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Abstract 
The development of a computational tool for the solution of turbulent 

magnetohydrodynamic (MHD) equations, including turbulence or chemically reacting 
flows is presented. For the MHD solver, option is provided to solve either the full MHD 
equations or the low magnetic Reynolds number equations. For turbulence, the Reynolds 
Averaged approach is considered for its low requirement in terms of computational 
resources. Six turbulence models, ranging from simple algebraic model to more 
sophisticated two-equation models are considered to evaluate the eddy viscosity. Since 
the turbulence models were originally designed for non-magnetic flows, they require 
some modifications to account for the presence of a magnetic field. The governing 
equations are numerically solved by a modified Runge-Kutta scheme augmented with a 
Total Variation Diminishing scheme for accurate shock capturing. The numerical 
solutions are compared with available experimental data and existing analytical solutions. 
The calibration of the modified turbulence models is performed based on the turbulent 
MHD Hartmann flow, for which a relaminarization process has been experimentally 
observed. Original models do not accurately predict the relaminarization process, 
whereas modified models show good agreement with experiments. Application of the 
original and modified turbulence models to a supersonic flow over a flat plate leads to a 
reduction of the skin fiiction by about 20% to 30% when the fluid has a low conductivity. 
A complete relaminarization is observed for high conductivity fluids. The heat transfer 
could also be substantially reduced for the hypersonic flow over a cone, as a result of a 
relaminarization of the flow. 

For the simulation of hypersonic high-temperature effects, two chemical models 
are utilized, namely a nonequilibrium model and an equilibrium model. A loosely 
coupled approach is implemented to communicate between the magnetogasdynamic 
equations and the chemical models. The nonequilibrium model is a one-temperature, 
five-species, seventeen-reaction model solved by an implicit flux-vector splitting scheme. 
The chemical equilibrium model computes thermodynamics properties using curve fit 
procedures. Selected results are provided, which explore the different features of the 
numerical algorithms. The shock capturing properties are validated for shock-tube 
simulations using numerical solutions reported in the literature. The computations of 
superfast flows over comers and in convergent channels demonstrate the performances of 
the algorithm in multiple dimensions. The effectiveness of the chemical models for 
hypersonic flow over blunt body is examined in various flow conditions. It is shown that 
the proposed schemes perform well in a variety of test cases, though some limitations 
have been identified. 
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Chapter 1 
Introduction 

Magnetohydrodynamics (MHD) is a branch of fluid dynamics that studies the 
interaction of an electrically conducting fluid with an electromagnetic field. It occurs 
naturally at larger scales in the sun and stars, the earth interior (dynamo effect) and 
ionosphere. The MHD effect has been investigated for engineering applications, e.g. for 
propulsion systems or power generators. Magnetohydrodynamics shows a great potential 
in aerospace engineering because it offers the possibility of controlling the flow around a 
vehicle or even extracting energy fi-om its surrounding. Faraday was the first scientist 
who designed an MHD converter in 1860. 

1.1 Magnetohydrodynamics 

When an electrically conducting fluid moves through a magnetic field, it produces 
an electric field and subsequently an electric current. The interaction of the induced 
electric current with the electromagnetic field creates a body force, called the Lorentz 
force, which acts on the fluid itself There are two approaches to treat 
magnetohydrodynamics. The first one is the macroscopic approach where the fluid is 
treated as a continuum media. It is associated with electrically conducting liquids and 
relatively dense gases. This is usually referred to as MHD and will be considered in this 
investigation. The second approach is the microscopic study of the fluid, treated in a 
statistical model. This approach is known as plasma dynamics. 

Mathematically, magnetohydrodynamics is represented by the combination of the 
Maxwell's equations, governing the electromagnetic field and the Navier-Stokes 
equations governing the flow field. The corresponding set of equations is known as the 
MHD equations. These equations must be solved in order to analyze 
magnetohydrodynamics flows. There have been numerous attempts in solving these 
equations, starting fi-om analj^ical or empirical methods. Since the governing equations 
are non-linear partial differential equations, they can be analytically solved only for 
simple flows with restrictive assumptions on the flow or the magnetic field. Rossow [1] 
developed an approximate solution for an incompressible laminar hypersonic flow over a 
flat plate subject to a uniform magnetic field. He showed that as the magnetic field is 
increased, the skin fiiction and heat transfer are reduced. Other investigators have shown 
the same trend for other types of flows. Lykoudis developed a similarity solution for 
boundary layer flows over a wedge [2]. Lykoudis [3] developed an analytical solution for 
the shock standoff distance for hypersonic flows of an electrically conducting fluid 
around a sphere and a cylinder. By assuming a Newtonian pressure distribution and a 
constant density past the shock, he was able to integrate the differential equation for an 
inviscid fluid and obtain a closed form solution. 

With the expansion of Computational Fluid Dynamics (CFD), it has become 
possible to investigate MHD flows under less limiting conditions on the magnetic field or 
the flow properties. Since the MHD equations are hyperbolic in nature, numerical 



schemes based on characteristic formulation have been widely used. High-order Godunov 
schemes have been used for one-dimensional cases and shock tube problems [4-9]. 
Riemann solvers associated with Godunov schemes have been proven to be robust and 
able to accurately capture the shock waves. More recently, modified Runge-Kutta 
schemes augmented with Total Variation Diminishing (TVD) schemes have been used 
for one-dimensional and two-dimensional problems [10-14]. The use of the TVD scheme 
as a post process stage allows good shock waves capturing with no or little spurious 
oscillation. This method requires the determination of the eigenvalues and eigenvectors 
of the system of equations. For the ideal one-dimensional case, it results in a seven-wave 
system, whereas for the ideal two-dimensional case, an eight-wave system is obtained. It 
has been shown that the determination of the eigenvalues and eigenvectors of the system 
requires a mathematical modification of the governing equations due to a singularity in 
the Jacobian matrices [15]. Recently, this scheme has been extended to the case where 
molecular viscosity and magnetic diffusivity are taken into consideration [16]. 

One of the challenges towards understanding MHD flows and its application to 
high-speed vehicles is the difficulty to obtain experimental results for hypersonic flows 
subject to a magnetic field. Encouraging results have been recenfly obtained in an 
experimental simulation of a Mach 6 flow of a weakly ionized gas over a blunt body [17]. 
A drag reduction was clearly observed. Another experimental study [18] has been 
conducted to measure the shock standoff distance for a supersonic flow around a blunt 
body. The experimental results matched the theoretical predictions fi-pm Lykoudis. 
Experimentation of an unseeded air plasma at Mach 30 subject to a transverse magnetic 
field has been conducted in a combustion driven hypersonic shock tube [19]. The induced 
electromotive force, and electrical conductivity were determined and a non-linear 
increase in the electrical conductivity was observed for a magnetic field of 0.65 T. 

Majority of supersonic and hypersonic flows are turbulent. Therefore, inclusion of 
turbulence in the computation of such flowfields is essential. It has been shown that the 
presence of a magnetic field could decrease the drag and heat transfer for laminar flows. 
It is thus important to investigate turbulent supersonic flowfields subject to magnetic 
fields to identify the overall effect of this combination. 

1.2. Turbulence and IMagnetohydrodynamics 

Most of the research combining the effect of turbulence with 
magnetohydrodynamics has been conducted for flows of liquid metals in simple 
geometries or in astrophysical applications, where the length scales are very large. Basic 
observations tend to show that the presence of a magnetic field would inhibit turbulence. 
Batchelor [20] showed that the equation governing the rate of change of the magnetic 
field intensity could be written in a similar fashion as the equation of stretching vorticity 
in homogeneous turbulence. He concluded fi-om this analogy that when steady state is 
reached, the tension of the lines of force of the magnetic field is sufficientiy large to 
prevent any further stretching by turbulent motion. Ferrero et al. [21] also discussed the 
inhibition of turbulence by a magnetic field and suggested a criterion on the magnitude of 
the magnetic field that would tend to inhibit the onset of turbulence. 



Napolitano [22] developed an expression for the velocity profiles of a turbulent 
boundary layer of a constant property, electrically conducting fluid (without any applied 
electric field). He showed that the friction velocity at the wall is decreased by the 
magnetic field. Two physical explanations are given. First, the turbulent kinetic energy 
input in the outer layer is reduced due to the presence of a magnetic field (Joule's 
dissipation). Secondly, this energy, already reduced, has to be dissipated by both viscous 
and magnetic actions, such that the shear stress at the wall is decreased. These results 
hold for a small value of the magnetic Reynolds number. The disadvantage of the new 
expression for the law of the wall is that it is no longer universal since it depends on the 
Reynolds number. He also used the results of Chandrasekhar [23] to propose some 
additional assumptions on the energy transfer in turbulence with the presence of a 
magnetic field. First, the intensity of the turbulent magnetic energy spectrum is at any 
wave number one order of magnitude smaller than the turbulent kinetic energy. Besides, 
the probability of exchange between turbulent kinetic energy and magnetic turbulent 
energy is negligible compared to the transfer of turbulent kinetic energy fi"om one wave 
number to another. Moreover, the intensity of the kinetic energy is lowered by the 
presence of a magnetic field. 

Lykoudis [24] showed that for large values of the Hartmann number, the magnetic 
field (which enters the solution through the Hartmann nimiber) has the same effect on the 
laminar layer as suction. His result was based on the laminar velocity profile in the case 
of acharmel flow. 

Turbulence has also been investigated using spectral analysis. The process of 
cascade of energy fi"om larger to smaller eddies has been generalized to hydromagneto- 
turbulence by Chandrasekhar [25]. He postulated that (1) there is another type of 
turbulent energy, namely the energy of turbulent magnetic field, (2) the nonlinear terms 
in the magnetohydrodjoiamic equations could result in additional coupling among Fourier 
components (the nonlinear coupling between the Fourier components of the velocity are 
responsible for the cascade of energy), (3) the kinetic and magnetic energies can be 
transformed into other types of energies, and (4) the magnetic energy cannot be 
transferred between two wave numbers since the Maxwell's equations are linear. 

For simple engineering applications, the effect of the magnetic field on turbulence 
has been integrated into existing turbulence concepts or even turbulence models. 
Lykoudis [26] generalized the Prandtl mixing length concept to MHD for a fiilly 
established turbulent channel flow, in a transverse and uniform magnetic field 
(electrically insulated channel). He obtained an expression for the turbulent stress in the 
case of MHD based on the solution of an oscillating infinite plate. Damping fiinctions are 
added to the algebraic model to take the presence of a magnetic field into account. The 
k-e two-equation model has been used in conjunction with MHD flows by several 
authors. Lee [27] used the k-e model (with no modification) to study the effect of 
MHD in a three-dimensional channel flow of liquid metal. Frando [28] used the Navier- 
Stokes equations with the k~e model to determine the steady state solution of an MHD 
turbulent flow in an electromagnetic valve. The breaking and accelerating of the flow was 
demonstrated. El-Kaddah [29] calculated the recirculating flow in an induction fiamace 



using the turbulent Navier-Stokes equations augmented with electromagnetic body 
forces. Again, ihe k-e model (with no modification) was used to evaluate the turbulent 
viscosity. Shimomura [30] derived the exact equations for the turbulent kinetic energy 
and its dissipation rate based on the TSDIA (Two Scale Direct Interaction 
Approximation) approach. The resulting equations though exact, are very complex and 
require several closure coefficients which determination is not clear. However, in some 
cases, simplifications can be made based on the geometry of the problem. Kitamura [31] 
used a simplified version of the model derived by Shimomura. Yoshizawa and Hamba 
[32-34] have incorporated the effect of the magnetic field into turbulence model by 
considering two additional bulk turbulence quantities. In addition to the kinetic turbulent 
energy and dissipation rate, the cross helicity and residual helicity are considered as bulk 
turbulence quantities. Therefore, the resulting turbulence model is a four-equation model. 

Kovasznay [35] derived a transport equation for the turbulent kinetic energy, 
taking both the velocity fluctuations and magnetic field fluctuations into account. This 
equation was derived by taking the time average of the momentum equation and the 
Ohm's law. The resulting equation showed that some energy could be produced fi-om the 
mean electric current, transferred into the fluctuating magnetic field (magnetic 
turbulence) and dissipated through Joule's heating. 

Shimomura [36] derived the LES formulation for MHD turbulent channel flow 
under uniform magnetic field. The effect of the magnetic field is to add a local damping 
factor in the Sub Grid Scale (SGS) eddy viscosity. He made the assumption of an 
incompressible flow of liquid mercury in a uniform magnetic field perpendicular to the 
insulated walls, at low magnetic Reynolds number. The presence of the magnetic field 
resulted in a negative contribution to the eddy viscosity. He was able to predict detailed 
structures of die MHD turbulent channel flow that the Ar-e model was unable to resolve 
and showed the process of anisotropic laminarization of turbulence by the magnetic field. 
Sukoriansky [37] derived an approximate Sub Grid Scale model for Large Eddy 
Simulation of homogeneous isotropic two-dimensional turbulent. Conventional eddy 
viscosities that are purely dissipative fail to represent both transfers fi-om higher to lower 
scales and from lower to higher scales (reverse cascade). The proposed model is able to 
produce a negative eddy viscosity which corresponds to the inverse cascade of energy 
from the unresolved (small scale) to resolved scales (larger scales). The positive eddy 
viscosity corresponds to dissipation of energy. 

In all cases where the effect of the magnetic field was incorporated in the 
turbulence models, it resulted in the addition of a negative turbulent viscosity. The 
evidence of such a negative eddy viscosity in real phenomena has been discussed by Starr 
[38]. The turbulent ti-ansport of momentum is an important feature of turbulent flows. If 
this turbulent transport simulates a molecular viscous effect, then it is said that a turbulent 
viscosity is present. A positive eddy viscosity results in the dissipation of kinetic energy 
of the mean flow, the energy being drained into the eddy motion, then into molecular 
motion and finally appearing as heat. On the other hand, when negative eddy viscosity is 
present, the mean flow gains energy from eddies. The eddy motion either dies out or is 
regenerated if heat is supplied. In nature, there are some examples of flows where a 



negative eddy viscosity may be encountered. The differential rotation of the photosphere 
of the sun is such an example. From the hydromagnetic equations, it can be shown that 
the magnetic forces tend to reduce the motion of solid rotation. 

There are two factors that can cause a flow to become two-dimensional [39,40]: 
the geometry of the flow and the action of a body force that smoothes the velocity 
fluctuations in a preferred direction. The magnetic friction in MHD flows with low 
magnetic Reynolds number is an example of such a case. 

Narasimha [41] discussed the phenomenon of MHD and relaminarization when 
the magnetic field is aligned with the flow and normal to it (the flow is assumed 
incompressible, and at low magnetic Reynolds number). When the magnetic field is 
aligned with the flow, laminarization is dissipative, the larger eddies being destroyed 
through electrical resistivity and the smaller one through viscosity. When a strong 
magnetic field is present, the Hartmann effect becomes important and the laminarization 
is due to the domination of the magnetic forces over the Reynolds stress gradient across 
the boundary layer. The critical point at which relaminarization occurs can be expressed 
as the value taken by the ratio of the Reynolds number and the Hartmarm number. When 

the magnetic field is normal to mean velocity, the effect of (j x Bj is to suppress the mean 

vorticity of the flow normal to B . 

Other investigators have studied the effect of MHD on turbulence. Eckert [42] 
showed that the application of a magnetic field does not lead exclusively to a suppression 
of the turbulent perturbations. It can be shown that velocity fluctuations remain and that 
an anisotropy of the MHD turbulence develops and become two-dimensional. These 
results are based on turbulence measurements in a sodium channel flow. Moisev [43] 
addressed the decrease in turbulent viscosity in flows with helical turbulence confirming 
it by experimental results. 

1.3. Turbulence IModeling 

There are mainly three approaches for the computation of turbulent flows. The 
Direct Numerical Simulation (DNS) approach is an "exact method" in the sense that the 
original governing equations are solved without any modifications, or filtering process. 
Assuming that the error introduced by the numerical scheme used to solve these 
equations can be evaluated or controlled, the use of DNS can provide high quality results, 
equivalent to an experiment. Note that the equations are solved on an extensive number 
of locations in the flow field, allowing the collection of a large amount of information 
that would be impossible to obtain from an experiment. For example, it is possible to 
numerically "probe" the flow very close to a solid surface, whereas it is relatively 
difficult to do so experimentally. In the case of time accurate solution, DNS also provides 
results in the entire flow field at a given time level, which is identical for all locations 
(necessary condition to evaluate the cross correlation terms). This requirement is very 
difficult to meet in an experiment. 



In fluid mechanics, flows present a wide range of scales, both in length and in 
time. The accuracy of a simulation method relies on the ability to resolve all scales of 
motion. The following observations can be made: (a) the large scales are more energetic 
and more effective in the transport process of turbulent quantities (energy and moments) 
and (b) the small scales are assumed to be more universal than the large scales. They are 
mostly responsible for the energy dissipation. 

The second approach for turbulent flow computation is the Large Eddy 
Simulation or LES [44,45]. Large scales are numerically computed, whereas the small 
scales are modeled by simple eddy viscosity models, known as Sub Grid Scale models 
(SGS). Algebraic models are sufficient, because the imperfections of these simple models 
should not greatly affect the solution. 

The two methods described above are very cosfly in terms of computational time 
and storage requirement. A more affordable method consists in averaging the Navier- 
Stokes equations in time (also called Reynolds averaging). When the filter operation is 
applied to the equations, the Reynolds Averaged Navier-Stokes (RANS) equations are 
obtained. In this filtering process, additional terms appear, known as the Reynolds 
stresses. A closure model (or turbulence model) is required to close the system. 
Tremendous amount of investigation has been conducted in this domain, resulting in 
many different turbulence models, ranging fi-om simple algebraic models to more 
sophisticated multi-equation models [46-63]. Unfortunately, none of the proposed models 
is able to accurately predict turbulent flows for a wide range of applications. The 
difficulty in developing such models relies in the fact that the closure constants are based 
on empiricism, and are calibrated to match the experimental data. This makes them non- 
universal and more likely to provide good results only for the type of applications they 
were designed for. 

The RANS approach is used for simple engineering applications because of its 
relative low computational cost compared to other existing methods. Since the turbulence 
models used in RANS are mostly based on empiricism, they have to be tuned for a given 
application. DNS results are used to improve the turbulence models. 

Other hybrid methods have been recently developed to take advantage of existing 
techniques. The Detached Eddy Simulation (DES) combines the RANS approach in 
regions of thin boundary layer where no separation occur, because this does not constitute 
a real challenge for RANS and switches to LES in region of massive separation [64, 65]. 
This method allows a reduction of the prohibitive cost of LES method and therefore, the 
solution of a turbulent flow field can be obtained with a reasonable time. 



1.4. Chemically reacting flows and Magnetohydrodynamics 

With the advent of hypersonic flight in the late 1950s, the aerospace community 
became interested in the application of the MGD principles for flow control of 
hypersonic vehicles and propulsion systems [66, 67]. In the first studies, aerospace 
scientists used analytical and empirical methods to solve the classical MFD problems. 
Particular attention was devoted to understanding the effect of magnetic fields on the 
velocity profiles and temperature profiles. 

In 1958, Bleviss [68] investigated the magnetic hypersonic Couette flow, which 
admits an exact solution with few assumptions about the gas and exhibits many important 
features of boundary-layer flows. He considered variable thermodynamic and transport 
properties, in particular the electrical conductivity. He investigated two cases, namely 
heat-insulated wall and constant-temperature wall. For the case of a heat-insulated wall, 
the magnetic field leads to a decrease in the skin fiiction and an increase in the total 
drag*. An increase in the heat transfer at the moving wall is observed. For the heat- 
transfer case, application of magnetic field causes a large increase in the total drag and a 
moderate increase in the heat transfer. For this case, he observed that at high Mach 
number regimes (Mach 30), the skin fiiction decreases monotonically with increasing 
magnetic field, while at lower Mach number regimes (Mach 20), the skin fiiction as a 
fiinction of magnetic field exhibits a hysteresis-like phenomenon. The skin fiiction 
decreases slightiy as the magnetic field is increased, until a critical value is reached and 
then drops dramatically to a much lower value. Then, if the magnetic field is decreased, 
the skin fiiction increases slowly until a second critical value of the field is reached, and 
subsequently it increases sharply to a higher value. Bleviss compared the magnetic case 
and the nonmagnetic case using the ratio of the total drag to the average heat-transfer 
coefficient. His results showed that for a slender body, this ratio is of the order of unity 
without magnetic field, and much greater than unity in the presence of magnetic field. In 
other words, compared on the basis of the same total drag, the heat transfer for tiie 
magnetic case is much less than for the nonmagnetic case. 

In 1960, Bush [69] solved the two-dimensional steady MGD hypersonic 
boundary-layer flow over a constant-temperature flat plate. Qualitative comparison of the 
Couette flow and boundary-layer problem showed some similarities, but some 
dissimilarities as well. For example, boundary-layer theory predicts that the heat transfer 
for a given Mach number decreases with increasing magnetic field strength, which is 
contrary to the phenomenon predicted by Couette-flow theory. The hysteresis effect, 
present in the Couette flow also occurs in the flat plate boundary-layer flow, but 
disappears at higher Mach numbers. 

A multitude of analyses for a number of geometiical configurations has been 
conducted. Flows over a wedge have been studied by Chu [70] and Minura [71]. The 
stagnation-point flow over a flat plate and a blunt body has been the object of most of the 

' The total drag can be divided into aerodynamic drag and magnetic drag. The application of the magnetic 
field leads to a reduction in the skin friction i.e., the aerodynamic drag, but also to a more significant 
increase in the magnetic drag. 



investigations [72-82]. Indeed, in hypersonic flight, the stagnation point is where the 
highest degree of ionization, hence the most important magnetic interaction can be 
expected. In 1958, Neuringer and Mcllroy [72, 73] theoretically analyzed the MGD effect 
on the skin friction and heat transfer in the vicinity of the stagnation point of an infinitely 
long flat plate. Their analysis showed that at the stagnation point, both the skin friction 
and heat transfer can be reduced significantly by application of a magnetic field 
perpendicular to the surface. They also observed that the heat transfer decreases less 
rapidly than the skin friction as the strength of the magnetic field is increased. Bush [77] 
also considered the stagnation-point flow of an axisymmetric blunt body in hypersonic 
regime. Results, obtained for a sphere concentric with the detached shock, indicate an 
increase in the shock standoff distance, decrease in the surface pressure and tangential 
velocity, with increasing magnetic field. 

Among the various magnetic field distributions, the dipole has often been 
considered. In 1957, Burgers [83] investigated the flow field in the presence of a 
magnetic dipole. He speculated that the magnetic field sfrength in the immediate vicinity 
of the dipole is so strong that it prevents the flow from penetrating a certain region (called 
"frozen region") around the dipole, and the flow resembles the flow around a rigid body. 
In 1959, Sakurai [84] discussed the possibility of a frozen region in hypersonic flow of 
ideal gas with infinite electrical conductivity. His results showed that the frozen region 
can exist even in hypersonic flows. 

All of these analytical, experimental and empirical studies led to preliminary and 
quantitative conclusions, as presented in a comprehensive literature review on 
electromagnetic control of heat transfer by Romig [85]. They clearly demonstrated the 
possibility of magnetic aerodynamic control. However, by the mid 1960s, enthusiasm for 
application of MGD principles in aerospace engineering waned, due to the lack of 
efficiency of magnetic systems. Since then, considerable technological progress has taken 
place in the field of superconducting magnets and in the enhancement of electrical 
conductivity by artificial ionization. As a result, electromagnetic flow confrol has been 
reconsidered for future hypersonic vehicles. 

The effect of a magnetic field on the flow field of a Mars return aerobrake was 
investigated by Palmer [86] using CFD techniques. The solution was obtained for an 
axisymmetric blunt body in thermal equilibrium and chemical nonequilibrium, subject to 
both self-generated and externally applied magnetic fields. An explicit time marching, 
first-order upwind scheme for the convective terms and second-order central difference 
scheme for the diffusion terms were utilized. A loosely coupled approach was selected to 
communicate between the Navier-Stokes equations and the magnetic induction equations 
to avoid the prohibitive time step restriction of the fully coupled system. Investigations 
verified previous conclusion that a significant increase in shock standoff distance can be 
achieved with a relatively modest magnetic field strength, which can be provided by 
either a permanent or solenoid type-magnet. The numerical simulations also showed a 
reduction in convective heat fransfer. 



1.5. Objectives 

The application of the MHD concept could prove valuable to the design of high- 
speed vehicles, by introducing a new form of flow control. The most important impact on 
the design is related to the possibility of drag and heat transfer reduction resulting from 
the application of a magnetic field. The computations of supersonic or hypersonic 
magnetohydrodynamic flows require the development of a versatile tool, due to the 
complexity of such flows. Turbulence and chemistry effects are two essential features 
that will affect the design process. The objective of this investigation is to utilize an 
affordable approach to compute turbulent and chemically reacting MHD flows. Among 
the available techniques to compute tvirbulent flows, the Reynolds Averaged approach 
remains more affordable than the Large Eddy Simulation or Direct Numerical 
Simulation. The inclusion of a magnetic field, and chemistry effects substantially 
increase the complexity of hypersonic MHD flows, and considerable computer resources 
are required to compute such flows. Therefore, the Reynolds Averaged approach appears 
to be the most affordable approach to represent turbulence, while it is associated with 
magnetohydrodynamics. One of the goals of the current investigation is to modify 
existing turbulence models that are not designed for MHD flows, and extend their range 
of application to MHD flows. Six turbulence models are modified and calibrated. The 
turbulent Hartmann flow serves as a reference during the calibration process. The 
turbulence models are applied to simple geometry flows to investigate the effect of a 
magnetic field on supersonic turbulent flows. Attention is focused on the possibility of 
reducing the turbulent skin friction and heat transfer. Two formulations for the MHD 
equations are considered. The full MHD equations are solved for high conductivity flows. 
The low magnetic Reynolds number formulation is a simpler formulation for flows 
characterized by a low electrical conductivity. The computational cost associated with the 
MHD formulations and turbulence models is evaluated to determine which one is more 
likely to be used in an integrated computational tool devoted to engineering MHD 
applications. 

In addition to the effect of turbulence, the high temperature effect is also 
investigated. Therefore, the second goal of the present research is to develop efficient 
numerical schemes for computational magnetogasdynamics and simulation of hypersonic 
chemically reacting flows. Two models are selected, namely, a one-temperature, five- 
species, seventeen-reaction nonequilibrium model, and an equilibrium model based on 
curve-fit procedures. The loosely coupled approach used to communicate between the 
MHD equations and the chemistry equations is documented. Limitations and numerical 
issues concerning the current thermochemical nonequilibrium model are discussed. 



Chapter 2 
Governing Equations 

In this chapter, the governing equations for MHD flows are reviewed. Two 
formulations are provided. First, the full MHD equations are described along with the 
corresponding assumptions. Next, the equations are described under the low magnetic 
Reynolds number approximation (i.e., for low conductivity fluids), in which case the 
equations can be simplified. The equations are first provided in their general form, and 
subsequently written in the coordinate system chosen in this investigation. Next, the 
parameters used to nondimensionalize the equations are specified. In order to solve the 
governing equations by the proposed numerical scheme, the equations must be written in 
a conservative form, leading to a more compact flux vector formulation. Finally, the 
equations are transformed into the computational space. 

2.1. FuU MHD Equations 
2.1.1 Formulation 

The MHD equations are composed of the Maxwell's equations. Ohm's law, 
continuity, momentum, and energy equations. The Maxwell's equations relate the basic 
electric and magnetic field quantities, and how they are produced. In the current study, 
the following assumptions are made: 

(i)        The fluids are considered sufficientiy dense such that they satisfy the 
continuum model. They have isotropic properties, and are electrically neutral. 

(ii)       All velocities are small compared to that of light, i.e., the equations are 
considered in their non-relativistic forms. 

(iii)     The fluids are considered to be in a chemically frozen state. 

(iv)      The electric field is of the order of U x B. The electiic fields are always 
induced or of the order of the induced field. 

(v)       The permeability of the fluids ^U^Q is such that B = ^I^QH . Furthermore, the 

permeability is considered to be a scalar quantity, such that B and H are 
proportional and interchangeable. 

(vi)      The density of electric charges p^ is small. 
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Under these assumptions, the four basic Maxwell's equations are: 

Ampere's Law: VxH = J 

Faraday's Law: 
dt 

Gauss' law for magnetism: V-B = 0 

Gauss' law for electricity: V-J = 0 

and the Ohm's Law is J = CT^^E + U x B j 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The combination of the Maxwell's equations and the Ohm's law results in the 
magnetic transport equation. The electric field can be eliminated from the equations, 
leaving the effect of the electromagnetic field being represented only by the magnetic 
field. The resulting MHD equations are comprised of the continuity, momentum, 
magnetic transport, and energy equations: 

Continuity equation: 

Momentum equation: 

dt 

dt ^  ' 

pU®U + P + 

2 ^ 

2M eO 

=   B(S)B 

*eO 

= VT 

Magnetic transport equation: 

—-VX(UXB)=-^V^B=VV^B 

Energy equation: 
dt ^eO^e 

f{«Kv, pe,+p + 

where 

2Me 

pe^ = p 

B 

= V-(U-T)-V-Q+— 

u 
-+-^+. 

B 

2      y-1    In, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
eO 

In these equations, the term  is usually referred to as the magnetic pressure. 
2M eO 

This is not actually a physical pressure but enters the momentum equation as a body force 
and can generate mechanical stress. 

The existence of cross products in the governing equations suggests that the MHD 
equations should be solved in a three-dimensional coordinate system. However, due to 
the complexity of the equations and the computational cost associated with the numerical 
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solution of these equations, it is more practical to write the equation in what is referred to 
as an extended two-dimensional form. The three components of the field vectors such as 

the velocity and magnetic fields are included, such that the cross product U x B can still 
be computed, but only two space coordinates are considered. Therefore, from the four 
vector equations, eight scalar equations are derived. 

2.1.2. Nondimensionalization 

The MHD equations are nondimensionalized using the following variables: 
/ .    A    ix,y) .     Uj ( ,   ,    ,\    (u,v,w) 

^*      P -' ^    P (R' R' p'\-^^5l£y£il 
P    =  > P    = ■7;T      ' V^x^^y'^z   - TT     I 

P. PMl ^ooVA^eoPco 

A^ 

* 
t 

UJ 
L 

* 
p 

P 
pJJl 

* 

ul 
« 

T   =—- , e, =—r- , T   -■ 
T ' '     U^ u U 

V, 

n  =  

In the following sections, the asterisk superscript designating nondimensional 
quantities will be dropped for convenience. Therefore, all the equations will be written in 
nondimensional form, unless specifically stated. 

2.1.3. Flux Vector Formulation 

The system of eight equations (in non-dimensional form) is written in a flux 
vector formulation as 

^3+^ + H=^+^ (2.11) 
dt     dx    dy dx      dy 

where Q is the imknown vector, E and F are the inviscid flux vector, E^ and F^ are 

the viscous flux vectors. The original system of equations has been shown to be difficult 
to solve due to singularities in the Jacobian matrices associated with the system because 
of the existence of zero eigenvalues. One solution that has been proposed [15] is to 
modify the Jacobian matrices, leading to the introduction of an additional term in the 
MHD equations. Thus, the flux vector H is added to the left-hand side of the equation as 

fdB,    dB, '^. + .^ appearing in the shown in Equation (2.11). Note that the common factor 
^ ^      ^ {dx      By 

additional term is merely the divergence of the magnetic field, which is supposed to be 
zero. Thus, the additional term is a purely mathematical modification and does not 
change the physics of the problem. The unknown vector and flux vectors are given in 
Equations (2.12a) to (2.12g). The eight components of the flux vectors represent the 
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continuity  equation,  momentum  equation  (three  components),  magnetic  induction 
equation (three components), and energy equation. 

Q = [p    fju   pv   fyw   B^    B^    B^    pej (2.12a) 

E: 

pu 
-Bl+Bl+Bl 

pu +P + - 

puv-B^B^ 

puw-B^B^ 

0 

uB^-vB^ 

uB-wB^ 

pe,+p + 
B'+B'+B' X y ' 

-^x("^.+v5,+w5j 

pv 

pvu-B^B^ 

pv^+p+— ^  

pvw-B B. 

pe,+p+- 

y    z 

vB^-uB^ 

0 

vB-wB, 
^      y  

~Bl+Bl+B^^ 

-B^{uB^+vB^+wB^) 

H = H 
'dB^    dB^ 

M ■ + ■ 
dx      dy ^ 

(2.12b) 

(2.12c) 

(2.12d) 
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H M 

E .,= 

F. = 

0 

u 

V 

w 

uB^ + vBy + wB^ 

0 

•xy 

1      SB^ 

1      dB^ 

1 8B^ 

■ yx 

yy 

y^ 

1 S^x 

1 
dy 

dB^ 

1 
dy 

8B, 

ur„+VT„+WT^-q yx yy y^- 

where 

For a Newtonian fluid: 

and for a perfect gas 

P^,=^p{" ̂ W^MA^^J^^^^^-^ 

^^^-t 
7-1 2 

''du,    duj    2 5M^ ^ ^ —L+—L L§ 
dxj    dxi    3dx,     j 

<li=- 
^ dT 

Re^Pr{r-\)Mldx. 

(2.12e) 

(2.12f) 

(2.12g) 

(2.13) 

(2.14) 

(2.15) 

14 



The nondimensional parameters appearing in the equations are the Reynolds 

number Re^ =        "'   , the Prandtl number Pr = '', the magnetic Reynolds number 

i?e    = G^u^JJ^L and the free stream Mach number M„ 
U„ 
 r. The magnetic 

Reynolds number represents the ratio of the magnetic convection to the magnetic 
diffusion. It can be shown that for small values of the magnetic Reynolds number, the 
induced magnetic field is small compared to the applied magnetic field. 

2.1.4. Generalized Coordinates 

The governing equations are partial differential equations and are solved using 
finite difference approximations for the derivatives. This technique requires the solution 
of these equations at discrete points within the domain of application. These points must 
be uniformly spaced within a rectangular domain to yield simple formulation and 
simplify the application of the boundary conditions. However, most of the physical 
domains of interest are non rectangular. Therefore, the physical domain, in which the grid 
points are distributed non-uniformly, is transformed into a rectangular computational 
domain of constant step sizes. 

The transformation between the physical and computational domain is achieved 
by a set of coefficients of transformation, called the metrics and Jacobian of 
transformation. If (x,y) is the coordinate system in the physical domain and (^,r]) is the 
coordinate system in the computational domain, then the following coefficients are 
defined: 

L=-:r- , Vy- 
dx 

dn 

dx 

X, =■ 
dx 

^n = 
dx 

dr] 
y^ = 

dy 

dy_ 

d^ 
yr,= 

dy 

dy_ 

dr] 

The terms E,^, ^y, 77^, and 77^ are known as the metrics of transformation. Since 

^ and 77 are both functions of x and y, we can write from the chain rule 

or equivalently 

Comparing Equations (2.16) and (2.17) leads to 

\d^' "^x      ^y 'dx' 

w. jix ny_ Uy\ 

'dx' 'x^ x; \da 
[dy\ y^  yr,_ [dnj 

^y 

x^ 

y^ 

-i-i 
n 

yn 

(2.16) 

(2.17) 

(2.18) 
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and thus ^x - -^Vn 

(2.19) ^y=-J^n 

where J = ^-  (2.20) 

J is defined as the Jacobian of the transformation. It can be interpreted as the 
ratio of the areas of the cells in the physical space to that of the computational space. 
Since the metrics and Jacobian of transformation will be used in the finite difference 
approximations, their computation is recommended to be as accurate as possible and that 
no discontinuities be introduced in their distribution (i.e. the grid points distribution 
should be smooth). Typically, the metrics within the domain are calculated with second 
order central finite difference approximations, unless the geometry allows their analytical 
computation. Any spatial derivative in the physical domain can be transformed into the 
computational domain using the following relations: 

A = ^^A+^^A (2.21) 
dx        d^        dr] 

— = t —       — 
dy      " d^      ' dr] (2.22) 

Now, the governing MHD equation given by (2.11), which is written in the 
physical space {x,y), is transformed into the computational space (^,^7) and expressed as 
follows 

«Q+«l + ^ + H=^+^ (2.23) 
dt     d£,     drj d^     drj 

where Q=— (2.24a) 

E=1(^,E + ^/) (2.24b) 

F=i:(77,E + r//) (2.24c) 

^dB     dB ") 

B,=J{^A+^A) (2-24e) 

- I 

J 
- 1 

H = H^ 
V 

B^=UriA+vA) (2.24f) 

E.=yfeA+^/v) (2.24g) 

F;=y(r7A+n/v) (2.24h) 
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The computation of E   and F   is achieved directly from Equations (2.24b) and 
(2.24c). The computation of E^   and F,,   requires more attention. In fact, E^   and F^ 

include the spatial derivatives of the velocity and magnetic field components, which must 
be transformed into the computational space. The resulting expressions for E^   and F^ 

in the computational space are provided in Appendix A. 

2.1.5. Boundary Conditions 

For the applications considered in this investigation, there are three types of 
boundary conditions, namely inflow, outflow and solid surface. The specification of the 
boundary conditions depends on the application considered and the type of magnetic field 
applied. The various possibilities for the specification of the boundary conditions are 
summarized below. 

Inflow: 

Outflow: 

Freestream conditions for density, velocity, pressure, temperature 
Zero magnetic field or applied magnetic field for uniform distribution 

Zero-order extrapolation for all primitive variables 

•    Solid surface: 
- No slip condition 
- Adiabatic wall or constant temperature wall 
- Applied (electrically insulated wall) or extrapolated (perfectly 

conducting wall) magnetic field 

2.2. Low Magnetic Reynolds Number Approximation 

2.2.1. Formulation 

The numerical simulation of MHD flows typically requires the solution of a 
system of eight equations: continuity, momentum (three components), energy, and 
magnetic field induction (three components). For magnetohydrodynamic flows that are 
characterized by a low electrical conductivity (Appendix B provides typical electrical 
conductivities of some fluids), the governing equations can be simpUfied. The validity of 
the simphfication is monitored by a non-dimensional number known as the magnetic 
Reynolds number. It is defined as  Re^^ =(7^iu^f^U^L, where  a^  is the electrical 

conductivity of the fluid, ^^Q is the magnetic permeability, U^ and L are respectively 

the reference velocity and length scale. Re^^ represents the ratio of the magnetic 

convection to the magnetic diffusion. It can be shown that for small values of the 
magnetic Reynolds number (Re^^ «1), the induced magnetic field is negligible 

compared to the applied magnetic field. Therefore, when this assumption is valid, the 
magnetic induction equations do not need to be solved. This is especially appealing since 
the method applied to solve these equations is source of numerical difficulties. When the 
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full system of MHD equations is solved, it has been experienced to be very difficult for 
the magnetic field to remain divergence-fi-ee at all time levels. Numerical techniques 
have been proposed [15] to alleviate this problem, but generally result in more complex 
equations or additional steps in the numerical procedure. The other source of difficulties 
is that the MHD equations become stiffer as the magnetic Reynolds number decreases. In 
the low magnetic Reynolds number approach, the magnetic field automatically satisfies 
the zero-divergence constrain, provided its initial distribution is divergence firee (since it 
is given and remains constant through the computation). The current density is 
determined directiy fi-om the Ohm's law and the MHD effect is modeled by the 
introduction of source terms in the Navier-Stokes equations. Under the assumption of 
small magnetic Reynolds number, the governing equations are: 

Continuity equation: 

Momentum equation: 

Energy equation: 

^ + V-(pu)=0 (2.25) 

dt 
p\]®\J + pl = V-T+JxB (2.26) 

—(pe,) + V-[(pe,+^)u]=V-(u-T)-V-Q + E-J (2.27) 

The current density can be evaluated fi-om the Ohm's law 
J = CT,(E + UXB) (2.28) 

In contrast with the MX MHD equations, the electric field appears explicitiy in the 
formulation associated with the low magnetic Reynolds number approximation. This 
offers additional control on the flow [87-91]. 

2.2.2. Nondimensionalization 

The MHD equations are nondimensionalized using the same quantities as 
described in Section 2.1.2. The electric field, which is the only additional variable, is 
nondimensionalized as follows 

fc- p*     .\_ [E,,E^,E^) 
V^x'-^y'^iJ- ^^   2    I  

Hence, the system of equations (in non-dimensional form) becomes 

+ V-(pu)=0 (2.29) 

Continuity equation: 

^.^ 
dt 

Momentum equation: 

^iP^+V-\plJ®ij + pl]=—V-r+Re^JxB (2.30) 
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\Energy equation: 

|(peJ+V-[(pe,+;7)u]= i.v^ = 
Re^ 

(e.;)- 
{j-\)PrM^Re^ 

-W-Q+Re^t~3    (2.31) 

2.2.3. Flux Vector Formulation 

The equations are solved in the same fashion as the fiill MHD equations, by using 
an extended two-dimensional approach. Although three spatial components of the 
velocity, magnetic and electric field are considered for the evaluation of the magnetic 
source terms (the Lorentz force requires the computation of several cross products), all 
flow variables are assumed to vary in only two dimensions. Therefore, only two spatial 
derivatives are taken into account. The system of equations is written in a flux vector 
formulation as 

gQ    gE    dF 

dt     dx    dy 

dE.. +^.S 
dx     By MHD (2.32) 

where Q is the unknown vector, E and F are the inviscid flux vector, E^ and F^ are 

the viscous flux vectors. The additional source term is represented by S^^^. The 
unknown and flux vectors are given by Equations (2.33a) through (2.33f). The unknown 
quantities than need to be computed are the density, momentum components and total 
energy. The magnetic and electric fields are considered as given quantities and remain 
constant throughout the computations. 

Q = [p pu    pv   pw   pe, J (2.33a) 

E: 

F 

pu 

pu^ +p 

puv 

puw 

(pe,+p)u 

pv 

pvu 

pv^+p 

pvw 

{pe,+p)v_ 

(2.33b) 

(2.33c) 
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^MHD ~ -^^moo 

E = 

F.,= 

xy 

"^rc+VT^+WT, 

■yx 

yy 

(2.33d) 

(2.33e) 

0 

B^E. +uB^ -VB^BXE, +VB^ -WB^) 

BXE, +VB, -WB^BXE, +M;B, -UB^) 

EXE. +VB^-WBJ+EXE, +WB^ -UB^)+EXE, +UB^ -VB^) 

(2.33f) 

where pe,=-p{u '+v'+w')+   P 
7-1 

All other quantities have the same definitions as in Section 2.1.3. 

(2.34) 

2.2.4. Generalized Coordinates 

The governing MHD equation given by (2.32), which is written in the physical 
space {x,y), is transformed into a computational space ((^,77) and expressed as follows 

where 

dQd^m   aE   aF   - 
—: 1 1 = 1 h » 
dt     dE,     dr]     dt,      drj 

Q 

MHD 

Q = 
J 

E = lfeE+^^F) 

-    1 F =7^+77/) 

K=jkK+lyK) 

s    -Is 

(2.35) 

(2.36a) 

(2.36b) 

(2.36c) 

(2.36d) 

(2.36e) 

(2.36f) 
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2.2.5. Boundary Conditions 

The same types of boundary conditions as described in Section 2.1.5 are applied 
for the low magnetic Reynolds number approximation, except for the magnetic field. 
Since the magnetic field is a given quantity, it does not need to be updated at the 
boundaries. 
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Chapter 3 
Numerical Scheme 

In this section, the numerical scheme used to solve the governing equations is 
described. All the equations given in this section are written in the computational space. 
The partial derivatives appearing in the equations are approximated by finite difference 
formulations. The equations are solved in a discrete manner at each grid point location. 
Each node is referred to by the indices {i,j), which are the node locations in the 

computational coordinate system (1^,77). The equations are solved by a modified fourth- 
order Runge-Kutta scheme augmented with a second-order TVD scheme. This numerical 
scheme has been employed for a wide variety of supersonic and hypersonic applications, 
and has shown the ability to accurately capture shock waves with no or little oscillations 
[10-14]. The scheme consists of four stages followed by a post-process stage where the 
TVD scheme is applied to stabilize the solution. 

3.1. Four Stage Runge-Kutta Scheme 

3.1.1. FuU MHD Equations 

The governing equations are solved by a four-stage Runge-Kutta scheme. It has 
been selected because of its high order of accuracy (fourth-order) and its low storage 
requirement, since only two time levels need to be stored. First, the numerical scheme is 
applied to the full MHD equation, given by Equation (2.11). The resulting four-stage 

Runge-Kutta scheme is 

Q(l)^Q"._J^  1 V JU 
d^    dr] 

\(0) 

^dE    dF 

5^     ^^ Ju 

el.,   dfy'' 

At 

+— + H- 
^d^    dr] d^     dr]).. 

SE    d¥   —   dE^ —+— + H  
d^    dr] 

aF 

Qi?=Q,v-A^ 
dE    d¥   — 
—+— + H- 
d^    dr] 

d%   eF.Y" 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

that 
The spatial derivatives are approximated by second-order central differences, such 

(dE^ E.^^j-E._^j 

^^KJ 2A<^ 
(3.2a) 
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117 ^ fdF 

H,;=H,, 

F,-j+i-F,.,._, 

2Ar] 

B.. 
xi+ij    "xi-\,j_    ~ yij+\ 

-B       ^ 

2A<§ 2AT7 

(3.2b) 

(3.2c) 

3.1.2. Low Magnetic Reynolds Number Formulation 

Under, the low magnetic Reynolds number approximation, the system of MHD 
equations given by Equation (2.32) is solved with the same numerical scheme as the fixU 
MHD equations and is given by 

Q.(°.UQ.". 

At_ 

4 

A? 

3 

At 

dE    d¥    aE„ 5F.    ^ 
 i5 

^8^     dr]     dE,      dr] 
MHD 

^aE   ar   SE,, aF.,    - N(l) 

dE,     dr]     dE,      dr] 
MHD 

SE    5F_5E„ 

d^    dr]     d^ 

(dE    dF    5E„ 
■+- 

 o 
dr] 

8V. 

\(2) 

MHD 

N(3) 

dt,    dr]     d^      dr] 
-S MHD 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 
y,- 

The similarities between the full and low magnetic Reynolds number MHD 
equations translate into the application of the numerical scheme. In fact, since the 

equations are written in a flux vector formulation, the only difference is that the term H 

appearing in the full MHD equations is replaced by - S^^^ in the low magnetic Reynolds 

number MHD equations. However, the definition of the flux vector is the key to the 
different formulations. In the full MHD equations, the magnetic terms are included in all 
flux vectors, the magnetic field being an unknown, resulting in a system of eight 
equations. In the low magnetic Reynolds number approach, the magnetic and electric 

field are treated as given or input quantities and are included in the term S^^^ only. The 

number of equations is therefore reduced to five. 

3.2. Post-Process Stage 

Some instability may arise due to the high order of accuracy associated with the 
numerical scheme. To alleviate this problem, a post-process stage is usually required to 
stabilize the solution. Such methods include the addition of artificial damping terms. 
Although computationally efficient and easy to implement, this technique requires a fine 
tuning of the amount of damping required for each possible configuration. Another 
method that has been successfully employed is the application of a Total Variation 
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Diminishing (TVD) scheme as a post-process stage. This method has the advantage of 
automatically adjusting the amoimt of damping (by switching from second to first order 
in accuracy) where needed. However, it requires the computation of the eigenvalues and 
eigenvectors associated with the governing equations. It is also expensive it terms of 
computational resources. The second order s3aTLmetric TVD scheme with Davis-Yee 
symmetric limiter has been chosen due to its successful application to MHD problems by 
previous investigators. It is particularly appealing for high-speed problems involving 
strong discontinuities such as shock waves. 

The same post-process stage is applied for the full and low magnetic Reynolds 
number MHD equations. However, the eigenvalues and eigenvectors differ from one 
formulation to another. 

3.2.1. Second Order Symmetric TVD Scheme 

The post-process stage consists of correcting the latest computed unknown vector 
and is given by 

Q;:;'=Q^' ~^(?^^n.j^Uj -^^>2J^UJ) 2A<5 

1 At 

2 At] 
(Y"      fi"       _Y"      &"      ) 

(3.4) 

The eigenvector matrices X and Y are provided in Reference 14. A wide variety 
of TVD limiters associated with the TVD schemes has been investigated by Harada et al. 
[14]. In this research activity, the Davis-Yee symmetric TVD scheme is adopted, and 
described below. 

3.2.2. Davis-Yee Symmetric TVD Limiters 

The flux limiter fiinctions are given as 

^W/2J = 

0 = iJ+l/2 

<9 =- 

^(^« M/2.J'^'-I/2J +nh M/2 j«M/2J -S,-XI2j) 

'^V'n ij^mf Kj^^i2 +W\\ ,v+i/2M.;+i/2 -^,+1/2) 

j;^[Kij-v^'Kj-v2 +n\,j-v2hj-v2 -Kj-m)^ 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

Details of the eigenvalues A^ and A^  can be found in Section 3.3. Based on 

previous investigations, the following limiters are selected. 
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^w/2j=minmod 

^/,7+i/2 =niinmod 

^^i-\l2Ji^'^i+\l2J^^^i+%l2,ji r. V^ 1-1/2,7 '^^i+V2,j) 

2p,-,y-l/2 '2p,j+i/2 52p,j+3/2 j — vAj-1/2 + Pi,j+3/2 ) 

(3.6a) 

(3.6b) 

The components a and j3 are defined in the generalized coordinate system as 

hHV2 =2(Y-0,-,7>./2(Q,-.>. -Q,JM^>I +-^U) (3.7b) 

The entropy correction function i// is defined as 

wiy)-- (3.8) 

-5 5 V 

Figure 3-1. The fiinction \\i{y). 

The fiinction y/ is applied to the eigenvalues of the system. It is used to overcome 
difficulties when the eigenvalues become small (see Figure 3-1). Typically, the cutoff 
parameter 5 is specified as 0 < 5 < 0.125. However, it has been shown that non-physical 
solutions could be obtained for flows around blunt body at M^ > 2.5. In this case, 5 
cannot be specified as a constant and must be locally computed. The local computation of 
5 is given by 

^■../2j|+(vyiL,,,.+KL,,,. ^MI2J=^ c/.. 1+1/2,7 + 

^,-.7>l/2 = ^ a ij+\l2 ^•,7>i/2| + (vy|^/2+(v/,l,. f,7+l/2 

(3.9a) 

(3.9b) 

where U, V are the contravariant velocities and v^, v^.^ the fast wave velocities. 5 is a 

weight term and is typically specified between 0.5 and 0.7. 
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3.3. Time Stepping 
When a steady state solution is sought, it is possible to accelerate the convergence 

of the solution by specifying a local time step at each grid point. It allows the solution to 
march faster where the eigenvalues of the system are small (i.e., the characteristic speed 
of the wave propagation are small). The time step is locally computed as a fimction of the 
eigenvalues of the system, the computational grid spacing and the Courant-Friedrichs and 
Lewy (CFL) number, which is a user-specified parameter. For stability purposes, the 
range of CFL number is typically specified between 0 and 0.2. The time step is 
computed according to the following procedure: 

where 

A? = min Af^;Af^ 

^t, =CFL-^ and Ar =CFL-^ 
""4 max "rjmax 

For the full MHD equations: 

\r^ =ma4Aj and \^ =rnax[xj 
1=1,8 I—l,o 

h=u h.=u 
h=u+K, h.=U-Vs, 

\=f^+^«. h.=u-v., 
h.=U + Vj, K=u-Vf, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where U is the contravariant velocity, V^^ is the Alfven velocity, F^ is the fast wave 

velocity and V^^ is the slow wave velocity. They are defined in the computational space 

as 
U = ^^u+^^v (3.14) 

V.,=^.v^HyV^ (3.15) 

where 

^^      2 

^1 

P 
2 

V.    = B 'P   , ^a.=Bjip   , V^^=BJ4P 
For the low magnetic Reynolds number MHD equations: 

\n^ =max[Aj and \^ =rn^A\] 

(3.16) 

(3.17) 

(3.18) 
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h=u 
u-v cs^ (3.19) 

where F, =c^Ja^ 

The eigenvalues in the 77 direction are expressed in a similar way as the 
eigenvalues in the ^ direction, by substituting ^ hy T]. 

3.4. Grid Generation 

The governing equations are solved at discrete points distributed within the 
domain of application. A numerical structured grid must be generated in the physical 
space {x,y) and then mapped onto the computational space {^,T}). The grids are 
generated using an algebraic grid generator. In order to obtain good resolution of the 
boundary layers, grid clustering is implemented near the solid surfaces. The metrics and 
Jacobian of transformations are calculated by the method outlined in Section 2.1.4. For 
turbulent flow computations, the level of clustering is adjusted to meet the requirement 
that the first value of y'^ away firom a solid wall is less than one. Since the value of y'*' is 
dependent on the solution, and cannot be known a priori, the grid is refined (if necessary) 
after a solution is obtained and a new computation is performed until the requirement on 
y'^ is satisfied. Figure 3-2 shows an example of a grid system for a 24-degree 
compression comer geometry. 

Figure 3-2. Example of two-dimensional grid system 

(24-degree compression comer, 100x80 grid points). 
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Chapter 4 
Turbulence Models 

In this chapter, a description of the six turbulence models used for the 
computation of turbulent flows is reviewed. Since these models were originally derived 
for flows not subject to magnetic fields, they are described in their original form i.e., 
based on the Reynolds Averaged Navier-Stokes equations. Modifications to include 
compressibility effect are also provided since these models will be applied to supersonic 
flows. The ultimate goal is to modify these turbulence models to take the presence of the 
magnetic field into account. The proposed modifications for the turbulence models are 
provided in Chapter 5. 

4.1. Introductory Remarks 
The computation of turbulent flows can be achieved by various techniques. The 

governing equations are the Navier-Stokes equations and are given in tensor notation by 
Equations (4.1a) through (4.1c). 

•    Continuity: —+—(pw,) = 0 (4.1a) 
8t    5x. 

Momentum: 
d W,)^^{f-.u,)-^-^r, (4.1b, 
er  '^ dxj ^^ ' ^^    &,.   dxj 

Energy; l(p,,)+A(P„,.,)=|-(„^.J-A(;,„,)-|L       (4.1C) 

For a Newtonian fluid Zy = /J. ̂ ^+^.1^5, I (4.2) 
ydxj     dx-     3 dx^ 

and for a perfect gas q^ = -k-— (4.3) 
ox,. 

No assumption about turbulence has been made to derive the Navier-Stokes 
equations. Therefore, they may be used directly to predict turbulent flows. This approach 
is called the Direct Numerical Simulation (DNS), where the full goveming equations are 
solved without any modeling or limiting assumptions. However, turbulent flow fields 
exhibit a wide range of scales of motion, and the resolution of all these scales are 
necessary to accurately predict the behavior of turbulent flows. Typically, the number of 
grid points N, required for a three-dimensional computation is of the order of Re . For 
example, if Re = 3,000, then A^ = 7.10' and if i?e = 800,000, then A^ = 2.10'\ Computer 
capacities have not yet reached levels of performance that would allow computations of 
complex geometries with large domains. The projection of computer's expansion shows 
that several decades will be required to obtain satisfactory computer capacities enabling 
the computation of complex flows. 
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The second category of turbulence computation is the Large Eddy Simulation 
(LES). The Navier-Stokes equations are used to simulate the large scales. The small 
scales (or unresolved scales) are simulated by the introduction of Sub Grid Scales models 
(SGS). The justification of this approach is that the smaller scales behave in a similar 
fashion in most flows, and they are assumed to be more homogeneous and less affected 
by the boundary conditions. 

The third category is the Reynolds Averaged approach. This technique has been 
widely used for practical applications, and will be considered in this investigation. 
Turbulent quantities are represented by fluctuations in the flow properties. For example, 
one would write u=u+u', where u is the average velocity (in time), u' is the 
fluctuating velocity associated with turbulence, and u is the instantaneous velocity 
(Figure 4-1). 

' I Velocity 

      .. V r 
u 

(\ iV \J^ 
^ I 

J^ \r u 

' 1 Time 

t 

Figure 4-1. Representation of fluctuating quantities. 

Once all the instantaneous quantities in the Navier-Stokes equations are written as 
the summation of an average and a fluctuating quantity, the equations are averaged in 
time. The resulting equations are known as the Reynolds Averaged Navier-Stokes 

equations (RANS). Additional unknowns such as wV, u'^ , etc. appear in the RANS 
equations, which are referred to as the turbulent or Reynolds stresses. Therefore, there are 
more unknowns than equations and additional equations for the Reynolds stresses are 
required to close the system. These equations are known as the turbulence models. They 
vary considerably in terms of complexity, accuracy, computational efficiency and 
numerical robustness. Since they are developed and calibrated based on specific 
conditions, they are not universal. However, the main advantage of this approach is the 
relatively low computational cost, and good accuracy provided the models are used 
within the range of application they were developed for. 
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All turbulence models are based on the Boussinesq assumption, which states that 
the Reynolds stresses are related to the gradient of the mean flow velocity. This 
assumption was made by analogy with the expression of the laminar shear stresses. For a 
laminar flow, the laminar shear stress is written as 

Ti=H— (4.4) 
dy 

By analogy, the Reynolds stress is written as 

-'^' = fi,^ (4.5) 
dy 

where fi, is the turbulent or eddy viscosity. Similarly, the laminar and turbulent heat flux 

are written in an analogous way. 

For a laminar flow, 

and for a turbulent flow 

-^    =-k— (4.6) 
\AJ, dy 

^    =pc^v'T' = -k,^ (4.7) 
KAJ,        ^ dy 

where k, is the turbulent conductivity. Note that /z, and k^ are not physical properties of 

the flow. They are mathematical concepts introduced to express turbulent shear stresses 
and heat flux in a similar form as the laminar quantities. Furthermore, a turbulent Prandti 

u.c 
number is introduced as Pr, = . For air, Pr = 0.90 and is considered constant. 

Hence, the determination of ju,   is sufficient since,   k,   is simply evaluated from 

Li C 
k, =   ' ^ . From a practical point of view, the implementation of turbulence in the 

Pr, 

Navier-Stokes equations is achieved by replacing ju by ^i + ju. and — by —+-r- in 
Pr        Pr    Pr, 

the governing equations. 

The main objective of a turbulence model is the determination of the turbulent 
viscosity /u,, using only mean flow properties. The first attempt was made by Prandfl 
(1925), who wrote the turbulent viscosity in a similar way as the molecular viscosity 
(which can be determined from the kinetic theory of gases). The turbulent viscosity is 
written as the product of a characteristic velocity and a characteristic length as 

where the characteristic velocity is V,=l 

M, = PK^ = Pl 
^du^ 

\Syj 
and the characteristic length is /. 

(4.8) 

Turbulence models relate the characteristic velocity and length to the mean flow 
quantities. Zero-equation (or algebraic) models specify the turbulent characteristic 
velocity and length algebraically. One-equation models specify the characteristic length 
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algebraically while solving a partial differential equation for the characteristic velocity or 
another variable related to it. Two-equation models solve two partial differential 
equations for turbulent quantities. A wide variety of models have been proposed and 
improved throughout the years. The following sections describe six turbulence models, 
ranging from an algebraic model to more sophisticated two-equation models. 

4.2. Baldwin-Lomax Zero-Equation Model 

The Baldwin-Lomax [47] model is a two-layer model composed of an inner and 
an outer region. The switch between the inner and outer turbulent viscosity occurs at the 
y-location where both turbulent viscosities are equal. The basic assumption is that the 
local rate of production and dissipation of turbulence are approximately equal. This 
model does not include any convection of turbulence. 

In the inner layer, the length scale associated with the turbulence is the mixing 
length. The mixing length is the distance that lumps of fluid associated with fluctuating 
quantities travel before they lose their identity. From experimental evidence, it is 
observed that turbulence damps out near the solid surfaces, within the viscous sublayer. 
Subsequently, turbulence grows rapidly. In this model, the mixing length is specified by 
an algebraic function, known as the Van-Driest function: 

where 

and 

(4.9) 

(4.10) 

The characteristic velocity is given by V, = Ico where 

03=. 
dv 

8z' 

dw \2 dw 

dx 

8u 

dzj 
+ du    dv 

dy    dx 

Therefore, in the inner layer, the turbulent viscosity is given by 
H, = pfco 

In the outer region, the turbulent viscosity is given by 
A^/„ ^ccpUoLo 

{Avf 
where at a given x UQ =min G„ 

and G„„ = max f 
max 

CO 

yn 

•^0 ~ ^CP-'o3^max 

is the value of y  where G,^ occurs. AV-V^ -F„ 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

is the difference 

between the maximum and minimum velocities at a given x (F^„ = 0 for boundary layer 

flows). IQ is the intermittency factor: 
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h = 1 + 5.5 
^c,,,,y~^' 

(4.18) 
-'max   J 

The closure coefficients for the Baldwin-Lomax model are summarized in Table 4-1. 

»c=0.41 ^^=26.0        QteA=0.3 

Ccp=\.6        a =0.0168 

Table 4-1. Closure coefficients for the Baldwin-Lomax model. 

4.2.1. Entropy Envelop Concept 

Difficulties are encountered when the Baldwin-Lomax is implemented in regions 
of strong viscous / inviscid interaction and flow separation. The entropy envelope 
concept has been proposed by Brock et al. [92] to alleviate these problems. This method 
ensures the proper evaluation of the maxima of a vorti city-based function. 

In the Baldwin-Lomax algebraic turbulence model, the length scale is related to 
the boundary layer vorticity. The length scale is the normal distance y^^ away fi-om the 

wall at which the moment of vorticity G = Ico/k is maximum. Typically, the maximum 
of G is found by probing the flow field fi-om the wall and marching outward with no 
limits in the search height. For flow fields that are characterized with a weak viscous / 
inviscid interaction, only one maximum of G is found. However, several maxima may 
occur for more complex flows. 

In separated flow fields, two maxima occur upstream and throughout separation. 
G can also be found maximum near strong or curved shocks outside the boimdary layer, 
which result in a non-physical selection of the length scale. 

The entropy envelope concept is based on the entropy function 

5 = 4 (4.19) 
P 

The edge of the entropy envelope is defined as the location where the entropy 
fimction reaches the value S^ =S^„/C^, where C^ is user-defined constant. The search 

for G,^ is then limited to the region where S>S^„/C^, starting at the edge of the 

entropy envelope and moving inward. This ensures that the outer maximum above the 
viscous sublayer will be selected when several maxima occur. Typically, the value of C^ 

is problem dependent and has to be adjusted for a given application. For this 
investigation, a value of C^ =0.18 has been used. 
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4.3. Baldwin Barth One-Equation Model 

The Baldwin-Barth model [48] is a one-equation model derived from the k-e 
model. It requires the solution of a transport partial differential equation for a new 
variable, which is the product of the kinematic viscosity and the turbulent Reynolds 

number defined as Re^. = —. For flows in the near-wall region, the turbulent Reynolds 
ve 

number is split into Rcj. =Rej.f\Rej.) where / is a damping function allowing Re^ and 

Re^. to be equal for large values of Rcj. The transport equation in terms of vRe^. is 
given by 

^(v^)=fe,/, -Q,X/v^P, +fv+-^y (v^)-J-(VvJ.v(v:^)        (4.20) 

Once this equation is solved, the turbulent viscosity is determined from 

fi,=pc^(vRe^)D,D, (4.21) 

The two damping functions Dj and ZJj are used to extend the model to the near 
wall region. They are 

£>, =l-e -//^^ 

D^=\-e^-' 'V^2^) 

(4.22) 

(4.23) 

The production term is given by 
r 

^,=y> 

du,    du. 

.dxj     dx. 

du,.    2 
—V, 

dxj    3 

The fimction /2 is given by 

A(y*h 'el 

'e2 

1-^ 
\^Ky 

, + AA 

y 

VAA A^ A,^ 

(4.24) 

(4.25) 

and the closure coefficients are provided in Table 4-2. 

jc=0.41 c,,=1.2 c.2=2.0 

c^ = 0.09 A^ =26 ^2^=10 

-^2   CJ^/K^ 
0-, 

Table 4-2. Closure coefficients for the Baldwin-Barth turbulence model. 
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Equation (4-.20) is solved by an iterative procedure that requires the specification 
of initial and boundary conditions for the working variable Re^ . The initial value for 

Ren.  is the same as its freestream value Re^ , which is specified as a small number 

{RBJ < 1). The boundary conditions are specified as follows: 

•    Solid surface:        Re^. = 0 

• Inflow: iJgj. = Rcj.^ 

• Outflow: Zero-order extrapolation 

The Baldwin-Barth model tends to become unstable in the separation and 
reattachment regions, the values of y* being very small and causing the damping 

functions to approach zero. In order to alleviate this problem, a new formulation for y^, 
given by Equation (4.26) is implemented for high-speed separated flows [49]: 

V 

'.(vRer) 
+ 0.005i?e„ 

K 
y (4.26) 

4.4. Spalart-Allmaras One-Equation Model 
The Spalart-Allmaras turbulence model [50] is a one-equation model that solves a 

partial differential equation for the variable v, which is related to the turbulent viscosity. 
The model is based on "empiricism, dimensional analysis, and selective dependence on 
molecular viscosity". The transport equation for the variable v is 

This equation states that fi-om conservation of turbulence, the total change in v, is 
equal to the sum of production, dissipation, diffusion, and destruction of v,. The model 
also includes a trip function for transition from laminar to turbulent flow. The following 
terms can be identified in Equation (4.27): 

Production term: Q, (l - f,2 )Sv 

Dissipation term:        — {v[(v + v)Vv]-t-Q2(^^f } 
c 

Diffusion term: ■-T.//2 ~ 
V 
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Destruction term:        - C^,/, 

Trip function: /,j (A^)^ 

^vV 

\aj 

The kinematic turbulent viscosity is determined from 
V, = y/;, 

where 

and 

Jv\ ~ 
X' 

x'^cl, 
V 

x=- 
V 

s=s+ 

/v2=l- 

—— f 

X 

d is the distance to the wall, and S is the magnitude of the vorticity 
I  l_ (^    du 

A destruction term takes into account the destruction of Reynolds shear stress due 
to the effect of a wall (in case of a wall boimded flow). A dimensional analysis leads to a 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

combination-C w\ , where d is the distance to the wall (for free shear layer flows, d 

tends to infinity, so that the destruction term tends to zero). However, this destruction 
term results in low values of skin friction over a flat plate, indicating that the destruction 
term decays too slowly in the outer region of the boundary layer. Thus, the destruction 
term is multiplied by a non-dimensional fimction /^, which equals imity in the log layer. 

Therefore, the destruction term is written as -C^ifJ—^\ , where the function for f^ is 

based on algebraic models as: 

^H<3   V 

where 

V 

(4.34) 

(4.35) 

r = r^ 
,2 j2 

SK'd^ (4.36) 
A final set of terms includes control over the laminar regions and the fransition. 

They maintain laminar flow where required and include fransition at a specified location. 
In the laminar region, v must be in the order of v. Therefore, the production term is 
altered as follows: 

P = C,,{l-f,,)S^ (4.37) 
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where -^'^ -C^ exp(-C„x^) ^4 33^ 

The other trip function is given by the source term f,i{^q) , which was derived 

from dimensional analysis, and where 

fn = Cagt exp 
''^(A.)^ 

(4.39) 

^q is the difference between velocities at the trip (zero at the wall) and the point 

in the field that is considered, co, is the vorticity at the wall at the trip point, d, is the 

distance from the field point to the trip point, g, and is given by 

gt =mm 0.1, 
V 

Ag (4.40) 

where Ax is the grid spacing on the wall at the trip point. The closure coefficients are 
provided in Table 4-3. 

2 
CT = — 

3 

C,,=1.0 

'wl 
__Q. ,(1 + ^2) 

K 

C^, = 0.1355        Q2 = 0.622       C„ = 7.1 

C,2 = 2.0 

^2=0.3 

C,3=l.l 

^3=2.0 

C„=2.0 

K:=0.41 

Table 4-3. Closure coefficients for the Spalart-AUmaras turbulence model. 

The initial value for v is the same as its freestream value v„ , which is specified 

as a small number (0.0 < v^ < v„). The boundary conditions are specified as follows: 

• Solid surface:       v = 0.0 

• Inflow: v=v„ 
• Outflow: Zero-order extrapolation 

For wall-bounded flows, the source term S becomes singular in the near wall 

region. The original model was modified by Edwards and Chandra [51]. The terms S 
and r are calculated as follows: 

s=4s 1 
+ /v vl u 

tanh[v/(?c^y^] 
tanh(l.O) 

and S' = 
8u.    du.  L + L 

^dxj    dx. j 

8u.    2 

dxj    3 

8u, V 

K^x.j 

(4.41) 

(4.42) 

(4.43) 
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4.5. k-e  Two-Equation Model (Jones & Launder) 

The k-e model [52,53] is a set of two partial differential equations for the 
turbulent kinetic energy k and its dissipation rate e. 

k -equation: 

4^ = /i-p(l.aA/,^V.#-''       ■" 
Dt dX: 

H + ^, 8k 

'kj dX; 
+U 

6 -equation: 

Dt      ^ " ' *     '' '    ^k    dx. 
H + ^^, Be 

The production term is 

du,. 

'''''a. I^t 
SM,.    duj    2 du^ „ 

, dx,     dx,     2 dx.      I 

^jdxi 

jpk5, 

+L 

du, 

dxj 

(4.44) 

(4.45) 

(4.46) 

2      2k 
The turbulent Mach number M,  =  is used as a compressibility term. It is 

yRT 

designed for shear layer flows and should be turned off for wall-bounded flows, by 
setting a = 0. The turbulent viscosity is calculated according to: 

pk^ 

In the Jones-Launder model, the following ftmctions are defined: 

(4.47) 

/:=l-0 -Re; /2=l-0.3e-^^' 
2.5 

_      l+0.02/?e, 

/.= 

L^=-2H 

Re,= 
^e 

dsfk 

P 

d  U: 

^dx,Xj^ 

The closure coefficients are provided in Table 4-4: 

c,,=1.44 c,,=1.92 c^=0.09 

CT,=1.0 C7,=1.3 a =1.0 

Table 4-4. Closure coefficients for the A: -e model. 

The turbulent quantities  k   and  e   are initiated as their fi-eestream values: 

k = k^ =1 .5{TI.U^ )   and e = e„ = c f  p^ —^, where TI is the fireestream turbulence 

intensity (10~^ <77 <10"^), C/„ is the fi-eestream velocity, and p^ is the freestream 

density, /i,  is the freestream turbulent viscosity and is specified as a small fraction of the 
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freestream viscosity, e.g.,  jU,^ =0.001/i^. The boundary conditions are specified as 

follows: 
• Solid surface:        k = 0, e = 0, /J, =0 

• Inflow: k = k^,e=6^, n,=id^ 

• Outflow: Zero-order extrapolation 

The modification proposed by Coakley and Huang [54] is designed to predict 
more accurately the separation region. The production term in the e equation is modified 
to ensure that the turbulent length scale does not change too abruptly through a shock 
wave. The term C^J^P^ is replaced by C^J^ix.S'^ -a^peD in the e equation, which 

becomes 

^ = [C^J.^^S' -a,peD-C,J,pefj- 8 
+— 

k        8X: 

de 

dX; 
+ L. 

( 
where 

and 

S^ = 
du;    duj 
—'- + —- 

. dxj     fix,. 

8u, 

D = 

8xi 

8u^ 

8x. 

^8u^ ^' 

v^^/ty 

(4.48) 

(4.49) 

(4.50) 

The closure coefficient associated with this modification is a, = 2.0. 

4.6. Combined k-e I k-co Two-Equation Model (Menter's) 

One of the shortcomings of the k-e model is its stif&iess in the viscous sublayer. 
Wilcox [55-58] proposed the k-co model composed of one equation for the turbulent 
kinetic energy and one equation for the specific turbulent dissipation rate (or turbulent 
fi-equency). This model performs better than the k-e in the near wall regions but is very 
sensitive to freestream values of o). On the other hand, the A: - 6 model is not sensitive 
to freestream values. Menter [59-62] proposed to combine the k-e and the k-co 
models to use the best features of both models. The model switches to the k-co model in 
the inner region of the boundary layer and switches to the A: -e model in the outer region 
of the boundary layer. Therefore, the model will be well behaved in the near wall region 
and will stay insensitive to freestream conditions outside the boundary layer. 

The combined model is written such that both models are blended together 
through a switching fimction. The switching fimction F^ is designed such that F^=\ in 
the near-wall region to activate the A: -o model and F, = 0 at the boundary layer edge to 
activate the k-e model and ensure the freesfream independence of the model. 
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The resulting two partial differential equations are given by 

^ + fi, 
G 

dk 

dp^=EEp^-ppco^^l 
Dt        ^i, dx,. 

fi + 

V 

A^/ 

dx, 
(4.51) 

da 
dX; 

(4.52) 

M-f}y.2 
1 dk da 

a dX; dX; 
The switching ftmction is given by 

argi = nun 

F, =taiih(argi'') 

4k     500v 
max 

0.09qy   ay^ 

(4.53) 

(4.54) 

where y is the distance to the closest wall and CD^ is the positive portion of the cross- 

diffiision term. 

CZ)^^= max 
a dx, OX; 

The production term is similar to that of the k-e model: 

5M, 
Ai< 

du.    duj    2 du^ 
■ + 

. dx,    dx,     3 dx.   '"' , 
—pk5„ 

3       " 

du, 

dxj 

(4.55) 

(4.56) 

The model constants are also affected by the switching function. Since two sets of 
constants exist (one for the k-a model and one for the k-€ model), the overall 
constant is given in the generic form as ^ =0, +(l-F,)02, where 0, represents a model 
constant for the k-a model and ^2 represents a model constant for the A:-e model. 
Menter proposed two versions of the combined k-e Ik—a model. They differ in the 
determination of the turbulent viscosity and the specification of the model constants. 
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4.6.1. Baseline Model 

In the Baseline model, the turbulent viscosity is computed from 
k 

H,=p— 
(O 

The model constants are given by Tables 4-5 and 4-6: 

(4.57) 

or,, =0.1 

/3'=0.09 

^..=0.5 

R:=0.41 

/?, = 0.0750 

Table 4-5. Constants associated with k-(o or 0,. 

cr,,=1.0 

;S'=0.09 

o-„2 = 0.856 p^ = 0.0828 

jc=0.41 
P'     ^ 

Table 4-6. Constants associated with k-e or ^2 

4.6.2. Shear Stress Transport 

This model is a modified version of the Baseline model. It is based on the 
assumption of the Johnson-King model where the turbulent shear stress is proportional to 
the turbulent kinetic energy in the log and wake region of the turbulent boundary layer. 
The eddy viscosity is limited by the turbulent kinetic energy to ensure the proportionaKty 
condition. Therefore, the turbulent viscosity is given by 

pa^k 

max(a,co,QF2) 

where a, = 0.31, Q. is the absolute value of the vorticity, 

_ 5v    du 

dx    dy 

F2=tanh(arg2^) 

arg2 = max 
2^k    500v 

0.09coy' coy^ 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

The same model constants as for the Baseline model are used except for cr^j, 

which is set equal to c^^ = 0.85 . 
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The initial conditions are given as follows: co^=m-^, v,^ =10 "v^, A:„ =v,^«^ 

where 1 < /n < 10 and 2<«<5.Lisa characteristic length of the problem. It is typically 
chosen as the length of the computational domain (it is the same as the reference length 
used to nondimensionalize the equations). The boundary conditions are specified as 
follows: 

6v 
Solid surface:        k = 0, a =10-77-7-;—2 > where Aji is the distance of the 

first point away fi-om the wall. 
Inflow: 

Outflow: 

k = k^, (o=(o^ 

Zero-order extrapolation 

Similar to the k-e model, a compressibility correction is introduced for the 
production term in the (o equation. The production term is rewritten in terms of the 

e 
proper  variables  through  the  relation   (o = 

P*k 
and  the   constants   are   adjusted 

accordingly. This modification is designed to increase the size of the separation region 
and is only applied for the Baseline model since the Shear Stress Transport model already 
includes a procedure to increase the size of the separation region. 

A compressibility correction term and a pressure dilatation term were also 
introduced in the model. They were modified by Suzen and Hoffinann [63] for the k-e 
model. Note that the modifications are applied to the k-e model such that the A:-© 
model remains unchanged in the near-wall region where it performs well. Indeed, the 
modifications are fiiUy activated when the model switches to the k-e model (i.e. when 
F^ = 0). The resulting modified equations are: 

DJpk). 
Dt 

■P,-P*pcok l+a^M. .i-F,)V d_ 

dx. 

■k-F.yi' 

fi+ A^r 
A 

V 
fix.. (4.62) 

Dt        ^, fix,. 
AI + A^r da 

dx. 

+ 2p(l-^K2 
1 dk dco 

CO dx: dX; 

4-F,ya,M,'pco'-(l-Fy^ 

(4.63) 

41 



The pressure dilatation term is given by 
dU:   ,,2 p-d-^-a^Ty^M, +a,p€M, (4.64) 

M, is the turbulent Mach number, 

M=. 
2k 

yRT 
(4.65) 

and the following constants have been obtained based on DNS of isotropic turbulence. 

a, =1.0 ^2 = 0.4 a^ = 0.2 

4.7. Numerical Issues 
When the turbulence model is expressed by a differential equation (i.e., for the 

one-equation and the two-equation models), some numerical issues need to be addressed. 
The time scales associated with turbulence are typically much smaller than those 
associated with the mean flow. The Reynolds Averaged Navier-Stokes equations are 
solved for the mean flow variables, and the turbulence models relate them to the turbulent 
quantities. Two numerical approaches can be used. The first one consists in solving the 
entire system of mean flow and turbulence quantities simultaneously. This is called a 
coupled scheme. In this case, the same time step must be used for the entire system (see 
Figure 4-2). Since the turbulence models require a smaller time step than the mean flow 
solver, the convergence of the numerical solution is very slow. 

Outer loop 
At„, =At, 

^ r 

Navier-Stokes 

i 

Turbulence Model 

Figure 4-2. Illustration of the coupled approach in turbulence modeling. 

In the second approach, the system is solved in an uncoupled fashion. First, the 
Reynolds Averaged Navier-Stokes equations are solved in an outer loop, with a time step 
At^y. Then, the turbulence model is integrated with a time step At, < At^j-. Next, a new 

outer iteration is resumed and the same procedure is applied (see Figure 4-3). This 
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approach is implemented with a typical turbulent time step that is five times smaller than 
the mean flow time step.  

Outer loop 
AC, > A/, 

Navier-Stokes 

Inner 
loop 
A/, 

Turbulence Model 

Figure 4-3. Illustration of the decoupled approach in turbulence modeling. 

For all models involving the solution of a partial differential equation, the 
convective terms have been approximated by a first order upwind scheme and the 
diffusion terms by a second order central difference scheme. The equations have been 
written in their non-dimensional form and transformed into the computational space 
using the same procedure as described in Section 2.1.4. The turbulent quantities are 
nondimensionalized as follows: 

k .        L_ 
3 ^,    = 

A^, r=- e =e- 

,.2 

RBJ. = 
V e 

V   =■ (0   =- 

u„ 

(DL 

4.8. Comparison of Computational Times 

Two computer programs have been developed for this investigation. A code is 
based on the low magnetic Reynolds number formulation (LRMHD) and a code is based 
on the full MHD equations (RAMHD). Both programs contain the six turbulence models 
described in this chapter (original forms) and in Chapter 5 (modified versions to account 
for the presence of a magnetic field). The selection of a turbulence model for the 
computation of a given application should be primarily based on the physics / geometry 
of the problem and the level of accuracy that the turbulence model would provide. It is 
expected that fi-om the six available turbulence models, some will perform better than 
others, and some will exhibit similar level of accuracy. When two models provide 
comparable satisfactory results, the turbulence model that provides the solution in the 
fastest computational time is preferable. The objective of this section is to provide some 
guidelines toward the selection of a turbulence model, based on the computational cost 
associated with it. 
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The computer resource has been provided by the High Performance Computing 
Center at Wichita State University, which operates a SiUcon Graphics Origin 2000 
machine. It contains 24 processors (16 operate at 300 MHz and 8 at 250 MHz), with 10 
Gigabytes of RAM. All programs have been timed on the 300 MHz processors. The 
programs have been written in FORTRAN 77 and optimization directives have been 
supplied to the compiler to increase the execution speed. 
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■ Turbulence 
■ Other 

Time step 
■ MHD source terms 
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jRunge-Kutta 
Convective terms 
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V i^^ 
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Figure 4-4. Load distribution of various program tasks. 

Figure 4-4 illustrates the CPU time spent on each key-task performed by the 
computer codes developed for this investigation. All CPU times have been normalized 
with the CPU time obtained with the LRMHD code while computing a laminar solution. 

For a laminar flow, the full MHD equation solver takes a little more than twice as 
much time as the code based on the low magnetic Reynolds number. Computation of the 
viscous and convective terms require more computational time when the full MHD 
equations are solved because there are eight components to the flux vectors as opposed to 
five for the low magnetic Reynolds number formulation. Similarly, the implementation of 
the Runge-Kutta scheme is more costly when the fiiU equations are solved. There exist 
also a substantial difference in the evaluation of the TVD terms. This difference is due to 
the larger complexity of the eigenstructure associated with the full MHD equations, as 
opposed to the eigenstructure of the low magnetic Reynolds number formulation, which 
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is identical to the Navier-Stokes eigenstracture. Note that only the low magnetic 
Reynolds number formulation requires the computation of the MHD source terms. 
However, the additional time spent to compute these terms is negligible compared to the 
computational time saved in all other sections of the code. The computation of the time 
step (for steady state solution) is not significantly affected by the type of formulation. 
The category "Other" includes the grid generation, reading of the input data, writing the 
output data, and implementation of the boundary conditions. These tasks are also 
independent of the formulation. 

When a turbulent computation is performed, the choice of the turbulence model 
has a substantial impact on the computational load of the codes. When the Baldwin- 
Lomax model is used, it results in an increase of 30% of the computational time, both for 
the low magnetic Reynolds number formulation or the full MHD equations formulation. 
Indeed, the computational time devoted to the turbulence model does not depend on the 
MHD formulation. The Baldwin-Barth model results in an increase of 150% compared to 
the laminar case. The large increase in computational time compared to the Baldwin- 
Lomax is due to the nature of the turbulence model. The Baldwin-Lomax model is an 
algebraic model that evaluates the turbulent viscosity explicitly fi"om the mean flow 
quantities. The Baldwin-Barth model solves a partial differential equation in terms of a 
turbulent variable related to the turbulent viscosity. Due to numerical stability 
consideration, the turbulent equation must be solved with a smaller time step than the 
mean flow solver. Subsequently, for each mean flow iteration, several turbulent sub- 
iterations are required to produce a concurrent marching of all flow quantities. It has been 
determined that a turbulent time step five times smaller than the mean flow time step, 
associated with five sub-iterations for the turbulent equation(s) is the most efficient 
combination. This results in shifting most of the computational load to the turbulence 
model. However, it is preferable to utilize this decoupled approach rather than solving 
both mean flow and turbulent equations with a prohibitively small time step. 

Similar to the Baldwin-Barth model, the Spalart-Allmaras model, which is also a 
one-equation model results in an increase of about 200% compared to the laminar case. 
Next, the two-equations models are investigated. The k-e model is the model that 
requires the most CPU time. In fact, ihe k-e model requires about 5.5 times more 
computational time than the mean flow solver. The Baseline and SST models need a little 
less than three times as much CPU time as the mean flow solver. Note that for two- 
equations models, most of the computational time is spent on the turbulence model, not 
the mean flow solver. 

The previous comments merely reflect the computational time devoted to 
individual tasks within the codes. It allows the comparison of the fiill MHD and low 
magnetic Reynolds number formulations and each turbulence models. For the 
computation of a time accurate solution, the CPU time required to reach a given time 
level will exacfly scale with the timing presented in Figure 4-4. For a steady state 
solution, it is more difficult to compare the performances of the codes and turbulence 
models. Figure 4-4 does not provide any information on how fast the codes converge. For 
example, it takes about twice as much time for the Spalart-Allmaras model to execute one 
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iteration as it takes for the Baldwin-Lomax model (low magnetic Reynolds number 
formulation). However, that does not mean that a converged solution will be obtained by 
the Spalart-AUmaras in twice as much CPU time as by the Baldwin-Lomax model, since 
the number of iterations required to reach convergence is likely to depend on the 
turbulence model. 

It is however very difficult to assess the convergence rate for each turbulence 
models. Many factors affect the convergence rate. Initial conditions, geometry, 
freestream conditions, numerical scheme, boundary conditions, time stepping method, 
and numerical stability influence the way a converged solution is reached. It is therefore 
impossible to predict with certainty which turbulence model would provide a converged 
solution in the least computational time. However, based on the experience gained with 
the utilization of the codes, the following comments can be made: 

The low magnetic Reynolds number formulation assumes a constant magnetic field 
(in time). It results in faster convergence rate than the full MHD equations solver 
because it eliminates the mutual interaction between the magnetic and velocity 
field. In the low magnetic Reynolds number formulation, only the magnetic field 
has an effect on the other flow properties, whereas when the full MHD equations 
are solved, the velocity field influences the magnetic field and vice-versa. This 
strong coupling results in a slower rate of convergence for the full MHD 
equations than for the low magnetic Reynolds number formulation. 

The Baldwin-Lomax model, which is an algebraic model, depends explicitiy on the 
mean flow variables. Therefore, the build up of turbulent viscosity occurs rapidly. 
In comparison, one-equation and two-equation models require more 
computational time to generate the same amount of turbulent viscosity. Thus, the 
Baldwin-Lomax model tends to converge faster than one and two-equation 
models. 

The k-e model has been found to be more unstable than other turbulence models. It 
usually requires a time step (or a CFL number for steady state solutions) two to 
ten times smaller than that of the Baldwin-Lomax model. Therefore, the k-e 
model, which already requires the most computational time per iteration, usually 
requires also more iterations to converge. The k-e turbulence model is by far 
the model that will converge the slowest. 

In order to accelerate the convergence of a given computation, the solution must be 
initialized with the most appropriate data. The first step in any investigation is to 
start by computing a laminar non-magnetic solution. Then, the magnetic field can 
be turned on and the solution is initiaKzed fi-om the previously computed laminar 
non-magnetic case. Similarly, a turbulent computation should be started fi-om the 
laminar solution, and not fi-om a cold start (constant fi-eestream conditions within 
the entire domain). 
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The code based on the low magnetic Reynolds number formulation is more stable 
than the code solving the full MHD equations. The CFL number associated with 
LRMHD is typically two to five times larger than the CFL number associated 
with RAMHD. 

Overall, the Baldwin-Lomax algebraic turbulence model is able to provide a 
converged solution in less computational time than any other turbulence models, due to 
its rapidity of execution and good stability. The k-e two-equation model is the slowest 
and most unstable model. For applications where these two models provide the same 
level of accuracy, preference should be given to the Baldwin-Lomax model. 
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Chapter 5 
Modifications of Turbulence Models For 

Magnetohydrodynamic Flows 

The turbulence models described in Chapter 4 are developed for the Reynolds 
Averaged Navier-Stokes equations. They are required because additional unknowns 
(Reynolds stresses) appear in the Reynolds Averaged Navier-Stokes equations. When 
investigating turbulent magnetohydrodynamic flows, the same filtering operations can be 
performed on the MHD equations. The resulting Reynolds Averaged MHD equations 
contain the Reynolds stresses that still require modeling, and additional unknowns 
usually referred to as magnetic Reynolds stresses, involving the fluctuations of the 
magnetic field. Due to the limited experimental data and theoretical investigation on how 
to model the magnetic Reynolds sti-esses, a simplified approach is considered where the 
effect of the magnetic field is modeled by modifying existing turbulence models. 

5.1. Baldwin Lomax Model 
The generalization of Prandti mixing length concept was extended to MHD flows 

at low magnetic Reynolds number by Lykoudis and Brouillette [26]. In the inner region, 
the turbulent viscosity is now written as 

^i,^=pK'y\\-e''*"')y,r,co (5.1) 

where ^2 = 1 ~ ^'^P' 
A* 

l\[A^X)\l.\[A^xf (5.2) 

and 73 = exp(-A?}), A = 700 (5.3) 

,2    <yeB'^i A^^^^^fU^ (5.4) 

The damping function and corresponding constants have been designed to match 
their experimental investigation of a channel flow of an electrically conducting fluid 
subject to a uniform transverse magnetic field [93]. It has been observed that when the 
skin fiiction is plotted versus the Hartmaim number (while keeping the Reynolds number 
constant), all curves coincide on the same laminar line when the ratio Ha/Re is larger 

than 1/225. This illustrates that the presence of a magnetic field tends to inhibit 
turbulence or initiates a relaminarization process. The main idea behind the damping 
fiinction introduced by Lykoudis is that the magnetic field leads to a suppression of the 
correlation term u'v'. The damping fiinction was designed for flows with a transverse 
magnetic field, such that the damping acts directiy on the u' fluctuation (the v' 
fluctuation is parallel to the transverse magnetic field). 
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5.2. Baldwin-Barth Model 

The derivation of the modified Baldwin-Barth turbulence model is presented in 
this section. The Baldwin-Barth model was originally derived jfrom the standard form of 
Hhe k-e model. Therefore, the modified version of the Baldwin-Barth model is derived 
fi-om the modified k-e model, which is described in Section 5.4. 

Consider the incompressible k-e model with magnetic terms: 
k -equation: 

Dk    ^ d 

Dt dx, 
v+- 

dk 

e -equation: 

Dt k k     8x: 

dx, 

v-f^ 

NM, 

de 

dx. 

NM^ 

(5.5) 

(5.6) 

The effects of the magnetic field are modeled by the terms NM,^ and NM^. 

M, = C'^,eB,B, 

N is the interaction parameter 

A^ = 
pU 

(5.7) 

(5.8) 

(5.9) 

In the Baldwin-Barth model, a new turbulent quantity is introduced, namely the 
turbulent Reynolds number, Rej., which is defined as 

or 

Rcj. =■ 
ve 

vRej. — — 
e 

(5.10) 

(5.11) 

Therefore 
diyRej) _^dk    de 

vRe^ 
= 2- (5.12) 

This transformation can be applied for both the local derivative — and the 
dt 

convective derivative U-V[v/?e^]. Therefore, the substantial derivative satisfies the same 
transformation, i.e., 

1    D(vRe^)_2Dk    1 De 

vRe^     Dt     ~ k Dt    e Dt 
Substitution of Equations (5.5) and (5.6) in Equation (5.13) yields 

(5.13) 
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1    D[vRej.j 2 

vRcj.     Dt k 

1 

€ 

n-^ + 
dX; 

\ 

v+- 
cr. 

r 
C,-P:-C, —+ — 

Ir k      dx 

dk_ 

dX: 
+ - iVM. 

v+- 
de 

fix,. 
+ ^ 

P 
J 

(5.14) 

Equation (5.14) can be rearranged by omitting some terms according to the 
discussion by Baldwin and Barth [48]: 

^ = (2-C.,Kf-(c,.-2> + v+- 

'*; dx. 
■{yRe^) 

 (v.   —WReT.) 
- ^"^'^ dx. ^    ' G, dx. 

+ vRe.r 
2_ 

pk pe 
NM^ NM^ 

(5.15) 

From Equations (5.7) and (5.8): 

pk p 

1 
NM^=-C'^,B,B, 

pe p 
which can be combined into 

pk pe p 

Therefore, we obtain 

^ = (2-C„Kf.(c,-2> + 
A 

v+- 
,^8x. 

(yRej.) 

1    d /   > 

CT,     OX; dX: 
(yRcj.) + ^2C'^,-C'^,)B,B,{vRe,) 

P 

For convenience, the following constant is defined 
r     = 2C'    - C 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Thus, the effect of the magnetic field is modeled by the addition of the magnetic 

source term  —Q^ B.B^\yRej.).  The ti-eatment of wall-bounded flows involves the 

introduction of damping terms in the production term and is assumed not to modify the 
magnetic term. Finally, the Baldwin-Barth turbulence model that accounts for the 
presence of a magnetic field is expressed as 
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D(vRej.)_ 

Dt 
(5.21) 

ACT- 

P 
CnerBA^Rer) 

The closure coefficient associated with the additional magnetic term has been 
calibrated for the MHD Hartmann flow (Section 7.3) and its proposed value is 
Q., =6.0. 

5.3. Spalart-Allmaras Model 
The approach to modify the Spalart-Allmaras turbulence model in the presence of 

a magnetic field is different fi"om the proposed modification concerning the other 
turbulence models. Here, no additional magnetic term is added to the partial differential 
equation governing the variable v . Rather, the effect of the magnetic field is accounted 
for within the closure coefficient Qj, which becomes a function of the magnetic field. 

The motivation behind this approach lies in the fact that the Spalart-Allmaras model is 
the model that performs the best in the prediction of the relaminarization process of the 
MHD Hartmann flow. In fact, when the model is used in its original form, it only slightly 
over predicts the relaminarization process. Therefore, instead of designing an additional 
magnetic term, it is proposed that an adjustment in the closure coefficient would be 
sufficient to extend the Spalart-Allmaras model to MHD flows. 

As for the Baldwin-Lomax model, the objective of the proposed modification is to 
reduce the amount of turbulent viscosity. This can be accomplished by several 
mechanisms. The Spalart-Allmaras model solves an equation in terms of the turbulent 
quantity v , which is directly related to the turbulent viscosity through the function j^j. 

Therefore, it would be suitable to make y^,   a decreasing function of the magnetic 

strength. Another option would be to decrease the production of v , or increase the 
dissipation of v, or a combination of both. 

Based on the analysis of the Hartmann flow (Section 7.3), it is proposed to modify 
the closure coefficient Q, according to Equation (5.22): 

2.6 + 1.6tanh 4.43^^-19.345+0.022 ,4.225 (5.22) 
\       Re ) Re \ 

The effect of this modification on the production, dissipation, and diffusion terms 
in the Spalart-Allmaras turbulence model is illustrated in Figure 5-1. All quantities have 
been normalized with their non-magnetic counterparts. As the coefficient Qi increases, 

the production and diffusion terms are reduced, up to a little less than 10%. On the other 
hand, the dissipation term increases by about 10 %, leading to a reduction of the turbulent 
quantity v by about 20%. 

C^i =7.1min 
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Figure 5-1. Effect of the closure coefficient Q, on the turbulent terms 
of the Spalart-AUmaras model. 

5.4. k-e Model 

The k-e model solves one equation for the turbulent kinetic energy and one 
equation for its dissipation rate. In the presence of a magnetic field, the fluctuations of the 
magnetic field must be incorporated into the model. The turbulent kinetic energy cannot 
be considered alone. A new turbulent variable is defined as the total turbulent energy 
composed of the turbulent kinetic energy and the turbulent magnetic energy. 
Mathematically, it is written as 

1    ' 

2     '      ' 
1 '     ' 
2     '   ' 

where 5 = 
1 B. \' 

(5.23) 

(5.24) 

and bj are the fluctuations of the magnetic field. The first term in Equation (5.23) 

represents the turbulent kinetic energy and the second term represents the turbulent 
magnetic energy. The dissipation of the total turbulent energy is achieved by fiiction and 
Joule's heating. The dissipation rate e must take into account these two mechanisms. 
However, since the magnitude of the fluctuations of the magnetic field is usually small, 
they are neglected and the total turbulent energy remains the same as the kinetic turbulent 
energy. 

The effect of the magnetic field is incorporated into the k-e model according to 
Kitamura et al [31] by adding magnetic terms to the k and e equations. This model was 
designed for MHD channel flows at low magnetic Reynolds number. The fluctuation of 
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the electric field has been neglected and a more complex model was proposed by 
Shimomura [30].  Since the electric field is not modeled in this investigation, its 
fluctuations are not taken into account. Therefore, the magnetic terms developed by 
Kitamura are added to the k-e model described in Section 4.5. The model becomes: 

k -equation: 

%) = /..-p(l.aA/,^). 
Dt 

e -equation: 

+- 1    d 

Re^ fix.. 

dk 

dx. 
+L^+NM^ 

^Ac.f,n-c.j.P^^ 
Dt 

where N is the interaction parameter 

+- 1    d 

k    Re^ 8x; 

r 
^4-A' de 

dX; 
+L^+NM^ 

N = 
pU 

The magnetic effects are modeled by the terms NM^ and NM^, 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

with 

M, = C'^,kB^B, 

M,=C'^,eB,B, 

C'^r=-0.5 

C:^,,=-1.0 

5.5. Combined k-e/k-co (Baseline and Shear Stress Transport) Model 

The k-e Ik-a is a combination of the k-e model, for which a modification 
has already been proposed in Section 5.4 and ihe k-(0 model. The specific turbulent 
dissipation rate a is directly related to the turbulent kinetic energy and its dissipation 
rate by the relation 

^ (5.29) (0 = 
P'k 

Therefore, it is possible to transform the additional term in the e-equation by 
using the change of variable (5.29) to obtain a magnetic term for the a -equation. 
Subsequently, the following k-e Ik-co model is proposed. This modification appHes to 
both the Baseline and Shear Stress Transport models. 
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Dt        '   ^ ^       dx: 

'( 
\^t 

\ dk 

Dt       n^ dXj 

fix,- 

dco 

fix,. 

(5.30) 

(5.31) 

■2p(l-i^K2- 
1 dk da 

+ NM,., 

terms 

CO dxi fix,. 

The effect of the magnetic field is introduced in the following two additional 

M.=C',mC0B,B, 

The closure constants need to be determined and tailored for the application they 
are designed for. The numerical investigation performed in Section 7.3 on the turbulent 
Hartmarm flow leads to the following values: 

Baseline model: 

SST model: 

C    =3 0 

C    =-15 
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Chapter 6 
Hypersonic Chemistry 

6.1. General Background 

The definition of hypersonic is not as clearly defined as supersonic. The edge of 
the hypersonic regime, or the "heat barrier" lies between Mach 3 and Mach 5. The 
hypersonic realm starts when the air behind shock waves reaches extremely high 
pressures and temperatures. Some phenomena, such as increasing temperature and the 
formation of a shock layer become considerable at about Mach 3. Others, such as 
chemical reactions, do not have a significant effect until about Mach 7 or more. The most 
notable chemical changes that air undergoes as temperature increases are summarized in 
Table 6-1. 

Temperature [K] Chemical change 

800 Molecular vibration 

2500 Oxygen molecules (O2) dissociate 

4000 Nitrogen molecules (N2) dissociate 

6000 Nitric oxide (NO) forms 

9000 Oxygen and nitrogen atoms ionize 

Table 6-1. High-temperature effects on air at standard conditions. 

In the hypersonic regime, the assumption of air as a calorically perfect gas is no 
longer valid. For a calorically perfect gas, the ratio of specific heats y is constant and the 
internal energy e is typically a fimction of temperature only. For chemically reacting 
flow, e is a fimction of both temperature and pressure, and 7 is no longer a constant. 

Three chemical states may be defined, namely firozen, equilibrium and 
nonequilibriimi. The determination of the chemical states is based on the relative 
importance of the following characteristic times: xj, the time for a fluid element to 

traverse the flow field of interest and T^ , the time for the chemical reactions and / or 

vibrational energy to approach equilibrium. In chemically firozen flow, no chemical 

* The distance between the shock wave and the surface of a hypersonic body decreases with Mach number. 
The resulting flow field between the surface and shock is referred to as a shock layer. 
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reactions take place. In other words, v^ tends to infinity. On the other hand, in chemical 

equilibrium, reactions are assumed to be instantaneous i.e., r^ equals zero. Chemical 

equilibrium may be a good approximation if T^ is negligible compared to TJ- . In reality, 

chemical reactions do not take place instantaneously and T^ may be of the same order of 

magnitude as Zj-. In this case, the flow is in chemical nonequilibrium. Table 6-2 provides 

a summary of the criteria for the distinction of the chemical states. 

tj-«T, Frozen flow 

-^f-^c Nonequilibrium flow 

Zf»X, Equilibrium flow 

Table 6-2. Chemical states criteria. 

These concepts are graphically illustrated in the Figure 6-1. For the sake of 
simplicity, consider the following reaction of dissociation of chemical species AB into 
species A and species B. 

AB- ->A+B 
where K is chemical rate constant. 

AB 

Fluid particle 

upstream of shock wave 

(low - temperature environment) 

AB 

^ " 

Chemically frozen flow: 

No dissociation of species AB 

^      Chemical nonequilibrium: 

AB, A,BJ     Partial dissociation of species AB 

"^      Chemical equilibrium: 

^^^ I     Full dissociation of species AB 

Same particle 

right downstream of shock wave 

(high - temperature environment) 

Figure 6-1. Illustration of the chemical states. 
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For the purpose of illustration, consider a fluid particle crossing a normal shock 
wave at hypersonic regime. Upstream of the shock wave, freestream conditions and low 
temperature are assumed. In contrast, the downstream of the shock wave is a high- 
temperature region. Recall that the chemical reactions considered in the present case are 
enhanced as the temperature is increased (chemical rate constant K increases with 
temperature). Thus, the upstream region is not favorable to chemical reactions unlike the 
downstream region. Now, to determine whether or not chemical reactions have a 
significant effect on the flow composition, it is necessary to compare the chemical time 
scale r^ and the flow time scale Ty. In other words, how long does the fluid particle take 

to cross the shock wave and how much time does the chemical reaction take to complete? 
If the particle crosses the shock wave in a too brief time compared to the reaction time, its 
chemical composition is unchanged: this is the fi-ozen state. On the contrary, if the 
reaction is instantaneous, species AB has the time to dissociate completely into A and B: 
this is chemical equilibrium. An intermediate state is chemical nonequilibrium for which 
the dissociation of AB in the immediate postshock region is partial. 

Note. In the case of a chemical nonequilibrium steady-state solution, there is no 
local time rate of change in any property. In other words, at a given location downstream 
of the shock wave, the field chemical composition is invariant with time. However, the 
composition of a fluid particle, as it moves fiirther downstream, changes. For instance, 
the fluid particle may have a nonequilibrium chemical composition (AB, A and B) in the 
vicinity of the shock wave, and an equilibrium composition (A and B) at another location 
farther downstream, if the reaction has time to complete. 

6.2. Thermochemical Models 

Various thermochemical models to simulate high-temperature effects using CFD 
techniques have been proposed by several investigators [94, 95]. Modeling chemical 
equilibrium can be accomplished by incorporating tables and curve fits of 
thermodynamic properties [96]. On the other hand, computing chemical and possible 
thermal nonequilibrium is far more complex due to the abundance of the species present 
in the medium and the various energy levels that must be taken into account. Moreover, it 
requires the solution of species conservation equations. Extension of CFD algorithms to 
nonequilibrium chemistry has been accomplished by several investigators [97-99]. 

In magnetogasdynamics, literature generally contains studies about 
nonequilibrium calculations involving noble gases and possibly nitrogen [100]. However, 
only a few MGD computations with nonequilibrium air have been reported [86, 101]. In 
order to simulate the flight environment of hypersonic vehicles in the atmosphere, it is 
necessary to use air as the working medium instead of a plasma of given species. 

In the present research, air thermochemical properties are computed by a five- 
species, seventeen-reaction nonequilibrium chemical model, associated with a one- 
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temperature model, based on a scheme employed by Chiang [102]. The temperature 
model is modified to account for the magnetic field energy. 

Physically, fluid motion and chemical reactions are intrinsically coupled. Thus, 
solving both simultaneously is a logical procedure called the "coupled method". If such 
an approach were selected, a modification of the flux vectors and the flux Jacobian 
matrices would be required to accoimt for the mass conservation of the chemical species. 
This would result in a large system of equations. The system eigenstructure (used in the 
TVD scheme) would have to be determined again. A simpler approach, known as 
"loosely coupled method" or "chemistry-split" is to solve the MGD equations and 
chemistry equations separately in an iterative fashion. The gas constant R and the ratio 
of specific heats y are considered as functions of both time and space. The chemical 
reactions affect the fluid motion in two ways, namely via pressure and temperature. The 
change in pressure Ap and the change in temperature AT are expressed as the sum of 

those due to the ideal gas and those due to the chemical reactions. 

In chemically reacting flows at high temperatures, nonequilibrium vibrational 
temperatiire becomes important. Disregarding the nonequilibrium vibrational temperature 
certainly degrades the accuracy of the numerical predictions, but reduces the complexity 
of the numerical scheme and the computational effort. Conscious of this issue, the author 
prefers developing the chemistry model using a one-temperature model, while not 
excluding the implementation of multitemperature model, in future studies. For example, 
a two-temperature model [95] may be selected for its comprehensive and concise 
treatment of vibrational and electronic energies, and due to its computational efficiency 
compared to higher-order multitemperature models. 

In the following sections, nonequilibrium and equilibrium models are described. 

6.3. Procedure For Chemical Nonequilibrium 

6.3.1. Thermochemical Equations 

•    Chemical model 
The proposed model is based on the following reactions: 
- thermal dissociation of air molecules: 

02+M^20+M (6-1) 

N2+M^2N+M (6-2) 

NO+M-N+O+M (6-3) 

- exchange reactions involving NO: 

NO+O^N+02 (6-4) 
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0+N2-N+N0 (6-5) 

where M represents a third body, which can be either O2, N2, NO, O or N. Thus, 
seventeen reactions involving five chemical species are considered. 

•    Thermodynamic model 
The specific internal energy for a species s is expressed as 

^s = ^t^ + ^e^ + ^0,. for an atom, (6-6a) 

^s = e,,. + e,^ + e,^ + e,, + e,^ for a molecule. (6-6b) 

where e,^,  e^^,  e^^,  e^^  and CQ^  represent the translational, rotational, vibrational 

electronic and zero-point specific energies, respectively. Statistical thermodynamics, for 
chemical species assumed perfect gas, leads to the following expressions. 

e,,=\RsT     (6-7a)        e,^=RJ       (6-7b)        e^^.^^^RJ     (6-7c) 

where  7 is the system temperature . 
R^='iR/M^ defines the specific gas constant of chemical species s. 

6^^ denotes the characteristic vibrational temperature for polyatomic species 5. 

In this model, the electronic energy is neglected. For air, neglecting this energy is a 
reasonable assumption, which induces an error less than 1% [97]. The zero-point energy 
is replaced by the heat of formation /j^^. Thus, the internal specific energy is rewritten as 

3 
e^=—R^T + h^^ for an atom, (6-8a) 

^. = TKT + ^sT +  e 'IT''   + ^0^ for a diatomic molecule. (6-8b) -RJ + RJ + -^ 
2 e '•'   -1 

Chemical properties (molar masses, heats of formation and characteristic vibrational 
temperatures) for species O2, N2, NO, O or N are provided in Appendix E. 

•    Chemical governing equations 
The nonequilibrium species continuity equation for a three-dimensional inviscid 

flow is expressed in a flux-vector form as 
do,    dE,    dF,    dG,      ■ 
-^^ + —'- + —'-+—- = W^ (6-9) 
dt^      dx      dy      dz 

where 

In a one-temperature model, the system temperature is associated to the translational temperature. 
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Qc = 

' pc, ' puc, ' PVCi ' Pvvc, ^ w, 

pc^ puc^ PVC2 pwc^ ^2 

pc^ puc^ pvc^ pwc^ vu, 

■ [,^c = ■ 

'\ 
['^c = 

V'\ 
P<^s puc^ pvc. pwc^ w. 

P^SM. ^P^^sM ^P^CSM. ^PWCsi^ 3A/. 

(6-lOa) (6-lOb) (6-lOc) (6-lOd) (6-lOe) 
p is the mixture density, u, v and w are the fluid velocity components. 

Index 5 e {l, 2,3, • • •, SM] denotes the chemical species s. SM = 5 is the number 

of chemical species. 
c^ is the mass fraction of species s. 

w^ represents the mass change rate of species s. 

ci[AJ 
w = M 

dt 
(6-11) 

A^ is the symbol for species s i.e., O2, N2, NO, O or N. 

[AJ is the concentration of species s (mole per unit volume). 

P<^s [AJ 

At chemical equilibrium, 

M 

d[Al 

(6-12) 

At 
= 0, 

Chemical kinetics 
Given a reacting mixture of SM  species undergoing the general elementary 

reaction 
SM ^/     ^ SM 

(6-13) 

where K^ and K^ are the forward rate constant and backward rate constant, respectively, 

vf and vf are the stoichiometric coefficients of reactants and products, respectively. The 

reaction rates are expressed as follows. 

Forward rate: 

Backward (or reverse) rate: 

Net rate of formation: 

d[Al 
dt 

d[Al 
dt 

d[Al 

=(v;-vfKntA.r' 

dt 

d[Al 
dt 

+ d[AJ 
dt 

(6-14) 

(6-15) 

(6-16) 
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= (v; -v;)[i^,n[A.r -K,U[AJ^ J (6-17) 

The net rate of formation of A, can be rewritten as 

d[AJ 

Expanded expressions of Equation (6-17) for each of the five chemical species are 
provided in Appendix F. 
Kf is obtained empirically using the modified Arrhenius equation expressed as 

is:^(r)=cr e-^"'*^ '        (6-18) 
where e^ is the activation energy, k is the Boltzmann constant, C and a are constants 

provided in Appendix E. 
In a scheme presented by Park [103], Kf, is evaluated as 

K f K,=-^ (6-19) 

K^ is the equilibrium constant, which is expressed in a functional form as 

K^[T) = exp(4 + 4 hi Z + 4Z + ^4Z^ + A^Z^) (6-20) 

where Z = 10,000/r[^] and coefficients A^ through A^ are provided in Appendix E. 

The numerical data contained in Appendix E are dimensional, therefore, a 
nondimensionalization consistent with that presented in Section 2.1.2 is required. 

•    Generalized coordinates 
Equation (6-9) in the physical space is expressed in the computational space as 

&^^^^^^ = W^ (6-21) 
8t^      d^     dr]     dQ        ' 

where 

a=y (6-22a) 

E.=^k.E^+^yF.+^fi,) (6-22b) 

Fc=j[n.E,+%F^+7]fi) (6-22C) 

^c=7(CA+C,i^c+CGj (6-22d) 

—    W 
W^=-^ (6-22e) 

The chemical flux Jacobian matrices are defined as follows. 
-   a§ 

da 
A=-^ = <^, A + ^yBc + ^.C. (6-23a) 

^c=^ = nAc + lyB. + lA (6-23b) 

61 



where 

- _dW _8fV 

dE. 
= ul 

SQ. 

(6-23c) 

(6-23d) 

(6-24a) 

(6-24b) 

(6-24c) 

That is to say, 
A^=UI (6-25a) 

B^=n (6-25b) 

C; = ^ (6-25c) 

where U , V and W represent the contravariant velocities and I is the SM x SM identity 
matrix. Chemical Jacobian matrix D^ is provided in Appendix G. 

■    Boundary conditions 
Boundary conditions for the conservative variable Q^ are required for the 

solution of Equation (6-21). They involve, in general, a surface chemistry interaction 
with the gas at the wall and they depend on the wall catalyticity. The catalyticity is the 
property of a substance to enable a chemical reaction to proceed at a usually faster rate or 
under different conditions than otherwise possible. A fully catalytic wall is a wall at 
which chemical reactions are catalyzed at an infinite rate. In other words, the mass 
fractions at the wall are their local equilibrium values at the local pressure and 
temperature at the wall. A partially catalytic wall is a wall at which chemical reactions 
are catalyzed at a finite rate. A noncatalytic wall is a wall at which no chemical reaction 
takes place. Depending on the case considered, the boundary conditions on c^  are 

summarized in the Table 6-3. 

(wcl=0«(Vc,-«i = 0                 , Noncatalytic wall 

(WCI = PA(VC,-4 Partially catalytic wall 

\ps )w ~ yPs Jequilibrium 
Fully catalytic wall 

Table 6-3. Boundary conditions on c^ and wall catalyticity. 
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In the present chemical model, diffusion phenomena are not represented (the flow 
is assumed inviscid), and boundary conditions at the wall are specified assuming 
noncatalytic wall. 

6.3.2. Numerical Method 

Due to the good stability characteristic of implicit methods, an implicit flux- 
vector splitting is selected to solve Equation (6-21). The flux-vector splitting method for 
the two-dimensional case is described in Appendix H. 

Figure 6-2 contains a flow chart of the computational scheme for nonequilibrium 
flow simulations. The integration of the loosely coupled scheme is performed according 
to the steps listed below. 

(i) MGD equations are solved for the conservative variable Q by the four-stage 
modified Runge-Kutta scheme, as described in Chapter 3. This intermediate solution 
(before chemistry adjustment) is denoted by a prime. 

Q' = Q"+AQ (6-26) 
Primitive variables such as pressure, p', temperature, T', etc. can be evaluated 

using conservative variables. At this step, the mass fi-actions, c", the ratio of specific 

heats, y" and the gas constant of the mixture, i?" are held to their previous values. 

(ii) The mass change rate w^ is evaluated according to Equations (6-11) and (6- 

17), using T, c" and p'. Subsequently, unknowns A(pc^) in the chemistry equations 

can be evaluated using c", p', (pu) , (pv) , (pw) and w^. Intermediate partial densities 

are computed as 

(pcj'=p'c;+A(pcJ (6-27) 

The species mass fi-actions are updated by 

<*' =rK (6-28) 
s=l 

and the nnixture gas constant is evaluated as 
SM  „n+l«5 

R"^'=ySs_Jl. (6-29) 

(iii) Translational temperature is computed assuming that pressure p', momentum 

components, (pw), (pv), (pw) , magnetic field components, B'^, By, B[, and total 

enthalpy, h[ are invariant during the chemistry step (ii). That is to say. 
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;,"+' = p' (6-30a) 

(pw)"^'= (pw)' (6-30d) 

Bf=B'^ (6-30g) 

By definition of the total enthalpy, 

{pur={pu) (6-30b) (pvr'=(pv)    (6-30C) 

Bf=B\ (6-30e) 5;^'=5;           (6-30f) 

K'=K (6-30h) 

ilpy, 
n+l 

(6-31) 
.1+1 

where 

^n+l       ^n+1   , ^j[{p.r I+[(pvr Wp-r f+^[(^7+(r ^(r'^ 

with 

p-'=    ^ 
-n+l 

r>n+lT-in+l nn+ln-rn+l 

SM 

j=i 

(6-32) 

(6-33) 

(6-34) 

Substitution of Equations (6-32) through (6-34) into Equation (6-31) yields 
SM 

h;'^' = h; = J]c"/'e^+R"^'r^' 
s=l 

2    r.    .n2 
(pw)     +  (pv) -f- WT.J-[te)^.feNter]}fcM 

/^eO 

(6-35) 
where the internal specific energy e^ is expressed by Equations (6-8a) and (6-8b). 

The unknown in this equation is the translational temperature 7""^', which is determined 
using the Newton-Raphson method. 

(iv) Once the translational temperature is known, all the properties can be updated 
as follows. 

(6-36a) 

(6-36b) 

(6-36c) 

n"+' p P nn+\rpn+l 

11"^^ 
_{pu1 

p- 

v""-' - _(PV)' 

p- 

Mr' _(pw) 

p 
B""-^ = B' 

n+\ 
(6-36d) 

(6-36e) 
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jn+1 

5"^' = B' 

5"^' = B' 
y y 

(6-36f) 

(6-36g) 

(6-36h) 

(pe)"*'=(pe,) ,n+l 

1   „/i+l 

-2" 

y"*'=^-^+l (M' ,n+l 
(6-36J) 

The steps (i) through (iv) are repeated until a convergence criterion is satisfied. The 
criterion is usually expressed as 

IM JM KM 

SEE f.". JJ' 
<£/ 

where / is a property such as temperature, or species mass fraction, and Sj- is a 

prescribed value for this property. 
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(^ START ) 

INPUTS 
Mathematical, physical constants 
Solution parameters  

INITIALIZATION 
Thermodynamic, electric fluid properties: y, fi, a^ 

Field state variables: Q 

Chemical compositions: Q^ 

«<—«+! MGD SOLVER RK4: 
Q^Q"+AQ 
TVD MODEL: 

Q^Q+ TVD 

At 
THERMOCHEMICAL MODEL: 

FLUX-VECTOR SPLITTING 

Q.^Q:+AQM 
At 

False 

CHEMISTRY ADJUSTMENT 

OUTPUTS 
Thermodynamic, electric fluid properties: y, n, a^ 

Field primitive variables: p, p, I, U, B 

Chemical mass fractions: c„ 

f STOP J) 

Figure 6-2. Program flow chart for nonequilibrium computations. 
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6.3.3. Numerical Issues And Model Limitations 

The coupling of thermochemical equations and MGD equations generally leads to 
a set of stiff partial differential equations. The stiffiiess is due to the disparity between the 
rates of some chemical reactions and the rate of bulk flow properties. More specifically, 
stiffness is associated with high reaction rates. In order to overcome the intrinsic 
difficulty, an implicit time marching solution technique has been chosen over an expUcit 
method. Moreover, as shown in Figure 6-2, two loops are considered, namely an outer 
loop with a computational time step Af for the solution of the MGD equations, and an 
inner loop for the chemistry model with a time step Ar^, which is in general different 

from At by several orders of magnitude. The computational time steps can be 
determined using the von Neumann stability analysis, as reported in Reference [104]. 

In theory, for a chemical system of SM species, only SM-l species 
conservation equations have to be added to the frozen MGD equations, which include the 
global continuity equation. One of the species variables can be expressed as a 
combination of the others, via the continuity equation. However, in practical 
computations, redundancy in the conservation equations (SM species equations instead 
of SM-l) is preferable. Indeed, if one of the species, say A, is expressed as a 
combination of others, numerical error on each of the species variables is compounding 
on the A value. If the A species is dominant and the A value is large, then the error may 
be negligible. However, in strongly reacting flow, no such dominant species exists. If the 
A value becomes small, the compounded error may be a large fraction of the true value of 
A. The consequence of retaining the redundant species equation is that the numerical 
error now causes the sum of species concentrations to deviate from the overall mass. 

Another source of stif&iess is due to the nonlinearity of the mass production rate 
terms. The equations associated with the kinetics of chemical reactions, e.g. Equation (6- 
17), are nonlinear in species concentrations. The exponents are the stoichiometric 
coefficients. The nonlinearity worsens stif&iess when negative concentrations occur as a 
consequence of numerical errors (round-off and truncation). In many intances, a small 
negative concenfration value amplifies into a large negative value. Moreover, a negative 
value in one species concentration leads to negative concenfration values for other 
species. In order to prevent system degeneration, negative concentrations are overwritten, 
but this violates the conservation of mass. To overcome the problem of mass 
conservation violation, the species mass fractions are renormalized after each integrating 
step, so that after modification, their sum equals unity. 

As mentioned previously, a one-temperature model is selected for the sake of 
simplicity and for minimization of the computation time. However, several issues are 
associated with the use of a one-temperature model. The question of solution accuracy 
has been already discussed. Another issue is the sensitivity of computation to numerical 
errors and the stifBiess of the chemical reactions behind a shock wave. Indeed, in a one- 
temperature model, the temperature at the first node point behind a shock wave is very 
high, and therefore, the chemical reaction rates and their associated Jacobian elements 
become very large. A small numerical error in the postshock conditions results in a large 
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error in the rate of dissociation at that point. In contrast, with a two-temperature model, 
the vibrational temperature is veiy low behind the shock, and so chemical reaction rates 
are nearly zero there. Chemical reaction rates become large only after a few node points 
downstream of the shock. 

The current thermochemical model is designed to simulate seventeen chemical 
reactions involving five chemical species. lonization is not considered. As indicated in 
Table 6-1, ionization begins at about 9,000 K, a temperature reached only in high 
hypersonic regime. The accuracy of the solution can be considered a posteriori by 
checking the maximum temperature in the flow field. In most of the simulations in the 
current investigation, the onset temperature of ionization should not be reached. Though 
ionization is not included, the gas is still assumed to possess some level of electrical 
conductivity (for magnetic interaction). 

Finally, the model presented does not include the diffusion terms. It caimot be 
applied to simulations of viscous flows. 

6.4. Procedure For Chemical EquUibrium 

The chemical composition of air for many applications is not required, in which 
case only thermodynamic properties need to be computed, using a curve-fit procedure. 
The thermodynamic properties are obtained using the following correlations. 

(i)        Y = 7(p,e)     where y =hle 

fi-om which pressure is evaluated as p = pe[y-l) 

(ii)       T = Tip,e) 

(iii)     y=y{p,p) 

P    Y and enthalpy is calculated as h= ——^— 
PY-\ 

(iv)      T = T{p,p) 

The procedure developed by Tannehill et al. [96] is summarized in Reference [105]. 
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Chapter 7 
Results and Discussions 

The results of computations, comparisons of the results to experimental data or 
other solutions, and subsequent discussions are presented in this chapter. The first stage 
of this investigation was the implementation of turbulence models. Their performances 
are first compared with experimental data for a supersonic flow over a compression 
comer, in Section 7.1. Although this test case represents by itself a challenging 
application, it addresses the accuracy and limitations of turbulence models based on the 
Reynolds Averaged Navier-Stokes formulation. Next, the MHD solver is examined for 
simple but fiindamental MHD problems in Section 7.2. The MHD Rayleigh problem is 
numerically solved and compared to the existing analytical solution. The supersonic flow 
over a blunt body is also investigated and the shock standoff distance compared to 
analytical solution. Subsequently, the turbulent MHD Hartmann flow is used to calibrate 
the proposed modifications of the turbulence models to account for the presence of a 
magnetic field (Section 7.3). The key-feature of this type of flow is the relaminarization 
process that has been experimentally observed. Once the turbulence models have been 
calibrated, they are applied for the turbulent supersonic flow over a flat plate in Section 
7.4. Here, the effect of the magnetic field on the skin friction is investigated. Finally, the 
turbulent flow over a cone is investigated to assess the possible reduction of the heat 
transfer by application of a magnetic field (Section 7.5). The performance of the 
algorithm in the simulation of hypersonic flows over blunt bodies is explored for the case 
of a hemisphere and a cylinder-wedge, for which hypersonic chemistry modeling is also 
included (Sections 7.6 to 7.8). 

7.1. Supersonic Flow over a Compression Corner 

The accuracy of the turbulence models is investigated in this section. The results 
are compared to the experimental data obtained by Settles [106, 107] for a Mach 2.85 
flow over a 24 degrees compression comer, without magnetic field. The flow is fully 
turbulent and the incoming boundary layer thickness is (5o= 0.83 m. The following 

fi-eestream conditions have been implemented (Table 7-1): 

Quantity Value 

Mach number M^ = 2.85 

Freestream velocity "„ == 1875y? / sec 

Freestream density Pa> = 1 -4944 x 10~^ ^lug/ft^ 

Freestream pressure p^ = 461.6 Ibf/ ft^ 

Freestream Temperature T^ = 180 °R 

Table 7-1. Freestream quantities for the turbulent flow over a compression comer. 
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The Reynolds number based on the inflow boundary layer thickness is 1.33 •10^ 
A constant wall temperature of 498 °R was specified along the surface. The inflow 
profiles of all quantities have been generated by executing the code over a flat plate until 
the velocity profile, skin fiiction coefficient, and boundary layer matched the 
experimental data upstream of the comer. These inlet profiles have been used to start the 
solution over the compression comer. 

An algebraic grid has been generated to represent the geometry of the problem. 
The domain of solution for the compression comer is shown in Figure 7-1. The grid size 
is 100 by 80 in the x- and y-directions respectively. Clustering near the surface and at 

the comer has been implemented. After an initial computation, the values of >;"" have 
been recalculated and the grid has been refined. Additional computations have been 
performed until the first y* away from the wall was less than one from the inflow to the 

outflow. 

CO 

-4.0    -3.0    -2.0    -1.0     0.0      1.0     2.0     3.0     4.0     5.0     6.0 

x/5o 

Figure 7-1. The grid system for the supersonic flow 

over a 24-degree compression comer (100x80 grid points). 

The incoming turbulent boundary layer separates upstream of the compression 
comer due to the adverse pressure gradient and reattaches downstream, forming a 
recirculation region. The interaction between the boundary layer and the shock wave at 
the comer is highly unsteady and the size and position of the separation bubble vary in 
time. However, due to the Reynolds Averaged approach considered for this investigation, 
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it is not possible to capture these oscillations and a steady state solution is sought. A 
typical flow field is shown in Figure 7-2. 

Oblique shock 

Freestream 

Incoming turbulent 
boundary layer 

Separated flow 

Figure 7-2. Illustration of a supersonic flow over a compression comer. 

The available experimental data include the surface pressure, skin friction and 
velocity profiles at several locations. For each of the turbulence model investigated, the 
following results are given: skin fiiction coefficient, surface pressure and velocity 
profiles at the comer and at a location further downstream. In the following description of 
the results obtained by various turbulence models, the separation region has been 
identified as the region where the skin fiiction becomes negative. 

The turbulence models have been investigated with and without compressibility 
correction terms. Appendix C summarizes the available options for these terms. No 
converged solution could be obtained with the Baldwin-Lomax model, since this 
turbulence model is not designed for separated flows. For the Baldwin-Barth turbulence 
model, no solution could be obtained without compressibility correction terms due to the 
instability mentioned in Section 4.3. Results obtained with compressibility correction 
terms (Figure 7-3), where a new calculation of y^ is introduced show that the separation 
region is over predicted, as well as the upstream surface pressure (Figure 7-4). The 
upstream skin fiiction shows good agreement with the experimental data, whereas the 
downstream skin fiiction is higher than the experimental one. 
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The Spalart-AUmaras turbulence model, with and without compressibility 
correction terms are unable to accurately predict the skin fiiction (Figure 7-5). When 
compressibility correction terms are turned on, the model provides a larger separation 
region. The surface pressure is in good agreement with the experiment, especially 
downstream of the comer (Figure 7-6). 

The k-e model provides an accurate downstream skin friction with 
compressibility correction terms and an accurate upstream skin friction without 
compressibility correction terms (Figure 7-7). In both cases, the surface pressure is over 
predicted (Figure 7-8). 

The Baseline model shows good agreement in the skin fiiction prediction with 
and without compressibility correction terms (Figure 7-9), although slightly under 
predicted downstream. The pressure is very similar for both models and is higher than the 
experimental data (Figure 7-10). 

The SST model, which is designed to provide a larger separation bubble, over 
predicts the size of the recirculation region. Similar results for the skin fiiction are 
obtained whether the compressibility correction terms are included or not. The skin 
fiiction is under predicted (Figure 7-11) and the pressure is over predicted upstream 
(Figure 7-12). 

The velocity profiles have been exfracted at two locations referred to as Station 22 
(at the comer) and Station 47 (at x = 4.0 in, dovmstream of the comer), which 
correspond to the experimental results of Settles. The velocities are nondimensionalized 
by the local velocity at the edge of the boundary layer, which has a different value 
upstream and downstream of the shock. The y -coordinate represents the normal distance 
from the wall. Some models show similar results for the prediction of the velocity 
profiles. The Baldwin-Barth (Figure 7-13), k-e (Figure 7-15), and Baseline models 
without compressibility correction terms (Figure 7-16) show a higher acceleration of the 
flow at the comer. On the other hand, the Spalart-AUmaras (Figure 7-14) and SST models 
(Figure 7-17) predict a lower acceleration. The velocity profiles obtained at the comer 
with the k-e and Baseline models (with compressibility correction terms) are in good 
agreement with the experimental data. No model is able to accurately predict the 
downstream velocity profile (Figures 7-18 to 7-22). They all indicate lower accelerations. 

The pressure contours are shown for the Baseline model in Figure 7-23, which 
illusfrates how the compression waves merge to form the oblique shock wave. The 
streamline pattems at the comer (Figure 7-24) shows the recirculation region. The 
turbulent viscosity contours (Figure 7-25) show that most of the turbulent viscosity is 
created downstream the oblique shock. 
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The ability to accurately represent all features of the flow varies from one 
turbulence model to another, as expected. In some cases, the introduction of 
compressibility correction terms provides a more accurate solution. It should be noted 
that the supersonic flow over a compression comer is an unsteady problem, and the 
interaction between the oblique shock wave and the boundary layer causes it to be a very 
challenging problem. The Reynolds Averaged approach provides a solution that is 
averaged in time, which can explain some of the discrepancies between the numerical and 
experimental results. 
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Figure 7-3. Skin friction coefficient (Baldwin-Barth model). 
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Figure 7-11. Skin friction coefficient (SST model). 
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Figure 7-23. Pressure contours (Baseline model). 

Figure 7-24. Streamline patterns at the comer (Baseline model). 
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7.2. Validation of the MHD Solver 

7.2.1. The MHD Rayleigh Problem 

The MHD Rayleigh problem is a key benchmark problem for MHD flows. It is a 
time accurate problem that involves molecular viscosity, magnetic diffusivity and wave 
propagation. This test case is used to validate the ability of the numerical code to 
accurately compute boundary layer type of flows. Consider an infinite flat plate at rest in 
a motionless electrically conducting fluid. A constant magnetic field B^ is applied in the 

y-direction, i.e., perpendicularly to the plate. At time r = 0.0, the plate is suddenly set 
into motion in the x -direction (i.e., in the direction of the plate) at a constant speed of 
UQ . Figure 7-26 illustrates a typical velocity profile obtained for the MHD Rayleigh 

flow. The motion of the plate drives the fluid close to the plate and the motion propagates 
within the fluid as time increases. The wave front separates the region where the fluid is 
at rest (ahead of the wave front) and the region where the fluid is accelerating (close to 
the wall). The latter is referred to as the Hartinann layer and has a thickness of 

^H = Jp'^/^e /-^o • The velocity field induces a magnetic field that propagates in the y- 

direction as a plane wave, which is called the Alfven wave. It fravels at the constant 

speed AQ = ^O/VA^^OP  (Alfven speed). In the case where the magnetic Prandti number 

equals unity (i.e., the kinematic viscosity and the magnetic diffusivity are equal), there 
exists an analytical solution [108, 109]. The velocity and induced magnetic field are 
given by Equations (7.1) through (7.5) for an electrically insulating wall and by 
Equations (7.6) and (7.7) for a perfecfly conducting wall. 

Electrically insulating wall: 

_M__J_ 
U,~4 

2.0-(er/(Aj+er/(A_))+e ' erfc{X_)+e " erfc(xj 

B,      1 

Br^        4 
{erf (?._)-erfM)+e " erfc{l_)-e " erfc{X,) 

Bref=Uoyfi^ 
d = v =r] 

2^fdt 

(7.1) 

(7.2) 

(7.3) 
(7.4) 

(7.5) 
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Perfectly conducting wall: 

^4[2.0-(erf(iyerf(K))] 
t/n 

B. 

Br4       2 
4[MA_)-.r/(Aj)] 

(7.6) 

(7.7) 

Where u is the x-component of the velocity field and B^ is the x-component 

of the induced magnetic field. The error fiinction and the complementary error fimction 
are denoted by erf and erfc, respectively. 

Fluid at rest 

Plateau 

Haitmaim layer 

Flat plate suddenly accelerated, 
moving at a constant speed U^ 

Figure 7-26. Schematic of the MHD Rayleigh flow. 

The MHD Rayleigh flow has been computed and compared with the analytical 
solution for the following case (Table 7-2): 

Property Value 

Electrical conductivity 

Fluid density 

Applied magnetic field 

Vertical range of the domain 

Time interval 

cr^ = 1 (f JAK mho/m 

p = 0.4x10-^ kg/m^ 

Bo =1.449x10-^7 

0<y<2.5m 

0<f<0.06 sec 

Table 7-2. Summary of the MHD Rayleigh problem parameters. 
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The magnetic Reynolds number based on the height of the domain is Re^ = 2.5, 

and therefore, the full MHD equations are solved. The temperature of the flow has been 
adjusted such that the kinematic viscosity, calculated from the Sutherland's law, equals 
the magnetic diffusivity. Figure 7-27 and 7-28 show the velocity profiles and induced 
magnetic fields obtained for t < 0.06 sec in the case of an electrically insulating wall. 
The numerical solutions show good agreement with the analytical solutions. All the 
features of Figure 7-26 are represented. Figure 7-29 and Figure 7-30 show the velocity 
profiles and induced magnetic fields in the case of a perfectly conducting wall. In this 
case, the Hartmann layer is not present. 

u/Uo 

Figure 7-27. Velocity profiles for the MHD Rayleigh problem 

(electrically insulating wall). 
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Figure 7-28. Induced magnetic field profiles for the MHD Rayleigh problem 

(electrically insulating wall). 
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Figure 7-29. Velocity profiles for the MHD Rayleigh problem 

(perfectly conducting wall). 
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Figure 7-30. Induced magnetic field profiles for the MHD Rayleigh problem 

(perfectly conducting wall). 

7.2.2. Supersonic MHD Flow over a Blunt Body 

In this section, the supersonic flow over a blxmt body is computed and the shock 
standoff distance is compared to the analytical solution proposed by Lykoudis [3]. Details 
of the analytical solution are given in Appendix D. The inflow conditions are: 

Flow property Value 

Mach number 

Freestream velocity 

Freestream density 

Freestream pressure 

Freestream Temperature 

u^ = 3625 m/sec 

p„ =3.035x10"'^g/m^ 

p^ =32.3 Pa 

T=3108K 

Table 7-3. Flow properties of the supersonic flow over a blunt body. 

The blunt body radius of curvature is r^ = 0.025 m. The grid system is shown in 

Figure 7-31. The magnetic field is initially oriented in the j;-direction, and the 

conductivity is assumed to be constant (cTg = 800mho!m) for all the computations. 
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The shock standoff distance moves away from the body as the magnetic field is 
increased (Figure 7-32). When the magnetic field is oriented in the y -direction, the body 
force created by the magnetic field is acting in the opposite direction of the incoming 
velocity, which slows down the flow. Since the velocity is decreased in the region 
between the blunt body and the shock wave, a wider area is required for the fluid passage 
and therefore, the shock standoff distance has to increase. In the analytical solution 
proposed by Lykoudis [3], the shock standoff distance ratio between the MHD and no- 
magnetic case is a function of the density ratio across the shock and the interaction 
parameter S (see Appendix D). The standoff distances have been non-dimensionalized 
by the radius of curvature of the shock. However, the analytical solution assumes that the 
shock wave and the body are concentric. In reality, the shock wave can be approximated 
by a circle having a different center from the blunt body center (Figure 7-33). Therefore, 
when the shock and body are considered concentric, the radius of curvature of the shock 
r is smaller than the actual radius r^. The numerical results are compared with the 

analytical solution in Figure 7-34. The location of the shock has been achieved by 
locating a point in the centerline where the pressure was the average between the extreme 
values of the pressure across the shock. The calculation of the non-dimensional shock 
standoff ratio between the non-magnetic and magnetic case has been performed with r 
and A; . The prediction of the shock standoff distance is more accurate when the actual 

shock radius of curvature is considered for non-dimensionalization. When the shock and 
body are considered concentric, the difference between the numerical and analytical 
solution increases with the magnitude of the magnetic field. This can be explained by the 
fact that the assumptions made to derive the analytical solutions are less valid for higher 
magnetic fields. The assumption that the pressure at the stagnation region is not disturbed 
by a magnetic field is not satisfied since the presence of a magnetic field tends to 
decrease the stagnation pressure. 
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Figure 7-31. The grid configuration for the blunt body (100x80 grid points). 

By=O.OT By=€.02T By=0.025 T By=0.030 T By=0.035 T 

Figure 7-32. Pressure contoiirs for various magnetic field intensities. 
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Figure 7-33. Two approaches in evaluating the shock wave radius of curvature. 
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Figure 7-34. Shock standoff distance for the supersonic flow over a blunt body. 
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7.3. The MHD Hartmann Flow 
The fully developed flow between two parallel plates under a transverse magnetic 

field is investigated under the influence of a magnetic field. It is the equivalent of the 
Couette flow in ordinary fluid mechanics. The term fully developed refers to the velocity 
profile being independent of the axial coordinate. A pressure gradient exists in the 
longitudinal coordinate, which drives the fluid into motion and balances the viscous and 
magnetic friction. This type of flow is the simplest magnetohydrodynamic channel flow 
and was first investigated by Hartmann in 1930. The presence of a magnetic field alone 
can only slow down the flow and a larger pressure gradient is required to maintain the 
same mass flow rate. The Hartmann flow has been extended to the case where both a 
magnetic and electric fields are present. In this case, it is possible to decelerate or 
accelerate the flow by a suitable combination of the electric and magnetic fields. Here, 
both laminar and turbulent flows are considered and compared with analytical or 
experimental results. This test case serves as a basis for the calibration of the modified 
turbulence models. 

Consider an incompressible fluid, with constant viscosity and constant electrical 
conductivity flowing between two infinite parallel flat plates (Figure 7-35). A constant 
magnetic field is applied in the transverse direction (i.e., the y -direction). All variables 
are fiinctions of y only, except the pressure. The walls are located at y = ±h. 

Figure 7-35. Schematic of the Hartmann flow. 
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Laminar and turbulent flows are investigated under the following conditions: 

Property Value 

Density p =1.225 kg/m^ 

Electrical conductivity cr^ = 800 mho I m 

Viscosity ^=1.8x10"^ kg/(m • sec) 

Distance between the plates h = 0.005 m 

Table 7-4. Properties of the MHD Hartmann flow. 

The Reynolds number based on the half-height h between the two plates and the 
average velocity, ranges from 5,000 to 50,000. The magnetic Reynolds number 
corresponding to these conditions is Re^ =1.51x10^. Therefore, the induced magnetic 

field can be considered negligible compared to the applied magnetic field. In fact, the 
value of the induced magnetic field can be analytically evaluated in the general case and 
is given by 

b^ ^lucT/hsinh[Harj) 

Bo       Ha    cosh(/ffl) 

where V and T] are provided in Equations (7.11) and (7.12). Figure 7-36 illustrates the 

relative magnitude of the induced magnetic field b^ compared to the applied field BQ 

(theoretical distribution). It can be observed that for a given Hartmann number, the 
induced field is maximum at the wall and zero at the centerline. The ratio b^/B^ 

decreases as the Hartmann number increases. In all cases, the induced magnetic field is 
negligible compared to the applied field. In fact, the largest value of the induced field is 
more than 2,000 times smaller than the applied field. Therefore, the low magnetic 
Reynolds number approximation can be considered valid for this application. 
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Figure 7-36. Analytical distribution of the induced magnetic field. 

The influence of the induced magnetic field is much less than that of the applied 
magnetic field. It is therefore sufficient to consider only the applied field in the flow 
analysis, and it is appropriate to solve this MHD Hartmann problem by the low magnetic 
RejTiolds number formulation. 

The computation is performed on a two dimensional domain. In order to obtain a 
fiiUy developed flow, the length of the numerical domain should be much larger than its 
height. This requires a large number of grid points in the x -direction and results in a 
prohibitive computational time for such a simple case. However, it is possible to 
accelerate the convergence of the code, by having a small computational domain and 
modifying the boundary conditions. The ratio between the length and the height of the 
domain is L/2h = 10 and the number of grid points is 10 in the x-direction with 
uniform grid spacing. There are 150 grid points in the y -direction and grid clustering is 
implemented near the two soUd walls to resolve the velocity gradients. The velocity is 
extrapolated at the inlet and ouflet to obtain a fiiUy developed flow in a short 
computational time. The pressure gradient in the x -direction is adjusted to provide the 
same mass flow rate regardless of the strength of the magnetic field. 

In the case of a laminar flow, an analytical solution exists [110]. It can be 
simplified fiirther since the magnetic Reynolds number is small. The pressure gradient is 
denoted by 
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dx 
(7.9) 

where G is the force per unit mass that maintains motion of the fluid. It balances the 
Lorentz force induced by the interaction between the magnetic field and velocity field. 
The X -component of the velocity is a function of y only and is given by 

u{y) _^    coshyHarj) 

where 

a- 

F = 

77 

cos 

pG 

y 

h{Ha) 
(7.10) 

(7.11) 

(7.12) 

Ha = Bf^h (7.13) 

Here, B^ is the constant value of the magnetic field that is applied in the positive 

y -direction. The Hartmann number Ha is a nondimensional parameter which its square 
represents a measure of the ratio of the electromagnetic to viscous forces. It is important 
to note that the reference length associated with the Hartmann number should represent a 
characteristic length of the variation of u{y). 

(7-14), 
The skin fiiction coefficient can be analj^ically calculated according to Equation 

c,= , 

du 
I— 
dy y=h _ ^ Ha 

PU' 
Re Ha 

(7.14) 

2' tanh(i7a) 
where U is the average velocity between the plates 

1 r* U = -\udy=V 

-1 

tanh(//fl)" 

Ifa 
(7.15) 

In the case of a turbulent flow, it has been experimentally shown by Lykoudis 
[93] that a relaminarization process should occur when the magnetic field is sufficiently 
strong. The criterion for the relaminarization process is expressed by the ratio of the 
Hartmann number to the Reynolds number. The advantage of expressing the 
relaminarization criterion with this ratio is that it becomes independent of the reference 
length. Lykoudis found that when the critical value of Ha I Re = If 125 is reached, the 
flow should return to a laminar state. The goal of this investigation is to verify this 
experimental conclusion. 
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Figure 7-37 shows the fUlly developed velocity profile for different values of the 
Hartmann number in the laminar case, for which a comparison with the analytical 
solution is possible. The velocities are normalized with the maximum velocity obtained 
in the non-magnetic laminar case. When Ha = 0.0, the well known parabolic profile 
corresponding to the Couette flow in fluid dynamic is obtained. As the Hartmann number 
is increased, the velocity profiles are flattened, the maximum velocity (at the centerline) 
decreasing. For Hartmann numbers greater than 10.0, the velocity remains almost 
constant on a large portion between the two flat plates. It can be qualitatively observed by 
inspecting the velocity slopes at the walls that the skin fiiction increases with the 
Hartmann number. In all cases, the computed solutions are in excellent agreement with 
the anal)^ical theory. 

0.0 0.2 0.4 0.6 0.8 1.0 
U/Un 

Figure 7-37. Laminar velocity profiles for the Hartmann flow. 

7.3.1. Baldwin-Lomax Model 

The skin fiiction coefficient is plotted versus the ratio Ha/ Re in Figure 7-38 for 
a Reynolds number of 10,000. In the case of the laminar flow, the computed values 
compare well with the analytical solution. Note that for large values of the Hartmann 
number, the skin fiiction coefficient can be approximated by the straight line IHaj Re. 
In the case of the turbulent fiow, the skin fiiction obtained with the original model do not 
show any relaminarization process, the turbulent skin fiiction always remains greater than 
the laminar one. When the damping terms are implemented to provide the modified 
Baldwin-Lomax model, the relaminarization process takes place at the expected location 
{Ha I Re ■x. XjllS). ks, expected, both original and modified models provide the same 
skin fiiction in the non-magnetic case. The turbulent velocity profiles are shown in Figure 
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7-39 for the original model and Figure 7-40 for the modified model. The velocities are 
normalized with the maximum velocity obtained in the non-magnetic turbulent case. 
When Ha = 0.0, the velocity profile is flatter than in the laminar case, as expected. 
However, the effect of the magnetic field is less important for small values of Ha than it 
was for the laminar case. In fact, the velocity profiles remain almost identical until the 
Hartmann number approaches a value of 10.0 (not shown). For values of Ha greater than 
10.0, the velocity flattening becomes noticeable. For large values of the Hartmann 
number, the shape of the velocity profile is identical to the laminar profile, suggesting 
that a relaminarization process has occurred. No significant difference in velocity profiles 
is noticeable between the two versions of the Baldwin-Lomax model. 

Figure 7-41 shows the distributions of the turbulent viscosity obtained with the 
original model. At low Hartmann numbers, the profiles exhibit sharp comers, with a 
relative minimum at the centerline. As the Hartmann number increases, the amount of 
turbulent viscosity is decreases and the profiles become more round in shape. The sharp 
profiles are most Kkely due to the nature of the algebraic model turbulence model, and 
the definition of the mixing length on which the model is based. The modified model 
provides similar turbulent viscosity profiles (Figure 7-42). For low Hartmann numbers, 
the turbulent viscosity begins to slightiy increase, followed by a rapid decrease, which is 
faster than when the original model was employed. For example, there is almost no 
turbulent viscosity produced by the modified model when Ha =30.0, whereas the 
original model provided more turbulent viscosity. When the maximum turbulent viscosity 
is plotted versus Ha/ Re (Figure 7-43), it can be seen that at the relaminarization point, 
the original model still provides a substantial amount of turbulent viscosity, whereas the 
damping terms in the modified version bring the turbulent viscosity to such a low level 
that the flow can be considered laminar. Figure 7-44 shows the maximum velocity (at the 
centerline) versus Ha/Re. The velocity is nondimensionalized by the non-magnetic 
maximum velocity. The effect of the magnetic field is to flatten the velocity profiles. In 
the case of a laminar flow, the flattening is large for low Hartmann numbers and remains 
almost constant for large Hartmann numbers. It is more than 30% for the largest magnetic 
field investigated. In the case of turbulent flow, the relative flattening is less than the one 
obtained for a laminar flow, because the turbulent profiles are already flatter than the 
laminar one. The maximum flattening is less than 10%. Figure 7-45 shows the pressure 
gradient required to maintain a constant mass flow rate between the two flat plates. Since 
the effect of the magnetic field is to slow down the flow (the Lorentz force is acting in the 
opposite direction of the flow field), a larger pressure gradient must be provided to 
maintain the same flow rate. A larger pressure gradient is required for the turbulent flow 
at low Hartmann numbers since the fiiction forces are greater than for the laminar flow. 
As the magnetic field is increased, the turbulent and laminar skin fiiction become similar, 
meaning tiiat the fiiction forces are comparable. Subsequently, the pressure gradients 
required to maintain a constant flow rate become identical. 

Similar results are obtained in terms of skin fiiction, as observed in Figure 7-46 
(for a lower Reynolds number of 5,000), and in Figure 7-47 (for a higher Reynolds 
number of 50,000). In all cases, the original model does not yield any relaminarization 
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process whereas the modified version shows that the flow becomes laminar at about the 
same ratio of HafRe- 1/225. Figure 7-48 shows a summary of the skin Mctions 
obtained by the modified model at different Reynolds numbers. As the Reynolds number 
is increased, the non-magnetic skin fiiction is decreased, and the turbulent skin fiiction 
coincide with the laminar one after the relaminarization is achieved. 
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Figure 7-41. Turbulent viscosity profiles 
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Figure 7-42. Turbulent viscosity profiles 
(modified Baldwin-Lomax model). 
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Figure 7-43. Maximum turbulent viscosity (Baldwin-Lomax model). 
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Figure 7-44. Maximum velocity (Baldwin-Lomax model). 
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7.3.2. Baldwin-Barth Model 

The same set of plots is provided for the results concerning the Baldwin-Barth 
model. Figure 7-49 shows the skin friction versus Hal Re at Re = 10,000. As for the 
Baldwin-Lomax model, the original model does not yield a relaminarization process, 
whereas the modified version provides a relaminarization process at the exact point, 
matching the experimental results of Lykoudis. The closure constant C^^   appearing in 

the magnetic terms of the modified model has been calibrated to provide this result 
(Qe =6.0). Figures 7-50 and 7-51 illustrate the velocity profiles for the original and 

modified model, respectively. For moderate Hartmarm number, there is an increase in the 
maximum velocity when the modified model is used, whereas the original model always 
provided a flattening of the profiles as the Hartmarm number is increased. The turbulent 
viscosity decreases as the Hartmarm number is increased (original model, Figure 7-52), 
and some turbulent viscosity is still present in the flow at high Hartmann numbers, which 
does not enable the flow to become laminar again. The modified version decreases the 
turbulent viscosity more substantially, especially in the center region of the flow (Figure 
7-53). It can be observed that at Ha I Re = 1/225, the maximum turbulent viscosity is 
decreased to the point that it becomes negligible in the case of the modified model 
(Figure 7-54), whereas the flow remains turbulent even at very large Hartmann numbers 
for the original model. 

The Baldwin-Barth model behaves similarly for Re = 5,000, (Figure 7-55), and 
i?e = 50,000, (Figure 7-56). The original model is not able to predict the 
relaminarization, whereas the modified version does. Figure 7-57 summarizes the skin 
frictions at various Reynolds numbers. 
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Figure 7-52. Turbulent viscosity profiles 
(original Baldwin-Barth model). 
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Figure 7-54. Maximum turbulent viscosity (Baldwin-Barth model). 
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7.3.3. Spalart-Allmaras Model 

The skin friction obtained with the Spalart-Allmaras model at /?e = 10,000 is 
shown in Figure 7-58. With the original model, the turbulent skin friction almost recovers 
the laminar skin friction values when Ha/ Re x 6 xlO~^, which is greater than the 
experimental prediction of Lykoudis, as shown by the vertical dashed line. However, it 
always remains slightly greater than its laminar counterpart. In order to match the 
experimental result illusfrating the relaminarization process, a modification of the 
Spalart-Allmaras closure coefficient C^, is proposed. This closure coefficient influences 

the production term in the turbulence model and the evaluation of the turbulent viscosity 
from the turbulent quantity v . An increase of this coefficient decreases the production of 
turbulent viscosity. When the closure coefficient C^, is made dependent on the Hartmann 

number, it is possible to verify the relaminarization criterion of Ha/Re = 1/225. This 
modification does not significantly modify the velocity profiles compared to those 
obtained with the original Spalart-Allmaras model (Figures 7-59 and 7-60). 

The turbulent viscosity profiles are illustrated in Figures 7-61 and 7-62 for the 
original and modified model, respectively. The general shape of the profile shows that the 
turbulent viscosity first increases away from the wall and then exhibits a local minimum 
at the centerline. As Ha is increased, the amount of turbulent viscosity is naturally 
decreased imtil it is sufficiently small to initiate the relaminarization process. For the 
original Spalart-Allmaras model, the turbulent viscosity becomes negligible when Ha 
reaches a value of 50.0. The turbulent viscosity profiles obtained by the modified Spalart- 
Allmaras model are very similar to those obtained by the original model. The difference 
between the two models becomes noticeable for Ha greater than 20.0, where the amount 
of turbulent viscosity is further reduced by the higher values of C^,, in the modified 

model. The turbulent viscosity becomes negligible when Ha reaches a value of 40, when 
the relaminarization process is about to occur. 

Figure 7-63 illusfrates the dependence of the closure coefficient C^,, on the 

Hartmann number. The proposed relation between C^j and Ha/ Re is provided by 

Equation (7.16). A substantial increase in the coefficient C^j is required in the 
relaminarization region in order to obtain the anticipated effect. 

C^j =7.1min 2.6-t-1.6tanh 
(Ha ^ 4.431^—19.345 
I        Re ) 

+ 0.022—,4.225 
Re 

(7.16) 

Another illusfration of the differences between the original and modified Spalart- 
Albnaras models is shown in Figure 7-64, where, the maximum values of the turbulent 
viscosity are plotted versus Ha/Re. For small values of Ha/Re, no noticeable change 
is observed and both models provide identical turbulent viscosities. It is followed by a 
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rapid decrease in the maximum turbulent viscosity when the magnetic field is increased. 
At the relaminarization point, the modified Spalart-Allmaras model provides a 
sufficiently small turbulent viscosity, whereas the original model is not adapted to exactly 
meet the relaminarization criterion, providing a too large turbulent viscosity, the 
relaminarization process being reached for larger values of the Hartmann number. 

Figures 7-65 through 7-67 show that the Reynolds number has no influence on the 
relaminarization point. 
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Figure 7-61. Turbulent viscosity profiles 
(original Spalart-Allmaras model). 
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Figure 7-60. Turbulent velocity profiles 
(modified Spalart-Allmaras model). 
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Figure 7-63. Closure coefficient Q, for the modified Spalart-Allmaras model. 
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7.3.4. k-e Model 

Figure 7-68 shows the skin friction distribution at Re = 10,000 obtained with the 
k-e model. The original k-e model is not able to predict the relaminarization process 
at Ha/Re = 1/225. Contrary to other original turbulence models that tend to over 
predict the relaminarization process, the original k-e turbulence model predicts that the 
relaminarization occurs at Ha/Re = 1/330. The modified version of the ^-e, in which 
additional magnetic terms have been included, has been calibrated to provide a 
relaminarization at the appropriate Hartmann number. The closure constant associated 
with the magnetic terms are C^, = -0.5 and C^j = -1.0. Figures 7-69 and 7-70 show the 

turbulent velocity profiles obtained with the original and modified models, respectively. 

Figure 7-71 shows the turbulent viscosity profile obtained by the original k-e 
model. First, observe that the k-e model does not provide a hollow profile at the 
centerline, as opposed to other turbulence models. Second, the amount of turbulent 
viscosity decreases too rapidly as the Hartmann number is increased. In fact, when 
Ha = 25.0, there is almost no turbulent viscosity left: in the domain, and the flow is about 
to become laminar. This particular behavior of the k-e model was a source of difficulty 
in the calibration process. Since the original model does not generate enough turbulent 
viscosity, the modified version must provide a mechanism to increase the turbulent 
viscosity. In order to increase the turbulent viscosity, one can either increase the turbulent 
kinetic energy, or decrease the dissipation rate, or a combination of both. However, since 
the magnetic field must also be responsible for dissipating some turbulent kinetic energy, 
it is not suitable to decrease the dissipation of turbulent kinetic energy. Therefore, the 
model has been calibrated to generate an increase in turbulent kinetic energy up to a 
Hartmann number of Ha = 40.0. It can be seen in Figure 7-72 that the resulting turbulent 
viscosity profiles obtained by the modified turbulence model present a different shape 
than the one obtained by other models. For small Hartmann numbers, there is an 
augmentation of turbulent viscosity at the center. For moderate Hartmann number 
(Ha = 20.0 to 30.0) the turbulent viscosity starts to decrease until Ha reaches a value of 
40.0, at which point there is no turbulent viscosity at the center. This precedes the 
relaminarization of the flow. 

Figures 7-73 and 7-74 show the turbulent kinetic energy profiles for the original 
and modified k-e models, respectively. The original model provides a too low turbulent 
kinetic energy close to the solid wall, which accelerates the relaminarization process. The 
modified version provides sufficient turbulent kinetic energy at moderates Hartmann 
numbers. However, the additional turbulent kinetic energy close to the solid surfaces also 
increases its value at the center. For example, at Ha = 20.0, there is no turbulent kinetic 
energy at the center when the original model is used whereas there is still a measurable 
amount of it when the modified version is implemented. This explains why the turbulent 
viscosity profiles present a large increase at the center. Figures 7-75 and 7-76 show the 
distribution of dissipation rate for both versions of the model. No significant difference 
can be observed. It should be noted that the dissipation rate should be increasing as the 
magnetic field increases, since it also dissipates some energy. However, due to the 
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behavior of the original model, a calibration of the modified version resulting in an 
increase of dissipation rate would further decrease the turbulent viscosity, accelerate the 
relaminarization process, and have the opposite effect as what is sought. 

Figure 7-77 shows the maximum turbulent viscosity as a function of the 
Hartmann number. When the original model is used, there is no turbulent viscosity when 
Ha - 20.0, which leads to an early relaminarization. The modified model shows first an 
increase and then a rapid decrease before the relaminarization occurs. Figure 7-78 shows 
the maximum turbulent kinetic energy as a function of the Hartmann number. The 
original model provides too little turbulent kinetic energy whereas the modified model 
generates the appropriate amount. Figure 7-79 shows that the minimum dissipation rate 
remains almost identical for both versions of the model. Figures 7-80 through 7-82 show 
the effect of the Reynolds number on the skin friction distribution. The original model 
under predicts the relaminarization process in all cases. The modified version is able to 
correctly predict the value of the Hartmann number at which the relaminarization process 
occurs. 
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7.3.5. Baseline Model 

Figure 7-83 shows that the original BaseHne model is not able to predict the 
relaminarization process at /?e = 10,000. The closure constants in the modified version 

have been calibrated to result in a relaminarization process at Hal Re = \/115. The two 

constant are 0',^^^ =3.0  and C^^, =-1.5. Figures 7-84 and 7-85 show the turbulent 

velocity profiles for the original and modified models, respectively. The modified model 
provides an increase in the velocity at the centerline for moderate Hartmann number 
{Ha = 10.0). The turbulent viscosity is fiirther reduced in the case of the modified model 
(Figure 7-87) compared with the original one (Figure 7-86), especially at the centeriine. 
The Baseline model involves the computation of the turbulent kinetic energy A:, and the 
turbulent dissipation rate o. It is thus interesting to display their distributions between 
the flat pates. Figures 7-88 and 7-89 show the turbulent kinetic energy profiles for the 
original and modified models, respectively. In both cases, the maximum turbulent kinetic 
energy is obtained close to the walls, and is minimum at the center. The amount of 
turbulent kinetic energy is decreased as the Hartmann number is increased. The modified 
model yields a faster decrease of the turbulent kinetic energy compared to the original 
model, resulting in a faster relaminarization process. In terms of turbulent dissipation 
rate, a noteworthy observation can be made. In the case of the original model (Figure 7- 
90), the dissipation rate decreases as the magnetic field is increased. The modified 
version provides the opposite effect: the turbulent dissipation rate increases when the 
Hartmann number increases, which is more representative of the physics of the problem 
(Figure 7-91), since some energy has to be dissipated by viscous as well as magnetic 
action. Figure 7-92 illustrates how the turbulent viscosity is decreased as the Hartmann 
number increases. The reduction is faster in the case of the modified model. Figure 7-93 
shows the maximum turbulent kinetic energy as a fiinction of HajRe. The level of 
turbulent kinetic energy is negligible at the relaminarization point for the modified model 
whereas a substantial amount remains in the flow when the original model is employed. 
Figure 7-94 shows the minimum of the turbulent dissipation rate (since the maximum is 
constant at the wall, based on the applied boundary conditions). In the case of the original 
model, the dissipation rate is small and decreases as the Hartmann number is increased. 
In the case of the modified model, it is an increasing fiinction of the Hartmann number, 
illustrating that the presence of the magnetic field results in a greater dissipation of the 
turbulent kinetic energy. Figures 7-95 through 7-97 show that the relaminarization 
process is not affected by the Reynolds number. 
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Figure 7-90. Turbulent dissipation rate 
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Figure 7-91. Turbulent dissipation rate 
profiles (modified Baseline model). 

125 



50.0  - 

40.0  - 

30.0 - 

KJl^ 
20.0  - 

10.0  - 

0.0 

1               1 
Ha      1 

^                            Re    225 

1                                       1 _ 

 •     "■   Uriginal DaSL/llIK.' 

 ■■*—     iVlOUlIlCCl UdoLimC 

»—«  
k ▲  1-^=^-1-1 =4 

0.0 2.0 4.0 6.0 
Ha 

8.0 10.0 

Re 
<1000 

Figure 7-92. Maximum turbulent viscosity (Baseline model). 

0.010 

0.008 

0.006 

0.004 

0.002  - 

0.000 

1                1   1 1                      1 
Ha      1   1 
Re    225 1 

—•— Original Baseline 
— »        ivioaiiicu odsuiinL 

1    -      1 V-^  _j .  1 ^^^ ==it 

0.0 2.0 4.0 6.0 
Ha 

8.0 10.0 

Re 
= 1000 

Figure 7-93. Maximum turbulent kinetic energy (Baseline model). 

126 



20.0 

16.0 - 

12.0 - 

(^mi„h/Uo 

8.0 

4.0  - 

0.0 

1              1 
Ha      1 
Re    225 

1       1 

/ 

~" •       KjTlglJldl X5abClinL 

^      iVlOaillLU JDaaOlinL 

•—•— _J ,_J  _,, 

0.0 2.0 4.0 6.0 8.0 

§^xl000 
Re 

Figure 7-94. Minimum turbulent dissipation rate (Baseline model). 

10.0 

25.0 

4.0 6.0 

^ xlOOO 
Re 

Figure 7-95. Skin friction coefficient for the Hartmann flow at Re = 5.0x10^ 

(Baseline model). 

10.0 

127 



25.0 

20.0  - 

15.0 

CfxlOOO 

10.0 

5.0  - 

0.0 

1              1,1              1 
!Ha      1 
; Re    225 

^ 

- 

1          1 

0.0 2.0 4.0 6.0 

^ xlOOO 
Re 

8.0 10.0 

Figure 7-96. Skin friction coefficient for the Hartmann flow at Re = 5.0x lO'' 

(Baseline model). 

25.0 

20.0 

15.0 

CfxlOOO 

10.0 

T 
• - Laminar,   Re = 5.0E3 

— Turbulent, Re = 5.0E3 

- Laminar,   Re=L0E4 

— Turbulent, Re =1.0E4 

• - Laminar,   Re = 5.0E4 

— Turbulent, Re = 5.0E4 

10.0 

Figure 7-97. Summary of skin friction coefficient frjr the Hartmann flow 

(Baseline model). 

128 



7.6.3. Shear Stress Transport Model 

The SST model provides very similar results as the Baseline model. The main 
difference between these two models Kes in the determination of the two closure 
constants associated with the magnetic terms. Here the values of the constants are 
C'j^^=l.O and €'^,^^=-0.5 compared to C^, =3.0 and C^^y, =-1.5 for the Baseline 

model. Figure 7-98 shows that the modified version performs better than the original one 
at i?e = 10,000. Figures 7-99 and 7-100 show that the turbulent velocity profiles are 

similar for both models. Figures 7-101 and 7-102 illustrate the turbulent viscosity profiles 
for the original and modified models, respectively. The original model does not exhibit a 
relative minimum at the centerline, whereas the modified version does. The modified 
model is able to sufficiently reduce the turbulent viscosity as the Hartmann number is 
increased to provide the correct relaminarization process. Figures 7-103 and 7-104 show 
the turbulent kinetic energy profiles for the original and modified models, respectively. 
Similar to the Baseline model, the modified SST model results in a faster decrease of the 
turbulent kinetic energy as the Hartmann number is increased. The original model shows 
a decrease in the dissipation rate as the magnetic field increases (Figure 7-105), whereas 
the modified model shows an increase (Figure 7-106), representing more accurately the 
physics of the problem. Figures 7-107 through 7-109 show the maximum turbulent 
viscosity, maximum turbulent kinetic energy and minimum dissipation rate as fianctions 
of Ha I Re. The effect of the modified model is to fiirther decrease the turbulent viscosity 

and turbulent kinetic energy compared to the original model. The dissipation rate tends to 
decrease with the original model whereas it significantly increases with the modified 
version. Figures 7-110 through 7-112 show the effect of the Reynolds number on the skin 
fiiction, which is similar to what was obtained with all turbulence models. 
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profiles (original SST model). 
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Figure 7-104. Turbulent kinetic energy 
profiles (modified SST model). 

Figure 7-106. Turbulent dissipation rate 
profiles (modified SST model). 
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Figure 7-112. Summary of skin friction coefficient for the Hartmann flow (SST model). 
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7.3.7. Comparison of AH Turbulence Models 

All turbulence models can be compared to the experimental data when the 
Reynolds number is Re = 50,000. Figure 7-113 shows the skin friction coefficient for the 
original turbulence models. Most models over predict the skin friction and therefore, are 
not able to accurately predict the relaminarization process. The k-e under predicts the 
skin fiiction, leading to an early relaminarization process. The original Spalart-Allmaras 
model is the only one that can accurately predict that the relaminarization process occurs 
at Haj Re = 1/ 215. On the other hand, all modified models provide a more accurate 
results and the relaminarization process is well predicted (Figure 7-114). It is concluded 
that the calibration of the modified versions of the turbulence models results in a better 
representation of the turbulent MHD Hartman flow. 
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Figure 7-113. Comparison of all original turbulence models at i?e = 5.0 x 10'*. 
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7.4. Supersonic Flow over a Flat Plate 

7.4.1. Low Magnetic Reynolds Number Formulation 
The objective of this section is to investigate the effect of the magnetic field on 

the skin friction for a supersonic turbulent flow over a flat plate. The freestream 
conditions are summarized in Table 7-5. The length of the flat plate is 0.08 m and the 
transition is triggered at jc = 0.04 m. The magnetic Reynolds number based on the length 
of the flat plate is Re^ = 0.058, which can be considered negligible compared to one. 

Therefore, the MHD equations will be solved by the low magnetic Reynolds number 
formulation. A schematic of a typical flow is illustrated in Figure 7-115. 

Property Symbol Value 

Mach number M^ 2.0 

Pressure P^ 1.0 atm 

Temperature T. 300.0 i^: 

Reynolds number Re^ 3.75x10* 
Electrical conductivity ^ea. 800 mho/m 

Table 7-5. Freestream conditions over the flat plate. 

The grid system consists of 100 grid points in the x-direction and 50 in the 
y-direction. Grid point clustering has been implemented near the leading edge to 
capture the weak leading edge shock-wave and near the solid surface to resolve the 
laminar and turbulent boundary layers. The grid system is shown in Figure 7-116. The 
plate is considered to be an adiabatic wall. 

I i^        Laminar 
boundary layer 

Transition 
Turbulent 
boundary layer 

L = 0.08 m 

Figure 7-115. Schematic of the flow over a flat plate. 
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Figure 7-116. Grid system (lOOx 50 grid points). 

The magnetic field is applied in the y - direction, ranging from zero to lAT. The 
strength of the magnetic field can be represented either by the magnitude of the applied 
magnetic field B^, or by the parameter m . The relation between B^ and m is provided 

in Equation (7.17). 

m =■ (7.17) 

First, all the turbulence models are compared in the non-magnetic case. Figure 7- 
117 illustrates the skin friction coefficient along the flat plate. Since the transition from 
laminar to turbulent flow is triggered at x = 0.04 m, the laminar skin friction, from the 
leading edge to the transition point does not depend on the turbulence model. In the 
turbulent region, all turbulence models provide a skin friction coefficient that falls 
between the analytical solution or the pseudo empirical method of Spalding and Chi 
[111]. However, each model behaves slightly differently along the transition region. 
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Figure 7-117. Comparison of all turbulence models in the non-magnetic case. 
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Next, the magnetic field is turned on in the y - direction. Figure 7-118 shows the 
skin friction coefficient obtained by the original Baldwin-Lomax model for different 
values of the magnetic field. The skin friction is decreased in the laminar region as the 
magnetic field is increased. The same effect can be observed in the turbulent region. 
However, no relaminarization process is achieved, since the skin friction does not reach a 
sufficientiy low value. The modified Baldwin-Lomax model provides similar skin 
fiiction distributions (Figure 7-119), the turbulent skin fiictions being slightly lower than 
those obtained by the original model. 
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Figure 7-118. Skin fiiction coefficients (original Baldwin-Lomax model). 
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Figure 7-119. Skin fiiction coefficients (modified Baldwin-Lomax model). 

In order to understand why the full relaminarization process does not occur, the 
velocity profiles are examined. First, the laminar velocity profiles are plotted at 
x = 0.06 m (Figure 7-120). These profiles were obtained by considering a fully laminar 
flow along the flat plate. The effect of the magnetic field is to generate a Lorentz force 
acting in the opposite direction of the incoming flow. Therefore, the flow is decelerated 
as the magnetic field is increased. For a sufficiently large value of the magnetic field, it 
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leads to a separation of the flow, at m = l.33. The freestream velocity is also reduced as 
the magnetic field increases, because the magnetic field remains constant within the 
entire domain. Once the flow is separated, it is not possible to obtained a converged 
solution, because a large subsonic region develops, which reaches the boundaries of the 
computational domain. The boundary conditions, based on a supersonic inflow and 
outflow are not adapted to such a flow. 
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Figure 7-120. Laminar velocity profiles at x = 0.06 m . 

Figure 7-121 illustrates the turbulent velocity profile obtained by the original 
Baldwin Lomax turbulence model, at x = 0.06 m. In the turbulent case, it is possible to 
increase the magnetic field up to m = 1.81, afl:er which a massive separation occurs. The 
separation occurs later than for the laminar case because the turbulent layer can sustain 
stronger Lorentz force. This is similar to the comparison between laminar and turbulent 
boundary layers subject to adverse pressure gradient. The separation is delayed when the 
boundary layer is turbulent. 
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Figure 7-121. Turbulent velocity profiles at x = 0.06 m 
(original Baldwin-Lomax model). 
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The temperature profiles are illustrated in Figure 7-122 for the laminar case and 
Figure 7-123 for the turbulent case. The effect of the magnetic field is to increase the 
surface temperature as well as the fi-eestream temperature, due to the Joule's effect. The 
thermal boundary layer is also larger in the turbulent case. 
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Figure    7-122.    Laminar   temperature 
profiles at X = 0.06 m. 

Figure   7-123.   Turbulent   temperature 
profiles at jc = 0.06 m 
(original Baldwin-Lomax model). 

Similar results are obtained with the other turbulence models. Figures 7-124 
through 7-133 illustrate how the skin fiiction coefficient decreases as the magnetic field 
increases. Results are shown for the original and modified versions of the Baldwin-Barth, 
Spalart-Allmaras, k-e, Baseline and SST models. For all models, the modified version 
provides a slightly lower skin fiiction than the original version, but no relaminarization 
process occurs. For all turbulence models, a separation consistently occurred when m 
was greater than 1.81. 
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Figure 7-124. Skin fiiction coefficients 
(original Baldwin-Barth). 
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Figure 7-125. Skin fiiction coefficients 
(modified Baldwin-Barth). 
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Figure 7-126. Skin friction coefficients 
(original Spalart-Allmaras). 
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Figure 7-127. Skin friction coefficients 
(modified Spalart-Allmaras). 
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Figure 7-128. Skin friction coefficients 
(original k-e). 
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Figure 7-129. Skin friction coefficients 
(modified k-e). 
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Figure 7-130. Skin fiiction coefficients 
(original Baseline). 
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Figure 7-131. Skin fiiction coefficients 
(modified Baseline). 
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Figure 7-132. Skin fiiction coefficients 
(original SST). 
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Figure 7-133. Skin fiiction coefficients 
(modified SST). 
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Figure 7-134 illustrates the turbulent velocity profiles obtained by all turbulence 
models in the non-magnetic case. A good consistency between the turbulence models can 
be observed. For a magnetic field corresponding to m=l.33 (Figure 7-135), all 
turbulence models provide similar velocity profiles. It should be noted that the freestream 
velocity is reduced by about 12% when the magnetic field is turned on. 
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Figure 7-134. Comparison of turbulent 
velocity profiles at m = 0.00. 

Figure 7-135. Comparison of turbulent 
velocity profiles at /n = 1.33. 

Figure 7-136 presents a comparison of all original turbulence models at m = 1.33. 
The models are consistent with each other, except in the transition region. Figure 7-137 
illustrates the skin friction coefficient obtained by all modified turbulence models. The 
skin frictions obtained by the modified models are less consistent with each other than 
when the original models were implemented. Figure 7-138 shows the relative skin 
friction at a given location (x = 0.06m), when it is normalized with its non-magnetic 
counterpart. In the laminar case, the relative reduction of the skin friction is more 
important than in the turbulent case. A substantial reduction is achieved, which leads to 
the separation of the flow (negative value of the skin friction). In the turbulent case, a 
reduction of up to about 20% is achieved with all turbulence models, at the highest value 
of magnetic field. When the same quantities are plotted for the modified versions of the 
turbulence models (Figure 7-139), the reduction in the skin friction is less homogeneous, 
ranging from 20% for the Baldwin-Lomax and Baseline models to 30% for the A:-6 
model. A complete relaminarization of the flow cannot be achieved because the effect of 
the magnetic field on the mean flow is more important than the effect on the small scales 
of motion. A flow separation occurs before the relaminarization of the flow is achieved. 
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Figure 7-137. Comparison of all modified turbulence models at m = 1.33, 

144 



Cf / Cf 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-«— Baldwin-Lomax 

-B— Baldwin-Barth 

-Q— Spalart-AUmaras 

-*— k-e 
■^— Baseline 

■*  SST 
I I I I I I I L 

0.0       0.2       0.4       0.6       0.8        1.0 

m 

1.2        1.4        1.6        1. 

Figure 7-138. Skin friction coefficient ratio obtained by all original models. 
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Figure 7-139. Skin friction coefficient ratio obtained by all modified models. 
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An expression for the skin friction coefficient obtained for an incompressible 
MHD flow over a flat plate can be found in the literature [112, 113]. This is the 
equivalent of the Blasius solution in fluid mechanics. The application of a magnetic field 
tends to decrease the skin friction. The effect of the magnetic field is introduced through 
the parameter m . Equation (7.18) is valid for small values of the product mx. Note that 
Equation (7.18) reduces to the Blasius solution when no magnetic field is present (i.e., 
m = 0.0). 

,0.664-O89mx , 

For the laminar but compressible case, it is assumed that Equation (7.18) can be 
modified by the introduction of compressibility correction factors. Therefore, the 
following approximation for the skin fiiction over a flat plate is proposed: 

r      Co, • 0-664-C,,-l.789-mx 

The coefficients Q, and C^, are compressibility correction coefficients. They are 

determined from numerical results obtained for a fiilly laminar flow over a flat plate, at 
different Mach numbers. Figure 7-140 shows the dependence of Co, and C„, on the 

Mach number. Figure 7-141 shows a comparison of Equation (7.19) with the numerical 
results. The skin fiiction is exfracted at x = 0.06m. The expression given by Equation 
(7.19) is valid for values of m up to 0.75, where the product mx equals 0.045. As the 
Mach number increases, the skin fiiction tends to decrease. At Mach 2.0, the magnetic 
field reduces the skin fiiction until a separation occurs. For larger Mach numbers, the 
slope of the curve increases, and no separation of the flow occurs. 

C, = -0. "—_-;; — - (7.20) 

For a turbulent flow, the following expression for the skin fiiction is proposed: 
Cn, •0.0577-C„,-1.789-mx 

It also reduces to the expression for the skin fiiction of a turbulent incompressible 
flow over a flat plate, when no magnetic field is present. The compressibility correction 
factors CQ, and C„, are determined from numerical results obtained of a fiilly turbulent 

flow over a flat plate at different Mach numbers. They both decrease when the Mach 
number increases (Figure 7-142). Figure 7-143 shows the good agreement between the 
numerical results and Equation (7.20). Here, increasing magnetic field and Mach number 
tend to decrease the skin fiiction. 
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7.4.2. FuU MHD Equations 

7.4.2.1. Effect of the Magnitude of the Applied Magnetic Field 
In this section, the flow over a supersonic flat plate is investigated when the full 

MHD equations are solved. For numerical stability considerations, the electrical 
conductivity is considered to be almost infinite (<y^ =\0^°mho/m). All other flow 

conditions are similar as described in Section 7.4.1. The magnetic field is applied in the 
y-direction, but its magnitude is sufficiently small to provide a finite value for the 

parameter m. 

Figure 7-144 shows the lammar velocity profiles at jc = 0.06 m. As the magnetic 
field is increased, the flow is decelerated within the boundary layer and the boundary 
layer thickness is increased. The fireestream velocity is not affected by the magnetic field. 
The turbulent velocity profiles obtained by the original Baldwin-Lomax turbulent model 
are shown in Figure 7-145. No measurable effect of the magnetic field can be observed in 
the vicinity of tihe wall. However, the boundary layer becomes thicker as the magnetic 
field is increased. When the modified version of the Baldwin-Lomax model is 
implemented, the magnetic field has a larger influence on the velocity profiles (Figure 7- 
146). The deceleration of the flow is greater than with the original model. For a large 
value of the applied magnetic field, corresponding to m = 3.69, the velocity profile is 
similar to the laminar profile obtained at the same value of m. Therefore, it can be 
anticipated that a relaminarization process has occurred. Figure 7-147 illustrates the 
turbulent viscosity profiles when m = 0.92. The original Baldwin-Lomax model 
produces turbulent viscosity neat the wall, whereas the damping terms in the modified 
version destroy the turbulent viscosity near the wall. The maximum amount of turbulent 
viscosity is also reduced when the modified Baldwin-Lomax model is used. For a larger 
value of the magnetic field (m = 3.69), a large quantity of turbulent viscosity is desti-oyed 
near the wall (Figure 7-148), which results in a relaminarization of the flow. 

Figure 7-149 shows the magnitude of the magnetic field at x = 0.06w, when it is 
normalized with the magnitude of the applied magnetic field. In the region near the wall, 
the magnetic field is about 500 times larger than the applied magnetic field. In this case, 
the induced magnetic field is much larger than the applied field within the boundary 
layer. Outside the boundary layer, no induced field is generated. 

Figure 7-150 shows the skin fiiction obtained with various turbulence models. No 
converged solution could be obtained with the modified Baldwin-Barth and the k-e 
models. The value of the skin fiiction has been extracted at x = 0.06 m. The soUd line 
represents the laminar skin friction. As the magnetic field increases, the laminar skin 
fiiction is reduced. The non-magnetic turbulent skin fiiction is more than five times 
larger than the laminar one. None of the original turbulence models predicts a complete 
relaminarization of the flow, even though a substantial reduction is achieved (up to 80%, 
when m = 3.69). The modified versions of the turbulence models exhibit a faster 
reduction of the skin fiiction, leading to a complete relaminarization of the flow. At 
m = 1.0, it can be considered that the flow returns to a laminar state when the modified 
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Baldwin-Lomax, Baseline and SST models are implemented. The modified Spalart- 
AUmaras predicts that the relaminarization process occiirs for m = 3.69. 
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Figure 7-144. Laminar velocity profiles. 
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Figiire 7-146. Turbulent velocity profiles 
(modified Baldwin-Lomax model). 
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Figure 7-148. Turbulent viscosity profiles at m = 3.69 
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Figure 7-149. Magnitude of the magnetic field across the boundary layer. 
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7.4.2.2. Effect of the Orientation of the Applied Magnetic Field 
The interaction between the magnetic field and the flow field generates an induced 

electric field tJxB  which creates a body force cr^^tJxBJxB in the absence of an 

externally applied electric field, which is the case considered here. Therefore, the relative 
orientation of the applied magnetic field with respect to the velocity field has a great 
impact on the solution [114]. Figure 7-151 shows the skin fiiction obtained at x = 0.06 m 
when the angle G between the applied magnetic field and velocity field varies from zero 

degree (i.e. tj and B are aligned and pointing in the same direction) to 180 degrees (i.e. 

JJ and B are aligned and pointing in opposite directions). The skin fiictions are 
normalized by the skin fiiction obtained at 9=0°. The flow is turbulent and the solution 
is obtained with the Baldwin-Lomax model. The reduction in the skin fiiction is maximal 
when the magnetic field and velocity fields are perpendicular. A substantial reduction of 
about 80% in the skin fiiction is achieved at 6 = 90°, compared to the case where the 
magnetic field and velocity fields are aligned. Furthermore, the symmetry of the curve 
suggests that the same effect is obtained whether the magnetic field and velocity field are 
pointing in the same direction or not. 
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Figure 7-151. Effect of the orientation of the applied magnetic field. 
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7.5. Flow over a Cone at Mach 6.86 
The objective of this section is to investigate the effect of the magnetic field on 

the heat transfer rate for a hypersonic turbulent flow. It has been stated in the literature 
that the application of a magnetic field should result in a decrease in the skin friction and 
a decrease in the heat transfer. It has been seen in Section 7.4 that the presence of a 
magnetic field does indeed reduce the skin fiiction. The proper evaluation of the heat 
transfer rate is a key-element that influences the design of hypersonic vehicles. The 
possibility of reducing it by an appropriate usage of magnetic field is a promising 
application of MHD to high-speed vehicles design. 

In order to assess the accuracy of the results, the non-magnetic case will be 
compared to the experimental results obtained by Fischer [115]. He investigated the 
boundary layer transition on a 10-degree half-angle cone at hypersonic speed. The 
configuration for the non-magnetic case (i.e., the experimental conditions) is summarized 
in Table 7-6. Under these conditions, the transition begins at 5 = 0.168 m and the flow 
becomes fiilly turbulent at s = 0.269 m, where s represents the curvilinear abscissa fi-om 
the tip of the cone. Suzen and Hof&nann [116] were able to numerically compute the 
turbulent heat rate transfer by solving the Reynolds Averaged Navier-Stokes equations 
with a flux vector spliti;ing scheme. They found that the Baseline model would provide 
more accurate results than the Baldwin-Barth, Spalart-AUmaras and SST models. 

Property Symbol Value 

Inflow Mach number M^ 6.86 

Total pressure P. 377x10^ N/m' 

Total temperature T, 594.0 i^ 

Wall temperature TJT, 0.52 

Reynolds number Re^ 17.48x10* per meter 

Table 7-6. Configuration of flow over a cone. 

First, the MHD equations have been solved in the laminar case in order to 
determine a suitable range for the magnitude of the applied magnetic field. Since the tip 
of the cone is in reality blunt, a detached shock wave develops upstream of the cone and 
it behaves like a blunt body. The application of a magnetic field will increase the shock 
standoff distance. From a numerical point of view, the domain of solution cannot be 
extended too far away fi-om the cone, which would prevent the computation of a 
converged solution in a realistic computational time, especially in the turbulent cases. 
Therefore, the range of the applied magnetic field has been selected such that the shock 
wave always remains within the boundaries of the domain and it has a measurable effect 
on the skin fiiction and heat tiansfer rate. The grid spacing near the wall has a great 
impact on the calculation of the heat transfer rate [117]. The grid has been refined until 
the solution exhibited grid independence. The grid system, composed of 124 by 80 grid 
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points is illustrated in Figure 7-152. To minimize the computational time required to 
reach a converged solution, only half of the cone is modeled, and symmetry boundary 
conditions are implemented to represent the entire body. 
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Figure 7-152. Grid system (124x 80 grid points). 

The strength of the magnetic field can be represented either by the magnitude of 
the applied magnetic field B^, or by the parameter m. Table 7-7 shows the relation 

between B^ and m. The magnetic Reynolds number based on the cone tip radius is 

Re^ = 0.052, which is much less than unity. Therefore, the problem will be solved by the 

low magnetic Reynolds number formulation. 

^.(T) m 

0.0 0.00 
0.1 0.12 
0.2 0.49 
0.3 1.10 
0.4 1.95 
0.5 3.05 
0.6 4.39 

Table 7-7. Conversion table between the applied magnetic field and m . 

Figure 7-153 illustrates the shock wave pattern near the tip of the cone. As the 
magnetic field increases, the shock wave moves away fi-om the body. Figure 7-154 shows 
the pressure distribution along the stagnation streamline. The shock standoff distance 
increases and the stagnation pressure decreases with an increasing magnetic field. 
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Figure 7-153. Shock wave pattern. 

The accurate computation of heat transfer rate is a very challenging task, 
especially for turbulent flows. It is therefore not in the scope of this investigation to 
calibrate all turbulence models for this particular application. The wide choice of 
turbulence models provided in the computational code will allow the selection of the 
turbulence models that perform the best in the non-magnetic case, based on the 
comparison with existing experimental data. Only those that perform well in the non- 
magnetic case will be used when the magnetic field is turned on. 
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Figure 7-154. Pressure distribution along the stagnation streamline. 
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All available turbulence models are tested in the non-magnetic case. The 
transition has been triggered at 5 = 0.20 m to reproduce the experimental transition 
behavior of the boundary layer. The heat transfer rate is shown in Figure 7-155. The 
laminar heat transfer rate is well predicted by the main solver. As expected, comparison 
between the numerical and experimental results shows that some turbulence models 
perform better than others. The Spalart-AUmaras model under-estimates the most the heat 
transfer rate in the turbulent region. The Baldwin-Barth, k-e and SST model perform 
better, but are still under-predicting the turbulent heat transfer rate by about 30%. The 
Baldwin-Lomax and Baseline model are able to accurately predict the heat transfer in the 
turbulent region. Therefore, only the Baldwin-Lomax and Baseline models will be used 
when computations are carried out with the magnetic field turned on. 

Next, the magnetic field is applied in the y-direction and remains constant 
within the entire domain. Both original and modified versions of the Baldwin-Lomax and 
Baseline models are investigated. Figure 7-156 shows the heat rate transfer obtained by 
the original Baldwin-Lomax model. It is difficult to extract a general trend fi-om this plot. 
The application of a magnetic field seems to provide a higher heat rate transfer in the 
laminar region, when compared to the non-magnetic case. In the turbulent region, the 
heat rate first increases for small values of the magnetic field, and then decreases as m is 
increased, until it reaches its laminar value. However, the distribution of the heat rate 
transfer remains very irregular. Figure 7-157 shows the heat rate ti-ansfer obtained by the 
modified Baldwin-Lomax model, i.e., when damping terms are added in the computation 
of the turbulent viscosity. In this case, a more general trend can be observed. The heat 
rate transfer decreases as the magnetic field increases until it reaches its laminar value. 
Some hollows can still be observed for intermediate values of the magnetic field. 

Figures 7-158 and 7-159 illustrate the skin fiiction distribution obtained with the 
original and modified Baldwin-Lomax models, respectively. For both versions, the skin 
fiiction distribution is smooth. The skin fiiction is noticeably reduced as the magnetic 
field increases in both the laminar and turbulent regions. When the magnetic field is 
sufficiently large, the skin fiiction shows the characteristics of a laminar flow along the 
entire domain. 

Figures 7-160 and 7-161 show the heat rate transfer obtained by the original and 
modified Baseline models, respectively. The modified Baseline model contains additional 
magnetic terms in the turbulent equations. The same trend can be observed for both 
models. The heat rate transfer distribution is smoother that the one obtained by the 
Baldwin-Lomax model, which is probably due to the different nature of the models. The 
Baseline model contains a convection and a diffiision term that makes the turbulent 
viscosity more smoothly distributed. For both versions of the model, the heat rate transfer 
decreases as m is increased until the laminar value is reached for a large magnitude of 
the magnetic field. However, the relaminarization occurs earlier with the modified 
Baseline model than with the original version. 

The same observation can be made about the skin fiiction coefficient. Figures 7- 
162 and 7-163 show the skin fiiction distributions for the original and modified Baseline 
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models, respectively. The relaminarization process occurs for both versions and is faster 
in the case of the modified model. 

In order to compare the turbulence models, the heat rate transfer and skin friction 
are plotted versus the strength of the magnetic field, at the location s = 0.28 m and 
normalized with their non-magnetic counterparts. Figure 7-164 shows the heat rate 
transfer as a fiinction of m. In the case where the original models were used, the 
relaminarization occurs at m = 2.0 for the Baldwin-Lomax model and m = 1.8 for the 
Baseline model. When the modified versions of the turbulence models are used, the 
relaminarization occurs earlier, at m = 1.05 for the Baldwin-Lomax, and m = 1.2 for the 
Baseline model. Overall, a reduction of about 70% is achieved by the application of a 
strong magnetic field. Figure 7-165 shows the skin fiiction coefficient as a fiinction of 
m . Here again, all models illustrate the relaminarization process. It occurs earlier in the 
case of the modified models, at about m = l.05 for both the Baldwin-Lomax and /n = 1.2 
for the Baseline models. The original models provide a relaminarization at m = 2.0 for 
the Baldwin-Lomax and /n = 1.8 for the Baseline model. The maximum reduction in skin 
fiiction is about 90%. Note that the values of the magnetic strength for which the skin 
fiiction reaches its lower values are consistent with those associated with the heat rate 
transfer. 

It is concluded that the application of a magnetic field leads to a substantial 
reduction in the skin fiiction coefficient (90%) and heat rate ti-ansfer (70%), primarily due 
to the relaminarization of the flow. A relaminarization process occurs between /n = 1.8 
and m = 2.0 with the implementation of the original turbulence models, whereas it 
occurs between m = 1.05 and m = 1.20 with the implementation of the modified 
turbulence models. 

"d     25000 I 
a  20000 

15000 F 

10000  - 

5000 
0.05 0.1 0.25 0.3 0.15 0.2 

s(m) 
Figure 7-155. Comparison of the turbulence models in the non-magnetic case. 
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Figure 7-156. Heat rate transfer (original Baldwin-Lomax model). 
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Figure 7-157. Heat rate transfer (modified Baldwin-Lomax model). 
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Figure 7-158. Skin friction coefficient (original Baldwin-Lomax model). 
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Figure 7-159. Skin friction coefficient (modified Baldwin-Lomax model). 
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Figure 7-160. Heat rate transfer (original Baseline model). 
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Figure 7-161. Heat rate transfer (modified Baseline model). 
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Figure 7-162. Skin friction coefficient (original Baseline model). 
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Figure 7-163. Skin friction coefficient (modified Baseline model). 
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Figure 7-164. Heat rate transfer at s = 0.28 m versus m . 
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Figure 7-165. Skin fiiction coefficient at s = 0.28 m versus m. 
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7.6. Hypersonic Flow Over A Hemisphere In The Low Magnetic 
Reynolds Number Approximation 

7.6.1. Chemically Frozen Flow 

Blunt-body configurations generally represent the nose, wing leading edges or 
any other parts of hypersonic vehicles that are subject to the severe aerod3aiamic heating. 
Indeed, heating rates are inversely proportional to the radius of curvature. The blunt-body 
problem is characterized by a strong detached bow shock wave, which is practically 
normal near the stagnation streamline. In the postshock region, in particular at the 
stagnation point, the extreme temperature remains one major impediment to hypersonic 
flight. However, thermal ionization enhances the electrical conductivity of the gas in the 
shock layers, so that it is possible to consider magnetic control for this class of flows. 
Due to the low electrical conductivity of thermally-ionized air, the induced magnetic field 
is considered negligible and it is not computed. Thus, computations are performed in the 
so-called low magnetic Reynolds number approximation. 

The present numerical simulations illustrate some features of MGD flows over a 
hemisphere. In an attempt to reproduce the results obtained analytically by Bush [77] and 
Coakley-Porter [118], the following assumptions are imposed. Air is a calorically perfect 
gas and the flow is laminar. The electrical conductivity is set to zero in the fi-eestream and 
to a finite value in the shock layer (due to ionization). The magnetic field distribution, 
specified in the entire domain of computation and at the boundaries, corresponds to a 
dipole located at the center of the hemisphere. Freestream conditions are used at the 
inflow. A zero-order extrapolation scheme is utilized for all primitive variables at the 
outflow. At the solid surface, the slip velocity condition, zero normal gradient of the sum 
of static and magnetic pressures, and zero normal temperature gradient are enforced. For 
validation purposes, the similarity parameters are selected to mimic Poggie and 
Gaitonde's numerical simulations [119], as specified in Table 7-8. To achieve similarity, 
the applied magnetic field at the stagnation point is specified in Table 7-9 and the 
electrical  conductivity is   CT^^^ =5.012x10^ mho-m"'.  The  computational  mesh  is 

depicted in Fig\ire 7-166. Selected magnetic field lines of dipole are shown in Figure 7- 
167. 

Freestream Mach number M,^=M^=5 

Magnetic interaction parameter 
(varying parameter) 

a^e{0, 1, 2, 3, 4, 5, 6} 

Magnetic Reynolds number ^^..^=0.01 

Altitude 
Freestream conditions 

h=AQ km 

/7„ =2.7752x10' Pa, r„ =251.05 K 

Body radius r,=ro=0.01   m 

Table 7-8. Solution parameters for the flow over the hemisphere. 
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Qr^ 0 1 2 3 4 5 6 

B.m 0.000 1.105 1.562 1.913 2.209 4.470 2.706 

Table 7-9. Strength of the applied dipole for the flow over the hemisphere. 

Figure 7-166. Mesh for the hemisphere consisting of 50x50x50 grid points 
(cutaway plot). 
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Figure 7-167. Imposed dipolar magnetic field on the hemisphere. 
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Figure 7-168. Effect of magnetic field on the pressure field over the hemisphere for 
^.^=5,/?e„,^ =0.01,7=1.4. 

Figure 7-168 illustrates the pressure field for Qref=^ and Q^^=6. The application of a 

strong magnetic field leads to a dramatic increase in the shock standoff distance. No 
obvious changes in the flow structure are observed. In an attempt to explain the observed 
phenomena. Figure 7-169, adapted fi-om [118], is considered. 

Shock wave 
Magnetic 
field line 

Streamline 

Electromagnet 

Drag   \ Lorentz reaction 
force      force 

Figure 7-169. Effect of onboard magnetic source on the flow field over a blunt body. 

166 



Figure 7-169 illustrates the effect of a magnetic dipole on the bow shock wave 
that forms in front of the blunt body in hypersonic regime. As in the numerical 
simulations, the gas is assumed conductor only behind the shock wave due to ionization. 
An electrical current applied to a coil mounted at the center of curvature of the blunt body 

generates a dipolar magnetic field B. The magnetic field interacts with the velocity field 
in the postshock region only (where the gas is conductor) and induces currents J that 
form loops in a plane normal to the dipole axis. This current interacts with the magnetic 

field to generate the magnetic force / = J x 5. In the absence of electric field, / may 

be rewritten as f = (7^\UxBjxB (using Ohm's law). This mathematical expression 

indicates that / presents a component opposing the flow velocity U, as illustrated in 

Figure 7-169. / tends to decelerate the flow in the postshock region. For conservation of 
the mass flow rate across the shock wave, an increase in the shock distance is required. 

The reasoning above, based on local mathematical relations, provides some 
insight into the phenomena. However, it fails to justify the increase in the shock standoff 
distance measured along the stagnation streamline, where the magnetic field vector and 
velocity vector are coUinear (UxB = 0), and therefore the local magnetic force is / = 0. 
It should be noted that the phenomena considered here are not local. Indeed, the flow 
behind the shock, in the vicinity of the stagnation streamline is subsonic and disturbances 
have a global impact. The flow variables such as density, pressure and temperature adjust 
to the electromagnetic forces in the entire region to yield the observed phenomena. 

In the absence of electric field, the magnetic force leads to a reduction in the 
stagnation-point velocity gradient as depicted in Figure 7-170. The current numerical 
solution falls between the values predicted by Bush's theory and Poggie and Gaitonde's 
solution. However, an excellent agreement in the trend is obtained. For the nonmagnetic 
case, the stagnation-point velocity gradient predicted by the Newtonian impact theory is 
less than the other solutions. Figure 7-171 depicts the magnetic effect on the shock wave 
and the sonic line. It is observed that the region of subsonic flow is extended in the 
presence of magnetic field. 

Figure 7-172 compares the shock standoff distance of the present simulation with 
results of other investigators, extracted from Reference [119]. An almost perfect match 
between the present computations and Poggie and Gaitonde's predictions is obtained. 
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Figure 7-170. Effect of applied magnetic field on the stagnation-point velocity gradient. 
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Figure 7-171. Effect of magnetic field on the shock wave and sonic line for inviscid flow 
over the hemisphere for M^^ =5, Re„^^ = 0.01, y=\A. 
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M = 5, Re„ =0.01, 7=1.4 
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Figure 7-172. Effect of applied magnetic field on the shock standoff distance for 7=1.4. 

Both Bush's theory and Coakley and Porter's results underestimate the shock 
standoff distance, the predictions of the latter being however closer to the numerical 
values. As a reference, the empirical values (Ambrosio-Wortman and Billig) for the 
shock standoff distance in the absence of magnetic field are also provided and validate 
the present computations. The relative error between Bush's solution and the present 
numerical simulation increases from 13% for Q^^ =0 up to 27% for Q^^ = 6. Poggie and 

Gaitonde [119] attribute the difference observed between the numerical simulations and 
Bush's solution to the constant-density theory on which the latter solution is based. In 
this theory, the hypersonic shock layer in the vicinity of the body nose is assumed 
incompressible, since the Mach number in this region is low. Such an approximation is 
not well justified and it is not implemented in the present numerical algorithm. 
Nevertheless, this theory leads to reasonable results in the case of large shock density 
ratios. The present computations were conducted for a density ratio of Pj / p, « 5. Now, a 
ratio of specific heats of 1.2 (as in Reference [119]) is selected, which leads to a density 
ratio of Pj/Pi w7.9. The shock standoff distance computed in this condition is presented 
in Figure 7-173. Again, the present numerical solution matches almost exactiy Poggie 
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and Gaitonde's solution [119] and is also in relative agreement with Bush's theory 
(relative error between Bush's solution and present numerical simulation: 9% for 
a./=0and23%fora^=6). 
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Figure 7-173. Effect of applied magnetic field on the shock standoff distance for / = 1.2. 

For the present freestream conditions, the chemically frozen flow model predicts 
stagnation temperature beyond 1,500 K. At this temperature, chemical reactions become 
considerable and thus need to be taken into account for accurate predictions, which is the 
object of the next section. 
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7.6.2. Chemical Equilibrium Flow 

In this section, the flow over the hemisphere is computed at an altitude of 40 km, 
assuming chemical equilibrium, all the nondimensional similarity parameters being kept 
unchanged from the previous simulations. As shown in Figure 7-174, chemical 
equilibrium leads to a shock standoff distance less than that predicted in frozen flow. 

M = 5, Rem =0.01, altitude40km 

C 
^ 

 O Frozen 
 D Chemical equilibrium 

Figure 7-174. Effect of chemistry on the shock standoff distance. 

Figure 7-175, illustrates the profiles of density, pressure and temperature 
(normalized by the freestream values) along the stagnation streamline. In the current 
simulation, the application of magnetic field at the body surface causes a significant 
increase in the shock standoff distance, but minor modifications in the flow variables. 
The Joule heating leads to a little peak in the temperature near the body surface, which in 
turn causes a trough in the density profile. On the other hand, the chemistry effect causes 
density to increase by about 7% and temperature to decrease by about 10%. No 
noticeable effect on pressure is observed. 
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Figure 7-175. Profiles of the flow variables along the stagnation streamline of the 
hemisphere. 
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7.7. Hypersonic Flow Over A Cylinder 

Numerical simulations of flow over a circular cylinder-wedge body are presented 
in this section. For the purpose of validation, the setup of the present problem is chosen to 
mimic Gaitonde and Poggie's simulations [91] to the best extent. A magnetic field 
aligned with the axis of the cylinder, which is coincident with z -axis, is imposed 
uniformly at the body surface and no electric field is applied. The fi-eestream velocity 
vector points in the positive x -direction. Since the MGD flow field is expected to be 
symmetrical about the (x,z) plane, computations are performed in the half-plane 

{x,y>0) for efficiency purposes. Figure 7-176 illustrates the mesh consisting of 

100x100x3 grid points. 

-I—r -"—r 

Figure 7-176. Mesh for the cylinder consisting of 100x100x3 grid points. 

For symmetry about the x -axis, reflexive boxmdary conditions along the / = 1 line 
(which is just below the x -axis) are specified. Freestream conditions and zero magnetic 
field are specified at the inflow. Zero-order extrapolation for all primitive variables is 
used for the outflow. At the solid surface, the slip velocity condition, zero normal 
gradient of the sum of static and magnetic pressures, zero normal temperature gradient, 
and uniform value of magnetic field are specified. Solution parameters for this series of 
simulations are provided in Table 7-10. 
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Altitude 
Freestream conditions 

/j = 40km 

p^=2.1152x\<f Pa, 7; =251.05 K 

Freestream Mach number M^^=M^=\6 

Magnetic pressure number 
(varying parameter) 

i?,^^e{0;0.1;0.5} 

Magnetic Reynolds number 
(varying parameter) 

^^..^e {6.25; 12.5;+00} 

Table 7-10. Solution parameters for the flow over the cylinder. 

7.7.1. Effect Of Magnetic Pressure Number 
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Figure 7-177. Effect of magnetic field on the flow over the cylinder - Pressure 
contours for M^^ = 16. i?e„ ,=12.5 

In this section, the effect of the magnetic pressure number R/,^^ is numerically 

investigated. In order to isolate the effect of this parameter, the magnetic Reynolds 
number is fixed at 12.5. The pressure field in the presence and absence of magnetic field 
is depicted in Figure 7-177. No fimdamental changes in the flow structure are observed. 
As expected, the shock wave moves upstream with application of magnetic field. For the 
magnetic case, the inclined contours lines at the body surface suggest that the normal 
gradient of static pressure is not zero, as it is for the nonmagnetic case. The profiles of 
static pressure along the stagnation streamline presented in Figure 7-178a confirm that 
the normal static pressure gradient is indeed not zero if a magnetic field is applied at the 
wall. It is also observed that svirface pressure decreases with increasing magnetic field. 
Comparison of the present simulation with solution reported in Reference [91] shows 
good agreement. Due to the use of a relatively fine mesh, the present simulation yields a 
superior resolution of the shock wave. For the case /?^^^ =1.0, the magnetic field is 
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attenuated at the shoulder to prevent the occurrence of negative static pressure. In the 
current investigation, the applied magnetic field at the surface is decreased linearly to 
zero in the streamwise direction fi-om 0=63.5 degrees to 0=90 degrees, which may 
differ fi-om the attenuation used in Reference [91]. This would explain the discrepancy in 
the shock standoff distance. However, pressure compares well. As a reference, Billig's 
correlation [120] for the shock standoff distance in the absence of magnetic field is also 
provided, which shows excellent agreement with the numerical simulations. Figure 7- 
178b depicts the variation of temperature along the stagnation streamline. The magnetic 
field, imposed at the body surface, tends to reduce the surface temperature, although a 
rise in temperature occurs in a region near the body surface. This temperature "hill" is 
attributed to the Joulean dissipation. In the present case, the magnetic field is 
predominant in the vicinity of the body, thus, so is the Joule heating. For comparison 
purpose, the temperature profile without Joule heating is also provided for the case 
Ri^ .=0.5. When Joule heating is omitted, no peak in temperature is observed. It is also 

observed that the shock standoff is dramatically reduced. 
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Figure 7-178. Effect of magnetic field on the flow over the cylinder - Profiles of static 
pressure and temperature along the stagnation streamline. 

Figure 7-179 depicts the variation of total pressure along the stagnation 
streamline. The total pressure is defined as the sum of the static, dynamic and magnetic 
pressures. The present results compare well with those reported in Reference [91]. 
Although static pressure decreases with magnetic field, no clear effect on the total 

175 



pressure is observed. This suggests no reduction in wave drag. In other words, the 
reduction in the aerodynamic drag force due to the magnetic interaction is balanced by 
the Lorentz reaction force. 
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Figure 7-179. Effect of magnetic field on the flow over the cylinder - Profiles of total 
pressure along the stagnation streamline. 

7.7.2. Effect Of Magnetic Reynolds Number 

The effect of magnetic diffusion is examined in this section. The relevant 
parameter is the magnetic Reynolds nvimber Re^^^, which determines the diffiision of 

the magnetic field along the streamlines. To isolate the effect of this parameter, the 
magnetic pressure number is nominally set to 0.5. Values of Re„^^ are varied via the 

electrical conductivity. It should be noted that this series of experiments is conducted 
with the fiiU MGD equations, which prohibits the use of zero or very small values of 
/?e„  ,. For a magnetic Reynolds number equal to zero i.e., for a perfectly electrical 

insulator fluid, no magnetic interaction is expected. Figure 7-180 illustrates the effect of 
the magnetic Reynolds number on the pressure field and the magnetic field. An 
interesting aspect is that the shock standoff distance is greatly affected by the magnetic 
Reynolds number: the higher the magnetic Reynolds number is, the closer the shock 
wave to the body. Figure 7-180b provides some clues to better understand this 
phenomenon. As the magnetic Reynolds number (or electrical conductivity) is increased, 
the magnetic field permeates the fluid less and less freely. Eventually, for the ideal case 
of perfectiy conducting fluid i.e., for i?e„„y ~ -Hx), the magnetic field is rigidly coupled 

with the flow field and is convected by fluid particles. It does not diffuse at all. The rate 
of diffiision of the magnetic field is negligible compared to the rate of transport of the 
magnetic field. 
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Figure 7-180. Effect of magnetic Reynolds number on the flow over the cylinder - 
Pressure and magnetic field contours for M^^ = 16, Rf,^^ = 0.5. 
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Figure 7-181. Effect of magnetic Reynolds number on the flow over the cylinder - 
Profiles of static pressure, temperature, and axial magnetic field along the 
stagnation streamline. 

The variation of selected flow variables along the stagnation streamline is 
presented in Figure 7-181. For finite non-zero magnetic Reynolds number, the flow 
undergoes a smooth expansion in the postshock region. In contrast, for infinite magnetic 
Reynolds number, a relatively sharp expansion is observed near the body surface. 
Temperature, via the Joule heating is also greatly affected. The higher the magnetic 
Reynolds number is, the lower the peak in temperature near the body surface. For infinite 
magnetic Reynolds number, the magnetic field is confined at the body surface where its 
interaction with the fluid is maximal. 
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7.8. Hypersonic Chemistry For Flow Over A Cylinder 

Series of numerical experiments are conducted to explore the effect of altitude 
and Mach number on hypersonic chemistry for the flow over a circular cylinder. To 
reduce computation time, the 2-D version of the algorithm is selected, since the flow is 
2-D. For these simulations, the mesh consists of 60x80 grid points, as presented in Figure 
7-182. The magnetic field applied at the body surface follows the equation B^ = B^ cosO 

where 0 denotes the angle between the x -axis and a point on the body surface, and BQ 

represents magnetic field strength at the stagnation point. For initialization of 
nonequilibrium simulations, fi-ozen flow computations are performed until a transient 
detached shock wave forms in firont of the body. Subsequently, the nonequilibrium model 
is switched on. Non-dissociated air (23.5% of O2 and 76.5% of N2) is considered for the 
specification of initial mass fi-actions. 

■>0.0 
0.0 0.1 

X [m] 

Figure 7-182. Mesh for simulation of hypersonic chemistry over the cylinder, 
consisting of 60x80 grid points. 

7.8.1. Effect Of Altitude 

The effect of altitude on the flow structure and chemical composition is 
investigated. Numerical computations are performed for altitudes ranging firom 30 km to 
70 km. Changes in altitude are simulated by changes in the flow properties (pressure, 
density, temperature, etc.), according to the US Standard Atmosphere model [121], as 
illustrated in Figure 7-183. 

179 



*""*""*18Q 
0    10   20   30   40   50   60   70   80 

h[km] 

—O—   Density   —Q—   Pressure   —o—   Temperature 

Figure 7-183. US Standard Atmosphere model. 

Simulations parameters are specified in Table 7-11. Similarity in terms of Mach 
number, magnetic pressure number and magnetic Reynolds number for various altitudes 
is achieved for the dimensional conditions shown in Table 7-12.        

Altitude (varying parameter) 

Freestream Mach number 

Magnetic pressure number 

Magnetic Reynolds number 

/zefSO,   50,   70   km} 

7l/,^=M„=14 

R. ■href E{0, 0.5} 

Re„ ,=12.5 mref 

Table 7-11. Solution parameters for simulation of altitude effect, for the flow over the 
cylinder. 

h [km] 

Ur^=U^ [m-s-'] 

^0 [T] 

eref [mho-m '] 

30 

3017.414 

4.495x10'' 

1.962x10 

50 

3297.379 

1.144x10"' 

1.796x10' 

70 

2955.526 

2.827x10' 

2.003x10' 

Table 7-12. Dimensional conditions for similarity at various altitudes, for the flow over 
the cylinder. 

As observed in Figure 7-183, atmospheric temperature versus altitude presents a 
maximiun at about 50 km. The speed of sound (proportional to the square root of 
temperature) follows the same trend. Thus, similarity in terms of Mach number is 
achieved for a fi-eestream velocity proportional to the speed of sound (with a maximum at 
50 km). Now, similarity in terms of magnetic Reynolds number requires the electrical 
conductivity to be inversely proportional to the fi-eestream velocity (with a minimum at 
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50 km). Finally, at constant magnetic pressure number, the applied magnetic pressure is 
proportional to the dynamic pressure. It can be shown that the freestream dynamic 
pressure decreases with altitude because air density decreases. As a consequence, the 
applied magnetic field B^ is reduced with altitude. 

•    Chemically frozen flow model 
Figure 7-184 presents profiles of selected flow variables along the stagnation 

streamline, at various altitudes, for chemically fi-ozen flow. The perfect overlap of the 
profiles indicates that similarity has been achieved for each altitude, as expected. 
Solutions with and without magnetic interaction distinguish by several features. The 
application of magnetic field leads to an increase in the shock standoff distance and a 
reduction in the postshock and surface static pressure. Moreover, due to the Joulean 
dissipation, temperature rises in a postshock region, slightly upstream of the body. 
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Figure 7-184. Effect of altitude on the flow over the cylinder - Flow variables along the 
stagnation streamline in chemically frozen state. 
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A corresponding decrease in density results so as to satisfy the equation of state. 
Analytical values at the stagnation point (in the absence of magnetic field) are also 
provided, which show an excellent agreement with the numerical simulations. 
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-O—   Frozen   —n—   Equilibrium 

Figure 7-185. Temperature behind a normal shock at Mach 14. 

Frozen flow simulations lead to unrealistic postshock temperatures. Figure 7-185 
depicts the variation of the postshock temperature with altitude. Postshock temperature 
evaluated using normal shock relations for fi-ozen flow at Mach 14, exhibits values above 
7,000 K for all the altitudes considered, with a maximum reached at an altitude of 50 km. 
In reality, in the hypersonic high-temperature enviroimient, air undergoes vibrational 
excitation, dissociation and ionization. These endothermic phenomena absorb energy and 
cause temperature to fall. Indeed, Figure 7-185 shows that the postshock temperatures, 
computed using GASEQ, program based on a NASA algorithm for equilibrium air [122], 
are about half of the fi-ozen flow values. In the range 20-50 km, equilibrium postshock 
temperature varies very gradually and remains relatively high. Chemical reaction rates, 
which are exponential fimctions of temperature are expected to be relatively large. 
Moreover, in this "low" altitude range, air density is high enough so that the number of 
molecular collisions is sufficient for the flow to reach thermodynamic equilibrium in the 
postshock region. In contrast, at higher altitudes, postshock temperature decreases 
significantly with altitude and air density is also lower. Few molecular collisions take 
place, thus leading to a nonequilibrium state. The chemical equilibrium model is not 
expected to be accurate in these conditions. 

•    Chemical equilibrium model 
Contrasting with the fi-ozen flow case, the chemical equilibrium model does not 

preserve similarity with changing altitude, as shown in Figure 7-186. Indeed, one of the 
nondimensional parameters, namely the ratio of specific heats computed by the 
equilibrium model varies with the fi-eestream conditions, as depicted in Figure 7-186d. In 
the preshock region, its value equals the fi-ozen flow value. Indeed, the freestream 
temperature is too low to initiate chemical reactions. On the other hand, in the postshock 
region and especially along the stagnation streamline, high temperature and density 
enhance chemical reactions. Due to the change in the gas chemical composition, 
thermodynamic properties are modified. In the present case, y undergoes a dramatic 
decrease across the shock wave fi-om 1.4 to about 1.2. Chemical phenomena change 
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compressibility, cause temperature to fall, density to increase and lead to a reduction in 
the shock standoff distance. The effect of chemistry on the postshock pressure is 
minimal. As a measure of validation of the present effort, density, pressure and 
temperature right behind the shock wave are compared with the equilibrium values 
predicted by the program GASEQ (in the absence of magnetic field, behind a normal 
shock). A good agreement is obtained. 

The presence of a magnetic field has an impact on the chemical phenomena, via 
the Joule heating. In the current simulation, the dissipated magnetic energy causes the 
temperature to increase in the region surrounding the stagnation point where the magnetic 
field is the sti-ongest. It should also be noted that temperature is affected by the Joule 
heating not only in the postshock region, with a peak in the vicinity of the body surface, 
but also, in the preshock region with values larger than those of the fireestream. In the 
absence of magnetic field, all the flow variables undergo a jump across the shock wave. 
The flow undergoes a gradual increase in the preshock temperature, as shown in Figure 
7-186c. In fi-ozen flow, the shock standoff distance is larger than in equilibrium and the 
preshock magnetic field is weaker. Therefore, the Joule effect on the preshock 
temperature is not as noticeable. 
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Figure 7-186. Effect of altitude on the flow over the cylinder 
stagnation streamline in chemical equilibrium. 

Flow variables along the 
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In the presence of magnetic field, the ratio of specific heats follows a trend 
somewhat inverse to that of the temperature. From the fireestream to the body surface, the 
ratio of specific heats increases gradually in the preshock region, undergoes a jump 
across the shock wave, and exhibits an undershoot in the vicinity of the body. 

•    Chemical nonequilibrium model 
Figure 7-187 depicts the variation of flow properties in chemical nonequilibrium for 
various altitudes. As altitude increases, air becomes less dense, the number of molecular 
collisions decreases and thus vibrational and chemical processes slow down. Therefore, 
nonequilibrium phenomena gain in importance with altitude. Roughly speaking, at low 
altitudes (say below 50 km), near chemical equilibrium exists. At higher altitudes, 
nonequilibrium phenomena dominate the flow field and approach chemically fi-ozen state 
with increasing altitude. As expected, nonequilibrium simulations predict an increase in 
the shock standoff distance with altitude, which is opposite to the equilibrium predictions. 
Equilibrium and nonequilibrium solutions present other differences. For instance, in 
Figure 7-187c, the peak in the temperature right behind the shock wave, which becomes 
more pronounced as altitude is increased, reveals regions of nonequilibrimn. This 
phenomenon is qualitatively described in Figure 7-188. 
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In an idealized mathematical model, thermodynamic properties are discontinuous 
across the shock wave, which is assumed infinitely thin. In reality, the collisions among 
molecules and atoms, which produce the thermodynamic and chemical changes, occur 
over a finite thickness. In the preshock region, the fiow is chemically fi-ozen. Within the 
shock front, which is a few mean-free-path thick, only a few molecular collisions take 
place and the flow barely departs from frozen state. A region of nonequilibrium exists 
behind the shock wave. As fluid particles move downstream, finite rate reactions take 
place and flow properties tend to their equilibrium values. The region of nonequilibrium 
extends more at high altitudes than at low altitudes. 
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Figure 7-189. Effect of altitude on the flow over the cylinder - Relative distribution of 
chemical mass fractions along the stagnation streamline in chemical 
nonequilibrium. 
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Figure 7-189 depicts the relative variation of the chemical mass fractions with 
distance along the stagnation streamline. In the postshock region, diatomics O2 and N2 
dissociate, the dissociation of O2 being the most important. As expected, the mass 
fractions of O and N increase, rising from their frozen flow values (essentially zero) 
ahead of the shock wave and tending to their equilibrium values fiirther downstream. For 
nonmagnetic cases, in which the postshock flow variables (density, pressure, temperature, 
etc.) are quasi-uniform along the stagnation streamline, nonequilibrium mass fractions of 
all chemical species, but nitric oxide NO, range between the two extremes of frozen and 
equilibrium values. 

The NO overshoot observed immediately downsfream of the shock wave may be 
explained as follows, based on the arguments reported in References [123] and [124]. 
Downstream of the shock wave, diatomics O2 and N2 dissociate, which releases 0-atoms 
and  N-atoms.   The  production   of 0-atoms  triggers  the  NO   exchange  reactions 

0+N2=^N+N0 and N+O2—0+NO. These reactions are extremely fast and they rapidly 

lead to a local equilibrium expressed as O2+N2—2N0. The net effect of these two 
reactions is to convert N2 and O2 into NO. Since the reactions are very fast, an excess of 
NO is produced downstream of the shock wave where there is plenty of O2 and N2. As O2 
continues to dissociate (fiirther downsfream of the shock wave), the shuffle reactions are 
reversed and nitric oxide NO is reduced towards its final value by this means and also by 
direct dissociation. 

It is observed that the local mass fractions at the stagnation point tend to the 
equilibrium values. Indeed, along the stagnation streamline, a fluid element decelerates 
and reaches zero velocity at the stagnation point, where chemical reactions have time to 
reach equilibrium. It should be recalled that the equilibrium values provided in Figure 7- 
189 are obtained behind a normal shock wave and not at a stagnation point. They provide 
a measure of validation of the present effort. 

In the current simulations, the chemical mass fractions distributions are affected 
by the magnetic field. In the absence of magnetic field, the mass fractions vary gradually 
in the postshock region. Indeed, the postshock temperature, which is the determining 
factor, is relatively uniform in the present conditions (adiabatic wall, no viscous 
dissipation at the wall). In the presence of magnetic field, temperature profiles exhibit an 
overshoot in the vicinity of the body due to the Joule heating. Due to the complexities of 
the chemical kinetics mechanism associated with such cases, the species mass fractions 
may exceed the two extremes of frozen and equilibrium values. 
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7.8.2. Effect Of Mach Number 

The effect of the freestream Mach number at a given altitude is investigated in 
this section. Simulations parameters are specified in Table 7-13. 

Altitude h=30 km 
Freestream Mach number 
(varying parameter) 

M^^=M^,M^e{lO,   14,   18} 

Magnetic pressure number ^..^^{0. 0-5} 

Magnetic Reynolds number ^^..^=12.5 

Table 7-13. Solution parameters for simulation of Mach number effect, 
for the flow over the cylinder. 

•    Chemically frozen flow model 
Figure 7-190 depicts the profiles of selected flow variables along the stagnation 

streamline at various Mach numbers, for frozen flow. Analytical stagnation-point values 
are also provided, which show an excellent agreement with the numerical simulations. 
Since the shock temperature ratio becomes larger with the Mach number, chemical 
processes are expected to be enhanced as the Mach number is increased. 

Figure 7-191 illustrates the variation of postshock temperature with the Mach 
number for both frozen flow and chemical equilibrium. As mentioned previously, the 
frozen flow approach leads to unrealistic temperature, with error of 42% at Mach 10 and 
126% at Mach 18, compared to equilibrium values. Errors of the same order are expected 
for density. Again, these observations clearly show the necessity to take into account 
chemistry effect in the computations of hypersonic flows. 
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Figure 7-190. Effect of Mach number on the flow over the cylinder - Flow variables 
along the stagnation streamline in chemically frozen state. 
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Figure 7-191. Temperature behind a normal shock at an altitude of 30 km. 

•    Chemical equilibrium model 
Figure 7-192 depicts the distribution of selected flow variables along the 

stagnation streamline. As a measure of validation, the equilibrium values obtained with 
GASEQ (for the nonmagnetic case) are included, which show a good agreement with the 
current solution. As described in Section 7.8.1, chemical reactions lead to a reduction in 
temperature, increase in density and no significant effect in pressure, in the postshock 
region, compared to fi-ozen flow. It is also observed that the variation in the shock 
standoff distance with the Mach number is amplified in chemical equilibrium compared 
to fi-ozen flow. The equilibrium model predicts an enhancement of the chemical 
phenomena with increasing Mach number. The temperature peak associated with the 
Joule heating is attenuated by chemical reactions, in particular at Mach 18. 
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Figure 7-192. Effect of Mach number on the flow over the cylinder - Flow variables 
along the stagnation streamline in chemical equilibrium. 
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•    Chemical nonequilibrium model 
The effect of Mach number on nonequilibrium flow is presented in Figure 7-193. 

At a given altitude, the postshock temperature increases with the Mach number, which 
enhances the chemical kinetics. Thus, liie higher the Mach number is, the faster the flow 
approaches chemical equilibrium. However, at a given altitude, higher Mach number 
translates into higher velocity. If the fluid particles cross the shock wave in a time smaller 
than the time lapse required for the chemical reactions, the flow right behind the shock 
wave is in chemical nonequilibrium. Peak in temperature, revealing nonequilibrium 
temperature are observed for all Mach numbers. For the sake of simplicity, the current 
nonequilibrium model assumes vibrational, rotational and translational temperatures to be 
the same. As a consequence, the temperature at the first node point behind the shock 
wave is very high (fi-ozen flow value), and therefore, the chemical reaction rates and their 
associated Jacobian elements become very large. In reality, the dissociation is preceded 
by the vibrational excitation (See Table 6-1). Thus, the time at which the vibrational 
excitation is completed and the time at which the dissociation process begins overlap. 
Moreover, since vibrational temperatvire is very low behind the shock wave, associated 
chemical reactions rates are nearly zero there. Chemical reaction rates become large only 
after a few node points behind the shock. It is thus expected that a two-temperature 
model, that treat the translational and rotational temperature separately from the 
vibrational temperature would provide a mechanism of relaxation. 
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Figure 7-193. Effect of Mach number on the flow over the cylinder - Flow variables 
along the stagnation streamline in chemical nonequilibrium. 
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Figure 7-194 shows the effect of the Mach number on the distribution of each of 
the chemical mass fractions along the stagnation line. For the nonmagnetic case, mass 
fractions at the stagnation point compares well with the equilibrium values computed 
with the program GASEQ (behind a normal shock). For the nitric oxide mass fraction, 
some discrepancy is observed, but it should be noted that Figure 7-194c is a close-up. 
Figure 7-195 presents the relative distributions of the chemical species, at various Mach 
numbers. From this perspective, it appears that the mass fractions at the stagnation point 
agree fairly well with the equilibrium values. 

Figures 7-194 and 7-195 show that chemical reactions are enhanced as the Mach 
number is increased. Dissociation of diatomics O2 and N2 balances the release of atoms O 
and N, and the formation of nitric oxide NO. The dissipation of the magnetic energy in 
the form of Joule heating modifies chemical kinetics, and enhances thermal dissociations. 
As a result, a larger amount of O2 and N2 is dissociated locally where the Joule effect is 
considerable. 
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Figure 7-194. Effect of Mach number on the flow over the cylinder - Chemical mass 
fractions along the stagnation streamline in chemical nonequilibrium. 
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Figure 7-195. Effect of Mach number on the flow over the cylinder - Relative 
distribution of chemical mass fractions along the stagnation streamline in 
chemical nonequilibrium. 
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7.8.3. Examination Of A Nonequibrium Blunt-Body Flow 

Some general features of nonequilibrium flow over hypersonic blunt body are 
addressed in this section. To support this description, the simulation of a Mach 18 flow 
over the cylinder at an altitude of 30 km is considered. 

Shock wave 

M, »1 

Sonic line 

Stagnation point: 

Equilibrium 

Freestrcani: Frozen flow 

)rium \_x;, ^onequilibrium \_Nearly frozen flow 
How 

' 'X : Equilibrium flow 
Figure 7-196. High-temperature flow field over a hypersonic blunt body. 

On a qualitative basis, the flow field over a blunt body is schematically presented 
in Figure 7-196, adapted fi-om [125]. The region upstream of the shock wave is the 
freestream. In the absence of magnetic field, flow properties are uniform in this region 
and temperature is typically too low to initiate chemical reactions. In the presence of 
magnetic field, flow properties are not uniform upstream of the shock wave, in particular 
the Joule heating affects temperature, as mentioned in previous sections. For some flow 
conditions, the preshock temperature can reach values that initiate chemical reactions. 
Downstream of the shock wave, fluid particles may undergo various chemical states, 
depending on their locations. A particle along the stagnation streamline, passes firom a 
state of chemical nonequilibrium immediately downstream of the shock wave to a state of 
chemical equilibrium at the stagnation point. Indeed, at the stagnation point, flow 
velocity is zero, and chemical reactions have an infinite time to reach equilibrium. Away 
fi-om the stagnation streamline, the nonequilibrium region extends downstream. The flow 
tends to chemical equilibrium fiirther downstream of the body nose. A thin region of 
nearly fi-ozen flow can be identified along the body downstream of the sonic point. This 
region is characterized by highly dissociated gas, flowing downstream over the body. 

For the sake of comparison, the temperature distributions over the cylinder 
predicted by fi-ozen flow, equilibrium and nonequilibrium models are presented in 
Figures 7-197 through 7-199. This allows the identification of the flow features 
associated with application of magnetic field and those due to hypersonic chemistry. 
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Figure 7-197. Temperature distribution over the cylinder for M^^ = 18, Re„^^ = 12.5, at 

an altitude of 30 km, in chemically frozen state. 

In frozen flow, temperature is maximal at the stagnation point. Moreover, the 
application of magnetic field yields an additional rise in temperature along the body 
surface around the stagnation point. Since the magnetic field decreases along the body 
surface, as a cosine fimction, the Joule heating follows the same frend, and thus 
attenuates at the shoulder of the blunt body. 
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Figure 7-198. Temperature distribution over the cylinder for M^^ = 18, Re^^^ = 12.5, at 

an altitude of 30 km, in chemical equilibrium. 
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In chemical equilibrium, the shape of temperature contours resemble that in 
frozen flow, though the shock standoff distance is reduced. For the magnetic case, a few 
contour lines are observed in front of the shock wave, corresponding to the gradual 
increase in temperature due to the Joule heating, as mentioned previously. The high 
temperatures along the body surface are not as pronounced as in frozen flow. 

In the current numerical simulations, nonequilibrium phenomena, identified by 
regions of high temperature in Figure 7-199b occur mosfly right downstream of the shock 
wave, slightly above the stagnation streamline. Indeed, streamlines and contours plots of 
velocity magnitude show that fluid particles, downstream of the shock wave, enter 
regions of various velocity magnitude, depending on their location with respect to the 
stagnation point. 
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Figure 7-199. Flow field over the cylinder for M^^ = 18, i?e„„r = 12.5, at an altitude of 

30 km, in chemical nonequilibrium. 

Velocity contours are "concentric" around the stagnation point, their value 
increasing with distance fi-om the stagnation point. Thus, fluid particles entering the 
shock wave along the stagnation streamline imdergo a more dramatic deceleration than 
particles entering the shock wave above the stagnation streamline. As a result, in the 
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shock layer, the fluid particles along the stagnation streamline reach chemical equilibrium 
in a shorter distance than those along other streamlines. 

Figure 7-200 depicts the distributions of species mass fractions. It is observed that 
the molecular oxygen 62 is almost completely dissociated in the shock layer. Moreover, 
dissociation proceeds within a short distance behind the shock wave, which is indicated 
by the accumulation of the contour lines along the shock wave. On the other hand, 
molecular nitrogen N2 dissociates gradually in the streamwise direction through the shock 
layer. The maximum dissociation rate occurs in a region around the stagnation point 
where the velocity is minimal and the temperature maximal. These chemical phenomena 
release 0-atoms and N-atoms. It is observed that the mass fraction contours of O and N 
are like photograph negatives of the distributions of O2 and N2, respectively. Some of the 
dissociated O2 and N2 contribute to the formation of nitric oxide. The maximum 
concentration of species NO is observed in a narrow region, adjacent to the shock wave. 

Figure 7-200 reveals major differences in the chemical composition and 
distribution between the nonmagnetic case and the magnetic case. For instance, in the 
high-temperature region due to the Joule heating, the dissociation of N2 is enhanced. 

0.0 0.1 
X [m] 

^w=0-5 

a)02 

202 



I    I    I    I    I 

0.0 0.1 
X [m] 

0.0 fc»-^ 
0.0 0.1 

.V [m] 

b)N2 

0.0 0.1 
X [m] 

0.0 0.1 
X [m] 

c)NO 

203 



0.0 I-—' 

0.3 - 

0.2 

0.1  - 

0.0 

- 

■■■'■'■• 

0.191 
0.147                ■ 
0.103            JF, 

, 0.059       j^^ 

• 

0.015 J^^ 

^ )A 

0.0 0.1 
X [m] 

d)0 

R,    =0 

0.0 0.1 
X [m] 

^.,,/=0-5 

0.0 1-—•■ 
0.0 0.1 

X [m] 

e)N 

Figure 7-200. Chemical mass fractions over the cylinder for M^^ = 18, Re^^^j = 12.5, at 

an altitude of 30 km, in chemical nonequilibrium. 
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Among all the cases considered, the flow at Mach 18 at an altitude of 30 km 
exhibits the highest level of postshock temperature. It is observed in Figure 7-199b that 
temperature locally reaches values above 8,500 K, but does not exceed 9,000 K, which is 
the onset of ionization. Therefore, this case is still in the margin of validity of the 
chemistry model (which does not include ionization). 

The current freestream conditions (Mach 18 flow, altitude of 30 km) leads to 
quasi-chemical equilibrium, though nonequilibrium features are clearly identified in the 
vicinity of the shock wave. Figure 7-201, compares selected flow variables along the 
stagnation streamline in various chemical states. As mentioned previously, the frozen 
flow model yields values of density and temperature, which are off by a factor of two 
compared to the chemically reacting flow values. All chemistry models predict similar 
level of postshock pressure. As expected, xmder the current conditions, the equilibrium 
and nonequilibrium models lead to nearly identical solutions, which provides another 
measure of validation of the present effort. However, the small peak in temperature 
reveals that nonequilibrium features are still present in the flow. As a result, the shock 
standoff distance in nonequilibrium is slightly larger than in equilibrium. 
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Chapters 
Conclusions 

The computation of turbulent magnetohydrodynamic flows has been performed 
using a Reynolds Averaged approach. Two formulations for the magnetohydrodynamic 
equations have been considered. The ftill MHD equations were solved for high 
conductivity fluids, whereas the low magnetic Reynolds number formulation was 
cinsidered for flows characterized with a low electrical conductivity. The latter 
formulation does not require the solution of the magnetic induction equation because the 
induced magnetic field is negligible compared to the applied magnetic field. 

The equations of motions were solved by a fourth-order, four stage Runge-Kutta 
scheme augmented with a Total Variation Diminishing scheme to accurately capture 
shock-wave discontinuities. The equations were written in a flux vector form and non- 
dimensionalized before the application of the numerical scheme. Six turbulence models 
were implemented, ranging fi-om a simple algebraic model to more sophisticated two- 
equation turbulence models. Their accuracy and limitations have been addressed by 
comparing the numerical solutions with the experimental data for the flow over a 24- 
degree compression comer. The performance of each turbulence model varied, and no 
model could accurately predict both the skin fiiction and the surface pressure 
simultaneously. Different formulations for the evaluation of y'^ in the Baldwin-Barth 
model helped in obtaining a converged solution for this separated flow. The introduction 
of compressibility correction terms improved the accviracy of the k-e model in the 
prediction of the skin fiiction coefficient. The Reynolds Averaged approach remains the 
most viable approach for turbulence modeling, due to its relatively reasonable 
requirement in terms of computational resources. 

The MHD solver was validated for the MHD Rayleigh flow and supersonic flow 
over a blunt body. Good agreement was found with existing analytical solution for the 
MHD Rayleigh flow. The shock standoff distance compared well with the analytical 
prediction when the shock wave was not considered concentric with the blunt body. 

Each turbulence model was calibrated based on the turbulent Hartmann flow. The 
objective was to verify the experimental observation, stating that a relaminarization 
process occurs when the ratio Ha/Re becomes larger than 1/225. When the Baldwin- 
Lomax, Baldwin-Barth, Baseline and SST models were used in their original form, they 
over predicted the skin fiiction and no relaminarization occurred. The original k-e 
model predicted a relaminarization occurring too early. The original Spalart-Allmaras 
was the most accurate, as it only slightly over predicted the skin fiiction coefficient. Each 
model has been modified to account for the presence of a magnetic field. Different types 
of modifications were introduced within the turbulence models. The Baldwin-Lomax 
model was modified by introducing a damping term in the evaluation of the mixing 
length. Additional magnetic terms were added to the k-e model. The modified version 
of the Baldwin-Barth model was directly derived fi-om the modified k-e model. It 
resulted in the addition of a magnetic term in the turbulent transport equation. By 
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analogy, additional magnetic terms have been included in the Baseline and SST 
turbulence models. The Spalart-Allmaras model was modified by proposing one of its 
closure coefficient to depend on the magnetic field. This simple modification proved to 
be sufficient since the original model was performing fairly well. The modifications 
resulted in the accurate prediction of the relaminarization process observed in the 
turbulent Hartmarm flow. The relaminarization process occurred when Hal Re = XjllS, 
and was not affected by the Reynolds number, ranging fi^om 5,000 to 50,000. 

The original and modified turbulence models were applied to a supersonic flow 
over a flat plate. For a low electrical conductivity fluid, the application of a magnetic 
field resulted in a decrease of the turbulent skin fiiction by about 20% when the original 
models were used and between 20 and 30% when the modified versions of the turbulence 
models were used. The magnetic field was uniformly applied in the y-direction. A 
complete relaminarization of the flow could not be obtained because the effect of the 
magnetic field was more important on the mean flow than on turbulence. As the magnetic 
field was increased, a separation of the flow occurred before the relaminarization could 
be reached. Expressions for the laminar and turbulent skin fiiction coefficients were 
proposed. They depend explicifly on the magnetic field and are valid for small values of 
the product wn;, for a Mach number ranging from 2 to 4. For very high conductivity 
fluids, the fiill MHD equations must be solved because the induced magnetic field is 
substantial within the boundary layer. In this case, a complete relaminarization of the 
flow was obtained. It was also determined that the orientation of the applied magnetic 
field had a strong effect on the reduction of the skin fiiction. A reduction of 80% was 
observed when the applied magnetic field was perpendicular to the incoming flow, 
compared to the case where both applied magnetic field and velocity fields were aligned. 

The effect of the magnetic field on the heat transfer was also investigated. The 
heat transfer was calculated for the hypersonic flow over a cone, and compared with 
experimental data, in the non-magnetic case. The Baldwin-Lomax and Baseline models 
provided the most accurate results when no magnetic field was present and therefore, 
were selected to carry out the numerical simulations when the magnetic field was turned 
on. A complete relaminarization of the flow could be observed, in the sense that both the 
skin fiiction and heat transfer were reduced to their laminar values. The relaminarization 
process occurred earlier (i.e., for a smaller value of the applied magnetic field) when the 
modified versions of the turbulence models were implemented. 

The numerical efficiency of the two MHD formulations and six turbulence 
models was discussed. The low magnetic Reynolds number formulation requires less 
computational time per iteration than the fiill MHD equation solver. The implementation 
of turbulence models increased the computational time by 30% for the Baldwin Lomax 
model, whereas it was multipUed by 5.5 for the k-e model. The code based on the low 
magnetic Reynolds number formulation converged faster and was more stable than the 
fiill MHD equations solver. The Baldwin-Lomax model was also the model that 
converged the fastest. 
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The application of a magnetic field was shown to be beneficial to turbulent MHD 
flows, by reducing the skin fiiction and heat transfer. A complete relaminarization of the 
flow was observed. The Baldwin-Lomax algebraic turbulence model appears to be a good 
candidate for the computation of relatively simple turbulent MHD flows, due to its 
computational efficiency and good prediction capabilities. 

Two models to simulate hypersonic high-temperature effects were implemented. 
One is an equilibrium model, based on curve fits of thermodynamic properties. The other 
is a five-species, seventeen-reaction nonequilibrium model, solved by a flux-vector 
splitting scheme. For the sake of simplicity, a one-temperature model has been assumed. 
The chemistry model is loosely coupled with the scheme for solution of the MGD 
equations. 

Blunt-body configurations in 2-D and 3-D were the object of intense 
investigations. The MGD flow over a hemisphere with an imposed magnetic dipole was 
simulated in the low magnetic Re5aiolds number approximation. The magnetic interaction 
caused the shock wave to move away upstream fi-om the body. For chemically fi-ozen 
flow, the computed shock standoff distance coincided perfectly with another numerical 
solution reported in the literature. Simulations in chemical equilibrium indicated a 
smaller shock standoff distance than in fi-ozen flow. 

Inviscid, resistive flow over a circular cylinder-wedge was investigated using the 
fiiU MGD equations. Good agreement with the existing numerical solutions has been 
obtained. Increase in the shock standoff distance and reduction in the surface pressure 
were observed. In the case of the cylinder-wedge, the effect of hypersonic chemistry was 
investigated in depth using the equilibrium and nonequilibrium chemistry models. 
Inclusion of chemistry effects in the simulation of hypersonic flow resulted in higher 
density ratio, lower temperature ratio across the shock wave and reduced shock standoff 
distance. The effect on postshock pressure was minimal. At low altitudes, the flow was 
mostly in chemical equilibrium, though small nonequilibrium regions existed behind the 
shock wave. At higher altitudes, nonequilibrium phenomena dominated the flow field. At 
a given altitude, chemical kinetics was enhanced with increasing Mach number. The 
application of a magnetic field had a significant impact on the chemical phenomena. In 
particular, the Joule heating enhances the thermal dissociation of air. 
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Appendix A 
MHD Viscous Terms in Computational Space 

The viscous flux vectors in the computational space are expressed as 
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The subscripts ^ and 77 represent differentiation with respect to this variable. For 
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—   and u„ = — example u^ = —   and u^ = ^:;—. They are approximated by a second order central 

difference approximation 
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Appendix B 
Electrical Conductivity of Selected Fluids 

Fluid Electrical conductivity <T^   (mho/wj 

Distilled water «10^ 
Sea water 4.0 
Weak electrolytes 10"^ to 10"^ 

Strong electrolytes 10-" to 10"' 
Water + 20% Na Cl (20°C) 21.6 
Pure H2SO4 (20°C) 73.6 

Molten Glass (1400°C) 10 to 10' 
"Cold" Plasmas (r« 10"^) «10^ 
"Hot" Plasmas (r« 10'^) «10* 
Totally ionized gas «io^r^'' 
Ionized hydrogen «5.3xl0' 
Interstellar space «10^ 
Interplanetary space (solar wind) «10' 

Liquid metals 10' to 10' 
Steel (1500°C) 0.7x10' 
Mercury (20°C) 10' 
Aluminum (700°C) 5x10' 
Sodium (400°C) 6x10' 

Table B-1. Electrical conductivity of selected fluids. 

Table B-1 shows the electrical conductivity for various fluids. Hot plasmas, 

referring to plasmas encountered in astrophysical applications or thermonuclear fusion, 

are very good conductors, but they cannot be fully described by the laws of fluid 
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mechanics. They do not satisfy the assumptions of thermodynamic equilibrium and a 

detailed description of the interaction between particles is required. 

Cold plasmas are less conducting but can be described by fluid models. Since they 

are very light, the electromagnetic forces affect them in a similar fashion as liquid metals 

that have a higher conductivity but are much heavier. 
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Appendix C 

Compressibility Correction Terms 

The following table summarizes the compressibility correction terms available within 
the turbulence models. 

Turbulence 
Model 

Replace 
(from the 
original 
Model) 

By 
(to obtain the modified 

version) 
Comment Objective 

Baldwin- 
Barth V K 

Prevent damping 
ftinctions from 

approaching zero in the 
separation and 

reattachment regions 

k-e pe pe{\ + aMf) a =1.0 Designed for shear 
layer flows           | 

k-e/k-o) 

P'pcok P'pcok\l + a,M^{l-F,) 
Inthe /t- 
equation 

p\M^pco'{l-F,) 
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Allmaras 
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du    dv 
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Avoid numerical 
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4 Obtain a larger 
separation region (only 
for the Baseline model) 

k-elk-a 

{\-F,)p'd' Added to the 
e -equation Designed for 

axisymmetric jet flows 
Added to the 
(o -equation 
 —.                 ' 

Table C-1. Summary of the compressibility correction terms. 
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Appendix D 
Calculation of the Shock Standoff Distance 

In this appendix, the analytical calculation of the non-dimensional shock standoff 

distance obtained by Lykoudis [5] is reviewed. The procedure is used to calculate the 

As 
ratio , where As and ASQ are the nondimensional shock standoff distances with and 

without a magnetic field, respectively. The following assumptions are made: 

The magnetic field is constant in the region between the shock and the body. It is 

perpendicular to the incoming streamlines. 

The induced electric current is negligible. 

The shock wave is cylindrical in shape. 

The pressure is not altered by the magnetic field in the stagnation region. 

A Newtonian pressure distribution with constant density is assumed. 

The electrical conductivity is assumed constant. 

Viscosity has little effect on the solution. 

Under these assumptions, the cylindrical shock standoff distance, in presence of a 

magnetic field is given by 

where 

-Ss + J(Ssf+l2s 
P = ^^^—^  (D.2) 
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-P-Q m = - 
P-Q 

(D.3) 

(D.4) 

(D.5) 

£=^ (D.6) 

In the case where there is no magnetic field, the shock standoff distance reduces to 

1 As„ = Zo_^ = _^_cosh-f-^ 
/•(,       -yJl-Ss W3£^ 

(D.7) 

where 

rg is the shock radius of curvature in the non-magnetic case, 

r is the shock radius of curvature in presence of magnetic field, 

/; is the blunt body radius. 

Figure D-1 illustrates the standoff distance for two values of the density ratio across the 

shock. 
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Figure D-1. Shock standoff distance for a cylindrical shock versus the parameter S. 
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Appendix E 

Chemical DATA 
The properties of the five species considered in the chemical model are specified 

in Table E-1. 
Index s 1 2 3 4 5 
Species O2 N2 NO 0 N 

MJg-mol-'] 31.9988 28.0134 30.0061 15.9994 14.0067 

\JJ-g-'] 0 0 2.995x10^ 1.544x10'* 3.364x10^ 

0.,s [K] 2275.2 3394.4 2740.7 

Table E-1. Properties of the chemical species. 

Dimensional analysis shows that the units of the chemical rate constants are 
reaction dependent. To determine the dimensions of the rate constants of a given 
chemical reaction, the dimensions equations associated with the rate equations are written 
as shown in Table E-2. n, L and t denote the dimensions for the number of moles, 
length and time, respectively.  

Rate equation Associated dimensions equation 
Forward rate 

d[AJ 
d^ 

SM 
n-L^-t-'=Kf[n-L^^^ 

f i=i 

Backward (or reverse) rate 
d[AJ 

At 
(v;-v;Kn[Aj' n-L-'-r'^K,{n-L-'f:' 

s=l 

Table E-2. Dimensional analysis. 

Thus, the dimensions of Kj-, Kf, and K^ =Kj-IK^ follow as 

Kf\[n-r'Y' ■ r' with a^ = Zvf -1 
s=l 

K,:[n-L')'"' • /"' with a, = f vf -1 
j=i 
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If international units are used, the CGS unit system is more suitable for chemistry 
than the MKS system. In the CGS system, units are as listed below. 

n: [mol] 
L: [cm] 
.:[s] 

is:^:[(mol-cm-^)r"^-s-' 

^^:[(mol-cm-^)r"'-s-' 

.^,:[(mol-cm-^)r'-"^] 
Table F-2 provides the constants used in the chemical model, expressed in the 

CGS system. 
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Appendix F 
Chemical Rate Equations 

The rates of change of species concentration due to each chemical reaction are 
expressed as follows. 

02+M^20+M 

^ = [OfK,([N] + [0])+^,,,([NJ + [OJ + [NO])} 
at 

-[0,]{Kf,(lN] + [0])+K,^A[^,] + [02] + [^0])} (F-1) 

ffl = -2i^ (F-2) 
dt ' ^    ^ 

N2+M^2N+M 

^ = [N]^ {K,^,[-N] + K,,[0] + K.^sii^,] + [O J)+^,,,[NO]} 
at 

-[Njlk^OT + K^,10] + ^^.jtNJ + [0J)+ X/,.[NO]) (F-3) 

^ = -2^ (F-4) 
at 

NO+M^N+0+M 

^^ = fc,7[N][0]-i:^^,[NO])([N] + [0] + [OJ+[N2] + [NO]) 

d[N]^d[0] 
dt       dt 

= -R, (F-6) 

NO+O^N+02 

^^ = ^ = ^,,3[N][0 J -i:^,,[NO][0] = R, (F-7) 
dt dt 

d[N]^d[OJ_ 
dt        dt 

-R, (F-8) 

O+N2-N+NO 
d[0]^ 
dt 

d[N]_d[NO] 

dt dt 

S^fflzl^i^   [N0][N]-ii:^,,[NJ[0] = /?5 (F-9) 
dt        dt 

"=-i?5 (F-10) 

233 



The net changes of species concentration due to the five chemical reactions are 
d[OJ 

dt 

d[NJ 
dt 

d[NO] 
dt 

d[0] 

= 7?i - 7?4 

net 

= /?3 + /?4 - i?5 

dt 

d[N] 
dt 

:-2i?, -i?3+i?4+i?5 

: -2i?2 - -^3 ~ -^4 ~ ''^S 

The mass production rates are expressed as 

'      df '  dt 

W2 = 
d(pcj    .. d[N,] 

M, 

w. 

df '   d? 

 d(pc3)_,, d[NO] = M. 
d? '   dt 

^_d(pcj_^^d[0] 
w. 

w. 

:M. 
dt " d? 

d(pc5)_,^d[N] 
dr 

■ M. 
dt 

el 

= M,{R,+R,-R,) 
let 

= M^{-2R,-R,+R,+R,) 

= M,{-2R,-R,-R,-R,) 

(F-11) 

(F-12) 

(F-13) 

(F-14) 

(F-15) 

(F-16) 

(F-17) 

(F-18) 

(F-19) 

(F-20) 
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Appendix G 

Chemical Jacobian Matrix Dc 
_                      _     dW    dW 

Jacobian matrix D^ is defined as D^ = —=^ = . The elements /)„  are expressed as 

A,=—-=— — (G-l) 

Thus, 

where 

^3.. =^¥1-1(^3+^4-^5) (G-4) 

^v. =17^¥fl(-2i?, -R, +R, +Rs) (G-5) 

£)-    ^^5      ^     (_2R,-R,-R,-R,) (G-6) 

= K,^,iOf -K^^,{[0] + [N])-i:^,2(2[0,] + [NJ + [NO]) (G-7) 
a[A,]    5[0,] 

:2[0]{i<:,,([0] + [N])+^,^,([0J + [N,] + [N0])} a[AJ    5[0]         '^ "-'^^           ''      "'^'^  .^   ^   .^   ^     ^n ^Q_^^^ 

an an 
TpT^ = Tp^ = i^^5[N]'-^/,3[N]-^^,4[0]-i^^,5([02] + 2[Nj)-i^^_,[^^^ (G-13) 

AR^_   dR,   -^^_^[Nf_;^^_^[N^] (G-H) 
^[Aj]    a[NO] 
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i^ -_^ - ^^ jNf -i^^,4[NJ (G-15) 
a[AJ    d[0] "■4 

= 2[N]{^,,3[N] + ^,,,[0] + i^,,5([0 J + [N J)+ir,,,[NO]} 
d[A,]    a[N]      ^   ^^ °- "'"^ -^^^   ^^       ^-'      "-^     ^' (G-16) 

J^ - J^ - i^, ,[0][N] -i:^,,[NO] (G-17) 

a[Aj~e[Nj 
^^i.7[0][N]-^^,,[NO] (G-18) 

a/?3     6i?. 

^[Aj]    a[NO] 
2- = ii:,,[0][N]-is:,7([OJ + [NJ + 2[NO] + [0] + [N]) (G-19) 

-^^—^ = i^,.7[N]([OJ + [NJ + [NO] + 2[0] + [N])-ii:^,,[NO] (G-20) 
a[Aj   e[0] 

^ = ^ = ^.7[0]([OJ + [NJ + [NO] + [0] + 2[N])-i^,,,[NO] (G-21) 
d{A,]    a[N] 

^\ = J^ = ^^^[N] (G-22) 
a[A,]   e[oj 

-^ = -^ = 0 (G-23) 
5[AJ    e[NJ 

^^ = _^ = _^^^[0] (G-24) 
e[A3]   a[NO] 

_^ = .^ = -K, JNO] (G-25) 
a[Aj   e[0]      ^''^ 

-^ = -^ = is:,JO,] (G-26) 
d[A,]   e[N]    *■'  ' 

-^ = -^ = 0 (G-27) 
a[A,]   e[oj 

^ = ^ = -^/.9[0] (G-28) 

-^^ = -^^ = ii:,JN] (G-29) 

J^ = _^ = _^   [NJ (G-30) 
a[Aj   a[0]      ^''' '-• 

e[A5]   a[N] 

236 



Appendix H 

Flux-Splitting for 2-D Chemistry Equations 
Due to the good stability of implicit numerical methods, an implicit finite 

difference formulation is applied as follows. 

_^=r \n+l       / _-^ \n+l 
'-'    -"    (dEX    (SF^ 

Ar 
• + 

d^ 
+ 

V ^b y ydrij 
-^;+'=0 (H-1) 

The time derivative is approximated by a first-order backward finite difference. 

The remaining terms in the equation are expressed at the n + \ time level. The change in 

the unknown vector Q^ per time step is 

Aa=er'-e, n+l      ^ n 
■c 

(H-2) 

A finite difference formulation in terms of AQ^ (known as the delta formulation) is 

considered. In the implicit formulation, the nonlinear terms given by the flux vectors E^, 

F. and W are at the unknown time level. Thus, a linearization is required. From Taylor 

series expansion about time level n, 

TB + l ■■E" + 
^dE.^" 

K^^c, 

At^+0{AtJ (H-3) 

Using the definition of flux Jacobian matrix A^, 

Er'=E:+A:^At,+o{Atj 
dt 

(H-4) 

Considering the approximation, —=^ « ——, one obtains 
dt„     Ar 

Er=E:+A:AQ,+0{AtJ (H-5) 

Likewise, 
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Fr'=F:+B:^Q,+o{^t,J (H-6) 

and 

w;^' = w; + /); AS, + o{AtJ (H-7) 

Substitution of these expressions into the finite difference Equation (H-4) yields 

A^+A/, 
aU"AgJ^afeAgJ j^„- 

d^ dt] 
= -A/ 

^dE"    dF" _£. + . (H-8) 

In the flux-vector splitting method, the flux vectors E^, F^ and the flux Jacobian 

matrices A^, B^ are split according to the sign of their respective eigenvalues. Jacobian 

matrices A^ and B^ admit the multiple eigenvalues X^^=U , X^^=V, respectively. 

The splitting process is as follows. 

A,^>0: 

\^<Q. 

(H-9) 

4^>0: 

K,<^- 

\B:=B^  B;=O 

[K=J'C /;=_O 
\B:=O  B;=B^' 

\F:=O F:=F^ 

(H-IO) 

The flux-spHt form of Equation (H-8) is 

Aa+AjA[(4^+^;)rAe]+|^[(5;+^;)'AeJ-z);Aa 

= -A/ 

(H-11) 
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The  space  derivatives  corresponding  to  the  positive  (negative)  terms  are 

approximated by a backward (forward) difference. If first-order approximations are used, 

the following finite difference equation is obtained. 

V/ € {2,IM-l], Vj 6 {2,JM-i\, 

where 

c4M,,=-^te.,.)r 

_       (H-12) 

At 

At] kuJ 
RHS,j = 

A^ l^c ij      ^c i~lj + ^c i+lj      ^c ij I 

+ -^(F"*"   -F*      +F~      -F'   ^-AtW" 

(H-13a) 

(H-13b) 

(H-13c) 

(H-13d) 

(H-13e) 

This implicit formulation for a two-dimensional configuration results in a 

pentadiagonal coefficient matrix. The solution of such a system is computationally time 

consuming. In order to alleviate this problem, an approximate factorization is introduced 

so as to reduce the pentadiagonal matrix system into two tridiagonal matrix systems for 

which efficient solution procedures exist. The equations are thus solved in two steps as 

follows. 
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where 

V/e{2,/M-l}, y/e{2,JM-l}, 

C4M,, Ae:,..,, + C-^.; Ae:,y + CAP,j Aa,.„,; = AO;,, (H-15) 

CAJ=1^^{A:,J-A:J (H-16a) 

CA.y =I + ^fe, -^;u)' -A^.^;,, (H-16b) 

Given RHS^j, Equation (H-14) can be solved for AgJ. j. This provides the right 

hand side of Equation (H-15), which is then solved for ^Qaj- The required boundary 

conditions for the blunt-body grid system are expressed as follows. 

At the solid surface (y = 1) zero-order extrapolation leads to 

Ae;„=Ae;,, (H-na) 

Application of the freestream conditions (y = JM ) yields 

^Q'cuM=^ (H-17b) 

After application of the boundary conditions (H-17a) and (H-17b), Equation (H- 

14) is written in matrix form as 

240 



V/e{2,/M-l} 

CBiV/.2+CJS,2 

CBM, 1,3 

0 

CBP,, 

CBM,, CBR i,JM-3 

0    CBM.,j^_, 

CBR i,JM-2 

CB Ag' 
JM-2 

i,JM-\  _\\_'-^^ci,JM-\_ 

RHS, 

RHS 
i,2 

1,3 

RHS i,JM-2 

RHS i,JM-\ 

Subsequently, Equation (H-15) is expressed in a matrix form as 

y/e{2,/M-l}, 

CAM,, + CA,,    CAR^.     0 

CAM 

0 
Xj 

CAM 4J CAR, 

CA 
IM-3,J 

M-2J CAR, IM-2,j 

0    C4M^_,,^.     C4^_,,,. 
Ae, 
Ae, 

■cIM-2,j 

■cIM-\,j 

(H-18) 

(H-19) 
' Ae;,; ■ 

Ae;3.; 

When Equation (H-8) is applied on the body surface, the flux-splitting method is still 

valid for the ^ -derivatives. However, for the r\ -derivatives, one-sided differences must 

be used. If second-order approximations are used, the following finite difference equation 

is obtained. 
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y/-€{2,jM-i}, 

+4',>,, A^,.,,, -A;., A^J-M^D:., A^,, 

Af„ 

A^ l-^c /,1       -'^c ,-1,1 + ^c ,+1,1       -^c /.I / 

+ -^^(-3F   +4F    -F   Y^-MW"*^ 
2 An '"'' ""'^      '"''■' c" c   /,i 

(H-20) 

Note that, for a non-porous solid surface, 

F=77x"+^^v = 0=> J^,., =0 (H-21) 

For the sake of simplicity, the following auxiliary variables are introduced. 

CAM,,=-^{A:^_J (H-22a) 

CAP: 
At 

',1 A<? ftc...ir (H-22b) 

C4, =I + ^(A;.,-A-y -AtD", 
'•' An '' '^ ',1/ c    c ,,1 (H-22c) 

^■^,.1 = A £ V^c ;,i     -^c ,-i,i + ^c ,+1,1     -^c ,-,1) 

+ -=^(F    -4F    Y'-AtW" 

(H-22d) 

With the assumptions 

Ae:,,,=Aa,i (H-23a), AQ^^,=AQ^ cIM,\       " ^clMMXA (H-23b) 

the following block tridiagonal system is obtained. 
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CAM,, 

0 

0 

RHS2 1 

CAP,, 

CA,, 

CAM,, 

0 

0    CAM^_,, 

0 

0 

CA. 

CAPi^_2, 

W-1,1 

Aec;M-2,l 

Ae/M-U. 

^■SB.! 

RHS IM-2A 

RHS 1M-1,1 

(H-24) 
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