M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

IMPLEMENTATION OF A HUMAN AVATAR FOR
THE MARG PROJECT IN NETWORKED VIRTUAL
ENVIRONMENTS

by
Faruk Yildiz
March 2004
Thesis Advisor: Xiaoping Yun
Second Reader: Don McGregor

Approved for public release; digtribution isunlimited.

THISPAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2004 Master's Thesis

4. TITLE AND SUBTITLE: Implementation of a Human Avatar for the MARG | 5. FUNDING NUMBERS
Project in Networked Virtual Environments

6. AUTHOR(S) Fark Yildiz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
U.S. Army Research Office (ARO) and U.S. Navy Modeling and Simulation AGENCY REPORT NUMBER
Office (N6M)

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the officia
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release: distribution is unlimited

13. ABSTRACT (maximum 200 wor ds)

The objective of the ongoing MARG project is to animate human motions captured by 15 MARG sensors in wireless
networked virtua environment (NVES). Three avatars were developed previoudy, but none of them met al the desred
requirements. The first one was overly smplistic and did not implement HAnim standards. The other two were created using
laser-scanned data and followed the HAnim standards, but one had its adjacent joints broken and the other was capable of
rotating only one joint. Therefore, the cartoon-type humanoid, Andy, was developed to meet the needs of the MARG project.
The humanoid Andy implements HAnim standards using built-in X3D humanoid nodes and is capable of controlling dl its 15
jointsin NVES.

Another need of the MARG project was a wireless network interface for rea-time data streaming. A concurrent
client-server program implementing multicasting using TCP and UDP protocols was developed for this purpose. Using
WIiSER2400.1P serial adapters between the MARG sensors and the server program adds a wireless capability to the project.
The server program converts the raw MARG sensor data to quaternions using the Quest algorithm. Multiple clients are
supported by the system. Each client program receives the motion data and updates the humanoid Andy.

14. SUBJECT TERMS 15. NUMBER OF
VRML, X3D, Java Network, Java, MARG sensor, Networked Virtual Environments, Virtua | PAGES 78
Environments, Humanoid, Avatar, Human Animation, Body Tracking, H-Anim, Control Interface
Unit, WiSER2400./P 16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Thisthesisisdonein cooperation with the MOVES Ingtitute
Approved for public release; distribution is unlimited.

IMPLEMENTATION OF A HUMAN AVATAR FOR THE MARG PROJECT IN
NETWORKED VIRTUAL ENVIRONMENTS

Faruk Yildiz
Lieutenant Junior Grade, Turkish Navy
B.S.C.E., Turkish Naval Academy, 1998

Submitted in partia fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTSAND SIMULATION (MOVEYS)

from the

NAVAL POSTGRADUATE SCHOOL
March 2004

Author: Faruk Yildiz

Approved by: Xiaoping Yun
Thesis Advisor

Don McGregor
Second Reader

Rudolph P. Darken
Chair, MOVES Academic Committee

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The objective of the ongoing MARG project is to animate human motions
captured by 15 MARG sensors in wireless networked virtual environment (NVES). Three
avatars were developed previoudly, but none of them met all the desired requirements.
The first one was overly simplistic and did not implement H-Anim standards. The other
two were created using laser-scanned data and followed the H-Anim standards, but one
had its adjacent joints broken and the other was capable of rotating only one joint.
Therefore, the cartoon-type humanoid, Andy, was developed to meet the needs of the
MARG project. The humanoid Andy implements HAnim standards using built-in X3D
humanoid nodes and is capable of controlling al its 15 jointsin NVES.,

Another need of the MARG project was a wireless network interface for real-time
data streaming. A concurrent client-server program implementing multicasting usng TCP
and UDP protocols was developed for this purpose. Using WiSER2400.IP serial adapters
between the MARG sensors and the server program adds a wireless capability to the
project. The server program converts the rav MARG sensor data to quaternions using the
Quest algorithm. Multiple clients are supported by the system. Each client program

receives the motion data and updates the humanoid Andy.

THISPAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION.ottt ettt sttt e st see b e sns 1
A. THE ONGOING MARG PROJECT ...eteieieierienie et sneas 1
B. THESIS GOALS ...t 4
C. ORGANIZATION ..ottt st benre s e 5
D. SUMMARY ettt bttt bbb e 6
BACKGROUND ..ottt sttt sttt aensentesneane e 7
A. NETWORKING PROTOCOLS......coiiiieieieieie et 7
B. PROGRAMMING LANGUAGES FOR NETWORKING (JAVA
VERSUS CH) ottt sttt 9
C. WIRELESS LAN ..ottt st snesnennens 10
D. 802.11B WIRELESS SERIAL PORT ADAPTER WISER2400.IP 10
E. MAGNETIC, ANGULAR RATE, AND GRAVITY (MARG)
SENSOR ..ottt bbb e b 12
F. THE COMPLETE MOTION TRACKING SYSTEM.....cccoevvvevvrrien 13
G. SUMMARY ettt bbbttt bbb e 15
HUMANOID ANDY USING H-ANIM STANDARDS.......ccccoeieierererene e 17
A. H-ANIM STANDARDS AND X3D GRAPHICSLANGUAGE................ 17
B. FUNDAMENTAL H-ANIM NODES PROVIDED BY X3D.....ccccceevnenene 18
1. HUMaNOoid NOEcooiiiiereee e 18
2. JOINE NOUE ...ttt 18
3. SEJMENT NOUE ..o 19
4, Displacer and SIte@ NOUES.........c.coceeieriiriereeeree e 20
C. HUMANOID ANDY .ottt sttt sre e 20
1 The Nested SKeleton SIrUCLUreoo.eeveeieieeeeee e 21
2. The Rebuilding Process of Humanoid Andycccccevvveeieeneennns 22
3. Getting Humanoid Andy to Work with Java Networking............. 28
4, Implementing Multiple MARG Sensors to Track Humanoid
ANY et ae e 31
D. SUMMARY ettt bbbttt bbb 33
DESIGN OF THE CLIENT-SERVER PROGRAMcccooiiiieeeieiere e 35
A. MULTICASTING USING TCP AND UDP PROTOCOLS........ccocvrenene 36
B. IMPLEMENTATION OF MUTUP IN THE MARG PROJECT 40
C. SUMMARY ettt sttt e bbb b 45
TESTING AND EVALUATION ..ottt s 47
A. ROTATIONAL MOTION TESTSTHE HUMANOID ANDYccceee. 47
B. TESTING HUMANOID ANDY WITH ONE MARG SENSOR............... 49
C. TESTING HUMANOID ANDY USING TWO MARG SENSORS.......... 51
D. TESTING THE CONCURRENT CLIENT-SERVER PROGRAM.......... 53
E. FINAL RESULTS ...ttt s 54

VI. CONCLUSIONSAND FUTURE WORKccoiiriiini e 57

A. SUMMARY AND CONCLUSIONS.......ooiiiieieieesee e 57
B. FUTURE WORK ... 59
LIST OF REFERENCES. ... 61
INITIAL DISTRIBUTION LIST ..ot 63

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.

Figure 30.
Figure 31.

Figure 32.
Figure 33.

LIST OF FIGURES

The Humanoid as a Boxman. [From Ref. 2.]......oooevveiiiieeeceeceee e 2
Dutton’ s Humanoid with Skin Deformatiors. [From Ref. 4.]ccccevvecvnienen. 3
Sinav’'s Humanoid Implementing Deformation Engine. [From Ref. 5] 4
Setting of WISERZ2400.IP.cccuoeiie ettt 11
The Schematic Diagram of the MARG MOLION.ccccoveveveeviecirceesecie s 14
The Components of the MARG Motion Tracking System.ccccevveriiennene 15
Humanoid Node. [From Ref. 14.]c.ooveiieeeeceee e 19
Joint Node. [From REf. 14.] ..o e 20
Segment Node. [From Ref. 14.] ...ocveveeieeeeeee e 20
Detailed Skeleton Structure of aHumanoid. [From Ref. 1.] ... 23
The Skeleton of Humanoid Andy in Nested-Joint Structure.cccccueneeee. 24
The Pseudo Code for Recalculating the Vertexes..........c.coveverveneeneciienene 25
The Meaning of the Ratio VAUE.ccoeeveveeieeeceece e 26
The Possible Locations 0N the X-AXIS.......ccueierinienene e 27
Rebuilding the New Humanoid in the Nested Joint Structure.ccccue...... 29
HUMBNOIA ANGY. ...t s 29
The Relationship between Javaand X3D.cccecvveerenin e 31
The Java SCIHPL COUE.cveeeeieieieee e 31
The X3D SCrHPt NOE.c.veeeeeeiieeeee e 32
POSItIONING ONE SEOMENT.eeieiiiiiieee e 33
Positioning Two Adjacent Segments in the Nested Structure.cccvee.e. 34
Pseudo Code for the Server Class........ccoveeeiniereee e 37
Pseudo Code for the HandleClient Class.ccocveveninenenineenese e 38
Pseudo Code for the Client ClasS.........ccooeeieriiniereee e 39
Pseudo Code for the MemoryUpdater Class.........ccoeveveeneecenieeseeceseeseeeens 40
Block Diagram of Concurrent Client Server Program.ccoceveeeeneenennnns 43
A Detailed Block Diagram of MemoryUpdater Class.cccccevveveeneeieernnnne 44
Simultaneous Rotation of the Left Forearm about Z-Axis and Left Hand

BDOUL Y -AXIS ottt sttt sttt e bbb 48
Rotations of Left Forearm, Right Forearm and Head of the Humanoid

N 10| 48

A Sample Screen Capture of the LISP Program Moving an Armin 3 DOF ...49
The Implementation of Quest Algorithm to the Humanoid Andy (90

Degrees of Rotation about Negative X-AXIS)ccorerrrernerieneeniesiee e 50
Testing Two MARG Sensors on the Humanoid Andy.ccccceeeveeeneeiiennenne 52
Testing Two MARG Sensors on the Humanoid Andy.ccocevvreeneniinnenne 53

THISPAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

| must first thank the U.S. Army Research office (ARO) and the U.S. Navy
Modeling and Simulation office (N6M) for funding this research. Without their support,
we would not have had the necessary means to fulfill our goals, and this research would

never been compl eted.

| would also like to thank Professor Yun for everything he taught me during this
research. It was an honor to work with such a distinguished educator. In addition, | thank
Don McGregor for his guidance in this research. | aso thank Andreas Kavousanos-
Kavousanakis for the joint work with him, for getting the MARG sensors working, and

for implementing the Quest algorithm.

| am also indebted to Professor McGhee for his guidance and for providing the
LISP code to develop the program that produced the simulation motion data | used in my
testing. | would also like to thank Ron Russdll for editing this thesis in a timely and

professional fashion.

Mogt of al, I must thank my loving and beloved wife, Ebru, for al her patience
and support as | conducted the research for this thesis. With all my love, | dedicate this
thesis to Ebru and to my beautiful newly born baby son, Uzeyir Alper. What a joy it was
to experience the beginning of fatherhood while satisfying the rigors of thisthesis.

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

INTRODUCTION

As the 3D graphics and the Internet continue to grow, the need to characterize
human beings in networked virtual environment (NVE) will continue to increase.
Creating and animating humanoids for different applications require establishing libraries
of interchangeable humanoids and standardization for humanoids [Ref. 1]. Furthermore,
because humanoids in a networked virtual environment will most likely run in computers
with different architectures, both humanoids and other interfaces such as networking
programs should be capable of running in multiple platforms. Java as a programming
language and X3D as a 3D graphics tool met the needs described above. X3D has built-in
nodes implementing H-Anim 2.0 specifications.

To animate humanoids in the virtual environment, one must acquire or generate
motion data of human body limbs. Bachmann [Ref. 2] introduced Magnetic, Angular
Rate, and Gravity (MARG) sensors, which use inertial/magnetic measurements for real-
time human body-motion tracking. This new technology overcomes the limitations of
previous motion-tracking technologies, and it is capable of tracking multiple users in
wide areas. Since the current implementation of the MARG sensors has a drawback of
limiting the users ability and flexibility of movement in a tracking system, the wireless
serial adapter WiSER2400.1P technology is used in this thesis for wirelessly delivering
UDP packets to the network.

This chapter briefly discusses the ongoing MARG project and the novelties that
thisthesis adds. Additionally, an outline of the remaining thesis chaptersis presented.

A. THE ONGOING MARG PROJECT

Bachmann [Ref. 2] successfully added humans into networked virtual
environments by usng MARG sensors. The motion of the human was accurately tracked
with a 100 Hz update rate. The experimental results showed that inertial/magnetic
orientation estimation is a practical method of tracking human body posture [Ref. 2].
However, transmitting sensor data by wires in the system was one of the serious

drawbacks in this implementation. The ability to track human motion was restricted to

1

short distance because the sensors were directly wired to the desktop computer where the
avatar was running. Another drawback with this implementation was that the humanoid
used for representing the tracked motion was not realistic. Instead, as shown in Figure 1,
a smple box man was implemented to represent the human being tracked [Ref. 2].
Furthermore, the skeleton structure was not developed using H-Anim standards. H-Anim
standards require a humanoid skeleton in a nested hierarchical joint structure.

Figurel. = The Humanoid as a Boxman. [From Ref. 2]

Dutton [Ref. 3] developed a more redistic humanoid by using laser-scan data.
The data was parsed into segments and the humanoid was constructed using the Virtua
Redlity Modeling Language (VRML) by following the HAnim 1.1 specifications. As
illustrated in Figure 2, the major drawback with Dutton’'s humanoid was that the
connections of two adjacent joints were broken when animating the humanoid [Ref. 3].

Stand Walk Run Jump

Figure2. Dutton’s Humanoid with Skin Deformations. [From Ref. 4.]

Sinav [Ref. 5] improved Dutton’'s humanoid and developed a deformation engine
that eliminated skin deformation to a high degree and added smooth joint connections.
Despite its smooth joint connections, Sinav’s humanoid does have some geometric
distortions of the segments when moving as shown in Figure 3. Another drawback with
his humanoid is that the user can only control the joint for the head. Therefore, a
desirable humanoid for representing the 15 MARG sensor data motion was still
unavailable for the MARG project.

Developing a redlistic humanoid is only one part of the ongoing MARG project
for representing the tracked human motion. Another part of the project is developing a
concurrent client-server program for implementing MARG project in a red-time
networked virtual environment. Dutton [Ref. 3] wrote severa java classes for reading and
parsing pre-recorded body motion data from a file, wrapping the data into a UDP packet

and sending it to the client program running the avatar over the network. These classes

3

were smply smulating the networked environment and were not feeding the humanoid
in real-time tracked motion data. Furthermore, the server program was not capable of
serving multiple clients simultaneously. The server program was supposed to receive
MARG sensors data wirelessly through the network and deliver those data to the clients
anywhere on the Internet. The client program should be capable of running a humanoid
with at least 15 joints simultaneoudly updating motion data.

Figure3. Sinav’'sHumanoid Implementing Deformation Engine. [FromRef. 5.]

B. THESISGOALS

This thesis concentrates on developing a real-time implementation of human
avatars animating the tracked human motion in a networked virtual environment. First, a
new humanoid for the MARG project will be developed. This humanoid will be
developed in a hierarchical joint skeleton structure using H-Anim200x nodes provided by

X3D. It will have a resolution of at least 15 joints in order to animate motions of major

4

limbs of a human successfully [Ref. 2]. The appearance of the humanoid is not important
for this thess. A humanoid better than the Boxman but smpler than the previoudy
developed laser-scanned humanoids will be sufficient. After searching the literature and

Internet, a cartoon-type humanoid AndyLow from [Ref. 6] is chosen as the starting point.

Second, a concurrent client-server networking interface between the tracked
human and multiple clients running anywhere on the Internet will be developed. This
concurrent client-server application receives data from MARG sensors through the
WIiSER2400.1P wireless seria adapter, capable of handling multiple clients, each running
a humanoid representing the same motion captured by the sensors. Since the 16-channel
Control Interface Unit (CIU) is not ready at this moment, the three-channel CIU is used
for connecting the sensors with the wireless serial adapters. The server program runs a
class for producing quaternion data using the Quest Quaternion Algorithm [Ref. 7]. A
filtering process is implemented in the sensor data before the algorithm is conducted. On
the client side, the client program converts the sensor quaternion data, independent from
each other, into a nested joint structure to make them compatible with H-Anim standard
humanoid structure. An additional conversion from quaternion into axis-angle pair is
conducted before updating the humanoid.

C. ORGANIZATION

This thesis contains six chapters. Chapter Il presents background information for
this thesis. It introduces networking protocols, compares Java and C as a networking
programming language, describes wireless LAN, introduces MARG sensors and
WIiSER2400IP serial adapters, and provides the complete setting of real-time wirelessly
networked, full-body tracking system using MARG sensors and WiSER2400.1P wireless
serial adapters.

Chapter 111 introduces Virtual Reality Modeling Language (VRML), X3D and H-
Anim 2.0 specification, explains how the nodes in X3D create a humanoid, discusses how
the humanoid Andy is modified from humanoid AndyLow, explains how Java
networking works with X3D and how independent sensor quaternion data is implemented

to a nested-joint structure humanoid.

Chapter IV analyses the design of the concurrent client-server program and its
purpose.

Chapter V describes the testing and evaluation of the concurrent client-server
program and the client programs running the new humanoid. The one-channd and the
three-channel ClUs developed by Kavousanos-Kavousanakis [Ref. 8] were used to obtain
adjacent joint data for animation.

The final chapter presents the conclusions and suggests further development and

optimization.

D. SUMMARY
This chapter discussed the existing state of the MARG project prior to this
research. The early design of the humanoids did not meet the needs for this thesis.

Moreover, awireless networking interface has to be added.

1. BACKGROUND

Networking in virtual environments is becoming more popular each day. Combat
models, games, virtual conferences are some of the applications that presently use
networked virtual environments (NVES). Programming languages such as C++ and Java
provide users high-level tools that eliminate the need to work with the complex low-level
basics of network programming. The WiSER2400.IP wireless serial adapter [Ref. 9] is
capable of receiving byte level data from a serial input and packing them either into a
UDP/IP or TCP/IP packet. Then the packets are transmitted over a wireless link to the
host IP address and port number set by the user. By connecting the MARG sensors [Ref.
2] to the WiSER2400IP device through the seria port, one can track real-time human
motion in a wireless networked virtual environment. This chapter introduces networking
protocols, compares Java and C as a networking programming language, describes
wireless LAN, introduces MARG sensors and WiSER2400IP serial adapters, and finally
provides the complete setting of a real-time wirelessly networked, full-body tracking
system, using MARG sensors and WiSER2400I P devices.

A. NETWORKING PROTOCOLS

Most of today’s Internet services are based on one sender and one receiver. The
file transport protocol (FTP), hyperlink transfer protocol (HTTP) and simple mail transfer
protocol (SMTP) are only some of the examples. Applications like video conferencing
and audio streaming that have one sender and multiple receivers are less common
because of the high bandwidth requirements. Depending on the number of senders and
receivers and the type of the packet used for communication, there are three types of
network communications: unicast, broadcast and multicast.

Unicast is the communication between one source host and one destination host.
It is subdivided into two protocols, TCP and UDP. TCP/IP protocol provides a reliable
data transmission between the source and the destination. The packets are delivered
reliably in order and checksums are implemented to packets to avoid data transmission

errors. Additionally, transmission flow is controlled to prevent the congestion on the

7

network. All these services of course have a cost of delay. FTP, HTTP and SMTP are
examples of unicast TCP protocols. On the other hand the UDP/IP protocol removes most
of the communication overhead used by TCP protocol. It is based on a smple structure
offering best-effort packet data delivery. Reliability and the order of the packets are not
guaranteed. It is well suited for applications such as video streaming because these
application classes depend on low latency and jitter.

Broadcast is the communication between one source host and al the other
destinations hosts on a subnet. It is largely parallel with UDP/IP protocol with the
exception that the packets are delivered to al hosts on aloca network. Applications such
as address-resolution protocol (ARP) use broadcasting to map the IP network addresses
to the hardware addresses (MAC addresses) in the data-link layer.

Multicagting is the communication between one or more source hosts and a
group of receiver hosts located anywhere on the network. Multicasting is more efficient
than unicast or broadcast for transmitting information among a large number of group
members spread out over different networks. Multicast routing algorithms can distribute
data across network boundaries, unlike broadcast, while not sending duplicate copies of
data, as with unicast. Packets are restricted by the multicast routing agorithms to travel
only along networks that have subscribers to that group and to newer travel over a single
network multiple times. A new multicast group member must send a join message, which

is distributed to the other routers participating in the multicast group distribution.

In many cases, multicasting capability is desirable. The maor advantage of
multicasting is that it reduces the use of network bandwidth. Assuming that there are 100
members of a group, transmitting only one packet by the source will be sufficient in
multicasting, while 100 packets are required to be sent separately to each group member
with unicast UDP/IP.

Despite the advantages listed above, multicasting has the following
disadvantages. The magjority of routers on the Internet today are not configured to handle
multicasting routing protocols. Most exclusively handle unicast or broadcast traffic. A
virtual network using tunneling can be used with unicast-only routers to overcome this
problem. Tunneling is a software solution that runs on the end point routers/computers

8

and allows multicast packets to traverse the network by putting multicast packets into
unicast packets.

Programming languages compatible with networking protocols provide socket
classes to represent the terminals of a connection between two machines or processes. For
instance, the java.net package provided by Java contains a Socket class for TCP
connection, a DatagramSocket class for UDP connection and a MulticastSocket class for

amulticast connection.

Although the IP address is unique to each computer, it is insufficient to
differentiate between multiple applications running on the same computer. Packets that
arrive at the machine must know which application they should be processed by. Thisis
accomplished through the use of port numbers. The port number is represented by a 16-
bit unsigned number that has a range from 0O to 65,536. Both the TCP and the UDP have
thelr own port numbers in the same range. Depending on the platform, port numbers are
divided into three ranges: the well-known ports (from O through 1023), the registered
ports (from 1024 through 49151), and the dynamic ports (from 49152 through 65535).
The well-known ports are assigned by the Internet Assigned Numbers Authority (IANA)
for special usage, such as 21 for FTP, 23 for Telnet, 25 for SMTP (mail) and 80 for
HTTP (Web).

B. PROGRAMMING LANGUAGES FOR NETWORKING (JAVA VERSUS
C++)

Java, compared to C++, is a panless networking language. Some of the
advantages of Java are as follows. First, Java supports threads at the language level. C++
supports threads, but it is complicated to program and varies from platform to platform.
Developing a program with concurrent processing is difficult, if not impossible, without
threads. The concurrent processing is vital in applications like File Transport Protocol.
Second, Java has the advantage of being portable between systems, even without
recompilation. It is easy to access machine level details in C++, but this makes C++
depend on to the specific platform on which the program was implemented. Considering
the number of different kind of machines connected to the Internet, it is obvious that
portability feature adds enormous power to Java. Finally, Java is much easier to use.

9

Many of the details require to set up a network connection are hidden by abstraction.
Furthermore, the garbage collection feature of Java handles all undeleted objects and
frees the memory. The most important disadvantage of Java is the speed. C is very
successful in computation-intensive applications. [Ref. 10]

C. WIRELESSLAN

A wireless Local Area Network (LAN) is designed to transmit and to receive data
over the air to minimize the need for wires in communication. The wireless
communication can be established either between a wireless dient and a base station or
between two wireless stations. The standard for wireless LAN is referred as |IEEE 802.11
established in 1997 [Ref. 11]. Since 2.4 GHz is an unlicensed frequency band in most
countries, using this frequency band for data transmission makes |IEEE 802.11 a global
standard.

The current IEEE 802.11 technology consists of four different types. 802.11,
802.11a, 802.11b, 802.11g. The 802.11 standard offers a 1 Mbps or 2 Mbps transmission
rate in the 2.4 GHz band. The 802.11a standard provides a 54 Mbps transmission rate in a
5 GHz band. The 802.11b standard is a high rate (or Wi-Fi) extension of the 802.11 and
provides up to an 11 Mbps transmission rate in a 2.4 GHz band. It is also backward
compatible with 5.5 Mbps, 2 Mbps and 1 Mbps rates. Finaly, the 802.11g is the latest
standard that offers up to 54 Mbpsin the 2.4 GHz band. [Ref. 12]

D. 802.11B WIRELESS SERIAL PORT ADAPTER WISER2400.1P

The WIiSER2400.IP is an 802.11b compliant module with an RS232 serid
interface. The WiSER2400.1P takes the seria data from the equipment it is connected to,
via the RS-232 seria port, and transmits them to the destination host. The data is
encapsulated into either TCP/IP or UDP/IP packets to make WiSER2400.1P compatible
with networking protocols. This capability of WiSER2400.IP is very useful in
networking applications, so it is very handy to establish a communication between the
WiSER2400.IP and the remote applications. [Ref. 9,13]

10

In order to use WiSER2400.IP serial adapter in this thesis research, the following
settings are configured via the utility program (wauti.exe) provided by the manufacturer.
A screenshot of the configuration is provided in Figure 4. After connecting the
WIiSER2400.IP to the serial port and selecting the port name in the utility program,
clicking the detect button detects the adapter and makes it ready for the settings. Once the
adapter is detected, the TCP/UDP radio button is selected as a first step to establish a
TCP or UDP communication with the destination application. As a second step, the
wireless settings are set. WiSER2400.IP can operate in two modes. Ad-Hoc and
infrastructure mode. In Ad-Hoc mode, computers can tak directly to each other and do
not need an access point. But, in this thess WiSER2400.IP is talking to the computers
through an access point, and therefore infrastructure mode is selected as the network
type. Additionally, SSID is set to the same SSID used by the access point. The third step

(5] wisetz400 - iagrostic and Canfio _|=] x|
Disconnect COM: | 1 »| BeudFata: | v]
Link Status Dafrfigurﬁhunl Encryption | Stafisic | About |
¢ Paintto Paint € Pointte Malh Pt & TCR{UDP
Wireless Setting
S8ID [MARGE
Network Type [MRS
R5232 Setfing
Start frame byte(s) [
End frame byte: PR~
Boud rote: TS <]
Max bytes/Fht |32
—IP Seting
This Lnit Dast. Unit
MaC Addr | | |
IFAddr: || 192 166, 1 . 97 [192 168 1 78
Part: | (8000 F SHE]
SubMNetMask: 255 .255.2585, O
Gatewsay: 192 .168. 1 .1
Status: Connected on; COMI, 19200 bps, Mo panty. B date bits, 1 stop bit(s)
| remesn | mepy | oK

Figure4. Setting of WiSER2400.IP.

11

is to set the RS232 settings. The baud rate used in this thesis is 19200 bps. Because a
sample motion data consists of 15.5 bytes, the packet size is set as twice of a sample data
size. The maximum packet size can be set as 200 bytes, which is insufficient for further
work with 15 MARG sensors. However, the current packet size is sufficient for this thesis
because only one sensor is connected to the serial adapter. Findly the IP settings should
be configured correctly. The destination unit’s IP address and port number indicate he
location of the application that listens for the packets from WiSER2400.1P. In addition to
setting the destination address and port number for the UDP/IP communication, the user
needs to set the unit's IP address, port number, subnet mask and gateway information,
too.

E. MAGNETIC, ANGULAR RATE, AND GRAVITY (MARG) SENSOR

All materials in this section are drawn from [Ref. 2]. The power of Networked
Virtual Environments lies in its ability to immerse users in a different world. The more
complete the immersion, the better and more effective the virtual environments (VE). If
user interactions are done with VE in the same manner as they are done in the real world,
they increase the immersion. The human interactions occur as a result of body motion.
Many different types of motion-tracking sensors including mechanical, optical, acoustic
and magnetic trackers have been introduced. Each of these tracker technologies has
limitations including marginal accuracy, user encumbrance, restricted range,
susceptibility to interference and noise, poor registration, occlusion difficulties and high
latency. These limitations make it difficult to track multiple users in virtual environments
and augmented reality applications. The MARG sensor introduced by Bachmann [Ref. 2]

overcomes the limitations of the motion-tracking technologies above.

The MARG moation-tracking sensor is a new sourceless tracking technology for
tracking the posture of an articulated rigid body. Source-based tracking systems require a
continuous link between the tracked body and one or more fixed stations. Since the
distance that can be maintained by the link when wired technology is used is often
limited, MARG sensors offer users an enormous distance that is limited with the wireless
technology. MARG technology is based on the use of inertia/magnetic sensors to

determine the orientation of each link in the rigid body independently. Each sensor
12

produces nine components of data (three rate sensor measurements, three accelerometer
measurements and three magnetometer measurements) for the tracked motion in a 100-
Hz update rate.

F. THE COMPLETE MOTION TRACKING SYSTEM

Although the goal of this thesis is to develop an avatar to be used with a 15-
channd Control Interface Unit (CIU), the avatar is tested with the only available 3-
channel CIU. Figure 5 shows a schematic diagram of the MARG motion tracking system
usng the 3-channel CIU and three WiSER2400.IP serial adapters. Each channel in the
CIU is independent of the other. That is, the user can use one sensor at a ime, or any
possible combinations of the three. The data tracked by the first sensor is delivered to the
WIiSER2400.1P through the first input and output port of the CIU. The WiSER2400.1P
accepts data only viathe RS232 serial port interface.

Each serial adapter must have the same destination IP address but may have a
different destination port number. The destination IP address is the |P address of the host
where the server program runs. Each serial adapter uses a different port number because
each is handled independently of the other in the server program. The port numbers used
in this thesis are UDP 8000, 8001 and 8002. There will be only one serial adapter when
the 15-channel CIU is available in further work. In that case, the CIU will have a 16-input
channel and one-output channel. All sensors will be connected to the CIU and the CIU
will serialize the read data and forward to the serial adapter. There will be only one serial
adapter in the system and additional UDP ports will not be needed.

Because a wireless access point is connected to the LAN, the wireless network
type specification of each WiSER2400.IP is set a infrastructure mode. When the IP
address of the server is set correctly in the serial adapters, the computer that runs the
server program can be either in the same LAN as the wireless access point or in any other
network on the Internet. It is the same concept for the computers that run the client

program. The components of the MARG motion tracking system are shown in Figure 6.

13

MARG 1 MARG 2 MARG 3

O O O
3-Channel Control Interface Unit (CIU)

RS232 RS232 RS232
WiSER2400.I1P 2
WiSER2400.1P 1 Port # 8001
Port # 8000 _
WiSER2400.IP 3
Port # 8002

17,

7

| A\Q@

Wireless Access Point

LAN

ROUTER

ROUTER

WAN

Avaa
Server

Avaa Avaar

Figure5. The Schematic Diagram of the MARG Motion.

14

1. WiSER2400.IP wireless serial adapter 5. Router

2. Wireless Access Point 6. PC running server program and a client
3. Three-channd CIU 7. PC running aclient

4. MARG Sensors

Figure6. The Components of the MARG Moation Tracking System.

G. SUMMARY

Java as a painless networking tool makes it easier to develop concurrent
programs, which is vital for this thesis. Various classes contained in java.net package
make network programming very easy. Its portability between systems adds noteworthy
strength to Javain the Internet world.

Unicasting, broadcasting and multicasting are the mgor types of communications
used in networking programming. Unicasting is sub-divided into TCP and UDP
protocols. TCP provides a reliable but higher latency and higher jitter communications
while UDP provides less reliable but lower latency and lower jitter communications.
Because of its low latency, UDP is preferred in streaming application such as the video,
voice or real-time applications discussed in this thesis research.

15

Adding the WiSER2400.1P serial adapter for this thesis makes it possible to track
human motion in a wireless network environment. However, using three different
wireless serial adapters with the 3-channd CIU seems to limit human motions. The
further version of CIU with 15 channels will eiminate extra WiSER2400.IP usage. The
15-channd CIU packs all the datafor 15 sensors into the serial output.

16

1. HUMANOID ANDY USING H-ANIM STANDARDS

This chapter first presents the HAnim standards and the X3D graphics language.
Second, the H-Anim nodes contained by X3D and the nested joint structure of humanoids
are described. Third, the method for feeding the nested joint structure humanoid with
multiple MARG sensor data is discussed. And finally, the required settings for updating
the humanoid through the network are explained.

A. H-ANIM STANDARDS AND X3D GRAPHICSLANGUAGE

The need for humanoids in the networked virtual environment continues to
increase with the growth of the Internet. Libraries of humanoids using international
standards are developed in order to meet this increasing need. Human Animation (H-
Anim) is a newly developed standard for this purpose. This standard is not language

specific and can be applied to any applications using any programming languages.

The joint structure of the humanoid offered by H-Anim is a nested joint structure.
That is, the child joints depend on their parent joints. For example, the left shoulder joint
is the parent joint to the left elbow joint. The motion applied to the left shoulder is
automatically applied to the left elbow. For this reason, the animation for two adjacent
joints will not work for two MARG sensors when the captured motion data is applied
directly. This is because each MARG sensor works independently of the others, and a
computation is needed before applying the data to the humanoid.

Virtua Redlity Modeling Language (VRML) is a 3D graphics language for
developing models used in virtual environment applications. Extensible 3D (X3D) is an
extenson of VRML and contains built-in nodes implementing H-Anim standards. X3D is
also compatible with the Java programming language, and Java Script classes can be
embedded into humanoids through the Script nodes provided by X3D. This makes it
possible to update humanoids with the data received through the network. Unfortunately,
X3D is not presently compatible with Java 1.4 or later versions in network applications.
Thisissue will be discussed later in this chapter.

17

B. FUNDAMENTAL H-ANIM NODES PROVIDED BY X3D

Humanoid, Joint, Segment, Site and Displacer nodes are the fundamental nodes
provided by X3D to support HAnim specifications. These nodes are used to construct
the nested joint structure of the humanoid. This thesis uses only the Humanoid, Joint and
Segment nodes for creating the humanoid. Shape, Transform, Mewpoint and Color are
some additional nodes of X3D used for defining the geometry of the human limb
segments. These nodes are not used in this thesis and will not be discussed. All materials

in this section are drawn from [Ref. 14].

1 Humanoid Node
Humanoid node is a container node for Joint, Segment, Site, and Displacer nodes.
It dso contains the geometry nodes Shape, Transform and Color, as well as a Viewpoint

node. The author and copyright information of the humanoid is kept in this node.

The trandation and the rotation fields specify a trandation or a rotation to the
coordinate system of the entire humanoid figure. The scale field specifies a non-uniform
scale of the humanoid figure coordinate system and the scale values must be assigned
greater than zero. The Viewpoint node is affected by the transformations and rotations
applied to the Humanoid node, but not affected by any of the transformations performed

to the Joint nodes. The structure of Humanoid node is provided in Figure 7.

2. Joint Node

Joint nodes represent the joints in the body. The function of a Joint node is to
define the relationship of two adjacent segments. An organization of hierarchica Joint
nodes describes the overall skeleton of the humanoid in a nested joint structure. A Joint
node can be a child of another Joint node or the Humanoid node, but it cannot be a child

of a Segment node. A Joint node can contain Segment nodes.

Joint nodes are the nodes used for animating the humanoids. The rotation field
determines the posture d the joint. Since joints are in a nested structure, the amount of
rotation set to this field is relative to the parent node. That is, the parent joint initially sets

its rotations and then the child joint sets its rotation according to the final local coordinate

18

system achieved by the parent joint. Because of this reason, the measured motion data by
the MARG sensors cannot be directly implemented to the Joint nodes. Before setting
each Joint node's rotation field, an inverse motion should be implemented in order to
achieve the original coordinate system. Implementation of this method is discussed later
in this chapter. It is possible to set limits to the rotation fields using limitOrientation field,
but it is not implemented in thisthesis.

Joint : X3DgroupingNode {
fied[] SFVec3f bboxCenter #initva: 000
field[] SFVec3f bboxSize #initvd:-1-1-1
field[in, out] SFVec3f center #initva: 000
field [in, out] MFNode humanoidBody #initvd:[]
field[in, out] MFString info #initva:[]
field[in, out] MFNode joints #initva:[]
field [in, out] SFString name #initva: "
field[in, out] SFRotation rotation #initva: 0010
field [in, out] SFVec3f scale #initval: 111
field[in, out] SFRotation scaleOrientation #initval: 0010
field [in, out] MFNode segments #initva:[]
field [in, out] MFNode sites #initva:[]
field[in, out] SFVec3f tranglation #initva: 000
field [in, out] SFString version #initval: “1.1"
field[in, out] MFNode viewpoints #initva:[]

}

Figure7. Humanoid Node. [From Ref. 14.]

The trandation field is used to determine the reference location of the Joint node
to the parent Joint node. The structure of Joint nodeis provided in Figure 8.

3. Segment Node

Segment node represents each segment of the body, such as pelvis, thigh or calf.
This specialized grouping node provides a container for nodes in its children field. The
children field may contain nodes, such as Shape or Transform, for drawing the geometry
of the segment. In order to avoid violation of the structure of the H-Anim specifications,
Segment nodes are allowed only as a child to the Joint nodes. Because Segment nodes
represent the geometry of a human limb segment, there is no field provided for
controlling the motion. The structure of Segment node is provided in Figure 9.

19

Displacer and Site Nodes

The displacer nodes are used to identify specific groups of vertices within a

alocation for the viewpoints.

HUMANOID ANDY
Humanoid Andy is created using Extended 3D (X3D) language as a modification

of the humanoid named AndyLow. AndyLow is developed as a low resolution humanoid

20

Joint : X3DgroupingNode {
field[in, out] SFV ec3f center #initval: 000
field [in, out] MFNode children #initva:[]
field[in, out] MFF oat [limit #initvd:[]
field [in, out] SFRotation limitOrientation #initval: 0010
field[in, out] SFString name #initvd: " "
field[in, out] SFRotation rotation #initva: 0010
field [in, out] SFVec3f scale #initval: 111
field[in, out] SFRotation scaleOrientation #initval: 0010
field [in, out] MFFloat stiffness #initval:[000]
field[in, out] SFV ec3f tranglation #initval: 000
field [in, out] MFFloat ulimit #initva:[]
}
Figure8. Joint Node. [From Ref. 14.]
Segment : X3DgroupingNode {
field[] SFV ec3f bboxCenter #initval: 000
field [] SFVec3f bboxSize #initva:-1-1-1
field[in, out] SFV ec3f centerOfMass #initval: 000
field [in, out] MFNode children #initva:[]
field [in, out] SFNode coord #init val: NULL
field[in, out] MFNode displacers #initval:[]
field [in, out] SFHl oat mass #initva: 0
field[in, out] MFF oat momentsOfinertia #initval:[000000000Q]
field [in, out] SFString name #initva: "
event [in] MFNode addChildren
event [in] MFNode removeChildren
Figure9. Segment Node. [From Ref. 14.]

Segment node. Site nodes are used to define an attachment point for special accessories,
such as nametags of companies or clothing. Another purpose of the Site node is to define

by Seamless Solutions, Inc. in 1998 [Ref. 6] and it is alowed to be used or modified for
none commercia applications, provided that it carries the nametag of the company.
AndyLow is selected as a starting humanoid for the humanoid Andy because it was based
on H-Anim 1.1 standards and VRML97 (the former version of X3D). AndyLow cannot
be used directly in this thesis because of its two drawbacks. First, the humanoid nodes
were declared as proto declarations because VRML97 does not support built-in H-Anim
nodes. This drawback is not so vital, but humanoid nodes provided by X3D are very
handy. Second, the vertexes for the geometries were defined according to a unique
reference point. When applying rotation to the joints, the segments do not rotate about
their connection point to the parent. Instead, they rotate about the global reference

position. This drawback is the main reason to rebuild AndyLow as Andy.

1. The Nested Skeleton Structure

Two different methods, according to the usage of reference position while
creating the geometry of the human limb segments, can be implemented to represent a
human in 3D-graphics world. The first method uses a fixed reference position. The
vertexes of the geometry for each segment are determined using this reference position.
When trying to implement rotations to the joints in this method, rotations are done about
the fixed reference position. In the second method, each segment has its own local
reference position defined separately. Local reference positions are assumed to be the
connection points for two adjacent segments. Therefore, the transformation process is
applied to al joints to place them into the correct location in the humanoid while creating
it. For animation, each joint is rotated about its local reference position, i.e. a connection

point.

As stated before, a Segment node cannot be a container for Joint nodes. Joint
nodes are the containers to construct the skeleton of the humanoid. The construction of
the skeleton can be achieved in two ways. Independent joint structure and nested joint
hierarchy. The joints in the independent joint structure do not follow the parent-child
relationship. Joint nodes are trandated to their location according to a unique reference
location. The motion applied to a Joint node does not affect the other joints. Since a

MARG sensor measures the motion of one human limb independently of each other, this
21

method may seem more suitable for this thesis. But to be compatible with the latest
standards, this thesis uses the HAnim standard that defines the structure of the human
skeleton completely differently. Nested joint hierarchy defined by HAnim follows the
parent-child relationship between two adjacent joints. A change applied to the parent
node effects all the sub nodes. That is, when the left shoulder (upper arm) is rotated, the
left elbow (forearm) will be rotated, too.

Figure 10 shows the complete skeleton structure defined by HAnim standards.
The Humanoid node is the main container for the whole humanoid. The first-level child
joint is the Joint node hanim_HumanoidRoot that is the parent for al the remaining
nodes. The second-level joints are vI5 and sacroiliac. Totally there are 94 joints in a
detailed skeleton structure.

A detailed skeleton structure is not required in this thesis because the MARG
sensors are still too large to mount onto small segments, and the CIU considered for the
MARG project at the current state supports only up to 15 MARG sensors. For this reason,
details such as fingers are eliminated and only the most required 15 joints are selected. As
illustrated in Figure 11, humanoid Andy has only 15 joints in its skeleton structure and
each joint is assigned a number. These numbers are used as a standard for this thesis. In
addition to the numbering, the segments attached to the joints are aso shown in this
figure. For example, |_thigh (left thigh) is the segment connected to the | _hip (left hip)
joint. Therefore, | _thigh segments motion will be controlled through | _hip joint.

2. The Rebuilding Process of Humanoid Andy

The humanoid AndyLow was crested usng VRML97 language, and the
humanoids nodes were self defined Proto nodes. The X3D built-in humanoid nodes
aready included the functionalities of these Proto nodes. The Proto nodes contained the
geometry for the human limb segments. The vertexes in these geometries are very hard to
set manually. The first step of the rebuilding process is to obtain these geometries in X3D
type nodes. VRML97 applications can be imported into a project or converted to a new
project in X3D. Thisis done by selecting file/import/VRML97 from the menu of X3D.

22

HumanoidRoot : sacrum
sacroiliac : pelvis
| I_hip:I_thigh
| I_knee:|_caf
| I_ankle : I_hindfoot
| |_subtaar : |_midproximal
| |_midtarsd : |_middistal
| |_metatarsal : |_forefoot
| r_hip:r_thigh
| r_knee:r_calf
| r_ankle: r_hindfoot
| r_subtalar : r_midproximal
| r_midtarsa : r_middistal
| r_metatarsal : r_forefoot

|_wrigt : |_hand
|_thumbl : |_thumb_metacarpal
|_thumb2 : |_thumb_proximal
|_thumb3: |_thumb_distal
|_index0 : |_index_metacarpal
|_index1 : |_index_proximal
|_index2 : |_index_middle
|_index3: |_index_distal
|_middle0 : |_middle_metacarpal
|_middlel : |_middle_proximal
|_middie2 : |_middle middle
|_middle3 : |_middle_dista
|_ring0 : |_ring_metacarpal
|_ringl :|_ring_proximal

vi5 15 |_ring2 |_ring_middle
vid: 14 |_ring3: |_ring_dista
vi3 I3 |_pinkyO : |_pinky_metacarpal
vi2:12 |_pinky1: |_pinky proximal
vil ;1 |_pinky2 : I_pinky_middle
vtl2: t12 |_pinky3: 1_pinky digta
vtll: t1l r_sternoclavicular : r_clavicle
vtl0 :t10 r_acromioclavicular : r_scapula
vt9: 19 r_shoulder : r_upperarm
vt8: 18 r_elbow : r_forearm
wt7 : t7 r_wrist : r_hand
vt6 : 16 r_thumbl : r_thumb_metacarpa
vt5: 15 r_thumb2 : r_thumb_proximal
vt4 : t4 r_thumb3: r_thumb_distal
wvt3: t3 r_index0 : r_index_metacarpa
w2 12 r_index1 : r_index_proximal
vl 1 r_index2 : r_index_middle
vC7 : c7 r_index3 : r_index_distal
| vc6 : c6 r_middle0 : r_middle_metacarpal
| vc5:ch r_middlel : r_middle_proximal
| wvcd:cd r_middie2 : r_middle middle
| vc3:c3 r_middie3: r_middle dista
| ve2 :c2 r_ring0 : r_ring_metacarpal
| vcl:cl r_ringl: r_ring_proximal
| skullbase : skull r_ring2 : r_ring_middle
| |_eydid joint : |_eydid r_ring3: r_ring_distal
| r_eydid joint : r_eydid r_pinkyO : r_pinky _metacarpal
| |_eyebal_joint : |_eyeball r_pinkyl: r_pinky proximal
| r_eyebal_joint : r_eyebadl r_pinky2 : r_pinky_middle
| |_eyebrow_joint : |_eyebrow r_pinky3: r_pinky_dista
| r_eyebrow_joint : r_eyebrow
| temporomandibular : jaw
|_sternoclavicular : |_clavicle
| I_acromioclavicular : |_scapula
| 1_shoulder : |_upperarm
| |_elbow :|_forearm
Figure10. Detailed Skeleton Structure of a Humanoid. [From Ref. 1.]

23

HumanoidRoot : sacrum/pelvis [Q]

|
|_hip: 1_thigh [1]

r_fingers: reft_fingers [None]

|

| |_knee:|_calf [2]

| |_ankle: |_hindfoot [3]

|

[r_hip:r_thigh [4]

| r_knee:r_cdf [5]

| r_ankle: r_hindfoot [6]

|

[vi5 :15 [7]
|
| skullbase : skull [8]
| 1_shoulder:|_upperarm [9]
| 1_elbow :1_forearm [10]
| |_wrist: | _hand [11]
| |_fingers: left_fingers [Nong]
|
| r_shoulder : r_upperarm [12]
| r_elbow : r_forearm [13]
| r_wrist:r_hand [14]
|

Figure11l. The Skeleton of Humanoid Andy in Nested-Joint Structure.

The conversion by itself is not enough because X3D does not know how to the Proto
nodes are defined. So, the nested hierarchical skeleton structure is rebuild by using
Humanoid, Joint and Segment nodes. The geometry is the same geometry used by the
Proto nodes. The result of this step makes humanoid AndyLow compatible with X3D.

The vertexes of each segment’'s geometry are defined according to a unique
reference position located in the origin of the humanoid. Using the same reference
position for al segments has drawbacks when rotating the joints, as described earlier in
this chapter. Therefore, the second step is to recalculate the vertexes according to their
local reference positions. The recalculation process is implemented as follows. The
original vertex values are copied from the geometry nodes and pasted into a file.
PointsCalculator class reads the original vertex values from this input file and saves the

recalculated new results into an output file. New vertexes in the output file is copied and

24

pasted back to the geometry nodes. This process is repeated for each segment. The
pseudo code for the recalculation process is provided in Figure 12.

/l Assign the RATI O values.

/I Ration valueistheratio of length from the parent joint (local reference position).

/I The lower the value, the local reference position (connection) closer to the parent joint
ratio X =0.5; ratio Y =0.1; ratio Z=0.5;

/I Find the minimum and maximum vertex valuesfor the given geometry (in 3 axis)
/I loop (until dataleft ininput file) {

1l Read vertex value from file and compare with current min and max values }
min_X, min_Y, min_Z, max_X, max_Y, max_Z

/I Find thelength of the geometry for 3 axes
/l'length = abs(max vertex value- min vertex vaue)
length X, length_Y, length_ Z

/I Determine thelocal reference position of the geometry.

/I Positioned from the closest end to the parent joint in the amount of RATIO value
/I locationRefPos = length * RATIO

locationRefPos_X, locationRefPos_Y , locationRefPos_Z

/I Determine the required shifting valuetomovethelocal referencepositiontotheorigin
/I if the closest edge of the geometry to the originisthe MAX vertex value:

1l shift = - (max value - locationRefPos)
/I if the closest edge of the geometry to the originisthe MIN vertex value:
1 shift =- (min value + locationRefPos)

shift_X, shift_Y, shift Z
/I savethe shifting valuesto the output file

/I apply these shifting valuesto the three axis of the vertex.
loop (until no dataleft in theinput file) {

/I Read the next vertex from the file

read fromfile

/l new value = old value + shift
new_X, new_Y, new_Z

// save the new vertex to the output file
savetofile

Figure12. The Pseudo Code for Recalculating the Vertexes.

The ratio values in the vertex recalculation pseudo code determine the distance for
the connection point of the geometry from the parent joint. For example, a ration value of
0.1 indicates the 10 percent length of the total geometry. The lower the ratio vaue, the

closer the connection to the parent joint. The connection point is also referred to as the
25

local reference position for new vertexes. The default values are 0.5 for x-axis and z-axis,
0.1 or 0.9 for yaxis. Because, according to the standard posture for humans in H-Anim
standard, a human's face is out to the positive zaxis, the head is to the positive y-axis,
and the left side is to the positive x-axis in a standing position (attention position in
military) [Ref. 1]. In a standing position, the segments are mostly postured downward.
For example, the thickness of the forearm is represented by the x and zaxis while the

length is represented by the y-axis. Figure 13 illustrates the meaning of the ratio value.

Parent Child
L
1 0
o
10
Ratio=10.1

Figure 13. TheMeaning of the Ratio Value.

Since the goa of this algorithm is to determine a connection point to the parent
joint and redraw the complete geometry in the new reference position, the next step of the
algorithm is to find a shifting vector from the local reference position to the origin. The
maximum and minimum vertex values of the geometry in each axis are determined.
Taking the absolute values of the differences between the maximum and minimum values
give the lengths of the geometry in each axes. Multiplying the lengths with their
corresponding ratio values will give the distance from the local reference position to the
parent joint.

The shifting vector is the vector required to trandate the connection point to the
origin. It is determined using two different types of calculations depending on the
position where the geometry is located. The possible four locations on the x-axis are
illustrated in Figure 14. Positions in case 1 have their max-valued edge closer to the

origin. The absolute maximum value is smaller than the absolute minimum value. That is,

26

most parts of the geometry (or the complete geometry) locate in the negative portion of
the xaxis. The remaining possible locations in case 2 have their minimum valued edge
closer to the origin. In this case, the absolute minimum value is smaller than the absolute
maximum value. That is, most of the geometry (or the complete geometry) locates in the
positive portion of the x-axis. The shifting value for x-axis is determined as follows:

shift value = - (max value — length * ratio) (incasel)

shift value = - (min value + length * ratio) (incase 2)

The same concept is followed for the y- and z-axis, too.

y y

A A
min max

min max
min max
D @ 2T @
min max
mm e e ——— » X ————— > X
Z Z
CASE 1 CASE 2

Figure 14. The Possible Locations on the X-Axis.

After determining the shifting vector for the geometry, the vector is added to all
vertexes in the input file. Then the new values are saved into the output file. The shifting
values need to be saved, too. After pasting the new vertex values back to their geometry
nodes, the segments are trandated to their proper location in the humanoid body by using

the inverse shifting values. Multiplying the shifting values with minus one will give the
inverse shifting value.

27

Inverse shifting values can be directly set to the trandation field of the Joint node.
But doing so breaks the nested-joint structure of the skeleton. The trandations depend on
their parents’ trandations. Rebuilding the new humanoid with the new vertexes requires
one to follow the hierarchy in the nested-joint structure. For instance, the shoulder
(upperarm) is trandlated before the elbow (forearm). Vectors v1, v2 and v3 in Figure 15
represent the inverse shifting vectors obtained above. Vectors v2 and v4 are the shifting
vectors relative to the parent joints. It is assumed that v1 is applied to the highest-level
parent joint and afirst level child joint is connected to it. The actual location of the first-
level child is v2 away from the parent joint, and v3 away from the origin. v1 and v3 are
known (inverse shifting vectors), and v2 is equal to the subtraction of v1 from v3. That is,
inverse shifting vector of the parent is subtracted from the child’s inverse shifting vector.
V2 is set to the trandation field of the first-level child joint. The same principleis applied
to the second-level child joint. This time v3 and v5 are known, but v4 is unknown. The
humanoid Andy using the technique described above is shown in Figure 16. Humanoid

Andy has the same geometry as humanoid AndyL ow.

3. Getting Humanoid Andy to Work with Java Networking

A Browser or Plug-in is an application used to view VRML, X3D and/or other 3D
files. Multiple browsers are available, supporting features in the various Web3d
specifications. Cortona and Cosmo Player are two of the browsers listed on WEB3D web
site [Ref.15]. Both Cortona and Cosmo Player are compatible with MS Internet Explorer
and Netscape Navigator and support java scripting. MS Internet Explorer (IE) has an
advantage over Netscape Navigator by virtue of its security policy. Because of obvious
security reasons, applets running in a browser may not send network traffic to nor receive
any hosts other than the server where applets are downloaded from without throwing a
security exception. This problem might be encountered when the scripting class is
connected to the network and receives the updated data of the Humanoid through the
network. Internet Explorer gets around with this security rule by its security policy.
According to the policy Java classesin a* .jar file, which are in the same directory on the
local disk as the invoking web page, are not subject to applet security rules. For this
reason, Internet Explorer is preferred in thisthesis.

28

v3=vl+vVv2
v2=v3-vl

v6b=v3+v4

v4 =v5+v3

V5

Figure 15. Rebuilding the New Humanoid in the Nested Joint Structure.

Figure 16. Humanoid Andy.
29

In order to implement IE's security policy, the following tasks need to be
performed. First, put the compiled java classes into the same *.jar file in which the
VRML or X3D file is placed. A batch file can be created for this purpose. The sample
batch file lines below compile MyScript.java and add all the files and the directories
located in the current local directory into MyJarFile,jar file.

C:\jdk1.3.1\bin\javac MyScript.java
C:\jdk1.3.1\bin\jar cvf MyJarFilejar *.*

Second, add the classpath for the *.jar file to the “environment variables.” The
classpath can be added to Windows 2000 or Windows XP by selecting start > control
panel > system > advanced > environment variable. Then the following code is typed.

CLASSPATH c:\path of the jar file\MyJarFile.jar

Although implementing Internet Explorer’s security policy solves the security
problem in java networking, it is still not enough to get Java to work with X3D. Some
nodes, such as Transform and HAnimJoint, in X3D provide fields that are capable of
receiving and/or sending data through ROUTE nodes. Route nodes are forwarding nodes
and contain four attributes: fromNode, fromField, toNode, and toField. The idea is
simple: from source to destination. The source and the destination can be any node, such
as Transform and Script node. The data of fromField is transferred to toField if these
fields are defined properly. An Eventin event allows a field to receive data and an
EventOut event to send data. The Rotation field defined in Transform node supports both
the Eventin and EventOut event that makes it capable of recelving and sending data.
Thus the fromField should support EventOut event, and the toField should support the
Eventln event. The relation between Javaand X3D isillustrated in Figure 17.

Script node is the key node for the link between Java and X3D. This node
contains one or more fields that support either Eventin’s or EventOut’s or both. These
fields are the pipes and need to be known by the Java script class referred inside the
Script node. For this reason all these fields are defined and created in the Java class and
the classisinherited from the Script class. Figures 18 and 19 show the relationship.

30

Script Node

! !

Any Node |g——p| ROUTE Node Java Script Class

Figure17. The Relationship between Java and X3D.

import vrml.*;

public class MyScript extends Script {
Il A referenceto the fields in Script node (X3D)
protected SFRotation leftHip;
protected SFRotation rightWrist;

Il Initialize the Script node

protected void initiaize () {
Il Create connections
leftHip = (SFRotation) getEventOut (“leftHip”);
rightWrist = (SFRotation) getEventOut (“rightWrist”);

/I Setting an initial value
leftHip.setValue (0.0f, 0.0f, 1.0f, 0.0f);
rightWrist.setValue (0.0f, 0.0f, 1.0f, 0.0f);

Figure 18. The Java Script Code.

4, I mplementing Multiple MARG Sensorsto Track Humanoid Andy

Humanoid Andy has a nested-joints structure as mentioned earlier. The
HumanoidRoot is the root joint and the parent joint for the second order joints. Second-
order joints are the left hip, right hip and vI5. For example, the hierarchical joint structure
for the right arm is as follows. HumanoidRoot, vI5, r_shoulder, r_elbow, r_wrist and
r_fingers. A MARG sensor is capable of providing quaternion data for the motion of the
attached segment. Positioning the tracked segment is possible through implementing the

guaternion data to the related joint. After converting the quaternion data into an axis-

31

angle pair data, the SFRotation field of the Joint node sets the axis-angle data pair. This
process is enough for only one sensor tracking. Additional processes are required to

implement multiple sensors to the humanoid Andy.

o * HAnimHumanoid: DEF: HUMARNOID, name: Humanoid, version: 2.0
@ J HAhimJoint. DEF: hanim_HumanoidRoot, name: HumanoidRoot, containerField: skeleton
l1ﬂtup—leveljnint references
J HAnimJaoint. USE: hanim_r_wrist, containerField: joints
J HAnImJoint. USE: hanim_I_hip, containerField: joints
o Script: DEF: MotionUpdater, url: "MyScript.class” ..
= figld: name: lefiHip, accessType: outhutOnly, type: SFRotation
= figld: name: rightWrist, accessType: outputOnly, type: SFRotation
3 ROUTE: fromMode: MotionUpdater, fromField: leftHip, tokode: hanim_|_hip, toField: set_rotation
3 ROUTE: fromMode: MotionUpdater, fromField: rightwrist, taklode: hanitm_r_wrist, toField: set_rotation

Figure 19. The X3D Script Node.

Let’'s assume a simple tracking system with one MARG sensor. If the quaternion
output of the MARG sensor is q, then the total orientation data isonly q (see Figure 20).
But, when tracking a nested structure with two segments, each MARG sensor will
produce quaternion data (t, h) for its own measurement, which is completely independent
of the other. Implementing t to the first joint will not only position the first segment
accurately but also affects the second joint, so that the starting position for the second
segment is set to t. This will result in an inaccurate positioning for the second segment if
h is directly implemented to its relevant joint (see Figure 21). In order to solve this
problem, initially the inverse quaternion of t is implemented to the second joint to
eliminate the effect of first MARG sensor. Later, quaternion h can be safely implemented

to the second joint. The formulation of this processis as follows. Assume
h = quaternion for child joint motion measured by the MARG sensor,
t = quaternion for parent joint motion measured by the MARG sensor,
c = final quaternion for the child joint.
Thefina quaternion data (c) applied to the joint is calculated as follows:
c=inverse(t) * h.

32

The idea for positioning the nested structures with more than two segments is
identical for those with two segments. The inverse motion for the parent joint(s) is

multiplied with the child joints motion. This multiplication is carried out in quaternion

type.

;K

Figure 20. Postioning One Segment.

D. SUMMARY
This chapter first presented the H-Anim standards and the X3D graphics

language. It continued with providing information about H-Anim nodes contained by
X3D and the nested-joint structure of humanoids. Finaly, the methods used for
rebuilding the humanoid Andy and getting humanoid Andy work with MARG sensors in
the network environment was discussed. For this thesis, a low-resolution Humanoid with
fifteen joints is sufficient, but a high resolution Humanoid is needed for fine gestures and

mimicsin further work.

33

t
t
X p X
z z
a. Initial position b. Quaternion t is applied to the
first joint
y
A .
1 inverse(t)
p X
p X
c. imverse(t) is applied to the d. Quaternion h is applied to the
second joint second joint

Figure21. Positioning Two Adjacent Segments in the Nested Structure.

34

V. DESIGN OF THE CLIENT-SERVER PROGRAM

Multicasting is the most efficient way of transmitting information among a large
number of group members spread out over different networks. Reduction of network
bandwidth use is the mgor advantage of using multicasting protocols. Unfortunately,
most of the routers on the Internet do not have multicast routing protocols configured. A
technique called tunneling is used to overcome this problem. Because very few numbers
of clients, up to 10 or 20, are required in this thesis, an aternative method to the
multicasting protocol referred as Multicasting Using TCP and UDP Protocol (MUTUP)
is introduced. This method overcomes the tunneling problem by implementing a

multicasting protocol with TCP and UDP protocols.

Implementing a multicasting protocol using TCP and UDP protocols requires a
concurrent client-server structure. Concurrent processing in Java can be implemented
with Thread classes. Each thread employed in the system requires additional memory and
CPU usage. The increase in the number of the clients supported by the srver program
will increase the amount of memory consumed. This might result in out-of-memory
problems or very low performance due to the overloaded CPU. In order to provide better
performance and avoid memory problems, the user in server settings restricts the number

of clients.

In principle, MUTUP is very similar to the File Transport Protocol (FTP). The
main difference between them is the protocols that are used to establish connections
between the server and the client applications. Two connections are set for handling a
client in both methods. These two connections use TCP protocol in FTP protocol,
whereas one is TCP and the other is UDP in MUTUP. The reason for this difference is
that file transfer requires reliable communication, but motion data streaming requires fast
communication.

This chapter discusses MUTUP developed as an dternative for multicasting
protocol used in this thesis. It also discusses the implementation of this MUTUP to the
MARG project.

35

A. MULTICASTING USING TCP AND UDP PROTOCOLS

MUTUP sets a TCP and a UDP connection between the server and each of the
client applications. A TCP connection is established as follows: First, the Server class
creates a ServerSocket object and waits for clients to make a request to set a TCP
connection. In order to make a request, clients need to know the IP address and the TCP
port number of the server. This information can be ether assigned as a fixed global
variable or provided externaly in the command line when running the client application.
Second, the client creates a Socket object with the provided or assigned |IP address and
TCP port number. The Socket object makes a request of a TCP connection from the
ServerSocket object in the Server class. The ServerSocket object accepts the request and
sets a TCP connection by creating a Socket object for the requesting client. Third, since
there will be multiple clients in the system, the Server class creates and starts a Thread
object for handling each new client. A class extending from the Runnable interface is
required as a parameter to the Thread class. Therefore, an additional class referred as
HandleClient class is defined for handling clients. A pseudo code for the Server class and

the HandleClient classis provided in Figures 22 and 23.

A TCP connection by itsef is not enough to create an aternative design to
multicasting for this thesiss A TCP connection is used for genera-purpose
communications, such as transferring essential data for setting a UDP connection and
informing the server when the client wants to terminate. Since the motion data tracked by
the MARG sensor(s) require low latency, the second link between the client and the

server must be a UDP connection.

The number of clients accepted by the Server class is limited by using a counter
variable in an infinite loop. Since the number of active clients at a time is dynamic, the
counter variable is increased after each client’s request and decreased after each client
shuts down. If the counter reaches the upper alowable limit, then it stops accepting new

clients until one of the active clients shuts the connection down.

36

class Server {

Set counter = 0; /I the counter
Set maxClientAllowed, /I Maximum clients allowed
Create the shared array/memory, /I byte]] sharedMemory

Create and start the thread for MemoryUpdater class
create ServerSocket object;

while (true) {
if (counter < maxClientAllowed) {
Accept new client; /I ServerSocket.accept()
Create Socket object for the client;
Create Thread object to handle the client; // new Thread(new HandleClient(sock, this))
Start thread; I/l Thread.start()
counter ++;
}
}
}

Provide the method for decreasing the counter,
Provide the setter and getter methods for the shared array.

Figure22. Pseudo Code for the Server Class.

The constructor of the HandleClient class accepts the Socket object passed from
the Server class, and extracts the input and output streams from the Socket object. These
streams are used for the TCP communication. The second connection is established in the
HandleClient class by requesting the port number and the IP address of the UDP
connection from the Client class. The request is done through the TCP connection. The
Client class creates a DatagramSocket object after receiving the request from the
HandleClient class and responds after retrieving the UDP port number and IP address that
the DatagramSocket object listens for. The HandleClient class sends feedback to the
Client class to confirm that the requested data is received. A loop is employed in the
HandleClient class in order to create DatagramPacket objects (packet) for the data. The
IP address and the UDP port number of the client are set to each packet before sending
them. The Client class employs a loop for receiving the packets. The loop continues until
no more data is left or the UDP connection is broken. Findly, the TCP and the UDP

37

connections are killed on both sides and the counter variable of the Server class is
decremented. The pseudo code for the Client classis provided in Figure 24.

class HandleClient implements Runnable

CONSTRUCTOR:

Save the Socket object and the Server object passed by the Sever class;
/I Socket sockTCP = Socket Object passed by the server;
Il Server owner = this;

RUN:
Create input/output stream for the TCP connection;
// Datal nputStream dis = new Datal nputstream (sock TCP.getInputStream ());
[/l DataOutputStream dos = new DataOutputstream (sockTCP.getOutputStream ());

Request address and port number for the UDP connection
I dos.writeUTF(" Requesting address and port number for UDP connection");
/ dos.flush ();

Wait to receive the respond from the client
/I clientRespond = dis.readUTF();

Send acknowledge to the client;
I/ dos.writeUTF("address and port number received");
/I dos.flush();

Tokenize address and port number from the respond message
Il StringTokenizer st = new StringTokenizer(clientM sg);
Il InetAddress destAddrUDP = InetAddress.getByName(st.nextToken());
I/l int destPortUDP = new Integer(st.nextToken()).intVaue();

while (more datato send) {
create DatagramSocket
I/ sockUDP = new DatagramSocket(); -- boundsto any available local port --

read the motion data from the shared byte array in the server
I byte]] barray = owner.getSharedByteArray();

create a DatagramPacket object,
set the address and the UDP port number of client
/I packet = new DatagramPacket(barray, barray.length, destAddrUDP, destPortUDP);

send the packet
/1 sockUDP.send(packet);
}

Kill the UDP and the TCP connections,
Decrease the counter variable of the Server class // owner.decreaseCounter();

Figure23. Pseudo Code for the HandleClient Class.

38

The method described above handles multiple clients concurrently, but it is not
explained how the same motion data is distributed to the clients smultaneoudly. Unless
the same data is distributed to the clients simultaneoudy, the system will not implement
multicasting. As a solution, a shared array/memory for the motion data is used in the
system. In order to get the shared array accessible by al client handler threads, the array
is defined in a global perspective, i.e. in the Server class, and the getter and setter
methods are provided. For updating the shared array, the Server class employs an
additional thread implementing the MemoryUpdater class. The pseudo code for
MemoryUpdater classis provided in Figure 25.

class Client

Create Socket object for TCP connection
[/l addrTCP = InetAddress.getByName(ADDRESS)
/1 sockTCP = new Socket(addrTCP, DEFAULT_TCP_PORT);

Create input/output stream for the TCP connection;
/I DatalnputStream dis = new Datal nputstream(sockTCP.getl nputStream());
/I DataOutputStream dos = new DataOutputstream(sock T CP.getOutputStream());

Wait to receive request from the server
1/ serverRequest = dis.readUTF()

Create DatagramSocket object for UDP connection
1/ sockUDP = new DatagramSocket();

Retrieve | P address and UDP port number from the DatagramSocket object
// addrUDP = (InetAddress.getL ocalHost()).getHostAddress();
/I portUDP = sockUDP.getL ocal Port();

Respond to the server's request
/I dos.writeUTF(addrUDP+" "+portUDP");
[/ dos.flush();

Wait for acknowledge
[dis.readUTF();

while (not finished) {
Receive motion data
1/ sockUDP.receive (packet);

Update Humanoid
}

Kill the TCP and UDP connections,

Figure24. Pseudo Code for the Client Class.

39

class MemoryUpdater implements Runnable

CONSTRUCTOR:
save the Server object passed by the Sever class;
/] Server owner = this;

RUN:
Create 3 arraysfor raw sensor data,

Create and run athread implementing MARGDataUpdater class,
/l Thisthread receives data through 3 MARGDataReader class,
/I and updates raw sensor data arrays continuously

while (continue reading data from sensors) {
Convert the 3 raw sensor datainto quaternion data,
/I Use QuestQuaternionProducer class

Convert the quaternion datainto byte]] type data,
Save the converted datainto the shared array,

/I by using setter method provided by the Server class
I/l owner.setSharedByteArray(barray);

Figure 25. Pseudo Code for the MemoryUpdater Class.

B. IMPLEMENTATION OF MUTUP IN THE MARG PROJECT

The Concurrent Client Server Program is used as a connector between the MARG
sensor(s) and the representation of the humanoid developed in X3D to animate the
tracked human motion. The humanoid used in this design is the humanoid Andy
introduced in Chapter 111. Humanoid Andy is capable of animating the 15 MARG sensor
data that is the minimum requirement for full-body human motion tracking as mentioned
in [Ref. 2]. The block diagram of the Concurrent Client Server Program implementing
MUTUPI sillustrated in Figures 26 and 27.

The StartServer class is the starting program for the Concurrent Client-Server
Application (CCSA) and triggers the server program by creating and starting a Thread
object for the Server class. The Server class implements Runnable interface and is
responsible for receiving rav MARG sensor(s) data, converting them into quaternion
representation and updating the shared array/memory continuoudy. Furthermore, the
Server class is responsible for starting a new thread for handling each new client and
controlling the number of active clients at any given time. Since the shared array for the

40

motion data is required to be accessible by all sub-threads in the system for implementing
multicasting, the Server class contains the shared array. In this way, the shared array
gains a global status over the threads created by the Server class and both the thread
implementing MemoryUpdater class and threads implementing HandleClient classes can
access the shared array. The Server class provides setter and getter methods for the
shared array. For the purpose of reducing computation process, the shared array is
defined as byte[] type. This is because the motion data is transmitted to the clients
through UDP connections and UDP packets accept payload data in byte]] type.
Otherwise, each HandleClient class has to repeat the same conversion process from high-
level quaternion data to the low-level byte[] data. The number of threads employed by the
Server class depends on the number of clients allowed to be handled. In any case, a
thread for implementing MemoryUpdater class is created and started first because the
server needs to be ready for capturing motion data before accepting any client. Once the
MemoryUpdater class is created and started to update the shared array, the clients can be
accepted within the allowed limitations.

The MemoryUpdater class implements the Runnable interface and its
responsibilities are as follows: Receiving the sensor data through three different
WIiSER2400.1P wireless serial adapters and converting the raw sensor data first into
guaternion representations and later into byte]] form. Receiving the sensor data through
the 3-channd CIU is more chalenging than through the 15-channe CIU. Since the 15-
channel CIU is not ready at this moment, the MemoryUpdater class is designed to use the
3-channel CIU connected to three different WiSER2400.1P adapters and MARG sensors.
The MemoryUpdater class will be much smpler for a 15-channel CIU since it will use
only one wireless serial adapter and all sensors will be connected to this serial adapter. In
order to use the 3-channel CIU in the concurrent client-server design, an additiona thread
implementing the MARGDataUpdater class is needed. The MARGDataUpdater class is
in charge of three different MARGDataReader class for handling the three MARG
sensors connected to the 3-channel ClU. The MARGDataReader class is responsible only
for receiving the sensor data through the WiSER2400.1P serial interface and parsing it.
Handling these parsed raw sensor data is under MARGDataUpdater class's
responsibility. The MemoryUpdater class provides three different arrays for each parsed

41

raw sensor data. These arrays are in int[] type and updated smultaneously by the
MARGDataUpdater class.

The second task of the MemoryUpdater class is to convert the raw sensor data
into usable quaternion data. The QuestQuaternionProducer class implements the Quest
guaternion algorithm introduced in [Ref. 7] in order to handle this conversion process.
The MemoryUpdater class uses three different QuestQuaternionProducer classes for each
raw sensor data since each sensor calibration data is different from the others and the
Quest quaternion algorithm uses the sensor calibration data in its calculations. The output
guaternion data is in [w X y z] order. Each element of quaternion data is in double type
data. It is acceptable to save the quaternion data as it is, but an additional conversion into
byte array form is needed before sending them to the clients. When multiple clients
accepted by the server, this means redundant computation overload on the computer
running the server application. Therefore, this conversion task is the third responsibility
of the MemoryUpdater class. The size of the shared array is flexible for further work with
15 sensors, or even more than 15. That is, it is capable of handling 15 sensor data in byte-
array from. For this reason, the MemoryUpdater class can update any selected three-joint
location in the shared array by setting the number of joints to the shared array updater
method. The three joints are determined globally either in a different class or within the

Server class. Using a different class is more flexible than defining within the Server class.

As described earlier in the chapter, the HandleClient class is used to handle each
visgiting client. The HandleClient class implements Runnable interface and establishes a
UDP connection with the client, which it is responsible to handle. Since setter and getter
methods are provided for the shared array by the Server class, the HandleClient class
reads the latest updated MARG sensors data by using the getter method. The read data is

transmitted to the client without any additional calculations: simply read and transmit.

On the client side, the humanoid Andy is connected to the ClientReceiver (Client)
class by using a Script node and can receive the MARG sensors data through this class.
ClientReceiver class sets two connections with the server program. First, a TCP
connection for genera-purpose communications is set. The client conducts the initial
contact with the ServerSocket object of the Server class by using the TCP connection.

42

StartServer class

Trigger Server class

MARG Sensor(s)
_| dataprovided
through three
Wisor2400I P
Wireless serial adapter
Server class (Thread)
MemoryUpdater class (Thread)
—p Read sensor data
Update
—pddey,

*

1. Start memory updater thread

2. Start threads to handle clients

v

HandleClient class
(Thread #1)

#2,#3, #4, ...

Read from shared

HandleClient class
(Thread #N)

1

vy

ClientReceiver class
(Thread)

lUDdate

Figure 26.

43

{1
vV
ClientReceiver class

(Thread)

lUDdate

Block Diagram of Concurrent Client Server Program.

If the ServerSocket object accepts the client, then the second connection is established
between the ClientReceiver and the HandleClient class for transferring the MARG
sensors data. Since the data rate is the major issue regarding performance in networked
virtual environments, the second connection isimplemented using the UDP/IP protocol.

WiSER2400.1P#1 WiSER2400.1P#2 WiSER2400.1P#3

]
v

MemoryUpdater class

LRead

LRead

MARGDataUpdater class Thread
MARGDataReader MARGDataReader MARGDataReader
class class class
Write Write Write
v v v
Raw Raw Raw
Sensor Sensor Sensor
Data Data Data

LRead

QuestQuaternionProducer QuestQuaternionProducer QuestQuaternionProducer
class#1 class #2 class#3
Convert Convert Convert
to to to
byte{] byte{] byte{]
0 1 .. 15
SHARED BYTE []
Figure27. A Detailed Block Diagram of MemoryUpdater Class.

C. SUMMARY

This chapter discussed MUTUP developed as an aternative of the multicasting
protocol to be used in this thesis and discussed the implementation of MUTUP to the
MARG project. MUTUP overcomes the tunneling limitations/requirements of the
multicasting protocol. The maor drawback of MUTUP in a concurrent clients-server
application is the limited number of clients accepted by the server. But, this drawback
does not affect the MARG project since a limited number of clients is expected. The
principle of MUTUP is similar to the FTP protocol, except the types of connections
established between the client and the server applications.

45

THISPAGE INTENTIONALLY LEFT BLANK

46

V. TESTING AND EVALUATION

This chapter describes the efforts of testing and developing procedures of the
humanoid Andy and the concurrent client-server program. Tests are conducted with
simulation data produced by a program developed in the Advanced Physicaly Based
Modeling course [Ref. 16] and real-time data obtained by using the MARG sensors.

A. ROTATIONAL MOTION TESTSTHE HUMANOID ANDY

As described in Chapter 111, humanoid AndyLow was created in VRML97 and
Proto nodes were declared to implement the H-Anim standards. Humanoid Andy, the
modified version of the humanoid AndyLow, is compatible with X3D and implements H-
Anim standards using built-in humanoid nodes provided by X3D. The process of
developing the humanoid Andy from the humanoid AndyLow was discussed in Chapter
I1l. Orientation tests applied to the joints of the humanoid Andy are required for
validating the humanoid. The first orientation test is implemented using the
Orientationinterpolator node provided by X3D. The Orientationinterpolator node
generates a series of rotation values in axis-angle pair data type that can be routed to the
Joint nodes of the humanoid Andy. This test showed that the humanoid Andy could be
used for tracking human motion since al 15 segments rotated about their relevant joints
(connection points to the parents). Figure 28 illustrates the smultaneous rotation of the
left forearm about zaxis and left hand about y-axis. Figure 29 illustrates the rotations of
the left forearm, right forearm and the head of humanoid Andy.

The second orientation test is conducted using simulated data created by a
program developed in the Advanced Physically Based Modeling course [Ref. 16].
Methods in LISP codes provided by the instructor were used in developing the program.
The program produces three-degrees-of-freedom (3 DOF) motion data for a rigid-body
model of a human arm either in Euler angles or in quaternions. The resulting data is
displayed on the screen and is saved into a file either as Euler angles or as quaternion
data. The mouse and a button on the keyboard are used to move the arm in 3 DOF. A

sample screen capture of the LISP program moving an am in 3 DOF is illustrated in

47

Figure 30. Subsequently, the quaternion data saved in the file is read by a Java program
and set to the Joints of the humanoid Andy. Since the humanoid Andy cannot implement
quaternion data directly for rotations, a computation from quaternion into axis-angle pair

is processed before setting the Joint nodes.

Figure 28. Simultaneous Rotation of the Left Forearm about Z-Axis and Left Hand about Y -
AXis

o

-k

Figure29. Rotationsof Left Forearm, Right Forearm and Head of the Humanoid Andy

48

Figure 30. A Sample Screen Capture of the LISP Program Moving an Armin 3 DOF

B. TESTING HUMANOID ANDY WITH ONE MARG SENSOR

Even though the orientation tests discussed above are not in red time, they
showed that humanoid Andy is ready for human motion tracking usng MARG sensors in
a real-time application. The testing with the MARG sensor follows three steps. First, the
MARG sensors capture limb segment independently from the other sensors and cannot be
directly implemented to the joints. Therefore the humanoid is tested for one MARG
sensor a the beginning using one-channel CIU. Second, in order to achieve a rea-time
application a server and a client program are developed. The server is responsible only
for reading motion data of one MARG sensor, and then transmitting it to the client
program. Humanoid Andy receives the real-time motion data through the client program.
A UDP connection between the server and the client program is set for achieving a higher
datarate.

Third, the data read from the sensor is raw data and needed to be converted to a
high-level representation. A joint work with [Ref. 8] is started to implement this
converson. The Quest and Triad agorithms introduced in [Ref. 7] can be used to
determine the three-axis attitude from vector observations. Both agorithms provide low-
cost computation and high numerical accuracy. Since the Quest algorithm is chosen for
higher accuracy applications, this thesis focused on implementing the Quest algorithm.
The Quest agorithm uses six accelerometer and magnetometer data read from the sensor

as an input and produces quaternion data for the motion. Figure 31 shows the high-

49

accuracy of rotations obtained by the MARG sensors using the Quest algorithm. Thearm
is initially parallel to the yaxis facing down to the negative y-axis. It went through a

rotation of 90 degrees about negative x-axis.

Figure 31. The Implementation of Quest Algorithm to the Humanoid Andy (90 Degrees of
Rotation about Negative X-AXxis)

50

C. TESTING HUMANOID ANDY USING TWO MARG SENSORS

Use of the quaternion data from multiple MARG sensors in a nested-joint
structure is another testing applied to the humanoid Andy. Each MARG sensor works
independently from each other. But, the joints in the skeleton of the humanoid are
dependent on the adjacent parent joints. As described in Chapter 111, the inverse motion
of the parent segment is multiplied with the motion of the current segment before
applying it to the relevant joint of the current segment. The concurrent client-server
program discussed in Chapter 1V is used to apply this method for testing. Two adjacent
segments selected for the testing are the right upperarm and the right forearm. The related
joints for these segments that are in the connection point to their parent joints are the
r_shoulder and r_elbow joints. Two MARG sensors are connected to the three-channel
CIU and their calibration results are set to the corresponding QuestQuaternionProducer
classes. Each MARG sensor needs to be calibrated independently from the other sensors.
In this case, two different objects of the QuestQuaternionProducer class are created in the
MemoryUpdater class. In addition to these objects, two different MARGDataReader
objects are also created for reading sensor data from two different MARG sensors.
Finally, the system is set to support two MARG sensors on the server side. The
guaternion data for each sensor is produced independently of the others, each using its
own calibration data. The produced quaternion data is converted into byte[] type data and
saved to the corresponding location in the shared array. The HandleClient class reads the
shared array and transmits it to the client program that runs the humanoid Andy. At this
moment, the quaternion data transmitted to the client side is the exact representation of

each MARG sensor measurement.

On the client side there are three array-type data members defined for storing the
motion data received from the server program. The reason for defining three different
data members for holding the motion data is to provide flexibility to the further client
programs with different humanoids. The humanoids developed in the future may use one
of these data members, depending on their structure. The first data member stores the
exact sensor measurements in high-level (double) quaternion type data. The client
program converts the low-level byte[] type data received in the packet to a high-level
guaternion type data and saves it into the first data member. The second data member

51

stores the motion data in high-level quaternion data but ready to apply to the nested-joint
structure of the humanoid Andy. To get the sensor data compatible with humanoid Andy,
the method of taking the inverse motion of the parent joint and multiplying it with the
original measurement is applied, as described in Chapter 111. For this reason, the original
sensor data stored in the first data member is used for these calculations. Finally, the third
data member is defined in order b get the sensor data to work with X3D. Since X3D
accepts axis-angle type data instead of quaternion type data, the motion data saved in the
second data member is converted into the axis-angle pair representations and saved in the
third data member. The Quat4d and AxisAngledd classes provided in the javax.vecmath
package handle conversions from quaternion into axis-angle pair. This package is an
open-source code included in the Java3d1.3.1 package [Ref. 17].

After obtaining the axis-angle pair data, the joints of the humanoid Andy is set to
the third data member values. The result of usng two MARG sensors in the system is
illustrated in Figures 32 and 33.

Figure32. Testing Two MARG Sensors on the Humanoid Andy.

52

Figure33. Testing Two MARG Sensors on the Humanoid Andy.

D. TESTING THE CONCURRENT CLIENT-SERVER PROGRAM

The concurrent client-server program was first tested using random data. The
double type random data are converted to byte[] type data and then transmitted to the
clients. The client programs in this testing do not run humanoids and the MARG sensors
are not connected to the system. Both the server program and the client programs are al
running on the same computer. The highest number of clients accepted by the server
program is not limited, but the system is only tested with up to five clients running at the
same time. The system is aso tested on the LAN and on the Internet successfully. Three
computers each running a client program and a computer running both the server

program and a client program are connected to the network. The clients did not join to the

53

system at the same time, but the same data was delivered concurrently to the clients
successfully. Even if a client program quits the system and rgjoins to the system later, al
active clients receive the same data simultaneoudly. That is, the system is multicasting.
This property of the client-server program makes it possible for any new client to join
and quit at any time. The only restriction is the number of clients allowed to be accepted
by the server program. The user can control this number.

Another testing is applied to the system with three MARG sensors capturing
human limb motion smultaneoudy. The client program runs the humanoid Andy. A
client and a server program run on the same computer. The captured motion data is saved
in the shared array on the server program. The size of the shared array is set to be large
enough to hold 15-sensor data. Therefore, only the locations for the connected joints in
the shared array are updated with the captured data and all the remaining locations retain
the same value as they are initialized. In this way, the data transferred to the clients are in
the size of 15 sensor data. This means, the system is greatly overloaded, but the goa o
the MARG project is to get a least 15 MARG sensor capturing human limb motion
simultaneoudly. The result of this testing is a successful animation on the client with

amost no delay. A further step with severa clients running on the Internet is not tested.

The performance of the WiSER2400.IP seria adapter in the system is not tested
for 15 MARG sensors data, but works well for one sensor. As described earlier, three
different MARG sensors are connected to a three-channel CIU and each is handled
independently by the server program. The server program reads the three sensor data
simultaneoudly, as if the three sensor data are transmitted through one wireless serial
adapter. The goal with the 15-channel CIU is to receive al 15 sensor data through one
wireless serial adapter.

E. FINAL RESULTS

All the tests conducted above helped develop the humanoid Andy to animate 15
MARG sensor motions captured ssimultaneoudly and helped develop the humanoid Andy
to work with the concurrent client-server program. Developing the concurrent client-

server adds the MARG project the capability of capturing real-time human motion. The

54

overal system is not tested with 15-channe CIU at this moment. Minor modification to
the system will make the system compatible with 15-channel CIU.

55

THISPAGE INTENTIONALLY LEFT BLANK

56

VI. CONCLUSIONSAND FUTURE WORK

This chapter presents the conclusions and the future work of this thesis, and

briefly discusses what has been done and the lessons learned.

A. SUMMARY AND CONCLUSIONS

The existing MARG project prior to this research lacked a humanoid that met the
need of animating 15 MARG sensor data. The existing humanoids developed for the
project had their own limitations. One was very far from reality and did not follow the H-
Anim standards. The other two humanoids were created using laser-scanned data and
followed the H-Anim standards, but one had its adjacent joints broken and the other was
capable of rotating only one joint. Therefore, the humanoid Andy was developed to meet
the needs for animating the motion of a human measured by 15 MARG sensors.

A cartoon type humanoid AndyLow was selected as the darting point for
developing the humanoid Andy. The humanoid AndyLow was developed using Proto
nodes of VRML97 and implemented with HHAnim standards. X3D has the advantage of
providing built-in humanoid nodes implementing HAnim standards. First, the humanoid
AndyLow was imported to the X3D and Proto nodes were replaced with built-in
humanoid nodes. Although this process made the humanoid compatible with X3D, it was
not possible to apply rotation to the segments about their connection points to the parent
joints. An additional process discussed in Chapter |1l was applied to overcome this
problem. Finally, the new humanoid was ready for animating 15 MARG sensor data and

named as the humanoid Andy.

A network interface was missing in the MARG project. Adding networking
capability to the project is vita to get a flexible system with real-time data streaming. The
concurrent client-server application implementing multicasting using both the TCP and
UDP protocols was developed. A shared array keeping the last update of the sensors
data was defined in the server program for a ssmultaneous data transmission between the
server and the clients. Three WiSER2400.IP wireless serial adapters were connected to

the three different MARG sensors through the 3-channel CIU. The server program listens
57

to the sensors data through the UDP connections established wirelessly between the
serid adapters and the server program. The humanoid Andy simulates the motion

captured by the sensors’ on the client side.

The mgjor advantage of implementing multicasting usng TCP and UDP protocols
(MUTUP) with a shared array is overcoming the tunneling problem encountered in
multicasting protocol. Today, most of the routers on the Internet cannot handle multicast
packets and multicast packets are forwarded using unicast protocols. Using unicast
protocol is referred as tunneling. The mgjor disadvantage is the limitation on the number
of clients handled by the server program at any time. There is a limitation because each
client means an additiona overload to the CPU and additional memory consumption that
results in low performance or out-of-memory problems. Ancther drawback is the
bandwidth restrictions. Sending motion data to any additional client adds additional
traffic to the network. Despite these drawbacks, the MARG project is not affected, for a
limited number of clients are needed. From this aspect, usng MUTUP is advantageous

over using multicasting protocol.

MUTUP has a similarity with the file transport protocol (FTP) in principle. The
only difference is that the FTP sets two TCP links between the server and aclient where
MUTUP sets a TCP link for genera-purpose communication and a UDP link for motion
data transfer. Using TCP protocol for data streaming reduces the data rate.

The rav MARG sensor data consist of an accelerometer, a magnetometer and an
angular rate sensor measurement. These measurements are converted to a quaternion data
by implementing the Quest agorithm. Using quaternions in animation has a low-cost
computation and high numerical accuracy [Ref. 7]. The quaternion data is produced
separately for each sensor. Calibration data for each sensor differs from the others and is
set to the Quest agorithm before producing the quaternions for the measurements. Each
sensor mounted on the human body works independently of the others. Therefore a
nested-joint structure cannot use the quaternions directly. An adjustment between the
sensors data is required to be conducted and to be compatible with the nested-joint
structure of the skeleton of the humanoid Andy. The adjustment method is explained in
detail in Chapter 111.

58

In case future work needs a different humanoid with a different skeleton structure,
the original sensor data is saved in a data member on the client program. The adjusted
motion data is converted from quaternions to axis-angle pair type data. Thisis the only

way of setting rotations to the Joint nodesin X3D.

B. FUTURE WORK

Using axis-angle pair data for rotation in X3D overloads the client program with
additional computation. The first humanoid developed for the MARG project [Ref. 2]
was capable of setting quaternion data directly to the joints without any additional
conversion. This humanoid was developed in Java using the open-source Java3dl.3.1
package [Ref. 17]. Tools other than X3D that supports quaternions might be required in

future work when performanceis an issue.

The humanoid Andy does not have a realistic geometry when compared with the
previous laser-scanned humanoids. A redlistic humanoid is required to increase the
immersion in virtua environments. Therefore, the laser-scanned humanoids can be
developed to smulate the motion captured by 15 MARG sensors. At this level, a cartoon
type humanoid is sufficient for the MARG project.

The client-server application needs to be adjusted when 15-channe CIU is
available. The MemoryUpdater class is responsible for reading motion data from the
sensors. The current structure of the class receives motion data through three independent
wireless serial adapters. A structure for one serial adapter needs to be developed by a
modification to the current structure. Since all 15 sensors data will be packed into one
packet, a decoding method to the packet needs to be devel oped.

To obtain a better result from the Quest algorithm, a caibration process is
required. The calibration results are obtained using a separate program. The results are
displayed on the screen and not saved in afile. The results of the calibration process for
each sensor are set to the Quest agorithm manually. This will be chalenging to handle
for a 15-sensor system. On the other hand, the QuestQuaternionProducer class, which
implements the Quest algorithm, cannot be used for multiple sensors. That is, a new

object of this class is created for each additional sensor. This class needs to be modified

59

to process multiple sensors. Adding data members to hold the calibration data for all

sensors will solve this problem.

The current setting with the three WiSER2400.IP serial adapters meet the needs
of this thesis. Each WiSER2400.IP is responsible for transmitting the motion data for one
MARG sensor. In a 15-channel CIU setting, the size of the sensors data will be more
than the capacity of the current WiSER2400.1P (i.e. more then 200 bytes). Requesting an
increase in the capacity of the WiSER2400.IP from the manufacturer will solve this
problem. Otherwise, another wireless serial adapter is required. Another problem with the
WIiSER2400.1P is the battery consumption that limits the portability of the system.

The performance of the concurrent client-server application is not tested on the
wide-area network (WAN). For example, testing can be conducted by setting the server
program to run in the United States and the client programs to run in Turkey (more than
10,000 miles distance).

60

10.

LIST OF REFERENCES

“ISO/IEC 19774 — Humanoid Animation (H-Anim200x),” [http://www.h-
anim.org/Specifications/H-Anim200x/ISO_IEC_FCD_19774]. February 2004.

Bachmann, Eric Robert, Inertial and Magnetic Tracking of Limb Segment
Orientation for Inserting Humans into Synthetic Environments, Ph.D.
Dissertation, Naval Postgraduate School, Monterey, CA, December 2000.

Dutton, James Allen, Developing Articulated Human Models from Laser Scan
Data for Use as Avatar in Real-time Networked Virtual Environments, Master’s
Thesis, Naval Postgraduate School, Monterey, California, September 2001.

“Humanoid Animation,”
[http://www.web3d.org/TaskGroups/x3d/trand ation/exampl es’Humanoi dA nimati
on/AllenDutton.wrl]. January 2004.

Sinav, Alper, Analysis and Modeling of the Virtual Human Interface for the
MARG Body Tracking System Using Quaternions, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 2002.

Vcom3D, Inc, “Human Characters” [http://www.vcom3d.com/Viewer.htm].
February 2004.

Schuster, M.D. and Oh, SD., “Three-Axis Attitude Determination from Vector
Observations.” Journal of Guidance and Control, Vol. 4, No. 1, pp. 70-77,
January-February, 1981.

Kavousanos-Kavousanakis, Andreas, Designing and Implementation of a DSP-
Based Control Interface Unit (CIU), Master's Thesis, Naval Postgraduate School,
Monterey, California, March 2004.

OTC Wirdless, Inc., “Wiser Wireless Serid (RS232) Solution,”
[http://www.otcwirel ess.com/802/wiser.htm]. January 2004.

Cornelius, Berry, “Java versus C++,” [http://www.dur.ac.uk/~dclObjc/Java.htm].
January 2004.

61

11.

12.

13.

14.

15.

16.

17.

The Working Group for WLAN Standards, “IEEE 802.11 Wireless Loca Area
Networks,” [http://grouper.ieee.org/groups/802/11/]. March 2004.

“802.11,” [http://www.webopedia.com/TERM/8/802_11.html]. January 2004.

OTC Wirdless, Inc., 802.11b Wireless Serial Port Adapter Wiser2400.IP User
Guide, January 2004.

“Extensble 3D (X3D) Humanoid Animation (H-Anim) Component,”
[http://mediamachines.com/X3D/spec_07 21 02/part01/components/hanim/index
html]. February 2004.

Web 3D Consortium, “Creating Open Standards for Communicating 3D,”
[http://www.web3d.org/vrml/browpi.htm]. January 2004.

McGhee, R. B., MV4472 Advanced Physically Based Modeling Course, Naval
Postgraduate School, Monterey, CA, 2003.

Sun Microsystems, Inc., “The Source for Java Developers,” [http://java.sun.com].
February 2004.

62

10.

11.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvair, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Dr. Rudy Darken
Naval Postgraduate School
Monterey, California

Prof. Xiaoping Yun
Naval Postgraduate School
Monterey, California

Don McGregor
Naval Postgraduate School
Monterey, California

Prof. Robert B. McGhee
Naval Postgraduate School
Monterey, Cdifornia

Dr. Don Brutzman
Naval Postgraduate School
Monterey, California

Eric Robert Bachmann

Miami University

Oxford, Ohio

Andreas Kavousanos-K avousanakis

Hellenic Navy
Athens, Greece

Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar, Ankara, Turkey

Deniz Harp Okulu Kutuphanes
Tuzla, Istanbul, Turkey

63

12.

13.

14.

15.

Aragtirma Merkezi Komutanligi
Pendik, Istanbul, Turkey

Middle East Technical University

Department of Computer Engineering

Ankara, Turkey

Istanbul Technical University

Electric and Electronic Faculty, Department of Computer Engineering

Ayazaga, Istanbul, Turkey

Faruk Yildiz
Turkish Navy
Golcuk, Kocaeli, Turkey

64

