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ABSTRACT 
 

 
 

Wireless Local Area Network (WLAN) technologies are becoming widely used 

since they provide more flexibility and availability. Unfortunately, it is possible for 

WLANs to be implemented with security flaws which are not addressed in the original 

802.11 specification. IEEE formed a working group (TGi) to provide a complete solution 

(code named 802.11i standard) to all the security problems of the WLANs.  The group 

proposed using 802.1X as an interim solution to the deficiencies in WLAN authentication 

and key management. The full 802.11i standard is expected to be finalized by the end of 

2004. 

Although 802.1X provides a better authentication scheme than the original 802.11 

security solution, it is still vulnerable to denial-of-service, session hijacking, and man-in-

the-middle attacks. Using an open-source 802.1X test-bed, this thesis evaluates various 

session hijacking mechanisms through experimentation. The main conclusion is that the 

risk of session hijacking attack is significantly reduced with the new security standard 

(802.11i); however, the new standard will not resolve all of the problems. An attempt to 

launch a session hijacking attack against the new security standard will not succeed, 

although it will result in a denial-of-service attack against the user.  
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I. INTRODUCTION 

A. BACKGROUND  
Wireless networks are an emerging and popular field in the network arena. Since 

wireless networks reduce the dependence of network clients on established and wire-

based infrastructures, they provide mobility and flexibility to the users and have become 

very increasingly important and pervasive. Wireless networks provide a cable-free 

internet connection; however, becoming cable-free creates the problems of being open to 

anybody in the coverage area.  Security aspects of wireless networks were examined and 

implemented after the technology was introduced. The very first design of all the wireless 

protocols did not consider security issues. Problems were discovered after installation of 

the systems. These problems were addressed by applying patches and some means of 

identification or privacy, such as Service Set Identifier (SSID) checks and Wired 

Equivalence Privacy (WEP). The weaknesses in these first security precautions, however, 

were exploited shortly after they were introduced.  

In addition to these actions to counter the security problems of wireless network 

traffic, a solid and reliable authentication mechanism should also be used to control the 

access of the users. The IEEE 802.11i working group was formed to solve the security 

problems of wireless networks, including the authentication issue. This working group 

proposed that the 802.1X authentication scheme be used until a complete solution to all 

the known problems of wireless networks could be developed. The 802.1X authentication 

mechanism includes the use of an authentication server to control the access of the 

mobile client trying to use the network.  

Since the 802.1X authentication scheme is not especially designed for wireless 

networks, it specifically does not address the problems of WLANs and carries the 

problems and security weaknesses of wired networks to the more “open” wireless world. 

Research [1] conducted in 2002 revealed problems that may be encountered in wireless 

networks that use the 802.1X authentication scheme. The security vulnerabilities that are 

present in wireless networks may be used by attackers to conduct several denial-of-

service, man-in-the-middle, and session hijacking attacks.  
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A session hijacking attack, if conducted successfully, can allow the attacker to 

access the wireless network in the place of a legitimate user by disconnecting that 

particular user from the network and assuming its identity as far as the network is 

concerned.  

Since the University of Maryland paper [1] was published, there have been two 

formal replies to the paper: one from Cisco [2] and the other from Orinoco [3]. Both 

replies have accepted the possibility of session hijacking attack under certain conditions. 

The session hijacking attack scenario in University of Maryland paper did not mention 

the encryption that might be used in the wireless networks. The reply papers indicated 

that if the encryption of the wireless networks were strong enough, then the session 

hijacking attack would not reach its goals, but would result in a denial of service situation 

instead. 

 

B. THESIS OBJECTIVES 
The main objective of this thesis is to conduct a systematic evaluation of the risks 

of session hijacking attacks in wireless networks. A major portion of the effort is devoted 

to an attempt to implement session hijacking attacks over an actual network. As a result, 

the work provides unique observations from a practical perspective.  Where an attack is 

successfully completed, the security flaws of the system giving rise to the success of that 

type of attack are examined and possible ways of overcoming those flaws are described 

in the thesis.  Otherwise, the protective mechanism responsible for preventing the attack 

is identified.  

An open-source 802.1X wireless networking test-bed is required in this thesis. 

One such test-bed was first implemented by LTJG H. Selcuk Ozturk, Turkish Navy, in 

2002 [4].  As a part of this thesis, the same test-bed is built again with the latest versions 

of the software components. 

 

C. THESIS ORGANIZATION 

This thesis is organized into six chapters. Chapter II covers the issues related to 

the 802.1X authentication standard. The entities and the protocols of the standard are 
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broadly discussed. Chapter III explains the structure of the test-bed and installation of the 

software to build the test-bed. Chapter IV contains the experiments and results of the 

experiments conducted on the test-bed pertinent to the session hijacking attack. Chapter 

V introduces the new security standard (802.11i). The final part of Chapter V discusses 

the new standard in regard to the weakness that result in a session hijacking attack. 

Finally, Chapter VI contains the conclusions and the areas for future work. 
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II. BACKGROUND AND SESSION HIJACKING ATTACKS 

A. INTRODUCTION 
The growing uses of wireless networks in everyday life generate urgent needs for 

confidentiality, privacy and access control. Authentication and Access Control issues are 

insufficiently covered and addressed in the original 802.11 protocol. After the discovery 

of the 802.11 protocol problems, the IEEE 802.1X standard became a temporary solution 

until a precise and complete solution is developed by the IEEE 802.11i working group, 

which has been established particularly to address the security problems of wireless 

networks. 

802.1X is known as the standard for Port-Based Network Access Control. This 

standard is intended to provide sufficient solutions to authentication, access control and 

key management issues. However, a University of Maryland paper [1], published in 

2002, asserts that the 802.1X standard has shortcomings, which could be exploited by 

attackers to launch successful man-in-the-middle, session hijacking and denial of service 

attacks. After the paper was published, Cisco and Orinoco presented two formal 

responses [2, 3]. These companies are among the top wireless networks equipment 

producers. Interestingly, the responses did not totally dismiss the possibility of successful 

man-in-the-middle and session hijacking attacks as asserted by the University of 

Maryland paper [1]. 

The 802.11i working group (TGi) approved the seventh draft of the new 802.11i 

standard in November 2003. The standard addresses the problems of wireless networks. 

The weakness in WEP encryption and the lack of mutual authentication issues will be 

addressed when the standard is finalized. 802.1X will remain the authentication 

mechanism of the new standard. 

This chapter covers the 802.1X authentication mechanism in detail, including the 

protocols used for communication between the participating entities. The message 

sequence of the authentication is examined in detail. This chapter also discusses the 

session hijacking attack. The aspects of the University of Maryland paper [1] and the 

responses [2, 3] related to the session hijacking attack are also examined. 
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B. IEEE 802.1X AUTHENTICATION MECHANISM 

1. Introduction  
Since the wireless environment is not as restricted to outside users as are wired 

networks, a trusted security framework should be established to control the access of the 

users and authenticate the pre-approved legitimate users. The 802.1X standard [12] is the 

authentication and access control standard, which was approved by the IEEE in 2001. 

The 802.1X standard was not intended to be used by only wireless networks. It was 

meant to be used by all 802 standard networks, such as contention-based bus networks 

(802.3), FDDI and Token Ring (802.5). After the vulnerabilities of the wireless networks 

were unveiled, the 802.1X standard was proposed to be used in wireless networks until 

the 802.11i working group (TGi) finds a complete solution. 

 

2. Elements of the Authentication Mechanism 
The security framework of the 802.1X standard [12] consists of three main 

entities: the supplicant, the authenticator, and the authentication server. Figure 1 shows 

the entities of 802.1X 

a. Supplicant 
The supplicant is an entity that desires to use the services offered by the 

authenticator. Thus the client side of the wireless network is labeled the “supplicant.” It is 

an entity at the one end of the network that is authenticated by the authentication server 

on the other end of the network. 

b. Authenticator 
The authenticator is the entity at one end of a point-to-point LAN segment 

that facilitates authentication of another entity attached to the other end of that link.[12] 

The authenticator has two roles: one before the authentication and the other after the 

authentication. The authenticator relays the authentication packets between the supplicant 

and the authentication server. After a successful authentication takes place, the 

authenticator provides network connectivity to the supplicant independent of the 

authentication server. 
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c. Authentication Server 
The authentication server is an entity that provides authentication service 

to an authenticator. This service determines from the credentials provided by the 

supplicant, whether the supplicant is authorized to access the network services provided 

by the authenticator [12]. An authentication server is the authority in a network that 

decides the access of the supplicants according to their credentials. Authentication is the 

only function for this server. After a successful authentication, the server is dormant until 

another supplicant wants to use the network. 

 

3. Application of the 802.1X Standard for WLANS 
The authenticator of the wireless network plays a key role in the access 

management of the network. The authenticator is the middle entity that controls the gates 

of the network by its ports, which can be considered as the logical connection between 

the authenticator and supplicant. 

There are two different ports defined in the 802.1X standard: a controlled and an 

uncontrolled port. The uncontrolled port is used for the authentication and the controlled 

port is used for network connections to the authenticated supplicants.  

At the very beginning of the authentication process, the authenticator relays the 

management frames between the supplicant and the authentication server. The first 

communication of any supplicant is over the uncontrolled port for the authentication. The 

controlled port is kept closed until a successful authentication occurs. Once the supplicant 

is verified and access to the network is granted, the controlled port is opened to the 

supplicant. The supplicant can reach and use the network services only via the controlled 

port. 
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Figure 1.   Authenticator, Supplicant, and Authentication Server Roles (From Ref. 4) 

The 802.1X authentication standard is intended to be used in Local Area 

Networks. The terms used in the standard documentation does not specifically mention 

the Wireless Local Area Networks. Until a complete solution to the problems of the 

wireless networks is completed by the 802.11i working group (TGi), 802.1X is proposed 

to be used for authentication in WLANs. The entities in a WLAN and in a traditional 

LAN can be mapped for the implementation of the 802.1X implementation. The 

communication protocols between the entities will remain the same, and they will be 

mentioned later in this chapter.  

In a WLAN environment, each mobile network client is a supplicant, the access 

point serves the authenticator role, and the authentication server role is assigned to a 

Remote Authentication Dial-in Server (RADIUS). In a larger application, the 

authentication server’s role may be divided into more entities. Additionally, multiple 

authenticators may be used to provide services to more supplicants. 

 

4. Protocols Used by the 802.1X Standard 

Three protocols are mentioned in the 802.1X standard. The most important 

protocol is the Extensible Authentication Protocol (EAP) which is used for the 

authentication between two entities. EAP over LAN (EAPOL) is another protocol defined 

in the 802.1X protocol.  It is basically used to carry the EAP packets between the 

supplicant and the authenticator. In other words, the EAPOL protocol is the encapsulation 

technique of the EAP messages in LAN environments between the authenticator and the 

supplicant. The final protocol that is used in this authentication method is the RADIUS 
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protocol which carries the EAP packets between the authenticator and the authentication 

server. The protocol stack is pictured in Figure 2. 

 
Figure 2.   The 802.1X Client Authentication Protocol Stack in the 802.11 Framework (From Ref 4) 

 
The details of these three important protocols will be described in this chapter. 

The details of the protocols will explain the vulnerabilities of the entire authentication 

method. 

a. Extensible Authentication Protocol over LAN (EAPOL) 
The EAPOL protocol is the encapsulation technique that is used to carry 

the EAP packets between the supplicant and the authenticator. In the IEEE protocol 

standard [7], EAPOL is described for Ethernet (802.3) and Token Ring/FDDI MAC 

addresses. However, EAPOL encapsulation used with Ethernet MAC can be applied to 

other LAN technologies that share the same basic format as Ethernet. It is convenient to 

use this protocol for Wireless LAN applications.  The packet format of the EAPOL is 

depicted in Figure 3. 

 

RADIUS 

m 
Supplicant 

EAPOL 

802.11 Frame 

^SSM. 
Authenticator Authentication 

Server 
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Version Packet Type Packet Body Length 

Packet Body

0            7  8                   15  16 32

Version Packet Type Packet Body Length 

Packet Body

0            7  8                   15  16 32

 
Figure 3.   EAPOL Protocol Format (From Ref. 12) 

The following briefly describes the fields of the EAPOL protocol: 

(1)  Version: The value of this field identifies the supported 

version of the EAPOL protocol supported by the sender. EAPOL version 1.0 is the 

current version. Since this field is 8 bits long, the version is represented as 0000 0001. 

(2)  Packet Type: This field identifies the type of packet that 

the sender is transmitting. There are five possible packets that can be sent. Four of these 

packets are about the type of the EAPOL protocol and the last one is about the payload of 

the packet, which is an EAP packet. The values of the field according to the packet type 

are listed in Table 1. All the other possible values of this field are not used and are 

reserved for possible future extensions of the protocol. 

 
Packet Type Definition Value 

EAP-Packet The frame carries an EAP packet 0000 0000 

EAPOL-Start The frame is an EAP-Start packet 0000 0001 

EAPOL-Logoff The frame is an explicit EAPOL-
logoff request frame 

0000 0010 

EAPOL-Key The frame is an EAPOL-Key frame 0000 0011 

EAPOL-Encapsulated-
ASF-Alert 

The frame carries an EAPOL-
Encapsulated-ASF-Alert 

0000 0100 

 
Table 1. Packet Types of EAPOL Protocol (From Ref. 12) 
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(3)  Packet Length: The total length of the packet is represented 

in octets in this field. 

(4)  Packet Body: The packet body contains data if the packet 

type is other than the EAP-Start and EAP-Logoff. These two packets do not contain any 

data portion. The packet body contains the EAP packet if the packet type is an EAP-

Packet. The field contains the EAP-Key Descriptor if the packet type is an EAPOL-Key. 

Finally, if the packet type is EAPOL-Encapsulated-ASF-Alert, the Packet Body contains 

the ASF alert frame.  

For any entity in the network to process an EAPOL packet, the 

destination MAC address of the packet should contain the address of the receiving entity, 

the LAN type should match the MAN type of the receiver, and the packet field should 

contain the values specified in Table 1. After all these three criteria have been matched, 

the packet can be evaluated as a regular EAPOL packet. 

b. Extensible Authentication Protocol (EAP) 
The Point-to-Point Extensible Authentication Protocol (EAP) is a 

mechanism that provides a standard message exchange mechanism for devices using an 

agreed upon authentication protocol. EAP protocol uses the link layer for 

communication. Since it does not require the devices to have IP addresses for 

communication, the EAP is used as a base technology for both wired and wireless 

networks for authentication. After a successful authentication, the devices are assigned a 

legitimate IP number by the DHCP server of the network.  

EAP was first developed for use with PPP in RFC 2284 and since then it 

has been widely deployed. EAP serves as a base technology and protocol for 

authentication mechanisms. EAP does not provide authentication all by itself. EAP 

supports a variety of authentication protocols to provide security during the 

authentication process. Some of the authentication protocols that are used with EAP are 

EAP-MD5, EAP-TLS, EAP-TTLS, EAP-PEAP and CISCO-Leap.  

EAP-TLS is a widely used certificate-based authentication protocol. It is 

the authentication protocol that will be used by the test-bed built for this thesis. Standard 

documentation of this protocol can be found in RFC-2716 [23]. EAP-TLS provides 

strong security between the supplicant and the authentication server through the use of 
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PKI certificates. While providing a very secure way of authentication, the complexity and 

the overhead of using PKI certificates are the main drawbacks of this authentication 

method.  

The EAP protocol is adopted by the IEEE 802.1x standard to provide an 

authentication mechanism for the 802.11 standard. The packet format of the EAP 

protocol is shown in Figure 4. 

Code Identifier EAP Packet Length 

Data

0            7  8                   15  16 32

Type

Code Identifier EAP Packet Length 

Data

0            7  8                   15  16 32

Type

 
Figure 4.   EAP Packet Format (From Ref. 23) 

 

(1)  Code: This field identifies the type of the EAP packet, 

which could be one of the following EAP packets; 1-Request, 2-Response, 3-Success, 4-

Failure. 

(2)  Identifier: This field is one octet long and allows a matching of 

responses with requests. This field, with the system port, uniquely identifies an 

authentication exchange. The value of this field is determined by the operation of the 

authenticator device used in a new EAP-Request/Identity frame. This identity is used by 

the supplicant and the authenticator throughout the authentication process. 

(3)  Length: This field is two octets long and the value indicates 

the length of the whole EAP packet including the code, identifier, length and data fields. 

(4)  Type: This field indicates the authentication protocol. 

Several authentication protocols are supported by EAP: Transport Layer Security (TLS), 

MD5, One Time Passwords (OTP), and Light-weight EAP (LEAP). 
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(5)  Data: The data field may contain zero or more octets 

depending on the type of the EAP packet indicated in the Code filed. 

c. Remote Authentication Dial in User Service (RADIUS) 
The RADIUS protocol facilitates centralized user administration, 

authentication, authorization, and accounting for network access. It was originally 

developed for dial-up remote access but became widely popular among other network 

access types, including wireless networks. RADIUS is used to carry the EAP packets 

between the authenticator and the authentication server. RADIUS provides per packet 

authenticity and integrity by using a shared secret and a calculation algorithm. The shared 

secret is an alphanumeric value used to calculate the MD5 sums for each packet. 

EAP packets are encapsulated inside the RADIUS packets. The 

authenticator is not required to know the type of authentication since the EAP packets 

travel between the supplicant and the authentication server. The RADIUS client 

(authenticator) sends the user’s credentials and the connection parameters to the RADIUS 

Server. The RADIUS server checks the incoming RADIUS packet and returns the 

response in a RADIUS packet. The EAP packet, which resides inside the RADIUS 

packet, is extracted and sent to the supplicant. RADIUS packets are sent via UDP. UDP 

Port 1812 is used for RADIUS authentication messages and UDP port 1813 is used for 

RADIUS accounting messages. The packet format of the RADIUS packet is defined in 

Figure 5. 

 
Figure 5.   RADIUS Packet Format (From Ref. 24) 

0 7 8 15 16 32 

Code Identifier Length 

Authenticator 

Attributes 
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(1)  Code: This field identifies the type of the RADIUS packet. 

Table 2 includes the complete list of the codes with their respective descriptions and the 

sender of the message. These codes are defined in RFCs 2865 [24] and 2866 [25]. 

 

Value Description Sender 

1 Access-Request RADIUS Client 

2 Access-Accept RADIUS Server 

3 Access-Reject RADIUS Server 

4 Accounting-Request RADIUS Client 

5 Accounting-Response RADIUS Server 

11 Access-Challenge RADIUS Server 

12 Status-Server (experimental) Reserved 

13 Status-Client (experimental) Reserved 
Table 2. Code Field Values and Descriptions of a RADIUS Packet (From Ref. 24) 

 

The RADIUS Server sends the Access-Accept message if the 

connection attempt is authenticated and authorized. The RADIUS server sends an 

Access-Reject message if the credentials are not authentic or if the connection attempt is 

not authorized. 

(2)  Identifier: This field is one octet long and allows the RADIUS 

client to match responses with requests. If the RADIUS server receives two request 

messages from the same IP address, the source UDP port and the same identifier in a 

short span of time, this packet is evaluated as a duplicate. 

(3)  Length: This field shows the complete length of the 

RADIUS packet including all the fields. 

(4)  Authenticator: This value is used to authenticate the reply 

from the RADIUS server and is used in the password hiding algorithm. The request 

authenticator is a 16-octet long random number used in the Access-Request packets. This 

value passes through the MD5 hash algorithm and the XOR operation with the shared 

secret and other field values of the Response packet and returns to the client in the form 
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of a response authenticator. This value enforces the per-packet authenticity and integrity 

verification. 

(5)  Attributes:  The attributes field carries the specific 

authentication, authorization information and the configuration details for the request and 

reply. Since the RADIUS Protocol supports a variety of authentication mechanisms, the 

content of this field varies. For the EAP authentication mechanism, this field contains 

EAP attributes. The most important attributes are the user name, user-password, NAS 

server IP address and port number, and the service type. 

 

5. 802.1X Authentication Procedure 
A complete authentication session uses all the protocols defined above. The 

authentication can be completed by the successful transfer of all the packets among the 

three main entities. Figure 6 illustrates the authentication. Network monitoring tools like 

Ethereal is employed in the implementation phase of the test-bed for troubleshooting and 

debugging purposes. The details of the authentication message sequence are as follows: 

1) Authentication sequence is started by the supplicant with an EAPOL-Start 

packet sent to the authenticator. 

2) The authenticator responds with an EAP-Request/Identity packet. The 

EAP traffic between the supplicant and the authenticator is encapsulated in EAPOL 

packets. 

3) The supplicant replies to the EAP-Request/Identity packet with an EAP-

Response/Identity packet. On receiving this packet, the authenticator extracts the EAP 

packet from the EAPOL packet and places it into a RADIUS Access-Request packet and 

sends it to the authentication server. 

4) The authentication server keeps track of a database of the legitimate 

authenticators. The authentication server checks the user ID of the authenticator and 

verifies it.  

5) The authentication server sends back a RADIUS-Access Challenge 

message if the user ID of the supplicant is in the database of the authentication server.  
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6) The authenticator relays the EAP-Request message embedded in the 

access challenge message that came from the authentication server to the supplicant in an 

EAPOL-EAP packet. The EAP-Request/Response messages are sent and received until 

the authentication is completed. (7, 8, 9, 10) 

11) Finally a success or failure message will be sent by the authentication 

server to the supplicant. This packet will be relayed by the authenticator to the supplicant 

in the form of an EAP-Success/Failure packet. 

12) After a successful authentication, the authenticator opens up the controlled 

port to the supplicant. In the case of a failure in authentication, the supplicant is 

disassociated from the uncontrolled port. 

13)  After a successful authentication, a key can be distributed by an EAPOL-

Key message to enforce privacy. 
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Figure 6.   The 802.1X Authentication Session (From Ref. 4) 

 

Supplicant Authentic ator 
Autlienti cation 

Server a ^ 

1- EJHPDL-^IAPI 

J tut HvaieitnD 

1 EnP li«^pHHu«/iD 

fa   E "P R^4iw^ I 

7- EAP Pe£Dort£e1 

9- E*P Rtnomt IJ 

1^- EAP ^uii«^^/f ^l<ri« 

11   EnPOL K«* 

4 PJV1IUS h^^«^^ Pfqunl 

^ PJVIIU^ A.ce££ ChallHQe 

S- PJIDIU^ ALI«^^ P«4|iw^ I 

lU   PnDlU^ALi«^^ P^qu^:-r N 

fi 

PADIUS rvcesE AccwUPtitcl 



18 

C. SESSION HIJACKING ATTACK 

1. Introduction 
It is helpful to explain the session hijacking attack concisely before going into the 

details of the standards and the actual attack scenario. 

The ultimate goal of the session hijacking attack is usurping a legitimate user and 

obtaining the privileges of that particular user to gain access to the network. Once a 

successful session is established between a legitimate user and the network, the rogue 

user captures the traffic between the two entities. After extracting the necessary 

information from the traffic, the attacker explores holes in the communication protocol to 

launch the attack. After obtaining enough information about the connection between the 

network and the user, the attack takes the place of the legitimate user by disconnecting 

the user. 

The session hijacking attack can be divided into two main parts. The first part of 

the attack is the disassociation of the regular user. The attacker can achieve this by posing 

as the authenticator and creating and sending fake logoff messages to the user. The 

second part of the attack is using the privileges of the user, which are obtained in the 

previous steps of monitoring, to access the network. Since the authentication server is out 

of the scene after the authentication takes place at the beginning of the session, 

mimicking the legitimate user is easy for the attacker. The authentication mechanism and 

its challenges are overcome at the end of the attack. The legitimate user is disassociated 

from the network and still unaware of the particular attack. The attacker obtains access to 

the network until the end of the session. The authenticator is also unaware of the attacker 

because the attacker uses the same credentials, such as the MAC address, as the 

legitimate and previously authenticated client. 

 

2. Vulnerabilities of the 802.1X Authentication Scheme 
The vulnerabilities of the 802.1X authentication mechanism will be covered from 

the session hijacking point of view. The university of Maryland paper [1] describes the 

vulnerabilities that can cause a possible session hijacking attack. The following examines 

the main vulnerabilities: 
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a. Propagation Medium 
Since the medium that carries the packets of the wireless network is the 

air, limiting the RF signal availability within a specific region is difficult. Eavesdropping 

is the starting point of the attacks against wireless networks. To overcome this 

vulnerability, which is a result of the broadcast nature of wireless networks, the 

authentication to the network and the confidentiality of the traffic should be reliable. 

b. Miscommunication of the State Machines 
The loose consistency between the 802.1X and 802.11 state machines 

provides the means for a session hijacking attack in wireless networks.[1] Since no clear 

communication between these two state machines exists, an attacker may change one of 

the state machines to launch the attack.   

Upon the supplicant’s successful authentication, which occurs after the 

access point sends the EAP-Success frame to the supplicant, the supplicant’s state 

machine transitions to the authenticated state. The authenticated state is entered from any 

other states of the supplicant on receipt of an EAP-Success frame. This state is 

maintained until the client disconnects from the network or an EAP-Request/Identity 

frame is received from the authenticator. The detailed picture of the supplicant state 

machine is shown in Appendix F. The attacker could forge the MAC address of the 

authenticator and send a MAC disassociate frame to the supplicant and thereby change 

the supplicant’s state to unassociated. The supplicant cannot reach the network until it is 

associated again. [12]  

The supplicant transitions to the acquired state where the supplicant waits 

for an EAP-Request frame from the authenticator to initiate the authentication again. By 

transitioning to this state, the state machine sets a timer called “authWhile” and sends a 

response identity frame. This timer lets the supplicant wait for a particular amount of 

time for the EAP-request frame from the authenticator. (The default wait time is 60 

seconds). When the timer expires, the supplicant returns to the very beginning of the 

authentication procedure and starts all over again.  [12] 
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There is another state machine for the same supplicant, which the 

authenticator maintains. This is called the Authenticator PAE state machine. After 

successful authentication between the supplicant and the authenticator, the Authenticator 

PAE state machine transitions to the authenticated state. There are only two types of 

frames that can change the authenticated state of this state machine. One of them is an 

EAPOL-logoff frame sent by the supplicant. On receiving this frame, the authenticator 

PAE state machine transitions to the disconnected state and closes the controlled port. 

The other one is the reauthentication request or an EAPOL-start frame sent by the 

supplicant. Upon receiving this frame, the authenticator PAE state machine transitions to 

a connecting state in order to reauthenticate. [12] 

After analyzing both state machines, the lack of communications between 

them can be seen easily.(The diagrams of the state machines are presented in Appendix 

F) Once the attacker changes the supplicant state machine, the authenticator PAE state 

machine is virtually unaware of the recent change. The authenticator PAE’s state 

machine remains in an authenticated state until the supplicant tries to authenticate again. 

[12] 

The attacker can keep the legitimate supplicant in the same acquired state 

by sending EAP-Request/Identity frames. On receiving these frames, the supplicant sets 

the authWhile timer and sends EAP-Response/Identity frames. Before the timer expires, 

the attacker sends the same packet again. The supplicant will repeat the same process: set 

the timer and send out EAP-Response/Identity frame. As a result, the supplicant is kept in 

the same state and the authenticator still considers the supplicant up and running. [12] 

c. Lack of Authenticity 
The lack of authenticity of the 802.1X frames is one of the main reasons 

for the session hijacking attack. Since the management frames are not authenticated, any 

attacker can trick the supplicant with little effort. 

d. One Way Authentication 
Although the 802.1X is using a controlled port mechanism for the access 

point, it is obvious that the port of the supplicant is always in a controlled state. The port 

of the supplicant is open to any entities that can pose as the access point. This is one-way 
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authentication. Only the supplicant is authenticated to the access point, the access point is 

not authenticated to the supplicant. 

e. Encryption 
The primary weakness of the wireless networks is the WEP encryption. 

Even though traditional WEP encryption is weak and vulnerable, there are access points 

that still do not even apply WEP so the traffic flows without any encryption. For better 

security, dynamic re-keying of the WEP must be an inherent part of any design. This 

would help prevent adversaries from intruding on the networks, even though they 

managed to bypass the authentication scheme. 

 

3. Discussion of the University of Maryland Paper 
Vulnerabilities of the 802.1X authentication standard were covered in the paper, 

“An Initial Security Analysis of the IEEE 802.1X Standard,” by Arunesh Mishra and 

William A. Arbaugh. [1]  

Session hijacking attack was one of the attacks, along with the Man-In-The-

Middle attack, that the paper described as possible. A session hijacking attack is said to 

be performed by sending disassociate packets to the authenticated supplicant from an 

attacker by using the authenticator’s MAC address. After this initial part of the attack, the 

adversary can use the MAC address of the legitimate supplicant and access the network. 

The lack of coordination between the two state machines lets the adversary pass through 

the authentication mechanism of the wireless network.  

After the publication of the claims of the paper on the possibility of the session 

hijacking attack, Orinoco and Cisco opposed the paper’s assertions. The main idea of 

these two papers was the same: If the wireless network is not using WEP keys, the attack 

can be successful. However, omitting WEP and using 802.1X authentication alone is not 

a common application. The attack can still be successful if the access point is using a 

weak WEP key. The WEP key can be broken and can be set to the attacker PC after the 

client is disassociated. The attack becomes more difficult if dynamic WEP rekeying is 

used. For this thesis, by using the test-bed, all the probabilities of WEP keying are tested 

and the possibilities of a successful session hijacking attack are explored. 
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D. SUMMARY 
This chapter introduces the protocols and standards of the 802.1X authentication 

scheme, which can be used for wireless networks. The details of the solutions that may 

help overcome the vulnerabilities of wireless networks are discussed. 

Even though the 802.1X standard improves the security level provided by the 

current 802.11 standard, there are still security leaks that may result in a session hijacking 

attack. An attacker may disassociate the user from the network and use its session for 

malicious purposes. 

802.11i standard is being developed by TGi and the problems of the wireless 

networks will be addressed in their document. Chapter V includes an analysis of the new 

802.11i standard based on the 802.11i draft 3.0. 

In order to perform experiments concerning the security issues of both 802.11 and 

802.1X protocols, an open-source test-bed is necessary. Chapter III will cover all the 

aspects of building the test-bed using open-source software. 
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III. AN OPEN-SOURCE WIRELESS PROTOCOL TEST-BED 

A. INTRODUCTION 
The IEEE 802.1X standard is proposed to address some of the IEEE 802.11 

security vulnerabilities. However, the 802.1X security standard is still vulnerable to some 

attacks, including session hijacking attacks.  

 For verification and analysis of primarily session hijacking attacks and other 

kinds of attacks against wireless local area networks (WLANs), an 802.1X test-bed was 

built on an IEEE 802.1b wireless LAN. This chapter explains how to build and configure 

the 802.1X entities described in the last chapter: the supplicant, the authenticator, and 

authentication server. The open-source software was used on the Linux operating system 

environment for availability and ease of source-code manipulation. 

 

B. 802.1X AUTHENTICATION TEST-BED 
This thesis is based on open-source software because it is easier to demonstrate a 

session hijacking attack and to analyze the results of the experiment. This section 

explains how to combine the Linux environment with the open-source software as 

illustrated in Figure 7. 

 
Figure 7.   802.1X Test-bed Schema (From Ref. 4) 
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1. Elements of the Authentication Test-Bed 
The security framework of the 802.1X standard [12] consists of three main 

entities: supplicant, authenticator and authentication server. The roles and functionality of 

these three entities are explained in chapter II. 

 

2. Authentication Methods 
While building the test-bed, the most secure authentication method must be 

selected. One of the main factors in choosing the right authentication method for the EAP 

protocol is the ability to provide mutual authentication between the 802.1X entities.  This 

is true because mounting attacks against WLANs is more difficult if the security protocol 

provides robust mutual authentication. 

Two types of authentication methods are used and supported by the current 

authentication servers. The first one is Cisco’s Lightweight Extensible Authentication 

Protocol (LEAP); the second one is the Transport Layer Security (TLS). The EAP-TLS 

authentication method was chosen for mutual authentication. TLS requires a public key 

infrastructure (PKI) for certificate-based authentication. 

 

3. Hardware and Software Configuration of the Test-Bed 
There are three entities implemented in the test-bed to support the 802.1X 

authentication mechanism: the supplicant (mobile client), the authenticator (access point) 

and the authentication server (FreeRADIUS). 

a. Supplicant 
The supplicant is an entity that requests network access and is being 

authenticated by an authenticator. A Pentium III laptop with PCMCIA support is used as 

the supplicant for the Open-1X test-bed. A D-Link DWL-650 wireless network interface 

card is used for wireless communication between the supplicant and the authenticator. 

Two different operating systems can host the supplicant: Windows XP and 

Linux Red Hat. Both of them have advantages and disadvantages. The supplicant in 

Linux Red Hat provides a wide range of tools for the supplicant’s configuration, while 
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the supplicant in Windows XP is easy to implement. In this section, both of the Windows 

XP client and the Xsupplicant will be explained in detail. 

(1)  Windows XP SP1: The Microsoft Windows XP with Service 

Pack 1 (SP1) operating system is used for its embedded IEEE 802.1X supplicant support. 

A D-Link DWL-650 network interface card is used for wireless communication. The 

driver can be easily downloaded and installed from http://support.dlink.com/. After the 

installation of Windows XP SP1, the public key certificate and private key of the client 

are created. The public key certificate (PKC) of the root certificate authority (Root-CA) is 

imported and installed. Appendix B gives the details on installing the certificates and 

configuring of the 802.1X protocol for the supplicant. 

(2)  Xsupplicant: The Linux Red Hat operating system can host the 

Xsupplicant on a mobile laptop. The same D-Link DWL-650 NIC is used as a wireless 

interface card. DWL-650 does not officially support Linux drivers. However, the chipset 

(Intersil Prism2) is supported by Linux Red Hat 8.0 via the ornico_cs driver. 

The three dependent libraries should be built and installed before 

the Xsupplicant source code: 

OpenSSL 0.9.7 (http://www.openssl.org/) 

Libpcap 0.7.1 (http://www.tcpdump.org/) 

Libnet 1.1.0 (http://www.packetfactory.net/libnet/) 

 

All these components should be downloaded and uncompressed 

into the /usr/src/xsup directory for the installation. The “readme” and “install” documents 

give enough information to guide the build of the libraries. The following commands are 

sufficient for building and installing the required libraries for the Xsupplicant. 

 

cd /usr/src/xsup/<directory name> 

. /configure 

make 

make install 
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The Xsupplicant source code can be downloaded from the 

sourceforge.net website (http://sourceforge.net/projects/open1x/). The tarball should be 

uncompressed into the /usr/src/xsup directory. The following commands suffice for the 

default installation of Xsupplicant source code. 

 

cd /usr/src/xsup/xsupplicant 

. /configure –enable-full-debug 

make 

make install 

 

The “enable-full-debug” flag causes critical information and run-

time errors to be printed during configuration. It is crucial to use this flag in order to 

determine whether or not the dependent libraries are found by the Xsupplicant source 

code. 

After installing the dependent libraries and Xsupplicant source 

code, the certificates created by Certificate Generator should be copied into the 

designated directory, as defined in the configuration file (1x.conf).  This configuration 

file must be copied into the /etc/1x/ directory since the Xsupplicant daemon requires the 

1x.conf file to be in that directory by default. Finally, the Xsupplicant daemon can be 

activated with the following commands. 

 

iwconfig wlan0 essid test 

xsupplicant –i wlan0 

 

b. Authenticator 
The authenticator is an entity at one end of a LAN segment that facilitates 

authentication of the entity attached to the other end of that LAN. In this context, an 

authenticator forwards 802.1X frames from a supplicant to an authentication server for 

authentication. The authenticator provides network connectivity to the supplicant via a 

controlled port after a successful authentication. In order to achieve this, a dual-port 

model is used. Figure 8 shows the dual-port concept employed in IEEE 802.1X. The 
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authenticator has two ports for external access to the network that it is protecting: The 

Uncontrolled Port and the Controlled Port. The Uncontrolled port filters all traffic and 

allows only the EAP packets to pass for the authentication. After successful 

authentication, the supplicants can use the Controlled Port to send regular network traffic 

through the authenticator. 

 
Figure 8.   802.1X Authenticator Dual Port Concept (From Ref. 4) 

 

For this thesis, the authenticator is the most important entity in the open-

source 802.1X test-bed, since it enables 802.11b access point functionality using the 

firmware of the Intersil chipsets for time sensitive tasks. All other functionality is handled 

by the HostAP driver, including WEP and passing frames off to an authentication server 

(1)  HostAP: The Host AP driver is a Linux driver for wireless 

LAN cards based on Intersil’s Prism 2/2.5/3 chipset. Since D-Link DWL 650 wireless 

NIC is based on the Prism 2 chipset, the HostAP driver will support it. The driver 

supports Host AP mode and does not require any special firmware for the D-Link DWL 

650 wireless NIC. It performs IEEE 802.11 management functions and acts as an access 

point. In addition, it implements the following IEEE 802.11 functions: 

 

Association 

Authentication 

Data transmission between two wireless stations 

Power saving mode signaling 
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Frame buffering. 

 

An IBM Think-Pad 600 Pentium II laptop and a D-Link DWL 650 

wireless NIC are the hardware components of the authenticator. Linux Red Hat 9.0 with 

kernel 2.4.22 is installed to support the HostAP driver.  

The Wireless Extensions v15 and v16 patches are not necessary for 

Linux kernel version 2.4.22. Two kernel configuration options must be enabled during 

the configuration of the kernel (2.4.22): the wireless LAN (non-hamradio) option for 

HostAP support (Figure 8) and the 802.1d Ethernet Bridging option (Figure 9) for 

bridging support between the wireless and wired interface. These graphical configuration 

menus will be displayed after the make xconfig command of the kernel configuration 

process. These options are not enabled by default. The authenticator would not function 

properly without these support options 

 

 
Figure 9.   Wireless LAN (non-hamradio) Option 
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Figure 10.   802.1d Kernel Bridging Support 

 

Before version v0.1.0, the HostAP driver used to be distributed as 

one tarball. Now the software is separated into three components. Since the HostAP 

v0.1.1 driver is used for the test-bed, the following three HostAP components and the 

Wireless Extension tools were installed on the authenticator: 

HostAP-driver 0.1.1 

Hostapd 

Hostap-utils 

Wireless Extension Tools v25 

 

The Wireless Extensions Tools v25 (http://pcmcia-

cs.sourceforge.net/ftp/contrib/) were downloaded and uncompressed into the /usr/src/ 

directory tree. The source code was installed by the command sequence below. 

 

. /configure 

make 

make install 
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The HostAP driver, utilities and daemon source code 

(http://hostap.epitest.fi) were downloaded and uncompressed into the /usr/src/ directory 

tree. The HostAP driver was configured by the commands below. 

tar –zxvf hostap-driver-0.1.1.tar.gz 

. /configure 

 

After the configuration of the driver, a Makefile was created for 

this specific configuration. The KERNEL_PATH variable was set to the kernel 

configured for the access point in the /usr/src/hostap/Makefile file. 

 

# Edit this path to match the system (It should point to the root  

# directory of the Linux kernel source.) 

KERNEL_PATH=/usr/src/linux-2.4.22 

# Leave this blank for kernel-tree PCMCIA compilations 

PCMCIA_PATH= 

 

Since the HostAP requires kernel support, the HostAP source code 

must be built and installed after the proper configuration and required modification to the 

Makefile. The “Extra flag” option was required in order to support the 802.1X 

functionality for hostapd daemon. 

 

make pccard EXTRA_CFLAGS=”-DPRISM_HOSTAPD” 

make install_pccard 

 

The HostAP utility and daemon components were built and 

installed to support the 802.1X authenticator functionality with the following sequence of 

commands:  

configure 

make  

make install 
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The authenticator supports bridging since the 802.1d Ethernet 

Bridging option was checked during the kernel configuration. Bridging will provide 

communication between the wireless and wired segments of the network. Otherwise, the 

authenticator cannot relay the regular network packets between the supplicant and the 

network. There must be two interfaces in the authenticator: an Ethernet interface (eth0) 

connecting the wireless segment to the wired network and a Wireless interface (wlan0) 

acting as an access points. The following series of commands are used to establish the 

bridging between the two interfaces. 

 

ifconfig wlan0 0.0.0.0 

ifconfig eth0 0.0.0.0 

brctl addbr br0 

brctl addif br0 eth0 

brctl addif br0 wlan0 

ifconfig br0 XXX.XXX.XXX.XXX up 

 

Both interfaces’ IP addresses must be set to zero and assigned to 

the bridge interface as defined above. The bridge interface (br0) is a logical interface 

rather than a physical one like eth0 or wlan0. The AP bridges packets between the 

Ethernet and wireless LANs and can be reached with the IP address 

XXX.XXX.XXX.XXX from either network. When the AP reboots, the bridging between 

the interfaces should also be reestablished. 

After installing all the components and establishing the bridging, 

the authenticator was ready to run the hostapd daemon to serve as an 802.1X compliant 

access point. The hostapd daemon accesses a configuration file known as hostapd.conf to 

retrieve the parameters of the wireless network. Appendix C provides an example of this 

configuration file. The hostapd daemon is launched with the following command 

sequence. 

 

cd /usr/src/hostap/hostapd 

. /hostapd –d hostapd.conf 
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(2)  D-Link DWL-7000AP: Since this Access point supports the 

802.1X authentication protocol, it was chosen to be used as the authenticator of the test-

bed. The configuration of the access point was simple since it has a web-based 

configuration tool. Appendix C explains and illustrates the configuration of DWL-

7000AP.  

c. Authentication Server 
Since FreeRADIUS (http://www.freeradius.org/) is the only available 

open-source authentication server tool that supports Linux, it was used by the test-bed for 

this thesis. FreeRADIUS supports the EAP-TLS authentication method as an embedded 

module. 

One of the latest versions of the Red Hat Linux (Red Hat 8.0) was used as 

the operating system for the authentication server. The newer versions of FreeRADIUS 

are compatible with Linux Red Hat 8.0. In order to run the FreeRADIUS server on Linux 

Red Hat 8.0, the following software should be downloaded and installed. 

 

OPENSSL 0.9.7 

OPENSSL SNAP-20020227 

OPENSSL 0.9.7-beta3 

FREERADIUS-0.9.2  

 

Three different versions of the OpenSSL are needed throughout the whole 

process. The stable version of OpenSSL (OPENSSL 0.9.7) is required to build most of 

the FreeRADIUS software. A recent snapshot version of OpenSSL (OPENSSL SNAP-

20020227) is required to build the EAP/TLS modules. OpenSSL 0.9.7-beta3 is the third 

version of the OpenSSL, which is used to create the certificates.  

The other open-source software package that must be installed is 

FreeRADIUS-0.9.2. After successfully installing all of the software, the Linux computer 

becomes the authentication server of the test-bed. The installation procedures of the 
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necessary software come with the downloadable tarball. The following paragraphs 

emphasize the important details of the installation process. 

(1)  OPENSSL 0.9.7: OpenSSL 0.9.7 (http://www.openssl. org) is 

used for building FreeRADIUS. After downloading and uncompressing the tarball, the 

following sequence of commands is used to build the software. 

 

cd openssl-0.9.7  

. /config 

make 

make test 

make install 

 

These commands build and install the OpenSSL-0.9.7 in the 

default location, which is /usr/local/ssl for Linux Red Hat 8.0. For the test-bed, the 

default location was used. 

 

(2)  OPENSSL SNAP-20020227: The snapshot version of the 

OpenSSL is used to load the EAP-TLS module in the FreeRADIUS source code. After 

downloading and uncompressing the OpenSSL 0.9.7 tarball, the source code was built 

and installed by using the commands below: 

 

. /config –prefix=/usr/local/openssl shared 

make 

make test  

make install 

 

One of the most important parts of this installation is paying 

attention to the location where the software is installed. If the config command was used 

without any switches, this version of OpenSSL would be installed to the default location 

and overwrite the stable version previously installed.  
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The final part of the installation is checking and verifying that 

libssl.so and libssl.so.0 are symbolically linked to libssl.so.0.9.8 while libcrypto.so and 

libcrypto.so.0 are symbolically linked to librypto.so.0.9.8. These files can be found under 

the lib directory of the snapshot version of OpenSSL. 

 

(3)  OPENSSL 0.9.7-beta3: This version of the OpenSSL is 

necessary to generate the certificates used by the wireless network. This software can be 

installed on another computer and the certificates can be generated in a more secure 

location in real-life applications. However, to keep the process simple, the authentication 

server computer was used as the certificate generator as well. After downloading and 

uncompressing the software, the following commands were used to install this version of 

OpenSSL: 

 

. /config –prefix=/usr/local/openssl-certgen shared 

make 

make test  

make install 

 

The final step of the installation is checking and verifying the same 

sym links of the specific lib files, which were mentioned in the installation of the SNAP 

version. These files can be found under the lib directory of the beta version of OpenSSL. 

Appendix A provides the OpenSSL configuration file for the certificate generator. 

 

(4)  FREERADIUS-0.9.2: The latest version of FreeRADIUS 

(FreeRADIUS 0.9.2) modules were downloaded and uncompressed into the 

/root/downloads directory. The FreeRADIUS source code was configured before building 

by using the commands below: 

 

cd /root/downloads/freeradius-0.9.2 

. /configure –sysconfdir=/etc 
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The configuration script prepares the makefile to build the source 

code. Since the OpenSSL version that will be used to create the EAP-TLS modules is 

different than the default OpenSSL, The EAP-TLS makefile, which was placed in 

/root/downloads/freeradius-0.9.2/src/modules/rlm_eap/types/rlm_eap_tls/ directory, was 

modified as defined in Appendix D. After modifying the makefile, the FreeRADIUS can 

be installed by using the following commands:  

 

make  

make install 

 
After building and installing the FreeRADIUS software, the 

configuration files of the RADIUS server should be modified to enable the 802.1X 

authentication scheme. There are three configuration files that should be modified: 

radiusd.conf, users, and clients.conf. The radiusd.conf file is modified to make EAP-TLS 

work properly. The clients.conf is modified to allow access by the access points of the 

wireless network to request authentication. The users file is modified to include pointers 

to client certificates. A test user may also be temporarily added to the users file to check 

the functionality of the authentication server without using the other components. 

Appendix D provides a copy of all three configuration files. 

For the session-key management, two random files must be 

created. These files only need to contain random characters. For this particular occasion, 

the date command was used to create these two random files. 

 

date > /etc/1x/random 

date > /etc/1x/DH 

 

If everything has been installed and configured correctly, the 

FreeRADIUS should be ready to run and to authenticate the legitimate users via the EAP-

TLS. A wrapper script is created to run FreeRADIUS with the correct SSL libraries of the 

OpenSSL snapshot version. Appendix D provides a copy of this script (run-radiusd). 
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The FreeRADIUS may be run from the shell by typing run-radiusd 

–X –A. (This runs the script that is mentioned in the preceding paragraph). After seeing 

that the server is running correctly and listening for requests, the test user can be 

employed to test the server. If the result of the test is good and an “Access-Accept” 

message is returned, then the server is running well and the test user may be deleted. 

 

4. EAP-TLS Authentication Method 
This section discusses the Extensible Authentication Protocol Transport Layer 

Security (EAP-TLS) briefly since EAP-TLS protocol was examined in [4] in detail. 

EAP-TLS authentication is based on 802.1X/EAP architecture. The three entities 

involved in the 802.1X/EAP authentication process are supplicant (the end entity), the 

authenticator (the access point), and the authentication server (RADIUS server). The 

supplicant and the RADIUS server must support EAP-TLS authentication. The access 

point has to support the 802.1X/EAP authentication process. For example, a Cisco 

Aironet access point that supports the EAP-TLS authentication protocol can be used in 

the 802.1X test-bed.  

The 802.1X test-bed requires the EAP-TLS authentication protocol for mutual 

authentication and key exchange between the entities. EAP-TLS (RFC-2716) uses the 

TLS protocol (RFC-2246), which is the latest version of the Secure Socket Layer (SSL) 

protocol. TLS provides a mechanism for both user and server authentication and for 

dynamic session key generation in order to use certificates. Figure 11 illustrates the 

general schema for a message exchange between the entities. 
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Figure 11.   EAP-TLS Message Exchange (From Ref. 26) 

 

5. X.509v3 Certificates 
The EAP-TLS authentication method is certificate-based. This method uses 

X.509v3 certificates, which can be generated by using the OpenSSL software. Appendix 

A covers the OpenSSL configuration file of the certificate generator.  

X.509v3 certificates contain the public key of the supplicant with some additional 

information. The certificates are created for the Root Certificate Authority, authentication 

server and the supplicant. The Root CA certificate is created first; the other certificates 

are digitally signed by the private key of the CA.    

Three certificate generation scripts will be used to create all the necessary 

certificates. Appendix B provides a copy of all three certificate generation scripts with an 

XP specific extension file that is necessary to generate a certificate. One of the most 

important requirements when creating the certificates is to verify that the client name on 

the certificate matches the names in the users configuration file. Another critical point is 

to assign a password that is different from the default password (default is “whatever”) 

during the certificate generation process. 
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The first certificate to be generated is the root certificate. This certificate will be 

used to sign the other two certificates. So the generation sequence will be as follows: 

 

./CA.root 

./CA.srv <servername> 

./CA.clt <clientname> 

 

After all three scripts are run, the folder will contain 12 different certificates. The 

extensions of the certificates will be “.p12, .der, .pem”. The two certificates that will be 

used by the FreeRADIUS are <servername>.pem and root.pem. The WinXP supplicant 

client requires <clientname>.p12 and root.der. So those two certificates should be copied 

to the supplicant and installed. The details of the certificate generation process can be 

found on the following web sites: 

 http://www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm 

http:// www.missl.cs.umd.edu/ wireless/eaptls/ 

 

6. Validation 
After installing all the software to run the test-bed, the system was tested by using 

the packet-capture software, Ethereal. (www.ethereal.com). Ethereal is a software tool 

that captures all the network traffic. The user may select the network adapter to filter the 

traffic. Two laptops were used in the validation process. One of the laptops (Dell Insiron-

5100) was configured to capture the wireless packets in promiscuous mode with Ethereal. 

The other laptop (HP Compaq pavilion Ze5400) was used as the supplicant.  

The client certificates were installed to the supplicant, and the wireless card was 

enabled to initiate the authentication process. All the traffic concerning the authentication 

process was captured by Ethereal which was running on the other laptop. The packets 

captured by Ethereal, shown in Figure 12, verified a successful authentication process. 
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Appendix E provides the successful logs of both the authentication server and the 

authenticator. 

 
Figure 12.   Captured Packets showing a successful authentication 

 
C. SUMMARY 

This chapter covers the building of the open-source test-bed. The test-bed is built 

using the open-source software and the Linux operating system. 802.1X authentication 

standard is applied with a specific certificate-based authentication method: EAP-TLS.  

A detailed manual about the configuration and installation of the 802.1X test-bed 

is provided in this chapter. The experiments and analysis of the session hijacking attack 

will be presented in the next chapters. 
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IV. APPLICATION OF THE SESSION HIJACKING ATTACK 

A. INTRODUCTION 
This chapter describes our first-hand experience of implementing a session 

hijacking attack against a WLAN. To implement an attack of this nature, an open-source 

platform should be built. The previous chapters detailed the building of such an open-

source test-bed. The test-bed was built to reflect a real-life implementation of a wireless 

network that uses the 802.1X authentication protocol.  

A session hijacking attack needs a laptop that can serve both as a rogue access 

point and as a rogue client. The test-bed works with a commercial access point (D-Link 

DWL-7000AP), which is capable of 802.1X authentication. A laptop with the HostAP 

software is used as the rogue access point for the attack described in this chapter. For the 

rogue client, either the same HostAP laptop or another laptop with Windows XP running 

is used during the implementation of the attack.   

The University of Maryland paper [1] talked about the possibility of a session 

hijack attack and the resultant responses by Cisco and Orinoco acknowledged the same 

risk, however, with some exceptions. Our work provides additional observations from a 

practical perspective.  

 

B. NECESSARY CONDITIONS FOR SESSION HIJACKING ATTACK 
A session hijacking attack is based on some specific vulnerabilities that can be 

exploited in such a fashion that both legitimate entities of the session are kept unaware of 

the attack. The nature of the attack involves posing as the authenticated user and using 

that user’s credentials to use the protected network.  

The first specification of the 802.11 standard is wide open to any kind of attacks. 

The standard does not even mandate the use of encryption for network traffic and 

authentication for the users. Using the 802.11 standard without encryption makes it 

subject to snooping and hijacking, regardless of the authentication method used.  

The enhancement to the first specifications of the 802.11 standard resulted in the 

introduction of the popular and widely discussed encryption technique, known as Wired 
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Equivalence Privacy (WEP). The weaknesses in the WEP encryption were discovered 

shortly after its introduction. WEP does not support per-packet integrity and offers weak 

encryption. The length of the initialization Vector (IV) is short enough (24 bits) for an 

attacker to break the WEP key. In a congested wireless network, an attacker can monitor 

the network traffic and capture multiple packets encrypted with the same WEP key and 

same IV after a fairly short time. The WEP key is then broken easily.  

There are two main conditions that should be present for a general session 

hijacking attack: the server should be unaware of the attack and the client should be 

unaware of the attack. The other two conditions mentioned below are the specific 

conditions that should be met for a specific session hijacking attack against a wireless 

network.  

From a mathematical point of view the attack can be formulated as follows: 

T0: the time of the start of the attack 

T1: the time of the disassociation of the client 

T2: the time that the attacker takes over the client’s role after changing the 

settings of the attacker 

T3: the time of the arrival of the first replay packet for the malicious packets. 

T4: the time of the detection of the attack by the network administrators. 

Te: time to break the encryption key. 

Since the Te is much larger than the other time variables of the attack, the best 

practice for an attacker is to break the key before the actual start of the attack. The time 

necessary for a session hijacking attack to be complete (Tcomplete) can be formulated as 

follows:  

Tcomplete = T3 – T0 = (T3 – T2) + (T2 – T1) + (T1 – T0) 

The time of the detection of the attack (T4) cannot be smaller than T1. The attack 

can be detected as soon as the client is disassociated.  Thus, 

(T4 >= T1). 
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For a session hijacking attack to be evaluated as complete and successful, the 

following equation should be met:  

Tcomplete < T4 

(T3 – T2) + (T2 – T1) < T4 

This formulation shows that the attack can only be successful if the attack is not 

detected before the reply for the first malicious packet returns to the attacker. 

Following are the necessary conditions specific to a session hijacking attack in a 

wireless network.  

 
1. Necessary Condition 1: 
For a session hijacking attack, the server or the entities that are responsible for 

providing network services should be kept unaware of the existence of an attacker for a 

sufficient amount of time, as described in the aforementioned formulation.  

 

2. Necessary Condition 2:  
Similar to the server, the legitimate client that is disassociated from the network 

should also be kept unaware of the existence of the attacker.  

The legitimate client is both the entity that will suffer from the attack and the 

entity that can detect the attack. The attacker will keep the legitimate client out of the 

network. If the legitimate client becomes aware of an attacker, the precaution against the 

attack may be applied. The time for the client to become aware of the attack is not 

controlled by the attacker. This time varies according to the instincts and knowledge of 

the client. A careful and knowledgeable client can detect an attack just after the attack is 

initialized. 

 

3. Necessary Condition 3: 
For a session hijacking attack, the attacker should have all the necessary tools and 

equipment that may be necessary at any part of the attack.  
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The steps of the session hijacking attack will be discussed in detail in this chapter. 

The attacker should have equipment that has good peak power to challenge the legitimate 

entities. Once the power of the attacker is greater than the legitimate entity, the victim 

machine will try to communicate with the station with the higher power.  

The attacker should have tools, such as Netstumbler and Ethereal, to monitor the 

victim’s network. Gathering information about the victim’s network is the first step for 

launching an attack. The attacker should have the capability to run a WEP key breaker 

tool against the victim network. The attacker should also be able to create malicious 

packets that look as if they are coming from a legitimate user. The tools that are used to 

generate the packets are discussed later in this chapter. The attacker should also have the 

capabilities and knowledge to change and to spoof IP and MAC addresses.  

 

4. Necessary Condition 4: 
No encryption or weak encryption is in use by the target network. 

A session hijacking attack is possible with any kind of known authentication 

mechanisms, unless encryption is used in the network. The 802.1X authentication 

mechanism provides some good techniques for authentication. EAP-TLS is one of the 

most popular authentication mechanisms. EAP-TLS provides strong mutual 

authentication, however, due to the problems discussed in Chapter II, the session 

hijacking attack is still possible.   

The importance of the encryption is mentioned in a paper published by Cisco [2] 

as an answer to the University of Maryland’s paper [1]: 

 If the network uses an EAP authentication algorithm that does not support 
dynamic WEP keys of mutual authentication, the wireless LAN will be vulnerable to 
attack. An example is the use of the EAP-MD5 authentication algorithm.  

 EAP- MD5 performs one way authentication of the client with no facility 
for dynamic WEP (static WEP is supported)… 

 

Another response published by Orinoco [3] accepts the possibility of a session 

hijacking attack without using encryption: 
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 The hijacked session attack assumes that no encryption is present. When 
no encryption is present, this attack will succeed, allowing the attacker to use the session 
until the next re-authentication interval. At the next re-authentication time, the attacker 
would not be re-authenticated. He would then hijack another valid session. 

 

The use of the static WEP key may not be sufficient to prevent all the attempts of 

the session hijacking. If the same WEP key is being used by all the clients of the network, 

that WEP key is vulnerable to compromise. The length of the WEP key and the traffic 

load of the traffic using it are important factors that effect the time needed to break the 

WEP Key.  

Dynamic, session-based, per user WEP keys will be a good solution to prevent the 

attackers to use the network, even if they manage to steal the session. The session 

hijacking attack may devolve to a denial of service attack for the legitimate client if the 

Dynamic WEP keys are used.   

 
C. DEMONSTRATION OF SESSION HIJACKING ATTACK  

As mentioned earlier in this thesis, a session hijacking attack is possible because 

clear communication between the state machines of the authenticator and the 

authentication server is lacking. A. Mishra and W. Arbaugh claim that the IEEE 802.1X 

is vulnerable to a session hijacking attack in their paper, “An Initial Security Analysis of 

the IEEE 802.1X Standard” [1]. They mentioned that after a successful authentication by 

the legitimate client, the attacker can send disassociate frames to the client by spoofing 

the legitimate authenticator and as a result, the supplicant is disassociated from the 

network. After the first part of the attack is completed, the attacker can spoof the MAC 

address of the legitimate supplicant and gain access to the network without passing the 

authentication scheme. The actual attack consists of three parts; 

o The disassociation of the supplicant  

o Breaking the encryption if encryption is in use.  

o Accessing the network by using the credentials of the disconnected user.  
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1. Disassociation of the Supplicant 
The first two necessary conditions, the server and the legitimate client are kept 

unaware of the attack, must be present to exercise this step.. Condition 3 is necessary to 

complete this step, also. The attacker must monitor the network using the type of tools 

described in the following chapters.  

The attacker has two machines to launch the attacks. Both machines are used to 

monitor the network traffic and the MAC addresses of the entities. Netstumbler is one of 

the Windows-based tools that may be used to detect he wireless access points (Figure 

13). Windows XP also has the capability to catch the available wireless networks. 

Netstumbler is used to monitor the SSID of the network and the MAC addresses of the 

authenticator. 

 
Figure 13.   Netstumbler 

The second important tool used to monitor the network traffic is Ethereal. 

Ethereal can work in both Linux and the Windows operating systems. Using Ethereal, an 

attacker can monitor all the wireless traffic in promiscuous mode. A successful 

authentication message sequence between the legitimate supplicant and the authenticator 

was monitored by using Ethereal, as shown in Figure 14.  The messages exchanged and 

the MAC addresses of the entities are shown.  
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Figure 14.   Successful Authentication Traffic Captured by Ethereal 

 

The MAC address of the rogue access point (HostAP) should be changed to the 

MAC address of the legitimate access point. This is relatively simple in the Linux 

environment compared to the Windows OS. Since the Hostap driver is working properly 

in the rogue access point, the ifconfig command easily changes the MAC address and the 

SSID of the wireless interface.  

ifconfig  wlan0 hw ether <MAC address> 

iwconfig  wlan0 essid “test” 

The preceding two lines of commands change the MAC address of the rogue 

access point. After the capture of the MAC address, there are two ways to send 

disassociate the legitimate supplicant. The first one is to run the HostAP software with 

the following command: 

./hostapd  –d  hostap.conf 
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HostAP automatically creates disassociation packets each time it is initiated. 

Since the supplicant just checks the MAC address of the frames coming from the access 

point, it is disconnected after the packet is received. The second way of disassociation is 

using the wireless tools that come with the HostAP tarball. The following command is 

used to disconnect the authenticated client:  

 iwpriv wlan0 kickmac <MAC address> 

However, the station will try to authenticate and associate again immediately after 

this, so the user should be denied by the rogue access point using the following 

commands:  

 iwpriv wlan0 maccmd 2 

 iwpriv wlan0 addmac <MAC address> 

 

2. Breaking the WEP Key 
Necessary condition 4 is critical for this step. If the encryption is not used, then 

there is no need to break the WEP key, and the access to the victim network is trivial. If 

the necessary condition 4 is not met, then the attack is unsuccessful. 

WEP (Wired Equivalent Privacy) is the encryption technique used by the 802.11 

wireless networks. Since Wireless LANs can be accessed without physical connection to 

the LAN infrastructure, IEEE decided to use encryption at a Data Link Layer to prevent 

eavesdropping. There have been several discussions and papers about the vulnerabilities 

of WEP.  These vulnerabilities will be mentioned, since session hijacking attacks may 

include breaking the encryption of the wireless traffic. 

WEP is on the RC4 algorithm, which is a symmetric key stream cipher. Stream 

cipher algorithms generate a key stream from the original key to match the length of the 

plaintext that will be encrypted. The stream ciphers, along with another method called 

“block-cipher” are known as Electronic Code Book (ECB) mode encryption. With ECB 

mode encryption, the same cipher text is generated when the input plain text is the same. 

Since usage of the same key for each packet would cause security problems, the 

Initialization Vector (IV) is used to obtain a different key for each packet by using the 
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same Key. By using the IV, the resulting cipher text will be different, even if the same 

packet is transmitted twice.  

An Initialization Vector is 24 bits long and is sent in clear to the recipient of the 

packet. The WEP key is 40 or 104 bits and with the augmentation of the IV they become 

64 or 128 bits long. Although the length of the WEP key is known to be 64 or 128 bits, it 

is actually 40 or 108 bits, since the IV is sent in the clear and readily available to the 

eavesdroppers.  

The weakness of the WEP encryption algorithm was revealed by two studies in 

2001: “Intercepting Mobile Communications: The Insecurity of 802.11” [15] and 

“Weakness in Key Scheduling Algorithm of RC4” [10]. Cryptanalysts Fluhrer, Mantin, 

and Shamir determined that WEP key can be broken passively by just collecting packets 

from a wireless network [10]. This technique is based on weak IVs, which reveal the key 

bytes after statistical analyses. This vulnerability was implemented by AT&T/Rice 

University and the developers of an open-source WEP cracking tool, Airsnort. The 

implementation showed that 64 or 128 bits long WEP keys may be derived after 

analyzing as few as four million packets [20]. This amount of packets is routed in four 

hours in a congested wireless networks.  A 24–bit IV can contain 16,777,216 possible 

values. So, in a network running at 11 Mbps, the time for the same IV to be used is about 

five hours. [21] 

WEP specifications do not require any specific kind of key management 

technique. The first of three techniques to be used for key management is static WEP 

keying. The shared secret key is known by both of the entities and that key is used 

without any change. The second key management technique is creating a known number 

of WEP keys and using those keys interchangeably. The third one is dynamic WEP 

rekeying, in which the new WEP keys are produced and installed automatically at small 

intervals without the supervision of any system administration.  

A wide range of tools was created after the vulnerabilities of the WEP algorithm 

became public. Airsnort and WEPcrack are the two most popular tools. WEPcrack is a 

series of perl scripts that are used to break the WEP key of the collected packets by a 

sniffer. Airsnort does not require a separate sniffer, since Airsnort can both capture the 
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packets and crack the WEP key. For this thesis work, Airsnort was selected as the WEP 

cracking tool.  

Airsnort is a Linux-based tool that exploits the vulnerabilities mentioned in the 

paper “Using Fluhrer, Mantin and Shamir Attack to Break WEP” [11]. Arisnort requires 

Linux kernel 2.2 or 2.4 with the wlan-ng drivers and a prism2-chipset-based wireless 

network card. The difficulty of the open-source wireless tools is to match the 

combination of the kernel configuration with the proper driver and the networking card. 

Airsnort works perfectly after overcoming the difficulties of the installation. Airsnort has 

a GUI interface which is sufficient for any user to interact with the software. The GUI 

interface is shown in Figure 15. The Cracking time depends on both the length of the 

WEP key and the amount of network traffic. The amount of time could vary, but it is 

obvious that with one of the tools and patience, the WEP keys can be broken. 

 
Figure 15.   WEP Cracking Tool Airsnort 
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The victim client will be out of the picture at the end of the first part. However, 

the client will try to reconnect to the network after it is disconnected. There will not be 

enough time for the second part of the attack if encryption is used.  Therefore, breaking 

the WEP key should be done prior to the first step of the attack.  

If the network is not using encryption, the attacker can change its MAC address 

and use the network as the real client. The attacker learns the MAC address of a 

legitimate client after the first step of the attack. If the attacker is using a Linux machine, 

changing the MAC address is the same as the first part. If the attacker is using Windows, 

then a tool must be used to change the MAC of the wireless interface. There are some 

free tools that can be used for this purpose. One of the most popular is SMAC, developed 

by KLC Consulting Inc. That tool can change the MAC addresses for Windows 

compatible NICs (http://www.klcconsulting.net/smac/). This tool has a GUI interface and 

is easy to use. There is one drawback to this tool: the machine should be rebooted for the 

change to take effect. Figure 16 shows the interface of SMAC.  

 
Figure 16.   SMAC: MAC Changer Tool Interface 
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the connection properties, namely the use of encryption and the size and type of the 

encryption Key. 

1. No Encryption: If there is no encryption used, the settings should be made for a 

connection without an encryption using the GUI interface for Windows XP wireless 

connection settings. Figure 17 shows the connection settings for a connection without 

encryption.  

Theoretically, the Windows client should continue on the connection that is 

provided by the previously connected legitimate client. For test purposes, the commercial 

access point (D-Link DWL-7000AP) was the first choice to be configured to use the 

802.1X authentication without encryption. However, the access point software doesn’t 

allow this kind of setup. The access point allows the 802.1X authentication only with 

encryption enabled. The other access point used in this thesis, HostAP, does allow any 

kind of configuration since it is an open–source tool. The configuration file called 

hostapd.conf can be configured to be used without encryption.  

  
Figure 17.   Windows XP Wireless Configuration Setup without Encryption.  
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2. With Static WEP key encryption: When static encryption is used, with 64- or 

128-bit keys, the XP client can be configured to use a connection similar to the original 

connection with encryption. The static WEP keys are known as breakable with tools like 

Airsnort. The tool was tested and left to break the 64 bit key of the test-bed. For four days 

of action, the tool collected only 123 interesting packets, whereas at least 1500 interesting 

packets are necessary to break the key. The tool could not break the key in four days 

since the network traffic of the test bed was not as high as expected. Although the WEP 

key could not be broken successfully due to the time considerations, the key is assumed 

to be broken by the tool since WEP cracking is not the main issue of this thesis. 

Both D-Link and HostAP access points are easy to be configured to work with 

static WEP keys and the 802.1X authentication. After the configuration of the XP client 

with the known WEP key, the XP client can use the network by activating its network 

card. Figure 18 shows the configuration options with the static WEP key.  

  
Figure 18.   Windows XP Wireless Configuration with Static WEP Key. 
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300 seconds. This changing interval makes WEP cracking virtually impossible. Even if 

the network is congested and the WEP key is 64 bits, the allotted time is not sufficient for 

any cracking tool to break the WEP key. 

The configuration of the XP client does not have any importance since the WEP 

key could not be set for the wireless connection. The attack only results in a denial-of-

service attack against the legitimate client.  

 

4. Using a Packet Generator 
Packet generators allow the users to create any kind of packets and send them 

from one of the computer’s network adapters. Excalibur is one of the most popular 

packer generators. For this thesis, Excalibur is used to generate an ICMP packet that is 

sent to a Web site (www.yahoo.com) to test the access to the network after the session is 

stolen. Excalibur provides options to input the MAC and IP addresses of the source and 

destination entities, as well as the other layer options of the packet (IP, TCP packet 

options.)  

The MAC and IP address of the legitimate client, which are spoofed in the first 

step of the attack, are applied to the ICMP packet. One of the popular Web sites is 

selected as the destination of the ICMP ping packet. Figure 19 shows the interface of the 

Excalibur. 

 
Figure 19.   Excalibur Packet Generator 
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Since the XP clients cannot be configured to use the 802.1X authentication 

without using WEP encryption, the tests of the session hijacking attack without 

encryption could not be implemented.  Since the legitimate user stays authenticated by 

the access point after it is disassociated from the network, the attacker can send the 

artificially generated packets by using the credentials of the legitimate client. For testing 

the packet generator, the access point is switched to open-system and WEP encryption is 

disabled. The ICMP ping packets are generated by the attacker and sent over the network 

in the name of the legitimate client. ICMP echo packets are received by the attacker via 

the access point. The network traffic can be received by the attacker after the 

authentication is bypassed. 

When the WEP encryption is enabled, the ICMP packets cannot be sent by using 

the credentials of the attacker because there is no way of encrypting the generated ICMP 

ping packets with the WEP key before sending it. Excalibur does not have a feature that 

allows the generated packets to be encrypted with the WEP key. The packet generator 

could not be tested with the WEP encryption enabled. 

 

D. RESULTS OF THE SESSION HIJACKING ATTACK 
The University of Maryland paper [1] mentioned the success of the session 

hijacking attack without mentioning the status of the encryption. Both Cisco and 

Orinoco’s responses both mentioned that the attack may be successful if encryption is not 

used.  

After conducting the tests on the test-bed, the results were similar to the responses 

of Cisco and Orinoco. Without using the encryption, the attacker successfully hijacked 

the session. Even though the results were in favor of the successful attack, there were 

some points that prevented the conditions of the attack to exist. Commercial access 

points, like the one used in the tests (D-Link DWL 7000 AP), do not allow a network 

configuration that uses the 802.1X authentication without encryption. The software of the 

access points does not allow this kind of configuration. Additionally, the latest version of 

the Windows operating system (Windows XP SP1) does not have an option for making a 

connection that enables the 802.1X authentication without encryption. The warning 
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message of windows XP is seen in Figure 20. Since more than 90 percent of the 

computers use the Windows OS, the environment for using the 802.1X authentication 

seems impossible. 

  

 
Figure 20.   Windows XP Warning Message. 
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The final test, with the Dynamic WEP keys, completely validated Cisco and 

Orinoco’s responses. The rekeying period is small enough to prevent any kind of attempt 

to break the WEP key.  

The 802.1X authentication is always vulnerable to injection of malicious frames. 

The disassociation of the legitimate client is always a possibility and can be achieved 

easily with the use of HostAP. However, the encryption is the greatest obstacle to 

overcome. If the encryption could not be beaten, then the attack becomes worthless. The 

packets sent by the malicious client are dropped since they are encrypted without the 

correct keys. 
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V. RESULTS, 802.11I STANDAND AND SOLUTIONS 

A. INTRODUCTION 
The IEEE 802.11i group is working hard to find a complete solution to the type of 

session hijacking attacks demonstrated in Chapter IV.  This chapter will examine that 

effort. Since the 802.11i working group has not finalized their work, this discussion is 

based on the most recent draft recommendations published by the group regarding the 

802.11 and 802.1X standards. (http://grouper.ieee.org/groups/802/11/LetterBallots.html) 

The draft recommendations are discussed generally and the sections that are concerned 

with the session hijacking attack are specifically analyzed. 

Our analysis has uncovered some inadequacies in the 802.11i recommendations 

with regard to their effectiveness against session hijacking attacks. Possible solutions to 

the inadequacies are proposed at the end of the chapter. 

 

B. PROBLEMS OF 802.1X AUTHENTICATION STANDARD IN WIRELESS 
NETWORKS 
While describing the session hijacking attack in Chapter II, the vulnerabilities of 

the 802.1X authentication standard that allows the attackers to launch the session 

hijacking attack were discussed. The problems can be summarized as follows: 

1. The client maintains a state machine and the authenticator maintains a 

state machine for each client. These two state machines may be out of synchronization as 

described in Chapter II, which could be exploited for a session hijacking attack.  

2. The lack of authenticity of the management frames of the authentication 

traffic.  

3. One-way authentication of the client only.  

4. Inadequacy of WEP encryption.  

5. Open-signal propagation medium 

 

 



60 

C. 802.11i STANDARD 
In this chapter, the new wireless security standard will be covered. The new 

standard is called 802.11i. The final version of the standard is not completed, it is still a 

work in progress; however, the latest draft of the standard was published after it passed 

the ballot of the wireless committee. 802.11i draft 7 is the latest draft of the standard.  

 

1. History 
In July of 1999, the IEEE 802.11 had a study group meeting for people interested 

in enhancing the IEEE 802.11 MAC for better quality of service (QoS) and privacy. In 

March of 2000, TGe was created to enhance the 802.11 Medium Access Control (MAC) 

to improve and manage QoS, and to provide enhanced security and authentication 

mechanisms for wireless networks. In March of 2001, the TGe was split into separate 

working groups: TGe and TGi to focus on QoS and security issues, respectively. TGi 

began acting independently in May of 2001. Since then, TGi has worked on the new 

standard and published the drafts of this new standard after the Letter Ballots. Draft 7 is 

the latest draft of the 802.11i standard. 

 

2. Architecture of 802.11i 
In general, the new 802.11i standard consists of two layers and there are three 

main pieces that are organized in these two layers. On the lower level, there are two 

improved encryption algorithms: the Temporal Key Integrity Protocol (TKIP) and the 

Counter mode with CBC-MAC protocol (CCMP). Both encryption protocols are 

designed to protect the data integrity better than the legacy WEP encryption technique.  

TKIP is targeted at legacy equipment and CCMP is targeted at future WLAN equipment. 

On the upper level, there is the authentication standard 802.1X. 802.1X was not a part of 

the original 802.11 standard and it becomes a part of the wireless LAN standards with 

802.11i.  

The goal of 802.11i is to combine the newly defined standards, such as TKIP and 

CCMP, with the existing 802.11 standards and 802.1X authentication standard. In order 

to understand how these three pieces fit together, the details of each individual standard 
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should be examined. Since the 802.1X standard has been examined in detail in the 

previous chapters, it is omitted from this discussion.  

 

3. Key Management 
802.1X authentication is carried over to the new standard, however, key 

management issues have been modified to make it more robust. The new standard defines 

two key hierarchies: pairwise key hierarchy, which aims to protect unicast traffic, and 

group-key hierarchy to protect multicast traffic.  

a. Pairwise Key Hierarchy 
The new standard brings the use of Pairwise Master Key (PMK) for the 

security of the session between the supplicant and the authenticator. A Pairwise Transient 

Key (PTK) is derived from the PMK, which will be chopped into three different keys to 

be used in different fields of the security. These three keys are: the EAPOL-Key MIC 

Key (KCK), the EAPOL-Key Encryption Key (KEK), and the Temporal Key (TK).  

Depending on the EAP type of authentication, the supplicant and the 

authentication server share some sort of key material before the actual authentication 

starts. Although it is not part of the new standard, certificate-based EAP-TLS is the most 

popular and convenient EAP type. Certificates are installed into both the supplicant and 

the authentication server before the actual authentication takes place. Master Key is 

derived during the 802.1X EAP Authentication. Only the Authentication Server (AS) and 

the Supplicant can have this Master Key.  

PMK can be defined as a fresh symmetric key, which controls AS’s and 

Supplicant’s access to the channel during the session. PMK results from the 

authentication between the supplicant and the AS. PMK generation is normally done 

independently and simultaneously on the AS and the supplicant, based on the information 

communicated between the two entities during the authentication. Each EAP method can 

derive the PMK from the Master Key in different ways. The PMK is pushed to the AP 

afterwards. Figure 21 shows the Pairwise Key Hierarchy. 
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PRF is a Pseudo-Random Function that is used in a number of places in 

the new standard. PRF generates different length outputs that vary from 128 bit to 512 

bits. The values inside the brackets in Figure 21 are the inputs of PRF.  

 
Figure 21.   Pairwise Key Hierarchy (From Ref 22) 

 

The Pairwise Transient Key (PTK) is derived from the Pairwise Master 

Key by using the authenticator’s and the supplicant’s MAC addresses along with the AP 

nonce and Supplicant Nonce values. Both nonce values are random or pseudo-random 

values contributed to by their respective entities. The length of PTK is 512 bits for TKIP 

and 384 for CCMP, WRAP and WEP. TKIP, WRAP and CCMP are new encryption 

standards, which will be discussed later in this chapter.  

The Key Confirmation Key (KCK) is computed as the first 128 bits of the 

PTK and is used by the 802.1X to provide data origin authenticity in the 4-way 

handshake and group-key distribution messages. The Key Encryption Key (KEK) is 

computed as the second 128 bits of the PTK. The KEK is used to provide confidentiality 

in the 4-wap handshake and group-key distribution messages.  The Temporal Key (TK) is 

the remaining part of the PTK, in 128 bits chunks. If the remaining part of the PTK is 
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more than 128 bits long, more than one TK can be produced. The TK is used to secure 

the data traffic.  

b. Group Key Hierarchy 
Similar to the Pairwise Key Hierarchy, a Group Transient Key (GTK) is 

generated from the Group Master Key (GMK). This GTK is partitioned into temporal 

keys used to protect the broadcast and multicast communication. These group keys are 

used between a single authenticator and all the supplicants authenticated to that 

authenticator.  

c. Four-Way Handshake 
Before the 802.1X authentication, the supplicant and the authenticator 

exchange discovery packets. In the discovery period, the authenticator advertises its 

capabilities and the Supplicant sends back its association request based on the 

authenticator’s capabilities. After the discovery, both stations are ready to authenticate 

over the established 802.11 channel.  

After the 802.1X authentication, the participating entities advance to the 

key management step. In this step, the Pairwise Master Key (PMK) is generated both in 

the authentication server and the supplicant. The PMK is then pushed to the authenticator 

by the AS. A Four-Way Handshake process takes place between the supplicant and the 

authenticator to produce and derive the PTK and other keys. Figure 22 shows the four-

way handshake process.  
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Figure 22.   Four-Way Handshake (From Ref. 22)  

 

The authenticator picks a nonce which is a random, one-time- use value 

(ANonce) and sends it to the supplicant within an EAPOL-Key Packet as the first 

message. On receiving the first message, the supplicant generates its own nonce 

(SNonce) value and derives the PTK from the PMK, nonce values, and the MAC 

addresses. After derivation of the PTK, the supplicant sends the second message to the 

authenticator. The authenticator receives the nonce value of the supplicant and generates 

the exact same PTK value on the authenticator side. The authenticator sends another 

message back to the supplicant indicating that it possesses the PTK. The last packet is 

send from the supplicant to the authenticator, which ends the 4-way handshake.  

The four-way handshake establishes a fresh Pairwise Key that is bound to 

the supplicant and the access point for the session. It also provides a security check that 

there is no man-in-the-middle between the two PTK holder entities.  
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4. Temporal Key Integrity Protocol (TKIP) Overview 
The TKIP was designed to address all the known attacks against the WEP 

algorithm while still maintaining backward compatibility with the legacy hardware. It 

was designed to be made available as a firmware or software upgrade to existing 

hardware so that users would be able to upgrade their level of security without replacing 

existing equipment or purchasing new hardware. The TKIP provides an upgrade path by 

offering an additional protocol or a wrapper around the WEP. The TKIP is comprised of 

the following elements: 

1. A message integrity code (MIC) provides a keyed cryptographic 

checksum using the source and destination MAC addresses and the plaintext data of the 

802.11 frames, which protects the session against forgery attacks. 

2. Countermeasures are implemented by the TKIP to limit the probability of 

successful forgery and the amount of information that an attacker can learn about a 

particular key.  

3. A TKIP sequence counter with a 48-bit Initialization Vector (IV) is also 

implemented to sequence the packets that are sent. This provides a replay protection, 

which is not sufficient enough to protect against these kinds of attacks. Any fragmented 

packets received out of order are dropped by the receiver.  

4. Per packet key mixing of the IV is used to break up the correlation used by 

weak key attacks.  

Figure 23 shows the picture of a TKIP encrypted MAC protocol data unit 

(MPDU). Different from the original WEP protocol, TKIP introduces the use of an 

extended 48-bit IV, which is called the TKIP sequence counter (TSC). The TSC is 

updated in each packet, which aims to extend the life of the temporal key and eliminate 

the need to re-key the temporal key in a single association. Using 48 bits, 248 packets can 

be exchanged using the same temporal key. It will take about 100 years for a key reuse to 

occur under normal network traffic conditions. 
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Figure 23.   MPDU Format after TKIP Encryption (From Ref. 27) 

 

To construct the TSC for an individual packet, the first and second bytes from the 

original WEP IV and the four bytes provided in the extended IV are used. The TKIP 

encapsulation process is shown in Figure 24. The temporal and MIC keys are used, which 

are derived from the PMK generated as part of the 802.1X exchange. [27] 

 

 
Figure 24.   Diagram Depicting the TKIP Encapsulation Process (From Ref. 27) 

 

The per-packet key in TKIP is 128 bits and is comprised of a 104-bit long RC4 

key and 24-bit IV. The key is produced after the mixture of the Temporal Key, the 

Transmitter Address and the TSC in a two-phase key mixing function. [27] 

The WEP integrity check Vector (ICV) is computed by a simple CRC-32 cyclic 

redundancy check. The TKIP replaces CRC-32 with MIC (nicknamed as Michael), which 

is a stronger, one-way hash function. The MIC value is calculated using the TSC, source 

and destination MAC addresses, Plaintext and the MIC key. After computing the MIC, 

the packet is keyed to the sender and receiver, preventing attacks based on packet 
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forgery. The MIC makes it much more difficult for an attacker to intercept and alter the 

packets in favor of their attacks. [27] 

The decapsulation process is essentially the same as the process illustrated in 

Figure 14 with the following exceptions. The countermeasures that are mentioned before 

are applied to the packet. The TSC value of the packet is extracted, and it is compared to 

the previously received packets. If the TSC value of the recent packet is smaller than the 

previously received packets, the new packet is discarded in order to prevent potential 

replay attacks.  

On the receiving side, the MIC value is calculated and compared to the received 

MIC value. If the MIC values do not match, then the countermeasures are invoked. The 

countermeasures are a warning sent to the administrator of a possible attack and rekeying 

the temporal key.  

 

5. The Counter-Mode/CBC-MAC Protocol (CCMP) Overview 
The new encryption method defined in 802.11i is based on a modern encryption 

technique called the Advanced Encryption Standard (AES). The AES can be used in a 

variety of different modes and algorithms. Counter mode with CBC-MAC (CCM) is 

chosen for the new standard in which the counter mode AES provides the data privacy 

and the Cryptographic Block Cipher–Message Authentication Code (CBC-MAC) 

delivers data integrity and authentication. [27]  

AES is a modern encryption algorithm that is a symmetric iterated block cipher. 

The same key is used for both encryption and decryption. The AES standard uses 128-bit 

blocks for encryption, and for 802.11 the encryption key length is also fixed at 128 bits.   

Figure 25 shows the format of an AES encrypted MAC-layer Protocol Data Unit 

(MPDU). The packet is expanded by 16 bytes over an unencrypted frame. [27] 

 
Figure 25.   MPDU Format after CCMP Encryption (From Ref. 27) 
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The CCMP also uses a 48-bit IV called a Packet Number (PN) which is used to 

create the AES cipher for both the MIC and frame encryption. Figure X shows the CCMP 

encapsulation process.  

 
Figure 26.   Diagram of the CCMP Encapsulation Process (From Ref. 27) 

 

The CCMP encapsulation process has two parts: Encryption and the MIC 

calculation. A temporal encryption key is used for both the MIC calculation and the 

packet encryption. The Temporal Key is derived form the master key, which is set to both 

entities after the 802.1X encryption. [27] 

Figure 26 shows the encryption and MIC calculation diagram of CCMP. Since 

AES is a block-cipher algorithm, the overall process is more complicated than both TKIP 

and WEP. The IV is the seed of the MIC calculation with the PN and some specific data 

that comes from the header of the particular frame. The IV first goes to the AES 

ciphering block and the output is XORed with some other elements of the frame header. 

The result is an input to the next AES block. This ciphering process continues until the 

end of the frame. At the end, a 128-bit CBC-MAC value is computed. The upper 64-bit 

part of this MAC is taken out to be used in the final MIC which is appended to the 

encrypted frame. [27] 

The encryption process, similar to the MAC calculation process, is seeded by a 

counter preload value, which is formed from the PN. In addition to the counter preload 

value, data from the frame header is also used for the encryption seed. The counter value 
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XORed with the output of the previous AES block. The counter value is incremented by 

one and the same process continues on until the end of the clear text. The last and final 

counter value is set to 0 and its output from the AES block is XORed with the MIC value 

which is computed in the previous MIC Calculation step. The output of this XOR 

operation is appended to the end of the encrypted frame.   

The decapsulation of the encapsulated CCMP frame is not much different than the 

encapsulation process. It is essentially the reverse of the encapsulation shown in Figure 

16. The decapsulation process has one more step of comparing the MIC values of the 

received frame with the computed MIC value of the same frame.  

 

6. Implementation of 802.11i 
The Wi-Fi Alliance is a nonprofit international association formed in 1999 to 

certify interoperability of wireless Local Area Network products based on the IEEE 

802.11 specification. In 2001, there were 100 Wi-Fi Certified Products and today there 

are more than 500 such products. The rapid growing wireless industry is demanding a 

more secure wireless environment and cannot wait for the 802.11i standard to be ratified, 

probably in 2004. Based on the immediate need for security, the goal of this alliance is to 

implement what is stable in 802.11i and bring it to market in Wi-Fi Protected Access 

(WPA). 

a. Wi-Fi Protected Access (WPA) Overview 
The first goal of the Wi-Fi alliance is to solve the security problems of the 

wireless networks with firmware and software upgrades without changing the hardware. 

WPA is a subset of the existing 802.11i draft, which uses TKIP instead of WEP. The 

WPA standard might not be fully compatible with some legacy devices and operating 

systems; however, it is designed to be forward compatible with the 802.11i standard.   

b. Robust Security Network (RSN) Overview 
The RSN is the enhanced security standard aimed at addressing the 

vulnerabilities of 802.1X and encryption issues concerning TKIP and CCMP. 

Simultaneous use of TKIP and CCMP is supported by RSN, however only CCMP will be 

mandatory while keeping the TKIP optional for true RSN implementations. 



70 

The authentication standard chosen for RSN is 802.1X and EAP, while the 

encryption algorithm will be the AES. Besides the new and strong functionality of RSN, 

it will run very poorly on some legacy devices because the AES algorithm does not 

perform well on the legacy devices. Table 1 presents some important parameters of the 

security standards.  

 
Table 3. Comparison of the Existing and Emerging Security Standards 

 

D. SOLUTIONS AND DISCUSSION 
The first part of this chapter discussed the problems of the wireless networks 

while the second part of the chapter discussed the new wireless security standard 

(802.11i). In this conclusion, the problems and the solutions will be discussed together.  

Since TGi is going to include the 802.1X standard as the authentication method in 

the 802.11i security standard, the advantages and disadvantages of the 802.1X standard 

will be carried over to the new standard. 

 

1. Mutual Authentication 
The lack of mutual authentication was one of the most important security 

vulnerabilities of wireless networks. The 802.1X standard will be used as the 

authentication method; however, some vulnerable and weak points are rectified. EAP is 

used to carry the authentication traffic. The new standard mandates the use of EAP 
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methods, which provide mutual authentication. EAP-TLS is the most popular and widely 

supported method that provides mutual authentication. Windows XP contains an 

implementation of EAP-TLS. Thus, EAP-TLS becomes the de facto authentication 

method. By using EAP-TLS and discarding the other weak methods, mutual 

authentication can be accomplished.   

The authentication problem can only be solved by employing mutual 

authentication. EAP-TLS should be implemented by the networks that need security. 

 

2. Encryption and Key Management 
The key management part of the 802.1X standard is modified in the new standard 

to provide a better way of encrypting the network traffic. Key management is the most 

important improvement that is introduced by the new standard. Both of the new 

techniques, TKIP and CCMP, provide better and improved encryption than WEP. 

Besides the encryption of the traffic, per-packet authentication and message integrity 

checking is improved.   

Since TKIP improves the WEP keys with enhancements such as 48-bit IV, the 

possibility of breaking the WEP key is quite difficult for an attacker. CCMP and WRAP 

both are based on a better encryption algorithm: AES. The complicated nature of this 

algorithm will provide a robust encryption for the wireless networks.  

The proposed four-way handshake mechanism establishes a fresh set of pairwise 

keys for each new session between a supplicant and the authenticator. The mechanism is 

carefully designed to eliminate the possibilities of a man-in-the-middle attack between 

the two entities during the handshake period. [22]  

TKIP is applicable to the legacy devices, while CCMP will run only on the new 

devices. Even if neither of these two techniques is implemented, some security 

precautions can still be applied to harden the wireless networks: hiding the SSID, 

changing the static WEP key frequently, applying WEP re-keying (if applicable). 
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3. Management Frames Authentication 
The session hijacking attack, which is defined in the previous chapter, starts with 

the disassociation of the supplicant with a fake disassociation frame. The cause of this 

vulnerability is the unauthenticated management frames. The draft of the new security 

standard keeps the open-system authentication prior to 802.1X authentication. The open-

system association is used to exchange the capabilities of the entities. Although the open-

system authentication does not serve any security role, the possibility of sending 

disassociation frame still exists. To mitigate this vulnerability, the management frames 

should also be authenticated.  

The 802.1X authentication protocol is used in the new standard with 

modifications to the key management issues. All the other parts of the standard remain 

unchanged. With the use of a new and complicated key management scheme, the 

attackers should be unable to use any network sources without breaking the key 

management.  

The supplicant can still be disconnected from the network, but the attacker will 

not have any chance of using the network. The network traffic will not be unencrypted or 

weakly-encrypted; instead the encryption will be strong enough to limit the attempt to 

hijack the session to a denial of service attack, at worst. 

 

E. SUMMARY 
By using the new security standard, the necessary conditions of the session 

hijacking attack mentioned in Chapter IV are eliminated. The first two necessary 

conditions are precluded by the use of the EAP methods that provide mutual 

authentication. The other important issue is the new key management, which also helps 

prevent the first two necessary conditions from happening. 

The fourth necessary condition will be prevented by the use of new encryption 

techniques, which are much stronger than WEP. The new encryption techniques, 

combined with the new-key management issues, dismiss the possibility of breaking the 

encryption. 
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The possibility of sending a disassociation frame still exists. The open-system 

association is the part of the new standard used to exchange the parameters of the 

connection. With the new and robust encryption techniques, this vulnerability can only 

end up as a denial-of-service attack against the client at worst. 
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VI. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 
This thesis examined the 802.1X authentication standard. The standard is 

explained in detail, and the entities and the protocols of the standard are covered in depth. 

The security vulnerabilities of the standard are discussed. 

The security vulnerabilities of the 802.11 WLAN standard will be addressed when 

the new security standard (802.11i) is completed and published by the security working 

group (TGi). TGi considers the 802.1X standard a very important and key part of its 

solution. The new standard will introduce 802.1X as a solution to the authentication 

problems of the 802.11 standard.  

In this thesis, the security vulnerabilities of 802.1X are tested. The vulnerabilities 

were discovered and published in a University of Maryland’s paper. [1] For testing 

purposes, an open-source test-bed was built. In the test-bed, the EAP-TLS authentication 

method is chosen and implemented. For this method, public key certificates are created 

and used. The test-bed was used to implement a session hijacking attack that is 

mentioned in the University of Maryland paper. [1] The attack is divided into three main 

parts and each part is performed individually.  

The experiments showed that launching session-hijacking attacks against wireless 

networks is easier than the wired networks because of the open broadcast nature of the 

wireless networks. Another important outcome of the experiments is the importance of 

encryption. Encryption and key management are the most important components of a 

secure network. If the encryption is strong and key management is well-organized, the 

attackers cannot reach their goals even if they exploit some other vulnerabilities. The new 

encryption methods that are proposed by the new wireless security standard (802.11i) 

provide much better security than the WEP encryption.  

The authentication and access control issues are addressed by the use of 802.1X 

authentication standard. The result of the experiment demonstrated that this standard 

provides mutual authentication if the authentication method is chosen right. EAP-TLS is 

a certificate-based authentication method that provides mutual authentication.  
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Open system authentication is proposed by the IEEE security working group 

(TGi) for the exchange of authentication information. The use of an open-system 

authentication still allows the attackers to disassociate a legitimate client. This 

vulnerability, however, is only enough for a denial-of-service attack, not a session 

hijacking attack.  

 

B. FUTURE WORK 
In this thesis a session hijacking attack is evaluated with an open-source test-bed. 

Since the test-bed is built and serves as a good environment for testing, other types of 

attack can be evaluated and other security problems can be discovered. Other 

authentication methods, such as EAP-MD5, can be tested using the test-bed. 

The new authentication scheme proposes new encryption techniques such as 

CCMP, WRAP and TKIP, as well as a new key management scheme. Once the new 

802.11i standard is completed, the new standard, along with the authentication methods, 

key management scheme, and encryption techniques, can be evaluated and tested. 

The source code of the HostAP and Linux client code Xsupplicant should be 

manipulated to employ the tests. Since the test-bed is built on Linux OS and the source 

code is written in C language, Experience with C and C++ programming and Linux OS is 

mandatory for this type testing. 
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APPENDIX A 

A. CERTIFICATE GENERATOR CONFIGURATION 

1. OpenSSL Configuration File 
# 
# OpenSSL example configuration file. 
# This is mostly being used for generation of certificate requests. 
# 
 
# This definition stops the following lines choking if HOME isn't 
# defined. 
HOME   = . 
RANDFILE  = $ENV::HOME/.rnd 
 
# Extra OBJECT IDENTIFIER info: 
#oid_file  = $ENV::HOME/.oid 
oid_section  = new_oids 
 
# To use this configuration file with the "-extfile" option of the 
# "openssl x509" utility, name here the section containing the 
# X.509v3 extensions to use: 
# extensions  =  
# (Alternatively, use a configuration file that has only 
# X.509v3 extensions in its main [= default] section.) 
 
[ new_oids ] 
 
# We can add new OIDs in here for use by 'ca' and 'req'. 
# Add a simple OID like this: 
# testoid1=1.2.3.4 
# Or use config file substitution like this: 
# testoid2=${testoid1}.5.6 
 
#################################################################### 
[ ca ] 
default_ca = CA_default  # The default ca section 
 
#################################################################### 
[ CA_default ] 
 
dir  = ./demoCA  # Where everything is kept 
certs  = $dir/certs  # Where the issued certs are kept 
crl_dir  = $dir/crl  # Where the issued crl are kept 
database = $dir/index.txt # database index file. 
new_certs_dir = $dir/newcerts  # default place for new 
certs. 
 
certificate = $dir/cacert.pem  # The CA certificate 
serial  = $dir/serial   # The current serial number 
crl  = $dir/crl.pem   # The current CRL 
private_key = $dir/private/cakey.pem # The private key 
RANDFILE = $dir/private/.rand # private random number file 
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x509_extensions = usr_cert  # The extentions to add to the cert 
 
# Comment out the following two lines for the "traditional" 
# (and highly broken) format. 
# name_opt  = ca_default  # Subject Name options 
# cert_opt  = ca_default  # Certificate field options 
 
# Extension copying option: use with caution. 
# copy_extensions = copy 
 
# Extensions to add to a CRL. Note: Netscape communicator chokes on V2 
CRLs 
# so this is commented out by default to leave a V1 CRL. 
# crl_extensions = crl_ext 
 
default_days = 365   # how long to certify for 
default_crl_days= 30   # how long before next CRL 
default_md = md5   # which md to use. 
preserve = no   # keep passed DN ordering 
 
# A few difference way of specifying how similar the request should 
look 
# For type CA, the listed attributes must be the same, and the optional 
# and supplied fields are just that :-) 
policy  = policy_match 
 
# For the CA policy 
[ policy_match ] 
countryName  = match 
stateOrProvinceName = match 
organizationName = match 
organizationalUnitName = optional 
commonName  = supplied 
emailAddress  = optional 
 
# For the 'anything' policy 
# At this point in time, you must list all acceptable 'object' 
# types. 
[ policy_anything ] 
countryName  = optional 
stateOrProvinceName = optional 
localityName  = optional 
organizationName = optional 
organizationalUnitName = optional 
commonName  = supplied 
emailAddress  = optional 
 
#################################################################### 
[ req ] 
default_bits  = 1024 
default_keyfile  = privkey.pem 
distinguished_name = req_distinguished_name 
attributes  = req_attributes 
x509_extensions = v3_ca # The extentions to add to the self 
signed cert 
 
# Passwords for private keys if not present they will be prompted for 
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# input_password = secret 
# output_password = secret 
 
# This sets a mask for permitted string types. There are several 
options.  
# default: PrintableString, T61String, BMPString. 
# pkix  : PrintableString, BMPString. 
# utf8only: only UTF8Strings. 
# nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings). 
# MASK:XXXX a literal mask value. 
# WARNING: current versions of Netscape crash on BMPStrings or 
UTF8Strings 
# so use this option with caution! 
string_mask = nombstr 
 
# req_extensions = v3_req # The extensions to add to a certificate 
request 
 
[ req_distinguished_name ] 
countryName    = Country Name (2 letter code) 
countryName_default  = US 
countryName_min   = 2 
countryName_max   = 2 
 
stateOrProvinceName  = State or Province Name (full name) 
stateOrProvinceName_default = California 
 
localityName   = Locality Name (eg, city) 
localityName_default  = Monterey 
 
0.organizationName  = Organization Name (eg, company) 
0.organizationName_default = NPGS 
 
# we can do this but it is not needed normally :-) 
#1.organizationName  = Second Organization Name (eg, company) 
#1.organizationName_default = World Wide Web Pty Ltd 
 
organizationalUnitName  = Organizational Unit Name (eg, section) 
organizationalUnitName_default = SAAM 
 
commonName    = Common Name (eg, YOUR name) 
commonName_max   = 64 
commanName_default  = WirelessSAAM CA 
 
emailAddress   = Email Address 
emailAddress_max   = 64 
emailAddress_default  = oozan@nps.navy.mil 
 
# SET-ex3    = SET extension number 3 
 
[ req_attributes ] 
challengePassword   = A challenge password 
challengePassword_min  = 4 
challengePassword_max  = 20 
 
unstructuredName  = An optional company name 
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[ usr_cert ] 
 
# These extensions are added when 'ca' signs a request. 
 
# This goes against PKIX guidelines but some CAs do it and some 
software 
# requires this to avoid interpreting an end user certificate as a CA. 
 
basicConstraints=CA:FALSE 
 
# Here are some examples of the usage of nsCertType. If it is omitted 
# the certificate can be used for anything *except* object signing. 
 
# This is OK for an SSL server. 
# nsCertType   = server 
 
# For an object signing certificate this would be used. 
# nsCertType = objsign 
 
# For normal client use this is typical 
# nsCertType = client, email 
 
# and for everything including object signing: 
# nsCertType = client, email, objsign 
 
# This is typical in keyUsage for a client certificate. 
# keyUsage = nonRepudiation, digitalSignature, keyEncipherment 
 
# This will be displayed in Netscape's comment listbox. 
nsComment   = "OpenSSL Generated Certificate" 
 
# PKIX recommendations harmless if included in all certificates. 
subjectKeyIdentifier=hash 
authorityKeyIdentifier=keyid,issuer:always 
 
# This stuff is for subjectAltName and issuerAltname. 
# Import the email address. 
# subjectAltName=email:copy 
# An alternative to produce certificates that aren't 
# deprecated according to PKIX. 
# subjectAltName=email:move 
 
# Copy subject details 
# issuerAltName=issuer:copy 
 
#nsCaRevocationUrl  = http://www.domain.dom/ca-crl.pem 
#nsBaseUrl 
#nsRevocationUrl 
#nsRenewalUrl 
#nsCaPolicyUrl 
#nsSslServerName 
 
[ v3_req ] 
 
# Extensions to add to a certificate request 
 
basicConstraints = CA:FALSE 
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keyUsage = nonRepudiation, digitalSignature, keyEncipherment 
 
[ v3_ca ] 
 
# Extensions for a typical CA 
 
# PKIX recommendation. 
 
subjectKeyIdentifier=hash 
 
authorityKeyIdentifier=keyid:always,issuer:always 
 
# This is what PKIX recommends but some broken software chokes on 
critical 
# extensions. 
#basicConstraints = critical,CA:true 
# So we do this instead. 
basicConstraints = CA:true 
 
# Key usage: this is typical for a CA certificate. However since it 
will 
# prevent it being used as an test self-signed certificate it is best 
# left out by default. 
# keyUsage = cRLSign, keyCertSign 
 
# Some might want this also 
# nsCertType = sslCA, emailCA 
 
# Include email address in subject alt name: another PKIX 
recommendation 
# subjectAltName=email:copy 
# Copy issuer details 
# issuerAltName=issuer:copy 
 
# DER hex encoding of an extension: beware experts only! 
# obj=DER:02:03 
# Where 'obj' is a standard or added object 
# You can even override a supported extension: 
# basicConstraints= critical, DER:30:03:01:01:FF 
 
[ crl_ext ] 
 
# CRL extensions. 
# Only issuerAltName and authorityKeyIdentifier make any sense in a 
CRL. 
 
# issuerAltName=issuer:copy 
authorityKeyIdentifier=keyid:always,issuer:always 
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B. CERTIFICATE GENERATION SCRIPTS 

1. Root Certificate Authority Generation Script 
 
#!/bin/sh 
SSL=/usr/local/openssl-certgen 
export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH} 
export LD_LIBRARY_PATH=${SSL}/lib 
# needed if you need to start from scratch otherwise the CA.pl -newca 
command doesn't copy the new 
# private key into the CA directories 
rm -rf demoCA 
echo 
"**********************************************************************
***********" 
echo "Creating self-signed private key and certificate" 
echo "When prompted override the default value for the Common Name 
field" 
echo 
"**********************************************************************
***********" 
echo 
# Generate a new self-signed certificate. 
# After invocation, newreq.pem will contain a private key and 
certificate 
# newreq.pem will be used in the next step 
openssl req -new -x509 -keyout newreq.pem -out newreq.pem -passin 
pass:whatever -passout pass:whatever 
echo 
"**********************************************************************
***********" 
echo "Creating a new CA hierarchy (used later by the "ca" command) with 
the certificate" 
echo "and private key created in the last step" 
echo 
"**********************************************************************
***********" 
echo 
echo "newreq.pem" | CA.pl -newca >/dev/null 
echo 
"**********************************************************************
***********" 
echo "Creating ROOT CA" 
echo 
"**********************************************************************
***********" 
echo 
# Create a PKCS#12 file, using the previously created CA 
certificate/key 
# The certificate in demoCA/cacert.pem is the same as in newreq.pem. 
Instead of 
# using "-in demoCA/cacert.pem" we could have used "-in newreq.pem" and 
then omitted 
# the "-inkey newreq.pem" because newreq.pem contains both the private 
key and certificate 
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openssl pkcs12 -export -in demoCA/cacert.pem -inkey newreq.pem -out 
root.p12 -cacerts -passin pass:whatever -passout pass:whatever 
# parse the PKCS#12 file just created and produce a PEM format 
certificate and key in root.pem 
openssl pkcs12 -in root.p12 -out root.pem -passin pass:whatever -
passout pass:whatever 
# Convert root certificate from PEM format to DER format 
openssl x509 -inform PEM -outform DER -in root.pem -out root.der 
#Clean Up 
rm -rf newreq.pem 
 

2. Server Certificate Generation Script 
#!/bin/sh 
SSL=/usr/local/openssl-certgen 
export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH} 
export LD_LIBRARY_PATH=${SSL}/lib 
echo 
"**********************************************************************
***********" 
echo "Creating server private key and certificate" 
echo "When prompted enter the server name in the Common Name field." 
echo 
"**********************************************************************
***********" 
echo 
# Request a new PKCS#10 certificate. 
# First, newreq.pem will be overwritten with the new certificate 
request 
openssl req -new -keyout newreq.pem -out newreq.pem -passin 
pass:whatever -passout pass:whatever 
# Sign the certificate request. The policy is defined in the 
openssl.cnf file. 
# The request generated in the previous step is specified with the -
infiles option and 
# the output is in newcert.pem 
# The -extensions option is necessary to add the OID for the extended 
key for server authentication 
openssl ca -policy policy_anything -out newcert.pem -passin 
pass:whatever -key whatever -extensions xpserver_ext -extfile 
xpextensions -infiles newreq.pem 
# Create a PKCS#12 file from the new certificate and its private key 
found in newreq.pem 
# and place in file specified on the command line 
openssl pkcs12 -export -in newcert.pem -inkey newreq.pem -out $1.p12 -
clcerts -passin pass:whatever -passout pass:whatever 
# parse the PKCS#12 file just created and produce a PEM format 
certificate and key in certsrv.pem 
openssl pkcs12 -in $1.p12 -out $1.pem -passin pass:whatever -passout 
pass:whatever 
# Convert certificate from PEM format to DER format 
openssl x509 -inform PEM -outform DER -in $1.pem -out $1.der 
# Clean Up 
rm -rf newert.pem newreq.pem 
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3. Supplicant Certificate Generation Script 
#!/bin/sh 
SSL=/usr/local/openssl-certgen 
export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH} 
export LD_LIBRARY_PATH=${SSL}/lib 
echo 
"**********************************************************************
***********" 
echo "Creating client private key and certificate" 
echo "When prompted enter the client name in the Common Name field. 
This is the same" 
echo " used as the Username in FreeRADIUS" 
echo 
"**********************************************************************
***********" 
echo 
# Request a new PKCS#10 certificate. 
# First, newreq.pem will be overwritten with the new certificate 
request 
openssl req -new -keyout newreq.pem -out newreq.pem -passin 
pass:whatever -passout pass:whatever 
# Sign the certificate request. The policy is defined in the 
openssl.cnf file. 
# The request generated in the previous step is specified with the -
infiles option and 
# the output is in newcert.pem 
# The -extensions option is necessary to add the OID for the extended 
key for client authentication 
openssl ca -policy policy_anything -out newcert.pem -passin 
pass:whatever -key whatever -extensions xpclient_ext -extfile 
xpextensions -infiles newreq.pem 
# Create a PKCS#12 file from the new certificate and its private key 
found in newreq.pem 
# and place in file specified on the command line 
openssl pkcs12 -export -in newcert.pem -inkey newreq.pem -out $1.p12 -
clcerts -passin pass:whatever -passout pass:whatever 
# parse the PKCS#12 file just created and produce a PEM format 
certificate and key in certclt.pem 
openssl pkcs12 -in $1.p12 -out $1.pem -passin pass:whatever -passout 
pass:whatever 
# Convert certificate from PEM format to DER format 
openssl x509 -inform PEM -outform DER -in $1.pem -out $1.der 
# clean up 
rm -rf newcert newreq.pem 
 

4. XP Specific Extension Files 
[xpclient_ext] 
extendedKeyUsage = 1.3.6.1.5.5.7.3.2 
[xpserver_ext] 
extendedKeyUsage = 1.3.6.1.5.5.7.3.1 
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APPENDIX B 

A. WINDOWS XP CERTIFICATE INSTALLATION 
Windows XP with Service Pack 1 support requires a client public key certificate, 

a private key corresponding to this public key and a rootCA public key certificate to 

verify the server’s certificate authentication. 

The “newxpclient.p12” file contains the public key certificate and private key of 

the client. The “root.der” contains the public key certificate (PKC) of the root certificate 

authority. We must assure that both of these files are generated in a trusted environment 

and there is a strong trust relationship between the client and the root certificate authority. 

First, the rootCA’ PKC must be installed manually.  

The screen shot demonstration below will explain how to install these certificates: 

 

 

B.A1. When the root.der file is double-clicked, the certificate information window comes 
up. Then the “Install Certificate“ button must be clicked. 

 

 

 
 

Q®S 
if 

* CERTIFICATES 

Fie    Ed*    View    Favorftes    Tools    Help 

©Back •   Q -   ^ jpswrch  g-Folders    ^' 

Address |t3 C;\DocLni8rts and5etHng5\orhai\De!ktop'ithesi5 dofl,CERTIFICflTE5    v| Q Go 

.-. ™— ri—jrenxpcKSif 
File dnd Folder Tasks    '.KJ |      r™M Personal Irfomatior Exctiarjei 

FT^^toot 
[   5ecu((:/ Certificate 

" ■ 11 1 '^B 

General    Delate    CerlificatKjn Path 

This certiricate Is Intended far the rallDWIibg piirpDse(s): 

• All Issuance pobcie^ 
• All application polLcies 

Issued to:   5AAM 

Issued hy:   5AAM 

Valid from   li;25;2003 to   12/25/2003 

InstaJI Certificate...       l-i^uer Statement 



86 

 

B.A2. The “Place all certificate in the following store” radio button must be checked and 
the “Trusted Root Certification Authorities” must be highlighted. Then click OK. 

 

B.A3. Click Next to continue 
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B.A4. Click “Finish” to complete the root certificate import wizard 

 

B.A5. If everything has been right. The system responds with the “successful import 
window 
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B.A6. 1024 bits RSA public key and other properties of the root certificate can be 
monitored through the “details” tab 

 

B.A7. The rootCA PKC can be verified via the MMC console whether it is under Trusted 
Certificate Authorities or not. 

 

Certificate 

General    Details    Certification Path 

Show: <AI> L^ 

Field Value                                        * 

Hserial number 00 

BSignature algorithm mdSRSA 

D Issuer oozan@nps,navy.mil, SAAM, ,,, 

HValidfrom Tuesday, November 25, 2003 .,, 

Hvalid to Thursday, December 25, 2003... 

Hsubject oozani5)np5,navy.mil, 5AAM, ... 

1     Public key R=;Ann?4Bit<'i                     ■ 

83Subject Key Identifier 68cee2 54 29 4cl8bF57c8 ,,,    " , 

30 81 89 02 81 81 00 be 4b 88 ec 3b el 88 A- 
St 07 c3 £b si, 74 27 al 4e bd af 62   5B el ~ 
d7 69 12 57 88 76 7£ 22 ba £a 57 be  ae cc 
09 02 84 bl 06 98 09 ee 4a £3 a5 42   dO 12 
4b 11 ID 4d gb eS al Bf 42 da 80 72   e2 e3 
35 19 44 2a 38 90 01 bl 89 39 80 4d   lb 29 
9£ 59 92 b7 eS 59 ad bl cb 35 29 aO   23 da 
d9 d9 b2 9f 9b 35 60 33 29 96 6e 01   e5 fb 
3d 01 6b de 98 32 62 78 5e IB b6 £3   7b £2 V 

Edit PlCpcltlei,.. Copy to File... 

OK 

S Certificates npfj^ 
[sl File   Action   View   Favorites   Window   Help _|s|x| 

*=-'E]Hjt%Xi'ii 
P Certificates - Current User 

a CJ Perionai 

a d Trusted Root Certification Autfio 

Pj Certificates 

a D Enterprise Trust 

a CJ Intermediate Certification Authoi 

a On Active Directory LJser Object 

a □ Trusted Publishers 

a D Untrusted Certificates 

a CJ Third-Party Root Certification Au 

a d Trusted People 

a □ Other People 

S D Certificate Enrijllment Requests 

<V~          "iiii              1        > 

Issued To  ' 1 IsscsdEy 1 EiMatlonDa te      .^1 

[^Microsoft Root Authority 

[^Microsoft Root Certificate Authority 

[^NetLock Express! (Class C) Tanusi,, 

^NetLock Ko!]egy!oi (Class A) Tanu, 

^NetLockU^ieti (Class B)Tanusitva,, 

ilNO LIABILITY ACCEPTED, (c)97V,, 

|§PTT Post Root CA 

Microsoft Root,,, 

Microsoft Root,,, 

NetLockExpres,,, 

NetLockKojjeg,,, 

NetLockUdeti(,,, 

NO LIABILITY A,, 

PTT Post Root CA 

12/30/2020 

S/9/2021 

2/20/2019 

2/19/2019 

2/20/2019 

1/7/2004 

6/26/2019 

MSBB 
6/25/2019 

6/25/2019 

1/7/2010 

10/16/2009 

10/16/2009 

10/16/2010 

10/16/2009 

9/15/2020 

9/15/2020 

9(15/2020 V 

S!" ^AAM 

1^5aunalahden 5erveri CA 

^Saunalahden Serveri CA 

Insecure Server Certification Authorit 

UsecureNet CA Class A 

UsecureNet CA Class B 

UsecureNet CA Root 

i^SecureNet CA 3GC Root 

aSecureSign RootCAl 

[§5ecureSign RootCA2 

^SecureSion RootCAS 

SaunalahdenS,.. 

SaunalahdenS,,, 

Secure Server ,,, 

SecureNetCA,,, 

5ecureNetCA,,, 

SecureNetCA,,, 

SecureNetCA 3,, 

SecureSignRoo,, 

SecureSignRoo,, 

SecureSionRoo,, 
<.           ",          1 ..k 

■ Trusted Root Certification Authorities stor ! contains 110 certificates. 



89 

 

B.A8. When the newxpclient.p12 file is double-clicked, the certificate installation wizard 
appears on the screen. Click “Next” to continue. 

 

B.A9. The password to decrypt the private key for the client must be entered correctly. 
The password can be obtained manually from the certificate manager. Then click “Next” 
to continue. 
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B.A10 Leave the default values and click next 

 

B.A11. Click “Finish” for successful client certificate import 
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B.A12. The certification path should be verified under in the MMC window.  
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B. WINDOWS XP WIRELESS CLIENT 802.1X CONFIGURATION 
 

 
B.B1. The WEP and dynamic key options must be checked in order to support the 
dynamic key generation from the authenticator. 
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APPENDIX C 

A. D-LINK DWL-7000AP CONFIGURATION 

C.A1 D-link DWL-7000AP comes with an access point manager. This manager is 

useful to identify and discover the access points in the network. After discovering the 

access point, a new IP address can be assigned.  

 

C.A2 After assigning a legitimate IP address to the access point, a web browser is used 

to configure the access point. The IP address of the AP is written to the address window 

and the web-based configuration tool is ready to be used. 802.1X option can be selected 

under advanced tab and encryption page. 
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C.A3 The next page after selecting the 802.1X option is the authentication server 

selection page. Radius server is selected from the drop down menu.  

C.A4 the next page after selecting the radius server helps the user apply the 

specifications of the authentication server e.g. IP address, authentication port and the 

shared Key. Once this fields are completed, the AP is restarted and able to serve as an 

authenticator.  
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B. HOSTAP CONFIGURATION FILE  
 
##### hostapd configuration file 
############################################## 
# Empty lines and lines starting with # are ignored 
 
# AP netdevice name (without 'ap' prefix, i.e., wlan0 uses wlan0ap for 
# management frames) 
interface=wlan0 
 
# Debugging: 0 = no, 1 = minimal, 2 = verbose, 3 = msg dumps 
debug=3 
 
# Dump file for state information (on SIGUSR1) 
dump_file=/tmp/hostapd.dump 
 
# Daemonize hostapd process (i.e., fork to background) 
daemonize=1 
 
##### IEEE 802.11 related configuration 
####################################### 
 
# SSID to be used in IEEE 802.11 management frames 
ssid=test 
 
# Station MAC address -based authentication 
# 0 = accept unless in deny list 
# 1 = deny unless in accept list 
# 2 = use external RADIUS server (accept/deny lists are searched first) 
macaddr_acl=0 
 
# Accept/deny lists are read from separate files (containing list of 
# MAC addresses, one per line). Use absolute path name to make sure  
# that the files can be read on SIGHUP configuration reloads. 
#accept_mac_file=/etc/hostapd.accept 
#deny_mac_file=/etc/hostapd.deny 
 
# Associate as a station to another AP while still acting as an AP on 
# the same channel. 
#assoc_ap_addr=00:12:34:56:78:9a 
 
 
##### IEEE 802.1X (and IEEE 802.1aa/D4) related configuration ################# 
 
# Require IEEE 802.1X authorization 
ieee8021x=1 
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# Use internal minimal EAP Authentication Server for testing IEEE 802.1X. 
# This should only be used for testing since it authorizes all users 
# that suppot IEEE 802.1X without any keys or certificates. 
minimal_eap=0 
 
# Optional displayable message sent with EAP Request-Identity 
eap_message=hello 
 
# WEP rekeying (disabled if key lengths are not set or are set to 0) 
# Key lengths for default/broadcast and individual/unicast keys: 
# 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits) 
# 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits) 
wep_key_len_broadcast=5 
wep_key_len_unicast=5 
#Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once) 
wep_rekey_period=300 
 
# EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if 
# only broadcast keys are used) 
eapol_key_index_workaround=1 
 
##### IEEE 802.11f - Inter-Access Point Protocol (IAPP) ####################### 
 
# Interface to be used for IAPP broadcast packets 
#iapp_interface=eth0 
 
##### RADIUS configuration 
#################################################### 
# for IEEE 802.1X with external Authentication Server, IEEE 802.11 
# authentication with external ACL for MAC addresses, and accounting 
 
# The own IP address of the access point (used as NAS-IP-Address) 
own_ip_addr=131.120.8.145 
 
# RADIUS authentication server 
auth_server_addr=131.120.11.55 
auth_server_port=1812 
auth_server_shared_secret=besiktas 
 
# RADIUS accounting server 
#acct_server_addr=127.0.0.1 
#acct_server_port=1813 

#acct_server_shared_secret=secret 

 



97 

APPENDIX D 

A. FREERADIUS EAP-TLS MODULE MAKE FILE 
# Generated automatically from Makefile.in by configure. 
TARGET      = rlm_eap_tls 
SRCS        = rlm_eap_tls.c eap_tls.c cb.c tls.c mppe_keys.c 
RLM_CFLAGS  = $(INCLTDL) -I../..    -DOPENSSL_NO_KRB5 
HEADERS     = rlm_eap_tls.h eap_tls.h ../../eap.h ../../rlm_eap.h 
RLM_INSTALL =  
RLM_LIBS    +=  -lcrypto -lssl 
 
$(STATIC_OBJS): $(HEADERS) 
 
$(DYNAMIC_OBJS): $(HEADERS) 
 
RLM_DIR=../../ 
include ${RLM_DIR}../rules.mak 

 
 

B. RADIUSD CONFIGURATION FILE 
(To save space, the comments are omitted) 
 
prefix = /usr/local 
exec_prefix = ${prefix} 
sysconfdir = /etc 
localstatedir = ${prefix}/var 
sbindir = ${exec_prefix}/sbin 
logdir = ${localstatedir}/log/radius 
raddbdir = ${sysconfdir}/raddb 
radacctdir = ${logdir}/radacct 
 
confdir = ${raddbdir} 
run_dir = ${localstatedir}/run/radiusd 
 
log_file = ${logdir}/radius.log 
 
libdir = ${exec_prefix}/lib 
 
pidfile = ${run_dir}/radiusd.pid 
 
 
max_request_time = 30 
 
delete_blocked_requests = no 
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cleanup_delay = 5 
 
max_requests = 1024 
 
bind_address = * 
 
port = 0 
 
hostname_lookups = no 
 
allow_core_dumps = no 
 
regular_expressions = yes 
extended_expressions = yes 
 
log_stripped_names = no 
 
log_auth = no 
 
log_auth_badpass = no 
log_auth_goodpass = no 
 
usercollide = no 
 
lower_user = no 
lower_pass = no 
 
nospace_user = no 
nospace_pass = no 
 
checkrad = ${sbindir}/checkrad 
 
# SECURITY CONFIGURATION 
security { 
 max_attributes = 200 
 reject_delay = 1 
 status_server = no 
} 
 
# PROXY CONFIGURATION 
 
proxy_requests  = yes 
 
$INCLUDE  ${confdir}/proxy.conf 
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# CLIENTS CONFIGURATION 
 
$INCLUDE  ${confdir}/clients.conf 
 
 
# SNMP CONFIGURATION 
snmp = no 
$INCLUDE  ${confdir}/snmp.conf 
 
 
# THREAD POOL CONFIGURATION 
thread pool { 
 start_servers = 5 
 
 max_servers = 32 
 
 min_spare_servers = 3 
 max_spare_servers = 10 
 
 max_requests_per_server = 0 
} 
 
# MODULE CONFIGURATION 
modules { 
 pap { 
  encryption_scheme = crypt 
 } 
 
 # CHAP module 
 chap { 
  authtype = CHAP 
 } 
 
 # Pluggable Authentication Modules 
 pam { 
  pam_auth = radiusd 
 } 
 
 unix { 
  cache = yes 
 
 
  cache_reload = 600 
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   passwd = /etc/passwd 
   shadow = /etc/shadow 
   group = /etc/group 
 
  radwtmp = ${logdir}/radwtmp 
 } 
 
 eap { 
  default_eap_type = tls 
  timer_expire     = 60 
 
  ignore_unknown_eap_types = no 
 
 
  tls { 
   private_key_password = whatever 
   private_key_file = /etc/1x/newradius.pem 
 
   certificate_file = /etc/1x/newradius.pem 
 
   CA_file = /etc/1x/root.pem 
 
   dh_file = /etc/1x/DH 
   random_file = /etc/1x/random 
 
   fragment_size = 1024 
 
   include_length = yes 
  # check_crl = yes 
  } 
 
  mschapv2 { 
  } 
 } 
 
 mschap { 
 
  authtype = MS-CHAP 
   
 
 } 
 
 ldap { 
  server = "ldap.your.domain" 
  basedn = "o=My Org,c=UA" 
  filter = "(uid=%{Stripped-User-Name:-%{User-Name}})" 
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  start_tls = no 
 
  access_attr = "dialupAccess" 
 
  dictionary_mapping = ${raddbdir}/ldap.attrmap 
 
  ldap_connections_number = 5 
 
  timeout = 4 
  timelimit = 3 
  net_timeout = 1 
 } 
 
 realm realmslash { 
  format = prefix 
  delimiter = "/" 
 } 
 
 #  'username@realm' 
 # 
 realm suffix { 
  format = suffix 
  delimiter = "@" 
 } 
 
 #  'username%realm' 
 # 
 realm realmpercent { 
  format = suffix 
  delimiter = "%" 
 } 
  
 preprocess { 
  huntgroups = ${confdir}/huntgroups 
  hints = ${confdir}/hints 
 
  with_ascend_hack = no 
  ascend_channels_per_line = 23 
 
  with_ntdomain_hack = no 
 
  with_specialix_jetstream_hack = no 
 
  with_cisco_vsa_hack = no 
 } 
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 files { 
  usersfile = ${confdir}/users 
  acctusersfile = ${confdir}/acct_users 
 
  compat = no 
 } 
 
 detail { 
  detailfile = ${radacctdir}/%{Client-IP-Address}/detail-%Y%m%d 
 
  detailperm = 0600 
 } 
 
 acct_unique { 
  key = "User-Name, Acct-Session-Id, NAS-IP-Address, Client-IP-Address, 
NAS-Port-Id" 
 } 
 
 
 $INCLUDE  ${confdir}/sql.conf 
 
 radutmp { 
  filename = ${logdir}/radutmp 
 
  username = %{User-Name} 
 
  case_sensitive = yes 
 
  check_with_nas = yes   
  perm = 0600 
 
  callerid = "yes" 
 } 
 
 radutmp sradutmp { 
  filename = ${logdir}/sradutmp 
  perm = 0644 
  callerid = "no" 
 } 
 
 attr_filter { 
  attrsfile = ${confdir}/attrs 
 } 
 
 counter daily { 
  filename = ${raddbdir}/db.daily 
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  key = User-Name 
  count-attribute = Acct-Session-Time 
  reset = daily 
  counter-name = Daily-Session-Time 
  check-name = Max-Daily-Session 
  allowed-servicetype = Framed-User 
  cache-size = 5000 
 } 
 
 always fail { 
  rcode = fail 
 } 
 always reject { 
  rcode = reject 
 } 
 always ok { 
  rcode = ok 
  simulcount = 0 
  mpp = no 
 } 
 
 expr { 
 } 
 
 digest { 
 } 
 
 exec { 
  wait = yes 
  input_pairs = request 
 } 
 
 exec echo { 
  wait = yes 
 
  program = "/bin/echo %{User-Name}" 
 
  input_pairs = request 
 
  output_pairs = reply 
 
 } 
 ippool main_pool { 
 
 
  netmask = 255.255.255.0 
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  cache-size = 800 
 
  session-db = ${raddbdir}/db.ippool 
 
  ip-index = ${raddbdir}/db.ipindex 
 
  override = no 
 } 
 
 
} 
 
instantiate { 
 expr 
 
} 
 
authorize { 
 preprocess 
 
 eap 
 
 suffix 
 files 
 
 
 
 
} 
 
 
authenticate { 
 
 unix 
 
 
 
} 
 
 
preacct { 
 preprocess 
 
 suffix 
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} 
 
accounting { 
 acct_unique 
 
 detail 
 
 unix  # wtmp file 
 
 radutmp 
 
} 
 
 
session { 
 radutmp 
} 
 
 
post-auth { 
 
} 
 
pre-proxy { 
} 
 
post-proxy { 
 
 
 eap 
} 
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C. CLIENTS CONFIGURATION FILE 
# 
# clients.conf - client configuration directives 
# 
# This file is included by default.  To disable it, you will need 
# to modify the CLIENTS CONFIGURATION section of "radiusd.conf". 
# 
####################################################################### 
 
####################################################################### 
# 
#  Definition of a RADIUS client (usually a NAS). 
# 
#  The information given here over rides anything given in the 'clients' 
#  file, or in the 'naslist' file.  The configuration here contains 
#  all of the information from those two files, and also allows for more 
#  configuration items. 
# 
#  The "shortname" can be used for logging, and the "nastype", 
#  "login" and "password" fields are mainly used for checkrad and are 
#  optional. 
# 
 
# 
#  Defines a RADIUS client.  The format is 'client [hostname|ip-address]' 
# 
#  '127.0.0.1' is another name for 'localhost'.  It is enabled by default, 
#  to allow testing of the server after an initial installation.  If you 
#  are not going to be permitting RADIUS queries from localhost, we suggest 
#  that you delete, or comment out, this entry. 
# 
##############################Orhan ekledi######################## 
#client 131.120.10.153 { 
#secret = whatever 
#shortname = CLIENT1 
#} 
 
client 131.120.8.145 { 
secret = besiktas 
shortname = AP1 
} 
#client 131.120.10.133 { 
#secret = wahtever 
#shortname = AP2 
#} 
#################################################################### 
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client 127.0.0.1 { 
 # 
 #  The shared secret use to "encrypt" and "sign" packets between 
 #  the NAS and FreeRADIUS.  You MUST change this secret from the 
 #  default, otherwise it's not a secret any more! 
 # 
 #  The secret can be any string, up to 32 characters in length. 
 # 
 secret  = test 
 
 # 
 #  The short name is used as an alias for the fully qualified 
 #  domain name, or the IP address. 
 # 
 shortname = localhost 
 
 # 
 # the following three fields are optional, but may be used by 
 # checkrad.pl for simultaneous use checks 
 # 
 
 # 
 # The nastype tells 'checkrad.pl' which NAS-specific method to 
 #  use to query the NAS for simultaneous use. 
 # 
 #  Permitted NAS types are: 
 # 
 # cisco 
 # computone 
 # livingston 
 # max40xx 
 # multitech 
 # netserver 
 # pathras 
 # patton 
 # portslave 
 # tc 
 # usrhiper 
 # other  # for all other types 
 
 # 
 nastype     = other # localhost isn't usually a NAS... 
 
 # 
 #  The following two configurations are for future use. 
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 #  The 'naspasswd' file is currently used to store the NAS 
 #  login name and password, which is used by checkrad.pl 
 #  when querying the NAS for simultaneous use. 
 # 
# login       = !root 
# password    = someadminpas 
} 
 
#client some.host.org { 
# secret  = testing123 
# shortname = localhost 
#} 
 
# 
#  You can now specify one secret for a network of clients. 
#  When a client request comes in, the BEST match is chosen. 
#  i.e. The entry from the smallest possible network. 
# 
#client 192.168.0.0/24 { 
# secret  = testing123-1 
# shortname = private-network-1 
#} 
# 
#client 192.168.0.0/16 { 
# secret  = testing123-2 
# shortname = private-network-2 
#} 
 
 
#client 10.10.10.10 { 
# # secret and password are mapped through the "secrets" file. 
# secret      = testing123 
# shortname   = liv1 
#       # the following three fields are optional, but may be used by 
#       # checkrad.pl for simultaneous usage checks 
# nastype     = livingston 
# login       = !root 
# password    = someadminpas 
#} 

 

D. USERS CONFIGURATION FILE 

# 
# Please read the documentation file ../doc/processing_users_file, 
# or 'man 5 users' (after installing the server) for more information. 
# 
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# This file contains authentication security and configuration 
# information for each user.  Accounting requests are NOT processed 
# through this file.  Instead, see 'acct_users', in this directory. 
# 
# The first field is the user's name and can be up to 
# 253 characters in length.  This is followed (on the same line) with 
# the list of authentication requirements for that user.  This can 
# include password, comm server name, comm server port number, protocol 
# type (perhaps set by the "hints" file), and huntgroup name (set by 
# the "huntgroups" file). 
# 
# If you are not sure why a particular reply is being sent by the 
# server, then run the server in debugging mode (radiusd -X), and 
# you will see which entries in this file are matched. 
# 
# When an authentication request is received from the comm server, 
# these values are tested. Only the first match is used unless the 
# "Fall-Through" variable is set to "Yes". 
# 
# A special user named "DEFAULT" matches on all usernames. 
# You can have several DEFAULT entries. All entries are processed 
# in the order they appear in this file. The first entry that 
# matches the login-request will stop processing unless you use 
# the Fall-Through variable. 
# 
# If you use the database support to turn this file into a .db or .dbm 
# file, the DEFAULT entries _have_ to be at the end of this file and 
# you can't have multiple entries for one username. 
# 
# You don't need to specify a password if you set Auth-Type += System 
# on the list of authentication requirements. The RADIUS server 
# will then check the system password file. 
# 
# Indented (with the tab character) lines following the first 
# line indicate the configuration values to be passed back to 
# the comm server to allow the initiation of a user session. 
# This can include things like the PPP configuration values 
# or the host to log the user onto. 
# 
# You can include another `users' file with `$INCLUDE users.other' 
# 
 
# 
# For a list of RADIUS attributes, and links to their definitions, 
# see: 
# 
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# http://www.freeradius.org/rfc/attributes.html 
# 
 
# 
# Deny access for a specific user.  Note that this entry MUST 
# be before any other 'Auth-Type' attribute which results in the user 
# being authenticated. 
# 
# Note that there is NO 'Fall-Through' attribute, so the user will not 
# be given any additional resources. 
# 
#lameuser Auth-Type := Reject 
#  Reply-Message = "Your account has been disabled." 
 
# 
# Deny access for a group of users. 
# 
# Note that there is NO 'Fall-Through' attribute, so the user will not 
# be given any additional resources. 
# 
#DEFAULT Group == "disabled", Auth-Type := Reject 
#  Reply-Message = "Your account has been disabled." 
# 
 
# 
# This is a complete entry for "steve". Note that there is no Fall-Through 
# entry so that no DEFAULT entry will be used, and the user will NOT 
# get any attributes in addition to the ones listed here. 
# 
#steve Auth-Type := Local, User-Password == "testing" 
# Service-Type = Framed-User, 
# Framed-Protocol = PPP, 
# Framed-IP-Address = 172.16.3.33, 
# Framed-IP-Netmask = 255.255.255.0, 
# Framed-Routing = Broadcast-Listen, 
# Framed-Filter-Id = "std.ppp", 
# Framed-MTU = 1500, 
# Framed-Compression = Van-Jacobsen-TCP-IP 
 
# 
# This is an entry for a user with a space in their name. 
# Note the double quotes surrounding the name. 
# 
#"John Doe" Auth-Type := Local, User-Password == "hello" 
#  Reply-Message = "Hello, %u" 
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#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#!!!!!!!!!!!added by the designers!!!!!!!!!!!!!!!!!!!!!! 
# 
newxpclient Auth-Type := EAP 
 
test  Auth-Type := Local, User-Password == "test" 
 Reply-Message = "hello,%u" 
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
# 
# Dial user back and telnet to the default host for that port 
# 
#Deg Auth-Type := Local, User-Password == "ge55ged" 
# Service-Type = Callback-Login-User, 
# Login-IP-Host = 0.0.0.0, 
# Callback-Number = "9,5551212", 
# Login-Service = Telnet, 
# Login-TCP-Port = Telnet 
 
# 
# Another complete entry. After the user "dialbk" has logged in, the 
# connection will be broken and the user will be dialed back after which 
# he will get a connection to the host "timeshare1". 
# 
#dialbkAuth-Type := Local, User-Password == "callme" 
# Service-Type = Callback-Login-User, 
# Login-IP-Host = timeshare1, 
# Login-Service = PortMaster, 
# Callback-Number = "9,1-800-555-1212" 
 
# 
# user "swilson" will only get a static IP number if he logs in with 
# a framed protocol on a terminal server in Alphen (see the huntgroups file). 
# 
# Note that by setting "Fall-Through", other attributes will be added from 
# the following DEFAULT entries 
# 
#swilson Service-Type == Framed-User, Huntgroup-Name == "alphen" 
#  Framed-IP-Address = 192.168.1.65, 
#  Fall-Through = Yes 
 
# 
# If the user logs in as 'username.shell', then authenticate them 
# against the system database, give them shell access, and stop processing 
# the rest of the file. 
# 
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#DEFAULT Suffix == ".shell", Auth-Type := System 
#  Service-Type = Login-User, 
#  Login-Service = Telnet, 
#  Login-IP-Host = your.shell.machine 
 
 
# 
# The rest of this file contains the several DEFAULT entries. 
# DEFAULT entries match with all login names. 
# Note that DEFAULT entries can also Fall-Through (see first entry). 
# A name-value pair from a DEFAULT entry will _NEVER_ override 
# an already existing name-value pair. 
# 
 
# 
# First setup all accounts to be checked against the UNIX /etc/passwd. 
# (Unless a password was already given earlier in this file). 
# 
DEFAULT Auth-Type := System 
 Fall-Through = 1 
 
 
 
# 
# Set up different IP address pools for the terminal servers. 
# Note that the "+" behind the IP address means that this is the "base" 
# IP address. The Port-Id (S0, S1 etc) will be added to it. 
# 
#DEFAULT Service-Type == Framed-User, Huntgroup-Name == "alphen" 
#  Framed-IP-Address = 192.168.1.32+, 
#  Fall-Through = Yes 
 
#DEFAULT Service-Type == Framed-User, Huntgroup-Name == "delft" 
#  Framed-IP-Address = 192.168.2.32+, 
#  Fall-Through = Yes 
 
 
# 
# Defaults for all framed connections. 
# 
DEFAULT Service-Type == Framed-User 
 Framed-IP-Address = 255.255.255.254, 
 Framed-MTU = 576, 
 Service-Type = Framed-User, 
 Fall-Through = Yes 
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# 
# Default for PPP: dynamic IP address, PPP mode, VJ-compression. 
# NOTE: we do not use Hint = "PPP", since PPP might also be auto-detected 
# by the terminal server in which case there may not be a "P" suffix. 
# The terminal server sends "Framed-Protocol = PPP" for auto PPP. 
# 
DEFAULT Framed-Protocol == PPP 
 Framed-Protocol = PPP, 
 Framed-Compression = Van-Jacobson-TCP-IP 
 
# 
# Default for CSLIP: dynamic IP address, SLIP mode, VJ-compression. 
# 
DEFAULT Hint == "CSLIP" 
 Framed-Protocol = SLIP, 
 Framed-Compression = Van-Jacobson-TCP-IP 
 
# 
# Default for SLIP: dynamic IP address, SLIP mode. 
# 
DEFAULT Hint == "SLIP" 
 Framed-Protocol = SLIP 
 
# 
# Last default: rlogin to our main server. 
# 
#DEFAULT 
# Service-Type = Login-User, 
# Login-Service = Rlogin, 
# Login-IP-Host = shellbox.ispdomain.com 
 
# # 
# # Last default: shell on the local terminal server. 
# # 
# DEFAULT 
#  Service-Type = Shell-User 
 
# On no match, the user is denied access. 
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E. RADIUSD RUNNING SCRIPT 
#!/bin/sh -x 
 
LD_LIBRARY_PATH=/usr/local/openssl/lib 
LD_PRELOAD=/usr/local/openssl/lib/libcrypto.so 
 
export LD_LIBRARY_PATH LD_PRELOAD 
 
/usr/local/sbin/radiusd -X -A $@ 
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APPENDIX E 

A. AUTHENTICATION SERVER SUCCESSFUL AUTHENTICATION 
LOGS 

Starting - reading configuration files ... 
reread_config:  reading radiusd.conf 
Config:   including file: /etc/raddb/proxy.conf 
Config:   including file: /etc/raddb/clients.conf 
Config:   including file: /etc/raddb/snmp.conf 
Config:   including file: /etc/raddb/sql.conf 
 main: prefix = "/usr/local" 
 main: localstatedir = "/usr/local/var" 
 main: logdir = "/usr/local/var/log/radius" 
 main: libdir = "/usr/local/lib" 
 main: radacctdir = "/usr/local/var/log/radius/radacct" 
 main: hostname_lookups = no 
 main: max_request_time = 30 
 main: cleanup_delay = 5 
 main: max_requests = 1024 
 main: delete_blocked_requests = 0 
 main: port = 0 
 main: allow_core_dumps = no 
 main: log_stripped_names = no 
 main: log_file = "/usr/local/var/log/radius/radius.log" 
 main: log_auth = no 
 main: log_auth_badpass = no 
 main: log_auth_goodpass = no 
 main: pidfile = "/usr/local/var/run/radiusd/radiusd.pid" 
 main: user = "(null)" 
 main: group = "(null)" 
 main: usercollide = no 
 main: lower_user = "no" 
 main: lower_pass = "no" 
 main: nospace_user = "no" 
 main: nospace_pass = "no" 
 main: checkrad = "/usr/local/sbin/checkrad" 
 main: proxy_requests = yes 
 proxy: retry_delay = 5 
 proxy: retry_count = 3 
 proxy: synchronous = no 
 proxy: default_fallback = yes 
 proxy: dead_time = 120 
 proxy: post_proxy_authorize = yes 
 proxy: wake_all_if_all_dead = no 
 security: max_attributes = 200 
 security: reject_delay = 1 
 security: status_server = no 
 main: debug_level = 0 
read_config_files:  reading dictionary 
read_config_files:  reading naslist 
Using deprecated naslist file.  Support for this will go away soon. 
read_config_files:  reading clients 
Using deprecated clients file.  Support for this will go away soon. 
read_config_files:  reading realms 
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Using deprecated realms file.  Support for this will go away soon. 
radiusd:  entering modules setup 
Module: Library search path is /usr/local/lib 
Module: Loaded expr  
Module: Instantiated expr (expr)  
Module: Loaded System  
 unix: cache = yes 
 unix: passwd = "/etc/passwd" 
 unix: shadow = "/etc/shadow" 
 unix: group = "/etc/group" 
 unix: radwtmp = "/usr/local/var/log/radius/radwtmp" 
 unix: usegroup = no 
 unix: cache_reload = 600 
HASH:  Reinitializing hash structures and lists for caching... 
  HASH:  user root found in hashtable bucket 11726 
  HASH:  user bin found in hashtable bucket 86651 
  HASH:  user daemon found in hashtable bucket 11668 
  HASH:  user adm found in hashtable bucket 26466 
  HASH:  user lp found in hashtable bucket 54068 
  HASH:  user sync found in hashtable bucket 42895 
  HASH:  user shutdown found in hashtable bucket 71746 
  HASH:  user halt found in hashtable bucket 7481 
  HASH:  user mail found in hashtable bucket 79471 
  HASH:  user news found in hashtable bucket 5375 
  HASH:  user uucp found in hashtable bucket 38541 
  HASH:  user operator found in hashtable bucket 21748 
  HASH:  user games found in hashtable bucket 47657 
  HASH:  user gopher found in hashtable bucket 47357 
  HASH:  user ftp found in hashtable bucket 56226 
  HASH:  user nobody found in hashtable bucket 99723 
  HASH:  user rpm found in hashtable bucket 72383 
  HASH:  user vcsa found in hashtable bucket 25959 
  HASH:  user nscd found in hashtable bucket 36306 
  HASH:  user sshd found in hashtable bucket 71560 
  HASH:  user rpc found in hashtable bucket 72373 
  HASH:  user rpcuser found in hashtable bucket 552 
  HASH:  user nfsnobody found in hashtable bucket 51830 
  HASH:  user mailnull found in hashtable bucket 78086 
  HASH:  user smmsp found in hashtable bucket 13600 
  HASH:  user pcap found in hashtable bucket 55326 
  HASH:  user xfs found in hashtable bucket 17213 
  HASH:  user ntp found in hashtable bucket 21418 
  HASH:  user gdm found in hashtable bucket 50360 
  HASH:  user oozan found in hashtable bucket 94479 
  HASH:  user amanda found in hashtable bucket 72438 
HASH:  Stored 31 entries from /etc/passwd 
HASH:  Stored 39 entries from /etc/group 
Module: Instantiated unix (unix)  
Module: Loaded eap  
 eap: default_eap_type = "tls" 
 eap: timer_expire = 60 
 eap: ignore_unknown_eap_types = no 
 tls: rsa_key_exchange = no 
 tls: dh_key_exchange = yes 
 tls: rsa_key_length = 512 
 tls: dh_key_length = 512 
 tls: verify_depth = 0 
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 tls: CA_path = "(null)" 
 tls: pem_file_type = yes 
 tls: private_key_file = "/etc/1x/newradius.pem" 
 tls: certificate_file = "/etc/1x/newradius.pem" 
 tls: CA_file = "/etc/1x/root.pem" 
 tls: private_key_password = "whatever" 
 tls: dh_file = "/etc/1x/DH" 
 tls: random_file = "/etc/1x/random" 
 tls: fragment_size = 1024 
 tls: include_length = yes 
 tls: check_crl = no 
rlm_eap: Loaded and initialized type tls 
rlm_eap: Loaded and initialized type mschapv2 
Module: Instantiated eap (eap)  
Module: Loaded preprocess  
 preprocess: huntgroups = "/etc/raddb/huntgroups" 
 preprocess: hints = "/etc/raddb/hints" 
 preprocess: with_ascend_hack = no 
 preprocess: ascend_channels_per_line = 23 
 preprocess: with_ntdomain_hack = no 
 preprocess: with_specialix_jetstream_hack = no 
 preprocess: with_cisco_vsa_hack = no 
Module: Instantiated preprocess (preprocess)  
Module: Loaded realm  
 realm: format = "suffix" 
 realm: delimiter = "@" 
Module: Instantiated realm (suffix)  
Module: Loaded files  
 files: usersfile = "/etc/raddb/users" 
 files: acctusersfile = "/etc/raddb/acct_users" 
 files: preproxy_usersfile = "/etc/raddb/preproxy_users" 
 files: compat = "no" 
Module: Instantiated files (files)  
Module: Loaded Acct-Unique-Session-Id  
 acct_unique: key = "User-Name, Acct-Session-Id, NAS-IP-Address, 
Client-IP-Address, NAS-Port-Id" 
Module: Instantiated acct_unique (acct_unique)  
Module: Loaded detail  
 detail: detailfile = "/usr/local/var/log/radius/radacct/%{Client-IP-
Address}/detail-%Y%m%d" 
 detail: detailperm = 384 
 detail: dirperm = 493 
 detail: locking = no 
Module: Instantiated detail (detail)  
Module: Loaded radutmp  
 radutmp: filename = "/usr/local/var/log/radius/radutmp" 
 radutmp: username = "%{User-Name}" 
 radutmp: case_sensitive = yes 
 radutmp: check_with_nas = yes 
 radutmp: perm = 384 
 radutmp: callerid = yes 
Module: Instantiated radutmp (radutmp)  
Listening on IP address *, ports 1812/udp and 1813/udp, with proxy on 
1814/udp. 
Ready to process requests. 
rad_recv: Access-Request packet from host 131.120.8.145:32804, id=0, 
length=160 
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 User-Name = "newxpclient" 
 NAS-IP-Address = 131.120.8.145 
 NAS-Port = 1 
 Called-Station-Id = "00-05-5D-D9-8D-AE:test" 
 Calling-Station-Id = "00-05-5D-D9-57-59" 
 Framed-MTU = 2304 
 NAS-Port-Type = Wireless-802.11 
 Connect-Info = "CONNECT 11Mbps 802.11b" 
 EAP-Message = "\002\001\000\020\001newxpclient" 
 Message-Authenticator = 0x7b47883e05d44aa13d69442f35d1178f 
modcall: entering group authorize for request 0 
  modcall[authorize]: module "preprocess" returns ok for request 0 
  rlm_eap: EAP packet type response id 1 length 16 
  rlm_eap: No EAP Start, assuming it's an on-going EAP conversation 
  modcall[authorize]: module "eap" returns updated for request 0 
    rlm_realm: No '@' in User-Name = "newxpclient", looking up realm 
NULL 
    rlm_realm: No such realm "NULL" 
  modcall[authorize]: module "suffix" returns noop for request 0 
    users: Matched newxpclient at 101 
  modcall[authorize]: module "files" returns ok for request 0 
modcall: group authorize returns updated for request 0 
  rad_check_password:  Found Auth-Type EAP 
auth: type "EAP" 
modcall: entering group authenticate for request 0 
  rlm_eap: EAP Identity 
  rlm_eap: processing type tls 
 rlm_eap_tls: Requiring client certificate 
  rlm_eap_tls: Initiate 
  rlm_eap_tls: Start returned 1 
  modcall[authenticate]: module "eap" returns handled for request 0 
modcall: group authenticate returns handled for request 0 
Sending Access-Challenge of id 0 to 131.120.8.145:32804 
 EAP-Message = "\001\002\000\006\r " 
 Message-Authenticator = 0x00000000000000000000000000000000 
 State = 0xcabe64f58e2e52c0326344aeaf7ff16d 
Finished request 0 
------- 
------- 
------- 
------- 
Going to the next request 
Waking up in 1 seconds... 
rad_recv: Access-Request packet from host 131.120.8.145:32804, id=13, 
length=168 
 User-Name = "newxpclient" 
 NAS-IP-Address = 131.120.8.145 
 NAS-Port = 1 
 Called-Station-Id = "00-05-5D-D9-8D-AE:test" 
 Calling-Station-Id = "00-05-5D-D9-57-59" 
 Framed-MTU = 2304 
 NAS-Port-Type = Wireless-802.11 
 Connect-Info = "CONNECT 11Mbps 802.11b" 
 EAP-Message = "\002\020\000\006\r" 
 State = 0x2c02871aafebad85e9d5602736783471 
 Message-Authenticator = 0xb1f4cfdc73e426a656047670cc908ef6 
modcall: entering group authorize for request 13 
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  modcall[authorize]: module "preprocess" returns ok for request 13 
  rlm_eap: EAP packet type response id 16 length 6 
  rlm_eap: No EAP Start, assuming it's an on-going EAP conversation 
  modcall[authorize]: module "eap" returns updated for request 13 
    rlm_realm: No '@' in User-Name = "newxpclient", looking up realm 
NULL 
    rlm_realm: No such realm "NULL" 
  modcall[authorize]: module "suffix" returns noop for request 13 
    users: Matched newxpclient at 101 
  modcall[authorize]: module "files" returns ok for request 13 
modcall: group authorize returns updated for request 13 
  rad_check_password:  Found Auth-Type EAP 
auth: type "EAP" 
modcall: entering group authenticate for request 13 
  rlm_eap: Request found, released from the list 
  rlm_eap: EAP_TYPE - tls 
  rlm_eap: processing type tls 
  rlm_eap_tls: Authenticate 
  rlm_eap_tls: processing TLS 
rlm_eap_tls: Received EAP-TLS ACK message 
  rlm_eap_tls: ack handshake is finished 
  eaptls_verify returned 3  
  eaptls_process returned 3  
  rlm_eap: Freeing handler 
  modcall[authenticate]: module "eap" returns ok for request 13 
modcall: group authenticate returns ok for request 13 
Sending Access-Accept of id 13 to 131.120.8.145:32804 
 MS-MPPE-Recv-Key = 
0xe9545b180975cdfb5d0f982189e03b43602f6c475e4ee66d7d24783c056f314c 
 MS-MPPE-Send-Key = 
0x1f44ce961ecf533c728e731dff144b918ed1a420fd83185e4ecc6b3c686a08b9 
 EAP-Message = "\003\020\000\004" 
 Message-Authenticator = 0x00000000000000000000000000000000 
 User-Name = "newxpclient" 
Finished request 13 
Going to the next request 
Waking up in 1 seconds... 
--- Walking the entire request list --- 
Waking up in 2 seconds... 
--- Walking the entire request list --- 
Cleaning up request 4 ID 4 with timestamp 4006d26e 
Cleaning up request 5 ID 5 with timestamp 4006d26e 
Cleaning up request 6 ID 6 with timestamp 4006d26e 
Cleaning up request 7 ID 7 with timestamp 4006d26e 
Cleaning up request 8 ID 8 with timestamp 4006d26e 
Waking up in 3 seconds... 
--- Walking the entire request list --- 
Cleaning up request 9 ID 9 with timestamp 4006d271 
Cleaning up request 10 ID 10 with timestamp 4006d271 
Cleaning up request 11 ID 11 with timestamp 4006d271 
Cleaning up request 12 ID 12 with timestamp 4006d271 
Cleaning up request 13 ID 13 with timestamp 4006d271 
Nothing to do.  Sleeping until we see a request. 
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B. AUTHENTICATOR SUCCESSFUL SUPPLICANT AUTHENTICATION 
LOG 
 

Opening raw packet socket for ifindex 4 
Using interface wlan0ap with hwaddr 00:05:5d:d9:8d:ae and ssid 'test' 
Default WEP key - hexdump(len=5): 8a 0a ef db b7 
Flushing old station entries 
Deauthenticate all stations 
Received 30 bytes management frame 
  dump: b0 00 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae a0 01 00 00 01 00 00 00 
MGMT 
mgmt::auth 
authentication: STA=00:05:5d:d9:57:59 auth_alg=0 auth_transaction=1 
status_code=0 
  New STA 
Station 00:05:5d:d9:57:59 authentication OK (open system) 
Received 30 bytes management frame 
  dump: b2 00 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 20 44 00 00 02 00 00 00 
MGMT (TX callback) ACK 
mgmt::auth cb 
Station 00:05:5d:d9:57:59 authenticated 
Received 40 bytes management frame 
  dump: 00 00 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae b0 01 01 00 01 00 00 04 74 65 73 74 01 04 82 84 0b 16 
MGMT 
mgmt::assoc_req 
association request: STA=00:05:5d:d9:57:59 capab_info=0x01 
listen_interval=1 
  new AID 1 
Station 00:05:5d:d9:57:59 association OK (aid 1) 
Received 36 bytes management frame 
  dump: 12 00 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 30 44 01 00 00 00 01 c0 01 04 82 84 0b 16 
MGMT (TX callback) ACK 
mgmt::assoc_resp cb 
Station 00:05:5d:d9:57:59 associated (aid 1) 
IEEE 802.1X: Start authentication for new station 00:05:5d:d9:57:59 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_KEY_TX entering state 
NO_KEY_TRANSMIT 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state DISCONNECTED 
IEEE 802.1X: Unauthorizing station 00:05:5d:d9:57:59 
IEEE 802.1X: Sending canned EAP packet FAILURE to 00:05:5d:d9:57:59 
(identifier 0) 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state IDLE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state CONNECTING 
IEEE 802.1X: Sending EAP Request-Identity to 00:05:5d:d9:57:59 
(identifier 1) 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
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Received 40 bytes management frame 
  dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 40 44 aa aa 03 00 00 00 88 8e 01 00 00 04 04 00 00 04 
DATA (TX callback) ACK 
Received 46 bytes management frame 
  dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 50 44 aa aa 03 00 00 00 88 8e 01 00 00 0a 01 01 00 0a 01 68 65 6c 6c 
6f 
DATA (TX callback) ACK 
Received 37 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae c0 01 aa aa 03 00 00 00 88 8e 01 01 00 00 00 
DATA 
IEEE 802.1X: 5 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=1 length=0 
   ignoring 1 extra octets after IEEE 802.1X packet 
   EAPOL-Start 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state CONNECTING 
IEEE 802.1X: Sending EAP Request-Identity to 00:05:5d:d9:57:59 
(identifier 1) 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 46 bytes management frame 
  dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 60 44 aa aa 03 00 00 00 88 8e 01 00 00 0a 01 01 00 0a 01 68 65 6c 6c 
6f 
DATA (TX callback) ACK 
Received 52 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae d0 01 aa aa 03 00 00 00 88 8e 01 00 00 10 02 01 00 10 01 6e 65 77 78 
70 63 6c 69 65 6e 74 
DATA 
IEEE 802.1X: 20 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=0 length=16 
   EAP: code=2 identifier=1 length=16 (response) 
   EAP Response-Identity 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state AUTHENTICATING 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE 
Encapsulating EAP message into a RADIUS packet 
Sending RADIUS message to authentication server 
RADIUS message: code=1 (Access-Request) identifier=0 length=160 
   Attribute 1 (User-Name) length=13 
      Value: 'newxpclient' 
   Attribute 4 (NAS-IP-Address) length=6 
      Value: 131.120.8.145 
   Attribute 5 (NAS-Port) length=6 
      Value: 1 
   Attribute 30 (Called-Station-Id) length=24 
      Value: '00-05-5D-D9-8D-AE:test' 
   Attribute 31 (Calling-Station-Id) length=19 
      Value: '00-05-5D-D9-57-59' 
   Attribute 12 (Framed-MTU) length=6 
      Value: 2304 
   Attribute 61 (NAS-Port-Type) length=6 
      Value: 19 
   Attribute 77 (Connect-Info) length=24 
      Value: 'CONNECT 11Mbps 802.11b' 
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   Attribute 79 (EAP-Message) length=18 
   Attribute 80 (Message-Authenticator) length=18 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 52 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae e0 01 aa aa 03 00 00 00 88 8e 01 00 00 10 02 01 00 10 01 6e 65 77 78 
70 63 6c 69 65 6e 74 
DATA 
IEEE 802.1X: 20 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=0 length=16 
   EAP: code=2 identifier=1 length=16 (response) 
   EAP Response-Identity 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 64 bytes from authentication server 
Received RADIUS message 
RADIUS message: code=11 (Access-Challenge) identifier=0 length=64 
   Attribute 79 (EAP-Message) length=8 
   Attribute 80 (Message-Authenticator) length=18 
   Attribute 24 (State) length=18 
RADIUS packet matching with station 00:05:5d:d9:57:59 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST 
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 2) 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 42 bytes management frame 
  dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 90 44 aa aa 03 00 00 00 88 8e 01 00 00 06 01 02 00 06 0d 20 
DATA (TX callback) ACK 
Received 148 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae f0 01 aa aa 03 00 00 00 88 8e 01 00 00 70 02 02 00 70 0d 80 00 00 00 
66 16 03 01 00 61 01 00 00 5d 03 01 40 06 d1 58 59 2c af d8 f8 1e 81 19 
ca 6e c5 66 34 d6 a6 28 85 47 61 eb 69 e8 c9 3c 8f a4 a0 00 20 81 90 a4 
11 52 ad 3b 0b 8f f1 cd 8a 98 ce 08 51 41 c8 f5 75 34 35 54 84 9b 7a 08 
f5 73 5d d0 82 00 16 00 04 00 05 00 0a 00 09 00 64 00 62 00 03 00 06 00 
13 00 12 00 63 01 00 
DATA 
IEEE 802.1X: 116 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=0 length=112 
   EAP: code=2 identifier=2 length=112 (response) 
   EAP Response-TLS 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE 
Encapsulating EAP message into a RADIUS packet 
Sending RADIUS message to authentication server 
RADIUS message: code=1 (Access-Request) identifier=1 length=274 
   Attribute 1 (User-Name) length=13 
      Value: 'newxpclient' 
   Attribute 4 (NAS-IP-Address) length=6 
      Value: 131.120.8.145 
   Attribute 5 (NAS-Port) length=6 
      Value: 1 
   Attribute 30 (Called-Station-Id) length=24 
      Value: '00-05-5D-D9-8D-AE:test' 
   Attribute 31 (Calling-Station-Id) length=19 
      Value: '00-05-5D-D9-57-59' 
   Attribute 12 (Framed-MTU) length=6 
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      Value: 2304 
   Attribute 61 (NAS-Port-Type) length=6 
      Value: 19 
   Attribute 77 (Connect-Info) length=24 
      Value: 'CONNECT 11Mbps 802.11b' 
   Attribute 79 (EAP-Message) length=114 
   Attribute 24 (State) length=18 
   Attribute 80 (Message-Authenticator) length=18 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 1100 bytes from authentication server 
Received RADIUS message 
RADIUS message: code=11 (Access-Challenge) identifier=1 length=1100 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=24 
   Attribute 80 (Message-Authenticator) length=18 
   Attribute 24 (State) length=18 
RADIUS packet matching with station 00:05:5d:d9:57:59 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST 
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 3) 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 1070 bytes management frame 
  dump: 0a 02 3a 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae a0 44 aa aa 03 00 00 00 88 8e 01 00 04 0a 01 03 04 0a 0d c0 00 00 06 
b9 16 03 01 00 4a 02 00 00 46 03 01 40 06 d2 6c 7e f5 d8 69 c3 00 ae 17 
26 a7 d7 0d 99 41 70 d4 6d 73 40 df b3 7b 42 95 c9 f5 29 1d 20 07 81 d9 
93 df a6 c5 e5 ca d6 d1 c5 7c 5f ed 8b 54 c0 04 e5 30 71 f2 80 7f 8f 9c 
e8 41 f1 40 fa 00 04 00 16 03 01 05 d9 0b 00 05 d5 00 05 d2 00 02 92 30 
82 02 8e 30 82 01 f7 a0 03 02 01 02 02 01 01 30 0d 06 09 2a 86 48 86 f7 
0d 01 01 04 05 00 30 76 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 
11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 
55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 
4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31 21 30 1f 06 
09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 
76 79 2e 6d 69 6c 30 1e 17 0d 30 34 30 31 31 35 30 30 33 39 31 32 5a 17 
0d 30 35 30 31 31 34 30 30 33 39 31 32 5a 30 81 8a 31 0b 30 09 06 03 55 
04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 
6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 
30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 
53 41 41 4d 31 12 30 10 06 03 55 04 03 13 09 6e 65 77 72 61 64 69 75 73 
31 21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 
70 73 2e 6e 61 76 79 2e 6d 69 6c 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 
01 01 01 05 00 03 81 8d 00 30 81 89 02 81 81 00 c7 c2 5b ce 6b b1 44 b7 
1d e6 f3 8a 99 76 ae 25 ec 70 68 3e ef 15 03 63 14 0b 3c 95 f1 fc 4e d8 
6e b7 ed 33 85 93 f8 4b ed c5 b8 91 e4 ff 1f eb 93 85 e1 4e ba 1a f3 c6 
b5 79 fe b1 19 c0 89 63 73 07 13 3f f7 3b 97 f5 3f 72 fd 6a f6 e2 3c 28 
56 c4 45 56 e7 b0 fb 6d 4f 60 94 94 10 96 af 1c 84 f4 91 e6 0f d5 61 17 
a8 b7 05 45 b9 17 dd 14 8c 84 d5 38 9a 63 e1 66 4f 87 b1 19 17 98 cb 75 
02 03 01 00 01 a3 17 30 15 30 13 06 03 55 1d 25 04 0c 30 0a 06 08 2b 06 
01 05 05 07 03 01 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 03 81 81 
00 07 c2 b6 90 91 fd 0a 1e 8f c1 98 41 a9 9d 9e d2 36 37 24 97 4f f6 91 
eb 95 44 45 37 95 72 96 9a 90 71 0c 9e cc 62 36 28 0d 07 2d 8d e0 30 81 
20 af 7d e2 33 2e 46 6d f5 6f 72 28 90 c0 68 eb 4b 51 72 3a 52 e6 6b 23 
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80 94 6f 86 81 2e 3b 71 d3 15 ab 90 5c ad 06 51 0e 6b a1 fa 6e d9 0c e0 
45 f3 9b ab 76 7e ab 63 94 73 bb a6 e8 d9 e2 fb e2 cb e1 3d 57 56 31 fa 
a6 de e2 61 a4 48 7f e9 ef 00 03 3a 30 82 03 36 30 82 02 9f a0 03 02 01 
02 02 01 00 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 30 76 31 0b 30 
09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 0a 43 61 6c 
69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 6e 74 65 72 
65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 0b 06 03 55 
04 0b 13 04 53 41 41 4d 31 21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 
12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 76 79 2e 6d 69 6c 30 1e 17 0d 30 
34 30 31 31 35 30 30 33 33 33 37 5a 17 0d 30 34 30 32 31 34 30 30 33 33 
33 37 5a 30 76 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 
55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 
13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 
53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31 
DATA (TX callback) ACK 
Received 42 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae 00 02 aa aa 03 00 00 00 88 8e 01 00 00 06 02 03 00 06 0d 00 
DATA 
IEEE 802.1X: 10 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=0 length=6 
   EAP: code=2 identifier=3 length=6 (response) 
   EAP Response-TLS 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE 
Encapsulating EAP message into a RADIUS packet 
Sending RADIUS message to authentication server 
RADIUS message: code=1 (Access-Request) identifier=2 length=168 
   Attribute 1 (User-Name) length=13 
      Value: 'newxpclient' 
   Attribute 4 (NAS-IP-Address) length=6 
      Value: 131.120.8.145 
   Attribute 5 (NAS-Port) length=6 
      Value: 1 
   Attribute 30 (Called-Station-Id) length=24 
      Value: '00-05-5D-D9-8D-AE:test' 
   Attribute 31 (Calling-Station-Id) length=19 
      Value: '00-05-5D-D9-57-59' 
   Attribute 12 (Framed-MTU) length=6 
      Value: 2304 
   Attribute 61 (NAS-Port-Type) length=6 
      Value: 19 
   Attribute 77 (Connect-Info) length=24 
      Value: 'CONNECT 11Mbps 802.11b' 
   Attribute 79 (EAP-Message) length=8 
   Attribute 24 (State) length=18 
   Attribute 80 (Message-Authenticator) length=18 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
IEEE 802.1X: 00:05:5d:d9:57:59 REAUTH_TIMER entering state INITIALIZE 
Received 769 bytes from authentication server 
------- 
------- 
------- 
RADIUS packet matching with station 00:05:5d:d9:57:59 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST 
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 15) 
Received 743 bytes management frame 
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  dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae 60 4c aa aa 03 00 00 00 88 8e 01 00 02 c3 01 0f 02 c3 0d 80 00 00 06 
b9 21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 
70 73 2e 6e 61 76 79 2e 6d 69 6c 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 
01 01 01 05 00 03 81 8d 00 30 81 89 02 81 81 00 cc fe 01 16 21 92 44 8b 
98 4d 48 59 a5 9d ae 3d 8b 5c eb d1 3f df 0c 93 c9 70 75 a0 a6 d4 b8 d8 
ff e7 83 c2 96 5e 14 09 47 aa da 91 f5 98 97 12 eb 37 42 81 6b 9f 6b 41 
ce 41 9d f7 89 50 05 67 64 a4 bd d0 44 a1 06 d2 71 fc 31 01 e2 8f b4 06 
5f b1 56 07 a3 c7 fd de 46 c6 a7 8d e6 65 db 4a f1 64 2b 48 b1 5e 51 3b 
d9 a0 33 1b 71 db 7a 9f 3f ea ae fa 4c 65 d0 6c da 7e 44 ee a9 8e 4b 13 
02 03 01 00 01 a3 81 d3 30 81 d0 30 1d 06 03 55 1d 0e 04 16 04 14 5f 18 
3d 02 8f ea ae 3c 3a a6 a5 53 82 29 73 24 68 86 2b 6c 30 81 a0 06 03 55 
1d 23 04 81 98 30 81 95 80 14 5f 18 3d 02 8f ea ae 3c 3a a6 a5 53 82 29 
73 24 68 86 2b 6c a1 7a a4 78 30 76 31 0b 30 09 06 03 55 04 06 13 02 55 
53 31 13 30 11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 
30 0f 06 03 55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 
04 0a 13 04 4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31 
21 30 1f 06 09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 
73 2e 6e 61 76 79 2e 6d 69 6c 82 01 00 30 0c 06 03 55 1d 13 04 05 30 03 
01 01 ff 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 03 81 81 00 52 89 
a7 07 95 4e 9e 1c 2f be 3c c5 79 5b 66 0a 06 4b ab 0f 54 28 10 c3 2b 28 
96 f0 53 66 06 bc 49 45 74 b2 e5 eb 31 cc b2 e5 bb 8e 74 60 be 48 c4 03 
b6 2f dc c3 d5 79 6b 92 1d ef 8b 8e 20 26 7d 15 02 1b 96 a0 f6 4a 3e 46 
3b 44 5e 17 dd 3e e4 dc ce e7 98 57 b3 7f 28 5a 9c ab 2f 68 e7 0e 80 98 
d0 4e 30 1f 2c 30 bb aa 1f 50 fe 90 af 6d 7a 05 f0 23 a5 e1 f9 35 bb dc 
57 32 5a a8 e1 b6 16 03 01 00 87 0d 00 00 7f 02 01 02 00 7a 00 78 30 76 
31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 0a 
43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 6e 
74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 0b 
06 03 55 04 0b 13 04 53 41 41 4d 31 21 30 1f 06 09 2a 86 48 86 f7 0d 01 
09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 76 79 2e 6d 69 6c 0e 00 
00 00 
DATA (TX callback) ACK 
Received 1032 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae e0 04 aa aa 03 00 00 00 88 8e 01 00 03 e4 02 0f 03 e4 0d 80 00 00 03 
da 16 03 01 03 aa 0b 00 02 9a 00 02 97 00 02 94 30 82 02 90 30 82 01 f9 
a0 03 02 01 02 02 01 02 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 30 
76 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 13 30 11 06 03 55 04 08 13 
0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 06 03 55 04 07 13 08 4d 6f 
6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 13 04 4e 50 47 53 31 0d 30 
0b 06 03 55 04 0b 13 04 53 41 41 4d 31 21 30 1f 06 09 2a 86 48 86 f7 0d 
01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 76 79 2e 6d 69 6c 30 
1e 17 0d 30 34 30 31 31 35 30 30 34 30 32 37 5a 17 0d 30 35 30 31 31 34 
30 30 34 30 32 37 5a 30 81 8c 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 
13 30 11 06 03 55 04 08 13 0a 43 61 6c 69 66 6f 72 6e 69 61 31 11 30 0f 
06 03 55 04 07 13 08 4d 6f 6e 74 65 72 65 79 31 0d 30 0b 06 03 55 04 0a 
13 04 4e 50 47 53 31 0d 30 0b 06 03 55 04 0b 13 04 53 41 41 4d 31 14 30 
12 06 03 55 04 03 13 0b 6e 65 77 78 70 63 6c 69 65 6e 74 31 21 30 1f 06 
09 2a 86 48 86 f7 0d 01 09 01 16 12 6f 6f 7a 61 6e 40 6e 70 73 2e 6e 61 
76 79 2e 6d 69 6c 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 01 01 01 05 00 
03 81 8d 00 30 81 89 02 81 81 00 b6 2b a4 23 42 e1 59 dd 8d cc ba d2 28 
50 b3 eb ed 4e c9 1f 9d d3 83 56 34 ae bd c9 bf 3d df 49 32 7c 0a ca 16 
95 20 06 dd 77 13 0c b5 c2 e8 be dd d8 9c 94 e6 fb 6d 96 17 01 0a 02 59 
d2 20 3f 79 5d ea 16 99 25 69 46 47 7e 15 49 54 13 c4 38 4d 83 ff b6 1b 
bd 13 c6 e2 93 12 17 2a 5b 9a 3a 48 53 59 76 98 04 75 30 06 93 65 75 86 
00 01 fe 90 09 17 74 40 7a 71 fc 6f 97 67 a6 ff 60 66 bf 02 03 01 00 01 
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a3 17 30 15 30 13 06 03 55 1d 25 04 0c 30 0a 06 08 2b 06 01 05 05 07 03 
02 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00 03 81 81 00 c1 89 97 3d 
d1 f6 63 2d ef 5a 12 3a 39 99 0e 8e 41 f3 ea ee be a6 45 e1 f4 2b 58 22 
ea ce 5d 08 19 dd a9 3d 55 6c 87 44 03 00 d8 ca f1 02 a7 88 0c 33 20 6f 
d7 be 6c 2c 14 32 c6 c7 b7 c9 3a 2f fb 4e d1 97 ed 00 ff 9f 78 c2 75 b8 
44 42 72 06 7c 17 53 46 03 03 a0 e1 f4 58 f7 83 bf cd c2 17 d9 d9 8e 78 
70 20 a5 6a 40 b9 94 34 fe 3a f4 d8 fc 3e 9f 3e f7 4d c1 09 7f 65 48 75 
3f d7 4d 5c 10 00 00 82 00 80 06 56 1e 5e 9d 9e 9c 8b 9f 60 3a 3d 6b 1f 
13 82 82 df e6 11 2e 12 ef c1 0c 0a c5 dd 45 22 78 60 2f ca 4b 97 51 3a 
89 6c 09 8f a0 d5 b6 7b 7d bd 7e 2e d6 c9 21 53 b6 1a 5f 92 ff ab e0 a3 
64 1c 85 06 8c 5d 03 3d 78 37 2a 09 2a 41 6a f4 0f c4 de a9 d1 e5 03 1e 
f9 79 aa ab 56 61 89 fe 82 a0 1b 50 92 88 22 00 fc 45 72 18 55 84 d6 ed 
57 8f 6e 39 f8 42 5b cd 59 5d 55 a4 68 fd 0d da 1b 2f 0f 00 00 82 00 80 
23 44 69 5b 98 67 df 6e b6 4e 52 41 a0 51 4e 2f 63 b1 24 0b d3 76 e4 53 
d6 54 9f 30 52 4d 0a d9 ad e3 7d 41 cd da b5 a2 90 90 7e f7 dd 91 56 64 
97 b6 26 7a 33 45 59 c6 de 78 86 6a db 9d 18 1b bc e8 67 4f 37 1e ac de 
c9 1f 5c 30 8b be 4c d2 94 55 d1 c2 5a 01 40 4c 91 b1 c1 27 1d 5e be 39 
40 b8 47 e9 4d 21 8f 56 3e f4 ed 37 a6 7d 9d e8 c0 de 36 59 2d 37 75 1b 
1f a8 71 d9 6f 93 e0 f6 14 03 01 00 01 01 16 03 01 00 20 88 a6 dd 59 65 
b0 d8 6d b0 88 e9 ee ae 76 37 00 49 b9 c5 3a 0f b1 6c 85 c5 fa 48 29 3a 
9e 3f 7d 
DATA 
IEEE 802.1X: 1000 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=0 length=996 
   EAP: code=2 identifier=15 length=996 (response) 
   EAP Response-TLS 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE 
Encapsulating EAP message into a RADIUS packet 
Sending RADIUS message to authentication server 
RADIUS message: code=1 (Access-Request) identifier=12 length=1164 
   Attribute 1 (User-Name) length=13 
      Value: 'newxpclient' 
   Attribute 4 (NAS-IP-Address) length=6 
      Value: 131.120.8.145 
   Attribute 5 (NAS-Port) length=6 
      Value: 1 
   Attribute 30 (Called-Station-Id) length=24 
      Value: '00-05-5D-D9-8D-AE:test' 
   Attribute 31 (Calling-Station-Id) length=19 
      Value: '00-05-5D-D9-57-59' 
   Attribute 12 (Framed-MTU) length=6 
      Value: 2304 
   Attribute 61 (NAS-Port-Type) length=6 
      Value: 19 
   Attribute 77 (Connect-Info) length=24 
      Value: 'CONNECT 11Mbps 802.11b' 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=255 
   Attribute 79 (EAP-Message) length=239 
   Attribute 24 (State) length=18 
   Attribute 80 (Message-Authenticator) length=18 
Received 111 bytes from authentication server 
Received RADIUS message 
RADIUS message: code=11 (Access-Challenge) identifier=12 length=111 
   Attribute 79 (EAP-Message) length=55 
   Attribute 80 (Message-Authenticator) length=18 
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   Attribute 24 (State) length=18 
RADIUS packet matching with station 00:05:5d:d9:57:59 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state REQUEST 
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 16) 
Received 89 bytes management frame 
  dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae c0 4c aa aa 03 00 00 00 88 8e 01 00 00 35 01 10 00 35 0d 80 00 00 00 
2b 14 03 01 00 01 01 16 03 01 00 20 e4 a4 01 c9 fe 54 a2 12 4b 7c 5b 32 
f5 e5 b2 7e 32 bc 67 46 4b 52 bc dc b9 03 a7 8d 1f d1 71 28 
DATA (TX callback) ACK 
Received 42 bytes management frame 
  dump: 08 01 02 01 00 05 5d d9 8d ae 00 05 5d d9 57 59 00 05 5d d9 8d 
ae f0 04 aa aa 03 00 00 00 88 8e 01 00 00 06 02 10 00 06 0d 00 
DATA 
IEEE 802.1X: 10 bytes from 00:05:5d:d9:57:59 
   IEEE 802.1X: version=1 type=0 length=6 
   EAP: code=2 identifier=16 length=6 (response) 
   EAP Response-TLS 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state RESPONSE 
Encapsulating EAP message into a RADIUS packet 
Sending RADIUS message to authentication server 
RADIUS message: code=1 (Access-Request) identifier=13 length=168 
   Attribute 1 (User-Name) length=13 
      Value: 'newxpclient' 
   Attribute 4 (NAS-IP-Address) length=6 
      Value: 131.120.8.145 
   Attribute 5 (NAS-Port) length=6 
      Value: 1 
   Attribute 30 (Called-Station-Id) length=24 
      Value: '00-05-5D-D9-8D-AE:test' 
   Attribute 31 (Calling-Station-Id) length=19 
      Value: '00-05-5D-D9-57-59' 
   Attribute 12 (Framed-MTU) length=6 
      Value: 2304 
   Attribute 61 (NAS-Port-Type) length=6 
      Value: 19 
   Attribute 77 (Connect-Info) length=24 
      Value: 'CONNECT 11Mbps 802.11b' 
   Attribute 79 (EAP-Message) length=8 
   Attribute 24 (State) length=18 
   Attribute 80 (Message-Authenticator) length=18 
Received 173 bytes from authentication server 
Received RADIUS message 
RADIUS message: code=2 (Access-Accept) identifier=13 length=173 
   Attribute 26 (Vendor-Specific) length=58 
   Attribute 26 (Vendor-Specific) length=58 
   Attribute 79 (EAP-Message) length=6 
   Attribute 80 (Message-Authenticator) length=18 
   Attribute 1 (User-Name) length=13 
      Value: 'newxpclient' 
RADIUS packet matching with station 00:05:5d:d9:57:59 
MS-MPPE-Send-Key (len=32): 1f 44 ce 96 1e cf 53 3c 72 8e 73 1d ff 14 4b 
91 8e d1 a4 20 fd 83 18 5e 4e cc 6b 3c 68 6a 08 b9 
MS-MPPE-Recv-Key (len=32): e9 54 5b 18 09 75 cd fb 5d 0f 98 21 89 e0 3b 
43 60 2f 6c 47 5e 4e e6 6d 7d 24 78 3c 05 6f 31 4c 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state SUCCESS 
IEEE 802.1X: Sending EAP Packet to 00:05:5d:d9:57:59 (identifier 16) 
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IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_KEY_TX entering state KEY_TRANSMIT 
IEEE 802.1X: Sending EAPOL-Key(s) to 00:05:5d:d9:57:59 (identifier 16) 
IEEE 802.1X: Sending EAPOL-Key to 00:05:5d:d9:57:59 (broadcast index=1) 
Individual WEP key - hexdump(len=5): bc b3 d0 ce 1d 
IEEE 802.1X: Sending EAPOL-Key to 00:05:5d:d9:57:59 (unicast index=0) 
IEEE 802.1X: 00:05:5d:d9:57:59 AUTH_PAE entering state AUTHENTICATED 
IEEE 802.1X: Authorizing station 00:05:5d:d9:57:59 
IEEE 802.1X: 00:05:5d:d9:57:59 BE_AUTH entering state IDLE 
Received 40 bytes management frame 
  dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae d0 4c aa aa 03 00 00 00 88 8e 01 00 00 04 03 10 00 04 
DATA (TX callback) ACK 
Received 85 bytes management frame 
  dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae e0 4c aa aa 03 00 00 00 88 8e 01 03 00 31 01 00 05 c3 b1 5b 4f 0a d4 
90 d2 91 9f 41 bf 1c 8d 9a 89 2a 58 94 49 e0 d9 c5 c1 01 10 87 ca 61 01 
32 8f 1f 86 0c e8 3a ad e6 c3 8f 6b c3 e5 3c 43 
DATA (TX callback) ACK 
Received 85 bytes management frame 
  dump: 0a 02 02 01 00 05 5d d9 57 59 00 05 5d d9 8d ae 00 05 5d d9 8d 
ae f0 4c aa aa 03 00 00 00 88 8e 01 03 00 31 01 00 05 c3 b1 5b 4f 0e 11 
98 94 8d 17 4f 4f 99 c0 cb cd 9b 41 c1 76 72 bd c6 15 80 dd cc b2 db 32 
7f 5c 65 72 90 18 32 b1 4b 57 1f 5e ed 7c 60 35 
DATA (TX callback) ACK 
IEEE 802.1X: 00:05:5d:d9:57:59 Port Timers TICK (timers: 29 0 3595 28) 
IEEE 802.1X: 00:05:5d:d9:57:59 Port Timers TICK (timers: 28 0 3594 27) 
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APPENDIX F 

A. AUTHENTICATOR STATE MACHINE 
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B. SUPPLICANT STATE MACHINE 
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