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ABSTRACT 
 
 
 
The objective of the ongoing MARG project is to animate human motions 

captured by 15 MARG sensors in wireless networked virtual environment (NVES). Three 

avatars were developed previously, but none of them met all the desired requirements. 

The first one was overly simplistic and did not implement H-Anim standards. The other 

two were created using laser-scanned data and followed the H-Anim standards, but one 

had its adjacent joints broken and the other was capable of rotating only one joint. 

Therefore, the cartoon-type humanoid, Andy, was developed to meet the needs of the 

MARG project. The humanoid Andy implements H-Anim standards using built-in X3D 

humanoid nodes and is capable of controlling all its 15 joints in NVES.    

 

Another need of the MARG project was a wireless network interface for real-time 

data streaming. A concurrent client-server program implementing multicasting using TCP 

and UDP protocols was developed for this purpose. Using WiSER2400.IP serial adapters 

between the MARG sensors and the server program adds a wireless capability to the 

project. The server program converts the raw MARG sensor data to quaternions using the 

Quest algorithm. Multiple clients are supported by the system. Each client program 

receives the motion data and updates the humanoid Andy.  
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I.  INTRODUCTION  

As the 3D graphics and the Internet continue to grow, the need to characterize 

human beings in networked virtual environment (NVE) will continue to increase. 

Creating and animating humanoids for different applications require establishing libraries 

of interchangeable humanoids and standardization for humanoids [Ref. 1]. Furthermore, 

because humanoids in a networked virtual environment will most likely run in computers 

with different architectures, both humanoids and other interfaces such as networking 

programs should be capable of running in multiple platforms. Java as a programming 

language and X3D as a 3D graphics tool met the needs described above. X3D has built-in 

nodes implementing H-Anim 2.0 specifications.  

To animate humanoids in the virtual environment, one must acquire or generate 

motion data of human body limbs. Bachmann [Ref. 2] introduced Magnetic, Angular 

Rate, and Gravity (MARG) sensors, which use inertial/magnetic measurements for real-

time human body-motion tracking. This new technology overcomes the limitations of 

previous motion-tracking technologies, and it is capable of tracking multiple users in 

wide areas. Since the current implementation of the MARG sensors has a drawback of 

limiting the users’ ability and flexibility of movement in a tracking system, the wireless 

serial adapter WiSER2400.IP technology is used in this thesis for wirelessly delivering 

UDP packets to the network.   

This chapter briefly discusses the ongoing MARG project and the novelties that 

this thesis adds. Additionally, an outline of the remaining thesis chapters is presented.   

 

A. THE ONGOING MARG PROJECT 

Bachmann [Ref. 2] successfully added humans into networked virtual 

environments by using MARG sensors. The motion of the human was accurately tracked 

with a 100 Hz update rate. The experimental results showed that inertial/magnetic 

orientation estimation is a practical method of tracking human body posture [Ref. 2]. 

However, transmitting sensor data by wires in the system was one of the serious 

drawbacks in this implementation. The ability to track human motion was restricted to 
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short distance because the sensors were directly wired to the desktop computer where the 

avatar was running. Another drawback with this implementation was that the humanoid 

used for representing the tracked motion was not realistic. Instead, as shown in Figure 1, 

a simple box man was implemented to represent the human being tracked [Ref. 2]. 

Furthermore, the skeleton structure was not developed using H-Anim standards. H-Anim 

standards require a humanoid skeleton in a nested hierarchical joint structure.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.    The Humanoid as a Boxman. [From Ref. 2.] 

 

Dutton [Ref. 3] developed a more realistic humanoid by using laser-scan data. 

The data was parsed into segments and the humanoid was constructed using the Virtual 

Reality Modeling Language (VRML) by following the H-Anim 1.1 specifications.  As 

illustrated in Figure 2, the major drawback with Dutton’s humanoid was that the 

connections of two adjacent joints were broken when animating the humanoid [Ref. 3]. 
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Figure 2.   Dutton’s Humanoid with Skin Deformations. [From Ref. 4.] 

 

Sinav [Ref. 5] improved Dutton’s humanoid and developed a deformation engine 

that eliminated skin deformation to a high degree and added smooth joint connections. 

Despite its smooth joint connections, Sinav’s humanoid does have some geometric 

distortions of the segments when moving as shown in Figure 3. Another drawback with 

his humanoid is that the user can only control the joint for the head. Therefore, a 

desirable humanoid for representing the 15 MARG sensor data motion was still 

unavailable for the MARG project. 

Developing a realistic humanoid is only one part of the ongoing MARG project 

for representing the tracked human motion. Another part of the project is developing a 

concurrent client-server program for implementing MARG project in a real-time 

networked virtual environment. Dutton [Ref. 3] wrote several java classes for reading and 

parsing pre-recorded body motion data from a file, wrapping the data into a UDP packet 

and sending it to the client program running the avatar over the network. These classes 
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were simply simulating the networked environment and were not feeding the humanoid 

in real-time tracked motion data. Furthermore, the server program was not capable of 

serving multiple clients simultaneously. The server program was supposed to receive 

MARG sensors data wirelessly through the network and deliver those data to the clients 

anywhere on the Internet. The client program should be capable of running a humanoid 

with at least 15 joints simultaneously updating motion data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   Sinav’s Humanoid Implementing Deformation Engine. [From Ref. 5.] 
 

 

B. THESIS GOALS 

This thesis concentrates on developing a real-time implementation of human 

avatars animating the tracked human motion in a networked virtual environment. First, a 

new humanoid for the MARG project will be developed. This humanoid will be 

developed in a hierarchical joint skeleton structure using H-Anim200x nodes provided by 

X3D. It will have a resolution of at least 15 joints in order to animate motions of major 
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limbs of a human successfully [Ref. 2]. The appearance of the humanoid is not important 

for this thesis. A humanoid better than the Boxman but simpler than the previously 

developed laser-scanned humanoids will be sufficient. After searching the literature and 

Internet, a cartoon-type humanoid AndyLow from [Ref. 6] is chosen as the starting point. 

Second, a concurrent client-server networking interface between the tracked 

human and multiple clients running anywhere on the Internet will be developed. This 

concurrent client-server application receives data from MARG sensors through the 

WiSER2400.IP wireless serial adapter, capable of handling multiple clients, each running 

a humanoid representing the same motion captured by the sensors.  Since the 16-channel 

Control Interface Unit (CIU) is not ready at this moment, the three-channel CIU is used 

for connecting the sensors with the wireless serial adapters. The server program runs a 

class for producing quaternion data using the Quest Quaternion Algorithm [Ref. 7]. A 

filtering process is implemented in the sensor data before the algorithm is conducted. On 

the client side, the client program converts the sensor quaternion data, independent from 

each other, into a nested joint structure to make them compatible with H-Anim standard 

humanoid structure. An additional conversion from quaternion into axis-angle pair is 

conducted before updating the humanoid. 

 

C. ORGANIZATION 

This thesis contains six chapters. Chapter II presents background information for 

this thesis. It introduces networking protocols, compares Java and C as a networking 

programming language, describes wireless LAN, introduces MARG sensors and 

WiSER2400IP serial adapters, and provides the complete setting of real-time wirelessly 

networked, full-body tracking system using MARG sensors and WiSER2400.IP wireless 

serial adapters. 

Chapter III introduces Virtual Reality Modeling Language (VRML), X3D and H-

Anim 2.0 specification, explains how the nodes in X3D create a humanoid, discusses how 

the humanoid Andy is modified from humanoid AndyLow, explains how Java 

networking works with X3D and how independent sensor quaternion data is implemented 

to a nested-joint structure humanoid.  
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Chapter IV analyses the design of the concurrent client-server program and its 

purpose.   

Chapter V describes the testing and evaluation of the concurrent client-server 

program and the client programs running the new humanoid. The one-channel and the 

three-channel CIUs developed by Kavousanos-Kavousanakis [Ref. 8] were used to obtain 

adjacent joint data for animation. 

The final chapter presents the conclusions and suggests further development and 

optimization.  

 
D. SUMMARY 

This chapter discussed the existing state of the MARG project prior to this 

research. The early design of the humanoids did not meet the needs for this thesis. 

Moreover, a wireless networking interface has to be added. 
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II. BACKGROUND 

Networking in virtual environments is becoming more popular each day. Combat 

models, games, virtual conferences are some of the applications that presently use 

networked virtual environments (NVES). Programming languages such as C++ and Java 

provide users high-level tools that eliminate the need to work with the complex low-level 

basics of network programming. The WiSER2400.IP wireless serial adapter [Ref. 9] is 

capable of receiving byte level data from a serial input and packing them either into a 

UDP/IP or TCP/IP packet. Then the packets are transmitted over a wireless link to the 

host IP address and port number set by the user. By connecting the MARG sensors [Ref. 

2] to the WiSER2400IP device through the serial port, one can track real-time human 

motion in a wireless networked virtual environment. This chapter introduces networking 

protocols, compares Java and C as a networking programming language, describes 

wireless LAN, introduces MARG sensors and WiSER2400IP serial adapters, and finally 

provides the complete setting of a real-time wirelessly networked, full-body tracking 

system, using MARG sensors and WiSER2400IP devices. 

 

A. NETWORKING PROTOCOLS 

Most of today’s Internet services are based on one sender and one receiver. The 

file transport protocol (FTP), hyperlink transfer protocol (HTTP) and simple mail transfer 

protocol (SMTP) are only some of the examples. Applications like video conferencing 

and audio streaming that have one sender and multiple receivers are less common 

because of the high bandwidth requirements. Depending on the number of senders and 

receivers and the type of the packet used for communication, there are three types of 

network communications: unicast, broadcast and multicast. 

Unicast is the communication between one source host and one destination host. 

It is subdivided into two protocols, TCP and UDP. TCP/IP protocol provides a reliable 

data transmission between the source and the destination. The packets are delivered 

reliably in order and checksums are implemented to packets to avoid data transmission 

errors. Additionally, transmission flow is controlled to prevent the congestion on the 
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network. All these services of course have a cost of delay. FTP, HTTP and SMTP are 

examples of unicast TCP protocols. On the other hand the UDP/IP protocol removes most 

of the communication overhead used by TCP protocol. It is based on a simple structure 

offering best-effort packet data delivery. Reliability and the order of the packets are not 

guaranteed. It is well suited for applications such as video streaming because these 

application classes depend on low latency and jitter.   

Broadcast is the communication between one source host and all the other 

destinations hosts on a subnet. It is largely parallel with UDP/IP protocol with the 

exception that the packets are delivered to all hosts on a local network. Applications such 

as address-resolution protocol (ARP) use broadcasting to map the IP network addresses 

to the hardware addresses (MAC addresses) in the data-link layer. 

Multicasting is the communication between one or more source hosts and a 

group of receiver hosts located anywhere on the network. Multicasting is more efficient 

than unicast or broadcast for transmitting information among a large number of group 

members spread out over different networks. Multicast routing algorithms can distribute 

data across network boundaries, unlike broadcast, while not sending duplicate copies of 

data, as with unicast. Packets are restricted by the multicast routing algorithms to travel 

only along networks that have subscribers to that group and to newer travel over a single 

network multiple times. A new multicast group member must send a join message, which 

is distributed to the other routers participating in the multicast group distribution.  

In many cases, multicasting capability is desirable. The major advantage of 

multicasting is that it reduces the use of network bandwidth. Assuming that there are 100 

members of a group, transmitting only one packet by the source will be sufficient in 

multicasting, while 100 packets are required to be sent separately to each group member 

with unicast UDP/IP.    

Despite the advantages listed above, multicasting has the following 

disadvantages. The majority of routers on the Internet today are not configured to handle 

multicasting routing protocols. Most exclusively handle unicast or broadcast traffic. A 

virtual network using tunneling can be used with unicast-only routers to overcome this 

problem. Tunneling is a software solution that runs on the end point routers/computers 



9 

and allows multicast packets to traverse the network by putting multicast packets into 

unicast packets. 

Programming languages compatible with networking protocols provide socket 

classes to represent the terminals of a connection between two machines or processes. For 

instance, the java.net package provided by Java contains a Socket class for TCP 

connection, a DatagramSocket class for UDP connection and a MulticastSocket class for 

a multicast connection.   

Although the IP address is unique to each computer, it is insufficient to 

differentiate between multiple applications running on the same computer. Packets that 

arrive at the machine must know which application they should be processed by. This is 

accomplished through the use of port numbers. The port number is represented by a 16-

bit unsigned number that has a range from 0 to 65,536. Both the TCP and the UDP have 

their own port numbers in the same range. Depending on the platform, port numbers are 

divided into three ranges: the well-known ports (from 0 through 1023), the registered 

ports (from 1024 through 49151), and the dynamic ports (from 49152 through 65535). 

The well-known ports are assigned by the Internet Assigned Numbers Authority (IANA) 

for special usage, such as 21 for FTP, 23 for Telnet, 25 for SMTP (mail) and 80 for 

HTTP (Web). 

 

B. PROGRAMMING LANGUAGES FOR NETWORKING (JAVA VERSUS 
C++) 

Java, compared to C++, is a painless networking language. Some of the 

advantages of Java are as follows. First, Java supports threads at the language level. C++ 

supports threads, but it is complicated to program and varies from platform to platform. 

Developing a program with concurrent processing is difficult, if not impossible, without 

threads. The concurrent processing is vital in applications like File Transport Protocol. 

Second, Java has the advantage of being portable between systems, even without 

recompilation. It is easy to access machine level details in C++, but this makes C++ 

depend on  to the specific platform on which the program was implemented. Considering 

the number of different kind of machines connected to the Internet, it is obvious that 

portability feature adds enormous power to Java. Finally, Java is much easier to use. 
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Many of the details require to set up a network connection are hidden by abstraction. 

Furthermore, the garbage collection feature of Java handles all undeleted objects and 

frees the memory. The most important disadvantage of Java is the speed. C is very 

successful in computation-intensive applications. [Ref. 10]  

 

C. WIRELESS LAN 

A wireless Local Area Network (LAN) is designed to transmit and to receive data 

over the air to minimize the need for wires in communication. The wireless 

communication can be established either between a wireless client and a base station or 

between two wireless stations. The standard for wireless LAN is referred as IEEE 802.11 

established in 1997 [Ref. 11].  Since 2.4 GHz is an unlicensed frequency band in most 

countries, using this frequency band for data transmission makes IEEE 802.11 a global 

standard.  

The current IEEE 802.11 technology consists of four different types: 802.11, 

802.11a, 802.11b, 802.11g. The 802.11 standard offers a 1 Mbps or 2 Mbps transmission 

rate in the 2.4 GHz band. The 802.11a standard provides a 54 Mbps transmission rate in a 

5 GHz band. The 802.11b standard is a high rate (or Wi-Fi) extension of the 802.11 and 

provides up to an 11 Mbps transmission rate in a 2.4 GHz band. It is also backward 

compatible with 5.5 Mbps, 2 Mbps and 1 Mbps rates. Finally, the 802.11g is the latest 

standard that offers up to 54 Mbps in the 2.4 GHz band. [Ref. 12]  

 

D. 802.11B WIRELESS SERIAL PORT ADAPTER WISER2400.IP 

The WiSER2400.IP is an 802.11b compliant module with an RS232 serial 

interface. The WiSER2400.IP takes the serial data from the equipment it is connected to, 

via the RS-232 serial port, and transmits them to the destination host. The data is 

encapsulated into either TCP/IP or UDP/IP packets to make WiSER2400.IP compatible 

with networking protocols. This capability of WiSER2400.IP is very useful in 

networking applications, so it is very handy to establish a communication between the 

WiSER2400.IP and the remote applications. [Ref. 9,13] 
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In order to use WiSER2400.IP serial adapter in this thesis research, the following 

settings are configured via the utility program (wauti.exe) provided by the manufacturer. 

A screenshot of the configuration is provided in Figure 4. After connecting the 

WiSER2400.IP to the serial port and selecting the port name in the utility program, 

clicking the detect button detects the adapter and makes it ready for the settings. Once the 

adapter is detected, the TCP/UDP radio button is selected as a first step to establish a 

TCP or UDP communication with the destination application. As a second step, the 

wireless settings are set. WiSER2400.IP can operate in two modes: Ad-Hoc and 

infrastructure mode. In Ad-Hoc mode, computers can talk directly to each other and do 

not need an access point. But, in this thesis WiSER2400.IP is talking to the computers 

through an access point, and therefore infrastructure mode is selected as the network 

type. Additionally, SSID is set to the same SSID used by the access point. The third step  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Setting of WiSER2400.IP. 
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is to set the RS232 settings. The baud rate used in this thesis is 19200 bps. Because a 

sample motion data consists of 15.5 bytes, the packet size is set as twice of a sample data 

size. The maximum packet size can be set as 200 bytes, which is insufficient for further 

work with 15 MARG sensors. However, the current packet size is sufficient for this thesis 

because only one sensor is connected to the serial adapter. Finally the IP settings should 

be configured correctly. The destination unit’s IP address and port number indicate the 

location of the application that listens for the packets from WiSER2400.IP. In addition to 

setting the destination address and port number for the UDP/IP communication, the user 

needs to set the unit’s IP address, port number, subnet mask and gateway information, 

too. 

 

E. MAGNETIC, ANGULAR RATE, AND GRAVITY (MARG) SENSOR 

All materials in this section are drawn from [Ref. 2]. The power of Networked 

Virtual Environments lies in its ability to immerse users in a different world. The more 

complete the immersion, the better and more effective the virtual environments (VE). If 

user interactions are done with VE in the same manner as they are done in the real world, 

they increase the immersion. The human interactions occur as a result of body motion. 

Many different types of motion-tracking sensors including mechanical, optical, acoustic 

and magnetic trackers have been introduced. Each of these tracker technologies has 

limitations including marginal accuracy, user encumbrance, restricted range, 

susceptibility to interference and noise, poor registration, occlusion difficulties and high 

latency. These limitations make it difficult to track multiple users in virtual environments 

and augmented reality applications. The MARG sensor introduced by Bachmann [Ref. 2] 

overcomes the limitations of the motion-tracking technologies above. 

The MARG motion-tracking sensor is a new sourceless tracking technology for 

tracking the posture of an articulated rigid body. Source-based tracking systems require a 

continuous link between the tracked body and one or more fixed stations. Since the 

distance that can be maintained by the link when wired technology is used is often 

limited, MARG sensors offer users an enormous distance that is limited with the wireless 

technology. MARG technology is based on the use of inertial/magnetic sensors to 

determine the orientation of each link in the rigid body independently. Each sensor 
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produces nine components of data (three rate sensor measurements, three accelerometer 

measurements and three magnetometer measurements) for the tracked motion in a 100-

Hz update rate. 

 

F. THE COMPLETE MOTION TRACKING SYSTEM 

Although the goal of this thesis is to develop an avatar to be used with a 15-

channel Control Interface Unit (CIU), the avatar is tested with the only available 3-

channel CIU. Figure 5 shows a schematic diagram of the MARG motion tracking system 

using the 3-channel CIU and three WiSER2400.IP serial adapters. Each channel in the 

CIU is independent of the other. That is, the user can use one sensor at a time, or any 

possible combinations of the three. The data tracked by the first sensor is delivered to the 

WiSER2400.IP through the first input and output port of the CIU. The WiSER2400.IP 

accepts data only via the RS232 serial port interface.  

Each serial adapter must have the same destination IP address but may have a 

different destination port number. The destination IP address is the IP address of the host 

where the server program runs. Each serial adapter uses a different port number because 

each is handled independently of the other in the server program. The port numbers used 

in this thesis are UDP 8000, 8001 and 8002. There will be only one serial adapter when 

the 15-channel CIU is available in further work. In that case, the CIU will have a 16-input 

channel and one-output channel. All sensors will be connected to the CIU and the CIU 

will serialize the read data and forward to the serial adapter. There will be only one serial 

adapter in the system and additional UDP ports will not be needed. 

Because a wireless access point is connected to the LAN, the wireless network 

type specification of each WiSER2400.IP is set at infrastructure mode. When the IP 

address of the server is set correctly in the serial adapters, the computer that runs the 

server program can be either in the same LAN as the wireless access point or in any other 

network on the Internet. It is the same concept for the computers that run the client 

program. The components of the MARG motion tracking system are shown in Figure 6. 
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Figure 5.   The Schematic Diagram of the MARG Motion.    
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Figure 6.    The Components of the MARG Motion Tracking System.   
 

 

G. SUMMARY 

Java as a painless networking tool makes it easier to develop concurrent 

programs, which is vital for this thesis. Various classes contained in java.net package 

make network programming very easy. Its portability between systems adds noteworthy 

strength to Java in the Internet world.  

Unicasting, broadcasting and multicasting are the major types of communications 

used in networking programming. Unicasting is sub-divided into TCP and UDP 

protocols. TCP provides a reliable but higher latency and higher jitter communications 

while UDP provides less reliable but lower latency and lower jitter communications. 

Because of its low latency, UDP is preferred in streaming application such as the video, 

voice or real-time applications discussed in this thesis research.  
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Adding the WiSER2400.IP serial adapter for this thesis makes it possible to track 

human motion in a wireless network environment. However, using three different 

wireless serial adapters with the 3-channel CIU seems to limit human motions. The 

further version of CIU with 15 channels will eliminate extra WiSER2400.IP usage. The 

15-channel CIU packs all the data for 15 sensors into the serial output.  
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III. HUMANOID ANDY USING H-ANIM STANDARDS 

This chapter first presents the H-Anim standards and the X3D graphics language.  

Second, the H-Anim nodes contained by X3D and the nested joint structure of humanoids 

are described. Third, the method for feeding the nested joint structure humanoid with 

multiple MARG sensor data is discussed. And finally, the required settings for updating 

the humanoid through the network are explained. 

 

A. H-ANIM STANDARDS AND X3D GRAPHICS LANGUAGE   

The need for humanoids in the networked virtual environment continues to 

increase with the growth of the Internet. Libraries of humanoids using international 

standards are developed in order to meet this increasing need. Human Animation (H-

Anim) is a newly developed standard for this purpose. This standard is not language 

specific and can be applied to any applications using any programming languages.  

The joint structure of the humanoid offered by H-Anim is a nested joint structure. 

That is, the child joints depend on their parent joints. For example, the left shoulder joint 

is the parent joint to the left elbow joint. The motion applied to the left shoulder is 

automatically applied to the left elbow. For this reason, the animation for two adjacent 

joints will not work for two MARG sensors when the captured motion data is applied 

directly. This is because each MARG sensor works independently of the others, and a 

computation is needed before applying the data to the humanoid.  

Virtual Reality Modeling Language (VRML) is a 3D graphics language for 

developing models used in virtual environment applications. Extensible 3D (X3D) is an 

extension of VRML and contains built-in nodes implementing H-Anim standards. X3D is 

also compatible with the Java programming language, and Java Script classes can be 

embedded into humanoids through the Script nodes provided by X3D. This makes it 

possible to update humanoids with the data received through the network. Unfortunately, 

X3D is not presently compatible with Java 1.4 or later versions in network applications. 

This issue will be discussed later in this chapter.  
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B. FUNDAMENTAL H-ANIM NODES PROVIDED BY X3D   

Humanoid, Joint, Segment, Site and Displacer nodes are the fundamental nodes 

provided by X3D to support H-Anim specifications. These nodes are used to construct 

the nested joint structure of the humanoid. This thesis uses only the Humanoid, Joint and 

Segment nodes for creating the humanoid.  Shape, Transform, Viewpoint and Color are 

some additional nodes of X3D used for defining the geometry of the human limb 

segments. These nodes are not used in this thesis and will not be discussed. All materials 

in this section are drawn from [Ref. 14]. 

 

1. Humanoid Node 

Humanoid node is a container node for Joint, Segment, Site, and Displacer nodes. 

It also contains the geometry nodes Shape, Transform and Color, as well as a Viewpoint 

node. The author and copyright information of the humanoid is kept in this node.  

The translation and the rotation fields specify a translation or a rotation to the 

coordinate system of the entire humanoid figure. The scale field specifies a non-uniform 

scale of the humanoid figure coordinate system and the scale values must be assigned 

greater than zero. The Viewpoint node is affected by the transformations and rotations 

applied to the Humanoid node, but not affected by any of the transformations performed 

to the Joint nodes. The structure of Humanoid node is provided in Figure 7. 

 

2.  Joint Node 

Joint nodes represent the joints in the body. The function of a Joint node is to 

define the relationship of two adjacent segments. An organization of hierarchical Joint 

nodes describes the overall skeleton of the humanoid in a nested joint structure. A Joint 

node can be a child of another Joint node or the Humanoid node, but it cannot be a child 

of a Segment node. A Joint node can contain Segment nodes.  

Joint nodes are the nodes used for animating the humanoids. The rotation field 

determines the posture of the joint. Since joints are in a nested structure, the amount of 

rotation set to this field is relative to the parent node. That is, the parent joint initially sets 

its rotations and then the child joint sets its rotation according to the final local coordinate 
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system achieved by the parent joint. Because of this reason, the measured motion data by 

the MARG sensors cannot be directly implemented to the Joint nodes. Before setting 

each Joint node’s rotation field, an inverse motion should be implemented in order to 

achieve the original coordinate system. Implementation of this method is discussed later 

in this chapter. It is possible to set limits to the rotation fields using limitOrientation field, 

but it is not implemented in this thesis.  

 

 

 

 

 

 

 

 

 

Figure 7.   Humanoid Node. [From Ref. 14.] 

 

The translation field is used to determine the reference location of the Joint node 

to the parent Joint node. The structure of Joint node is provided in Figure 8. 

 

3.  Segment Node 

Segment node represents each segment of the body, such as pelvis, thigh or calf. 

This specialized grouping node provides a container for nodes in its children field. The 

children field may contain nodes, such as Shape or Transform, for drawing the geometry 

of the segment.  In order to avoid violation of the structure of the H-Anim specifications, 

Segment nodes are allowed only as a child to the Joint nodes. Because Segment nodes 

represent the geometry of a human limb segment, there is no field provided for 

controlling the motion.  The structure of Segment node is provided in Figure 9. 

Joint : X3DgroupingNode { 
 field [ ]  SFVec3f bboxCenter # init val: 0 0 0 
 field [ ]  SFVec3f bboxSize # init val: -1 -1 –1 
               field [in, out] SFVec3f center  # init val: 0 0 0 
 field [in, out] MFNode humanoidBody # init val: [ ] 
 field [in, out] MFString info  # init val: [ ] 
 field [in, out] MFNode joints  # init val: [ ]  
              field [in, out] SFString  name  # init val: “ ” 
 field [in, out] SFRotation rotation  # init val: 0 0 1 0 
            field [in, out] SFVec3f scale  # init val: 1 1 1 
 field [in, out] SFRotation scaleOrientation # init val: 0 0 1 0 
              field [in, out] MFNode segments # init val: [ ] 
 field [in, out] MFNode sites  # init val: [ ] 
 field [in, out] SFVec3f translation # init val: 0 0 0 
 field [in, out] SFString  version  # init val: “1.1” 
 field [in, out] MFNode viewpoints # init val: [ ] 
} 
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Figure 8.   Joint Node. [From Ref. 14.] 

 

 

 

 

 

 

Figure 9.   Segment Node. [From Ref. 14.] 
 
 
4. Displacer and Site Nodes 

 The displacer nodes are used to identify specific groups of vertices within a 

Segment node. Site nodes are used to define an attachment point for special accessories, 

such as nametags of companies or clothing. Another purpose of the Site node is to define 

a location for the viewpoints. 

 

C. HUMANOID ANDY 

Humanoid Andy is created using Extended 3D (X3D) language as a modification 

of the humanoid named AndyLow. AndyLow is developed as a low resolution humanoid 

Segment : X3DgroupingNode { 
 field []  SFVec3f bboxCenter  # init val: 0 0 0 
 field []  SFVec3f bboxSize  # init val: -1 -1 -1  
               field [in, out] SFVec3f centerOfMass  # init val: 0 0 0 
 field [in, out] MFNode children   # init val: [ ] 
               field [in, out] SFNode  coord   # init val: NULL 
 field [in, out] MFNode displacers  # init val: [ ] 
               field [in, out] SFFloat  mass   # init val: 0 
 field [in, out] MFFloat  momentsOfInertia # init val: [0 0 0 0 0 0 0 0 0] 
 field [in, out] SFString  name   # init val: “” 
 event [in] MFNode addChildren   
               event [in] MFNode removeChildren   
} 

Joint : X3DgroupingNode { 
 field [in, out] SFVec3f center  # init val: 0 0 0 
 field [in, out] MFNode children  # init val: [ ]  
               field [in, out] MFFloat  llimit  # init val: [ ] 
 field [in, out] SFRotation limitOrientation # init val: 0 0 1 0 
               field [in, out] SFString  name  # init val: “ ” 
 field [in, out] SFRotation rotation  # init val: 0 0 1 0 
              field [in, out] SFVec3f scale  # init val: 1 1 1 
 field [in, out] SFRotation scaleOrientation # init val: 0 0 1 0 
 field [in, out] MFFloat  stiffness  # init val: [0 0 0] 
 field [in, out] SFVec3f translation # init val: 0 0 0 
 field [in, out] MFFloat  ulimit  # init val: [ ] 
} 
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by Seamless Solutions, Inc. in 1998 [Ref. 6] and it is allowed to be used or modified for 

none commercial applications, provided that it carries the nametag of the company. 

AndyLow is selected as a starting humanoid for the humanoid Andy because it was based 

on H-Anim 1.1 standards and VRML97 (the former version of X3D). AndyLow cannot 

be used directly in this thesis because of its two drawbacks. First, the humanoid nodes 

were declared as proto declarations because VRML97 does not support built-in H-Anim 

nodes. This drawback is not so vital, but humanoid nodes provided by X3D are very 

handy. Second, the vertexes for the geometries were defined according to a unique 

reference point. When applying rotation to the joints, the segments do not rotate about 

their connection point to the parent. Instead, they rotate about the global reference 

position. This drawback is the main reason to rebuild AndyLow as Andy. 

 

1.  The Nested Skeleton Structure 

Two different methods, according to the usage of reference position while 

creating the geometry of the human limb segments, can be implemented to represent a 

human in 3D-graphics world. The first method uses a fixed reference position. The 

vertexes of the geometry for each segment are determined using this reference position. 

When trying to implement rotations to the joints in this method, rotations are done about 

the fixed reference position. In the second method, each segment has its own local 

reference position defined separately. Local reference positions are assumed to be the 

connection points for two adjacent segments. Therefore, the transformation process is 

applied to all joints to place them into the correct location in the humanoid while creating 

it. For animation, each joint is rotated about its local reference position, i.e. a connection 

point.  

As stated before, a Segment node cannot be a container for Joint nodes. Joint 

nodes are the containers to construct the skeleton of the humanoid. The construction of 

the skeleton can be achieved in two ways: Independent joint structure and nested joint 

hierarchy. The joints in the independent joint structure do not follow the parent-child 

relationship. Joint nodes are translated to their location according to a unique reference 

location. The motion applied to a Joint node does not affect the other joints. Since a 

MARG sensor measures the motion of one human limb independently of each other, this 
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method may seem more suitable for this thesis. But to be compatible with the latest 

standards, this thesis uses the H-Anim standard that defines the structure of the human 

skeleton completely differently. Nested joint hierarchy defined by H-Anim follows the 

parent-child relationship between two adjacent joints. A change applied to the parent 

node effects all the sub nodes. That is, when the left shoulder (upper arm) is rotated, the 

left elbow (forearm) will be rotated, too.  

Figure 10 shows the complete skeleton structure defined by H-Anim standards. 

The Humanoid node is the main container for the whole humanoid. The first-level child 

joint is the Joint node hanim_HumanoidRoot that is the parent for all the remaining 

nodes. The second-level joints are vl5 and sacroiliac. Totally there are 94 joints in a 

detailed skeleton structure.  

A detailed skeleton structure is not required in this thesis because the MARG 

sensors are still too large to mount onto small segments, and the CIU considered for the 

MARG project at the current state supports only up to 15 MARG sensors. For this reason, 

details such as fingers are eliminated and only the most required 15 joints are selected. As 

illustrated in Figure 11, humanoid Andy has only 15 joints in its skeleton structure and 

each joint is assigned a number. These numbers are used as a standard for this thesis. In 

addition to the numbering, the segments attached to the joints are also shown in this 

figure. For example, l_thigh (left thigh) is the segment connected to the l_hip (left hip) 

joint. Therefore, l_thigh segments motion will be controlled through l_hip joint.  

 

2.  The Rebuilding Process of Humanoid Andy 

The humanoid AndyLow was created using VRML97 language, and the 

humanoids nodes were self defined Proto nodes. The X3D built-in humanoid nodes 

already included the functionalities of these Proto nodes.  The Proto nodes contained the 

geometry for the human limb segments. The vertexes in these geometries are very hard to 

set manually. The first step of the rebuilding process is to obtain these geometries in X3D 

type nodes. VRML97 applications can be imported into a project or converted to a new 

project in X3D. This is done by selecting file/import/VRML97 from the menu of X3D.  

 



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.   Detailed Skeleton Structure of a Humanoid. [From Ref.  1.] 

 

 

                                    |       l_wrist : l_hand 
                                    |         l_thumb1 : l_thumb_metacarpal 
                                    |           l_thumb2 : l_thumb_proximal 
                                    |               l_thumb3 : l_thumb_distal 
                                    |         l_index0 : l_index_metacarpal 
                                    |           l_index1 : l_index_proximal 
                                    |             l_index2 : l_index_middle 
                                    |                 l_index3 : l_index_distal 
                                    |         l_middle0 : l_middle_metacarpal 
                                    |           l_middle1 : l_middle_proximal 
                                    |             l_middle2 : l_middle_middle 
                                    |               l_middle3 : l_middle_distal 
                                    |         l_ring0 : l_ring_metacarpal 
                                    |           l_ring1 : l_ring_proximal 
                                    |             l_ring2 l_ring_middle 
                                    |               l_ring3 : l_ring_distal 
                                    |         l_pinky0 : l_pinky_metacarpal 
                                    |           l_pinky1 : l_pinky_proximal 
                                    |             l_pinky2 : l_pinky_middle 
                                    |               l_pinky3 : l_pinky_distal 
                                    r_sternoclavicular : r_clavicle  
                                      r_acromioclavicular : r_scapula  
                                        r_shoulder : r_upperarm 
                                          r_elbow : r_forearm 
                                            r_wrist : r_hand 
                                              r_thumb1 : r_thumb_metacarpal 
                                                r_thumb2 : r_thumb_proximal 
                                                  r_thumb3 : r_thumb_distal 
                                              r_index0 : r_index_metacarpal 
                                                r_index1 : r_index_proximal 
                                                  r_index2 : r_index_middle  
                                                    r_index3 : r_index_distal 
                                              r_middle0 : r_middle_metacarpal 
                                                r_middle1 : r_middle_proximal 
                                                  r_middle2 : r_middle_middle 
                                                    r_middle3 : r_middle_distal 
                                              r_ring0 : r_ring_metacarpal 
                                                r_ring1 : r_ring_proximal 
                                                  r_ring2 : r_ring_middle  
                                                    r_ring3 : r_ring_distal 
                                              r_pinky0 : r_pinky_metacarpal 
                                                r_pinky1 : r_pinky_proximal 
                                                  r_pinky2 : r_pinky_middle 
                                                    r_pinky3 : r_pinky_distal 

HumanoidRoot : sacrum 
  sacroiliac : pelvis 
  |   l_hip : l_thigh 
  |     l_knee : l_calf 
  |       l_ankle : l_hindfoot 
  |         l_subtalar : l_midproximal 
  |           l_midtarsal : l_middistal 
  |             l_metatarsal : l_forefoot 
  |   r_hip : r_thigh 
  |     r_knee : r_calf 
  |       r_ankle : r_hindfoot 
  |         r_subtalar :  r_midproximal 
  |           r_midtarsal : r_middistal 
  |             r_metatarsal : r_forefoot 
  vl5  : l5 
    vl4 : l4 
      vl3  : l3 
        vl2 : l2 
          vl1  : l1 
            vt12 : t12 
              vt11 : t11 
                vt10  : t10 
                  vt9 : t9 
                    vt8 : t8 
                      vt7 : t7 
                        vt6  : t6 
                          vt5 : t5 
                            vt4 : t4 
                              vt3 : t3 
                                vt2 : t2 
                                  vt1  : t1 
                                    vc7 : c7 
                                    | vc6 : c6 
                                    |   vc5 : c5 
                                    |     vc4  : c4 
                                    |       vc3 : c3 
                                    |         vc2  : c2 
                                    |           vc1 : c1 
                                    |             skullbase : skull 
                                    |               l_eyelid_joint : l_eyelid 
                                    |               r_eyelid_joint : r_eyelid 
                                    |               l_eyeball_joint : l_eyeball 
                                    |               r_eyeball_joint : r_eyeball 
                                    |               l_eyebrow_joint : l_eyebrow 
                                    |               r_eyebrow_joint : r_eyebrow 
                                    |               temporomandibular : jaw  
                                    l_sternoclavicular : l_clavicle  
                                    | l_acromioclavicular : l_scapula  
                                    |   l_shoulder : l_upperarm 
                                    |     l_elbow : l_forearm 
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Figure 11.   The Skeleton of Humanoid Andy in Nested-Joint Structure. 

 

The conversion by itself is not enough because X3D does not know how to the Proto 

nodes are defined. So, the nested hierarchical skeleton structure is rebuild by using 

Humanoid, Joint and Segment nodes. The geometry is the same geometry used by the 

Proto nodes. The result of this step makes humanoid AndyLow compatible with X3D.  

The vertexes of each segment’s geometry are defined according to a unique 

reference position located in the origin of the humanoid. Using the same reference 

position for all segments has drawbacks when rotating the joints, as described earlier in 

this chapter. Therefore, the second step is to recalculate the vertexes according to their 

local reference positions. The recalculation process is implemented as follows: The 

original vertex values are copied from the geometry nodes and pasted into a file. 

PointsCalculator class reads the original vertex values from this input file and saves the 

recalculated new results into an output file. New vertexes in the output file is copied and 

HumanoidRoot : sacrum/pelvis  [0] 
   | 
   | l_hip : l_thigh    [1] 
   |      l_knee : l_calf   [2] 
   |             l_ankle : l_hindfoot  [3] 
   | 
   | r_hip : r_thigh    [4] 
   |      r_knee : r_calf   [5] 
   |             r_ankle : r_hindfoot  [6] 
   | 
   | vl5    : l5    [7] 
          | 
          | skullbase : skull   [8] 
          |   
          | l_shoulder : l_upperarm  [9] 
          |       l_elbow : l_forearm  [10] 
          |              l_wrist : l_hand  [11] 
          |                    l_fingers : left_fingers [None] 
          | 
          | r_shoulder : r_upperarm  [12] 
          |       r_elbow : r_forearm  [13] 
          |              r_wrist : r_hand  [14] 
          |                    r_fingers : reft_fingers [None] 
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pasted back to the geometry nodes. This process is repeated for each segment. The 

pseudo code for the recalculation process is provided in Figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.   The Pseudo Code for Recalculating the Vertexes. 

 

The ratio values in the vertex recalculation pseudo code determine the distance for 

the connection point of the geometry from the parent joint. For example, a ration value of 

0.1 indicates the 10 percent length of the total geometry. The lower the ratio value, the 

closer the connection to the parent joint. The connection point is also referred to as the 

// Assign the RATIO values.  
// Ration value is the ratio of length from the parent joint (local reference position). 
// The lower the value, the local reference position (connection) closer to the parent joint 
ratio_X = 0.5;  ratio_Y = 0.1;  ratio_Z = 0.5; 
 
// Find the minimum and maximum vertex values for the given geometry (in 3 axis) 
//  loop (until data left in input file) { 
// Read vertex value from file and compare with current min and max values  } 
min_X, min_Y, min_Z, max_X, max_Y, max_Z 
 
// Find the length of the geometry for 3 axes 
// length = abs(max vertex value - min vertex value) 
length_X, length_Y, length_Z 
 
// Determine the local reference position of the geometry. 
// Positioned from the closest end to the parent joint in the amount of RATIO value 
// locationRefPos = length * RATIO 
locationRefPos_X, locationRefPos_Y, locationRefPos_Z 
 
// Determine the required shifting value to move the local reference position to the origin
// if the closest edge of the geometry to the origin is the MAX vertex value: 
//    shift = - (max value - locationRefPos) 
// if the closest edge of the geometry to the origin is the MIN vertex value: 
//   shift = - (min value + locationRefPos) 
shift_X, shift_Y, shift_Z 
 
// save the shifting values to the output file 
 
// apply these shifting values to the three axis of the vertex.  
loop (until no data left in the input file) { 

// Read the next vertex from the file  
 read from file 
  

// new value = old value + shift 
 new_X, new_Y, new_Z 
 
 // save the new vertex to the output file 
 save to file 
} 
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local reference position for new vertexes. The default values are 0.5 for x-axis and z-axis, 

0.1 or 0.9 for y-axis. Because, according to the standard posture for humans in H-Anim 

standard, a human’s face is out to the positive z-axis, the head is to the positive y-axis, 

and the left side is to the positive x-axis in a standing position (attention position in 

military) [Ref. 1]. In a standing position, the segments are mostly postured downward. 

For example, the thickness of the forearm is represented by the x- and z-axis while the 

length is represented by the y-axis.  Figure 13 illustrates the meaning of the ratio value. 

  

 

 

 

 

 

 
Figure 13.   The Meaning of the Ratio Value. 

 

Since the goal of this algorithm is to determine a connection point to the parent 

joint and redraw the complete geometry in the new reference position, the next step of the 

algorithm is to find a shifting vector from the local reference position to the origin. The 

maximum and minimum vertex values of the geometry in each axis are determined. 

Taking the absolute values of the differences between the maximum and minimum values 

give the lengths of the geometry in each axes. Multiplying the lengths with their 

corresponding ratio values will give the distance from the local reference position to the 

parent joint.  

The shifting vector is the vector required to translate the connection point to the 

origin. It is determined using two different types of calculations depending on the 

position where the geometry is located. The possible four locations on the x-axis are 

illustrated in Figure 14. Positions in case 1 have their max-valued edge closer to the 

origin. The absolute maximum value is smaller than the absolute minimum value. That is, 
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most parts of the geometry (or the complete geometry) locate in the negative portion of 

the x-axis. The remaining possible locations in case 2 have their minimum valued edge 

closer to the origin. In this case, the absolute minimum value is smaller than the absolute 

maximum value. That is, most of the geometry (or the complete geometry) locates in the 

positive portion of the x-axis. The shifting value for x-axis is determined as follows:  

shift value = - (max value – length * ratio)     (in case 1) 

shift value = - (min value + length * ratio)     (in case 2) 

The same concept is followed for the y- and z-axis, too. 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 14.   The Possible Locations on the X-Axis. 

 

After determining the shifting vector for the geometry, the vector is added to all 

vertexes in the input file. Then the new values are saved into the output file. The shifting 

values need to be saved, too. After pasting the new vertex values back to their geometry 

nodes, the segments are translated to their proper location in the humanoid body by using 

the inverse shifting values. Multiplying the shifting values with minus one will give the 

inverse shifting value.  

 

min  max 

min  max 

x 

z 

y 

CASE 1 

min  max 

min  max x 

z 

y 

CASE 2 



28 

Inverse shifting values can be directly set to the translation field of the Joint node. 

But doing so breaks the nested-joint structure of the skeleton. The translations depend on 

their parents’ translations. Rebuilding the new humanoid with the new vertexes requires 

one to follow the hierarchy in the nested-joint structure. For instance, the shoulder 

(upperarm) is translated before the elbow (forearm). Vectors v1, v2 and v3 in Figure 15 

represent the inverse shifting vectors obtained above. Vectors v2 and v4 are the shifting 

vectors relative to the parent joints. It is assumed that v1 is applied to the highest-level 

parent joint and a first level child joint is connected to it. The actual location of the first-

level child is v2 away from the parent joint, and v3 away from the origin. v1 and v3 are 

known (inverse shifting vectors), and v2 is equal to the subtraction of v1 from v3. That is, 

inverse shifting vector of the parent is subtracted from the child’s inverse shifting vector. 

v2 is set to the translation field of the first-level child joint. The same principle is applied 

to the second-level child joint. This time v3 and v5 are known, but v4 is unknown. The 

humanoid Andy using the technique described above is shown in Figure 16. Humanoid 

Andy has the same geometry as humanoid AndyLow.  

 

3. Getting Humanoid Andy to Work with Java Networking 

A Browser or Plug-in is an application used to view VRML, X3D and/or other 3D 

files. Multiple browsers are available, supporting features in the various Web3d 

specifications. Cortona and Cosmo Player are two of the browsers listed on WEB3D web 

site [Ref.15]. Both Cortona and Cosmo Player are compatible with MS Internet Explorer 

and Netscape Navigator and support java scripting. MS Internet Explorer (IE) has an 

advantage over Netscape Navigator by virtue of its security policy. Because of obvious 

security reasons, applets running in a browser may not send network traffic to nor receive 

any hosts other than the server where applets are downloaded from without throwing a 

security exception. This problem might be encountered when the scripting class is 

connected to the network and receives the updated data of the Humanoid through the 

network. Internet Explorer gets around with this security rule by its security policy. 

According to the policy Java classes in a *.jar file, which are in the same directory on the 

local disk as the invoking web page, are not subject to applet security rules. For this 

reason, Internet Explorer is preferred in this thesis. 
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Figure 15.   Rebuilding the New Humanoid in the Nested Joint Structure. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16.   Humanoid Andy. 
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In order to implement IE’s security policy, the following tasks need to be 

performed. First, put the compiled java classes into the same *.jar file in which the 

VRML or X3D file is placed. A batch file can be created for this purpose. The sample 

batch file lines below compile MyScript.java and add all the files and the directories 

located in the current local directory into MyJarFile.jar file.  

C:\jdk1.3.1\bin\javac   MyScript.java 

C:\jdk1.3.1\bin\jar cvf MyJarFile.jar *.* 

Second, add the classpath for the *.jar file to the “environment variables.” The 

classpath can be added to Windows 2000 or Windows XP by selecting start > control 

panel > system > advanced > environment variable. Then the following code is typed.  

CLASSPATH c:\path of the jar file\MyJarFile.jar 

Although implementing Internet Explorer’s security policy solves the security 

problem in java networking, it is still not enough to get Java to work with X3D. Some 

nodes, such as Transform and HAnimJoint, in X3D provide fields that are capable of 

receiving and/or sending data through ROUTE nodes. Route nodes are forwarding nodes 

and contain four attributes: fromNode, fromField, toNode, and toField. The idea is 

simple: from source to destination. The source and the destination can be any node, such 

as Transform and Script node.  The data of fromField is transferred to toField if these 

fields are defined properly. An EventIn event allows a field to receive data and an 

EventOut event to send data. The Rotation field defined in Transform node supports both 

the EventIn and EventOut event that makes it capable of receiving and sending data. 

Thus the fromField should support EventOut event, and the toField should support the 

EventIn event. The relation between Java and X3D is illustrated in Figure 17.  

Script node is the key node for the link between Java and X3D. This node 

contains one or more fields that support either EventIn’s or EventOut’s or both. These 

fields are the pipes and need to be known by the Java script class referred inside the 

Script node. For this reason all these fields are defined and created in the Java class and 

the class is inherited from the Script class. Figures 18 and 19 show the relationship. 
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Figure 17.   The Relationship between Java and X3D. 

 

 

 

 

 

 

 

 

 

 

Figure 18.   The Java Script Code. 
 
 
4.  Implementing Multiple MARG Sensors to Track Humanoid Andy 

Humanoid Andy has a nested-joints structure as mentioned earlier. The 

HumanoidRoot is the root joint and the parent joint for the second order joints. Second-

order joints are the left hip, right hip and vl5. For example, the hierarchical joint structure 

for the right arm is as follows: HumanoidRoot, vl5, r_shoulder, r_elbow, r_wrist and 

r_fingers. A MARG sensor is capable of providing quaternion data for the motion of the 

attached segment. Positioning the tracked segment is possible through implementing the 

quaternion data to the related joint. After converting the quaternion data into an axis-

import vrml.*; 
 
public class MyScript extends Script { 
 // A reference to the fields in Script node (X3D) 
 protected SFRotation leftHip; 

protected SFRotation rightWrist; 
 
// Initialize the Script node 
protected void initialize () { 
 // Create connections 
 leftHip = (SFRotation) getEventOut (“leftHip”); 
 rightWrist = (SFRotation) getEventOut (“rightWrist”); 
 
 // Setting an initial value 
 leftHip.setValue (0.0f, 0.0f, 1.0f, 0.0f); 

rightWrist.setValue (0.0f, 0.0f, 1.0f, 0.0f); 
} 

} 

 

   

 

Java Script Class 

Script Node 

ROUTE Node Any Node 
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angle pair data, the SFRotation field of the Joint node sets the axis-angle data pair. This 

process is enough for only one sensor tracking. Additional processes are required to 

implement multiple sensors to the humanoid Andy. 

 

 

 

 

 

 

 

Figure 19.   The X3D Script Node. 

 

Let’s assume a simple tracking system with one MARG sensor. If the quaternion 

output of the MARG sensor is q, then the total orientation data is only q (see Figure 20). 

But, when tracking a nested structure with two segments, each MARG sensor will 

produce quaternion data (t, h) for its own measurement, which is completely independent 

of the other.  Implementing t to the first joint will not only position the first segment 

accurately but also affects the second joint, so that the starting position for the second 

segment is set to t. This will result in an inaccurate positioning for the second segment if 

h is directly implemented to its relevant joint (see Figure 21). In order to solve this 

problem, initially the inverse quaternion of t is implemented to the second joint to 

eliminate the effect of first MARG sensor. Later, quaternion h can be safely implemented 

to the second joint.  The formulation of this process is as follows. Assume  

h = quaternion for child joint motion measured by the MARG sensor, 

t  = quaternion for parent joint motion measured by the MARG sensor, 

c = final quaternion for the child joint. 

The final quaternion data (c) applied to the joint is calculated as follows: 

c = inverse (t) * h. 

9   jt HAnimHumanoid   DEF HUMANOID, name Humanoid, version 2 0 

^ J  HAnimJoml  DEF hanim_HumanoidRool, name HumanoidRool, conlamerField skeleton 

\<J[ lop-level loinl references 

J  HAnimJoml  USE hanim_r_wnsl, conlamerField loinis 

J  HAnimJoml  USE hanim_l_hip, conlamerField loinis 

g] Scnpl  DEF MolionUpdaler, uri "MyScnpl class" 

T*-field, name letlHip, acceesiype oulpulOniy, tvpe. SFRolalion 

'- ^^ fleld: name: rlghtWrlst, accessType: outputOnly, t/pe: SFRotatlon 

^ ROUTE: fromNode: MotlonUpdater, fromFleld: leflHIp, toNode: hanlmj_hlp, toFleld: seLfotatlon 

^ ROUTE: fromNode: MotlonUpdater, fromFleld: rlghtWrlet, toNode: hanlm.Lwrlst toFleld: eeLfotatlofi 
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 The idea for positioning the nested structures with more than two segments is 

identical for those with two segments. The inverse motion for the parent joint(s) is 

multiplied with the child joints motion. This multiplication is carried out in quaternion 

type. 

 

 

 

 

 

 

Figure 20.   Positioning One Segment. 

 

D. SUMMARY 

This chapter first presented the H-Anim standards and the X3D graphics 

language. It continued with providing information about H-Anim nodes contained by 

X3D and the nested-joint structure of humanoids. Finally, the methods used for 

rebuilding the humanoid Andy and getting humanoid Andy work with MARG sensors in 

the network environment was discussed. For this thesis, a low-resolution Humanoid with 

fifteen joints is sufficient, but a high resolution Humanoid is needed for fine gestures and 

mimics in further work. 
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Figure 21.   Positioning Two Adjacent Segments in the Nested Structure.  
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IV. DESIGN OF THE CLIENT-SERVER PROGRAM 

Multicasting is the most efficient way of transmitting information among a large 

number of group members spread out over different networks. Reduction of network 

bandwidth use is the major advantage of using multicasting protocols. Unfortunately, 

most of the routers on the Internet do not have multicast routing protocols configured. A 

technique called tunneling is used to overcome this problem. Because very few numbers 

of clients, up to 10 or 20, are required in this thesis, an alternative method to the 

multicasting protocol referred as Multicasting Using TCP and UDP Protocol (MUTUP) 

is introduced. This method overcomes the tunneling problem by implementing a 

multicasting protocol with TCP and UDP protocols.  

Implementing a multicasting protocol using TCP and UDP protocols requires a    

concurrent client-server structure. Concurrent processing in Java can be implemented 

with Thread classes. Each thread employed in the system requires additional memory and 

CPU usage. The increase in the number of the clients supported by the server program 

will increase the amount of memory consumed. This might result in out-of-memory 

problems or very low performance due to the overloaded CPU. In order to provide better 

performance and avoid memory problems, the user in server settings restricts the number 

of clients.  

In principle, MUTUP is very similar to the File Transport Protocol (FTP). The 

main difference between them is the protocols that are used to establish connections 

between the server and the client applications. Two connections are set for handling a 

client in both methods. These two connections use TCP protocol in FTP protocol, 

whereas one is TCP and the other is UDP in MUTUP. The reason for this difference is 

that file transfer requires reliable communication, but motion data streaming requires fast 

communication. 

This chapter discusses MUTUP developed as an alternative for multicasting 

protocol used in this thesis. It also discusses the implementation of this MUTUP to the 

MARG project.  
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A.  MULTICASTING USING TCP AND UDP PROTOCOLS 

MUTUP sets a TCP and a UDP connection between the server and each of the 

client applications. A TCP connection is established as follows: First, the Server class 

creates a ServerSocket object and waits for clients to make a request to set a TCP 

connection. In order to make a request, clients need to know the IP address and the TCP 

port number of the server. This information can be either assigned as a fixed global 

variable or provided externally in the command line when running the client application. 

Second, the client creates a Socket object with the provided or assigned IP address and 

TCP port number. The Socket object makes a request of a TCP connection from the 

ServerSocket object in the Server class. The ServerSocket object accepts the request and 

sets a TCP connection by creating a Socket object for the requesting client. Third, since 

there will be multiple clients in the system, the Server class creates and starts a Thread 

object for handling each new client. A class extending from the Runnable interface is 

required as a parameter to the Thread class. Therefore, an additional class referred as 

HandleClient class is defined for handling clients. A pseudo code for the Server class and 

the HandleClient class is provided in Figures 22 and 23.  

A TCP connection by itself is not enough to create an alternative design to 

multicasting for this thesis. A TCP connection is used for general-purpose 

communications, such as transferring essential data for setting a UDP connection and 

informing the server when the client wants to terminate. Since the motion data tracked by 

the MARG sensor(s) require low latency, the second link between the client and the 

server must be a UDP connection.  

The number of clients accepted by the Server class is limited by using a counter 

variable in an infinite loop. Since the number of active clients at a time is dynamic, the 

counter variable is increased after each client’s request and decreased after each client 

shuts down. If the counter reaches the upper allowable limit, then it stops accepting new 

clients until one of the active clients shuts the connection down.   
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Figure 22.   Pseudo Code for the Server Class. 
 

The constructor of the HandleClient class accepts the Socket object passed from 

the Server class, and extracts the input and output streams from the Socket object. These 

streams are used for the TCP communication. The second connection is established in the 

HandleClient class by requesting the port number and the IP address of the UDP 

connection from the Client class. The request is done through the TCP connection. The 

Client class creates a DatagramSocket object after receiving the request from the 

HandleClient class and responds after retrieving the UDP port number and IP address that  

the DatagramSocket object listens for. The HandleClient class sends feedback to the 

Client class to confirm that the requested data is received. A loop is employed in the 

HandleClient class in order to create DatagramPacket objects (packet) for the data. The 

IP address and the UDP port number of the client are set to each packet before sending 

them. The Client class employs a loop for receiving the packets. The loop continues until 

no more data is left or the UDP connection is broken. Finally, the TCP and the UDP 

class Server  { 
      Set counter = 0;    // the counter 
      Set maxClientAllowed,    // Maximum clients allowed 
 
      Create the shared array/memory,  // byte[] sharedMemory 
 
      Create and start the thread for MemoryUpdater class 

 
      create ServerSocket object; 
 
      while (true) { 
           if (counter < maxClientAllowed) { 
             Accept new client;    // ServerSocket.accept() 
             Create Socket object for the client; 
             Create Thread object to handle the client;   // new Thread(new HandleClient(sock, this)) 
             Start thread;    // Thread.start() 
             counter ++; 
           } 
      } 
} 
 
Provide the method for decreasing the counter, 
Provide the setter and getter methods for the shared array. 
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connections are killed on both sides and the counter variable of the Server class is 

decremented. The pseudo code for the Client class is provided in Figure 24.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23.   Pseudo Code for the HandleClient Class. 
 

class HandleClient implements Runnable   
 
CONSTRUCTOR: 
Save the Socket object and the Server object passed by the Sever class; 

// Socket sockTCP = Socket Object passed by the server; 
     // Server owner   = this; 
 
RUN: 
Create input/output stream for the TCP connection; 

// DataInputStream dis = new DataInputstream (sockTCP.getInputStream ()); 
// DataOutputStream dos = new DataOutputstream (sockTCP.getOutputStream ()); 
 

Request address and port number for the UDP connection 
// dos.writeUTF("Requesting address and port number for UDP connection"); 
// dos.flush (); 
 

Wait to receive the respond from the client 
// clientRespond = dis.readUTF(); 
 

 Send acknowledge to the client; 
// dos.writeUTF("address and port number received"); 
// dos.flush(); 
 

 Tokenize address and port number from the respond message 
// StringTokenizer st  = new StringTokenizer(clientMsg); 
// InetAddress destAddrUDP = InetAddress.getByName(st.nextToken()); 
// int  destPortUDP = new Integer(st.nextToken()).intValue(); 
 

 while (more data to send) { 
create DatagramSocket 
 // sockUDP  = new DatagramSocket();  -- bounds to any available local port -- 
 
read the motion data from the shared byte array in the server 

// byte[] barray = owner.getSharedByteArray(); 
 
create a DatagramPacket object, 
set the address and the UDP port number of client 
 // packet = new DatagramPacket(barray, barray.length, destAddrUDP, destPortUDP);
 
send the packet 
 // sockUDP.send(packet); 

} 
 
Kill the UDP and the TCP connections,  
Decrease the counter variable of the Server class  // owner.decreaseCounter(); 
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The method described above handles multiple clients concurrently, but it is not 

explained how the same motion data is distributed to the clients simultaneously. Unless 

the same data is distributed to the clients simultaneously, the system will not implement 

multicasting. As a solution, a shared array/memory for the motion data is used in the 

system. In order to get the shared array accessible by all client handler threads, the array 

is defined in a global perspective, i.e. in the Server class, and the getter and setter 

methods are provided. For updating the shared array, the Server class employs an 

additional thread implementing the MemoryUpdater class. The pseudo code for 

MemoryUpdater class is provided in Figure 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.   Pseudo Code for the Client Class.                                
 

 

 

class Client  
 
Create Socket object for TCP connection 
 // addrTCP = InetAddress.getByName(ADDRESS) 
 // sockTCP = new Socket(addrTCP, DEFAULT_TCP_PORT); 
 
Create input/output stream for the TCP connection; 
         // DataInputStream  dis = new DataInputstream(sockTCP.getInputStream()); 
 // DataOutputStream dos = new DataOutputstream(sockTCP.getOutputStream()); 
 
Wait to receive request from the server 
 // serverRequest = dis.readUTF() 
 
Create DatagramSocket object for UDP connection 
 // sockUDP = new DatagramSocket(); 
 
Retrieve IP address and UDP port number from the DatagramSocket object 
 // addrUDP = (InetAddress.getLocalHost()).getHostAddress();  
 // portUDP = sockUDP.getLocalPort(); 
 
Respond to the server's request 
 // dos.writeUTF(addrUDP+" "+portUDP"); 
 // dos.flush();  
 
Wait for acknowledge 
 // dis.readUTF(); 
 
while (not finished) { 
 Receive motion data 
  // sockUDP.receive (packet); 
 
 Update Humanoid 
} 
 
Kill the TCP and UDP connections, 
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Figure 25.   Pseudo Code for the MemoryUpdater Class.                                

 

B.  IMPLEMENTATION OF MUTUP IN THE MARG PROJECT 

The Concurrent Client Server Program is used as a connector between the MARG 

sensor(s) and the representation of the humanoid developed in X3D to animate the 

tracked human motion. The humanoid used in this design is the humanoid Andy 

introduced in Chapter III. Humanoid Andy is capable of animating the 15 MARG sensor 

data that is the minimum requirement for full-body human motion tracking as mentioned 

in [Ref. 2]. The block diagram of the Concurrent Client Server Program implementing 

MUTUP is illustrated in Figures 26 and 27.  

The StartServer class is the starting program for the Concurrent Client-Server 

Application (CCSA) and triggers the server program by creating and starting a Thread 

object for the Server class. The Server class implements Runnable interface and is 

responsible for receiving raw MARG sensor(s) data, converting them into quaternion 

representation and updating the shared array/memory continuously. Furthermore, the 

Server class is responsible for starting a new thread for handling each new client and 

controlling the number of active clients at any given time. Since the shared array for the 

class MemoryUpdater implements Runnable   
 

CONSTRUCTOR: 
save the Server object passed by the Sever class; 

// Server owner   = this; 
 

RUN: 
Create 3 arrays for raw sensor data, 
 
Create and run a thread implementing MARGDataUpdater class, 
// This thread receives data through 3 MARGDataReader class,  
// and updates raw sensor data arrays continuously 
 
while (continue reading data from sensors) { 
 Convert the 3 raw sensor data into quaternion data, 

// Use QuestQuaternionProducer class 
 

Convert the quaternion data into byte[] type data, 
 
Save the converted data into the shared array, 
// by using setter method provided by the Server class 
// owner.setSharedByteArray(barray); 

} 
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motion data is required to be accessible by all sub-threads in the system for implementing 

multicasting, the Server class contains the shared array. In this way, the shared array 

gains a global status over the threads created by the Server class and both the thread 

implementing MemoryUpdater class and threads implementing HandleClient classes can 

access the shared array. The Server class provides setter and getter methods for the 

shared array. For the purpose of reducing computation process, the shared array is 

defined as byte[] type. This is because the motion data is transmitted to the clients 

through UDP connections and UDP packets accept payload data in byte[] type. 

Otherwise, each HandleClient class has to repeat the same conversion process from high-

level quaternion data to the low-level byte[] data. The number of threads employed by the 

Server class depends on the number of clients allowed to be handled. In any case, a 

thread for implementing MemoryUpdater class is created and started first because the 

server needs to be ready for capturing motion data before accepting any client.  Once the 

MemoryUpdater class is created and started to update the shared array, the clients can be 

accepted within the allowed limitations. 

The MemoryUpdater class implements the Runnable interface and its 

responsibilities are as follows: Receiving the sensor data through three different 

WiSER2400.IP wireless serial adapters and converting the raw sensor data first into 

quaternion representations and later into byte[] form. Receiving the sensor data through 

the 3-channel CIU is more challenging than through the 15-channel CIU. Since the 15-

channel CIU is not ready at this moment, the MemoryUpdater class is designed to use the 

3-channel CIU connected to three different WiSER2400.IP adapters and MARG sensors. 

The MemoryUpdater class will be much simpler for a 15-channel CIU since it will use 

only one wireless serial adapter and all sensors will be connected to this serial adapter. In 

order to use the 3-channel CIU in the concurrent client-server design, an additional thread 

implementing the MARGDataUpdater class is needed. The MARGDataUpdater class is 

in charge of three different MARGDataReader class for handling the three MARG 

sensors connected to the 3-channel CIU. The MARGDataReader class is responsible only 

for receiving the sensor data through the WiSER2400.IP serial interface and parsing it. 

Handling these parsed raw sensor data is under MARGDataUpdater class’s 

responsibility. The MemoryUpdater class provides three different arrays for each parsed 
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raw sensor data. These arrays are in int[] type and updated simultaneously by the 

MARGDataUpdater class.  

The second task of the MemoryUpdater class is to convert the raw sensor data 

into usable quaternion data. The QuestQuaternionProducer class implements the Quest 

quaternion algorithm introduced in [Ref. 7] in order to handle this conversion process. 

The MemoryUpdater class uses three different QuestQuaternionProducer classes for each 

raw sensor data since each sensor calibration data is different from the others and the 

Quest quaternion algorithm uses the sensor calibration data in its calculations. The output 

quaternion data is in [w x y z] order. Each element of quaternion data is in double type 

data. It is acceptable to save the quaternion data as it is, but an additional conversion into 

byte array form is needed before sending them to the clients. When multiple clients 

accepted by the server, this means redundant computation overload on the computer 

running the server application. Therefore, this conversion task is the third responsibility 

of the MemoryUpdater class. The size of the shared array is flexible for further work with 

15 sensors, or even more than 15. That is, it is capable of handling 15 sensor data in byte-

array from. For this reason, the MemoryUpdater class can update any selected three-joint 

location in the shared array by setting the number of joints to the shared array updater 

method.  The three joints are determined globally either in a different class or within the 

Server class. Using a different class is more flexible than defining within the Server class. 

As described earlier in the chapter, the HandleClient class is used to handle each 

visiting client. The HandleClient class implements Runnable interface and establishes a 

UDP connection with the client, which it is responsible to handle.  Since setter and getter 

methods are provided for the shared array by the Server class, the HandleClient class 

reads the latest updated MARG sensors data by using the getter method. The read data is 

transmitted to the client without any additional calculations: simply read and transmit.  

On the client side, the humanoid Andy is connected to the ClientReceiver (Client) 

class by using a Script node and can receive the MARG sensors data through this class. 

ClientReceiver class sets two connections with the server program. First, a TCP 

connection for general-purpose communications is set. The client conducts the initial 

contact with the ServerSocket object of the Server class by using the TCP connection. 
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Figure 26.   Block Diagram of Concurrent Client Server Program. 
 

 
ClientReceiver class 

(Thread) 

Update 

 
ClientReceiver class 

(Thread) 

Update 

Server class (Thread) 

MemoryUpdater class (Thread) 

Update  
 

Shared

byte[] 

 
Read sensor data  

Wireless 

MARG Sensor(s) 
data provided 
through three 
Wisor2400IP 
serial adapter 

 

Read from shared 

2. Start threads to handle clients 

1. Start memory updater thread 

Trigger Server class 

StartServer class 

HandleClient class 
(Thread #1) 

HandleClient class 
(Thread #N) #2, #3, #4, … 



44 

If the ServerSocket object accepts the client, then the second connection is established 

between the ClientReceiver and the HandleClient class for transferring the MARG 

sensors data. Since the data rate is the major issue regarding performance in networked 

virtual environments, the second connection is implemented using the UDP/IP protocol.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27.   A Detailed Block Diagram of MemoryUpdater Class. 
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C.  SUMMARY 

This chapter discussed MUTUP developed as an alternative of the multicasting 

protocol to be used in this thesis and discussed the implementation of MUTUP to the 

MARG project. MUTUP overcomes the tunneling limitations/requirements of the 

multicasting protocol. The major drawback of MUTUP in a concurrent clients-server 

application is the limited number of clients accepted by the server. But, this drawback 

does not affect the MARG project since a limited number of clients is expected. The 

principle of MUTUP is similar to the FTP protocol, except the types of connections 

established between the client and the server applications. 
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V. TESTING AND EVALUATION 

This chapter describes the efforts of testing and developing procedures of the 

humanoid Andy and the concurrent client-server program. Tests are conducted with 

simulation data produced by a program developed in the Advanced Physically Based 

Modeling course [Ref. 16] and real-time data obtained by using the MARG sensors.   

 

A.  ROTATIONAL MOTION TESTS THE HUMANOID ANDY 

As described in Chapter III, humanoid AndyLow was created in VRML97 and 

Proto nodes were declared to implement the H-Anim standards. Humanoid Andy, the 

modified version of the humanoid AndyLow, is compatible with X3D and implements H-

Anim standards using built-in humanoid nodes provided by X3D. The process of 

developing the humanoid Andy from the humanoid AndyLow was discussed in Chapter 

III. Orientation tests applied to the joints of the humanoid Andy are required for 

validating the humanoid. The first orientation test is implemented using the 

OrientationInterpolator node provided by X3D. The OrientationInterpolator node 

generates a series of rotation values in axis-angle pair data type that can be routed to the 

Joint nodes of the humanoid Andy. This test showed that the humanoid Andy could be 

used for tracking human motion since all 15 segments rotated about their relevant joints 

(connection points to the parents). Figure 28 illustrates the simultaneous rotation of the 

left forearm about z-axis and left hand about y-axis. Figure 29 illustrates the rotations of 

the left forearm, right forearm and the head of humanoid Andy. 

The second orientation test is conducted using simulated data created by a 

program developed in the Advanced Physically Based Modeling course [Ref. 16]. 

Methods in LISP codes provided by the instructor were used in developing the program. 

The program produces three-degrees-of-freedom (3 DOF) motion data for a rigid-body 

model of a human arm either in Euler angles or in quaternions. The resulting data is 

displayed on the screen and is saved into a file either as Euler angles or as quaternion 

data. The mouse and a button on the keyboard are used to move the arm in 3 DOF. A 

sample screen capture of the LISP program moving an arm in 3 DOF is illustrated in 
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Figure 30. Subsequently, the quaternion data saved in the file is read by a Java program 

and set to the Joints of the humanoid Andy. Since the humanoid Andy cannot implement 

quaternion data directly for rotations, a computation from quaternion into axis-angle pair 

is processed before setting the Joint nodes.  

 

 

 

 

 

 

 

 

Figure 28.   Simultaneous Rotation of the Left Forearm about Z-Axis and Left Hand about Y-
Axis 

 

 

 

 

 

 

 

 

 

 

 

Figure 29.   Rotations of Left Forearm, Right Forearm and Head of the Humanoid Andy 
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Figure 30.   A Sample Screen Capture of the LISP Program Moving an Arm in 3 DOF 

 

B.  TESTING HUMANOID ANDY WITH ONE MARG SENSOR 

Even though the orientation tests discussed above are not in real time, they 

showed that humanoid Andy is ready for human motion tracking using MARG sensors in 

a real-time application. The testing with the MARG sensor follows three steps. First, the 

MARG sensors capture limb segment independently from the other sensors and cannot be 

directly implemented to the joints. Therefore the humanoid is tested for one MARG 

sensor at the beginning using one-channel CIU. Second, in order to achieve a real-time 

application a server and a client program are developed. The server is responsible only 

for reading motion data of one MARG sensor, and then transmitting it to the client 

program. Humanoid Andy receives the real-time motion data through the client program. 

A UDP connection between the server and the client program is set for achieving a higher 

data rate.  

Third, the data read from the sensor is raw data and needed to be converted to a 

high-level representation. A joint work with [Ref. 8] is started to implement this 

conversion. The Quest and Triad algorithms introduced in [Ref. 7] can be used to 

determine the three-axis attitude from vector observations. Both algorithms provide low-

cost computation and high numerical accuracy. Since the Quest algorithm is chosen for 

higher accuracy applications, this thesis focused on implementing the Quest algorithm. 

The Quest algorithm uses six accelerometer and magnetometer data read from the sensor 

as an input and produces quaternion data for the motion. Figure 31 shows the high-
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accuracy of rotations obtained by the MARG sensors using the Quest algorithm. The arm 

is initially parallel to the y-axis facing down to the negative y-axis. It went through a 

rotation of 90 degrees about negative x-axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31.   The Implementation of Quest Algorithm to the Humanoid Andy (90 Degrees of 
Rotation about Negative X-Axis) 
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C.  TESTING HUMANOID ANDY USING TWO MARG SENSORS  

 Use of the quaternion data from multiple MARG sensors in a nested-joint 

structure is another testing applied to the humanoid Andy. Each MARG sensor works 

independently from each other. But, the joints in the skeleton of the humanoid are 

dependent on the adjacent parent joints. As described in Chapter III, the inverse motion 

of the parent segment is multiplied with the motion of the current segment before 

applying it to the relevant joint of the current segment. The concurrent client-server 

program discussed in Chapter IV is used to apply this method for testing. Two adjacent 

segments selected for the testing are the right upperarm and the right forearm. The related 

joints for these segments that are in the connection point to their parent joints are the 

r_shoulder and r_elbow joints. Two MARG sensors are connected to the three-channel 

CIU and their calibration results are set to the corresponding QuestQuaternionProducer 

classes. Each MARG sensor needs to be calibrated independently from the other sensors. 

In this case, two different objects of the QuestQuaternionProducer class are created in the 

MemoryUpdater class. In addition to these objects, two different MARGDataReader 

objects are also created for reading sensor data from two different MARG sensors. 

Finally, the system is set to support two MARG sensors on the server side. The 

quaternion data for each sensor is produced independently of the others, each using its 

own calibration data. The produced quaternion data is converted into byte[] type data and 

saved to the corresponding location in the shared array. The HandleClient class reads the 

shared array and transmits it to the client program that runs the humanoid Andy. At this 

moment, the quaternion data transmitted to the client side is the exact representation of 

each MARG sensor measurement. 

 On the client side there are three array-type data members defined for storing the 

motion data received from the server program. The reason for defining three different 

data members for holding the motion data is to provide flexibility to the further client 

programs with different humanoids. The humanoids developed in the future may use one 

of these data members, depending on their structure. The first data member stores the 

exact sensor measurements in high-level (double) quaternion type data. The client 

program converts the low-level byte[] type data received in the packet to a high-level 

quaternion type data and saves it into the first data member. The second data member 
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stores the motion data in high-level quaternion data but ready to apply to the nested-joint 

structure of the humanoid Andy. To get the sensor data compatible with humanoid Andy, 

the method of taking the inverse motion of the parent joint and multiplying it with the 

original measurement is applied, as described in Chapter III. For this reason, the original 

sensor data stored in the first data member is used for these calculations. Finally, the third 

data member is defined in order to get the sensor data to work with X3D. Since X3D 

accepts axis-angle type data instead of quaternion type data, the motion data saved in the 

second data member is converted into the axis-angle pair representations and saved in the 

third data member. The Quat4d and AxisAngle4d classes provided in the javax.vecmath 

package handle conversions from quaternion into axis-angle pair. This package is an 

open-source code included in the Java3d1.3.1 package [Ref. 17].   

 After obtaining the axis-angle pair data, the joints of the humanoid Andy is set to 

the third data member values. The result of using two MARG sensors in the system is 

illustrated in Figures 32 and 33.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32.   Testing Two MARG Sensors on the Humanoid Andy. 
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Figure 33.   Testing Two MARG Sensors on the Humanoid Andy. 

 

D.  TESTING THE CONCURRENT CLIENT-SERVER PROGRAM 

The concurrent client-server program was first tested using random data. The 

double type random data are converted to byte[] type data and then transmitted to the 

clients. The client programs in this testing do not run humanoids and the MARG sensors 

are not connected to the system. Both the server program and the client programs are all 

running on the same computer. The highest number of clients accepted by the server 

program is not limited, but the system is only tested with up to five clients running at the 

same time. The system is also tested on the LAN and on the Internet successfully. Three 

computers each running a client program and a computer running both the server 

program and a client program are connected to the network. The clients did not join to the 
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system at the same time, but the same data was delivered concurrently to the clients 

successfully. Even if a client program quits the system and rejoins to the system later, all 

active clients receive the same data simultaneously. That is, the system is multicasting. 

This property of the client-server program makes it possible for any new client to join 

and quit at any time. The only restriction is the number of clients allowed to be accepted 

by the server program. The user can control this number. 

Another testing is applied to the system with three MARG sensors capturing 

human limb motion simultaneously. The client program runs the humanoid Andy. A 

client and a server program run on the same computer. The captured motion data is saved 

in the shared array on the server program. The size of the shared array is set to be large 

enough to hold 15-sensor data. Therefore, only the locations for the connected joints in 

the shared array are updated with the captured data and all the remaining locations retain 

the same value as they are initialized. In this way, the data transferred to the clients are in 

the size of 15 sensor data. This means, the system is greatly overloaded, but the goal of 

the MARG project is to get at least 15 MARG sensor capturing human limb motion 

simultaneously. The result of this testing is a successful animation on the client with 

almost no delay.  A further step with several clients running on the Internet is not tested.  

The performance of the WiSER2400.IP serial adapter in the system is not tested 

for 15 MARG sensors’ data, but works well for one sensor. As described earlier, three 

different MARG sensors are connected to a three-channel CIU and each is handled 

independently by the server program. The server program reads the three sensor data 

simultaneously, as if the three sensor data are transmitted through one wireless serial 

adapter. The goal with the 15-channel CIU is to receive all 15 sensor data through one 

wireless serial adapter.   

 

E.  FINAL RESULTS 

All the tests conducted above helped develop the humanoid Andy to animate 15 

MARG sensor motions captured simultaneously and helped develop the humanoid Andy 

to work with the concurrent client-server program. Developing the concurrent client-

server adds the MARG project the capability of capturing real-time human motion. The 
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overall system is not tested with 15-channel CIU at this moment. Minor modification to 

the system will make the system compatible with 15-channel CIU. 
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VI. CONCLUSIONS AND FUTURE WORK 

This chapter presents the conclusions and the future work of this thesis, and 

briefly discusses what has been done and the lessons learned. 

 

A.  SUMMARY AND CONCLUSIONS 

The existing MARG project prior to this research lacked a humanoid that met the 

need of animating 15 MARG sensor data. The existing humanoids developed for the 

project had their own limitations. One was very far from reality and did not follow the H-

Anim standards. The other two humanoids were created using laser-scanned data and 

followed the H-Anim standards, but one had its adjacent joints broken and the other was 

capable of rotating only one joint. Therefore, the humanoid Andy was developed to meet 

the needs for animating the motion of a human measured by 15 MARG sensors. 

A cartoon type humanoid AndyLow was selected as the starting point for 

developing the humanoid Andy. The humanoid AndyLow was developed using Proto 

nodes of VRML97 and implemented with H-Anim standards. X3D has the advantage of 

providing built-in humanoid nodes implementing H-Anim standards. First, the humanoid 

AndyLow was imported to the X3D and Proto nodes were replaced with built-in 

humanoid nodes. Although this process made the humanoid compatible with X3D, it was 

not possible to apply rotation to the segments about their connection points to the parent 

joints. An additional process discussed in Chapter III was applied to overcome this 

problem. Finally, the new humanoid was ready for animating 15 MARG sensor data and 

named as the humanoid Andy.     

A network interface was missing in the MARG project. Adding networking 

capability to the project is vital to get a flexible system with real-time data streaming. The 

concurrent client-server application implementing multicasting using both the TCP and 

UDP protocols was developed.  A shared array keeping the last update of the sensors’ 

data was defined in the server program for a simultaneous data transmission between the 

server and the clients. Three WiSER2400.IP wireless serial adapters were connected to 

the three different MARG sensors through the 3-channel CIU. The server program listens 
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to the sensors’ data through the UDP connections established wirelessly between the 

serial adapters and the server program. The humanoid Andy simulates the motion 

captured by the sensors’ on the client side. 

The major advantage of implementing multicasting using TCP and UDP protocols 

(MUTUP) with a shared array is overcoming the tunneling problem encountered in 

multicasting protocol. Today, most of the routers on the Internet cannot handle multicast 

packets and multicast packets are forwarded using unicast protocols. Using unicast 

protocol is referred as tunneling. The major disadvantage is the limitation on the number 

of clients handled by the server program at any time. There is a limitation because each 

client means an additional overload to the CPU and additional memory consumption that 

results in low performance or out-of-memory problems. Another drawback is the 

bandwidth restrictions. Sending motion data to any additional client adds additional 

traffic to the network. Despite these drawbacks, the MARG project is not affected, for a 

limited number of clients are needed. From this aspect, using MUTUP is advantageous 

over using multicasting protocol.  

MUTUP has a similarity with the file transport protocol (FTP) in principle. The 

only difference is that the FTP sets two TCP links between the server and a client where 

MUTUP sets a TCP link for general-purpose communication and a UDP link for motion 

data transfer. Using TCP protocol for data streaming reduces the data rate.  

The raw MARG sensor data consist of an accelerometer, a magnetometer and an 

angular rate sensor measurement. These measurements are converted to a quaternion data 

by implementing the Quest algorithm. Using quaternions in animation has a low-cost 

computation and high numerical accuracy [Ref. 7]. The quaternion data is produced 

separately for each sensor. Calibration data for each sensor differs from the others and is 

set to the Quest algorithm before producing the quaternions for the measurements. Each 

sensor mounted on the human body works independently of the others. Therefore a 

nested-joint structure cannot use the quaternions directly. An adjustment between the 

sensors’ data is required to be conducted and to be compatible with the nested-joint 

structure of the skeleton of the humanoid Andy. The adjustment method is explained in 

detail in Chapter III.  
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In case future work needs a different humanoid with a different skeleton structure, 

the original sensor data is saved in a data member on the client program. The adjusted 

motion data is converted from quaternions to axis-angle pair type data. This is the only 

way of setting rotations to the Joint nodes in X3D.  

 

B.  FUTURE WORK 

Using axis-angle pair data for rotation in X3D overloads the client program with 

additional computation. The first humanoid developed for the MARG project [Ref. 2] 

was capable of setting quaternion data directly to the joints without any additional 

conversion. This humanoid was developed in Java using the open-source Java3d1.3.1 

package [Ref. 17]. Tools other than X3D that supports quaternions might be required in 

future work when performance is an issue.  

  The humanoid Andy does not have a realistic geometry when compared with the 

previous laser-scanned humanoids. A realistic humanoid is required to increase the 

immersion in virtual environments. Therefore, the laser-scanned humanoids can be 

developed to simulate the motion captured by 15 MARG sensors. At this level, a cartoon 

type humanoid is sufficient for the MARG project. 

The client-server application needs to be adjusted when 15-channel CIU is 

available. The MemoryUpdater class is responsible for reading motion data from the 

sensors. The current structure of the class receives motion data through three independent 

wireless serial adapters. A structure for one serial adapter needs to be developed by a 

modification to the current structure. Since all 15 sensors’ data will be packed into one 

packet, a decoding method to the packet needs to be developed.  

To obtain a better result from the Quest algorithm, a calibration process is 

required. The calibration results are obtained using a separate program. The results are 

displayed on the screen and not saved in a file. The results of the calibration process for 

each sensor are set to the Quest algorithm manually. This will be challenging to handle 

for a 15-sensor system. On the other hand, the QuestQuaternionProducer class, which 

implements the Quest algorithm, cannot be used for multiple sensors. That is, a new 

object of this class is created for each additional sensor. This class needs to be modified 
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to process multiple sensors. Adding data members to hold the calibration data for all 

sensors will solve this problem.  

The current setting with the three WiSER2400.IP serial adapters meet the needs 

of this thesis. Each WiSER2400.IP is responsible for transmitting the motion data for one 

MARG sensor. In a 15-channel CIU setting, the size of the sensors’ data will be more 

than the capacity of the current WiSER2400.IP (i.e. more then 200 bytes). Requesting an 

increase in the capacity of the WiSER2400.IP from the manufacturer will solve this 

problem. Otherwise, another wireless serial adapter is required. Another problem with the 

WiSER2400.IP is the battery consumption that limits the portability of the system.   

The performance of the concurrent client-server application is not tested on the 

wide-area network (WAN). For example, testing can be conducted by setting the server 

program to run in the United States and the client programs to run in Turkey (more than 

10,000 miles distance).  
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