

NAVAL
POSTGRADUATE

SCHOOL

Monterey, California

THESIS

Approved for public release; distribution is unlimited

AUTONOMOUS LANDING SYSTEM FOR A UAV

by

Mariano I. Lizarraga

March 2004

 Committee Supervisor: Roberto Cristi
 Committee Co-Supervisor: Isaac Kaminer
 Committee Member: Robert G. Hutchins

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Direc-
torate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2004

3. REPORT TYPE AND DATES COVERED
Engineer’s Thesis

4. TITLE AND SUBTITLE: Autonomous Landing System for a UAV
6. AUTHOR(S) : Mariano I. Lizarraga

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous
shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to
establish communication between the UAV’s ground station and the Autonomous Landing Flight Control Computer ef-
fectively. The second addresses the design and implementation of an autonomous landing controller using classical
control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The
overall system was implemented in a PC104 computer running a real-time operating system developed by The Math-
works, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the
algorithm proposed here. Flight tests are scheduled to be performed in the near future.

15. NUMBER OF
PAGES

147

14. SUBJECT TERMS
Unmanned Aerial Vehicles, UAV, Silver Fox, Autonomous Landing, Shipboard Landing, UAV
Control System, Real Time Workshop, xPC Target, Piccolo.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AUTONOMOUS LANDING SYSTEM FOR A UAV

Mariano I. Lizarraga
Lieutenant Junior Grade, Mexican Navy

 B.S. Naval Sciences Engineering, Mexican Naval Academy, 1995

Submitted in partial fulfillment of the
requirements for the degrees of

ELECTRICAL ENGINEER

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2004

Author: Mariano I. Lizarraga

Approved by: Roberto Cristi, Committee Supervisor

Isaac Kaminer, Committee Co-Supervisor

Robert G. Hutchins, Committee Member

John P. Powers, Chairman
Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis is part of an ongoing research conducted at the Naval Post-

graduate School to achieve the autonomous shipboard landing of Unmanned Ae-

rial Vehicles (UAV). Two main problems are addressed in this thesis. The first is

to establish communication between the UAV’s ground station and the Autono-

mous Landing Flight Control Computer effectively. The second addresses the

design and implementation of an autonomous landing controller using classical

control techniques. Device drivers for the sensors and the communications pro-

tocol were developed in ANSI C. The overall system was implemented in a

PC104 computer running a real-time operating system developed by The Math-

works, Inc. Computer and hardware in the loop (HIL) simulation, as well as

ground test results show the feasibility of the algorithm proposed here. Flight

tests are scheduled to be performed in the near future.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. BACKGROUND ... 1
B. OBJECTIVES... 1
C. CURRENT CONTROL SYSTEM SETUP... 3

1. The Piccolo Avionics... 5
2. Ground Station... 6
3. Operator Interface.. 7
4. Pilot Manual Control.. 7
5. Two-Layer Piccolo Protocol.. 8

D. SUMMARY... 9

II. AUTONOMOUS LANDING CONTROL SETUP ... 11
A. OVERVIEW OF THE SOLUTION APPROACH 11

1. Position and Orientation of the Recovering Net 13
2. Glide Slope Calculation... 14
3. Recovery Segment One: Glide Slope Capture 17
4. Recovery Segment Two: Glide Slope Tracking................... 19

B. INTERCONNECTION TO THE CURRENT CONTROL SETUP 23
1. RS-232 Reader of the Piccolo Protocol 24
2. Decoder of the Piccolo Protocol .. 25
3. Encoder of the Piccolo Protocol .. 27
4. RS-232 Writer of the Piccolo Protocol 28
5. Limitations on the Data Rate .. 29

C. AUTONOMUS LANDING FLIGHT CONTROL COMPUTER............. 30
D. DEVELOPMENT OF THE DEVICE DRIVERS................................... 33

1. GPS ... 33
2. Differential Correction Beacon ... 36

E. SUMMARY... 36

III. CONTROL SYSTEM DESIGN.. 37
A. CONTROLLER DESIGN.. 37

1. Decoupling of Motion .. 38
2. Inner Loop Autopilot ... 39

a. Lateral Channel ... 39
b. Longitudinal Channel ... 42

3. Outer Loop Control Feedback .. 46
a. Longitudinal and Lateral Channels 47
b. Path Realignment.. 51

B. INNER LOOP AUTOPILOT IMPLEMENTATION IN THE UAV
AVIONICS .. 52

C. COMPLETE AUTONOMUS LANDING SYSTEM INTEGRATION.... 54
1. Graphical User Interface (GUI).. 56

 viii

D. SUMMARY... 57

IV. SIMULATION AND GROUND TESTS RESULTS .. 59
A. SIMULATION ... 59

1. Simulation Scenarios .. 59
a. Ideal Conditions: No Measurement Noise and No

Wind ... 62
b. Measurement Noise and No Wind 65
c. Measurement Noise and Wind Disturbances 69
d. Results Summary.. 73

B. HARDWARE IN THE LOOP SIMULATION 76
1. Setup... 76
2. Results.. 78

C. GROUND TEST ... 82
1. Setup... 82
2. Results.. 84

D. SUMMARY... 86

V. CONCLUSIONS AND FOLLOW-ON WORK.. 87
A. CONCLUSIONS... 87
B. FOLLOW-ON WORK... 88

APPENDIX A: SOURCE CODE OF THE DRIVERS ... 89

APPENDIX B: DERIVATION OF THE 6-DOF AERODDYNAMIC MODEL OF
THE SILVER FOX UAV .. 107
A. 6-DOF AIRCRAFT MODEL ... 107

1. Equations of Motion .. 107
a. Linear Dynamics Equations 107
b. Angular Dynamics Equations 109
c. Attitude (Euler) Equations.. 110

2. Forces and Moments on Aircraft.. 112
a. Aerodynamic Forces and Moments......................... 112
b. Gravitational and Propulsive Forces and Moments114

3. Dimensionless Aerodynamic Coefficients 115
4. Engine Model ... 117
5. Atmosphere and Wind Model ... 119
6. Actuators Models... 121

APPENDIX C: NUMERICAL VALUES OF THE AERODYNAMIC
COEFFICIENTS OF THE SILVER FOX 6DOF MODEL 123

LIST OF REFERENCES.. 125

INITIAL DISTRIBUTION LIST ... 127

 ix

LIST OF FIGURES

Figure 1. Current Control System Setup of the Silver Fox UAV........................... 4
Figure 2. Piccolo Closed Loop Control System. .. 5
Figure 3. Piccolo Avionics System... 6
Figure 4. Telemetry Screen of the Piccolo Operator Interface Software.............. 7
Figure 5. Piccolo Pilot Manual Control... 8
Figure 6. Piccolo Communications Two-layer Protocol Structure. 9
Figure 7. Landing Segment One: Alignment of the Velocity Vectors in the XY

Plane in Preparation for Landing. ... 11
Figure 8. Segment Two: Keeping the Velocity Vectors Aligned in the XY

Plane (a) while Initiating Descent by Aligning the Velocity Vector in
the YZ Plane with a Predetermined Glide Slope (b). 12

Figure 9. Recovering Net Layout. .. 13
Figure 10. Glide Slope Localization with Respect to the Middle Point of the

Recovering Net... 14
Figure 11. A New Coordinate Frame Fixed to the Recovering Net and Aligned

with the Glide Slope.. 15
Figure 12. Simulink Implementation of the Glide Slope Calculation. 16
Figure 13. Simulink Implementation of Recovery Segment One: Glide Slope

Capture... 19
Figure 14. Desired Inertial Trajectory for Recovery Segment Two: Glide Slope

Tracking.. 20
Figure 15. Simulink Implementation of Recovery Segment Two: Glide Slope

Tracking.. 23
Figure 16. Interconnection of the Autonomous Landing Flight Control

Computer to the Piccolo Ground Station. ... 24
Figure 17. Complete Reading/Decoding of the Piccolo Protocol. (a) Receiver,

Reader, and Decoder. (b) Reader/Decoder. (c) Decoder. 26
Figure 18. Encoder of the Piccolo Protocol; (a) Inner Level Wrapper; (b) Outer

Level Wrapper. ... 28
Figure 19. Position and Velocity Filter. .. 29
Figure 20. Complementary Filter in the Vertical Channel. 30
Figure 21. Autonomous Landing Flight Control Computer................................... 31
Figure 22. Complete Interconnection of the Autonomous Landing Flight

Control Computer to Peripheral Devices. ... 32
Figure 23. NMEA-0183 Message Structure (From: Ref. [6].)............................... 34
Figure 24. Complete Reading/Decoding of the GPS Data (a) Receiver,

Reader, and Decoder. (b) Reader/Decoder. (c) Decoder. 35
Figure 25. Top Level View of the Inner and Outer Loop Control System

Design. ... 38
Figure 26. Root Locus and Bode Plot of the Transfer Function from aδ to r. 40

 x

Figure 27. Root Locus and Bode Plot of the Transfer Function from aδ to r with
a Compensator in the Forward Path... 41

Figure 28. Root Locus and Bode Plot of the Transfer Function from rδ to r with
a Compensator in the Forward Path... 42

Figure 29. Root Locus and Bode Plot of the Transfer Function from eδ to q with
a Gain Compensator in the Forward Path. ... 43

Figure 30. Root Locus of the Closed Loop Speed Controller. 44
Figure 31. Inner Loop Control (Autopilot) Implementation in Simulink................. 45
Figure 32. Top Level Diagram of the Control Scheme Implemented in the

Outer Loop. .. 47
Figure 33. Root Locus of the Outer Loop Longitudinal Channel Using Only PD

Control.. 48
Figure 34. Root Locus and Bode Plot of the Outer Loop Longitudinal Channel

Using PD Control and a Controller in the Feedback Path................... 48
Figure 35. Root Locus and Bode Plot of the Outer Loop Lateral Channel Using

PD Control and a Controller in the Feedback Path............................. 49
Figure 36. Simulink Implementation of the Complete Outer Loop Control

Feedback ... 50
Figure 37. Scenario Showing a Large Angle Difference between the UAV’s

Velocity Vector and T
v

in the XY Plane. .. 51
Figure 38. Simulink Implementation of the Path Realignment Logic.................... 52
Figure 39. NPS and Piccolo Autopilot Implementation in the Avionics. 53
Figure 40. Top Level View of the System Integration. ... 55
Figure 41. Graphical User Interface (GUI) Used to Configure the Autopilot

Parameters, Present In-Flight Data and Log the Variables. 56
Figure 42. Simulink Model Used for Ship Landing Simulation. 60
Figure 43. Simulink Model Used for Runway Landing Simulation. 61
Figure 44. YZ Plot of the Position of the UAV’s CG When Crossing the Plane

of the Recovering Net. (a) Shipboard Landing. (b) Runway Landing.
No Measurement Noise and No Wind. ... 62

Figure 45. Three-Dimensional Plot of a Landing Approach. (a) Shipboard
Landing. (b) Runway Landing. No Measurement Noise and No
Wind. .. 63

Figure 46. XY and YZ Plots of a Landing Approach. (a) Shipboard Landing. (b)
Runway Landing. No Measurement Noise and No Wind.................... 64

Figure 47. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate. (a) Shipboard Landing. (b) Runway Landing. No
Measurement Noise and No Wind.. 65

Figure 48. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate. (a) Shipboard Landing. (b) Runway Landing. No
Measurement Noise and No Wind.. 65

Figure 49. YZ Plot of the Position of the UAV’s CG When Crossing the Plane
of the Recovering Net. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.. 66

 xi

Figure 50. Three-Dimensional Plot of a Landing Approach. Measurement
Noise and No Wind. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.. 67

Figure 51. XY and YZ Plots of a Landing Approach. (a) Shipboard Landing.
(b) Runway Landing. Measurement Noise and No Wind.................... 68

Figure 52. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.. 69

Figure 53. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.. 69

Figure 54. YPG’s Wind Profile. (After Ref. [12].).. 70
Figure 55. YZ Plot of the Position of the UAV’s CG When Crossing the Plane

of the Recovering Net. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.. 71

Figure 56. Three-Dimensional Plot of a Landing Approach. (a) Shipboard
Landing. (b) Runway Landing. Measurement Noise and Wind........... 72

Figure 57. XY and YZ Plots of a Landing Approach. (a) Shipboard Landing.
(b) Runway Landing. Measurement Noise and Wind. 72

Figure 58. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and Wind. .. 73

Figure 59. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and Wind. .. 73

Figure 60. Histograms of the Occurrences of the Position Errors in Y and Z for
Each of the Simulation Conditions. Shipboard Landing...................... 75

Figure 61. Histograms of the Occurrences of the Position Errors in Y and Z for
Each of the Simulation Conditions. Runway Landing. 75

Figure 62. Diagram of the HIL Simulation.. 77
Figure 63. HIL Simulation Setup at the Naval Postgraduate School Unmanned

Systems Lab... 77
Figure 64. Three-Dimensional Plot of a Landing Approach in HIL Simulation.

Noise and Wind . .. 78
Figure 65. XY and YZ Plots of a Landing Approach in HIL Simulation. Noise

and Wind. ... 79
Figure 66. YZ Plot of the Position of the UAV’s CG When Crossing the Plane

of the Recovering Net. HIL Simulation.. 80
Figure 67. Position and Velocity Errors in Y Compared with the Commanded

Yaw Rate in HIL Simulation. Noise and Wind..................................... 81
Figure 68. Position and Velocity Errors in Z Compared with the Commanded

Pitch Rate in HIL Simulation. Noise and Wind.................................... 81
Figure 69. Dropouts in the Sensor Data during HIL Simulation. 82

 xii

Figure 70. Ground Test Setup at the NPS’s UAV Lab. (a) Piccolo Avionics
Tied to a Wheel Cart. (b) Ground Station GPS Receivers. (c)
Ground Station Setup. .. 83

Figure 71. Triangular Path Followed by the Piccolo Avionics during the Ground
Tests... 84

Figure 72. Drifting and Variation of the Signals Provided from the Sensors in
the Ground Test. .. 85

Figure 73. GPS Seconds from the Telemetry Message of the Piccolo Protocol
and the Delays between Updates Obtained during the Ground Test. 86

Figure B 1. Main Configuration Window of LinAir Pro. Top View of the Modeled
Silver Fox UAV. .. 115

Figure B 2. Nondimensionalized Section Lift Coefficient vs. Panel Y
Coordinate. LinAir Pro. ... 116

Figure B 3. Silver Fox’s Static Thrust Diagram. .. 118
Figure B 4. Variation of Thrust Available with Forward Speed. (From Ref. [10].) 119
Figure B 5. Simulink Implementation of the Engine Model.................................. 119
Figure B 6. Atmosphere and Wind Model in Simulink. .. 120
Figure B 7. Complete Simulink Model of the Silver Fox. 121
Figure B 8. Servomechanism (Actuator) on a UAV... 121
Figure B 9. Aileron, Elevator, Rudder and Throttle Actuators. Simulink Model. . 122

 xiii

LIST OF TABLES

Table 1. Location of the Dominant Closed Loop Poles, Gain Margins and
Phase Margins of the Inner Loop (Autopilot) Controller...................... 46

Table 2. Location of the Dominant Closed Loop Poles, Gain Margins and
Phase Margins of the Outer Loop Control. ... 50

Table 3. Means and Standard Deviations of the Landing Errors. No
Measurement Noise and No Wind.. 63

Table 4. Variances for the White Additive Noise Used in the Sensors for
Simulation... 66

Table 5. Means and Standard Deviations of the Landing Errors.
Measurement Noise and No Wind.. 67

Table 6. Means and Standard Deviations of the Landing Errors.
Measurement Noise and Wind. .. 71

Table 7. Summary of Mean and Standard Deviations for the Three
Scenarios ... 74

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my beloved wife Erika for her

invaluable support throughout our stay here in Monterey. Without her, this would

have been much harder. Thanks to our daughter Valeria for being our inspiration

to be better each day.

My sincerest gratitude to the Mexican Navy for giving me this opportunity,

specially to Viceadmiral Alberto Castro Rosas. An NPS alumni himself, his

support to come here, and during my stay, has been invaluable.

 I am grateful to Drs. Vladimir Dobrokhodov and Oleg Yakimenko for their

support and patience during the endless hours working at the Unmanned

Systems Lab. To them, my deepest gratitude, for always, regardless of their

schedule, going out of their way to make complicated topics understandable and

showing me what teaching is all about.

Special thanks are due to Dr. Isaac Kaminer for giving me the opportunity

to work in this interesting project and sharing his insight in control systems.

Without his support, my stay here at NPS would not have been as rewarding as it

has been.

I would also like to thank my control systems professors and advisers,

Drs. Roberto Cristi, Robert Hutchins, and Xiaoping Yun. Thank you for all those

in-class and after-class hours you took to explain the ins and outs of control

systems to me.

Thanks are also due to Jerry Lentz, for his support in many technical

details of the hardware involved in this project. I would also like to thank him for

encouraging all sorts of technical and non-technical discussions and helping me

understand the topics in question.

Finally, I would like to thank Ron Russell for all his support during the

editing process of this thesis and for showing a very high sense of responsibility

and professionalism in what he does.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

This thesis is part of an ongoing research conducted at the Naval Post-

graduate School to achieve the autonomous shipboard landing of Unmanned Ae-

rial Vehicles, particularly in a ship underway. The Silver Fox UAV is used as a

test platform for the algorithm proposed here.

 The control algorithm presented takes advantage of the Piccolo system

developed by Cloud Cap Technologies. All the control commands generated by

the Autonomous Landing system are sent through the underlying communica-

tions channel between Piccolo’s ground station and the UAV.

Two main problems are addressed in this thesis. The first is to establish

communication between the UAV’s ground station and the Autonomous Landing

Flight Control Computer effectively. The second addresses the design and im-

plementation of an autonomous landing controller, using classical control tech-

niques. Generally speaking, the controller forces the UAV to track a glide slope

from an imaginary point in space to the landing point.

Device drivers for the sensors and the communications protocol were de-

veloped in ANSI C and implemented in S-Functions inside Simulink models.

Mathworks’ XPC Target and Real Time Workshop tools were used to compile

and download the system into a PC104 form factor computer running a real-time

operating kernel.

Computer and hardware in the loop (HIL) simulation under different sce-

narios, as well as ground test results, present the feasibility of the scheme pro-

posed here.

Flight tests are scheduled to be performed in Tucson, Arizona, in the near

future.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
The use of Unmanned Aerial Vehicles in the battlefield has given the

modern war fighter advantages over the enemy, proven to be extremely useful in

the recent wars in Afghanistan and Iraq. The ability to relay real-time imagery to

field commanders, collect intelligence and launch precise attacks on identified

targets were very important roles that the UAV played in these wars.

Also, at the tactical level, small lightweight UAV that were carried to the

battlefront and launched in a short time without the need of a landing strip proved

to be useful and provided an invaluable advantage to fulfill surveillance missions

for Marines and Special Forces units.

This thesis addresses the autonomous landing of such small, lightweight

tactical UAV, particularly on a ship underway. Currently, when a ship recovers

those types of UAVs, the pilot flies the UAV close to the vessel, stops the engine

and opens a parachute to drop the airplane to the sea. Then the ship stops and

recovers the UAV in any way possible.

The work presented herein is part of a major effort to achieve an unas-

sisted landing of the UAV by taking control of the airplane when it is sufficiently

close to the moving vessel and guiding it to a landing point. In the first phase, the

UAV will be guided to a recovery net aboard the ship. Once this algorithm is suc-

cessfully tested, future work may focus on a more robust control algorithm that

actually lands the airplane in a short-landing platform aboard a ship.

B. OBJECTIVES
The entire project aims to give battle ready intelligence about what lies

ahead for the troops, allowing them to be better prepared for an impending en-

gagement. The NPS’s current efforts focus on making the Silver Fox UAV a true

hands-off aircraft with an autonomous recovering capability. The system poten-

tially promises to be seamlessly integrated with manned aircraft missions, carrier

2

air traffic control, and deck operations. This approach guarantees greater military

safety, simplicity and flexibility than anything previously available in sea opera-

tions. Such capability, when fully integrated, will eliminate the need for the Army

and Navy units to train and to maintain Radio Control (RC) pilots to launch and

recover the UAVs. The implementation will allow safe, high quality reconnais-

sance at a fraction of the cost of current sea-based aircrafts with much longer

endurance and utility for a much wider range of ships. The proposed solution in-

valuably contributes not only onboard implementation of the autonomous landing

algorithm but also provides compatibility of Silver Fox avionics with many UAVs

currently used by the Army and Navy, and with many research projects in indus-

try and academia.

This thesis is organized as follows: The remaining of this chapter presents

a summary of the current control setup used onboard the UAV. Chapter II de-

scribes the solution approach successfully used to guide the UAV from an imagi-

nary point in space to the net aboard the recovering vessel. It also addresses all

the issues concerned with the connectivity between the Ground Station and the

proposed Autonomous Landing Flight Control Computer. Chapter III describes

the control system design, a detailed six-degrees-of-freedom (6-DOF) aircraft

model used to test the control system, and the implementation of the controller to

run in real-time. Chapter IV presents the simulation and ground test results of the

proposed control system. Chapter V presents the conclusions and the recom-

mendations for follow-on work to this research. Appendix A lists the C source

code for the device drivers developed for this work. Appendix B presents a de-

tailed derivation of the 6-DOF model for the Silver Fox UAV. Appendix C lists the

numerical values of the dimensionless aerodynamic coefficients of the Silver Fox

UAV.

This thesis seeks to implement an autonomous recovery control system in

a PC104 computer using the Silver Fox UAV as a test platform. The Silver Fox is

a small tactical UAV with a 6-foot long fuselage, 8-foot wingspan, and 20-pound

takeoff weight, which can fly up to 1,000 feet for four hours at a cruise speed of

23 meters per second.

3

The scope of the work presented here includes the following:

• Effectively establish communication between the Ground Station
and the Autonomous Landing Flight Control Computer.

• Develop all the necessary device drivers to read and to decode
data from the Ground Station.

• Develop all the necessary device drivers to read data from the de-
vices connected to the Autonomous Landing Flight Control Com-
puter.

• Design a controller so the UAV is capable of tracking a trajectory
from an imaginary point in space to the landing point.

• Implement the controller in a PC104 form factor computer to be
connected to the Ground Station via RS232 serial connection.

• Perform real-time and Hardware In the Loop (HIL) simulation of the
overall design to prove its feasibility.

C. CURRENT CONTROL SYSTEM SETUP

The Silver Fox UAV mission and flight control is done using a system

called Piccolo, developed by Cloud Cap Technologies, Inc., which is capable of

controlling multiple UAVs in flight.

The Piccolo control system setup, shown in Figure 1, consists of four main

parts: an Avionics control system located onboard the UAV, a Ground Station, a

Pilot Manual Control, and the Operator Interface. These four elements provide a

reliable way to fly the UAV and enable the end user to program desired routes for

the UAV via waypoints. For take off and landing of the UAV a pilot in the loop

mode is enabled in which the ground station only retransmits the signal gener-

ated by the pilot using the Manual Control.

4

Operator Interface

Ground Station

Silver Fox UAV

Piccolo Protocol Over Serial

Piccolo Protocol Over
Wireless Link

Piccolo
Avionics

Pilot Manual Control

Figure 1. Current Control System Setup of the Silver Fox UAV.

As shown in Figure 2, the Piccolo Control setup has two control loops: a

faster, inner loop onboard the Silver Fox and a slower outer loop, which is im-

plemented on the Ground Station.

This current control setup uses application-specific two-layer protocol to

communicate between all the components of the system. A more detailed de-

scription of the main components is given in the following subsections.

5

Silver Fox UAV
Flight Dynamics

Path
Determination

(Ground Station)

Autopilot
(Piccolo Avionics)

Desired
Route

(Operator
Interface)

Disturbances

Silver Fox UAV

Figure 2. Piccolo Closed Loop Control System.

1. The Piccolo Avionics
The Piccolo Avionics System, shown in Figure 3, is an autopilot designed

to track the commanded path transmitted by the Ground Station. It generates the

required signals for the control surfaces of the airplane (ailerons, elevator and

rudder) and the engine’s thrust. The main processor is an MPC555 microcontrol-

ler based on the PowerPC architecture delivering a 40-MHz operation, including

the hardware floating point.

6

Figure 3. Piccolo Avionics System.

The sensor group of the system includes: three rate gyros and three ac-

celerometers used to determine the UAV’s attitude; a Motorola G12 Global Posi-

tioning System (GPS) to determine its geodetic position, and a set of dynamic

and static pressure sensors coupled with a thermometer to determine the air-

plane’s true air speed and altitude.

The data link to the Ground Station is provided by a 900 MHz /2.4 GHz

radio modem. All the data transmitted is wrapped in a custom-developed two-

layer protocol, which will be thoroughly explained in the last subsection of this

chapter.

2. Ground Station
The Piccolo Ground Station has two very important roles in the system: to

provide the communication link between the Avionics, the Operator Interface,

and the Pilot Manual Control; and to convert the intentions of the end user cap-

tured through the Operator Interface, into meaningful commands for the autopilot.

The main processor, as in the Avionics, is an MPC555 microcontroller

based on the PowerPC architecture. It is equipped with a Subminiature B Con-

nector (SMB) for the GPS antenna and a Bayonet Neill-Concelman (BNC) con-

7

nector for the Ultra High Frequency (UHF) communications antenna. The con-

nection to the Operator Interface is done through a standard 9-pin serial cable.

3. Operator Interface
The Operator Interface consists of a portable computer running a Win-

dows 2000 ® operating system and a custom developed software to allow the

end user to configure and to operate the Piccolo System.

The Operator Interface software, shown in Figure 4, has nine configuration

screens that provide the end user with an interface to:

• perform a preflight checklist,
• configure the desired gains of the control system in the Autopilot,
• program a desired route for the UAV via waypoints,
• display the reading of all the sensors aboard the UAV, and
• display the current position of the UAV in a geographical chart.

Figure 4. Telemetry Screen of the Piccolo Operator Interface Software.

4. Pilot Manual Control
Mainly used for take off and landing, the Pilot Manual Control provides the

end user with a way to override the commands generated by the Ground Station

and allows a qualified UAV Pilot to take control of the UAV.

Piccolo 61, [4B04934] 22;57;40; 02 June, ?<I0

[ALT , IAS SYS jGPS ;RSSI COMTAudio

Telemelry | Commands { Map { Prsflight { Limits { Sensors | Surtoces | Gains | Pa^oed

 GPS data i Alrdoto-

37.701661 [dsg] Latlttude \

Longitude f

Height

Ground Speed

Direction

Status [DGPS l»fiy m \2D |ACO
Satellites | 6 trecksd of 0 visible

PDOP I 2.2

-122.152103 [deg]

r~ "500.91 [m]

I ~"205 [m/s]

[deg] 11

 UHF radio settiigs -

Channel |l ' Rec

Power|W]fr00 Send

rFlrmware-

^BreionTlT

Uun aa 2003 Test

True Air Speed

AKitude

Air Temperature

2Am [m/s]

501.29 [m]

ii rq
r—--System 1

T[-q 144.00

nsEi 173

iin 10.34

Vin 111.57

5.3V 15.46

5.0V- D 1497

5.0V-A 1495

3.3V 13.33

3W 12.97

r Deadman status: -

[[ReguestFaet |

Request Slow

GPS Comm

Gyro [deg/s]

Floll I -0.29

Pilch

Yaw

0.23

-1.15

-Accel [m/s/s]-]

X

Y

Z

-0.57

~0O0

-9.G9

-RPI^-

Left I

Right j

9248

0

8

The Pilot Manual Control, shown in Figure 5, is a commercial Futaba® ra-

dio remote control typically used for midsize hobby radio control airplanes.

Figure 5. Piccolo Pilot Manual Control.

5. Two-Layer Piccolo Protocol
As mentioned above, the data transmitted between all the devices of the

Piccolo Control System are wrapped in a custom-developed two-layer communi-

cations protocol.

Shown in Figure 6 is the overall structure of the Piccolo Protocol. The in-

ner layer is structured as follows: two synchronization bytes used to signal the

receiving state machine that a stream packet may be forthcoming; one byte to

specify whether the message is a control, telemetry, waypoint data, or any of the

24 other types of message that the protocol can handle; one byte to indicate the

size of the payload; the payload itself according to the type of message; and, a

two-byte Cyclic Redundancy Check (CRC) code used to detect transmission er-

rors.

The outer layer is structured as follows: two synchronization bytes used to

signal the receiving state machine that a stream packet may be forthcoming; two

network address bytes that contain the network address of the Piccolo Avionics

that is sending the message; a one-byte stream identifier, which can be any of

the eight types supported by the protocol; one byte to indicate the size of the

payload, which in this case is the whole inner layer; one byte containing an eight

bit XOR checksum of the header bytes, bytes zero through six; the payload,

9

which in this case is the complete inner layer; and, a two-byte CRC code to de-

tect for transmission errors.

Sync 0 Sync 1 Type Size Payload CRC Hi CRC Lo

Sync 0 Sync 1 Net 0 Net 1 Stream
ID Size Payload CRC Hi CRC LoChecksum

Inner Layer

Outer Layer

Figure 6. Piccolo Communications Two-layer Protocol Structure.

As will be shown in the following chapters, understanding the Piccolo pro-

tocol will be extremely important to this work. The autonomous landing control

system proposed decodes the information received from the avionics in this for-

mat and wrap the issued control commands in the protocol so that the onboard

avionics has no problem interpreting them.

D. SUMMARY
In this chapter, the importance of UAVs in modern warfare and how they

relate to this work was briefly presented. It stated the objectives to be achieved

by this work and explained the current control setup used by the Silver Fox UAV.

The following chapter presents the proposed hardware/software approach to

solve the autonomous landing of the UAV on a ship underway.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

II. AUTONOMOUS LANDING CONTROL SETUP

This chapter presents the autonomous landing algorithm and discusses all

the issues related to the interconnection of the current control setup with the pro-

posed solution. The hardware, its peripherals, and the development of the re-

quired device drivers are explained.

A. OVERVIEW OF THE SOLUTION APPROACH
The position of an object in a three-dimensional space is typically ex-

pressed with respect to a predetermined coordinate system. For purposes of this

work, let a local coordinate system, or reference frame {L}, be a right-handed

system with its X axis pointing to the true north, the Y axis pointing east, and the

Z axis be orthogonal to X and Y, thus pointing to the zenith.

Guiding an aircraft from any point in space to a predetermined landing

point moving in a straight line can be described in two segments. The first, shown

in Figure 7, is to fly the aircraft from any initial condition to a point in space where

the aircraft not only has the correct position behind the moving landing point, but

also its velocity vector in the XY plane is aligned with that of the landing point.

Initial Position
of the Aircraft

Landing Point Moving
in a Straight Line

x

y
vUAV

vLand

Figure 7. Landing Segment One: Alignment of the Velocity Vectors in the XY
Plane in Preparation for Landing.

12

The second segment, shown in Figure 8, consists of keeping the velocity

vector of the aircraft in the XY plane aligned with that of the moving landing point

(Figure 8a) as the aircraft initiates its descent by aligning its velocity vector in the

YZ plane with a predetermined glide slope that ends in the desired touchdown

point (Figure 8b).

From the approach described above, it can be seen that five parameters

that must be known at all times. These are the position and velocity vector of the

landing point, and the position, velocity vector and attitude of the aircraft.

Aircraft

Landing Point Moving
in a Straight Line

x

y
vUAV

vLand

Aircraft

Landing Point Moving
in a Straight Liney

z
vUAV

vLand

Glide Slope

γ

(a)

(b)

Figure 8. Segment Two: Keeping the Velocity Vectors Aligned in the XY
Plane (a) while Initiating Descent by Aligning the Velocity Vector in
the YZ Plane with a Predetermined Glide Slope (b).

13

Furthermore, the following assumptions are made:

• Assumption 1: If the ship does not have a deck long enough to be
used as a landing strip, then the UAV must be forced to collide with
a recovering net.

• Assumption 2: The recovering ship does not change course
throughout the recovery approach.

1. Position and Orientation of the Recovering Net
In order to describe the position and orientation of the recovering net un-

equivocally, the following must be known: a point in the net and a normal vector

[1]. Since a normal vector to the net is not readily available, it must be calculated.

Let the vector []=ˆ 0 0 1nz denoting the vertical orientation of the net be

known and constant and two known points in the net be 1p and 2p , as described

in Figure 9.

x

y

z

ˆnz

p1

p2

Figure 9. Recovering Net Layout.

Then the direction of the main diagonal of the net can be calculated as:

 ()= −
−

v v
v v 2 1

2 1

1d̂ p p
p p

 (1)

and the position of the middle point in the net can be obtained by

 ()−
=

v v
v 2 1 .

2t

p p
p (2)

With these two coplanar vectors, then a normal vector to the net can be

obtained by:

14

 ()= ×
×

1 ˆˆ ˆ
ˆˆ n

n

n z d
z d

 (3)

which, together with any of the three known positions, fully describe the plane of

the net in a three-dimensional space.

2. Glide Slope Calculation
Once the exact position and orientation of the recovering net is known,

then the glide slope can be calculated. Two parameters determine the position of

the glide slope: the angle γ formed between the glide slope and the horizon, and

the offset D, which specifies the length of the glide slope.

y

x

z

p1

p2

γ

 D

p0

pt

n̂

Figure 10. Glide Slope Localization with Respect to the Middle Point of the
Recovering Net.

From the geometry of the glide slope with respect to the net, shown in

Figure 10, the position of the top of the glide slope is obtained as follows:

γ

γ

=

=

=

cos
0

sin .

t

t

t

x D
y
z D

 (4)

15

The above equations assume that the origin is located at
v

tp ; therefore, a

more general way to state the position of the top of the glide slope without mak-

ing any assumptions about the position of
v

tp is given by:

 γ γ= +
v v

0 [cos 0 sin].tp p D D (5)

Even though Equation (5) is general, it still puts a large constraint in the

calculation of
v

0p , which is that the normal vector to the net, n̂ , be aligned with

the X axis; therefore, a more general solution is needed. To do that it is neces-

sary to introduce a new coordinate frame fixed to the point
v

tp with its X axis

aligned with the glide slope, as shown in Figure 11, where the local or fixed

frame {L} is denoted with a left superscript L, and those described in the glide

slope frame {G} are denoted with a left superscript G.

p1

p2

γ

 D
p0

p t

n̂
y

x

z
L

L

L

x
z

Gy
G

G

Figure 11. A New Coordinate Frame Fixed to the Recovering Net and Aligned
with the Glide Slope.

The above figure shows that the vector that describes the direction of the

net, in the glide slope frame, is the unitary vector ˆGx or []()1 0 0
TG . Also, by

inspecting the above figure, one can determine that the Euler angles [2] that de-

scribe the rotation of the glide slope frame with respect to the local frame are

given by:

16

φ
θ γ

ψ −

=
=

=

1 ˆ

ˆ

0

tan ,n

n

y
x

 (6)

where n̂y and n̂x denote the x and y components of the vector n̂ . Knowing this,

one can calculate the position of the top of the glide slope as:

 = +
v v

0 ˆ,L L L
t Gp p Rn (7)

where L
G R denotes the rotation matrix from {G} to {L} derived in [2], written below

for reference:

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

=

− +
 + −
 −

cos cos sin sin cos cos sin cos sin cos sin sin
 cos sin sin sin sin cos cos cos sin sin sin cos ,

sin sin cos cos cos

G
L R

(8)

and

 () .
TL G

G LR R= (9)

It is important to note that, because the vector ˆnz is held constant, this sta-

bilizes the glide slope, allowing it to move in the XY plane with the ship, but un-

couples it from the rolling movement of the ship.

Figure 12 shows the complete implementation in Simulink of the above

described procedure to calculate the top of the glide slope:

Figure 12. Simulink Implementation of the Glide Slope Calculation.

17

In order to simplify the notation, for the rest of the work presented herein,

all the vectors are assumed to be resolved in the local reference frame {L} unless

they are identified by a left superscript, denoting that they are resolved in a dif-

ferent frame.

3. Recovery Segment One: Glide Slope Capture
During the first segment of the recovery, it is assumed that the UAV’s ini-

tial height is approximately the same as that of the glide slope, and that the

UAV’s autopilot keeps it constant during this segment.

Given that the position of the UAV is known, then the distance from the

top of the glide slope to the UAV is given by:

 0 .UAVd p p= −
v v

 (10)

 Let a new frame be fixed to the center of gravity (CG) of the UAV and de-

noted by the unit orthogonal vectors
v

T ,
v
N and

v
B , where the vector

v
T points

from the UAV’s CG to the top of the glide slope. Such a frame is generally called

a TNB or Frenet Frame {F} [1]. Then
v

T , resolved in {L} is given by:

 ()0
1 .UAVT p p
d

= −
v v v

 (11)

The vector
v
N lies on the local horizon of the UAV and is determined as fol-

lows:

[]

−
 = −

v 1 ,
0

0

T

T
T T

y
N x

y x
 (12)

where Tx and Ty are the X and Y components of
v

T , respectively. The vector
v
B is given by:

 = ×
v v v

,B T N (13)

where ×denotes a vector cross product.

18

The approach used to assure that the UAV will be located at the top of the

glide slope is to align the velocity vector of the UAV with the vector
v

T . To do

that, one must know the velocity error resolved in {F} in order to generate the ap-

propriate control signal.

The velocity error resolved in {L} is given by:

 = −
v v v ,e c UAVV Tv v (14)

where cv is the commanded speed.

Resolving eV
v

 in {F} leads to the following:

 ()
 −

= − = −
 −

v v v
�

v v v vv v
�

v v v
�

.

T
c UAV

F T
e UAV UAV

T
UAV

T v T v
V N T v N v

B B v
 (15)

From the above result, one can see that the Y and Z components of the

velocity error resolved in {F} are the projections of the velocity and taken with the

opposite sign. It is important to note that when the velocity vector of the UAV is

aligned with the vector
v

T and has the desired magnitude, the error becomes

[]0 0 0 T as expected.

Although the above result is feasible, it means that a control signal for the

UAV’s thrust must also be generated (the X component of the velocity error). In

the early design process, it was decided that thrust would be controlled by the

autopilot and not by the landing algorithm; therefore, a simplified velocity error for

the first segment is given by:

 = −
 −

v v v
�
v v
�

0
,e UAV

UAV

V N v
B v

 (16)

where the X component of Equation (15) was arbitrarily made to be zero.

The above approach guarantees that the UAV will pass through the top of

the glide slope but does not take into consideration the fact that by the time the

19

UAV reaches the top of the glide slope, its velocity vector should be aligned with

the glide slope. To solve this, the distance to the top of the glide slope is con-

stantly calculated. When the distance is less than a predetermined value, then

the velocity and position errors are calculated by segment two, which forces the

alignment of the UAV’s velocity vector with the glide slope. This will be described

in the following subsection.

Figure 13 shows the implementation of the first segment, in Simulink.

Figure 13. Simulink Implementation of Recovery Segment One: Glide Slope
Capture.

4. Recovery Segment Two: Glide Slope Tracking
As described in the beginning of this chapter, the glide slope tracking

segment is slightly more complicated than the capture segment because the ve-

locity vectors of the UAV and the target have to be aligned in the XY and YZ

planes, and also because the position of the UAV with respect to the glide slope

is relevant.

20

For this segment, the vector
v

T is defined as the unit vector that points

from the top of the glide slope to the center of the recovering net. The unit vec-

tors
v
N and

v
B are obtained in the same way as described in the previous subsec-

tion.

Let the desired inertial trajectory be parameterized, as presented in [3], in

terms of its arc-length S. From the geometry shown in Figure 14, one can see

that ()
v
cP S is defined as follows:

 () 0cP S p TS= +
v vv

 (17)

where
v

0p is the top of the glide slope and S can take values between 0 and D,

thus ≤ ≤0 S D .

p1

p2

γ

 D
p0

y
x

z
L

L

L

T

pt

Pc (S)

Figure 14. Desired Inertial Trajectory for Recovery Segment Two: Glide Slope
Tracking.

Also, from Figure 14, it can be stated that:

 = −
vv v

0 ;tp p TD (18)

and substituting Equation (18) into Equation(17) this can be rewritten as:

 () ()= + −
v vv

.c tP S p T S D (19).

21

Having defined the desired inertial trajectory, the position error can be de-

fined as the difference between the desired and the actual position of the UAV,

thus:

 () ()= −
v v v

.e c UAVP S P S p (20)

Therefore, it is necessary to find the parameter S that minimizes the posi-

tion error in the mean square sense, which can be mathematically stated as:

 ()()−
v v 2

2
min .c UAVS

P S p (21)

The above problem can be restated as the solution of the following equa-

tion [1]:

 ()() ()()() 0.
T

c UAV c UAV
d P S p P S p

dS
− − =

v vv v
 (22)

Substituting the actual value of ()
v
cP S , Equation (22) can be rewritten as:

 ()() ()()() 0
T

t UAV t UAV
d p T S D p p T S D p

dS
+ + − + + − =
v vv v v v

 (23)

from which the optimal value of S is obtained and is given by:

 () ()()1 .
2

T T T
UAV t UAV tS T p p p p T D= − + − +

v vv v v v
 (24)

Substituting the above value of S into Equation (19) after the algebraic simplifica-

tions, this can be rewritten as:

 () () ()()1 .
2

T
c t UAV t UAV tP S p T p p T T p p= + − + −
v v v vv v v v v

 (25)

Finally, substituting the above expression for ()cP S into Equation (20), the posi-

tion error resolved in {L} is given by:

 () () () ()()1 .
2

T
e t UAV UAV t UAV tP S p p T p p T T p p= − + − + −
v v v vv v v v v v

 (26)

22

In the same manner as in segment one, the position error is resolved in

{F} by rotating it as follows:

 () () () ()()

 = − + − + −

v

v v v v vv v v v v v

v

1 ,
2

T

F T T
e t UAV UAV t UAV t

T

T
P S N p p T p p T T p p

B
 (27)

which, after doing the algebra simplifications, can be rewritten as:

 () ()
()

0
.F

e t UAV

t UAV

P S N p p
B p p

 = −
 −

v v v v
�
v v v
�

 (28)

Following the same procedure as above, one can show that the velocity

error is given by:

 () ()
()

0
.F

e t UAV

t UAV

V S N v v
B v v

 = −
 −

v v v v
�
v v v
�

 (29)

Figure 15 shows the implementation of the second segment in Simulink.

23

Figure 15. Simulink Implementation of Recovery Segment Two: Glide Slope
Tracking.

B. INTERCONNECTION TO THE CURRENT CONTROL SETUP
So far, it has been assumed that the data from the UAV is available. This

is actually possible due to the interconnection between the Autonomous Landing

Flight Control Computer and Piccolo’s Ground Station.

To establish this interconnection, drivers had to be developed in C pro-

gramming language, implemented in S-Functions in Simulink, and then fine-

tuned to produce the data required, in the correct units and at the highest sam-

pling rate possible.

As in any protocol, two main libraries had to be developed, one to read

data and one to write (or send) data. For simplicity and to keep the amount of

code manageable, each one was separated in two parts:

24

• For the reader, one that actually handled the serial port and
stripped the useful data from the headers, and another to actually
decode the bits into meaningful measurements of the UAV’s sen-
sors.

• For the writer, one that packed the commands for the UAV in a byte
format the autopilot would understand and put the headers to it ,
and another that actually handled the serial communication.

An overall picture of the interconnection is shown in Figure 16:

Autonomous
Landing

Algorithm

Piccolo
Protocol
Reader

Piccolo
Protocol
Decoder

Piccolo
Protocol
Encoder

Piccolo
Protocol
Writer

Autonomous Landing
Flight Control Computer

Piccolo
Ground Station

Piccolo
Avionics

RS-232 RS-232

Wireless
Link

UAV
Sensors

UAV

UAV Data
Control

Commands

Figure 16. Interconnection of the Autonomous Landing Flight Control Com-
puter to the Piccolo Ground Station.

1. RS-232 Reader of the Piccolo Protocol
The reader of the Piccolo Protocol was, without doubt, the longest and

hardest of all the drivers developed for the work presented here, consisting of

more than 650 lines of code. The reader performs the following sequence of op-

erations:

• Buffers data as it is received from the serial port.
• Performs the outer level checksum verification.
• Performs the outer level CRC verification.
• Performs the inner level CRC verification.
• Verifies that the received message is of interest, i.e., that it contains

data that is required by the autonomous landing algorithm.

25

• Parses the useful data and produces three outputs: the valid data,
the header type that indicates which type of message it is, and a
function call that lets the system know that new data is available.

The complete source code of the S-Function implementation is included in

Appendix A.

2. Decoder of the Piccolo Protocol
Once the data has been validated and stripped of the headers of both lay-

ers, it must be converted to meaningful data that can be used by the autonomous

landing algorithm.

Four types of messages from the Piccolo Protocol were required: teleme-

try, control, diagnostics and autopilot. Each of these four messages has its own

format as described in [4]. Therefore, four separate C S-Functions were written to

decode the received data. The complete source code of each of the decoders is

included in Appendix A.

The complete reading/decoding scheme is shown in Figure 17. The raw

data is received through the serial port and streamed to a predetermined size

buffer. Once the buffer is full, the serial receiver issues a function call that indi-

cates to the following block that new data is available (Figure 17a). Once the

reader receives a complete buffer, it processes it, as described in the previous

section and sends to the output the following (Figure 17b):

• The header type which indicates what type of message was re-
ceived,

• a function call which indicates to the decoder that new data is
available, and

• the data.
The decoder, according to the type of message that will be decoded, en-

ables the appropriate block that generates the meaningful data (Figure 17c).

26

(a)

(b)

(c)

Figure 17. Complete Reading/Decoding of the Piccolo Protocol. (a) Receiver,
Reader, and Decoder. (b) Reader/Decoder. (c) Decoder.

27

3. Encoder of the Piccolo Protocol
Once the autonomous landing algorithm has generated the commands

that are required to transmit to the UAV, it is necessary to put those commands

in a format that the ground station and, most importantly, the autopilot, can un-

derstand and execute.

In the same format as the one shown in Figure 6 in Chapter I, each set of

commands is wrapped appropriately in the two-layer protocol. In order to com-

pute the CRC of both levels and the checksum, three C S-Functions were coded

and are included in Appendix A.

The complete assembly of the stream to send, shown in Figure 18, mimics

the scheme shown in Figure 6 in Chapter I. First, the inner level wrapper receives

the payload (the commands to send) and the data type, and it wraps it, append-

ing the header and calculating the CRC (Figure 18a). Then the outer level header

is assembled and the checksum is obtained. All the data is put together in the

correct order and the outer level CRC is calculated, delivering a packet ready to

be sent through the serial port (Figure 18b).

28

(a)

(b)

Figure 18. Encoder of the Piccolo Protocol; (a) Inner Level Wrapper; (b) Outer
Level Wrapper.

4. RS-232 Writer of the Piccolo Protocol
Due to a limitation on the Piccolo Ground Station, the commands gener-

ated by the control algorithm could not be sent at the same operating frequency

as the rest of the controller (40 Hz); therefore, a different sampling rate for the

serial writer had to be implemented. So even though the algorithm used the serial

port in full duplex mode, the reading and writing procedures were done at differ-

ent sampling rates.

29

5. Limitations on the Data Rate
According to the Piccolo’s Communications Protocol Specifications [4], the

data rate at which the data is received is not fixed, and moreover, it is nondeter-

ministic. Because of this, the data had to be estimated for an unknown period un-

til new data was available.

After analyzing the messages that were required for the autonomous land-

ing algorithm, it was noticed that the longest drop outs occurred in the GPS data

embedded in the telemetry message. Thus the position of the UAV was not

known at every sample time. Because of this, a filter was implemented to perform

dead reckoning between fixes.

The filter shown in Figure 19 performs the fusion of two measurements

when available, the position of the UAV and its velocity. From those measure-

ments, it estimates the true position of the UAV. If the GPS position is updated,

then it is considered in the filter. If not, then the position is estimated from the ve-

locity.

Figure 19. Position and Velocity Filter.

30

For the vertical channel, a complementary filter, shown in Figure 20 and

denoted as h-filter in Figure 19, was implemented. This filter fuses the signal of

the onboard accelerometers and the altitude measurements. A simple logic block

detects whether there has been an update in the altitude readings or not and sets

a flag accordingly. If there has been an update, then it is used to estimate the al-

titude and the vertical velocity of the airplane. If not, then those values are ob-

tained directly from the accelerometers. The values for the coefficients of such

filter were determined experimentally.

Figure 20. Complementary Filter in the Vertical Channel.

C. AUTONOMUS LANDING FLIGHT CONTROL COMPUTER
The Autonomous Landing Flight Control Computer, shown in Figure 21, is

a PC104 form factor computer manufactured by Integrated Systems Inc., running

a Pentium I microprocessor at 266 MHz. It contains a 64 Mb disk-on-chip mem-

ory drive that performs similar tasks to the hard drive in personal computers. The

operating system is an IBM PC-DOS version 3.4 and on top of that runs the

Mathworks’ XPC Target kernel, which allows the implementation of models de-

veloped in Simulink [5] to run in real-time.

31

Figure 21. Autonomous Landing Flight Control Computer.

The Autonomous Landing Flight Control Computer has four serial ports

that are used as follows:

• Serial port 1 (COM1) is used to receive the information from the
Piccolo’s Ground Station and to send the control commands; thus it
is used in full duplex mode.

• Serial ports 2 and 3 (COM2 and COM3) receive information from
two Trimble agGPS114 GPS units that provide the corner points of
the recovering net (points

v
1p and

v
2p described in Section A of this

chapter).

• Serial port 4 (COM4) receives information from a Garmin GBR21
differential correction receiver to provide differential correction for
the GPS onboard the UAV.

The Ethernet port is used for two purposes. One is to communicate with

the host computer, that is, the computer where all the models are compiled and

from where they are downloaded to the disk-on-chip. A more detailed description

of what the Host computer is and what functions it performs will be given in the

following chapter when the implementation issues are discussed.

The second purpose of the Ethernet port is to provide communication with

a dedicated personal computer (PC) on the network that performs data logging

for all the required internal variables. Data logging is a necessary task in order to

analyze the flight data offline and provide a way to debug any problems in the

code. The logged data is sent from the Autonomous Landing Flight Control Com-

32

puter using the User Datagram Protocol (UDP), which due to its connectionless

nature, provides a very convenient way to send real-time data through a network.

Figure 22 shows the complete interconnection of the Autonomous Landing

Flight Control Computer to all the peripheral devices mentioned above.

Autonomous
Landing

Algorithm

Piccolo
Protocol
Reader
COM1

Piccolo
Protocol
Decoder

Piccolo
Protocol
Encoder

Piccolo
Protocol
Writer

Autonomous Landing
Flight Control Computer

Piccolo
Ground Station

Piccolo
Avionics

RS-232

RS-232

Wireless
Link

UAV
Sensors

UAV

UAV Data Control
Commands

GPS
Driver
COM 2

GPS
Driver
COM 3

GBR
Receiver
COM 4Recovering Net Data

GPS 1 GPS 2
Differential
Correction
Receiver

Ethernet Port

UDP
Driver

Host PC Data Logging

XPC
Target

Download

Hub

Figure 22. Complete Interconnection of the Autonomous Landing Flight Con-
trol Computer to Peripheral Devices.

33

D. DEVELOPMENT OF THE DEVICE DRIVERS
So far, it has been assumed that the position of the corner points of the

recovering net (points
v

1p and
v

2p described in Section A of this chapter) are ob-

tained using two GPS receivers, but no detail has been given on how this data is

read from the GPS and made available to the autonomous landing algorithm.

Since Simulink does not provide any readily available method to decode the se-

rial GPS data, a set of custom made C S-Functions had to be developed.

For the GPS differential correction provided by the Garmin GBR21 and

required by the Piccolo’s Avionics GPS, the case was slightly easier. Since the

data provided by the GBR21 was not necessary for the autonomous landing al-

gorithm, just a reader and a protocol wrapper (similar to the ones described for

the control commands) were created to pass trough the data to the Avionics.

Both device drivers are described in the following subsections.

1. GPS
The Trimble agGPS114 GPS sends out messages in the NMEA-0183

format. These messages consist of streams of comma-delimited ASCII text as

shown in Figure 23. The NMEA message structure includes a message identifier

at the beginning of each stream to identify unequivocally the type of message.

Each NMEA message contains a different number of fields according to a prede-

termined structure and includes a checksum value, which is used to check the

integrity of the data included in the message. The checksum on each stream is

calculated by performing an 8-bit exclusive OR of the characters between the

dollar sign and the asterisk delimiter.

34

Figure 23. NMEA-0183 Message Structure (From: Ref. [6].)

In the same way as the driver developed for the Piccolo protocol, this

driver is separated in two parts—a reader that actually handles the serial port

and strips the useful data from the headers and a decoder that decodes the re-

ceived bits into meaningful measurements provided by the GPS messages.

Two of the sixteen NMEA messages provided by the agGPS114 were of

particular interest because of the navigation data they provided: the GPS fixed

data, which uses the identifier GGA in the NMEA format; and the recommended

minimum specific GPS data, which uses the identifier RMC in the NMEA format.

These two messages provided the necessary data for the autonomous landing

algorithm.

The complete reading/decoding scheme is shown in Figure 24. The raw

data is received through the serial port and streamed to a buffer of predeter-

mined size. Once the buffer is full, the serial receiver issues a function call that

indicates to the following block that new data is available (Figure 24a). Once the

reader receives a complete buffer, it identifies which type of NMEA message it is,

removes the header and checksum, and sends to the output the NMEA message

type, the data, and a function call that indicates to the decoder that new data is

available (Figure 24b). The decoder, according to the type of message that will

35

be decoded, enables the appropriate block that generates the meaningful data

(Figure 24c). The C source code for the implemented S-Functions used to per-

form these tasks is included in Appendix A.

(a)

(b)

(c)

Figure 24. Complete Reading/Decoding of the GPS Data (a) Receiver,
Reader, and Decoder. (b) Reader/Decoder. (c) Decoder.

36

2. Differential Correction Beacon
Geographical position data provided by the GPS is generally corrupted by

four types of measurement errors: ionospheric and tropospheric noise, multipath

effect, satellite position errors, and receiver noise[7]. In order to improve the qual-

ity of the position provided by the GPS, the signals are differentially corrected by

signals emitted by radio beacons (supervised by the United States Coast Guard),

which essentially contain an approximation of the values for each of the meas-

urement errors in the area of the receiver. Applying differential corrections to

GPS data can improve its accuracy by an order of magnitude or more [7].

In order to provide the differential corrections provided by the Garmin

GBR21 through serial port 4 (COM4) to the Piccolo’s Avionics, a protocol en-

coder and wrapper identical to the one shown in Figure 18 was implemented.

E. SUMMARY

This chapter discussed the tracking and capture segments of the landing

approach in detail. It explained how the flight data is made available to the sys-

tem by the Piccolo protocol reader/decoder developed in C and Simulink. It pre-

sented the Autonomous Landing Flight Control Computer hardware and dis-

cussed all the peripherals required by the algorithm. The next chapter presents

the design, development and implementation of the control system.

37

III. CONTROL SYSTEM DESIGN

For the control system design presented in this chapter, a six-degrees-of-

freedom (6-DOF) nonlinear model of the Silver Fox UAV was first developed in

Simulink based on the available flight characteristics and structural data provided

by the manufacturer. The autopilot was then designed using classical control

techniques for the innermost, thus a faster, loop. For this purpose, the dynamic

model of the Silver Fox UAV around the trimmed flight condition was linearized

and used as the plant. Then the outer loop structure was developed to drive to

zero the error signals generated by the autonomous landing segments described

in Chapter II.

Once the real-time simulation showed successful results, the autopilot de-

sign was passed on to Cloud Cap Technologies, Inc. so it could be programmed

and included in the Piccolo’s Avionics firmware.

The last section of this chapter presents the integration of the autonomous

landing algorithm developed in the previous chapter with the control system pre-

sented in this one.

 A. CONTROLLER DESIGN
The controller design presented here is based on the classical inner/outer

control loop approach. The inner loop is designed to be much faster in response

than the outer loop. Thus, it produces enough bandwidth separation to make the

plant look like a point mass to the outer loop. The outer loop is a regulator de-

signed to drive the position and velocity errors (described in Chapter II Section A

Subsection 3 and 4) to zero. In both cases, the longitudinal and lateral motion

were decoupled by using several assumptions described in the following subsec-

tion.

A complete top-level block diagram of the inner and the outer control sys-

tem used for the controller design is shown in Figure 25. This figure shows how

the inner loop receives as inputs the angular rates and the speed of the UAV and

38

compares them with the set points created by the outer loop to produce the con-

trol surface deflection and the thrust command. The outer loop monitors the ve-

locity and position errors generated by the autonomous landing algorithm and

generates the set points accordingly. A more detailed explanation of the inner

loop controller (autopilot) and the outer loop controller (regulator) is given in the

following subsections.

Figure 25. Top Level View of the Inner and Outer Loop Control System De-
sign.

1. Decoupling of Motion
One of the commonly used techniques that simplify analysis of the spatial

motion of an aircraft is the decoupling of its motion onto longitudinal and lateral

components.

A study of equations (B8) and (B9), shown in Appendix B, demonstrate

that two nonlinear vector equations are required to describe the spatial motion of

an aircraft. Nevertheless these equations can be separated into two subsets.

Assume that the aircraft is in leveled flight, thus in trim condition, and that

this condition is disturbed by the deflection of the aircraft’s elevator. The deflec-

39

tion generates a pitching moment only,without affecting the rolling or yawing

moments. It also produces a change in the forces applied in the X and Z direction

in the body frame {B}, without affectiing the dynamics in the Y direction. In other

words, we consider the dynamics in the longitudinal plane of the aircraft.

Therefore, the longitudinal motion is characterized by the following pa-

rameters taken in body frame {B} : , , , , , B B B B
x zx z v v α θ , and q, which are defined

in Appendix B. This motion is caused by the forces and moments acting in the

local vertical plane of the aircraft: thrust (assumed that there is no deflection of

this vector), drag, lift, gravity (projection to the local vertical plane obtained

through pitch) and the pitch moment B
yG .

Proceeding in the same way as for the longitudinal motion, but this time

disturbing the trim flight by a deflection of the aileron or the rudder, the parame-

ters that describe the lateral motion can be obtained. These parameters are

, , , , ,B B
yy v β ϕ ψ p, and r, again, defined in Appendix B. The lateral motion is

produced by the projection of gravity and aerodynamic forces and moments in

the sideslip direction.

It is also important to mention that such a separation allows decoupling of

the control surfaces deflection onto two separate channels: elevator for the longi-

tudinal channel and ailerons and rudder for the lateral channel.

2. Inner Loop Autopilot
a. Lateral Channel
The control in the lateral channel was designed to stabilize the air-

craft’s yawing and make the response fast enough so the lateral channel of the

outer loop control “saw” only a point mass. As stated previously, two of the con-

trol surfaces, the aileron and the rudder, have influence over the aircraft’s lateral

motion. Therefore, two separate analyses had to be performed.

The first step was to obtain a linearized model of the Silver Fox,

which for the control purposes was the plant. The Silver Fox 6DOF model de-

40

scribed in the first section of this chapter was linearized about a trim condition in

leveled flight at 200 meters altitude with an airspeed of 21 meters per second.

The linearization was accomplished by using Simulink’s linear analysis tool. The

following figure shows the Root Locus and Bode plot of the transfer function ob-

tained from the deflection of the aileron (aδ) to the yaw rate (r).

Figure 26. Root Locus and Bode Plot of the Transfer Function from aδ to r.

A simple analysis of the above figure shows that using only a feed-

back gain will not result in a stable system. This is because, in order to bring the

pole located at 1.48 0 j+ to the left side of the imaginary axis, a feedback gain

would not be sufficient. To be able to bring the unstable pole to the stable region

quickly, a compensator with a zero located at 2 0 j+ , a pole located at 2 0 j− + ,

and a gain of 0.1 was introduced in the forward control path. This resulted in a

system with a root locus shown in Figure 27, which is stable for the selected

41

gain, with the dominant poles located at 2.48 4.39 j− ± and 1.05 0.216 j− ± .

The selection of this controller results in a closed loop system with a gain margin

of 7.76 dB and a phase margin of o60.7 , also shown in Figure 27.

Figure 27. Root Locus and Bode Plot of the Transfer Function from aδ to r with
a Compensator in the Forward Path.

Using the same procedure as the one described above for the ai-

leron, a compensator for the rudder was implemented, with a zero at the origin, a

pole at 2 0 j− + , and a gain of 0.1. The root locus of the transfer function from

rδ to r with the compensator in the forward path is shown in Figure 28.

42

Figure 28. Root Locus and Bode Plot of the Transfer Function from rδ to r with
a Compensator in the Forward Path.

As shown in the above figure, choosing this compensator places

the dominant closed loop poles at the origin and at 1.59 5.45 j− ± . This controller

produces a closed loop system with a gain margin of 68 dB and a phase margin

of 128o− .

b. Longitudinal Channel
The control in the longitudinal channel was designed to stabilize the

aircraft’s pitch and make the response fast enough so the longitudinal channel of

the outer loop control “saw” only a point mass. As stated before, the elevator is

the only control surface that has influence over the aircraft’s longitudinal motion.

The commanded thrust to the aircraft also has an important influence in the longi-

43

tudinal channel, since an increment in thrust is reflected in an increment in speed

and this generates an increment in lift, thus making the aircraft gain altitude.

Therefore, two compensators were designed for the longitudinal

channel, one to stabilize the aircraft’s pitch and have a fast response, and one to

keep the speed of the aircraft constant, thus avoiding the variation of the influ-

ence of the air speed in the longitudinal channel.

Analyzing the root locus of the transfer function from eδ to q, shown

in Figure 29, it was noticed that a pure gain compensator was enough to make

the system stable and to have the desired response. Therefore, a gain of 0.05

was chosen to be placed in the forward control path.

Figure 29. Root Locus and Bode Plot of the Transfer Function from eδ to q with
a Gain Compensator in the Forward Path.

44

 As a result of this gain the dominant closed loop poles were located

at 0.0744 0.506 j− ± . The system had a infinite gain margin and 81.2o− of phase

margin.

For the speed controller, a Proportional-Integral (PI) controller was

implemented to keep the speed constant. The gains implemented for the control-

ler were determined experimentally. Figure 30 shows the root locus and bode

plot of the closed loop speed controller implemented.

Figure 30. Root Locus of the Closed Loop Speed Controller.

 As a result of placing the PI controller in the forward path, the

dominant closed loop poles where located at 0.00231 0.0 j− ± and at

0.879 1.91j− ± . This resulted in an infinite gain margin and a 66.7o phase mar-

gin.

45

The complete implementation in Simulink of the lateral and longitu-

dinal control previously discussed is shown in Figure 31. As it can be seen, be-

sides implementing the control scheme previously discussed, limiters have been

added to each of the control signals to avoid generating signals that are not

physically possible.

Figure 31. Inner Loop Control (Autopilot) Implementation in Simulink.

 Table 1 shows a summary of the location of the dominant closed

loop poles, the gain margins, and phase margins for each channel of the inner

loop control.

46

 DOMINANT
CLOSED LOOP

POLES

GAIN
MARGIN

PHASE
MARGIN

Aileron 2.48 4.39 j− ±
1.05 0.216 j− ±

7.76 dB o60.7
Lateral Chan-

nel Rudder 0.0 0.0 j+
1.59 5.45 j− ±

68 dB 128o−

Elevator 0.0744 0.506 j− ± Infinite 81.2o−
Longitudinal

Channel Thrust 0.00231 0.0 j− ±
0.879 1.91j− ±

Infinite 66.7o

Table 1. Location of the Dominant Closed Loop Poles, Gain Margins and
Phase Margins of the Inner Loop (Autopilot) Controller.

3. Outer Loop Control Feedback
As described above, in control terms, the outer loop is a regulator. For this

particular case, the signals to be driven to zero are the position and velocity er-

rors generated by the tracking or capture segments of the autonomous landing

algorithm. Since both position and velocity errors were readily available, this re-

sulted in a convenient way to implement a PD control. During the initial phase of

the control system design, it was decided that, in order to provide a better control

scheme, feedback controllers should be introduced in the feedback path.

In the same way as for the inner loop, the complete plant, including the in-

ner loop, was linearized using Simulink’s Linear Analysis tool. The controllers

were designed from the linear model obtained.

Figure 32 shows a top level view of how the control strategy was imple-

mented for the outer loop. Note that the plant transfer functions (shown in green)

are the transfer functions obtained from the linearization of the Silver Fox 6-DOF

model, the autopilot and the capture/tracking segment (shown in Figure 25 in yel-

low, green, and red, respectively) altogether.

47

Figure 32. Top Level Diagram of the Control Scheme Implemented in the
Outer Loop.

a. Longitudinal and Lateral Channels
The design of the controller in this case was an iterative process.

The PD gains were first set to make the system marginally stable. Then the

feedback controllers were designed. Finally, the PD gains were fine-tuned in

simulation to obtain the desired response.

The following figure shows the Root Locus of the outer loop’s longi-

tudinal channel with just the PD controller. It can be seen that the system, even

with a very small feedback gain, can become unstable due to the fact that the

pole located at the origin will move to the right-hand side of the plane, thus mak-

ing the system unstable. To correct for that, a controller was introduced in the

feedback path bringing the system to stability and reshaping the Root Locus to

the one shown in Figure 34.

48

Figure 33. Root Locus of the Outer Loop Longitudinal Channel Using Only PD
Control.

Figure 34. Root Locus and Bode Plot of the Outer Loop Longitudinal Channel
Using PD Control and a Controller in the Feedback Path.

49

 This controller placed the dominant closed loop poles at 0.0 0.0 j+ ,

0.634 0.981 , 1.19 1.36 , and at 1.24 1.08j j j− ± − ± − ± . The resulting gain margin

was 11.6 dB and a 36.4o phase margin.

Using the same methodology as the one described above for the

longitudinal channel, the lateral channel was designed and fine-tuned in simula-

tion. Figure 35 shows the Root Locus and Bode plot of the longitudinal channel.

Figure 35. Root Locus and Bode Plot of the Outer Loop Lateral Channel Using
PD Control and a Controller in the Feedback Path.

 This controller placed the dominant closed loop poles at 0.0 0.0 j+ ,

0.133 0.0451 , 0.218 0.0 , 0.919 0.0j j j− ± − + − + . The resulting gain margin was

11.9 dB and a phase margin of 44.3o .

50

The complete outer loop controller is shown in Figure 36. Note that

a realign block has been introduced in the lateral channel. This block will be ex-

plained in the following subsection.

Figure 36. Simulink Implementation of the Complete Outer Loop Control
Feedback .

 Table 2 shows a summary of the location of the dominant closed

loop poles, the gain margins and phase margins for each channel of the outer

loop control.

CHANNEL DOMINANT CLOSED
LOOP POLES

GAIN
MARGIN

PHASE
MARGIN

Longitudinal 0.0 0.0 j+
0.634 0.981j− ±
1.19 1.36 j− ±
1.24 1.08 j− ±

11.6 dB 36.4o

Lateral 0.0 0.0 j+
0.133 0.0451j− ±
0.218 0.0 j− +
0.919 0.0 j− +

11.9 dB 44.3o

Table 2. Location of the Dominant Closed Loop Poles, Gain Margins and
Phase Margins of the Outer Loop Control.

51

b. Path Realignment
Since the system was designed to take control of the UAV at any

in-flight initial condition, a possibility exists that when the angle between the

UAV’s velocity vector and T
v

in the XY plane is noticeably large, it can impact the

performance of the algorithm (see Figure 37).

Initial Position
of the Aircraft

Landing Point Moving
in a Straight Line

x

y

vUAV

vLand

Top of Glide Slope

T

Figure 37. Scenario Showing a Large Angle Difference between the UAV’s Ve-
locity Vector and T

v
in the XY Plane.

It was noticed in the simulation that under this condition the algo-

rithm might diverge or have slow convergence. To avoid that, an additional logic

in the lateral channel was introduced in the outer loop control to force the UAV to

realign its velocity vector with the glide slope in the XY plane much faster than it

would normally do, by commanding a high constant yaw rate. In control terms,

this was done to force the control algorithm to slide into a convergence region.

This logic calculates the angle between these two vectors and de-

cides whether to let the calculated yaw rate be passed through, or to command a

high constant yaw rate. If so, the position error and velocity error are used to de-

cide whether the high constant yaw rate should be positive or negative.

The implementation of the path realignment block is shown in

Figure 38.

52

Figure 38. Simulink Implementation of the Path Realignment Logic.

B. INNER LOOP AUTOPILOT IMPLEMENTATION IN THE UAV AVIONICS
As previously stated, the inner loop autopilot must provide a fast response

by feeding back the information from the onboard sensors. However, if the auto-

pilot designed were to reside on the ground station, then the communication de-

lays would significantly impact its performance. To avoid this, the NPS workgroup

and Cloud Cap Technologies, the developers of the Piccolo system, agreed that

the NPS autopilot needed to reside in the Piccolo Avionics as well.

Cloud Cap, in coordination with the NPS workgroup, modified the pro-

posed autopilot shown in Figure 31, to include anti-windup logic to the integra-

tors, channel shut-off capabilities, and configurable values for the gains and limits

of the saturation blocks. Also, additional logic was included to permit the ground

control to decide which autopilot was active, NPS’s or Piccolo’s. A top-level dia-

gram of the C code implemented in the avionics microprocessor is shown in the

following figure.

53

Figure 39. NPS and Piccolo Autopilot Implementation in the Avionics.

It is important to note that as seen in Figure 39 this new control scheme

introduces several changes. The input named Settings and the output named

Derived contained data such as altitude, air density, and true air speed, that were

relevant to the Ground Station. Cloud Cap Technologies implemented these di-

rectly.

In addition to the previously implemented commands received by the

autopilot (pitch rate command and yaw rate command), three new messages

were implemented. Two of these messages (NPS Gains and NPS Limits) config-

ure the numerical values of the gains and saturation limits from the ground. A

third message (NPS States) shuts down the lateral and/or longitudinal channels

mainly for debugging purposes. This third message also indicates which of the

two autopilots is active.

The last change introduced as a result of the autopilot implementation in C

was the NPS Trim signal, which was an output of the Piccolo autopilot and an

54

input to the NPS autopilot. This signal was created to set all the initial conditions

of the NPS autopilot so when the transition occurred there was no instantaneous

change of the position of the control surfaces, thus permitting a smooth transition

from normal flight to autonomous landing.

C. COMPLETE AUTONOMUS LANDING SYSTEM INTEGRATION
The Mathworks Inc., the developer of MATLAB, provides a set of tools that

can deploy a system developed in Simulink to any PC running a real-time operat-

ing system (RTOS) that they develop. Two products (besides Simulink and

MATLAB) are necessary to make this happen. One is the Real Time Workshop,

which automatically generates the C source code and the object file to be

downloaded to the microprocessor. The other is the XPC Target, which enables

the connection and download of the C code generated by the Real Time Work-

shop to a physical system and executes it in real-time.

Therefore, all the Simulink models, like the ones shown in Figure 12,

Figure 13, and Figure 15, were ready to be applied to a real-world scenario. The

only remaining task was to perform the integration of all the elements previously

described into one fully working system. The integration was performed as it is

shown in Figure 40. The letter and number sequences included in most of the

components of the system shown in the figure below, indicate the Chapter – Sec-

tion – Subsection of this work that present and discuss how the component

works. For example, the Piccolo Protocol Reader/Decoder is discussed in Chap-

ter II Section B Subsections 1 and 2.

55

Hub

Li
m

its
 C

on
fig

ur
at

io
n

(II
I.C

.1
)

GUI and
Data
Logging

Ethernet Port

G
ai

ns
 C

on
fig

ur
at

io
n

(II
I.C

.1
)

St
at

es
 C

on
fig

ur
at

io
n

(II
I.C

.1
)

Da
ta

 L
og

gi
ng

 U
til

ity
(II

.C
)

G
ra

ph
ica

l D
isp

la
y

(II
I.C

.1
)

Operator
Interface

(I.C.3)

Antenna

M
AT

LA
B

(II
I.C

)

Ethernet Port

Si
m

ul
in

k
an

d
th

e
R

ea
l

Ti
m

e
W

or
ks

ho
p

(II
I.C

)

Host PC

Wireless
Link

UAV’s
Antenna

UAV
Sensors

UAV (I.B)

Piccolo
Autopilot

NPS
Autopilot
(III.A.2)

Control Surfaces

Piccolo
Ground Station

(I.C.2)

Pilot Manual
 Control
(I.C.4)

Avionics (I.C.1)

Piccolo Protocol
Reader/Decoder

(II.B.1 - 2)

Net Position
and

Orientatation
Calculation
(II.A.1 - 2)

Autonomous Landing
Flight Control Computer

GPS
Driver
COM 2
(II.D.1)

Ethernet Port

UDP
Driver

Position and
Velocity

Filter
(II.B.5)

Segment 1
and

Segment 2
Calculation
(II.A.3 - 4)

Outer Loop
Control and

Path
Realign
(III.A.3)

Piccolo
Protocol

Commands
Wrapper

(II.B.3 - 4)

GBR
Receiver
COM 4
(II.D.2)

Piccolo
Protocol

GBR
Wrapper

(II.B.3 - 4)

Receive
States,

Limits and
Gains
(III.B)

Piccolo
Protocol
States,

Limits and
Gains

Wrapper
(II.B.3 - 4)

COM 1

Read

XPC
Target

Download

Write

G
PS

 1
G

PS
 2

G
BR

21

RS232

GPS
Driver
COM 3
(II.D.1)

Figure 40. Top Level View of the System Integration.

A more detailed explanation of the GUI is given in the following subsec-

tion.

56

1. Graphical User Interface (GUI)
To configure all the values required for the three new message structures

introduced by the implementation of the autopilot in C (States, Limits and Gains)

a Graphical User Interface (GUI) had to be developed. The GUI also provided a

convenient way to present in-flight data to the user in real time.

The GUI and data logging was performed by a laptop computer running

Windows ® XP Pro, MATLAB and Simulink. As previously mentioned, the GUI

provided a way to tune all the parameters of the autopilot, and it also provided a

graphical display of the important variables of the system. All the data were ex-

changed through the network using UDP protocol. The following figure shows the

GUI developed in Simulink for a flight test.

Figure 41. Graphical User Interface (GUI) Used to Configure the Autopilot Pa-
rameters, Present In-Flight Data and Log the Variables.

57

 D. SUMMARY
This chapter presented how the linearized Silver Fox 6-DOF model was

used as the plant model to design the control system using classical control

techniques based on the inner and outer loop approach. Also, system integration

and implementation issues were addressed. The following chapter presents the

results obtained from the computer and hardware in the loop (HIL) simulations as

well as the ground tests performed on the system.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

IV. SIMULATION AND GROUND TESTS RESULTS

This chapter presents the results of extensive computer simulations per-

formed to verify the feasibility of the solution proposed. Results from computer

simulation, hardware in the loop, and ground tests are presented.

A. SIMULATION
The first approach used to explore the success rate of the algorithm pro-

posed was to create a model in Simulink that contained the dynamics of the UAV

represented by the 6DOF Silver Fox model, a very simple model of a ship un-

derway with constant heading, and the implementation of the autonomous land-

ing algorithm. More than 900 different runs were done for the simulation, varying

the initial conditions of the aircraft, the existence of measurement noise and

wind.

Following these successful initial results, the model was then simplified to

land the UAV on a landing strip, in order to be ready for flight tests. This was

done because the first phase of the testing protocol contemplated making a land-

ing attempt at a landing strip in Tucson, Arizona.

1. Simulation Scenarios
Figure 42 shows a top-level view of the Simulink model used to simulate

the autonomous landing on a ship underway. The movement of a ship was simu-

lated by angular rates in roll and pitch of 0.15 rad/sec and 0.5 rad/sec respec-

tively. The roll and pitch was considered to be 0.5 rad for both cases. The yaw

was kept constant, thus having a constant heading. Additional blocks were intro-

duced to add measurement noise when the scenario so required.

Figure 43 shows a top-level view of the Simulink model used to perform

the simulation of the autonomous landing on a landing strip on ground. Several

modifications from the previous diagram were introduced. The autopilot was now

positioned next to the actuator model for clarity sake. Configurable parameters

60

were added to set the angle of the glide slope (γ), offset (D), and the switching

range. Also a way to configure the heading of the landing strip was introduced.

Since at this time the landing point would not be moving, the origin of the

local reference frame {L} would be considered as the landing point.

Figure 42. Simulink Model Used for Ship Landing Simulation.

61

Figure 43. Simulink Model Used for Runway Landing Simulation.

Three major runs of the simulations were performed. The first run tested

ideal conditions with no wind and the measurements being perfect, thus there

was no measurement noise. The second run still assumed there was no wind

disturbances but considered measurement noise. The last scenario, the most re-

alistic, considered wind disturbances and measurement noise. The results are

shown in the following subsections.

For the three cases described above the initial heading of the UAV was

varied from 0 to 345 degrees in increments of 15 degrees. The initial position of

the UAV was varied from 750− to 750 in increments of 250, in X and Y coordi-

nates. For the ship landing, the initial height was varied from 75 to 125 meters in

62

increments of 25. For runway landing, the initial height was varied from 100 to

150 meters in increments of 25.

a. Ideal Conditions: No Measurement Noise and No Wind
Figure 44 shows the position of the center of gravity (CG) of the

UAV with respect to the middle point of the net when the UAV crosses the YZ

plane of the net.

(a) (b)

Figure 44. YZ Plot of the Position of the UAV’s CG When Crossing the Plane
of the Recovering Net. (a) Shipboard Landing. (b) Runway Landing.
No Measurement Noise and No Wind.

As seen in the above figure, the error of the algorithm, under ideal

conditions is generally quite small. For the 324 experiments performed under

these conditions for each type of landing (shipboard and runway) the mean and

standard deviations of the errors were calculated and are shown in the following

table:

63

MEAN (m) STANDARD
DEVIATION (m) LANDING TYPE

Y Z Y Z
Shipboard 0.1950 0.3689 1.8166 0.2794
Runway 0.3533 0.5254− 0.2753 0.0294

Table 3. Means and Standard Deviations (in meters) of the Landing Errors.
No Measurement Noise and No Wind.

From the previous table and figure, it can be seen that even

though the runway landing has higher values for the means of the errors, its

standard deviations are almost a magnitude smaller than those of the shipboard

case. This, potentially, means that a smaller net is required for recovering the

UAV on the ground.

The following figures show a complete landing approach. Figure 45

shows the three-dimensional plot and Figure 46 shows the XY and YZ plots of

the approaches. It is clear that ideal conditions allow the autonomous landing al-

gorithm to have smooth trajectories and very small errors during the capture and

tracking segments. The glide slope is only shown in the runway landing scenario

because in shipboard landing, the glide slope moves with the ship. Therefore

plotting only the last glide slope would have no meaning and plotting all of them

would only clutter the figure.

(a) (b)

Figure 45. Three-Dimensional Plot of a Landing Approach. (a) Shipboard
Landing. (b) Runway Landing. No Measurement Noise and No
Wind.

64

(a) (b)

Figure 46. XY and YZ Plots of a Landing Approach. (a) Shipboard Landing. (b)
Runway Landing. No Measurement Noise and No Wind.

 From the above figures it is clear how, for the runway landing case,

the UAV performs a perfect tracking of the glide slope as desired.

The following figures show how in the landing approaches shown

above, first the UAV starts in capture mode and the position errors are zero.

Once the UAV reaches the top of the glide slope, it switches to tracking mode

and the position errors are no longer zero. After that, both errors are driven to

zero by the outer loop control system. This is consistent with what was shown in

Chapter II Section A. It is important to note how in the longitudinal channel, for

the shipboard landing scenario, when the ship moves, the control system is al-

ways trying to compensate for that movement. Figures 47 and 48 show how the

commanded pitch (cq) and yaw (cr) rates act to correct the position and velocity

errors.

65

(a) (b)

Figure 47. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate. (a) Shipboard Landing. (b) Runway Landing. No Meas-
urement Noise and No Wind.

(a) (b)

Figure 48. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate. (a) Shipboard Landing. (b) Runway Landing. No Meas-
urement Noise and No Wind.

b. Measurement Noise and No Wind
The same set of experiments as in the previous subsection were

performed but now measurement noise was added to the values generated by

the Ship’s and UAV’s GPS. For all the cases additive white noise was assumed

66

to be present. The following table shows the variances used for the different sen-

sors.

SENSOR READING VARIANCE
Latitude and Longitude 3 m
Height 1 m UAV
Velocities 0.5 m/s
Latitude, Longitude and Height 1 m Ship or

Ground Velocities 0.3 m/s

Table 4. Variances for the White Additive Noise Used in the Sensors for
Simulation.

As expected, Figure 48 shows that introducing measurement noise

negatively impacts the performance of the algorithm. It is important to note how

the points on the plot are no longer clustered in a small regions and that the

spread of these has noticeably increased.

(a)

(b)

Figure 49. YZ Plot of the Position of the UAV’s CG When Crossing the Plane
of the Recovering Net. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.

 Table 5 shows the comparison of the means and standard devia-

tions of the errors shown above.

67

MEAN (m) STANDARD
DEVIATION (m) LANDING TYPE

Y Z Y Z
Shipboard 0.1255 1.0930 4.1122 3.7121
Runway 0.0578 1.5822− 1.2455 2.3719

Table 5. Means and Standard Deviations (in meters) of the Landing Errors.
Measurement Noise and No Wind.

 As expected, due to the constant movement of the ship, the ship-

board landing has larger standard deviations for the errors due to the uncertainty

of the movement and the sensors.

The following figures show complete landing approaches for both

scenarios. Figure 50 shows three-dimensional plots and Figure 51 shows the XY

and YZ plots of the approaches. It can be seen that due to the uncertainty in the

sensors, the UAV must perform a more complicated maneuver to position itself at

the top of the glide slope. Also it is noticeable in the runway landing, that perfect

tracking of the glide slope is no longer achievable.

(a) (b)

Figure 50. Three-Dimensional Plot of a Landing Approach. Measurement
Noise and No Wind. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.

I — SHp'J TflKttoV I
U- UA\riTr«|Ktory

■MO JM ^0

IM MO 300

68

(a) (b)

Figure 51. XY and YZ Plots of a Landing Approach. (a) Shipboard Landing.
(b) Runway Landing. Measurement Noise and No Wind.

As in the previous case, the position and velocity errors in Y and Z,

shown in Figure 52 and Figure 53, are driven to zero by the control system. It is

important to note how the commanded pitch rate presents the effect known in

control systems as chattering. Regardless of this effect, the control system still

manages to steer the UAV into the recovering net correctly. The oscillations in

the position error in Z, for the shipboard landing case, are due to the movement

of the ship and the measurement noise. They are more noticeable than in the

previous scenario.

69

(a)

(b)

Figure 52. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate. (a) Shipboard Landing. (b) Runway Landing. Measure-
ment Noise and No Wind.

(a)

(b)

Figure 53. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate. (a) Shipboard Landing. (b) Runway Landing. Measure-
ment Noise and No Wind.

c. Measurement Noise and Wind Disturbances
In order to make the simulation more realistic, wind disturbances

were introduced to the simulation. Real data was used, which was previously col-

lected in the U.S. Army’s Yuma Proving Grounds (YPG), Yuma, Arizona for the

70

work presented in [12]. The wind was set up to run cyclically in the simulation, so

if the data collected reached its end before the simulation was stopped, it would

start again from the beginning in order to provide continuous wind for the simula-

tion. The following figure presents the X, Y, and Z components of the wind.

Figure 54. YPG’s Wind Profile. (After Ref. [12].)

Once again, the same set of experiments as in the previous sub-

section were performed.

As expected, the following figure shows, that introducing wind dis-

turbances negatively impacts the performance of the algorithm and downgrades

the previously presented performance.

71

(a)

(b)

Figure 55. YZ Plot of the Position of the UAV’s CG When Crossing the Plane
of the Recovering Net. (a) Shipboard Landing. (b) Runway Landing.
Measurement Noise and No Wind.

 For shipboard landing, the error’s means still remain small but the

standard deviations grow even larger than before. On the contrary, for the run-

way landing, the means become significantly larger, but the standard deviations

are barely changed.

MEAN (m) STANDARD
DEVIATION (m) LANDING TYPE

Y Z Y Z
Shipboard 0.3139 2.9194 4.6724 4.3451
Runway 2.4227− 7.0919− 1.2986 2.9819

Table 6. Means and Standard Deviations (in meters) of the Landing Errors.
Measurement Noise and Wind.

The following figures show complete landing approaches. Figure 56

shows three-dimensional plots and Figure 57 shows the XY and YZ plots of the

approaches. It can be seen that due to the wind disturbances, the UAV must per-

form more complicated maneuvers to position itself at the top of the glide slope.

72

(a)

(b)

Figure 56. Three-Dimensional Plot of a Landing Approach. (a) Shipboard
Landing. (b) Runway Landing. Measurement Noise and Wind.

(a)

(b)

Figure 57. XY and YZ Plots of a Landing Approach. (a) Shipboard Landing.
(b) Runway Landing. Measurement Noise and Wind.

As in the previous case, the position and velocity errors in Y and Z,

shown in Figure 58 and Figure 59, are driven to zero by the control system. It is

now noticeable how the position error in Z is greater than in the previous scenar-

ios.

I — SHrtTnlenojv |

73

(a)

(b)

Figure 58. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate. (a) Shipboard Landing. (b) Runway Landing. Measure-
ment Noise and Wind.

(a)

(b)

Figure 59. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate. (a) Shipboard Landing. (b) Runway Landing. Measure-
ment Noise and Wind.

d. Results Summary
Table 7 shows a summary of the results previously presented re-

garding the means and variances of the errors according to the simulation sce-

narios.

74

CONDITIONS MEAN (m) STANDARD
DEVIATION (m)

 Scenario Y Z Y Z

Ship 0.1950 0.3689 1.8166 0.2794 Ideal Conditions Runway 0.3533 0.5254− 0.2753 0.0294
Ship 0.1255 1.0930 4.1122 3.7121 Measurement

Noise Only Runway 0.0578 1.5822− 1.2455 2.3719
Ship 0.3139 2.9194 4.6724 4.3451 Measurement

Noise and Wind Runway 2.4227− 7.0919− 1.2986 2.9819

Table 7. Summary of Mean and Standard Deviations (in meters) for the
Three Scenarios

Figure 60 and Figure 61 show the histograms of the occurrences of

the position errors in Y and Z. These figures corroborate what was previously

stated—even though there is not a significant change in the means as the simu-

lation becomes more realistic, the spread of the data changes, thus decreasing

the probability of the UAV hitting the recovering net. Nevertheless, it is worth not-

ing that there is not a significant change in the means or in the standard devia-

tions between the noise only and the noise and wind conditions. As expected, the

algorithm has better results in the runway scenario.

75

Figure 60. Histograms of the Occurrences of the Position Errors in Y and Z for
Each of the Simulation Conditions. Shipboard Landing.

Figure 61. Histograms of the Occurrences of the Position Errors in Y and Z for
Each of the Simulation Conditions. Runway Landing.

76

B. HARDWARE IN THE LOOP SIMULATION
With successful results in the computer simulation of the algorithm, the

next step was to perform Hardware in the Loop (HIL) simulation. This was done

in order to verify the following:

• The correct implementation of the Piccolo protocol reader/decoder
and encoder/writer as well as the performance of the serial port 1
(COM1) in full duplex mode.

• How the latencies in the communications channel and drop outs in
the data provided by the sensors affected the performance of the
algorithm.

• The correct implementation of the autopilot in the Piccolo’s firm-
ware.

• The correct implementation of the GUI and the ability to switch be-
tween Piccolo’s and NPS’s autopilot effortlessly.

• The performance of the autonomous landing algorithm running in
real-time in the Autonomous Landing Flight Control Computer.

Cloud Cap Technologies Inc. provided the software and hardware re-

quired to perform the HIL simulation. The setup and the interaction of the com-

ponents will be described in the following subsection. The successful results of

the HIL simulation are presented after that.

1. Setup
Included in the Piccolo system, Cloud Cap Technologies Inc, provides a

set of software/hardware tools to perform HIL simulation. The software is an ap-

plication that simulates the behavior of an aircraft in flight, thus its dynamics. It

also simulates all the data that the aircraft’s sensors would collect in real flight

and provides a way to include wind disturbances in the simulations. All the data

produced by this simulator is sent through an Universal Serial Bus to Controller

Area Network (USB/CAN) bus adapter that connects the computer running the

simulation and the Piccolo Avionics.

Figure 62 shows a diagram of the components involved in the HIL simula-

tion and their interconnections.

77

Figure 62. Diagram of the HIL Simulation.

The above HIL setup was done in the Unmanned Systems Lab at the

NPS. The results presented in the following subsection were obtained in this lab.

Figure 63 shows a picture of the setup.

Antenna

Piccolo Ground
Station

Piccolo
Avionics

Hub

Pilot Manual
Control

Operator
Interface

Autonomous
Landing Flight

Control Computer

SimulatorGUI and
Data

Logging

Host PC

USB/CAN
Adapter

Figure 63. HIL Simulation Setup at the Naval Postgraduate School Unmanned
Systems Lab.

78

For this simulation, a runway landing scenario was setup to prepare for

the flight test, which will be conducted on a runway in Tucson, Arizona.

2. Results
The following figures show a complete landing approach. Figure 64 shows

a three-dimensional plot, and Figure 65 shows the XY and YZ plots of the ap-

proach.

Figure 64. Three-Dimensional Plot of a Landing Approach in HIL Simulation.
Noise and Wind .

79

Figure 65. XY and YZ Plots of a Landing Approach in HIL Simulation. Noise
and Wind.

The following figure shows the position of the center of gravity of the UAV

(CG) with respect to the middle point of the net, when the UAV crosses the YZ

plane of the net for the landing approach showed above. It can be seen that the

position error in Z is less than 0.2 m and that the position error in Y is less than 4

m.

80

Figure 66. YZ Plot of the Position of the UAV’s CG When Crossing the Plane
of the Recovering Net. HIL Simulation.

From the above results, several of the items to be verified in the HIL were

solved. Clearly, the implementation of the NPS autopilot in the Piccolo’s firmware

was done correctly. The parameters configured by the GUI were interpreted cor-

rectly by the autonomous landing algorithm and allowed to switch between Pic-

colo’s and NPS’s autopilot .

Regarding the position and velocity errors, shown in Figure 67 and Figure

68, they were all driven to zero by the control system. Therefore, the Piccolo pro-

tocol reader/decoder and the encoder/writer work correctly. Also, the use of serial

port 1 (COM1) in full duplex mode did not show any signs of undermining the

performance of the algorithm.

81

Figure 67. Position and Velocity Errors in Y Compared with the Commanded
Yaw Rate in HIL Simulation. Noise and Wind.

Figure 68. Position and Velocity Errors in Z Compared with the Commanded
Pitch Rate in HIL Simulation. Noise and Wind.

It is noticeable in the above figures that the position and velocity errors,

specially in the longitudinal channel (Z) have a kind of jigsaw effect that was not

82

present in the computer simulations. This is a result of the position and velocity

filter (discussed in Chapter II Section B Subsection 5) performing dead reckoning

between fixes. As a byproduct of this effect, much of the chattering in the com-

manded pitch rate is eliminated in comparison with the previous results.

Finally, the latencies in the communications and/or the sensor data were

studied. It was found, as shown in the following figure, that although most of the

time the communications and the data provided by the sensors are reliable, there

were several drop outs of considerable length. Figure 69 shows an extreme

case, where a seven-second dropout in the last meters of the landing approach

affected the performance of the algorithm. Other cases of small drop outs be-

sides those happening in the last seconds of flight seemed to have little or no ef-

fect on the overall performance of the algorithm.

Figure 69. Dropouts in the Sensor Data during HIL Simulation.

C. GROUND TEST
1. Setup
The last test performed before an actual flight was the ground test per-

formed at the NPS’s UAV lab at the Navy’s Monterey Golf Course. This was

done in order to verify the following:

83

• The duration and frequency of dropouts in the telemetry data pro-
vided by the Piccolo Ground Station.

• The existence of drifting in the sensors, if any.

• Once more, the correct implementation of the Piccolo protocol
reader/decoder.

To achieve this, two different tests were performed. The first consisted of

tying the Piccolo Avionics to a push cart and moving it along a triangular pattern

established in the parking lot of the lab. The second consisted in leaving the Pic-

colo Avionics static and analyzing the drifting of the sensors. Figure 70 shows a

picture of the actual set up at the lab.

(b)

(a)

(c)

Figure 70. Ground Test Setup at the NPS’s UAV Lab. (a) Piccolo Avionics Tied
to a Wheel Cart. (b) Ground Station GPS Receivers. (c) Ground
Station Setup.

84

2. Results
The following figure shows the results of the first ground test. As illus-

trated, the triangular path followed by the Piccolo Avionics was correctly recon-

structed by the collected data, thus proving once more that the Piccolo protocol

reader/decoder had been implemented correctly.

Figure 71. Triangular Path Followed by the Piccolo Avionics during the Ground
Tests.

The second part of the ground test was performed by leaving static the

avionics and collecting data for more than fifteen minutes. The following figure

shows the drifting and variations of some of the data provided by the avionics.

The GPS position (converted to the local reference frame {L}) drifted approxi-

mately one meter in each direction (X and Y) while the calculated Euler angles,

roll, and pitch had a variation of o1.5± and the yaw had a variation of o3± .

85

Figure 72. Drifting and Variation of the Signals Provided from the Sensors in
the Ground Test.

The last test performed during the ground tests consisted in analyzing the

frequency and duration of the dropouts in the GPS signals. For simplicity, the

stream of data that was analyzed was the seconds of the GPS signal. This signal

was differentiated and the results are shown in the following figure.

86

Figure 73. GPS Seconds from the Telemetry Message of the Piccolo Protocol
and the Delays between Updates Obtained during the Ground Test.

No dropouts longer than two seconds appeared during the test. This re-

sult is noticeably better than that obtained during the HIL simulation in which the

simulator produced drop outs of up to seven seconds, as shown in Figure 69.

D. SUMMARY
The results from different simulation scenarios as well as ground tests

were presented in this chapter. These scenarios included ideal conditions,

measurement noise only, and measurement noise and wind disturbances to the

system. The following chapter presents the conclusion and makes some recom-

mendations regarding follow-on work.

87

V. CONCLUSIONS AND FOLLOW-ON WORK

A. CONCLUSIONS
This thesis presented the design, development and implementation of an

autonomous landing system for the Silver Fox UAV. The autonomous landing al-

gorithm was developed in Simulink, a widely recognized tool for control systems

and signal processing development. All the low-level device drivers were devel-

oped in ANSI C and integrated seamlessly into the Simulink models, providing

the required link between hardware and software. The feasibility of the algorithm

presented here was demonstrated in computer and HIL simulation, as well as

ground tests. The system presented here is scheduled to have a flight test in the

near future.

The fundamental idea on which this system was developed is mostly

based on the work presented in [3]. The idea, although simple, is very effective.

The approach consisted of creating an imaginary glide slope and having

the UAV track it as it approaches the landing point. Based on the position of the

UAV, the algorithm creates a new reference frame that points either to the top of

the glide slope, or to the landing point, depending on the previously explained

parameters. Position and velocity errors are generated in this reference frame.

The position errors indicate how far the UAV’s CG is from the glide slope. The

velocity errors indicate the misalignment of the UAV’s velocity vector with that of

the glide slope. Due to the introduction of this reference frame, a three-

dimensional problem is simplified to two dimensions, making the control system

design simpler.

The system presented in this work provides the following advantages:

• The system is not limited to day-time operations, as is generally the
case for pilot-operated tactical UAVs.

• Since the Piccolo system is not tied to any particular UAV, it can be
migrated to other UAVs with little effort.

• The algorithm works for both, shipboard and runway landing.

• It can easily be operated by one person.

88

B. FOLLOW-ON WORK
This work presents only an initial approach to solve the autonomous ship-

board landing problem. There is certainly much to do, especially in the control

system. Nevertheless, this work should only be done after obtaining real flight

data.

The development of a more robust control algorithm is certainly a good

area to pursue. Particularly, since this system is to perform in real-time, highly

sophisticated control algorithms may be such a high burden to the Autonomous

Landing Flight Control Computer that they may worsen, instead of improve, the

overall performance of the system.

A predictor to allow the aircraft to come about and restart the approach in

case it identifies that it will miss the recovering net is also an element that would

add reliability to the overall system.

An observer or a predictor to have a better estimation of the current and

future position of the ship would certainly improve the performance of the algo-

rithm, again, only as long as it does not imply a heavy burden for the Autono-

mous Landing Flight Control Computer.

89

APPENDIX A: SOURCE CODE OF THE DRIVERS

This appendix presents the ANSI C source code of the S-Functions im-

plemented in Simulink to be used as drivers. Each S-Function presented includes

a header that briefly explains what it is used for.
//***
// File: pic_rec_v4..c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: August-23-2003
// Description: This is the mdlOutputs of the S-Function that
// reads the Piccolo Protocol
//***
/* Function to compute outputs */
static void mdlOutputs(SimStruct *S, int_T tid)
{
//#ifndef MATLAB_MEX_FILE

 unsigned char data[500]; /* temp char holder */
 int_T tmp=0;
 unsigned char *buf = (unsigned char *)ssGetDWork(S, 0); /* uchar buffer bytes */
 unsigned char *remainsdata = (unsigned char *)ssGetDWork(S, 1); /* buffer remain */
 int *current = ssGetIWork(S); /* current = addr of current pointer in
 int *recLength = ssGetIWork(S) + 1; /* recLength = addr of receieved data */
 int *bufCount = ssGetIWork(S)+ 2; /* count number of useful bytes in buf. */
 int *remainsSize = ssGetIWork(S)+ 3; /* count size of the inner loop remains */
 int i=0, ii = 0, j=0, notenoughbytes_inner=0, notenoughbytes_outer=0,k=0;
 int crcreal=0,crc=0,crch=0, numBytesAvail=0, flag,packetSize=0 ;
 int serbufCount; //number of bytes available in the port
 int_T temp[1024];// make an aliase for the uPtrs
 int NETADR = (int)mxGetPr(NETADR_ARG)[0];
 unsigned __int8 temp_crc=0;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 //real_T *y0 = ssGetOutputPortRealSignal(S,1);

 // Get the number of bytes available in the port
 serbufCount = (int)mxGetPr(WIDTH_ARG)[0];

 for (i=0; i<serbufCount; i++){temp[i] = (int_T)(*uPtrs[i]);}

 *bufCount = serbufCount + *current;
 // place new chunk of data at the end of previously unprocessed data
 // 'buf' also keeps the remains of previous step ending at the *(buf+current),
 // where 'current' is the position of last byte
 for (i=*current;i<*bufCount;i++)
 {
 *(buf+i)=(unsigned char)temp[i-*current];
 }

 i=0;
 // start main loop
 while(!notenoughbytes_outer && i<(*bufCount))
 {
 // Iteration to find 4 bytes header,
 // so only complete(not fragmented) message is going to be processed
 while ((*(buf+i) == 80 && *(buf+i+1) == 10 && *(buf+i+2) == 0
 && *(buf+i+3) == NETADR && *(buf+i+4) == MESSAGE_TYPE)==0 &&
 i< (*bufCount-5)) // Looking for header {50 0A 00 00//63 03}
 { // Simply shifting along the *buf array to find a header
 i = i + 1;
 } // end of while

 // If we've found a top level header
 // {50 0A 00 00//63 03} do the rest of checking
 if (*(buf+i) == 80 && *(buf+i+1) == 10 && *(buf+i+2) == 0 &&
 *(buf+i+3) == NETADR && *(buf+i+4) == MESSAGE_TYPE)
 { // we've got a top level header
 flag=77;
 } // end of if

 // check availability of at least *(buf+i+6)

90

 // recall that *(buf+i+6) contains the size of the payload
 // in turn, the '*(buf+i+6)+9' is the length of outerlevel package
 if ((i+6)>=*bufCount || (i+ *(buf+i+6)+9)>= *bufCount)
 {
 notenoughbytes_outer=1;
 }
 else// we do have enough bytes
 {
 // if we have a top level header and
 // enough bytes to proceed
 if (flag==77 && (i+*(buf+i+6)+9)<*bufCount)
 { //=============================
 // Top Level HeaderChecksum Procedure
 //=============================
 // Read first 7 bytes into the array to get header CRC
 crch=0;//just in case
 for (k=0; k<7; k++)
 {// put the value in a temporary variable
 temp_crc = (unsigned __int8)(*(buf+i+k));
 // Perform the CRC
 crch = (unsigned __int16)(crch^temp_crc);
 // clear the crc_temp to use it in the
 // 2nd level crc chech procedure
 temp_crc = 0;
 }//end of for

 //========================
 // End Top Level HeaderChecksum
 //========================
 // if the Top Level HeaderCRC is equal to that embedded in the
 // packet, thus *(buf+i+7)
 if (crch== *(buf+i+7))
 {
 // Succeded with header check
 flag=1;
 //========================
 // 1st Level CRC Procedure
 //========================
 // '*(buf+i+6)+7' is the amount of bytes used to get 1st Level CRC
 // next 2 bytes (8,9) determine the actual CRC embedded into the stream

 crc=0;//just in case
 crc=(int)GetCRC((int)(*(buf+i+6)+7),(buf+i));

 //========================
 // End 1st Level CRC
 //========================
 // read the crc embedded in the message
 crcreal=(*(buf+i+*(buf+i+6)+8))*(256) + *(buf+i+*(buf+i+6)+9);

 // if the CRC is different then that embedded in the
 // message

 if (crc != crcreal)
 {
 // discard this chunk of data and shift to a new position
 i=i+ *(buf+i+6)+9;
 //flag=0;
 }
 else
 {
 // we have a valid 1st level CRC
 flag=2;

 //autopilot data=payload is located between i+8:i+8+Size{Size=temp(i+6)}
 numBytesAvail= *(buf+i+6);

 //Send packet out {crc}
 //
 //put valid bytes of payload to data - initial array to be splitted packets
 FillDataRemains(data, *remainsSize, remainsdata,numBytesAvail, (buf+i));

 notenoughbytes_inner = 0;
 ii = 0;

 // check, check, check: ii<(numBytesAvail + *remainsSize) &&
 while(notenoughbytes_inner==0)
 {
 FindHeader(data, numBytesAvail, &ii);
 // read size of first packet

91

 // if there is enough bytes to obtain the size
 if (ii<(numBytesAvail + *remainsSize - 3))
 {
 // obtain it
 packetSize = data[ii+3];
 }
 // else
 else
 {
 // make the packet size a very big number to
 // force the next if to fail
 packetSize = 500000;
 }

 //*********
 if ((ii+packetSize+6) <= (numBytesAvail+*remainsSize))
 {
 // ProcessPacket();
 ProcessPacket(data, &flag, &ii, S);
 // ii is changed inside of ProcessPacket
 }
 else
 {
 //FillRemainsInnerLevel
 FillRemainsInnerLevel(data, remainsSize, ii, remainsdata,
 numBytesAvail);
 notenoughbytes_inner=1;
 }
 } // end while notenoughbytes_inner==0

 //
 i=i+(*(buf+i+6))+10;// shift to next byte of outer level
 } // if else crc != crcreal flag 2
 } // if crch==temp(i+7) flag 1
 else
 {
 i=i+7;
 }//
 } // if flag==77 &&(i+*(buf+i+6)+9)<*bufCount flag 77

 } // end of notenoughbytes_outer

 //

 }// end of while

 //Substitute remain bytes from this step at the beginning of "buf"
 //save remain bytes into the "buf" and shift current to the end of a new buf
 if (i<(*bufCount))
 {
 *bufCount=*bufCount-i; //number of remain bytes
 // buf[j]=buf[i]
 for (j=0;j<*bufCount; j++)
 {
 (buf+j)=(buf+i);
 i++;
 }// end of for
 *current=*bufCount;
 }

//#endif
}

//**
// File: dec_diag..cpp
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: April-15-2003
// Description: This is the mdlOutputs of the S-Function that
// decodes the diagnostics message of the Piccolo Protocol
//**

static void mdlOutputs(SimStruct *S, int_T tid)
{
 // Declare the variables to be used in the function
 // counters
 int_T i=0;
 double vr_temp=0;
 int_T temp[17]; // make an alias for the uPtrs

92

 // Incoming data stream,
 // *uPtrs[0]- determines the length of useful bytes{28 for the IMU}
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,0);

 // read the whole incoming string and assign it to a temporary variable
 // in order to avoid mistakenly overwrting the incoming data
 for (i=0; i<(*uPtrs[0]); i++){temp[i] = (int_T)(*uPtrs[i+1]);}

 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Generate the Output
 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 // Output Channel 1: DeadMan Bit 7 (LSB)
 vr_temp = temp[16] % 2;
 *y=(real_T)vr_temp;

}

//**
// File: dec_autopil..c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: April-11-2003
// Description: This is the mdlOutputs of the S-Function that
// decodes the autopilot message of the Piccolo Protocol
//**

static void mdlOutputs(SimStruct *S, int_T tid)
{
 // Declare the variables to be used in the function
 // counters
 int_T i=0,j=0;
 double vr_temp=0;
 int_T temp[56]; // make an alias for the uPtrs

 // Incoming data stream,
 // *uPtrs[0]- determines the length of useful bytes{28 for the IMU}
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,0);

 // read the whole incoming string and assign it to a temporary variable
 // in order to avoid mistakenly overwrting the incoming data
 for (i=0; i<(*uPtrs[0]); i++){temp[i] = (int_T)(*uPtrs[i+1]);}

 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Start the Decoding Procedure
 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 // Output Channel 1: Barometric Altitude Command (in meters)
 vr_temp = temp[0]*16777216 + temp[1]*65536 + temp[2]*256 + temp[3];
 if (vr_temp>2147483647) vr_temp =vr_temp-4294967295;
 *(y+0)=(real_T)(vr_temp/100);

 // Output Channel 2: Dynamic Pressure Command (in Pa)
 vr_temp =0;
 vr_temp = temp[4]*256 + temp[5];
 *(y+1)=(real_T)vr_temp;

 // Output Channel 3: Turn Rate Command (in rad/sec)
 vr_temp =0;
 vr_temp = temp[6]*256 + temp[7];
 *(y+2)=(real_T)(vr_temp/1000);

 // Output Channel 4: Waypoint Number
 *(y+3)=(real_T)temp[8];

 // Output Channel 5: Flap Deflection (in rads)
 vr_temp =0;
 vr_temp = temp[9];
 if (vr_temp>127) vr_temp = vr_temp - 128;
 *(y+4)=(real_T)vr_temp*0.01745329251994;

 // Output Channel 6: Altitude Loop Control
 // 0 -> Off

93

 // 1 -> Use the Passed Command
 // 2 -> Use the Command from the Navigator
 vr_temp =0;
 vr_temp = temp[10] >> 6;
 vr_temp = (int)vr_temp & 0x03;
 *(y+5)=(double)(vr_temp);

 // Output Channel 7: Dynamic Pressure Loop Control
 // 0 -> Off
 // 1 -> Use the Passed Command
 // 2 -> Use the Command from the Config Manager
 vr_temp =0;
 vr_temp = temp[10] >> 4;
 vr_temp = (int)vr_temp & 0x03;
 *(y+6)=(double)(vr_temp);

 // Output Channel 8: Engine Kill On
 vr_temp =0;
 vr_temp = temp[10] >> 3;
 vr_temp = (int)vr_temp & 0x01;
 *(y+7)=(double)(vr_temp);

 // Output Channel 9: Deadman Engine Kill On
 vr_temp =0;
 vr_temp = temp[10] >> 2;
 vr_temp = (int)vr_temp & 0x01;
 *(y+8)=(double)(vr_temp);

 // Output Channel 10: Turn Rate Loop Control
 // 0 -> Off
 // 1 -> Use the Passed Command
 // 2 -> Use the Command from the Navigator
 vr_temp =0;
 vr_temp = (int)temp[10] & 0x03;
 *(y+9)=(double)(vr_temp);

 // Output Channel 11: Flaps Loop Control
 // 0 -> Neutral
 // 1 -> Use the Passed Command
 // 2 -> Use the Command from the Config Manager
 vr_temp =0;
 vr_temp = temp[11] >> 6;
 vr_temp = (int)vr_temp & 0x03;
 *(y+10)=(double)(vr_temp);

 // Output Channel 12: Tracker Loop Control
 // 0 -> Off
 // 1 -> Tracker Enabled
 vr_temp =0;
 vr_temp = temp[11] >> 4;
 vr_temp = (int)vr_temp & 0x03;
 *(y+11)=(double)(vr_temp);

 // Output Channel 13: Manual Steering On
 vr_temp =0;
 vr_temp = temp[11] >> 2;
 vr_temp = (int)vr_temp & 0x01;
 *(y+12)=(double)(vr_temp);

 // Output Channel 14: Autolaunch On
 vr_temp =0;
 vr_temp = temp[11] >> 1;
 vr_temp = (int)vr_temp & 0x01;
 *(y+13)=(double)(vr_temp);

 // Output Channel 15: Global On
 vr_temp =0;
 vr_temp = (int)temp[11] & 0x01;
 *(y+14)=(double)(vr_temp);

}

//**
// File: dec_telemtry..c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: April-5-2003
// Description: This is the mdlOutputs of the S-Function that
// decodes the telemetry message of the Piccolo Protocol
//**
static void mdlOutputs(SimStruct *S, int_T tid)

94

{
 // Declare the variables to be used in the function
 // counters
 int_T i=0,j=0;
 double vr_temp=0;
 int_T temp[60]; // make an alias for the uPtrs
 char ext[]="\0";
 int count=0,len_in;

 // Incoming data stream,
 // *uPtrs[0]- determines the length of useful bytes{28 for the IMU}
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,0);

 // read the whole incoming string and assign it to a temporary variable
 // in order to avoid mistakenly overwrting the incoming data
 for (i=0; i<(*uPtrs[0]); i++){temp[i] = (int_T)(*uPtrs[i+1]);}

 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Start the Decoding Procedure
 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 // Output Channel 1: Latitude
 vr_temp = temp[0]*16777216 + temp[1]*65536 + temp[2]*256 + temp[3];
 if (vr_temp>2147483647) vr_temp =vr_temp-4294967295;
 *(y+0)=(real_T)vr_temp*MSEC2RAD;

 // Output Channel 2: Longitude
 vr_temp =0;
 vr_temp = temp[4]*16777216 + temp[5]*65536 + temp[6]*256 + temp[7];
 if (vr_temp>2147483647) vr_temp=vr_temp-4294967295;
 *(y+1)=(real_T)vr_temp*MSEC2RAD;

 // Output Channel 3: Height (in meters)
 vr_temp =0;
 vr_temp = temp[8]*16777216 + temp[9]*65536 + temp[10]*256 + temp[11];
 if (vr_temp>2147483647) vr_temp=vr_temp-4294967295;
 *(y+2)=(real_T)vr_temp/100;

 // Output Channel 4: V North (in meters/sec)
 vr_temp =0;
 vr_temp = temp[12]*256 + temp[13];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+3)=(real_T)vr_temp/100;

 // Output Channel 5: V East (in meters/sec)
 vr_temp =0;
 vr_temp = temp[14]*256 + temp[15];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+4)=(real_T)vr_temp/100;

 // Output Channel 6: Number of Satellites
 *(y+5)=temp[16];

 // Output Channel 7: Number of Visible Satellites
 *(y+6)=temp[17];

 // Output Channel 8: Dop
 vr_temp =0;
 vr_temp = temp[18]*256 + temp[19];
 *(y+7)=(real_T)vr_temp;

 // Output Channel 9: Status
 vr_temp =0;
 vr_temp = temp[20]*256 + temp[21];
 *(y+8)=(real_T)vr_temp;

 // Output Channel 10: Year
 vr_temp =0;
 vr_temp = temp[22]*256 + temp[23];
 *(y+9)=(real_T)vr_temp;

 // Output Channel 11: Month
 *(y+10)=(real_T)temp[24];

 // Output Channel 12: Day
 *(y+11)=(real_T)temp[25];

 // Output Channel 13: Hour

95

 *(y+12)=(real_T)temp[26];

 // Output Channel 14: Minute
 *(y+13)=(real_T)temp[27];

 // Output Channel 15: Seconds
 *(y+14)=(real_T)temp[28];

 // Output Channel 16: TmpOat
 vr_temp =0;
 if(temp[29] >128) {vr_temp=temp[29]-256;}
 else {vr_temp=temp[29];}
 *(y+15)=(real_T)vr_temp;

 // Output Channel 17: Altitude (in meters)
 vr_temp =0;
 vr_temp = temp[30]*16777216 + temp[31]*65536 + temp[32]*256 + temp[33];
 if (vr_temp>2147483647) vr_temp=vr_temp-4294967295;
 *(y+16)=(real_T)vr_temp/100;

 // Output Channel 18: Tas
 vr_temp =0;
 vr_temp = temp[34]*256 + temp[35];
 *(y+17)=(real_T)vr_temp/100;

 // Output Channel 19: X Track (in meters)
 vr_temp =0;
 vr_temp = temp[36]*16777216 + temp[37]*65536 + temp[38]*256 + temp[39];
 if (vr_temp>2147483647) vr_temp=vr_temp-4294967295;
 *(y+18)=(real_T)vr_temp/100;

 // Output Channel 20: Y Track (in meters)
 vr_temp =0;
 vr_temp = temp[40]*16777216 + temp[41]*65536 + temp[42]*256 + temp[43];
 if (vr_temp>2147483647) vr_temp=vr_temp-4294967295;
 *(y+19)=(real_T)vr_temp/100;

 // Output Channel 21: Velocity in X (in meters/sec)
 vr_temp =0;
 vr_temp = temp[44]*256 + temp[45];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+20)=(real_T)vr_temp/100;

 // Output Channel 22: Velocity in y (in meters/sec)
 vr_temp =0;
 vr_temp = temp[46]*256 + temp[47];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+21)=(real_T)vr_temp/100;

 // Output Channel 23: W South (in meters/sec)
 vr_temp =0;
 vr_temp = temp[48]*256 + temp[49];
 if (vr_temp>32768)vr_temp=vr_temp-65536;
 *(y+22)=(real_T)vr_temp/100;

 // Output Channel 24: W West (in meters/sec)
 vr_temp =0;
 vr_temp = temp[50]*256 + temp[51];
 if (vr_temp>32768)vr_temp=vr_temp-65536;
 *(y+23)=(real_T)vr_temp/100;

 // Output Channel 25: W Error (in meters/sec)
 vr_temp =0;
 vr_temp = temp[52]*256 + temp[53];
 if (vr_temp>32768)vr_temp=vr_temp-65536;
 *(y+24)=(real_T)vr_temp/100;

 // Output Channel 26: Residue 0
 *(y+25)=(real_T)temp[54];

 // Output Channel 27: Residue 1
 *(y+26)=(real_T)temp[55];

 // Output Channel 28: Iterations
 *(y+27)=(real_T)temp[56];

 // Output Channel 29: Number of Points
 *(y+28)=(real_T)temp[57];

 // Output Channel 30: Wind Hour
 *(y+29)=(real_T)temp[58];

96

 // Output Channel 31: Wind Minute
 *(y+30)=(real_T)temp[59];

}

//**
// File: dec_control.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: April-1-2003
// Description: This is the mdlOutputs of the S-Function that
// decodes the control message of the Piccolo Protocol
//**

static void mdlOutputs(SimStruct *S, int_T tid)
{
 // Declare the variables to be used in the function
 // counters
 int_T i=0,j=0;
 double vr_temp=0;
 int_T temp[56]; // make an alias for the uPtrs

 // Incoming data stream,
 // *uPtrs[0]- determines the length of useful bytes{28 for the IMU}
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,0);

 // read the whole incoming string and assign it to a temporary variable
 // in order to avoid mistakenly overwrting the incoming data
 for (i=0; i<(*uPtrs[0]); i++){temp[i] = (int_T)(*uPtrs[i+1]);}

 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Start the Decoding Procedure
 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 // Output Channel 1: Number of Milliseconds since the system has been on
 vr_temp = temp[0]*16777216 + temp[1]*65536 + temp[2]*256 + temp[3];
 //if (vr_temp>2147483647) vr_temp =vr_temp-4294967295;
 *(y+0)=(real_T)vr_temp;

 // Output Channel 2: Static Pressure (in Pa)
 vr_temp =0;
 vr_temp = temp[4]*16777216 + temp[5]*65536 + temp[6]*256 + temp[7];
 *(y+1)=(real_T)vr_temp;

 // Output Channel 3: Dynamic Pressure (in Pa)
 vr_temp =0;
 vr_temp = temp[8]*256 + temp[9];
 *(y+2)=(real_T)vr_temp;

 // Output Channel 4: Outside Temperature (in Celsius)
 vr_temp =0;
 vr_temp = temp[10];
 if (vr_temp>127) vr_temp=vr_temp-256;
 *(y+3)=(real_T)vr_temp;

 // note that temp[11] is not used.

 // Output Channel 5: Roll Rate(in rads/sec)
 vr_temp =0;
 vr_temp = temp[12]*256 + temp[13];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+4)=(real_T)(vr_temp/1000);

 // Output Channel 6: Pitch Rate(in rads/sec)
 vr_temp =0;
 vr_temp = temp[14]*256 + temp[15];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+5)=(real_T)(vr_temp/1000);

 // Output Channel 7: Yaw Rate(in rads/sec)
 vr_temp =0;
 vr_temp = temp[16]*256 + temp[17];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+6)=(real_T)(vr_temp/1000);

 // Output Channel 8: Roll Rate Bias (in rads/sec)
 vr_temp =0;

97

 vr_temp = temp[18]*256 + temp[19];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+7)=(real_T)(vr_temp/1000);

 // Output Channel 9: Pitch Rate Bias (in rads/sec)
 vr_temp =0;
 vr_temp = temp[20]*256 + temp[21];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+8)=(real_T)(vr_temp/1000);

 // Output Channel 10: Yaw Rate Bias (in rads/sec)
 vr_temp =0;
 vr_temp = temp[22]*256 + temp[23];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+9)=(real_T)(vr_temp/1000);

 // Output Channel 11: X Axis Accel (in meters/sec^2)
 vr_temp =0;
 vr_temp = temp[24]*256 + temp[25];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+10)=(real_T)(vr_temp/100);

 // Output Channel 12: Y Axis Accel (in meters/sec^2)
 vr_temp =0;
 vr_temp = temp[26]*256 + temp[27];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+11)=(real_T)(vr_temp/100);

 // Output Channel 13: Z Axis Accel (in meters/sec^2)
 vr_temp =0;
 vr_temp = temp[28]*256 + temp[29];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+12)=(real_T)(vr_temp/100);

 // Output Channel 14: Aileron 1 Command (in rad)
 vr_temp =0;
 vr_temp = temp[30]*256 + temp[31];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+13)=(real_T)(vr_temp/1000);

 // Output Channel 15: Elevator 1 Command (in rad)
 vr_temp =0;
 vr_temp = temp[32]*256 + temp[33];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+14)=(real_T)(vr_temp/1000);

 // Output Channel 16: Rudder 1 Command (in rad)
 vr_temp =0;
 vr_temp = temp[34]*256 + temp[35];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+15)=(real_T)(vr_temp/1000);

 // Output Channel 17: Throttle 1 Command (in % of Full Throw)
 vr_temp =0;
 vr_temp = temp[36]*256 + temp[37];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+16)=(real_T)(vr_temp/100);

 // Output Channel 18: Flap 1 Command (in rad)
 vr_temp =0;
 vr_temp = temp[38]*256 + temp[39];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+17)=(real_T)(vr_temp/100);

 // Output Channel 19: Aileron 2 Command (in rad)
 vr_temp =0;
 vr_temp = temp[40]*256 + temp[41];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+18)=(real_T)(vr_temp/1000);

 // Output Channel 20: Elevator 2 Command (in rad)
 vr_temp =0;
 vr_temp = temp[42]*256 + temp[43];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+19)=(real_T)(vr_temp/1000);

 // Output Channel 21: Rudder 2 Command (in rad)
 vr_temp =0;
 vr_temp = temp[44]*256 + temp[45];
 if (vr_temp>32768) vr_temp=vr_temp-65536;

98

 *(y+20)=(real_T)(vr_temp/1000);

 // Output Channel 22: Throttle 1 Command (in % of Full Throw)
 vr_temp =0;
 vr_temp = temp[46]*256 + temp[47];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+21)=(real_T)(vr_temp/100);

 // Output Channel 23: Flap 1 Command (in rad)
 vr_temp =0;
 vr_temp = temp[48]*256 + temp[49];
 if (vr_temp>32768) vr_temp=vr_temp-65536;
 *(y+22)=(real_T)(vr_temp/100);

 // Output Channel 24: Estimated Euler Roll Angle (in rad)
 vr_temp =0;
 vr_temp = temp[50]*256 + temp[51];
 if (vr_temp>32768)vr_temp=vr_temp-65536;
 *(y+23)=(real_T)vr_temp/1000;

 // Output Channel 25: Estimated Euler Pitch Angle (in rad)
 vr_temp =0;
 vr_temp = temp[52]*256 + temp[53];
 if (vr_temp>32768)vr_temp=vr_temp-65536;
 *(y+24)=(real_T)vr_temp/1000;

 // Output Channel 26: Estimated Euler Yaw Angle (in rad)
 vr_temp =0;
 vr_temp = temp[54]*256 + temp[55];
 if (vr_temp>32768)vr_temp=vr_temp-65536;
 *(y+25)=(real_T)vr_temp/1000;

}

//**
// File: toplevelcrc.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: March-20-2003
// Description: This is the mdlOutputs of the S-Function that
// computes the top level checksum used to wrap data
// in the Piccolo Protocol
//**

static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming stream*/
 real_T *y = ssGetOutputPortRealSignal(S,0);

 unsigned __int8 temp[100]; // make an aliase for the uPtrs
 unsigned __int8 crc = 0,tmp, tmp1;
 int count=0;
 int len_in=*uPtrs[0];

 for (i=0; i<len_in; i++)
 {
 temp[i] = (unsigned __int8)(*uPtrs[i+1]);
 }

 for (i=0;i<len_in;i++)
 {
 crc = (unsigned __int16)(crc^temp[i]);
 }
 *y=(real_T)crc;
}

//**
// File: enc_apilot_loop_fix.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: June-10-2003
// Description: This is the mdlOutputs of the S-Function that
// recieves the inner level stream, calculates the
// CRC, appends it to the end and sends the data out
// in the Piccolo Protocol inner level form
//**
static void mdlOutputs(SimStruct *S, int_T tid)
{

99

 // Declare the variables to be used in the function
 // counters
 int_T i=0,j=0;
 int_T temp[50]={0}; // make an alias for the uPtrs
 char ext[]="\0";
 int count=0,temp_crc=0, crc=0, CRCHi=0, CRCLo=0;
 float vr_temp = 0.0;

 // Incoming data stream,
 // *uPtrs[0]- determines the length of useful bytes{15 in this case}
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,1);

 // read the whole incoming string and assign it to a temporary variable
 // in order to avoid mistakenly overwrting the incoming data
 for (i=0; i<(*uPtrs[0]); i++){temp[i] = (int_T)(*uPtrs[i+1]);}

 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Start the Decoding Procedure
 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 // ===============
 // Compute the CRC
 // ===============
 crc=0;
 for (j=0;j<(*uPtrs[0]);j++)
 {
 // read the value to a temp variable
 temp_crc = temp[j];

 // perform the crc calculation
 crc = (unsigned __int16)(crctable2[(temp_crc^crc) & 0xff] ^ (crc >> 8));
 }

 // ======================
 // Split CRC in two bytes
 // ======================

 vr_temp = crc/256.0;
 CRCHi= (int)floor(vr_temp);

 vr_temp = vr_temp-CRCHi;
 CRCLo = (int)floor(vr_temp*256);

 // ===============
 // Output the data
 // ===============

 // Pass the input directly to the output
 // SYNC
 // SYNC1
 // Packet Type
 // Size of Payload
 // Payload
 for (j=0;j<(*uPtrs[0]);j++)
 {
 *(y+j)=(real_T)temp[j];
 }

 // Write the CRC bytes

 *(y+j) = (real_T)CRCHi;
 *(y+j+1) = (real_T)CRCLo;

 // Issue done pulse to outport 0
 ssCallSystemWithTid(S, 0, 0);

}

//**
// File: enc_top_level_26.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: June-10-2003
// Description: This is the mdlOutputs of the S-Function that
// recieves the inner level packet, calculates the

100

// CRC, appends it to the end and sends the data out
// in the Piccolo Protocol form
//**
static void mdlOutputs(SimStruct *S, int_T tid)
{
 // Declare the variables to be used in the function
 // counters
 int_T i=0,j=0;
 int_T temp[100]={0}; // make an alias for the uPtrs
 char ext[]="\0";
 int count=0,temp_crc=0, crc=0, CRCHi=0, CRCLo=0;
 float vr_temp = 0.0;

 // Incoming data stream,
 // *uPtrs[0]- determines the length of useful bytes{15 in this case}
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,1);

 // read the whole incoming string and assign it to a temporary variable
 // in order to avoid mistakenly overwrting the incoming data
 for (i=0; i<(*uPtrs[0]); i++)
 {temp[i] = (int_T)(*uPtrs[i+1]);}

 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Start the Decoding Procedure
 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 // ===============
 // Compute the CRC
 // ===============
 crc=0;
 for (j=0;j<(*uPtrs[0]);j++)
 {
 // read the value to a temp variable
 temp_crc = temp[j];

 // perform the crc calculation
 crc = (unsigned __int16)(crctable3[(temp_crc^crc) & 0xff] ^ (crc >> 8));
 }

 // ======================
 // Split CRC in two bytes
 // ======================

 vr_temp = crc/256.0;
 CRCHi= (int)floor(vr_temp);

 vr_temp = vr_temp-CRCHi;
 CRCLo = (int)floor(vr_temp*256);

 // ===============
 // Output the data
 // ===============

 // Pass the input directly to the output
 // SYNC
 // SYNC1
 // Packet Type
 // Size of Payload
 // Payload
 for (j=0;j<(*uPtrs[0]);j++)
 {
 *(y+j)=(real_T)temp[j];
 }

 // Write the CRC bytes

 *(y+j) = (real_T)CRCHi;
 *(y+j+1) = (real_T)CRCLo;

 // Issue done pulse to outport 0
 ssCallSystemWithTid(S, 0, 0);

}

//**

101

// File: gpsrcv_v2.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: August-30-2003
// Description: This is the mdlOutputs of the S-Function that
// recieves data from the GPS and sends to the output
// the GGA and RMC messages
//**
/* Function to compute outputs */
static void mdlOutputs(SimStruct *S, int_T tid)
{
//#ifndef MATLAB_MEX_FILE
 int width = (int)mxGetPr(OUT_WIDTH_ARG)[0];

 unsigned char tmp; /* temp char holder */
 unsigned char *buf = (unsigned char *)ssGetDWork(S, 0); // uchar buffer to contain bytes
 int *current = ssGetIWork(S); /* current = addr of current position pointer in buf */
 int *recLength = ssGetIWork(S) + 1; /* recLength = addr of receieved data length */
 int *bufCount = ssGetIWork(S)+ 2; /* count number of useful bytes in buf. */
 int serbufCount; /* count number of useful bytes collected in Serial buf*/
 int HeaderFound, i, j, bufStop, chksum=0, nextbytetoprocess=0, lastHeaderPos=0, EOB;
 int GGA=358,RMC=377;// checksum of 'GPGGA','GPRMC' sentences's header
 int bl_header;// boolean values for GGA=1 and RMC=2 sentences, 0=nothing found
 int headwidth=5;// length of GPS header except '$'
 int ggalng=87,rmclng=73, enough_bytes =1;// initialize length of GGA (87) and RMC(73)
 int_T temp[1024]={0};
 int *head_ptr = &bl_header;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 // Get the number of bytes available from the port
 serbufCount = (int)mxGetPr(IN_WIDTH_ARG)[0];

 for (i=0; i<serbufCount; i++){temp[i] = (int_T)(*uPtrs[i]);}

 *bufCount = serbufCount + *current;
 // place new chunk of data at the end of previously unprocessed data
 // 'buf' also keeps the remains of previous step ending at the *(buf+current),
 // where 'current' is the position of last byte
 for (i=*current;i<*bufCount;i++)
 {
 *(buf+i)=(unsigned char)temp[i-*current];
 }

 i=0;

 /*Initialize logical flags*/
 HeaderFound = 0;
 i = 0;
 EOB = 0;//end of buffer

 //if (*bufCount<width) return; // Not enough bytes to decode, output old value

 // while no header has been found
 while ((HeaderFound==0) && (EOB !=1) && (enough_bytes ==1))
 { /* find Header byte = '$'=36 */

 chksum =0;
 //printf("\n%d %d %d" , *bufCount,i, EOB);
 // while no header has been found
 while ((*(buf+i) != HEADER) && (EOB != 1))
 {

 // if you have enough bytes
 if (i < *bufCount)
 {
 // increment position indx
 i++;
 }
 // if you ran out of bytes
 else
 {
 // turn on the flag
 EOB = 1;
 }
 }

 //printf("\n%d %d %d" , *bufCount,i, EOB);
 // if the remaining amount of data read from the port is less
 // then the amount of data I want to write to the output
 if (*bufCount - i < width-1)

102

 {
 // turn the flag
 enough_bytes = 0;
 }

 // if I did not reach the End Of Buffer and have enough bytes
 // to write
 if ((EOB!=1) && (enough_bytes == 1))
 {
 //printf("\n Header Found i = %d" , i);
 // initialize the chechsum
 chksum = 0;

 // grab GPXXX
 for (j=1;j<headwidth+1;j++)
 {
 chksum = chksum + *(buf+i+j);
 }

 //printf("\n Checksum = %d" , chksum);
 if (chksum == GGA)
 {
 // turn on the flag
 HeaderFound = 1;

 // turn on the boolean flag
 bl_header=1;

 // intialize the length of the GGA message
 ggalng=0;

 // while we do not find a 13 (CR)
 //"0D"=13(ASCII),
 while(*(buf+i+headwidth+1+ggalng) != 13)
 {
 // increment the counter
 ggalng++;
 }

 // once we found the CR
 // copy to the outputport ggalng bytes
 memcpy(ssGetOutputPortSignal(S,1),buf+i+headwidth+1,ggalng);

 // increment the position index to reflect all the bytes read
 i = i + ggalng;
 } // if checksum tally
 else
 {
 if (chksum == RMC)
 {
 HeaderFound = 1;
 bl_header=2;
 rmclng = 0;
 while(*(buf+i+headwidth+1+rmclng) != 13)
 {
 rmclng++;//"0D"=13(ASCII),
 }
 // printf("rmc length = %d", rmclng);
 memcpy(ssGetOutputPortSignal(S,1),buf+i+headwidth+1,rmclng);
 i = i + rmclng;
 } // if checksum tally
 else
 {
 // checksum doesn't tally
 i=i+5;
 bl_header=0;
 }// end of checksum searching
 }

 memcpy(ssGetOutputPortSignal(S,2),head_ptr,1);// ? chek to be ","=44

 }// if not EOB and there is enough bytes

 } /* while HeaderFound = 0*/

 // if I did not reach the EOB looking for a header but I ran out of bytes to send
 // then copy the remains to the beggining of buffer
 if ((EOB != 1) || (enough_bytes == 0))
 {

103

 *bufCount=*bufCount-i; //number of remain bytes
 // buf[j]=buf[i]
 for (j=0;j<*bufCount; j++)
 {
 (buf+j)=(buf+i);
 i++;
 }// end of for
 *current=*bufCount;
 }

 ssCallSystemWithTid(S, 0, 0); /* issue done pulse to outport 0 */
 return;

//#endif
}

//**
// File: gpgga.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: August-30-2003
// Description: This is the mdlOutputs of the S-Function that
// recieves data from the gpsrcv_v2 S-Function and
// decodes the GGA message
//**
static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming data*/
 real_T *y = ssGetOutputPortRealSignal(S,0);
 /*int_T width = ssGetOutputPortWidth(S,0);*/

 int_T tempbuf[100]; //here we make an aliase for the uPtrs
 char ext[]="\0";
 int count=0,len_in;
 double sys[20];//output array of decoded data
 double res[1]={0}; //output piece of decoded data
 real_T tmp;

 for (i=0; i<(*uPtrs[0]); i++){tempbuf[i] = (int_T)(*uPtrs[i+1]);}

 //GPGGA sentence of GPS message
 i=0;
 if ((real_T) tempbuf[i] != (real_T) 44)
 { /*printf("\n Error! 44 expected, received %d",*tempbuf);*/
 return;}
 else count++; /*miss first comma sign and define shift*/

 /* UTC & Latitude -1,2*/
 for(i=0;i<2;i++)
 {
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 }/*end of for*/

 /*Direction of latitude -3*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Longitude -4*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Direction of longitude -5*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)

104

 {++len_in;}//end of while to count the length of GPS field
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*GPS quality indicator -6;
 Number of SVs -7;
 HDOP -8;
 Antenna height -9*/

 for(i=0;i<4;i++)
 {
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 }/* end of for*/

 /*Altitude in meters -10*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Geoidal separation -11*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Geoidal separation in meters -12*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Age of DGPS data -13*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Base station ID-14*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 42)//42 ='*' It's the beginning
 {++len_in;}//end of while to count the length of GPS field
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

}

//**
// File: gprmc.c
// Author(s): Mariano I Lizarraga and Vladimir Dobrokhodov
// Date: August-30-2003
// Description: This is the mdlOutputs of the S-Function that
// recieves data from the gpsrcv_v2 S-Function and
// decodes the RMC message
//**
static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming stream*/
 real_T *y = ssGetOutputPortRealSignal(S,0);
 /*int_T width = ssGetOutputPortWidth(S,0);*/

 int_T tempbuf[100]; //here we make an aliase for the uPtrs
 char ext[]="\0";

105

 int count=0,len_in;
 double sys[20];//output array of decoded data
 double res[1]={0}; //output piece of decoded data
 real_T tmp;

 for (i=0; i<(*uPtrs[0]); i++){tempbuf[i] = (int_T)(*uPtrs[i+1]);}

 //GPRMC sentence of GPS message
 i=0;
 if ((real_T) tempbuf[i] != (real_T) 44) return;
 else count++; /*miss first comma sign and define shift*/

 /* UTC -1*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Status -2*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Latitude -3*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Latitude direction -4*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Longitude -5*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Direction of logitude -6*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Speed over ground[knots] -7*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Track made good,True[degree] -8*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Date in dd/mm/yy -9;

106

 Manetic variation [degree] -10;*/

 for(i=0;i<2;i++)
 {
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 }/* end of for*/

 /*Direction of Magnetic variation-11*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Mode indicator(A(4)-autonomous;D(5)-differencial;N(0)-not valid) -12*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 42)/*=42*/
 {++len_in;}//end of while to count the length of GPS field
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

}

107

APPENDIX B: DERIVATION OF THE 6-DOF AERODDYNAMIC
MODEL OF THE SILVER FOX UAV

This appendix presents a detailed derivation of the 6-DOF model of the

Silver Fox UAV.

A. 6-DOF AIRCRAFT MODEL
The derivation of the equations of motion for a 6-DOF aircraft model to be

used as a plant in the control system design was done in two steps. The first step

was formulating the equations of motion for the aircraft, treated as a rigid body.

The second step was the computation of aerodynamic, gravitational and propul-

sive forces that act upon the aircraft’s body. The aerodynamic and propulsive

forces are specific to the aircraft to be modeled and depend directly on the airfoil,

aircraft geometry, mass dispersion, and engine characteristics.

1. Equations of Motion
In the following subsections, the development of the equations of motion

for the aircraft’s linear and angular dynamics in the local reference frame {L} are

developed.

a. Linear Dynamics Equations
The equations for linear motion are governed by Newton’s second

law, which states that the net force applied to the center of mass of a body is

equal to the product of the mass times the acceleration. However, aircraft veloci-

ties, accelerations, linear forces and attitude angles are usually measured with

respect to the aircraft’s body axis coordinate system since the sensors are

strapped down to the aircraft’s body (fuselage).

Because of this, a new reference frame is required, a frame that is

attached to the aircraft’s body center of gravity, hence called the Body frame {B}.

This frame has its X axis defined as coming out of the nose of the airplane; its Y

108

axis as pointing to the right wing; and the Z axis as orthogonal to these two, thus

pointing straight down the fuselage.

It is known from elementary kinematics that:

 .UAV uavv p=
vv
& (B1)

Equation (B1) can be expressed in the local reference frame {L} simply by

premultiplying it by a rotation matrix, as previously described,

 ,L B
uav B UAVp R v=
v v
& (B2)

where the rotation matrix B
LR is derived in [2], written below for reference:

cos cos cos sin sin

 sin sin cos cos sin sin sin sin cos cos sin cos ,
cos sin cos sin sin cos sin sin sin cos cos cos

B
L R

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

=

−
 − +
 + −

(B3)

and

 () .
TL B

B LR R= (B4)

The total derivative of a vector Bvv , which is rotating with angular

velocity Bωv with respect to {L}, is given by Coriolis’ theorem [8] by:

 ω= + ×
vv vv& ,B B B B

L

d v v v
dt

 (B5)

where
L

d
dt

denotes the total derivative in {L}. Therefore, the derivative of vector

Bvv with respect to {L} has two components; the total derivative in its frame and a

component that is nonzero when it is rotating.

Hence, the rigid body’s linear acceleration is given by:

 .B B B B
UAV UAV UAV UAV

L

d v v v
dt

ω= + ×
vv vv& (B6)

109

Therefore, Newton’s second law applied to the aircraft’s center of

gravity can be written as:

 .B B
UAV UAV

L

dF m v
dt

=
v v (B7)

The above equation can be rewritten by substituting Equation (B6) into Equation

(B7) as:

 ().B B B B
UAV UAV UAV UAVmF v vω= + ×

vv vv& (B8)

Note that equations (B7) and (B8) consider the mass to be constant. Generally

this is not the case. However, since a typical landing approach for a tactical UAV

such as the Silver Fox only lasts about two minutes, the change on mass in that

time is considered to be negligible.

b. Angular Dynamics Equations
The angular equations of motion are derived using Euler’s law for

conservation of angular momentum in {L}. Let
v

L
UAVG denote the moment im-

parted to the rigid body and UAV
d H
dt

v
& denote the rate of change of the angular

momentum. Therefore [2]:

 .UAV UAV
dG H
dt

=
v v

 (B9)

Using equations (B3) and (B5), Equation (B9) can be rewritten as:

 ,B B B B B
UAV UAV UAV UAV UAV

L

d H G H H
dt

ω= = + ×
vvv vv& (B10)

where the angular momentum can be rewritten in terms of the moments and

cross products of inertia as [8]:

 .
xx xy xz

B B B
UAV xy yy yz UAV UAV

xz yz zz

J J J
H J J J J

J J J
ω ω

 − −
 = − − =
 − −

v v v (B11)

110

However, since the UAV is symmetric with respect to its XZ plane,

all the YZ and XY cross products of inertia are cancelled, simplifying the inertia

matrix J to:

0

0 0 .
0

xx xz

yy

xz zz

J J
J J

J J

−
 =
 −

 (B12)

Equation (B10) can now be rewritten as:

 ().B B B B
UAV UAV UAV UAVG J Jω ω ω= + ×
v v v v

& (B13)

c. Attitude (Euler) Equations
A vector resolved in {L} can be expressed in {B} simply by premulti-

plying it by the rotation matrix shown in Equation (B3) as:

 .B B
Lv Rv=

v v (B14)

If, instead of using Coriolis’ law to obtain the total derivative of the

vector expressed in Equation (B14), the rules of calculus are used, then the vec-

tor can be expressed as:

 () ,B B
L

L

d v Rv
dt

=
vv
& (B15)

but, if the total derivative is taken in {B}, then the product rule for differentiation

must be applied to obtain:

 () ,B B B
L L

B

d v Rv Rv
dt

= +
vv v& & (B16)

which, if it is solved for B
LRvv& and substituted in Equation (B15), gives:

 () .B B B
L

L

d v v Rv
dt

= −
vv v&& (B17)

Comparing the above equation with Equation (B5) suggests that a

relation between the rate of change of the rotation matrix B
LR and the angular ve-

111

locity vector Bωv exists. To find this relationship, let the vector cross product be

expressed as a product of a matrix and a vector as:

0

0 ,
0

B B B B B

r q
v r p v v

q p
ω

−
 × = − = Ω
 −

v v vv (B18)

where

 .B

p
q
r

ω

 =

v (B19)

By substituting Equation (B14) into Equation (B18) and comparing

the second terms of equations (B5) and (B17), the following equality can be es-

tablished:

 ,B B B
L LRv Rv− Ω =

v v& (B20)

or,

 .B B B
L LR R= − Ω& (B21)

The above equation is known as the strapdown equation [8]. Equat-

ing elements (1,2), (1,3), and (2,3) of the above matrix equation (where (i ,j)

represents the element in the ith row and the jth column) gives a set of three equa-

tions that allows one to compute the rate of change of the Euler angles as fol-

lows:

()

()

sin cos tan

cos sin
sec sin cos .

p q r

q r
q r

ϕ φ φ θ

θ φ φ
ψ θ φ θ

= + +

= −

= +

&

&

&

 (B22)

 In summary, the equations to be implemented in the rigid body 6-

DOF model of the Silver Fox are given in Equations (B8), (B13), and (B22).

112

2. Forces and Moments on Aircraft
The forces and the moments exerted on the aircraft are due to the aero-

dynamic, propulsion, and gravitational effects on the body. They can be ex-

pressed as:

 .
B B BB

aero prop gravUAV

B B B
UAV aero prop

F F FF

G G G

 + +
 =

+

v v vv

v v v (B23)

a. Aerodynamic Forces and Moments
The aerodynamic forces and moments that act upon an aircraft are

produced by the relative motion of the aircraft with respect to the air mass (the

airspeed). Mathematically, the aerodynamic forces and moments terms are de-

termined by using a first-order Taylor series expansion around the aircraft

trimmed operating point.

Each term in the series is a partial derivative of B
UAVF
v

 and B
UAVG
v

with respect to the aerodynamic variables. These aerodynamic variables are

given by the deflection of the elevator, aileron, and rudder.

Let the angle of attack α be the angle between the projection of

the airspeed vector to the XZ body plane and the X body axis. Also let the side-

slip angle β , be the angle between the projection of the airspeed vector to the

XY body plane and the X body axis.

Since the forces and moments depend on the airspeed, a new co-

ordinate frame must be introduced. In this new coordinate frame, denoted as

{W}, the X axis is aligned with the wind’s velocity vector (
v

W). The rotation matrix
B

W R , which rotates a vector from {W} to {B}, is given in [8]:

cos cos cos sin sin

sin cos 0 .
sin cos sin sin cos

B
W R

α β α β α
β β

α β α β α

− −
 =
 −

 (B24)

113

Equation (B23) can now be rewritten as:

 .
B W B BB

W aero prop gravUAV

B B W B
UAV W aero prop

R F F FF

G R G G

 + +
 =

+

v v vv

v v v (B25)

For simplicity, the forces and moments acting on the aircraft are de-

fined in terms of dimensionless aerodynamic coefficients that, as expected, de-

pend on the control surfaces deflection, the aerodynamic angles α and β , and

the angular rates. The forces and moments expressed in terms of the dimen-

sionless aerodynamic coefficients are derived in [8] and shown in Equation (B26)

for easy reference.

 ,

D

Y

W
LUAV

W
UAV l

m

n

C
C
CF

qS
G C b

C c
C b

 =

v

v (B26)

where q is the dynamic pressure given by:

()ρ −

=

vv 2

,
2

B
W UAVR v W

q (B27)

the variable S is the wing reference area, given by:

 ,S cb= (B28)

the variable ρ is the air density, c is the wing chord, and b is the wingspan.

The numerical values for the dimensionless aerodynamic coeffi-

cients required by Equation (B26) were obtained using LinAir Pro, developed by

Desktop Aeronautics Inc., which is a software tool that employs a panel or a

multi-element method to compute the aircraft’s aerodynamic characteristics.

Later this chapter briefly explains how LinAir Pro produced the above coeffi-

cients.

114

b. Gravitational and Propulsive Forces and Moments
Gravitational forces act on the rigid body but generate no moments

since the forces are assumed to act at the center of gravity. The gravitational

forces are resolved in {L} and are given by:

0
0 ,gravF

mg

 =

v
 (B29)

where m is the mass of the airplane and g is the acceleration of gravity. Equation

(B29) can be resolved in {B} simply by premultiplying it by the appropriate rota-

tion matrix:

0
0 .B B

grav LF R
mg

 =

v
 (B30)

Propulsive forces and moments are exerted in {B} and can be

stated as:

 ,
x

B
prop y

z

P
F P

P

 =

v
 (B31)

and

 ,
l

B
prop m

n

P
G P

P

 =

v
 (B32)

where each of the scalars P in Equations (B31) and (B32) represent forces or

moments due to the aircraft’s thrust.

Since in the aircraft being modeled, the Silver Fox UAV, the engine

thrust axis coincides with the X axis of {B}, then the thrust projections yP and

zP are zero.

115

In summary, Equation (B25) can be rewritten as:

0

0 0 ,
0

D x
B B B

UAV W Y L

L

C P
F qS R C R

C mg

 = + +

v
 (B33)

 .
l

B B
UAV W m

n

C b
G qS R C c

C b

 =

v
 (B34)

3. Dimensionless Aerodynamic Coefficients
As was previously mentioned, the values of the dimensionless aerody-

namic coefficients are obtained from a Taylor series expansion about a trim con-

dition. Typically these values are experimentally obtained in a wind tunnel. Nev-

ertheless, software packages exist that allow one to obtain reasonably good ap-

proximations of wind-tunnel experiments. LinAir Pro is one of these software

packages. LinAir Pro computes the aerodynamic characteristics of multi-element,

nonplanar lifting surfaces.

In order to have LinAir Pro produce the desired results, first one must cre-

ate an input file, which contains the geometry of the airplane divided in panels,

shown in Figure B 1.

Figure B 1. Main Configuration Window of LinAir Pro. Top View of the Modeled
Silver Fox UAV.

116

Once the input file is correctly configured, the Prandtl-Glauert equation is

internally solved, and the force and moment contribution of each panel is com-

puted [9]. Figure B 2 shows one of the result screens produced by LinAir Pro. It

shows how each panel contributes to the lift of the aircraft.

Figure B 2. Nondimensionalized Section Lift Coefficient vs. Panel Y Coordinate.
LinAir Pro.

LinAir Pro was ran with different scenarios, in which the deflection of the

control surfaces were first varied from –15° to 15° and then different values for

α and β were used for each run. All the data were collected and analyzed with

Microsoft Excel to produce curve fittings of the data.

The following equations were used to compute the value of the dimen-

sionless aerodynamic coefficients required by Equations (B33) and (B34) . The

numerical values of the intermediate coefficients, which were obtained with LinAir

Pro, are shown in the MATLAB script file listed in Appendix C.

2
0 2

0 ,

r

e

D D polar L L

Y Y Y r

Lq
L L L L L e B

UAV

C C A C A C

C C C

C q
C C C C C

v

β δ

α α δ

β δ

α α δ

= + +

= +

= + + + +&
& v

 (B35)

[^^^^Q riora

V4II]IE ConHfliJHHflr

■■/■yjjj^-

Pinl Vfaardlnlr

117

()

()

0

2

,
2

a r

e

a r

l l l a l r lp lrB
UAV

mq
m m m m e m B

UAV

n n n a n r np nrB
UAV

bC C C C C p C r
v

C qc
C C C C C

v

bC C C C C p C r
v

β δ δ

α δ α

β δ δ

β δ δ

α δ α

β δ δ

= + + + +

= + + + +

= + + + +

&

v

& v

v

 (B36)

where , ,e a rδ δ δ represent the deflection of the elevator, aileron, and rudder re-

spectively: , ,p q r are the angular rates, b is the wingspan, c is the wing’s mean

aerodynamic chord, and α and β represent the angle of attack and the sideslip

angle, respectively.

4. Engine Model
The mathematical model of the UAV’s engine required for the 6-DOF

model needed to reflect the relationship between the throttle commanded by the

pilot manual control or the ground station, and the thrust exerted to the aircraft’s

body expressed in Newtons.

This relationship was found in two steps. The first step consisted of an ex-

periment in which the UAV, sitting on the ground and linked to a spring scale,

was forced to accelerate its engine from 4,000 to 9,000 Revolutions Per Minute

(RPM) as measured by a digital tachometer. The readings were plotted in a chart

to compare thrust vs. RPM and a linear fit was obtained, as shown in Figure B 3.

This fit is known as the static thrust of the aircraft. In this experiment it was de-

termined that the commanded thrust was directly proportional to the RPM scaled

by a factor of 8,700 lbs/RPM.

118

Figure B 3. Silver Fox’s Static Thrust Diagram.

Having the static thrust, the second step was to obtain the thrust available,

which can be predicted based on momentum theory. In [10] it is shown that the

relationship between static thrust and thrust available is given by:

2

4 1,UAV UAV

o o o o

v vT T
T w w T

 + + =

v v

 (B37)

where oT is the static thrust, T is the thrust available,

 ,
2

o
o

Tw
Aρ

= (B38)

and A is the propeller disk area. The propeller used in this particular test was an

APC 14x8 propeller, where 14 stands for the length in inches, and 8 stands for

the propeller pitch in inches.

119

A plot of the relationship shown in Equation (B37) is shown in Figure B 4.

Figure B 4. Variation of Thrust Available with Forward Speed. (From Ref. [10].)

A straight-line approximation, using a standard sea level air density ρ ,

with the propeller described, results in the thrust available in pounds:

 0.0238 .o UAV oT T v T= −
v (B39)

Figure B 5 shows the Simulink implementation of the engine model and in-

troduces several conversions to match the appropriate units.

Figure B 5. Simulink Implementation of the Engine Model.

5. Atmosphere and Wind Model
As seen in Equation (B27), the dynamic pressure depends on the air den-

sity. To model the variation of the air density correctly with respect to the altitude

120

of the aircraft, the equations adopted by the United States Committee on Exten-

sion to the Standard Atmosphere (COESA) were used. The equations and pa-

rameters used are documented in [11] and Simulink provides a readily available

block, which has as input the altitude in meters and provides, as one of the out-

puts, the air density in Kg/m3.

For the wind, real data was used which was previously collected at the

U.S. Army’s Yuma Proving Grounds (YPG), Yuma, AZ, for the work presented in

[12]. The data is indexed by height in meters and is accessed in Simulink using

lookup tables. Figure B 6 shows the complete Simulink diagram of the atmos-

phere and wind model.

Figure B 6. Atmosphere and Wind Model in Simulink.

A complete Simulink model of the Silver Fox, including the equations of

motion, the forces and moments, the engine model and the atmosphere and wind

model is shown in Figure B 7.

121

Figure B 7. Complete Simulink Model of the Silver Fox.

6. Actuators Models
The control surfaces onboard the UAV are moved by small servomecha-

nisms, similar to the ones shown in Figure B 8.

Figure B 8. Servomechanism (Actuator) on a UAV.

These mechanisms have two main limitations, the rate at which they can

change the position of the surface, and the maximum deflection they can impose

on the surface. Because of this, the actuators were modeled as second order

122

systems with rate limiters and position limiters. The parameters chosen to model

the actuators were a natural frequency of 50 rad/sec and a damping ratio of 1.

Thus, the actuators were modeled as low pass filters with a cutoff frequency of 5

Hz. The Simulink diagram that models the UAV’s actuators is shown in the fol-

lowing figure.

Figure B 9. Aileron, Elevator, Rudder and Throttle Actuators. Simulink Model.

123

APPENDIX C: NUMERICAL VALUES OF THE AERODYNAMIC
COEFFICIENTS OF THE SILVER FOX 6DOF MODEL

The following MATLAB Script file sets all the initial conditions for the com-

puter simulation and includes all the values for the aerodynamic coefficients of

the Silver Fox 6-DOF model.

% ==
% File: fox_load_variables_new.m
% Author(s): Oleg Yakimenko
% Date: April-10-2003
% Description: This script file intializes all the variables
% required for the Silver Fox 6DOF model
% ==

clear all;
clc;

% Initial Conditions in ENU (all vector data is represented as a column vectors)
Pos_0 = [0; 0; 300.]'*0.3048; % Initial position vector (m)
Vb_0 = [85.; 0; 0]'*0.3048; % Initial velocity vector (m/s)
Euler_0 = [0; 0; 0]'*pi/180; % Initial Euler angles (rad)
PQR_0 = [0; 0; 0]'; % Initial Omega (rad/s)

% Mass and Geometric Parameters
S = 8.; % surface area of wing (ft^2)
span = 8.; % wingspan (ft)
chord = 1.; % chord (ft)
mass = 20; % gross weight (lbs)
Ixx = 0.268; % main moment of inertia around axis Ox (slug*sq.ft)
Iyy = 0.640; % main moment of inertia around axis Oy (slug*sq.ft)
Izz = 0.884; % main moment of inertia around axis Oz (slug*sq.ft)

% Mass and Geometric Parameters recomputation
S = S*0.3048^2; % surface area of wing (m2)
span = span*0.3048; % wingspan (m)
chord = chord*0.3048; % chord (m)
mass = mass*0.45359237; % gross weight (kg)
Ixx = Ixx*1.355817949; % main moment of inertia around axis Ox (kg*sq.m)
Iyy = Iyy*1.355817949; % main moment of inertia around axis Oy (kg*sq.m)
Izz = Izz*1.355817949; % main moment of inertia around axis Oz (kg*sq.m)

% Aerodynamic Derivatives (all per radian)
CL0 = 3*0.076; % lift coefficient at a = 0
CLa = 5.097; % lift curve slope
CLa_dot = 1.93; % lift due to angle of attack rate
CLq = 6.03; % lift due to pitch rate
CLDe = 0.738; % lift due to elevator
CD0 = 0.0191; % drag coefficient at a = 0
Apolar = 0.038; % drag curve slope
CYb = -0.204; % side force due to sideslip
CYDr = 0.112; % sideforce due to rudder
Clb = -0.0598; % dihedral effect
Clp = -0.363; % roll damping
Clr = 0.0886; % roll due to yaw rate
ClDa = 0.265; % roll control power
ClDr = 0.0064; % roll due to rudder
Cm0 = 0.107; % pitch moment at a = 0
Cma = -2.051; % pitch moment due to angle of attack
Cma_dot = -5.286; % pitch moment due to angle of attack rate
Cmq = -16.52; % pitch moment due to pitch rate
CmDe = -2.021; % pitch control power
Cnb = 0.0562; % weathercock stability
Cnp = -0.0407; % adverse yaw
Cnr = -0.0439; % yaw damping
CnDa = -0.0296; % aileron adverse yaw
CnDr = -0.0377; % yaw control power

% Standartd Atmosphere

124

ISA_lapse = .0065; % Lapse rate (degC/m)
ISA_hmax = 2000; % Altitude limit (m)
ISA_R = 287; % Gas Constant (degK*m*m/s/s)
ISA_g = 9.815; % Gravity (m/s/s)
ISA_rho0 = 1.225; % Density at sea level (kg/m/m/m)
ISA_P0 = 101325; % Sea-level Pressure (N/m/m)
ISA_T0 = 289; % Sea-level Temperature (degK)

% Load Wind Profile
load YPGwind.mat;

125

LIST OF REFERENCES

[1] James Stewart, Calculus Early Transcedentals, Fourth Edition,

Brooks/Cole, Pacific Grove, CA, 1999.

[2] Bernard Etkin, and Lloyd Duff Reid, Dynamics of Flight, Third Edition,

John Wiley & Sons, New York, NY, 1995.

[3] Isaac Kaminer, Antonio Pascoal, Eric Hallberg, and Carlos Silvestre, “Tra-

jectory Tracking for Autonomous Vehicles: An Integrated Approach to

Guidance and Control,” Journal of Guidance, Control and Dynamics, Vol.

21, No. 1, pp. 29-38, January – February 1998.

[4] William Vaglienti, and Ross Hoag, Communications for the Piccolo Avion-

ics, version 1.1.6, Hood River, OR, 2003.

[5] Mathworks, The, XPC Target User’s Guide, Nantick, MA, 2003.

[6] Trimble, agGPS114 Receiver User’s Guide, Overland Park, KA, 2003.

[7] Yaakov Bar-Shalom, Xiao Rong-Li, and Thiagalingam Kirubarajan, Esti-

mation with Applications to Tracking and Navigation, John Wiley & Sons,

New York, NY, 2001.

[8] Brian L. Stevens, and Frank L. Lewis, Aircraft Control and Simulation,

Wiley & Sons, New York, NY, 1992.

[9] Ilan Kroo, A Nonplanar, Multiple Lifting Surface Aerodynamics Program.

LinAir Pro Version 3.4, Desktop Aeronautics, Stanford, CA, 1997.

[10] B. W. McCormick, Aerodynamics of V/STOL Flight, Academic Press,

1967.

[11] Government Printing Office, U.S. Standard Atmosphere, Washington,

D.C., 1976.

[12] Vladimir N. Dobrokhodov, Oleg A. Yakimenko, and Christopher J. Junge,

“Six-Degree-of-Freedom Model of Controlled Circular Parachute,” Journal

of Aircraft, Vol. 40, No. 3, pp. 482-493, May-June 2003.

126

THIS PAGE INTENTIONALLY LEFT BLANK

127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC
 Dept. of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, California

4. Dr. Isaac Kaminer, Dept. of Mechanical and Astronautical Engineering
Naval Postgraduate School
Monterey, California

5. Dr. Roberto Cristi, Dept. of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Dr. Robert G. Hutchins, Dept. of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

7. Dr. Vladimir Dobrokhodov, Dept. of Mechanical and Astronautical
Engineering
Naval Postgraduate School
Monterey, California

8. Dr. Oleg Yakimenko, Dept. of Mechanical and Astronautical Engineering

Naval Postgraduate School
Monterey, California

