating 

modes off cushion and on cushion. In the off cushion mode the vessel should have similar 

resistance characteristics as the Wave Piercing Catamaran. In the on cushion mode the vessel 

should have the resistance characteristics provided by the model testing data from Vibtech Inc. 
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Harley SES Power Curve Based on all Data & 
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Figure 49 Power Curve for Harley SES Based on All the Data Compared to Catamaran 

In Figure 49 two curve fits were created. One from the data selected for the Harley 

SES and one for the Catamaran.  Since a single power curve for the SEA ARCHER for the whole 

range of speeds was needed, the design team decided to create a power curve having three 

different regions. One was for high speeds (above 1.5 Froude number) where the Harley SES 

concept is very efficient and should operate fully on-cushion. The 1.5 Froude number corresponds 

to 45 knots speed for a 13,000 LT ship. This 45 knot crossover point can be found from the 

intersection of the Catamaran and the Harley SES curves. The next mode should be partial 

cushion operation where the vessel begins to resemble a Catamaran and the power requirement is 

similar to the Wave Piercing Catamaran (quadratic fit). The last one is completely off-cushion 

where the vessel operates in low speeds (below 25 knots or below 0.8 Froude number); the 

resistance for that speed range can be found easily from first principles as the frictional resistance 

plus the catamaran wave resistance and resembles a linear fit of the Harley SES data. The final 

power curve is given in Chapter IV. 

After a final modification and optimization for the Harley SES hullform the 

analytical tool was used to finally size the SEA ARCHER. The final dimensions were calculated 

based on weight inputs from all the different sub teams. To finally size SEA ARCHER we used 



 156 

geometric similarity and a concept design from Vibtech Inc. The final dimensions of SEA 

ARCHER are given in Chapter IV. 

 

2. Hydrostatic Calculations 

For calculating the hydrostatic values and performance of SEA ARCHER the hull must be 

drawn. The design team used Rhino 3D to make the initial drawings and to create the necessary 

geometry files. For the hull - only section we used a scaled model of a concept design created by 

Vibtech Inc. At this point it should be mentioned that although the design team realized that the 

very large beam of the ship would create problems with the construction and the support of the 

ship in the United States the same length to beam ratio was used so that the model theory for the 

power requirements would be valid. 

From the hydrostatic analysis results the SEA ARCHER is found to be a very stable 

platform with high values of reserve buoyancy. This is something expected since this is a general 

advantage of the multihull vessels. The floodable length was also calculated and the results show 

the increased survivability features of SEA ARCHER. The body plan of the SEA ARCHER’s hull 

can be seen in Figure 50 while isometric views of the hull can be seen in Figure 51 and Figure 52. 

 
Figure 50 SEA ARCHER’s Hull Body Plan View 
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For the hydrostatic calculations we used Auto-Hydro. The results from the Auto–Hydro 

calculations can be seen in Appendix B. It has to be mentioned that the marine software 

community only recently has started to incorporate multihulls in their programs and that is 

obvious in the case of the SEA ARCHER. The design team had to change considerably the 

geometry files so that the software could understand the shape of the hull by introducing 

pseudohulls. 

 

 
Figure 51 SEA ARCHER’s Hull Top Isometric View 
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Figure 52 SEA ARCHER’s Hull Bottom Isometric View 
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B.  PROPULSION 

 

1.  Main Engine Analysis and Trade Studies 

The propulsion study began by focusing on the requirements set out in the 

Mission Needs Statement (MNS) and the Operational Requirements Document (ORD).  

Based on these two documents, propulsion studies focused on the following areas: SEA 

ARCHER speed of 60 knots, Commercial Off the Shelf Technology (COTS), reduced 

manning, lower cost, reduced maintenance, high reliability, acoustically quiet, and the 

technology proven by the year 2012.  

All marine capable propulsion systems were investigated.  These included Diesel 

and Gas Turbine engines, Nuclear propulsion, and Fuel Cells, with key parameters 

identified and compared.  The parameters investigated included Specific Fuel 

Consumptions (SFCs), power to weight ratios, and propulsion weight.  The results are as 

follows: 

Nuclear Propulsion:  Nuclear propulsion was found not to be a viable option for 

the following reasons: manning and cost.  Nuclear propulsion requires more people in the 

engineering department.  Secondly, nuclear power plants total ownership costs are higher 

than conventional plants.  Since both of the previous disadvantages are contrary to the 

basic design principle of low cost and manning, nuclear power was dropped from 

consideration 

Fuel Cells:  Fuel cells were found not to be a viable option for SEA ARCHER 

propulsion.  Current fuel cell technology can only achieve output power levels at or near 

0.12MW for Marine applications, falling well short of the anticipated required output 

power (150MW-350MW).  Experts in the field were consulted and stated that by the year 

2012, Fuel Cell technology will not be mature enough for the power levels required to 

propel SEA ARCHER to 60 knots. 

            Diesel Engines:  Diesel engines were thoroughly investigated for possible 

feasibility.  Knowing the powering requirement could approach 350MW, all Marine 

capable medium speed Diesel engines were studied.  Diesels have the major advantage of 
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low Specific Fuel Consumption (SFC) but suffer because these engines have the potential 

of becoming manpower intensive and are extremely heavy.  It was found that the largest 

Marine capable Diesel Engine available was rated at 35MW ( ≈ 47,000 BHP).  This 

engine weighs nearly 347mT (mT=metric tons) and would require a minimum of 10 

engines (3474mT and ≈ 5000m3 of internal volume) to propel the ship to 60 knots.  

Based on the volume and weight required for the Diesel engine, it was found not to be 

feasible for SEA ARCHER.   Figure 53 illustrates the Power to Weight Ratio for the 

Diesel and Gas Turbine engine. 

Gas Turbines: Present production and anticipated Marine capable Gas Turbine 

engines were investigated.  The advantages of Gas Turbine engines are as follows: Gas 

Turbine installations are relatively simple/modular in design and are lightweight ranging 

from (0.68kg/Hp to 1.81kg/Hp).   They possess good high power fuel efficiency and are 

capable of rapid start up (times of less than 10 seconds are feasible), typical engines 

require reduced shipboard maintenance and produce less hull noise than equivalent power 

Diesel installations.  Units are currently available at 50MW ( ≈ 67,000SHP) and are 

estimated to reach 90MW ( ≈ 121,000SHP) within the near future.  Gas Turbines have a 

power footprint of 1650HP/m2 to 3100 HP/m2  (in the area of interest) as compared to 

415HP/m2 to 450HP/m2 for Diesels and approximately 10 HP/m2 for Fuel Cells. The 

disadvantages of the Gas Turbine engines include: unit cost of a Gas Turbine generator 

system is relatively high, increasing ship procurement cost.  Marine Gas Turbines are 

susceptible to damage beyond ship force capability to repair.  Large volumes of air are 

required to produce acceptable power levels.  This results in increasing intakes and 

uptake volume within the ship.  Gas Turbines produce a large infrared signature, which 

must be reduced by appropriate exhaust and stack design, Infra-red (IR) suppression 

systems add to the cost and weight of the ship, and the Gas Turbine has a higher SFC 

than the Diesel engine. 

After weighing the advantages and disadvantages for each potential propulsion 

systems, the Gas Turbine engine was found to be the most feasible option for SEA 

ARCHER.  It is estimated that approximately 6-8 Rolls-Royce Trent Gas Turbine engines 

could provide the required power up to 350MW with a volume of ( ≈ 1500m3 -2000m3) 

and a weight of ( ≈ 160mT - 210mT of engines).  The LM2500+ was also investigated 
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due to its lower weight and volume constraints ( ≈ 6mT/engine at 37m3/engine).   Figure 

53 illustrates the power to weight advantage of the Gas Turbine engine over the Diesel 

engine.   Figure 54 illustrates that as the power level increases, the SFC of the Gas 

turbine approaches that of the Diesel.  
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Figure 53 Power to Weight Ratio Comparison.  
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SFC vs Power for Gas Turbine and Diesel
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Figure 54 SFC Comparison. 

 

Based on the above analysis, a gas turbine engine was selected to be the prime 

mover for SEA ARCHER.  It was also mentioned that the Trent Gas Turbine, 

manufactured by Rolls-Royce, and the LM2500+, manufactured by General Electric, 

were the top candidates for the design.  What follows is a brief discussion on several Gas 

Turbines that were considered and ultimately which Gas Turbine(s) was selected for the 

design.  The driving factors used to select the final Gas Turbine were: ships speed, total 

fuel consumption, engine weight, engine volume, and engine cost.  It should be 

mentioned that power for the blowers, required for dynamic lift of the ship was 

considered an electrical load and was not part of the propulsion power requirement. 

LM2500 (25.06 MW, 33,600 SHP) 

Data for this engine was obtained from General Electric's website [34].  

This engine has a proven track record that dates back to the early 1960's.  The LM2500 is 

currently in use on US Navy ships and other naval ships throughout the world.  The 

disadvantage of this engine is low horsepower and high Specific Fuel Consumption 

(SFC) 0.373lb/(SHP-hr) or 0.226kg/(KW-hr) as compared to others.  For this design, 

more than eight LM2500 engines would be required for propulsion only (to achieve 60 

knots).  Based on this fact, the LM2500 was dropped from consideration.  Cost data for 
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General Electric Engines is available in Reference [35].  The LM2500 is pictured in 

Figure 55 below. 

 

 
Figure 55 LM2500 GTE (From Ref [34]). 

 

WR-21-ICR (25.24MW, 33847 SHP) 

The WR-21-ICR (InterCooler Recuperator) incorporates revolutionary 

advancements in Gas Turbine technology.  By using compressor intercooling, exhaust 

energy recover, and airflow management this Gas Turbine can achieve greater than 14% 

reduction in specific fuel consumption as compared to the simple cycle Gas Turbine and 

greatly reduces the ship Infrared signature (IR).  The efficiency of the WR-21 can lead to 

25% annual fuel savings depending on the ship's mission.  The disadvantage of the WR-

21 is weight [36].  The intercoolers and recuperators would add excessive weight (in 

terms of this design) to SEA ARCHER.  The engine weighs nearly 50mT and would 

require eight WR-21 Gas Turbine engines to achieve 60 knots.  Based on engine weight 

and volume requirements, the WR-21 was dropped from consideration.  The WR-21 is 

illustrated in Figure 56 from Reference [37]. 
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Figure 56 WR21 GTE (From Ref [37]) 

 

LM6000 (42.75MW-44MW, 57330 SHP-59000 SHP) 

According to Reference [38], the LM6000 is the most fuel-efficient, 

simple-cycle Gas Turbine in the world with an SFC at 0.200 kg/(KW-hr).  The LM6000 

has a higher thermal efficiency and lower exhaust gas temperature as compared to other 

General Electric engines.  The LM6000 requires 202m3 of volume and weighs 55mT 

(including Gas Turbine, inlet, vents, exhaust, Gas Turbine Enclosure, Gas Turbine Base, 

Auxiliary Skids, and Shock mounts).  This engine is well suited for high-speed ferries 

and cargo ships.  The LM6000 has a high power to weight ratio (7.85HP/kg).  The 

disadvantage of employing the LM6000 for SEA ARCHER is engine water-cooling.  The 

LM 6000 is a water-cooled engine requiring excessive weight and volume requirements 

not suitable for this design.  If used as the only prime mover, 5-LM6000 GTEs and 5 

reduction gears would be required to propel SEA ARCHER to 60 knots.  The LM6000 

GTE is illustrated in Figure 57.  
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Figure 57 LM6000 GTE (From Ref [34]). 

 

 TRENT (50MW, 67051 SHP) 

The Rolls-Royce Trent Gas Turbine is an aero-derivative Gas Turbine 

Engine that delivers 50MW at a thermal efficiency of 42%, comparable to the LM6000.  

The Trent Gas Turbine also possesses an attractive SFC at 0.205kg/(KW-hr) [39].  Of all 

the engines considered (with the exception of the WR-21), the Trent has the lowest 

exhaust temperature at 445°C.  The lower exhaust temperature provides SEA ARCHER 

with a lower IR signature.  The main disadvantages of this engine are its weight and 

volume characteristics.  Each Trent requires 248m3 of space and each engine weights 

nearly 12mT while the enclosure weighs 26mT.  However, this weight is lower than the 

LM6000.  SEA ARCHER requires, at a minimum, 4-Trent Gas Turbines Engines (at full 

rated power) to achieve 60 knots.  Four Gas Turbines would require 4 Main Reduction 

Gears and 4-waterjets/Hydro-Air Drives further increasing the volume and weight 

requirements.  The Trent GTE is illustrated in Figure 58. 
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Figure 58 Trent 50 GTE (From Ref [40]). 

 

 LM2500+ (30.2MW, 40500 SHP) 

The last General Electric engine considered in this design was the 

LM2500+.  The SFC for the LM2500+ is 0.215kg/(KW-hr) [41].  The LM2500+ entire 

module with engine weighs approximately 40mT (scaled from other GE engines and 

enclosure data) and occupies 67m3 of enclosure volume (does not include intakes and 

uptakes), far less than the Trent or the LM6000.  The LM2500+ is a direct descendant of 

the LM2500.  The performance of the LM2500+ represents a 25% increase in power 

output compared to the LM2500.  SEA ARCHER would require 7-LM2500+ to propel 

the ship to 60 knots.  Extra engines can have the advantage of providing a multitude of 

engine arrangements at different speeds where the propulsion plant can be optimized 

based on the mission profile.  Also, with 7-engines, maintenance can be accomplished 

more easily than a ship with only 4 or even 6 engines.  The LM2500+ has the 

disadvantage of a higher SFC as compared to the Trent, LM6000, and as will be seen, the 

Trent 30.  However, assuming Main Reduction Gears can reach 60MW and maintain the 

current weight (2001 weight) of 57mT, up to 8-LM2500+ engines will fit into SEA 

ARCHER.  The LM2500+ is illustrated in Figure 59. 
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Figure 59 LM2500+ GTE (From Ref [34]). 

 
 

Trent 30 (30-36MW, 40231-48277 SHP)  

The last engine considered was the Trent 30 GTE by Rolls-Royce.  The 

engine is advertised with a power rating up to 36MW (48277 SHP).  The total package, 

including enclosure and auxiliaries occupies a volume of 134m3 and weighs 26,000kg 

(26mT) [42].  The marine Trent 30 is compact and lightweight and possesses an SFC of 

0.2068kg/(KW-hr).  The Trent 30 has the best power to weight ratio in its class.  This Gas 

Turbine is available in mechanical and electrical generator sets (similar to GE generator 

sets).  The engine can be changed out within 12 hours.  The Trent 30 is acoustically 

enclosed and self-contained, meeting all military specifications.  Trent 30 is nuclear, 

biological, and chemical warfare designed.  This engine is highly reliable and readily 

available.  Another key feature of the Trent 30 is its ability to rapidly load-shed should 

waterjet aeration occur.   The Trent 30 is pictured in Figure 60.   
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Figure 60 Trent 30 GTE (From Ref [43]). 

 

To determine the correct prime mover for SEA ARCHER, all 

requirements were taken into account.  The ship was found to require nearly 188MW 

(252,000 SHP) to achieve 60 knots.  Also, 34MW ( ≈ 46,000 HP) is the anticipated 

requirement for continuous ship's service electric load.  As required by the design 

reference mission, the ship will only be required to be at 60 knots 3.5% 

(6hours/168hours) of the time in a 7-day period while in the operational area.  With this 

in mind, the ship will have excessive power available that is not being utilized.  To 

harness this extra power, a hybrid mechanical/electrical drive system was proposed.  

Engine selection was based on the advantages and disadvantages as discussed above, 

volume and weight constraints, technology maturity dates, specific fuel consumption, 

power to weight ratios, main reduction gearing, and finally, available propulsors.        

The technology cut off date for SEA ARCHER is 2012.  Advances in Gas 

Turbine and propulsion motor technologies are occurring rapidly.  It is assumed that 

advances in reduction gear and Waterjet/Hydro-Air Drive technologies (to be discussed 

later) will continue to advance, with decreasing weight and increased power levels.  For 

this design, Waterjets/Hydro-Air Drives are assumed to reach 50 MW and have rotational 

speeds of 400rpm (as projected) by 2012.  Main Reduction Gears will require a smaller 

reduction ratio (9:1 vice 21.4:1 for today); this will lead to significant weight reduction in 

gearing (40mT vice 45.55mT (currently) [44] for 50 MW units and 25mT for 36MW 

units).  Propulsion motor weight will continue to decrease from 140mT (currently) at 36 
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MW to 100mT at 36MW.  As waterjet rpm increase, motor rpm will increase, thus 

driving motor size down. 

A major consideration for a high-speed ship like SEA ARCHER is fuel 

consumption.  Recently, studies have been conducted concerning where Specific Fuel 

Consumption (SFC) for Navy ships is projected to be in 10-15 years.  It is anticipated that 

advances in high temperature materials will continue to improve and drive SFC down to 

0.26lb/(SHP-hr) or 158kg/(MW-hr) [45].   Figure 61and Figure 62from reference [45] 

illustrate SFC projection.  Using the SFC projection data, an SFC of 0.28lb/(SHP-hr) or 

170.2kg/(MW-hr) was utilized in this design. 

 

 
Figure 61   SFC Performance Predictions (From Ref.[45] ). 
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Figure 62 Far Term SFC Predictions (From Ref [45]). 

 

Main Engine Selection.  Each of the engines investigated had certain advantages 

and disadvantages.  The driving factors for engine selection were which set of engine 

types and arrangements would meet the required horsepower for both propulsion and 

electrical, provide a low SFC, and furthermore, fit inside the ship within the allotted 

volume and weight constraints.  Several iterations where performed on different engine 

arrangements (including mixing engine types), it was decided that 2-Trent 50 and 2-Trent 

30 Gas Turbine engines would be used for strictly propulsion while 2-Trent 30 

motor/generator sets would be used for both propulsion and electrical needs (see 

propulsion Appendix for different engine arrangement configurations considered).  This 

arrangement buys enormous flexibility by allowing several plant configurations based on 

mission requirements.  At low speeds, only certain engines will be on line, while at high 

speeds the big Trent 50's can be brought online to provide boost for op-area 

repositioning.  It was determined that the Trent engines are technologically further along 

in SFC improvement as compared to similar engines in their respective classes.   

 
2.  Propulsion Motors 

The following Propulsion Motors from Reference [46] were considered for this 

design.  Since the Trent 30 provides nearly 36 MW of rated power, a 36 MW induction 

motor was selected for the hybrid electric drive portion of the power plant.  Although 

only 35 MW versions are listed in the table, it is anticipated that a 36 MW motor can be 
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built and that substantial weight improvements can be made in the next 11 years both by 

motor rpm increase and material improvement factors.  The 140mT motor was selected 

and by 2012 is projected to weigh 100mT at speeds near 400rpm. 

 

Power 
(MW) 

Speed 
(rpm) 

Phase No Overall 
Length 
(mm) 

Overall 
Height 
(mm) 

Overall 
Width 
(mm) 

Weight 
(Tonne) 

35 100 21 6500 5080 5300 230 

35 100 2 x 15 12100 3750 4250 260 

35 100 2 x 15 9680 3750 4250 240 

35 135 21 5700 5080 5300 175 

35 170 15 4710 4210 5600 140 

38 110 21 6500 5080 5300 230 

40 130 21 5990 4270 5000 200 

44 125 21 6500 5080 5300 235 

Table 38 Induction Propulsion Motors (From ref [46]). 

 
3. Propulsors 

The following propulsors were considered to propel SEA ARCHER: propellers, 

PODS, Waterjets and Hydro-Air drives.   

Propellers are only efficient up to approximately 35 knots; at speeds greater than 

this, serious cavitation results.  Furthermore, a controllable reversible pitch propeller 

requires substantial navigational draft and hydraulic systems.  Since SEA ARCHER will 

be required to reposition at 60 knots, propellers were dropped from consideration.   

POD propulsors were also considered.  The disadvantages with PODs in a SEA 

ARCHER design are added drag resistance and increased navigational draft at lower 

speeds.  Both of these disadvantages caused PODs to be dropped from consideration. 

Waterjets/Hydro-Air Drive technology can deliver the power required by SEA 

ARCHER.  At present Kamewa and Rolls-Royce are building 50MW Waterjets for 
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Fastship Atlantic.  The disadvantage of the Waterjet is entrained water weight.  As stated 

in Reference [47], 50MW Waterjets with water in the duct can weigh as much as 470mT 

(fitted with steering and reversing gears).  SEA ARCHER would require 2-50MW 

Waterjets and 4-36MW Waterjets.  Even with a 15% technology improvement factor 

applied, these jets are too heavy.  Another potential risk with a pure waterjet design is 

aeration.  SEA ARCHER will operate on cushion a large percentage of the time; hence, 

air can be trapped in the inlet duct causing the waterjet to shut down.    This is an obvious 

disadvantage. A 50 MW waterjet is illustrated in Figure 63  

 

 
Figure 63 Kamewa 50MW Waterjet (From Ref [48]). 

 

A new technology called Hydro-Air Drive reduces the water weight substantially 

because the inlet duct is only half-full of water (when on cushion) by design.  Hydro-Air 

Drives combine the principles of Waterjets and surface-piercing propellers.    According 

to Reference [48], the Hydro-Air Drive features a flush inlet and a close-fitting protective 

duct that encloses its rotor like a waterjet.  The rotor operates only half-submerged at 

cruising and high speeds, however, similar to a surface propeller, it can be fully 

submerged at low speeds to double mass flow and increase thrust.  This design promises 

significant benefits in performance and efficiency, along with reduced costs.  

Furthermore, while offering all the advantages of conventional waterjets, Hydro-Air 

Drives claim to offer the following benefits: 1) significantly better efficiencies at high 

and low speeds, 2) improved low speed thrust, 3) no cavitation damage, 4) full reverse 
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thrust on the shaft, and 5) less susceptibility to damage or failure from debris ingestion.  

Reference [48] further states that improved Hydro-Air Drive efficiency at high speeds 

results from less inlet water not having to lifted as high, and the reduced wetted area 

friction compared with inlet water flowing into a traditional fully submerged waterjet 

rotor.  This translates to higher inlet pressure recoveries and therefore higher efficiency; 

refer to Figure 64 The disadvantage of the Hydro-Air Drive is that it uses a gearbox to 

reverse and a rudder to steer.  The rudder will add drag to the ship as well as increase 

navigational draft at slow speeds.  In order to take the weight and efficiency advantage of 

the Hydro-Air Drive, this designed used a combined Hydro-Air and Waterjet technology.  

The design uses Hydro-Air Drive with the Waterjet steering and reversing bucket for 

maneuvering.  Figure 65 illustrates the Hydro-Air Drive concept.     

 
Figure 64 Hydro-Air Half Submerged (from Ref [48]). 

 

 
Figure 65 Typical Hydro-Air Drive Install (from Ref[48]). 

 

To take advantage of the 15% technology improvement factor and the decreased 

water weight attributed to Hydro-Air Drive, all Kamewa Waterjet data was plotted to 

determine the most accurate weight of an anticipated 36 MW and 50 MW Hydro-Air 

drive unit [49].  Figure 66is a plot of all Kamewa waterjet data. 
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Figure 66 Scaled Waterjet/Hydro-Air drive Data (data from Ref [49]). 

 

The figure illustrates 4 plots.  The top dashed curve represents present day waterjet 

weight data including water entrained inside the waterjet.  The solid curve below the top 

curve represents a 15% technology improvement on current day waterjets.  The third 

curve from the top is the same as the second curve from the top except that 0.5 of the 

water was removed from the waterjet duct to take advantage of the Hydro-Air 

technology.  The bottom dashed curve represents the yellow curve with 0.5 of the water 

removed and no reversing or steering components.  The 50 MW waterjets/Hydro-Air 

Drives will only be used for boost and require no reversing or steering gear.  Only the 

36MW waterjets/Hydro-Air Drive units will be equipped with steering and reversing 

buckets.  The red circles represent the power and weights utilized in this design.   

 

4. Main Reduction Gears 

Main Reduction Gear (MRG) selection was based on prime mover selection.  

Since the Trent 50 and Trent 30 GTEs were selected for this design, both a 36MW and 

50MW MRG is required for SEA ARCHER.  General Electric, NAVSEA, Philadelphia 
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Gear, and Rolls-Royce were all consulted to determine MRG requirements for SEA 

ARCHER.  As stated in Reference [42], Philadelphia Gear has designed a 67,000SHP 

MRG for Fastship Atlantic (which will use the Trent 50 for propulsion).  They estimate 

this MRG to weigh 45.55mT.  Taking known reduction gear weight for several US Navy 

plants, a 36 MW reduction gear weight was determined based on linear scaling (this was 

verified by Rolls-Royce).  The 36MW MRG weighs 25mT.  
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C. ELECTRICAL 
 

The electrical system has been broken down into four subsystems.  These 

subsystems are power loads, power conversion, power distribution, and power 

generation.  The following section describes each category for SEA ARCHER.  Based on 

these studies and the electrical load requirements, the optimum system can be designed. 

1.  Power Loads 

The power loads were mainly based on the needs of the other systems in the SEA 

ARCHER design, and for the most part did not require trade-off studies.  With 

propulsion, however, the question arose of whether to keep the propulsion engines 

separate from the electrical systems, or to design an Integrated Electric Drive system 

(IED) that uses electrical power to drive the propulsion motors.  Three options were 

available.  They were to keep the electrical and propulsion systems independent, to use a 

complete IED system, or to use a hybrid-IED system, where some of the propulsion 

engines are electric drive and some of the propulsion engines remain independent.  The 

following paragraphs briefly explain the systems and their advantages and disadvantages. 

Conventional Power System:  By designing two independent systems for 

propulsion and electrical power, the complexity of each design is minimized.  This is 

only an advantage in the design phase.  With two independent systems, the power 

generators and prime movers are routinely not optimized and operate during many 

operating modes with high inefficiencies.  This adds extra weight and cost to the ship for 

the amount of useful power being generated.  Though this has been the standard method 

of designing ships, current technology allows for designing a more optimum propulsion 

and electrical system. 

Integrated Electric Drive (IED):  Integrated Electric Drive is a step 

towards increasing the efficiency of the propulsion and electrical systems.  By using an 

electric propulsion motor many advantages are gained.  The primary design advantages 

of an IED system are flexibility in locating prime movers and vertical integration of 

propulsion equipment.  In addition, the IED system decouples the prime mover speed 

from the propeller speed, allowing the prime mover to operate at a higher Specific Fuel 
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Consumption (SFC).  By optimizing the prime mover location, the intake and exhaust 

volumes can potentially be minimized.  In addition, the need for a long shaft is 

eliminated. 

By using common prime movers, an IED system can also reduce the 

potential manning size and reduce overall cost through elimination of components.  From 

a power aspect, using the same prime movers allow the prime movers to be operated at 

optimum conditions for the needed propulsion and electrical loads.  This reduces the 

amount of fuel consumed, which generates additional cost savings. 

The disadvantage of an IED system is that a large generator, power 

converter, and motor are inserted between the prime mover and shaft, vice a reduction 

gear.  The weight and volume of this equipment demands careful consideration. 

Hybrid-IED:  A hybrid version of IED, where only some of the engines 

are electric drive, possesses advantages and disadvantages compared to either the 

conventional or IED systems.  The mechanical drive propulsion motors will still operate 

inefficiently at low speeds, but overall weight and cost gains will be realized.  This is 

because ships do not operate at high speeds for extended periods of time so traditional 

propulsion turbines waste fuel when not operating at the most efficient speeds.  Electric 

drive propulsion motors can be modulated to operate at different speeds while keeping 

the electrical generator prime mover at a constant speed.  At low propulsion speeds, the 

excess power can be used to power ship service loads without the use of extra electrical 

generators.  As ship propulsion is increased extra electrical generators can be brought on-

line to supplement the propulsion power requirements. 

Summary 

Based on the extremely high power requirements needed to operate at 60 

knots, a true Integrated Electric Drive is not practical.  The cost, weight and volume of 

the combination of motor, converter module and generator for multiple propulsion drives 

preclude using a total IPS system.  However, by using electric drive on two of the 

propulsion motors, increased efficiency can be achieved in the electric plant.  Therefore, 

SEA ARCHER will have a hybrid Integrated Electric Drive. 
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2.  Power Distribution 

Four types of distribution systems were investigated in determining the optimum 

electrical arrangement.  These were the traditional radial, AC Zonal, DC Zonal, and 

modified AC/DC Zonal distribution. 

Radial Distribution:  One of the key advantages of the radial distribution 

system is that it has been fully developed and has been in use in Navy ships for years.  

The technology is well understood and the components are readily available 

commercially.  The drawbacks, however, are significant.  Because of the radial nature of 

the design, the distribution system typically has multiple switchboard panels, scores of 

power transformers and many switchboard feeder cables.  All these components add 

much weight and numerous watertight compartment penetrations, which adversely affect 

hull design and damage control. 

AC Zonal Distribution:  AC Zonal distribution allows the ship to be 

electrically segmented into multiple smaller sections.  Each section then has a couple of 

main bus lines that feed power to that particular zone, and the zones are connected 

together by their bus lines.  By designing the zones to coincide with watertight 

compartments, damage control is improved by minimizing electrical penetrations through 

the watertight bulkheads.  In addition, many feeder cables and transformers can be 

eliminated reducing the overall ship weight. 

Zonal distribution also benefits construction because of its modular nature.  

Each zone can be built and tested independently.  This simplifies installation and should 

reduce building costs. 

DC Zonal Distribution:  DC zonal distribution possesses the same 

advantages as an AC zonal distribution, but the bus lines carry DC power, vice AC 

power.  With DC zonal distribution added advantages are realized.  A primary advantage 

is that fault detection is simpler and faster, and can be isolated to a zone immediately.  In 

conjunction with fault detection, DC power uses diode auctioneering to maintain power 

to vital loads.  Diode auctioneering is superior to automatic bus transfer (ABT) switches 
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because power source is transferred in microseconds vice milliseconds or tenths of 

second as is common with ABTs.  

A second advantage is that the generator frequency is decoupled from the 

load frequency requirements.  This allows the generator to operate at its optimum speed 

for the load condition and still allow the loads to have constant frequency power. 

Current drawbacks to a DC zonal distribution are issues with converter 

EMI compatibility and system stability.  In addition, other drawbacks include research 

and design costs and power density optimization.  These issues are being addressed at the 

Land Based Engineering Site (LBES) in Philadelphia, PA, and it is expected that by 2012 

these issues will be largely resolved. 

AC/DC Zonal Distribution:  Because of the extremely high power 

requirement on SEA ARCHER coupled with the fact that some loads are non-sensitive 

and can tolerate millisecond-level casualty responses vice microsecond response times, a 

modified AC/DC zonal distribution was studied.  This distribution system would have an 

AC and DC power bus on both the port and starboard busses.  By using an AC bus, the 

high power AC loads, like the propulsion blowers, could be tied closer to the source 

output.  This would eliminate the need to convert the AC power to a high power DC and 

then reconvert the power back to high power AC for use, which would aide in 

minimizing the size of the converters and inverters needed.  The majority of loads, AC 

and DC, could still be powered by the DC bus line through smaller converters and 

inverters. 

Because of the two types of power sources, the number of electrical 

penetrations in the watertight bulkheads will double, thereby reducing the overall 

integrity of the watertight compartment as compared to a DC only zonal distribution. 

Summary 

It became apparent after investigation that a zonal architecture offers many 

advantages over the traditional radial architecture.  The technology exists to implement 

zonal distribution and the converter controls are understood.  Ideally, a DC zonal 

distribution system provides the greatest survivability advantage.  However, the number 
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of loads that have large AC power requirements and the need to minimize weight made it 

necessary to consider an AC zonal power line as well.  Therefore, the optimum electrical 

distribution for SEA ARCHER to employ is an AC/DC zonal distribution. 

3.  Power Conversion 

Based on the total power requirements of the power loads, section 1 above, it is 

assumed that notionally only 1 MW will need to be provided to each zone, including 

lifetime growth allowances.  Further design iterations would refine how much power 

each zone would really need.  Some might need more and some might need less, but 

notionally it is 1 MW.  Therefore the DC-DC and DC-AC power converter modules need 

only be able to supply a maximum of 1 MW of power.  Based on this maximum power 

load Table 39 and Table 40 show the current power converter module weights and 

volumes and the predicted year 2012 characteristics. 

The practical size of the power converter modules is limited by the admissible bus 

voltage and magnified by cabling requirements.  Despite the advancement of technology 

in solid-state electronics, the cables must be of specific size to carry the electrical current. 

 

Table 39 Gas Turbine and Power Conversion Module Weights 
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Table 40 Gas Turbine and Power Conversion Module Volumes 
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4.  Power Generation 

In determining the optimum electrical generation system, diesel and gas turbine 

engines were both investigated.  Detailed comparisons of their advantages and 

disadvantages are contained in the Main Engine Analysis and Trade Studies reported 

earlier. 

Both the diesel and gas turbine generators are capable of providing the required 

electrical needs.  However, the excessive weight and manpower of the diesel system, 

along with the fuel compatibility with the propulsion gas turbines, make the gas turbine 

generators the practical choice. 

Table 41 shows the major gas turbine generators investigated and their 

characteristics.  Based on the required electric drive propulsion and electrical load 

requirements and the need for a small generator for emergency and light load conditions, 

two Trent 30s and a GE 10 were chosen as the electrical generators to provide a total of 

83.2 MW. 

 

Table 41  Available Gas Turbine Generators 
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D. AVIATION OPERATIONS 

The driving factor in designing the flight deck, hangar deck, and ordnance 

handling system was reduced manning.  Current carrier operations are extremely 

manpower-intensive, which translates to high cost of ownership.  Automating as many 

functions as possible was a top priority in designing the aviation systems.  The caveat to 

these automated systems is that they must be high-reliability and low maintenance to 

truly achieve manning reductions.  Other specific requirements set forth by the 

Operational Requirements Document include: 

• Flight deck design should focus on automation.   

• High-speed launch and recovery operations should take place from an 
unmanned flight deck. 

• SEA ARCHER should have the ability to act as a “lily pad” (recover, fuel & 
launch) for AV-8s, VTOL JSFs, and helicopters under 30,000 pounds 
maximum gross weight. 

• SEA ARCHER should have responsibility for control of unmanned vehicles 
within its air wing. 

• SEA ARCHER should be capable of sustained combat operations of three 
days (threshold) and seven days (objective) without resupply.   

• A SEA ARCHER battle group should be capable of ninety days of self-
sustained peacetime operations. 

1. Aircraft Stowage and Service 

The first step in determining what the SEA ARCHER’s flight deck would look 

like was figuring out where the aircraft would be stowed and serviced.  To decide where 

the stowage and service functions would be located, the sortie rate was analyzed, with the 

result being that CROSSBOW’s distributed aviation concept eliminates the requirement 

for a single ship to launch large numbers of aircraft in a short amount of time.  The small 

airwing size allows almost 45 minutes to turn around an aircraft, a virtual eternity in 

carrier operations.  The net result is that options with the advantage of reduced manning 

are preferred over options that reduce turn-around time.   

To reduce manning, it is necessary to automate the refueling and rearming 

process.  The two automation schemes considered were assembly line type and pit stop 
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type.  The assembly line method would require a large amount of volume and would 

likely not reduce manning a great deal since a lot moving parts generally means more 

maintenance.  The advantage would be that it could turn around aircraft at a high rate, but 

as already discussed, this is not of great advantage in the distributed aviation concept.  

For the other half of the picture, where the service is performed at, the choices 

were: all aircraft topside, all aircraft inside the skin of the ship, or something in between.  

If all servicing were performed on the flight deck, the aircraft turn-around rate would be 

faster than if the servicing were performed in the hangar bay.  However, the high ship 

speeds involved would require an island to shelter the systems from the wind, and would 

generate a higher radar cross-section (RCS).  Moving all the functions to the hangar deck 

reduces RCS, wind, and corrosion concerns, but slows down the aircraft turn-around and 

requires an efficient means of moving the aircraft between the flight deck and the hangar 

deck.  The hangar bay must then be large enough to accommodate the automated 

servicing stations, maintenance areas, and stowage.  Since the aircraft turn-around time 

doesn’t drive the sortie rate, only the hangar bay’s size was a concern.  The initial 

analysis of alternatives by the hull team indicated that the ship would be weight-limited 

not volume-limited, so concerns about the size of the hangar bay were considered to be 

secondary.  The configuration decided upon was pit stop type servicing performed in the 

hangar bay and no aircraft stowed topside. 

2. Aircraft Launch and Recovery 

The next step in the design was to choose a launch and recovery method.  

Designing the layout of SEA ARCHER’s launch and recovery system was vastly 

simplified by not having any aircraft parked topside.  The first task was to determine if a 

catapult was necessary and, if so, what type.  The SEA ARROW was designed to take off 

unassisted with 40 knots wind over deck [52], making the no-catapult option a 

possibility.  Eliminating the catapult has numerous advantages including decreased 

manning, decreased ship’s power requirement, decreased volume, decreased weight, 

decreased cost, decreased structural requirement and stresses on aircraft, and no catapult 

reset time.  The disadvantages of not having a catapult include loss of ability to launch 

aircraft if dead in the water, decreased range of aircraft, and the need for more sea room 

due to higher ship speeds.  Having a catapult on the other hand, allows the ship to launch 
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aircraft even while at anchor and if the process can be automated, reduced manning can 

still be achieved.   

The dominating constraint in this decision was determined to be the tight sea-

space encountered in the littorals.  Having to make frequent high-speed runs is extremely 

complicated, especially in the littorals where traffic and water depth are always an issue.  

For this reason it was decided that SEA ARCHER would have a catapult.  However, 

since the aircraft can launch unassisted with 40 knots of wind over the deck and since the 

ship is capable of speeds greater than that, it was decided to have only a single catapult, 

with the back-up launching method being the unassisted launch. 

Five options were considered for the type of catapult to be used: steam, hydraulic, 

stored energy rotary drive (SERD), internal combustion catapult powerplant (ICCP), and 

electromagnetic aircraft launching system (EMALS).  Hydraulic catapults and SERD 

were discarded due to insufficient energy output and prohibitive manning and 

maintenance requirements.   Figure 67 shows the energies capable of being developed by 

the different catapult systems [53].  The horizontal line shows the energy required to 

launch a SEA ARROW with zero wind over deck.  Though steam launch is a proven 

method, it is prohibitive for ships with gas turbine propulsion and has the same 

prohibitive manning and maintenance requirements.  ICCP is viable with gas turbine 

propulsion, but still has prohibitive manning and maintenance requirements.  The 

remaining method, EMALS, was chosen because it had the most to offer with its high 

power density, reliability, closed-loop control, plus positive impacts on weight, manning, 

volume, and maintenance. 

For aircraft recovery, the current wire-recovery system can be improved by 

replacing the hydraulics system with the same linear motor technology used in the 

EMALS.  The Navy has designated this the electromagnetic aircraft recovery system 

(EARS) [54].  The advantages of EARS include high power density, reliability, closed-

loop control, reduced weight, reduced manning, reduced volume, and reduced 

maintenance.
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Figure 67 Available Catapult Energies 

 

3. Aircraft Movement 

Another manpower-intensive aspect of flight operations at sea, is the delicate 

ballet of aircraft movement.  The distributed aviation concept, by reducing the number of 

aircraft carried by a single ship, vastly simplifies this complex operation and opens the 

door for automated aircraft movement.  The high wind speed encountered during high-

speed ship operations also drives the design towards an unmanned flight deck.  With this 

in mind, the options considered for aircraft movement were:  unassisted movement 

(autonomous aircraft movement), use existing yellow gear, use a rail or tracked method, 

use robots, or some combination of these options. 

When considering the different options it became apparent that to make the 

system simpler, it was advantageous to combine a robotic and a tracked system.  The 

final iteration of the concept resulted in an aircraft movement system that uses diesel-

powered robots on the flight deck and electrical-powered robots guided by a track in the 

hangar bay.  Having the tracked system in the hangar bay reduces the complexity of 

aircraft movement down to a level manageable by a scheduling computer.  The computer 

can simply forecast aircraft arrangement and necessary movements to relocate any 

aircraft. 
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4. Ordnance Handling 

The ordnance handling system was changed numerous times throughout the 

design of the ship.  As the design evolved, different systems became more appropriate.  

Several features were common to all the designs, however.  To eliminate the manning 

necessary to prepare weapons, it was decided that SEA ARCHER would only carry all-up 

rounds that were finned and in all other manners completely ready for launch.  This 

would then require a special magazine designed to hold finned missiles and bombs.  

Additionally, the manpower required to move the weapons would be eliminated by 

completely automating the movement from the rack in the magazine to mounting the 

weapon on the aircraft. 

Two different options were considered for removing the weapons from their 

storage racks in the magazine:  a two-dimensional, translating “retriever,” and an 

articulated robotic arm mounted on a track.  To understand the retriever design, picture a 

honeycomb viewed from the end.  A weapon is stored in each cell of the honeycomb.  

The retriever would move over the face of this honeycomb to the appropriate cell, 

remove the weapon, and deliver it to the conveyor for transport to the pit stop.  The 

robotic arm idea was similar, except instead of being attached to the face of the storage 

racks, the robot rides back and forth on a track in the deck as in Figure 68. 

Ultimately, the robotic arm system was chosen over the retriever system.  Two 

factors helped make this determination.  First, robotic arm technology is already available 

and in use in industry today, thus reducing risk and cost.  Second, structural requirements 

of storage racks that could support the retriever were, to a first approximation, adding 

weight and volume to the ship that were unnecessary given the availability of the robotic 

arm design.  Given that the initial analysis of alternatives indicated the design was 

weight-limited it was decided that the robotic arm design better fit the overall ship 

system. 

The initial ordnance handling system design used conveyor technology to move 

the weapons through the ship between the magazine (assumed to be deep in the hull) and 

the hangar bay.  As the hull design evolved from a pentamaran to a surface-effect 

catamaran, the volume available low in the ship decreased pushing the magazines higher 
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and higher up in the ship.  Eventually the magazines ended up in the deck beneath the 

hangar bay, eliminating the need for a conveyor system.  The final design of the ordnance 

handling system needed only a shuttle to the weapons a short distance from the magazine 

to the pit stop. 

Figure 68 Ordnance Handling System 

 

5. Sizing/Scaling of Systems and Equipment 

Having obtained a conceptual design for each of the aviation services, it was then 

necessary to determine the size, weight, volume, power requirements, etc. of the 

equipment involved.  When possible, existing systems and their parameters were used 

and scaled appropriately for our application.  However, for many of the systems, it was 

necessary to quantify several of the unknowns in the design, so assumptions were made 

as necessary.  For example, in order to size the magazines, it was necessary to determine 

how much ordnance would be carried onboard to meet the requirements set forth in the 

Mission Needs Statement and the Operational Requirements Document.  But to quantify 

the amount of ordnance needed to meet those requirements, it was necessary to make 
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assumptions about what type of ordnance would be used and an expenditure rate of that 

ordnance.   

Robot Sizing 

The towbots were scaled off the SD-2 tow tractor currently used in the 

fleet today [56].  The SD-2 tractor has the capability to actually lift the nose gear of the 

aircraft off the ground in case the aircraft is damaged.  This capability was traded off to 

make the towbot smaller and lighter.  The assumption was made if the SD-2 didn’t have 

to lift the aircraft it would be half the size it is.  Given that the SD-2 can tow up to a 

70,000-pound aircraft, and the towbot need only tow up to a 20,000-pound aircraft, a 

two-sevenths scaling factor was used.  Thus, the towbot weight was given by dividing the 

SD-2 weight by two and then multiplying by the two-sevenths scaling factor, yielding a 

final weight of 730 kilograms.  The trackbots were sized by assuming that if the diesel 

engine on the towbot were replaced by a track-connector the robot would be ~270 

kilograms lighter, giving the trackbot a weight of 460 kilograms.  The flight deck 

firefighting robot was sized by taking a towbot and adding a 760-liter AFFF tank (780 

kg), a bulldozer type blade (100kg), and a water cannon (10 kg) for a total weight of 1620 

kg.  Given their application, the chainbots were assumed to be 115 kilograms.   

EMALS, EARS and Elevators 

The EMALS was sized using data provided by the Naval Air Warfare 

Center (NAWC) Aircraft Division Lakehurst.  NAWC Lakehurst provided up-to-date 

estimates of weight, volume, and power requirements for the EMALS system to be 

installed in CVNX-1.  To scale SEA ARCHER’s EMALS from the CVNX-1 EMALS, 

the kinetic energies imparted to the aircraft by the launchers were compared.  Using KE = 

½mv2, and inserting the SEA ARROW’s design weight and launch speed [52], for m and 

v, the energy required by the SEA ARCHER EMALS was calculated to be 16 million 

Joules (16 MJ).  Adding a 25% margin for future aircraft growth, the SEA ARCHER 

EMALS design launch energy was 20 MJ.  NAWC Lakehurst gave 122 MJ as the launch 

energy of CVNX-1 [56], with a stored-energy-to-launch-energy efficiency of 40%.  This 

requires that the EMALS Energy Storage Device (ESD) in SEA ARCHER must store 50 

MJ of energy in the 45 second cycle time giving an average power of ~1 megawatt (1 
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MW) and deliver that energy in a two-second launch for a peak power output of ~10 

MW. 

For weight and volume estimates, the NAWC Lakehurst team discouraged 

our original estimate of scaling our EMALS linearly from CVNX-1 EMALS based on 

power.  They suggested that rather than using an uncertain scaling relation, we should 

just use the sizes of a similar conceptual design they had done for an EMALS system to 

launch UAVs off replenishment ships.  That EMALS design had a shorter length and thus 

a greater acceleration but had similar power requirements to SEA ARCHER’s EMALS.  

Using the size and weight from that 76 metric ton design, the SEA ARCHER’s 

weight/volume breakdown is given in Table 42. 

Component Volume (m3) Weight (kg) 
Launch Motor 34 38,000 

Power Conditioning Inverter 18 11,400 
Power Conditioning Rectifier 7 7,600 

Energy Storage Device 23 19,000 
Total 82 76,000 

 
Table 42 Weights and Volumes of EMALS Components 

 

The EARS was sized by first calculating the energy dissipated in 

recovering a SEA ARROW using the landing speed given in Reference [52].  The result 

was that recovering an aircraft uses just under half the energy of launching an aircraft.  

Given this, the EARS system was sized as being approximately half the size and weight 

of the EMALS system:  38 metric tons, ~0.5 megawatts average power load, and 41 m3 in 

volume. 

The aircraft elevators’ power requirements were determined using 

information provided by Jered Industries, Inc., manufacturer of CVN deck-edge aircraft 

elevators [57].  The size of the elevator was driven by the desire to keep personnel off the 

flight deck.  This meant preparing the helo for launch (i.e. unfolding pylon and rotors) in 

the hangar bay.  Therefore, the elevator must be able to accommodate an unfolded SH-60 

helo.  Using the size elevator necessary to meet this requirement and the load weight the 

elevator would be required to handle, the data provided by Jered Industries was used to 
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determine the installed power requirements of SEA ARCHER’s aircraft elevators:  250 

HP (186 kilowatts). 

Reconnaissance UAV 

The only requirements specified for SEA ARCHER’s UAV were that it 

perform a reconnaissance mission and that it weigh approximately 5000 pounds.  Given 

no other data a parametric study of all existing UAVs was done to determine the size, 

weight, and payload of SEA ARCHER’s UAV.   An internet search on UAVs produced 

an extensive database maintained by NASA’s Wallops Flight Facility [58].  Using the 

data provided in this database, graphs of range, payload, and wingspan vs. weight were 

generated.  A linear relationship was assumed in all cases and the parameters for a 5000-

pound UAV were read directly off the graphs.  The results were a 5000-pound UAV with 

a range of 1200 nm, a payload of 500 pounds and a wingspan of 43 feet.   

Ordnance Payload and Magazine Sizing 

The magazine sizing has previously been discussed.  The only additional 

information worth noting is that the level of detail of magazine sizing went as far as 

determining the type, numbers and location of weapons in each magazine.  This was 

necessary to determine the size of the magazine since the ordnance racks are specially 

designed to hold each weapon.  To make sure it was possible to evenly balance the 

weapons loadout, the number of racks holding each type of weapon was determined.  The 

breakdown of the magazine loadout is given in Table 43. 
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Table 43 Magazine Loadout 

 

 

 

 Port Magazine Starboard Magazine 

Weapon 
# of 

racks 

# in each 

rack 

Total # in 

magazine 

# of 

racks 

# in each 

rack 

Total # in 

magazine 

JSOW 2 7 14 3 7 21 

HARM 13 3 39 13 3 39 

AMRAAM 4 6 24 4 6 24 

Penguin 1 5 5 1 5 5 

Sidewinder 6 5 30 6 5 30 

Mk 54 

Torpedo 
1 7 7 1 7 7 

Maverick 12 5 60 12 5 60 

JDAM 10 8 80 10 8 80 

Hellfire 9 9 81 9 9 81 
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E. COMBAT SYSTEMS 

1.  Radars 

Volume Search Radar 

 The U.S. Navy released a Radar Roadmap in 1999 to call for a greater 

commonality of radars across ship classes   The VSR selected for SEA ARCHER was the 

same radar as that proposed for the DD21 program, CVNX and possibly the upgrade 

radar for LPD-17. 

 Current research does not provide a size requirement for such a radar, requiring 

certain assumptions to be made.  It was assumed that an early detection of a supersonic 

aircraft is critical to allow the SEA ARROW to engage the target and prevent it from 

releasing its missiles. Furthermore, it is assumed that the ASCM has a range of 120 km 

and  it takes 6.5 minutes for a SEA ARROW to scramble from SEA ARCHER and fly to 

100km and fire its missiles to engage the enemy aircraft.  Then a supersonic aircraft must 

be detected at –  

Maximum Detection Range = Speed of enemy aircraft (Mach 1)× 6 minutes + 120 km 

   = (343 × 6.5 ×  60)/1000 + 120 

   = 253 km  

Assume   -  Aircraft radar cross section =  5 m2,  

  Radar Frequency = 2 GHz (L band radars are between 1-2 GHz) 

Probability of Detection, PD = 0.9 

Probability of  False Detection, Pfa = 0.01%  

Smin = 1 × 10-12 

Peak Power = 63 dB = 2 MW assumed 

Since, 
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Therefore the size of the antenna will be 3.5 m by 3.5 m large. 

This figure is only a rough estimation of the VSR and is not comprehensive.  It 

provides a rough installation guide for the platform and is not purported to be the actual 

system. 

Multi Function Radar  

Similar to the VSR rationale, the Multi-Function Radar (SPY 3) program initially 

slated for the DD21 program, was selected as the radar of choice for SEA ARCHER.  

The MFR is to be also installed on the CVX, with studies into the feasibility for 

retrofitting it on LPD-17.  Thus it would be prudent that a future sea combatant utilize 

common sensor systems and obtain better costs savings and easier integration across all 

platforms (for instance when CEC is implemented).  Sizing was obtained from NAVSEA 

and is shown in Figure 69The system was designed for 3 planar arrays with 2200 

elements on each array, since it was decided to place all the arrays at the side of the ship, 

the number of arrays had to increase to ensure proper 360° coverage.  Consequently, the 

weight of the arrays was increased from 7700 kg to 12000kg.  This weight increase 

considered that extra equipment that would be required to facilitate the operation of the 

radar compared to locating all the sensors in one location.  The number of equipment 

enclosures had to be increased to provide for the heat exchangers and auxiliary power, 

while the size of each equipment enclosure was reduced as it had only to maintain two 

planar arrays instead of three. 

Since the specifications of the system are classified and are still being developed a 

rough order of magnitude calculation was performed to ascertain the approximate 

detection range of the system. 

Assume   -  ASCM radar cross section = 0.05 m2,  

  Radar Frequency = 10 GHz (X band radars are between 8-12 GHz) 

Probability of Detection, PD = 0.9 

Probability of  False Detection, Pfa = 0.01%  

Smin = 1 × 10-12 
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Peak Power = 66 dB = 3.981 MW (from SPY 1 data)  

Since, the missile range for the Super SSM is only 30km, this range for weapon 

control is sufficient.  The extra range will allow for target tracking. 

Figure 69 Size and Weight for SPY 3 
 

Radar Coverage 

It can be assumed that the MFR and VSR have a maximum azimuth spread of 

120º; with four planar arrays for each of the radar systems, this would provide the 

adequate 360 ° coverage required for situational awareness.  Nonetheless, blind zones 

still occur, as shown in Figure 70 this zone has the maximum distance of 120 m  from the 
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ship centerline.  This minimum range is deemed acceptable and is less than a ship’s 

length.  The problem associated with this spread is that maximum detection range at the 

extremities is reduced to almost half the calculated detection ranges.  This can be 

overcome by increasing the power output of the beam. More detailed analysis with trade 

off studies would have to be made to optimize the solution for this class.  It would require 

a comprehensive threat document and detailed mission requirements, and is beyond the 

scope of this study. 

 
Figure 70 SEA ARCHER Radar Blind Zones 

 
2. Vertical Launch System 

 A deliberate decision was made to install a vertical launch system rather than 

trainable launcher system.  It was based on the following reasons 

• Most Optimum coverage – if trainable launchers (like Mk 21) were to be 

employed, it would require installations either port/starboard or fore/aft to provide 

360° firing angles.  The number of missiles that can engage a threat will also be 

dictated by the number of missiles facing the specific direction.  If a saturation 
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attack occurs in one specific direction, it will quickly overwhelm the number of 

available missiles.  VLS will not have directional issues with regard to missile 

firing; it will be able to engage threats in any direction 

• Lower RCS -  VLS will be flush with the deck and thus does not affect the overall 

RCS of the ship.  A trainable launcher will either have to have RAM material or 

be shaped to reduce the RCS.  If this option was not viable and the system was to 

be enclosed within the ship, the firing angles of the launcher would be reduced the 

minimum firing range. 

Nonetheless, there were impacts on utilizing the VLS compared to trainable 

launchers.  The main issue was the reduced firing range of the SSSM; vertically launched 

missiles have inherently longer minimum engagement ranges, as the missile has to vector 

itself towards the target.  The vectoring has to take place within a finite distance, whereas 

trainable launchers do not experience this minimum turning range.  This risk was deemed 

acceptable as SSSM was a long range weapon system and short range targets will be 

taken up by the FEL system or SCGS. 

 Increased costs are another factor when comparing VLS against trainable 

launchers.  Historically, trainable launchers are cheaper than VLS but the design 

principles laid out dictate that survivability have precedence over cost. 

 Finally, installation of VLS will be more difficult as it  requires larger installation 

volumes.  The SEA ARCHER hull design has the necessary volume and the installation 

can meet the allocated combat spaces.  Moreover, if it is decided that the missile payload 

should be increased to meet more enemy targets, SEA ARCHER will have adequate 

space and weight to increase the number of launchers. 

Super Sea Sparrow Missile  

The system was selected as the optimum solution for SEA ARCHER as long-

range missile engagement will be handled by SEA LANCE II and SEA ARROWs.  The 

sizing of the vertical launchers was based on the Sparrow missile and was not sized for 

Standard Missiles or Tomahawk missiles like a Mk 41 Vertical Launch System. 
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To optimize space and meet threat scenarios, the SSSM had to have dual modes 

of engagement.  Future surface threats are envisaged to be heavily sensor dependant i.e. 

weapons cannot be fired without fire control systems or radars.  Thus it will not be 

necessary for a target to sink to remove its effectiveness from the combat scenario.  The 

SSSM warhead (40.5 kg) will be sufficient for a mission kill, as compared to a Harpoon 

warhead at 220 kg. 

The system has to be active homing rather than semi-active homing to counter 

saturation attacks.  Semi-active homing would require terminal guidance from the MFR 

system, which will prevent it from engaging more targets when compared to active 

homing.  The impact of this is the cost of the missile will increase but this is deemed 

necessary for the SEA ARCHER’s requirements. 

The missile payload will allow it to engage a total of 32 separate targets 

simultaneously.  As in all weapon systems, there will never be a perfect kill probability.  

For an ASCM engagement, if a “Shoot-Shoot-Look” strategy is employed, a total of 16 

targets per SEA ARCHER can be destroyed by the SSSM. 

 

3. Free Electron Laser Weapon System  

The following choices were analyzed for the inner-layer defense for SEA 

ARCHER – 

• Phalanx Type Close In Weapon System  

• Railgun concept  

• Rolling Airframe Missile 

• Directed Energy Weapon – Free Electron Laser 

The problem associated with Phalanx is the extremely short engagement range, 

typically at 1000m. At these distances, even if the incoming missile has been hit by the 

20 mm rounds from Phalanx, the danger still exists that the missile has sufficient inertia 

and remaining components to damage the ship.  This has been recognized and as a result, 
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all current and future USN ships will be upgraded to fire the RAM system to extend the 

engagement range.   

A railgun concept utilizes electromagnetic rails to launch projectiles with a 

muzzle velocity of 4 km/s.  The extremely high muzzle velocity will ensure a higher hit 

probability against incoming ASCMs as target prediction errors within the fire control 

system will be minimized.  Target kill will also be enhanced as the terminal velocity will 

high enough to ensure target destruction.  In spite of these benefits it will still be a 

weapon that will not have long range capability against incoming ASCMs; target 

engagement range will still be close range and approximated at around 3 to 4 km.  At 

these ranges, ASCM can still perform maneuvering profiles to throw off the fire control 

prediction and mislead the weapon system. 

Therefore, two possible alternatives were narrowed down to consider the possible 

implementation of an inner layer defense- RAM and FEL system. 

The table below provides an overview between the current point defense systems 

in the USN inventory and the FEL system 

 

 FEL RAM 

Range 5 km 9.6 km 

Number of Targets 2 sec per target 10 

Cost per engagement $2.24 $0.732M 
Assume 2 missiles per engagement 

Unit Cost $55 M 
Launcher =$7.924 M 
Missiles   = $7.686 M 

Total        = $15.61 M 
Table 44 Comparison of Inner Layer Defense Systems (from [23] & [25] ) 

The range of RAM is based on the rocket’s motor capability and not the actual 

performance range.  This will be tied closely with performance capability of the 

detection, acquisition and tracking of the incoming ASCM with respect to the ship radar 

system and the RAM seeker head.  

The 10 targets that RAM can engage is an estimation using the Mk 49 21 cell 

Launcher, where two RAM missiles will be fired against each incoming subsonic ASCM.  
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The two missiles fired are to ensure high kill probabilities and to counter any possible 

missile failures.  The number of engageable targets will decrease if the incoming ASCM 

is supersonic as more missiles may have to be fired to ensure a kill.   This figure is only a 

rough estimate based on 3 seconds of firing at 4500rpm per target.  The number of targets 

for FEL will be based on the method of implementing the power supply to the system.  If 

it is linked directly to the shipboard supply, then the number of targets will only be 

limited by the available power. If storage devices are used (like flywheel or capacitors), it 

will be dependant on the power density of the device. 

The cost of engagement is linked to the number of possible targets engaged.  As 

the estimated cost of one RAM missile is $0.366M [25], two missiles will cost $0.732M.  

FEL cost is linked to the amount of fuel consumed to generate the requisite power for 1 

engagement. The $0.45 was obtained using the specific fuel consumption of an LM2500+ 

Gas turbine engine that can generate the requisite power for this application.  If 1MW of 

laser power hitting the target for 2 seconds is necessary for killing the target and it is 

further assumed that the FEL system has 10% efficiency in converting the power 

supplied to laser power.  It will require 10MW for 2 seconds from the LM2500+.  This 

translates to 20 MJ, the turbines may only be 20% efficient.  The final energy required 

would then be 100MJ, since the specific fuel consumption for LM2500+ is 235 g/kwh, 

consequently 6.5 kg or 2.15 gallons of F76 fuel is consumed. Given that the cost of F76 

fuel is $1.05 per gallon, the cost of 1 engagement is only $2.25. 

 The $55M for FEL is an estimate, and though the unit cost is higher than RAM or 

Phalanx, the total operating cost has yet to be factored into the total life cycle cost. The 

FEL will not require replenishment or a stockpile of missiles and projectiles but only be 

dependant on shipboard power supply.  Thus the high capital cost will be offset by the 

reduced operating costs. 

 

FEL Advantages 
 

A FEL weapon employed to provide inner-layer defense would enhance ship 

survivability when compared to the RAM system. This system will have a proposed 
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effective range of 5000 meters and it will employ laser power to defeat a missile by 

structurally destroying sections of the target. The advantages will be -  

• Almost zero time of flight – A light beam will only take 16.7 

microseconds to reach 5000 meters. In contrast, RAM will typically 

require 7.3 seconds to traverse the same range. Thus, a FEL system will 

sidestep all the problems associated with target position prediction and 

ASCM maneuvers. 

• True Line of Sight Weapon – The FEL system will require a beam director 

to channel the light to the target; essentially this will be high performance 

Electro Optical (EO) system. This optical system will be providing the 

tracking function against any targets.  Thus, when the system has a proper 

lock onto an ASCM, the FEL weapon will be firing at the same point as 

the tracking system. The other benefit is to allow the operator to ascertain 

whether the target has been effectively destroyed.   

• No extra supply requirements – Currently, RAM has 21 missiles in a 

launcher and a certain number stored for replenishment.  Similarly, 

Phalanx has 1470 ready-to-use rounds, with extra rounds stored for spares. 

The FEL weapon will utilize shipboard power supply for its engagement 

and will be limited only to the amount of power available.  It will not 

require extra supplies to support engagements, as replenishment will not 

be required. 

• Quick reaction and reengagement time – In littoral warfare, a possibility 

exists that the enemy will be able to remain undetected until he is able to 

fire missiles at close ranges.  This cuts down the reaction time of all 

combat systems to engage the threat. The negligible time of flight for the 

beam will allow target destruction at further ranges than RAM.  The FEL 

system only requires an approximate dwell time of 2 seconds for a target 

kill.  This coupled with the almost zero time of flight, will allow for quick 

reengagement of other targets.   
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• Low utilization cost – As mentioned, the cost of the light beam is coupled 

with the utilization of shipboard power supplies.  The initial cost of 

acquiring the complete system will be inherently more than that of a 

missile system.  However, the total life cycle cost may be lower than a 

missile system as the replenishment, training utilization, and the necessity 

for stock piling missiles is avoided.  

Time Engagement Analysis 

Another important methodology to establish the effectiveness of a weapon system is 

to analyze the time engagement scenario against targets; this will assess the reaction time 

of the system, the number of targets it can engage and the range of interception. In any 

engagement analysis, the following sequence with respect to the target has to occur - 

Detect Acquire Track Fire

 
Figure 71 Combat Engagement Sequence  

 The sensor system has to first be able to detect the target, subsequently an 

acquisition process has to follow.  This phase also differentiates whether the target is an 

enemy or friendly force.  If it has been assessed to be a foe, the sensor suite would track 

the target, and require the system to predict target motion and calculate fire control 

solutions before firing a weapon against it. This chain of events occurs both in radar and 

optical systems. To have an estimation of the maximum possible detection range using a 

radar system against a sea skimming ASCM, the following equation is used -[26]  

 ( )= −
2

0.672 1.22H R h  (3.1) 

where H is target height in feet, h antenna height in feet, R is the radar range in nautical 

miles.  

This equation is plotted with a target at different heights, while varying the antenna 

heights.  It can be seen from the plots that target height plays a critical role in the radar 

horizon, if a target is moved from 5 feet to sea level, the maximum radar horizon is 

reduced by 5km – 
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Figure 72 Radar Horizon with target at different target heights 

Assuming a radar is placed on SEA ARCHER at a height of 20m above sea level, the 

estimated radar range will only be about 23 km for a 5 feet target height.  This range is 

the maximum physical distance in which the radars can reach the ASCM.  It does not 

consider the signal to noise ratio capability of the radar system or the sea clutter noise 

created by flying near the surface or even the radar cross section of the target. Any of this 

will severely affect the performance of the detection range. To have a sense of scale, a 

typical RCS of ships range from 3,000 sq m to 1,000,000 sq m while missiles are only 0.5 

sq m.  It can then be inferred that the detection range for a stealthy sea skimming missile 

may be even lower than expected.  Due to the sensitivity of this information, detection 

ranges for various targets are always classified.  Therefore, the detection ranges are 

educated guesses. 

 To proceed with the analysis, the following assumptions are made - 

Speed of ASCM Mach 2 (686 m/s) 

Speed of RAM Mach 2 (686 m/s) 

Detection range of ASCM 10 km 

Time between 2 RAM launches 3 seconds 

Time to detect ASCM    1 second 
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Time to acquire ASCM  

Time to track ASCM      

Time to Launch RAM    

 Total             

1 second 

1 second 

1 second 

4 seconds 
Table 45 Table of ASCM assumptions 

 

The detection range of 10km is an estimated distance based on the size of the target 

and sea skimming profile the ASCM will perform. As for the time between launches 

being 3 seconds, this was obtained from a video of RAM firings against ASCM[27]. 

Time lag exists between 2 RAM missiles because firing simultaneously will cause the 

rocket blast to affect each other.  Currently, the time between each launch has to be long 

enough so that the plume from the first missile does not affect the IR seeker of the second 

missile.  Based on the assumptions, a time engagement sequence was performed below 

Figure 73 Time Engagement Analysis for Mach 2 ASCM 

It can be seen from the figure above that the FEL can intercept the ASCM at 5000m, 

with more than 7 seconds available to track the incoming target. With a two second dwell 

time, the ASCM will be destroyed by 3628m. If the “Shoot-Shoot-Look” strategy is 

employed, the first RAM is launched at 4 seconds and intercepts the ASCM at 3656m. If 

the target is not destroyed, the second interception range will be at 2606 m. A third 
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possible intercept occurs at 800m given a one second “look” before launching the third 

RAM.  

Another scenario would be to increase the speed of the ASCM to Mach 3 and the rest 

of the parameters remain the same.  The FEL can fire when the ASCM reaches 5km as 

there will be 5 seconds for the system to detect, acquire and track.  The RAM will fire 

again at 4 seconds and intercept the missile at 2440m.  The second missile intercepts 

1255 m.  There will be no time left for a third launch of RAM if the previous 2 missiles 

failed to destroy the target as the Mach 3 ASCM will have hit the ship. 
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Figure 74 Time Engagement with Mach 3 ASCM 

It can be observed in both engagements that FEL will allow the target to be destroyed 

at longer ranges than RAM.  The lethality of the FEL will also ensure that there will be 

no requirement for reengagement of the target.  For a Mach 3 ASCM engagement, the 

danger is that if the RAM missiles do not destroy the target within two shots, the ASCM 

will be able hit the ship. 

Another inference is the importance of detection range of the ASCM.  If it is reduced 

further, the reaction time of the combat system must be shortened further.  When a 

missile is used to counter the ASCM, there may not be adequate time for the missile to 

reach the target as it will take a significant time of flight compared to a beam of light.   
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 In littoral warfare, this can weaken missile defense as enemy missiles have the 

possibility of being fired at close ranges in the congested waters.  This significantly 

reduces the reaction time for all weapon systems.  In these scenarios, the FEL will be able 

to achieve greater success. 

 
Target Lethality  
 

A quick way; to estimate of the amount of energy required to destroy a missile is to 

assume that a 3 cm penetration with a 10 cm radius spot size would be sufficient for 

destruction.  If it is further supposed that the material is made of aluminium and the 

melting of the aluminum is assumed to be the kill mechanism, then the energy required 

would be : 

 

 [ ]Melting Energy m o mV C T T Hρ= − + ∆( )                         (3.2) 

 
 
where 

  Aluminium 
Properties 

ρ Mass Density 2.7 g/cm3 

V Volume of material 942.5 cm3 

C Specific Heat Capacity 896 J/kg-K 

Tm Melting Temperature 933 K 

To Ambient Temperature 300 K 

∆Hm Latent Heat of Fusion 4×105 J/kg 
Table 46 Properties of Aluminum 

Using the material properties of aluminium listed above, the energy required is 2.461 

MJ. If the time for engagement is fixed at two seconds, the irradiation would then be 

2.461/2 = 1.23 MW of beam power. 

These destruction mechanisms have not considered thermal conductivity, target 

reflectance and the impulse effects on the target due to rapid temperature changes.  
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The effectiveness of the damage mechanism is also dependant on the beam, pulse 

duration, wavelength, the material and the finish of the target surface.  The absorption for 

each material varies for different wavelengths.  For instance, the absorption of a ruby 

laser light at 694 nanometres is 11 % for aluminium, 35 % for light coloured painted 

metals and 20% for white paint.  Whereas, the corresponding numbers for a CO2 laser (at 

10,600 nanometres) are 1.9%, 95% and 90%. For many materials, the surface is 

blackened quickly so that light is absorbed more readily than indicated  by the low power 

absorption. 

 

FEL System Configuration 

An FEL installed onboard a vessel would have to consider system power 

requirements, weight, sizing and radiation hazards.  To optimize all concerns, it appears 

desirable to use an energy recovery concept in the FEL.  This will ensure a higher wall-

plug efficiency reducing the required input power.  Electron beam bends will also have to 

be employed rather than straight configurations to enable a more compact shipboard 

installation.  Concept studies have shown that straight configurations for the electron 

beam would require a  length of 26 m, while bends would reduce the length to about 12 

m.  This is especially important in shipboard installations as it will minimize the number 

of bulkheads the FEL system has to traverse.   

The proposed architecture is shown in Figure 76Electron beams are initially injected 

into the linear accelerator with 7 MeV energy. A superconducting RF (SRF) linear 

accelerator (LINAC) then increases the electron beam energy to 100 MeV along its 6.7 m 

path. The electron beam is then turned by a series of bending magnets to be injected into 

the wiggler.  The wiggler will have an energy extraction efficiency of approximately 2% 

and produce a laser beam of 1.5MW.  A second set of bending magnets will take the 

residual electron beam from the wiggler and transport it back to the accelerator where it 

enters out of phase with respect to the accelerating fields.  As a result, the energy from 

the decelerating electrons is then transferred back into the RF fields, which in turn are 

used to accelerate subsequent electron pulses.  The decelerated electrons retain about 
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7MeV of residual energy which is transferred to the beam dump for dissipation. The 

optical cavity, where the light beam is amplified, is 12 m in length.  

 The light beam from the optical cavity will be guided through a series of mirrors to 

either one or both of the two beam directors. Adaptive optics will also be used for these 

mirrors to handle beam fluctuations from ship vibration and motion.   

This configuration dramatically reduces the radiation from the beam dump as the 

residual energy will only be at 7MeV.  If a energy recovery is not used, the electron 

energy leaving the wiggler would be at 100 MeV, making it difficult to prevent the 

materials in the beam from generating neutron radiation. Shielding for neutron radiation 

is much more extensive. 

 The complete system will be installed at the center of the ship to minimize the 

effects of hull flexure on the beam transport system as shown in Figure 75. 

 

Figure 75 FEL System Location 

FEL 
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Figure 76 FEL System Architecture 
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Beam Director - This 2-axis system will direct the 1.5 MW beam output.  The exit 

mirror radius will be around 0.3 m, which is larger than the calculated exit mirror radius 

of 0.13m that provides a 0.1m size spot radius on the target.  This increase is reserved for 

a tracker system that uses the outer annulus of the exit mirror.  An aperture-sharing 

element in the high power beam path ensures that it would be possible to track the target 

visually even when firing the beam laser.  Such technology is already employed in the 

MIRACL program and by the SEALITE Beam Director. High power density mirrors will 

employ adaptive optics to minimize turbulence effects. 

 
Figure 77 Beam Director for Sea Archer 

The beam director will also have a separate independent infra-red camera operating in 

the 3 to 5 µm on top of the beam director.  This will provide target detection and cueing 

for the beam director itself.  It allows the beam director to maintain multiple target track 

profiles while the director is firing at a specific target.   
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The beam director will require a high slew rate to engage crossing targets.  If a Mach 

2 crossing target at 500m is envisaged, it translates to a slew rate of 82 degrees/s.  This 

will not be a difficult requirement to fulfil as gun systems in fleet today can perform slew 

rates up to 140 degrees/s. 

A major requirement for the targeting of the system will be the tracking accuracy of 

the beam director.  There must be minimal dispersion errors in tracking as the beam 

would then be misdirected.  For engaging missile targets up to 5000m, the dispersion 

error has to be less than 0.06 mrad, assuming a typical missile diameter of 0.3 m, to 

ensure that the beam is held on the target.  Though it is more stringent than current naval 

tracking systems (for example, optical systems and fire control radars), the tracking 

system has been proved viable by the SEALITE Beam director and the Army’s Tactical 

High Energy Laser System.  The difference would be the pitch and roll of the ship. 

A typical engagement sequence for the FEL system would begin with the initial 

detection of incoming threats from the sensor suites onboard SEA ARCHER.  This 

encompasses the Multi-Function Radar, Volume Search Radar, Infra-Red Search and 

Track and Electronic Warfare systems.  Once the target has been identified and classified 

as a threat, the combat system will cue the appropriate beam director to the proper 

elevation and bearing.  The wide FOV of the camera on the beam director will perform 

quick scan and acquire and track the target.  This allows the system to have sufficient 

resolution for the beam director to track the target.  Furthermore, the outer annular exit 

mirror can perform visual confirmation of proper target tracking.  Firing can then be 

automated or commanded by the operator once the target has reached the firing range.  

This entire sequence of cueing from the sensors to tracking of the beam director should 

be performed in 2 seconds or less. 

Multiple tracks should be maintained by the wide FOV infrared camera to ensure that 

a target file with the proper resolution is maintained by the FEL system.  That is the 

reason why the camera has independent movement from the beam director itself. 

Subsequently the FEL can quickly engage another target when the first target has been 

destroyed. 
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The locations of the beam directors are at the port and starboard sides of SEA 

ARCHER.  This will be the most advantageous position as the hull flexure for a ship will 

be the lowest at the centre of the ship.  Also, a beam transport system through the length 

of a ship would be unnecessary as the FEL system is co-located at the centre of the ship.  

The beam director itself has been placed on a pedestal that provides a 180° firing arc.  

When the system is on standby, an automatic cover would protect it.  Firing sequences 

can commence when the covers is recessed into the ship as shown in . 

Figure 78 Beam Director Location 

Prime Power Generation  

It has been frequently mentioned that the amount of power required for an FEL 

system to effectively engage missile targets require is approximately 10 MW.   

The Sea Archer prime power design did not implement an IPS design but rather a 

hybrid version.  The reason was due to the extremely high power requirements to drive 

the ship to 60 knots.  Dedicated turbine generators were necessary to provide the 

propulsion for the water jet engines.  Other generators were required for the blowers to 

inject air into the air cavities it operated as a Surface Effect Ship (SES) at high speeds.  
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Nonetheless, the power requirements for combat system was initially sized based on a 1.5 

MW FEL weapon drawing 10 MW of power with 1 MW of extra power supporting the 

cooling systems and other ancillary devices.  It was decided that the requirements for 

direct power generation for the FEL in the Sea Archer was not the optimum solution as 

the increase in power draw from 1 MW for a standby mode to 10 MW almost instantly 

would affect the other shipboard systems.  Therefore, storage devices were deemed a 

more attractive solution for this design. 

 Energy Storage devices - Energy storage devices like flywheels and capacitors 

provide an alternative method to power the FEL system. To ascertain the TOTAL energy 

required for the FEL weapon system, it may be prudent to assume that such a weapon 

system should at least handle the same number or even more targets than a RAM system.  

As mentioned, the number of targets that a single RAM system can engage is supposedly 

10.  A standard platform installation usually has two RAM systems, the total number of 

targets that can be engaged before reloading is then 20.  To destroy a missile target the 

1.5 MW beam would need 2 to 3 seconds of irradiation.  Since, the efficiency of the 

system has been assumed at 10%, the total energy required for 20 targets is then 400 to 

600 MJ.   

 Modern flywheels have energy densities of 36 MJ/m3 and 47 kJ/kg, this translates 

to approximately 11 m3 in volume and weighing 8500 kg.  As mentioned previously, the 

advantage of flywheels over direct power generation is that the power is made available 

instantly and would not affect other ship loads when the FEL system is operating.   

 Charging the flywheels would be performed by any shipboard power supply. In 

the case of Sea Archer, the shipboard generators would produce a total of 82.2 MW.  Of 

this amount 4 to 8 MW may be drawn to charge the FEL system.  This takes 50 to 100 

seconds to have a complete charge of the flywheels. The system would then be ready to 

fire another set of 20 targets or 60 seconds, if necessary.  This is extremely noteworthy as 

a missile system will not be able to fire at such a short notice once all missiles are 

expended.  It would take a substantial amount of time to reload the missiles before it is 

operable. 
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 Capacitors offer another avenue for storage of power, similar to the flywheels and 

it can also be instantly discharged when required.  The estimated power density of 

modern capacitors place is 39 MJ/m3 and 30 kJ/kg, which provides an installation of 10 

m3 and 13,300 kg for the capacitor banks.  The advantage of capacitors over flywheels is 

that they afford a combat system graceful degradation in effectiveness.  The number of 

capacitor banks required would be numerically more substantial than the number of 

flywheels desired; if a failure occurs on single flywheel it would reduce the amount of 

power available significantly.  Conversely, failures of a few capacitors would only reduce 

the overall available power by a lower percentage.  The disadvantage of capacitors would 

be the added complexity of maintaining more components with an increased weight.  The 

design philosophy of Sea Archer gives survivability prime importance; capacitors would 

allow for graceful degradation when components fail and thus ensure higher survivability 

as the FEL system can still function, albeit at a lower output.  Hence, the choice of for 

energy storage would be capacitor banks even though the weight is 60 % heavier.  The 

prime power layout is shown in Figure 79. 

Figure 79 SEA ARCHER Prime Power Layout 
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As mentioned previously, there are a total of 3 turbine generators, with the two Trent 

30s producing 36 MW each, while the GE 10 producing 11.2 MW.  This combined power 

will be used to generate the necessary power for Sea Archer.  Power will be distributed at 

1100 VDC; if necessary, rectifiers will convert the power output for use with the FEL 

system.  

 

Shipboard Requirements  

The beam and light transport systems would also require some form of control to 

alleviate problems associated with vibration and hull flexure.  This can be performed by 

adaptive optics or utilising active control mechanisms to counter flexure.  The placement 

of the FEL system in SEA ARCHER was selected to minimise the effects of hull flexure. 

 

Developmental Issues 

The FEL system architecture proposed is still conceptual and no system has yet to be 

built for shipboard applications.  Most of the systems are either currently too large or too 

low powered to be deployed directly. Certain areas that need to be improved into include, 

• High average power injectors – it has been demonstrated that 5mA CW injectors 

are feasible.  Though it may seem a far cry from the required 0.75A, there is a 

great need within the mainstream physics community for light sources with 

requirements similar to the FEL weapon parameters.  With this parallel 

developmental need, any work to achieve it would benefit the FEL system.  

Moreover, Boeing has demonstrated a 1A injector 10 years ago but the system 

would is too huge for shipboard implementation. 

• High peak power density optical elements – present proposals for FEL oscillator 

design have power densities 3 to 4 times higher than those experienced in the 

chemical high energy laser systems.  Current optical element technology has 

demonstrated the handling capacity for half the required power density.  

Consequently, more development is still required.  However, one aspect that has 
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not been analysed is the impact of high peak, non-continuous FEL power loading 

on optical surfaces and coatings. 

• SRF and room-temperature acceleration – room-temperature acceleration was 

not chosen, as a significant amount of RF power loss is experienced because 

of resistive losses in the acceleration walls. These accelerators have 

undergone space  

 

Problems Associated  

 No perfect weapon system has yet to be designed and an FEL weapon system also 

suffers from a myriad of problems.  The most glaring issue with FEL weapon system 

would be the effect of the atmospheric conditions on its operation.  It has been shown that 

selection of wavelengths and other measures can be used to alleviate the effects but once 

heavy rain occurs the effectiveness of the weapon system is drastically reduced. Figure 

80 shows a plot of energy required against rainfall.  It illustrates the necessary energy 

required to vaporize a column of water with a radius of 0.2 m by 5000m long, replicating 

a beam of light that engages a target.  Therefore, the energy is the requisite amount 

necessary to vaporize the water before the beam can engage the target.  It shows an 

exorbitant amount required.   
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Figure 80 Energy Required for Vaporization of Rain for a 5 km Engagement 

Countermeasures by the ASCM may also be employed to counter the effects of the 

irradiation, though no system can really deflect the amount of energy directed at it.  It 

would lengthen the required engagement time and thus reduce the effectiveness of the 

weapon 

 
4. Small Calibre Gun System 

To engage surface threats in the littoral region, gun systems were studied that 

provided the most cost effective solution.  To maintain low manning requirements and 

high hit probabilities against surface targets, the system proposed has to be unmanned 

and stabilised.  Stabilization is necessary as the pitch and roll from the sea state will make 

targeting an enemy difficult.  Unmanned operations will allow SEA ARCHER to 

maintain a low manning crew as the SCGS can then be operated from any console within 

the CIC.  Charge Coupled   Devices with thermal imagers in the 3-5 µm will ensure both 

day and night operations.  Target prediction software will be included in the system to 

ensure high hit probability. 

Gun choices were based on the following: 

• Gas operated cannons like the Mauser Mk30 or Oerlikon KCB 
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• Electrically operated chain guns like the Bushmaster cannons. 

• 40mm Automatic Grenade Launchers 

Gas operated cannons operate at higher rates of fire (600 to 800 rounds per 

minute) compared to Bushmaster cannons at 400 rounds per minute.  But Mean Rounds 

Between Failures (MRBF) for Bushmaster cannons are much higher than gas operated 

guns, and they also allow for automatic recocking when rounds are jammed in the 

receiver.  Gas operated cannons require manual recocking for jammed rounds. 

Accuracy for the Bushmaster is also better than gas operated cannons.  Reported 

dispersion rates were single shot dispersion at 0.2 mrad compared to 0.45mrad for gas 

operated cannons.  For surface engagements, a high rate of fire is not necessary when 

compared to air engagements as the target is moving slower and target prediction errors 

are not as critical.  Therefore, a Bushmaster cannon was selected as the appropriate gun.   

The calibre of the gun was initially selected at 30mm as it afforded the best 

possible maximum range at 5km.  A 25mm cannon only be able to engage targets up to 

4km.  35mm cannons can be selected at a later juncture if the range increase is required, 

as the sizing of the system will allow this upgrade. The types of the 30mm rounds to be 

used can range from High Explosive (HE), to Armour Piercing Fin Stabilized Discarding 

Sabot (APFDS) to High Explosive Incendiary (HEI).  Each type of round is optimised for 

different types of target. 

Forty mm Grenade rounds were not selected as the range of this round would only 

be around 2000m, it also exhibits bad dispersion characteristics.  Though the 

fragmentation pattern will allow it to be an area weapon.  It was deemed that a longer 

range engagement with greater accuracy is essential for increased barrier while allowing 

the possibility to engage more targets. 

Medium calibre guns like the Otobreda 76mm Super Rapid Gun or the Bofors 

57mm Mk 3 were not considered as a possible solution as the size of the weapon 

precluded their selection.  Phalanx CIWS was also not a viable solution as the 

engagement range of the surface targets was around 2000m. 
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The 200 ready to fire rounds will ensure that the system can engage 10 to 15 

targets. If this is deemed insufficient at a later date, increasing the ammunition load out 

will be easily implemented. 

The number of the SCGS selected was to obtain 360o coverage of the SEA 

ARCHER platform.  The minimum engagement range is dictated by minimum depression 

angle of the SCGS.  It was decided that the minimum range for this system should be 

50m.  This implied that the depression angle has to be 68 °.The traversing speed of the 

gun will be at least 140°/s, as this will translate to a crossing target at 50m travelling at 

180 knots, sufficient for surface and air targets.  This will also be beneficial for quick 

reengagement. 

It must be noted that the SCGS cannot be viewed as a CIWS as the rate of fire, 

lack of dedicated fire control radar and ammunition load out prevents it from fulfilling 

this role.  Nonetheless it can engage slow moving UAVs as their profile permits this. 

 Figure 81 provides an overview of the Small Calibre Gun Systems that were 

analysed for SEA ARCHER.  It can be seen that this type of gun system is around 1000 

kg and could bw either gas operated or chain-driven guns.  All offer similar 

characteristics in terms of weight and sizing.  The only difference would be the addition 

of the rocket launchers for the chaff and Nulka  decoys. 
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Figure 81 Overview of Small Calibre Gun Systems 
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5.  Radar Crossection  

It can be assumed that the highest radar cross section of SEA ARCHER would be a 

reflection off the broadside.  This RCS can be obtained from the RCS equation of a flat 

plate shown below- 
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Different values of RCS based of varying θ were then calculated and shown in Figure 82 

Figure 82 Radar Cross Section against Aspect Angle θ 

The angle of slope for SEA ARCHER has been designed at 5°.  The RCS for different 

surface based radars are- 

 

 
10 GHz (X Band Radar) 

Fire Control Radar 

2 GHz (L-Band Radar) 

Search Radar 

20 GHz  (Ku Band) 

Missile Seeker Radar 

Angle θ σ m2 σ dbsm σ m2 σ dbsm σ m2 σ dbsm 

5° 507660 57 652115 58 1282269 61 

Table 47 Radar Cross Section of SEA ARCHER for Surface Based Radar 
 

To obtain the RCS when an air based radar system is searching for SEA ARCHER, it has 

been assumed that the aircraft is at 40 000ft and at 200 nm. The worst case scenario for 

RCS would be a broadside detection, where the radar would reflect off the top and side of 
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area of 10679 m2) and 3° for the side of SEA ARCHER.  The combined RCS would then 

be 

 
10 GHz (X Band Radar) 

Fire Control Radar 

2 GHz (L-Band Radar) 

Search Radar 

20 GHz  (Ku Band) 

Missile Seeker Radar 

angle θ σ m2 σ dbsm σ m2 σ dbsm σ m2 σ dbsm 

3° 2.83  54.42  0.43 -3.68 

88° 92.08  1672.07  0.00 -44.78 

Total  94.91 19.77 1726.49 32.37 0.43 -3.68 

Table 48 Radar Cross Section of SEA ARCHER for Air Based Radar 

 

It can be ascertained that the RCS magnitude drops dramatically for air based radar 

systems.  This is due mainly to the flat sloping sides of the SEA ARCHER design and the 

lack of an island structure, which greatly reduces the detection of the SEA ARCHER  

from air assets.  Other ship architectures which employed a mast structure and antennas 

protruding from the vessel would have substantially larger RCS.  Surface based RCS is 

found to be around 61 dBsm, which is comparable to a Navy auxiliary vessel.  This is 

acceptable as surface based radars are limited by the physical horizon, at  around 30 km.  

 

6. Electro Optical Sensors 

Electro Optical Systems selection was a simple choice based on utilizing 

developed technology.  The system selected would be the generation of imaging systems 

available during the 2020 period.  It would be necessary to operate in the 3-5 µm and 8-

12 µm to maintain effectiveness in the littoral region.  Both bands have their own 

strengths and weaknesses, so a dual band system would cover all gaps in performance.  A 

Laser rangefinder will also be necessary to provide a 3 dimensional data for the target. 

Figure 83  shows the current imaging system installed on current warships, the system 

proposed will be similar but will be required to be low RCS. 
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Figure 83 Thermal Imaging Sighting System (TISS) (from [23]) 

 

7. IRST  

Similar to the EOS, the IRST will use conventional equipment available within 

2012.  The threat of stealthy, sea-skimming missiles makes this detection system a 

requirement for this vessel.  Figure 84shows a dual band system that is currently 

available.  The requirement for SEA ARCHER would be that this system has either to be 

low RCS or be enclosed within the ship structure. 

Figure 84 Notional IRST system (from [23]) 
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8. Mine Detection 

The initial design process included a mine detection suite for SEA ARCHER.  

Noise limited sonar calculations were done at various frequencies to find the optimum 

frequency for short range mine detection. This sonar system would operate in the 40 kHz 

and had an aperture of approximately 2m. Figure 85 provides the result of the calculation.  

Figure 85 Source Level Calculation 
 

It was later decided during the design process to remove the mine detection suite for the 
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b. Self Noise Generation – the operating speed of SEA ARCHER would entail 

large amounts of self noise; this would reduce the effectiveness of a mine 

detection sonar.  The calculations could not consider this effect as no data 

existed for  surface effect ship noise generation at such a velocity.  A 

frequency could possibly be selected to minimize the effects of self noise but 

the number of variables would make this selection difficult as considerations 

would have to be given to noise generated by the flow of 60 knots over the 

dome, blower noise generation and air interaction between the SES cavities. 

c. Operational Scenario – it was concluded that the SEA 

LANCE/helicopters/USCs would be able to handle the mine detection 

requirements.  This would be more appropriate for the SEA ARCHER as long 

range mine detection can then be performed by other assets and allow it ample 

reaction time to perform necessary maneuvers.  The short range detection of 

the initial mine detection suite would only allow it to stop or perform evasive 

maneuvers to counter the threat.  

 

9. Mine Clearance 

The concept of mine clearance is to utilize the current developmental concept of 

Rapid Airborne Mine Clearance System (RAMICS).  A Light Detection Ranging 

(LIDAR) system located on the helicopter will use a laser beam to scan the water for 

shallow and floating mines.  Once located a stabilized gun pod mounted on the helicopter 

will fire 20mm caliber rounds optimized for traversing the water with sufficient terminal 

velocity for mine detonation. 
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Figure 86 RAMICS Concept 

Weight Estimates 

Appendix D provides the detailed breakdown of the combat systems with their proposed 

locations. 
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F.  DAMAGE CONTROL 

The damage control system, including the CBR system, is described in Chapter 

IV under Damage Control section.  

The selection of the detectors and the fire suppression systems, and organizing the 

damage control parties is discussed in this section. 

1. Detectors 

The available and proposed fire detection systems are analyzed for the best 

selection for SEA ARCHER. 

Smoke Detectors 

Photoelectric smoke sensors operate by projecting a beam of light across a 

sensing chamber. A photosensitive receiver detects changes in the projected light pattern 

caused by smoke particles within the chamber. These detectors provide good response to 

smoke with larger particles. However, they are subject to false alarms from other airborne 

particulates.[68] 

Optical detectors (including fiber optics) are based upon the photoelectric 

principle, except the beam is not confined to a sensing chamber and may be projected 

across open areas. These detectors can monitor areas up to 25 meters across, and areas 

subjected to high airflow rates.  

An ionization detector uses an extremely small quantity of radioactive 

material to make the air in the detector chamber conduct electricity. Smoke from a fire 

interferes with the electrical current and triggers the alarm. Smaller particles are 

detectable, as compared to the photoelectric sensor, providing higher sensitivity in critical 

compartments. These detectors can also be prone to false alarms from airborne particulate 

matter.  

Electrostatic detectors operate by detecting naturally charged particles 

across a set of electrodes. The principle of operation is the same as the ionization 

detectors without the need for a radiation source, as with an ionization detector. These 

detectors are not as sensitive as ionization detectors and do not alarm with "nuisance" 
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smoke, such as burnt toast. These detectors generally require smoke from a developed 

fire to trigger an alarm. 

Carbon Monoxide Detectors 

Irrespective of how intelligent a smoke detector is it still needs the smoke 

to be introduced to the detector before it can be sensed and an alarm decision made. It is 

difficult if the protected area is large and open or the seat of the fire is in a hidden area 

such as a linen locker or adjacent unprotected room. [69] 

In a slow smoldering fire situation, typical of those started by discarded 

cigarette ends in soft furnishings or smoldering sawdust and other organic materials, 

smoke may not be given off for many minutes, even several hours in certain situations, 

after ignition. During this time the insidious carbon monoxide gas can build up to a level 

sufficiently high so that, on awakening, sleeping persons are too disoriented to evacuate 

the area. When smoke is given off and has reached the detector it can frequently be too 

late to stop the rapid spread of the fire. 

It is also well known that smoke escaping into corridors can cool and fall 

to the floor thus making them impassable by the time the smoke reaches the detectors at 

the ceiling and generates an alarm condition. Smoke can also be prevented from reaching 

the detectors by barriers of hot air building towards the ceiling. 

CO fire detectors react well to smoldering pyrolysis fire (wood), and 

glowing smoldering fire (cotton), but open plastic fires (polyurethane), and liquid fires 

(n-heptane) do not produce sufficient CO gas to trigger an alarm. 

CO fire detectors are particularly well suited to accommodation areas 

where there is a risk of slow smoldering fires causing death through the build up of CO, 

limiting occupants’ ability to evacuate.  

Fire/Flame Detectors 

Infrared and ultraviolet detectors operate on the ability to distinguish 

respective radiation wavelengths that are only given off during a fire. These optical 

sensors are capable of monitoring large open areas by a single sensor. Infrared sensors 

can be subject to false alarms by such things as electrical arcs, whereas ultraviolet sensors 



 233 

are subject to false alarms by such things as arc-welding, electrical arcs, x-rays and 

lighting. Certain infrared sensors can also be used to monitor temperatures by annualizing 

the returned radiation spectrum.  

UV flame detectors are very sensitive to arc-welding, electrical arcs, x-

rays and lighting. Although it is possible to eliminate false alarms from lighting and 

electrical arcs by the inclusion of time delay processing the elimination of false alarms 

from arc welding and x-rays is much more difficult to achieve. The detectors’ sensitivity 

to these false alarm sources can be a significant problem. There are external influences, 

whose presence can have a detrimental effect on the ability of the detector to see flame 

radiation. The main inhibitors of UV propagation are oil mists or films, heavy smoke or 

hydrocarbon vapor and water films. These phenomenon are present in machinery spaces 

and on offshore platforms and can significantly reduce the intensity of the UV signal if 

present in the flame detection path.  

The shortcoming of UV detectors for offshore and machinery space 

applications has resulted in operators preferring the Triple Wavelength Infra Red Flame 

Detectors.  

 

 

Figure 87 Typical Hydrocarbon Fire Spectrum 
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The use of Triple Wavelength Infra-Red Detection principles has 

overcome the main shortcoming of Infra Red Flame Detectors, namely response to solar 

radiation and black body radiation.  

Closed Circuit Smoke and Flame Detection System 

The system uses standard CCTV Cameras. The system functions by 

comparing one frame with the next, so that any change can be evaluated. Compound 

Obscuration evaluates the total attenuation of light from the camera to the furthest point 

in the field of view. The algorithm is able to de-couple smoke quantity from smoke 

density i.e. large clouds of thin smoke can be identified as well as small areas of dense 

smoke. 

 
Figure 88 Schematic Video Smoke and Flame 

 

The system can also be used to detect visible oil mist, high-pressure oil 

leakage from pipes, and steam leaks the moment they occur.  

Heat Detectors 

Heat detectors come in different types including spot detectors and line 

detectors. Spot detectors sense temperature at a specific location. Line detectors consist 

of a cable run where temperatures can be detected at a point along the cable, within a 

certain distance, typically 1.5 meters. Heat detectors work on five basic principles as 

follows in the paragraphs below.  
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Fixed temperature sensors alarm when temperature reaches a fixed point. 

Fixed temperature heat detectors are suited to alarm in the presence of slowly rising 

temperatures. Fixed temperature heat detectors are suited for installation where high heat 

output fires are expected or in areas where ambient conditions will not allow use of other 

detection methods,  

Rate-of-rise sensors alarm when rate of temperature increase exceeds a 

predetermined value. It is common practice to have fixed rate sensors in combination 

with rate-of-rise sensors, providing good all round heat protection.  

Thermoelectric effect sensors detect a change in electric resistance in 

response to an increase in temperature. These sensors are typically "hot wire" 

anemometers used for sensing temperature changes in fluid flows, including ventilation 

ducts.  

Fiber optical heat detection is possible by use of monitoring the  scattering 

of light down the fiber optic, which is proportional to the temperature sensed along the 

cable. The signals are immune to electromagnetic interference thereby ensuring integrity 

of readings from electrically noisy areas, for example around power cables and 

transformers. The system can continue to operate in the event of a fiber break by 

exploiting the signal processing techniques. The system can reconstitute the temperature 

profile of the entire fiber length regardless of the position of the break. Depending on the 

nature of the break a few measurement points in the immediate vicinity of the break may 

be lost. In the case of multiple breaks, the length accessible to the system will continue to 

be measured. The optical fiber temperature sensing system has wide ranging applications 

especially where small changes in temperature need to be detected, like pipe leakages, 

overheating of sensitive equipment, and magazine areas. 
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Figure 89 Principle of Fiber Optical Detector 

 

The High Performance Optical Detector has sensitivity to both hot, fast, 

"Clean" burning fires (domain of the ion-chamber detector) and cold, slow smoldering 

fires (domain of the optical detector). [69] The High Performance Optical Detector senses 

the flaming fires that generate a significant rise in air temperature together with a small 

increase in visible smoke. To sense this temperature rise, two thermistors are arranged in 

a similar fashion to that found in a standard rate-of-rise heat detector. One thermistor is 

mounted so as to be exposed to the air while the second is shielded inside the detector's 

body. If the temperature rises slowly then the thermistor temperature will be 

approximately equal and no adjustment to optical sensitivity occurs. If however the air 

temperature changes very rapidly, the exposed thermistor will heat more quickly than the 

reference thermistor (heat shielded by the detector body) and a temperature difference 

will be established. The electrical circuit senses that the exposed thermistor is hotter than 

the reference thermistor and reduces the alarm threshold of the optical sensor 

accordingly. If there is smoke present at a level above the reduced threshold then an 

alarm will be raised. Otherwise the detector will remain in its enhanced sensitivity state, 

without giving an alarm until the temperature stabilizes. The High Performance Optical 

offers a significant performance improvement over standard optical detectors, with a 

much more uniform performance, across open cellulosic fires (wood), and liquid fires (n-

heptane). 
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Figure 90 High Performance Optical Detector 

 

The use of this detector that contains no radio-active material, together 

with its systems design flexibility, now offers the ship operator a cost effective, stable, 

false-alarm-free alternative to the ion- chamber detector.  

Smart Microsensors 

A smart microsensor is a miniature voltammetric/electrocatalytic (V/EC) 

microsensor made of ceramic-metallic (cermet) materials that identifies many different 

gases by their electrical signatures. [70] 

 

   
Figure 91 Smart Microsensor 

 

The microsensor's intelligent pattern recognition system can be trained to 

recognize a wide variety of gases and gas mixtures. The microsensor is inexpensive to 

produce (< 25 cents per microsensor), and is proving rugged enough to survive in hostile, 
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high-temperature environments. The microsensor can be remotely cleaned and does not 

require electrolyte replenishment or replacement. Compared with conventional sensors, 

power requirements are low (milliwatts). The neural network signature processing is 

scalable and can be implemented on equipment from a microcontroller up to a larger PC. 

Humidity Detectors 

Humidity sensor contains a capacitive element that changes value in 

response to the relative humidity in the air.  An integrated circuit timer translates this 

capacitance into a digital frequency. 

Liquid Level Detectors 

Typical flooding detectors are open/closed 'dry' contact type switches 

operating by a float mechanism. A number of these sensors can be mounted at various 

heights within a tank or compartment to determine the liquid level. These switches are 

either on or off, and the level of desired accuracy dictates the number of sensors.  

"Wet" type contact switches use the fluid level to complete an electrical 

circuit and provide the alarm. These sensors are not as desirable as the dry contact 

switches.  

Continuous reading tank level sensors are available and operate by a 

detecting a resistance float sensor along a shaft, providing readings accurate to within 

one-half inch. These sensors typically monitor normal tank levels. These continuous level 

sensors can also monitor for excessive liquid loss indicating a damage situation, or 

provide unmanned filling operations.  

The open/closed contact switches can also be utilized for detecting 

actuator and access status. Fiber optical sensors have also been developed to provide this 

detection. 

Conclusions 

Other than fire detection, compartments will also be monitored for 

humidity and temperature, to calculate heat stress. Paint lockers and pump rooms will be 

monitored for explosive gases and lack of oxygen. Sewage spaces will be monitored for 

hydrogen sulfide gas. Air conditioning and refrigeration rooms will be monitored for 
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refrigerants and low oxygen levels. Other appropriate monitoring will be conducted in 

spaces subjected to localized hazards.  

Monitoring confined areas subject to toxic gas or oxygen deficiency will 

prevent unwanted exposures of the crew to these hazards. Immediate notification to 

control stations will prevent unaware watch standers from entering the compartments.  

2. Reactive System 

The available and proposed fire suppression systems are analyzed for the best 

selection for SEA ARCHER. 

FM-200 Fire Suppression Systems 

FM-200, heptafluoropropane, is one of the new halon alternative agents 

now in use to protect essential applications traditionally protected by Halon 1301. This 

agent has many similar characteristics to Halon 1301 and is safe in normally occupied 

areas. FM-200 systems are available in spheres or cylinders. [71] 

Inergen Fire Suppression Systems 

Inergen is another new alternative agent replacing traditional Halon 1301. 

Inergen is a high-pressure agent and is stored in cylinders similar to Carbon Dioxide. 

This agent is comprised of three naturally occurring gases nitrogen, argon and carbon 

dioxide. The system is laid out with a central bank of cylinders manifolded together and 

the agent is dispersed through a pressure reducer and a piping system. Critical areas that 

require non-water based extinguishing agent that is electrically nonconductive, safe for 

use in human occupied facilities, and not damage sensitive electronic equipment.  

The strategy of fire extinguishment employed by an Inergen system is like 

no other modern suppression system in use today. An Inergen system lowers the oxygen 

content of the protected area to a point sufficient to sustain human life, but insufficient to 

support combustion. 

Carbon Dioxide Fire Suppression Systems 

Clean agent carbon dioxide systems, have been an industry standard for 

many decades and are still the preferred agent in many applications. There are several 

common local application systems, which are utilized to extinguish fires in dip tanks, 

quench tanks and industrial operations where spilled fuel is a possibility. Local 
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application systems are also popular in the marine market, especially in engine 

compartments. 

FE-13 Fire Suppression Systems 

FE-13, trifluromethane, is the safest of the three most commonly used 

clean agents (FE-13, FM-200 and Inergen). Systems are typically designed at 16-21% 

concentrations but FE-13 has no exposure restrictions until concentrations reach 30% or 

higher. The ability to design at higher than required concentrations makes FE-13 an ideal 

agent for occupied areas where very rapid extinguishments is desired. [72] 

Two other characteristics make this a unique agent that should be 

seriously considered for our clean agent requirements. First, nozzles can be located at 

heights of up to 25 feet as compared to only 12 feet for FM-200 systems. Second, due to 

its low boiling point, FE-13 can be used in temperatures as low as 40° F. 

As with other clean agents, FE-13 can be used in any area with high 

valued electronics such as computer facilities, battery rooms and telecommunications 

facilities. It also has many industrial applications including unheated storage areas. 

NAFS-III 

NAFS-III consists of HCFC mixed by 82 %HCF22, 9.5%HCFC124, 

4.75% HCFC123. It is able to extinguish fires in the B and C rating classes and electrical 

goods. HCFC exists in gas form after spraying and extinguishing.  There is no liquid or 

solid residue, no remaining trace, and therefore no stain resultes. This type of fire 

suppression is good for oil stores, paint lockers, flammable chemical stores and 

electronics equipment compartments. 

Water Mist System 

Water mist systems extinguish fires primarily by removing heat from the 

materials involved in the combustion process. Water is applied to the fire in very fine 

droplets, which appear to the observer as a dense fog. The ratio of droplet surface area to 

water volume is large and conversion to steam occurs very efficiently. The latent heat of 

vaporization, which is a physical phenomenon associated with the change of state of 

water to a gas (steam), removes heat from the fire and the steam produced also helps to 

smother the fire by displacing oxygen in the vicinity of the fire. [73] 
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Water mist systems are also safer for people and the environment. These 

systems only use potable or natural seawater, with no adverse side effects. Lower flow 

rates equate to less cleanup than traditional water sprinkler systems. Tests have shown 

that properly designed water mist systems can effectively extinguish a wide variety of 

exposed and shielded Class B hydrocarbon pool, spray, and cascading pool fires.  

A general reluctance to provide water extinguishing for class "C" fires 

exists because of fears of conductivity.  

The Navy sponsored a program at the Applied Physics Laboratory/Johns 

Hopkins University (APL/JHU) to evaluate the effects of water mist on energized 

electrical equipment. Equipment selected for testing consisted of 3 phase-450 VAC 

motors, motor controllers and switchboards that were representative of equipment to be 

installed in the machinery spaces of LPD-17. The objective was to determine potential for 

equipment damage and to identify personnel electric shock hazards resulting from the 

discharge of mist onto energized equipment. Results showed that the conductivity of salt-

free potable water is very low. Shock hazards could only exist after a sustained mist flow 

of sufficient duration to cause plating out or pooling of water on equipment surfaces. 

There was essentially no current leakage for motors or motor controllers. Shock hazard 

with switchboards is negligible within the first 15 minutes if the boards are clean and 

properly grounded. The summary conclusion relative to LPD-17 is the probability of 

creating a shock hazard is low and that watch standers in the space would not have to 

evacuate prior to mist activation even if all equipment is energized.  

Water mist systems have been successfully tested on telecommunications 

switchgear equipment, consisting primarily of vertically mounted circuit boards. 

The results of a multi-year water mist research and development program 

by the Naval Research Laboratory, Chesapeake Beach Detachment says that large fires 

are easier to extinguish than small fires, due mainly to the displacement of oxygen by the 

expansion of the water mist to steam, obstructed fires become more difficult to extinguish 

with increased water droplet horizontal travel distance, well-ventilated fires are difficult, 

but not impossible, for water mist and water mist performs superior to gases in well-

ventilated scenarios. Deep-seated Class A fires are difficult to totally extinguish, though 
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surface flaming is suppressed, and mist enhances room tenability by cooling and smoke 

scrubbing.  

The system effectively extinguishes flammable liquid pool fires as well as 

spray fires, which could ignite from a ruptured hose or pipe in a process using flammable 

liquids. Water mist applications include, but are not limited to, engine and generator set 

enclosures, machinery spaces with incidental storage of flammable liquids, oil pumps, 

gear boxes, and drive shafts. 

Aqueous Film Forming Foam (AFFF) Systems 

Aqueous Film Forming Foams (AFFF) is based on combinations of 

fluoro-chemical surfactants, hydrocarbon surfactants, and solvents. These agents require 

a very low energy input to produce high quality foam. AFFF agents suppress fire by 

separating the fuel from the air (oxygen). Depending on the type of foam system, this is 

done in several ways: Foam blankets the fuel surface smothering the fire, the fuel is 

cooled by the water content of the foam, or the foam blanket suppresses the release of 

flammable vapors that can mix with the air.  

They can be applied through a wide variety of foam delivery systems. This 

versatility makes AFFF an obvious choice for handling of flammable liquids. 

Conclusions 

Active damage control measures will be required to keep the damage 

contained and from progressing. Fire extinguishing methods include the use of a ship 

wide water mist sprinkler system, AFFF flooding, FM 200 system and carbon dioxide 

flooding.  
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Figure 92 Relative System Cylinder/Space Requirements ( from [71]) 
 

FM 200 is selected. Because, it requires less space and costs less than inert 

gas technology, FE 13, and NAFS-III. Although carbon dioxide fire suppression systems 

are cheaper than the FM 200, carbon dioxide is toxic to human life. 

 

Gas Inst RM/cu.m Refill RM/ cu.m 

CO2 18,000 100. 8 1,100 6.2 

FE13 45,000 252. 0 14,000 78.4 

Water Mist 70,000 392. 1 11,000 6.2 

Inergen 60,000 336. 1 10,000 56.0 

FM200 50,000 280. 1 19,000 106.4 

NAFS- III 38,000 212. 9 14,500 81.2 

Table 49 Comparison of Fire Suppression Systems (from [74]) 

 

Independent extinguishing agents, such as carbon dioxide flooding for the 

paint lockers, pump rooms, air conditioning and refrigeration rooms, and engine 

enclosures, which are all unmanned, and FM 200 for the electronics equipment 

compartments, CIC, bridge, accommodations, kitchens and galley, and passage ways, 
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which are manned, will protect specialized spaces. Water mist sprinklers will protect 

machinery spaces. A combination of the water mist sprinklers and AFFF sprinklers will 

be used to combat fuel fires, which are possible in the machinery spaces and the hangar 

bay. 

3.  Damage Control Party Organization 

As the first detection and reaction to any fire or damage will be performed by 

ADCS, the number of personnel assigned to in a classical damage control party 

organization is reduced.  With the use of electronic hand held devices, the 

communication and plotter man is no longer needed. Also, the fire and smoke detection 

network allows us to decrease the number of boundary personnel. 

 



245 

G. TOTAL SHIP SYSTEMS  

Table 50 Manhors Summary

Levels of Maintenance Concept
1 Routine Minimized to accommodate min manning
2 Tiger Teams Monthly (Possibly 50 personnel, 12 hr days, 7 days out of the month rotational = 4200mhrs / month)
3 Requires less "routine maint" or more of it moved to SRA periods

Weekly
# Hrs Days/Wk. Manhrs Manhours

Operational Watch Stations Ship Ops 17 24 7 408 2856
Daily OPS Brief 20 0.5 7 10 70

Spec Evs Unrep Ship Control 2 4 2 8 16 Helm lookout
(2 x 4hrs.) Safety 2 4 2 8 16 rig & eng space

Riggers 5 4 2 20 40
Line Handlers 3 4 2 12 24
stowage 1 4 2 4 8

GQ DC parties 42 2 2 84 168
Bridge 4 2 2 8 16 Helm, BM, JOOD, L/O
Combat Sys. 4 2 2 8 16 CIC Consoles
ENG 3 2 2 6 12
Trons 5 2 2 10 20

WEPS loading ciws/gun reload 4 3 1 12 12
ram reload 4 6 1 24 24
chaff reload 3 2 1 6 6

Command CO/XO 2 16 7 32 224
Chaplain/RPO 1 1 7 1 7

Non Clean/Sweep 70 0.25 6 17.5 105
Transferable Prop. Maint. 6 6 6 36 216 Off Watch Personnel 
(Non-Watch) Elex Maint 6 6 6 36 216 RQD some Maint too…
(Routine) AUX/DC Maint 5 6 6 30 180
(and minor Repair)
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Table 51 Manhours Summary (Continued)  

 

Network Maint 3 6 6 18 108
Automation Maint 3 8 6 24 144
Weps maint 2 4 6 8 48
Deck Gear Maint 1 2 6 2 12
Small Boat Maint 1 1 6 1 6

Intel/Ops 2 12 7 24 168
Comms 2 12 7 24 168
ET/EW 2 12 7 24 168

Collaterals 20 1 2 20 40 Legal, MWR, 
Wardroom, CMS, etc.

SUPP 1 8 7 8 56
SUPP 2 8 7 16 112
ADMIN 2 8 7 16 112
Laundry/FS Supp 1 8 7 8 56
Med 2 12 7 24 168

Traning 75 1.5 6 112.5 675

Summations 6293.0 ###
Ship's Company Proposed 75

Manhours Per Day (per person) 12.0

Manhours Per week (per person) 83.9

manhours in 7 day week (12hour day) 84
manhours in 7 day week (8hour day) 56
hours in week 168
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Table 52 SEA ARCHER Specialized Equipment 

 

Sea Archer Specialized Equipment used for ship cost estimate

Costs are reflected back to 1991 at 3% inflation rate to align with CER's in given model.  
Later, total is reflected to 2001 with same inflation rate.

Costs in 2001 Costs in 1991 What to add
Engines/WaterJets $140,000,000 $104,173,148 $104,173,148 Propulsion
Electric Plant $60,000,000 $44,645,635 $21,045,635 Electric
Composite Hull Form $150,000,000 $111,614,087
Air Cushion $50,000,000 $37,204,696 $148,818,783 Hull/Air Cushion
MultiFunction Radar $80,000,000 $59,527,513
MultiFunction RF system (EW suite) $30,000,000 $22,322,817
Volume Search Radar $30,000,000 $22,322,817 $102,173,148 Radar
Free Electron Laser $55,000,000 $40,925,165
Other Weps/Sensor Systems $5,000,000 $3,720,470 (IRST,EOS,Chain Gun)
2 Unmanned Surface Vessels $900,000 $669,685 $45,315,319 FEL, Surf, Other Weps/Sensors
Ship Missile Launcher $40,000,000 $29,763,757 $29,763,757 VLS 16 CELL (Quad Missile) launch
EMALS $40,000,000 $29,763,757 $29,763,757 EMALS
Automated DC systs. $35,000,000 $26,043,287
DC Automation IP (.75*gear) $26,250,000 $19,532,465 $45,575,752 Automation (Hab/DC)
Automated Flight Deck/Hanger $45,000,000 $33,484,226
Automated Weapons Handling $35,000,000 $26,043,287
A/C Automation IP (.75*gear) $60,000,000 $44,645,635 $104,173,148 Automation Aviation
Network Centric CMD/CONT. $10,000,000 $7,440,939 $7,440,939 Network Centric

SUMS $882,150,000 $663,843,386 $638,243,386
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Table 53 SEA ARCHER Cost Estimate 

 

 

TSSE Sea Archer Cost Estimate
Sea Archer Ref. Tot 13800

Archer Archer Archer Archer S-CVX
Archer (Scaled) MAT MATERIAL Labor Labor
Wt. Ratio Description (LT) Other CER COSTS CER Hours
0.0308 SHELL + SUPPORTS 425.3 1181 $502,314 251 106758
0.0407 HULL STRUCTURE BULKHEADS 561.8 1181 $663,459 251 141006
0.0417 HULL DECKS 574.8 1181 $678,831 316 181635
0.0058 HULL PLATFORMS/FLATS 80.2 1181 $94,665 316 25329
0.0145 DECK HOUSE STRUCTURE 200.8 1028 $206,383 316 63441
0.0513 SPECIAL STRUCTURES 708.0 1632 $1,155,508 251 177716
0.0002 MASTS,KINGPOSTS,SERV PLAT. 2.9 6183 $17,632 164 468
0.0072 FOUNDATIONS 98.7 1028 $101,464 359 35434
0.0078 SPECIAL PURPOSE SYSTEMS 107.6 1000000 4758 $107,597,658 404 43469
0.2000 Hull Sum 2760.0 $111,017,914 775255

0.0000 ENERGY SYS 0.0 0 $0 0 0
0.0000 ENERGY GEN. SYSTEM 0.0 0 $0 0 0
0.0597 PROPULSION UNITS 824.5 500000 144 $72,000,000 209 172316
0.0115 XMISSION+PROP. SYST's. 158.9 560000 63 $35,280,000 162 25745
0.0011 SHAFTING 14.7 20003 $294,023 0 0
0.0301 SUPPORT SYSTEMS 415.5 288 $119,659 412 171179
0.0044 PROP SUP SYS -FUELS,LUBES 61.0 36916 $2,251,546 271 16529
0.0031 SPECIAL PURPOSE SYSTEMS 43.4 288 $12,507 0 0
0.1100 Propulsion Sum 1518.0 $109,957,736 385769

0.0202 ELECTRIC PWR GENERATION 279.4 200000 650 $55,883,802 209 58399
0.0780 POWER DIST. SYSTEM 1077.0 57000 $61,391,345 1294 1393691
0.0189 LIGHTING SYSTEM 260.7 5450 $1,420,839 1329 346476
0.0096 POWER GEN SUPPT. SYSTEM 133.0 13750 $1,828,678 1329 176750
0.0032 SPECIAL PURPOSE SYSTEMS 43.8 480000 788 $21,043,500 471 20649
0.1300 Electrical Sum 1794.0 $141,568,165 1995965

0.0024 COMMAND+CONTROL SYS 33.8 380000 150000 $12,830,743 235 7935
0.0016 NAVIGATION SYS 21.4 150000 $3,210,168 235 5029
0.0045 INTERIOR COMMS 62.0 150000 $9,295,337 235 14563
0.0037 EXTERIOR COMMS 51.1 150000 $7,671,632 235 12019
0.0064 SURF SURV SYS (RADARS) 88.7 1150000 150000 $101,985,535 235 20841
0.0000 UNDERWATER SURV. SYSTS. 0.0 150000 $0 235 0
0.0032 COUNTERMEASURES 44.8 150000 $6,725,712 235 10537
0.0021 FIRE CONTROL SYS 28.4 150000 $4,252,915 235 6663
0.0011 SPECIAL PURPOSE SYS 14.8 3000000 150000 $44,540,155 235 3489
0.0250 CMD/CONT Sum 345.0 $190,512,198 81075

0.0101 CLIMATE CONTROL 139.2 32868 $4,574,447 494 68753
0.0062 SEA WATER SYSTEMS 85.1 50705 $4,312,529 679 57750
0.0013 FRESH WATER SYSTEMS 17.3 34033 $588,336 529 9145
0.0151 FUELS/LUBES, HANDL/STORE 207.8 42125 $8,752,491 271 56307
0.0019 AIR, GAS+MISC FLUID SYSTEM 25.8 70265 $1,812,091 647 16686
0.0000 SHIP CONTL SYS 0.0 14025 $0 353 0
0.0051 UNREP SYSTEMS 69.8 8035 $560,756 176 12283
0.0233 MECH. HANDLING SYST'S. 321.4 322000 16853 $103,490,619 259 83242
0.0072 SPECIAL PURPOSE SYSTEMS 99.7 302000 1888 $30,119,319 282 28125
0.0700 Auxiliary Sum 966.0 $154,210,589 332290
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Multi-Hull Adj unit cost with basic With Multi-Hull
Hours Labor Cost .30*Labor Shipyard Overhead Labor Overhead

Total 2001 1st Ship Labor 7783481 272421851 81726555 $1,370,186,717.51 $1,451,913,272.76
Total 2001 2nd Ship Labor 7394307 258800758 77640227 $1,353,637,090.07 $1,431,277,317.56
Total 2001 3rd Ship Labor 7175739 251150871 75345261 $1,344,342,477.21 $1,419,687,738.56
Total 2001 4th Ship Labor 7024592 245860720 73758216 $1,337,914,944.01 $1,411,673,160.12
Total 2001 5th Ship Labor 6909549 241834219 72550266 $1,333,022,744.76 $1,405,573,010.45
Total 2001 6th Ship Labor 6816952 238593328 71577998 $1,329,085,061.79 $1,400,663,060.07
Total 2001 7th Ship Labor 6739631 235887101 70766130 $1,325,796,996.35 $1,396,563,126.62
Total 2001 8th Ship Labor 6673362 233567684 70070305 $1,322,978,905.24 $1,393,049,210.55
 

SEA ARCHER Cost Estimate (Cont) 

 

 

0.0005 SHIP FITTINGS 6.6 55033 $364,157 882 5836
0.0040 HULL COMPARTMENTATION 54.7 11160 $610,509 741 40536
0.0112 PRESERVATIVES+COVERINGS 154.6 10789 $1,668,226 494 76384
0.0033 LIVING SPACES 44.9 29677 $1,332,492 1235 55451
0.0011 SERVICE SPACES 15.5 26174 $405,907 135 2094
0.0030 WORKING SPACES 41.7 27376 $1,141,897 292 12180
0.0068 STOWAGE SPACES 93.6 86901 $8,131,970 12 1123
0.0002 SPECIAL PURPOSE SYSTEMS 2.4 19300000 35511 $45,511,005 235 554
0.0300 Hab Sum 414.0 $59,166,163 194158

Next 4 Entries are materials needed to support given system vice actual expendable
0.0001 MISSILES+ROCKETS 1.0 100000 $99,275 235 233
0.0000 SMALL ARMS+PYROTECHNICS 0.3 100000 $32,854 235 77
0.0042 AIRCRAFT RELATED WEAPONS 58.1 100000 $5,811,541 235 13657
0.0007 SPECIAL PURPOSE SYSTEMS 9.6 3100000 100000 $29,646,217 235 2247
0.0050 Weps Sum 69.0 $35,589,887 16215

0.5700 MATERIAL / LABOR SUMS 7866 1991 Material Cost $802,022,652 3780728
FY01 Material Cost $647,097,811

(3% inflation rate) Total 2001 Material Cost $855,303,843
0.0097 SHIPS FORCE 134.2
0.0523 MISSION RELATED EXPENDABLES 721.7
0.0220 STORES 303.2
0.3100 LIQUIDS, PETROLEUM BASED 4278.0
0.0212 LIQUIDS, NON-PETROLEUM BASED 292.7
0.0148 FUTURE GROWTH MARGIN 204.2
0.4300 Total Payload weight: 5934.0 Payload Cost
1.0000 Check Sums 13800.0 $2,967,000

Ship assembly and support labor = .478*Labor 1807188
Integration and Engineering Labor = .186*Labor 703215
Program Management Labor = .194*Labor 733461 (4th ship) Labor cost
Combined Labor Total Hours @ Labor rate: $35 7024592 $245,860,720
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VI. CONCLUSIONS 

The Total Ship Systems Engineering team has completed the first iteration of the 

design spiral and shown that numerous advanced concepts are practical.  The SEA 

ARCHER design is by no means complete. This report has shown the results of the first 

iteration in the design process of SEA ARCHER.  The design is able to meet the 

demanding speed and range requirements that were set out in the Operational 

Requirements Document.  This by no means though is a finished design.   It is recognized 

that further studies and design could be done to better meet the requirement including a 

recommendation to further study the effects that speed and range requirement had on 

both the size and cost of the ship. 

When this first iteration was completed, it was realized the ship had been over 

designed in both volume and power.  This was a result of our focus on ensuring we were 

able to meet the demanding speed and range requirements. Further iteration on this 

design would aide in refining the ships characteristics, especially in the area of volume 

utilization and powering requirements for the ship, with an expected overall smaller ship 

with less installed horsepower and at a lower cost. 

This design utilizes many new technologies, many of which would require 

continued research and development to complete the design.   The following is a 

discussion of some of the further research and next iteration recommendations from the 

SEA ARCHER design team: 

 

Hull Design: The Harley SES hull form is a new design that has the potential for 

high-speed naval applications and provides several key advantages over other hull forms 

in the littoral environment.  The team feels that aggressive research with this hull form 

will determine the design space and demonstrate the usefulness of this design.   

Specifically more detailed model testing should be performed to evaluate slow 

speed performance.  Model testing should also be performed to determine how variations 

in the air cushion geometry affect overall performance.  This would allow needed 
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flexibility in shipyard construction size restrictions and determine the optimal design 

ratios for this hull form.    

The lift system requires 10 to 15% of the propulsion power therefore optimization 

of this system is critical to the overall design.  Further research to optimize the lift system 

should be conducted both from a sizing issue and from a ride control aspect.  The center 

body shape can contribute lift at higher speeds and research to determine the optimal 

design shape should be conducted.  The use of ram intakes may also reduce blower power 

requirements at higher speeds and should be investigated.    

An important difference for the Harley SES design is the cushion pressure is 4 to 

5 times higher than a standard SES.  The higher pressure requires a structurally stronger 

hull and the use of larger and more powerful fans to deliver both high pressure and flow.  

The design team feels that research into large capacity blowers for shipboard applications 

is critical to this design’s future use. 

The SEA ARCHER design benefited from the use of lightweight high strength 

composite materials and although research supports this application more is still needed.  

Although composite material use has accelerated in the aircraft industry large scale ship 

construction with composite materials is still not possible.  Continued research should 

support not only developing material but also large scale production issues.  

The first iteration design of SEA ARCHER shows the vessel is overpowered.  

Allowing for the continuous electrical load of 15 MW results in a total propulsion power 

available of 306,000 SHP, corresponding to a maximum speed of approximately 68 knots 

on the speed/power curve.  Further iteration with a focus on more refined powering 

requirements would result in a smaller vessel and should be the next step in the design 

process. 

  

Propulsion: Based on the design philosophy of ship reduced manning, the gas 

turbine engine is the correct prime mover for SEA ARCHER.  However, research must 

continue in the areas of material improvement and weight reduction for propulsion 

motors and propulsors.  Motors are still extremely heavy.  If they are to be a viable 

propulsion alternative for future naval ships, weight must be reduced.  Hydro-Air Drive is 
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still in its technological beginnings.  Larger units must be built and proven in order for 

SEA ARCHER to take full advantage of this technology.  On the next iteration a better 

match of required horsepower to installed horsepower could be done as more information 

about the HARLEY SES is found.   

Electrical: In order to improve the electrical system design, a couple of areas need 

to be researched further: the power converter modules and the cabling.  As of yet, there 

are no power converter modules designed for the power output needed on SEA 

ARCHER.  The SEA ARCHER design uses scaled versions of developed lower power 

converter modules, but research is currently being conducted at the Land Based 

Engineering Site (LBES) in Philadelphia, PA.  With more research, the size, weight and 

cost of each module can be refined. 

In addition, the large power requirement of SEA ARCHER necessitates large 

currents with the 4160 V power source of this design.  The large currents require large 

amounts of cabling to carry the current.  Lower currents are desirable for safety reasons, 

as well as, to minimize the cabling size needed for distribution.  In order to provide lower 

current, the next iteration of SEA ARCHER would look at emerging technologies into 

high voltage power distribution.  The emerging trend is to use 13,800 V power lines, vice 

the 4160 V power lines, which would reduce the current by roughly three times.  Issues 

of safety, handling, and naval qualified circuit breakers for 13.8 kV must be addressed. 

The distribution of power between the AC and DC systems should be refined 

further to improve the balance between survivability and the weight and cost of cabling, 

converters and switch gear.  Along these lines, since there are only a few major “dirty” 

AC power loads, the next iteration would look at removing the AC zonal busses, and 

using specific AC lines to power these loads.  This should eliminate a lot of bus cable 

weight in zones that do not have the large AC loads. 

Lastly, the Total Harmonic Distortion issues imposed on the AC distribution 

system by the various power converter loads needs to be further investigated.  The 

investigation needs to focus on assessing the passive and active filtering requirements and 

considering designs specific to improving power quality. 

 



254 

Aviation Operations: The critical part of the design of the aviation systems 

onboard SEA ARCHER is the use of automation and robotics to replace people.  It is a 

significant risk that the technologies will be developed to a degree sufficient for 

shipboard application in a combat environment in the given time frame.  From a total 

systems engineering perspective, the hangar bay design was developed more as a separate 

entity than as a part of the total system.  The rest of the design was forced to mold itself 

around the hangar deck whereas, ideally, it should have been as flexible as any other part 

of the design.  This was an unfortunate consequence of the time constraint of the project, 

and as such the hangar bay design might not be the optimum for the total ship design.  On 

the next iteration in the design a more integrated approach to design of the hangar bay 

and hangar bay functions could be done. 

Combat Systems: A more in-depth analysis into the benefits of a non-mast/island 

design versus a conventional mast (albeit low RCS) would be necessary to ensure the best 

design alternative was chosen.  For the first iteration look at combat systems the concern 

for survivability of the ship was given a high priority (with cost being much lower).  

Evaluation of the effectiveness of the ships defensive capabilities and the cost to maintain 

this level of survivability would need to be traded off in the next iteration of combat 

systems design.   

Damage Control: The reliability of the Automated Damage Control Systems 

should be reviewed.  A particular focus on the expected reliability of the detectors would 

need to be conducted to better understand the overall reliability of the system.   

Further analysis needs to be conducted to determine what else can be done by an 

automated damage control system, before a missile hit, to increase the survivability of the 

ship. 

  The size of the damage control parties should also be analyzed to increase the 

reliability of the damage control system and the survivability of SEA ARCHER.  While 

thought was given to the differing damage control requirements in a highly automated 

and enclosed hangar bay, further research and design could be done. In particular the 

number, locations and the material of the fire resistant smoke curtains should be 

reviewed. 
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Auxiliaries:  A cost analysis should be performed for the recommended magnetic 

sensors. Depending on the cost, the equipment that would benefit from use of magnetic 

sensor can be determined. Also, the maintenance of these devices should be reviewed. 

Further research into the use of variable speed pumps and the savings projected 

could also be done to truly understand their impact throughout the life of the ship. 

 Habitability: Analysis on the benefits of workload reduction practices, like the 

self-service utilities, should be performed to understand the benefit in cost and man-hours 

saved by providing these innovations as well as the added cost to bringing these to the 

design.    

  Total Ship:  The SEA ARCHER design represents one potential solution for the 

littorals.  Follow on work is required to refine the automated systems and man/machine 

interfaces required to operate this complex warship with a minimal manning concept.  

The logistic and maintenance support structure will require further analysis to ensure 

supportability for the ships life cycle.   

The ship design philosophy focused on innovation and advanced concepts in 

order to explore the entire range of possible solutions for the Navy.  The next iteration of 

the design needs to reorder the design philosophy to interject some practical constraints 

imposed by limited fiscal resources.  These constraints should not limit the basic goals of 

innovation but help refine the realm of possible solutions to meet the mission needs in the 

littorals.    

The SEA ARCHER design resulted from the concept of Total Ship Systems 

Engineering.  By using this concept from the start, a well balanced design resulted in 

which no one system was optimized, but as a whole, the ship is capable to meeting its 

demanding requirements.   
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TYPICAL RESULTS OF THE ANALYTICAL TOOL DURING THE ANALYSIS OF 
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1 

 
 

Initial Input
Ranking

1 Desired Speed in Waves 60                 knots
2 Desired Payload 1,900            long tons
3 Desired Range 4,000            nautical miles

Sea State 1 wave height at top of SS1 = 0.3 feet
Maximum Displacement 30,000          long tons

Results
SES Catamaran Pentamaran

Calm Water Speed 3,12 knots 60.0               60.0               60.0               60.1                60.0               60.2               60.0               
Speed in Waves 1,3,4,9,10,11 knots 60.0               60.0               60.0               60.0                60.0               60.0               60.0               
Payload Weight 2,3,4,9 long tons 1,200             1,200             1,900             1,200              1,900             1,900             1,200             
Range at Speed in Waves 4,7,9 nautical miles 4,000             4,000             4,000             2,404              4,000             4,000             1,994             
Displacement 3,7 long tons 7,871             8,424             13,343           7,508              12,590           10,118           8,508             
Installed Power 3,6,7 HP 209,682         239,172         366,357         342,000          318,709         291,384         342,000         
Engines 5 # Type 6 LM 2500+ 6 LM 5000 6 LM 2500+ 6 LM 6000 6 LM 2500 6 LM 2500 6 LM 6000
Fuel Carried On Board 3,7,8 long tons 2,082             2,651             3,488             2,406              3,195             2,969             1,844             
Length feet 478                380                646                430                 549                522                330                
Beam feet 121                110                121                86                   175                64                  146                
Hullborne Draft feet 65.7               53.2               26.7               31.9                25.0               22.6               30.3               
Foilborne / Cushionborne Draft feet 26.6               28.2               7.5                 N/A N/A N/A N/A
Rough Order of Magnitude Cost 528,900,000$ 531,300,000$ 600,200,000$ 543,000,000$ 584,800,000$ 542,800,000$ 572,100,000$ 
Lift to Drag Ratio 23.8               19.4               21.5               12.4                22.6               20.8               12.1               

Notes
1 Results with speeds below 15 knots are not reliable 7 Purple indicates limit is exceeded
2 Cannot drop below 10% of desired 8 Limited to Minimum of 10 long tons
3 Red indicates limit has been reached 9 Yellow-Orange indicates desired quantity has not been reached
4 Green indicates desired quantity has been reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms
5 Assumes 10 equal-sized Gas Turbines 11 Cannot drop below 30% of desired
6 Limited to 670,500 HP = 10 Trent Gas Turbines 12 Limited to 80 knots, SES limited to 100 knots
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Initial Input
Ranking

1 Desired Speed in Waves 60                 knots
2 Desired Payload 3,850            long tons
3 Desired Range 4,000            nautical miles

Sea State 1 wave height at top of SS1 = 0.3 feet
Maximum Displacement 30,000          long tons

Results
SES Catamaran Pentamaran

Calm Water Speed 3,12 knots 60.0               60.0               60.0               60.1                60.0               60.1               60.0               
Speed in Waves 1,3,4,9,10,11 knots 60.0               60.0               60.0               60.0                60.0               60.0               60.0               
Payload Weight 2,3,4,9 long tons 1,200             1,200             3,850             1,200              3,850             3,850             1,200             
Range at Speed in Waves 4,7,9 nautical miles 4,000             4,000             4,000             2,404              4,000             4,000             1,994             
Displacement 3,7 long tons 7,871             8,424             19,640           7,508              18,892           15,003           8,508             
Installed Power 3,6,7 HP 209,682         239,172         487,020         342,000          432,504         365,411         342,000         
Engines 5 # Type 6 LM 2500+ 6 LM 5000 6 LM 5000 6 LM 6000 6 LM 5000 6 LM 2500+ 6 LM 6000
Fuel Carried On Board 3,7,8 long tons 2,082             2,651             4,560             2,406              4,251             3,711             1,844             
Length feet 478                380                735                430                 628                596                330                
Beam feet 121                110                138                86                   201                73                  146                
Hullborne Draft feet 65.7               53.2               30.4               31.9                28.6               25.8               30.3               
Foilborne / Cushionborne Draft feet 26.6               28.2               8.5                 N/A N/A N/A N/A
Rough Order of Magnitude Cost 528,900,000$ 531,300,000$ 666,900,000$ 543,000,000$ 649,900,000$ 580,200,000$ 572,100,000$ 
Lift to Drag Ratio 23.8               19.4               23.8               12.4                25.0               24.5               12.1               

Notes
1 Results with speeds below 15 knots are not reliable 7 Purple indicates limit is exceeded
2 Cannot drop below 10% of desired 8 Limited to Minimum of 10 long tons
3 Red indicates limit has been reached 9 Yellow-Orange indicates desired quantity has not been reached
4 Green indicates desired quantity has been reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms
5 Assumes 10 equal-sized Gas Turbines 11 Cannot drop below 30% of desired
6 Limited to 670,500 HP = 10 Trent Gas Turbines 12 Limited to 80 knots, SES limited to 100 knots
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Initial Input
Ranking

1 Desired Speed in Waves 60                 knots
2 Desired Payload 2,271            long tons
3 Desired Range 4,000            nautical miles

Sea State 1 wave height at top of SS1 = 0.3 feet
Maximum Displacement 30,000          long tons

Results
SES Catamaran Pentamaran

Calm Water Speed 3,12 knots 60.0               60.0               60.0               60.1                60.0               60.2               60.0               
Speed in Waves 1,3,4,9,10,11 knots 60.0               60.0               60.0               60.0                60.0               60.0               60.0               
Payload Weight 2,3,4,9 long tons 1,200             1,200             2,271             1,200              2,271             2,271             1,200             
Range at Speed in Waves 4,7,9 nautical miles 4,000             4,000             4,000             2,404              4,000             4,000             1,994             
Displacement 3,7 long tons 7,871             8,424             14,656           7,508              13,906           11,117           8,508             
Installed Power 3,6,7 HP 209,682         239,172         392,383         342,000          343,349         307,664         342,000         
Engines 5 # Type 6 LM 2500+ 6 LM 5000 6 LM 5000 6 LM 6000 6 LM 2500+ 6 LM 2500 6 LM 6000
Fuel Carried On Board 3,7,8 long tons 2,082             2,651             3,725             2,406              3,428             3,134             1,844             
Length feet 478                380                666                430                 567                539                330                
Beam feet 121                110                125                86                   181                66                  146                
Hullborne Draft feet 65.7               53.2               27.5               31.9                25.8               23.3               30.3               
Foilborne / Cushionborne Draft feet 26.6               28.2               7.7                 N/A N/A N/A N/A
Rough Order of Magnitude Cost 528,900,000$ 531,300,000$ 614,300,000$ 543,000,000$ 598,600,000$ 550,700,000$ 572,100,000$ 
Lift to Drag Ratio 23.8               19.4               22.0               12.4                23.2               21.6               12.1               

Notes
1 Results with speeds below 15 knots are not reliable 7 Purple indicates limit is exceeded
2 Cannot drop below 10% of desired 8 Limited to Minimum of 10 long tons
3 Red indicates limit has been reached 9 Yellow-Orange indicates desired quantity has not been reached
4 Green indicates desired quantity has been reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms
5 Assumes 10 equal-sized Gas Turbines 11 Cannot drop below 30% of desired
6 Limited to 670,500 HP = 10 Trent Gas Turbines 12 Limited to 80 knots, SES limited to 100 knots
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Initial Input
Ranking

1 Desired Speed in Waves 60                 knots
2 Desired Payload 3,220            long tons
3 Desired Range 4,000            nautical miles

Sea State 1 wave height at top of SS1 = 0.3 feet
Maximum Displacement 30,000          long tons

Results
SES Catamaran Pentamaran

Calm Water Speed 3,12 knots 60.0               60.0               60.0               60.1                60.0               60.2               60.0               
Speed in Waves 1,3,4,9,10,11 knots 60.0               60.0               60.0               60.0                60.0               60.0               60.0               
Payload Weight 2,3,4,9 long tons 1,200             1,200             3,220             1,200              3,220             3,220             1,200             
Range at Speed in Waves 4,7,9 nautical miles 4,000             4,000             4,000             2,404              4,000             4,000             1,994             
Displacement 3,7 long tons 7,871             8,424             17,748           7,508              17,000           13,511           8,508             
Installed Power 3,6,7 HP 209,682         239,172         451,777         342,000          399,377         344,165         342,000         
Engines 5 # Type 6 LM 2500+ 6 LM 5000 6 LM 5000 6 LM 6000 6 LM 5000 6 LM 2500+ 6 LM 6000
Fuel Carried On Board 3,7,8 long tons 2,082             2,651             4,254             2,406              3,950             3,500             1,844             
Length feet 478                380                710                430                 606                575                330                
Beam feet 121                110                133                86                   194                71                  146                
Hullborne Draft feet 65.7               53.2               29.4               31.9                27.6               24.9               30.3               
Foilborne / Cushionborne Draft feet 26.6               28.2               8.2                 N/A N/A N/A N/A
Rough Order of Magnitude Cost 528,900,000$ 531,300,000$ 647,100,000$ 543,000,000$ 630,600,000$ 569,100,000$ 572,100,000$ 
Lift to Drag Ratio 23.8               19.4               23.1               12.4                24.4               23.5               12.1               

Notes
1 Results with speeds below 15 knots are not reliable 7 Purple indicates limit is exceeded
2 Cannot drop below 10% of desired 8 Limited to Minimum of 10 long tons
3 Red indicates limit has been reached 9 Yellow-Orange indicates desired quantity has not been reached
4 Green indicates desired quantity has been reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms
5 Assumes 10 equal-sized Gas Turbines 11 Cannot drop below 30% of desired
6 Limited to 670,500 HP = 10 Trent Gas Turbines 12 Limited to 80 knots, SES limited to 100 knots

 

2 Squadron Option w Sea Arrow 
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Initial Input
Ranking

1 Desired Speed in Waves 60                 knots
2 Desired Payload 7,143            long tons
3 Desired Range 4,000            nautical miles

Sea State 1 wave height at top of SS1 = 0.3 feet
Maximum Displacement 30,000          long tons

Results
SES Catamaran Pentamaran

Calm Water Speed 3,12 knots 60.0               60.0               60.0               60.1                60.0               60.1               60.0               
Speed in Waves 1,3,4,9,10,11 knots 60.0               60.0               60.0               60.0                60.0               60.0               60.0               
Payload Weight 2,3,4,9 long tons 1,200             1,200             7,143             1,200              7,143             7,143             1,200             
Range at Speed in Waves 4,7,9 nautical miles 4,000             4,000             4,000             2,404              4,000             4,000             1,994             
Displacement 3,7 long tons 7,871             8,424             28,222           7,508              27,473           21,988           8,508             
Installed Power 3,6,7 HP 209,682         239,172         639,316         342,000          574,802         453,946         342,000         
Engines 5 # Type 6 LM 2500+ 6 LM 5000 > 2 GT's 6 LM 6000 > 2 GT's 6 LM 5000 6 LM 6000
Fuel Carried On Board 3,7,8 long tons 2,082             2,651             5,815             2,406              5,482             4,561             1,844             
Length feet 478                380                829                430                 711                677                330                
Beam feet 121                110                155                86                   227                83                  146                
Hullborne Draft feet 65.7               53.2               34.3               31.9                32.4               29.3               30.3               
Foilborne / Cushionborne Draft feet 26.6               28.2               9.6                 N/A N/A N/A N/A
Rough Order of Magnitude Cost 528,900,000$ 531,300,000$ 755,000,000$ 543,000,000$ 735,800,000$ 629,900,000$ 572,100,000$ 
Lift to Drag Ratio 23.8               19.4               26.0               12.4                27.4               29.0               12.1               

Notes
1 Results with speeds below 15 knots are not reliable 7 Purple indicates limit is exceeded
2 Cannot drop below 10% of desired 8 Limited to Minimum of 10 long tons
3 Red indicates limit has been reached 9 Yellow-Orange indicates desired quantity has not been reached
4 Green indicates desired quantity has been reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms
5 Assumes 10 equal-sized Gas Turbines 11 Cannot drop below 30% of desired
6 Limited to 670,500 HP = 10 Trent Gas Turbines 12 Limited to 80 knots, SES limited to 100 knots

 

2 Squadron Option with JSF 
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Initial Input
Ranking

1 Desired Speed in Waves 60                 knots
2 Desired Payload 3,620            long tons
3 Desired Range 4,000            nautical miles

Sea State 1 wave height at top of SS1 = 0.3 feet
Maximum Displacement 30,000          long tons

Results
SES Catamaran Pentamaran

Calm Water Speed 3,12 knots 60.0               60.0               60.0               60.1                60.0               60.1               60.0               
Speed in Waves 1,3,4,9,10,11 knots 60.0               60.0               60.0               60.0                60.0               60.0               60.0               
Payload Weight 2,3,4,9 long tons 1,200             1,200             3,620             1,200              3,620             3,620             1,200             
Range at Speed in Waves 4,7,9 nautical miles 4,000             4,000             4,000             2,404              4,000             4,000             1,994             
Displacement 3,7 long tons 7,871             8,424             18,962           7,508              18,214           14,466           8,508             
Installed Power 3,6,7 HP 209,682         239,172         474,472         342,000          420,719         357,881         342,000         
Engines 5 # Type 6 LM 2500+ 6 LM 5000 6 LM 5000 6 LM 6000 6 LM 5000 6 LM 2500+ 6 LM 6000
Fuel Carried On Board 3,7,8 long tons 2,082             2,651             4,451             2,406              4,144             3,636             1,844             
Length feet 478                380                726                430                 620                588                330                
Beam feet 121                110                136                86                   198                72                  146                
Hullborne Draft feet 65.7               53.2               30.0               31.9                28.2               25.5               30.3               
Foilborne / Cushionborne Draft feet 26.6               28.2               8.4                 N/A N/A N/A N/A
Rough Order of Magnitude Cost 528,900,000$ 531,300,000$ 659,800,000$ 543,000,000$ 643,000,000$ 576,200,000$ 572,100,000$ 
Lift to Drag Ratio 23.8               19.4               23.5               12.4                24.8               24.2               12.1               

Notes
1 Results with speeds below 15 knots are not reliable 7 Purple indicates limit is exceeded
2 Cannot drop below 10% of desired 8 Limited to Minimum of 10 long tons
3 Red indicates limit has been reached 9 Yellow-Orange indicates desired quantity has not been reached
4 Green indicates desired quantity has been reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms
5 Assumes 10 equal-sized Gas Turbines 11 Cannot drop below 30% of desired
6 Limited to 670,500 HP = 10 Trent Gas Turbines 12 Limited to 80 knots, SES limited to 100 knots

 

2 Squadron Option w/o Sea Quiver 
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Hull Data (with appendages) 
 
Baseline Draft: 4.059 at Origin 
Trim:      0.04 deg. 
Heel:       0.01 deg. 
 
DIMENSIONS 
Length Overall: 181.000 m    LWL:  181.000 m       Beam:  58.800 m       BWL:  57.278 m 
Volume: 13067.060 m3       Displacement: 13393.800 MT 
 
COEFFICIENTS 
Prismatic: 0.513       Block: 0.297       Midship: 0.579       Waterplane: 0.523 
 
RATIOS 
Length/Beam: 3.078       Displacement/length: 62.949       Beam/Depth: 14.220 
MT/  cm Immersion: 55.584 
 
AREAS 
Waterplane: 5422.832 m2       Wetted Surface: 7986.630 m2 
Under Water Lateral Plane: 713.657 m2       Above Water Lateral Plane: 1165.874 m2 
 
CENTROIDS (Meters) 
Buoyancy:  LCB = 17.904  aft        TCB =0.001  stbd        VCB = 2.655  
Flotation:  LCF = 11.660  aft  
Under Water LP: 4.645  fwd  of Origin, 1.985 below waterline. 
Above Water LP: 4.189  fwd  of Origin, 3.221 above waterline. 
 
Note: Coefficients calculated based on waterline length at given draft 
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Cross Curves of Stability 

Righting Arms(heel) for VCG = 9.31 

Trim      0.04 deg. at heel = 0 (RA Trim = 0) 

Displ (MT) 5.000s 10.000s 15.000s 20.000s 25.000s 30.000s 
675.902 22.911s 23.303s 22.881s 22.172s 21.231s 19.894s 
845.591 22.521s 23.273s 22.825s 22.074s 21.091s 19.805s 
1034.023 22.131s 23.207s 22.739s 21.963s 20.950s 19.704s 
1241.039 21.777s 23.105s 22.633s 21.847s 20.816s 19.585s 
1467.126 21.455s 22.953s 22.513s 21.723s 20.686s 19.445s 
1713.186 21.167s 22.702s 22.385s 21.590s 20.555s 19.314s 
1979.309 20.905s 22.345s 22.233s 21.454s 20.424s 19.186s 
2264.686 20.664s 21.977s 22.062s 21.320s 20.294s 19.066s 
2570.839 20.435s 21.629s 21.868s 21.175s 20.168s 18.948s 
2917.814 20.194s 21.287s 21.629s 21.012s 20.034s 18.832s 
3291.426 19.913s 20.966s 21.321s 20.834s 19.896s 18.714s 
3684.708 19.607s 20.673s 21.000s 20.644s 19.751s 18.599s 
4093.971 19.290s 20.405s 20.698s 20.441s 19.602s 18.483s 
4516.920 18.971s 20.156s 20.419s 20.217s 19.451s 18.366s 
4952.547 18.653s 19.927s 20.159s 19.973s 19.292s 18.247s 
5398.826 18.321s 19.710s 19.919s 19.737s 19.126s 18.126s 
5855.431 17.972s 19.508s 19.696s 19.510s 18.957s 18.003s 
6321.385 17.611s 19.326s 19.486s 19.298s 18.777s 17.878s 
6795.800 17.237s 19.163s 19.291s 19.098s 18.594s 17.749s 
7278.998 16.817s 19.015s 19.107s 18.909s 18.418s 17.620s 
7769.772 16.372s 18.879s 18.933s 18.728s 18.248s 17.488s 
8267.707 15.913s 18.755s 18.772s 18.558s 18.087s 17.352s 
8773.214 15.451s 18.633s 18.623s 18.399s 17.933s 17.218s 
9287.779 14.987s 18.509s 18.486s 18.249s 17.784s 17.087s 
9809.242 14.528s 18.375s 18.361s 18.107s 17.640s 16.959s 
10337.060 14.083s 18.233s 18.245s 17.973s 17.505s 16.833s 
10869.330 13.656s 18.085s 18.138s 17.847s 17.378s 16.708s 
11406.720 13.244s 17.933s 18.040s 17.731s 17.258s 16.582s 
11948.760 12.849s 17.777s 17.948s 17.623s 17.143s 16.456s 
12494.910 12.468s 17.616s 17.864s 17.523s 17.034s 16.330s 
13045.520 12.100s 17.450s 17.785s 17.428s 16.928s 16.207s 
13600.500 11.745s 17.281s 17.711s 17.341s 16.823s 16.084s 
675.902 18.234s 16.390s 14.411s 12.318s 10.133s 7.875s 
845.591 18.177s 16.358s 14.401s 12.328s 10.159s 7.916s 
1034.023 18.111s 16.317s 14.383s 12.333s 10.186s 7.962s 
1241.039 18.045s 16.272s 14.361s 12.333s 10.210s 8.010s 
1467.126 17.968s 16.225s 14.338s 12.333s 10.232s 8.056s 
1713.186 17.878s 16.176s 14.315s 12.334s 10.257s 8.103s 
1979.309 17.770s 16.123s 14.291s 12.336s 10.282s 8.152s 
2264.686 17.659s 16.065s 14.265s 12.337s 10.308s 8.203s 
2570.839 17.552s 16.000s 14.237s 12.338s 10.336s 8.255s 
2917.814 17.449s 15.917s 14.203s 12.337s 10.365s 8.311s 
3291.426 17.350s 15.834s 14.164s 12.334s 10.393s 8.370s 
3684.708 17.254s 15.756s 14.118s 12.327s 10.420s 8.426s 
4093.971 17.162s 15.682s 14.067s 12.318s 10.443s 8.481s 
4516.920 17.072s 15.613s 14.018s 12.303s 10.464s 8.534s 
4952.547 16.982s 15.548s 13.974s 12.285s 10.483s 8.583s 
5398.826 16.893s 15.484s 13.933s 12.266s 10.497s 8.620s 
5855.431 16.802s 15.421s 13.895s 12.250s 10.503s 8.641s 
6321.385 16.711s 15.359s 13.858s 12.233s 10.494s 8.647s 
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Displ (MT) 35.000s 40.000s 45.000s 50.000s 55.000s 60.000s 
6795.800 16.618s 15.295s 13.819s 12.207s 10.474s 8.639s 
7278.998 16.526s 15.231s 13.773s 12.170s 10.444s 8.620s 
7769.772 16.433s 15.162s 13.717s 12.122s 10.404s 8.589s 
8267.707 16.338s 15.088s 13.652s 12.065s 10.356s 8.552s 
8773.214 16.240s 15.004s 13.577s 11.999s 10.300s 8.508s 
9287.779 16.136s 14.912s 13.494s 11.925s 10.237s 8.458s 
9809.242 16.024s 14.813s 13.403s 11.844s 10.167s 8.400s 
10337.060 15.904s 14.706s 13.307s 11.758s 10.092s 8.336s 
10869.330 15.781s 14.594s 13.205s 11.667s 10.013s 8.269s 
11406.720 15.653s 14.474s 13.098s 11.571s 9.928s 8.197s 
11948.760 15.524s 14.349s 12.985s 11.471s 9.841s 8.120s 
12494.910 15.393s 14.222s 12.869s 11.367s 9.750s 8.039s 
13045.520 15.259s 14.094s 12.750s 11.261s 9.655s 7.954s 
13600.500 15.122s 13.964s 12.627s 11.150s 9.556s 7.868s 

   Water Specific Gravity = 1.025.    
 
 

Cross Curves
Displacement in Metric Tons
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Hydrostatic Properties 

Draft is from Baseline. 

Trim:      0.04 deg., No heel, VCG = 9.312 

Draft at  
4.500f 

(m) 

Displ 
(MT) 

LCB 
(m) 

VCB 
(m) 

LCF 
(m) 

TPcm 
(MT/cm) 

MTcm 
(MT-m 
/deg)  

KML 
(m) 

KMT 
(m) 

1.000 675.902 20.530a 0.686 28.325a 15.97 73594.80 6,247.261 888.139 
1.100 845.591 22.119a 0.755 28.592a 17.96 81553.83 5,534.693 796.093 
1.200 1034.023 23.268a 0.823 28.255a 19.74 88280.91 4,900.505 717.664 
1.300 1241.039 24.047a 0.891 27.796a 21.61 95264.53 4,406.998 653.050 
1.400 1467.126 24.573a 0.958 27.302a 23.54 102368.80 4,006.721 599.706 
1.500 1713.186 24.863a 1.026 25.574a 25.88 110924.60 3,718.693 557.352 
1.600 1979.309 24.956a 1.094 25.233a 27.54 116815.80 3,390.476 521.495 
1.700 2264.686 24.949a 1.161 24.536a 29.58 123509.60 3,133.743 490.716 
1.800 2570.839 24.841a 1.229 23.499a 31.85 130296.90 2,912.918 466.368 
1.900 2917.814 24.754a 1.301 23.983a 36.49 141879.50 2,795.052 475.093 
2.000 3291.426 24.600a 1.372 22.765a 38.45 148069.40 2,586.580 443.000 
2.100 3684.708 24.345a 1.442 21.590a 40.31 153711.10 2,399.216 414.322 
2.200 4093.971 24.029a 1.511 20.700a 41.70 158746.50 2,230.768 385.053 
2.300 4516.920 23.683a 1.578 19.985a 42.89 163448.20 2,082.392 357.716 
2.400 4952.547 23.321a 1.645 19.163a 44.18 168120.10 1,954.087 335.441 
2.500 5398.826 22.954a 1.710 18.496a 45.23 172200.30 1,836.625 314.721 
2.600 5855.431 22.587a 1.774 17.995a 46.09 175862.60 1,729.963 294.930 
2.700 6321.385 22.225a 1.837 17.371a 47.06 179746.20 1,638.329 278.509 
2.800 6795.800 21.868a 1.900 16.739a 47.97 183509.10 1,556.330 263.695 
2.900 7278.998 21.513a 1.962 16.295a 48.67 186644.10 1,478.310 249.232 
3.000 7769.772 21.166a 2.023 15.735a 49.49 190156.90 1,411.422 237.058 
3.100 8267.707 20.826a 2.084 15.279a 50.15 192979.90 1,346.540 225.219 
3.200 8773.214 20.491a 2.144 14.633a 51.09 196602.90 1,293.148 215.899 
3.300 9287.779 20.155a 2.205 14.209a 51.82 199296.50 1,238.635 206.338 
3.400 9809.242 19.827a 2.265 13.810a 52.42 201754.30 1,187.639 197.187 
3.500 10337.060 19.505a 2.325 13.355a 53.02 204662.70 1,143.592 189.068 
3.600 10869.330 19.198a 2.384 13.090a 53.44 206661.40 1,098.580 180.855 
3.700 11406.720 18.899a 2.443 12.652a 54.01 209570.70 1,061.875 174.050 
3.800 11948.760 18.611a 2.502 12.435a 54.39 211280.00 1,022.323 166.998 
3.900 12494.910 18.334a 2.560 12.131a 54.85 213511.20 988.274 160.684 
4.000 13045.520 18.067a 2.618 11.880a 55.27 215440.90 955.430 154.932 
4.100 13600.500 17.809a 2.676 11.596a 55.70 217583.80 925.849 149.486 

   Water Specific Gravity = 1.025.    
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Hydrostatic Properties at   Trim = 0.04f,  Heel = 0.00
Long. Location in m
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4.0LCB m
LCF m
VCB m
Displ.MT
MT/cm Imm.
Mom/Deg Trim
KML
KMT

VCB m x 1  0.0 1.0 2.0 3.0
Displ.MT x 10000  0.0 1.0
MT/cm Imm. x 10  1.0 2.0 3.0 4.0 5.0 6.0

Mom/Deg Trim x 100000  1.0 2.0
KML  x 1000  0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
KMT  x 1000  0.0 0.5 1.0
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Longitudinal Strength (      0.01 deg.) 

Location 
(m) 

Weight 
(MT) 

Buoyancy 
(MT/m) 

Shear 
(MT) 

Bending 
(MT-m) 

95.000f 0.000 2.927 0.00 0 
84.000f 0.000 12.984 103.61 -494 
79.000f 0.000 19.196 184.06 -1198 
74.000f 0.000 24.435 293.14 -2378 
69.000f 0.000 34.891 441.45 -4191 
64.000f 0.000 41.954 633.56 -6862 
60.000f 0.000 46.323 810.12 -9742 
60.000f 40.000    
59.000f 40.000 47.415 816.99 -10555 
54.000f 40.000 53.442 869.13 -14756 
49.000f 40.000 60.461 953.89 -19297 
44.000f 40.000 68.771 1076.97 -24355 
40.000f 40.000 76.047 1206.60 -28911 
40.000f 101.601    
39.000f 101.601 77.866 1181.95 -30105 
34.000f 101.601 87.320 1086.92 -35755 
29.000f 101.601 97.113 1039.99 -41050 
24.000f 101.601 92.873 1006.96 -46175 
19.000f 101.601 82.876 938.33 -51057 
14.000f 101.601 69.778 811.96 -55458 
9.000f 101.601 55.951 618.28 -59060 
4.000f 101.601 53.574 384.08 -61569 
1.000a 101.601 53.519 143.82 -62887 
6.000a 101.601 55.538 -91.54 -63012 
11.000a 101.601 57.562 -316.79 -61985 
16.000a 101.601 59.586 -531.92 -59857 
21.000a 101.601 64.045 -730.85 -56689 
26.000a 101.601 69.819 -904.19 -52587 
31.000a 101.601 76.506 -1046.38 -47695 
36.000a 101.601 85.770 -1148.69 -42186 
40.000a 101.601 94.783 -1193.99 -37487 
40.000a 61.600    
41.000a 61.600 97.035 -1159.69 -36310 
46.000a 61.600 105.609 -961.07 -30988 
46.000a 111.601    
51.000a 111.601 110.786 -978.08 -26128 
56.000a 111.601 116.010 -969.09 -21247 
61.000a 111.601 121.268 -933.90 -16477 
66.000a 111.601 126.568 -872.31 -11948 
71.000a 111.601 131.907 -784.12 -7794 
76.000a 111.601 137.273 -669.18 -4148 
80.000a 111.601 141.305 -558.43 -1686 
80.000a 50.000    
81.000a 50.000 142.313 -466.62 -1173 
86.000a 50.000 144.337 0.00 0 
86.000a 0.000    

 
 
 

Max. Shear 1206.60 MT at 40.000f   
Max. Bending Moment -63012 MT-m at 6.000a (Sagging)  
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Longitudinal Strength
<---Aft  (Meters)  Fwd--->

100.0a 50.0a 0.0a 50.0f 100.0f

-100.0

-50.0

0.0

50.0

100.0
Weight x 2.0
Buoy. x 2.0
Shear  x 20.0
B.M.  x 800.0
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Righting Arms vs Heel Angle 
 

Heel Angle 
(deg) 

Trim Angle 
(deg) 

Origin Depth 
(m) 

Righting 
Arm 
(m) 

0.01p 0.04f 4.059 0.000 
5.01p 0.07a 3.912 11.859 

10.01p 0.37a 2.997 17.344 
13.56p 0.50a 1.934 17.809 
15.01p 0.52a 1.471 17.731 
20.01p 0.56a -0.148 17.368 
25.01p 0.63a -1.770 16.858 
30.01p 0.74a -3.370 16.127 
35.01p 0.88a -4.933 15.172 
40.01p 1.04a -6.454 14.014 
45.01p 1.21a -7.936 12.675 
50.01p 1.37a -9.359 11.194 
55.01p 1.51a -10.715 9.596 
60.01p 1.62a -11.986 7.902 
 
 

Righting Arms vs. Heel
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Floodable Length Calculation 

Displacement: 13668.97MT    Water Specific Gravity: 1.025     Draft: 4.10 m 

L: 18.474a     T: 0.000     V: 3.500 m 

Required GM: 0.50 m    Uniform Permeability: 0.95 

Center 
(m) 

Length 
(m) 

Trim 
(deg) 

GM 
(m) 

58.800f 69.06 2.539f 56.62 
54.275f 70.03 2.486f 55.62 
49.750f 71.05 2.406f 54.50 
40.700f 76.92 2.321f 48.51 
36.175f 81.09 2.258f 45.31 
31.650f 86.08 2.190f 41.73 
27.125f 91.45 2.110f 37.99 
22.600f 97.29 2.009f 33.95 
18.075f 103.37 1.872f 29.70 
13.550f 109.88 1.674f 25.23 
9.025f 117.64 1.383f 20.20 
4.500f 126.55 0.891f 14.73 
0.025a 137.99 0.000 8.64 
4.550a 129.10 0.394a 11.37 
9.075a 120.40 0.851a 14.69 
13.600a 112.05 1.248a 18.13 
18.125a 103.95 1.595a 21.90 
22.650a 96.24 1.923a 25.77 
27.175a 88.72 2.186a 29.88 
31.700a 81.27 2.390a 33.78 
36.225a 73.81 2.533a 37.61 
40.750a 66.74 2.665a 41.16 
45.275a 59.97 2.781a 44.60 
49.800a 53.76 2.896a 48.08 
54.325a 48.19 3.005a 51.24 
58.850a 43.32 3.130a 53.46 
63.375a 39.01 3.239a 56.03 
68.431a 35.14 3.456a 55.41 
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Floodable Lengths
Location
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Floodable Length Calculation 

Displacement: 13668.97MT    Water Specific Gravity: 1.025     Draft: 4.10 m 

L: 18.474a     T: 0.000     V: 3.500 m 

Required GM: 0.50 m    Uniform Permeability: 0.9 

Center 
(m) 

Length 
(m) 

Trim 
(deg) 

GM 
(m) 

54.275f 74.52 2.476f 53.36 
49.750f 76.54 2.427f 51.43 
45.225f 79.42 2.378f 48.61 
36.175f 87.75 2.257f 42.32 
31.650f 92.93 2.192f 38.72 
27.125f 98.61 2.112f 34.87 
22.600f 104.46 2.004f 30.91 
18.075f 110.63 1.854f 26.82 
13.550f 117.98 1.646f 22.08 
9.025f 126.41 1.328f 17.10 
4.500f 137.50 0.725f 11.15 
0.025a 144.50 0.120a 7.55 
4.550a 134.90 0.523a 10.39 
9.075a 125.68 0.945a 13.66 
13.600a 116.85 1.311a 17.18 
18.125a 108.40 1.643a 20.86 
22.650a 100.36 1.958a 24.68 
27.175a 92.52 2.213a 28.83 
31.700a 84.93 2.414a 32.72 
36.225a 77.30 2.562a 36.53 
40.750a 69.97 2.684a 40.18 
45.275a 63.00 2.805a 43.54 
49.800a 56.54 2.908a 47.15 
54.325a 50.75 3.019a 50.27 
58.850a 45.59 3.123a 52.79 
65.850a 40.30 3.292a 55.20 
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Floodable Lengths
Location

L
e
n
g
t
h
 

m

100.0a 50.0a 0.0a 50.0f 100.0f

0.0

50.0

100.0

150.0
Flood Length
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APPENDIX C  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROPULSION 
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Gas Turbine Engine Parameters 
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PROPULSION LAYOUT OPTIONS EXPLORED 
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Sea Archer Sea Arrow Propulsion Option 1 (50MW Trent)

GT 4

GT 2

GT 3

GT 1

50MW

50MW

50MW

50MW

50MW

50MW

50MW

50MW

18.5’

18.5’

18.5’

18.5’

4’

4’

Volume

•MRG=89m^3*4=356m^3
•Trent=248m^3*4=992m^3
•WJ= data coming
•Total Vol=1348m^3 + WJ

Weight

•MRG=57mT*4=228mT
•Trent=26.1mT*4=105mT
•WJ= data coming
•Total weight=333mT + WJ

Cost

•MRG= 40M (4 Gears)
•Trent=60 Million (4 engines)
•WJ= data coming

Total Power

•200MW
•268,000HP

2’ 47’

47’

4’

4’

2’

GT=3600RPM

MRG

MRG

MRG

MRG

24’

45’
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Sea Archer Sea Arrow

Propulsion Option 2 (LM 2500+)

MRG

MRG

MRG

MRG

60MW

60MW

60MW

60MW

GT 2

GT 4

Volume

•MRG=89m^3*4=356m^3
•LM2500+=36m^3*8=291m^3
•WJ= data coming
•Total Vol=647m^3 + WJ

Weight

•MRG=57mT*4=228mT
•LM2500+=5.3mT*8=43mT
•WJ= data coming
•Total weight=271mT + WJ

Cost

•MRG= 40M (4 Gears)
•LM2500+=81 Million (8 engines)
•WJ= data coming

Total Power

•240MW
•321,845HP

GT 1

GT 6

GT 8

GT 3

GT 5

GT 7

4’

4’

4’

4’

4’

4’

2’

2’

2’

2’

9’

52’

GT=3600RPM

26’24’
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Sea Archer Sea Arrow
Propulsion Option 2a (LM 2500+)
with EMALs

MRG

MRG

60MW

60MW

GT 2

GT 4

GT 6

GT 8

4’

4’

2’

2’
9’

52’

GT=3600RPM

Generator
PTO

Rectifier

EMALs #2

MRG

MRG

60MW

60MW

GT 1

GT 3

GT 5

GT 7

4’

2’

2’
9’

Generator
PTO

Rectifier

EMALs #1

20MWA

20MWA

4’

4’

4’52’
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Sea Archer Sea Arrow
Propulsion Option 3 (LM 2500+ 
and motors) with EMALs

MRG

MRG

60MW

60MW

GT 2

GT 6

GT 8

GT=3600RPM

EMALs #2
or

Ship service

30MW
Motor

30 MVA
Converter GT 4

Converter

MRG

MRG

60MW

60MW

GT 1

GT 5

GT 7

GT=3600RPM

EMALs #1
or

Ship service

30MW
Motor

30 MVA
Converter GT 3

Converter

To Ship’s Service
Located anywhere
on ship

5MVA

8MVA

8MVA

30MVA
Generator

30MVA
Generator

5MW

8MW

8MW
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Sea Archer Sea Arrow
Propulsion Option 3a (LM 2500+ 
smaller Gas Turbines) with EMALs

MRG

MRG

60MW

60MW

GT 2

GT 6

GT 8

GT=3600RPM

EMALs #2
or

Ship service
30 MVA

Converter

GT 4

MRG

MRG

60MW

60MW

GT 1

GT 5

GT 7

GT=3600RPM

EMALs #1
or

Ship service

GT 3

To Ship’s Service
Located anywhere
on ship

5MVA

8MVA

8MVA

30MVA
Generator

30MVA
Generator

5MW

8MW

8MW

30 MVA
Converter
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Sea Archer Sea Arrow

Propulsion Option 4
(Trent/motors and smaller Gas 
Turbines) with EMALs

50MW
GT4

50MW
GT 2

50MW

50MW

47’

MRG

MRG

50MW
Motor

50MW 
Converter

50MVA
Generator

Converter

EMALs #2
or

Ship service

50MW
GT 1MRG

50MW
GT 3

50MW

50MW
50MW

MRG
50MW
Motor

50MW 
Converter

50MVA
Generator

Converter

EMALs #2
or

Ship service

To Ship’s Service
Located anywhere
on ship

5MVA

8MVA

8MVA

5MW

8MW

8MW
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APPENDIX D   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

COMBAT SYSTEMS PAYLOAD 
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