

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SESSION HIJACKING ATTACKS IN WIRELESS LOCAL
AREA NETWORKS

by

Hulusi ONDER

March 2004

 Thesis Advisor: Geoffrey XIE
 Second Reader: John GIBSON

NAVAL
POSTGRADUATE

SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY

2. REPORT DATE
March 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Session Hijacking attacks in Wireless Local Area
Networks

6. AUTHOR Hulusi ONDER

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT
Wireless Local Area Network (WLAN) technologies are becoming widely used since they provide more

flexibility and availability. Unfortunately, it is possible for WLANs to be implemented with security flaws which
are not addressed in the original 802.11 specification. IEEE formed a working group (TGi) to provide a complete
solution (code named 802.11i standard) to all the security problems of the WLANs. The group proposed using
802.1X as an interim solution to the deficiencies in WLAN authentication and key management. The full 802.11i
standard is expected to be finalized by the end of 2004.

Although 802.1X provides a better authentication scheme than the original 802.11 security solution, it is
still vulnerable to denial-of-service, session hijacking, and man-in-the-middle attacks. Using an open-source
802.1X test-bed, this thesis evaluates various session hijacking mechanisms through experimentation. The main
conclusion is that the risk of session hijacking attack is significantly reduced with the new security standard
(802.11i); however, the new standard will not resolve all of the problems. An attempt to launch a session hijacking
attack against the new security standard will not succeed, although it will result in a denial-of-service attack
against the user.

15. NUMBER OF
PAGES

151

14. SUBJECT TERMS
Wireless Local Area Networks, Authentication, Security, Session Hijacking, 802.1X, 802.11, 802.11i,
Encryption, Access Control, Supplicant, Authenticator, Authentication Server, open-source test-bed.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SESSION HIJACKING ATTACKS IN WIRELESS LOCAL AREA NETWORKS

Hulusi ONDER
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2004

Author: Hulusi ONDER

Approved by: Geoffrey Xie, PhD

Thesis Advisor

John Gibson
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Wireless Local Area Network (WLAN) technologies are becoming widely used

since they provide more flexibility and availability. Unfortunately, it is possible for

WLANs to be implemented with security flaws which are not addressed in the original

802.11 specification. IEEE formed a working group (TGi) to provide a complete solution

(code named 802.11i standard) to all the security problems of the WLANs. The group

proposed using 802.1X as an interim solution to the deficiencies in WLAN authentication

and key management. The full 802.11i standard is expected to be finalized by the end of

2004.

Although 802.1X provides a better authentication scheme than the original 802.11

security solution, it is still vulnerable to denial-of-service, session hijacking, and man-in-

the-middle attacks. Using an open-source 802.1X test-bed, this thesis evaluates various

session hijacking mechanisms through experimentation. The main conclusion is that the

risk of session hijacking attack is significantly reduced with the new security standard

(802.11i); however, the new standard will not resolve all of the problems. An attempt to

launch a session hijacking attack against the new security standard will not succeed,

although it will result in a denial-of-service attack against the user.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. THESIS OBJECTIVES...2
C. THESIS ORGANIZATION..2

II. BACKGROUND AND SESSION HIJACKING ATTACKS5
A. INTRODUCTION..5
B. IEEE 802.1X AUTHENTICATION MECHANISM....................................6

1. Introduction..6
2. Elements of the Authentication Mechanism......................................6

a. Supplicant..6
b. Authenticator...6
c. Authentication Server ...7

3. Application of the 802.1X Standard for WLANS7
4. Protocols Used by the 802.1X Standard...8

a. Extensible Authentication Protocol over LAN (EAPOL)........9
b. Extensible Authentication Protocol (EAP)11
c. Remote Authentication Dial in User Service (RADIUS).......13

5. 802.1X Authentication Procedure ..15
C. SESSION HIJACKING ATTACK ..18

1. Introduction..18
2. Vulnerabilities of the 802.1X Authentication Scheme....................18

a. Propagation Medium ..19
b. Miscommunication of the State Machines.............................19
c. Lack of Authenticity..20
d. One Way Authentication...20
e. Encryption ...21

3. Discussion of the University of Maryland Paper21
D. SUMMARY ..22

III. AN OPEN-SOURCE WIRELESS PROTOCOL TEST-BED23
A. INTRODUCTION..23
B. 802.1X AUTHENTICATION TEST-BED...23

1. Elements of the Authentication Test-Bed ..24
2. Authentication Methods ..24
3. Hardware and Software Configuration of the Test-Bed................24

a. Supplicant..24
b. Authenticator...26
c. Authentication Server ...32

4. EAP-TLS Authentication Method..36
5. X.509v3 Certificates...37
6. Validation..38

 viii

C. SUMMARY ..39

IV. APPLICATION OF THE SESSION HIJACKING ATTACK41
A. INTRODUCTION..41
B. NECESSARY CONDITIONS FOR SESSION HIJACKING

ATTACK ..41
1. Necessary Condition 1: ..43
2. Necessary Condition 2: ..43
3. Necessary Condition 3: ..43
4. Necessary Condition 4: ..44

C. DEMONSTRATION OF SESSION HIJACKING ATTACK...................45
1. Disassociation of the Supplicant ...46
2. Breaking the WEP Key ...48
3. Accessing the Network...50
4. Using a Packet Generator ...54

D. RESULTS OF THE SESSION HIJACKING ATTACK55

V. RESULTS, 802.11I STANDAND AND SOLUTIONS..59
A. INTRODUCTION..59
B. PROBLEMS OF 802.1X AUTHENTICATION STANDARD IN

WIRELESS NETWORKS ..59
C. 802.11i STANDARD ..60

1. History...60
2. Architecture of 802.11i ..60
3. Key Management ...61

a. Pairwise Key Hierarchy ..61
b. Group Key Hierarchy..63
c. Four-Way Handshake ..63

4. Temporal Key Integrity Protocol (TKIP) Overview65
5. The Counter-Mode/CBC-MAC Protocol (CCMP) Overview........67
6. Implementation of 802.11i...69

a. Wi-Fi Protected Access (WPA) Overview69
b. Robust Security Network (RSN) Overview.............................69

D. SOLUTIONS AND DISCUSSION ...70
1. Mutual Authentication ..70
2. Encryption and Key Management ...71
3. Management Frames Authentication...72

E. SUMMARY ..72

VI. CONCLUSION AND FUTURE WORK ...75
A. CONCLUSION ..75
B. FUTURE WORK...76

APPENDIX A...77
A. CERTIFICATE GENERATOR CONFIGURATION77

1. OpenSSL Configuration File ..77
B. CERTIFICATE GENERATION SCRIPTS ...82

1. Root Certificate Authority Generation Script82

 ix

2. Server Certificate Generation Script ...83
3. Supplicant Certificate Generation Script ..84
4. XP Specific Extension Files ...84

APPENDIX B ...85
A. WINDOWS XP CERTIFICATE INSTALLATION85
B. WINDOWS XP WIRELESS CLIENT 802.1X CONFIGURATION........92

APPENDIX C...93
A. D-LINK DWL-7000AP CONFIGURATION..93
B. HOSTAP CONFIGURATION FILE...95

APPENDIX D...97
A. FREERADIUS EAP-TLS MODULE MAKE FILE...................................97
B. RADIUSD CONFIGURATION FILE ...97
C. CLIENTS CONFIGURATION FILE..106
D. USERS CONFIGURATION FILE ..108
E. RADIUSD RUNNING SCRIPT..114

APPENDIX E ...115
A. AUTHENTICATION SERVER SUCCESSFUL AUTHENTICATION

LOGS ..115
B. AUTHENTICATOR SUCCESSFUL SUPPLICANT

AUTHENTICATION LOG ..120

APPENDIX F ...129
A. AUTHENTICATOR STATE MACHINE...129
B. SUPPLICANT STATE MACHINE ...130

LIST OF REFERENCES..131

INITIAL DISTRIBUTION LIST ...133

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Authenticator, Supplicant, and Authentication Server Roles (From Ref. 4)8
Figure 2. The 802.1X Client Authentication Protocol Stack in the 802.11

Framework (From Ref 4) ...9
Figure 3. EAPOL Protocol Format (From Ref. 12) ..10
Figure 4. EAP Packet Format (From Ref. 23)...12
Figure 5. RADIUS Packet Format (From Ref. 24) ...13
Figure 6. The 802.1X Authentication Session (From Ref. 4) ...17
Figure 7. 802.1X Test-bed Schema (From Ref. 4)..23
Figure 8. 802.1X Authenticator Dual Port Concept (From Ref. 4).................................27
Figure 9. Wireless LAN (non-hamradio) Option ..28
Figure 10. 802.1d Kernel Bridging Support..29
Figure 11. EAP-TLS Message Exchange (From Ref. 26)...37
Figure 12. Captured Packets showing a successful authentication39
Figure 13. Netstumbler..46
Figure 14. Successful Authentication Traffic Captured by Ethereal.................................47
Figure 15. WEP Cracking Tool Airsnort...50
Figure 16. SMAC: MAC Changer Tool Interface...51
Figure 17. Windows XP Wireless Configuration Setup without Encryption....................52
Figure 18. Windows XP Wireless Configuration with Static WEP Key.53
Figure 19. Excalibur Packet Generator ...54
Figure 20. Windows XP Warning Message. ...56
Figure 21. Pairwise Key Hierarchy (From Ref 22) ...62
Figure 22. Four-Way Handshake (From Ref. 22) ...64
Figure 23. MPDU Format after TKIP Encryption (From Ref. 27)66
Figure 24. Diagram Depicting the TKIP Encapsulation Process (From Ref. 27)66
Figure 25. MPDU Format after CCMP Encryption (From Ref. 27)67
Figure 26. Diagram of the CCMP Encapsulation Process (From Ref. 27)68

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Packet Types of EAPOL Protocol (From Ref. 12) ..10
Table 2. Code Field Values and Descriptions of a RADIUS Packet (From Ref. 24)14
Table 3. Comparison of the Existing and Emerging Security Standards.......................70

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my mother, Ayse, and my entire family for their never-

ending and full support. I would like to thank my advisor, Professor Geoffrey Xie, for his

understanding and guidance throughout my research. I would like to thank my second

reader, John Gibson, for his advice and help.

I would also like to express my admiration and thanks to my friend Orhan Ozan,

who was my partner for the first part of this thesis, and his spouse, Banu Ozan. Finally, I

would like to thank my great friends for their help, support, and friendship.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
Wireless networks are an emerging and popular field in the network arena. Since

wireless networks reduce the dependence of network clients on established and wire-

based infrastructures, they provide mobility and flexibility to the users and have become

very increasingly important and pervasive. Wireless networks provide a cable-free

internet connection; however, becoming cable-free creates the problems of being open to

anybody in the coverage area. Security aspects of wireless networks were examined and

implemented after the technology was introduced. The very first design of all the wireless

protocols did not consider security issues. Problems were discovered after installation of

the systems. These problems were addressed by applying patches and some means of

identification or privacy, such as Service Set Identifier (SSID) checks and Wired

Equivalence Privacy (WEP). The weaknesses in these first security precautions, however,

were exploited shortly after they were introduced.

In addition to these actions to counter the security problems of wireless network

traffic, a solid and reliable authentication mechanism should also be used to control the

access of the users. The IEEE 802.11i working group was formed to solve the security

problems of wireless networks, including the authentication issue. This working group

proposed that the 802.1X authentication scheme be used until a complete solution to all

the known problems of wireless networks could be developed. The 802.1X authentication

mechanism includes the use of an authentication server to control the access of the

mobile client trying to use the network.

Since the 802.1X authentication scheme is not especially designed for wireless

networks, it specifically does not address the problems of WLANs and carries the

problems and security weaknesses of wired networks to the more “open” wireless world.

Research [1] conducted in 2002 revealed problems that may be encountered in wireless

networks that use the 802.1X authentication scheme. The security vulnerabilities that are

present in wireless networks may be used by attackers to conduct several denial-of-

service, man-in-the-middle, and session hijacking attacks.

2

A session hijacking attack, if conducted successfully, can allow the attacker to

access the wireless network in the place of a legitimate user by disconnecting that

particular user from the network and assuming its identity as far as the network is

concerned.

Since the University of Maryland paper [1] was published, there have been two

formal replies to the paper: one from Cisco [2] and the other from Orinoco [3]. Both

replies have accepted the possibility of session hijacking attack under certain conditions.

The session hijacking attack scenario in University of Maryland paper did not mention

the encryption that might be used in the wireless networks. The reply papers indicated

that if the encryption of the wireless networks were strong enough, then the session

hijacking attack would not reach its goals, but would result in a denial of service situation

instead.

B. THESIS OBJECTIVES
The main objective of this thesis is to conduct a systematic evaluation of the risks

of session hijacking attacks in wireless networks. A major portion of the effort is devoted

to an attempt to implement session hijacking attacks over an actual network. As a result,

the work provides unique observations from a practical perspective. Where an attack is

successfully completed, the security flaws of the system giving rise to the success of that

type of attack are examined and possible ways of overcoming those flaws are described

in the thesis. Otherwise, the protective mechanism responsible for preventing the attack

is identified.

An open-source 802.1X wireless networking test-bed is required in this thesis.

One such test-bed was first implemented by LTJG H. Selcuk Ozturk, Turkish Navy, in

2002 [4]. As a part of this thesis, the same test-bed is built again with the latest versions

of the software components.

C. THESIS ORGANIZATION

This thesis is organized into six chapters. Chapter II covers the issues related to

the 802.1X authentication standard. The entities and the protocols of the standard are

3

broadly discussed. Chapter III explains the structure of the test-bed and installation of the

software to build the test-bed. Chapter IV contains the experiments and results of the

experiments conducted on the test-bed pertinent to the session hijacking attack. Chapter

V introduces the new security standard (802.11i). The final part of Chapter V discusses

the new standard in regard to the weakness that result in a session hijacking attack.

Finally, Chapter VI contains the conclusions and the areas for future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND AND SESSION HIJACKING ATTACKS

A. INTRODUCTION
The growing uses of wireless networks in everyday life generate urgent needs for

confidentiality, privacy and access control. Authentication and Access Control issues are

insufficiently covered and addressed in the original 802.11 protocol. After the discovery

of the 802.11 protocol problems, the IEEE 802.1X standard became a temporary solution

until a precise and complete solution is developed by the IEEE 802.11i working group,

which has been established particularly to address the security problems of wireless

networks.

802.1X is known as the standard for Port-Based Network Access Control. This

standard is intended to provide sufficient solutions to authentication, access control and

key management issues. However, a University of Maryland paper [1], published in

2002, asserts that the 802.1X standard has shortcomings, which could be exploited by

attackers to launch successful man-in-the-middle, session hijacking and denial of service

attacks. After the paper was published, Cisco and Orinoco presented two formal

responses [2, 3]. These companies are among the top wireless networks equipment

producers. Interestingly, the responses did not totally dismiss the possibility of successful

man-in-the-middle and session hijacking attacks as asserted by the University of

Maryland paper [1].

The 802.11i working group (TGi) approved the seventh draft of the new 802.11i

standard in November 2003. The standard addresses the problems of wireless networks.

The weakness in WEP encryption and the lack of mutual authentication issues will be

addressed when the standard is finalized. 802.1X will remain the authentication

mechanism of the new standard.

This chapter covers the 802.1X authentication mechanism in detail, including the

protocols used for communication between the participating entities. The message

sequence of the authentication is examined in detail. This chapter also discusses the

session hijacking attack. The aspects of the University of Maryland paper [1] and the

responses [2, 3] related to the session hijacking attack are also examined.

6

B. IEEE 802.1X AUTHENTICATION MECHANISM

1. Introduction
Since the wireless environment is not as restricted to outside users as are wired

networks, a trusted security framework should be established to control the access of the

users and authenticate the pre-approved legitimate users. The 802.1X standard [12] is the

authentication and access control standard, which was approved by the IEEE in 2001.

The 802.1X standard was not intended to be used by only wireless networks. It was

meant to be used by all 802 standard networks, such as contention-based bus networks

(802.3), FDDI and Token Ring (802.5). After the vulnerabilities of the wireless networks

were unveiled, the 802.1X standard was proposed to be used in wireless networks until

the 802.11i working group (TGi) finds a complete solution.

2. Elements of the Authentication Mechanism
The security framework of the 802.1X standard [12] consists of three main

entities: the supplicant, the authenticator, and the authentication server. Figure 1 shows

the entities of 802.1X

a. Supplicant
The supplicant is an entity that desires to use the services offered by the

authenticator. Thus the client side of the wireless network is labeled the “supplicant.” It is

an entity at the one end of the network that is authenticated by the authentication server

on the other end of the network.

b. Authenticator
The authenticator is the entity at one end of a point-to-point LAN segment

that facilitates authentication of another entity attached to the other end of that link.[12]

The authenticator has two roles: one before the authentication and the other after the

authentication. The authenticator relays the authentication packets between the supplicant

and the authentication server. After a successful authentication takes place, the

authenticator provides network connectivity to the supplicant independent of the

authentication server.

7

c. Authentication Server
The authentication server is an entity that provides authentication service

to an authenticator. This service determines from the credentials provided by the

supplicant, whether the supplicant is authorized to access the network services provided

by the authenticator [12]. An authentication server is the authority in a network that

decides the access of the supplicants according to their credentials. Authentication is the

only function for this server. After a successful authentication, the server is dormant until

another supplicant wants to use the network.

3. Application of the 802.1X Standard for WLANS
The authenticator of the wireless network plays a key role in the access

management of the network. The authenticator is the middle entity that controls the gates

of the network by its ports, which can be considered as the logical connection between

the authenticator and supplicant.

There are two different ports defined in the 802.1X standard: a controlled and an

uncontrolled port. The uncontrolled port is used for the authentication and the controlled

port is used for network connections to the authenticated supplicants.

At the very beginning of the authentication process, the authenticator relays the

management frames between the supplicant and the authentication server. The first

communication of any supplicant is over the uncontrolled port for the authentication. The

controlled port is kept closed until a successful authentication occurs. Once the supplicant

is verified and access to the network is granted, the controlled port is opened to the

supplicant. The supplicant can reach and use the network services only via the controlled

port.

8

Figure 1. Authenticator, Supplicant, and Authentication Server Roles (From Ref. 4)

The 802.1X authentication standard is intended to be used in Local Area

Networks. The terms used in the standard documentation does not specifically mention

the Wireless Local Area Networks. Until a complete solution to the problems of the

wireless networks is completed by the 802.11i working group (TGi), 802.1X is proposed

to be used for authentication in WLANs. The entities in a WLAN and in a traditional

LAN can be mapped for the implementation of the 802.1X implementation. The

communication protocols between the entities will remain the same, and they will be

mentioned later in this chapter.

In a WLAN environment, each mobile network client is a supplicant, the access

point serves the authenticator role, and the authentication server role is assigned to a

Remote Authentication Dial-in Server (RADIUS). In a larger application, the

authentication server’s role may be divided into more entities. Additionally, multiple

authenticators may be used to provide services to more supplicants.

4. Protocols Used by the 802.1X Standard

Three protocols are mentioned in the 802.1X standard. The most important

protocol is the Extensible Authentication Protocol (EAP) which is used for the

authentication between two entities. EAP over LAN (EAPOL) is another protocol defined

in the 802.1X protocol. It is basically used to carry the EAP packets between the

supplicant and the authenticator. In other words, the EAPOL protocol is the encapsulation

technique of the EAP messages in LAN environments between the authenticator and the

supplicant. The final protocol that is used in this authentication method is the RADIUS

9

protocol which carries the EAP packets between the authenticator and the authentication

server. The protocol stack is pictured in Figure 2.

Figure 2. The 802.1X Client Authentication Protocol Stack in the 802.11 Framework (From Ref 4)

The details of these three important protocols will be described in this chapter.

The details of the protocols will explain the vulnerabilities of the entire authentication

method.

a. Extensible Authentication Protocol over LAN (EAPOL)
The EAPOL protocol is the encapsulation technique that is used to carry

the EAP packets between the supplicant and the authenticator. In the IEEE protocol

standard [7], EAPOL is described for Ethernet (802.3) and Token Ring/FDDI MAC

addresses. However, EAPOL encapsulation used with Ethernet MAC can be applied to

other LAN technologies that share the same basic format as Ethernet. It is convenient to

use this protocol for Wireless LAN applications. The packet format of the EAPOL is

depicted in Figure 3.

RADIUS

m
Supplicant

EAPOL

802.11 Frame

^SSM.
Authenticator Authentication

Server

10

Version Packet Type Packet Body Length

Packet Body

0 7 8 15 16 32

Version Packet Type Packet Body Length

Packet Body

0 7 8 15 16 32

Figure 3. EAPOL Protocol Format (From Ref. 12)

The following briefly describes the fields of the EAPOL protocol:

(1) Version: The value of this field identifies the supported

version of the EAPOL protocol supported by the sender. EAPOL version 1.0 is the

current version. Since this field is 8 bits long, the version is represented as 0000 0001.

(2) Packet Type: This field identifies the type of packet that

the sender is transmitting. There are five possible packets that can be sent. Four of these

packets are about the type of the EAPOL protocol and the last one is about the payload of

the packet, which is an EAP packet. The values of the field according to the packet type

are listed in Table 1. All the other possible values of this field are not used and are

reserved for possible future extensions of the protocol.

Packet Type Definition Value

EAP-Packet The frame carries an EAP packet 0000 0000

EAPOL-Start The frame is an EAP-Start packet 0000 0001

EAPOL-Logoff The frame is an explicit EAPOL-
logoff request frame

0000 0010

EAPOL-Key The frame is an EAPOL-Key frame 0000 0011

EAPOL-Encapsulated-
ASF-Alert

The frame carries an EAPOL-
Encapsulated-ASF-Alert

0000 0100

Table 1. Packet Types of EAPOL Protocol (From Ref. 12)

11

(3) Packet Length: The total length of the packet is represented

in octets in this field.

(4) Packet Body: The packet body contains data if the packet

type is other than the EAP-Start and EAP-Logoff. These two packets do not contain any

data portion. The packet body contains the EAP packet if the packet type is an EAP-

Packet. The field contains the EAP-Key Descriptor if the packet type is an EAPOL-Key.

Finally, if the packet type is EAPOL-Encapsulated-ASF-Alert, the Packet Body contains

the ASF alert frame.

For any entity in the network to process an EAPOL packet, the

destination MAC address of the packet should contain the address of the receiving entity,

the LAN type should match the MAN type of the receiver, and the packet field should

contain the values specified in Table 1. After all these three criteria have been matched,

the packet can be evaluated as a regular EAPOL packet.

b. Extensible Authentication Protocol (EAP)
The Point-to-Point Extensible Authentication Protocol (EAP) is a

mechanism that provides a standard message exchange mechanism for devices using an

agreed upon authentication protocol. EAP protocol uses the link layer for

communication. Since it does not require the devices to have IP addresses for

communication, the EAP is used as a base technology for both wired and wireless

networks for authentication. After a successful authentication, the devices are assigned a

legitimate IP number by the DHCP server of the network.

EAP was first developed for use with PPP in RFC 2284 and since then it

has been widely deployed. EAP serves as a base technology and protocol for

authentication mechanisms. EAP does not provide authentication all by itself. EAP

supports a variety of authentication protocols to provide security during the

authentication process. Some of the authentication protocols that are used with EAP are

EAP-MD5, EAP-TLS, EAP-TTLS, EAP-PEAP and CISCO-Leap.

EAP-TLS is a widely used certificate-based authentication protocol. It is

the authentication protocol that will be used by the test-bed built for this thesis. Standard

documentation of this protocol can be found in RFC-2716 [23]. EAP-TLS provides

strong security between the supplicant and the authentication server through the use of

12

PKI certificates. While providing a very secure way of authentication, the complexity and

the overhead of using PKI certificates are the main drawbacks of this authentication

method.

The EAP protocol is adopted by the IEEE 802.1x standard to provide an

authentication mechanism for the 802.11 standard. The packet format of the EAP

protocol is shown in Figure 4.

Code Identifier EAP Packet Length

Data

0 7 8 15 16 32

Type

Code Identifier EAP Packet Length

Data

0 7 8 15 16 32

Type

Figure 4. EAP Packet Format (From Ref. 23)

(1) Code: This field identifies the type of the EAP packet,

which could be one of the following EAP packets; 1-Request, 2-Response, 3-Success, 4-

Failure.

(2) Identifier: This field is one octet long and allows a matching of

responses with requests. This field, with the system port, uniquely identifies an

authentication exchange. The value of this field is determined by the operation of the

authenticator device used in a new EAP-Request/Identity frame. This identity is used by

the supplicant and the authenticator throughout the authentication process.

(3) Length: This field is two octets long and the value indicates

the length of the whole EAP packet including the code, identifier, length and data fields.

(4) Type: This field indicates the authentication protocol.

Several authentication protocols are supported by EAP: Transport Layer Security (TLS),

MD5, One Time Passwords (OTP), and Light-weight EAP (LEAP).

13

(5) Data: The data field may contain zero or more octets

depending on the type of the EAP packet indicated in the Code filed.

c. Remote Authentication Dial in User Service (RADIUS)
The RADIUS protocol facilitates centralized user administration,

authentication, authorization, and accounting for network access. It was originally

developed for dial-up remote access but became widely popular among other network

access types, including wireless networks. RADIUS is used to carry the EAP packets

between the authenticator and the authentication server. RADIUS provides per packet

authenticity and integrity by using a shared secret and a calculation algorithm. The shared

secret is an alphanumeric value used to calculate the MD5 sums for each packet.

EAP packets are encapsulated inside the RADIUS packets. The

authenticator is not required to know the type of authentication since the EAP packets

travel between the supplicant and the authentication server. The RADIUS client

(authenticator) sends the user’s credentials and the connection parameters to the RADIUS

Server. The RADIUS server checks the incoming RADIUS packet and returns the

response in a RADIUS packet. The EAP packet, which resides inside the RADIUS

packet, is extracted and sent to the supplicant. RADIUS packets are sent via UDP. UDP

Port 1812 is used for RADIUS authentication messages and UDP port 1813 is used for

RADIUS accounting messages. The packet format of the RADIUS packet is defined in

Figure 5.

Figure 5. RADIUS Packet Format (From Ref. 24)

0 7 8 15 16 32

Code Identifier Length

Authenticator

Attributes

14

(1) Code: This field identifies the type of the RADIUS packet.

Table 2 includes the complete list of the codes with their respective descriptions and the

sender of the message. These codes are defined in RFCs 2865 [24] and 2866 [25].

Value Description Sender

1 Access-Request RADIUS Client

2 Access-Accept RADIUS Server

3 Access-Reject RADIUS Server

4 Accounting-Request RADIUS Client

5 Accounting-Response RADIUS Server

11 Access-Challenge RADIUS Server

12 Status-Server (experimental) Reserved

13 Status-Client (experimental) Reserved
Table 2. Code Field Values and Descriptions of a RADIUS Packet (From Ref. 24)

The RADIUS Server sends the Access-Accept message if the

connection attempt is authenticated and authorized. The RADIUS server sends an

Access-Reject message if the credentials are not authentic or if the connection attempt is

not authorized.

(2) Identifier: This field is one octet long and allows the RADIUS

client to match responses with requests. If the RADIUS server receives two request

messages from the same IP address, the source UDP port and the same identifier in a

short span of time, this packet is evaluated as a duplicate.

(3) Length: This field shows the complete length of the

RADIUS packet including all the fields.

(4) Authenticator: This value is used to authenticate the reply

from the RADIUS server and is used in the password hiding algorithm. The request

authenticator is a 16-octet long random number used in the Access-Request packets. This

value passes through the MD5 hash algorithm and the XOR operation with the shared

secret and other field values of the Response packet and returns to the client in the form

15

of a response authenticator. This value enforces the per-packet authenticity and integrity

verification.

(5) Attributes: The attributes field carries the specific

authentication, authorization information and the configuration details for the request and

reply. Since the RADIUS Protocol supports a variety of authentication mechanisms, the

content of this field varies. For the EAP authentication mechanism, this field contains

EAP attributes. The most important attributes are the user name, user-password, NAS

server IP address and port number, and the service type.

5. 802.1X Authentication Procedure
A complete authentication session uses all the protocols defined above. The

authentication can be completed by the successful transfer of all the packets among the

three main entities. Figure 6 illustrates the authentication. Network monitoring tools like

Ethereal is employed in the implementation phase of the test-bed for troubleshooting and

debugging purposes. The details of the authentication message sequence are as follows:

1) Authentication sequence is started by the supplicant with an EAPOL-Start

packet sent to the authenticator.

2) The authenticator responds with an EAP-Request/Identity packet. The

EAP traffic between the supplicant and the authenticator is encapsulated in EAPOL

packets.

3) The supplicant replies to the EAP-Request/Identity packet with an EAP-

Response/Identity packet. On receiving this packet, the authenticator extracts the EAP

packet from the EAPOL packet and places it into a RADIUS Access-Request packet and

sends it to the authentication server.

4) The authentication server keeps track of a database of the legitimate

authenticators. The authentication server checks the user ID of the authenticator and

verifies it.

5) The authentication server sends back a RADIUS-Access Challenge

message if the user ID of the supplicant is in the database of the authentication server.

16

6) The authenticator relays the EAP-Request message embedded in the

access challenge message that came from the authentication server to the supplicant in an

EAPOL-EAP packet. The EAP-Request/Response messages are sent and received until

the authentication is completed. (7, 8, 9, 10)

11) Finally a success or failure message will be sent by the authentication

server to the supplicant. This packet will be relayed by the authenticator to the supplicant

in the form of an EAP-Success/Failure packet.

12) After a successful authentication, the authenticator opens up the controlled

port to the supplicant. In the case of a failure in authentication, the supplicant is

disassociated from the uncontrolled port.

13) After a successful authentication, a key can be distributed by an EAPOL-

Key message to enforce privacy.

17

Figure 6. The 802.1X Authentication Session (From Ref. 4)

Supplicant Authentic ator
Autlienti cation

Server a ^

1- EJHPDL-^IAPI

J tut HvaieitnD

1 EnP li«^pHHu«/iD

fa E "P R^4iw^ I

7- EAP Pe£Dort£e1

9- E*P Rtnomt IJ

1^- EAP ^uii«^^/f ^l<ri«

11 EnPOL K«*

4 PJV1IUS h^^«^^ Pfqunl

^ PJVIIU^ A.ce££ ChallHQe

S- PJIDIU^ ALI«^^ P«4|iw^ I

lU PnDlU^ALi«^^ P^qu^:-r N

fi

PADIUS rvcesE AccwUPtitcl

18

C. SESSION HIJACKING ATTACK

1. Introduction
It is helpful to explain the session hijacking attack concisely before going into the

details of the standards and the actual attack scenario.

The ultimate goal of the session hijacking attack is usurping a legitimate user and

obtaining the privileges of that particular user to gain access to the network. Once a

successful session is established between a legitimate user and the network, the rogue

user captures the traffic between the two entities. After extracting the necessary

information from the traffic, the attacker explores holes in the communication protocol to

launch the attack. After obtaining enough information about the connection between the

network and the user, the attack takes the place of the legitimate user by disconnecting

the user.

The session hijacking attack can be divided into two main parts. The first part of

the attack is the disassociation of the regular user. The attacker can achieve this by posing

as the authenticator and creating and sending fake logoff messages to the user. The

second part of the attack is using the privileges of the user, which are obtained in the

previous steps of monitoring, to access the network. Since the authentication server is out

of the scene after the authentication takes place at the beginning of the session,

mimicking the legitimate user is easy for the attacker. The authentication mechanism and

its challenges are overcome at the end of the attack. The legitimate user is disassociated

from the network and still unaware of the particular attack. The attacker obtains access to

the network until the end of the session. The authenticator is also unaware of the attacker

because the attacker uses the same credentials, such as the MAC address, as the

legitimate and previously authenticated client.

2. Vulnerabilities of the 802.1X Authentication Scheme
The vulnerabilities of the 802.1X authentication mechanism will be covered from

the session hijacking point of view. The university of Maryland paper [1] describes the

vulnerabilities that can cause a possible session hijacking attack. The following examines

the main vulnerabilities:

19

a. Propagation Medium
Since the medium that carries the packets of the wireless network is the

air, limiting the RF signal availability within a specific region is difficult. Eavesdropping

is the starting point of the attacks against wireless networks. To overcome this

vulnerability, which is a result of the broadcast nature of wireless networks, the

authentication to the network and the confidentiality of the traffic should be reliable.

b. Miscommunication of the State Machines
The loose consistency between the 802.1X and 802.11 state machines

provides the means for a session hijacking attack in wireless networks.[1] Since no clear

communication between these two state machines exists, an attacker may change one of

the state machines to launch the attack.

Upon the supplicant’s successful authentication, which occurs after the

access point sends the EAP-Success frame to the supplicant, the supplicant’s state

machine transitions to the authenticated state. The authenticated state is entered from any

other states of the supplicant on receipt of an EAP-Success frame. This state is

maintained until the client disconnects from the network or an EAP-Request/Identity

frame is received from the authenticator. The detailed picture of the supplicant state

machine is shown in Appendix F. The attacker could forge the MAC address of the

authenticator and send a MAC disassociate frame to the supplicant and thereby change

the supplicant’s state to unassociated. The supplicant cannot reach the network until it is

associated again. [12]

The supplicant transitions to the acquired state where the supplicant waits

for an EAP-Request frame from the authenticator to initiate the authentication again. By

transitioning to this state, the state machine sets a timer called “authWhile” and sends a

response identity frame. This timer lets the supplicant wait for a particular amount of

time for the EAP-request frame from the authenticator. (The default wait time is 60

seconds). When the timer expires, the supplicant returns to the very beginning of the

authentication procedure and starts all over again. [12]

20

There is another state machine for the same supplicant, which the

authenticator maintains. This is called the Authenticator PAE state machine. After

successful authentication between the supplicant and the authenticator, the Authenticator

PAE state machine transitions to the authenticated state. There are only two types of

frames that can change the authenticated state of this state machine. One of them is an

EAPOL-logoff frame sent by the supplicant. On receiving this frame, the authenticator

PAE state machine transitions to the disconnected state and closes the controlled port.

The other one is the reauthentication request or an EAPOL-start frame sent by the

supplicant. Upon receiving this frame, the authenticator PAE state machine transitions to

a connecting state in order to reauthenticate. [12]

After analyzing both state machines, the lack of communications between

them can be seen easily.(The diagrams of the state machines are presented in Appendix

F) Once the attacker changes the supplicant state machine, the authenticator PAE state

machine is virtually unaware of the recent change. The authenticator PAE’s state

machine remains in an authenticated state until the supplicant tries to authenticate again.

[12]

The attacker can keep the legitimate supplicant in the same acquired state

by sending EAP-Request/Identity frames. On receiving these frames, the supplicant sets

the authWhile timer and sends EAP-Response/Identity frames. Before the timer expires,

the attacker sends the same packet again. The supplicant will repeat the same process: set

the timer and send out EAP-Response/Identity frame. As a result, the supplicant is kept in

the same state and the authenticator still considers the supplicant up and running. [12]

c. Lack of Authenticity
The lack of authenticity of the 802.1X frames is one of the main reasons

for the session hijacking attack. Since the management frames are not authenticated, any

attacker can trick the supplicant with little effort.

d. One Way Authentication
Although the 802.1X is using a controlled port mechanism for the access

point, it is obvious that the port of the supplicant is always in a controlled state. The port

of the supplicant is open to any entities that can pose as the access point. This is one-way

21

authentication. Only the supplicant is authenticated to the access point, the access point is

not authenticated to the supplicant.

e. Encryption
The primary weakness of the wireless networks is the WEP encryption.

Even though traditional WEP encryption is weak and vulnerable, there are access points

that still do not even apply WEP so the traffic flows without any encryption. For better

security, dynamic re-keying of the WEP must be an inherent part of any design. This

would help prevent adversaries from intruding on the networks, even though they

managed to bypass the authentication scheme.

3. Discussion of the University of Maryland Paper
Vulnerabilities of the 802.1X authentication standard were covered in the paper,

“An Initial Security Analysis of the IEEE 802.1X Standard,” by Arunesh Mishra and

William A. Arbaugh. [1]

Session hijacking attack was one of the attacks, along with the Man-In-The-

Middle attack, that the paper described as possible. A session hijacking attack is said to

be performed by sending disassociate packets to the authenticated supplicant from an

attacker by using the authenticator’s MAC address. After this initial part of the attack, the

adversary can use the MAC address of the legitimate supplicant and access the network.

The lack of coordination between the two state machines lets the adversary pass through

the authentication mechanism of the wireless network.

After the publication of the claims of the paper on the possibility of the session

hijacking attack, Orinoco and Cisco opposed the paper’s assertions. The main idea of

these two papers was the same: If the wireless network is not using WEP keys, the attack

can be successful. However, omitting WEP and using 802.1X authentication alone is not

a common application. The attack can still be successful if the access point is using a

weak WEP key. The WEP key can be broken and can be set to the attacker PC after the

client is disassociated. The attack becomes more difficult if dynamic WEP rekeying is

used. For this thesis, by using the test-bed, all the probabilities of WEP keying are tested

and the possibilities of a successful session hijacking attack are explored.

22

D. SUMMARY
This chapter introduces the protocols and standards of the 802.1X authentication

scheme, which can be used for wireless networks. The details of the solutions that may

help overcome the vulnerabilities of wireless networks are discussed.

Even though the 802.1X standard improves the security level provided by the

current 802.11 standard, there are still security leaks that may result in a session hijacking

attack. An attacker may disassociate the user from the network and use its session for

malicious purposes.

802.11i standard is being developed by TGi and the problems of the wireless

networks will be addressed in their document. Chapter V includes an analysis of the new

802.11i standard based on the 802.11i draft 3.0.

In order to perform experiments concerning the security issues of both 802.11 and

802.1X protocols, an open-source test-bed is necessary. Chapter III will cover all the

aspects of building the test-bed using open-source software.

23

III. AN OPEN-SOURCE WIRELESS PROTOCOL TEST-BED

A. INTRODUCTION
The IEEE 802.1X standard is proposed to address some of the IEEE 802.11

security vulnerabilities. However, the 802.1X security standard is still vulnerable to some

attacks, including session hijacking attacks.

 For verification and analysis of primarily session hijacking attacks and other

kinds of attacks against wireless local area networks (WLANs), an 802.1X test-bed was

built on an IEEE 802.1b wireless LAN. This chapter explains how to build and configure

the 802.1X entities described in the last chapter: the supplicant, the authenticator, and

authentication server. The open-source software was used on the Linux operating system

environment for availability and ease of source-code manipulation.

B. 802.1X AUTHENTICATION TEST-BED
This thesis is based on open-source software because it is easier to demonstrate a

session hijacking attack and to analyze the results of the experiment. This section

explains how to combine the Linux environment with the open-source software as

illustrated in Figure 7.

Figure 7. 802.1X Test-bed Schema (From Ref. 4)

24

1. Elements of the Authentication Test-Bed
The security framework of the 802.1X standard [12] consists of three main

entities: supplicant, authenticator and authentication server. The roles and functionality of

these three entities are explained in chapter II.

2. Authentication Methods
While building the test-bed, the most secure authentication method must be

selected. One of the main factors in choosing the right authentication method for the EAP

protocol is the ability to provide mutual authentication between the 802.1X entities. This

is true because mounting attacks against WLANs is more difficult if the security protocol

provides robust mutual authentication.

Two types of authentication methods are used and supported by the current

authentication servers. The first one is Cisco’s Lightweight Extensible Authentication

Protocol (LEAP); the second one is the Transport Layer Security (TLS). The EAP-TLS

authentication method was chosen for mutual authentication. TLS requires a public key

infrastructure (PKI) for certificate-based authentication.

3. Hardware and Software Configuration of the Test-Bed
There are three entities implemented in the test-bed to support the 802.1X

authentication mechanism: the supplicant (mobile client), the authenticator (access point)

and the authentication server (FreeRADIUS).

a. Supplicant
The supplicant is an entity that requests network access and is being

authenticated by an authenticator. A Pentium III laptop with PCMCIA support is used as

the supplicant for the Open-1X test-bed. A D-Link DWL-650 wireless network interface

card is used for wireless communication between the supplicant and the authenticator.

Two different operating systems can host the supplicant: Windows XP and

Linux Red Hat. Both of them have advantages and disadvantages. The supplicant in

Linux Red Hat provides a wide range of tools for the supplicant’s configuration, while

25

the supplicant in Windows XP is easy to implement. In this section, both of the Windows

XP client and the Xsupplicant will be explained in detail.

(1) Windows XP SP1: The Microsoft Windows XP with Service

Pack 1 (SP1) operating system is used for its embedded IEEE 802.1X supplicant support.

A D-Link DWL-650 network interface card is used for wireless communication. The

driver can be easily downloaded and installed from http://support.dlink.com/. After the

installation of Windows XP SP1, the public key certificate and private key of the client

are created. The public key certificate (PKC) of the root certificate authority (Root-CA) is

imported and installed. Appendix B gives the details on installing the certificates and

configuring of the 802.1X protocol for the supplicant.

(2) Xsupplicant: The Linux Red Hat operating system can host the

Xsupplicant on a mobile laptop. The same D-Link DWL-650 NIC is used as a wireless

interface card. DWL-650 does not officially support Linux drivers. However, the chipset

(Intersil Prism2) is supported by Linux Red Hat 8.0 via the ornico_cs driver.

The three dependent libraries should be built and installed before

the Xsupplicant source code:

OpenSSL 0.9.7 (http://www.openssl.org/)

Libpcap 0.7.1 (http://www.tcpdump.org/)

Libnet 1.1.0 (http://www.packetfactory.net/libnet/)

All these components should be downloaded and uncompressed

into the /usr/src/xsup directory for the installation. The “readme” and “install” documents

give enough information to guide the build of the libraries. The following commands are

sufficient for building and installing the required libraries for the Xsupplicant.

cd /usr/src/xsup/<directory name>

. /configure

make

make install

26

The Xsupplicant source code can be downloaded from the

sourceforge.net website (http://sourceforge.net/projects/open1x/). The tarball should be

uncompressed into the /usr/src/xsup directory. The following commands suffice for the

default installation of Xsupplicant source code.

cd /usr/src/xsup/xsupplicant

. /configure –enable-full-debug

make

make install

The “enable-full-debug” flag causes critical information and run-

time errors to be printed during configuration. It is crucial to use this flag in order to

determine whether or not the dependent libraries are found by the Xsupplicant source

code.

After installing the dependent libraries and Xsupplicant source

code, the certificates created by Certificate Generator should be copied into the

designated directory, as defined in the configuration file (1x.conf). This configuration

file must be copied into the /etc/1x/ directory since the Xsupplicant daemon requires the

1x.conf file to be in that directory by default. Finally, the Xsupplicant daemon can be

activated with the following commands.

iwconfig wlan0 essid test

xsupplicant –i wlan0

b. Authenticator
The authenticator is an entity at one end of a LAN segment that facilitates

authentication of the entity attached to the other end of that LAN. In this context, an

authenticator forwards 802.1X frames from a supplicant to an authentication server for

authentication. The authenticator provides network connectivity to the supplicant via a

controlled port after a successful authentication. In order to achieve this, a dual-port

model is used. Figure 8 shows the dual-port concept employed in IEEE 802.1X. The

27

authenticator has two ports for external access to the network that it is protecting: The

Uncontrolled Port and the Controlled Port. The Uncontrolled port filters all traffic and

allows only the EAP packets to pass for the authentication. After successful

authentication, the supplicants can use the Controlled Port to send regular network traffic

through the authenticator.

Figure 8. 802.1X Authenticator Dual Port Concept (From Ref. 4)

For this thesis, the authenticator is the most important entity in the open-

source 802.1X test-bed, since it enables 802.11b access point functionality using the

firmware of the Intersil chipsets for time sensitive tasks. All other functionality is handled

by the HostAP driver, including WEP and passing frames off to an authentication server

(1) HostAP: The Host AP driver is a Linux driver for wireless

LAN cards based on Intersil’s Prism 2/2.5/3 chipset. Since D-Link DWL 650 wireless

NIC is based on the Prism 2 chipset, the HostAP driver will support it. The driver

supports Host AP mode and does not require any special firmware for the D-Link DWL

650 wireless NIC. It performs IEEE 802.11 management functions and acts as an access

point. In addition, it implements the following IEEE 802.11 functions:

Association

Authentication

Data transmission between two wireless stations

Power saving mode signaling

28

Frame buffering.

An IBM Think-Pad 600 Pentium II laptop and a D-Link DWL 650

wireless NIC are the hardware components of the authenticator. Linux Red Hat 9.0 with

kernel 2.4.22 is installed to support the HostAP driver.

The Wireless Extensions v15 and v16 patches are not necessary for

Linux kernel version 2.4.22. Two kernel configuration options must be enabled during

the configuration of the kernel (2.4.22): the wireless LAN (non-hamradio) option for

HostAP support (Figure 8) and the 802.1d Ethernet Bridging option (Figure 9) for

bridging support between the wireless and wired interface. These graphical configuration

menus will be displayed after the make xconfig command of the kernel configuration

process. These options are not enabled by default. The authenticator would not function

properly without these support options

Figure 9. Wireless LAN (non-hamradio) Option

■3 Wireless LAH moii-liamradio) HlOi ^ ^

VJfreless LAN (iioii-haiiir<iclio) |

^v -s^ " V n VJfrdess LAN (iion-hcunrciflio)^ He^ A

/

V y ^^ m ♦ II STRIP (Metricom st<irmode radio BP) He^

V y x' m ♦ II AT&T W^veLAN & DEC RoamAbout DS siqiport He^

V y x' m ♦ II ARnnet Arlan G5S & ICZZOO DS siqiport He^i

V y ■y^ m ♦ II i^nnet 4500/4800 series adapters He^

V y ^^ m V n Aironet 4500/4800 ISA/PCI/PNP/3G5 support He^

V y *^ " V n Airoiiet 4500/4000 PriP support Help

V y *^ " V n Aironet 4500/4000 PCI support He^i

V y -s^ - V n Airouet 4500/4000 ISA broken support (EXPERIMENTAL) He^

f ait^nol fHittrtitnti nCi hn-iL-on 'MmMnri- /1:VOi:DII.<EMTA1 ^ Ikiln 1

OK Next B^v

' 1

29

Figure 10. 802.1d Kernel Bridging Support

Before version v0.1.0, the HostAP driver used to be distributed as

one tarball. Now the software is separated into three components. Since the HostAP

v0.1.1 driver is used for the test-bed, the following three HostAP components and the

Wireless Extension tools were installed on the authenticator:

HostAP-driver 0.1.1

Hostapd

Hostap-utils

Wireless Extension Tools v25

The Wireless Extensions Tools v25 (http://pcmcia-

cs.sourceforge.net/ftp/contrib/) were downloaded and uncompressed into the /usr/src/

directory tree. The source code was installed by the command sequence below.

. /configure

make

make install

30

The HostAP driver, utilities and daemon source code

(http://hostap.epitest.fi) were downloaded and uncompressed into the /usr/src/ directory

tree. The HostAP driver was configured by the commands below.

tar –zxvf hostap-driver-0.1.1.tar.gz

. /configure

After the configuration of the driver, a Makefile was created for

this specific configuration. The KERNEL_PATH variable was set to the kernel

configured for the access point in the /usr/src/hostap/Makefile file.

Edit this path to match the system (It should point to the root

directory of the Linux kernel source.)

KERNEL_PATH=/usr/src/linux-2.4.22

Leave this blank for kernel-tree PCMCIA compilations

PCMCIA_PATH=

Since the HostAP requires kernel support, the HostAP source code

must be built and installed after the proper configuration and required modification to the

Makefile. The “Extra flag” option was required in order to support the 802.1X

functionality for hostapd daemon.

make pccard EXTRA_CFLAGS=”-DPRISM_HOSTAPD”

make install_pccard

The HostAP utility and daemon components were built and

installed to support the 802.1X authenticator functionality with the following sequence of

commands:

configure

make

make install

31

The authenticator supports bridging since the 802.1d Ethernet

Bridging option was checked during the kernel configuration. Bridging will provide

communication between the wireless and wired segments of the network. Otherwise, the

authenticator cannot relay the regular network packets between the supplicant and the

network. There must be two interfaces in the authenticator: an Ethernet interface (eth0)

connecting the wireless segment to the wired network and a Wireless interface (wlan0)

acting as an access points. The following series of commands are used to establish the

bridging between the two interfaces.

ifconfig wlan0 0.0.0.0

ifconfig eth0 0.0.0.0

brctl addbr br0

brctl addif br0 eth0

brctl addif br0 wlan0

ifconfig br0 XXX.XXX.XXX.XXX up

Both interfaces’ IP addresses must be set to zero and assigned to

the bridge interface as defined above. The bridge interface (br0) is a logical interface

rather than a physical one like eth0 or wlan0. The AP bridges packets between the

Ethernet and wireless LANs and can be reached with the IP address

XXX.XXX.XXX.XXX from either network. When the AP reboots, the bridging between

the interfaces should also be reestablished.

After installing all the components and establishing the bridging,

the authenticator was ready to run the hostapd daemon to serve as an 802.1X compliant

access point. The hostapd daemon accesses a configuration file known as hostapd.conf to

retrieve the parameters of the wireless network. Appendix C provides an example of this

configuration file. The hostapd daemon is launched with the following command

sequence.

cd /usr/src/hostap/hostapd

. /hostapd –d hostapd.conf

32

(2) D-Link DWL-7000AP: Since this Access point supports the

802.1X authentication protocol, it was chosen to be used as the authenticator of the test-

bed. The configuration of the access point was simple since it has a web-based

configuration tool. Appendix C explains and illustrates the configuration of DWL-

7000AP.

c. Authentication Server
Since FreeRADIUS (http://www.freeradius.org/) is the only available

open-source authentication server tool that supports Linux, it was used by the test-bed for

this thesis. FreeRADIUS supports the EAP-TLS authentication method as an embedded

module.

One of the latest versions of the Red Hat Linux (Red Hat 8.0) was used as

the operating system for the authentication server. The newer versions of FreeRADIUS

are compatible with Linux Red Hat 8.0. In order to run the FreeRADIUS server on Linux

Red Hat 8.0, the following software should be downloaded and installed.

OPENSSL 0.9.7

OPENSSL SNAP-20020227

OPENSSL 0.9.7-beta3

FREERADIUS-0.9.2

Three different versions of the OpenSSL are needed throughout the whole

process. The stable version of OpenSSL (OPENSSL 0.9.7) is required to build most of

the FreeRADIUS software. A recent snapshot version of OpenSSL (OPENSSL SNAP-

20020227) is required to build the EAP/TLS modules. OpenSSL 0.9.7-beta3 is the third

version of the OpenSSL, which is used to create the certificates.

The other open-source software package that must be installed is

FreeRADIUS-0.9.2. After successfully installing all of the software, the Linux computer

becomes the authentication server of the test-bed. The installation procedures of the

33

necessary software come with the downloadable tarball. The following paragraphs

emphasize the important details of the installation process.

(1) OPENSSL 0.9.7: OpenSSL 0.9.7 (http://www.openssl. org) is

used for building FreeRADIUS. After downloading and uncompressing the tarball, the

following sequence of commands is used to build the software.

cd openssl-0.9.7

. /config

make

make test

make install

These commands build and install the OpenSSL-0.9.7 in the

default location, which is /usr/local/ssl for Linux Red Hat 8.0. For the test-bed, the

default location was used.

(2) OPENSSL SNAP-20020227: The snapshot version of the

OpenSSL is used to load the EAP-TLS module in the FreeRADIUS source code. After

downloading and uncompressing the OpenSSL 0.9.7 tarball, the source code was built

and installed by using the commands below:

. /config –prefix=/usr/local/openssl shared

make

make test

make install

One of the most important parts of this installation is paying

attention to the location where the software is installed. If the config command was used

without any switches, this version of OpenSSL would be installed to the default location

and overwrite the stable version previously installed.

34

The final part of the installation is checking and verifying that

libssl.so and libssl.so.0 are symbolically linked to libssl.so.0.9.8 while libcrypto.so and

libcrypto.so.0 are symbolically linked to librypto.so.0.9.8. These files can be found under

the lib directory of the snapshot version of OpenSSL.

(3) OPENSSL 0.9.7-beta3: This version of the OpenSSL is

necessary to generate the certificates used by the wireless network. This software can be

installed on another computer and the certificates can be generated in a more secure

location in real-life applications. However, to keep the process simple, the authentication

server computer was used as the certificate generator as well. After downloading and

uncompressing the software, the following commands were used to install this version of

OpenSSL:

. /config –prefix=/usr/local/openssl-certgen shared

make

make test

make install

The final step of the installation is checking and verifying the same

sym links of the specific lib files, which were mentioned in the installation of the SNAP

version. These files can be found under the lib directory of the beta version of OpenSSL.

Appendix A provides the OpenSSL configuration file for the certificate generator.

(4) FREERADIUS-0.9.2: The latest version of FreeRADIUS

(FreeRADIUS 0.9.2) modules were downloaded and uncompressed into the

/root/downloads directory. The FreeRADIUS source code was configured before building

by using the commands below:

cd /root/downloads/freeradius-0.9.2

. /configure –sysconfdir=/etc

35

The configuration script prepares the makefile to build the source

code. Since the OpenSSL version that will be used to create the EAP-TLS modules is

different than the default OpenSSL, The EAP-TLS makefile, which was placed in

/root/downloads/freeradius-0.9.2/src/modules/rlm_eap/types/rlm_eap_tls/ directory, was

modified as defined in Appendix D. After modifying the makefile, the FreeRADIUS can

be installed by using the following commands:

make

make install

After building and installing the FreeRADIUS software, the

configuration files of the RADIUS server should be modified to enable the 802.1X

authentication scheme. There are three configuration files that should be modified:

radiusd.conf, users, and clients.conf. The radiusd.conf file is modified to make EAP-TLS

work properly. The clients.conf is modified to allow access by the access points of the

wireless network to request authentication. The users file is modified to include pointers

to client certificates. A test user may also be temporarily added to the users file to check

the functionality of the authentication server without using the other components.

Appendix D provides a copy of all three configuration files.

For the session-key management, two random files must be

created. These files only need to contain random characters. For this particular occasion,

the date command was used to create these two random files.

date > /etc/1x/random

date > /etc/1x/DH

If everything has been installed and configured correctly, the

FreeRADIUS should be ready to run and to authenticate the legitimate users via the EAP-

TLS. A wrapper script is created to run FreeRADIUS with the correct SSL libraries of the

OpenSSL snapshot version. Appendix D provides a copy of this script (run-radiusd).

36

The FreeRADIUS may be run from the shell by typing run-radiusd

–X –A. (This runs the script that is mentioned in the preceding paragraph). After seeing

that the server is running correctly and listening for requests, the test user can be

employed to test the server. If the result of the test is good and an “Access-Accept”

message is returned, then the server is running well and the test user may be deleted.

4. EAP-TLS Authentication Method
This section discusses the Extensible Authentication Protocol Transport Layer

Security (EAP-TLS) briefly since EAP-TLS protocol was examined in [4] in detail.

EAP-TLS authentication is based on 802.1X/EAP architecture. The three entities

involved in the 802.1X/EAP authentication process are supplicant (the end entity), the

authenticator (the access point), and the authentication server (RADIUS server). The

supplicant and the RADIUS server must support EAP-TLS authentication. The access

point has to support the 802.1X/EAP authentication process. For example, a Cisco

Aironet access point that supports the EAP-TLS authentication protocol can be used in

the 802.1X test-bed.

The 802.1X test-bed requires the EAP-TLS authentication protocol for mutual

authentication and key exchange between the entities. EAP-TLS (RFC-2716) uses the

TLS protocol (RFC-2246), which is the latest version of the Secure Socket Layer (SSL)

protocol. TLS provides a mechanism for both user and server authentication and for

dynamic session key generation in order to use certificates. Figure 11 illustrates the

general schema for a message exchange between the entities.

37

Figure 11. EAP-TLS Message Exchange (From Ref. 26)

5. X.509v3 Certificates
The EAP-TLS authentication method is certificate-based. This method uses

X.509v3 certificates, which can be generated by using the OpenSSL software. Appendix

A covers the OpenSSL configuration file of the certificate generator.

X.509v3 certificates contain the public key of the supplicant with some additional

information. The certificates are created for the Root Certificate Authority, authentication

server and the supplicant. The Root CA certificate is created first; the other certificates

are digitally signed by the private key of the CA.

Three certificate generation scripts will be used to create all the necessary

certificates. Appendix B provides a copy of all three certificate generation scripts with an

XP specific extension file that is necessary to generate a certificate. One of the most

important requirements when creating the certificates is to verify that the client name on

the certificate matches the names in the users configuration file. Another critical point is

to assign a password that is different from the default password (default is “whatever”)

during the certificate generation process.

38

The first certificate to be generated is the root certificate. This certificate will be

used to sign the other two certificates. So the generation sequence will be as follows:

./CA.root

./CA.srv <servername>

./CA.clt <clientname>

After all three scripts are run, the folder will contain 12 different certificates. The

extensions of the certificates will be “.p12, .der, .pem”. The two certificates that will be

used by the FreeRADIUS are <servername>.pem and root.pem. The WinXP supplicant

client requires <clientname>.p12 and root.der. So those two certificates should be copied

to the supplicant and installed. The details of the certificate generation process can be

found on the following web sites:

 http://www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm

http:// www.missl.cs.umd.edu/ wireless/eaptls/

6. Validation
After installing all the software to run the test-bed, the system was tested by using

the packet-capture software, Ethereal. (www.ethereal.com). Ethereal is a software tool

that captures all the network traffic. The user may select the network adapter to filter the

traffic. Two laptops were used in the validation process. One of the laptops (Dell Insiron-

5100) was configured to capture the wireless packets in promiscuous mode with Ethereal.

The other laptop (HP Compaq pavilion Ze5400) was used as the supplicant.

The client certificates were installed to the supplicant, and the wireless card was

enabled to initiate the authentication process. All the traffic concerning the authentication

process was captured by Ethereal which was running on the other laptop. The packets

captured by Ethereal, shown in Figure 12, verified a successful authentication process.

39

Appendix E provides the successful logs of both the authentication server and the

authenticator.

Figure 12. Captured Packets showing a successful authentication

C. SUMMARY

This chapter covers the building of the open-source test-bed. The test-bed is built

using the open-source software and the Linux operating system. 802.1X authentication

standard is applied with a specific certificate-based authentication method: EAP-TLS.

A detailed manual about the configuration and installation of the 802.1X test-bed

is provided in this chapter. The experiments and analysis of the session hijacking attack

will be presented in the next chapters.

^ CApiiive llhcrpdl

Fib Edit Capture Display Tools IHsIp

.-jm&

Sfegxi><ja[^*sD3»i^
No Time . Source De^finfltion Protocol Info

4f: 13

a 7 13,
48 13.
49 13.
52 13.
53 13.
55 13.
56 13.
57 14.
58 14.
59 14.
60 14.
61 14.

'j I' .■ .H r,"

415619
425336
435052
607570
608437
792 53 5
804619
354494
358761
375824
382970
397397

L. -L Ini

D-Llnl<_d9
compaqHp_
D-Llnl<_d9
compaqHp_
Ci-Llnl<_d9
compaqHp_
D-Llnk_d9
CGmpaqHp_
D-Llnl<_d9
D-Llnl<_d9
Cp-Llnk_d9

.75: Si: 84
:8d:ae
.75:81:84
:8d:ae
.75:8a: 84
:8d:ae
.75:8a: 84
:8d:ae
.75:8a: 84
:8d:ae
:8d:ae
:8d:ae

Cijrriiiiijiifj "'. :^^a:.f-3
D-L"lnl<_d9:8d:ae
CompaqHp_75:8a:84
D-Llnl<_d9:8d:ae
CompaqHp_75:8a:84
D-Llnl<_d9:8d:ae
CompaqHp_75:8a:84
D-Llnl<_d9:8d:ae
CompaqHp_75:8a:84
D-Linl<_d9:8d:ae
CompaqHp_75:8a:84
CompaqHp_75:8a:84
CompaqHp_75:8a:84

EAf
EAP
EAP
TLS
TLS
EAP
TLS
TLS
TLS
EAP
EAP
EAPOL
EAPOL

ksquest, Identify [RFi:2284]
Response, Identity [RFC2284]
Request, EAP-TLS [RFC2716] [Aboba]
client Hello
seruer Hello, certificate, certificate Bequest, server He'
Response, EAP-TLS [RFC2716] [Aboba]
seruer Hello, certificate, certificate Bequest, server He'
certificate, client Key Exchange, certificate verify, chat
change Cipher Spec, Encrypted Handshal<e Message
Response, EAP-TLS [RFC2716] [Aboba]
success
Key
Key

R:
ffl Frame 44 (19 bytes on wire. 19 bytes captured)
EEthernet II, src: OO;0b:cd;75:8a;84, Dst: 00:05: 5d;d9:8d:ae
EIB02.1X Authentication

uerslon: 1
Type: start <1)
Length: 0

rc
0000 00 05 5d d9 8d ae 00 Ob cd 75 8a 84
0010 00 00 00

..]

/ Rssel Apply Fils: capturs

(9 Etharcal. Displav Filtsr * I.- .- 'l *^. '■- f^ " 03 AM

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

IV. APPLICATION OF THE SESSION HIJACKING ATTACK

A. INTRODUCTION
This chapter describes our first-hand experience of implementing a session

hijacking attack against a WLAN. To implement an attack of this nature, an open-source

platform should be built. The previous chapters detailed the building of such an open-

source test-bed. The test-bed was built to reflect a real-life implementation of a wireless

network that uses the 802.1X authentication protocol.

A session hijacking attack needs a laptop that can serve both as a rogue access

point and as a rogue client. The test-bed works with a commercial access point (D-Link

DWL-7000AP), which is capable of 802.1X authentication. A laptop with the HostAP

software is used as the rogue access point for the attack described in this chapter. For the

rogue client, either the same HostAP laptop or another laptop with Windows XP running

is used during the implementation of the attack.

The University of Maryland paper [1] talked about the possibility of a session

hijack attack and the resultant responses by Cisco and Orinoco acknowledged the same

risk, however, with some exceptions. Our work provides additional observations from a

practical perspective.

B. NECESSARY CONDITIONS FOR SESSION HIJACKING ATTACK
A session hijacking attack is based on some specific vulnerabilities that can be

exploited in such a fashion that both legitimate entities of the session are kept unaware of

the attack. The nature of the attack involves posing as the authenticated user and using

that user’s credentials to use the protected network.

The first specification of the 802.11 standard is wide open to any kind of attacks.

The standard does not even mandate the use of encryption for network traffic and

authentication for the users. Using the 802.11 standard without encryption makes it

subject to snooping and hijacking, regardless of the authentication method used.

The enhancement to the first specifications of the 802.11 standard resulted in the

introduction of the popular and widely discussed encryption technique, known as Wired

42

Equivalence Privacy (WEP). The weaknesses in the WEP encryption were discovered

shortly after its introduction. WEP does not support per-packet integrity and offers weak

encryption. The length of the initialization Vector (IV) is short enough (24 bits) for an

attacker to break the WEP key. In a congested wireless network, an attacker can monitor

the network traffic and capture multiple packets encrypted with the same WEP key and

same IV after a fairly short time. The WEP key is then broken easily.

There are two main conditions that should be present for a general session

hijacking attack: the server should be unaware of the attack and the client should be

unaware of the attack. The other two conditions mentioned below are the specific

conditions that should be met for a specific session hijacking attack against a wireless

network.

From a mathematical point of view the attack can be formulated as follows:

T0: the time of the start of the attack

T1: the time of the disassociation of the client

T2: the time that the attacker takes over the client’s role after changing the

settings of the attacker

T3: the time of the arrival of the first replay packet for the malicious packets.

T4: the time of the detection of the attack by the network administrators.

Te: time to break the encryption key.

Since the Te is much larger than the other time variables of the attack, the best

practice for an attacker is to break the key before the actual start of the attack. The time

necessary for a session hijacking attack to be complete (Tcomplete) can be formulated as

follows:

Tcomplete = T3 – T0 = (T3 – T2) + (T2 – T1) + (T1 – T0)

The time of the detection of the attack (T4) cannot be smaller than T1. The attack

can be detected as soon as the client is disassociated. Thus,

(T4 >= T1).

43

For a session hijacking attack to be evaluated as complete and successful, the

following equation should be met:

Tcomplete < T4

(T3 – T2) + (T2 – T1) < T4

This formulation shows that the attack can only be successful if the attack is not

detected before the reply for the first malicious packet returns to the attacker.

Following are the necessary conditions specific to a session hijacking attack in a

wireless network.

1. Necessary Condition 1:
For a session hijacking attack, the server or the entities that are responsible for

providing network services should be kept unaware of the existence of an attacker for a

sufficient amount of time, as described in the aforementioned formulation.

2. Necessary Condition 2:
Similar to the server, the legitimate client that is disassociated from the network

should also be kept unaware of the existence of the attacker.

The legitimate client is both the entity that will suffer from the attack and the

entity that can detect the attack. The attacker will keep the legitimate client out of the

network. If the legitimate client becomes aware of an attacker, the precaution against the

attack may be applied. The time for the client to become aware of the attack is not

controlled by the attacker. This time varies according to the instincts and knowledge of

the client. A careful and knowledgeable client can detect an attack just after the attack is

initialized.

3. Necessary Condition 3:
For a session hijacking attack, the attacker should have all the necessary tools and

equipment that may be necessary at any part of the attack.

44

The steps of the session hijacking attack will be discussed in detail in this chapter.

The attacker should have equipment that has good peak power to challenge the legitimate

entities. Once the power of the attacker is greater than the legitimate entity, the victim

machine will try to communicate with the station with the higher power.

The attacker should have tools, such as Netstumbler and Ethereal, to monitor the

victim’s network. Gathering information about the victim’s network is the first step for

launching an attack. The attacker should have the capability to run a WEP key breaker

tool against the victim network. The attacker should also be able to create malicious

packets that look as if they are coming from a legitimate user. The tools that are used to

generate the packets are discussed later in this chapter. The attacker should also have the

capabilities and knowledge to change and to spoof IP and MAC addresses.

4. Necessary Condition 4:
No encryption or weak encryption is in use by the target network.

A session hijacking attack is possible with any kind of known authentication

mechanisms, unless encryption is used in the network. The 802.1X authentication

mechanism provides some good techniques for authentication. EAP-TLS is one of the

most popular authentication mechanisms. EAP-TLS provides strong mutual

authentication, however, due to the problems discussed in Chapter II, the session

hijacking attack is still possible.

The importance of the encryption is mentioned in a paper published by Cisco [2]

as an answer to the University of Maryland’s paper [1]:

 If the network uses an EAP authentication algorithm that does not support
dynamic WEP keys of mutual authentication, the wireless LAN will be vulnerable to
attack. An example is the use of the EAP-MD5 authentication algorithm.

 EAP- MD5 performs one way authentication of the client with no facility
for dynamic WEP (static WEP is supported)…

Another response published by Orinoco [3] accepts the possibility of a session

hijacking attack without using encryption:

45

 The hijacked session attack assumes that no encryption is present. When
no encryption is present, this attack will succeed, allowing the attacker to use the session
until the next re-authentication interval. At the next re-authentication time, the attacker
would not be re-authenticated. He would then hijack another valid session.

The use of the static WEP key may not be sufficient to prevent all the attempts of

the session hijacking. If the same WEP key is being used by all the clients of the network,

that WEP key is vulnerable to compromise. The length of the WEP key and the traffic

load of the traffic using it are important factors that effect the time needed to break the

WEP Key.

Dynamic, session-based, per user WEP keys will be a good solution to prevent the

attackers to use the network, even if they manage to steal the session. The session

hijacking attack may devolve to a denial of service attack for the legitimate client if the

Dynamic WEP keys are used.

C. DEMONSTRATION OF SESSION HIJACKING ATTACK

As mentioned earlier in this thesis, a session hijacking attack is possible because

clear communication between the state machines of the authenticator and the

authentication server is lacking. A. Mishra and W. Arbaugh claim that the IEEE 802.1X

is vulnerable to a session hijacking attack in their paper, “An Initial Security Analysis of

the IEEE 802.1X Standard” [1]. They mentioned that after a successful authentication by

the legitimate client, the attacker can send disassociate frames to the client by spoofing

the legitimate authenticator and as a result, the supplicant is disassociated from the

network. After the first part of the attack is completed, the attacker can spoof the MAC

address of the legitimate supplicant and gain access to the network without passing the

authentication scheme. The actual attack consists of three parts;

o The disassociation of the supplicant

o Breaking the encryption if encryption is in use.

o Accessing the network by using the credentials of the disconnected user.

46

1. Disassociation of the Supplicant
The first two necessary conditions, the server and the legitimate client are kept

unaware of the attack, must be present to exercise this step.. Condition 3 is necessary to

complete this step, also. The attacker must monitor the network using the type of tools

described in the following chapters.

The attacker has two machines to launch the attacks. Both machines are used to

monitor the network traffic and the MAC addresses of the entities. Netstumbler is one of

the Windows-based tools that may be used to detect he wireless access points (Figure

13). Windows XP also has the capability to catch the available wireless networks.

Netstumbler is used to monitor the SSID of the network and the MAC addresses of the

authenticator.

Figure 13. Netstumbler

The second important tool used to monitor the network traffic is Ethereal.

Ethereal can work in both Linux and the Windows operating systems. Using Ethereal, an

attacker can monitor all the wireless traffic in promiscuous mode. A successful

authentication message sequence between the legitimate supplicant and the authenticator

was monitored by using Ethereal, as shown in Figure 14. The messages exchanged and

the MAC addresses of the entities are shown.

47

Figure 14. Successful Authentication Traffic Captured by Ethereal

The MAC address of the rogue access point (HostAP) should be changed to the

MAC address of the legitimate access point. This is relatively simple in the Linux

environment compared to the Windows OS. Since the Hostap driver is working properly

in the rogue access point, the ifconfig command easily changes the MAC address and the

SSID of the wireless interface.

ifconfig wlan0 hw ether <MAC address>

iwconfig wlan0 essid “test”

The preceding two lines of commands change the MAC address of the rogue

access point. After the capture of the MAC address, there are two ways to send

disassociate the legitimate supplicant. The first one is to run the HostAP software with

the following command:

./hostapd –d hostap.conf

^ capture - Ethereal

File Edit Capture Display Tools Help

&t a ® * *3 A®

46 13.
47 13.
48 13.
49 13.
52 13.
53 13.
55 13.
56 13.
57 14.
58 14.
59 14.
60 14.
61 14.

382367
415619
425336
435052
607570
608437
792535
804619
354494
3 58761
375824
382970
397397

D-Link_d9:
compaqHp_75
D-Link_d9:8
compaqHp_75
D-L1nk_d9:8
cornpaqHp_75
D-Li nk_d9:8
CompaqHp_75
D-Li nk_d9:8
compaqHp_75
D-Link_d9:8
D-Link_d9:8
D-Link_d9:8

:8a: 8
diae
:8a: 8
diae
:8a: 8
diae
:8a: 8
diae
:8a: 8
diae
d:ae
d:ae

compaqHp_
D-Link
compaqHp_
D-Link_d9
compaqHp_
D-Link_d9
compaqHp_
D-Link_d9
compaqHp_
D-Link_d9
compaqHp_
compaqHp_
compaqHp_

75:8a:E
:3d:ae
75:8a:8
:3d:ae
75:8a:8
:3d:ae
75:8a:8
:3d:ae
75:8a:8
:8d:ae
75:8a:8
75:8a:8
75:ea:8

EAP Request, Identity [RFC2284]
EAP Response, Identity [RFC2284]
EAP Request, EAP-TLS [RFC2716] [Aboba]
TLS client Hello
TLS server Hello, certificate, certificate Request, server He"
EAP Response, EAP-TLS [RFC2716] [Aboba]
TLS server Hello, certificate, certificate Request, server He"
TLS certificate, client Key Exchange, certificate verify, char
TLS change cipher spec. Encrypted Handshake Message
EAP Response, EAP-TLS [RFC2716] [Aboba]
EAP Success
EAPOL Key
EAPOL Key

fflFrame 44 (19 bytes on wire, 19
fflEthernet II, src: OO:0b:cd:75:i
B802.1X Authentication

version: 1
Type: start (15
Length: 0

bytes captured^
a:84, Dst: 00:05:5d:d9:8d:ae

R:
DOOO 00 05 5d d9 8d ae 00 Ob
0010 00 00 00

=1 Resel Apply File capture

, Start f O 3! " 9 Cffiture - Ethere.

48

HostAP automatically creates disassociation packets each time it is initiated.

Since the supplicant just checks the MAC address of the frames coming from the access

point, it is disconnected after the packet is received. The second way of disassociation is

using the wireless tools that come with the HostAP tarball. The following command is

used to disconnect the authenticated client:

 iwpriv wlan0 kickmac <MAC address>

However, the station will try to authenticate and associate again immediately after

this, so the user should be denied by the rogue access point using the following

commands:

 iwpriv wlan0 maccmd 2

 iwpriv wlan0 addmac <MAC address>

2. Breaking the WEP Key
Necessary condition 4 is critical for this step. If the encryption is not used, then

there is no need to break the WEP key, and the access to the victim network is trivial. If

the necessary condition 4 is not met, then the attack is unsuccessful.

WEP (Wired Equivalent Privacy) is the encryption technique used by the 802.11

wireless networks. Since Wireless LANs can be accessed without physical connection to

the LAN infrastructure, IEEE decided to use encryption at a Data Link Layer to prevent

eavesdropping. There have been several discussions and papers about the vulnerabilities

of WEP. These vulnerabilities will be mentioned, since session hijacking attacks may

include breaking the encryption of the wireless traffic.

WEP is on the RC4 algorithm, which is a symmetric key stream cipher. Stream

cipher algorithms generate a key stream from the original key to match the length of the

plaintext that will be encrypted. The stream ciphers, along with another method called

“block-cipher” are known as Electronic Code Book (ECB) mode encryption. With ECB

mode encryption, the same cipher text is generated when the input plain text is the same.

Since usage of the same key for each packet would cause security problems, the

Initialization Vector (IV) is used to obtain a different key for each packet by using the

49

same Key. By using the IV, the resulting cipher text will be different, even if the same

packet is transmitted twice.

An Initialization Vector is 24 bits long and is sent in clear to the recipient of the

packet. The WEP key is 40 or 104 bits and with the augmentation of the IV they become

64 or 128 bits long. Although the length of the WEP key is known to be 64 or 128 bits, it

is actually 40 or 108 bits, since the IV is sent in the clear and readily available to the

eavesdroppers.

The weakness of the WEP encryption algorithm was revealed by two studies in

2001: “Intercepting Mobile Communications: The Insecurity of 802.11” [15] and

“Weakness in Key Scheduling Algorithm of RC4” [10]. Cryptanalysts Fluhrer, Mantin,

and Shamir determined that WEP key can be broken passively by just collecting packets

from a wireless network [10]. This technique is based on weak IVs, which reveal the key

bytes after statistical analyses. This vulnerability was implemented by AT&T/Rice

University and the developers of an open-source WEP cracking tool, Airsnort. The

implementation showed that 64 or 128 bits long WEP keys may be derived after

analyzing as few as four million packets [20]. This amount of packets is routed in four

hours in a congested wireless networks. A 24–bit IV can contain 16,777,216 possible

values. So, in a network running at 11 Mbps, the time for the same IV to be used is about

five hours. [21]

WEP specifications do not require any specific kind of key management

technique. The first of three techniques to be used for key management is static WEP

keying. The shared secret key is known by both of the entities and that key is used

without any change. The second key management technique is creating a known number

of WEP keys and using those keys interchangeably. The third one is dynamic WEP

rekeying, in which the new WEP keys are produced and installed automatically at small

intervals without the supervision of any system administration.

A wide range of tools was created after the vulnerabilities of the WEP algorithm

became public. Airsnort and WEPcrack are the two most popular tools. WEPcrack is a

series of perl scripts that are used to break the WEP key of the collected packets by a

sniffer. Airsnort does not require a separate sniffer, since Airsnort can both capture the

50

packets and crack the WEP key. For this thesis work, Airsnort was selected as the WEP

cracking tool.

Airsnort is a Linux-based tool that exploits the vulnerabilities mentioned in the

paper “Using Fluhrer, Mantin and Shamir Attack to Break WEP” [11]. Arisnort requires

Linux kernel 2.2 or 2.4 with the wlan-ng drivers and a prism2-chipset-based wireless

network card. The difficulty of the open-source wireless tools is to match the

combination of the kernel configuration with the proper driver and the networking card.

Airsnort works perfectly after overcoming the difficulties of the installation. Airsnort has

a GUI interface which is sufficient for any user to interact with the software. The GUI

interface is shown in Figure 15. The Cracking time depends on both the length of the

WEP key and the amount of network traffic. The amount of time could vary, but it is

obvious that with one of the tools and patience, the WEP keys can be broken.

Figure 15. WEP Cracking Tool Airsnort

3. Accessing the Network
After completing the first two steps of the session hijacking attack, there is only

one step left to complete the attack. The last part is accessing the victim network by using

the victim client’s credentials.

V PiMTi-i.M

FlJe Edit Settings H^p

O scan

® channel Is H

Network device wianO

Card type Piism;

40 bit crack breadth: 3 ^

128 bn crack breadth; ; ^

c |BSSID Name |wEP Last Seen Last IV Chan Packets Ertcryptet |lnteresting |pW: Hex |pw. ASCII -

00: OS: 5 D: 99:60: A6 test Y Tue Feb 10 14 04 30 2004 5B EE 65 3 1124444 3523994 123

FF:FF:FF:FF:FF:FF SST-PR-1 Tue Feb 10 14 04 06 2004 00 00 00 6 56468 0 0

7B 77 7B 27 52 32 Thu Feb 5 13 54 10 2004 00 00 00 1 0 0

00 00 00 00 00 00 Y Mon Feb 9 13 35 28 2004 9B 09 45 2109 25 0

7F 77 7B 27 52 32 Tue Feb 10 10 41 00 2004 00 00 00 3 0 0

B3:13:33:32:1S:73 ^_^_ Thu Feb 5 14:09:00 2004 00:00:00 1 0 0

M-90-4C(M(M(M
^^■H

Thu Feb 5 141303 2004 000000 2 0 0

33 13 33 32 1873 Thu Feb 5 1415 57 20W 00 00 00 1 0 0

B3 12 33 32 1873 Thu Feb 5 142411 20M 00 00 00 1 0 0

7D75FB07 52 72 Thu Feb 5 143109 20M 000000 5 0 0 ^

7D:75:FB:27:52:72 ThuFeb 5 143255 2004 000000 7 0 0

BA:01:EA:02:11:00 SST-PR-l Y FrI Feb 6 100044 2004 000000 6 20 0 0

E6:01:B4:03:44:02 SST-PR-1 Y Frl Feb 6 11271S 2004 000000 6 15 0 0

72:00:CS:02:DB:02 SST-PR-1 Y FrI Feb 6 Ii:4S:33 2004 00:00:00 6 3 0 0

9A:iXi:E0:00:BF:03 SST-PR-1 Y Frl Feb 6 11:34:15 2004 00:00:00 6 18 0 0

E2:03:1A:03:D7:03 SST-PR-1 Y Sal Feb 710:56:04 2004 00:00:00 6 25 0 0

C6:03:69:03:31:01 SST-PR-1 Y MonFeb 910:09:58 2004 BD:00:OC 6 17 1 0

7F:37:76:27:52:32 Tue Feb 10 11:47:17 2004 00:00:00 3 0 0

6E:02:14:02:4B:03 SST-PR-1 Y MonFeb 914:31:33 2004 00:00:00 6 20 0 0

CI0:0A:B7:1A:SF:S2 Y Tue Feb 10 10:13:10 20M 34.05.00 33 33 0

7F:36:7B:27:52:32 MonFeb 913.15.56 2004 00.00.00 1 0 0

GA.03.31.01.9D.00 SST-PR-1 Y Tue Feb 10 09.18.53 2004 00.00.00 6 14 0 1
92.02.4E.03.FB.03 SST-PR-1 Y Tue Feb 10 09.41.54 2004 00.00 00 6 18 0 1
7F35.7B.27.52.32 Tue Feb 10 10.25.09 2004 00.00.00 1 0 P

IE] ■'-^ lUntltledl - OpenOfflce.org 1.0.1] 3[root^csll-9:/usr/src/Ursnort-a.2.3c/sr{

■ root@>csll-9:/usr/src/alrsnort-0.2.3c/rTra □ AlrSnort

51

The victim client will be out of the picture at the end of the first part. However,

the client will try to reconnect to the network after it is disconnected. There will not be

enough time for the second part of the attack if encryption is used. Therefore, breaking

the WEP key should be done prior to the first step of the attack.

If the network is not using encryption, the attacker can change its MAC address

and use the network as the real client. The attacker learns the MAC address of a

legitimate client after the first step of the attack. If the attacker is using a Linux machine,

changing the MAC address is the same as the first part. If the attacker is using Windows,

then a tool must be used to change the MAC of the wireless interface. There are some

free tools that can be used for this purpose. One of the most popular is SMAC, developed

by KLC Consulting Inc. That tool can change the MAC addresses for Windows

compatible NICs (http://www.klcconsulting.net/smac/). This tool has a GUI interface and

is easy to use. There is one drawback to this tool: the machine should be rebooted for the

change to take effect. Figure 16 shows the interface of SMAC.

Figure 16. SMAC: MAC Changer Tool Interface

After changing the MAC address, the Windows XP client should configure the

wireless connection options to connect to the network. There are some options related to

SMAC1,1 fWBEMOn]
&l» ^out

UHJ
10 Active S
fiDDJ hei hei Bioadcom 440^ 10/lOOJnl

IPAddref? AdWeMAC

655 Ye^ No
0016 Ye^ No

WAN[PPP/BLIPJInlerlace
WANpPP/BLIPJInlerlace

17?13313?ie4 00-53 45 DD DD DD
172 139 132 184 O0-5^-45-00-00-00

17 Show OnlvAchve Network Adapler^

New Spooled MAC Addre^^

j 00 -, OD -, 56 -, 3C -| B8

Spoofed MAC Addrg^^

|00-OD-56-3C-B8-95 ±i

Aclive MAC Addre^^

|00-0D-56-3C-Bfi-95 *|

- 95 x]
Updale MAC Refresh

Remove MAC Eidl

KLC CONSULTING, INC
WWW. kicconsultinq.net/smac

I DGdaiiKt: Use diis pto^am 3l you own ii5k V^ ate ml responsiile lot any dairaqe dial mi^ DCOH ID you syslan Hits
IptD^atn 1^ nol la be u^ed IDF dny ill^gdl Df un^lhicdl pqifpa^e Cw mH u^e ^^ pii>gf dm il yihi do nol jgree wilh Ihi^ di^cldimer

52

the connection properties, namely the use of encryption and the size and type of the

encryption Key.

1. No Encryption: If there is no encryption used, the settings should be made for a

connection without an encryption using the GUI interface for Windows XP wireless

connection settings. Figure 17 shows the connection settings for a connection without

encryption.

Theoretically, the Windows client should continue on the connection that is

provided by the previously connected legitimate client. For test purposes, the commercial

access point (D-Link DWL-7000AP) was the first choice to be configured to use the

802.1X authentication without encryption. However, the access point software doesn’t

allow this kind of setup. The access point allows the 802.1X authentication only with

encryption enabled. The other access point used in this thesis, HostAP, does allow any

kind of configuration since it is an open–source tool. The configuration file called

hostapd.conf can be configured to be used without encryption.

Figure 17. Windows XP Wireless Configuration Setup without Encryption.

lesi properiies

Aiiocialion , AulhenliGolion I

Ne|i/^Qrkname[BBlD); le^l

Wirele^^ nelwork key

Thi^ nelwork requires a key lor Ihe lollowing

Nelwork Aulhenlicalion

Dala encrvplion Disabled

Nelwork key

Conlirm nelwork key

Key inde- (advanced) tf
I I The key i^ provided lor me aulomalicallv

mm

I I Thi^ 1^ a compuler-lo-compuler (ad hoc) nelwork, wireless
acce^^ poinl^ are nol u^ed

OK Gated

test properties

A^^ocialion Aulhenlicalion

Selecl Ihi^ opiion lo provide aulhenlicaled nelwork acce^^ lor
wirele^^ Elhernel nelwork^

O Enable IEEE 802 1- aulhenlicalion lor Ihi^ nelwork

EAP Ivpe Smarl Card or olher Cerlilicale

Properiies

I I Aulhenlicale as compuler when compuler inlormalion is available

I I Aulhenlicale as guesi when user or compuler inlormalion is
unavailable

j\
-I lEEE 802 1- aulhenlicalion can nol operale on peer lo
' \ peer (ad hoc) nelworks or on nelworks lor which dala

encrvplion is disabled

OK Cancel

53

2. With Static WEP key encryption: When static encryption is used, with 64- or

128-bit keys, the XP client can be configured to use a connection similar to the original

connection with encryption. The static WEP keys are known as breakable with tools like

Airsnort. The tool was tested and left to break the 64 bit key of the test-bed. For four days

of action, the tool collected only 123 interesting packets, whereas at least 1500 interesting

packets are necessary to break the key. The tool could not break the key in four days

since the network traffic of the test bed was not as high as expected. Although the WEP

key could not be broken successfully due to the time considerations, the key is assumed

to be broken by the tool since WEP cracking is not the main issue of this thesis.

Both D-Link and HostAP access points are easy to be configured to work with

static WEP keys and the 802.1X authentication. After the configuration of the XP client

with the known WEP key, the XP client can use the network by activating its network

card. Figure 18 shows the configuration options with the static WEP key.

Figure 18. Windows XP Wireless Configuration with Static WEP Key.

3. With Dynamic WEP rekeying: The third option of the WEP encryption is using

Dynamic WEP rekeying, in which the authentication server creates dynamic WEP keys

that are changed in a predefined interval. The default changing interval for the HostAP is

test properties

A^^ocialion Aulhenlicalion,

Nelworkname(SSID) le^l

Wirele^^ nelwork key

Thi^ nelwork requires a key lor Ihe lollowing

Nelwork Aulhenlicalion

Dala encrvplion

Open

WEP

Nelwork key

Conlirm nelwork key

Key inde- (advanced)

I I The key i^ provided lor me aulomalicallv

@S

I I Thi^ 1^ a compuler-lo-compuler (ad hoc) nelwork, wirele^^
acce^^ poinl^ are nol u^ed

OK Cancel

test properties

A^^ocialion i Aulhenlicalion

Selecl Ihi^ opiion lo provide aulhenlicaled nelwork acce^^ lor
wirele^^ Elhernel nelwork^

O^nable IEEE 302 l>i authentication lor this neti^iork

EAP Ivpe Smarl Card or other Cerlilicale

Properties

' Authenticate as computer when computer inlormation is available

I i Authenticate as guest when user or computer inlormation is
unavailable

OK Cancel

54

300 seconds. This changing interval makes WEP cracking virtually impossible. Even if

the network is congested and the WEP key is 64 bits, the allotted time is not sufficient for

any cracking tool to break the WEP key.

The configuration of the XP client does not have any importance since the WEP

key could not be set for the wireless connection. The attack only results in a denial-of-

service attack against the legitimate client.

4. Using a Packet Generator
Packet generators allow the users to create any kind of packets and send them

from one of the computer’s network adapters. Excalibur is one of the most popular

packer generators. For this thesis, Excalibur is used to generate an ICMP packet that is

sent to a Web site (www.yahoo.com) to test the access to the network after the session is

stolen. Excalibur provides options to input the MAC and IP addresses of the source and

destination entities, as well as the other layer options of the packet (IP, TCP packet

options.)

The MAC and IP address of the legitimate client, which are spoofed in the first

step of the attack, are applied to the ICMP packet. One of the popular Web sites is

selected as the destination of the ICMP ping packet. Figure 19 shows the interface of the

Excalibur.

Figure 19. Excalibur Packet Generator

BrSO Decode

^le Edit
"EBB

ISO Layers

130-3 Internet Protocol (IP)
190-il Int Ctrl Msg Proto (ICMPj
Iso-ii iCMP option ectio
(free Input)

DstvenOor ^ OKOOOSSD: D OKLInk Systemi, Inc J0"00055D

DstAOOress f 3 Oytes

3rc venOor

«

tj0«D95759

'-hOw-vendor thij adapter venaorj@iny-iiaw-vendot

3rc Address [@my-hdw-addr this adapter addr tj@my-iiaw-aaar

=rotocoltype \ 0>iOBOO: IP llso] j(o»0800

'Aoa ISO/ISO options/ Delete last layer J Select packet action type: O SerrB packet O Match packet
'acket details Heiadecirnai / ASCII
00 0! !tl tl» !7 ;$ 00 00 00 00 00 00 Oe 00
1! 00 00 00 00 CO 00 00 eo 01 00 00 00 00 00 00 .
00 00 00 00
08 00 00 00
DO 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Packet data length ■ 000074 Oytes, Adding new Iso will call: (NULL)

55

Since the XP clients cannot be configured to use the 802.1X authentication

without using WEP encryption, the tests of the session hijacking attack without

encryption could not be implemented. Since the legitimate user stays authenticated by

the access point after it is disassociated from the network, the attacker can send the

artificially generated packets by using the credentials of the legitimate client. For testing

the packet generator, the access point is switched to open-system and WEP encryption is

disabled. The ICMP ping packets are generated by the attacker and sent over the network

in the name of the legitimate client. ICMP echo packets are received by the attacker via

the access point. The network traffic can be received by the attacker after the

authentication is bypassed.

When the WEP encryption is enabled, the ICMP packets cannot be sent by using

the credentials of the attacker because there is no way of encrypting the generated ICMP

ping packets with the WEP key before sending it. Excalibur does not have a feature that

allows the generated packets to be encrypted with the WEP key. The packet generator

could not be tested with the WEP encryption enabled.

D. RESULTS OF THE SESSION HIJACKING ATTACK
The University of Maryland paper [1] mentioned the success of the session

hijacking attack without mentioning the status of the encryption. Both Cisco and

Orinoco’s responses both mentioned that the attack may be successful if encryption is not

used.

After conducting the tests on the test-bed, the results were similar to the responses

of Cisco and Orinoco. Without using the encryption, the attacker successfully hijacked

the session. Even though the results were in favor of the successful attack, there were

some points that prevented the conditions of the attack to exist. Commercial access

points, like the one used in the tests (D-Link DWL 7000 AP), do not allow a network

configuration that uses the 802.1X authentication without encryption. The software of the

access points does not allow this kind of configuration. Additionally, the latest version of

the Windows operating system (Windows XP SP1) does not have an option for making a

connection that enables the 802.1X authentication without encryption. The warning

56

message of windows XP is seen in Figure 20. Since more than 90 percent of the

computers use the Windows OS, the environment for using the 802.1X authentication

seems impossible.

Figure 20. Windows XP Warning Message.

The tests with the use of static WEP keys showed that the attack would be

possible but not efficient. The amount of time required to break the WEP key could be

unworkable if the traffic of the victim network is not congested. If, however, the WEP

key can be obtained then the other steps of the session hijacking attack can be performed.

This possibility was tested artificially applying the WEP keys to the attacker client

machine as if they were broken by the WEP crack tools. In theory, the attack is successful

with the known encryption keys. Even if the network administrator changes the static

WEP keys periodically the attacker should be able to crack the keys every time they are

changed, given an insufficient change interval. The legitimate client will be kept out of

the network with the disassociation packets sent from HostAP. The legitimate client

cannot detect the existence of the attacker unless the administrator is notified about the

problem. The administrator can detect the attacker that is using the credentials of the

legitimate user that is unable to connect to the network.

leit propertiei

Association | ^

Sfifcl Ihis opiion to provide authentioated network aooess Tor
i^iireless Elhernel networks.

D^nable IEEE 802.1 x authentication for tliis network

EAP l^ipe I Smart Card or other Certificate

Pioperties

□ Authenticate as ^crnputer when computer mlormation is avaiiahie

I I Authenticate a? gue^t when u?er or compuler infurmahDn i-^
ur.a callable

•\ IEEE 802.1 X authentication can not operate on peer to
^_J\ peer [ad hoc) networks or on networks for which data

encryption is disabled.

CK Cancel

57

The final test, with the Dynamic WEP keys, completely validated Cisco and

Orinoco’s responses. The rekeying period is small enough to prevent any kind of attempt

to break the WEP key.

The 802.1X authentication is always vulnerable to injection of malicious frames.

The disassociation of the legitimate client is always a possibility and can be achieved

easily with the use of HostAP. However, the encryption is the greatest obstacle to

overcome. If the encryption could not be beaten, then the attack becomes worthless. The

packets sent by the malicious client are dropped since they are encrypted without the

correct keys.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

V. RESULTS, 802.11I STANDAND AND SOLUTIONS

A. INTRODUCTION
The IEEE 802.11i group is working hard to find a complete solution to the type of

session hijacking attacks demonstrated in Chapter IV. This chapter will examine that

effort. Since the 802.11i working group has not finalized their work, this discussion is

based on the most recent draft recommendations published by the group regarding the

802.11 and 802.1X standards. (http://grouper.ieee.org/groups/802/11/LetterBallots.html)

The draft recommendations are discussed generally and the sections that are concerned

with the session hijacking attack are specifically analyzed.

Our analysis has uncovered some inadequacies in the 802.11i recommendations

with regard to their effectiveness against session hijacking attacks. Possible solutions to

the inadequacies are proposed at the end of the chapter.

B. PROBLEMS OF 802.1X AUTHENTICATION STANDARD IN WIRELESS
NETWORKS
While describing the session hijacking attack in Chapter II, the vulnerabilities of

the 802.1X authentication standard that allows the attackers to launch the session

hijacking attack were discussed. The problems can be summarized as follows:

1. The client maintains a state machine and the authenticator maintains a

state machine for each client. These two state machines may be out of synchronization as

described in Chapter II, which could be exploited for a session hijacking attack.

2. The lack of authenticity of the management frames of the authentication

traffic.

3. One-way authentication of the client only.

4. Inadequacy of WEP encryption.

5. Open-signal propagation medium

60

C. 802.11i STANDARD
In this chapter, the new wireless security standard will be covered. The new

standard is called 802.11i. The final version of the standard is not completed, it is still a

work in progress; however, the latest draft of the standard was published after it passed

the ballot of the wireless committee. 802.11i draft 7 is the latest draft of the standard.

1. History
In July of 1999, the IEEE 802.11 had a study group meeting for people interested

in enhancing the IEEE 802.11 MAC for better quality of service (QoS) and privacy. In

March of 2000, TGe was created to enhance the 802.11 Medium Access Control (MAC)

to improve and manage QoS, and to provide enhanced security and authentication

mechanisms for wireless networks. In March of 2001, the TGe was split into separate

working groups: TGe and TGi to focus on QoS and security issues, respectively. TGi

began acting independently in May of 2001. Since then, TGi has worked on the new

standard and published the drafts of this new standard after the Letter Ballots. Draft 7 is

the latest draft of the 802.11i standard.

2. Architecture of 802.11i
In general, the new 802.11i standard consists of two layers and there are three

main pieces that are organized in these two layers. On the lower level, there are two

improved encryption algorithms: the Temporal Key Integrity Protocol (TKIP) and the

Counter mode with CBC-MAC protocol (CCMP). Both encryption protocols are

designed to protect the data integrity better than the legacy WEP encryption technique.

TKIP is targeted at legacy equipment and CCMP is targeted at future WLAN equipment.

On the upper level, there is the authentication standard 802.1X. 802.1X was not a part of

the original 802.11 standard and it becomes a part of the wireless LAN standards with

802.11i.

The goal of 802.11i is to combine the newly defined standards, such as TKIP and

CCMP, with the existing 802.11 standards and 802.1X authentication standard. In order

to understand how these three pieces fit together, the details of each individual standard

61

should be examined. Since the 802.1X standard has been examined in detail in the

previous chapters, it is omitted from this discussion.

3. Key Management
802.1X authentication is carried over to the new standard, however, key

management issues have been modified to make it more robust. The new standard defines

two key hierarchies: pairwise key hierarchy, which aims to protect unicast traffic, and

group-key hierarchy to protect multicast traffic.

a. Pairwise Key Hierarchy
The new standard brings the use of Pairwise Master Key (PMK) for the

security of the session between the supplicant and the authenticator. A Pairwise Transient

Key (PTK) is derived from the PMK, which will be chopped into three different keys to

be used in different fields of the security. These three keys are: the EAPOL-Key MIC

Key (KCK), the EAPOL-Key Encryption Key (KEK), and the Temporal Key (TK).

Depending on the EAP type of authentication, the supplicant and the

authentication server share some sort of key material before the actual authentication

starts. Although it is not part of the new standard, certificate-based EAP-TLS is the most

popular and convenient EAP type. Certificates are installed into both the supplicant and

the authentication server before the actual authentication takes place. Master Key is

derived during the 802.1X EAP Authentication. Only the Authentication Server (AS) and

the Supplicant can have this Master Key.

PMK can be defined as a fresh symmetric key, which controls AS’s and

Supplicant’s access to the channel during the session. PMK results from the

authentication between the supplicant and the AS. PMK generation is normally done

independently and simultaneously on the AS and the supplicant, based on the information

communicated between the two entities during the authentication. Each EAP method can

derive the PMK from the Master Key in different ways. The PMK is pushed to the AP

afterwards. Figure 21 shows the Pairwise Key Hierarchy.

62

PRF is a Pseudo-Random Function that is used in a number of places in

the new standard. PRF generates different length outputs that vary from 128 bit to 512

bits. The values inside the brackets in Figure 21 are the inputs of PRF.

Figure 21. Pairwise Key Hierarchy (From Ref 22)

The Pairwise Transient Key (PTK) is derived from the Pairwise Master

Key by using the authenticator’s and the supplicant’s MAC addresses along with the AP

nonce and Supplicant Nonce values. Both nonce values are random or pseudo-random

values contributed to by their respective entities. The length of PTK is 512 bits for TKIP

and 384 for CCMP, WRAP and WEP. TKIP, WRAP and CCMP are new encryption

standards, which will be discussed later in this chapter.

The Key Confirmation Key (KCK) is computed as the first 128 bits of the

PTK and is used by the 802.1X to provide data origin authenticity in the 4-way

handshake and group-key distribution messages. The Key Encryption Key (KEK) is

computed as the second 128 bits of the PTK. The KEK is used to provide confidentiality

in the 4-wap handshake and group-key distribution messages. The Temporal Key (TK) is

the remaining part of the PTK, in 128 bits chunks. If the remaining part of the PTK is

^^ Master Key {MK)

Pairwise Master Key {PMK) = TLS-PRF(MasterKey. "client EAR encryption"
I clientHello.random | serverHello.random)

Pairwise Transient Key (PTK) = EAPoL-PRF(PMK. AP Nonce | STA Nonce
AP MAC Addr | STA MAC Addr)

Key
Confirmation

Key (KCK) - PTK
bits 0-127

Key Encryption
Key (KEK) - PTK

bits 128-255

Temporal Key - PTK bits 256-M - can
have cipher suite specific structure

63

more than 128 bits long, more than one TK can be produced. The TK is used to secure

the data traffic.

b. Group Key Hierarchy
Similar to the Pairwise Key Hierarchy, a Group Transient Key (GTK) is

generated from the Group Master Key (GMK). This GTK is partitioned into temporal

keys used to protect the broadcast and multicast communication. These group keys are

used between a single authenticator and all the supplicants authenticated to that

authenticator.

c. Four-Way Handshake
Before the 802.1X authentication, the supplicant and the authenticator

exchange discovery packets. In the discovery period, the authenticator advertises its

capabilities and the Supplicant sends back its association request based on the

authenticator’s capabilities. After the discovery, both stations are ready to authenticate

over the established 802.11 channel.

After the 802.1X authentication, the participating entities advance to the

key management step. In this step, the Pairwise Master Key (PMK) is generated both in

the authentication server and the supplicant. The PMK is then pushed to the authenticator

by the AS. A Four-Way Handshake process takes place between the supplicant and the

authenticator to produce and derive the PTK and other keys. Figure 22 shows the four-

way handshake process.

64

Figure 22. Four-Way Handshake (From Ref. 22)

The authenticator picks a nonce which is a random, one-time- use value

(ANonce) and sends it to the supplicant within an EAPOL-Key Packet as the first

message. On receiving the first message, the supplicant generates its own nonce

(SNonce) value and derives the PTK from the PMK, nonce values, and the MAC

addresses. After derivation of the PTK, the supplicant sends the second message to the

authenticator. The authenticator receives the nonce value of the supplicant and generates

the exact same PTK value on the authenticator side. The authenticator sends another

message back to the supplicant indicating that it possesses the PTK. The last packet is

send from the supplicant to the authenticator, which ends the 4-way handshake.

The four-way handshake establishes a fresh Pairwise Key that is bound to

the supplicant and the access point for the session. It also provides a security check that

there is no man-in-the-middle between the two PTK holder entities.

PMK

EAPoL-Key(Reply Required, Unicast, ANonce)

Pick Random SNonce. Derive PTK = EAPoL-PRF(. ANonce |
SNonce | AP MAC Addr | STA MAC Addr)

PMK

Picl< Random ANonce Jj

instaii TK

EAPoL-Key(Unicast, SNonce, , STA RSN IE)

EAPoL-Key(Reply Required, Install PTK,
Unicast, ANonce, , AP RSN IE)

EAPoL-KeyfUnicast,)

Derive PTK^

JnstallTK |

65

4. Temporal Key Integrity Protocol (TKIP) Overview
The TKIP was designed to address all the known attacks against the WEP

algorithm while still maintaining backward compatibility with the legacy hardware. It

was designed to be made available as a firmware or software upgrade to existing

hardware so that users would be able to upgrade their level of security without replacing

existing equipment or purchasing new hardware. The TKIP provides an upgrade path by

offering an additional protocol or a wrapper around the WEP. The TKIP is comprised of

the following elements:

1. A message integrity code (MIC) provides a keyed cryptographic

checksum using the source and destination MAC addresses and the plaintext data of the

802.11 frames, which protects the session against forgery attacks.

2. Countermeasures are implemented by the TKIP to limit the probability of

successful forgery and the amount of information that an attacker can learn about a

particular key.

3. A TKIP sequence counter with a 48-bit Initialization Vector (IV) is also

implemented to sequence the packets that are sent. This provides a replay protection,

which is not sufficient enough to protect against these kinds of attacks. Any fragmented

packets received out of order are dropped by the receiver.

4. Per packet key mixing of the IV is used to break up the correlation used by

weak key attacks.

Figure 23 shows the picture of a TKIP encrypted MAC protocol data unit

(MPDU). Different from the original WEP protocol, TKIP introduces the use of an

extended 48-bit IV, which is called the TKIP sequence counter (TSC). The TSC is

updated in each packet, which aims to extend the life of the temporal key and eliminate

the need to re-key the temporal key in a single association. Using 48 bits, 248 packets can

be exchanged using the same temporal key. It will take about 100 years for a key reuse to

occur under normal network traffic conditions.

66

Figure 23. MPDU Format after TKIP Encryption (From Ref. 27)

To construct the TSC for an individual packet, the first and second bytes from the

original WEP IV and the four bytes provided in the extended IV are used. The TKIP

encapsulation process is shown in Figure 24. The temporal and MIC keys are used, which

are derived from the PMK generated as part of the 802.1X exchange. [27]

Figure 24. Diagram Depicting the TKIP Encapsulation Process (From Ref. 27)

The per-packet key in TKIP is 128 bits and is comprised of a 104-bit long RC4

key and 24-bit IV. The key is produced after the mixture of the Temporal Key, the

Transmitter Address and the TSC in a two-phase key mixing function. [27]

The WEP integrity check Vector (ICV) is computed by a simple CRC-32 cyclic

redundancy check. The TKIP replaces CRC-32 with MIC (nicknamed as Michael), which

is a stronger, one-way hash function. The MIC value is calculated using the TSC, source

and destination MAC addresses, Plaintext and the MIC key. After computing the MIC,

the packet is keyed to the sender and receiver, preventing attacks based on packet

 Encrypled-

IV/KeylD Bdenled IV
n delete

MIC
a aatt£

ICV
1 4Dcleb

Tfrnpoul K«y

T la nimitt« r A<J d rais

MIC Ke/

Saurce Addr
♦

[>stinjtion Addr

lulSDlJ PlainTe:^

TKIP

Counter jijrt

WlIC

PerPjcttel

PisinlfV
M^DUSMIC

F*C:4K*v

AEP IV

1
Fraarrienlalion

Pldinl44
MSDU

MPDLfe

67

forgery. The MIC makes it much more difficult for an attacker to intercept and alter the

packets in favor of their attacks. [27]

The decapsulation process is essentially the same as the process illustrated in

Figure 14 with the following exceptions. The countermeasures that are mentioned before

are applied to the packet. The TSC value of the packet is extracted, and it is compared to

the previously received packets. If the TSC value of the recent packet is smaller than the

previously received packets, the new packet is discarded in order to prevent potential

replay attacks.

On the receiving side, the MIC value is calculated and compared to the received

MIC value. If the MIC values do not match, then the countermeasures are invoked. The

countermeasures are a warning sent to the administrator of a possible attack and rekeying

the temporal key.

5. The Counter-Mode/CBC-MAC Protocol (CCMP) Overview
The new encryption method defined in 802.11i is based on a modern encryption

technique called the Advanced Encryption Standard (AES). The AES can be used in a

variety of different modes and algorithms. Counter mode with CBC-MAC (CCM) is

chosen for the new standard in which the counter mode AES provides the data privacy

and the Cryptographic Block Cipher–Message Authentication Code (CBC-MAC)

delivers data integrity and authentication. [27]

AES is a modern encryption algorithm that is a symmetric iterated block cipher.

The same key is used for both encryption and decryption. The AES standard uses 128-bit

blocks for encryption, and for 802.11 the encryption key length is also fixed at 128 bits.

Figure 25 shows the format of an AES encrypted MAC-layer Protocol Data Unit

(MPDU). The packet is expanded by 16 bytes over an unencrypted frame. [27]

Figure 25. MPDU Format after CCMP Encryption (From Ref. 27)

-Encrypled-

lY/KeylD
4c.clete

E.1endal IV
4(.cleb

Dala
n delete

MIC

68

The CCMP also uses a 48-bit IV called a Packet Number (PN) which is used to

create the AES cipher for both the MIC and frame encryption. Figure X shows the CCMP

encapsulation process.

Figure 26. Diagram of the CCMP Encapsulation Process (From Ref. 27)

The CCMP encapsulation process has two parts: Encryption and the MIC

calculation. A temporal encryption key is used for both the MIC calculation and the

packet encryption. The Temporal Key is derived form the master key, which is set to both

entities after the 802.1X encryption. [27]

Figure 26 shows the encryption and MIC calculation diagram of CCMP. Since

AES is a block-cipher algorithm, the overall process is more complicated than both TKIP

and WEP. The IV is the seed of the MIC calculation with the PN and some specific data

that comes from the header of the particular frame. The IV first goes to the AES

ciphering block and the output is XORed with some other elements of the frame header.

The result is an input to the next AES block. This ciphering process continues until the

end of the frame. At the end, a 128-bit CBC-MAC value is computed. The upper 64-bit

part of this MAC is taken out to be used in the final MIC which is appended to the

encrypted frame. [27]

The encryption process, similar to the MAC calculation process, is seeded by a

counter preload value, which is formed from the PN. In addition to the counter preload

value, data from the frame header is also used for the encryption seed. The counter value

is initialized to 1 at the start. The clear text is chopped into 128-bit chunks which are

I "v I

MIC
Calculation

rtEStig AESog n

<^

Clea-Ted
Frame

EIE

AESOg n

rnrT

AESOg n

El.
Frame H^idEf

I Cb Prdoad~|-

EnciYption

&icri||)ted
Frame

PN

Frame HeadEf

<5

AESOg n

MM^

AESOg

-(J
ISM n^a

PUi)

AESOg

C^

PN

Pl^

J
AES(ig

PUn)

J
AES(ig

MC

PUP)

AES(ig

D^a MC FCS

69

XORed with the output of the previous AES block. The counter value is incremented by

one and the same process continues on until the end of the clear text. The last and final

counter value is set to 0 and its output from the AES block is XORed with the MIC value

which is computed in the previous MIC Calculation step. The output of this XOR

operation is appended to the end of the encrypted frame.

The decapsulation of the encapsulated CCMP frame is not much different than the

encapsulation process. It is essentially the reverse of the encapsulation shown in Figure

16. The decapsulation process has one more step of comparing the MIC values of the

received frame with the computed MIC value of the same frame.

6. Implementation of 802.11i
The Wi-Fi Alliance is a nonprofit international association formed in 1999 to

certify interoperability of wireless Local Area Network products based on the IEEE

802.11 specification. In 2001, there were 100 Wi-Fi Certified Products and today there

are more than 500 such products. The rapid growing wireless industry is demanding a

more secure wireless environment and cannot wait for the 802.11i standard to be ratified,

probably in 2004. Based on the immediate need for security, the goal of this alliance is to

implement what is stable in 802.11i and bring it to market in Wi-Fi Protected Access

(WPA).

a. Wi-Fi Protected Access (WPA) Overview
The first goal of the Wi-Fi alliance is to solve the security problems of the

wireless networks with firmware and software upgrades without changing the hardware.

WPA is a subset of the existing 802.11i draft, which uses TKIP instead of WEP. The

WPA standard might not be fully compatible with some legacy devices and operating

systems; however, it is designed to be forward compatible with the 802.11i standard.

b. Robust Security Network (RSN) Overview
The RSN is the enhanced security standard aimed at addressing the

vulnerabilities of 802.1X and encryption issues concerning TKIP and CCMP.

Simultaneous use of TKIP and CCMP is supported by RSN, however only CCMP will be

mandatory while keeping the TKIP optional for true RSN implementations.

70

The authentication standard chosen for RSN is 802.1X and EAP, while the

encryption algorithm will be the AES. Besides the new and strong functionality of RSN,

it will run very poorly on some legacy devices because the AES algorithm does not

perform well on the legacy devices. Table 1 presents some important parameters of the

security standards.

Table 3. Comparison of the Existing and Emerging Security Standards

D. SOLUTIONS AND DISCUSSION
The first part of this chapter discussed the problems of the wireless networks

while the second part of the chapter discussed the new wireless security standard

(802.11i). In this conclusion, the problems and the solutions will be discussed together.

Since TGi is going to include the 802.1X standard as the authentication method in

the 802.11i security standard, the advantages and disadvantages of the 802.1X standard

will be carried over to the new standard.

1. Mutual Authentication
The lack of mutual authentication was one of the most important security

vulnerabilities of wireless networks. The 802.1X standard will be used as the

authentication method; however, some vulnerable and weak points are rectified. EAP is

used to carry the authentication traffic. The new standard mandates the use of EAP

71

methods, which provide mutual authentication. EAP-TLS is the most popular and widely

supported method that provides mutual authentication. Windows XP contains an

implementation of EAP-TLS. Thus, EAP-TLS becomes the de facto authentication

method. By using EAP-TLS and discarding the other weak methods, mutual

authentication can be accomplished.

The authentication problem can only be solved by employing mutual

authentication. EAP-TLS should be implemented by the networks that need security.

2. Encryption and Key Management
The key management part of the 802.1X standard is modified in the new standard

to provide a better way of encrypting the network traffic. Key management is the most

important improvement that is introduced by the new standard. Both of the new

techniques, TKIP and CCMP, provide better and improved encryption than WEP.

Besides the encryption of the traffic, per-packet authentication and message integrity

checking is improved.

Since TKIP improves the WEP keys with enhancements such as 48-bit IV, the

possibility of breaking the WEP key is quite difficult for an attacker. CCMP and WRAP

both are based on a better encryption algorithm: AES. The complicated nature of this

algorithm will provide a robust encryption for the wireless networks.

The proposed four-way handshake mechanism establishes a fresh set of pairwise

keys for each new session between a supplicant and the authenticator. The mechanism is

carefully designed to eliminate the possibilities of a man-in-the-middle attack between

the two entities during the handshake period. [22]

TKIP is applicable to the legacy devices, while CCMP will run only on the new

devices. Even if neither of these two techniques is implemented, some security

precautions can still be applied to harden the wireless networks: hiding the SSID,

changing the static WEP key frequently, applying WEP re-keying (if applicable).

72

3. Management Frames Authentication
The session hijacking attack, which is defined in the previous chapter, starts with

the disassociation of the supplicant with a fake disassociation frame. The cause of this

vulnerability is the unauthenticated management frames. The draft of the new security

standard keeps the open-system authentication prior to 802.1X authentication. The open-

system association is used to exchange the capabilities of the entities. Although the open-

system authentication does not serve any security role, the possibility of sending

disassociation frame still exists. To mitigate this vulnerability, the management frames

should also be authenticated.

The 802.1X authentication protocol is used in the new standard with

modifications to the key management issues. All the other parts of the standard remain

unchanged. With the use of a new and complicated key management scheme, the

attackers should be unable to use any network sources without breaking the key

management.

The supplicant can still be disconnected from the network, but the attacker will

not have any chance of using the network. The network traffic will not be unencrypted or

weakly-encrypted; instead the encryption will be strong enough to limit the attempt to

hijack the session to a denial of service attack, at worst.

E. SUMMARY
By using the new security standard, the necessary conditions of the session

hijacking attack mentioned in Chapter IV are eliminated. The first two necessary

conditions are precluded by the use of the EAP methods that provide mutual

authentication. The other important issue is the new key management, which also helps

prevent the first two necessary conditions from happening.

The fourth necessary condition will be prevented by the use of new encryption

techniques, which are much stronger than WEP. The new encryption techniques,

combined with the new-key management issues, dismiss the possibility of breaking the

encryption.

73

The possibility of sending a disassociation frame still exists. The open-system

association is the part of the new standard used to exchange the parameters of the

connection. With the new and robust encryption techniques, this vulnerability can only

end up as a denial-of-service attack against the client at worst.

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

VI. CONCLUSION AND FUTURE WORK

A. CONCLUSION
This thesis examined the 802.1X authentication standard. The standard is

explained in detail, and the entities and the protocols of the standard are covered in depth.

The security vulnerabilities of the standard are discussed.

The security vulnerabilities of the 802.11 WLAN standard will be addressed when

the new security standard (802.11i) is completed and published by the security working

group (TGi). TGi considers the 802.1X standard a very important and key part of its

solution. The new standard will introduce 802.1X as a solution to the authentication

problems of the 802.11 standard.

In this thesis, the security vulnerabilities of 802.1X are tested. The vulnerabilities

were discovered and published in a University of Maryland’s paper. [1] For testing

purposes, an open-source test-bed was built. In the test-bed, the EAP-TLS authentication

method is chosen and implemented. For this method, public key certificates are created

and used. The test-bed was used to implement a session hijacking attack that is

mentioned in the University of Maryland paper. [1] The attack is divided into three main

parts and each part is performed individually.

The experiments showed that launching session-hijacking attacks against wireless

networks is easier than the wired networks because of the open broadcast nature of the

wireless networks. Another important outcome of the experiments is the importance of

encryption. Encryption and key management are the most important components of a

secure network. If the encryption is strong and key management is well-organized, the

attackers cannot reach their goals even if they exploit some other vulnerabilities. The new

encryption methods that are proposed by the new wireless security standard (802.11i)

provide much better security than the WEP encryption.

The authentication and access control issues are addressed by the use of 802.1X

authentication standard. The result of the experiment demonstrated that this standard

provides mutual authentication if the authentication method is chosen right. EAP-TLS is

a certificate-based authentication method that provides mutual authentication.

76

Open system authentication is proposed by the IEEE security working group

(TGi) for the exchange of authentication information. The use of an open-system

authentication still allows the attackers to disassociate a legitimate client. This

vulnerability, however, is only enough for a denial-of-service attack, not a session

hijacking attack.

B. FUTURE WORK
In this thesis a session hijacking attack is evaluated with an open-source test-bed.

Since the test-bed is built and serves as a good environment for testing, other types of

attack can be evaluated and other security problems can be discovered. Other

authentication methods, such as EAP-MD5, can be tested using the test-bed.

The new authentication scheme proposes new encryption techniques such as

CCMP, WRAP and TKIP, as well as a new key management scheme. Once the new

802.11i standard is completed, the new standard, along with the authentication methods,

key management scheme, and encryption techniques, can be evaluated and tested.

The source code of the HostAP and Linux client code Xsupplicant should be

manipulated to employ the tests. Since the test-bed is built on Linux OS and the source

code is written in C language, Experience with C and C++ programming and Linux OS is

mandatory for this type testing.

77

APPENDIX A

A. CERTIFICATE GENERATOR CONFIGURATION

1. OpenSSL Configuration File

OpenSSL example configuration file.
This is mostly being used for generation of certificate requests.

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca' and 'req'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

[ca]
default_ca = CA_default # The default ca section

[CA_default]

dir = ./demoCA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
new_certs_dir = $dir/newcerts # default place for new
certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

78

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2
CRLs
so this is commented out by default to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # which md to use.
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should
look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self
signed cert

Passwords for private keys if not present they will be prompted for

79

input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several
options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString.
utf8only: only UTF8Strings.
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: current versions of Netscape crash on BMPStrings or
UTF8Strings
so use this option with caution!
string_mask = nombstr

req_extensions = v3_req # The extensions to add to a certificate
request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = US
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = California

localityName = Locality Name (eg, city)
localityName_default = Monterey

0.organizationName = Organization Name (eg, company)
0.organizationName_default = NPGS

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = SAAM

commonName = Common Name (eg, YOUR name)
commonName_max = 64
commanName_default = WirelessSAAM CA

emailAddress = Email Address
emailAddress_max = 64
emailAddress_default = oozan@nps.navy.mil

SET-ex3 = SET extension number 3

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20

unstructuredName = An optional company name

80

[usr_cert]

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some
software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE

81

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer:always

This is what PKIX recommends but some broken software chokes on
critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it
will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX
recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a
CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always,issuer:always

82

B. CERTIFICATE GENERATION SCRIPTS

1. Root Certificate Authority Generation Script

#!/bin/sh
SSL=/usr/local/openssl-certgen
export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH}
export LD_LIBRARY_PATH=${SSL}/lib
needed if you need to start from scratch otherwise the CA.pl -newca
command doesn't copy the new
private key into the CA directories
rm -rf demoCA
echo
"**
***********"
echo "Creating self-signed private key and certificate"
echo "When prompted override the default value for the Common Name
field"
echo
"**
***********"
echo
Generate a new self-signed certificate.
After invocation, newreq.pem will contain a private key and
certificate
newreq.pem will be used in the next step
openssl req -new -x509 -keyout newreq.pem -out newreq.pem -passin
pass:whatever -passout pass:whatever
echo
"**
***********"
echo "Creating a new CA hierarchy (used later by the "ca" command) with
the certificate"
echo "and private key created in the last step"
echo
"**
***********"
echo
echo "newreq.pem" | CA.pl -newca >/dev/null
echo
"**
***********"
echo "Creating ROOT CA"
echo
"**
***********"
echo
Create a PKCS#12 file, using the previously created CA
certificate/key
The certificate in demoCA/cacert.pem is the same as in newreq.pem.
Instead of
using "-in demoCA/cacert.pem" we could have used "-in newreq.pem" and
then omitted
the "-inkey newreq.pem" because newreq.pem contains both the private
key and certificate

83

openssl pkcs12 -export -in demoCA/cacert.pem -inkey newreq.pem -out
root.p12 -cacerts -passin pass:whatever -passout pass:whatever
parse the PKCS#12 file just created and produce a PEM format
certificate and key in root.pem
openssl pkcs12 -in root.p12 -out root.pem -passin pass:whatever -
passout pass:whatever
Convert root certificate from PEM format to DER format
openssl x509 -inform PEM -outform DER -in root.pem -out root.der
#Clean Up
rm -rf newreq.pem

2. Server Certificate Generation Script
#!/bin/sh
SSL=/usr/local/openssl-certgen
export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH}
export LD_LIBRARY_PATH=${SSL}/lib
echo
"**
***********"
echo "Creating server private key and certificate"
echo "When prompted enter the server name in the Common Name field."
echo
"**
***********"
echo
Request a new PKCS#10 certificate.
First, newreq.pem will be overwritten with the new certificate
request
openssl req -new -keyout newreq.pem -out newreq.pem -passin
pass:whatever -passout pass:whatever
Sign the certificate request. The policy is defined in the
openssl.cnf file.
The request generated in the previous step is specified with the -
infiles option and
the output is in newcert.pem
The -extensions option is necessary to add the OID for the extended
key for server authentication
openssl ca -policy policy_anything -out newcert.pem -passin
pass:whatever -key whatever -extensions xpserver_ext -extfile
xpextensions -infiles newreq.pem
Create a PKCS#12 file from the new certificate and its private key
found in newreq.pem
and place in file specified on the command line
openssl pkcs12 -export -in newcert.pem -inkey newreq.pem -out $1.p12 -
clcerts -passin pass:whatever -passout pass:whatever
parse the PKCS#12 file just created and produce a PEM format
certificate and key in certsrv.pem
openssl pkcs12 -in $1.p12 -out $1.pem -passin pass:whatever -passout
pass:whatever
Convert certificate from PEM format to DER format
openssl x509 -inform PEM -outform DER -in $1.pem -out $1.der
Clean Up
rm -rf newert.pem newreq.pem

84

3. Supplicant Certificate Generation Script
#!/bin/sh
SSL=/usr/local/openssl-certgen
export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH}
export LD_LIBRARY_PATH=${SSL}/lib
echo
"**
***********"
echo "Creating client private key and certificate"
echo "When prompted enter the client name in the Common Name field.
This is the same"
echo " used as the Username in FreeRADIUS"
echo
"**
***********"
echo
Request a new PKCS#10 certificate.
First, newreq.pem will be overwritten with the new certificate
request
openssl req -new -keyout newreq.pem -out newreq.pem -passin
pass:whatever -passout pass:whatever
Sign the certificate request. The policy is defined in the
openssl.cnf file.
The request generated in the previous step is specified with the -
infiles option and
the output is in newcert.pem
The -extensions option is necessary to add the OID for the extended
key for client authentication
openssl ca -policy policy_anything -out newcert.pem -passin
pass:whatever -key whatever -extensions xpclient_ext -extfile
xpextensions -infiles newreq.pem
Create a PKCS#12 file from the new certificate and its private key
found in newreq.pem
and place in file specified on the command line
openssl pkcs12 -export -in newcert.pem -inkey newreq.pem -out $1.p12 -
clcerts -passin pass:whatever -passout pass:whatever
parse the PKCS#12 file just created and produce a PEM format
certificate and key in certclt.pem
openssl pkcs12 -in $1.p12 -out $1.pem -passin pass:whatever -passout
pass:whatever
Convert certificate from PEM format to DER format
openssl x509 -inform PEM -outform DER -in $1.pem -out $1.der
clean up
rm -rf newcert newreq.pem

4. XP Specific Extension Files
[xpclient_ext]
extendedKeyUsage = 1.3.6.1.5.5.7.3.2
[xpserver_ext]
extendedKeyUsage = 1.3.6.1.5.5.7.3.1

85

APPENDIX B

A. WINDOWS XP CERTIFICATE INSTALLATION
Windows XP with Service Pack 1 support requires a client public key certificate,

a private key corresponding to this public key and a rootCA public key certificate to

verify the server’s certificate authentication.

The “newxpclient.p12” file contains the public key certificate and private key of

the client. The “root.der” contains the public key certificate (PKC) of the root certificate

authority. We must assure that both of these files are generated in a trusted environment

and there is a strong trust relationship between the client and the root certificate authority.

First, the rootCA’ PKC must be installed manually.

The screen shot demonstration below will explain how to install these certificates:

B.A1. When the root.der file is double-clicked, the certificate information window comes
up. Then the “Install Certificate“ button must be clicked.

Q®S
if

* CERTIFICATES

Fie Ed* View Favorftes Tools Help

©Back • Q - ^ jpswrch g-Folders ^'

Address |t3 C;\DocLni8rts and5etHng5\orhai\De!ktop'ithesi5 dofl,CERTIFICflTE5 v| Q Go

.-. ™— ri—jrenxpcKSif
File dnd Folder Tasks '.KJ | r™M Personal Irfomatior Exctiarjei

FT^^toot
[5ecu((:/ Certificate

" ■ 11 1 '^B

General Delate CerlificatKjn Path

This certiricate Is Intended far the rallDWIibg piirpDse(s):

• All Issuance pobcie^
• All application polLcies

Issued to: 5AAM

Issued hy: 5AAM

Valid from li;25;2003 to 12/25/2003

InstaJI Certificate... l-i^uer Statement

86

B.A2. The “Place all certificate in the following store” radio button must be checked and
the “Trusted Root Certification Authorities” must be highlighted. Then click OK.

B.A3. Click Next to continue

Certificate Jmport Wizard

Certificate Store

Certificate stores are ^sCeir areas where certfjcate^ are kept.

Windovvs can automatically select a certificate store, or you can specify a location for

O Aiitoniaticafl/ select the certificate store based on the type of certf icate

® Place all certificates in the folfov^ng store

Certtficate %tore:

I Broivse. r.

Select Certificate Store

Select the certificate store you i^ant to use.

Pi Personal

^m^
CJ Enterprise Trust
CJ Intermediate Certification Authorities
r~i Trusted Publishers
n I Inhri i.J-'^rl r'fH(ir^'r.'z

I f 5hoifc physical stores

I OK] [Cancel

ick Cancel

m

Certificate Import Wizard

Certificate Store

Certificate stores dre systern areas where certificates are kept.

Windows can automatically select a certificate store, or you can specify a location For

O Automatically select the certficate store based on the type of cerfificate

© piece al certificates in the folcwing store

Certificate store:

[Trusted Root Certfication Authorities BrcnAtf e.,,

<Back Next> Caricel

87

B.A4. Click “Finish” to complete the root certificate import wizard

B.A5. If everything has been right. The system responds with the “successful import
window

Certificate Import Wizard

Completing the Certificate Import
Wizard

Vou h^e 5uccessflify compleled the Certificate Import
wizard.

Vou have specified the pQloHlng stings:

CertifKate 5tore Selected by User Trusted Root Certific
Content Certificate

<. >-

<Back Finish Cancel

General | Det^ || CerBfJcation PaEh^

CertiFKate InfornidtiDn

Jhil certificate Is inlended far the Tolkiwlng purpD&e(«J:
•Al ttsuaniie poJlaes
•Al application policies

Certificate Impart Wizard [jC|

V Ti-ie import i^as successful. IfHcdto: 5AAM

Ifued by: 5AAM 1 OK 1

VdHdrronn 11/25/2003 to 1^^/2003 I

InsUllCertJficaCe,.,

OK

88

B.A6. 1024 bits RSA public key and other properties of the root certificate can be
monitored through the “details” tab

B.A7. The rootCA PKC can be verified via the MMC console whether it is under Trusted
Certificate Authorities or not.

Certificate

General Details Certification Path

Show: <AI> L^

Field Value *

Hserial number 00

BSignature algorithm mdSRSA

D Issuer oozan@nps,navy.mil, SAAM, ,,,

HValidfrom Tuesday, November 25, 2003 .,,

Hvalid to Thursday, December 25, 2003...

Hsubject oozani5)np5,navy.mil, 5AAM, ...

1 Public key R=;Ann?4Bit<'i ■

83Subject Key Identifier 68cee2 54 29 4cl8bF57c8 ,,, " ,

30 81 89 02 81 81 00 be 4b 88 ec 3b el 88 A-
St 07 c3 £b si, 74 27 al 4e bd af 62 5B el ~
d7 69 12 57 88 76 7£ 22 ba £a 57 be ae cc
09 02 84 bl 06 98 09 ee 4a £3 a5 42 dO 12
4b 11 ID 4d gb eS al Bf 42 da 80 72 e2 e3
35 19 44 2a 38 90 01 bl 89 39 80 4d lb 29
9£ 59 92 b7 eS 59 ad bl cb 35 29 aO 23 da
d9 d9 b2 9f 9b 35 60 33 29 96 6e 01 e5 fb
3d 01 6b de 98 32 62 78 5e IB b6 £3 7b £2 V

Edit PlCpcltlei,.. Copy to File...

OK

S Certificates npfj^
[sl File Action View Favorites Window Help _|s|x|

*=-'E]Hjt%Xi'ii
P Certificates - Current User

a CJ Perionai

a d Trusted Root Certification Autfio

Pj Certificates

a D Enterprise Trust

a CJ Intermediate Certification Authoi

a On Active Directory LJser Object

a □ Trusted Publishers

a D Untrusted Certificates

a CJ Third-Party Root Certification Au

a d Trusted People

a □ Other People

S D Certificate Enrijllment Requests

<V~ "iiii 1 >

Issued To ' 1 IsscsdEy 1 EiMatlonDa te .^1

[^Microsoft Root Authority

[^Microsoft Root Certificate Authority

[^NetLock Express! (Class C) Tanusi,,

^NetLock Ko!]egy!oi (Class A) Tanu,

^NetLockU^ieti (Class B)Tanusitva,,

ilNO LIABILITY ACCEPTED, (c)97V,,

|§PTT Post Root CA

Microsoft Root,,,

Microsoft Root,,,

NetLockExpres,,,

NetLockKojjeg,,,

NetLockUdeti(,,,

NO LIABILITY A,,

PTT Post Root CA

12/30/2020

S/9/2021

2/20/2019

2/19/2019

2/20/2019

1/7/2004

6/26/2019

MSBB
6/25/2019

6/25/2019

1/7/2010

10/16/2009

10/16/2009

10/16/2010

10/16/2009

9/15/2020

9/15/2020

9(15/2020 V

S!" ^AAM

1^5aunalahden 5erveri CA

^Saunalahden Serveri CA

Insecure Server Certification Authorit

UsecureNet CA Class A

UsecureNet CA Class B

UsecureNet CA Root

i^SecureNet CA 3GC Root

aSecureSign RootCAl

[§5ecureSign RootCA2

^SecureSion RootCAS

SaunalahdenS,..

SaunalahdenS,,,

Secure Server ,,,

SecureNetCA,,,

5ecureNetCA,,,

SecureNetCA,,,

SecureNetCA 3,,

SecureSignRoo,,

SecureSignRoo,,

SecureSionRoo,,
<. ", 1 ..k

■ Trusted Root Certification Authorities stor ! contains 110 certificates.

89

B.A8. When the newxpclient.p12 file is double-clicked, the certificate installation wizard
appears on the screen. Click “Next” to continue.

B.A9. The password to decrypt the private key for the client must be entered correctly.
The password can be obtained manually from the certificate manager. Then click “Next”
to continue.

Cerlificale Import Wizard

File to Import

SpedFy ths File you went to import.

RIsnaine:

iCiJ[-iE-'llorhan\DesH:0DUH£5IS-UCERTIF-l NEWXPC-l.PU Browse.

Note: More than one certificate can be stored In a single file in the following formats:

Personal InfornaUon Exchange- PKC5 #12 (.PF>:,.P12)

Cryptogrcphic Message Syntax Standard- PKCS #7 Certificates (.P7B)

Microsoft Serialijed Certificate Store (,5ST)

Certificate Import Wizard

Password

To msinlsin security, the privsle key wss protected with s password,

Type the password tor the private key.

Password;

[] Enable strong private key protection. You will be prompted every time ttie

private key is used by an application if you enable this option,

[jMark tills key as exportable. This will allow you to back up or transport your

keys at a later time.

<Back NeKt> Cancel

90

B.A10 Leave the default values and click next

B.A11. Click “Finish” for successful client certificate import

Certificate Import Wizard

Certificate Store

Certificate stores are system areas where certificates are kept.

Windows can sutomstlcslly select a certificate store, or you can specify a location

|S) Automatics I ly select the certificate store based on tie type of certificate

(^Piace all certificates in Uie fbllowing store

Certificate stor^

<Back

Certificate Impart Wizard

Completing the Certificate Import
Wizard

Vou have successfully completed the Certf Itate Impart
wizard.

Vou have specified bhe following settings:

Certificate Store Selected Automatically determined by t
Content PFX
File Name C;\DOCUME-Uothanlpeskto

<Back Finsh Cancel

91

B.A12. The certification path should be verified under in the MMC window.

E5 Cor Illicit I?;;

[^ Flla Action View Favoritas Windo*^ He^ i^j£JiiJ
«--► SiGEi^G^ XcFOS. [^
^ CerbFJcaCes - Current User

Cli Personal
':^ Certificates

CJ Trusted Root Certif kcation Autho
^ Enterprise Trust
CJ]nCern>edLaCe CertlFkaClon AuChoi
CJ Active D»ecCory User Object
Cli Trusted Publishers
CJ Untrusted CertlFkaCes
CJ Third-Party Root CertlFlcattan Au
Cli Trusted People
CJ other People
CJ Certificate Enrollrnent Requests

<

Issued To [ssued By Explrjtbn Date

newKpcHenC

L^orhan hulusl
i:S2'*f20«-\

IO; 14/2004

> < Lttl

Personal store contabis 2 certificates.

92

B. WINDOWS XP WIRELESS CLIENT 802.1X CONFIGURATION

B.B1. The WEP and dynamic key options must be checked in order to support the
dynamic key generation from the authenticator.

B.B2 The “Enable IEEE 802.1X authentication for this network” radio button must be
checked with the “Smart Card or other Certificates” option. When the “Properties” button
is clicked, the “Use a certificate on this computer” radio button must be checked. The
“Validate server certificate” radio button must be checked; otherwise, only the client
certificate is validated at the server. The server certificate must also be validated to
enforce mutual authentication.

I Genwal Wiolsst Nati^ikt AdvAncadj

1^ Usa WJndoibt to ccnfiguia ir^ Mralas neti^ik satbngs

ftv jjlable networks;
To connecl to an availabla mtuvark, cick ConhgurSr

¥ rast 1 Configute |

1 Rafiesfi 1
l_

' Praterred ^a^^^lOFkt;

Automatical^ connact lo availabia natwork^ in the order lisled
below:

f tett Movaup

Move down

Add.. Remova Propeitias

Laarn aboul seltin
cor^ioufation. Advanced

OK Cancel

ti!ai nroperti»>n

Assooiahtjii I Auitwnlioilion

Netwoik riairie [SSID]: jtest |

Wireless r>etwork key |>VEP}

Thisnetwoikraguirasakey lor Ihefolo^ng:

[^ Data encryption |>/EP enablad)

G NeTHork Authentication [Shared moda)

Wei"*aik krjy 1 1

Confirm network key: 1 1

K.f.V hndpn larf\'flni:edf n " \

[Z] The key it provided for me automaticaly

~| This IS a computer-to-cornputar [ad hoc) natMork; Palest
access points are not used

OK Cancel

test properties

Association Authenlication

Select Ihi? opiion lo provide aijifienlicated neli^ork access for
iNiieless Ethernet iietwoiks.

[^ Enable IEEE 802.1x aiihanticelian lot tliii neliwik

EAR type | Stnart Caid or ather Catllicata

? X Smart Card or other Cnrlificate Properties

When connectir^

O Use nijj SFiiarl card

® Use a certificate on this coiv^ler

0 Use simple cerlificale ielection fRecciTimeridedt

Properties

[^ Authenticate as computer when computer informatiori i$ available

□ Authenticate as guesi when user or compuler inf orinalion k
unavailable

0 Valid^e server certificate

PI Connect to these servers:

I ne^radius

Trusted Roct Certificaticr Authorities.

□ Use a ditferer^ user name for the connection

[1 NetLockKozjegyzoilClajsA] T anusitvar^kiado

D NetLock U:leti (Class B| Tatiiisitvati>;iado
n N0LI4BILnYAIXEPTED,(cl97VeiiSi9r,lnc.

□ PTT Post Root CA

n Saiiiialalider Sayan CA
(1 SaunaJahider SefveriCA

G Sei:LireEefvefCeiliicationAijIhoritii

m

.-»Wi

.it::' II1 : -n
1 View Cftftiticate 1

OK Caned

93

APPENDIX C

A. D-LINK DWL-7000AP CONFIGURATION

C.A1 D-link DWL-7000AP comes with an access point manager. This manager is

useful to identify and discover the access points in the network. After discovering the

access point, a new IP address can be assigned.

C.A2 After assigning a legitimate IP address to the access point, a web browser is used

to configure the access point. The IP address of the AP is written to the address window

and the web-based configuration tool is ready to be used. 802.1X option can be selected

under advanced tab and encryption page.

• D-Link AirXpert Tri-Mode Dualband AP Manager

o
Model Name Mac Addiess IP Addiess Netmask FWVeision Device Name Action Stains

DWL-7000AP 00055D9960A6 131.120.11. 255.255.25. vi.03 D-linkCoip..

a BOB
riCes Tools Help

li?] L^ -fi >^ ="'=^ ^ FavoMtss I «j^ Media ■© | ^ - i^ fS " LJ '^ -2fc

120,1 l,43|titml/CFgWepParam,html?0 >" B So

wireless Band: IEEE802.11a

□ Boptk
Trl-Mode Dualband Wireless Access Point

Advanced

wep Key Type

Wep Key Size

Valid Key

Kov T,ll.l->

FIrslKey

Second Key

Third Key

Fourth Key

O Open System

O Shared Key

O Open System
f Shared key

® 802.IX

<S> Dlsat^led

O Enabled

: iEX~ -fjl

■Bus "]

WEP

Wep Key Type

Wep Key Size

Valid Key

Ki'v i.il'le

First Key

Second Key

Third Key

Fourth Key

Apply Cancel Help

94

C.A3 The next page after selecting the 802.1X option is the authentication server

selection page. Radius server is selected from the drop down menu.

C.A4 the next page after selecting the radius server helps the user apply the

specifications of the authentication server e.g. IP address, authentication port and the

shared Key. Once this fields are completed, the AP is restarted and able to serve as an

authenticator.

crosofi Inlernel Explorer

vontes ioob Help

[»^ 1^ ^^ y ^ Search ^^Favorites ^Media ^)

nr^^

D9-S
120.11.43/hl:ml/B021yAul:h .htrfj?0 'MB^ lunlB

V g^5^aIc^lWe^l - !0 ^ 430 blocked -fT] AIJILJ iii [3 gODMons *

8"j 11-*

Tri-Mode Dualband Wireless Access Point
DWL-7000AP

erfoimance

Encryption

BrrM Advanced Status

:ii>?. in Amlteiiiii.rifi4>iL

WEP Key Size I B^ Bits v|

Auiheniitation from Radius Server

I
o o o
Apply Con eel Help

soft inlernet Explorer 1- ll n-ll
es Tools Help «
L1 i^ L/1 •^■'^-^h 'y'^ Favorite? ^jpMeda ^ ^-^ s ■ Dt^-a
11.43/html/3021xRadiusServer.hl:iril?0 .■«|BGd Lir

iPl 430 blocted '^Aut.iCill H I^JOPIJ'

DWL-7000AP

Encryption

Tri-Mode Dualband Wireless Access Point

Advanced B^9^

P-"nNn5 serve! Seniihj

Succession

Radius Server

Authentic Port

Accounting Port

Key

Confirm Key

Status

First -w

131.12011.55

^ ^ o
Apply Cancel Help

■ 1111 "ill R.T'(Mi:> -^^r.*.] JM Si^itlnir.: T,-(i.|-

Sui:c:es3iDa Radius Server Authentic Port Accounling Port Valid Status
First 131.130.11.J5 1812
Second 0.0.0 0 1812
Third 0.0.0 0 1812

1E13
1E13
1E13

Valid
Invalid
Invalid

95

B. HOSTAP CONFIGURATION FILE

hostapd configuration file

Empty lines and lines starting with # are ignored

AP netdevice name (without 'ap' prefix, i.e., wlan0 uses wlan0ap for
management frames)
interface=wlan0

Debugging: 0 = no, 1 = minimal, 2 = verbose, 3 = msg dumps
debug=3

Dump file for state information (on SIGUSR1)
dump_file=/tmp/hostapd.dump

Daemonize hostapd process (i.e., fork to background)
daemonize=1

IEEE 802.11 related configuration
#######################################

SSID to be used in IEEE 802.11 management frames
ssid=test

Station MAC address -based authentication
0 = accept unless in deny list
1 = deny unless in accept list
2 = use external RADIUS server (accept/deny lists are searched first)
macaddr_acl=0

Accept/deny lists are read from separate files (containing list of
MAC addresses, one per line). Use absolute path name to make sure
that the files can be read on SIGHUP configuration reloads.
#accept_mac_file=/etc/hostapd.accept
#deny_mac_file=/etc/hostapd.deny

Associate as a station to another AP while still acting as an AP on
the same channel.
#assoc_ap_addr=00:12:34:56:78:9a

IEEE 802.1X (and IEEE 802.1aa/D4) related configuration #################

Require IEEE 802.1X authorization
ieee8021x=1

96

Use internal minimal EAP Authentication Server for testing IEEE 802.1X.
This should only be used for testing since it authorizes all users
that suppot IEEE 802.1X without any keys or certificates.
minimal_eap=0

Optional displayable message sent with EAP Request-Identity
eap_message=hello

WEP rekeying (disabled if key lengths are not set or are set to 0)
Key lengths for default/broadcast and individual/unicast keys:
5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
wep_key_len_broadcast=5
wep_key_len_unicast=5
#Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once)
wep_rekey_period=300

EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if
only broadcast keys are used)
eapol_key_index_workaround=1

IEEE 802.11f - Inter-Access Point Protocol (IAPP) #######################

Interface to be used for IAPP broadcast packets
#iapp_interface=eth0

RADIUS configuration

for IEEE 802.1X with external Authentication Server, IEEE 802.11
authentication with external ACL for MAC addresses, and accounting

The own IP address of the access point (used as NAS-IP-Address)
own_ip_addr=131.120.8.145

RADIUS authentication server
auth_server_addr=131.120.11.55
auth_server_port=1812
auth_server_shared_secret=besiktas

RADIUS accounting server
#acct_server_addr=127.0.0.1
#acct_server_port=1813

#acct_server_shared_secret=secret

97

APPENDIX D

A. FREERADIUS EAP-TLS MODULE MAKE FILE
Generated automatically from Makefile.in by configure.
TARGET = rlm_eap_tls
SRCS = rlm_eap_tls.c eap_tls.c cb.c tls.c mppe_keys.c
RLM_CFLAGS = $(INCLTDL) -I../.. -DOPENSSL_NO_KRB5
HEADERS = rlm_eap_tls.h eap_tls.h ../../eap.h ../../rlm_eap.h
RLM_INSTALL =
RLM_LIBS += -lcrypto -lssl

$(STATIC_OBJS): $(HEADERS)

$(DYNAMIC_OBJS): $(HEADERS)

RLM_DIR=../../
include ${RLM_DIR}../rules.mak

B. RADIUSD CONFIGURATION FILE
(To save space, the comments are omitted)

prefix = /usr/local
exec_prefix = ${prefix}
sysconfdir = /etc
localstatedir = ${prefix}/var
sbindir = ${exec_prefix}/sbin
logdir = ${localstatedir}/log/radius
raddbdir = ${sysconfdir}/raddb
radacctdir = ${logdir}/radacct

confdir = ${raddbdir}
run_dir = ${localstatedir}/run/radiusd

log_file = ${logdir}/radius.log

libdir = ${exec_prefix}/lib

pidfile = ${run_dir}/radiusd.pid

max_request_time = 30

delete_blocked_requests = no

98

cleanup_delay = 5

max_requests = 1024

bind_address = *

port = 0

hostname_lookups = no

allow_core_dumps = no

regular_expressions = yes
extended_expressions = yes

log_stripped_names = no

log_auth = no

log_auth_badpass = no
log_auth_goodpass = no

usercollide = no

lower_user = no
lower_pass = no

nospace_user = no
nospace_pass = no

checkrad = ${sbindir}/checkrad

SECURITY CONFIGURATION
security {
 max_attributes = 200
 reject_delay = 1
 status_server = no
}

PROXY CONFIGURATION

proxy_requests = yes

$INCLUDE ${confdir}/proxy.conf

99

CLIENTS CONFIGURATION

$INCLUDE ${confdir}/clients.conf

SNMP CONFIGURATION
snmp = no
$INCLUDE ${confdir}/snmp.conf

THREAD POOL CONFIGURATION
thread pool {
 start_servers = 5

 max_servers = 32

 min_spare_servers = 3
 max_spare_servers = 10

 max_requests_per_server = 0
}

MODULE CONFIGURATION
modules {
 pap {
 encryption_scheme = crypt
 }

 # CHAP module
 chap {
 authtype = CHAP
 }

 # Pluggable Authentication Modules
 pam {
 pam_auth = radiusd
 }

 unix {
 cache = yes

 cache_reload = 600

100

 passwd = /etc/passwd
 shadow = /etc/shadow
 group = /etc/group

 radwtmp = ${logdir}/radwtmp
 }

 eap {
 default_eap_type = tls
 timer_expire = 60

 ignore_unknown_eap_types = no

 tls {
 private_key_password = whatever
 private_key_file = /etc/1x/newradius.pem

 certificate_file = /etc/1x/newradius.pem

 CA_file = /etc/1x/root.pem

 dh_file = /etc/1x/DH
 random_file = /etc/1x/random

 fragment_size = 1024

 include_length = yes
 # check_crl = yes
 }

 mschapv2 {
 }
 }

 mschap {

 authtype = MS-CHAP

 }

 ldap {
 server = "ldap.your.domain"
 basedn = "o=My Org,c=UA"
 filter = "(uid=%{Stripped-User-Name:-%{User-Name}})"

101

 start_tls = no

 access_attr = "dialupAccess"

 dictionary_mapping = ${raddbdir}/ldap.attrmap

 ldap_connections_number = 5

 timeout = 4
 timelimit = 3
 net_timeout = 1
 }

 realm realmslash {
 format = prefix
 delimiter = "/"
 }

 # 'username@realm'
 #
 realm suffix {
 format = suffix
 delimiter = "@"
 }

 # 'username%realm'
 #
 realm realmpercent {
 format = suffix
 delimiter = "%"
 }

 preprocess {
 huntgroups = ${confdir}/huntgroups
 hints = ${confdir}/hints

 with_ascend_hack = no
 ascend_channels_per_line = 23

 with_ntdomain_hack = no

 with_specialix_jetstream_hack = no

 with_cisco_vsa_hack = no
 }

102

 files {
 usersfile = ${confdir}/users
 acctusersfile = ${confdir}/acct_users

 compat = no
 }

 detail {
 detailfile = ${radacctdir}/%{Client-IP-Address}/detail-%Y%m%d

 detailperm = 0600
 }

 acct_unique {
 key = "User-Name, Acct-Session-Id, NAS-IP-Address, Client-IP-Address,
NAS-Port-Id"
 }

 $INCLUDE ${confdir}/sql.conf

 radutmp {
 filename = ${logdir}/radutmp

 username = %{User-Name}

 case_sensitive = yes

 check_with_nas = yes
 perm = 0600

 callerid = "yes"
 }

 radutmp sradutmp {
 filename = ${logdir}/sradutmp
 perm = 0644
 callerid = "no"
 }

 attr_filter {
 attrsfile = ${confdir}/attrs
 }

 counter daily {
 filename = ${raddbdir}/db.daily

103

 key = User-Name
 count-attribute = Acct-Session-Time
 reset = daily
 counter-name = Daily-Session-Time
 check-name = Max-Daily-Session
 allowed-servicetype = Framed-User
 cache-size = 5000
 }

 always fail {
 rcode = fail
 }
 always reject {
 rcode = reject
 }
 always ok {
 rcode = ok
 simulcount = 0
 mpp = no
 }

 expr {
 }

 digest {
 }

 exec {
 wait = yes
 input_pairs = request
 }

 exec echo {
 wait = yes

 program = "/bin/echo %{User-Name}"

 input_pairs = request

 output_pairs = reply

 }
 ippool main_pool {

 netmask = 255.255.255.0

104

 cache-size = 800

 session-db = ${raddbdir}/db.ippool

 ip-index = ${raddbdir}/db.ipindex

 override = no
 }

}

instantiate {
 expr

}

authorize {
 preprocess

 eap

 suffix
 files

}

authenticate {

 unix

}

preacct {
 preprocess

 suffix

105

}

accounting {
 acct_unique

 detail

 unix # wtmp file

 radutmp

}

session {
 radutmp
}

post-auth {

}

pre-proxy {
}

post-proxy {

 eap
}

106

C. CLIENTS CONFIGURATION FILE

clients.conf - client configuration directives

This file is included by default. To disable it, you will need
to modify the CLIENTS CONFIGURATION section of "radiusd.conf".

Definition of a RADIUS client (usually a NAS).

The information given here over rides anything given in the 'clients'
file, or in the 'naslist' file. The configuration here contains
all of the information from those two files, and also allows for more
configuration items.

The "shortname" can be used for logging, and the "nastype",
"login" and "password" fields are mainly used for checkrad and are
optional.

Defines a RADIUS client. The format is 'client [hostname|ip-address]'

'127.0.0.1' is another name for 'localhost'. It is enabled by default,
to allow testing of the server after an initial installation. If you
are not going to be permitting RADIUS queries from localhost, we suggest
that you delete, or comment out, this entry.

##############################Orhan ekledi########################
#client 131.120.10.153 {
#secret = whatever
#shortname = CLIENT1
#}

client 131.120.8.145 {
secret = besiktas
shortname = AP1
}
#client 131.120.10.133 {
#secret = wahtever
#shortname = AP2
#}

107

client 127.0.0.1 {
 #
 # The shared secret use to "encrypt" and "sign" packets between
 # the NAS and FreeRADIUS. You MUST change this secret from the
 # default, otherwise it's not a secret any more!
 #
 # The secret can be any string, up to 32 characters in length.
 #
 secret = test

 #
 # The short name is used as an alias for the fully qualified
 # domain name, or the IP address.
 #
 shortname = localhost

 #
 # the following three fields are optional, but may be used by
 # checkrad.pl for simultaneous use checks
 #

 #
 # The nastype tells 'checkrad.pl' which NAS-specific method to
 # use to query the NAS for simultaneous use.
 #
 # Permitted NAS types are:
 #
 # cisco
 # computone
 # livingston
 # max40xx
 # multitech
 # netserver
 # pathras
 # patton
 # portslave
 # tc
 # usrhiper
 # other # for all other types

 #
 nastype = other # localhost isn't usually a NAS...

 #
 # The following two configurations are for future use.

108

 # The 'naspasswd' file is currently used to store the NAS
 # login name and password, which is used by checkrad.pl
 # when querying the NAS for simultaneous use.
 #
login = !root
password = someadminpas
}

#client some.host.org {
secret = testing123
shortname = localhost
#}

You can now specify one secret for a network of clients.
When a client request comes in, the BEST match is chosen.
i.e. The entry from the smallest possible network.

#client 192.168.0.0/24 {
secret = testing123-1
shortname = private-network-1
#}

#client 192.168.0.0/16 {
secret = testing123-2
shortname = private-network-2
#}

#client 10.10.10.10 {
secret and password are mapped through the "secrets" file.
secret = testing123
shortname = liv1
the following three fields are optional, but may be used by
checkrad.pl for simultaneous usage checks
nastype = livingston
login = !root
password = someadminpas
#}

D. USERS CONFIGURATION FILE

Please read the documentation file ../doc/processing_users_file,
or 'man 5 users' (after installing the server) for more information.

109

This file contains authentication security and configuration
information for each user. Accounting requests are NOT processed
through this file. Instead, see 'acct_users', in this directory.

The first field is the user's name and can be up to
253 characters in length. This is followed (on the same line) with
the list of authentication requirements for that user. This can
include password, comm server name, comm server port number, protocol
type (perhaps set by the "hints" file), and huntgroup name (set by
the "huntgroups" file).

If you are not sure why a particular reply is being sent by the
server, then run the server in debugging mode (radiusd -X), and
you will see which entries in this file are matched.

When an authentication request is received from the comm server,
these values are tested. Only the first match is used unless the
"Fall-Through" variable is set to "Yes".

A special user named "DEFAULT" matches on all usernames.
You can have several DEFAULT entries. All entries are processed
in the order they appear in this file. The first entry that
matches the login-request will stop processing unless you use
the Fall-Through variable.

If you use the database support to turn this file into a .db or .dbm
file, the DEFAULT entries _have_ to be at the end of this file and
you can't have multiple entries for one username.

You don't need to specify a password if you set Auth-Type += System
on the list of authentication requirements. The RADIUS server
will then check the system password file.

Indented (with the tab character) lines following the first
line indicate the configuration values to be passed back to
the comm server to allow the initiation of a user session.
This can include things like the PPP configuration values
or the host to log the user onto.

You can include another `users' file with `$INCLUDE users.other'

For a list of RADIUS attributes, and links to their definitions,
see:

110

http://www.freeradius.org/rfc/attributes.html

Deny access for a specific user. Note that this entry MUST
be before any other 'Auth-Type' attribute which results in the user
being authenticated.

Note that there is NO 'Fall-Through' attribute, so the user will not
be given any additional resources.

#lameuser Auth-Type := Reject
Reply-Message = "Your account has been disabled."

Deny access for a group of users.

Note that there is NO 'Fall-Through' attribute, so the user will not
be given any additional resources.

#DEFAULT Group == "disabled", Auth-Type := Reject
Reply-Message = "Your account has been disabled."

This is a complete entry for "steve". Note that there is no Fall-Through
entry so that no DEFAULT entry will be used, and the user will NOT
get any attributes in addition to the ones listed here.

#steve Auth-Type := Local, User-Password == "testing"
Service-Type = Framed-User,
Framed-Protocol = PPP,
Framed-IP-Address = 172.16.3.33,
Framed-IP-Netmask = 255.255.255.0,
Framed-Routing = Broadcast-Listen,
Framed-Filter-Id = "std.ppp",
Framed-MTU = 1500,
Framed-Compression = Van-Jacobsen-TCP-IP

This is an entry for a user with a space in their name.
Note the double quotes surrounding the name.

#"John Doe" Auth-Type := Local, User-Password == "hello"
Reply-Message = "Hello, %u"

111

#!!!
#!!!!!!!!!!!added by the designers!!!!!!!!!!!!!!!!!!!!!!

newxpclient Auth-Type := EAP

test Auth-Type := Local, User-Password == "test"
 Reply-Message = "hello,%u"
#!!!

Dial user back and telnet to the default host for that port

#Deg Auth-Type := Local, User-Password == "ge55ged"
Service-Type = Callback-Login-User,
Login-IP-Host = 0.0.0.0,
Callback-Number = "9,5551212",
Login-Service = Telnet,
Login-TCP-Port = Telnet

Another complete entry. After the user "dialbk" has logged in, the
connection will be broken and the user will be dialed back after which
he will get a connection to the host "timeshare1".

#dialbkAuth-Type := Local, User-Password == "callme"
Service-Type = Callback-Login-User,
Login-IP-Host = timeshare1,
Login-Service = PortMaster,
Callback-Number = "9,1-800-555-1212"

user "swilson" will only get a static IP number if he logs in with
a framed protocol on a terminal server in Alphen (see the huntgroups file).

Note that by setting "Fall-Through", other attributes will be added from
the following DEFAULT entries

#swilson Service-Type == Framed-User, Huntgroup-Name == "alphen"
Framed-IP-Address = 192.168.1.65,
Fall-Through = Yes

If the user logs in as 'username.shell', then authenticate them
against the system database, give them shell access, and stop processing
the rest of the file.

112

#DEFAULT Suffix == ".shell", Auth-Type := System
Service-Type = Login-User,
Login-Service = Telnet,
Login-IP-Host = your.shell.machine

The rest of this file contains the several DEFAULT entries.
DEFAULT entries match with all login names.
Note that DEFAULT entries can also Fall-Through (see first entry).
A name-value pair from a DEFAULT entry will _NEVER_ override
an already existing name-value pair.

First setup all accounts to be checked against the UNIX /etc/passwd.
(Unless a password was already given earlier in this file).

DEFAULT Auth-Type := System
 Fall-Through = 1

Set up different IP address pools for the terminal servers.
Note that the "+" behind the IP address means that this is the "base"
IP address. The Port-Id (S0, S1 etc) will be added to it.

#DEFAULT Service-Type == Framed-User, Huntgroup-Name == "alphen"
Framed-IP-Address = 192.168.1.32+,
Fall-Through = Yes

#DEFAULT Service-Type == Framed-User, Huntgroup-Name == "delft"
Framed-IP-Address = 192.168.2.32+,
Fall-Through = Yes

Defaults for all framed connections.

DEFAULT Service-Type == Framed-User
 Framed-IP-Address = 255.255.255.254,
 Framed-MTU = 576,
 Service-Type = Framed-User,
 Fall-Through = Yes

113

Default for PPP: dynamic IP address, PPP mode, VJ-compression.
NOTE: we do not use Hint = "PPP", since PPP might also be auto-detected
by the terminal server in which case there may not be a "P" suffix.
The terminal server sends "Framed-Protocol = PPP" for auto PPP.

DEFAULT Framed-Protocol == PPP
 Framed-Protocol = PPP,
 Framed-Compression = Van-Jacobson-TCP-IP

Default for CSLIP: dynamic IP address, SLIP mode, VJ-compression.

DEFAULT Hint == "CSLIP"
 Framed-Protocol = SLIP,
 Framed-Compression = Van-Jacobson-TCP-IP

Default for SLIP: dynamic IP address, SLIP mode.

DEFAULT Hint == "SLIP"
 Framed-Protocol = SLIP

Last default: rlogin to our main server.

#DEFAULT
Service-Type = Login-User,
Login-Service = Rlogin,
Login-IP-Host = shellbox.ispdomain.com

Last default: shell on the local terminal server.

DEFAULT
Service-Type = Shell-User

On no match, the user is denied access.

114

E. RADIUSD RUNNING SCRIPT
#!/bin/sh -x

LD_LIBRARY_PATH=/usr/local/openssl/lib
LD_PRELOAD=/usr/local/openssl/lib/libcrypto.so

export LD_LIBRARY_PATH LD_PRELOAD

/usr/local/sbin/radiusd -X -A $@

115

APPENDIX E

A. AUTHENTICATION SERVER SUCCESSFUL AUTHENTICATION
LOGS

Starting - reading configuration files ...
reread_config: reading radiusd.conf
Config: including file: /etc/raddb/proxy.conf
Config: including file: /etc/raddb/clients.conf
Config: including file: /etc/raddb/snmp.conf
Config: including file: /etc/raddb/sql.conf
 main: prefix = "/usr/local"
 main: localstatedir = "/usr/local/var"
 main: logdir = "/usr/local/var/log/radius"
 main: libdir = "/usr/local/lib"
 main: radacctdir = "/usr/local/var/log/radius/radacct"
 main: hostname_lookups = no
 main: max_request_time = 30
 main: cleanup_delay = 5
 main: max_requests = 1024
 main: delete_blocked_requests = 0
 main: port = 0
 main: allow_core_dumps = no
 main: log_stripped_names = no
 main: log_file = "/usr/local/var/log/radius/radius.log"
 main: log_auth = no
 main: log_auth_badpass = no
 main: log_auth_goodpass = no
 main: pidfile = "/usr/local/var/run/radiusd/radiusd.pid"
 main: user = "(null)"
 main: group = "(null)"
 main: usercollide = no
 main: lower_user = "no"
 main: lower_pass = "no"
 main: nospace_user = "no"
 main: nospace_pass = "no"
 main: checkrad = "/usr/local/sbin/checkrad"
 main: proxy_requests = yes
 proxy: retry_delay = 5
 proxy: retry_count = 3
 proxy: synchronous = no
 proxy: default_fallback = yes
 proxy: dead_time = 120
 proxy: post_proxy_authorize = yes
 proxy: wake_all_if_all_dead = no
 security: max_attributes = 200
 security: reject_delay = 1
 security: status_server = no
 main: debug_level = 0
read_config_files: reading dictionary
read_config_files: reading naslist
Using deprecated naslist file. Support for this will go away soon.
read_config_files: reading clients
Using deprecated clients file. Support for this will go away soon.
read_config_files: reading realms

116

Using deprecated realms file. Support for this will go away soon.
radiusd: entering modules setup
Module: Library search path is /usr/local/lib
Module: Loaded expr
Module: Instantiated expr (expr)
Module: Loaded System
 unix: cache = yes
 unix: passwd = "/etc/passwd"
 unix: shadow = "/etc/shadow"
 unix: group = "/etc/group"
 unix: radwtmp = "/usr/local/var/log/radius/radwtmp"
 unix: usegroup = no
 unix: cache_reload = 600
HASH: Reinitializing hash structures and lists for caching...
 HASH: user root found in hashtable bucket 11726
 HASH: user bin found in hashtable bucket 86651
 HASH: user daemon found in hashtable bucket 11668
 HASH: user adm found in hashtable bucket 26466
 HASH: user lp found in hashtable bucket 54068
 HASH: user sync found in hashtable bucket 42895
 HASH: user shutdown found in hashtable bucket 71746
 HASH: user halt found in hashtable bucket 7481
 HASH: user mail found in hashtable bucket 79471
 HASH: user news found in hashtable bucket 5375
 HASH: user uucp found in hashtable bucket 38541
 HASH: user operator found in hashtable bucket 21748
 HASH: user games found in hashtable bucket 47657
 HASH: user gopher found in hashtable bucket 47357
 HASH: user ftp found in hashtable bucket 56226
 HASH: user nobody found in hashtable bucket 99723
 HASH: user rpm found in hashtable bucket 72383
 HASH: user vcsa found in hashtable bucket 25959
 HASH: user nscd found in hashtable bucket 36306
 HASH: user sshd found in hashtable bucket 71560
 HASH: user rpc found in hashtable bucket 72373
 HASH: user rpcuser found in hashtable bucket 552
 HASH: user nfsnobody found in hashtable bucket 51830
 HASH: user mailnull found in hashtable bucket 78086
 HASH: user smmsp found in hashtable bucket 13600
 HASH: user pcap found in hashtable bucket 55326
 HASH: user xfs found in hashtable bucket 17213
 HASH: user ntp found in hashtable bucket 21418
 HASH: user gdm found in hashtable bucket 50360
 HASH: user oozan found in hashtable bucket 94479
 HASH: user amanda found in hashtable bucket 72438
HASH: Stored 31 entries from /etc/passwd
HASH: Stored 39 entries from /etc/group
Module: Instantiated unix (unix)
Module: Loaded eap
 eap: default_eap_type = "tls"
 eap: timer_expire = 60
 eap: ignore_unknown_eap_types = no
 tls: rsa_key_exchange = no
 tls: dh_key_exchange = yes
 tls: rsa_key_length = 512
 tls: dh_key_length = 512
 tls: verify_depth = 0

117

 tls: CA_path = "(null)"
 tls: pem_file_type = yes
 tls: private_key_file = "/etc/1x/newradius.pem"
 tls: certificate_file = "/etc/1x/newradius.pem"
 tls: CA_file = "/etc/1x/root.pem"
 tls: private_key_password = "whatever"
 tls: dh_file = "/etc/1x/DH"
 tls: random_file = "/etc/1x/random"
 tls: fragment_size = 1024
 tls: include_length = yes
 tls: check_crl = no
rlm_eap: Loaded and initialized type tls
rlm_eap: Loaded and initialized type mschapv2
Module: Instantiated eap (eap)
Module: Loaded preprocess
 preprocess: huntgroups = "/etc/raddb/huntgroups"
 preprocess: hints = "/etc/raddb/hints"
 preprocess: with_ascend_hack = no
 preprocess: ascend_channels_per_line = 23
 preprocess: with_ntdomain_hack = no
 preprocess: with_specialix_jetstream_hack = no
 preprocess: with_cisco_vsa_hack = no
Module: Instantiated preprocess (preprocess)
Module: Loaded realm
 realm: format = "suffix"
 realm: delimiter = "@"
Module: Instantiated realm (suffix)
Module: Loaded files
 files: usersfile = "/etc/raddb/users"
 files: acctusersfile = "/etc/raddb/acct_users"
 files: preproxy_usersfile = "/etc/raddb/preproxy_users"
 files: compat = "no"
Module: Instantiated files (files)
Module: Loaded Acct-Unique-Session-Id
 acct_unique: key = "User-Name, Acct-Session-Id, NAS-IP-Address,
Client-IP-Address, NAS-Port-Id"
Module: Instantiated acct_unique (acct_unique)
Module: Loaded detail
 detail: detailfile = "/usr/local/var/log/radius/radacct/%{Client-IP-
Address}/detail-%Y%m%d"
 detail: detailperm = 384
 detail: dirperm = 493
 detail: locking = no
Module: Instantiated detail (detail)
Module: Loaded radutmp
 radutmp: filename = "/usr/local/var/log/radius/radutmp"
 radutmp: username = "%{User-Name}"
 radutmp: case_sensitive = yes
 radutmp: check_with_nas = yes
 radutmp: perm = 384
 radutmp: callerid = yes
Module: Instantiated radutmp (radutmp)
Listening on IP address *, ports 1812/udp and 1813/udp, with proxy on
1814/udp.
Ready to process requests.
rad_recv: Access-Request packet from host 131.120.8.145:32804, id=0,
length=160

118

 User-Name = "newxpclient"
 NAS-IP-Address = 131.120.8.145
 NAS-Port = 1
 Called-Station-Id = "00-05-5D-D9-8D-AE:test"
 Calling-Station-Id = "00-05-5D-D9-57-59"
 Framed-MTU = 2304
 NAS-Port-Type = Wireless-802.11
 Connect-Info = "CONNECT 11Mbps 802.11b"
 EAP-Message = "\002\001\000\020\001newxpclient"
 Message-Authenticator = 0x7b47883e05d44aa13d69442f35d1178f
modcall: entering group authorize for request 0
 modcall[authorize]: module "preprocess" returns ok for request 0
 rlm_eap: EAP packet type response id 1 length 16
 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
 modcall[authorize]: module "eap" returns updated for request 0
 rlm_realm: No '@' in User-Name = "newxpclient", looking up realm
NULL
 rlm_realm: No such realm "NULL"
 modcall[authorize]: module "suffix" returns noop for request 0
 users: Matched newxpclient at 101
 modcall[authorize]: module "files" returns ok for request 0
modcall: group authorize returns updated for request 0
 rad_check_password: Found Auth-Type EAP
auth: type "EAP"
modcall: entering group authenticate for request 0
 rlm_eap: EAP Identity
 rlm_eap: processing type tls
 rlm_eap_tls: Requiring client certificate
 rlm_eap_tls: Initiate
 rlm_eap_tls: Start returned 1
 modcall[authenticate]: module "eap" returns handled for request 0
modcall: group authenticate returns handled for request 0
Sending Access-Challenge of id 0 to 131.120.8.145:32804
 EAP-Message = "\001\002\000\006\r "
 Message-Authenticator = 0x00000000000000000000000000000000
 State = 0xcabe64f58e2e52c0326344aeaf7ff16d
Finished request 0

Going to the next request
Waking up in 1 seconds...
rad_recv: Access-Request packet from host 131.120.8.145:32804, id=13,
length=168
 User-Name = "newxpclient"
 NAS-IP-Address = 131.120.8.145
 NAS-Port = 1
 Called-Station-Id = "00-05-5D-D9-8D-AE:test"
 Calling-Station-Id = "00-05-5D-D9-57-59"
 Framed-MTU = 2304
 NAS-Port-Type = Wireless-802.11
 Connect-Info = "CONNECT 11Mbps 802.11b"
 EAP-Message = "\002\020\000\006\r"
 State = 0x2c02871aafebad85e9d5602736783471
 Message-Authenticator = 0xb1f4cfdc73e426a656047670cc908ef6
modcall: entering group authorize for request 13

119

 modcall[authorize]: module "preprocess" returns ok for request 13
 rlm_eap: EAP packet type response id 16 length 6
 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
 modcall[authorize]: module "eap" returns updated for request 13
 rlm_realm: No '@' in User-Name = "newxpclient", looking up realm
NULL
 rlm_realm: No such realm "NULL"
 modcall[authorize]: module "suffix" returns noop for request 13
 users: Matched newxpclient at 101
 modcall[authorize]: module "files" returns ok for request 13
modcall: group authorize returns updated for request 13
 rad_check_password: Found Auth-Type EAP
auth: type "EAP"
modcall: entering group authenticate for request 13
 rlm_eap: Request found, released from the list
 rlm_eap: EAP_TYPE - tls
 rlm_eap: processing type tls
 rlm_eap_tls: Authenticate
 rlm_eap_tls: processing TLS
rlm_eap_tls: Received EAP-TLS ACK message
 rlm_eap_tls: ack handshake is finished
 eaptls_verify returned 3
 eaptls_process returned 3
 rlm_eap: Freeing handler
 modcall[authenticate]: module "eap" returns ok for request 13
modcall: group authenticate returns ok for request 13
Sending Access-Accept of id 13 to 131.120.8.145:32804
 MS-MPPE-Recv-Key =
0xe9545b180975cdfb5d0f982189e03b43602f6c475e4ee66d7d24783c056f314c
 MS-MPPE-Send-Key =
0x1f44ce961ecf533c728e731dff144b918ed1a420fd83185e4ecc6b3c686a08b9
 EAP-Message = "\003\020\000\004"
 Message-Authenticator = 0x00000000000000000000000000000000
 User-Name = "newxpclient"
Finished request 13
Going to the next request
Waking up in 1 seconds...
--- Walking the entire request list ---
Waking up in 2 seconds...
--- Walking the entire request list ---
Cleaning up request 4 ID 4 with timestamp 4006d26e
Cleaning up request 5 ID 5 with timestamp 4006d26e
Cleaning up request 6 ID 6 with timestamp 4006d26e
Cleaning up request 7 ID 7 with timestamp 4006d26e
Cleaning up request 8 ID 8 with timestamp 4006d26e
Waking up in 3 seconds...
--- Walking the entire request list ---
Cleaning up request 9 ID 9 with timestamp 4006d271
Cleaning up request 10 ID 10 with timestamp 4006d271
Cleaning up request 11 ID 11 with timestamp 4006d271
Cleaning up request 12 ID 12 with timestamp 4006d271
Cleaning up request 13 ID 13 with timestamp 4006d271
Nothing to do. Sleeping until we see a request.

120

B. AUTHENTICATOR SUCCESSFUL SUPPLICANT AUTHENTICATION
LOG

Opening raw packet socket for ifindex 4
Using interface wlan0ap with hwaddr 00:05:5d:d9:8d:ae and ssid 'test'
Default WEP key - hexdump(len=5): 8a 0a ef db b7
Flushing old station entries
Deauthenticate all stations
Received 30 bytes management frame
 dump: b0 00 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae a0 01 00 00 01 00 00 00
MGMT
mgmt::auth
authentication: STA=00:05:5d:d9:57:59 auth_alg=0 auth_transaction=1
status_code=0
 New STA
Station 00:05:5d:d9:57:59 authentication OK (open system)
Received 30 bytes management frame
 dump: b2 00 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 20 44 00 00 02 00 00 00
MGMT (TX callback) ACK
mgmt::auth cb
Station 00:05:5d:d9:57:59 authenticated
Received 40 bytes management frame
 dump: 00 00 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae b0 01 01 00 01 00 00 04 74 65 73 74 01 04 82 84 0b 16
MGMT
mgmt::assoc_req
association request: STA=00:05:5d:d9:57:59 capab_info=0x01
listen_interval=1
 new AID 1
Station 00:05:5d:d9:57:59 association OK (aid 1)
Received 36 bytes management frame
 dump: 12 00 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 30 44 01 00 00 00 01 c0 01 04 82 84 0b 16
MGMT (TX callback) ACK
mgmt::assoc_resp cb
Station 00:05:5d:d9:57:59 associated (aid 1)
IEEE 802.1X: Start authentication for new station 00:05:5d:d9:57:59
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_KEY_TX entering state
NO_KEY_TRANSMIT
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state DISCONNECTED
IEEE 802.1X: Unauthorizing station 00:05:5d:d9:57:59
IEEE 802.1X: Sending canned EAP packet FAILURE to 00:05:5d:d9:57:59
(identifier 0)
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state IDLE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state CONNECTING
IEEE 802.1X: Sending EAP Request-Identity to 00:05:5d:d9:57:59
(identifier 1)
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE

121

Received 40 bytes management frame
 dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 40 44 aa aa 03 00 00 00 88 8e 01 00 00 04 04 00 00 04
DATA (TX callback) ACK
Received 46 bytes management frame
 dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 50 44 aa aa 03 00 00 00 88 8e 01 00 00 0a 01 01 00 0a 01 68 65 6c 6c
6f
DATA (TX callback) ACK
Received 37 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae c0 01 aa aa 03 00 00 00 88 8e 01 01 00 00 00
DATA
IEEE 802.1X: 5 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=1 length=0
 ignoring 1 extra octets after IEEE 802.1X packet
 EAPOL-Start
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state CONNECTING
IEEE 802.1X: Sending EAP Request-Identity to 00:05:5d:d9:57:59
(identifier 1)
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 46 bytes management frame
 dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 60 44 aa aa 03 00 00 00 88 8e 01 00 00 0a 01 01 00 0a 01 68 65 6c 6c
6f
DATA (TX callback) ACK
Received 52 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae d0 01 aa aa 03 00 00 00 88 8e 01 00 00 10 02 01 00 10 01 6e 65 77 78
70 63 6c 69 65 6e 74
DATA
IEEE 802.1X: 20 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=0 length=16
 EAP: code=2 identifier=1 length=16 (response)
 EAP Response-Identity
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state AUTHENTICATING
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE
Encapsulating EAP message into a RADIUS packet
Sending RADIUS message to authentication server
RADIUS message: code=1 (Access-Request) identifier=0 length=160
 Attribute 1 (User-Name) length=13
 Value: 'newxpclient'
 Attribute 4 (NAS-IP-Address) length=6
 Value: 131.120.8.145
 Attribute 5 (NAS-Port) length=6
 Value: 1
 Attribute 30 (Called-Station-Id) length=24
 Value: '00-05-5D-D9-8D-AE:test'
 Attribute 31 (Calling-Station-Id) length=19
 Value: '00-05-5D-D9-57-59'
 Attribute 12 (Framed-MTU) length=6
 Value: 2304
 Attribute 61 (NAS-Port-Type) length=6
 Value: 19
 Attribute 77 (Connect-Info) length=24
 Value: 'CONNECT 11Mbps 802.11b'

122

 Attribute 79 (EAP-Message) length=18
 Attribute 80 (Message-Authenticator) length=18
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 52 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae e0 01 aa aa 03 00 00 00 88 8e 01 00 00 10 02 01 00 10 01 6e 65 77 78
70 63 6c 69 65 6e 74
DATA
IEEE 802.1X: 20 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=0 length=16
 EAP: code=2 identifier=1 length=16 (response)
 EAP Response-Identity
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 64 bytes from authentication server
Received RADIUS message
RADIUS message: code=11 (Access-Challenge) identifier=0 length=64
 Attribute 79 (EAP-Message) length=8
 Attribute 80 (Message-Authenticator) length=18
 Attribute 24 (State) length=18
RADIUS packet matching with station 00:05:5d:d9:57:59
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 2)
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 42 bytes management frame
 dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 90 44 aa aa 03 00 00 00 88 8e 01 00 00 06 01 02 00 06 0d 20
DATA (TX callback) ACK
Received 148 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae f0 01 aa aa 03 00 00 00 88 8e 01 00 00 70 02 02 00 70 0d 80 00 00 00
66 16 03 01 00 61 01 00 00 5d 03 01 40 06 d1 58 59 2c af d8 f8 1e 81 19
ca 6e c5 66 34 d6 a6 28 85 47 61 eb 69 e8 c9 3c 8f a4 a0 00 20 81 90 a4
11 52 ad 3b 0b 8f f1 cd 8a 98 ce 08 51 41 c8 f5 75 34 35 54 84 9b 7a 08
f5 73 5d d0 82 00 16 00 04 00 05 00 0a 00 09 00 64 00 62 00 03 00 06 00
13 00 12 00 63 01 00
DATA
IEEE 802.1X: 116 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=0 length=112
 EAP: code=2 identifier=2 length=112 (response)
 EAP Response-TLS
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE
Encapsulating EAP message into a RADIUS packet
Sending RADIUS message to authentication server
RADIUS message: code=1 (Access-Request) identifier=1 length=274
 Attribute 1 (User-Name) length=13
 Value: 'newxpclient'
 Attribute 4 (NAS-IP-Address) length=6
 Value: 131.120.8.145
 Attribute 5 (NAS-Port) length=6
 Value: 1
 Attribute 30 (Called-Station-Id) length=24
 Value: '00-05-5D-D9-8D-AE:test'
 Attribute 31 (Calling-Station-Id) length=19
 Value: '00-05-5D-D9-57-59'
 Attribute 12 (Framed-MTU) length=6

123

 Value: 2304
 Attribute 61 (NAS-Port-Type) length=6
 Value: 19
 Attribute 77 (Connect-Info) length=24
 Value: 'CONNECT 11Mbps 802.11b'
 Attribute 79 (EAP-Message) length=114
 Attribute 24 (State) length=18
 Attribute 80 (Message-Authenticator) length=18
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 1100 bytes from authentication server
Received RADIUS message
RADIUS message: code=11 (Access-Challenge) identifier=1 length=1100
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=24
 Attribute 80 (Message-Authenticator) length=18
 Attribute 24 (State) length=18
RADIUS packet matching with station 00:05:5d:d9:57:59
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 3)
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 1070 bytes management frame
 dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae a0 44 aa aa 03 00 00 00 88 8e 01 00 04 0a 01 03 04 0a 0d c0 00 00 06
b9 16 03 01 00 4a 02 00 00 46 03 01 40 06 d2 6c 7e f5 d8 69 c3 00 ae 17
26 a7 d7 0d 99 41 70 d4 6d 73 40 df b3 7b 42 95 c9 f5 29 1d 20 07 81 d9
93 df a6 c5 e5 ca d6 d1 c5 7c 5f ed 8b 54 c0 04 e5 30 71 f2 80 7f 8f 9c
e8 41 f1 40 fa 00 04 00 16 03 01 05 d9 0b 00 05 d5 00 05 d2 00 02 92 30
82 02 8e 30 82 01 f7 a0 03 02 01 02 02 01 01 30 0d 06 09 2a 86 48 86 f7
0d 01 01 04 05 00 30 76 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30
11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03
55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04
4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31 21 30 1f 06
09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61
76 79 2e 6d 69 6c 30 1e 17 0d 30 34 30 31 31 35 30 30 33 39 31 32 5a 17
0d 30 35 30 31 31 34 30 30 33 39 31 32 5a 30 81 8a 31 0b 30 09 06 03 55
04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72
6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d
30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04
53 41 41 4d 31 12 30 10 06 03 55 04 03 13 09 6e 65 77 72 61 64 69 75 73
31 21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e
70 73 2e 6e 61 76 79 2e 6d 69 6c 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d
01 01 01 05 00 03 81 8d 00 30 81 89 02 81 81 00 c7 c2 5b ce 6b b1 44 b7
1d e6 f3 8a 99 76 ae 25 ec 70 68 3e ef 15 03 63 14 0b 3c 95 f1 fc 4e d8
6e b7 ed 33 85 93 f8 4b ed c5 b8 91 e4 ff 1f eb 93 85 e1 4e ba 1a f3 c6
b5 79 fe b1 19 c0 89 63 73 07 13 3f f7 3b 97 f5 3f 72 fd 6a f6 e2 3c 28
56 c4 45 56 e7 b0 fb 6d 4f 60 94 94 10 96 af 1c 84 f4 91 e6 0f d5 61 17
a8 b7 05 45 b9 17 dd 14 8c 84 d5 38 9a 63 e1 66 4f 87 b1 19 17 98 cb 75
02 03 01 00 01 a3 17 30 15 30 13 06 03 55 1d 25 04 0c 30 0a 06 08 2b 06
01 05 05 07 03 01 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 03 81 81
00 07 c2 b6 90 91 fd 0a 1e 8f c1 98 41 a9 9d 9e d2 36 37 24 97 4f f6 91
eb 95 44 45 37 95 72 96 9a 90 71 0c 9e cc 62 36 28 0d 07 2d 8d e0 30 81
20 af 7d e2 33 2e 46 6d f5 6f 72 28 90 c0 68 eb 4b 51 72 3a 52 e6 6b 23

124

80 94 6f 86 81 2e 3b 71 d3 15 ab 90 5c ad 06 51 0e 6b a1 fa 6e d9 0c e0
45 f3 9b ab 76 7e ab 63 94 73 bb a6 e8 d9 e2 fb e2 cb e1 3d 57 56 31 fa
a6 de e2 61 a4 48 7f e9 ef 00 03 3a 30 82 03 36 30 82 02 9f a0 03 02 01
02 02 01 00 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 30 76 31 0b 30
09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 0a 43 61 6c
69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 6e 74 65 72
65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 0b 06 03 55
04 0b 13 04 53 41 41 4d 31 21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16
12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 76 79 2e 6d 69 6c 30 1e 17 0d 30
34 30 31 31 35 30 30 33 33 33 37 5a 17 0d 30 34 30 32 31 34 30 30 33 33
33 37 5a 30 76 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03
55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07
13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47
53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31
DATA (TX callback) ACK
Received 42 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae 00 02 aa aa 03 00 00 00 88 8e 01 00 00 06 02 03 00 06 0d 00
DATA
IEEE 802.1X: 10 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=0 length=6
 EAP: code=2 identifier=3 length=6 (response)
 EAP Response-TLS
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE
Encapsulating EAP message into a RADIUS packet
Sending RADIUS message to authentication server
RADIUS message: code=1 (Access-Request) identifier=2 length=168
 Attribute 1 (User-Name) length=13
 Value: 'newxpclient'
 Attribute 4 (NAS-IP-Address) length=6
 Value: 131.120.8.145
 Attribute 5 (NAS-Port) length=6
 Value: 1
 Attribute 30 (Called-Station-Id) length=24
 Value: '00-05-5D-D9-8D-AE:test'
 Attribute 31 (Calling-Station-Id) length=19
 Value: '00-05-5D-D9-57-59'
 Attribute 12 (Framed-MTU) length=6
 Value: 2304
 Attribute 61 (NAS-Port-Type) length=6
 Value: 19
 Attribute 77 (Connect-Info) length=24
 Value: 'CONNECT 11Mbps 802.11b'
 Attribute 79 (EAP-Message) length=8
 Attribute 24 (State) length=18
 Attribute 80 (Message-Authenticator) length=18
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE
Received 769 bytes from authentication server

RADIUS packet matching with station 00:05:5d:d9:57:59
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 15)
Received 743 bytes management frame

125

 dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae 60 4c aa aa 03 00 00 00 88 8e 01 00 02 c3 01 0f 02 c3 0d 80 00 00 06
b9 21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e
70 73 2e 6e 61 76 79 2e 6d 69 6c 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d
01 01 01 05 00 03 81 8d 00 30 81 89 02 81 81 00 cc fe 01 16 21 92 44 8b
98 4d 48 59 a5 9d ae 3d 8b 5c eb d1 3f df 0c 93 c9 70 75 a0 a6 d4 b8 d8
ff e7 83 c2 96 5e 14 09 47 aa da 91 f5 98 97 12 eb 37 42 81 6b 9f 6b 41
ce 41 9d f7 89 50 05 67 64 a4 bd d0 44 a1 06 d2 71 fc 31 01 e2 8f b4 06
5f b1 56 07 a3 c7 fd de 46 c6 a7 8d e6 65 db 4a f1 64 2b 48 b1 5e 51 3b
d9 a0 33 1b 71 db 7a 9f 3f ea ae fa 4c 65 d0 6c da 7e 44 ee a9 8e 4b 13
02 03 01 00 01 a3 81 d3 30 81 d0 30 1d 06 03 55 1d 0e 04 16 04 14 5f 18
3d 02 8f ea ae 3c 3a a6 a5 53 82 29 73 24 68 86 2b 6c 30 81 a0 06 03 55
1d 23 04 81 98 30 81 95 80 14 5f 18 3d 02 8f ea ae 3c 3a a6 a5 53 82 29
73 24 68 86 2b 6c a1 7a a4 78 30 76 31 0b 30 09 06 03 55 04 06 13 02 55
53 31 13 30 11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11
30 0f 06 03 55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55
04 0a 13 04 4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31
21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70
73 2e 6e 61 76 79 2e 6d 69 6c 82 01 00 30 0c 06 03 55 1d 13 04 05 30 03
01 01 ff 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 03 81 81 00 52 89
a7 07 95 4e 9e 1c 2f be 3c c5 79 5b 66 0a 06 4b ab 0f 54 28 10 c3 2b 28
96 f0 53 66 06 bc 49 45 74 b2 e5 eb 31 cc b2 e5 bb 8e 74 60 be 48 c4 03
b6 2f dc c3 d5 79 6b 92 1d ef 8b 8e 20 26 7d 15 02 1b 96 a0 f6 4a 3e 46
3b 44 5e 17 dd 3e e4 dc ce e7 98 57 b3 7f 28 5a 9c ab 2f 68 e7 0e 80 98
d0 4e 30 1f 2c 30 bb aa 1f 50 fe 90 af 6d 7a 05 f0 23 a5 e1 f9 35 bb dc
57 32 5a a8 e1 b6 16 03 01 00 87 0d 00 00 7f 02 01 02 00 7a 00 78 30 76
31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 0a
43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 6e
74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 0b
06 03 55 04 0b 13 04 53 41 41 4d 31 21 30 1f 06 09 2a 86 48 86 f7 0d 01
09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 76 79 2e 6d 69 6c 0e 00
00 00
DATA (TX callback) ACK
Received 1032 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae e0 04 aa aa 03 00 00 00 88 8e 01 00 03 e4 02 0f 03 e4 0d 80 00 00 03
da 16 03 01 03 aa 0b 00 02 9a 00 02 97 00 02 94 30 82 02 90 30 82 01 f9
a0 03 02 01 02 02 01 02 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 30
76 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13
0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f
6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30
0b 06 03 55 04 0b 13 04 53 41 41 4d 31 21 30 1f 06 09 2a 86 48 86 f7 0d
01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 76 79 2e 6d 69 6c 30
1e 17 0d 30 34 30 31 31 35 30 30 34 30 32 37 5a 17 0d 30 35 30 31 31 34
30 30 34 30 32 37 5a 30 81 8c 31 0b 30 09 06 03 55 04 06 13 02 55 53 31
13 30 11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f
06 03 55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a
13 04 4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31 14 30
12 06 03 55 04 03 13 0b 6e 65 77 78 70 63 6c 69 65 6e 74 31 21 30 1f 06
09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61
76 79 2e 6d 69 6c 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 01 01 01 05 00
03 81 8d 00 30 81 89 02 81 81 00 b6 2b a4 23 42 e1 59 dd 8d cc ba d2 28
50 b3 eb ed 4e c9 1f 9d d3 83 56 34 ae bd c9 bf 3d df 49 32 7c 0a ca 16
95 20 06 dd 77 13 0c b5 c2 e8 be dd d8 9c 94 e6 fb 6d 96 17 01 0a 02 59
d2 20 3f 79 5d ea 16 99 25 69 46 47 7e 15 49 54 13 c4 38 4d 83 ff b6 1b
bd 13 c6 e2 93 12 17 2a 5b 9a 3a 48 53 59 76 98 04 75 30 06 93 65 75 86
00 01 fe 90 09 17 74 40 7a 71 fc 6f 97 67 a6 ff 60 66 bf 02 03 01 00 01

126

a3 17 30 15 30 13 06 03 55 1d 25 04 0c 30 0a 06 08 2b 06 01 05 05 07 03
02 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 03 81 81 00 c1 89 97 3d
d1 f6 63 2d ef 5a 12 3a 39 99 0e 8e 41 f3 ea ee be a6 45 e1 f4 2b 58 22
ea ce 5d 08 19 dd a9 3d 55 6c 87 44 03 00 d8 ca f1 02 a7 88 0c 33 20 6f
d7 be 6c 2c 14 32 c6 c7 b7 c9 3a 2f fb 4e d1 97 ed 00 ff 9f 78 c2 75 b8
44 42 72 06 7c 17 53 46 03 03 a0 e1 f4 58 f7 83 bf cd c2 17 d9 d9 8e 78
70 20 a5 6a 40 b9 94 34 fe 3a f4 d8 fc 3e 9f 3e f7 4d c1 09 7f 65 48 75
3f d7 4d 5c 10 00 00 82 00 80 06 56 1e 5e 9d 9e 9c 8b 9f 60 3a 3d 6b 1f
13 82 82 df e6 11 2e 12 ef c1 0c 0a c5 dd 45 22 78 60 2f ca 4b 97 51 3a
89 6c 09 8f a0 d5 b6 7b 7d bd 7e 2e d6 c9 21 53 b6 1a 5f 92 ff ab e0 a3
64 1c 85 06 8c 5d 03 3d 78 37 2a 09 2a 41 6a f4 0f c4 de a9 d1 e5 03 1e
f9 79 aa ab 56 61 89 fe 82 a0 1b 50 92 88 22 00 fc 45 72 18 55 84 d6 ed
57 8f 6e 39 f8 42 5b cd 59 5d 55 a4 68 fd 0d da 1b 2f 0f 00 00 82 00 80
23 44 69 5b 98 67 df 6e b6 4e 52 41 a0 51 4e 2f 63 b1 24 0b d3 76 e4 53
d6 54 9f 30 52 4d 0a d9 ad e3 7d 41 cd da b5 a2 90 90 7e f7 dd 91 56 64
97 b6 26 7a 33 45 59 c6 de 78 86 6a db 9d 18 1b bc e8 67 4f 37 1e ac de
c9 1f 5c 30 8b be 4c d2 94 55 d1 c2 5a 01 40 4c 91 b1 c1 27 1d 5e be 39
40 b8 47 e9 4d 21 8f 56 3e f4 ed 37 a6 7d 9d e8 c0 de 36 59 2d 37 75 1b
1f a8 71 d9 6f 93 e0 f6 14 03 01 00 01 01 16 03 01 00 20 88 a6 dd 59 65
b0 d8 6d b0 88 e9 ee ae 76 37 00 49 b9 c5 3a 0f b1 6c 85 c5 fa 48 29 3a
9e 3f 7d
DATA
IEEE 802.1X: 1000 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=0 length=996
 EAP: code=2 identifier=15 length=996 (response)
 EAP Response-TLS
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE
Encapsulating EAP message into a RADIUS packet
Sending RADIUS message to authentication server
RADIUS message: code=1 (Access-Request) identifier=12 length=1164
 Attribute 1 (User-Name) length=13
 Value: 'newxpclient'
 Attribute 4 (NAS-IP-Address) length=6
 Value: 131.120.8.145
 Attribute 5 (NAS-Port) length=6
 Value: 1
 Attribute 30 (Called-Station-Id) length=24
 Value: '00-05-5D-D9-8D-AE:test'
 Attribute 31 (Calling-Station-Id) length=19
 Value: '00-05-5D-D9-57-59'
 Attribute 12 (Framed-MTU) length=6
 Value: 2304
 Attribute 61 (NAS-Port-Type) length=6
 Value: 19
 Attribute 77 (Connect-Info) length=24
 Value: 'CONNECT 11Mbps 802.11b'
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=255
 Attribute 79 (EAP-Message) length=239
 Attribute 24 (State) length=18
 Attribute 80 (Message-Authenticator) length=18
Received 111 bytes from authentication server
Received RADIUS message
RADIUS message: code=11 (Access-Challenge) identifier=12 length=111
 Attribute 79 (EAP-Message) length=55
 Attribute 80 (Message-Authenticator) length=18

127

 Attribute 24 (State) length=18
RADIUS packet matching with station 00:05:5d:d9:57:59
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 16)
Received 89 bytes management frame
 dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae c0 4c aa aa 03 00 00 00 88 8e 01 00 00 35 01 10 00 35 0d 80 00 00 00
2b 14 03 01 00 01 01 16 03 01 00 20 e4 a4 01 c9 fe 54 a2 12 4b 7c 5b 32
f5 e5 b2 7e 32 bc 67 46 4b 52 bc dc b9 03 a7 8d 1f d1 71 28
DATA (TX callback) ACK
Received 42 bytes management frame
 dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d
ae f0 04 aa aa 03 00 00 00 88 8e 01 00 00 06 02 10 00 06 0d 00
DATA
IEEE 802.1X: 10 bytes from 00:05:5d:d9:57:59
 IEEE 802.1X: version=1 type=0 length=6
 EAP: code=2 identifier=16 length=6 (response)
 EAP Response-TLS
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE
Encapsulating EAP message into a RADIUS packet
Sending RADIUS message to authentication server
RADIUS message: code=1 (Access-Request) identifier=13 length=168
 Attribute 1 (User-Name) length=13
 Value: 'newxpclient'
 Attribute 4 (NAS-IP-Address) length=6
 Value: 131.120.8.145
 Attribute 5 (NAS-Port) length=6
 Value: 1
 Attribute 30 (Called-Station-Id) length=24
 Value: '00-05-5D-D9-8D-AE:test'
 Attribute 31 (Calling-Station-Id) length=19
 Value: '00-05-5D-D9-57-59'
 Attribute 12 (Framed-MTU) length=6
 Value: 2304
 Attribute 61 (NAS-Port-Type) length=6
 Value: 19
 Attribute 77 (Connect-Info) length=24
 Value: 'CONNECT 11Mbps 802.11b'
 Attribute 79 (EAP-Message) length=8
 Attribute 24 (State) length=18
 Attribute 80 (Message-Authenticator) length=18
Received 173 bytes from authentication server
Received RADIUS message
RADIUS message: code=2 (Access-Accept) identifier=13 length=173
 Attribute 26 (Vendor-Specific) length=58
 Attribute 26 (Vendor-Specific) length=58
 Attribute 79 (EAP-Message) length=6
 Attribute 80 (Message-Authenticator) length=18
 Attribute 1 (User-Name) length=13
 Value: 'newxpclient'
RADIUS packet matching with station 00:05:5d:d9:57:59
MS-MPPE-Send-Key (len=32): 1f 44 ce 96 1e cf 53 3c 72 8e 73 1d ff 14 4b
91 8e d1 a4 20 fd 83 18 5e 4e cc 6b 3c 68 6a 08 b9
MS-MPPE-Recv-Key (len=32): e9 54 5b 18 09 75 cd fb 5d 0f 98 21 89 e0 3b
43 60 2f 6c 47 5e 4e e6 6d 7d 24 78 3c 05 6f 31 4c
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state SUCCESS
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 16)

128

IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_KEY_TX entering state KEY_TRANSMIT
IEEE 802.1X: Sending EAPOL-Key(s) to 00:05:5d:d9:57:59 (identifier 16)
IEEE 802.1X: Sending EAPOL-Key to 00:05:5d:d9:57:59 (broadcast index=1)
Individual WEP key - hexdump(len=5): bc b3 d0 ce 1d
IEEE 802.1X: Sending EAPOL-Key to 00:05:5d:d9:57:59 (unicast index=0)
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state AUTHENTICATED
IEEE 802.1X: Authorizing station 00:05:5d:d9:57:59
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state IDLE
Received 40 bytes management frame
 dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae d0 4c aa aa 03 00 00 00 88 8e 01 00 00 04 03 10 00 04
DATA (TX callback) ACK
Received 85 bytes management frame
 dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae e0 4c aa aa 03 00 00 00 88 8e 01 03 00 31 01 00 05 c3 b1 5b 4f 0a d4
90 d2 91 9f 41 bf 1c 8d 9a 89 2a 58 94 49 e0 d9 c5 c1 01 10 87 ca 61 01
32 8f 1f 86 0c e8 3a ad e6 c3 8f 6b c3 e5 3c 43
DATA (TX callback) ACK
Received 85 bytes management frame
 dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d
ae f0 4c aa aa 03 00 00 00 88 8e 01 03 00 31 01 00 05 c3 b1 5b 4f 0e 11
98 94 8d 17 4f 4f 99 c0 cb cd 9b 41 c1 76 72 bd c6 15 80 dd cc b2 db 32
7f 5c 65 72 90 18 32 b1 4b 57 1f 5e ed 7c 60 35
DATA (TX callback) ACK
IEEE 802.1X: 00:05:5d:d9:57:59 Port Timers TICK (timers: 29 0 3595 28)
IEEE 802.1X: 00:05:5d:d9:57:59 Port Timers TICK (timers: 28 0 3594 27)

129

APPENDIX F

A. AUTHENTICATOR STATE MACHINE

130

B. SUPPLICANT STATE MACHINE

131

LIST OF REFERENCES

1. A. Mishra, W. Arbaugh, “An Initial Security Analysis of the IEEE 802.1X
Standard”, CS-TR-4328 UMIACS-TR-2002-10 Technical Report 6 February 2002.

2. Cisco Product Bulletin No.1327“Cisco Comments on Recent WLAN Security
Paper from University of Maryland”, 6 October 2001.

3. Agere Systems, “ORINOCO WLAN Security Response to ‘An Initial Security
Analysis of the IEEE 802.1X Standard’, W.Arbaugh and A,Mishra, University of
Maryland” December 2001

4. H.Selcuk Ozturk “Evaluation of Secure 802.1X Part-Based Network Access
Authentication Over 802.11 Wireless Local Area Networks”, Naval Postgraduate School,
CA 93943, March 2003

5. Geier Jim, Wireless LANs Implementing Interoperable Networks, Macmillan
Network Architecture & Development Series, 1999.

6. Behrouz A. Forozuan, Local Area Networks, McGraw Hill, 2003.

7. Institute of Electrical and Electronics Engineers, “ANSI/IEEE Std 802.11 Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, 20
August 1999.

8. Institute of Electrical and Electronics Engineers, “ANSI/IEEE Std 802.11b/D8.0,
DRAFT Supplement to STANDART for Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4
GHZ Band”, September 2001.

9. Certified Wireless Network Administrator Official Study Guide, Planet3 2000.

10. Scott Fluhrer, Itsik Mantin, and Adi Shamir, “Weakness in the Key Scheduling
Algotrithm of RC4”, SAC 2001.

11. Adam Stubblefield, John Ioannidis, and Aviel D. Rubin, “Using Fluhrer, Mantin,
and Shamir Attack to Break WEP”, AT&T Labs Technical Report 2001.

12. Institute of Electrical and Electronics Engineers, IEEE Standard for Local and
Metropolitan Area Networks Port-Based Network Access Control, IEEE Std 802.1X-
2001.

13. W. Stallings, Wireless Communications and Networks, Prentice Hall 2002.

132

14. Jesse R. Walker, “Unsafe at Any Key Size: An analysis of the WEP
Encapsulation”, doc: IEEE 802.11-00/362, October 2000.

15. Nikita Borisov, Ian Goldberg, and David Wagner, “Intercepting Mobile
Communications: The Insecurity of 802.11”, ACM SIGMOBILE 7/01 Rome, Italy, 2001
ACM ISBN 1-58113-422-3/01/07.

16. B.Aboba and D.Simon, “PPP EAP Authentication Protocol”, RFC 2716
Experimental, October 1999

17. C. Rigney, S. Willens, A. Rubens, W. Simpson, “Remote Authentication Dial In
User Service”, RFC2138 June 2000.

18. Bernard Aboba, “IEEE 802.1X Pre-Authentication”, doc.: IEEE 802.11-02/389r0
June 2002.

19. T.Dierks, C. Allen “The TLS Protocol Version 1.0”, RFC-2246 January 1999.

20. Cisco Systems, Inc “A Comprehensive Review of 802.11 Wireless LAN Security
and the Cisco Wireless Security Suite”, White Paper, January 2002

21. M. Sutton, “Hacking the Invisible Network, Insecurities in 802.1X”, iDEFENSE
Labs., 10 July 2002.

22. J. Walker, “802.11i Overview part-I and part-II”, Microsoft Power point
Presentation, Intel Corporation, Jesse Walker, March 2003

23. B. Aboda, D. Simon, “PPP EAP TLS Authentication Protocol”, RFC-2716,
October 1999.

24. C. Rigney, S. Willens, A. Rubens, W. Simpson, “Remote Authentication Dial In
User Service (RADIUS)” RFC-2865, June 2000.

25. C. Rigney, “RADIUS Accounting”, RFC-2866, June 2000

26. Cisco Systems, Inc. “Extensible Authentication Protocol Transport Layer
Security Deployment Guide for Wireless LAN Networks “, White Paper, November 2002

27. D. Eaton, (1 November 2002), “Diving into the 802.11i Spec: A Tutorial”
[online], Available from: http://www.commsdesign.com/design library/cd/hn
/OEG20021126S0003, [Accessed 12 January 2004]

133

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Geoffrey Xie
Naval Postgraduate School
Monterey, CA

4. Professor John Gibson
Naval Postgraduate School
Monterey, CA

5. Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
06410 Bakanliklar
Ankara, TURKEY

6. Bogazici Universitesi

Muhendislik Fakultesi, Bilgisayar Muhendisligi
34342 Bebek
Istanbul, TURKEY

7. Ortadogu Teknik Universitesi
Muhendislik Fakultesi, Bilgisayar Muhendisligi
06531
Ankara, TURKEY

8. Hulusi ONDER
Hatip mahallesi, No:43/A, 58700, Zara
Sivas, TURKEY

