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Preface 

Non-Newtonian GFD was the theme of the 2003 Geophysical Fluid Dynamics 
Summer Study Program. Professor John Hinch (University of Cambridge) gave the 
principal lectures, which amounted to a thorough introduction to the fluid dynamical 
foundation of the subject. As usual, the principal lectures were followed by a variety of 
seminars, covering a wide range of fields, some non-Newtonian, others not. 

One newer enterprise this summer was the introduction of a special GFD lecture, 
intended for a more general audience. This summer's lecture was given by Andy Woods 
(BP Professor, University of Cambridge), on the general subject of "Volcano 
Mechanics". Andy presented material covering the current thinking on the geological 
processes at work in volcanoes, and ideas on how we might model the phenomena from a 
theoretical perspective. The talk was held in Redfield Auditorium and was attended by 
almost fifty people, drawing in members of the Oceanographic Institution and the local 
community, in addition to the program participants. The talk was followed by an 
enjoyable reception. 

This year's Fellows meshed together fairly well. The Fellows' exploits included 
some notable successes on the softball field (against both the other WHOI teams and the 
staff team at the summer's close). Their academic accomplishments can be viewed 
elsewhere in this volume. 

Jean-Luc Thiffeault must be thanked for his tireless service of the computers. I also 
thank Shreyas Mandre for his important contributions in creating this volume. Regarding 
the every day scientific and educational aspects of the program, special 
acknowledgements go to Oliver Buhler, Claudia Cenedese, Jean-Luc Thiffeault and 
George Veronis, and to Keith Bradley for his assistance in the Lab. 

The program continues to be indebted to the W.H.O.I. Academic Programs Office, 
who once more provided a perfect atmosphere in which to run the program. This year 
Janet Fields stepped down as the administrator of the program, and her place in the 
cottage was competently filled by Jeanne Fleming and Penny Foster. However, all three 
helped to ensure that the summer ran smoothly. 

Neil J. Balmforth 
26"^ August 2003 



TABLE OF CONTENTS 

I PREFACE i 

CONTENTS ii 

II PARTICIPANTS iv 

III LECTURE SCHEDULE vii 

IV PRINCIPAL LECTURES - Non-Newtonian Geophysical Fluid Dynamics 
Presented by John Hinch, University of Cambridge, United Kingdom 

Lecture One: 

Introduction 
John Hinch 1 

Lectvire Two: 
Constitutive Relations 
John Hinch 20 

Lecture Three: 
Simple Flows 
John Hinch 28 

Lecture Four: 
Experiments and Numerics 
John Hinch 39 

Lecture Five: 
Microstructural Studies 
John Hinch 49 

Lecture Six: 
Simple Relaxation and Yield Problems 
John Hinch 55 

Lecture Seven: 
Stress Relaxation 
John Hinch 65 

Lecture Eight: 
Instabilities 
John Hinch 83 

u 



Lecture Nine: 
Strong Flows 
JohnHinch 94 

FELLOW'S LECTURES 

Report One: 
Flow Induced Oscillations: A Source Mechanism for Volcanic Tremors? 
Alison Rust, University of Oregon 113 

Report Two: 
Wave-Mean-Flow Interaction in Oldroyd-B Fluid 
Amit Apte, University of Texas at Austin 133 

Report Three: 
Diffusively-driven Overturning of a Stable Density Gradient 
Andrew F. Thompson, Scripps Institution of Oceanography 146 

Report Four: 
Viscoelastic Catenary 
Anshuman Roy, University of Michigan 166 

Report Five: 
Eddy Generation by Flow over Variable Topography: Some Experiments 
Christopher L. Wolfe, Oregon State University 172 

Report Six: 
Elastic Critical Layers 
Joel Miller, Cambridge University, United Kingdom 191 

Report Seven: 
Laboratory Experiments on Non-linear Rossby Adjustment in a Channel 
Julia Mullamey, Res. School of Earth Sci., Australian National University 211 

Report Eight: 
Stability of Viscoplastic Flow 
JunJun Liu, California Institute of Technology 232 

Report Nine: 
A Novel Layered QG Model 
Neil Burrell, University of Colorado, Boulder 253 

in 



2003 GFD FELLOWS, STAFF AND VISITORS 

Fellows 

Amit Apte 
Neil Burrell 
Junjun Liu 
Joel W. Miller 
Julia Mullamey 
Anshuman R03' 
Alison Rust 
Andrew Tliompson 
Christopher L. Wolfe 

University' of Texas at Austin 
University of Colorado-Boulder 
California Institute of Technology 
Cambridge University 
Res. School of Earth Sci., Australian National University 
University of Michigan 
University of Oregon 
Scripps Institution of Oceanography, UCSD 
Oregon State University 

Staff and Visitors 

James L. Anderson 
Neil J. Balmforth 
Andrew Belmonte 
Andrew Bemoff 
Oregon,' Buck 
John Bush 
Colm-cille P. Caulfield 
Eric P. Chassignet 
Stephen W. Childress 
Charles Doering 
Pascale Garaud 
Louis N. Howard 
Daniel Joseph 
Joseph B. Keller 
Nomian R. Lebovitz 
Jennifer A. MacKinnon 
Willem V.R. Malkus 
Philip J. Morrison 
Claes G. Rooth 
Alexander V. Soloviev 
Andrew M. Soward 
Edward A. Spiegel 
Jean-Luc Tliiffeault 
George Veronis 
JieYu 

Stevens Institute of Technology 
University' of California, Santa Cruz 
Penn State University 
Harvey Mudd College 
Saint Anselm College 
Massachusetts Institute of Technology 
Universit>' of California, San Diego 
University of Miami 
New York Universit\' 
University of Michigan 
Universit\' of Cambridge 
Florida State Univ./Massachusetts Institute of Technology 
University' of Minnesota 
Stanford University 
University of Chicago 
Scripps 
Massachusetts Institute of Technology 
University of Texas at Austin 
Universit>' of Miami 
NOVA Southeastern University' 
University of Exeter 
Columbia University 
Imperial College 
Yale University' 
Duke University 

IV 



2003 Participants 

Standing (left to right): Stephen Childrcss, Aiison Rusl. Lou Ting, Joseph Keller, Shrcyas Mandre, 
Lakshminarayanan Mahade\ an, Andrew Behnonle, Clacs Rooth. Amala MahadeMin 

Seated on porch (left to right): Ewslali E\slalie\- (slanding), Oli\er Buhler, Charles Doering, Misha Chcrlko\-, 
Alexander Solo\ie\-, Jean-Luc ThilTeault, George Vcronis, Shilpa Ghadge, Christopher Wolfe, Amit Apte, 
Anshuman Roy, Neil Burrell 

Seated on ground (left to right): Penn\ Foster, JunJun Liu, Neil Balmlorth, Joel Miller, Pascal Garaud, Julia 
Mullarncy, Andrew Thompson, Jennilcr Mackinnon 

BEST AVAILABLE COPY 



B 
A * i 

try jffi-'iJ 

';€-:■/■ 

"c;,^^ 
'^■^>i.nyl 

1 w 
is ^' 
f,B t 

1003 Principal Lecturer John Hinch 

BEST AVAILABLE COPY 

Vl 



GFD 2003 Lecture Schedule 

Week of June 16 - 20,2003 
(All talks held in Walsh cottage unless otherwise noted.) 

Monday, June 16 
10:00 am John Hinch, University of Cambridge, United Kingdom 

Phenomena and Rheometry 

2:00 pm John Hinch 
Constitutive Equations 

Tuesday, June 17 
10:00 am John Hinch 

Simple Flow Calculations 

Wednesday, June 18 
10:00 am John Hinch 

Experiments and Computing 

3:00 pm John Hinch 
Micostructural Studies for Rheology 

Thursday, June 19 
10:00 am John Hinch 

Simple Relaxation and Yield Problems 

3:00 pm John Hinch 
Instabilities 

Friday, June 20 
10:00 am John Hinch 

Strong Flows 

3:00 pm John Hinch 
The Success and Failure of Oldroyd-B (inc converging flows) 

Week of June 23 - 27,2003 

Monday, June 23 
10:30 am 

2:00 pm 

Jean-Luc Thiffeauh, Imperial College, United Kingdom 
Turbulent Polymers 

John A. Whitehead, Physical Oceanography Department, WHOI 
Discrete Jumps and Oscillations in Temperature - Salinity Driven 

Laboratory Experiments 

vn 



Tuesday, June 24 
10:30 am 

3:00 pm 

John Wettlaufer, Yale University 
Flow of Unfrozen Water 

Physical Oceanography Department Seminar 
Location - Clark 507 

Wednesday, June 25 
10:30 am Linda Sniolka, Duke University 

Filament Dynamics of Non-Newtonian Fluids in Extensional 
Flows 

3:00 pm Philip Morrison, University of Texas at Austin 
Fluctuations in Inhomogeneous Systems using Statistical 

Mechanics 

5:30 PM 

Thursday, June 26 
10:30 am 

Friday, June 27 
10:00 am 

Project Discussions 

Oliver Buhler, New York Universit>' 

Vortices in a Tea Cup 

Claudia Cenedese, Physical Oceanography Department, WHOI 
A Laboratory Model of Tltermocline Depth and Exchange 

Fluxes Across Circumpolar Front 

Week of June 30 - July 4, 2003 

Monday, June 30 
10:00 am Daniel Joseph, University of Minnesota 

Non-Ne}vtonian Fluids I 

Tuesday, July 1 
10:30 am Daniel Joseph 

Non-Newtonian Fluids II 

Wednesday, July 2 
10:30 am Norman Lebovitz, University of Chicago 

Fission Theory Primed 

Thursday, July 3 
10:30 am Joseph B. Keller, Stanford University 

Water Waves 

vui 



Friday, July 4 
NO LECTURE -DUE TO INDEPENDENCE DA YHOLIDA Y 

WeekofJuIy7-ll,2003 

Monday, July 7 
10:30 am 

3:00 pm 

Slava Solomatov, New Mexico State University 
Mantle Convection with Realistic Rheologies 

Andrew Fowler, Oxford University', United Kingdom 
Ice Sheets 

Tuesday, July 8 
10:30 am Lakshminarayanan Mahadevan, Univ. of Cambridge, United Kingdom 

The Pseudo-Elasticity of Newtonian Fluids 

Wednesday, July 9 
10:00 am Gregor\- Buck, Saint Anselm College 

Natural Entanglements: Geometry, Topology and a Phase 
Transition 

Thursday, July 10 
10:30 am 

3:00 pm 

Greg Hirth, Geolog\' & Geophysics Department, WHOI 
Non-Ne)vtonian Viscous Deformation of the Earth's Mantle 

Ross Griffiths, Australian National Universit\- 
Solidification in Shear Flows 

Friday, July 11 
10:30 am Alan Rempel, Yale University 

Freezing Dirt: The Fluid Mechanics of Frost Heave 

WeekofJulyl4-18,2003 

Monday, July 14 
10:30 am 

Tuesday, July 15 
10:30 am 

Amala Mahadevan, University of Cambridge, United Kingdom 
Spatial Heterogeneity at the Sea Surface 

Informal Discussion 
Horizontal Convection - Turbulent or Non-Turbulent? 

IX 



Wednesday, July 16 
10:30 am Jean-Luc Thiffeault 

Mixing in a Simple Map 

Thursday, July 17 
10:30 am 

3:00 pm 

Oliver Buhler, New York University 
Wave Scattering and Remote Recoil 

Edward Spiegel, Columbia University 
The Content of Shape 

Friday, July 18 
10:30 am 

3:00 pm 

NO LECTURE 

John Bush, Massachusetts Institute of Technology 
Water Walking Insects 

Monday, July 21 
10:30 am 

3:00 pm 

Tuesday, July 22 
10:30 am 

3:00 pm 

Wednesday, July 23 
10:30 am 

3:00 pm 

Charles Doering, University' of Michigan 
The Stochastic Fisher-Kolmogorov-Petrbvsky-Piscanov Equation, 

Interacting Particles and Duality 

NO LECTURE 

Alexander Soloviev, NOVA Southeastern University 
Horizontal Mixing in the Western Pacific Warm Pool as a 

Nonlinear Diffusion Process 

NO LECTURE 

Misha Chertkov, Los Alamos National Laboratory 
Phenomenology ofRayleigh Taylor Turbulence 

NO LECTURE 

Thursday, July 24 
10:30 am 

3:00 pm 

Steve Childress, New York University 
Experiments on Flapping Flight as a Symmetry Breaking 

Bifurcation 

Jennifer MacKinnon, University of California, San Diego 
Missing Mixing or Missing Physics: the Nonlinear Evolution of 

Internal Gravity Waves over Rough Topography 



Friday, July 25 
10:30 am 

3:00 pm 

Andrew Belmonte, Penn State University 
Introduction to the Dynamics of Wormlike Micellar Fluids 

Andrew Belmonte, Penn State University 
Instabilities of Viscoelastic Free Surfaces 

Week of July 28 - August 1, 2003 

Monday, July 28 
10:30 am 

3:00 pm 

Ian Frigaard, University- of British Columbia 
Viscoplastic Fluids 

Am\' Shen, Washington University 
Coating Dynamics with Complex Fluids 

Tuesday, July 29 
10:30 am 

3:00 pm 

Wednesday, July 30 
10:30 am 

Ian Frigaard, University of British Columbia 
Stability of Multi-Layer Viscoplastic Flows 

NO LECTURE 

Pascale Garaud, Universit>' of Cambridge, United Kingdom 
Dust]' Acretion Disks 

3:00 pm 

Thursday, July 31 
10:30 am 

NO LECTURE 

Chiang Mei, Massachusetts Institute of Technology 
Slow Flows of Mud Down a Channel or a Conical Surface 

3:00 pm 

Friday, August 1 
10:30 am 

3:00 pm 

NO LECTURE 

Joe Pedlosky, Physical Oceanography Department, WHOI 
Rossby Basin Modes and their Instabilities 

NO LECTURE 

XI 



Week of August 4-8,2003 

Monday, August 4 
10:30 am 

3:00 pm 

Colm-cille Caufield, University of California, San Diego 
The Consequences of Stress: Rigorous Bounds for Environmental 

Flows 

Antonello Provenzale, Instituto de Cosmogeofisica 
Patterns of Blown Sand 

Tuesday, August 5 
10:30 am 

3:00 pm 

George Field, Harvard University 
Dynamo Theory and Magnetic Helicity 

NO LECTURE 

Wednesday, August 6 
10:30 am Gordon Ogilvie, University of Cambridge, United Kingdom 

The Visco-Elastic/MHD Connection 

3:00 pm Andrew Woods, University- of Cambridge, United Kingdom 
Gravity Currents in Porous Media 

Thursday, August 7 
10:30 am 

3:00 pm 

Yoel Forterre, Universite de Provence, France 
Long-surface Wave Instability in Dry Granular Flows 

Shre>'as Maiidre, University of California, Santa Cruz 
Dynamics of Roll Waves 

Friday, August 8 
10:30 am 

3:00 pm 

Richard Craster, Imperial College, United King 
Evolving and Cooling Domes of Lava 

George Haller, Massachusetts Institute of Technology 
Kinematic Theory of Unsteady Separation 

Week of August 11-15,2003 

Monday, August 11 
10:30 am NO LECTURE 

3:00 pm NO LECTURE 

xn 



Tuesday, August 12 
10:30 am NO LECIURE 

3:00 pm NO LECTURE 

Wednesday, August 13 
10:30 am NO LECTURE 

3:00 pm NO LECTURE 

Thursday, August 14 
5:00 pm Andrew Woods, BP Professor, University of Cambridge, UK 

Volcano Mechanics -A public lecture at RedfieldAuditorium, 
reception to follow 

Friday, August 15 
10:30 am NO LECTURE 

3:00 pm NO LECTURE 

Week of August 18 - 22,2003 - Fellows' Lectures 

Monday, August 18 
10:30 am NO LECTURE 

3:00 pm NO LECTURE 

Tuesday, August 19 
10:30 am Christopher Wolfe, Oregon State University 

Eddy Formation over Variable Topography 

2:00 pm Andrew Thompson, Scripps Institution of Oceanography 
Diffusively Driven Overturning from a Stable Density Gradient 

3:15 pm Amit Apte, Universit}- of Texas at Austin 
Wave-Mean-Flow Interaction in Oldroyd-B Fluid 

Wednesday, August 20 
10:00 am Anshuman Roy, Universit}' of Michigan 

Viscoelastic Catenary 

xni 



11:15 am 

2:15 pm 

Neil Burrell, University of Colorado, Boulder 
/ % Layer Quasigeostrophic Equations 

Julia Mullamey, Research School of Earth Sciences, Australian National 
Universit}' 
Laboratory Experiments on Non-Linear Rossby Adjustment in a 
Channel 

3:30 pm Alison Rust, University of Oregon 
Volcanic Tremor 

Thursday, August 21 
10:30 am 

11:15 am 

JunJun Liu, California Institute of Technology 
Stability of Viscoplastic Flow 

Joel Miller, Cainbridge, University, United Kingdom 
Elastic Critical Lavers 

Thursday, August 22 
10:30 am NO LECTURE 

3:00 pm NO LECTURE 

XIV 



Lecture 1: Introduction 

E. J. Hinch 

Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, 
saliva, oils, mud and lava, exhibit a number of behaviors that are difierent from Newtonian 
fluids and have a number of additional material properties. In general, these differences 
arise because the fluid has a microstructure that influences the flow. In section 2, we will 
present a collection of some of the interesting phenomena arising from flow nonlinearities, 
the inhibition of stretching, elastic efl'ects and normal stresses. In section 3 we will discuss 
a variety of devices for measuring material properties, a process known as rheometry. 

1    Fluid Mechanical Preliminaries 

The equations of motion for an incompressible fluid of unit density are (for details and 
derivation see any text on fluid mechanics, e.g. [1]) 

*Hu.V)u = V.S + F (1) 

V • u = 0 (2) 

where u is the velocity, S is the total stress tensor and F are the body forces. It is customary 
to divide the total stress into an isotropic part and a deviatoric part as in 

S = -pI + a (3) 

where tr cr = 0. These equations are closed only if we can relate the deviatoric stress to 
the velocity field (the pressure field satisfies the incompressibility condition). It is common 
to look for local models where the stress depends only on the local gradients of the flow: 
a = a (E) where E is the rate of strain tensor 

E = i (Vu + Vu^), (4) 

the symmetric part of the the velocity gradient tensor. 
The trace-free requirement on a and the physical requirement of symmetry a = cr^ 

means that there are only 5 independent components of the deviatoric stress: 3 shear 
stresses (the off'-diagonal elements) and 2 normal stress diff'erences (the diagonal elements 
constrained to sum to 0). These two normal stress differences are 

M = (^xx — (^yy (5) 
Ni   =   <72^   -   Uyy. (6) 

1 



Throughout this series of notes we will frequently refer to two model flow types: Simple 
shear and Uni-axial extension. In simple shear the velocity profile is u = 7 (y,0,0) where 7 
is the shear rate. The rate of strain tensor in this case is 

/ 0   7   0 
E=      7   0   0 

\ 0    0   0 

For uni-axial extension, u = e (z, -y/2, -z/2) with rate of strain tensor 

E 

where e is the magnitude of the strain. Note that 7 and e are both scalars, whereas E is a 
tensor. 

2    Phenomena 

2.1 Non-linear Flow 

In the simple example of flow down a pipe at low Reynolds numbers, the flow rate in 
Newtonian fluids increases linearly with the applied pressure drop (see figure 1). Any 
fluids which deviate from this relation are then non-Newtonian. These fluids can be further 
classified depending on how this relation claanges, relative to the Newtonian example. Shear 
thinning fluids become less viscous with increasing shear rates and so have larger than 
linear growth with pressure-drop in the flow rate. The microstructures of such materials 
are smashed up at higher sheai". This results in lower viscosities, hence the fluid flows more 
easily. Shear thickening fluids become more viscous with increasing shear rate and hence 
have less than linear flow rates. Shear thickening behavior is less common and generally 
arises in fluids that have a highly regular microstructure at rest. When the fluid begins 
to move, the microstructural components jam against each other, thickening the fluid thus 
preventing movement. Finally there are yield fluids for which there is no flow below a 
certain critical pressure drop. Some common yield fluids are ketchup, toothpaste, silicate- 
rich lava and mud. The viscous properties of all of these fluids are strongly dependent on 
temperature and pressiire. 

2.2 Inhibition of Stretching 

Another phenomenon associated with some non-Newtonian fluids is a dramatic resistance 
to stretching of fluid elements compared to Newtonian fluids. Typically, the force required 
to stretch the fluid is ~ 1000 times greater than that required to shear it. Measurements 
of the extensional viscosity, the resistance of the fluid to stretching motions, show large 
variations in behavior depending on the type of flow (see figure 2). 

The high extensional viscosities present in these fluids give rise to a multitude of con- 
sequences. Bubbles rising in these fluids form cusps at the downstream end, thus avoiding 
the large stretching flow out of a rear stagnation point (see figure 3).  A similar effect in 
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Figure 1: Flow rate as a function of pressure drop for flow down a pipe. 

jets inhibits the ejection of spray. The formation of droplets is a highly straining event that 
occurs at the pinching off of a parcel of fluid. In a fluid containing a few parts per million 
of high molecular weight polymers, this effect is inhibited by the high extensional viscosity 
(see figure 4). This lack of spray formation could provide a beneficial effect for fire hoses 
and in aircraft fuel by preventing potentially explosive mists of droplets from forming. 

The inhibition of stretching by high extensional viscosities is also thought to be impor- 
tant in the process of turbulent drag reduction. Addition of very small amounts of high 
molecular weight polymers to turbulent fluid flows can dramatically reduce the amount of 
drag in pipe flows. Drag reductions of 50% are possible with polymer concentrations of 10 
parts per million (ppm) and as much as an order of magnitude reduction with concentra- 
tions of only 500 ppm. This reduction is not well understood and is a much-debated issue 
in current research. One hypothesis is as follows: drag in turbulent flows is largely due to 
turbulent bursting events which transport low momentum fluid from near the walls into the 
interior of the pipe. These bursts are highly straining flows and so are less frequent with the 
addition of polymers and the attendant increase in extensional viscosity. Such reductions 
in drag can be critical for oil pipelines (the trans-Alaskan pipeline) and ancient municipal 
sewer systems. (In Bristol, so great was the drag reduction after a rainfall that a hydro- 
dynamic shock wave was formed in the sewer system and propagated down the network 
blowing off manhole covers a.s it passed.) 

Conversely, non-Newtonian effects can be detrimental for some industrial processes, 
for example through the formation of upstream vortices (see section 6 from Lecture 3). 
Consider flow from a reservoir out a hole: as seen in figure 5, Newtonian fluids flow toward 
the hole from the entire reservoir while non-Newtonian fluids can form recirculating vortices 
upstream. These upstream vortices are industrially important in the processing of polymers 
because fluid that stays in the tank for longer can be significantly degraded (e.g. by a 
longer exposure to heating), and hence can lead to the production of inconsistent materials. 
These upstream vortices are caused by high extensional viscosity in the following way: the 
stretching of fluid elements is proportional to the width of the cone through which fluid flows 



l(f IQi W 
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Figure 2: Extensional viscosity measurements for the Ml Boger fluid from (1) open siphon, 
(2) spinline, (3) contraction flow, (4) opposing jets, (5) falling drop, (6) falling bob, (7) 
contraction flow, (8) contraction flow [from [2]]. 

into the hole. For non-Newtonian fluids shear is preferential to stretching and a narrower 
cone of extensional flow forms at the cost of recirculating vortices ([3]). On the other hand, 
for Newtonian fluids the cone of fluid flowing out through the hole fills the entire container. 

2.3 Elastic Effects 

Many non-Newtonian fluids are called visco-elastic because they exhibit a variety of elastic 
effects in which straining of the fluid can store energy. A dramatic example is shown in 
figure 6 which shows the cutting of visco-elastic liquid as it is poured. The lower portion of 
the fluid falls as expected, however the upper portion rebounds upward into the container 
from which it is being poured. Another interesting effect is the open (tubeless) siphon, 
in which fluid is drawn up over the wall of the upper container by elastic forces from the 
descending fluid (see figure 7). Finally in flow out of an orifice, non-Newtonian fluids show 
an expansion of the stream of fluid known a.s die swell (see figure 8). This expansion is 
caused by the release of elastic energy stored in the fluid as it is stretched in the outlet 
tube. This tension causes a vertical rebounds after the fluid leaves the tube and because of 
incompressibility the stream must expand in the transverse direction. 

2.4 Normal Stress Effects 

Our final category of non-Newtonian effects contains those caused by stresses normal to 
shear flow. These effects can be viewed as being due to tension in the streamlines of the 
flow. For example, there can be dramatic effects on the distribution of particles in shear 
flows. In simple shear there is aggregation of particles. The tension present in the curved 
streamlines surrounding two particles produces a net force on the particles that pushes 
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Figure 5:   Sireamlinos of [low oiil a hole ibr (a) glycerin.  DP. = 0 and (b-e) i for 1.67% 

aqu(H)us ])()lyaerylamide solution, Dc. = 0.2. 1. 3 and 8. 

Figure 6: Aluminum soap solution cut in midstream 

Figure 7: Schematic of the open-siphon effect 
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Figure 8: Schematic of the die swell effect for Newtonian and non-Newtonian fluids 

them together (figure 9) with a cumulative effect as shown in figure 10. A similar effect 
is the migration of particles to the center of a pipe. The parabolic velocity profile gives a 
non-uniform shear that is higher near the walls of the pipe than in the center. This makes 
the tension in the streamlines greater near the wall and thus applies a net force which causes 
particles to migrate towards the center as in figure 11. 

tension in streamlines 
resultant force 

Figure 9: Balance of forces for two particles in a simple shear. 

A final example of the effect of normal stresses is that of a spinning rod in a bath of 
fluid. For low rates of rotation, a Newtonian fluid will have a flat (or slightly depressed) free 
surface. For comparable rates of rotation in the non-Newtonian fluid, we see an upwards 
deflection in the free surface, which is higher in the center (see section 4 from Lecture 
3). The shear caused by the rotating rod creates tension in the circular streamlines. This 
"hoop" stress balances the hydrostatic pressure of a column of fliiid above it, allowing the 
fluid to "climb" the rod as in figure 12. 
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Figure 10: Particle aggregation in sheared polymer solution [after [4]]. 
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Figure 11: Migration of particles to centerline in a non-Newtonian pipe flow. 

3    Rheometry 

Rheometry is the study of material properties of fluids including shear viscosities, exten- 
sional viscosities and normal stresses as well as the dependence of those properties on 
temperature and pressure. In this section we discuss the definitions of these properties and 
the mechanisms used to measure them. 

3.1    Simple Shear Devices 

There are many ways to generate a shear flow in the laboratory that allow us to measure 
fluid properties. One of the simplest is shown in figure 13. The fluid lies between two 
parallel plates with the top plate free to move under an applied force and the bottom plate 
held fixed. This method works for fluids, such as heavy tars, which are sufficiently viscous 
so they do not flow out of the sides. The top plate is dragged at constant velocity v across 
the fluid and feels a force F. The area of the plates is A and their separation is h. The 
shear rate across the layer is 

7 
V 

h' 



Figure 12: A photograpli of l,he rod climbing ofi'ocl,. The d(!vice consisted of a rod immersed 
in t.he 1OW(M-, darker fluid. As the rod is rot.aied, normal stressc^s cause a lliiid column t-o 

ris(! near the rod. 

Possible values of this sheai' rate range from 7 ^ 10  ■'s   '  for fine particles sedimenting, 
7 X 10'' s   ^ for food being chewed and as high as 7 ?« 10' s in lubrication shear flows. The 

tangcMitial shear stress is 
F 

^r.y = j. 

and the sh(;ar viscosity // is given by the ratio of these two C|uantities, 

Fh 

Typical valutas of// for non-Xewtonian fluids are quite lai'gc!. for example polymer melts havc^ 
// ^ 10''Pas and molten glass has // ^ 10^'^ Pas (for water // = 10 "''Pas). Shear-thinning 
materials often have appi-oximate power law dependence wit,h shear viscosity as a function 

of shear rate, that is 
^j,{A,)=kY'-\ fbrn<l. (7) 

For molten polymers n « 0.6, tooth]5aste has n « 0.3 and grease has n ^QA. 
A variedly of other devices exist for measuring shear viscositi(;s and these are summarized 

bcilow (ligure I'l). The capillary tube rheometer is used for measurements on low viscosity 
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Figure 13: Device for measuring simple shear 

liquids with high shear rates. The Couette device is used for flows which have very low 
Reynolds numbers and so does not suffer from any inertial instability. However, a defect 
of these two devices is that the shear rate is not uniform throughout the device hence it is 
not clear what value of 7 is being measured. The cone-and-plate rheometer is designed so 
that the shear rate is independent of position for small angles a ~ 2° (figure 14). Sample 
rheometric data are shown in figure 15. The plateau at low shear rates, with power law 
behavior above a critical value is characteristic of non-Newtonian fluids (see section 3.7). 

3.2 Normal Stresses 

The normal stresses (the first normal stress due conceptually to the tension in the stream- 
lines) can be measured using the cone-and-plate device described earlier. Tension in the 
streamlines produces an axial thrust pushing the cone and plate apart with a force which 
can be measured (see figure 14). With the same device, the second normal stress can be 
found by measuring the distribution of pressiire over the surface of the cone or, if the first 
normal stress is known, it can be computed from the axial thrust on two rotating parallel 
plates. A final apparatus for measuring the second normal stress is Tanner's tilted trough, 
in which non-Newtonian fluid flows down an inclined trough. The free surface is curved 
due to the influence of the second normal stress and this bowing can be measured with an 
optical device. 

3.3 Oscillatory Rheometry 

Rheometers of the parallel plate and cone-and-plate varieties often have the capability to do 
small amplitude oscillatory shear tests. These tests involve the application of a sinusoidal 
stress (or strain) to the upper plate or cone of the rheometer. The resulting strain (or 
stress) can be resolved into components that are in phase with the input (elastic response) 
and I out of phase with the input (viscous response). Pi'om these data a complex modulus, 
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Figure 14: Illustration of devices for measuring shear viscosities. The vertical scale in the 
cone-and-plate illustration is exaggerated. 
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Figure 15: Dependence of viscosity on shear rate for two polymer solutions (o and A) and 
an aluminum soap solution (D). All data were taken at 298 K. 
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G*, is detennined as a function of frequency. 

G* = G' + iG", (8) 

where G' (storage modultis) and G" (loss modulus) give information on energy storage and 
energy dissipation in the flow, respectively. For a perfectly elastic sohd, G" = 0 and G' = G, 
the elastic modulus. For a Newtonian fluid, G' = 0 and fJ- = ^, where u is the frequency. 

3.4    Extensional Viscosity 

For the imi-axial extensional flow, we can define the extensional viscosity as, 

1 

3e Mext = 
ax      2°yy      "iyzz /g\ 

where Oxx-, (^yy and CTZZ are the diagonal components of the stress tensor. Unfortunately, 
in the laboratory this steady straining flow cannot be maintained indefinitely. An approxi- 
mation to this flow is the spinline experiment (figure 16) where, at every point m the flow, 
there is one straining direction, in this case the x-direction, and two contracting directions, 
(for further details see section 7 from Lecture 3 and 1 fipm Lecture 8). Using a similar 
approximation to that used in section 3.1 we can compute an average stress by dividing the 
tension T by the area A and an average shear from the velocity gradient Vu « [v^ - vi)/L. 
Then the extensional viscosity is given by 

Atext « -fT T- (10) 
A{V2 - Vi) 

Other devices to measure extensional viscosity include the filament stretching rheometer and 
the Moscow rheometer. The filament stretching rheometer works by placing a fluid between 
two plates which are pulled apart rapidly (2 m within a second) at a constant strain rate and 
the appUed force on the bottom plate is measured. The Moscow rheometer allows surface 
tension to squeeze a fllament of fluid and measures the rate of thinning. The "Worthington 
jet" could also be used as a possible method to measure the inhibition of stretching: a 
sohd sphere is dropped mto a fluid, as it breaks the siu^ace a cavity forms and the filling 
of this cavity creates an upwards jet. In non-Newtonian fluids the extensional viscosity 
retards the motion of the drop and the rebound of the surface [5]. Theory to describe the 
correlation between the maximum height of this jet and the extensional viscosity has yet 
to be developed. Other devices to measture extensional viscosity include flow between four 
rollers or opposed jets, film blowing and Meissner's film on an expanding square grid. 

3.5    Temperature, concentration and molecular weight scaling 

Material properties depend on a variety of parameters, including the concentration and 
molecular weights of the polymers and also temperatm-e. Using an appropriate choice of 
non-dimensional parameters the data may be collapsed to give a power-law dependence for 
viscosity as a function of shear rate. Figure 17 shows a plot of the non-dimensional reduced 
viscocity and reduced shear rate, which axe defined as 
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Area, A 
Figure 16: Spinline apparatus for measuring extensional viscosity 

/ir = M(7,T) 
A^(0,T,) 

7r = 7 

//(0,T)' (11) 

(12) 

where T* and p* are a reference temperature and density, respectively. Similarly, figure 
18 shows a plot of dimensionless viscosity against dimensionless shear rate for a series of 
solutions with different concentrations of polymers. Figiure 19 shows the power law depen- 
dence of viscosity on molecular weight. In the dilute regime, (lower molecular weights) the 
dependence is linear and in the entangled regime (higher molecular weights) the viscosity is 
proportional to the molecular weight to the (empirically determined) 3.4 power. The signif- 
icance of these scalings is that the rheological properties can be determined at a reference 
condition and then extrapolated to other conditions. 

3.6 Cox-Merz rule 

The Cox-Merz rule is an empirical nxle which states that the dependence of the steady 
shear viscosity on the shear rate can be estimated from the dynamic viscocity (see section 
3.3) as a function of frequency as the two curves are approximately identical (figure 20). 
This has important practical appUcations as it is easier to acquire data over a wide range 
of oscillation frequencies. We force a fluid periodically with frequency u so that the strain 
'y(i) = je*^^ and write the resulting stress as 

a{t) = G*{oj)^{t) = [G' + iO") ^e^\ 

where G* is a complex elastic modulus. We can also write 

a{t) = tx*^{t) = [fj! + ifi") ioj-ye^* 

for a complex viscosity /x*. The Cox-Merz rule states that // = |/x*| and Ni = 2G'. 

3.7 Non-dimensional Parameters 

All materials have a relaxation time T, the time required to return to its base state after 
being perturbed, for instance by stretching. This timescale can be seen in figure 3 as the 
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Figiire 18: Dimensionless viscosity plotted against dimensionless shear rate for a series of 
solutions with different solution concentrations. 

reciprocal of the shear rate at which the graph of viscosity versus shear rate begins to txurn 
over. In non-Newtonian fluid flow the ratio of the timescales of deformation and relaxation 
is important. Two important non-dimensional parameters that express this quantity are 
the Weissenberg number and the Deborah number. The Weissenberg number is a measure 
of the strength of the shear rate and is defined by 

Wi = JT. 

The Deborah number is the ratio of the characteristic time-scale of the flow to the relaxation 
time, 

De=-. 

Note that the Deborah and Weissenberg numbers are often the same (but not always) and 
either can be used to quantify the importance of relaxation in the fluid. For De < 1 the 
material relaxes relatively quickly and it behaves like a viscous fluid. Conversely, when 
De » 1 the fluid does not relax on the timescale of the flow and so acts like an elastic solid. 

Notes by Neil Burrell and Julia Mullamey 
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Lecture 2: Constitutive Relations 

E. J. Hinch 

1 Introduction 

This lecture discusses equations of motion for non-NewtoniaJi fluids. Any fluid must satisfy 
conservation of momentum 

p— = -Vp + V-a + f>g (1) 

where p is the density of the fluid, u is the velocity field, p is the pressure and a is the 
deviatoric stress tensor (the trace-free component of the stress).^ We can absorb the body 
force pg into a modified pressure, and in turn we can absorb the modified pressure into the 
stress giving p^ = V • a. Much of the modeUng in non-Newtonian fluids concentrates on 
finding a constitutive relation between a and the flow velocity distribution. 

The fluids we use are incompressible unless stated otherwise, so we have assumed 

V • u = 0. 

In many practical applications of non-Newtonian fluids inertia is also negligible. So we will 
often use the Stokes equations: 

V • cr = 0. 

2 Phenomenological 

2.1    Simple materials 

In a simple material the stress a depends on the deformation and the rate of deformation. 
To imderstand this relationship we begin by considering how the fluid deforms. Using a 
Lagrangian fluid description we follow a fluid particle in the flow. The flow u maps a 
material element to a new position x that depends on its initial position X 

X^x{X,t). 

If we foUow a material fine element, 6X, it is stretched and rotated in the flow according to 

dxi 
6X-^6x = A- 5X,        Aij = 

dX. 

'in these notes a is used for either the stress or just the deviatoric stress. It is usually obvious from the 
context. 
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We assume that the system is local and causal. That is, the stress at a material point 
depends only on the history of that material point, and the stress cannot depend on future 
time. This gives a functional for stress 

a{t) = a{A{T)}r<t. (2) 

We now adopt the assmnption of material frame indifference which states that our 
constitutive equation should not depend on the translation, rotation or acceleration of the 
frame of reference. Except in extreme cases this should be a good approximation. Thus, 
we should get the same result if we calculate our stress before or after rotating the frame 

of reference. 
Consider a change of frame of reference given by 

x' = Q{t)x + a{t), (3) 

with Q(t) a rotation matrix and a a translation vector. The stress in the new frame of 
reference is given by 

a' = (T {Q(T) A(T) Q^(0)K<t 

= Q(t) a{A{T)}r<t Q^(t)- 

We require o-{A} to obey this identity for all Q(t). 

2.1.1    Perfectly Elastic Materials 

A perfectly elastic material responds instantaneously to an applied stress. All that matters 
is the present strain which depends only on the present position and the relaxed position. 
The history of how it arrived into its current position does not matter. The functional 
a{A(t)} becomes a function o-(A). 

We can decompose the deformation tensor A into a rotation tensor R and a stretch 

tensor U such that 
A = R • U with R^R = I and U^ = A^A. (4) 

Then setting Q = R^ in material frame indifference gives 

a{A} = R^(t)/(U(t))R(i), (5) 

thus reducmg the problem to determining the unknown function f{U). It is convenient to 
express the constitutive law in erms of the potential enevgyw{U) instead of the function /. 
The principal of frame indiflference leads to the constitutive law. For an elastic material 
that is isotropic in its rest state, and has potential energy w for elastic deformations, this 

gives 
^   dw   .  -T        l   OW   ._T.-1 ((!\ a = - ^ AA^ - - -^ A ^ A ^ (6) 
7 aa 7 c»P 

where a= HXl + Xl + Xl), ^ =}{XT^ + X2^ + Xf) and 7 = Af A^A§ (=1 if incompressible), 
and A^ are the eigenvalues of A^A 
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2.2    Time derivative problem 

In a new reference frame the stress is given by 

a' = QaOF' 

and so 
a' = Qa(f + QorQ^ + QaQ^. 

Thus the transformation from CT to o^ does not follow the same relation as the transformation 
from a to a'. We will try to find some other derivative that does. 

The new flow velocity is 
u' = Qu + Qa; + d 

and the velocity gradient is 

|^ = Q|^Q'- + QQ'-. (7) 
ox'        ox 

The velocity gradient can be separated into symmetric (strain rate) and antisymmetric 
(vorticity) parts The transformed strain rate is E' = QEQ^ and the transformed vorticity 
is Q! = moF + QQ^. 

Putting these elements together we can show that the co-rotational (Jaumann [1, 2]) 
time derivative 

^=:^_fi.^ + a.fi (8) 

has transformation 

t'= Q a Q^, 
o' 

(where </ denotes the co-roational derivative of the stress in the new frame of reference,) 
as does the co-deformational (Oldroyd [3] or upper convected) derivative 

?=:^_Vu^-a-a-V«. (9) 

o V 
Note 1= 0 but I 7^ 0. 

The co-rotational time derivative is the rate of change as observed while rotating and 
translating with the fluid. The co-deformational derivative is the rate of change as observed 
while deforming and translating with the fluid. 

3    Exact approximations 

3.1    Linear viscoelsisticity 

Linear viscoelasticity is valid in the Umit where A^A « I.  The most general form of the 
history-dependent Unear constitutive law is 

/•OO 

a{t) = R(t) /    G{s) (A^A)' (i - s)ds R^(t). (10) 
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This is a co-rotational time integral. G{s) represents the elastic memory. It is the Fomrier 
transform of the frequency dependent elastic modulus G*{w) defined in section 3.3 of Lecture 
1. For a Newtonian fluid G{s) = S{s) and for an elastic soUd, G{s) = 1. 

For simple shear with shear rate 7 

a(t) =  r G{s)j{t - s)ds (11) 
Jo 

and since for steady shear 7 is constant, the steady shear viscosity is given by f^ G{s)ds. 

3.2    Second order fluid 

The second order fluid is derived through a retarded motion expansion and is valid for 
slow, weak flows. Considerable care must be used because this model can have instabilities 
in regimes where it doesn't apply {e.g., high frequency), and these regimes can arise from 
poorly chosen boimdary conditions. 

The stress is Newtonian with smaJl terms added: 

o- = -pl + 2AtE-2Q:iE + a2E-E (12) 
/•oo 

H=        G{s)ds 
Jo 

/•C50 

ai = /    s G{s)ds. 
Jo JO 

In simple shear the second order fluid has constant viscosity /i = /J" G{s)ds and normal 
stress differences Ni = Cyy - Oxx = "^-otij^ , N2 = Czz -<^yy = -1027^, where x denotes the 
flow direction, y is the velocity gradient direction. 

In imiaxial extensional flow the viscosity is 

Mext = AJ + (ai + ^0:2)6,  - (13) 

where e is the elongation rate. 

4    Semi-empirical models 

Many fluids are too non-hnear to be described by the linear viscoelastic or slightly non- 
Unear second order models discussed above. For these fluids there are no exact solutions or 
exact approximations and other models must be considered. 

4.1    Generalized Newtonian Fluid 

The generalized Newtonian fluid follows the same equations as the Newtonian fluid but 
the viscosity depends on the shear rate 7 = \/2E : E. As for Newtonian fluids, the stress 
depends only on the instantaneous flow and not the flow history. The constitutive law is 

a = -p\ + 2fi{j)E. (14) 

The generalized Newtonian models were developed to fit experimental data and the form 
of ^(7) is usually derived empirically. Some common expressions used to fit data are: 
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Power Law [4] 
m=kT-\ (15) 

where k and n are fit paxameters. 

Caxreau, Yasuda, Cross [5, 6, 7] 

Ai(7) = /^cx> + (A^O - A^oo)[l + (AT)"]"^ (16) 

where /io a^d /Xcso are the viscosities at the limits of zero and infinite shear rate, 
respectively; a, n, and A are fit parameters. 

Yield fiuids: the fiuid flows only above some critical stress ay. 

— Bingham [8] 
if |cr| < ay 

if \a\ > ay 

- Herschel Bulkley 

ti=< 
00 if \a\ < ay 

Oy 

7 
^<jn-l + ^      if |jy| > ^^ 

4.2    The Oldroyd-B and FENE Models 

The Oldroyd-B model [3] is one of the sunplest models that includes the history of the flow. 
We use the following equation for the evolution of the deviatoric stress, 

a + Xia = 2fi{E + \2E). (17) 

where Ai is the relaxation time and A2 is the retardation time. For a given pressxxre p, the 
Oldroyd-B model often appears in an equivalent form for the total stress: 

a = -p*l + 2/x*E + -A (18) 
T 

X = -i(A-l) (19) 
T 

where p* =p + 2{l- A2/AI)AX/AI, G = 2(1 - X2/Xi)fi, T = Ai and /i* = A2AX/A1. The 
Oldroyd-B model reduces to Upper Convective Maxwell (UCM) when A2 = 0 and viscous 
Newtonian when A2 = Ai. 

In simple shear an Oldroyd-B fluid has constant viscosity /z = G/2 + fi* and the normal 
stresses are 

Ni = 2/x(Ai - A2)7^        N2 = 0. (20) 

The uniaxial extensional viscosity is 

fijl - Aze - 2AiA2e^) (^^. 

24 



m 
O 
CJ 2 
03 

^ 0 

13 
cl o 
P5 
v 

+= 
X 

W 
-8 

/ 

/ 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 

Elongation rate: e 

Figure 1: The extensional viscosity for Ai = 2, A2 = 1- The extensional viscosity is negative 
for elongation rates slightly above l/2Ai. 

This gives negative viscosities at some elongation rates (figure 1) which is unphysical. This 
happens because the Oldroyd-B model is derived using Hooks Law springs which are in- 
finitely extensible. 

The Oldroyd-B model can be reformulated to eUminate the negative viscosity. Assuming 
that the microstructure is not infinitely extensible, we get 

A -1- :L(A - I) = 0 
T 

for some function /(A). The stress a is then 

or T = -pH-2/X5E + ^!-(A-l) 

(22) 

(23) 

Occasionally / appears only in Equation (22) and not in (23). 
The FENE (finitely extensible nonlinearly elastic) modification keeps A firom growing 

too fast by setting 
I? 

^ ^ L^-trace A' ^^ ^ 
where L represents a nondimensional length scale for the stretching of the microstructure. 
The more A stretches, the stiffer it becomes. 

4.3    Other Consititutive Equations 

Below axe a few of the many other costitutive equations, which are derived to match exper- 
imental data. 

• The White-Metzner model [9] is used for shear-thinning fluids.   It is a modified 
Maxwell model that allows incorporation of experimental data on viscosity as a func- 
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tion of sheax rate. The deviatoric stress is given by 

The shear thinning viscosity //(-y) often follows a power-law. 

(25) 

The Giesekus model [10] adds quadratic nonlinearity and divides the deviatoric stress 
into a solvent contribution (ag) and a polymer contribution (ap). 

a = as + (Tp 

as = ^jE 

ap + Ai<Tp H ap = 2fj,pE 
fip 

The PTT (Phan-Thien-Tanner) model [11] is similar to Giesekus but has a different 
nonlineax term 

<7p + Ai CTp + exp I — trace ap ) — 

a = as + ap 

as = fXs^ 

ap = 2/XpE 

The Kay-Bernstein-Kearsly-Zappa (K-BKZ) equation [12] combines linear viscoelas- 
ticity and nonlinear elasticity via a memory integral constitutive law: 

'=pw[ll<^^^-^'-i'^-^^-'-« ds 

where A = A(i)A ^(s), and w, a and P are as in Section 2.1.1. 

In simple sheax 

while in extension 

^-rHTj^"'-'-"''%^ e" _ e-2«. ds. 

(26) 

The Wagner model [13] is a special case of the K-BKZ model with 

dw dw 
^ =:0(iV2 = 0) and 5^ = e-V-3+<'(^-). 
dp da 

One can choose ap to be the sum of several components each of which has its own 
relaxation time. This allows us to introduce multiple relaxation times into most of 
the above models. 

Notes by Joel C. Miller and Alison Rust 
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Lecture 3: Simple Flows 

E. J. Hinch 

In this lecture, we will study some simple flow phenomena for the non-Newtonian fluid. 
Prom analyzing these simple phenomena, we will find that non-Newtonian fluid has many 
unique properties and can be quite different from the Newtonian fluid in some aspects. 

1    Pipe flow of a power-law fluid 
The pipe flow of Newtonian fluid has been widely studied and well understood. Here, we 
will analyze the pipe flow of non-Newtonian fluid and compare the phenomenon with that 
of the Newtonian fluid. 

We consider a cylindrical pipe, where the radius of the pipe is R and the length is L. 
The pressure drop across the pipe is Ap and the flux of the fluid though the pipe is Q 
(shown in Figm-e 1). Also, we assume that the flow in the pipe is steady, uni-directional 
and uniform in z. 

Thus, the axial momentum of the fluid satisfies: 

Q_    dp ^ ld{ra„) .^^ 
dz     r     dr 

Integrate this equation with respect to r and scale ^ with ^, we have: 

<^zr = -n^walh (2) 

where Oyjoxi represents the stress on the wall and is given by Oyjcdl = ^r- ^^^ *^® power-law 
fluid, the constitutive equation is: 

CTzr = kr, (3) 

AP 

Figure 1: Pipe flow 
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Figure 2: Flow profile 

where fc is a constant and 7 is the scalar strain rate. For the pipe flow, the strain rate can 
be expressed as: 

(4) . _    dw 

where w is the axial velocity. Substitute the expression for the strain rate into the consti- 
tutive equation, then put the constitutive equation into the equation (2); we find 

/d«;\"_ 7^ 
\dr)   ~R <^wall- 

Integrate this equation with respect to r; we have: 

~\kR) 
w 

+ 1 

(5) 

(6) 

For the different choices of n, the relation of the axial velocity to the radius is different (see 
Fig. 2). For Newtonian flow (Poiseuille flow) with n = 1, the structure of the flow is 
quadratic {w oc r^). For shear thinning fluid with n < 1, the profile of the flow is flatter in 
the middle and decays faster towards the wall. Near the middle of the pipe, the stress a is 
low, and the viscosity /x is high; near the boimdaxy of the pipe, the stress a is high, and the 
viscosity fi is low. 

The volume fliix Q of the flow through the pipe is given by: 

Q -f Jo 
w2^rdr = j-^ ^-^^j (7) 

The volume flux Q of the shear thinning non-Newtonian fluid increases more quickly with 
pressure gradient than the Newtonian fluid. The flow of a power law fluid along pipe has 
common applications in wire coating, film draining and drop spreading. 

2      Capillary rheometry 

In Capillary rheometry, the shear viscosity of a fluid can be determined by shear rate. 
Assuming the flux through the pipe to be Q and the axial velocity to be to, the flux of the 
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flmd can be expressed as: 

rR pR ^yj 
Q=       w2Trrdr = wirr^lQ - /    -j-irr^dr. (8) 

Jo JQ    or 

Since the axial velocity is zero at the boundary (no slip boundary conditions), then WKr^ \Q = 
0. Also, the strain rate 7 can be expressed as 7 = ^. Thus, 

rR 

Q = -       77rr^dr. (9) 
Jo 

Prom the calculation of the flow through the pipe in Section 1, we know that the stress can 
be expressed as: 

(Tzr = -^(^wall- (10) 

This relation does not depend on the constitutive equation, and the stess azr linearly de- 
pends on the stress on the wall a.u,au- Therefore, the radius can also be expressed as a 
function of the stress: r = §^ 

Changing the integration variable from the radius r to the stress a, we may express the 
flux through the pipe: 

Q = -^ /        j{a)a'da. (11) 

Before the change of variables, the strain rate is a function of the radius, which describes 
the geometric property of the strain rate. After the change the variable, the strain rate 
is a function of the stress, which describes the material property of the strain rate. If we 
differentiate the above equation with respect to the stress on the wall awalh we have: 

-- = -i^il (1#) = -^ i"' ^ <'-'^) •        <'^' 
Since the stress on the wall a^ is linearly proportional to the pressure gradient Ap, we may 
simplify this equation as: 

Here j^^ is the slope of the hxQ and hi Ap plot. For a Newtonian flow (Poisseuille fluid), 

we have j^§- = 1- For a shear thinning fluid with n = 1/4, the relationship wiU be: 

j^'°Q = 4. But for any fluid, by measmring the volume flux through the pipe Q and the 
pressure gradient Ap, the value of the strain rate on the wall can be calculated from the 
above equation. Thus the viscosity on the wall can be expressed as: 

<^wall ApR 
fJ'wall —   • ~ OTA.,       ' 

which gives the rheological law. 
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Torque T 

Figure 3: Couette device 

3    Bingham yield fluid in a Couette device 

For a Bingham fluid, if the appKed stress a is smaller than the yield stress, the fluid will 
remains rigid. But if the apphed stress a is larger than the yield stress, the fluid yields and 
shears. For a Couette device containing Bingham fluid, we assume that the inner radius is 
o and the outer radius is 6 and apply a torque T on the outer cylinder (see Figure 3). For 
an axisymmetric steady flow with velocity field (0,Utf(r),0), conservation of momentmn in 
the 0 direction demands that: 

1  ^ '-2_. ^ (15) 

Integrating this equation with respect to r, we have: 

T 
(^TB = 27rLr2" 

The constitutive equation for the Bingham fluid is: 

7 = 0        'i£ a <ay 

<^re = (ry + nj      if cr > a. !" 

(16) 

(17) 

(18) 

where ay is the yield stress and 7 is the only non-zero component of the strain rate tensor: 

7 — ^dr K r rf-{^) . Therefore, we could get the yield radius Vy in the device to be: 

ry = 27rLa, 
(19) 

y 

Therefore, the different positions for ry correspond to different flow types of the Bingham 
fluid in the Couette device: 

if Tj, > 6, Yield throughout 

Yield nowhere 

Intermediate situation      if a < TJ, < 6. 

if Ty < a, 

(20) 

(21) 

(22) 
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In the intermediate state,for a < TJ, < 6, the material yields and shears; but for ry <r <b, 
the material rotates rigidly. Now we will calculate these two regions separately. For a < 
r < Ty, the shear rate is expressed as: 

• —   — (—\ — ^ f !if. _ 1 I C23) 
dr \ r J       fj,  I r^        I 

Integrating this equation with respect to r, we find: 

For the region TJ, < r < 6, the solid body rotation can be expressed as: 

^ = fi, (25) 
r 

where fi is the constant rotation rate. At r = TJ,, we match the velocity in these two regions 

to find that ,     , . . 

Since the radius for the yield surface ry is also a function of the torque T, the angular 
velocity of the solid body rotation fi is a function of the applied torque T. 

4    Rod climbing of a second order fluid 

As we have seen in earlier lectmres, a well-documented phenomenon of non-Newtonian fluids 
is rod climbing. When a rod is rotated in a non-Newtonian fluid, the fluid is forced towards 
the center instead of being thrown away from the rod as in a Newtonian fluid. In a non- 
Newtonian flmd, tension in the streamlines, or the hoop stress, has a radial force inward 
that forces the fluid towards and then up the rod. In this section we determine the free 
surface of a weakly non-linear second-order fluid caused by a rod of radius a rotating at a 
frequency fi in the fluid (figure 4). 

The flow is weakly non-linear so to leading order, the fluid behaves like a Newtonian fluid. 
The velocity, which has only an azimuthal component, is determined from the azimuthal 
component of the momentum equation. 

Integrating this equation and applying boundary condition of r = a and r = oo yields 

ug = —, (28) 
r 

and the strain rate is „ 
' (^) ^ _?^. (29) 

\ r / r^ dr 
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Figure 4:   Geometry of rod climbing problem.   A cylinder of radius a is rotating with 
frequency fi, which causes a displacement of the free surface which is described by h{r). 

The constitutive equation of a second-order fluid is given by 

a = -pi + 2nE -2aE +pE ■ E, (30) 

where E is the upper convective derivative of the strain tensor E, and the last two terms 
of equation (30) are small compared to the others. Then, because Ere = ^er = ITJ the 
components of stress are given by 

Odr    =   iJ-l, 

= -p+4/37^ 

=   -p+Ua + ^^j'f, (^ee 

(31) 

(32) 

(33) 

(34) 

In order to determine the pressure dependence in the radial direction, we apply the 
steady state Stokes equation and consider the radial component in cylindrical coordinates 
to find 

_ Oarr   ,   (^TT — O'ee /OK) 
dr r 

where the last term is the normal stress Ni or the hoop stress. Using equations (32) and 
(33) we can write the normal stresses in terms of r. Integrating with respect to r yields 

(7,r + 2a—^ = -p + -{2a + fi)^ = f{z), (36) 

where / is an arbitrary function of z. The axial or vertical component of the Stokes equation 
gives a hydrostatic balance 

(37) 0 = ^^ + pg. 
dz 
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Integrating with respect to z and applying the boundary condition p = 0 at the free surface, 
z = h{r), we find 

p = pg {h{r) - z). (38) 

Finally, we choose f{z) = pgz to cancel the z dependence in the pressure to find that the 
free surface height is described by 

h{r) = -{2a + l3)^. (39) 
pg r* 

Therefore as long as 2a + ;8 > 0 rod chmbing occurs in the fluid. If this term is negative, 
though, it implies that the fluid is plunging down the rod rather than climbing up the rod. 
This solution seems imphysical and may be due to an improper force balance or improper 
definition of the constitutive equation. 

5    Unchanged flow field for some second order fluids 

In the previous section we have assumed that there is no small non-linear correction to the 
flow field ug as there is in the constitutive equation (30). In this section we sketch how to 
show that this is a valid assumption for some flows. At the end of the section we wiU see 
that the method described here does not necessarily verify an unchanged flow field in the 
rod chmbing problem. The following proof will require the use of the identity, 

V-(E+^-E\= ^V\ + Vu• V\ + V{E : E). (40) 

As we only touched on this topic briefly in lecture, we wiU not prov^ the identity here, but 
leave it as an exercise for the interested reader. 

We define pi and pa as the pressure that satisfies the Stokes flow and the pressure related 
to the non-linear elastic eff'ect, respectively. Then u and pi satisfy the equation for Stokes 
flow, 

0 = Vpi -1- /xV^u. (41) 

Since u does not have an elastic correction, we must be able to show that u and p2 satisfy 

V-a   =   0, (42) 

a   =   -p2l + 2nE-2aE-4aE-E (43) 

with 
P2=pi--^ + aE:E. (44) 

We can show that this is indeed true by using the identity given in (40). (Details are again 
left for the interested reader). Note that in (43) 0 has the specific value -4a. Recall that 
for rod chmbing to occiur 2a+P >0, and therefore the method sketched here does not apply 
to the rod chmbing problem. This analysis does show that for some flows, the equations 
of motion and the constitutive equation are satisfied without a small elastic correction to 
the flow field u. This holds in planar and uni-directional flows without a restriction on the 
relationship between a and yS. 
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6    Anisotropic converging channel flow of a suspension of 
rigid rods 

The constitutive equation for a suspension of rigid rods is given by 

(T=-pI + 2//shear-E + 2/iext.PP {P ' E • p) , (45) 

where p is the iinit vector in the direction of the rods. The shear and extensional viscosities, 
/ishear and /igxt., are constants with fi^xt. representing an additional viscosity over //shear in 
the direction of the rods. In this problem it is assumed that the rods are fixed in the 
direction of the flow, and we will describe the formation of recirculating eddies (cf. lecture 
2) around a point sink. 

The flow field is described by a two-dimensional sink flow in the half plane given by 

u=(^,o),        p=(l,0) (46) 

in polar coordinates, where the radial direction represents the distance for the point sink 
and the azimuthal direction varies between 0 and w in the upper half plane. Therefore the 
velocity is purely in the radial dkection and satisfies incompressibility. 

Using the constitutive equation given in (45), we can determine the different components 
of the stress using 

Note that the extensional viscosity only makes a contribution to am so 

arr     =    -^-2(/Xshear + /^ext.)^, (48) 

f' 
CTrO    =    Mshear-^5 (^^) r 

CreS    = o~ + 2/ishear-2? (^0) 

where g{9)/r^ is the pressure, which is an unknown function of 6, and primes here denote 
differentiation with respect to 9. Now the two unknows, f{9) and g{9), can solved for by 
applying the two components of momentum conservation. 

Assimiing steady state and taking the azimuthal component of the steady Stokes equa- 
tion V • a = 0 (see table in Bird et al.), 

^ + 1^ + 2^=0. (51) 
dr       r  89 r 

Using equations (49) and (50), this can then be written in terms of / and g by 

g' = 2//shear/'- (52) 

Similarly, the radial component of V • cr = 0 gives 

darr       1 d(7r9   .   <^Tr - (^60 _ Q ^53\ 

dr      r 89 r 
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Figure 5: Diagrams of point sink converging channel flow. The diagram on the left shows 
that for a Newtonian fluid, recurculating vortices only appear when the plane is bent past 
horizontal. Non-Newtonian fluids can generate recirculating vortices even with a flat plate 
because of the additional extensional viscosity. The streamlines shown here are not valid 
close to the point sink as the flow is no longer pmrely radial in this region. 

or in terms of / and g 

/"+('4 + 2-^^^^')/ = const. (54) 
\ Mshear / 

The equation for / is a harmonic oscillator equation. We require that / goes to zero on 
the boundaries ^ = 0, TT to satisfy the condition of no slip, and we expect the maximum flow 
rate to occur in the middle, or ^ = 7r/2. For a Newtonian fluid, the additional extensional 
viscosity /Xext. = 0 and by applying the nc^slip boundary condition we find to within a 
multiplicative constant that 

/ = 1 - cos(2^), (55) 

and there are no recirculating eddies. If the plate is bent at an angle larger than TT then 
recirculating eddies are present even in a Newtonian fluid. For a non-Newtonian fluid, 
A*ext. 7^ 0 and we can solve equation (54) to find, 

/ = COS^-COSA(^-F|), (56) 

where A = sqrtA + 2//shear/Mext.- In this case there are always recirculating eddies on both 
sides of the sink (figure 5). Note that these equations approximate the flow far from the sink 
so that the streamlines are always in the radial direction. Close to the sink the streamlines 
must turn to form the vortices. From (56) we can see that the angle of the flow into the 
sink, and thus the size of the vortices, is determined by the ratio V'/ishear/A'ext.- 

7    Spinning of an Oldroyd B fluid 

Finally, the last simple flow we will consider is fiber spinning of an Oldroyd B fluid. The 
constitutive equation of an Oldroyd B fluid is given by 

a = -pl + 2nE + GA, (57) 

where GA is the elastic stress, and A is a. measure of the deformation of the microstructure. 
The time dependence of A is described by 

^ = A-VU+{VUf-A-^{A-l). (58) 
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Figure 6: Geometry of fiber spinning of an Oldroyd B fluid. The fluid is pulled from a 
reservoir by a spuming wheel. After a brief initial transient region, the fluid is pulled into 
a cylinder whose radius decreases and velocity increases in the direction of positive z. 

The first two terms on the right hand side describe the stretching of the microstructure 
while the last term describes relaxation back to the steady state, A = 1, on a time scale T. 

The geometry for this problem is shown in figure 6. Fluid begins in a reservoir, and 
after a brief initial transient region is puUed out into a cyhnder begmning at x = 0 by a 
spinning wheel. The fluid is stretched and accelerated so that the velocity w increases and 
the radius R decreases moving in the durection of positive z. The flux and tension are both 
constant and are given by 

Q = TvR^w (59) 

and 
F = irR^a. (60) 

respectively. 
Considering the constitutive equation and applying the boundary condition of no radial 

stress on the free sinface arr = 0 (57) gives 

dw     ^ . 
p = -M-^ + GArr- (61) 

Then, considering the axial component of stress and using the expression for pressure given 
above, we find 

a,, = 3/i^ + G {A,, - Arr) = ^, (62) 

where we have made use of the expressions for the tension and the flux in the cylinder. 
Finally, from equation (58) the steady state equations for the radial and axial components 
of the deformation of A can be written as 

dAr 
w 

w- 

dz 
dAzz 
dz 

— —Arr~r~ [Arr      1) 
dz      T 

_ diu     1 , , 
— 2Azz~} [Azz ~ 1) • 

dz      T 

(63) 

(64) 

In general, for a given Deborah munber, De = r^, the equations above must be solved 
nimierically.   However, we will consider two limits where the equations are analytically 
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tractable. In the Newtonian limit of small Deborah nimiber, De < 1, the two terms on the 
right hand side of equations (63) and (64) balance to give 

^rr ~ 1 - T-;-,        ^22 ~ 1 + 2r—-. (65) 
dz az 

Plugging these expressions for Arr and Azz into (62) gives a simple linear equation 

„, ^    ^dW FW ,r.c\ 

^^^■^^'^Tz=-Q^ ^''^ 

which has the solution 
Fz 

M.)=M0)exp^3^^^^^^^   ■ (67) 

Therefore in the Newtonian regime the velocity increases exponentially until the elastic 
limit is reached, in which the relaxation rate is comparable to the shear, or T^ ~ 1. 

In the elastic limit the stretching term in the axial direction dominates radial stretching 
and viscosity, /^^ < GArr < GA^z, and therefore 

a^z ~ GAzz = -Q-- (68) 

Prom (64) we have 

J^ = 2Azz^^-^-{Azz) (69) 
dz dz     T 

since Azz > 1- Plugging Azz = Fw/Q into this equation yields a simple linear diflFerential 
equation which has the solution 

w = wi H—. (70) 
T 

Upon reaching the elastic regime the velocity only grows linearly. Numerical results indicate 
that there is an abrupt change in the dynamics of the thread as the fluid transitions between 
the Newtonian and elastic regimes. This transition affects not only the velocity, but also 
the radius of the thread as given from the thread's flux and tension relationships (59) and 
(60). 

Notes by Junjun Liu and Andrew Thompson 
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Lecture 4: Experiments and Numerics 

E. J. Hinch 

1    Experiments 

In this section we discuss experimental approaches to characterizing materials and assessing 
the behavior of flowing materials. Standard apparatuses used to determine fluid rheology 
were described in section 3 of Lectiure 1. Here we emphasize practical problems in measuring 
the rheology of non-Newtonian fluids, the importance of using standard fluids, and methods 
for observing flow properties. 

1.1    MaterigJs 

What is a complete rheological description? Measuring the shear viscosity, normal stresses 
and elastic modulus in shear flow is not sufficient to describe a fluid, as two fluids may 
be similar in these characteristics and yet have distinct behavior in extensional flow. It is 
important to dociunent experimental details carefully, including measurement technique, 
fluid preparation and molecular weight distributions, so that others can reproduce the 
results. To this end, rheologists study standard fluids. Meissner [1] coordinated a project 
to examine low density polyethylene fluids. In more recent years, there has been a transition 
from the use of hot melts to cold solutions as standard fluids for logistical ease. 

An example of a modem standard fluid is the Ml ('magic') fluid which consists of 0.244 % 
polyisobutylene (molecular weight 3.8 xlO^ g/mol) and 7% kerosene in polybutene. The 
Ml fluid is a Boger fluid, that is, one which has a shear viscosity that is approximately 
independent of shear rate, thus allowing a separation of shear and elastic effects. There is 
good agreement amongst different shear rheometers in the measmrements of shear viscosity 
of the Ml fluid. However a series of extensional viscosity measurements demonstrates that 
different measurement techniques can lead to a range of extensional viscosities [2] (up to four 
orders of magnitude; see figure 2 from Lecture 1. A rational explanation of this phenomenon 
wUl be given in Lectine 9. 

1.1.1    Practical problems 

There are many experimental difficulties in measuring the properties of non-Newtonian 
fluids. These include: 

• Flow instabilites in Couette and cone-and-plate apparatuses can produce a jump in 
torque that may be erroneously interpreted as an increase in viscosity. 
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Figure 1: Stick-slip from flow of a mixture of clay powder and oil through a 20 mm diameter 
steel dye at 13 mm/s [4]. 

• The no-slip boundary condition at walls is generally assumed but is not always valid 
(figure 1). 

• There can be slipping along internal layers, known as sheax banding. Rheometers can 
be designed to observe this phenomena to avoid misinterpretations. 

• Friction from shearing viscous fluids increases temperatures in the fluids, which causes 
a reduction in fluid viscosity. 

• Phase-separation and crystallisation will cause changes in rheological properties. The 
standard SI ('siUy') fluid (5% polyisobutylene in decalin [3] by weight) has been 
problematic because it tends to phase separate. 

• Degradation of the fluid due to UV radiation, bio-organisms or mechanical breaking 
of polymers by the flow itself {e.g., figure 2). 

1.2    Observations 

Standard methods of flow observation include direct visualisation, laser doppler anemometry 
and particle image velocimetry. Fluid properties and flow characteristics can also be inferred 
from measurements of fluid fluxes and normal stresses for flow through a simple geometry 
such as flow through a pipe. There are however complications associated with this technique. 
There is a large pressure drop at pipe entry, an efiect that can be accoimted for by using a 
range of pipe lengths and extrapolating the data to an infinite pipe. Additionally there is 
an error associated with measmring normal stresses using pressvure taps in the walls, because 
flow past the hole creates normal stresses. 

Visualization may be complemented by assessing stresses from flow-induced anisotropy 
in the optical index of refraction of the fluid (birefringence). When plane-polarized monochro- 
matic light passes through the fluid and then through a second polarizer, the birefringence 
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Figure 2: Plot showing drag reduction for aqueous PEO solutions with time related to 
mechanical degredation of polymers. The symbols correspond to experiments at dijfferent 
Reynolds numbers (2.0 x 10"^ < ile < 18.1 x 10"^). t is the residence time of the solution 
in the flow and t* is the half-degradation time [5]. 

of the fluid causes constructive and destructive interference fringes (figure 3) from which 
stress contours are deduced (figure 4). A linear relationship between stress and index of 
refraction (n) is sometimes assumed, 

a = cAn, (1) 

where c, the stress optical coefficient, is a constant determined from a simple test flow. 
For qualitative assessment (1) is not required however the quantitative application of this 
technique depends on the validity of the stress optical law. This law may fail because 
birefringence measures bond alignment and not the magnitude of the stretching. This is 
particulary problematic in strong extensional flows. 

Failure of the stress-optical law was demonstrated by [7] with simultaneous measme- 
ments of birefringence and extensional stress of polymer solutions in a filament stretching 
rheometer. The data indicate a non-Unear relationship between stress and birefringece. Fur- 
thermore, stress relaxation was faster than birefringence relaxation, leading to a hysteresis 
in the stress optical law (figure 5). 

2    Numerics 

2.1    Discretization 

There are three methods of discretisation which are commonly used in the numerical solution 
of non-Newtonian fluid flow problems. These are finite element, spectral and finite difierence 
methods. Finite element techniques are good for problems with complex geometries, and as 
solvers for eUiptic equations. Spectral methods are very accurate but only work for periodic 
geometries such as a wavy-wall tube. They are often used for tmbulent drag problems. 
Finite difference methods are relatively simple and are most easily appUed to mappable 
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(a) s\h wail shear mU- - 8(1 s '' (tVt slit ivjill slu-ar rwU' = 255 s '' 

(cj slit wall shear rate = 365 s Id! slit wail shear rate ~ <(Oft s  ' 

Figure 3: Photographs of fringe patterns for fluid flowing into a slit for a range of shear 
rates. Dark fringes are areas of destructive interference and each additional fringe indicates 
that the slow ray is an additional wavlength behind the fast light ray. Prom [6] 

Figure 4: The first normal stress contours corresponding to the flow shown in Figure 3, part 
(b). 
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Figure 5: Stress versus birefringence for extensional flow and subsequent relaxation at a 
range of Weissenberg numbers; asterisk: Wi = 41.7, circle: Wi = 16.8, square: Wi = 2.84, 
line: conformation dependent FENE model with Wi = 2.84. 

geometries {i.e., domains that can be mapped onto a quadrilateral grid). We include only 
a brief overview of each of these methods. For further details, see e.g. [8]. 

2.1.1    Finite Elements 

The domain is divided into a grid of triangular or quadrilateral elements, (note that use of 
a triangular grid can lead to diflBculties with list processing associated with the storing of 
neighbouring elements). The unknown fields (such as velocity) are represented by a smn 
(over the elements) of the product of known functions, 4>i, and unknown ampUtudes, /,, 

N 

"W=yi/i'^iW' (2) 

where ^j axe referred to as test functions. These summation representations are substituted 
into the governing equations, and then on projection we have 

f fp^ + Vf, - /xV^u - V • a^^^A ■ <^.(x) dV = 0,    for s = 1,2, ...N. (3) 

By requiring the above relation to hold, we obtain a set of ordinary differential equations 
for the functions /j. These can be solved easily {e.g. using a Runge-Kutta scheme) to find 
the fi and hence the unknown fields. 

2.1.2    Spectral Methods 

Similar to the finite element method, the spectral representation of flows is a summation 
of the product of an miknown amplitude with a known basis function (such as Fourier or 
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Chebyshev modes) so 

/(^) = E/ne^""- (4) 
The elegance of this method Ues in the fact that spatial derivatives of (4) become mul- 

tiplications, which are mmierically simple to perform, and the error term in such a repre- 
sentation is exponentially small, 

/'(a:) = f;/„me---FO(e-^). (5) 

A disadvantage of this method is that the product of two functions requires summing 
over cross terms which is computationally expensive, 

f{x)9{x) = f2f2fk9n-ke'^^. (6) 
n     k 

In order to avoid this expense, pseudo-spectral methods are used instead. This method 
calculates the derivatives using (5) but the product of functions is calculated with the 
actual function values (using Fast Fourier transforms to switch between the two). To avoid 
aliasing it is common to remove the top third of the spectrum (for quadratic nonlinearities). 
Spectral methods are ideal for periodic boundaries but cannot represent discontinuities in 
the flow very well because the basis functions are smooth. 

2.1.3    Finite Difference Methods 

Finite difference methods axe widely employed in modeling fluid dynamics problems. This 
method involves a coordinate grid so the labelling and interaction of nodes is straight- 
forward. The equations are generally discretised using a second-order central difiierencing 
scheme. For example, the second derivative is approximated by 

f" ~ fi^ + h)-2f{x) + f{x-h) ,. 

It is important to note that the discretization process can sometimes lead to errors. For 
example the finite difference expression for the divergence of radial flow is not the same as 
the analytical expression, 

2.2 Benchmark numerical cases 

Solutions from benchmark problems are used for testing munerical codes. Some common 
examples are shown in figure 6 below. 

2.3 Pressure 

The pressmre in two-dimensional calculations for Newtonian fluids can be avoided by taking 
the cml of the momentimi equation to obtain the vorticity equation. However this is not 
possible for calculations involving non-Newtonian fluids because all components of the stress 
tensor axe required to give an acciu-ate description of the flow. 
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Figiure 6: Benchmark problems for testing nimierical code. 
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2.3.1    Fractional step with presstire projection 

Consider the pressure equation (found by taking the divergence of the momentum equation), 

2. V'p -p^ + V-CcT^^'^ + a^"^*) (8) 

When solving numerically for the pressure, incompressibility is usually satisfied only to 
within a small error, so that 

V • u w 0. (9) 

Over many timesteps these small errors can accumulate, leading to a significant error. 
This problem can be reduced using a fractional step with pressure projection. This nu- 
merical technique (used with finite diflFerencing, finite element and spectral methods) finds 
an approximate solution u* and then makes a correction which removes the error in the 
incompressibilty condition and guarantees that V • u = 0 exactly. 

The fractional step uses u* foimd by solving 
,n 

H—ii- = -{pu ■ Vu)" + V • (a''"'^ + CT*'"'*)", (10) 

with the no-slip boundary condition and then the pressiure projection gives the solution for 
the next timestep, 

u"+^ = u* - AtVp^+K (11) 

Note therefore that 

V . u"+^ = V • u* - At VV"^^ = V • u* - V - u* = 0. (12) 

The disadvantage of this technique is that the no-slip boundary condition is not exactly 
satisifed by u""*"^. 

2.3.2    Fractional step with pressure update 

The method described above can be refined by using a firactional step with a pressure 
update. This includes the pressure term expUcitly in the calculations, so adjustments are 
made to the pressure at the previous time, as opposed to recalculating the pressmre field at 
each timestep. This method is much better at handling the boimdary conditions and leads 
to a closer approximation to the no-sHp condition. 

The velocity at the fractional step, u* is given by 

"*-^"" = -Vp"-i 4- [-pu. Vu -F V • a«'-']"^' + [V • a-i"+' , (13) 

where p""^/^ is the pressure at the last step. Then the non-zero divergence of u* is given 

by 
V • u* = A< V25p"+i (14) 

The solution (including the pressiure field) is then updated by 

p"+l =p"-2+,5p"+i (16) 
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Figure 7: Contours of the configuration tensor component < QQ >xx around a cylinder for 
flow of an Oldroyd-B fluid through a Uneax array of cyUnders with De = l. Prom [10]. 

2.3.3    Staggered grids 

Central differencing can lead to spurious pressure modes (oscillations on the scale of the 
grid). In finite diffierence techniques these can be avoided by using a staggered grid, in 
which different fields are held on different points, {e.g. velocities on the midpoints of cells 
boundaries, shear stresses on the comers and momentum terms at the cell center). However, 
a staggered grid is not possible with finite element models. This leaves an essential diflnlculty 
in such schemes. 

2.4 Elliptic and hyperbolic parts 

The elliptic pressiure equation is relatively easily solved. However the stress equation is a 
hyperboUc partial differential equation and there is no easy method of solution. With a finite 
difference code, the method of characteristics can be employed (using the streamlines as the 
characteristics). An alternative is 'black box magic' such as the code MINMOD, which 
uses second order discretization over the domain except in the vicinity of shocks where 
the discretization is first-order. For finite-element methods an upwinding technique can 
offer a method of solution, however this generates large nmnerical diffusion. Alternatively 
a lagrangian grid can be used, so that the grid and the elements defined on it travel along 
with the flow, such as that employed by [9]. 

2.5 Numerical Problems 

There are a number of problems which develop when computing non-Newtonian flows. Con- 
vergence tests are often neglected and mmaerical instabihties can develop when simulating 
flows with sharp comers, mterfaces between shear layers, and thin layers of high stress (e.^. 
7). More grid resolution is needed in these areas, however it is computationally expensive. 

A limitation of the Upper Convective Maxwell and Oldroyd-B models is that there 
appear to be no solutions for large Deborah numbers (high strain rates). For flow past a 
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sphere in a tube, the maxunum Deborah numbers are Demax = 2.17 and Demax = 1-28 for 
the UCM and Oldroyd-B models, respectively [11]. At greater than these critical Deborah 
nimibers there is a region in which the extensionaJ viscosity is negative. The FENE model 
(Finite Extension Nonhnear Elasticity), overcomes this problem and is sucessful up to De w 
100 (see Lecture 2). 

Notes by Alison Rust and Julia Mullamey 
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Lecture 5: Microstmctural studies 

E. J. Hinch 

1 Introduction 

These two lectures will describe attempts to derive constitutive equations from "first princi- 
ples." A large separation of length scales between the flow and the microstructure allows us 
to approximate the bulk properties of the fluid by averaging over the small scales. We begin 
by considering microstructure in a Newtonian solvent: first spheres, then other shapes, and 
finally their deformations and interactions. Moving beyond this approach, we also consider 
models for isolated or entangled polymers. 

2 Separation of length scales 

A typical length scale characterizing microstructure is I ~ l/zm, while the macroscopic 
length scale, the scale on which the flow varies, is a few orders of magnitude large, e.g., 
L ~ 1cm. The micro scale is large enough that the continuum approximation is valid (it 
works weU down to about 10 nm). However, even though the length scales are separated, 
the time scales are comparable. Thus, we wiU use only space-averages (or maybe ensemble 
averages) but not time-averages. Another assumption is that the microscopic Reynolds 
number is small: 

M 
Without this assumption it is possible to have macroscopic boundary layers smaller than the 
microscopic length scale. Note that the macroscopic Reynolds niunber Rei = {pyL'^)/fJ, can 
be large or small. If Re^ is very large, then the macroscopic length scale (e.g. in boundary 
layers) can be comparable to the microscopic length scale and the desired separation of 
scales breaks down. 

Our general approach to this two-scale problem has two steps. First we compute the 
effect of the flow on the microstructure; this is difficult and requires approximations or 
models. We will delay the discussion of this procedure in detail to the following sections. 
Once that problem is solved, we can extract the constitutive relation by averaging, which 
we discuss presently. 

There are several ways to do this averaging. One choice, not employed here, is ensemble 
averaging. Another technique that we wiU not discuss further is homogenization; this uses 
asymptotic analysis to achieve the same result. Here we will use volume averaging with a 
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representative volume V between the micro and macro scales, I <C V^^^ <^ L. Averaging 
the momentum equation and neglecting micro Reynolds stresses we get 

- + U.VU = V-a + F, (1) 

where " denotes averaging over V. The stress tensor in the presence of particles in a 
Newtonian fluid is given by 

a- = -pS + 2fiE + a+, (2) 

where <T"'' is the stress inside the particles, /j, is the viscosity of the solvent, E is the rate of 
strain tensor and p is the pressure. The averages of the latter three quantities are unchanged 
by the microstructure up to leading order in the small parameter l/L, i.e., p = p + 0{l/L), 
etc. Note that for general microstructmre we cannot compute o-"*" but it varies on the micro 
scales. The average of o-"*" is 

= i/^.w = .(/^.w) (3) 

where n is the number density of particles, fp -dV is the integral over a particle and < ■ > 
is the average over types of particles if needed. If the particles are considered to be rigid, 
the strain e inside the particle is zero. Neglecting the pressure and micro-gravity, we see 
that 

^J = dk{<TtkXj) - Xjdkcrf^ = dk{(7ff.Xj), (4) 

where x = (xi,ar2, xs) are the space-coordinates. Then the volume integral over the particle 
reduces to a integral over the smface S: 

f a+dV = <[ tr+ ■ ik y: dA. (5) 

Thus, we need to know only the stress on the surface of the particle. 

3    Suspension of Rigid Spheres 

The simplest case of a microstructure is that of a dilute suspension of inert, rigid spheres. 
This highly ideahzed case was studied originally by Einstein in 1906, although his method 
involved subtracting two divergent integrals to get the right answer! The problem is to 
solve the Stokes flow around a sphere of radius a with prescribed linear flow far away. We 
also require that there be no net force and couple. The governing equations are 

V • u = 0 (6) 

0 = -Vp + fiV^u (7) 

for r > a with boundary conditions 

u = V -I- w X X, on r = o, (8) 

u = U -1- X • VU, r -^- 00, (9) 
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where U + x • VU is the prescribed flow at infinity, w is the vorticity and V the velocity 
on the surface of the particle, to be determined using the force- and couple-free conditions 

F = ^    o- • ndA = 0 (10) 
Jr=a 

G = <f    XX a- ndA = 0. (11) 
Jr=a 

We split VU into symmetric strain rate E and antisymmetric vorticity fi, i.e., 

X • VU = X • E + n X X. 

The conditions (lO)-(ll) imply that the particle translates with the mean flow V = U and 
rotates with the mean vorticity uf = n. The flow field and the pressure field is 

u = U + nxx + E.x-E.x^-^x-E.x(^^-^Jx (12) 

p = -5//a3(x • Ex)/r^. (13) 

Evaluating the stress on the siurface of the particle 

tr.n|,=„ = ^^E.x (14) 
2 a 

and integrating 

* a • ndA = 5//E • -^a^ (15) 

gives an average stress 

a = -p6 + 2/iE + bfjBtp = -p5 + 2/Lt*E (16) 

where (p = 4zna^/3 is the fraction of volume occupied by the spheres and 

/x* = Ai f 1 + 2^J 

is the Einstein viscosity due to the presence of the spheres in the liquid. This result does 
not depend on the type of flow or the size of individual particles, only their volume fraction. 

4    Suspension of Rigid Spheroids 

Now consider a dilute suspension of rigid particles that are not spherical. The next simplest 
class of paxticles are spheroids which are elUpsoids with semi-axes a, b and b. The aspect 
ratio of the spheroid is r = a/b. For r > 1, this is a prolate spheroid with the two equal 
axes being shorter than the imique axis, while for r < 1 this is an oblate spheroid with the 
two equal axes being longer. As in the previous section, in order to determine the effect 
of these particles on the flow, we will determine the stress contribution of one particle and 
then average over the number of particles per unit volume to get the macroscopic stress 
contribution. 
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A B c 
r —>■ 00 

r' 6In2r-ll 2 2(ln2r-3/2) 

r->0 lU 
37rr 

8 
3irr 

Table 1: Material constants A, B and C for suspensions of rigid spheroids. 

Considering Stokes flow around a spheroid we are lead to an evolution equation for a 
unit vector p in the direction of the axis of symmetry 

r^-l 
p = n X p + "2—-r [E • p - p (p • E • p)] 

where () is the material time derivative of () and fl is the vorticity of the flow at infinity. The 
solution of Stokes flow around a spheroid was obtained by Oberbeck in 1876 [1]. For a given 
p we can integrate the stress around the boundary of the particle and get an expression for 
the macroscopic stress due to a volume fraction (p of spheroids 

a=-p5 + 2/xE + 2//V? [>1 (p • E ■ p) pp + S (pp ■ E + E • pp) + CE] 

with A, B, and C constants depending only on the shape of the particles. For the limits of 
slender rods and flat disks the values of A, B and C are given in table 1. 

In a simple extensional flow, rod-like particles will align with the stretching direction 
of the flow, the orientation that maximizes dissipation. For disk-like particles the axis of 
symmetry will align with the compression direction which is also the orientation of that 
shape that maximizes the dissipation of the flow. For rods and disks (the limits r -> oo 
and r -)■ 0) we can compute from this flow an efiective extensional viscosity for dilute 
suspensions. If y> <C 1 and r > 1 then 

M^t = /^ ( l + tp 
3(hi2r-3/2) 

and if we substitute the definition of (f 
unit volume then we get 

Mext = /x(l + 

Aimab'^/3 where n is the number of particles per 

47rno^ 

)) 9(ki2r-3/2)^ 

which is the same viscosity that we would get from a suspension of rigid spheres of radius a, 
apart from a factor that varies only logarithmically in r. Since a is the largest dimension of 
the spheroid, this explains why very small concentrations of polymers which are very long 
can have large effects on the characteristics of the flow. In the case of disks rather than 

"""^ . f 10 \ A     10n&3\ 

In a simple shear flow, these spheroidal particles do not approach a steady state, but 
instead tmnble in the flow, spending some time aligned with the flow and then flipping 
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relatively quickly to the opposite orientation again aligned with the flow.   The effiective 
shear viscosities can be computed for rods, 

and for disks, 

where the exact effective shear viscosities depend on the distribution of all of the particles 
in the flow over all of the possible tumbling orbits. Even this very simple model of rigid, 
asymmetric particles can explain a situation where /ighear ^ ^ext ^^^^ ^^ typical of many 
non-Newtoniaji fluids (for Newtonian fluids /Xext = ^fJ^sheai )• We also see that there axe 
three measures of concentration for the rods: 

cpr"^ = na^ for /i*^.^, 

ipr = naH for n^hear^ 

ip = nab^ for permeability. 

One feature of non-Newtonian fluids that cannot be explained by these simple models is 
the relaxation of the fluid back to a basic state over a particular time-scale. One way to add 
this featmre of relaxation to this model is to allow the rods and disks to execute Brownian 
motion on a particxilar time-scale, l/6r>rot given by 

Drot = fe3" (87r/Lta^)~ for spheres, 

and Drot = kT (8/i6^/3) ~^, for disks. 

Then instead of writing down an evolution equation for the orientation vector p, we write 
down the Fokker-Planck equation for the probability density V{p, t) 

where p is as before from the deterministic model. Then we can compute an average stress 
by averaging not only over all of the paxticles in a volume, but also over the distribution T. 
If we write (•) = f, .j^ •'Pdp then the average stress due to rigid spheroids is 

cT = -pI + 2/xE + 2fi(p [AB : (pppp) + B {E ■ (pp) -1- (pp) ■B) + CE + FD^otiPP)], 

where there is now a new material constant F for the entropic stress {F = 3r^/(ln2r —1/2) 
for rods, F = 12/{irr) for disks). The equations for (pp) and (pppp) involve even higher 
order moments leading to an infinity hierarchy of equations. Different closiures can be used 
to solve this problem. Some commonly used closures assume (pppp) to be a fimction of 

(pp)- 
Notes by Neil Burrell and Amit Apte 
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Lecture 6: Simple Relaxation and Yield Problems 

E. J. Hinch 

1    Deformable Microstructure 

All of the microstructural elements discussed so far have been rigid. Most real non- 
Newtonian fluids are composed of deformable bodies, such as Uquid drops or flexible poly- 
mers. Allowing deformable microstructure dramatically increases the complexity of the 
problem because the microstructure now has a large number of internal degrees of freedom. 
We will first consider the case of dilute suspensions where the interactions between the 
microscopic particles can be ignored. 

1.1    Emulsions 

One of simplest fluids with a deformable microstructure is an emulsion of immiscible drops 
in a solvent. Let the emulsion consist of drops of fluid with viscosity /Xjn, surface tension T, 
and characteristic radius a suspended in a solvent with viscosity //out (A'out is the viscosity of 
the external fluid). The drops are dilute, non-interacting, and do not mix with the exterior 
fluid. 

Suppose that the drop is caught in a purely straining flow with strain rate E. The 
straining flow exerts a viscous stress fioutE that stretches the drop. This stress is coun- 
teracted by the drop's surface tension T/a which tends to make the drop spherical. The 
equilibrium shape is somewhat sausage-like, as shown in Figure 1. If the viscous stress on 
the drop exceeds its capillary pressure, that is if fXoutE > T/a, the drop will (normally) 
rupture. Each rupture reduces the size of the drops, which drives up the capillary pressure. 
This rupturing process will halt when the drops reach the radius 

a* = 
IJ-outE 

(1) 

The size reduction is essentially irreversible since coalescence is usually much slower than 
the time scale of the exterior flow. 

Rupture is difficult if the internal viscosity is too large or too small compared to the 
external viscosity. If /iin <C /iout the drops are too slippery for the exterior flow to have a 
strong effect. Theoretical and experimental estimates indicate that the drops become long 
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Figure 1: Pre-rupture shapes of drops in an emulsion in straining and shearing flow. 

and thin, but do not rupture unless 

fXoutE > — < 
a 

0.54 I   simple shear 

/       \ ^^^ 
0.14 I —^^ ) extensional flow 

(2) 

However, mobile surfactants in the drop will give the exterior flow something to grab onto 
and causes the drops to lose small droplets off their pointed ends. This phenomenon, called 
'tip-streaming,' occurs if //out-E' > 0.56 T/a. 

In general, the dimensionless capillary number 

Ca = -^ (3) 

measures the efficiency of an emulsification process. For simple straining flows and viscosity 
ratios in the range 

10-^ < ^^ < 1, (4) 
Atout 

the capillary number is near unity, but it can be as large as 20 for viscosity ratios outside 
this range. 

A shear flow will induce internal circulation in the drops. In the limit of very small 
internal viscosity, all of the external vorticity is taken up by the internal circulation and 
the envelope will not rotate relative to the external flow (Figure 1). This phenomenon is 
known as 'tank treading' because the fluid on the drop surface is stationary relative to the 
fluid just outside the surface, just as a tank's treads are stationary relative to the ground. 
As the internal viscosity increases, more and more of the external vorticity is taken up by 
solid body rotation of the drop. 

Shear flow will cause extension of the drops just as in straining flow, and the conditions 
for rupture and the final drop size as similar to the previous case. One crucial difference 
is that shear flow cannot rupture the drops if /zin > 3/iout- If this is the case, the drops 
are so rigid that they just rotate with the exterior vorticity. The drops are still extended 
by the exterior flow, but before they can rupture they rotate so that they are stretched 
in the orthogonal direction. Instead of rupturing, the drops are periodically stretched and 
compressed around their mean shapes. 
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In order to determine the effect of the drops on the theology, we have to solve the Stokes 
problem for both the interior and exterior flow, as well as determine the location of the free 
surface. This is challenging and not very efficient. To make progress, we consider small 
ellipsoidal deformations of a spherical drop. 

Let the location of the free surface be given by 

r{x,t)=a{l + x-A{t)-x + ---), (5) 

where a is the equihbrium radius of the drop.   The leading few terms of the evolution 
equation for the deformation tensor A in Stokes flow are 

DA T 
^-Q-A + A-Q = A;iE + fc5(A-E + E-A) {k2A + fceA • A + ■ • •) (6) 
Dt /iouta 

a = -pi + 2/ioutE + 2/iout<?!' fcaE + A;7(A • E + E • A) {k^A + fcgA • A + • • •) + 
MoutO 

(7) 
with coefficients kn that depend on the viscosity ratio A = /Xin/Mout- About 16 of the 
coefficients have been calculated. The first four are 

5 , 40(A + 1) 
ki = „,   ,  -, fc2 = 

2A + 3' "      (2A + 3)(19A + 16)' 

u       5(A -1) , 4 
2A + 3 ' ^      2A + 3' 

Unfortunately, this theory does not fit the data very well and its restriction to small defor- 
mations make it mute on the effect of drop rupture on the rheology. 

Experiments and numerical studies have shown that the pre-rupture rheology is char- 
acterized by small strain hardening and small shear thinning, with Ni > G and A^2 < 0. 
Interestingly, repeated rupture leaves the effective viscosity nearly constant since rupture 
preserves the volume fraction of the droplets. This is consistent with Einstein's observa- 
tion that the effective viscosity of a suspension depends only on the volume fraction of the 
particles and not on their absolute size. 

2    Electrical Double Layers 

Another deformable microstructure is an electric double layer around a charged colloidal 
particle. The solvent ions dissociate in presence of charged particles, forming a neutralizing 
cloud of counter-ions. The thickness of the double layer is given by the Debye length K"^, 

where „ „ 

= E=S^- («) ekT 

Here, Zje is the charge on solvent ions of number density rii and e the dielectric constant. 
Thus, the colloidal particles act as spheres with a slightly larger radius, contributing a very 
small increase in the Einstein viscosity. In addition, the flow can distort this cloud but at 
low concentrations the effect is negligible. 
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Figure 2: An electric double layer around a charged colloidal particle 

3    Interactions 

In this section we study the interactions between particles in concentrated solutions. These 
interactions include excluded volume interactions of rigid spheres and rods as well as de- 
formable drops; electrical and van der Waals interactions. 

3.1 Rigid Spheres 

For a dilute solution of rigid spheres, only pair interactions (i.e. collisions) are important. 
At low shear rates, the effect of the collisions is to increase the effective viscosity [1]: 

fi* = fi{l + 2.5ip + e.2ip^). (9) 

The data from experiments by Saunders verifies the above result [2, 3] as shown in Figure 3. 
(This is Figure 14.17 from [4].) For purely extensional flows, the coefficient of the (p^ term 
is 7.6. 

For high concentrations, the experiments show shear thinning by a factor of roughly two. 
The shear thinning effect increases with the concentration. This is illustrated in Figure 4. 
(This is Figure 14.3 and 14.4(a) from [4].) The numerical simulations show shear thinning 
at moderate shear rates and shear thickening at high shear rates. This shear thickening has 
not been verified experimentally and may be a numerical artifact. 

3.2 Electrical Interactions 

As discussed previously, electrically charged colloids tend to form a shielding cloud of so- 
lution counter-ions whose thickness is given by the Debye length K~^. This cloud has a 
profound effect on the dynamics of collisions between colloidal particles. If the approaching 
particles are separated by a length r much greater than the Debye length, the particles 
interact like uncharged spheres of slightly augmented radius. Once the particle separation 
becomes comparable to the Debye length, the colloids begin to feel their mutual electrical 
repulsion. Their approach is halted at a characteristic distance r*, determined from 

r* 
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Figure 3: The data from [2, 3] verifying Equation 9 

where viscous drag balances interparticle electrical repulsion. Here C is the surface charge 
density of the colloid, and e is the dielectric constant for the solvent. 

The effect of the charge particle interactions on the rheology can be calculated in much 
the same was as for uncharged rigid spheres. The result is an effective viscosity given by 

fi   ^n 1 + 2.5(^ + 2.8¥j2 (—y 

Since r» is usually greater than a, the coefficient of the </?^ term is much greater than the 
6.2 found for the hydrodynamic interaction between rigid spheres, as illustrated in Figure 5. 
(This is Figure 14.19 from [4].) Changing the solvent ion concentration can have a large 
impact on the viscosity by changing the screening length K~^. 

3.3    van der Waals Interactions 

Van der Waals interactions allow aggregation of large, extended structures called floes. 
Floes are fractal structures with a typical dimension d ~ 2.3, which implies that they are 
packed more closely than a planar structure but less densely than a solid. If the floes are 
small, they will tend to stick together after collisions but large floes will be destroyed by 
strong flows. The size R of these floes can be estimated by the following scaling argument. 
The number of particles of radius a in a floe is iV = (R/a)^ In equilibrium, the viscous 
forces (given by the Stokes drag formula) will balance the cohesive forces: 

(67r/xi?) i'jR) = FbN 
R' 
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Figure 4: The shear thinning at high concentrations. 

where F^ is the bond force and Na/R is the number of bonds per fioc. Solving for R/a, we 
see that the volume fraction of the floes is 

V/ = <y='(-R/« 
,3-d 

</5 
Fb 

dnfxa^'j 

The effective viscosity is simply the Einstein viscosity with iff replacing ip. Since ipf ~ I/7, 
suspensions of floes exhibit strong shear thinning. The expression for iff is unbounded as 
7-^-0. However, physically, <pf cannot be greater than one. Thus, at low shear rates the 
solution gels and has a yield stress ~ {(pFh/a^). 

3.4    Rigid Fibers 

In contrast to dilute suspensions of rigid fibers, concentrated solutions cannot pack with 
random orientation if (/?r > 1 because of topological constraints. (Here r > 1 is the aspect 
ratio of the fiber.) Instead, the fibers spontaneously align - this is called the nematic phase 
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Figure 5: The coefficient of the ^p^ term in the effective viscosity 

transition. As discussed in Lecture 5, the shear viscosity depends hnearly on the aspect 
ratio and it can be large only when (/?r is large and the fibers are ahgned. However, the 
extensional viscosity depends quadratically on the aspect ratio; it can be big even when 
ipr <\ and the fibers are randomly oriented. Since the aspect ratio r of disks is less than 
1, they cannot align randomly if (/?/r > 1. 

3.5    Drops 

When the microstructure is deformable, the geometrical constraints are much less stringent 
and there is no jamming or locking of particles. During coUision, the deformations lead to 
wider gap between the particles. Additionally, strong flow distorts the drops into cyHnders 
with spherical end caps. These cylinders present a smaller colhsional cross-section than a 
sphere of the same volume. This means that a suspension of drops is effectively 'dilute' 
even at a concentration of 30%. Because of this, blood works despite its high concentration 
of red blood cells. 

4    Polymer chains 

We have discussed microstructure without any internal structure. In the remaining part 
of the lecture, we will discuss various models for polymers, first for isolated polymers and 
then for entangled ones. 

4.1    Isolated Polymers 

The simplest model studied in the '40s is the bead-and-spring model, shown schematically 
in Figure 6. This model replaces a chain of iV bonds each of length h with two spheres of 
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Figure 6: (a) A schematic drawing of polymer being distorted by the flow, (b) The bead- 
and-spring model to study the isolated polymer chains. 

radius a joined by a spring of spring constant K. Assuming that each bond is undergoing 
Brownian motion, we obtain the effective spring constant of K = SkT/Nb'^ and sphere radius 
a = by/{N/6). If we denote by R the vector joining the two spheres, the Stokes drag on 
the spheres is 67r/xa(R • Vu - R). Equating the drag force with restoring force -KR of the 
spring, we obtain the time evolution of R: 

R = R • Vu 
2r 

R, where r = 
v/6       kT 

The equation for the deformation tensor A oc RR is obtained as 

A • Vu - (Vu)^ ■ A = (A 
Y      DA T ._   U.   ^s 

The stress' tensor is given by 
(T = —p5 + 2/iE + n/cA, 

where n is the number density of the chains. This is the Oldroyd-B model. In a shear 
flow, fj, is constant, the first normal stress depends quadratically on the strain rate, and the 
second normal stress is zero. As we noted in the second lecture, this model gives negative 
extensional viscosity when ^r > 1/2 because the model allows the polymers to stretch 
indefinitely. 

There are a number of (boring) refinements to the bead and spring model: Allowing the 
polymer to have a spectrum of internal modes just leads to a spectrum of relaxation times. 
Considering polydisperse molecular weight polymers smears out the relaxation time, but 
does not otherwise modify the model. 

An extremely important refinement accounts for the fact that polymers cannot be ex- 
tended indefinitely—they all have finite length. This is accomplished by modifying the 
spring force law so that the restoring force goes to infinity when the polymer is maximally 
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extended. A common form for this force law is 

kT        R 
F = iV62i-i22/L2' 

where L = Nb is the total length of the polymer. This modification is called FENE for 
Finite Extension Nonlinear Elasticity. 

Some other refinements are:   inclusion of nonlinear bead friction; rotation of beads; 
nonlinear internal modes. 

4.2    Entangled Polymers 

A polymer in a concentrated solution is not free to move arbitrarily because neighboring 
polymer chains impose topological constraints. A class of models called the reptation mod- 
els, first suggested by de Gennes in 1971 [5], focuses on a single polymer which squiggles and 
squirms around other polymer chains, as shown schematically in Figure 7.   Consider the 

Figure 7: A polymer chain reptating through the tube formed by presence of other polymers 

motion of a single polymer, keeping all the others fixed. Assuming that the chain diffuses 
along its length L with a diffusion constant D proportional to kT/fiL, we see that the 
diffusion time scale is 

ra = ^. (10) 

Since the molecular weight M is proportional to the length, the above equation imphes that 
the diffusion time scale is proportional to M^. But experiments discussed in Lecture 1 show 
this power to be 3.4. Attempts to capture this elusive 3.4 have lead to many refinements of 
this simple model. One of them (the A-BKZ model) considers the deformations with the 
mean flow of an effective tube containing the polymer [6]. A refinement of this refinement 
considers the effect of retraction of the polymer, which leads to an effective shrinking of 
the tube, along with the tube deformation. Another obvious refinement is to allow for the 
reptation of other poljrmers. The latter two theories have been combined together to give 
finally the correct power of 3.4 [7]! 

Notes by Amit Apte and Christopher L. Wolfe? 
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Lecture 7: Stress Relaxation 

E. J. Hinch 

1 Introduction 

How does a Non-Newtonian fluid behave when under stress? And what happens when the 
force causing the stress is removed? One would expect that purely elastic solids when com- 
bined with viscous fluids would be adequate in modeling Non-Newtonian fluids. However, 
that is not the case. 

As is apparent in figure 1, there is a certain time scale characteristic of Non-Newtonian 
fluids that is absent when such substances are modeled as a mix of elastic solids and viscous 
fluids. Accounting for a relaxation time of the microstructmre and the extra normal streses 
is essential to the description of such materials. 

When a Non-Newtonian fluid is deformed, the instantaneous viscous stress that builds 
up scales as fioii where Ho is the zero-shear viscosity of the material. If we now suppose that 
there is a memory time (T) associated with the microstructmre within the material, then 
the deformation it imdergoes for a constant shear rate, 7, would be jr. As in elastic solids, 
the elastic stress associated with such a deformation would be Gjr, where G is the elastic 
modulus of the material. After the memory time or the relaxation time of the material has 
elapsed, the stress would reach a steady value which would scale as (//Q + GT)^ as seen in 
flgure 1. It is reasonable to think of {fj,o + GT) as an enhanced viscosity. In other words, 
Non-Newtonian fluids have a characteristic memory time scale which is referred to as the 
relaxation time. When the applied rate of deformation is reduced to zero, these materials 
relax over their characteristic relaxation time - a constitutive property of each material. 
This phenomenon is known as stress relaxation. 

2 Flow of a non-Newtonian fluid past a rigid sphere 

We will now look at the flow of a Non-Newtonian fluid past a sphere. While such a flow can 
be steady in an Eulerian sense, it might be imsteady in a Lagrangian sense.Arigo et al, [1] 
worked out the FEM simulations of the long wake behind the sphere using the Oldroyd-B 
model for the microstructure, as shown in figure 2. Note that the wake gets longer as the 
Deborali number, De, increases. This is because as the shear rate is increased, the fluid 
behind the wake is stretched more and more, therefore requiring a larger distance to relax. 

In flgure 3, the force required to move the sphere at a constant velocity through the 
fluid is plotted against Weissenberg number (which for this case may be thought of as 
the dimensionless shear rate). The force is made dimensionless with the equivalent Stokes 
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Figure 1: Stress build-up and relaxation in a viscoelastic material due to a step strain rate. 

i&o 

Figure 2: Velocity in the wake of a rigid sphere moving through a non-Newtonian fluid, as 
a ftmction of the distance from the center of the sphere. 
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Figure 3: Drag on the sphere, scaled with Stokes drag, plotted against the Weissenberg 
number. 

drag - the force that would have been required to move the sphere at the same velocity in a 
Newtonian fluid of viscosity {no+Gr) [2]. A comparison with the experiments shows that the 
force required does not decrease as drastically as predicted by the Oldroyd-B calculation [3], 
as shown in figure 4. The simulations can be brought closer to the experimental observation 
by calculating the Stokes drag using the zero-sheax viscosity of the fluid instead of the 
deformation enhanced viscosity. This is because, as the sphere is moved faster (up to a 
limit), the fluid gets less time to deform. Hence the viscosity as seen by the sphere stiU 
remains /Xo- Two of the important experimental observations that the Oldroyd-B model 
fails to predict are the large increase in drag beyond a critical We and the much larger 
•wake seen behind the sphere. 

When a sphere moves through a Non-Newtonian fluid, negative wakes are observed. In a 
negative wake, the fluid in the wake region of a moving sphere starts to move in a direction 
opposite to that of the sphere. Figure 5 shows a cartoon describing the effiect. These 
negative wakes have been ascribed to the high stresses that the moving sphere introduces 
in its wake regions as it deforms the microstructure. The stress relaxation of the fluid after 
the sphere has moved away from a point causes a secondary flow. 

Another calculation was done by Harlen [4] using a finite extensible non-linear elastic 
(FENE-CR) microstructure model proposed by Chilcott and RaUison, a figure firom which 
is shown in figure 6. This simulation demonstrates that the extent of negativity in a wake 
increases as the extensibility (paxajneter L in figure) of the microstructure increases. 
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Figure 4: Drag on the sphere plotted against Weissenberg number, measured experimentally. 
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Figure 5: Cartoon showing a negative wake region behind the sphere 
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Figure 6: The negative wake as seen in FENE-CR calculations. 
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BEST AVAILABLE COPY 

Figure 7: A picture from an experiment, showing the upstream vortex in the contraction 
flow of a non-Newtonian fluid. 

3    Flow of a non-Newtonian fluid through a sudden contrac- 
tion 

Large upstream vortices are observed in Non-Newtonian fluids flowing through a channel 
contraction as shown by Caxtalos and Piau [5] (see figiue 7). This is another example of 
a flow which may be unsteady in the Lagrangicm sense while being steady in the Eulerian 
sense. Oldroyd-B model has been used in the FEM simulations of such flows ([6, 7]). In 
figure 8, we can see the pressure drop (made dimensionless with the Stokes drag) across the 
contraction plotted against the Deborah nvmaber. This result disagrees with what is observed 
in experiments (see figure 9) wherein an initial decrease in the pressure drop is followed by 
a steady climb up to an order of magnitude higher vaJue. Thus Oldroyd-B successfully 
predicts the initial small decrease in pressure drop imtil a De of about 5. However, it fails 
to predict the large upstream vortices ajid the dramatic increase in pressmre drop seen in 
constraction flows of such fluids. Again, it is better to scale the pressure drop for higher De 
using Ho instead of {(j,o + GT) as explained for a sphere moving in a Non-Newtonian fluid. 

Arigo, et al. [1] worked out the FEM simulation of a sphere falling down a tube filled 
with a Non-Newtonian fluid, wherein a constajit force was appUed to move the sphere. 
Figmre 10 shows the velocity of the sphere as it descends down the tube. Again, Oldroyd-B 
is the model that has been xised in the calculation. In the figure, it is evident that the 
velocity of the sphere overshoots the Newtonian value during start-up of the fall. This is 
due to shear-thinning. After reaching a peak, the velocity begins to decrease and becomes 
less than the Newtonian case after a sufficiently long time. Increasing the Deborah number 
results in the sphere slowing down more quickly. 
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Figure 8:   Pressure drop across the contraction, calculated using the Oldroyd-B model, 
plotted against De. 
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Figure 9: Experimental results of pressure drop in a contraction flow plotted against strain 
rate. 
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Figure 10: Velocity of the sphere plotted against time 

Shear Strain Rotation 

45 

Figure 11: Shear flow can be written as a siun of straining and rotation. 

3.1    Non-linear deformation 

When a Non-Newtonian fluid undergoes a nonUnear deformation, tension in the streamhnes 
develops due to the large relaxation time of the niicrostructure. This tension in the stream- 
lines results in non-zero normal stresses within the fluid. We can estimate the approximate 
shear and normal stresses in Non-Newtonian fluid deformed by a simple shear flow in the 
following maxmer. The simple shear flow can be decomposed into a pinrely straining motion 
with the principal axes oriented at 45° from the axis of shear and a pm-e rotation as is 
shown in figiure 11. 

The straining motion caiises a strain of -yr resulting in a shear stress equal to G-^T in 
the microstructure. Pure rotation then causes the microstructiure to align in the direction 
of the flow, thereby lending it to compression by the straining motion, as shown in figure 
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Figure 12: Shear and Normal Stresses in a non-Newtonian fluid. 

12. The extent of the compression is 7T. Thus 

Normal Stress = Shear Stress x -yr 

4    Yield Problems 

Some Non-Newtonian fluids undergo a yield behavior when deformed beyond a limit. Such 
fluids have an associated yield stress beyond which it imdergoes a distinct change in flow 
behavior. Common examples of materials that possess a yield stress are foams, cross-linked 
gels and pastes. In this lecture we will talk about such materials and then describe some of 
the common appUcations of yielding in the transport of small particles as well as the dangers 
of having a dead zone in sharp comers of channels. We will then proceed to the age-old 
squeeze film paradox. After that we wiU talk about what is common between ketchup 
bottles and oil pipeUnes. 

Kabla & Debregeas [8] has suggested that foams get permanently damaged upon yield- 
ing. Therefore, an understanding of the yield behavior of foams is of direct relevajice to 
their efficacy. The figure 13 has been taken from St.Jalmes & Durian [9]. They show how 
the yielding stress and strain decrease with decreasing volume firaction of gas in a foam. 
The rheological behavior of aji mmamed cross-Unked gel is shown in figure ??. Both the 
degree of cross-linking and the concentration of the polymer molecules forming the gel will 
determine its yield stress. 

Yield stress is an important quantity when walls are being plastered. If the yield stress 
of the plaster is too large, it will not flow very smoothly - sticking, slipping and bringing into 
question the self-esteem of the painter. However, if the yield stress is too small, painting 
the deling will be an exercise in making the floor dirty because all the plater paste will give 
in to gravity. The figure ?? shows the yielding behavior of a suspension of 30% Aluminium 
particles in an imknown solvent. Clearly, the the yielding behavior is strongly governed by 
the pH of the suspension. An explanation for this is still lacking. 

Another interesting effect of yield stress can be seen in the sedimentation of rigid parti- 
cles in a Bingham fluid. In order for the particle to sediment, the stress due to gravitational 
force should be higher than the yield stress of the fluid. When that happens, a fluid region 
is created around the particle that wiH cause it to cruise through the Bingham fluid and 
sediment, as can be seen in figure 14. For the case of a spherical paxticle, there are two 
stagnation points where the stress is below yield stress. Hence, they remain undeformed 
and can be treated as soUd regions. Detailed calculations for this problem can be found in 
work by Beris et al [10]. 
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Figure 13: Yield strain and yield stress of a foam Vs. volume fraction of gas. 
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Figure 14: Sedimentation of a sphere in a Bingham fluid. 

When a Bingham yield fltiid flows through a rectangular chaoinel, the fluid near the 
comer can remain unyielded as seen in figure 15. 

5    Squeeze film paradox 

In this section, we will talk about the squeeze film paradox.  First, we will describe this 
paradox. After that, we will address the solution of this problem [11, 12, 13]. 

As shown in Fig. 16, we consider a film of Bingham fluid described in terms of a Cartesian 
coordinate system {x, z) in which x is the horizontal and z the vertical. Let the center of the 
film lie at the origin. If we squeeze the fihn with the vertical velocity W/2 from above and 
the vertical velocity —W/2 from below, the film will move horizontally with the velocity u 
and vertically with the velocity w (Shown in figure 16). If the efiiect of gravity is ignored, 
the momentum equations for the film are: 

dp 
dx 
dp 

0 — n      + <^XX,X + (^XZ.Zi 

U — ,-,      + (^XZ,X    I    ^ZZ,Z- 

(1) 

(2) 
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FigTire 15: Unyielded zone in the comer of a rectangular channel. 
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Figure 16: Squeezing of the fikn 
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For a Binghajn fluid, the relationship between the stress and strain rate is 

E = 0      if |<r| < o-y, (3) 

^ = (2/. + g| )E      if \CT\ > ay, (4) 

where Cy is the yield stress, E is the strain rate tensor and a is the stress tensor. E can be 
expressed as: 

The second invariant of the strain rate tensor and the stress tensor are:  |E| = -i/lE : E 

and \a\ = J\a : a respectively. We non-dimensionalize the momentum equation in the 
following way. Let L be the horizontal length scale, H be the vertical length scale, and W 
be the scale for the vertical velocity. Then the horizontal velocity u can be scaled asW^, 

and strain rate tensor E can be scaled as ^. Also we scale a^, axz by ^^HT" and <^xxi <^zz by 

^, and the presssure p by ^^f . Let e = ^. Since the horizontal length scale L is much 
larger than the vertical length scale H, we have e <C 1, p > {(Ty,crxz) > {(^xxi(^zz)- Then 
the non-dimensionaJized equation can be written as: 

dp 
dx 

0 = - TT- + e^crxx,x + crxz,z, (6) 

^dp 
e^dz 

To O(e^), the momentum equation in the z direction is: 

dp 
Wz 

0 = -^-^-^Oxz^ + Ozz^z- (7) 

1^ = 0. (8) 

Thus, the pressure is not a function of the height to O(e^): 

f, = p(x) + 0(e2). (9) 

The non-dimensionlized strain rates are: 

E=f.      ^%    ^    \{uz^e^v^x)\ (10) 
\^ 5(«z + ewx) ewz ) 

So the leading order constitutive law wiU be: 

u^ = 0 if \Oxz\ < <^y, (11) 

CTxz = -CTj, + juz (in 2: > 0)        if \axz\ < (^y, (12) 

axz = +(7y - iuz (in 2: < 0)        if \axz\ < <^y (13) 

Integrating the momentum equation along the x-direction with respect to z, we find: 

axz = ^z + 0{^) (14) 
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Plug 

Figure 17: Plug velocity profile in the unyielded region of the film. 

By introducing equation (14) into the leading order constitutive law equation(ll-13) at the 
yielding level z = Y,-we find that: 

dp. 
dx 

Y = 'y 

Hence the yield level Y can be expressed as: 

The velocity gradient in the z-direction then becomes: 

_rO YD. Q<z<Y 

"'"l ti^-Y)     ■uiY<z<l. 

Integrating in z, we obtain the velocity profiile as: 

{ U in 0 < z < y 

(15) 

(16) 

(17) 

(18) 
U + %\{z-YY    mY<z<l. 

When the height z is less than the yield level Y, the fluid in the film will not yield and 
move with a uniform plug velocity U. When the height z is larger than the yield level Y, 
the velocity of the fluid in the film increases quadratically with height (See in figure 17). 

Assmne the non-slip boimdary condition: 

u = 0      at 2; = 1. (19) 

Then match the velocity profile to the non-slip boundary condition; we have: 

d^ 2U 
dx 

(20) 
(i-y)2- 

Substituting the pressmre gradient along the x direction into the velocity profile, we have 

u 
U in 0<2;<y 

U[l in Y <z<l. 
(21) 

Therefore, we obtain the horizontal velocities of the fihn at different heights. However, that 
is not the end of the story. Integrating the horizontal velocity along the z direction, we can 
obtain the volume flux Q: 

Q = j udz = U{\ + \Y]. (22) 
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Figure 18: The velocity is increasing in the x direction - paradox! 

As we squeeze the fihn, the sum of the horizontal flux Q of the fluid should be equal to 
the decrease of the fluid volume in the vertical direction per imit time because of the mass 
conservation: 

Q = lx. (23) 

Combining the two equations above, we obtain the expression for the plug velocity U. 

1, 

U = 
ix 

i+iy 
(24) 

Putting this into the expression for the pressmre gradient along the i-direction, we have: 

(25) 
dp 
dx (i + iF)(i-y)2- 

After substituting the pressure gradient along the x direction into the expression for the 
yield level, we obtain an equation for the yield level Y: 

The asymptotic solution of this equation is: 

in a; ^ 1. 

(26) 

(27) 

By introducing the expression for the yield level Y into the equation for the plug velocity 
17, we find that the plug velocity U is not a constant any more, but varies in the horizontal 
direction x (See figure 18), which contradicts with the previous conclusion. This is known 
as the squeeze film paraxiox. 

To resolve the squeeze film paradox, we show how plug velocity U can be a function 
of X if we assume the stress is actually just above the yield value in the "plug" region: 
|a| =ay + 0(e). Now, the stress is given by. 

Cxz = — Ci 
F' 

(28) 
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Thus |cr| « (Tj, if 

Cxx = -(Tzz = (Ty\/1 -y2+ ^(^)- (29) 
^2 

Since the strain rate tensor E is proportional to the stress tensor for the Bingham fluid, 
the derivative of the horizontal velocity u with respect to z should have first order approx- 
imation, Uz = 0(e), and we could assume that the horizontal velocity u can be expanded 
as u = U{x) + eui{x,z). Then the strain rate tensor can be expressed as: 

^-'\\u,z    -Uj (30) 

Therefore the magnitude of the strain rate tensor is: |E| = ey U^ + \^IXJ ^^^ ^® have 

-(^y^ = (^xz=    2 +      ,   ^^ ^ e-uiz. (31) 

Thus, uiz satisfies: 

u    = ^^y (32) 

This solution is singular as z approches the yielding level Y, requiring a thin transition 
layer of order 0(e), across which we must match the pseudoplug solution with the earlier 
solution for the yielding region in order to fiilly specify the flow. Without going through 
this refinement, we may still integrate equation (32) to find the velocity connection inside 
the plug, 

u, = 2U,Y^\-[Pj\ (33) 

Therefore, the horizontal velocity u varies in the x and the z directions even in the plug 
region as predicted. 

6     Ketchup bottles and oil pipelines 

There are great reservoirs underneath the ocean. In the petroleum industry, oil is often 
pumped through long pipeHnes to the sea surface. The length of the pipelines is usually 3 
km, and the diameter of the pipeHnes is usually 10cm. When the oil is pimaped up out of 
these reservoirs, the temperature of the oil is high (~ 80° C) and the viscosity of the oil is 
low. During transport, the cold water in the ocean (~ A°C) cools the oil. To insidate the 
pipeline firom the ocean water and ease pumping, insulating gel is put between the pipelines. 
A pratical problem which then occur is that the hot oil pipe will also heat the gel and make 
the gel expand. People usually build a vacant expansion pipe to contain the expanded gel. 
After the production stops, the oil pipe cools and gel contracts. The contracted gel is then 
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recyled. Three questions emerge that need to be answered before the production process: 
Will the gel convect with the large temperature dijfference AT = 80° C7? Can we generate 
the pressure to pump the oil 3Km in 10 hoius without biusting the pipe? How much gel 
flows out of the expansion pipe in the recycling process? 

We address these questions one by one. First, let us consider whether the gel will 
convect. Before we answer this question, we need to calculate the yield stress of the gel. 
Lab observations show that a 1mm air bubble does not move in the vertical gel pipe and 
air bubbles larger than 1mm will move. A balance of buoyant stress and the yield stress of 
the gel(r*) gives the following estimate: 

T, = Apogd = 10 Pa, (34) 

where the Apo is the density difference between the gel and air, and d is the diameter of 
the bubble. Therefore, the yield stress of the gel is about lOPa. Near the surface of the oil 
pipe the temperature of the gel is around 80° C, and the temperature of the gel near the 
cold water is around 4°C. The temperature difference between the cold gel and the hot gel 
will therefore be about: AT ~ 80°C. The density difference for the gel at these different 
temperatures is: 

^ = 10-2. (35) 
P 

Consequently, there will be a buoyant force on a "bubble" of the heated gel. Prom Eq. 34, 
a bubble of diameter D will be held in place by the yield stress if: 

T. w lOPa > ApgD = 10"^ • 10 • Z), (36) 

that is, if D < 10cm. Since the diameter of the pipe is about 10cm, the gel will not convect. 
Now, let us consider whether pumping is feasible. For pumping, the pressure difference 

across the pipe should exceed the yield stress of the gel along the wall: 

irr^Ap > 2TrrLn, (37) 

where r is the radius of the pipe, L is the length of the pipe, Ap is the pressure difference 
across the pipe, and T, is the yield stress of the gel. Therefore, we estimate pressure drop 
per unit length as: 

^ = 200Pa-m-\ (38) 

Measurement shows that the pressure drop per unit length in the oil pipes is 350Pain~^ 
in the 100m long pipe test. Therefore, the gel will flow. For the 3A;m long pipe, the total 
pressure drop will be: Ap = 66ar. Since the strength of the pipe is about 50bar, it is also 
safe for pumping gel to 3Km in 10 hours. 

In the hot oil pipe, the gel expands and flows into the special expansion pipe. When 
the production stops, the pipe cools, and the gel contracts. Does the gel flow out of the 
expansion pipe? Before answering this question, let us look at a ketchup bottle problem 
and calculate how much fluid comes out of the ketchup bottle. 
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z = h(x) 

Figure 19: The flow of gel inside the expansion pipe is similar to that of ketchup in a bottle. 

For an idealized cylindrical ketchup bottle, let x be the distance along the bottle, z be 
the height of the ketchup in the bottle z = h{x), ajid A be the cross section of the ketchup 
in the bottle. 

Then the pressure force is: 

= / pdA, (39) 

where p is the hydrostatic pressure produced by the ketchup.   Then the gradient of the 
pressure force along the x direction is: 

dF dh 
dx dx 

(40) 

In the steady state, the pressure gradient force is balanced by the friction between the 
ketchup and the wall of the ketchup bottle. The kepchup can flow if the friction stress is 
larger than the yield stress of the ketchup: 

dh . _   - 
(41) 

where T, is the yield stress and lad express the wetted area per unit length, with the angle Q 
defined as in figure 19. The height of the wetted area can be expressed as /i = o(l — cos(0)) 
and A = (P'{6—\ sin(^)). Substituting these two expression into the equation of the pressure 
gradient force, we get 

d6        T, 29 

dx     pga^ sin(^) {6-1 sin(^))' 
(42) 

Therefore, flow wiU continue until the inequality becomes an equality, giving the volume 
removed from a ketchup bottle: 

V = a^P^lM, (43) 

from a length a^O.85. This calculation fits well with experiments. 

Notes by Junjun Liu and Anshuman Roy 
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Lecture 8: 
Instabilities 

E. J. Hinch 

A laxge class of fluids flows is never observed in practice even though they axe exact 
solutions to the equations of motion. This is because these flows are unstable to smaU 
perturbations that are always present in the environment. Newtonian fluid flows support 
a vast array of instabilities and it is not surprising that many of these instabilities persist 
when the Newtonian fluid is replaced by a non-Newtonian fluid. Additionally, there are a 
number of instabihties which are foimd only in non-Newtonian fluids. 

In this lecture we survey six non-Newtonian flow instabilities. The first, the spinline 
draw resonance, is an instabihty of a simple viscous fluid that can be modified by non- 
Newtonian effects. Sections 2-4 deal with instabihties which depend on non-Newtonian 
effects for their existence. In section 5, we examine the little understood phenomenon of 
turbulent drag reduction in a dilute suspension of polymers. Finally, section 6 deals the 
instabihties of a high speed elastic jet. 

1    Spinline Draw Resonance 

The manufacture of synthetic fabrics such as nylon and kevlar involves the drawing of 
polymer melts into thin fibers on a spinline. The geometry of a simple spinline is shown 
in figure 1. As the draw ratio—the ratio of the velocity of the spindle to the exit velocity 
of the fluid—is increased, the spun fiber becomes thinner, so the spinning of extremely 
thin fibers requires large draw ratios. If the draw ratio is increased beyond a critical value. 

Figure 1: Geometry of a spinhne. 
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the spinline draw resonance sets it. This instability, first described by Christensen [1] and 
Miller [2], is characterized by sustained periodic oscillations in the cross-sectional area and 
stress in the spinning polymer strand. While most fibers are spun firom non-Newtonian 
fluids, the spinline draw resonance occurs even in purely NewtoniaJi fluids. We wiU consider 
the simpler Newtonian instability first. 

The geometry of a simple spinhne is shown in figure 1. A steady state can be found 
by assuming that the cross-sectional area a and velocity v are functions of the streamwise 
coordinate y only. The continuity equation becomes a conservation equation for area, 

|;M = 0' (1) 

while the momentum equation is a balance between the viscous force and the (constant) 
tension T: 

- = <ryy = 3^^. (2) 

The spinline has length L and boundary conditions 

^(0) = Vo 

v[L) = Vr. ^ ^ 

The solution to equations (l)-(3) is 

v(y) = FoDr^/^ (4) 
TT 

where the Dr = V\/VQ is the draw ratio. 
This simple solution is unstable if 

Dr > 20.3. 

Including additional processes can have a dramatic effect on this stability criterion. Inertia, 
cooling (which increases viscosity), and elastic effects can push the critical draw ratio to 
Dr w 10^. Surface tension and shear thinning, on the other hand, have a destabilizing 
influence and can lower the stability threshold to Dr « 3. The exact stability threshold in 
an industrial application is set by a competition between these stabilizing and destabilizing 
effects. 

To understajnd the mechanism for this instability, imagine a perturbation which causes 
a thinning of the thread near the spool (at y — L). Since the speed of the thread near 
the spool is fixed, the mass flux onto the spool must decrease, which decreases the total 
tension in the fine. This low tension causes the velocity to decrease throughout the interior 
of the line. The speed of the thread at the outflow point (at y = 0) is similarly fixed, so 
the line must thicken near the outflow point to conserve mass (figure 2a). This thickened 
section will eventually propagate down the line to the spool. Once it reaches the spool, the 
increased mass flux onto the spool will increase the tension in the line, which causes the 
line to thin at the outflow point (figure 2b). 
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\ 
make thick 

-J    s 
thin- low tension thick—^ high tension 

Figure 2: Mechanism for spinline draw resonance, (a) Thinning at the spool causes thick- 
ening at the outflow point, (b) Thickening at the spool causes thinning at the outflow 
point. 

Drainage of the Foot Free Surface Depression Fibril Formation Growth 

Figure 3: Development of the buckling instabiUty, after Spiegelberg and McKinley's figure 
10 [3]. The dash-dot curves represent streamlines. 

The amplified feedbaxdc combined with the time delay caused by propagation feeds the 
instabihty. Above the critical draw ratio, the pertmrbation can grow to finite size. The 
system settles down into limit cycles, causing periodic oscillations in the thickness of the 
spun fiber. 

2    Buckling Instability 

The 'filament stretching device' is a common experimental device for measuring extensional 
properties of polymer solutions. In this device— which is described in detail in Lecture 2—a 
small cylinder of fluid is held between two rigid circular plates which are suddenly sepaxated 
at a known rate. The extensional properties of the fluid are deduced by measuring the force 
on the plates as a function of the known strain. In order to obtain a consistent rheological 
measurement, the strain rate should be approximately constant throughout the extending 
fluid colimm. The buckling instability, which occurs on the plates of the filament stretching 
device, can seriously compromise the utility of the device unless measmres are taken to 
prevent it. This instability was first observed by Spiegelberg and McKinley [3]. 

Figure 3 illustrates the evolution of the buckling instabihty. In the initial stages of the 
experiment, fluid is drained from the 'foot' of the colmnn to feed the extending column. 
Eventually, the reservoir next to the column is depleted, at which time the foot begins to 
break up into fibrils. These fibrils migrate to the outer edge of the plate and can themselves 
develop secondary and tertiaxy instabiUties. 

The mechanism for this instability can be simply understood with the paradigm of 
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tension in curved streamlines. As the reservoir at the foot of the column is drained, the 
streamlines become increasingly more curved. Eventually, the tension in the streamlines 
is so great it overwhelms the adhesive force holding the column to the plate. This causes 
the center of the foot to detach from the plate, leaving the fibrils attached to the outer 
edge. The final configuration has nearly straight streamlines and thus forms a configuration 
which globally minimizes stored elastic energy. A mathematical investigation of the buckling 
instability can be found in Kumar and Graham [4]. 

Recent filament stretching devices have incorporated plates that contract as the filament 
is stretched. This modification stabilizes the foot of the colimm and allows consistent 
measurements of the extensional properties of the fluid [3]. 

3 Purely Elastic Instability of Curved Streamlines 

A common feature of visco-elastic fluids is that instabilities can occur even in the absence 
of inertia. These are discussed at length in the review article [5]. Many of these occm: in 
situations where the streamlines are curved. StreaxnUnes in shear flow are under tension. If 
they are curved, this tension creates a hoop stress, which can lead to instabilities. The hoop 
stress acts in a direction opposite to the centrifugal effects, and so the resulting instabilities 
are clearly distinct from inertial effects. 

The most famous example is the Taylor-Couette instabihty. In a Taylor-Couette device 
(two concentric rotating cylinders with fluid between them), an instability arises at suffi- 
ciently high flow rates. In a Newtonian fluid the instability occurs because of centrifugal 

effects at sufficiently high Taylor number (the Taylor nimiber 4—j^_fiZ ^^^ is the ratio of 

centrifugal force to viscous force), but in a non-Newtonian fluid an instability can occur at 
negligible Taylor number (e.g., 10~*). The mechanism creating the instability is the hoop 
stress generated by the flow which acts oppositely to the expected centrifugal force. This 
instabihty was first observed and analyzed by [6, 7, 8]. Further experimental analysis was 
done by [9] and by a number of other people. For a gap ratio of e ={R2_— Ri)/R2, the 
instabihty appears to happen when e^/^Wi w 8 (note that e^/^Wi = \/DeWi). 

Numerics suggest that axisymmetric and non-axisynmietric modes can occur, and both 
are observed in experiments. The instability occmrs as a supercritical Hopf bifurcation. 

Other flows with curved streamlines can be foimd in Taylor-Dean, plate-plate or cone 
and plate geometries. This general class of instabilities has led to the concept of elastic 
turbulence [10], a comphcated time-dependent flow with negligible Reynolds number. 

4 Instability of coextrusion 

Even in flow with straight streamlines instabilities can occur in inertialess flow with elastic- 
ity. In core-annular flow of two fluids down a pipe, differences in elastic properties can lead 
to instability at zero Reynolds number. We consider a pipe with flow in the z direction, 
with one fluid at r < TQ and another at ro < r < R. At the interface between the two fluids 
a ■ n must be continuous. If the elastic properties of the two fluids are different, there will 
be a discontinuity of the CTZZ component because the two fluids have different first normal 
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stress differences. However, since n has no component in the z component, cr • n remains 
continuous. 

less elastic 

more elastic 

(a) The unperturbed basic flow. (b) Zooming in on a perturbed interface. 
Because the fluids have different elastic- 
ities, the interface moves to the right. 

(c) A small core which is more elastic 
than the outer fluid. Since the core 
is small, the recirculation occurs in the 
outer fluid and enhances the perturba- 
tion to the interface 

(d) A perturbation with a large core 
which is more elastic than the outer fluid. 
Here the recirculation occurs in the core 
and opposes the perturbation to the in- 
terface. 

Figure 4: Mechanism of instability: The misalignment of the interface and the base flow cre- 
ates a perturbation flow. Incompressibility forces the flow to recirculate. The recirculation 
can either enhance or oppose the perturbation to the interface. 

When there is a perturbation to the interface, n is no longer purely radial, so a secondary 
flow across the interface must develop to keep a • n continous. Physically the more elastic 
fluid is pulling the less elastic fluid across the curved interface. The secondary flow must 
have a recirculation by conservation of mass. If the inner fluid takes up a large fraction of 
the pipe, the recirculation will take place inside the inner fluid. If it takes up a small fraction 
of the pipe, the recirculation will take place inside the outer fluid. Thus the recirculation 
will either enhance or stabilize the pertm-bation, depending on which fluid is more elastic. 

This instability was first computed in the longwave limit by [11], and the mechanism 
was explained by [12]. It was found that if the more elastic fluid occupied less than 32% of 
the volimie the flow would be unstable to long waves, regardless of whether the more elastic 
fluid was in the core or the ajinulus. 
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This instability has been studied in detail in her PhD thesis by Wilson [13]. It was further 
found that when the discontinuity is smoothed out, the instability can be eliminated [14]. 

5    Turbulent Drag Reduction 

It was noted during the second world war that the addition of a small amount of high 
molecular weight polymers to gasohne dramatically reduced the eflFective turbulent viscosity 
of the flow. Since then it has been shown that drag reduction of a turbulent flow is a general 
feature of dilute solutions of long polymers. Though it is potentially of extreme industrial 
value, a detailed explanation of this phenomenon remains elusive. However, a general 
framework for understanding this effect has emerged. 

The action of the polymers is primarily to modify turbulent behavior near the walls. 
There, wall eddies are formed which transport momentimi into the fluid mterior which exerts 
a drag on the flow. The polymer's high resistance to extension makes these eddies wider 
and less frequent and, consequently, less efficient in transporting momentum away from the 
walls. Cross-stream fluctuations are suppressed relative to their Newtonian values while 
alongstream fluctuations are actually enhanced. The traditional explanation for turbulent 
drag reduction—that the addition of polymers reduces the turbulent intensity of the flow— 
cannot hold since the turbulent intensity in the bulk of the fluid is unaffected by the presence 
of polymers. (This explanation follows that in [15].) Figure 5 shows numerical simulations 
of the effect of polymers on the mean flow and near-wall velocity fluctuations. 
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Figure 5: Nimierical simulations of turbulence using Newtonian and two different FENE 
rheologies, from [15]. Left: Mean flow velocity in the log-layer near the wall. Right: RMS 
velocity fluctuations near the wall. The wall coordinate y^ = vyjVQ where I/Q is the viscosity 
of fluid and v is the effictive viscosity. 



6    Instability of a High Speed Elastic Jet 

We now look at an instability which happens at high Reynolds number and high Weissenberg 
number. We consider a high speed submerged elastic jet [16,17]. It is well known that a high 
extensional viscosity helps prevent an elastic jet from breaking up into spray, so elasticity 
helps stabilize that instability. However, other instabiUties can arise. We follow [17] to 
consider the effect of elasticity using an Oldroyd-B model. 

6.1    Governing Equations 

The equations of motion are 

p^ = - VP + fiV^U + GV • A 
JLyv 

V 1 
^ = --(A-l) 

The basic state has flow in only the x direction. It is steady ajid rectilinear, so ^ = 0. We 
get 

U=iU{y,z),0,0) 
"1 + 2r2(C72 + C72)   ^u^   ^jj^ 

A = rUy 1        0 
TU^ 0       1 

We now make the assimiption that the Reynolds number is large, ^^^ > 1, and that the 

Weissenberg number is large as well, ^ > 1. 

6.2    Linearization 

The problem is linearized with lower case letters denoting the perturbation quantities. We 
denote the components of the perturbed velocity by w = (it, v, w). The linearized equations 
are 

p[ut + Uux + vUy + wUz] = -px + G[aii,x + oi2,x + oi3,z] 

p[vt + Uvx] = -Py + Gai2,x 

p[wt + Uwx] = -Pz + Gan,x 

oii,f + Uaii^x + vAii^y + wAii^t = 2^ii«a: + 2ai2?7j, + 'i-a\zUz 

Oi2,t + Uai2,x = AuVx 

aiz,t + Uais^x = MiWx 

and we seek a solution proportional to e^^i"^-'*) where the waveniunber a is real and the 
growth rate is ac. 
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We can maJke progress using different coordinates. We change to streamline displace- 
ments. We let ri denote the y-displacement of a material particle from its equilibrium 
position and C denote its z-displacement. Then ^ = z; to first order, but we can express 

^ to first order as 

= r}t + {U-g^)r} 

= ia{U — c)ri 

so u = ia{U — c)rj. A similar analysis can be done for C- By incompressibility 

u = -nUy - CU, -{U- c)ir}y + Cz) 

and 

Oi2 = iarjAn 

ai3 = iaCAn 

an = -2Au{r}y + Cz) - Mii,y + C^ii,z)- 

We use these to arrive at 

ia[p{U - cf - GAn]{riy + Cz) = icxp 

lp{U-cf-GAn]a'^r]=Py 

\p{U-cf-GAnWC=Pz. 

In planar flow we set C = 0 and rj = -^/{U - c) to arrive at an elastic Rayleigh equation 

This can be expressed in a self-adjoint form, giving a semi-circle theorem [18] which states 
that the complex wave speed c must lie within a circle centered on {Umax + C^mm)/2 with 
radius (C/max - Urain)/2. 

We assume that the time-scale of the instabiUty is much less than vorticity diffusion, 
stress relaxation and shear wave propogation. 

6.3    Two-dimensional jet 

We consider a two dimensional jet where 

'Uo{i-i)   \y\<b 
0 \y\ > b 

U{y) 

lo |y| > h 
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We define the elasticity number 

E 
GAn      Gr'^ 
pC/2 pft2 

which, remarkably, is independent of the flow rate. Outside the jet we have a potential flow 

V = T—2" 

We look for sinuous and varicose modes to see the efiect of the elasticity paxameter E 
on the growth rates. 

1J^ "u 
a   A « «" f\ « 
5>"   I^W 0) 

-^^     /Aft .f^ 

ai 1 \V ^ 
-^"/   \VN\ ^—^ ^ 
-*-=•/        \ \ Ns,/        ^^-^ "(J 

^"     \\ /W ^^ & 
o           \ \/   \"~--—-_^^--^ o 
1-f"                \   V         \          "^ ■ —S (H 

o        VL ^-~~— O 

Wave Number: a 
(a) The growth rate of the 
instability as a function of 
A; for sinuous distiirbances 
with E equaling 0, 0.0025, 
0.01 and 0.05. The high- 
est peak occurs for E = 0, 
and the peak decreases as 
E increases. 

Wave Number: a 

(b) The growth rate of 
the instability as a func- 
tion of k for varicose dis- 
turbances with E equaling 
0, 0.0025, 0.01 and 0.05. 
The highest peak occurs 
for E = 0, and the peak 
decreases as E increases. 

Elasticity: E 
(c) The masdmum growth 
rate of the 2D jet as 
a function of the elsatic- 
ity for the sinuous mode 
(continuous curve) and 
the varicose mode (dashed 
curve). The dotted curves 
are asymptotic results for 
long waves. 

Figure 6: Growth rates — Elasticity stabilizes both instabilities. For small (nonzero) E, 
there appears to be an elastic wave mode at laxge wavenumber. 

As the elasticity approaches 0, there is aji imstable mode with moderate growth rate 
at laxge a. As E decreases further, the value of a increases. This instability is localized 
close to the interface, and depends on the discontinuity in shear rates. As the discontinuity 
in shear rates leads to a jimap in normal stresses, this may be similar to the coextrusion 
instability in origin. 

6.4    Conclusions 

The elasticity has a stabilizing effect. For a two-dimensional jet, the sinuous mode is no 
longer unstable when E > 0.2. The varicose mode remains imstable as E increases, but the 
maximum growth rate decays to 0. 
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For an axisymmetric jet, it was shown by Batchelor and Gill [19] that the Newtonian case 
is stable to varicose perturbations. Adding a small amount of elasticity allows the emergence 
of an unstable mode for large a. However, as the elasticity increases, this imstable mode is 
damped and stabilized a,t E = 0.228. The sinuous mode is stabilized at E = 0.3756. 

Notes by Joel C Miller and Christopher L. Wolfe 
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Lecture 9: Strong Flows 

E. J. Hinch 

1    Birefringent Strand 

1.1    Flow of a FENE fluid past a sphere 

In the lecture on stress relaxation, we talked about how an Oldroyd-B fluid deforms as it 
flows past a rigid sphere. We also discussed the two main shortcomings of the Oldroyd-B 
model as the Deborah nmnber increases, namely the failmre to predict the sudden increase 
in pressure drop after an initial decrease and long wakes. The infinite extensibihty of the 
Oldroyd-B model renders it useless at high Deborah numbers. However, if the Oldroyd-B 
model is modified into its finitely extensible counterpart also called the FENE (Finitely 
Extensible Nonlinear Elastic) model, then strong flow phenomena can be successfully pre- 
dicted. 

Figure 1 has been taken from a finite difierence calculation [1] for a sphere faUing down a 
cyUnder of FENE fluid. Notice the increase in drag force after an initial decrease. The initial 
decrease in drag imtil De = 1.3 is captured well by the Oldroyd-B model. Such a decrease 
occurs due to the elasticity of the microstnicture lending itself to the flow and deforming 
along with it. However, at higher Deborah numbers, the Ohoyd-B continues to deform to 
infinite lengths. The finite extensibility in the FENE model limits the deformation of the 
microstnicture, leading to an extensional viscosity that adds to the drag experienced by the 
flow. Figure 2 is a plot of the drag force felt by the falling sphere with increasing Wi [2]. 

Figure 1: Drag on a sphere with FENE fluid flowing past it plotted against De 
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Figure 2: Drag on a sphere in a viscoelastic fluid plotted against Wi, measured experimen- 
taUy. 

It is evident that the Oldroyd-B model does well at small Wi, but fails beyond Wi greater 
than 1. 

FENE calculations also successfully predict the long wake seen in flow past a rigid 
sphere. The longer-than-Newtonian wake arises because the fluid takes a finite amount of 
time to relax (relaxation time). The material in the wake is highly stretched due to the 
strong extensional flow there. Consequently, a large extensional viscosity results that causes 
increased drag on the sphere above the Newtonian value. It is possible to see these efiiects by 
passing polarized light through the medium. As could be predicted from figure 3, very high 
birefringence is observed in the downstream wake formed by the sphere, especially in the 
regions close to the center streamhne that emanates from the stagnation point. Henceforth, 
we will refer to this region as the 'birefringent strand', and infer that large stresses occiu: 
there. 

1.2    Cross-slot flow of a viscoelastic fluid 

Figure 4 shows the flow of fluid from two chaimels that are sucked out by two other channels 
perpendicular to the inlet chaimels. The velocity profiles at different sections of the exit 
channel axe shown in figures 5 and 7. The flow is simple extensional by design, and will 
therefore stretch out the microstructure, leading to a birefringent strand. A careful look at 
the development of the flow profile gives us some confidence about the effect of the birefrin- 
gent strand on the flow. It is clear that only after a time of the order of the microstructirre 
relaxation time has elapsed, will the parabolic profile develop. 
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Figure 3: Long wake seen in flow of a FENE fluid past a rigid sphere. The contours are of 
constant tr{A) [1]. 

Birefringent Strand 

Figure 4: A schematic figure showing the cross-slot flow. The profiles at different positions 
in the exit channel (a, b, c, d and e) are plotted in the following figure 
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Figure 5: Development of the velocity profile in the exit channel. 

This suggests that it is possible to view the birefringent strand in terms of an elastic 
boundary layer if one views the fluid within this strand as Newtonian but with a very large 
viscosity equal to the extensional viscosity. In this formulation, the fluid smroimding the 
strand is imagined to have a constant Newtonian viscosity and the strand is a thin layer of 
fluid with much higher viscosity. 

1.2.1    Analysis of a birefringent strand in an exit channel 

The velocity profile in the exit channel is given by 

u{x,y) = U{x) ^^ + (Q - Uix)a) M^. (1) 

Force balance on the birefiringent strand results in 

0+ 

M 
du 
dy 

0 (2) 

where, fiext is the extensional viscosity in the birefiringent strand. From the velocity profile, 
we have: 

du 
li 

dyiQ 

0+ 
= 2// 

u Q> 
(3) 

Solving, we obtain 
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Figure 6: Flow in the exit channel with a birefringent strand 

^(-) = !?(i -»-/ ) (4) 

Thus, the velocity along the center streamline starting at the stagnation point increases 
very rapidly to the steady Newtonian value. It is also possible to calcidate the thickness of 
the thin birefringent strand (a good exercise for the keen reader). Interesting predictions 
about the thickness of the birefringent strand for a given flow rate can be made using a 
FENE dumbbell model for the microstructure. Harlen, Hinch and Rallison [3] performed 
such calculations and realized that, as the flow rate increased, there must be a transition 
from thin strands to much thicker ones that would look like pipes. This is shown in figure 
7. 

1.3    Flow of a FENE fluid past a bubble 

Another interesting efiiect of a stagnation point flow is that of a Non-Newtonian fluid past a 
bubble. Since the bubble is deformable, imlike a rigid sphere, a cusp forms at the stagnation 
point. Rallison and Malaga (2003). have worked out the calculations for such a flow. They 
concluded that the curvatmre at the cusp becomes sharper with increasing extensibility 
of the microstructure, as shown by the cartoon in figure 8. By definition, extensibility 
is ratio of the fully stretched length of the microstructure to its equihbrium size. Note 
that the cmrvature increases with stretching of the microstructure, which ultimately leads 
to elimination of the stagnation point—a nonlinear feedback of the microstructure on the 
flow. 
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Figure 7: A plot of Deborah nimiber vs concentration of polymer molecules showing the 
different states of the birefringent strand seen in the numerical calculation. 

Curvature increases with 
extensibility of fluid 

Figure 8: A cartoon of the bubble in a viscoelastic fluid. 
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Figure 9: Nmnerical simulation of a contraction flow of a FENE fluid [4]. Non-Newtoniaai 
fluids generate corner vortices that are much larger those apparent in Newtonian fluids. 

2    Wine glass model of contraction flow 

In lecture 3 we considered anisotropic converging chaimel flow of a suspension of rigid rods. 
Here we turn our attention to a strong contraction flow of a general anisotropic material. 
Experiments and numerical simulations have shown that these flows develop large upstream 
vortices that have a lengthscale greater than a corner vortex observed in a Newtonian fluid. 
Figure 9 shows a simulation of flow into a contraction [4] where the large corner vortex is 
apparent. Figure 10 is an image of a similar contraction flow from experiments [5]. The 
darker regions outside of the inner flow (white region) are the comer vortices. 

We consider the wine glass model of contraction flow, which is a toy model [4]. The 
geometry is shown in figmre 11. Initially there is no deformation of the microstnicture in 
the region upstream of the "wine glass." In this upstream region the relaxation rate of 
the microstnicture is greater than the strain rate. As we near the contraction, though, the 
strain rate increases and will become comparable to the relaxation rate. At this transition, 
material located in the region r < rjy begins to stretch, where r is the distance from the 
centerline of the pipe (figure 11). Once the fluid passes into the "bowl" of the wine glass, 
the polymers continue to stretch as both the flow and strain rate increase. Eventually the 
polymers become fully stretched at a distance r^ from the centerline. At this point the flxiid 
enters the "stem" of the wine glass and travels towards the contraction which has a radius 

re- 
We can now make some progress on this problem using scaling arguments. Within the 

bowl we can approximate the flow as a point sink flow given by 

The point sink flow approximation is valid within the bowl and stem regions. Stretching 
of the microstructmre begins to become important when the relaxation rate is of the same 
order of magnitude as the strain rate, or in other words, the Weissenberg number is 0(1). 
At this point 

1 du , , 
— ~ £» ~ TT— (o) 
r or 
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Figure 10: Image of contraction flow from experiments [5]. The white region indicates 
strong extension flow (the "stem" in the wine glass model), and the corner vortices are the 
darker regions outside it. 

Centerline 

R D 

Bowl 

aCl^ 
/?; 

Stem R. 

Figure 11: Geometry of the wine glass model of contraction flow [4]. This figure shows half 
of a pipe with a 4:1 contraction. Flow is into the contraction. The microstructmre begins to 
be stretched once it enters the bowl, and becomes fuUy stretched when it enters the stem. 
The maximum radius of the bowl is RD , the maximum radius of the stem is RL and the 
radius of the contraction is Re- 

101 



ajid, from differentiating (5), we determine that stretching begins to be important at 

TD - (QT)1/^ (7) 

Within the bowl, the strain rate becomes large and dominates the relaxation term. 
In this region then, the microstnicture stretches like fluid Une elements. Line element 
stretching is proportional to the velocity of the flow and since A is the tensor describing 
the microstructure, we find 

^ oc u^ oc r"^, (8) 

where we have used the relationship between u and r for a point sink flow. 
Upon entering the stem of the wine glass, the microstructure has become fully stretched. 

In this finite extension regime ^4 ~ i^. Now assuming an individual polymer begins stretch- 
ing at a distance rs from the centerUne, A at this point is simply equal to 1. Then using (8) 
we can consider the two Umits of undeformed microstructmre {A = 1) and fully stretched 
microstructure {A = L"^) to show 

1 ~ ^,        L^ ~ ^, (9) 

which gives the result that the microstructure becomes folly stretched at 

rj, = ■^. (10) 

The large vortices that we axe interested in viewing occur only if rs falls within the 
region where the strain rate is larger than the relaxation rate. Or in other words, the 
polymers can only become fully stretched if r^ = L^I'^TL < ro- Note also that this model 
makes sense only if rn lies within the upstream pipe. Now applying this constraint and 
noting that the Deborah nmnber for this flow is given by 

De = ^, (11) 
re 

we find that the microstructure can become fully stretched only if we exceed a critical 
Deborah niunber, 

De > Decrit. = i^^^ (12) 

In determioing Dccrit. we have assumed that TL — re, which is true if we assume the cone 
angle a is small. 

Once the material is fully stretched we have an extensional viscosity /Xext that is much 
laxger than the shear viscosity, /ishearj and the momentxun balance is between the high 
extensional viscosity in the stem and the high shear in the recirculating vortices.   This 
balance can be written as 

a^u 1 d^u 

As in the problem we discussed in section 6 from Lecture 3, for converging channel flow, 
the dependence in the 9 direction has a sinusoidal character, where the 9 direction is in the 
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Figure 12: Numerical simulation of pressure drop as a function of Deborah number for an 
Oldroyd B fluid (Szabo et al. 1997). As the Deborah number increases, the microstructure 
is stretched and the pressure drop decreases. There is some evidence for increasing pressmre 
drop at high De. 

direction of the cone angle a. Assuming a separable solution for equation (13), we find that 

the r-independent solution has a sinusoidal dependence with an argument of {\/^T\^]- 

Therefore the angle of the stem is given by 

a ~ Jt^^ (14) 
V   /^ext 

from which we can see that as long as /igxt > A^shear) our assumption of smaU cone ajigle is 
vaJid. The length of the cone I can be foimd using trigonometry, tan a = (r^ - re)/I, which 
with the smaU angle approximation gives 

=^^=-H^-'-0/¥ / = li^_lii = re (DetL-t - l) W—-. (15) 

Here we have used the fact that /igxt ~ GrL-^and otir previous relationships for r^ and De. It 
is easy to see from our scaling arguments for the angle a that these vortices are much larger 
than the corner vortices we would expect to see in a Newtonian fluid. Numerical calculations 
[4] have shown that these scaling arguments are within 20% of the full numerical calculations. 
The authors also include numerical models of how the pressmre drop varies with increasing 
Deborah number (figmre 12) for an Oldroyd B fluid. As the fluid enters the wine glass and 
the microstructure is stretched, the pressure drop decreases (cf. turbulent drag reduction). 
There is also some evidence that at very large Deborah number the pressure drop begins to 
increase again. 

3    Corner singularity 

The geometry for flow aroimd a corner singularity is shown in figure 13. For very fast flows 
aroimd a sharp comer (we wUl consider a 270° comer), Vu ^> l/r or De > 1.  In this 
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Figure 13: Geometry of flow around a comer singularity. Near the corner, the microstruc- 
ture is strongly stretched. This region is known as the elastic core. Both upstream and 
downstream of the comer there will be boundary layers where viscous effects become im- 
portant (the Deborah number becomes small). Far from the comer the shear is small (the 
Weissenberg number is small). 

case the relaxation of the microstructure is negUgible and only the stretching is important. 
There will be both upstream and downstream boimdary layers where the Deborah number 
is small and viscous effects axe imporant. Also, far from the corner, the shear is small so 
the Weissenberg number becomes small. The transition between these regions are marked 
with a dashed hne in figure 13. The equation for the evolution of the microstructure in the 
elastic core then becomes 

DA 
Dt 

= ^ • Vu + (Vu)^ • A (16) 

where A deforms with the flow. As we discussed briefly in the previous section and in 
earlier lectures, the microstructure deforms like fluid line elements. This can be written 
more formally as 

dt 
5\ = 5\- Vu. (17) 

If we then consider a steady flow, the fact that A will deform like fluid line elements 
suggests that we look for a solution of the form 

A = f{'il))uu. (18) 

Here / is an unknown function which accounts for the fact that the deformation depends 
on the choice of streamline. 

Now when we analyze the momentum equation for these flows, even though the Deborah 
number is large, the inertial terms are still negligible. Therefore the flow is still Stokes flow 
except that the stretching of the microstructure GA balances the pressure gradient rather 
than the viscous forces balancing pressure. Then applying our guess for A and noting that 
/(V') is a scalar function, we can write 

0 = -Vp + Gfiu ■ V/2U (19) 
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where we have used incompressibility, V • u = 0. The reason for splitting / in this fashion 
is that now equation (19) is suggestive of a steady Euler's equation in /^/^u. Indeed, we 
can write 

-Vp+iGV(/|u|2)=0 (20) 

and by integrating we get an anti-Bernoulli equation where 

P - ^G^/luP = const. (21) 

along streamlines. This is termed an anti-Bemoidh equation because rather than pressure 
decreasing with increasing velocity, pressure will increase with increasing velocity. (Theoret- 
ically you would need to flip the wings of an airplane upside down to fly in a non-Newtonian 
fluid!) We can now seek a potential flow solution to (21), assuming the flow is irrotational, 
and has the form 

/i/2u = V(^. (22) 

The solution to potential flow aroimd an angle a [6] is 

^ = CW"cosr^y (23) 

For our 270° corner with a properly normalized velocity, this gives 

0 = r' cos {l^) ■ (24) 

Note that this solution can be obtained by finding the complex potential solution for flow in 
a half plane and using conformal mapping to transform the flat plate to the desired angle. 
This now represents the solution for our flow around a comer neglecting the boimdary layer 
eS'ects (i.e. potential flow only satisfies conditions of no normal flow at the boimdaries, not 
the no-shp condition). This also shows that u « ^/r ex r~^/^ and, since CT oc ^4 a u^, we 
find that 

a oc r~3. (25) 

At this point, using the definition of the stream function we can write 

/lu = /5(V;)V X (0,0, V) = /^V X (o,0, |ri sin^o) . (26) 

Finally, using the fact that / is also a function of tp, we can write 

i; = 9(^rhm^9y (27) 

where g is an unknown function. Rather than solving for g, though, we will apply matching 
between the inner solution and the boundary layer solution. 

Before considering the flow in the boundary layer, we first analyze how the microstruc- 
ture deforms with the fluid. Then as before, we can say that the fluid deforms like a fine 
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element, but aJso in order to conserve mass, the fluid is squeezed in the direction perpen- 
dicular to the stretching, 

Slocu       6l± (X -. (28) 
u 

Following the work by Renardy (1994) we can then seek a solution of ^ in terms of the 
streamwise coordinates, 

>1 = Auu-l-/x(uv + vu) + i^w, (29) 

where 
(V u      \ 

—2~r~2'~2~r~2  • (^^) 

Note that u • v = 0 and |v| = l/|u|. We then substitute this construction into the upper 
convective derivative of A assiuning that the flow is steady. We now include the efiiects 
of relaxation because they will be important in the boundary layer. After an excursion 
through the land of linear algebra, we find three equations for the unknowns A, n and v, 

u-VA   =   2^/x--fA--^y (31) 

u-V//   =   ^v--n, (32) 

uVv   =   --{v-v?), (33) 

where the last equation is decoupled from the first two. It is helpful to note that 

7 = V • (Vu + Vu^) • u = -u^V ■ V , (34) 

from which one can see that the terms that contain 7 in (31) and (32) come from the 
[A ■ Vu + (Vu)-^ • A) terms in the upper convective derivative. For slow flows, the inertia- 
like terms on the LHS are small, so the balance of the remaining terms gives. 

2                            X       1       VT^ i/~tt /z~7r        A~-;T-| 7;—. (35) 

For fast flows, the RHS of (31-33) are approximately zero and therefore A,|x and 1/ are 
constants. 

In the boundary layer we caji seek a similarity solution in streamline coordinates for 
the four unknown functions ip, A, fj, and u. Setting up this similarity solution is discussed 
in depth in Rallison and Hinch, 2004. At the conclusion of the analysis, the similarity 
function for ip as we approach the outer limit of the boundary layer tends to ^^/^ where ^ 
is the non-dimensional parameter in the boundary layer. By matching the boundary layer 
solution to the inner elastic core, we find 

i> = CrT- sini (^e\ , (36) 

where C is an arbitrary constant.   Finite element simulations [7] have shown excellent 
agreement with these results verifying that u ~ r^/^ and a ~ r~^/^ as shown in figmre 14. 
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Figure 14: Finite element simulations of stress singularity at a sharp (270°) corner [7]. The 
upper plot shows velocity as a function of distance from the corner in the elastic core while 
the lower plot shows stress as a function of distance from the corner in the elastic core. The 
lines are drawn for reference to the power law relationships. 
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Figure 15: A filament being stretched. 

4    Elastic stress saturation in a stretching filament 

We will now look at the problem of rapid stretching of a filament of an elastic liquid, with 
a large surface tension. The problem is motivated from the fiber spinning process, in which 
fibers are drawn rapidly from droplets of viscoelastic liquids. 

Let a{t) be the radius of the filament at time t (see figure 15). Also, let the strain rate 
applied to the filament be E{t). Conservation of mass gives us 

a = -^Ea (37) 

Hoop stress due to siurfEice tension (x) has the effect of squeezing the filament. Thus, 
with neglect of the viscous stresses and the elastic stress component, arr, conservation of 
momentum leads to 

- = GA,, (38) 
a 

where A is the tensor describing the configuration of the microstructiure and G is the elastic 
modidus. 

Due to the straining of the filament, the microstructure will get deformed with time. 
Here we model the microstructure with an Oldroyd-B model, assuming large deformations 
of the microstructure, and get 

Azz    =    ^EAzz        Azz 
T 

=   i2E--)Azz:    ' (39) 
T 

where T is the relaxation time of the microstructure. Since the surface tension is resisting the 
stretching of the filament, we need to find out the strain E required to stretch the filament. 
The strain rate cannot be very large beca\]se that would break the filament. Equation of 
momentum, Eq. 38, gives Azz oc \. Using this and Eq. 37, we have ^ = — | = | £7. We 
then look at Eq. 39 and solve to get ^ = | ^. Conservation of mass (Eq. 37) then gives 
the variation of filament radius with time as: 

a(t) = o(0)e~3^. (40) 

The result we have obtained does not compare well with experiments, in the as is shown 
in figmre 16. The experiments were done using Si fluid by Liang and Mackley [8] and the 
solid theoretical curves are firom the analysis carried out by Entov and Hinch [9] in which 
they used a spectrum of relaxation times instead of the single relaxation time that we used in 
o\a earlier derivation. When a spectrum of relaxation times is used for the microstructure, 
the solution for the stretching and relaxation of stress is: 
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Figure 16: Variation of the diameter of an SI liquid filament (on y-axis) being stretched 
with time (on x-axis). The dotted line is the theoretical result derived in Eq. 40. 

''     a\t) 
,-t/Ti (41) 

where the subscript i represents the relaxation mode. 
Hence, the momentum equation becomes 

(42) 

(43) 

Then, the radius of the filament as a function of time is 

a(*)=(fi)V3) 

where G{t) = Yl9i e~*^^^ is the material stress-relaxation function. 

5    Oldroyd-B: Successes and Failures 

The Oldroyd-B is one of the simplest and the most firequently used models for the mi- 
crostructure. Its simpHcity lies in the fact that it adds an elasticity G to the fluid and a 
single relaxation time T, over and above the Newtonian flmd viscosity, ^o- Although this 
model has been successful in explaining some of the viscoelastic phenomena, it has been 
found to perform poorly when the rate of deformation of the fluid is much larger than the 
relaxation time of the microstructure. 
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Figure 17: Extensional viscosity of an M-1 fluid depends on what device you use to measure 
it. 

Figure 17 demonstrates this problem quite vividly. This is a plot of measurements of 
extensional viscosity of the same fluid (Ml) but in difierent devices which are represented 
by diffierent curves labeled 1 through 8. Curve 1 is from an open siphon device, 2 is from 
a spinline, 3, 7 &: 8 are from a contraction flow device, 4 is from an opposing jet, 5 is from 
a falling drop and 6 is from a falling blob. The other plots in figure 17 are details of some 
of the measurements made. Notice the large scatter and disagreement in the curves. This 
raises two questions. First, is extensional viscosity an appropriate quantity to be measured 
for non-Newtonian fluids or should we be using some other measinre for the influence of a 
largely deformed microstructure on the flow, e.g. elastic constant? Second, will Oldroyd-B 
be able to capture the efiect of largely extended microstructures on the flow? 

The answer to the first question is not clear at this time. Using the strain on the 
microstructure to define the stress with the help of an elastic constant could be one way 
of going about it. The answer to the second question is that Oldroyd-B fails to describes 
these efiects. For a contraction flow, while Oldroyd-B does predict a small initial decrease in 
pressure drop, it fails to predict the large increase in pressure drop or the size of upstream 
vortices seen at higher flow rates. In the case of a fluid flowing past sphere, it rightly 
predicts the initial decrease in drag but again fails to predict the increase in force and large 
wake lengths observed at higher flow rates. As a fiinal example, Oldroyd-B gives us the 
correct time scale for the deformation of capillary filament being stretched, but does not 
predict any breakage of the filament at very high applied strain rates. From a numerical 
perspective, the Oldroyd-B model runs into problems for high De, because it suggests that 
the microstructmre can keep stretching to infinite lengths as long as there exists a force to 
deform it. Consequently, the extensional stresses become negative beyond a critical De. 
This is obviously unrealistic and we are forced to conclude that more physics is required in 
the constitutive equation than contained in Oldroyd-B. 

The modification to the constitutive equation that has been successfully used and rather 
swiftly accepted is FENE — Finitely Extensible Non-Linear Elastic microstructure. This 
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Figure 18: The negative viscosity as predicted by Oldroyd-B and the FENE cure to that. 

model limits the deformation to a certain length L and retains a large positive value for 
extensional stresses at high De. It predicts a large pressure drop for strong contraction 
flows, a large increase in drag for strong flows past a sphere and finally, breakage of the 
capillary filament when drawn at a large strain rate. Also, for strongly extensional flows 
in general, the FENE modification predicts ^lext > fJ-shear- This dramatic anisotropy in 
viscosity can be of direct consequence to poljrmer turbulent drag reduction. 

In conclusion, we can say that we have begun to get some understanding of both the 
strong and weak flows of elastic liquids. While the Oldroyd-B model is a good choice for 
small De < 1 flows, the FENE model is a clear winner for high De > 1 flows. Thus 
Non-Newtoniaji fluids have unique dynamical signatures that cannot be explained by the 
superposition of viscous and elastic effects. A general theory for such fluids is still lacking 
due to the diversity of materials and their characteristic flow behaviors. 

Notes by Anshuman Roy and Andrew Thompson 
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Flow-induced oscillations: 
A source mechanism for volcanic tremor? 

Alison Rust 

1 Introduction 

Accurate predictions of volcanic activity axe key to protecting the himdreds of millions of 
people who live near potentially active volcanoes. Over the past twenty years, the detec- 
tion of long-period seismic signals (peak frequencies < 5Hz) has become an increasingly 
important tool in eruption forecasting, however, the physical mechanisms for their gener- 
ation remain poorly understood. These long-period ground vibrations that precede and 
accompany eruptions, may be generated by complex interactions between fluids and rocks. 
Volcanic eruptions require flow of magma and/or aqueous fluids through rock and there is 
potential for long-period seismic signals to provide important information on changes in the 
location, velocity and tjrpes of fluids (e.g., gas, magma, bubbly magma) imder volcanoes. 
However, such analysis requires understanding potential source mechanisms of the ground 
oscillations and the characteristics of the resulting signals. Here we examine the feasibility 
of inducing persistent long-period seismicity by fluid flow through a crack in an elastic rock, 
an idea first explored by Julian [1]. 

2 Characteristics of volcanic tremor 

Long-period seismic signals near volcanoes can be of long duration and when a signal con- 
tinues for several minutes or longer, it is called volcanic tremor. Shorter duration signals 
with similar waveforms and frequency spectra (and perhaps similar source mechanisms) are 
simply called long-period (LP) events. Tremor is a common preciusor to volcanic erup- 
tions and accompanies nearly all eruptions [2, 3] but the characteristics of tremor can vary 
considerably. The signal may a) originate from hundreds of meters below the ground sur- 
face down to as deep as 40 km, b) have a gradual or abrupt onset, c) be harmonic or 
anharmonic, and d) last minutes, days or months [2]. Typically, the signal comes from 
<10 km depth, emerges gradually in the time domain with a random distribution of sharp 
peaks concentrated between 0.1-7 Hz in the frequency domain. There can be systematic 
changes in tremor during eruptions including period-doubling, a phenomenon associated 
with a transition from periodic to chaotic behavior of a non-linear system [4, 1]. 
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Figure 1: Sketch of the resonating fluid-filled crack model of Chouet [5, 6]. The two small 
boxes in the center of the crack faces mark where the pressure disturbance that triggers 
resonance is applied. 

3    Models for generation of volcanic tremor 

Given the range of tremor properties, depths of origin and association with all styles of 
eruptions (explosive, effusive; magmatic, phreatic; passive degassing), there are proba- 
bly multiple origins of volcanic tremor. Several mechanisms for tremor generation have 
been proposed including bubble growth or collapse, jerky crack propagation, oscillations of 
magma chambers, resonance of fluid-filled cracks and flow-induced oscillations of conduits. 
For a review of tremor properties and potential source mechanisms, see [2]. Here we will 
briefly discuss only two models: 1) the resonance of fluid-filled cracks [5, 6, 7] which is 
probably the best-known and accepted model for long-period seismicity, and 2) the Julian 
[1, 4] model of vibrations induced by flow through a slot with elastic walls, which is the 
inspiration for our analysis. 

Chouet [5, 6] proposed that the spectral peaks of tremor and LP events are the res- 
onance modes of fluid-filled cracks. Chouet's model simulates motion along the walls of 
a rectangular fluid-filled crack in an infinite homogenous elastic solid that is excited into 
vibrations by a pressure-time soiurce function at a specified position on the walls (Figure 
1). The equations of elastic motion of the crack walls are solved simtiltaneously with the 
governing equations for fluid flow. The resulting far-field wavefield depends on the crack 
dimensions, the position and size of the pressure disturbance, the elastic constants of the 
solid (bulk modulus and rigidity), and the densities and sound speeds of both the solid and 
fluid. Thus comparing model results to long-period seismic signals recorded at volcanoes, 
Chouet and others [8, 9] infer parameters such as crack dimensions and sound speeds. There 
are numerous potential sources of the pressiure disturbance required to trigger resonance in- 
cluding an earthquake, a new crack network connection, shock waves from "choked" flow 
[10], or bubble coalescence leading to a rising gas slug [8]. These are all plausible sources of 
LP-events, which decay after seconds or tens of seconds. However, tremor requires a distur- 
bance that is sustained for minutes or even months and thus precludes transient resonance 
triggers such as earthquakes. Sustained resonance could be caused by continued formation 
of shock waves or gas slugs however these seem to require special circumstances and do not 
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Figure 2: The lumped parameter model of Julian [1] for the generation of tremor by flow 
induced oscillations. Fluid flows from one reservoir to another (each with constant fluid 
pressure) via a slot of length L. The walls of the constriction each have a mass M, a 
stiffness A;, and a damping constant A. 

explain the near-ubiquity of tremor during volcanic eruptions of all styles and compositions. 
If fluid flow through a crack induced oscillations in the conduit walls, this could be 

a source of sustained seismicity, lasting as long as flow continued at a sufficient speed. 
Julian [1] explored this tremor mechanism using an approach similar to [11] for blood 
flow through collapsible arteries. Juhan set up a lumped-parameter model involving two- 
dimensional flow of an incompressible Newtonian fluid through a slot-like constriction with 
two movable walls (Figure 2). At each end of the constriction the conduit is wide enough that 
it can be considered to be a fluid reservoir with constant fluid pressure despite oscillations 
of the constriction. Each wall is modelled as a mass whose motion is controlled by a 
spring representing the elasticity of the country rock, and a dashpot for anelastic efiects 
and radiation damping. The separation of the walls changes as a function of time only, 
and thus the walls of the constriction are always flat and parallel. This model leads to a 
third-order system of nonlinear ordinary diffierential equations. For different driving fluid 
pressures,.niunerical solutions show stable steady flow, simple oscillations, period-doubhng 
cascades, or chaotic oscillations. Although the sample results presented by Julian involve 
very high fluid velocities (45-110 m/s) and frequencies on the high end of tremor (~5 Hz), his 
lumped parameter model demonstrates that flow-induced oscillations are a potential source 
of tremor and can explain observed non-linear phenomena observed at several volcanoes 
[4]. Like Julian [1, 4], we consider vibrations induced by fluid flow through an elastic soUd. 
However, we take a mathematically more rigorous approach. Rather than using a lumped 
parameter model with walls that are blocks with masses connected to springs and dashpots, 
we assmne the conduit is in a homogeneous elastic soUd. We solve governing equations for 
deformation in both the fluid and the solid, and match stresses in the two materials at their 
interface (the walls). Unlike Julian, we allow the crack gap thickness to vary with both 
time and position (along the direction of dominant fluid flow). We also consider a tube-like 
conduit in addition to a slot-like geometry. 

115 



Figure 3: The geometry of our model. An incompressible, Newtonian fluid flows through 
a crack of length L ajad equihbrium gap thickness iZ" in an elastic solid. Flow-induced 
oscillations cause the thickness of the gap {2h) to vary in both x and time. Flow is two- 
dimensional with flow field («, u, 0) and « » u. 

4    The fluid 

We consider flow of an incompressible, Newtonian fluid through a crack of length L and 
gap thickness if in an isotropic elastic solid (Figure 3). The coordinate system {x,y,z) is 
set so that the crack is parallel to y = 0 and the two crack walls are at y = ±h{x,t) with 
/i = Y at equilibrimn. Flow is two-dimensional with velocity field (it,u,0). The governing 
equations for fluid flow are conservation of momentxmi, 

and 

Ut + UUx + VUy =  + u{Uxx + %y)) 

Ut + UVx + VVy —  + v{Uxx + %j,), 

and continuity (conservation of mass), 

Ux + Vy= 0, 

(1) 

(2) 

(3) 

where p is the density, P is the pressure and v is the kinematic viscosity of the fluid. To 
simplify this set of equations, we wiU take advantage of the small aspect ratio, e = ^, of 
the fluid-filled crack. We begin by non-dimensionalizing the equations, using 

x = Lx,   y = Hy,   u = Uu,   v = eUv,   t = jjt and P = [P]P^ (4) 
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Figure 4: Sketch of the wall for which /i > 0 at equilibrium. A point in the elastic solid 
with coordinates (xo,yo) at equilibrium has coordinates {XQ + ^, yo +»?) when disturbed 
by flow-induced oscillations. The dashed line is the equilibrium position of the fluid-rock 
interface; yo = 0 for all points on this Une. When deformed this interface becomes the curve 
h{x,t). 

where ~ indicates a dimensionless variable, U is the average fluid speed and [P] = -^r- 
The resulting dimensionless momentmn equations to order e^ axe 

e Re [Ul -f- UUx + VU^) = —Px + Uyy,    Py = 0, (5) 

where i?e = ^^ is a Reynolds number using the crack gap thickness for the length-scale. 
Dropping the ~ notation, the dimensionless equations for momentum are 

e Re {ut + UUx + vuy) = —Px -f- %j„   Py = 0. (6) 

The base state is P^ = Uyy. Therefore at equilibrium (i.e., no flow-induced movement 
of the walls), the non-dimensional pressure gradient and pressure are Px = —3 and P = 
-3i, respectively. The equihbriiun fluid thickness, H, is the wall separation caused by the 
equilibrium fluid pressure. The pressure gradient driving flow will in fact cause the base 
state to be a wedge-shaped crack. However, we assume H is independent of x, which is a 
good assumption if the ambient (lithostatic) pressure is much greater than both the fluid 
pressure and changes in lithostatic pressmre along the crack. 

The fluid stress tensor is 

(    -P 0        \ / 2Ux Uy+Vx\ 
^nuii=[        0 -pj^'^PyUy+Vx 2Vy ) (7) 

Using the continuity equation (3) and the scalings in (4), the non-dimensional fluid stress 
is, to order e^, 

5    The solid 

We treat the cotmtry rock as an elastic solid. The coordinates of a point in the solid are 
{^0 + CiJ/o + v)^ where {xo,yo) is the undistiurbed position and yo = 0 at the wall. To 
determine non-dimensional governing equations, we assume the wall moves a distance of 
order eL = H and take H to be the xmit of ^ and r], but L for XQ and yo: 

xo = Lxo,   yo = Lyo,   ^ ^ Hi,   rj = Hfj. (9) 
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Then, at the wall we have the non-dimensional relations 

x = xo + e^tixo,0,t), (10) 

v{x,h,t) =r]t{xo,0,t), (11) 

u{x,h,t) = €^t{xo,t), (12) 

and taking the non-dimensional location of the wall, h{x,t), to be /IQ = 1 when not dis- 
turbed, 

T]ixo,0,t) = h{x,t) - 1. (13) 

The constitutive equations for stress in the elastic solid are 

(^xx = H^x + Vy) + 2M 6, (14) 
ayy = X{^x + Vy) + 2M VX, and (15) 
<^xy = f^{^y+Vx)- (16) 

Again omitting the "notation, the non-dimensional stress tensor for the solid to order e^ is 

/^     -Ur, Or,     ^^(f:     ^ r,    \    \ ' ^^^^ ?OT + Vxo ^Vxo + IlK^xo + %o) J 

We are interested in seismic waves created by oscillations of the crack. We express the 
elastic wave equations in terms of potentials, 4> and ip which are related to ^ and rj by 

^ = <f>xo+ V'yo and 77 = ^j,o -f i^xo- (18) 

The wave equations are 
^« = a^V^c^ and i>u = a^V^iP, (19) 

where a and 0 are compression and shear waves velocities, respectively. Using the average 
fluid speed to non-dimensionalize the elastic wave speeds, 

.-^aBd^' = ^, (20) 

where A and /j, are Lame elastic constants (/x is called the shear modulus). 
Fourier transform solutions to the wave equations are 

4> ^ / ^ikxo+iu^t^f.^^^^!^ ^-^^yo^ (21) 

and /•OO roc Jr. j, , 
-,p= / e''=^''+''^*(Jfc,cc;)^^ e-«^s'», (22) 

where   
'2 / uj^ 

«a = YA:2-^  and «/3 = W^^ - ^- (23) 

To ensure that the waves are evanescent (decay as go to an infinite distance from the source), 
we require that KQ and K0 be positive. 
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6    Matching fluid and solid stresses at the wall 

Stress mtist be continuous across the fluid-solid interface. Therefore from (7) and (17), at 
x = aro + 0{e) and yo = 0 (i.e., at the waJl), 

^ ( 2^X0 + J(U + riyo) ^yo +nxo \ ( -eh^ \ ^ ( -P   ^^y W "^'^^ ^ 
[ ^yo + %0 ^V.o + iiU+Vyo) )\     1      /       U%    -P J \      1      /' 

(24) 
where 

and {—ehx, 1) is a vector normal to the wall. This gives 

^s,o + Vxo = 0{e) and G ^2 ^y, + ^(^^ + r,y)^ =-P + 0{e), (26) 

indicating that normal stresses dominate over shear stresses on the wall.   Thus the full 
matching conditions at the wall are 

x = xo, (27) 
^ = h-l, (28) 
w = 0, and (29) 

^ = -G(2eyo + ^(e. + %))- (30) 

Prom these conditions and equations (18,19), for wave-like disturbances, 

,„,,)_,,.(i±^)(^_,,H|^). (31, 
For nonlinear stabiUty analysis we calculate an equivalent Fourier Transform solution, 

(32) 

P = 

^IJlj-'-H^Uw--^"^ -CX) 

''°°       -uir-r.'j.i,.,i'\r,, . ...     .,(It'dx'dkdu} 
fCO /-oo 

... / / e-(^'=^'+^'^*')[Ma:',t')-l]- 
Jx'=-ooJe=-oo 27r      27r   ' 

which for w << a and u « ^ simplifies to 
/•CX) J 

.„  27r 

7    Linear stability analysis 

P = 2c(^)r     IMx'.O-llf     |.|e-<'-.^. (33) 

7.1    Lubrication theory 

We begin by considering the case where the crack gap is so thin compared to its length, 
and flow is slow enough that eRe -^ 0. Thus 

Px=Uyy, (34) 
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which for a paxabolic velocity profile and « = 0 at the walls gives 

u = lp,iy^-h'). (35) 

We next integrate the continuity equation (3) in y and apply a kinematic boundary condi- 
tion, 

ht = v, (36) 

to obtain 
ht-l£h^P. = 0. (37) 

Adding small perturbations in cra^k thickness and pressure 

h = l + h'e''"=+''^^ and (38) 

P=-3x + p'^f'^+i'^\ (39) 

we solve (37) using P' determined from (31). The resulting linearized dispersion relation is 

The system will be unstable if there is a root for which the imaginary part of w is negative 
{I{u}) < 0). This is because iu) = in{u) -I{oj) and so if X(w) < 0 then e'*'^+*'^* will grow 
with time. For small fc, roots are of the form u = -3k + 0{k^). If a; = -3fc + u}{3)k^, then 

It is always true that P <a (20). It is reasonable to assmne that ^3 > 3, which means that 
the shear wave speed in the country rock (of order km/s) is more than triple the average 
fluid speed in the crack. With these constraints, we find ia;(3) >   ^ ^^ ^   and iw(3) > 0. 

Therefore, the imaginary part of w is positive and instabihties will not grow with time. 
For large k, roots of equation (40) satisfy 

(l-f)'-y'(l-5^)(l-^)=0'   whereX = 

There are roots with X(w) < 0 but none satisfy KQ > 0 and K^ > 0 as required for 
evanescence. There are Rayleigh waves propagating along the surface, though, with small 
X{ui) > 0, that become damped due to fluid viscosity. 
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7.2    Averaged model 

To allow Reynolds number (Re) dependence, while still taking advantage of the small crack 
gap to length ratio, we average the velocity across the gap (i.e., in the y-direction). We 
assume the fluid velocity in the crack is 

-H-i) "=in'-t^j (42) 
and thus has a parabohc profile with it = 0 at the wall {y = h), and an average velocity of 
U. 

The momentum equation (6) averaged over y is 

ly=0 

which, for u defined in (42), is 

rh 
Re        ut + uux + vuy dy = -hPx + [%]j/=/i, 

Jv=0 
(43) 

eRe 'im + ldu^") dt dx 

Similarly the kinematic boundary condition (36) averaged over y is 

d   f^ 
ox Jy=o 

-hP.-^-^- (44) 

ly=0 

which gives 

(45) 

ht + Uxh + Uhx = 0. (46) 

Combining (38, 39, 44, 46) and 

U=l + t7'e'^^+^*, (47) 

gives the dispersion relation 

which at Re = 0, reduces to the stable result firom lubrication theory (40). 
Prom asymptotic analysis for small k, roots of (48) at neutral stability are of the form 

a; = -3fe + W(3)A;^ (49) 

where 

'-(3) = -^^+i^(l + /|)|^-2 + ,^^^|, (50) 

and 

/a = y 1 - ^ and /^ = Y'I - ^- (51) 
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Contours of 1(00) at 0.05 intervals 

8 Re 

Figure 5: Contours of the imaginary part of the frequency at intervals of 0.05 in a non- 
dimensional wavenumber versus eRe plot. The non-dimensional a and y8 are set at 8 and 
4, respectively. The thick dashed Une is the calculated solution (equation 52) for neutral 
stability of the system. As expected, this Une coincides with the I{CJJ) = 0 contour. For 
the parameters used to create this plot, the system is most imstable (fastest growth rate 
of waves) at both k and eRe 0(1). Equivalent plots with a and p one or two orders of 
magnitude greater show similar patterns with the Une of neutral stabiUty matching equation 
(52). 
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Hence the waves axe unstable if Re is large enough. At neutral stability, I{(JJ) = 0, which in 
this case means I{oj(3)) = 0. Therefore the non-dimensional critical wave number, ka- (for 
clarity we return to the "notation to denote non-dimensional quantities), below which the 
system is unstable is 

i„= ™ (52) 

which is equivalent to 

fccr=(^^l- 7-^^ ^^^, (53) 

where /? without the ~ is the true dimensional shear wave speed. Note that fccr = 1 corre- 
sponds to a wave of wavelength equal to the length of the crack and the second fraction in 
(53) is of order 1. Interestingly, kcr is proportional to the reciprocal of a Mach number to 
the foiurth power and does not directly depend on the fluid viscosity. Furthermore, from 
(53) the system could be unstable at arbitrarily low eRe. 

7.3    Long wave expansion 

Typically, results from an averaged model are qualitatively correct with some error from 
the averaging. To check the accuracy of the averaging results at small k we iise asymptotic 
analysis. We begin by defining stream functions that satisfy continuity 

u = Xy + U{y), V = -Xx, (54) 

where x oc e**^"''*'^. In terms of these stream functions, the momentimi equation in x is 

eRe (iuxy + 3 (^" ^^) ^^^v + ^^^^v)"" "^^^ "^ ^yyy ^^^^ 

Solving for u to order e^ using 
00 00 00 00 

eRe = 5^ ^(n)fc", ''^ = E '^W*^"' ^ = E^W^"' P = E^C")^" ^^^^ 
n=0 n=l n=0 n=l 

((„) are indices of summation constants) and w = —kx from the kmematic boimdary con- 
dition, gives 

w = -3fc + i QP(1) - ^i?(i)) k\ (57) 

Therefore at neutral stability 

and 

k   =^ 
27 U^ h 

ep' (}-fi){i^-^-n) 
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Figure 6: Geometry for our model with a cylindrical conduit. An incompressible, Newtonian 
fluid flows through a tube-like hole of length L and equilibrium diameter JT in an elastic 
solid. Flow induced oscillations cause the tube radius (h) to vary in both x and time. Flow 
is two-dimensional with the aJong-tube velocity u much greater than the radial velocity v. 

This result indicates that the across-gapnaveraged model (53) is qualitatively correct but 
off by a factor of |. 

7.4    Cylindrical conduit 

Magma mostly rises through the Earth's brittle crust through fractures forming sheets of 
magma. Lava sometimes erupts from linear fissm-es, however, flow is usually localized by 
cooling, producing a cyHndrical form at the top of the conduit. We assess the feasibility 
of flow through a cylindrical conduit generating tremor using long wave theory as done in 
section 7.3 for a crack. 

We consider a fluid-fiUed tube of length L and diameter if in an elastic solid. The 
cylindrical coordinate system {x, r, 9) is set so that the a;-axis is in the center of the tube 
and the solid-fluid interface is at r = h{x,t). Flow is two-dimensional with velocity fleld 
{u,v,0) (Figure 6). We nondimensionalize as for the crack problem (4) with x and y 
replaced with z and r respectively. The non-dimensional governing equations for fluid flow 
are conservation of momentum, 

1 fi 
eRe{ut + uuz + vur) = -Pz + -■^-(rur),   PT 

r or 0, 

and continuity. 
1   ^   .       X o Uz-\---^[rv) =0. 
T or 

We take the velocity of the fluid to be 

U{r) = 2 - 27-2, 

(60) 

(61) 

(62) 

so that the average velocity is one and the proflle is parabohc. We define stream functions 
1   fi 

u = --^(rx) + U{r) and v 
r or 

(63) 
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where x ex e'*^+*'^. Using Bessel functions, matching of stresses in the Newtonian fluid and 
the elastic solid at their cylindrical interface gives 

P = G[h{x, i) - 1] 0 - e hi(e«a) 5(^-2) (4 + fc')) ' (64) 

and thus 
P«—[/i(x,t)-l]. (65) 

Long wave expansion using the kinematic boundary condition (36), indicates that neutral 
stabiUty for the cylindrical conduit occurs at 

C/2 

for small A;, in contrast to 

fi  -Tk' («») 

^ ~ 6fe, (67) 

for the planar conduit. As discussed further below (section 9) for realistic parameter values, 
this result means that the cylindrical conduit is always much more stable to flow-induced 
oscillations than the planar conduit. 

8    Non-linear stability analysis 

Results from linear stability analysis are not necessarily a good indicator of the behaviour 
of non-linear systems. Oxa preliminary nonlinear analysis involves a periodic domain and 
the gap-averaged model (section 7.2) with the physically sensible simpUfying assiunption 
that (jj « a and w << p. 

Given h{x), we use a Fast Fourier Transform to compute fourier coefficients for the series 

h-l=  Y^ An^^. (68) 
n=—c» 

Using these coefficients, the Fourier Transform solution for pressure at the wall for w << a 
and u) « 0 (33), and a Hilbert Transform, we have an expression for determining P^, 

00 

P^ = iG J2 ^nn|n|e'"^ (69) 
n=—00 

where G = 2G (°~/ )■ With this Pa:) inverted with a Inverse Fast Fourier Transform, 
the difiierential equations for momentum (44) and the kinematic boundary condition (46) 
are then solved by a MATLAB PDE solver (finite-difference method with standard time 
integrator). The end result is the evolution of /i as a function of time and position along 
the crack (e.g.. Figure 7). We varied both G and eRe by several orders of magnitude and 
set initial random or sinusoidal {k =1 to 6) perturbations in either h or in fluid flux. We 
found only simple, steady solutions; there was no complex behavioiur such as multiplicity 
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Figure 7: Results of a nonlinear simulation for eRe = 2 and G = 2G [^-^] = 0.05 

beginning with random pertmbations in h. For these parameters, the linear growth rate is 
greatest for /: ~ 6 (a), (b) shows how the amplitude for the non-lineax simulation changes 
with time (solid line). The broken lines illustrate growth rates for three A;-values based on 
linear analysis. Subplots (c) and (d) show amplitude as a fimction of time and space (the 
horizontal axis is position along the crack of length L). The two subplots have different 
greyscales to maximize the range of tones but in both cases dark^high and light=low. A 
background speed of 2.5^ was subtrated for more efficient computation and the apparent 
reversal in wave propagation in (d) is not real, (c) is the first 20 seconds of the simulation. 
Several waves form from the random pertmrbations. By 20 seconds it has coarsened to three 
waves, (d) is the first minute of the simulation. Note the sudden coarsening to two waves 
and then a single wave. The final wave has a very steep wave firont (i.e., it is a roll wave). 

BEST AVAILABLE COPY 
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Figure 8: Plot of saturation amplitude versus eRe from non-lineax analysis with a periodic 
domain and G = 2G [°'~/ ) = 1- Amplitudes are normalized such that the equilibrium 
crack thickness is 2. The low saturation amplitude near the critical Re above which the 
system in unstable indicates a soft transition to instability (i.e., supercritical). This is unlike 
the familiar subcritical nature of tmrbulence where there is a sudden jump in behaviour above 
a critical Re. 

or period-doubling. As shown in Figure 8, the transition from stable to unstable is "soft" 
with low-amplitude saturation near the critical Re. 

No matter the initial conditions, when unstable, the waves coarsen to the longest possible 
wavelength {k = 1). Figure 8 shows an example where the linear growth rate, determined 
from the across-gap averaged model dispersion relation (48) for w << a and uj « fi, 

a;2-F /12,        3   \        6,2      9fc      ^^(o?-0^\     n (70) 

is greatest for fc ~ 6. After some adjustment at the start, the non-Uneax growth rate is 
comparable to that for A; = 6 and then decreases as the waves coaxsen imtil finally the fc = 1 
wave becomes saturated. Coarsening indicates that the most imstable linear wave is not 
necessarily that observed and the character of tremor may be given by the lengthscale of 
cracks or crack constrictions. The G of 0.05 used in the simulation for Figmre 7 is much 
lower than expected for the volcanic system but was chosen to demonstrate coarsening. 
In the real volcanic system, the highest growth rate is probably A; ~ 1 or fc ~ 2 and the 
coarsening behavioiu: (transition to lower k until fe = 1) is less evident. 

9    Back to volcanoes 

Our linear stability analysis suggests that for flow through a crack in an elastic solid, 
flow-induced oscillations are possible at arbitraxily low, non-zero Reynolds numbers. Fur- 
thermore, the stability of the system depends on the crack aspect ratio, fluid speed and 
elastic wave speeds. However, to this point we have not considered the physical parameters 
relevant to volcanic tremor. Prom (53), the range of wavenumbers and Reynolds numbers 
for which the system is unstable expands (to lower k and Re) if the crack thickness to length 
ratio or the shear wave speed in the rock are decreased. To assess the feasibility of om: model 
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Figure 9: The curve on this plot of non-dimensional wavenumber versus average fluid ve- 
locity represents neutral stability for flow through a crack with aspect ratio e = 10~* in a 
solid with elastic wavespeeds a = 4 km/s and 0 = 2 km/s. The plot is based on results of 
the averaged velocity model (53) with the slight correction from long wave theory (|). 

for generating volcanic tremor we consider e = 10"^ and /3 = 2 km/s^ which are at the low 
end of physically possible parameters. We require that the nondimensional wave number, 
k, be at least 1 which corresponds to a wavelength equal to the length of the crack (4). 
Figure 9 shows that even tising these relatively low e and P values, average fluid velocities of 
order 10 m/s or greater are needed to induce oscillations. Thus the feasibility of the model 
reduces to the feasibility of fluids flowing at speeds of order 10 m/s through cracks beneath 
volcanoes. Stability does not depend directly on viscosity but the more viscous the fluid, 
the greater the pressmre gradient needed to drive flow at a given velocity through a crack 
with a given aperture. The required conditions of high flow speeds through thin cracks are 
most easily achieved for low viscosity fluids such as convecting groimdwater or vapors and 
supercritical fluids exsolved from magma. There is potential for tremor triggered by such 
fluids to be common because aqueous fluids are present at all volcanoes and eruptions of 
magma are typically preceded by increased gas emissions. 

To what depths are aqueous fluids present? There is growing evidence from volcanic gas 
emissions as well as the chemistry of crystals and pockets of melt trapped inside crystals, 
that magmas in storage regions kilometers below volcanoes are often satxurated in volatiles 
(mixtures of H2O, CO2, etc.) [12]. For example, melt inclusions in quartz crystals indicate 
that the magma that became the Bishop Tuff (Long Valley, California) exsolved enough 
volatiles to comprise 30% by volmne of the magma prior to rapid ascent and eruption 
[13]. Because of the low viscosity and density of the volatile phase, and the increased 
fluid pressmre caused by its formation, a portion of this supercritical aqueous fluid likely 
rose through cracks in rock above the magma. Further evidence for aqueous fluid flow at 
several kilometers depth is preserved in porphyry deposits. The porphyry copper-gold mine 
in Butte Montana for instance, contains countless veins formed by aqueous fluids flowing 
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through rock fractures that were once about 7 km beneath a volcano [14]. 
Typically one does not expect there to be a free volatile phase below 10 km depth becavise 

the solubility of volatiles in silicate melts increases with increasing pressure. However, 
saturation at great depth is possible if there is sufl&cient CO2 in the melt. To take an 
extreme (and exceedingly rare) example, kimberlite magmas, the most common source of 
diamonds, are thought to contain about 30% CO2 by weight and saturate in volatiles at 
about 150 km depth. The deepest reported tremor originated about 40 km below Kilauea 
Volcano, Hawaii [15] in the 1970's. Recent data on gas emissions from the summit of Kilauea 
[16] show a surprisingly high CO2 emission rate (w 8.5 x 10^ kg/day), which, in conjunction 
with information on the chemistry and supply rate of the magma, indicates that the basalt 
contained about 0.7 % CO2 by weight and saturated in volatiles at about 0.95 GPa. For 
inferred crust and upper mantle densities [17], this means that volatile exsolution from the 
magma to form a low viscosity, low density fluid, could occur about 30 km under Kilauea 
[16]. Although not as deep as the deepest tremor reported by Aki and Koyanagi, the data 
of Gerlach et al. open the possibiUty that a volatile phase played a role in generating 
the deep sustained vibrations below Kilauea. It is possible for there to be a free volatile 
phase at greater depths than 30 km without invoking greater bulk CO2 contents in the 
basalt. Crystallization of basalt concentrates CO2 in the melt because the crystals contain 
negligible CO2- Thus, substantial crystallization of basalt stalled at 40 km depth could 
leave a residual melt that is saturated in CO2. Pressure increase from the exsolution of a 
low-density fluid could cause fractures in the overlying rock through which the C02-rich 
fluid escapes. In fact sudden onsets to the deep tremor at Kilauea reported by [15] are what 
allowed Aki and Koyanagi to locate the source depths. We conclude that flow of aqueous 
or C02-rich fluids is a plausible source mechanism for volcanic tremor in the upper several 
km of crust where most tremor is generated as well as deep tremor for magmas with high 
CO2 contents. 

It is also possible that magma transport could generate tremor in the upper crust dur- 
ing explosive eruptions and fire-fountaining as exit velocities for these eruption styles can 
reach hundreds of m/s and 50 m/s, respectfully [18, 19]. However, the viscosity of magma 
(10 to 10^"^ Pa s) makes sustained velocities of 10 m/s unreasonable for subsurface magma 
flow that is not coincident with, or inmiediately preceding, eruption of magma at the surface. 
Very thick dikes reduce the resistance to flow and thus may allow large magma velocities 
but our scaling of the problem (4), combined with the frequencies of volcanic tremor, limit 
the size of the cxaxk. The characteristic time scale is i = ^, and as the period of tremor is 
typically seconds, the length of the crack (in m) cannot be more than an order of magni- 
tude greater than the average fluid velocity (in m/s). To keep the minimum fluid velocity 
required for flow-induced oscillations down to 0(10 m/s), we used e = 10~^. With our 
time-scale constraints, the crack could be as long as C(100 m) which gives a crack thick- 
ness of only 0{1 cm). For laminar flow of basalt with /j, = 100 Pa s, this corresponds to 
a pressure gradient of 0(10^ Pa/m) and decompression rate of 0(10® Pa/s), values which 
axe probably only reached by rapid bubble expansion and fragmentation at shallow levels 
during explosive eruptions. Therefore, linear stabiUty analysis suggests that magma trans- 
port is unlikely to generate flow induced oscillations except at shallow levels (perhaps top 
2 km) during explosive or fountaining eruptions. If a low viscosity fluid is required for 
deep tremor, this could explain the general lack of long period seismicity in recharge zones 
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beneath intermediate and silicic volcanoes where there is magma movement but the magma 
is not saturated in volatiles. 

Our analysis indicates that some fluids, conduit geometries and eruption styles axe more 
likely to cause tremor by flow-induced oscillations than others. In particular, we found that 
planar rather than tube-like fluid conduits, small thickness to length ratios of conduits, 
and high fluid speeds are factors that tend to generate flow-induced tremor. Except for 
shallow seismicity during explosive or fountaining activity, for realistic pressure gradients, 
maintaining sufficient fluid speeds (>10 m/s) to induce oscillations requires sustained flow 
of low viscosity aqueous or carbonaceous fluid rather than magma. These conclusions from 
stability analysis are consistent with observations by McNutt [3] in a study of tremor from 
50 eruptions at 31 volcanoes comparing tremor characteristics and corresponding eruption 
parameters. McNutt Usts four trends in the data: 
"1) large eruptions produce stronger tremor than small ones; 
2) fissure eruptions produce stronger tremor than circular vents for the same fountain height; 
3) eruptions with higher gas content produce stronger tremor than those with low gas 
content at the same volcano; and 
4) phreatic eruptions [eruptions that eject broken rock and vapor but no magma] produce 
stronger tremor than magmatic eruptions [eruptions that do eject magma] for the same VEI 
[Volcanic Explosivity Index, a measure of the magnitude and intensity of an eruption].^ 
Therefore, flow-induced oscillations are a plausible source mechanism for volcanic tremor 
that is consistent with observations jBrom volcanoes. 

10 Future work 

There are several possible avenues for future research. These include fluid compressibility, 
non-linear analysis with a non-periodic domain and application of results to other systems. 
Perhaps the simplest and most obvious is to add fluid compressibility. We concluded that 
flow-induced tremor is most readily generated by flow of vapors and other aqueous fluids 
through cracks. The compressibihty of these fluids will be significant at pressures in the 
first few kilometers below volcanoes and thus we will incorporate compressibility in the 
across-gap averaged model. 

Further non-linear analysis is required. Our preUminary model involving a crack with a 
periodic domain may not be adequate as it does not produce period doubling, a non-Unear 
phenomenon observed at several volcanoes. The difficulty in treating the fluid conduit as a 
slot with a non-periodic domain is setting the boimdaxy conditions. 

In addition to volcanic tremor, the generation of oscillations by flow past a deformable 
material has applications in diverse fields such as physiology [11] and drag reduction in 
gel-lined tubes and other surfaces [20]. It would be interesting to examine our results for 
conditions relevant to these applications (e.g., much lower elastic velocities). 
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Wave-mean-flow interaction in Oldroyd-B fluid 

Amit Apte 

1 Introduction 

The effects of waves on the mean-flow have been extensively studied, most notably in 
the studies of oceanic and atmospheric waves. But waves in non-Newtonian fluids have 
not received much attention. I will be focusing here on the wave-mean-flow interaction 
in Oldroyd-B fluid. This is done in a very simple flow profile to study clearly various 
phenomena arising because of elasticity. 

I will start by studying the hnear equations in section Sec. 2. The equations for mean- 
flow response are obtained after mtroducing zonal averaging in section Sec. 3. I discuss 
and apply the Generalized Lagrangian Mean theory in section Sec. 4. The spin-up and 
spin-down problem, discussed in section Sec. 5, illustrates some of the peculiar features of 
the mean-flow response. I conclude with a few remarks and indicate some directions for 
further studies. 

2 Linear theory 

The Oldroyd-B model for an incompressible fluid is given by: 

V-u = 0, (1) 

^ + u-Vn = -Vp + uV^u + GV-A, (2) 
at 

^ + u-VA-(Vuf ■A-A-Vu = --(A-I). (3) 
at T 

I have set the constant fluid density p = 1- The momentum equation contains the divergence 
of the polymeric stress GA. This extra stress simply advects with the flow, as given by 
the "upper convected derivative" [left hand side of (3)], but it also relaxes to I with a time 
constant T. 

multiplying the momentmn equation (2) by u-  we can get the equation for energy: 

(|-v)(l„^.f..) 
Q 

= V • {-up + i/Vu • u -I- Gu • A) - i^Vu : Vu - — (tr ^ - 3) .   (4) 
2T 
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Thus we see that in addition to viscosity, the relaxation of polymeric stress also dissipates 
energy. In most of the following, I will consider the "ideal" limit of this model: an inviscid, 
relaxation-less Oldroyd-B fluid with u = 0 and l/r = 0. In this limit, the energy is 
conserved. 

I consider the flow in an semi-iofinite two dimensional domain D = {{x,y)\ — oo < x < 
oo,h{x) <= y < 00}. We can satisfy two boimdary conditions at the boundary y = h{x): 
the free-slip condition u • n = 0, and the condition of no taxigential stress n x (A • n) = 0. 
Here n is the normal to the lower boundary: n = {—hx(x), 1). 

I wiU study Avaves on following one dimensional constajit flow profile, thus avoiding 
problems of critical layers: 

u={U,0),       p = Po,       A = I,        and       h{x)=0. (5) 

In the absence of relaxation, the stress A can be any constant matrix, not necessarily I. 
But the above choice was made with the following in mind: The qualitative featiures of 
the wave-mean-flow interaction do not change by assuming it to be I; Also, one of the 
extensions of this problem, to be studied later, is the flow in presence of relaxation when 
the stress A for the background flow must be I. 

Substituting 

u = {U,0)+u',       p=Po+p',        and       A = H-A', (6) 

in (l)-(3), denoting Dt := d/dt + Ud/dx, and keeping terms linear in perturbed quantities, 
we get the following linear equations: 

V-u' = 0, (7) 

Dtu'=-Vp'+ GV ■ A', (8) 

AA'=(Vu')^-hVu'. (9) 

The boundary for the linear problem is chosen to be h{x) = ho cos(fea;) with a small ampli- 
tude ho, i.e., a := hok <C 1 is the small parameter. The energy conservation equation for 
the linear problem is the following: 

Dt Qu'^ + ^tr A'^) = V • (-uV + Gu'A') . (10) 

I will introduce the particle displacement associated with the perturbation flow u' as 
Dt^' = u'. Then we can explicitly integrate (9) to get 

A' = (VO'^ + V€'. (11) 

Using the incompressibility equation V • ^' = 0, we get 

V-A' = V2^'-1-V(V-^0 = V2C'- (12) 

This reduces the momentum equation (8) to 

Dtu' = -Vp' + GV^^'. (13) 
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By taking the divergence of the above equation, and using incompressibility, we see an 
important consequence that pressure is an harmonic function: 

VV = 0 (14) 

The relation (11) is reminiscent of the stress-strain relation for a soUd. In fact, we 
will see later that the vorticity waves for this linear model are the same as elastic waves 
in an incompressible linear elastic solid. The analogy fails when I consider the potential 
flow and satisfy the boundary condition on tatngential stress: a solid can support tangential 
stresses at the boundary and these must be specified to solve the problem, while I impose 
the condition that the tangential stress is zero for this ideal Oldroyd-B fluid. Thus the 
only diflierence between a soUd and this ideal limit of Oldroyd-B fluid is in the boundary 
conditions. 

We can find two kinds of waves firom the linear equations. I begin by considering the 
vorticity waves. With vorticity defined as q' = v'j. — Uy, we get 

DU' = Dt{Dtvl-Dtu'y), 

= Dt i{-p.y + GV%) - (-p., + GVX)), 

= Gv2(A(^;-ci)), 

which gives the vorticity wave equation: 

{D^-GV^)g' = 0. (15) 

The dispersion relation for the vorticity waves [with ^ ~ exp(ifc • x - iwt)] is 

u = TJk±^\k\ — Vk^Oi. (16) 

Here, w is the intrinsic frequency of the waves ,i.e., frequency in the frame moving with the 
background flow, whereas u is the firequency with respect to the boundary. The magnitudes 
of intrinsic group and phase velocities are equal and are given by 

,;p=t;j = ±x/G. (17) 

Stationary vorticity waves have u = 0. Choosing U > 0 and fc > 0, we see that we must 
choose the lower sign in (16). Then solving for I, we get 

l = ±k^^-l. (18) 

This shows that for U^ > G the waves are propagating while for U^ <G they are evanescent. 
This is also seen by writing (15) as 

[(C/2/G-l)a2-5j]q' = 0. (19) 

I note that this equation is elUptic for U"^ < G and parabolic for U^ = G, but is hyperbolic 
otherwise. 
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I choose the lower sign in (18) so that these axe outgoing waves (i.e., the y-component 
of Vpk/\k\ is positive). These are pressure-less waves p' = 0. All the other fields are given 
by 

e' = - ^     fcff       cos(fcx + ly), ^' = - ^§2 cos(fcx + ly), (20) 

,     GJlP/G-1 . ,,       , , ,     G . ,,       , - ,„,, 
u = —-—yz sm(Ka; + ly), '"      TT ^^''^V'^ + '■V)' (^1) 

4^ = -A'yy =      "^^2 sin(A:x + ly), A'^y = ^^^^^  sin(A;a; + ly).      (22) 

The vorticity waves alone cannot satisfy both the fi-ee-slip and tangential stress-firee 
boundary conditions. Thus I look for the other solution of the lineax problem, i.e., potential 
flow. Assuming u' = V^', i.e. g* = 0, we get firom the continuity equation that ^' is a 
harmonic fimction V^^' = 0. Requiring that <f>' oscillates in x, remains boimded as y -> oo, 
and looking for stationary solutions {d/dt = 0), we get 

<!>' = ^^ie''"'-'^ = -^ sm{kx)e-''y. (23) 

Using u' = V^', Dti' = [d/dt + Ud/dx)^' = Ud^'/dx = u', and A' = (V^O^ + V^' gives 
all the quantities for the potential flow: 

^' = -lsm{kx)e-'^, 

u'=-U cos{kx)e-''y, 

A'^^ = -A'   = -2cos{kx)e -ky 

V = -^cos(/bx)e-*^ (24) 

v' = Usmikx)e-''y, (25) 

A'^y = 2smikx)e-''y. (26) 

The pressure for the potential flow is not zero but decays exponentially: p' = U^ cos(A;2;)e~*^. 
Both the above solutions axe written so that the y-paxticle displacement is in phase with 

the boundary h{x). I write the total solution as ^' = a^/^v + 0^2)^ where ^[^^ and ^',^^ are 
respectively the vorticity wave and potential flow solutions. The constants a and 0 can be 
foimd from the two boundary conditions as follows: 

u-n = 0,=>       v'\y=o = Uhx{x),    :^       G a + U'^0       =-aU^. 

nx(A-n)=0,=^    A'^y\y=o = 0, =>       {2G-U^)    a + 2U^p     =0. 

Solving the last two equations, we get 

a = -2a,        and       0 = a (^ - Ij . (27) 

Thus, we see that 0 = 0 for U'^ = 2G, which can also be seen directly firom (22), because 
A'xy = 0 in that case and the boTmdary condition is satisfied with the vorticity waves alone. 
This specific velocity will be important again when we later consider drag. 

Briefly going back to the full set of Oldroyd-B equations (l)-(3), I will get the dispersion 
relation for vorticity waves with relaxation and dissipation. The linear equations in that 
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case axe 

V-u' = 0, (28) 

r>ju' = -Vj>' + yVV + GV-A', (29) 

AA'=(Vu')^ + Vu'-^A'. (30) 

Then the equations for vorticity qr' = V x u and n' := V x (V • A') become 

i),g' = -V + V2n', (31) 
T 

Dtn' = vV'^n' + Gq'. (32) 

These equations give the following dispersion relation: 

a; ="-1(7-1^0 *^'*i\H^^-      p») 
As another aside, if the background A is not equal to I but some constant symmetric 

matrix M, then the dispersion relation is given by 

u = \/GVfc • M • fe. (34) 

This is very much Uke the dispersion relation for Alfven waves in magnetohydrodynamic 
flows. This kind of analogy between non-Newtonian fluid flow and magnetohydrodynamic 
has been studied in difierent context in [5] and exploring it in greater details will be inter- 
esting. 

3    Zonal averaging and small amplitude expansion 

We will be interested in the effect of the waves on the mean-flow. To study this, we introduce 
the concept of zonal averaging, which is deflned by 

7-=lf fix,y,t)dx, (35) 

for any function which is periodic in x with period L. I will take L to be the wavelength 
27r/fe of the boundary. The disturbance part is deflned as /':=/ — /. This is an exact 
decomposition without any assumption about small amplitude expansion, i.e., /' is not 
necessarily a "small" quantity. 

A few properties, obtained by integrating by parts, will be very useful for further cal- 
culations: 

%=(f)x = jj  Udx = f{L)-f{0)=0; (36) 

      1   /"i                 
f=^9 = 2       ^=^3^^ = ~^3x;        fy9 = {f9)y - f9y; (37) 

AB = AB + A!W. (38) 
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Now we will look for equations for the averaged quantities like u etc. by averaging the 
Oldroyd-B equations. The continuity equation gives 

This is the first simplification obtained by introducing the concept of zonal averaging: the 
average y-velocity is zero and we need to consider only the equation for u. 

The averaged ar-momentum equation is: 

ui + Tm^ + vu^ + p^= G{Axx,x + Axy^y). (39) 

The second, fourth, and fifth terms vanish while the third term reduces to average over 
product of distiurbance parts: 

p^ = 0,        and       Axx,x = 0, 

VUy   =VUy+ V'u'y   =  0 +  {V'u')y  —  V'yU'  =   {v'u')y  + U'j.U'  =   {v'u')y  + 0 . 

Thus we get the following x-momentum equation: 

Ut + {V^)y = GAxy,y . (40) 

This equation shows another simpHfication of zonal averaging: the nonlinear terms contain 
only the disturbance parts and only one component of A appears in the a;-momentum 
equation. 

The equations for A can also be reduced to simpler form in similar fashion. Since only 
the component Axy appears in the x-momentum equation, I will concentrate on the equation 
for Axy-. 

Axy,t + (^ -^xyJy ~~ "^y-^yy + ^y-^yy "'" ""x-^xx (^1) 

Again almost all the nonlinear terms, except the first one on right hand side, contain only 
the disturbance parts. In order to get a full set of equations, we will need equations for 
Ayy and Axx- But, at this stage I will introduce the small-amplitude expansion to study 
small-amplitude waves [which are 0(a)] and their effiect, accurate only up to 0{a^), on the 
flow. We will see later that the above equations for u and Axy form a closed set of equations 
after introducing the small-amplitude expansion. 

For considering the small-amplitude waves, I will expand all the physical quantities in 
the following asymptotic expansion: 

/ = i^ + /i + /2 + --- + /n + 0(a"+i), (42) 

where F is the 0(1) backgroimd and fn = 0{a^). Each term of this expansion is decomposed 
into an average and a disturbance part: 

fn=7n + fn- (43) 

By definition, the bax:kground contains no distiurbance part, i.e. F' = 0, while the first 
order quantities contain no mean part: /i = 0. Thus, keeping only the terms up to 0{a^) 
gives: 

u = U + u^; u' = u[ + U2; A = l + A^; A' = A^ + Aj. 
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Thus we see that (40) and (41) correct up to 0(0^) axe: 

U2t + GA2xy,y = {v'iU[)y , (44) 

A2xy,t -U2y = -{v[A[^y)y + u[yA[yy + <ICI ■ (45) 

We note that only the first order paxt of the disturbance and second order part of the mean 
appear in the above equations. This allows us to drop ()i firom disturbances and ()2 from 
means. _ 

The above Jire wave equations for the means u and Axy. Note that there are source 
terms which appear as products of first order disturbances. Thus the efiect on the mean- 
flow of the propagating vorticity waves and evanescent potential flow travels as a wave. The 
wave speed of this wave is VG which is greater than {If-^k"^ + P)\/G = VG^/I — G/U^ 
that is the y-component of group velocity of 0{a) vorticity waves. Thus we will distinguish 
between the waves of the mean part as "fast" vs. the waves of the disturbance part as 
"slow" waves. 

The soiurces in the above equations appear only in terms of the first order disturbance 
parts. If we take a particular solution of the linearized equations (as given towards the end 
of Sec. 2), then we know the right hand sides of the above equations and we can solve them 
expUcitly for u and A^y. But at this stage, I will introduce the ideas of Lagrangian mean 
averaging in contrast with the Eulerian zonal averaging ( ) that we have been using so far. 
The motivation for this step is that, in many cases, the equations in terms of Lagrangian 
averaged quantities are much simpler than those in terms of Eulerian means. We will soon 
see that such is indeed the case here. 

4    Lagrangian mean averaging 

In this section, I give a very brief introduction to Generalized Lagrangian Mean theory, [1, 
2, 3] before applying it to the present problem. The GML theory obtains equations in terms 
of quantities averaged along the particle trajectory instead of averaging at a given spatial 
point, which is the case for Eulerian averaging. Thus, one of the main quantities to be used 
through-out the GLM theory is the disturbance related particle displacement field ^{x,t). 
For example, the $' in (20) is the particle displacement field for the 0{a) vorticity waves. 

The crux of the GLM theory is in the following two requirements: 

• The field ^{x,t) is defined in such a way that x + ^{x,t) is the actual position of the 
fluid particle whose mean position at time t is x. Thus if we define S = a; -f- ^(a;,t), 
then we reqiiire that S = a;. This is equivalent to requiring that ^ is a disturbance 
quantity. 

Iix,t) = 0. (46) 

• The other requirement is that x + i{x,t) gives the actual trajectory of the material 
element of the fluid, i.e., the velocity of that point is the actual fluid velocity u^ at 
x + ^. 

D^S = u^, (47) 

where I have defined P^ := {d/dt -f- u^ • V) . 
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Any field f{x,t) is "lifted" to the actual particle position by defining 

fHx,t):=f[x + ^{x,t)]. (48) 

-r^L 
The Lagrangian-mean operator ( )    is then defined to be the average taken with respect 
the displaced position sc + ^, i.e., 

fix, ty := f^x, t) = f[x + ^{x, t)]. (49) 

The main idea behind GLM theory is that the equations in terms of Lagrangian-averaged 
quantities should be of the same form as the original equations. As an example, consider a 
scalar quantity 6 that is advected by the flow: 

g=(i.u.v). = 0. ,50, 

With the above definitions and requirements, we can show that the Lagrangian-mean version 
of this equation is simply 

^V=(| + u^-v)5" = o, (51) 

This is much simpler than the Eulerian mean equation which contains products of distur- 
bance parts from the nonUnear terms: 

(^ + u-v)0 = -(u'-Ve')- (52) 

For a vector or tensor field that is advected by the flow, the corresponding mean field can be 
defined in appropriate way so that the equation for advection remains form invariant under 
Lagrangian averaging. [3] In the absence of relaxation, the symmetric tensor A satisfies the 
equation 

^ + u-VA-(Vu)^-A-A-Vu = 0. (53) 
ot 

If we define the mean stress tensor by 

4- := (^^"^^^p^^A , (54) 

where J is the Jacobian of the transformation x -^ E = x + ^{x,ty. 

J = 
diS) 
d{x) = \Sij + Cij\. (55) 

and Kmn are the cofactors of the above matrix, then it can be verified that this mean vector 
is advected by the Lagrangian-mean velocity field, i.e., 

^ + u^-VA-(Vu^)^-A-A-ViI^ = 0. (56) 
at ^ 
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Now we transform the wave equations for u and Axy into equations for the Lagrangian- 
mean quantities u^ ajid Axy defined as follows: 

u^ :=u+ [rfu') y> 

Axy '■— Axy + [jl Axyjy + SzSj/ "r VxVy • 

These definitions agree with the above definitions (49) and (54) up to 0{a^). 
The averaged equations for these Lagrangian mean quantities take very simple form as 

seen by using the linear equations [(7)-(9) and V -^ = 0] for the 0{a) disturbance fields and 
the properties (36)-(38) of the Eulerian averaging: 

uf - GAxy,y = {rfxP')y =: Sy {v, t), (57) 

Axy,t-u^ = 0. (58) 

For example, 

Axy,t -u^ = -{v'A'xy)y + 2v'xi'x + 2u'yrfy 

+ {■"'A'xy)y + {U'yi)y + {V'xrf)y 

+ VyTix  -   {U'yrf)y  -   {U'iy)y 

= 0. 

A very similar, though tedioxis, calculation verifies the other equation. Using the previous 
linear solution, we can get the source inside the fully-developed wave-firont to be: 

Sy{y,t) = {r,'xVf)y = h,k^Ge-''y sm{ly) — cos{ly) 
y-G- 

(59) 

Thus we see that the source term drops ofi' exponentially because it gets contribution only 
from to the evanescent potential flow. Fax enough from the boundary, these are source- 
free wave equations. This is in contrast to the much more diflBcult situation of the wave 
equations (44)-(45). The somrce terms for those equations get contributions from both the 
potential flow and the vorticity waves and axe present even far from the boimdary. 

5    Spin-up problem 

I wUl present the solution of the wave equations for the fast waves with the perturbation 
tiirned on at t = 0. The boundary condition of no tangential stress (yl^ = 0 at the 

boimdary) gives the boundary condition for Axy- I define the drag D to be GAxy at the 
boundary: 

D := GAxy\y=o = 2Gi'xi. !,=o = -^u2—y-G - ^ > 0 

First I solve equations (57)-(58) dropping the soxu-ce term Sy but with the boundary con- 
dition 

Axy{y = 0,t) = -Hit), (60) 
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where H{t) is the Heaviside step function. This gives the following solution: 
D 
G 

A,y{y,t) = ^H{VGt-y), (61) 

u^{y,t) = -^H{^/Gt-y). (62) 

Thus the total mean-flow (including the 0(1) and 0{a^) parts) is 

Now solving these equations by keeping the source term dS{y, t)/dy but with the boimdary 
condition Axy{y = 0,t) = 0, we get the following solution: 

A^iy, t) = ^ [S{y + VGt) + S{\y - VCt])] , (64) 

u^{y, t) = ^ [S{y + VGt) + S{\y-VGt\)\. (65) 

Since S{y, t) decays exponentially in y, the effect of this term is seen only locally near the 
wave front. The main effect on the mean-flow is because of the drag at the boundary as 
given by (62). 

Now, I plot the drag as a function of Mach number M := U/VG in Fig. 1. We see that 
the drag reduces as a function of velocity for large backgroimd velocity U. Also for a fixed 
U, decreasing G leads to increasing Mach number and decreasing drag. This suggests that 
there might be an interesting connection of this problem to drag reduction. 

Now we look at the energy conservation for the linear equations. Averaging (10) over x 
and integrating over y we get: 

,dy 

= vg (^ + ^) -h (^- G^TI^- G^TI^) \lZ^ 

= -{2hlk^G^/U)y/U^/G - 1 + UGAa:y\y=o 

=  -UD + UGAa:y\y=0 
= 0. 

This shows that the energy at 0(0^) is carried by the 0{a) vorticity waves. This can be 
seen from, for example, the kinetic energy term u2/2. The contribution to this term from 
the 0(0^) mean-flow u is only 0(0^). Thus the 0{a^) contribution comes only from the 
0{a) disturbance solution. 

The momentima balance is given by integrating the momentum equation: 
^    /-Vet /"oo      ^ roo 
— /       u^dy - /     GAxy,ydy - /     Sydy 
at JQ JO JO 

= VGU''- GA,y\l=^ - SllZ^ 

= VGU^ + GAa:y\y=0 

= 0. 
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Figure 1: Drag on the mean-flow as a function of Mach number 

Thus we see that the momentiun at 0{a^) is carried by the fast moving mean-flow response. 
This is because momentum is Uneax in, for example, u and the 0{a) disturbaiice part does 
not maie any contribution. 

The curious difference between the speeds of propagation of the 0{a) disturbance waves 
and O(a^) mean-flow response gives rise to separation between energy and momentum of 
the flow at 0(0^). Suppose that the perturbation is kept on from f = 0 to t = T. Also 
assume T to be large enough for the stationary waves to develop fully. Then, at some later 
time t » T, the wavefront of the slow 0{a) vorticity waves will be traveUng at a speed 
Vg := VCy/l - G/lP and these are the waves that carry the energy from the boundary. 
But the fast 0{a^) waves (the mean-flow response), which carry the momentum from the 
boxmdary, will be traveling at a speed VG. Also, the effect on the mean-flow is seen even 
before the 0{a) waves arrive! This is shown in Fig. 2. 

6    Conclusion 

We have studied the various phenomena associated with waves propagating in the inviscid 
relaxation-less Oldroyd-B fluid. One of the main results is that the waves do not directly 
affect the mean-flow in the sense that the region where the mean-flow is affected can be 
separate from the region where the waves actually exist. The results were obtained by using 
the Generalized Lagrangian Mean theory. 

There are several directions in which these results can be extended. Studying the full 
Oldroyd-B equations (with viscosity and relaxation) will be interesting. This might change 
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Figure 2: Mean-flow response due to the waves. Here Vg is the speed of the vorticity waves, 
shown by the shaded region. 

the results significantly because we will need to use the no-slip boimdary condition instead 
of free-shp condition. The inviscid relaxation-less model can be studied in the Hamiltonian 
formulation [using a non-canonical Poisson bracket and the Hamiltonian given by the left 
hand side of (4)]. Such an approach is developed in [4]. Studying the Lagrangian-mean 
theory in this Hajniltonian formulation can give insights into the (pseudo)energy and mo- 
mentum equations. The interesting result about decrease in drag as a function of velocity 
can have some implications for turbulent drag reduction! 
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Diffusively-driven overturning of a stable density gradient 

Andrew F. Thompson 

1    Introduction 

Oceanographic observations from CTD (conductivity, temperature and depth) casts have 
shown that rapid reversals in the gradient of temperature and salinity with depth is a 
coDimon feature in many areas, especially in polar regions [14, 12]. These oscillations in 
temperature and salinity which are typically on the order of tens of meters are thought to be 
a signatiure of horizontal intrusions. These intrusions are often referred to as thermohaline 
intrusions because they are driven by processes related to the different diffusing properties 
of heat and salt, or what is commonly known as double diffusion. 

Double diffusion can occur when two components contribute to the density of a fluid 
(such as heat and salt in the ocean), but they diffuse at different rates. Double diffusive 
convection refers to the case when one of the components is stably stratified, the second 
component is stratified in a destabihzing sense, but the fluid is overall stably stratified. 
Double diffusive convection is the process by which potential energy stored in the desta- 
bilizing component is released. There are two possible configurations for double diffusion 
at an interface between two fluids. If the slower diffusing component is destabilizing, this 
is known as a fingering interface and if the faster diffusing-component is destabilizing this 
is known as a diffusive interface. A complete review of double diffusion can be fotmd in 
the seminal work on buoyancy effects in fluids by Turner [13] and a discussion of double 
diffusive processes important in the ocean can be found in the review by Schmitt [9]. 

To understand how double diffusion can generate thermohaline intrusions first consider 
lateral, density-compensating gradients of temperature and saUnity and a vertical strati- 
fication that supports salt fingering for example. If this basic state is then perturbed by 
alternating shear zones, the lateral gradients will create alternating regions where the salt 
fingers are strengthened (when greater concentrations of salt run over colder water) and 
weakened (when colder water is over salty water). Since fingering leads to a downward 
density fiux, the regions above increased fingering (the waxm salty water) become Ughter. 
If there is some initial slope to the sheared perturbations the warm salty water will con- 
tinue to rise and propagate, while the cold fresh regions will sink while propagating in the 
opposite direction. A schematic of this model, which was first explained by Stern [11] and 
reviewed recently by Ruddick and Kerr [6], appears in figure 1. 

While the model described above assiunes that the vertical density gradient is initially 
stratified in a fingering sense, there have been observations of intrusion formation in regions 
where the ocean is stably stratified in both temperature and salinity [12]. This raises the 
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Figure 1: Schematic diagram of a thermohaline intnision [6]. In the fingering region between 
the two difi'usive interfaces, the downward density flirx causes the warm, salty fluid to rise 
as it propagates to the right, while the cold, fresh fluid becomes denser and sinks. 

question of how thermohaline intrusions can form in the lack of a vertical stratification that 
supports double diffusion. 

The aim of this project is to present a model for intrusion formation driven by vertical 
diffusion in a layer of constant density, but lateral gradients of two diffusmg components. 
The layer sits above a reservoir that has higher concentrations in both components so 
that the system is stably stratified in both components. In section 2 we briefly discuss 
previous laboratory experiments that have considered similar problems. In section 3 and 4 
we describe the experiments carried out over the summer and our observations. In section 
5 we present a simple model of how density and the intrusion lengths evolve. Section 6 
contains results from our experiments and a discussion of how they compare to the theory, 
and we finish with some conclusions and suggestions for future work in section 7. 

2    Previous Experiments 

There has been a number of previous studies considering laboratory models of intrusion 
formation in double diffusive systems. All of the models discussed here use a sugar-salt 
system as opposed to a heat-salt system. This is a common practice in laboratory work 
because of the complications that arise due to heat losses through the walls of the exper- 
imental tank. For this same reason we also use a sugar-salt system in the experiments to 
be described below. It should be noted that while heat diffuses 100 times faster than salt, 
in the sugar-salt system, salt diffuses only three times as fast as sugar. Traditionally T 
(here, salt) refers to the faster diffusing component and S (here, sugar) refers to the slower 
diffusing component. 

Ruddick and Turner [8] in a study famiUarly known as the "Christmas tree experiment," 
first looked at horizontal intrusions firom a stable density gradient. They filled the left and 
right hand sides of a divided tank with a stably stratified sugar and salt solution respectively. 
The stratifications were set up so that there were no horizontal density gradients anywhere. 
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At the start of the experiment the baxrier was removed which created perturbations that 
allowed both fingering and diffusive interfaces to form. The study foimd that fingering 
dominated the vertical fluxes; sugary intrusions, which lost density through sugar fingers, 
rose as they propagated to the right, while salty intrusions fell as they propagated to the 
left. A series of intrusions formed in the tank, the height of which was determined by the 
initial density stratification. Ruddick, PhiUips and Turner [1] returned to these experiments 
and completed a more thorough study that included theories for the propagation speed of 
the noses and overturning circulations that occur withui each intrusion. 

Noting similarities between thermohaline intrusions and gravity currents, Maxworthy [5] 
completed an experimental study on double diffusive gravity currents. He considered both 
the release of a fixed volume of fluid and a constant inflow for both difi'usive and fingering 
interfaces. Maxworthy fotmd that horizontal momentum could be transferred across the 
interface of the current and in many cases this transfer dominated the viscous forces more 
commonly associated with gravity currents. This process was modeled as a double diffusive 
retarding force that depended on both the horizontal velocity of the current and a vertical 
velocity defined by the ratio of the vertical flux to the vertical density gradient of the more 
rapidly transferred component {S for a fingering interface and T for a diffusive interface). 

Yoshida, Nagashima and Ma [4] later used this double diffusive retarding force to help 
explain their observations of double diffusive lock exchange experiments. The experiments 
considered homogeneous solutions of sugar and salt separated by a barrier. A slight density 
difference between the two sides of the tank determined whether the sugar solution ran under 
the salt solution and generated a diffusive interface or alternatively the sugar solution ran 
over the salt solution and formed a fingering interface. Yoshida et al. found that the length 
of the intrusions grew linearly with time, and they developed a simple theory to explain 
this linear relationship. 

3    Experimental Procedure 

Before each experiment four solutions, corresponding to the four regions marked in figure 
2, were prepared using distilled water, pure cane sugar (obtained from a grocery store) and 
kosher salt. Solutions 1 and 2 had a density of approximately 1.02 g/cm^, but contained 
different concentrations of sugar and salt. In one configuration the contribution of sugar to 
the density of solution 1 was twice that of salt, while in solution 2, the contribution of salt 
to the density was twice that of sugax. In the second configuration, solution 1 contained 
only sugar and solution 2 contained only salt. In all experiments solution 1 was dyed blue. 
By diluting with distilled water, the densities of these two upper layers were set equal to 
±5 X 10~^ g/cm^ using an Anton Paar precision densitometer. Solution 3, composed of both 
salt ajad sugar, had a density of 1.05 g/cm^ with the same concentration of salt as solution 
2. Finally solution 4 had a density of 1.065 g/cm' with again the same salt concentration 
as solutions 2 and 3. The appropriate quantities of salt and sugar necessary to create these 
solutions were determined firom Ruddick and Shirtcliffe [7]. The solutions were allowed 
to sit overnight to achieve room temperature. This minimized the effects of temperature 
fluctuations and heat diffusion in the experiments. 

The experiments were conducted in a Perspex tank 60 cm long, 20 cm deep and 10 cm 
wide. The tank was fitted with a lock gate that could be raised to any height and fixed in 
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Figure 2: Diagram of laboratory equipment. Solutions 1 and 2 have the same density, but 
are composed of different concentrations of sugar and salt. The density due to sugar is 
larger in solution 1 than solution 2. Solution 3 is denser than 1 and 2, but contains the 
same amount of salt as solution 2. Solution 4 is denser than solution 3, but again contains 
the same amount of salt as 2 and 3. A barrier separates solutions 1 and 2 before the start 
of the experiment and fluid from region 4 is removed with a siphon to lower the surface and 
initiate the experiment. 

place with a small clamp. This gate was used to separate solutions 1 and 2 until the start of 
the experiment. The different solutions were layed down in the tank as depicted in figure 2. 
The fluid was poured through siphons at a flow rate of approximately 3 mL/s onto sponges 
floating on the surface in order to minimize mixing. The thickness of the upper layer was 
varied in each experiment; layers 3 and 4 were generally 1.5 to 2 cm thicker than the upper 
layer. 

The experiments were initiated using a new method for lock release. In similar experi- 
ments the baxrier is removed by manually or mechanically pulling it out of the tank. Here 
we removed water from layer 4 by use of a siphon. This lowered the surface of the entire 
system at a slow rate until the siuface was entirely below the barrier. 

After initiation, measmrements were made using a number of visualization techniques 
including shadowgraphs, still photography and time-lapse video. Measurements were made 
of the propagation of the intrusions as they formed. Flow visualization was also aided 
by dropping potassium permanganate crystals in the flow at different times during the 
experiment. Samples were removed at various locations and times using a syringe and 
density measurements were made using the precision densitometer. 

Paxameters varied in the system were the initial thickness of the upper layer, and the 
variation in properties across the barrier in the upper layer. These parameters are listed in 
table 1, where configuration 1 refers to mixed solutions in the upper layer and configuration 
2 refers to pure sugar/pure salt solutions in the upper layer. 
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Experiment 
Number 

Configuration Initial upper 
layer depth 

ho (cm) 
14      : L        1.5 

12        J L        1.8 

15        ] L        2.0 

17        ] L        2.2 

9         ] L         2.5 

16        ] L        4.8 

8         ] [        8.0 

19 2 1.2 
21 2 1.3 
18 2 1.8 
26 2 2.0 
22 2 2.5 
25 2 3.0 
24 2 5.0 

27 2 2.5 

Table 1: Parameters varied in the experiments. Configuration 1 refers to mixed solutions 
where sugar contributes twice as much as salt to the density on the left hand side of the 
barrier, and salt contributes twice as much as sugar to the density on the right hand side. 
Configiuration 2 refers to a pure sugar solution on the left hand side and pure salt solution 
on the right hand side. Experiment 27 was carried out to measure density as a function of 
time. 
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4    Observations 

4.1 Initiation 

As soon as the sugary upper layer solution was added to the top layer, salt began to diffuse 
upward from the reservoir below. Since the salty layer had the same salt concentration as 
the reservoir no salt diffused upward. Therefore, the bottom of the sugary layer became 
more denser than the salty layer. As fluid was siphoned out of the lowermost layer, the 
right and left sides of the upper layer came into contact at time t = 0. Observations showed 
that the densities could be calibrated such that in most experiments there was a period of 
five to ten seconds where neither fluid showed a net propagation into the opposite region. 
This was then followed by a sUght intrusion of sugary fluid (dyed blue) toward the right. 
The shape of this intrusion was a very thin wedge with no turbulent motions apparent near 
the nose. This intrusion of sugary fluid in turn induced a return flow into the left hand side 
simply by mass conservation. Figure 3a shows a photograph of an experiment after these 
initial intrusions. 

Since salty fluid pushed into a region with sugary fluid above, sugar fingers formed that 
vigorously mixed the region to the left of the barrier (figure 36). This caused fluid depleted 
of sugar to become buoyant, rise and pool at the surface to the left of the rising barrier. 
Once reaching the surface the fighter fluid began to propagate to the left into the sugary 
region while remaining at the smrface. 

While vigorous convection characterized the initiation of this experiment, the turbulent 
nature of the flow quickly resolved itself into a sharp diagonal interface that linked the left- 
ward moving upper intrusion and the rightward moving lower intrusion (figure 3c). Despite 
the vigorous convection, there still seemed to be minimal mixing of salty and sugary fluid 
as evidenced by the lack of mixing of the blue dye. Once this interface formed, strong con- 
vective plumes were observed both above and below the interface. In general, the greater 
the depth of the upper layer and the larger the salt and sugar contrast across the barrier 
the stronger the convective plumes appeared to be. 

4.2 Intrusion shape 

As the lower, sugajy intrusion received salt from both the lower reservoir and the fluid above, 
it continued to become denser and propagated to the right along the interface between the 
upper layer and the reservoir (figure 4). The current intruded as a wedge and did not exhibit 
the turbulent head common to gravity currents in a homogeneous ambient. The flow of the 
current was on the order of 1 cm/min, but seemed to depend strongly on the depth of the 
upper layer. The interfaice between the dyed lower intrusion and the clear upper intrusion 
appeared to be a straight fine connecting the fronts, with some small curvature at the noses. 

The current propagating to the left at the surface seemed to move at a nearly constant 
velocity that was also dependent on the height of the upper layer. In all experiments the 
leftward moving intrusion hit the end wall first and generally did not seem to slow upon 
nearing the end wall. The rightward moving lower intrusion did slow upon nearing the end 
wall. 

In all the experiments with a small aspect ratio, only two layers were observed to form in 
the upper region with the clear, salty layer running over the dyed, sugary layer. The interface 
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Figure 3: Photographs of hiitialioii of exi)eriment. 25 a(. (a) I. = 58 s, (h) L = f22 s, (c) I 
184 s. 
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Figure 4: Photograph of right-moving lower intrusion from experiment 25 at t — 10:50. 

between these two regions remained sharp throughout the experiment until convection ran 
down and diffusion started to thicken the interface slowly. Convection lasted for most of the 
experiment although it weakened steadily throughout. The convective motions appeared 
to have a vertical length-scale, which was most likely determined by the sheax in the two 
layers discussed below. Convection was not observed in a region extending a centimeter or 
two behind the head of the current (figure 4). It is possible that this length-scale is related 
to the diffusivity of the salt and the velocity of the nose. 

4.3    Velocity structure 

Besides the leftward and rightward propagation of the upper and lower intrusions respec- 
tively, there was also an overturning circulation within each layer. The sense of this cir- 
culation was clockwise in both layers and in general the velocities were greater than those 
of the intrusions. This featmre was observed and commented upon by Ruddick et al. [1]. 
Visualization with the use of dye crystals showed strong shear occmrred along the interface 
between the two regions of fluid as the horizontal velocity is to the left (up slope) in the 
upper layer and to the right (down slope) in the lower layer. Retiurn flows were to the right 
near the surface in the upper layer and to the left neax the interface with the reservoir in the 
lower layer. Observations also seemed to indicate regions of high shear both near the smrface 
and at the interface between the upper layer and reservoir. Dye crystals that fell through 
the upper layer showed that velocities in the lower reservoir were very small compared to 
the velocities in the upper layer. While we expect no net transport over the entire height 
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of the upper layer, there was a net transport of fluid to the left in the clear layer and a net 
transport to the right in the blue-dyed layer since the sloped interface continued to flatten 
untU it appeared horizontal. 

5    Some Simple Theory 

5.1    Initiation 

We begin this section by writing down the governing equations for our experiment. We 
assume a two-dimensional, incompressible, Boussinesq salt and sugar system (T and S 
respectively). The equations of motion are given by 

6 + Ai', 0 = -9 {ocT, + /55x) + vV\ (1) 
Tt + J{i},T) = KTV''T, (2) 

St + J{'>P,S)=KsV^S, (3) 

w = ipx,    u= -i^z,    (= V^V, (4) 

p = po{l + aT + fiS) (5) 

where 
1 dp 1 dp 

" = ^aT'     ^ = 7ods (^) 
are the coeflficients of expansion of salt and sugar respectively and J represents the Jacobian. 
These equations represent the ciurl of the horizontal and vertical momentum equations, 
conservation of salt, conservation of sugar and conservation of mass. It is quickly apparent 
from these equations that it would be difficult to solve these equations analytically, and 
even numerically it would be a non-trivial task. Therefore, in the scope of this project we 
have attempted to Tmderstand parts of the problem rather than a complete solution. 

We first considered the initiation of the experiment by assuming that the barrier is 
removed instantaneously without any disturbances at time t = 0. Because of the difierences 
in diffusion rates, we expect that at eaxly times we can neglect the effects of sugar diffusion. 

A simple problem is to consider the horizontal diffusion of salt across the vertical inter- 
fsLce separating the two regions in the upper layer. At early times we assume the non-Unear 
terms in the governing equations above are small and that across the front dx '> dz. We 
simply solve the diffusion equation, 

Tt = KTTXX (7) 

with the boundary conditions T ^ 0 as z -> —oo and T -^ ATQ as X -^ -t-oo. Solving 
these equations gives us a solution in terms of the error function, but we will choose to 
solve the diffusion equation using Laplace transforms so we can use the solution in the 
momentmn equation as well. After taking the Laplace transform of equation 7 and the 
boimdary conditions we find the solution in Laplace space is given by 

a: < 0. (9) X 
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Figure 5: Plot of vertical velocity as a function of position from the vertical interface at 
various times caused by horizontal diffusion of salt. 

Neglecting the nonlinear terms in the curl of the momentmn equation and dropping 
derivatives with respect to z we seek to solve, 

Ipxxt = -gOiTx + flpxxxx- (10) 

Again we proceed by taking the Laplace transform of this equation, and apply the expres- 
sions for f that we foimd above. We can solve this equation for ■ipxx and integrate once with 
respect to x. We then transform back to the time domain using the convolution theorem 
to find ipx or 

w = 
gaATQ 

2v ~ (^ ~ ^)      (r ^^^''^'^"^ ~ ^'^''^"''^^ '^") ' a;>0, (11) 

where;?« = xl2,/l^pu and rjv = xflyfuu. Using the same procedure we can find the vertical 
velocity for x < 0, and find that it is just the opposite of the expression given above. A plot 
of the vertical velocity as a function of distance from the interface at various times using 
parameters typical from oiur experiments is shown in figure 5. As we expect, salt difiuses 
horizontally from positive to negative x generating a larger density that drives a downward 
flow for X < 0 and reducing the density and driving an upward flow for a: > 0. This seems 
to indicate that an instability coiild occur even without the lower reservoir. We expect the 
reservoir has a much larger efiiect, though, and we are planning further experiments to test 
this more thoroughly. 

We next consider diff'usion of salt across the horizontal interface between the dense lower 
reservofr and the sugar solution in the upper layer. Once again we will neglect the effects 
of sugar difiusion and only consider vertical derivatives since they are much larger than the 
horizontal derivatives at early times. We consider the diflfusion equation 

Tt = KTTZZ, (12) 

which we can solve in terms of an error function and then use to express the density in the 
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upper layer as a function of vertical position and time. Using equation 5, 

p = po(l + aATo + ^erfc(77,)) , (13) 

where T)Z — z/2y/KTt, and ATQ is the initial salinity difference across the interface. 
As a simple analysis at this point, we can argue that the region that gained density 

due to diffusion wiU intrude into the salty fluid as a gravity current. We can estimate the 
increase in density due to diffusion by taking the mean density increase ax;ross the diffusive 
boundary layer y/izri. Rather than integrating (13), we can take the density gradient as 
linear to leading order to find that the mean density change is given by 

A.= ^. (14) 

A gravity current is characterized by the Froude niunber, Pr = u/^/g^. Here g' = gAp/po 
is the reduced gravity and we take the length scale h to be the diffusive length scale y/Krt. 
Typically Fr = 1 at the nose of a gravity current. Considering times less than one minute, 
t ~ 0(10), we find that u w 0.5 cm/s. Although this represents an extremely thin layer 
of fluid, the velocity determined by this simple method is much larger than the velocities 
observed in the experiments. 

One likely reason for the disagreement is that the horizontal interface is not actually 
sharply defined. In the process of filling the tank, some mixing occurs that leads to a 
thin region of stratification on both sides of the barrier. This then makes it much more 
diflBcult to quantify the rate at which salt diffuses firom the reservoir into the upper layer. 
Ruddick et al. [1] foimd that the velocity of intrusions propagating into a stratified ambient 
scaled like Nh, where N is the buoyancy firequency. The quantity u/Nh is equivalent to 
a Proude number, and they also foimd the velocity was much smaller than expected for 
gravity current dynamics. Their results showed, 

u ~ O.OOdNh. (15) 

Ruddick et al. did not provide an explanation for the small size of the Proude number, and 
it is a problem that begs further study. 

An important quantity in double diffusive convection is the fiux ratio 7 defined as 

for a diffusive interface, and the reciprocal of (16) for a fingering interface (so that 7 is 
always less than 1). Measiurements of 7 have shown that its value depends on the density 
ratio, which is given by 

R  - ^^^ fl7) 

for a diffusive interface. For Rp > 2, Turner [13] has found that 

(18) 
iT 
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As Rp approaches 1, though, the value of 7 also approaches 1. Turner interpreted this result 
by arguing that as Rp approaches 1, convection becomes more turbulent and therefore the 
same processes are transporting both diflFusing components and the ratio of the fluxes are 
approximately equal. At the initiation of our experiments, the value of Rp has carefully been 
set to 1 so that density is compensated across the front. This may indicate that although 
we observe strong turbulent motions, there may be very little change in density associated 
with these motions. 

5.2    Intrusion propagation 

A second approach we have taken to modeling the rightward and leftward moving intrusions 
is based on the work on Yoshida et al. [4]. We assume that after some period of time the 
vertical interface between the salt solution and sugar solution has tilted so that salty water 
is riding over fresh. As an initial condition we assume that the density jump across the 
interface is still zero which may be accurate for early times if the flux ratio 7 is close to 1 
as discussed above. 

We can write that the change in density in the salty solution is due to a flux of salt out 
of this layer and a flux of sugar into this layer. This can be written as 

dt ho/2 

where pr is the density in the salty layer and ho is the initial depth of the upper layer. This 
model assiunes that the layers are well mixed and that the density is a function of time 
only. The factor of 2 is a geometrical factor included because the current is approximately 
triangular. We note that this is a simplified model as our measurements have indicated that 
there are spatial gradients in the density field. 

The flux of salt across the interface can be related to the change in the salinity difierence 
across the interface, 

«Fr = ^|(aAT). (20) 

Finally a third equation is needed as a parameterization of the salt flux as a function of 
the salt gradient. A review of flux laws for double diffusive convection across a diffusive 
interface is given in KeUey et al. [3]. For simplicity we use the flux relationship determined 
by Turner [13] where he argued that for turbulent convection 

aFr = C{a^Tfl^, (21) 

where C is a dimensional constant that depends on the solution properties and the density 
ratio Rp [10]. It is more difficult to judge the validity of assuming that C is a constant 
because in the scope of this project we were unable to measure concentrations of salt and 
sugar separately, and therefore it is difficult to estimate how Rp changes over the course of 
the experiment. 

At this point we can use equations (20) and (21) to find an expression for the salt jump 
across the interface as a function of time, 

aAT = (aATo)(l+t/T)-3, (22) 
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where r is a time scale given by 

_       Zpohp 
^~2C7(aATo)V3- ^^^^ 

Assuming il^ w 2 in determining C, and using parameters from our experiments we find 
that T = O(lO^s). We note here that we expect Rp to be small based on the propagation 
speed of our current (density difierences must be small), but there are also large fluctuations 
in the value of C for 1 < Rp < 2. 

Finally we can use equations (21) and (22) to integrate equation (19) with time. Prom 
this we obtain 

PT = Po [1 + aATo(l - 7)(1 + t/r)-^ + aATo^f]. (24) 

The density in the lower, sugary layer can be determined in a similar manner and using the 
fact that OATQ = PASQ we find, 

PS = po [1 - aATo(l - 7)(1 + t/r)-^ + aATo(2 - 7)]. (25) 

Combining these two equations then gives us an expression for the density difference axiross 
the interface as a function of time, 

Ap = 2po(aATo)(l - 7) (l - (1 + t/r)-^). (26) 

We have also analyzed this model for a flux condition that is controlled purely by 
diffusion. This modification only affects our parameterization of the flux law given in (21), 
where now the flux of salt across the interface depends on the salinity gradient across the 
interface. To model this we assmned that there is some length scale hm associated with the 
thickness of the interface and that this was maintained at a constant value. We beheve that 
this assumption may be valid while the shear at the interface is high. Then we can write 

_ aAT ,._. 
aFr = PQKT-T—•      - (27) 

Following the same steps as before we can integrate up equations 20 and 27 to obtain 

Ap = 2poiaATo){l - 7) (1 - exp [-nt/hohm]) ■ (28) 

Following the work of both Maxworthy [5] and Yoshida et al. [4], we now argue that 
for most of the experiment, the buoyancy force generated by density differences across the 
interface is balanced by a double diffusive retarding force. This double diffusive force is 
given in Maxworthy [5] as 

FDD = pUVL, (29) 

where U and V are defined as 

U=-,    and   F = -^. (30) 
f' paAT ^   ' 

The buoyajicy force is given by FB = ApghQ, so we can write 

FB = 2po(aATo)(l - ^)ghl [l - (1 + t/r)-^] , (31) 

FDD = C{aATo)^/^il + tlT)-^LH-\ (32) 
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where we have used the four-thirds flux parameterization as opposed to the diffusive flux 
parameterization. Equating these two forces we obtain a scaling for L, 

L oc {mfl\a^.%f'\Q^{l + t/r) (l - (1 + t/r)-^) t. (33) 

We can show that for both i < r and t » T, L a t from the expression above, and even 
when t ~ r the t dependence is well approximated by a linear curve [4]. 

6    Results 

Figures 6 and 7 show measiurements of density as a function of position in the tank after 
the experiment has neared run-down. All measurements were taken between one hour and 
one and a half hoiurs after the start of the experiment. On the x-axis, 0 cm corresponds 
to the lefthand wall of the tank and 60 cm corresponds to the right-hand wall. The clear 
symbols represent measurements taken in the upper layer above the interface between the 
two fluids and the closed symbols represent measurements taken below this interface. Note 
that density decreases upward on the y-axis in figures 6, 7, and 8 for easier interpretation 
of the graph. 

Figure 6 shows the density measurements from the experiments that had mixed initial 
conditions. In these experiments, the density in the upper layer was 1.02 g/cm^. Sugar 
contriubted twice as much to the density in the left side and salt twice as much in the right 
side leading to a property contrast across the barrier, OATQ = ^A5o = 0.0067. The data 
show that there is still a small positive horizontal density gradient. This most likely means 
that the experiment has not fully run down to completion. The jump in density across 
the interface is roughly 0.002 g/cm^. Fewer measurements of density were made in the 
experiments with pure sugar and pure salt initial conditions, figure 7. It is clear, though, 
that the density jump is considerably larger than in the other experiments. The density 
difference here is roughly 0.006 g/cm^ which is three times as large as Ap in figure 6. This 
agrees well with our theory that the nm-down density jump across the interface should 
scale linearly with aATo, since OATQ is 0.02 in the pure salt/pure sugar configuration, or 
roughly three times as large as the mixed configmration experiments. 

In experiment 27 we took density measurements at various heights and times in the 
center of the tank. These values appear in figure 8 with the different symbols representing 
the location at which the sample was talcen as described in the key. As expected, density de- 
creased steadily in the upper layer and increased steadily in the lower layer. Measurements 
made just above and below the interface (regions 2 and 3) seem to reach a quasi-equilibrium 
state after approximately 20-30 minutes, while measurements taken near the surface and 
near the reservoir interface reach nearly steady values after an hour or more. These mea- 
surements seem to show that despite the convection observed in the experiments, there 
may be either a staircase or a stratified density profile. The vertical density structure could 
depend strongly on the overturning circulation that is observed. We further note that the 
density change at region 4 is the largest because of the continuous diffusion of salt into this 
region from the lower reservoir. 

From equations (26) and (28) we can see that the run-down time for the density jump 
across the interface is T or hohm/Kr for the foiu:-tlurds flux law or the diffusive flux law 
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Figure 6: Density in the upper layer as a function of position in the tank after run-down 
(between 60 and 80 minutes after initiation) for mixed solution initial conditions. The 
open symbols correspond to measurements taken above the interface and closed symbols to 
measurements taken below the interface. Density decreases along the y-axis. 
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Figure 7: Density in the upper layer as a fimction of position in the tank after run-down 
(between 60 and 80 minutes after initiation) for pure salt/pmre sugar initial conditions. The 
open symbols correspond to measurements taken above the interface and closed symbols to 
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respectively. As given earlier, r 

hohn 

10^ s and 

lcm(.05cm) 

KT        1 X 10~^cm/s2 
5 X lO^s. (34) 

Figure 8 may then indicate that the four-thirds law is a decent approximation close to the 
interface, but the assumption that both layers are well-mixed is certainly not valid. Also, 
after nm-down, we expect Ap w 2po(aAT)(l - 7). For a diffusive interface and Rp > 2, 
Turner [13] gives 7 = 0.577 for a one-dimensional salt-sugar system. Therefore we expect 
Ap « 0.87po(aAT) or 0.0174 g/cm^ for the pure salt/pure sugar intitial conditions. Our 
measurements show that the density difference is smaller than this estimate by a factor of 
2 or 3. This may be explained by the fact that at least at the initiation of our experiment, 
Rp = 1 and as Rp approaches 1, 7 also approaches 1. Furthermore, our system is two- 
dimensional, while Turner's value for 7 was derived from a one-dimensional system. 

Figures 9 and 10 show measurements of the front position of the upper and lower in- 
trusions respectively as a function of time from the experiments with pure salt/pure sugar 
initial conditions. The various symbols represent different initial thicknesses ho- From 
both figures it is clear that the intrusion velocity depends strongly on the layer depth. Both 
figures have log-log axes and various power law relations are shown with dashed lines for 
reference. The length of the upper intrusion seems to depend linearly on time, so that 
the velocity is constant. There are no pronoimced end wall effects, although there may be 
some late-time behaviour and a change in regime for the slowest experiment where ho = 1.2 
cm. Most of the measurements of the lower intrusions seem to indicate that the velocity 
is approximately constant, although there does seem to be a monotonic increase in slope 
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in figure 10 with increasing layer depth. For a very deep upper layer, ho = 5.0 cm, the 
velocity increases with time with L ~ t^/^ or C/ ~ 1^^^. There is a much more pronounced 
end wall effect in the lower layer intrusion due to stratification that arises at the upper 
layer-reservoir interface when filling the tank. This leads to a blocking flow, which feels the 
presence of the end wall much earher than the upper intrusion [2]. 

Finally, in figures 11 and 12 we have non-dimensionalized the length of the intrusions 
with the initial height ho, and included both the mixed solution initial condition (closed 
symbols) and the pure salt/pure sugar initial conditions (open symbols). Figure 11 shows 
the upper intrusion data, which seem to collapse so that L scales lineaxly with ho- This 
agrees with the force balance argument given in (33). We have also included the average 
slope, or penetration velocity, of the experiments for both initial conditions. The velocity 
of the pure solutions is approximately three times larger than the mixed solutions. It is 
true that OATQ is three times larger for the pure solutions than for the mixed solutions, but 
firom (33) we expect the velocity to vary like (aATo)^/^. The data also collapses fairly well 
when we non-dimensionalize the length of the lower intrusion. The difierence in velocities 
is more difficult to determine in this case due to the strong end wall eflfects. 

7    Conclusions 

We have attempted to show how horizontal thermohahne intrusions may develop because 
of vertical diffusion in a system stably stratified in both S and T. The problem was studied 
experimentally using sugar and salt solutions. We found that horizontal intrusions that 
lead to overtxu-ning in a layer initially of uniform density, but with horizontally varying 
concentrations of sugar and salt, can be driven purely by diffusion of the faster diffusing 
component firom below. We also believe that the composition of this lower reservoir plays 
a large role in determining whether a diffusive or a fingering interface forms. This then 
in turn governs how sugax and salt are exchanged between the two upper layers. Further 
experiments will be carried out varying the reservoir concentrations to verify the importance 
of diffusion at this interface. Hopefully in future experiments we will be able to measure 
salt and sugar concentrations, which will provide information about the diffusive transfers 
across the interface and the evolution of the flux ratio. These experiments should offer 
helpful insights into the formation and mixing properties of thermohahne intrusions in 
regions such as the Southern Ocean. 
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Viscoelastic Catenary 

Anshuman Roy 

1 Introduction 

This paper seeks to determine the shape of a thin viscoelastic fluid filament as it sags under 
its own weight. The problem is an extension of the viscous catenary [1] and we refer to 
this problem as "viscoelastic catenary". Viscoelastic filaments appear in appUcations such 
as fiber processing firom melts and solutions, extensional rheometry etc. An understanding 
of the dynamics of the viscoelastic catenary will therefore aid in better design of such 
applications. 

2 Experimental Observations 

We investigated a Boger fluid composed of 0.025% w/w Polystyrene of molecular weight 
1.877 X 10^ dissolved in styrene oil. The relaxation time for this fluid is aroimd 4 seconds 
and its zero-shear viscosity, TJO, is 50 Pa.s. There is no shear thinning in the fluid over 
several decades of strain rate, and expecially in the regime of our experiments. We took 
some fluid between two plates and stretched out in the horizontal direction to shape it into 
a thin filament, h « L, where h is the thickness of the filament and L is the length to 
which it is stretched. Figure (1) shows a snapshot of one such experiment with h = 0.002 
m, L = 0.025 m. 

Two problems emerged out of this experiment that need to be imderstood. First is the 
problem of the viscoelastic catenary, wherein the fluid filament sags imder its own weight 
and its shape evolves with time. Second, is what we refer to as the chewing-gum problem. 
In this problem, fluid between two plates is stretched out into a thin filament and then 
instantaneously, the two plates are brought closer together. This makes the filament buckle 
in the direction of gravity, thereby making a viscoelastic catenary to begin with. What 
happens then is, to our knowledge, a phenomenon unique to viscoelastic fluids only - the 
catenary staxts moving upwards against gravity, like a recoil. However, if the plates are 
brought together at a rate equivalent to the inverse of the relaxation time of the fluid, we 
do not see this recoil efiect. We refer to this eff"ect as the chewing-gum problem because we 
observed the efiect for the first time in a chewing-gum. 
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Figure 1: Snapshot of a viscelastic catenary.In this case, the fluid used is a mixture of 
Polystyrene (MW 1.877 x 10^) in styrene oil - a Boger fluid. The zero shear viscosity is 
approximately 50 Pa.s and there is no shear thinning for the shear rates under considera- 
tion.Squares in the backgroimd axe 1 mm in dimension. 

3    Governing Equations 

All the dynamics of a viscoelastic filament can be understood by considering the simpler 
problem of a 2D sheet. The analysis that we will present is appHcable to many viscoelastic 
systems that do not shear-thm. However, for now consider a solution of polymer molecules 
in a viscous solvent. The governing equations for the fluid are conservation of mass, con- 
servation of momentum and the closure model to describe the polymer stress within the 
fluid: 

V.u = 0 (1) 

p {ut + u.Vu) = -Vp + JJLV u + V.T - pg 

Tt + U.VT - (Vu)-' .T - r. (Vu) = --{T-G) 
A 

(2) 

(3) 

where, the subscripts represent differentiation with respect to the subscripted variables, T 

is the polymer stress tensor, G is the equiUbrium polymer stress and A is the relaxation 
time of the polymer molecules. Note that eqs. (1) and (2) not closed without eq. (3) 
which describes the evolution of polymer stress in the flow, referred to as the Oldroyd-B 
constitutive model. 

In order to make the above equations dimensionless, we choose a velocity scale U and 
a length scale L. Then, the scahng for time is L/U, where L is the length of the sheet 
between the clamps. We scale the pressure and polymer stress with /x^. We perform the 

167 



following expansion: 

U = Uo + ^U2 + O(e^) 

ev = vo + e2t;2 + O(e^) 

H = eHo + e 3^2 + 0{e^) 

h = eho + e% + O(e^) 

P = PO + e^P2 + 0{e') 

T = To + eS + 0(e4) 

Then the governing equations for a 2D sheet become, 

e^Ux + Uv = 0 

e^Re [lit + e^uux + vuy) = -e^px + e^Uxx + Uyy + ^TX 

(4) 

(5) 

(6) 

(7) e^Re {vt + ^uvx + vvy) = -^Py + ^Vxx + Vyy - e^w 

where, Re = pUL/fj, is the Rejmolds number and w = -^^ is the dimensionless weight 
variable. In the limit of Ca = pU/y » 1, the effects due to surface tension can be ignored. 
So, we consider trax;tion-free boundaries. At y = H±h/2, the kinematic boundary condition 
is: 

The stress boundaxy condition results in the following two equations: 

-€^{-P + 2UX + T) (Hx±Y]+i->h + Vx)=0 

(8) 

(9) 

(10) 

At leading order, 0(1), the incompressibiUty equation reduces to: 

VOy = 0 (11) 

The x-momentum and y-momentum balances are respectively: 

UOyy = 0 (12) 

VOyy = 0 (13) 

We assume that the polymer stress tensor has only one non-zero component, r^^, where 
the superscript refers to the component of the stress tensor. Here onwards, we drop the 
superscript and refer to r^^ as T. The Oldroyd-B equation for r at this order is: 

1 
rot + voToy = -— (ro - G) (14) 
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We assume that Toy = 0.   Stretching the filament embeds a stress within the fluid, 
To(0,t) = ro(0). Boimdary conditions a.t y = H ± h/2 are: 

vo = (HO ± ^) (15) 

UOy + Vox = 0 (16) 

UOy = 0 (17) 

Then we conclude that hot = 0. Also 

vo = Hot (18) 

uo = Hoxt{H-y) + u5{x) (19) 

where, uo{x) is the velocity of the centerline of the filament, i.e. y = HQ- Integrating Eq. 
(14) gives the equation for the leading order polymer stress that decays with time. 

To = G+(To(0)-G)e-*/^^ (20) 

At second order, O(e^), the incompressibility equation and momentiun balances yield, 

V2y  = -Uox (21) 

POx — U2yy = UOxx + TQX (22) 

POy = Voxx — UQxy (23) 

The Oldroyd-B equation becomes 

T2t + ^'0^22, + TF^ = 2roUoz - UQTOX (24) 

The kinematic and stress boundary conditions at this order are: 

^2=(F2±^)   +^(^0X±^) (25) 

U2y + V2x + PO (HOX ± ^) = (2«0x + To) (^Ox ± ^) (26) 

PO = 2V2y (27) 

Integrating the y-momemtum balance, Eq. (23) and applying the appropriate boundary 
condition, Eq. (27), we can evaluate the leading order pressure. 

PO = -2uox (28) 

To calculate V2, we integrate the second order incompressibility equation, Eq. (21), 

V2 = ^iV- Hf - T{y -H)+V2 (29) 
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where, V2 = -H2t + UQHQX and T = «ox + jHox-Hoxt- Note that T is the viscoiis contribution 
to the dimensionless tension in the viscoelastic sheet. The second order horizontal velocity- 
then is 

U2 = ^^{y-Hf-l{Ho,Ho:.:^ + n){y-H)'-^{y-Hf+k{x)iy-H)+U2{^) (30) 

where k{x) = -Hoxxxtho/2 + (3T + TO)HOX - V2x and £12 (x) is the constant of integration. 
At this order, the boiindary conditions and the equations impose the following solvabiUty 

conditions: 
h2t = - {uoho)x (31) 

[i4T + ro)ho]x = 0 (32) 

Eq. (32) is a statement of tension balance. Inertia is too small to appear at this order. So 
the catenary is in a quasi-static balance. At the next order, C>(e^) the incompressibUity, 
momentum balances and the Oldroyd-B equation are as follows. 

V4y = -U2x (33) 

-P2x + Uiyy = -Re (uot + VQUOy) - «2ix - T2x (34) 

P2y  =  -Re (Vot) + V2XX + Viyy - WQ (35) 

The boundary conditions are, 

V,+V2y(^H2±^) = {H,±^)^+U2{Hox±^)+Uo{H2x±^) (36) 

- (-P0 + 2U0X + TO) (H2X ± ^ j - (-P2 + 2u2a: + T2) (HQX ± ^j +Uiy+ Vix=0   (37) 

0 (38) -{U2y+V2x) (^0.±^)-[p2+P0j, (^^2 ± y)]+2 ^V^y + V2yy (^2 ± y) 

Integrating the y-momentum balance, we get another solvability condition. For the sake 
of simplicity, we assume that hox = 0 and that TQX = 0. Then, 

hoReHott + -^HQxxxxt - (4T + To)/io-ffoa:x - rahQ (39) 

We can now rescale Eq. (39) to gain more insight into the problem. All lengths are 
scaled with L and time with &^/pgh. The centerline velocity at a: = 0 and the ends of the 
catenary, x = ± 1/2 is zero. So integrating the first solvabiUty condition, we have that 

4T + TO = I ij^^^ {Hx)1 dx + TO J (40) 
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which is a statement of tension baJajice. The second solvability condition becomes, 

RegHtt + ■;^Ha:xxxt = I /      (-^1)4 dx + ATQ 1 eHxx - 1 (41) 

where we have dropped the subscript "0" from the equation. Reg = [%;■] 7 is the 

appropriate Reynolds number, often referred to as the Galileo number in engineering circles. 
A = ^, where G is the equilibriiun polymer stress. Eq. (41), along with the boundary 
conditions if (±1/2,f) = 0 and ffa:(±l/2,f) = 0, describes the shape of the viscoelastic 
catenary as it sags imder its own weight. The second term on the left hand side, Hxxxxt is 
the contribution from torque balance and is referred to as the beding term. 

4 Results and discussion 

The final equation to be solved, Eq (41) is not, apparently amenable to analytical solu- 
tions.However, some simpUfcations axe in order. For the fluid filaments that we constructed, 
Reg ~ 10"^. So we can entirely neglect the inertial term. Also, at early times, the straight 
filajnent must first bend to begin the formation of a catenary. Neglecting the non-linear 
viscous stretching term, we have 

i^Hxxxxt = (ATO) eHxx - 1 (42) 

where, the parameter A ~ 5 and TQ can be evaluated from Eq.(20). As the catenary evolves, 
stretching will result in tension due to viscoxis stresses and the non-linear stretching term 
can no longer be ignored. At present, we present only these hypotheses. We hope to examine 
them in the process of solving Eq.(41) numerically. 

We intend to attack chewing-gum problem using the framework that we have developed 
for the viscoelastic catenary. It appears to be a special case of the catenary - one in which 
the initial state of the filament is a catenary to begin with. 
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Eddy Generation by Flow Over Variable Topography: 
Some Experiments 

Christopher L. Wolfe 

1    Introduction 

The Labrador Sea is a marginal sea of the North Atlantic Ocean bounded by Canada on 
the west and Greenland on the east. The prevailing winds are from the west and, in the 
winter, very cold and dry. The surface waters of the Labrador Sea are typically warmer 
and salter than the water at depth. In severe weather, the sensible and latent heat fluxes 
can be sufficient to render the surfaxie water denser than the water below. Convective 
overturning ensues that can mix the water column to depths of over 2 kilometers, creating 
an intermediate mode water known as Labrador Sea Water[l]. 

The Labrador Sea Water that forms in these deep convective events spreads out at depth 
and forms part of the driving force for the global thermohaline circulation whereby dense 
water formed at high latitudes spreads throughout the world oceans, upwells and warms, 
and returns to the polar oceans. This circulation transports a large amount of heat from the 
topics to the poles and is important for maintaining a temperate climate at high latitudes. 
The deep convection driving this circulation occurs only in a few isolated locations in the 
arctic and antarctic and an imderstanding the dynamics of these areas is essential to an 
imderstanding of the world climate. 

After winters of intense convection, the newly formed Labrador Sea Water is rapidly 
capped by a thick layer of stratified water. There are too few observations of the restratifi- 
cation process to provide a clear picture of its mechanism, but it is too rapid to be driven 
simply by surface warming at the beguming of spring. This suggests that horizontal fluxes 
driven by eddies may be responsible. A possible source of warm, fresh water is eddies shed 
by the Irminger Current—a fresh, buoyancy driven boimdary current rimming the Labrador 
Sea. West of Greenland the continental shelf is narrower and the continental slope steeper 
than along the rest of the coast, and the most intense region of eddy formation is at the 
downstream end of this constriction[l]. A modeUng study by Katsman et al.[2] indicate that 
Irminger Current eddies are triggered by rapid variations in shelf topography. In particular, 
they showed that narrow alongshelf gaps were less effiective at generating eddies than large 
gaps, and that topography with abrupt transitions generates eddies more efficiently than 
gently varying topography. 

The stabiUty of a buoyant boundary current flowing along topography which does not 
vary in the downstream direction is a haxd enough problem, for which there are few general 
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theoretical results. A necessaxy condition for baroclinic instability of a two layer flow is 
known, namely that the gradient of the potential vorticity (PV), 

n = ^^    where   C = (Vxti)-k, (1) 
h 

must change signs somewhere in the flow (see, for example, [3]). If the PV gradient is of 
a single sign in each layer, this condition implies that the PV gradient in the upper layer 
must be of opposite sign as the PV gradient in the lower layer for instability to occur. 
Simple appUcation of this condition shows that bottom topography that slopes in the same 
direction as a front can render the front completely baxochnically stable[4]. Topography 
that slopes in the opposite direction can be destabilizing, but there are many instances 
of currents flowing over topography with a 'destabiHzing' (i.e. opposing) slope that are 
nevertheless stable[5, 6, 7]. 

Several authors have studied the stability of fronts over sloping topography in specific 
situations. Flagg and Beardsley[8] and Gawarkiewicz[9] investigated the linear stability 
of surface to bottom shelfbreaJc fronts over topography that slopes away from the front. 
They find that the front is unstable for any slope, but is most unstable over gentle slopes, 
becoming rapidly more stable for very steep slopes. The stability of a surface trapped 
front over sloping topography was studied by Reszka and Swaters[10] using a nonlinear 
numerical model based on an asymptotic expansion of the primitive equations that assumes 
that the ratio of the upper layer depth to the lower layer depth is small. They also find 
that an opposing slope is destabilizing, but that the front becomes less stable as the slope 
is increased. The very diff"erent mean frontal structures (smrface to bottom verses surfax:e 
trapped) may be a source of the discrepancy between these two sets of studies. 

The effect of rapidly varying topography on the stability of buoyant currents is less 
well studied. Bracco and Pedlosky[ll], building on a study by Samelson and Pedlosky[12], 
investigated the stability of a two-layer, quasi-geostrophic channel model with topographic 
variations in the along-channel direction. The flow in the bulk of the channel was stabilized 
by a bottom that sloped in the same direction as the interface between the two layers. 
The slope was smoothly reduced to zero in a narrow gap, thus inducing instability in the 
gap. They foimd that the gap strongly influenced the flow downstream of the gap; in their 
nonlinear model this influence was in the form of coherent vortices that formed in the gap 
and propagated downstream. These vortices formed and propagated for arbitrarily narrow 
gaps, contrary to the naive expectation that a gap narrower than one Rossby radius of 
deformation should have no effect on the flow. The authors suggest that their model could 
be a possible model for the formation of eddies in the Irminger Current. However, the 
restriction to small interface deflections (required by quasi-geostrophy) and a bottom that 
slopes in the same direction as the front (opposite to that of a shelfbreak front) makes the 
application of this model to the Irminger Cmrrent problematic. 

We performed a series of laboratory experiments in order to better imderstand the effect 
of variable topography on buoyant coastal currents. In order to determine the stabiUty 
characteristics of a buoyant current on a single slope, we performed a set of preliminary 
experiments in which the input parameters were varied over a large range. We then allowed 
the current to flow from a slope which was known to be stable to an unstable slope, or from 
a slope which was unstable to a slope which was stable. Finally, we attempted to simulate 
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61 cm 

TOP VIEW 

Figure 1: Experimental apparatus used in the preliminary experiments. Left: top view, 
Right: side view. The arrows indicate the flow direction. 

the Irminger Cmrent west of Greenland by allowing the current to flow over two identical, 
stable slopes separated by a variable width gap containing an imstable slope. 

The format of the paper is as follows: In section 2, we will describe the experimental 
methods. Section 3 wiU introduce some theoretical results pertaining to buoyant coastal 
cmrents. In sections 4 and 5 we discuss the qualitative and quantitative results, respectively, 
of the experiments. Finally, we conclude in section 6. 

2    Experimental Methods 

The experiments were performed in three phases, using three different experimental ap- 
paratuses. The three phases will be referred to as the preliminary, two-slope, and gap 
experiments, respectively. 

A sketch of the apparatus used in the preliminary experiments is shown in figure 1. 
These experiments were conducted in a transparent plastic tank of depth 60 cm with a 
square base measuring 61 cm on a side. The tank was mounted on a 1 meter diameter, 
belt-driven, rotating table with a vertical axis oi rotation. The tank was fiUed with salt 
water of density p2 to a depth of about 15 cm. The right 30 cm (in the frame of figure 1) 
of the tank had a bottom with slope Si, with the fluid shallowest toward the top of the 
figiure. The left 30 cm had a sloping bottom with slope S2 7^ si, again with fluid shallowest 
toward the top of the figure. The level of water in the tank was adjusted so that the 
two slopes intersected at the free surface. Dyed buoyant water of density pi < P2 flowed 
from the 1.1 cm diameter nozzle (marked 'S' in the figure) placed about 0.5 cm below the 
free surface. The nozzle was covered with a piece of sponge to reduce mixing between the 
buoyant and ambient fluids. The buoyant water flowed onto the right-hand slope where it 
developed into a buoyancy forced boundary cmrent which flowed with the coast on its right 
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Figure 2: Experimental apparatus used in the two-slope experiments. Left: top view, Right: 
side view. The arrows indicate the flow direction. 

(looking downstream) before flowing onto the left-hand slope. In this arrangement, buoyant 
fluid could flow all the way aroimd the tank and rejoin the current near the soiurce. The 
experiment was ended before this happened. 

In all that follows, the first slope that the buoyant fluid encounters will be referred to 
as slope 1 and the other slope is slope 2. The buoyancy force on the current is described 
by the reduced gravity ^ = g{p2 — Pij/p-, where g is the gravitational acceleration and 
p = [p2 + /?i)/2. The reduced gravity was calculated using the densities of the fluids 
before the beginning of the experiment; the actual value was reduced somewhat by mixing. 
Sampling of buoyant water from developed current revealed that g' was reduced in the 
experiments by between 20% and 50%. In the first set of experiments si = 0.25 or 0.30 and 
52 = 0.79 or 00 (a vertical wall). For the preliminary experiments, the other parameters 
were varied greatly to explore a large region of parameter space. The CorioUs parameter / 
varied from 0.20 s~^ to 3.0 s~^ and the reduced gravity g' took on values from 0.40 cm/s^ 
to 12 cm/s^. The flow rate Q was varied from 0.75 cm^/s to 18 cm^/s. 

The two-slope experiments (shown in figure 2) were performed in a 215 cm diameter, 45 
cm deep, opaque plastic tank mounted on a 2 meter diameter, direct-drive rotating table 
with a vertical axis of rotation. The tank was fiUed to a depth of either H = 15 cm or 
H = 22.5 cm with salt water of density p2- The two slopes where moimted in the tank 
away from the side walls. The lengths of the first and second slopes were 72 cm and 82 
cm, respectively, and both slopes were painted with a 10 cm by 10 cm grid. The first slope 
was fixed with si = 0.29 while the second slope was adjustable from $2 = 1.0 to S2 = oo. 
The source of buoyant fluid as well as the progress of the experiments is the same as that 
described above. However, since the slopes were moimted away from the side walls of the 
tank, the buoyant fluid could not make a circuit of the tank and rejoin the cmrent near 
the soiurce. This allowed us to rim the experiment until our reserves (about 20 liters) of 
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TOP VIEW 

SIDE VIEW 

215 cm 

Figure 3: Experimental apparatus used in the gap experiments. Left: top view, Right: side 
view. The arrows indicate the flow direction. The isolated circle of buoyajit fluid represents 
an eddy which often forms in the gap. 

buoyant fluid were depleted. For several experiments, we wanted the current to start on a 
steep slope and flow onto the gentle slope. Rather than physically reverse the position of 
the slopes, we simply moved the soturce to the left end of the left-hand slope and spun the 
table anti-clockwise. The current then flowed from left to right, with the coast on the left 
(looking downstream). In all the two-slope experiments, the reduced gravity was kept fixed 
at g' w 1 cm/s^, except for four experiments where p* w 13 cm/s^. The magnitude of the 
Coriolis parameter |/| varied from 0.5 s~-^ to 2.0 s~^, but was usually fixed at |/| = 2.0 s~^. 
The flow rate was fixed at Q = 12 cm^/s, except for one experiment where Q = 6.0 cm'/s. 

The gap experiments (shown in figure 3), where performed in the same tank as the 
two-slope experiments using two identical slopes with slope s = 0.29 separated by a gap 
of width a. The shoreward side of the gap was a vertical wall. In all other respects, these 
experiments were identical to the two-slope experiments. The gap width a took on values 
of 1 cm, 5 cm, 10 cm, 20 cm, and 40 cm. All other parameters were kept fixed with g' = 1 
cm/s^, / = 2.0 s-^ and Q = 12 cm^/s. 

For all of the above experiments, data was capttured using a video camera which was co- 
rotating with the table. The current was made visible by the addition of food coloring and, 
in several experiments, surface velocities were visualized by fioating paper pellets on the 
surface. The gap experiments were additionally visualized using potassium permanganate 
dye crystals. The width of the current was determined as the average of three measmrements 
separated by 20 cm, starting at 20 cm downstream from the source on slope 1 or 20 cm 
downstream from the joint between the two slopes on slope 2. 
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(a) 

(b) 

Figure 4: Basic structure of a buoyant current over a sloping bottom, cross-section on the 
left and plan view on the right, (a) Surface trapped front, (b) Bottom trapped front. 

3    Scaling for Buoyant Boundary Currents 

Lentz and Helfrich[13] introduced and tested a scaling theory for buoyant currents flowing 
over a sloping bottom in a rotating fluid. The basic structure of a buoyant current over a 
sloping bottom is shown in flgmre 4. The buoyant fluid occupies the entire water coliman 
in a wedge of width Ws and depth hp. Offishore of this point, the front detaches from the 
bottom and curves upward to meet the surface at a distance Wp ofishore. The point where 
the front intersects the bottom is called the foot of the front and the distance from the foot 
to the seaward edge of the front will be referred to as Wf. 

We assume throughout that the front is quasi-steady and in geostrophic and hydrostatic 
balance. If we also assume that the free surface deformation and the viscous forces are small 
then the wedge shoreward of the foot is quiescent, while the dynamics seaward of the foot 
are governed by 

-fv = -9'K (2) 

where v is the along-shelf velocity, h is the depth of the interface between the buoyant and 
dense water, and subscripts stand for partial differentiation. The position of the foot is 
fixed by requiring that the current transport a known flux Q, since 

pWj, f     pWp 
Q=        vhdx = -;^        {h%dx = 

Jo ^y Jw. 25" 
(3) 

so 

hp = 
l2Qf 

(4) 
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The offshore position of the foot, then, is W^ = hp/s. In fact, the foot is 'trapped' at this 
position [14] since this is exactly the position at which the vertically sheared, geostrophic 
velocity is zero at the bottom. If the firont were to move toward shore, a negative geostrophic 
velocity would develop at the bottom. The resulting offshore Ekmaji flux in the bottom 
botmdary layer would force the foot back offshore. Conversely, if the front moves offshore, 
a positive geostrophic velocity at the bottom would drive an Ekman flux onshore, forcing 
the foot back to its trapping depth. In practice, there is always some downstream transport 
shoreward of the foot driven, perhaps, by alongshore pressure gradients. This will lead to 
a somewhat reduced value of hp and, hence, Wg- 

The offshore portion of the front is assumed to initially adjust to a width of one Rossby 
radius based on the depth of the foot: 

Wf{Q) ~ LH = ^, (5) 

giving an initial mean frontal slope and velocity of 

^« = W^ = ^ .o = f~v^. (6) 
The total width of the current is then 

Wp = Ws + W>(0). (7) 

The ambient fluid is assumed to be quiescent and the shear between the buoyant and 
ambient fluids is assumed to be concentrated at the interface between the layers. This shear 
produces drag on the moving layer which creates an interfacial Ekman layer that transports 
buoyant water offshore, causing the front to spread slowly. Assimiing that the spreaxiing 
rate is equal to the average offshore velocity in the interfacial Ekman layer, 

9W>M..„^^"     M (8) /NJ   * 

dt "^4      AWf' 

we find that 

Wf{t)^LR{^-pj     . (9) 

This equation holds for times long compared to the initial axijustment of the front to its 
trapping depth. In terms of the total current width W = Wg + Wf, normalized by the 
width Wp given by equation (7), 

Wp      \2tp) 
^1"^        s'/s 

where tp = (1 + s'/s)/f. The current will continue to spread imtil a diffusive boundary 
layer of thickness greater than an Ekman thickness develops between the layers. This will 
halt the interfacial Ekman transport and shut down the spreading of the current. 

The parameter s'/s which appears above is an important parameter for predicting the 
behavior of a current over sloping topography. If s'/s ':^ 1 the current is 'bottom trapped' 
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Figure 5: Evolution of a surface trapped front {Q = 12.0 cm^/s, / = 2.0 s ^, g' = 13.2 
cm/s^, 51 = 0.29, 52 = 1-0, s' = 0.14) after 12 s (left) and 144 s (right). 

(figure 4b) and if s'/s < 1 the current is 'siuface trapped' (figure 4a), using the terminology 
of Yanlcovsky and Chapman [15]. Bottom trapped currents are strongly controlled by bottom 
topography whereas siuface trapped ciurents are only mildly so. 

Lentz and Helfrich[13] performed a number of laboratory experiments to test this scaling 
theory. They found the width and spreading rates of the current to be well predicted if 
they take the trapping depth /i w (0.7 ± 0.1)/ip. 

4    Qualitative Results 

In all the experiments performed, buoyant water spread from the soiurce and fiowed along 
the coast with the coast on the right looking downstream (for positive /). The current 
broadened rapidly as it flowed away from the soiurce and equilibrated to a width similar to 
that predicted by Lentz and Helfrich[13] about 20 cm downstream of the somrce. The foot of 
the cxurent was visible as a maxiinum in dye intensity, but it was not feasible to measure its 
position accurately. After the initial equiUbration, the ciurent continued to widen slowly, 
possibly due to interfacial drag, occasionally forming filamentous streamers on the seaward 
edge due to oS'shore transport in the surface Ekman layer. "When these occmred the width 
of the current was measm-ed with the streamers excluded. 

During the preliminary experiments, we varied all the input parameters over a wide 
range to characterize the stability of the current along a slope or a wall. Over the range 
of parameters used, the cxurent was always stable on the gentle slope. It was foimd that a 
fairly large value of s' > 3 was needed to generate instabilities along a vertical wall within 
the time scale of the experiment and that flows over sloping topography were always more 
stable that flows along a vertical wall. 

4.1    Two-Slope Experiments 

4.1.1    Surface Trapped, Gentle to Steep 

We performed five experiments with relatively high reduced gravities and low rotation rates 
in order to make a close comparison with the results of Lentz and Helfrich[13]. These flows 
are predominately surface trapped, with s'/s w 0.3-1.0. All of these experiments had the 
source located over gentle topography with steeper topography placed downstream. As 
expected for surface trapped flows, the topography did not greatly influence the evolution 
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Figure 6: A bottom trapped front (Q = 12.0 cm^/s, / = 2.0 s-\ ^ = 0.78 cm/s^, sx = 0.29, 
S2 = cxD, s' = 6.1) flowing from a gentle slope to a vertical wall after 240 s (upper left), 288 
s (upper right), 408 s (lower left), and 504 s (lower right). Note the immediate formation 
of a large eddy on the vertical wall. 

of the current. The evolution of a surface trapped front is shown in figure 5. The ciurent 
propagated quickly across both slopes and was stable throughout the entire experiment. The 
width of the current decreased slightly on slope 2, but the ciurent was otherwise unaffected 
by the change in topography. Aside from presence of two slopes, this figure is virtually 
indistinguishable from figure 5 in Lentz and Helfrich[13]. 

4.1.2    Bottom Trapped, Gentle to Steep 

The bottom trapped currents evolved much more slowly than the surface trapped currents 
and their cross-shelf extent was smaller, with an equilibrated width on slope 1 rarely greater 
than 25 cm. Do to their slow spreading, these cxirrents often trapped some dense ambient 
water between the ciurent and the coast. This density contrast drove a flow along the 
shoreward edge of the current that was upstream relative to the mean flow of the current. 
The shoreward front was extremely susceptible to instabilities which tended to smooth 
out the edge of the front. These instabilities are visible in the first two panels of figure 6. 
However, no eddies were observed to form on the seaward edge of the front when the ciurent 
flowed over a gentle slope. 

When the nose of the current passed from the gentle to the steep slope, it often formed 
a wisp of fluid (visible in the first panel of figure 6) extending into the ambient fluid. This 
wisp may be caused by entrainment of buoyant fluid in a cyclonic eddy of ambient fluid 
formed when the current flows from the gentle to the steeply sloping topography. This initial 
perturbation propagated more slowly than the nose of the current and decayed downstream 
over all topography with less than a vertical slope. When the current flowed along a vertical 
wall, this pertmrbation grew rapidly into a large eddy. This eddy consumed much of the 
flux along the wall and delayed the formation of finiiher instabilities downstream of the 
eddy. Other instabilities eventually grew and formed eddies, the beginnings of which are 
seen in the last two panels of figure 6. Immediate formation of a large eddy seemed to be 
a particular feature of flow onto a vertical wall and was not observed for large but finite 
slopes. 

When the current flowed from a gentle slope to a steep—but not vertical—slope the 
initial pertmrbation died out before it could grow to a large amplitude eddy. The flow along 
the steep slope was initially steady and laminar. As the experiment progressed the current 
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Figure 7: A bottom trapped front {Q = 12.0 cm^/s, / = 2.0 s-\ g' = 1.0 cm/s^, si = 0.29, 
S2 = 3.7, 5' = 5.3) flowing from a gentle slope to a steep slope after 124 s (upper left), 279 
s (upper right), 465 s (lower left), and 589 s (lower right). 

widened and occasionally developed meanders, but the development of large scale eddies 
was delayed until the ciirrent was wider than the sloping shelf and the seaward edge of 
the current lay over the flat bottom. An example of this behavior can be seen in figure 7. 
This behavior was observed on aU slopes with s > 1. This lead us to beUeve that fully 
developed eddies cannot form over strongly sloping topography and that the current must 
be sufficiently wide so as to extend beyond edge of the sloping topography before eddies 
can form. 

In order to test this idea, we performed a series of experiments where the depth of the 
ambient fluid was increased to 22.5 cm from 15.0 cm, but the slopes were imchanged. This 
increased the width of the sloping shelf without changing its steepness. In these experiments, 
the formation of eddies was again delayed until the ctirrent extended beyond the shelf and 
the seaward edge of the current lay over the flat bottom. 

The detailed evolution of all ciurents that formed eddies over steep topography is shown 
in flgure 8, showing that eddies only form once the current is wider than the shelf. In fact, 
in all cases the current was wider than the shelf by almost a factor of two before eddies 
formed. Another way to see this is to plot the width of the ciurent when eddies start 
forming verses with width of the shelf. This is shown in figure 9 where, in addition, the 
width of the current at the end of the experiment has been plotted versus the width of the 
shelf for all experiments. Again, aU of the eddying currents fall above the line W = L. 
Five currents that were steady at the end of the experiment also lie above the line W = L. 
These experiments were the surface trapped experiments discussed in section 4.1.1. These 
cmrrents were stable imder any condition tested. 

4.1.3    Bottom Trapped, Steep to Gentle 

We can also inquire as to what will happen if a flow which is initially unsteady and eddying 
is allowed to flow onto a gentle slope. We have observed that currents starting on gentle 
slope never form eddies, but it was not clear whether this was a result of a special initial 
condition or a general statement about the stability of cmrents over slopes. Figure 10 
shows the evolution of a cmrent flowing from a steep slope onto a gentle slope. The current 
was initially lajminax on both slopes, but formed eddies once the cmrent width on slope 1 
exceeded the width of the shelf. Regardless of how unstable the current was on slope 1 it 
was immediately stabilized once it flowed onto slope 2. Eddies formed on slope 1 evidently 
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Figure 8: The total width verses time for currents on a slope that eventually formed ed- 
dies. '+'s and 'o's indicate that the current is meandering or forming eddies, respectively. 
Numbers at the end of each curve give the slope over which each current formed. Those 
with asterisks have total depth H = 22.5 cm, those without have H = 15.0 cm. Top: Total 
width W. Bottom: Total width normalized by the width of the shelf L = H/s. 
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current width at formation of eddies, meanders, or final state 

L = H/s[cm] 

Figure 9: Final width of current verses shelf width L = H/s for all experiments (upper 
panel) and only currents that form eddies (lower panel). For currents that form eddies, the 
final width was measured just before eddies began to form. 

Figure 10: A bottom trapped front {Q = 12.0 cm^/s, / = -2.0 s'^, g' = 1.0 cm/s^, 
si = 3.7, S2 = 0.29, s' = 5.3) flowing from a steep slope to a gentle slope after 122 s (upper 
left), 305 s (upper right), 610 s (lower left), and 1037 s (lower right). Note that the current 
flows from right to left since / is negative. 
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Figure 11: A bottom trapped front {Q = 12.0 cm^/s, / = 2.0 s~\ g' = 1.0 cm/s^, si = 0.29, 
S2 = 0.29, 5' = 5.3, a = 40 cm) flowing axn-oss a gap after 372 s (upper left), 837 s (upper 
right), 1302 s (lower left), and 1767 s (lower right). Darker dye was occasionally injected to 
help visualized the flow field. Note that the eddies pile up at the downstream edge of the 
gap- 

could not propagate onto slope 2 and piled up at the upstream edge of the slope. This 
behavior is similar to the behavior of Irminger Cvirrent eddies formed in the constriction 
west of Greenland (see Katsman et al.[2] figxure 1). 

4-2    Gap Experiments 

The gap experiments were performed with gap sizes ramging from o = 1 cm to o = 40 cm, 
corresponding to a = O.SLR to a = Z2LR, where LR is the Rossby radius of deformation 
given by equation (5). For experiments with a < ALR the flow exhibited small pertm-bations 
that decayed downstream of the gap, but no eddies were observed to form. 

Once the gap size was increased to a = SLij, eddies began to form in the gap. It should 
be noted that the smallest fuUy developed eddies observed in the previous experiments had 
diameter D w BLR. Thus, eddies were unable to form in the gap until the gap was wide 
enough to contain a least one fully developed eddy. Two coherent eddies formed in the gap 
when a = %LR: a cyclonic eddy of ambient fluid near the wall and an anticyclonic eddy of 
buoyant fluid seaward of the first eddy. When the gap was increased to a = \%LR three 
eddies formed, with a cyclonic/anticyclonic pair occupying the same positions as before 
and an additional cyclonic eddy seawaxd of the anticyclonic eddy. The first two eddies were 
stationary throughout the experiment, while the third eddy migrated back and forth across 
the gap, sometimes closer to slope 1, at other times closer to slope 2. The experiment with 
the largest gap (a = 32L/j, shown in figure 11) developed at random eddy field where the 
number of eddies increased as the experiment proceeded. By the end of the experiment, at 
least seven individual eddies and dipoles had formed. A summary of the gap experiments 
is shown in figiure 12. 
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Figure 12: Number of eddies observed in gap experiments verses gap width in Rossby raxiii. 
The dashed line represents a lower bound on the width of the constriction associated with 
Irminger Current eddies. 

In none of the gap experiments were eddies that formed in the gap able to propagate onto 
the gentle slopes, either upstream or downstream of the gap. Eddies advected downstream 
in the gap accumulated on the downstream edge of the gap rather thaji propagating onto 
the slope, as in figure 11. 

5    Quantitative Results 

If time and the width of the current are scaled as discussed in section 3, the data should 
collapse onto a set of curves with time dependence like {^1"^. Equation (10) places a bound 
on the expected variation of the data if boimds on s'/s are known. If the data is scaled 
using the value of hp given by equation (4), it does not collapse onto a single curve weU 
and does not fit within the required bounds. As noted in section 3, the observed value of 
the trapping depth h often falls short of the predicted value hp. Using h = hp/2 (shown in 
figure 13) produces a scaling which coUapses the data and causes it fall within the required 
bounds reasonably well for the first slope. However, the width of the current on the second 
slope consistently falls short of the predicted width.   This shortfall may be caused by a 
reduction in Q caiised by upstream flow on the shoreward edge of the front (discussed in 
section 4.1.2). 

An estimate of the growth rate of distiurbances on the current caji be found by measuring 
the growth of the current once it begins to meander. If we assiune the growth rate of the 
disturbance is much larger than the spreading rate due to interfacial drag, then the mean 
growth rate of the disturbances is simply the growth of the current divided by the time it 
taJces the current to grow: 

Wf-Wj 

where Wj and Wj are the initial and final widths of the current, respectively. Figure 14 
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surface trapped (top) and all with s <= 1 (bottom) with h = 0.5 h (slope 2 dashed) 
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Figirre 13: The total width W on slope 1 (solid) and slope 2 (dash-dot) verses time, nor- 
malized by the predicted width and time, respectively, assuming h = hp/2. Upper panel: 
Surface trapped experiments only. Lower panel: All experiments with slope s < 2. (Cur- 
rents with s > 2 evolved so quickly that they would not fit on this graph). The experimental 
measurements should Ue between the dotted lines, 'x's indicate that the current is mean- 
dering. 
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top: mean growth rate of instability, bottom: mean growth over flat bottom 
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Figure 14: Mean disturbance growth rate as a function of s'/s < 1, the ratio of the interface 
slope to the topographic slope. Upper panel: All experiments. Lower panel: Experiments 
with s'/s < 1/2. 

shows how the mean growth rate of disturbances on all currents observed in the experiments 
depends on the ratio of the interface slope to the topographic slope s'/s. Here we define s' to 
be the interface slope just before the growth of disturbances. Currents that remained lam- 
inar throughout the experiment were defined to have zero disturbance growth. Only those 
experiments with s'/s < 1 showed any distiurbance growth, although several experiments 
with s'/s < 1 did not show disturbance growth. So s'/s < 1 seems to be a necessary, but 
not sufficient, condition for distxu-bance growth. The condition s'/s < 1 implies that distur- 
bances grow on currents that are predominantly sxu-face trapped and relatively imcoupled 
to the topography. 
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6    Conclusion and Discussion 

We performed a series of laboratory experiments to investigate the effect of rapid changes in 
topography on the stabiUty of buoyant coastal currents. It was found that buoyant coastal 
currents do not form eddies on gentle slopes and do not form eddies on steep slopes imtil the 
current width exceeds the shelf width. Eddies formed immediately when the current flowed 
from a gentle slope to vertical wall. Not only did eddies not form on sloping topography, 
but eddies generated off the topography were unable to propagate onto the slope. Unstable, 
eddy-forming currents were immediately stabiUzed when they flowed onto a gentle slope. 
Disturbances were able to grow only when the topographic slope exceeded the slope of the 
frontal interface (i.e. s'/s < 1), implying that—for fixed s'—steep slopes are less stable than 
gentle slopes. This observation is in agreement with some of the conclusions of Reszka and 
Swaters[10], who state that a steep bottom slope is essential for frontal instability. Our 
results do not agree, however, with those of Flagg and Beardsley[8] and Gawaxkiewicz[9]. 
Their model fixes the shelf width while the topographic slope is varied, so that increasing 
the slope also increases the depth of the layer below the front. Given that a two-layer 
barocUnic instabihty is most active when the upper and lower layers are of comparable 
thickness it is not STurprising that they should find reduced growth rates at large values of 
the topographic slope. 

The gap experiments demonstrate that gaps which are small compared to the Rossby 
radius of deformation perturb the flow only weakly and locally. The eddies in our experi- 
ments seemed to have a preferred diameter of ~ ^LR and would not form in the gap tmtil 
the gap was at least this large. The length of the topographic constriction associated with 
the formation of Irminger Current eddies is 30-60 Lit [2], which is in the range of the largest 
gap used in our experiments. We have demonstrated that a topographic gap can generate 
a large, incoherent eddy field where the eddies tend to accimiulate on the downstream edge 
of the gap. In the Labrador Sea, the background mean flow or ^-induced drift would even- 
tually remove the eddies from the gap and inject them into the interior of the Sea. The 
experiments lacked a background flow and the ^ effect, so the eddies simply accumulated 
in the gap. 

Viscous effects typically play a much larger role in the laboratory than they do in the 
ocean, but it difficult to make a quantitative assessment the importance of friction in these 
experiments. One measure of the impact of viscosity is the barotropic spindown time 

(12) 

For most of the experiments Tgp w 50 s, which is short compaxed to the length of the 
experiment and roughly equal to the eddy formation time scale. While easy to calculate 
and interpret, this time scale is not appropriate for these experiments as the dynamics is 
clearly baroclinic. A baroclinic spindown time is harder to estimate and depends on the 
details of the stratification and flow. The baroclinic time scale is longer due to the reduced 
tendency of a stratified fluid to move as barotropic columns. Until a relevant baroclinic 
spindown time can be estimated an accurate assessment of the importance of viscosity in 
these experiments remains elusive. 

188 



The topographic slopes used in oxa experiments are quite large by oceanic standards, 
as are are the interface slopes. Reasonable oceanic values can be determined by conserving 

the ratio of the relative vorticity in the current to its topographically induced vorticity. For 
h = 100 m and L = 10 km we have Soc ~ 0.05siab- A topographic slope of 0.05 is still quite 
large, but this is about the order of magnitude of the continental slope oJBF the Mid-Atlantic 
Bight[9]. 
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Elastic Critical Layers 

Joel C. Miller 

Abstract 

We consider the weakly nonlinear growth of instabilities of a submerged elastic jet. 
We look at the large Weissenberg and Reynolds number cases with small and moderate 
elasticity. As in inviscid Newtonian shear flows, critical layers develop, but they are 
affected by the elastic properties of the fluid. At small elasticity, the early development 
of the critical layer is not significantly changed. At moderate elasticity, the critical layer 
splits into two different layers, whose location depends on the elasticity. The resulting 
amplitude equation is significantly altered from the Newtonian case. 

1    Introduction 

Rallison and Hindi [1] studied the inertial instability of a submerged elastic jet having a 
parabolic velocity profile. They used a large Weissenberg and Reynolds number limit and 
concentrated on the effects of elasticity on the instability. At the end of their paper, they 
foimd hints of a critical layer for certain parameter values. This critical layer disappears 
when elasticity is removed from the equations and so depends on elastic effects. 

As in [1], we consider a jet of an elastic fluid entering into a motionless fluid. We can 
think of the motionless fluid as being the same material as the jet, or we can consider it to 
be Newtonian without any change in the governing equations. Because it is motionless, its 
elastic properties wiU not affect the dynamics. 

The jet itself is 2 dimensional, rectilinear (i.e., the fluid particles all travel parallel), 
symmetric about y = 0 and bounded between y = —L and y = L. We are primarily 
interested in the large Weissenberg and Reynolds number limit of this jet. Hence the 
relaxation time of the elastic fluid will be large in comparison to the shear rate and inertia 
will dominate viscosity. 

The velocity profile of the jet which we use is similar to the RaJlison and Hinch profile. 
It is U{y) = V{L'^ —y^Y/L^. The choice of this profile wiU be explained in more detail later 
(and our results are not strongly dependent on the particular profile), but it is chosen so 
that U' is continuous between the jet and the ambient fluid. We flnd that critical layers will 
exist, and we concentrate on the influence these critical layers have on the weaily nonlinear 
evolution of the instability. 

In section 2 we give a brief description of related results in Newtonian fluids and 
magneto-hydrodynamics. In Section 3 introduces the equations that govern the motion 
of oiu: elastic fluid. Section 4 describes the linear problem to be solved assmning large 
Weissenberg number, derives some results about neutrally stable modes and discusses the 
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influence of those results on the weaily nonlinear analysis. Sections 5 and 6 look at the 
influence of an elasticity parameter £? <C 1 and E ^ 1 respectively, performing both the 
linear and weakly nonlinear analysis. Section 7 concludes this work and suggests futiure 
lines of attack. 

2    Rayleigh's Equation 

An inviscid Newtonian fluid caji have a 2-dimensional flow profile U = {U{y),0) where U{y) 
is any function. If we restrict U to twice continuously difi"erentiable functions, and look for 
lineax disturbances uexp[ik{x — ct)] then the linear stability is governed by Rayleigh's 
equation 

{U - c)' 
(^)': 

= k^{U- c)i; 

where •^ is the stream function for u. 
lie has positive imaginary part, then the disturbance will grow — the system is imstable. 

It was shown by Rayleigh that a necessary condition for instabiUty is that U" = 0 for some 

y- 
In order to go a step beyond the linear analysis into a weakly nonlineax theory, we 

generally start from a mode which is neutrally stable, that is, c has zero real part. We then 
try to imderstand what happens as the growth rate is increased from zero to 0{e). In the 
case of Rayleigh's equation, it can be shown that if c is real, then U{yc) = c for some yc 
satisfying U"{yc) = 0. In this case, a critical layer develops about where U = c, which is 
where the backgroimd flow is equal to the movement of the instability. It can be shown 
that although there is an apparent singularity in the difiierential equation, the solution for 
ip is continuously dififerentiable. 

A large amount of research has been done into the this problem, as well as the effiect 
that weak viscosity has (see [2] and references therein). In the presence of viscosity, we can 
no longer use an arbitrary flow U. Generally, people wiU use a flow profile which does not 
satisfy the equations of motion, but justify it either by arguing that the time scale that the 
viscosity acts on is slower than the time scale of the instabiUty or by explicitly adding a 
body force. 

A paper by Hughes and Tobias [3] studies the linear stability of magneto-hydrodynajnic 
shear flows. The hnear stability has been studied by others as well (see references in [4]). 
Some papers by Shukhman [4, 5] have analyzed the weakly nonhnear problem in the presence 
of a magnetic field parallel to the flow. They used a modified Rayleigh equation 

[{U - c)' -K^)I 2       J2,     f = m-cr-cj,] 
U-c 

Rather than the critical layer occurring where the background flow is as fast as the insta- 
bility, the critical layer will occur here where the speed of the instability relative to the 
background flow is equal to the Alfven wave speed. 

The magneto-hydrodynamic version of the Rayleigh equation is similar to that which 
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we will derive for aai elastic fluid (previously derived by [6, 1]) 

[{U - cy - 2EU' "i^X = [{U - cf - 2EU''] Tl^^       ^ 

U-c 

Here the critical layer occurs where the speed of the instabiUty relative to the background 
flow equals the elastic wave speed. 

3    Basic equations 

Because we are interested in an elastic fluid, we cannot use the Navier-Stokes equations. 
There are a wide variety of equations developed to describe elastic fluids. Many of them 
are applicable in difiierent regimes, and none seem to be imiversally valid. The principal 
lectiures for this year discuss them more completely. 

We use the Oldroyd-B equations 

DU 
Dt 

= -VP + fJ,V^U + GV-A 

V     1 
A=-(l-A) 

V • C7 = 0. 

where U is the fluid velocity, P the pressure, p the density // the viscosity, r the relaxation 
time of the fluid and t time. Often G is considered to be C/T where C is proportional to 
the concentration of a polymer in the fluid. It meastures the strength of the fluid's response 
to stretching, while A measures the amount the fluid is stretched.  The upper convected 

derivative is defined by A = ^ - A • (VU) - (VUf ■ A. 
We non-dimensionalize with a typical length scale L equal to the half-width of the jet 

and velocity scale V equal to the center-Une velocity. Then using asterisks to denote the 
new non-dimensionalized variables, V* = jV, U* = VU, fi* = n/pVL, P* = P/pV"^ 
and t* = j;t. In the base flow, Au win be 1 + 2T^U^, and a characteristic value for Uy is 
V/L. Defining A = Wi"^ = L/VT we wiU normalize A by A* = A^A. Setting E = Gr^/pL^ 
and dropping the asterisks, we arrive at 

:^ = -VP + /iV2C7 + £?V-A (1) 
JL/1/ 

A = A^l - AA (2) 

V ■ t/ = 0. (3) 

Because of the length rescaling, the jet is now bounded between y = —1 and y = 1. The 
elasticity parameter E is independent of the speed of the base flow. It depends entirely on 
geometrical and material properties. We will take the Newtonian viscosity p, to be small. 
We are interested in the influence of the elasticity and the inverse Weissenberg number, A 
on the growth of instabilities. 

In the presence of nonzero viscosity or elasticity, the momentum equation (1) wUl not 
allow U = {U{y),0) to be a solution.  A body force b{y) may be added to to the right 
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hand side to maintain this base flow. Alternatively, we can assume that the instability 
investigated develops over a short enough time scale that the base flow is effiectively steady. 

For a steady rectilinear flow, the elastic stress will reach a steady state, so ^ = 0. 
Expanding the upper convected derivative in equation (2) yields —A • (Vt7) — (VU) • A = 
A^l - AA. Solving this we get 

/2C/'2 + A2   XU'\ 

We allow perturbations to the base flow so that the velocity is U = U + u and the 
elastic stress is A = A + a. We substitute U and A into equations (1) and (2). Since the 
flow is two dimensional and incompressible, we introduce a streamfunction ip such that 
u = {ipy, —ipx)- We eliminate pressure by taking the curl of the momentimi equation (1) 
yielding an equation for the vorticity u and we expand the constitutive equation (2) giving 

VV = -w (4) 
cvt + UoJx + U"'tpx - Jii^, w) = /iV^w + E[-dxyan + {dxx + dyy)ai2 + dxyC-n]      (5) 

^t + u^x-J{i'.^)-i^x^'-u'{^^^^ ""fj F - f = -Aa. (6) 

The Jacobian J satisfies J{q, r) = qxTy — qyVx- The tensors F = A • (Vu) + (Vu)-^ • A and 
f = a • (Vit) + (Vw)-^ • a are given by 

p _  f2Au1pxy + "^Aulpyy A22'^yy - ^llV'xx    ^ 
V A22lpyy - ^lllV'zx       -2Ai2^xx - 2^22V'zj// 

f = /'^^ll^aij/ + 2ai2^j,j, ('.22'>Pyy - antpxx    \ 
\ 0,22'^yy — aulpxx       -2ai2^xx - 2a22i'xy/ ' 

4    Linear Problem 

We shall make the asstunption that A and n are negUgibly small, and so we reach a simpler 
expression for F 

^Wxy     ~Wxx 
.-i'xx 0 

We now linearize the perturbation equations (4)-(6), holding on to the leading order hnear 
terms. We seek solutions proportional to exp[iA;(a; — ct)]. If c has positive imaginary part, 
then this mode will grow in time at a rate of 3?[c]A;. It is referred to as unstable. If c has 
negative imaginary part, then the mode wiU decay in time and is called stable. The resulting 
relation between 3?[c]A; and A; is a dispersion relation. It gives the growth rate as a function 
of the wavenumber k. 

Equation (6) shows Tis that 022 and ai2 are both much less than an and that 

an = [4C/'Vxj, + 2U'^^x]/[ikiU - c)]. 

Substituting this into the vorticity equation (5) and dropping nonlinear terms provides 

F = 2U'^ 

|(^r^,)=*^r, (7) 
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Dispersion Relations 

-0.02 
1 1.5 
wavenumber 

Figure 1: The dispersion relation for varicose modes with different values oiE. The elasticity 
tends to stabilize the mode. For all cases, the growth rate is positive for sufficiently small 
k, and the mode disappears at some finite value of k. 

where T = {U - c)^ - 2EU''^ and r) = ip/{U - c). Note that T is continuous. 
We will be looking for varicose and sinuous modes. Because of the symmetries of these 

modes, we can restrict om: computations to just looking at half of the jet. For a varicose 
mode, the pertiurbation has no flow across the center line of the jet. Consequently, V'l = 0 
at y = 0. This means that tp is constant on the center line. Since ip can have an arbitrary 
constant added to it, we choose that constant to maJce V'(O) =0 for a varicose mode. 

Conversely, for a sinuous mode, the perturbation has no flow along the center line of 
the jet. Consequently for a sinuous mode ipy{0) = 0. 

To find the boimdaxy conditions at y = ±1, we observe that for |y| > 1, the value of F 
is (P. Thus r) solves 

c'^rj" = k^c\ 

and so rj = C^ exp{ky) + C^ exp{—ky) for y > 1 and r) = C^ exp(fey) + C^ exp(-fcy) for 
y < 1. We assume that 77 decays as |y| -» 00 so C^ = C^ = 0. We use this to choose 
boundary conditions at y = ±1. The boundary condition we apply at 1 is that FT;' = —kc^rj 
and at y = — 1, Trj' = kcr]. Either of these conditions along with the conditions previously 
discussed at y = 0 will suffice to determine the solutions. However, for what immediately 
follows, it is easier to use the conditions at ±1. 

We are interested in conditions under which we can have a marginally stable mode, that 
is, a solution where c is real. Clearly if c is such that F = 0 for some value of y, then c is 
real and the differential equation will be singular. The values of c which allow this wiU form 
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a continuous set, the continuous spectrum of the problem. We will now show that if c is 
not in the continuous spectrum, then c has nonzero imaginary paxt. For generality, we do 
not make many assumptions on U here. We take only that U is continuously diflFerentiable 
and that U{-1) = U{1) = 0. 

Assume that c is real but outside of the continuous spectnun. This means F is nowhere 
0. We multiply equation (7) by T/*, the complex conjugate of 77, and integrate from —1 to 
1. One integration by parts gives 

[^ri'fiU - j\ rhf dy = k^ £ r|7?p dy. 

The boundary term evaluates to -kc^{\r]{-l)\^ + \r}W) < 0. Since U{-1) = U{1), the 
mean value theorem can be used to prove that i7' = 0 at some point in the interior. At 
this point T = {U - c)"^ - 2EU'^ > 0. By assmnption, T ^ 0, hence T is positive at 
some y € (—1,1). Since F is continuous in this interval, and is nowhere 0, it is positive 
throughout. Both integrals are positive, and thus the left hand side is negative while the 
right hand side is positive, a contradiction. 

We have shown that all real eigenvalues c lie within the continuous spectrum. Thus if 
an unstable mode stabiUzes, the eigenvalue is actually entering the continuous spectrum. 
This will substantially complicate the nonlinear analysis. Generally when we attempt a 
weakly nonlinear analysis, we separate the dynamics into a small niunber of slowly growing 
or neutrally stable modes on which we focus along with some quickly decaying modes which 
are ignored. We then get coupled ODEs relating the amplitudes of these modes. Here there 
is a continuum of slow modes, so we cannot reduce the problem to even a finite set of modes, 
much less a small number. Consequently we will arrive at a PDE rather than the ODEs. 

It has been shown [7, 8] that a jiunp in first normal stress (An) can lead to an instability 
at zero Reynolds number. If there were a discontinuity in U', then there would be such a 
jump, and we might expect it to play a significant role in the dynamics. To simpUfy our 
analysis, we wiU not investigate that eflFect. To prevent this from occurring, we need U' 
continuous everywhere, including y = ±1. This is why we have chosen U{y) = (1 — y^)^- 
The theoretical results we obtain here do not depend strongly on this form. Oiur numerical 
work has shown qualitatively similar behavior for other flow profiles. 

We expect to find a neutrally stable mode proportional to exp[ik{x — ct)] which goes 
imstable. We wiU attempt a weakly nonlinear analysis of this mode, looking for modulations 
over a long time scale T = €~^t where e C 1. 

We change to a frame moving with the disturbance, and so dt is replaced by —cdx + edp- 
The equations (4)-(6) become 

VV = -w (8) 

eojT + iU - c)wx + i/'Va: " ^(V', (^) = A^V^w + E[-dxyan + {dxx + dyy)^^ + dxya-n]   (9) 

ear + {U- c)a, - J(^, a) - VxA' - U' f ^''^^   '"f\-F-^ = -Aa. (10) 
\ 022      u / 

These are the equations we must use for the weakly nonlinear analysis. 
We consider two cases 
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(a) Eigenfiinction for a varicose mode with E = 
0.001 with a value of *; very close to where 
the mode disappears. Note that the solution is 
smooth. 

(b) Eigenfiinction for a varicose mode with E = 
0.1 with a value of k very close to where the mode 
disappears. Note the two singularities for positive 
and negative y. 

Figure 2: Plots of the varicose eigenfuBctions for small and mdoerate elasticities. 

• E<1,  A < 1 

• .EJ ~ 1,  A < 1. 

5    Small E, small A 

There are two limits which are of interest here. In the limit where E ^ e^, A ~ e the elastic 
stresses appear in the leading order balance inside the critical layer. Almost all of the terms 
are of the same order, so this Umit turns out to be quite hard. It corresponds to the scaling 
at which the critical layer sphts into two layers whose width is comparable to the distance 
between them. The interax;tion between the two layers is important. We do not discuss this 
Umit here. 

The Umit where .E ~ e^, A ~ e is more tractable. We set E = e^^E^ and A = eAi. The 
elastic stresses do not appear at leading order inside the critical layer. 

When the instabiUty begins to appear, we expect ^ to be very small. As the instabiUty 
develops, V should grow and saturate at some size ^. We seek an appropriate relation 
between ^ and e. The dominant terms in equation (9) are eojr, {U — c)a;a;, [/"'Vx and 
J(^,w). Inside the critical layer, V is about 0, and can be approximated by (y — y^V^. 
For small T, the balance between ewr and (y — ycW^Ux tells us that y — yc = Oe and so 
the proper length scale inside the critical layer is y = e~^(y - yc). As T grows, we expect 
J{tp, w) to become order e~^^a;, which should be comparable in size to ew. This gives ^ = e^. 

We typically have a long wave instabiUty which stabilizes at higher wave mmaber fco- We 
make the assumption that our domain is such that the longest wave possible corresponds 
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to the wavelength at which the modes restabilize. A small perturbation to the domain size 
allows an unstable mode to develop with wavenumber k = ko + eki. Using oxir scaling for 
ip, we have (for the outer solution) 

^ = ■026^ + i'3^^ + cc + hot 

(jj = a;2e^ + WgC^ + cc + hot 

where cc denotes complex conjugate and hot denotes higher order terms. We expect ip2 and 
U2 to be proportional to exp{ikx) and separable in y and T. Let V'2 = B{T)tf)2{y)e'''"' and 

Wz = B{T)c32iy)e^'"^. At O(e^) equation (8) becomes ip2 — fcoV'2 = —^2 and equation (9) is 
{U — c)u}2 + U"ip2 = 0 which combine to give 

(U - c) [^2' - kU2] -U"i^2 = 0 (11) 

which is identical to the Newtonian case. As in the Newtonian case, the mode of interest 
satisfies U = c when U" = 0. For future reference we define a linear operator C such that 

£[4] = 0 
C[',p]:={U-c){iPyy-klil;)-U"'^. 

Solving this Unear problem gives us information about the shape of ■^z, but teUs us 
nothing about the evolution of B. That will come firom the next order. 

At O(e^) equations (8) and (9) become 

V^^3 - 2kokiip2 = —<^3 

-CJ2T = {U - c)ujsx + U"ip3x- 

The koki term comes firom the fact that 5^^2 = (—^o ~ e2fcoA;i — e^ki)ip2- We are only 
interested in the part of ^3 proportional to exp(tfcx), which we express ip^. The x derivatives 
again become multiplication by ik. Combining these equations gives 

£[4] = -iBTc32/ko + 2B{T){U - c)kM^- (12) 

We multiply this by '^1/{U — c) and integrate firom y = — 1 to 0 (the 0 to 1 contribution 
follows similarly). This will give us a differential equation to solve for B. A complication 
arises at yc, so instead we integrate over {—l,yc — 6) and {yc + S, 0) for a 6 determined later, 
but assmned to be small. On the right hand side we approximate this integral in the limit 
5-^0 with a principle value integral so that the right hand side evaluates to UQBT + kiliB 
where IQ = /_i \ip2\^U"/ko{U - cf dy and h = f\ 2fco|V'2p dy. 

When we integrate the left hand side by parts, we get 

/•^--■^ 4*£[4] , f° jt£M = r~^'h^M. + r ^3£fe* 
y_i    u-c   Jy^+s u-c   y_i    u-c   Jy^+s u-c 

+ [rJzyf-i'+[r2^zy]l+s - [r.y^zf-r' - [r.y-^.t+s 

-^^;*[[4j -^'2% [[4]]^    as 5-^0 
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where we iise the fact that if* satisfies £[tp] = 0, that the boxindary conditions at —1 and 
0 cause boundary terms to disappear and that continuity in ■^j across j/c means the jimap 
in •^J is 0. To evaluate the remaining jtunps we need to know more about ips close to yc- 

Close to j/c, we wiU use a Taylor Series approximation for U — c. At yc, U = c and 
U" = 0,soU -c={y- yc)Ul + {y~ yc)^U'J'/6 + ■■■. As y ^ yc, ips diverges and so to 
leading order 'my — yc equation (12) becomes 

V'3     = ko{y-yc)Ul. 

which gives a solution of the form 

4 = -(y - yc)-BTQIn \y - yd + \y- ydi + R 

where Q and R are regular functions of y and 7 is a constant measuring the jump in i/'sj, 

across the critical layer. Note that ips is continuous across the critical layer, so we arrive at 

UQBT + kJiB = 2iP*^j. (13) 

Our solution for ips gives us no information about 7. However, it does show that eip^ 
becomes larger than ipiBsy -^ yc- This continues at even higher orders, and the asymptotic 
expansion which we have assmned for ip will fail close to y^ Even before determining this 
solution, we could see that it would feil because in obtaining an equation for ipz", we 
neglected terms which we expect to be small. However, we also divided hy U — c, and so as 
y —^ yc some discarded terms will inevitably become unbounded. 

We will have to resolve the critical layer more carefully in order to retain an asymptotic 
solution. In the process, we will be able to determine the value of 7, which allows us to 
find B. We will introduce a new space variable Y satisfying y — yc = eY. Thus dy >-^ jdy. 

Inside the critical layer U-c will be given hyU-c = eYU'c + ^^U"' using the observation 
that Uc — c = U'c = 0. We wiU match the outer solution with the irmer solution at y = 5 
corresponding to y = A. A satisfies 1 <C A <C e~^ so that 5 = eA -C 1. 

The outer solution evaluated at j/c + ^ is 

ip = e^ip2c + e^Sip2c + eVa + • • • 

= €V2c + ^^^K - e^AhilelSrQ - e^ABrQhi|A| + e^|AI7 + e^Rc + --- 

u) = e^cjic -\ • 

5.1    Inner solution 

To match we take an inner solution of the form 

7Pix,Y,T) = e2*,(a:,T) + e^[^,{x,T) + Y^,{x,T)] + {e^]ne)Y%,/,{x,T) + e'^^.ix^Y^T) + 

w = e^Z, + • ■ • . 
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Note that the only dependence of V* on Y is m y$3 and ^4.  ^4 will be allowed to grow 
large as Y" ^ A. It is immediately obvious that 

*2(x,T)=^2^(a;,T) 

#3(x,r) = ^4(x,T) 
*3i/2(a:,T) = -BT<3 

^,{x,T) = Rc{x,T). 

The remaining terms from the outer solution will match with ^4. In particular 2AV'2c + 
[[^3']] = [^iY]-A- We know tpi", so we just need to find [*4]^A '^^ o^^^er to get 7 = [[^'3']] /2. 

Prom the C(e^) component of equation (8), we get ^2xx + *4yy = —Z2 and so 

""   =-(f   Z^dY+ 2A^2xx) [*4yJ-A 

Substituting for [*4y]^A = ^^'^2" + 27 we get 

27 = -(y    Z2dy + 2A(*,^^ + ^,^'))- 

Since $2 = ^2c) we can rewrite the final term as 2A{il)2xx + ^2")- L'Hopital's rule and 
equation (11) teU us that this is 2AU"'ip2c/Uc- Finally substituting for ^20 with ^2, we 
reax;h 

One further change of variables C = —Z2 — U"'^2/Uc reduces om- problem to finding C- 
Taking equation (9) will give a PDE for C- The 0{e^) terms will be zero since Uc — c = 

U" = 0. We are left 

in U' 
CT + jjr^2T + YU'.C - *2xCy = eEi[-e-^dxYan + {dxx - e~^9ry)ai2 + e-^d^ya^]. 

We need to determine how the stresses an, 012 and 022 scale. 
Using equation (10) and the leading order approximation for t/ — c we arrive at 

eyf/c022,aT + eo22,T " e~^/y(^,a22) - ■F22 - /22 = -eAia22 

eYUcai2,x + eoi2,T - e~^Jy(^,ai2) - C^c022 - F12 - /12 = -eAiai2 

eYUl,an,x + ean,r - e~^Jy(^,aii) - 2C/^ai2 - -Fu - /n = -eAiou 

where Jy (g, r) = ^x^y — ^y^a;- Looking at the order of the driving terms in each component 
suggests that on = an,  012 = eai2 and 022 = ^^0:22 is a good scaling. 

This yields 

YU^a22,x + a22,T - ^2xa22,Y - 2XiU^^2xx - 2ai2^2xx = -Aia22 (14) 

YU'^ai2,x + OLi2,T - *2xai2,y - K0C22 + 2U^^2xx + aii*2xx = -AiQ!i2 (15) 

YU'^an,x + an,T - ^2xCtii,Y - 2U'^ai2 = -AiOu (16) 
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coupled together with the PDE 
TJIII 

C.T + 7fr*2T + YU[C. - *2xCy = E4[d^Yan - dvYOtu]. (17) 

Solving this system and taking the limit A -> oo, we can find 7 = Jf^ C/2 dY. Then finally 
we have 

UQBT + hhB = r,^ /     CdY (18) 

5.1.1 Linearization 

The coupled system of partial differential equations is nonlinear and generally dLfficult. To 
solve it completely would demand a numerical attack. We can still manage some progress 
through theoretical approaches. We foUow [2] and references therein. 

We can Unearize these equations to get some idea of the early groAvth of the mode prior 
to its saturation. The linear equations are 

{dT + Xi+ ikU'^Y)a22 = -2\iU'J^B (19) 

(&r + Ai + ikU'^Y)ai2 = C/c«22 + 2k'^U'J^B (20) 
(ar + Ai + ikU'^Y)an = ^U'^au (21) 

U'" 
(dr + ikU',Y)(: = --^BT - E{an,x + ai2,y)y (22) 

5.1.2 Normal Modes 

Taking the Unear equations (19)-(22), we look for modes proportional to exp(ar).   So 
022 = 0:22 exp((7r) and similarly for the other terms. 

Then 

2\iU'k'^B 
0.12 = a + Ai + ikU'^Y 

2XiU'^k^B 2fc2c/fB 
«12 = -TTT-r-rTTFTT^TTo + 

ail = 

(a + Ai+ifeC7^y)2     a + Xi+ikU^Y 

2U'&i2 

c = - 

cr + Ai + ikU;Y 

U'"BT Ak^U'^'^EB 
U;,{a + ikU'^Y)     {a + ikU'^Y) (a + Ai + ikU'^Yf 

We want to back out the integral /f^ C dY. C, is the sum of two terms, each of which wiU 
have to be attacked separately. 

The first term is not difficult 

r -—jn^i—=JIIEL r  ^ dY 
J-00    UI,{a + ikU^Y) ikU',^ ]_^Y--^^ 

-z7rsign(3fJ[cT]/J7c). 
iU'J'Br. 

kU',^ 
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Since we are looking at —1 < y < 0, and U{y) = (1-y^)^, we know that Ul. > 0. The second 
term is the term that depends on the elasticity. Therefore it gives the elastic contribution. 

y_oo {<T + ikU',Y){a + Ai + ikU'^Yf J_^ (Y - ^(Y - ^^)3 

We use contour integration. For the following we assume U^ > 0, though equivalent ar- 
guments can be made if it is negative. The contour we choose is jfrom —R to R and then 
closing it with a semicircle. The contribution from the arc goes to 0 as i? gets large [since 
the denominator is ©(y*)]. The poles are at F = ia/kUl- and Y = i{a + \i)/kUl.. We know 
Ai > 0. If 3?[cr] > 0, both of these poles are in the upper half plane and so we close the 
contour in the lower half plane. This shows that the integral is 0. In contrast, if cr/j < —Ai, 
then both poles are in the lower half plane, and we can close the integral in the upper half 
plane. We get a nonzero integral only when —Ai < c/^ < 0. In this case the integral is 

l\3 [Xi/kU',) 

Thus elasticity only has an effect on the normal modes if the mode is decaying. Prom 
equation (18) 

icrlo + kili = "ac 

where x = 1 if — Ai < di.[a] < 0. This can be used to solve for a, but it is of hmited value 
since we expect the solution to saturate at large enough values that the linearized inner 
equations are invalid. This can give useful information for small T. 

5.1.3    Initial Value Problem 

Rather than looking for a normal mode, we can alternately try to solve equations (19)-(22) 
as an initial value problem using Laplace transforms. 

We get a very similax set of equations to the normal mode equations. Here we define 
a22 such that 6:22 = J^ e~^'^a22{s)ds. We similarly define the other hatted variables. As 
before we arrive at 

2XiU'ck'^B 
"22 = s + Ai + ikUlY 

2XiU'^k^B 2k^U'^B 
«12 = -TT-T-f-TTITTP^ + 

an = 

{s + Xi+iku;y)^   s + Xi+ikU!Y 

2U'ai2 

C = - 

s + Xi+ikU^Y 

U'J'BT ^k^U'^EB 
U;,{s + ikU^Y)     (s + ikU^Y){s + Xi + ikUlYf 

and we want J^ C, dY. 

When we inverse transform C, using a Bromwich contoxu: integral, we wiU take ^[s] > 0. 
Using the arguments from the previous section, the contribution from the second term will 
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be identically 0 because s and s + Ai both have positive real part.   So once again, the 
contribution from the elasticity disappears. 

The first term gives a contribution. We end up with 

UQBT + kJiB = 
kU^^ 2c 

This is a linear, first order constant coefficient ODE for JB. B will have exponential growth 
or decay. Until B becomes large, this equation shoxild give useful information about its 
growth. 

6    £"^1,   A<1 

We now consider larger values ofE. To simpUfy the analysis in this case, we will completely 
ignore A. 

As before, we assume that ^ saturates at some size ^. Balancing the leading terms, the 
width of the critical layer is e again. The dijfference is that now E is order 1, so that the 
elastic stresses will have to appear in the leading order balance. 

We still solve (8)-(10), but now when A = 0, the value of F becomes 

\-Anipxx 0      J 

It is convenient to use the following expression for an and 022= 

4U'U"i> , d-^2U'ai2     AW^ipy     d-^S 
Oil = -ir? 1 7; 1- -;:7 h 

O12 = 

U-C 
2U'^ip.. 

U-c 
-1) 

U-c      U-c 

U-c 

where d^^ denotes an integral and 

■X ^ d-^R 

U 

R = -eai2,T + <7(V',oi2) - awipxx 

S = -ean,T + J{ip,an) + 2aiiipxy + 2ai2ipyy 

This results in the equation 

JO.[ip]x = -ewr + J{ip, uj)+E 

where 

'd-^2U'R' 
[{U-cr\ + 

y 

■ s ■ 

y 

'^-^R^ 
U-c_ + 

yy 

■   R   ■ 

U-c_ (23) 

'i^^-U^ii^^U'i^) 
with T = (U-c)^-2EU'^. At leading order, this is the linear problem (7). We expect that 
if there is a zero of F, then there is likely to be another zero. Usually we anticipate that 
there wiU be two critical layers. We can generally look at the critical layers independently 
of each other, and we wiU use a subscript j to distinguish between different critical layers. 
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The places where T = 0 correspond to where the elastic wave speed equals the speed of the 
disturbance relative to the base flow. 

We now use a different ordering for ^i following [9]. In the outer solution 

ip = e'l^^,^ + eVa + e^'^V: ^5/2 7/2 

At leading order, the outer solution satisfies 

C[^^n] = 0. 

If c is real, the solution to this is singular. We can use a Probenius expansion to approximate 
the outer solution close to the j-th. singularity as 

^5/2 = B{T){af(f)i + hf(h) exp(iA:rr) + cc 

where of and bf are constants that depend on the sign of y - yj and 

4 lo 

+ ^i\D.\y-yj\ + hot 

+ 
2r7r;^ ^7fc^_rf\   _   3 

108 3   J ^^    ^^' 

We need to determine what the jumps are and how B evolves.   This will require careftd 
analysis inside the critical layer. 

At order e^, the outer solution satisfies the same problem 

£[V'3] = 0. 

At the next order, C>(e''/^), we get a new equation 

C[^y2]x=2iklkiV^^^_+tP~. 
U-c 5/2yyT klip. 5/22" 

+ E {U-cY {U-cY        {U-cY 
■'y 

+ 
-•yy 

As before, we multiply by ipt/2/iU - c). We would like to integrate firom -1 to 1, but this 
integral will have singularities at the critical layers causing it to diverge. To accomodate 
this, we will have to leave out regions of width 25 about each critical layer. On the left hand 
side, we wiU use integration by parts. After iising the fact that £[^'5/2] = 0 all that wiU 
be left is boundary terms involving V7/2 and ^5/2. The values of those boundary terms will 
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have to be evaluated by solving the umer problem. On the right hand side, all the integrals 
will involve ^5/2- We can evaluate them. As 6 gets small, a careful matching in orders of 
S will match the portions of the integrals on each side that go to infinity. We will be left 
with an expression of the form 

boundary terms = UQBT + k\IiB (24) 

We need to solve the inner problem to advance further. 

Figure 3: We see that across the critical layers there is a change in phase of the solution. 

6.1    Inner Solution 

The inner solution wUl have 

a; = ei/2Zv2 

Notice that in the previous section the leading order term of ^ in the ioner solution is 
independent of Y. Here however it depends on Y. We know w = -V^V which has two 
derivatives in Y. Each derivative in Y introduces a factor of e~^, consequently w is two 
orders larger than ip. It is straightforward to see that 

R = Ry.e'^l^ + R,€^ + R,,,e^/^ + ■■■ 

S = Ss/^e>'^ + Sse^ + Sy^e'"'^ + • • • . 

Again we use the variable Y = e~^{y — yj). The left hand side of equation (23) becomes 

1  r'- 
eUj-c' ^'   ' {Uj-cf 

while the right hand side becomes 

— eujT + J{il}i w) 

V'U'- T"- T'U'- 
Yip + 0(6^/2) 

xY 

d^'Ry 

^^'^ -(U-c)  2^x   ^ ■•  u -Oj.     Ryy 

= -IpYYT - -^JY{IPAYY) + E 
e 

-E 

2U^ 

2m 
e{Uj-c) 

1 1 

d-^RY + E 
eUj — c 

SY 
U', 

iUj - c)' 
;YSY + ^i 

iUj-c)^  \ 

2^x e2 Uj - c 
d-^RvY + - 

m 
e{Uj-c) Yd-^RvY 

+ 0(e^/2) 
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We want to match these equations order by order. 
At C)(e^/^), equation (23) becomes 

mt-^^>"y = * 
xY 

5/2YYT + ES. 5/2 y 

Uj-c 
Edj. Rj/2YY 

Ui-c     ■ 
(25) 

Order e^ gives 

'c^^*- = ^^YYT - JY{^5/2,'^S/2YY) + 
ESsY        E%   RiYY 

and order e^'^ gives 

lU^ 
+ 

= *7/2yyT ~ JY{^5/2, ^3YY 

■ixY 

T'U' T"- 
2^   *5/2y + Jj-i    *5/2y 

Uj-C u, (26) 

T'U'- 
S/2 

xY 

.      , /T    T X     2£?(7,aj R7/2Y     ESi/2y 
) - Jy(*3, *5/2yy) +        ,/, .o        + TT"^^ f/,- {Uj - cf 

EUjYSs/iY      EU'jSs/2     2EU'jdx i27/2y     Ed~^Rg/2YY     EUjYd^ R7/2YY 
(Uj-c)^  +(C/,.-c)2"*'     {Uj-cr ui^ w^ 

(27) 

We need to go into detail on the expansions for tp, R and S. Before we do this, we make 
the observation that if {Uj - c)^ - 2EU^'^ = 0, then 2EU'j^/{Uj - c)^ = 1. 

Some messy algebra shows that 

_Uj-c 
■^7/2 - —-^     *5/2a;r '-7/2 

RA  — 
_Uj-c 

R9/2 — 
-Uj 

E 
[*3r-(*5/2y*5/2j]^ 

S^5/2  — 

53  =  - 

Or/2 — 

[y*5/2X - *5/2Tr + *7/2T - (*3y*5/2j;) "  (*3a:*5/2y)] , E 
2{Uj - c) 

^ *5/2yT 

2(t/j - c) 

2(t/j-c) 
£7 

[*3yr - *5/2y*5/2^y] 

\Uj- 

2U'f 

c^ {Uj-c)m 
y* s/zyy + TTT^S/^T "'" ^7/2yj' 

C'j 
^* 5/2T 

?/,■ 
:5^^*5/2yTr-(*5/2y*3y)x 

We axe finally in a position to write down equations for the evolution of ip inside the critical 
layers. 

We can immediately make a perhaps remarkable observation. When these values for R 
and S axe inserted in equations (25)-(27) E is cancelled in every term where it appeaxs. So 
the only role E appeaxs to play is in determining where the critical layers axe. Other than 
that it does not directly affect the dynaxaics within the critical layers. 
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After substituting for R and S and integrating once in Y, equation (25) becomes 

*.. 
n - + ■'^'y^ • 2{Uj-c) 

Substituting for R and 5 in equation (26) gives 

^*5/2^y = ^i(^'^)- (28) 

ri- 
iUj-c Y%^Y -2^3YYT - Jvi^sp, *5/2yy)- 

Jy 

However, 

Jy(*5/2,*5/2yK) = *5/2^*5/2Kry + *5/2a;y*5/2yy " *5/2^y*5/2yy " *5/2y*5/2a:yy 

= (*6/2^*5/2yy - *5/2^y^5/2y)y 

= [Jy(*5/2,*5/2y)]i' 

and so integrating in Y gives 

^SYT + ^,^/_   .y^3xy = -^y (*5/2, *5/2y)/2 + Viix, T). (29) 

After some eflFort, equation (27) becomes 

r'. 
2{Uj-c)' 
1  /   V'U'-        T"\ V'U'- 

m + 2U'! m + ^ + U'i 
Uj-c     [Uj - c)m )     Uj-c     2     2{Uj - c) 

y* 5/2yr (30) 

+ _2   Ji_ 
Ui -c   m'^ Ui - c 

U'j 
*5/2T + 2     Ui- c^ 

* 5/2yTT 

- 2(*5/2^'^3yy + *3x*5/2yy) + Vs{x,T). 

We can now get the jmnps in aj and bj in the outer solution (•^5/2) from our inner 
solution for ^5/2. 

The large Y limit of (28) forces 

*5/2,y~2(c7,-c)Fi/yr;- 

and so ^5/2^. ~ 2{Uj - c)Vi(ln|y|)/r^- However, we mvist be able to match this to the 

outer solution for tp. At Y = A, this term has become C>(e^/^hiA), and so this must 
match to ikB{T)bflD.\A\exp{ikx). Hence we can choose bj = 2{Uj - cj/T'^, and Vi = 

ikB{T) exp{ikx). A similar look at y = -A will show that bJ = fet. 

Since Vi a exp{ikx), equation (28) unplies that $5/2 oc exp(ifcx).  Defining ^5/2 such 
that '^5/2 = %/2 exp(ifcx) yields the equation 

ik 
*5/2yT + T:^*5/2y=ifcB(T). 
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We integrate this ra T using an integrating factor 

*5/2y 

rl     ikY(S-T) 

= ik       e     "j     B{S)dS 
Jo 

The jump in Oj can now be calculated by integrating *5/2y from —A to A and dividing by 
B{T). To simplify the calculation, we take A -> oo. 

•L        rT roo     ikY(S-T) 

= hjTT 

where S is the Kronecker delta function. Because the outer integral only goes to 5 = T, the 
delta function picks out only half of the value of B{T). 

We now turn to equation (29). Rather than going into detail on it, we note that it can 
be solved with the integrating factor exp[T'jY/2{Uj - c)] = exp{Y/bj). However, we will 
end up with an integral from 0 to T of the nonlinear terms in the Jacobian. $3 will have a 
dependance on an integral of a quadratic in B. 

Approaching equation (30), a similax problem occurs with the nonlinear terms that 
involve $3 and ^5/2- '^7/2 has a tangled dependence on B. It will have a double integral of 
a cubic term in B involving a delay. When we return to the outer solution and update the 
boundary terms in equation 24, we will have a delay differential equation, which we expect 
to diverge in finite time. 

It is hkely that introducing a sufficiently large A should prevent this divergence. 

7    Conclusions 

We have made a significant step towards understanding critical layers in elastic fluids at 
high Weissenberg and high Reynolds number Hmits. 

We have found that the presence of small elasticity does not significantly affect the early 
growth of the instability, though it may affect the later development. To imderstand the 
later development would require solving a nonlinear system of coupled PDEs. 

In the case of moderate elasticity, the elasticity substantially affects the critical layers, 
changing the position and number of critical layers. The equation governing the growth 
of the amplitude is nonlinear, and depends on earlier times. Consequently, we expect that 
the solutions wiU grow to infinity in finite time. Decreasing the Weissenberg number from 
infinity (increasing A from 0) may help to stabihze this imbounded growth. 

7.1    Future Work 

There is a lot of work left to do on this problem. Quite likely a PhD thesis or two's worth. 
We have done part of the E = 0(e'*),  A = 0{e) case. To do more would likely require 

considerable computations. We have also done part of the E = C(l), A = 0 case. It should 
not be difficult to add small A in to this analysis. 
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It would be difficult to attadi the E = C(e^), A = 0(e) case because there are two 
critical layers which will interact strongly. A successful attack on this should also be straight- 
forward to translate into the MHD community, where the corresponding case has also been 
neglected for being too difficult. 

It would be interesting to approach the £^ 2> 1 case because in that limit we can neglect 
inertia. We would then be looking at the zero Reynolds ntunber limit. 

In aU cases we discussed in this we used the high Weissenberg number hmit (A •< 1). 
Dropping this assimiption would compUcate matters because we woxild not arrive at the 
same elastic Rayleigh equation. A new continuous spectrum is created at where ik{U — 
c) + A = 0 (note that this has 3?[c] < 0). For small A, this overlapped with the continuous 
spectrum of the standard Rayleigh's equation. We did the case where E = 0{^), A = 0(1) 
though we did not report it here. This case is not difficult since the small value of E keeps 
A from aflFecting the leading order and hence the Rayleigh equation remains imchanged. In 
this case, the effect of elasticity is identical to the effect of weak viscocity. It is not clear 
what happens as E gets larger. 
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Laboratory experiments on nonlinear Rossby adjustment in a 
channel 

Julia MuUarney 
Research School of Earth Sciences, Australian National University 

1    Introduction and review 

Gravity currents in geophysical scenarios such as river outflows or atmospheric boundary 
layers often occur over sufficiently large scales that they axe influenced by the Earth's rota- 
tion and therefore behave diSierently to their non-rotating equivalents. Efiiects of rotation 
include lateral mixing, barocUnic instability and the ciurrent is deflected to the right (left) 
in the northern (southern) hemisphere (see Griffiths, 1986, for a review). As the ciurent 
flows along a boundary (such as a coastHne or mountain range) mixing occiurs and reduces 
the density difiierence between the current and ambient fluid, thus changing its velocity and 
run out distance. 

We focus here on the propagation of rotating dam-break gravity ciurents along a vertical 
wall. These currents are formed by a finite and instantaneous release of a large volmne 
of fluid into a second fluid of difierent density and are typically realised in the laboratory 
by the removal of a barrier between two volumes of fluid. Early laboratory experiments 
by Stern, Whitehead & Hua (1982) revealed an unsteady bore-like ciurent with a bltmt 
nose from which large eddies were detrained and a thin and approximately laminar 'neck' 
region behind the nose. The nose velocity decreased with time, and in some experiments 
the current stagnated and formed a large gyre. Two self-similar solutions of the long-wave 
equations were found to describe the shape of the current: a thinning 'wedge' solution 
and a 'bore-like' solution with the front steepening in time. Stern (1980) and Stern et al. 
(1982) also predicted the existence of a limiting bore. This bore has the property that its 
dimensionless upstream width is maximal among all intrusions {L < l/v^L/j, where L 
is the width and LR is the Rossby radius of deformation based on the local depth of the 
nose). Intrusions initiated in wider chaxmels adjust so that a thinner current propagates 
downstream. It should be noted that the theory developed by Stern et al. (1982) is not a 
complete solution to the dam-break initial value problem and thus the connection of this 
solution to the dam break problem is tmresolved. 

An extensive set of experiments by Griffiths & Hopfinger (1983) also showed that the width 
of the current appeared to asymptote (in this case to O.GLR) directly behind the nose, 
however further upstream the cmrrent is widened by mixing and the width exceeds the 
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theoretical maximum {L w LR at ten deformation raxiii upstream of the nose). The currents 
observed were qualitatively similax to those in Stern et al. (1982) and it was shown further 
that the nose velocity decays exponentially with time. Griffiths & Hopfinger (1983) fotmd 
that the growth rate of the current billows was much greater than the rotation rate and 
hence the billows were attributed to a Kelvin-Hehnholtz instability and not to a hydrostatic 
instability as suggested by Stem (1980). Diffusion of momentum by horizontal eddy motions 
caused broadening of the current upstream of the nose. 

We note here that both Stem et al. (1982) and Griffiths & Hopfinger (1983) scaled the nose 
velocity using the local depth of the current which is in contrast to our analysis in which 
the nose velocity is scaled by the initial layer heights. 

Numerical simulations and theoretical analyses of dam-break problems have also revealed 
interesting features which may have importajit consequences for the modelling of coastal 
currents. A weakly nonlinear analysis was developed by Fedorov & Melville (1996) to 
describe three-dimensional hydraulic jumps propagating along a vertical boundary. A dis- 
continuous solution of the full shallow-water equations was obtained and showed that a 
shock may exist and it can be felt up to three times further offshore than a regular Kelvin 
wave. Furthermore, the shock evolves into and maintains a permanent shape which travels 
at a constant velocity. Far behind the shock the alongshore flow is geostrophic however 
directly in the lee of the shock there is a region of moderate offshore flow. 

Helfrich et al. (1999) compared a semi-geostrophic theory (in which geostrophic balance 
holds in the cross stream but not in the along stream direction) with munerical solution 
of the two-dimensional shallow water equations. They found a rarefying intrusion (banked 
along the right hand wall) controlled by the non-dimensional ratio, w, of the chaimel width 
to the Rossby radius of deformation. There is generally good agreement between the two 
solutions except for in the limit of a wide channel w > 2. In this case the cross channel 
motions increased and the semigeostrophic assmnption becomes invalid. The speeds of the 
intrusion nose were significantly less in the numerical solution, however this discrepancy 
was attributed to the finite resolution of the grid being unable to capture the ever thinning 
nose. 

Dammed region 
 1 L           

Direction of gravity 
cmrent propagation 

^\_L 
r 

I ^ ho, Po 

X Po 1                               ^^ 

^Dam '                          Pi 

t 
Pi 

Figure 1: Sketch of two-layer dam break conditions. 

If the height of the fluid layer outside of the dammed region is non-zero then the flow gains 
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Figure 2: Numerical solution for the non-dimensional depth of the intrusion caused by 
lifting a dam at y = 0. The contom: integral is 0.025 and the thicker line is the c = 0.5 
concentration contour which identifies the interface between the water masses originally 
upstream and downstream of the dam. In this case ^o/^i = 0.5 and the ratio of channel 
width to Rossby deformation radius, w = 4. For t = 20 the potential vorticity front reaches 
y « 8, while the leading edge of the shock is located at y w 20. Prom Helfrich et al. (1999). 

much complexity (figure 1). Hermann et al. (1989) examined a flow in which the depth 
diflPerence across the dam was small {hi/ho w 1 + e, for e <C 1). The potential vorticity 
intrusion propagated down both sides of the channel and for thin channels a small parcel 
of fluid was ejected from the main boundary current and propagated ahead of the intrusion 
along the right hand wall. In the case when the depth difference across the dam is not 
small (0 < hi/ho < 1) Helfrich et al. (1999) found that the leading rarefying intrusion was 
replaced by a Kelvin shock. The shock propagated ahead of the potential vorticity front, 
which appeared again as a rarefying intrusion (figures 2 and 3a). The shock curved across 
the channel with the angle to the x-axis decreasing with bore ampUtude. For small w or 
for small depth difference across the dam the shock attached to both walls; however, as the 
above quantities increased, it detached from the left hand wall. Behind the shock was a 
boundary layer of approximately one deformation radius in width, in which the flow was 
strongly ageostrophic with a large off-shore velocity, figure 3(c) (in agreement with Fedorov 
&: Melville 1996). Potential vorticity was not conserved over the shock and the shock also 
generated oscillations which Helfrich et al. (1999) interpret as Poincaxe waves. 
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Figure 3: (a) Non-dimensional solution at f = 20 as for figme 2, except with w = 4 and 
ho/hi = 0.1. (b)-(e) show close-up profiles of the bore in (a). Contours plots are of: depth 
(b), cross-channel velocity u (c), along-channel velocity v (d) and potential vorticity q (e). 
In (c) solid, dashed and dotted lines correspond to positive, negative and zero velocities, 
respectively. Prom Helfirich et al. (1999). 

A similar representation of the above problem would be the case in which a dam break 
current flows into a stratified two-layer fluid in which the upper layer is of the same density 
as the dajmned fluid. This situation coixld arise in a geophysical context with the relaxation 
of an oceaji front (of finite length) after the cessation of wind forcing (Stem & Helfirich, 
2002) or when considering the penetration of coastaHy trapped disturbances into the marine 
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Figure 4: Schematic of the new model. The rarefying gravity current (illustrated by the 
dotted line) is matched to a bore solution. The attachment point connects the rarefaction 
and the bore and moves with velocity C^. 

atmospheric boundary layer (Rogerson, 1999). Stem h Helfrich (2002) extended the study 
of Helfrich et al. (1999) to examine this scenario. The theoretical analysis once again gave an 
'expansion' wave (thinning wedge) or a bore solution for the shape of the potential vorticity 
intrusion. By assuming that the Kelvin shock speed is greater than the speed of the leaxling 
potential vorticity intrusion the expansion wave solution was selected. The laboratory 
experiments of Stern &; Helfrich (2002) appear to validate this assumption. The dyed fluid 
of lower potential vorticity rarefied as it advanced and there were clearly visible instabiUties 
and backward breaking lateral waves at the edge of the current. The Kelvin wave was 
not directly observable, however its existence was inferred from its effect as it reached the 
trailing edge of the potential vorticity intrusion. Once the wave had propagated around the 
full length of the circular tank it displaced the dyed stationary fluid out into the interior 
and this displaxied fluid formed a vortex pair. 

2    Aims of this project 

New theory developed by Helfrich extends the work of Helfrich et al. (1999) and Stern & 
Helfrich (2002) and aims to describe the evolution of a rarefying gravity current. Both 
Stern et al. (1982) and Griffiths k Hopfinger (1983) used a localised analysis to describe 
the dynamics at the nose, however their analyses give no information about the current 
further upstream and in the dammed region. The novel aspect of the new theory is the 
connection of a rarefaction to a imiform gravity current and uses an explicit bore speed 
relation of the form cj = fihy,...), where /ij is the height of the gravity current head. (In 
particular the choice of q, = 1.2^/g'hij is supported by Stem et al. 1982 and Griffiths & 
Hopfinger 1983). The present solutions give depth contoiurs of the current for all x and y 
and the speed of the nose, separation point velocity, attachment point velocity and width 
of the current as functions of the initial depth of the dammed fluid hi and w (figure 4). 
The analytical results agree well with results obtained using a two-layer numerical model. 

The present work involves an experimental study for comparison with the above model. The 
first set of experiments is similar to those conducted by Stern et al. (1982) and Griffiths & 
Hopfinger (1983) and we contrast the three sets of results. 
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The second set of experiments explores the propagation of a gravity current breaking into 
a two-layer stratified ambient. Although the experiments are conducted in an annulus they 
share some similarities with those conducted by Stem & Helfirich (2002). The focus of the 
study is on the Kelvin bore which propagates ahead of the intrusion of the lower potential 
vorticity fluid. We aim to obtain a clear direct visualisation of this feature, to measure its 
velocity and amplitude and to make a comparison with results from Helfrich et al. (1999). 

3    Experimental set-up 

3.1    Apparatus and procedure 

The experiments were carried out on in a tank on the 1 m diameter rotating table in the 
geophysical fluid dynamics laboratory at the Woods Hole Oceanographic Institution. The 
cylindrical AcryUc tank had an internal diameter and depth of 0.965 m and 0.418 m, respec- 
tively. The sides and base of the tank were 10 mm thick. A concentric inner barrier was 
attached within the tank (by four equally-spaced supports) to form an annulus of width 
0.15 m. The inner barrier consisted of a thin clear polycaxbonate sheet 0.3 m in depth and 
was fixed in place 10 mm above the base. This gap at the base of the tank connected the 
fluid in the inside cylindrical region and the outer annulus to ensiure that pressures on either 
side of the barrier were equal. The water mass in the inner cylinder played no active role 
in the experiments and its only purpose was to hold the barrier in shape. 

A quarter of the annulus was isolated between a fixed vertical end wall and a removable 
vertical dam to form the dammed region of lower potential vorticity fluid. The end wall 
and dam also did not reach the base of the tank ensuring the interfeices of the two different 
fluid regions within the armulus were at identical heights. 

The dam was initially left out and the temk was filled with saltwater of density P2(> Pi) to 
a depth of 27.5 to 30 cm. Densities were measured using an Anton Paar densimeter with an 
accuracy of 10~^g cm~^. The tank was spim-up counterclockwise at a rate fi = //2 imtil 
close to soUd body rotation. Relatively fresh water of density pi was then added at the 
surface until a layer of depth ho overlayed the lower denser layer. The fluid was pumped 
slowly (from source fluid reservoirs attached to the table) through a foam float to minimise 
mixing. 

The tank was allowed to spin-up for a further period of 10-20 minutes before the dam 
barrier was inserted. Additional source fluid (density pi) was then added to the surface 
layer in the dammed region until it had reached a depth of hi. The total depth throughout 
the tank was H (figure 5). The entire system was brought to near solid body rotation (30 
minutes) at which time the experiment was initiated with the removal of the dam. Although 
the dam was lifted as quickly and smoothly as possible, some imwanted distmrbances were 
created, however their effects dissipated quickly. A summajy of all experimental runs is 
given in table 1. 
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Figure 5: Schematic of experimental apparatus. All lengths are in m.  (a) plan view,  (b) 
side view (unwrapped). 
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Run ho hi H 9' / ho/hi LR w 

1 0 4.5 28.5 5.16 1 0 4.81 3.11 

2 0 4.4 28.9 4.95 1.25 0 3.73 4.02 

3 0 4.7 28.6 12.56 1 0 7.68 1.95 

4 0 4.6 28.5 12.52 0.5 0 15.18 0.99 

5 0 5.9 28.8 18.35 0.35 0 29.72 0.50 

6 0 6.1 28.8 13.53 0.15 0 60.55 0.25 

7 1 4.5 27.5 5.47 1 0.22 4.96 3.02 

8 2.8 6 28.7 4.89 1 0.47 5.41 2.77 

9 2.2 4.5 28.4 12.47 0.5 0.49 14.98 1.00 

10 1.3 4.6 28.9 12.52 0.5 0.28 15.18 0.99 

11 3.1 4.1 28.7 12.54 0.5 0.76 14.34 1.05 

12 1 3.9 29 5.02 1.25 0.26 3.54 4.24 

13 2.2 4.7 28.8 5.01 1.25 0.47 3.88 3.86 

14 4.1 5.1 29 5.06 1.25 0.80 4.06 3.69 

15 2 6.3 28.4 13.49 0.15 0.32 61.45 0.24 

16 2.8 5.4 28.6 13.53 0.15 0.52 56.97 0.26 

17 4.5 6 28 13.52 0.15 0.75 60.06 0.25 

18 1.7 5.9 29.3 18.39 0.35 0.29 29.76 0.50 

19 3.1 6.4 28.5 18.47 0.35 0.48 31.06 0.48 

20 4.7 6 29 18.38 0.35 0.78 30.00 0.50 

21 1.2 4.4 29 12.53 1 0.27 7.42 2.02 

22 2.3 4.8 29.2 12.56 1 0.48 7.77 1.93 

23 3 4.4 29.6 12.52 1 0.68 7.42 2.02 

24 1.5 5 29.3 5.59 1 0.3 5.29 2.84 

25 1.9 4 28.8 5.56 1 0.48 4.71 3.18 

26 3.5 4.7 29.9 5.57 1 0.74 5.12 2.93 

Table 1: Summary of experimental runs. All parameters are in cgs units. The width of the 
annulus was 0.15 m in all runs. 
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3.2    Visualisation 

Four sets of (0.585 m long) two-bax fluorescent lights were attached to the table structure. 
The Ughts were placed 0.15-0.25 m from the side wall at a height of approximately 0.4 m and 
were angled slightly down toward the fluid surface. The upper layer of Ught fluid in front of 
the dam was usually dyed red and the fluid in the dammed region was dyed blue. After the 
dam break, the blue fluid therefore marked the position and extent of the potential vorticity 
intrusion while the propagation of the internal Kelvin wave could be observed by viewing 
the tank from the side. The wave formed from the lighter red fluid and travelled along the 
interface between the surface light layer and the denser imderlying fluid. The inside edge of 
the inner boundary was covered with mylar to sharpen the side-view images and to obscure 
visual efiects from the opposite far side of the annulus. 

The evolution of the flow after the dam break was monitored by two co-rotating video 
cameras mounted on the table structure. The plan view was captured by a centred colomr 
camera placed 1.5 m above the surface. The development of the flow at a fixed position 
with time was captm-ed by a black and white camera mounted on the side of the tank 
to view a region 0.9-1 m from the dam gate. Over this small region efiiects of cmrvature 
were negligible. Images from both video cameras were digitised and saved directly into 
a computer at known time intervals (from 1/6 to 2 s). The plan view images were also 
recorded onto video tape as a back up. 

Qualitative images showing the flow at varying positions and time were obtained with a 
still camera positioned on the floor 2 m from the tank. 

4    Results for the experiments with an unstratified fluid am- 
bient {ho = 0) 

4.1    Qualitative description of the flow 

The flow behavioxu: both qualitatively and quantitatively matches that described by Stern 
et al. (1982) and Griffiths & Hopfinger (1983). Figure 6 shows the progress of the ciurent 
(indicated by the dyed fluid) with time. Immediately after the removal of the dam the 
released relatively hght fluid collapsed forwards and upwards (figtu-e 6a). The fluid collapsed 
uniformly across the chaimel until the nose had reached a distaxice of approximately one 
Rossby radius of deformation from the dam, at which point the efiects of rotation began 
to be felt by the cinrent and the fiuid banked up against the right hand waU (figure 6b). 
The current propagated as a bore with a blimt bulbous nose which joined to a thin laminar 
'neck' region. As described by Stern et al. (1982) this neck region was usually the thinnest 
part of the current. There was some unsteadiness at the edge of the current due to Kelvin- 
Helmholtz instability and billows were detrained predominantly from the nose but also from 
further upstream. The unsteadiness and billows were three-dimensional features with much 
mixing also occurring at the lower edge of the current (figure 7 shows a side view of the 
current nose). 

219 



Figure 6: A sequence of photographs from the experiment with w = 0.99 showing the 
propagation of the gravity current. The time in seconds after the dam was removed was (a) 
2, (b) 3.5, (c) 10, (d) 18, (e) 28, (f) 35. 

Although not visible in the photographs, a Kelvin wave formed at the beginning of the 
experiment. The wave could be seen by looking directly along the dammed region toward 
the inside back wall of the dam. Immediately after the removal of the dam, the wave of 
elevation propagated upstream along the interior barrier until it reached the dam end wall, 
at which point it was reflected around to the outside wall and it continued to propagate 
downstream behind the nose and in some cases probably caught up with the nose of the 
cmrent. 

In all experiments the digitised images were processed using Matlab. Measurements were 
taken of the position of the nose of the ciurent along the right hand wall and also of the 
position of the separation point along the left hand wall. The position of the cmrrent was 
plotted as a function of time (with the removed of the dam occurring at t = 0) and the 
results are shown in figure 8. Allowing for an initial adjustment period after the removal 
of the dam, the velocity remains roughly constaxit for a period of time and we use a linear 
fit to this region to give the velocities for comparison with the theoretical predictions. As 
the current neaxs the end of the annulus however there is a noticeable decrease in velocity 
and this departmre from the linear fit is more pronoimced for larger w. We hypothesize that 
lateral friction plays an important role in this decay. In some cases the Kelvin wave which 
initially propagated upstream catches up with the nose of the current after its reflection off' 
the inside dam wall and this interference may also have an eff"ect on the nose velocity. 
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Figure 7: Photograph showing a side view of the current in the experiment with w — 0.99. 
Note the unsteadiness and the billows traiUng behind the nose. The nose has reached a 
circumferential distance from the dam of approximately 1 m. 
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Figure 8: Position of the nose of the current on the outside wall against time, x is the 
circumferential distance from the dam, which was removed at time f = 0. The different 
symbols are results from experimental runs with parameter w — 0.25 (+), 0.5 (O): 0-9^ i"^)-! 
1.95 (x), 3.11(A), 4.02 (D). The two soUd hues are examples of the linear fit used to 
determine the velocity of the current. 

The width was also measured at each time step. Two definitions of the width were recorded; 
firstly, the 'vortex sheet' width used by Stern et al. (1982) that is, the width from the 
side wall to the maximum shear line which separates the coherent laminar part of the 
current from the region of eddies and billows (the darker dyed region in figure 6. Our 
second definition includes the billows and eddies as part of the current and the width was 
then the radial distance from their outer edge to the wall. In order to eliminate some of 
the subjectivity in the measurement process (in both cases), the width was measured at 
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Figure 9: Width of the current against time t for runs with w = 0.25 (+), 0.5 {Q), 0.99 (V), 
1.95 (x), 3.11 (A), 4.02 (D). The dam was removed at time < = 0. Here the definition of 
width includes the billows on the edge of the current. 

approximately one Rossby radius of deformation behind the leading edge of the intrusion 
and, at each time step, five estimates of the edge of the current were made. The mean of 
these estimates was used as the value for the width at that time step. The width against 
time graph (figure 9) revealed some initial trajosience as the fluid slumped followed by a 
period in which the width of the current remained approximately constant. Here, we use 
the mean value for each run (neglecting the initial adjustment time) to compare with the 
numerical and theoretical results found by Helfirich. 

The sudden jump in the record for w = 0.5 indicates that at i w 12 s the ciurrent separated 
from the interior wall within the region one deformation radius behind the nose. In the run 
with w = 0.25 the current width is exactly equal to the width of the channel throughout 
the experiment, that is the nose and separation point were less that a Rossby radius of 
deformation apart throughout and in this case the current behaves very similarly to its 
equivalent (one driven by the same density difference) in a non-rotating firame of reference. 

4.2    Comparison with theoretical and numerical predictions 

Figure 10 shows theoretical, numerical and experimental results for ciurrent width, velocity 
and height plotted against the governing non-dimensional paxameter w. We also include 
the results obtained by Stern et al. (1982), however these are not in their original form, but 
have been non-dimensionalised using the initial height of the dammed fluid so as to allow 
comparison with the present results. Generally there is reasonable agreement between the 
new results and the theoretical and numerical predictions. The most noticeable discrepancy 
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Figure 10: Comparison of the present results for experiments 1-6 (table 1) with previous 
experimental data (from Stern et al, 1982) and new nimaerical and theoretical results (from 
Helfrich). The plots show the current velocity (a), width (b), and height at the nose (c). All 
results are non-dimensional and plotted against the governing parameter w. The straight 
Unes are the theoretical results using the bore speed relation Cnose = l-S-y/ff'^- The squares 
are the numerical results, the circles are the results from Stern et al. (1982) and the trieingles 
are the results from the present study. In (b) the solid and outline symbols correspond to 
the two different definitions of width (§4.1): the solid symbols include the billows and 
outline symbols show the width of just the laminar part of the current. 

is in the velocity data: the experimental data show a clear decrease for larger w, whereas 
the numerical and theoretical data show a very slight increase in nose velocities between 
w = 1 and w = A. 

The theoretical and munerical models do not include all of the physical effects that exist in 
the experiment and so it is unclear exauctly what the discrepancy between the sets of results 
is due to. Some part can be attributed to the numerical scheme used. The numerical 
solution points in figure 10 are from the Rutgers ROMS model which is a continuously 
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Figure 11: Theoretical and experimental velocities. The lines correspond to theoretical 
predictions for velocities of the current nose —•, separation point - and attaxiiment point 
- - (see figure 4). Triangles show experimental results for nose velocity (A) and separation 
point velocity (A). 

stratified hydrostatic ocean model set up to rephcate laboratory scales. It does not include 
any vertical turbulent mixing sub-model and also uses slip boimdaxies, so the effects of 
frictional dissipation are neglected. If this effect were included we would expect the predicted 
velocities to be lowered, particularly in the cases with larger Cnose- The effects of mixing 
are also neglected in the theoretical and numerical predictions. Mixing would change the 
value of g' locally at the nose and hence lead to a lower velocity. The finite lower layer 
may also play a role however these effects are neglected in the theoretical model. GriflBlths 
k Hopfinger (1983) conjecture that cyclonic vortices are generated in the lower layer by 
turbulence in the current and their experiments show wave and eddy motions exist in the 
deep lower layer. 

The separation point and nose velocities firom the present set of experiments are shown in 
figure 11. The separation point velocities match very well to the theoretical predictions. 
The agreement is much closer than with the nose velocities. This is probably because the 
separation point velocities are much slower and hence firictional dissipation plays a much 
smaller role. There is also less mixing far upstream of the nose in the vicinity of the 
separation point. We note that in the theoretical results Csep < c^ for w < 0.5, and hence 
the current is attached across the width of channel to both walls. In this case the separation 
point velocity should equal the nose velocity (csep « Cnose) however the experimental results 
do not show a jmnp between the two curves. However it proved too difficult to measure the 
attachment point velocity precisely, so this effect could not be studied. 
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Figure 12: Photograph from the co-rotating camera mounted above the tank in the exper- 
iment with w = 1.93 and ho/hi — 0.48. The darker dyed fluid marks the intrusion of lower 
potential vorticity fluid (which has propagated around < 1/4 of the annulus). The Kelvin 
wave is not seen in this image. The photo was taken approximately 15 s after the removal 
of the dam. 

5    Results for the experiments with a two-layer fluid ambient 
{ho ^ 0) 

5.1    Qualitative description of the flow 

The intrusion of the lower potential vorticity fluid (marked experimentally by the blue dye) 
propagated as a very thin laminar rarefying front (figure 12) in agreement with the nmnerical 
solutions of Helfrich et al. (1999). As the experiment progressed the exact position of this 
intrusion became difficult to see. Thus, in order to estimate the velocity of the nose of 
the current, its position was plotted against time for the early section of the run when 
the nose was clearly visible and a Mnear fit was again used. In the experiments when the 
depth difference across the dam was small {ho/hi ~ 0.75) the current travelled only a short 
distance (~ 0.75 m) aroimd the tank before stagnating and forming a large eddy. 

There was a disturbance which propagated ahead of, and at a faster velocity than, the 
potential vorticity intrusion, similar to the shock in the numerical solutions of Helfrich et al. 
(1999). In the experiments this took the form of an undular or a shock-like bore. The series 
of internal Kelvin waves were clearly visible and propagated along the interface between 
the lighter red fluid and the clear lower layer. The amplitude of the leading disturbance 
was the largest with subsequent waves decreasing in size (figure 13). Each time the waves 
reached an end wall they were reflected off and propagated around the opposite wall of the 
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Figure 13: Distortions in the interface measured at a fixed point (~lm firom the dam) 
against time from the experiment with w = 0.48 and ho/hi = 0.48. The measurements 
were taJcen from images captured by the co-rotating camera moimted on the side of the 
tank. The data shows the leading internal Kelvin wave and the subsequent chain of smaller 
waves. The upstream propagation of these waves after reflection oflF the end wall is not 
shown here. 

annulus in the other direction. Each time a reflection occurred the waves decayed in size 
however they propagated around the annulus several times before becoming too small to 
observe. The amplitude of the leading distmrbance is plotted in figure 14 and it is found 
to be proportional to the depth diflierence across the dam between the two layers of the 
same density. The reflected bore also affected the advance of the lower potential vorticity 
fluid (causing the stagnation mentioned above in the cases with ho/hi w 0.75). As the bore 
travelled past the potential vorticity front, the front either recoiled or advanced suddenly 
depending on whether the bore was travelling upstream or downstream, respectively. In 
many cases a large eddy spht off from the cmrrent as the bore passed. 

For experiments with a large depth difference across the dam ho/hi w 0.25 the difference 
between the bore speed and the advancement velocity of the potential vorticity intrusion 
was small and the two featmres were almost co-located. In these cases (and those with 
ho/hi w 0.5 and w>3) the bore was turbulent with eddies detraining from the nose (figure 
15). For larger values of ho/hi the intrusion of the potential vorticity front was located far 
behind the leading disturbance which was a much smoother series of waves (figure 16). 

5.2    Comparison with theoretical and numerical results 

Figure 17 shows the amplitude of the leading bore plotted against the ratio of the initial 
depths of the layers on either side of the dam. The amplitudes are up to a factor of two 
larger than in results obtained numerically by Helfrich et al. (1999) however the qualitative 
agreement is good. The amplitude of the leading wave increases as the difference in depths 
across the dam becomes larger, except when close to the Umiting case of ho = 0 (no layer 
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(^1 - hQ)lhi 
Figure 14:   The non-dimensional amplitude Alhi of the leading disturbance (measured 
downward from the interface) against the non-dimensional depth difference across the dam 
{hi — ho)/hi. The straight line is a linear fit to the data. 

Figure 15: Photographs showing the tvubulent structure of the bore from experiments with 
(a) w = 0.99,/io//ii = 0.28 and (b) w = 0.5,ho/hi = 0.29. In both cases the darker fluid 
maxks the fluid of lower potential vorticity. (a) shows the nose of the intrusion (approxi- 
mately 1/5 from the right hand end of the photo) inside the Kelvin wave, (b) shows the 
eddying structxures just behind the nose of the intrusion. 
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Figure 16: Photographs from the experiment with w — 0.48 and h^jhi — 0.48. (a) shows 
the leading internal wave and the potential vorticity can jiist be seen on the left hand side 
of the photo, (b) shows the smooth shape of the initial and second wave. The white marks 
are scales on the side of the tank and should be ignored. 

of lighter fluid ahead of the dam) and there is a wider range of ampUtudes for lower h^lhi 
across the same range of w. There is however no clear systematic variation with tt), which 
is in contrast to the numerical results. 

The position of the leading bore was plotted from the sequence of images recorded as it 
passed into the view of the video camera mounted on the side of the tank. The velocity was 
then estimated iising a linear fit to the data. We note that it is difficult to obtain aji accinrate 
estimate over such a short range (particularly for the experiments with h^jhi « 0.75 in 
which the wave had a small amplitude) and a better measurement technique is required 
to allow a careful comparison of results, however the current data are included here for 
completeness (figure 18). As in the results from §4.2 the trend indicated in figure 18 is that 
the velocities axe again lower in the experimental case. This is probably attributable to the 
lack of side wall friction in the numerical model. There is also a laxge spread in the data 
and no clear variation with w. 

The velocity of the potential vorticity front was also measured and despite a large scatter 
matches the nmnerical data reasonably (figure 19). The agreement is probably better than 
in the case with /IQ = 0 because the current velocities are slower when it propagates into the 
two-layer ambient and hence there is less frictional dissipation. Also the intrusion rarefies 
as it advances so mixing is negligible. 

;T AVA II ^^ . '"'Y 
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Figure 17: The non-dimensional amplitude of the disturbance against the ratio of depths 
across the dam. The straight line is the non-rotating theory w = 0. The solid symbols 
are the results from Helfrich et al. (1999) for w =0 (•) and 4 (A). The outline symbols 
correspond to the results from the present set of experiments with w = 0.25 (-h), 0.5 (O), 
0.99 (V), 1.95 (x), 3.11 (A), 4.02 (D). 
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Figure 18: Results showing the bore velocities from (a) the present set of experiments and 
(b) from Helfrich et al. (1999). (a) shows the experiments with w = 0.25 (-F), 0.5(0)? 
0.99 (V), 1.95 (x), 3.11 (A), 4.02 (D). In (b) the velocity increases with w from 0 (o) to 4 
(A). 
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Figure 19: Results showing the velocities of the potential vorticity intirusion from (a) the 
present set of experiments and (b) from Helfrich et al. (1999). (a) shows the experiments 
with w = 0.25(+), 0.5(0), 0.99(V), 1.95(x), 3.11(A), 4.02(0). In (b) the velocity 
increases with w from 0 (o) to 4 (A). 

6    Conclusions and further work 

We have considered the problem of a dam break gravity current in a rotating frame in 
two different scenarios. In the first situation we return to the well-studied problem of 
the current flowing into a uniform ambient. The purpose of the experimental study was 
a comparison with new theoretical results by Helfrich. The new model connects a bore 
solution at the nose of the current to a rarefaction solution and relates the height, depth 
and width of the current to the initial dam conditions. There is good agreement between 
the theoretical solutions and numerical solutions from a three-dimensional continuously 
stratified hydrostatic ocean circulation model (set up to imitate laboratory conditions). 
The laboratory results agree reasonably well with the two sets of results and the differences 
between them were attributed to viscous effects at the boundaries and mixing, neither of 
which are present in the models. We note also that small scale turbulence and vertical shear 
are more significant in the laboratory, so the numerical solutions may be of more use when 
extrapolating to the oceans. 

The second set of experiments considered the case when the ambient fluid outside of the 
dam region consisted of a two-layer stratification, in which the upper layer of relatively 
light fiuid was of the same density as that released from the dammed region. It was fotmd 
that a undular bore propagated ahead of the intrusion of fluid of lower potential vorticity. 
For larger separations between the bore and the potential vorticity front, the bore was a 
smooth series of waves, whereas when the separation between the potential vorticity front 
and the bore was small, the bore was turbulent with eddying structures on its lower edge. 
The amplitude of the leading disturbance was proportional to the initial height difference 
between the dammed region and the upper layer of the ambient fluid. The preHminary 
results also show qualitative agreement with numerical results obtained by Helfrich et al. 
(1999) (using a single layer shallow water model). 
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There are several possible extensions to the work presented here. Both sets of experiments 
could be repeated in a rectangular tank, which would allow visualisation of the side of the 
current for a longer time and propagation distance. The set of experiments with the current 
propagating into the two-layer ambient should be extended over a wider parameter range 
so a better comparison with the nimiericaJ data could be made. The nimierical solutions 
also predict existence of a strong offshore boundary layer directly behind the shock. This 
feature was not observed in these experiments, possibly it was obscured by the dye in the 
ciurrent. The use of particle tracking in the experiments would give confirmation of whether 
this flow occiurs in the laboratory and enable us to characterise it. 
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Stability of viscoplastic flow 

Junjun Liu 

1    Introduction 

Air and water, the most common fluids on the Eaxth, are Newtonian fluids. It means 
that the viscous behaviors of these fluids can be described by Stokes' law of viscosity. In 
other words, the viscosity, which is defined as the ratio of shear stress versus shear rate, 
is constant. However, there are many liquids that do not obey Stokes' law of viscosity. 
For example, many geological and industry materials, such as mud, ice, lava, painting oil, 
toothpaste, drilhng mud, chocolate and so forth, are not Newtonian fluids. Any fluid that 
does not follow the constant-viscosity law is called non-Newtonian fluid. Non-Newtonian 
fluids often exhibit some very interesting behaviors. 

There are many tj^es of non-Newtonian fluids: shearing thinning fluid, viscoplastic fluid 
and viscoelastic fluid... In this report, we will focus on the viscoplastic fluid. Viscoplastic 
fluid is also called "yield stress" fluid. Such fluid has a property in which the fluid behaves 
like a solid below some critical stress value (the yield stress), but flows like a viscous liquid 
when the yield stress is exceeded. It is often associated with highly aggregated suspensions. 
Flow of the muddy rivers is a tjrpical exajnple. Among many viscoplastic fluids, there is a 
special class called Bingham plastics. For Biagham plastic fluid, the shear stress beyond the 
yield stress is linearly proportional to the shear rate. If the yield stress approaches zero, the 
Bingham plastic fluid can be approximately treated as Newtonian fluid. Mathematically, 
this model can be represented as ([11]): 

Tij= [^+-r-] iij    for    T > 7y, (1) 

and 

jij = 0     for     T <TY- (2) 

where Tij is the deviatoric stress tensor, v is the viscosity, the rate-of-strain tensor is: 

•.. := ^ + ^ (3) 
dxj     dxi 

where Vj represents the velocity field, ajid 

r=^,    an,    , = ^,. (4, 
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Figure 1: The Rheology of the Bingham model. 

are the second invaxiants of T^ and 7ij. The rheology of the Bingham fluid is shown in 
Figure 1. 

For the flow of the Bingham fluid, the stress varies in space and time. There can be 
regions in the fluid where the yield stress is exceeded, and other regions in which it is 
not. The boundaries between the two regions are the yield surfaces. Tracking the yield 
surfaces as the flow evolves is one of the most compUcated problems associated with the 
Bingham model. The stabihty of the viscoplastic flows depends on what happens to these 
non-material surfaces when a sudden perturbation is introduced? Do the yield surfax^e 
remain intact and merely displaced, or do they disappear and the plug is "broken" by 
the perturbation? In the study of the channel flow of the Bingham fluid, Priggard ([4]) 
address that an infinitesimal pertiurbation to the flow should displace the yield surfaces but 
otherwise leave them intact, since the unyielded region is "an elastic solid that would not 
break up". However, the identification of the yield surface leads to some confusion in the 
free surface flow of the Bingham fluid down an inclined plane and through narrow conduit 
([2]). In this kind of problems, asymptotic expansion can be used to reduce the governing 
equations due to the small aspect ratio of the fluid. The leading order asymptotic solution 
contains apparent yield surfaxie, however, the theory subsequently predicts that fluid flow 
is extensional even in the supposedly non-yielding regions. The resolution of this paradox 
is to re-interpret the apparent yield surfaces as "fake" ones and apparent "plug flow" as a 
weakly yielding flow, or a "pseudo-plug" ([1]; [2]). 

Then, when the "plug flow" can be treated as "pseudo-plug flow"? How the stability 
criterion changes as we interpret the "plug flow" differently? What is the meaning of the 
yield surface and yield stress for the Bingham plastic flow? In this paper, we will try to 
answer these questions by studying various kinds of Bingham flow phenomena: firee smrfcice 
flow, channel flow and thermal convection. Based on the imderstanding of the yield sm-face 
and yield stress in the Bingham fluid, we then get an improved vertical average mode for 
the free surface flow of the Bingham thin film. 
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Figure 2: Fluid flowing down the inclined plane. 

2    Free surface flow 

Mud, the conunon geological fluid, has Bingham rheology. Every year, axicompanying the 
heavy and persistent rainfalls in mountainous areas, mudflow can be induced by mixture of 
the water and mud flowing down the hill. It can move stones, boulders and even trees. It 
threatens the hves of the people who inhabit in the mountain area and is a main soxurce of the 
natural hazards. Mudflows caused by Hurricane Mitch in 1998 have incurred devastating 
floods in Central America. In Honduras alone more than 6000 people perished. Half of the 
nations infrastructures were damaged([9]). 

River with a large amount of clay suspension can also be characterized as Bingham fluid. 
The mud concentration at low water in the Yellow river of China is known to reach 50% by 
volume ([10]). In Jiang-xia Ravine China, the mudflow surges down diuring the wet season 
in groups of successive bores. The maximum wave height reaches 4m and the maximum 
wave velocity lZms~^. The wavelength varied between 20 and 100m, while the period of 
each wave ranges from 5 to 60s. The bore fronts splattered with so much force that even 
large stones were thrown into the air. The flow in the rear of the waves was much shallower, 
slower and essentially laminar, and frequently stagnant before next surge. ([10]) 

Better understanding of the free surfax;e flow of the Bingham fluid and accurate deriva- 
tion for the stability criterion can help us to monitor the mudflows down the hill and mud 
surges in the rivers. In this section, we first give the governing equations for two-dimensional 
free surface flow, and then we introduce the pseudo-plug theory for the Bingham flow under 
the lubrication approximation. After that, we briefly describe the vertical average mode 
and its limitations. We also compare the pseudo-plug theory for the Bingham model with 
the bi-viscous model. Finally, we derive an improved vertical average model. 

2.1    Governing equations 

Consider a two-dimensional laminar flow of a thin layer of mud flowing down a plane with 
inclination $. We define an {x, z) coordinate system with the x-axis along and the z-axis 
normal to the plane. We denote the longitudinal and transverse velocity components by 
u(a:,z,t) and i(;(x,2r,t) respectively, the pressure by p[x,z^t) and the depth normal to the 
bed by h{x,t) (Shown in figure 2). 
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The momentum equations along x and z directions are: 

p{ut + uux + wuz) = -Px + dxTxx + dzTzx + P9 sin(^), (5) 

p{Wt + UWx + WWz) = -Pz + dzTxz + dzTzz - PQ COs(^), (6) 

with the continuity equation: 
Ux + Wz = 0. (7) 

At the bottom z = 0, the velocity vanishes (non-shp boundary condition): 

u = w = 0. (8) 

On the free surface z = h, the kinematic boundary condition requires: 

ht + u{x,h,t)hx = w{x,h,t); (9) 

and the stress free boimdary condition states: 

( Txx-P       Txz     \ ( hx\ ^ ( 0\ 

\       Txz Tzz-P J\    1    J        \0 J- 

The constitutive law of the Bingham fluid is: 

(10) 

{ 
nj   =   iJ^ + ^)iij      if       T>rY, 
jij     =0 if T <TY, (11) 

where T^ is the stress tensor, 7JJ is the rate-of-strain tensor and 7 is the second-invariant 
of the rate-of-strain tensor. 

For the slow flow of the thin mud layer, the height of the fluid layer H is much less than 
the length L and the vertical velocity V is much less than the horizontal velocity U. We 
can define the aspect ratio: e = ^ (e <C 1) and non-dimensionalize the equations in the 
following way: p = pgHcos{9)p', z = Hz!, x = Lx\ u = Uu', w = j;Uw', and t = ^1f. 
Drop the primes and the scaled momentum equations are: 

eRe{ut + uUx + wuz) = -px + e^dxTxx + dzTzx + S, (12) 

e^Re{Wt + UWx + WWz) = —Pz + ^^dzTxz + ^dzTzz - 1- (13) 

where S is the dimensionless slope defined as: S = ^ tan 9. Rg is the Reynolds number 
defined as: eRe = ^. 
Under this scaling, the stress tensor can be expressed as: 

U (     2eux       Uz + e^Wx\ ,^.. 
'' = ''H[uz + e'wx       2ewz     j" ^'^^ 

We can scale the stress as i/^ and define the Bingham number as B = ^^, which is the 
dimensionless yield stress. Then the largest element in the stress tensor will be: 

Tz. = Txz =  (1 + 1^) ^- (15) 
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2.2    Lubrication Approximation 

There are several ways to analyze the stability of the flow. Lubrication approximation is 
the simplest way. Under the standard lubrication approximation, we let e be zero. The 
momentum equation can be simplified as: 

0 = —px + dzTxz + S, 

0 = -pz-1. (16) 

The stress free boundary condition at the top surfEice requires: p = 0 and TXZ = 0 {&t Z = h). 
Solution of the momentum equations shows that the vertical distribution'of shear stress is: 

Txz = {hx-S){z-h). (17) 

The yield surface Y is defined at the place where the shear stress TXZ is equal to the Bingham 
number: 

B = Txz = (hx - S){Y - h). (18) 

Thus, 

Below the yield surface {0 < z < Y), the material is yielded. Above the yield surface 
{h > z > Y), the material remains to be unyielded. We usually call the region above the 
yield surfax;e as the plug region. 

Integrating the momentum equation (16) along the x-direction gives the vertical distri- 
bution of the horizontal velocity u: 

{ 
u   =   {S-hxm2Y-z)       far      z<Y, 
u   =       (S-hx)^ for       z>Y. ^   ^ 

Below yield siurface {0 < z < Y), the velocity u has parabolic dependence on height z. 
Above the yield surface {h > z > Y), the velocity u is independent of height z and called 
plug velocity. 

Integrating the kinematic boundary condition (9)across the layer, we arrive: 

d   r'^ 
ht + ^       udz = 0. (21) 

ox Jo 

Substituting the horizontal velocity u{z) (Equation 20)into this equation, we find that the 
height of the free surface satisfies: 

ht + l^ [Y\3h - Y){S - hx)] = 0. (22) 

Linear stability analysis with am infinitesimal perturbation shows that the profile is 
linearly unconditionally stable. However, instabilities has been observed for the free surface 
flow of Bingham fluid down the incUned plane both in nature ([8]) and in the laboratory . 
Then, the lubrication approximation cannot be used to describe the stability of the Bingham 
fluid flowing down the inclined plane. Since the Reynolds number for the free siurface flow 
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of Bingham fluid can be very large, then eRe ~ 0(1), the inertia term must be included for 
correctly describing the stability of the free surface flow for the Bingham fluid. 

However, the lubrication approximation reveals some interesting features about the 
Bingham fluid. During the initiation period, the viscoplastic flow usually contains per- 
turbation, which can be the noise in the laboratory or natural environment. Then the 
velocity at the plug region can treated as a sum of the plug velocity uo{x,t) and the 0(e) 
perturbation velocity ui{x,z,i): 

u = uo{x,t) + eui{x,z,t). (23) 

Notice that the velocity in the plug region will not be independent of height any more. We 
can treat the plug as a "fake" one, and caJl this region as " pseudo-plug" region. The stress 
tensor in the pseudo-plug region can be written as: 

Substituting the strain rate: 7 = ey/4ul^ -huf^ into the above expression, we then have: 

B 

Therefore, as the flow reaches the steady state, the variation of the zero order plug velocity 
along the x direction goes to zero: UQX -> 0, the stress tensor through the pseudo-plug 
region can be written as: 

Tij=B(^l   J)sffn(«i,)-f-0(e). (26) 

As the flow settles down to a steady state, the stress in the pseudo-plug region will be 
0(e) above the yield stress B. It implies that the flow in the pseudo-plug region will relax 
to a sUghtly yielded state if we consider the noise in the initialization period. 

In figure 3, we compared the vertical stress distribution obtained in the uniform true 
equilibrium state (17) with that obtained in the pseudo-plug state. Prom this figure we 
can see that the imiform true equilibrium state wiU produce a true plug, but the limiting 
lubrication solution will always produce a slightly yielded pseudo-plug. 

For the experiment carried out in the laboratory and geological Bingham fluid flowing 
down the incUned plane, the uniform true equilibrium state is very hard to achieve. In most 
cases, the flow in the plug region will always relax to a slightly yielded pseudo-plug state 
after the flow is initiated. 

2.3    Vertical averaged model 

For describing stability of the Bingham fluid flowing down the inchned plane, the more 
accurate boundaxy layer approximation including the inertia term can be used. In boundary 
layer approximation, the momentum equations are: 

R{ut + UUx + WUz)    =    l-px-\- -^Txz, 

0   =   -1-Pz- (27) 
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1-B 

True equilibrium 

Limiting lubrication 
solution 

Figure 3: Compaje the vertical stress distribution between the true equilibrium state and 
the pseudo plug state. 

where R = eRg- Following the study of the Newtonian fluid flowing down the incUned plane 
([15]), further simphfication of this mode can be obtained for Bingham fluid by vertically 
integrating the momentmn equation assuming the following velocity profile ([8]): 

{ u   =        Up{x,t) 
f)      far      z< Y, 

for        z>Y. 
(28) 

where Up{x,t) is the plug velocity. This velocity profile is obtained firom the lubrication 
approximation. Integrating the momentum equation along the x-direction for the plug 
region Y < z < h gives: 

RiUpt + UpUp^) = l-h^- 
h-Y 

(29) 

And integrating the x-direction momentum equation for the yielded region 0 < ^ < F gives: 

(I' R I =:YUpt - ^UpYt + ^YUpUp^ 
^^^^^) = {l-K)Y-^sgn{Up).        (30) 

Finally, integration of the kinematic boundary condition across the whole layer yields: 

ox 
Up{x,t) 

(3/1 - Y) = 0- (31) 

The vertical average model (VAM) is composed of the above three equations (29, 30, 31). 
Linear stabihty analysis of this model has been conducted by Liu and Mei ([8]). However, 
even for the Newtoniaji fluid flowing down the inclined plane, VAM does not give the correct 
Reynolds number ([3]; [15]). 
For Newtonian fluid, VAM is usually used to study the turbulent flow. Since the flow of the 
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Bingham fluid down to the inclined plane is usually laminar, it is not necessary to apply 
the vertical average model. 
Furthermore, VAM is built on the assumption that the vertical profile of the velocity u is the 
same with or without considering the inertia term in the momentum equation. Due to the 
existence of the yield stress and yield surface in the Bingham fluid, there is no justification 
for assuming this velocity profile. A better imderstanding of the Bingham fluid is necessary 
for obtaining the stability criteria. 

2.4    Long wave expansion 

For Newtonian fluid flowing down the inclined plane, it is well known that the long wave 
expansion for the boundary layer model (27) yields the correct Reynolds nimiber ([3],[15]). 
To see how good the vertical averaged model for Bingham fluid is, let us check the critical 
Reynolds number for the Bingham fluid using a long wave expansion for the boundary layer 
model (27). First, we will carry out the stability analysis imder the pseudo-plug assump- 
tion. After that, we will do the stabihty analysis under the true plug assumption. 
Under the boundary layer approximation (See equation 27 ), we can integrate the momen- 
tum equation along the z-direction and considering p = 0 on the free surface z = h. Then, 
we get the vertical distribution of the pressure: p = h — z. Substituting it to the momentum 
equation along the x-direction, we get: 

R{ut + UUx + WUz)    =     1 - /li + -^Txz- (32) 
oz 

{ 

For simplification, we set the slope to be unity: 5 = 1. In equilibrium, the horizontal 
velocity U is: 

' U = \z{2Y -z)      far      z <Y, 
U = \Y^ far        z> Y. 

And the vertical velocity W is zero. We can also normalize the height of the firee surface at 
the equilibrium to be unity h = l. 
Applying the following infinitesimally small perturbations to the equilibrium state: 

u = U{z)+ u{x,z^t),      w = w{x,z,t),       h = 1 + h{x,z,t). (33) 

Dropping the hats, the momentum equation can be rewritten as: 

R{iLt + Uux + wUz) = l-hx + -^Txz- (34) 
oz 

Since the velocity perturbation satisfies the following continuity equation: Ux + Wz = 0, we 
can define a stream function ^ and the perturbations can be rewritten as: 

u = *^, w = -^x- (35) 

First, we assume the periodic perturbations: ^,h oc exp{Xt + ikx) carry out the stability 
analysis for the pseudo-plug assumption. We divide the layer into two parts: the upper part 
is the pseudo-plug region and the low part is the yielded region. If we use the superscript 
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t and b to express the function of the top ajid bottom paxt respectively, the momentum 
equations in these two regions can be written as: 

*L = 0, for    z>Y, (36) 

and, 
^l^^ = ik + R[X-<Sz + ikU^z-ik^Uz)      far    z <Y. (37) 

Prom the expression of the stream fimction in the region above the yield surface, we can see 
that the motion is allowed in this region under the pseudo-plug assumption. The Unearized 
kinematic boundary condition at the free surface ht + Uhx = w is: 

ik 
X = -.tZY^-ik^\      at       z = 1. (38) 

Non-slip boundary condition at the bottom z = 0 requires: 

*6(z = 0) = **(^ = 0)=0. (39) 

Under the pseudo-plug assumption, the zero order stress in the pseudo-plug region is equal 
to the yield stress B. And the stress free boimdary condition at the top surface is satisfied by 
the first order correction (See the discussion in the section of the lubrication approximation). 

At the interface of the two parts (the perturbed yield surface), the continuation of the 
stress implies: 

Ul + ¥,, = Ul + -9l,, (40) 

Since U^ = 0 and ^* j. = 0 at the interface, we then have: 

YU',,{z = Y) + ^l{z = Y)=0. (41) 

Recall the perturbation of the yield surface is: y' = 1 - ikB — R{X + iU^)^zB, the mterface 
condition (41) can be written as: 

(1 - ikB - R{X + ikU^)^,B)U^,{z = Y) + ^l^{z = Y) = 0. (42) 

Similarly, the continuation of the perturbed velocity u across the interface implies: 

^',{z = Y) = ^l{z = Y), (43) 

ajid the continuation of the stream function across the interface needs, 

^''{z = Y) = 9*{z = Y). (44) 

We can then do long wave expansion by taking fc << 1 : 

X = kXi + k^X2 + ... (45) 

^ = k^i + kHi + ... (46) 

where Ai, A2, *i, and ^2 denote the expansion coefficients. To the leading order, the 
momentum equations can be written as: 

*L=0, (47) 

'Ozzz *Lz = 0, (48) 
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with the mterface conditions: 

Ul{z = Y) + ^l,{z = Y)=0, (49) 
<Sl{z = Y) = ^l{z = Y), (50) 

■^l{z^Y) = ¥o{z = Y), (51) 

Prom the leading order calculation, we obtain: Ai = —iY. To the second order, the mo- 
mentum equations are: 

*L.   =   0, (52) 

*L.   =   i + RiXA + iU'^lMu',). (53) 

and the interfsuje conditions are: 

i-iB - R{Xi + iU'')9lB)Ul,{z = Y) + *L(z = y) = 0, (54) 
ssl{z = Y) = ¥,,{z = Y), (55) 

^l{z = Y) = '9\iz = Y). (56) 

Putting the second order solution into the kinematic boundary condition (38), we then have: 

RB^     RB^     RB^     RB^     B^     2RB     2R     1 ,^^, 
^^ = -^-^ —+ —- —■^T--ir + T^-3- ('') 

And the critical Reynolds nmnber is then: 

_ 5{B' + B + 1) 
^ - 3^5 _ 553+ 2- (58) 

We can compare the critical Reynolds nimiber obtained by the long wave expansion with 
that gotten from VAM in the long wave length limit (See Figure 4). Prom this figure, we 
find that the Reynolds number obtained in VAM is always larger than that in the long 
wave expansion. When the yield stress equals zero, the Reynolds number gotten from the 
long wave expansion is | of that from VAM, which is consistent with the calculation for 
the Newtonian fluid. As the yield stress increases (yield surface decreases), the difierence 
increases. If the dimensionless yield stress approaches one, the diSerence approaches infinity. 

Now, let us carry out the stability smalysis under the true plug assumption. Since 
the true plug behaves as the elastic sohd, it wiU not be destroyed by the infinitesimal 
perturbation. Then the perturbation velocity is zero in the plug region. Under the Unear 
perturbation: u,w,/i,^ a exp{\t + ikx), the stream function in the plug region satisfies: 

** = **=**, = 0      /or    z>Y, (59) 

which means that no motion can be transferred from the yield region to the plug region. 
The stream function in the yielded region, the boimdary condition, and the interface 

condition will remain to be the same with that tmder the pseudo-plug assumption. Taking 
the long wave expansion, to the leading order we have: 

**o = *o = 0. (60) 
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Compare ttie Reynolds number Difterence between the Reynolds numbers 

E 

I 

• ■ 

— Long wave expansion 
• -■ Vertical average model 
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■js:^ 
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(a). Dimensionless yield stress B 

0.2 0.4 0.6 0.8 
(b). Dimensionless yield stress B 

Figure 4: (a) Compare the critical Reynolds niimber obtained from the long wave expansion 
with that from the vertical average mode, (b) The difference between the Reynolds number 
obtained by different methods. 

and Ai = 0. To the second order, we have: 

*L = *L. = o 
^f> Izzz 

for 
for 

z>Y, 
z<Y. 

(61) 
(62) 

There is no solution satisfying these two equations, the boimdary conditions, as well as the 
interface conditions. It means the solution does not exist under the true plug assumption. 

2.5    Compare pseudo-plug theory for the Bingham fluid with bi-viscous 
model 

Under the pseudo-plug assumption, the motion can exist in the plug region for the Bingham 
fluid. Then the relationship between the rate of strain tensor and the stress is like the 
modified constitutive model: 

Tij= lu + 
Ty 

VA2+72 7ti (63) 

When the parameter A becomes small, the model becomes more and more Bingham-like, 
with flow regions that resemble the fully plastic regions of the Bingham fluid, and other 
regions in which the flow is just slightly yielding and reminiscent of the pseudo-plug. Here, 
we will consider the simplest regularized model: the bi-viscous model. 

The constitutive relationship for the bi-viscous fluid is illustrated in flgiure 5, with a 
lower viscosity u for the high shear rate and much higher viscosity u for the lower shear 
rate. We can use a to express the viscosity ratio: a = ^. It a goes to zero, the bi-viscous 
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Figure 5: The Rheology of the bi-viscous fluid. 

fluid will approaches the Bingham fluid. If a goes to one, the bi-viscous fluid is reduced to 
the Newtonian fluid. 

Tij = i"yij      for     r <TY, 
Ty 

Tij = t^iij + {T^ - Ctj-r-jij       for      T>TY. 
7 

(64) 

(65) 

We use the same scaling as free surface flow of the Bingham fluid. The boundary layer 
approximation requires: 

R{ut + UUx + WUz)    =    l — Px +-K-Txz, 

0    =    -1-Pz- 

(66) 

(67) 

For the bottom layer, the shear stress is TXZ = Uz + B{1 — a). For the top layer, the 
shear stress is TXZ = Q«Z Substitute the expression for the sheax stress into the momentum 
equation, we can then get the equilibrium velocity profile: 

,2 y2        ^y2 
u' = - az' 

+ 0;^; + for   z>Y, 

U'' = -— + {-aY + Y + a)z   far   z <Y. 

(68) 

(69) 

with y = 1 + Here the superscript t and 6 denotes the function for the top and \h^-S\- 
bottom layer respectively. 

As before, we perturb the equiUbrimn by infinitesimal amount: u = U{z) + u'{x, z, t) 
and w — w'{x,z,t). We also use a stream function ^ to express the perturbation velocity: 
u'{x,z,t) = ^z, and w'{x,z,t) = —*i. We can then carry out the linear stabiMty analysis 
by assuming: $ a exp{ikx + At). Then the stream function satisfies: 

**^2 = ika + ila(A*z + ikU^zik-^Uz)    for   z>Y, 

^\^^ = ik + R{\<i!z + ikU^zik^Uz)    far   z <Y. 

(70) 

(71) 
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At the free siirface (z=l), the linearized kinematic condition gives: 

X + Uiz = l)ik = -ik¥, (72) 

and the stress free condition gives: 

^i!\z = l) + U,,{z = l)=0. (73) 

The non-slip boundary condition at the bottom implies: 

iifliz = 0) = ^^{z = 0) = 0. (74) 

At the interface between the two layers, the continuation of the shear stress requires: 

*L(^ = y) = ^*L(^ = Y). (75) 

The continuation of the velocity and the stream function needs: 

^l{z = Y) = ^l{z = Y)    and   *''(z = Y) = **(2r = F). (76) 

Do long wave expansion, the Reynolds nimaber is given in figure 6. Prom this figure we 
find that the Reynolds number of the bi-viscous fluid approaches the Reynolds number for 
the Bingham fluid as the viscosity ratio approaches zero. This result is quite difiierent from 
the result obtained by Hjorth ([5]), which states that the free surface flow of the bi-viscous 
fluid is linearly unconditionally stable as the viscosity ratio a goes to zero. The reason for 
this diflference is probably due to the difierent interfacial conditions between two different 
viscosity region. 

2.6    Improved vertical averaged model 

Researches on the Newtonian fluid flowing down the inclined plane have shown that the 
vertical averaged model can not give the correct stability criterion. The Hmitations of 
this model exist in the nistic character of the averaging method and the lack of freedom 
in the description of the hydrodynamic fields. The improved model has been derived by 
combining a gradient expansion to weighted residual techniques with polynomials as test 
functions ([12]; [13]). Based on the understanding of the free surface Bingham flow and the 
pseudo-plug assumption, we can use this technique to improve the vertical average model 
for the free surface Bingham flow. 

We separate the fluid into two regions: the pseudo-plug region and the yield region. In 
the pseudo-plug region {Y < z < h), the velocity is the same as the plug velocity u = t/(x, i), 
which is guaranteed by the pseudo-plug theory. In the yielded region(0 < z < Y), the 
boundary layer equations are: 

R{dxU + udxU + wdzu) - u^z = 1 - dxh, (77) 

Ux + Wz = 0, (78) 

Uz\z=Y = 0, (79) 

u\o = w\o = 0. (80) 
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Figure 6:   Compare the critical Reynolds number for the long wave expansion and the 
bi-viscous mode. 

Prom the continuity equation: Ux + Wz = 0 and the non-slip boundary condition u|o = 
W\Q = 0, we can replace why w = — JQ Uxdz so that the only remaining dynamical variable 
is u{x, z, t). Expanding u{x, z, t) in the following form: 

«(x,z,i) = aj{x,t)fj{z), (81) 

where z is defined as: z = y. Both Y and expansion coefficients aj are supposed to be 
slowly varying function of time t and the stream-wise coordinate x. The base function fj{z) 
can be chosen to be: 

fj{z)=z- j+i 

J + 2 
(82) 

which fulfills the boimdary condition: fj{0) = /j(l) = 0. It is easily observed that the 
vertical velocity profile used in VAM is merely proportional to fo{z)- It can be shown 
that the consistent first order model can be obtained by considering a reduced set of test 
functions comprising monomials up to degree 6 included. 

Inserting the trimcated expansion tt(rr,z,i) = X)|=o'^i(^'*)/i(^) "^^^ *^® momentum 
equation along the x-direction, and neglecting all terms in aj{j > 0) involving derivatives 
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with respect to x and t, we will have: 

0   =l^(«o-2aO-| + f, (83) 

0   =^{4ai-6a2) + dtao-^dtY, (84) 

0   = ;^(9a2 - 12a3) - ^dtoo + ydtY + ^aod^^ao - ^d^Y, (85) 

1 1 OQ? 

0   =-^^{ieaz-20a^)--aod^ao + -^d^Y, (86) 

0   =^25a^ + ^i^aoda:ao-^dY). (87) 

Eliminating ai, 02, 03 and 04 by inserting their expression into the first equation, we arrive: 

p py TfV^ RV 
ao = y2 _ :^y2g^oo + ^oodtY - ^ood.oo + ^ajd^^Y - Y^d^h. (88) 

o 0 lU oU 

Now we need to obtain the plug velocity: u{z = Y) = U{x^t). The plug velocity can be 
expressed as: 

U{x,t) = ^aj{x,t)fj{z = l). (89) 
3 

Substituting the expansion coeflBicient aj{x,t) into this equation, thus we have: 

U{x, t) = ^ao- ^RY^aod:,ao + ^RYald^^Y - ^RY^dtOo- (90) 

Also, we use p to denote the local instantaneous flow rate: p = JQ udz = Y" JQ udz. The 
value for p can be calculated out and expressed as: 

P{x, t) = \m - JQooy^iJSxao + -^^alYRd^Y - ^dta^RY^ + ^a^RYdtY.      (91) 

Integrating the kinematic boundary condition across the pseudo-plug region gives: 

,    ht + ^mx,t){h-Y)) + ^P = Q. (92) 

Also we can integrate the momentum equation in x-direction across the pseudo-plug region, 
we then have: 

R{Ut + UU,) = 1-K- ^^^. (93) 

Plus the equations for OQ, p and U, we then have a set of five equations. These five equations 
close the system. To test this set of equations, we can do hnear stability analysis and 
comparing the critical Reynolds number with that obtained firom the long wave expansion 
for the boundary layer model. The equilibrium is: 

h = l,Y = l-B,U = \{l- B)\ ao = (1 - B)\ P = ^Y. (94) 
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Apply small perturbations: h = h+h', Y = Y+Y', U = U+U', p = p+p', and OQ = oo+aQ. 
Do normal mode expansion for these perturbations: h', U', Y', P', CQ oc exp{Xt + ikx). Then 
the perturbed equations wiU be: 

Xh + ikBU{x,t) + l{l- Bfik{h -Y)+ ikp = 0, (95) 

R{\U + hi-B)HkU) = -ikh-^^^^, (96) 
2 B 

U=Y-^m-B)Ukao + ^{l- BfikY - I (1 - Bj^Aoo, (97) 

6 0 

_   H(l^ .j„^ ^ R(l_l^ay _ (1 _ BAW, (98) 

For the improved vertical average model, the Reynolds number R in the long wave length 
limit is very close to that obtained from the long wavelength expansion for the boimdary 
layer model (See figure 7). 

3    Channel flow of Bingham fluid 

In this section, we will study the channel flow of Bingham fluid. 

3.1    Govening equations 

For the Binghajcn fluid flowing through a channel with width L, the momentum equation 
can be written as[l]: 

p{Ut + UUx + WUz) — -Px + dxTxx + dzTzx, (100) 

p{wt + UWx + WWz) = -Pz + dzTxz + dzTzz, (101) 

with the continuity equation: Ux + Wz = 0, with the boimdary condition: ty = « = 0 on 
z = L, —L. We scale the problem in the following way: 

u ~ Uu\ w ~ Uw; X ~ Lx; z ~ Lz;p ~ pU^p- (102) 

Define the Bingham number as: B = ^^, and the dimensionless viscosity coeflScient u as: 
1/ = -^. Also we separate the backgroimd pressure gradient from the evolving pressure 
gradient: 

p = ux +p'{x,z,t). (103) 
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Figure 7: Compaxe the critical Reynolds number for the improved vertical averaged model. 

Droping the primes, the momentmn equation can be written as: 

p{ut + UUx + WUz) = V—Px + ^{dxTxx + dzTzx), 

p{wt + UWx + WWz) = -Pz + I'idzTxz + dzTzz), 

with, 

{ 
■"xz   =   {l + ^)Uz     if     T>B, 
Txz   = 0      if      T<B. 

The equilibrium state will be w = p = 0 and u = U{z): 

Uiz) = -^(1 - z"") - B{1 - \z\)      for     \z\ > B, 

U{z) = {l-Bf/2 for       \z\<B 

Do linear stability analysis: 

{u,w,p) = {U,0,0) + {^y,ik'9,p)exp{ikx + At). 

Then we will get the Orr-Sommerfeld equation; 

(^ + ^){^yy - k'^) - U"^ = id', - k'f^ - 4Bk%{^^). 

The boundary conditions are* = *j, = Oaty=—1,1. 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 
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3.2 A; < 1 mode 

For k <^1 mode, we can do long wave expajision and the leading order term for outside of 
the plug region is: 

i'yy - ^'^ = 0' (111) 

with the boundary condition: ipy = 0 on y — 1. For the region inside the pseudo-plug 
region, we have: 

',Pyy=0. (112) 

We can solve these equations analytically, and get the eigen-value and eigen-functions for 
odd mode and even mode respectively. The odd mode in stream function ^ is corresponding 
to the 'sausage' mode of the flow, the even mode in stream function ^ is corresponding to 
the 'kink' mode of the flow. For the odd mode in streajn function, we have: * = 0 on y = 0. 
The eigen-value satisfies: 

For the even mode, we have: Vy = 0 on j/ = 0. And the eigen-value satisfies: 

-Bhanh{yll{l-B)) = l. (114) 

The above equations has no real solution for real A, and the flow is linearly imconditional 
stable. 

3.3 k finite mode 

For finite fc, we have tpyy — ipxy ^ 0? aJid i^xy ^ 0, which implies: 

ip      =     Ipy      =     Ipyy      =     Q, (HS) 

inside the pseudo-plug. It reveals a very interesting phenomena of the flow: the plug in this 
case bahaves like a solid and seperate the flow completely. In fact, the pertubation in top 
part of the flow will not be transport to the bottom part of the flow! Both odd and even 
mode will exist and have the same eigenvalue, which is the same as the predicted by the 
regularized mode.([l]) 

4    Convection of Bingham fluid 

Put the Bingham fluid between two plates with fixed temperatures: To and Ti, with TQ >Ti. 
The momentum equation will be: 

Du _     1 dp     drxx     dzxz ,^^„. 

Dt        podx^  dx  ^  dz' ^     ' 
Dw _       1  dp dTxz   ,   dTzz f^^„. 
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the temperature equation is: 

^ = «V2T, (118) 

with the continuity equation: V •« = 0 and the following constitutive equation: 

Tij   =   (/i + ^Hij     if    r>TY, 

{ (119) -Yij     =0 tf        T<TY, 

where Ty is the yield stress of the Bingham fluid, and u is the viscosity, we scale the problem 
in the following way: 

^^d,t^-^,u^-,T^-,p^-, (120) 

where d is the spacing between two plates, and P is the inverse temperature gradient. Define 
the following dimensionless numbers: Rayleigh number Ra- 

Ra = ^^, (121) 

Pr = ^, (122) 
K 

and define the Prandtle nmnber Pr: 

and define the Bingham number: B 

Then the scaled equations will be: 

B = ^, (123) 

Dw^_^^ p^^^r + p^^ + p^^. (125) 
Dt dz dx dz 

this temperature equation is: 

w = KV^T (126) 
dt 

with the continuity equation: V • w = 0 and the following constitutive equation: 

Tij   =   (l + f)7u      if    r>B, 
jij   =       0 if       T <B. { (127) 

We have the none-slip boundary condition at the top and the bottom surface: u = w = 0, 
also the temperature at the top is 1, and the temperature at the bottom is 0. At the 
equilibrium, the fluid has no motion: u* = w* =0 and no stress: T^J = 0. The equilibrium 
temperatine structTore will be: T* = 1 — z and the equihbrium pressure profile will be: 
p* = z — ^. Apply the small perturbations: u', w', 0, p', and drop the primes, then the 
perturbed momemtum equation will be: 
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We conduct the linear stability analysis by assuming u.,w,6,p a exp{ikx + At). Since the 
fluid is heated from the below, the fluid is at the true equilibriiun state in the beginning. 
The initial stress in the fluid is zero. Therefore, adding infinitesimal perturbation will not 
make the stress in the fluid larger than the yield stress (see equation 127). It can be easily 
shown that the only solution is u = 0, w = 0. Therefore, the fluid is linearly unconditional 
stable under the infinitesimal perturbation. 

5 Conclusion 

For Bingham fluid in the laboratory and in the nature, the fluid is likely to relaxed to a 
pseudo-plug state. In this case, the stress in the pseudo-plug is slightly above the yield 
stress and the fliiid can be linearly unstable. However, for the thermal convection of the 
Bingham fluid, since the initial stress in the fluid is zero, adding infinitesimal perturbation 
will not make the stress in the fluid larger than the yield stress. The thermal convection of 
the Bingham fluid will be linearly unconditional stable. 
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A Novel Layered QG model 

Neil Burrell 

1 Introduction 

The earth's ocean is a complicated fliiid system. It is affected by the rotation of the earth, 
the density stratification due to temperature and salinity, and many other factors. These 
processes combine to act on an extremely wide range of length-scales, firom centimeters to 
thousands of kilometers. One notable simplification is that the ocean is tremendously more 
shallow than it is wide. But the assumption that the ocean is two-dimensional is overly 
restrictive and does not capture important dynamical processes. 

We concern ourselves here with the observation of a correlation in the energy-containing 
scales of the ocean with the first Rossby deformation radius. This correlation appears in 
observations of the sea surface usmg the TOPEX/POSEIDON satellite [1, 2] and also in 
models [3]. The processes which cause eddy energies in the ocean come to equilibrate at 
this horizontal scale are not weU understood. It is the fully nonlinear development of ocean 
eddies (presumably created through wind stress forcing at the surface) that determines 
this scale. In addition, the effect of vertically non-uniform stratification on the downward 
propagation (baxotropization) of energy are not clear. Typical models of ocean tmrbulence 
assume vertically homogeneous stratification, with correspondingly more uniform dynamics 
throughout the layer. 

Smith and VaUis [4, 5] investigate these questions in the context of a non-imiformly 
stratified, three-dimensional ocean using quasigeostrophic (QG) dynamics. The surface- 
intensified stratification that they use leads to surface-localized potential vorticities. In an 
effort to create a simpler model for these processes, we consider a two-layer QG system in 
which the lower layer has no potential vorticity. In section 2 we review layered QG models 
in general. Then in sections 3 and 4 we examine the simplified two-layer model and its 
consequences for eddy evolution using nmnerical simulations. We present our conclusions 
in section 5. 

2 Layered Quasigeostrophic Models 

Consider a nearly incompressible, rotating, stratified fluid. All of the models that we 
consider here will neglect the meridional variation in the Coriolis parameter that is present 
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Figure 1: The /-plane geometry. 

on a rotating sphere (see figure 1). On this /-plane, the Boussinesq equations are 

Dtu + 2f^(fi X «) =  ^-hz-^- —t^u 
Po Po 

V-w = 0 

(la) 

(lb) 

(Ic) 

where the dependent variables are the fluid velocity it, the pressiure p and the buoyaacy 
anomaly h = —gp/pQ. The parameters are the rotation rate 2Q, the typical background 
density po, the buoyancy frequency N^ = —{g/po){dp/dz) for a backgroxmd density p and 
the momentum and mass diflFusivities, 1/ and K respectively. Non-dimensionalizing these 
equations by w ~ Z7, a; L, ,b^ B,pr^ P and N'^{z) = N^S{z) we have 

Dtu + =—Cl X u = -PVp -I- Tbz + =r-A«, 
Ro Ke 

r.,.        S{z) 1    .^ 
Dtb + -^w = — A6, 

rPr^        Pe 
V • w = 0, 

(2a) 

(2b) 

(2c) 

where the Reynolds number Re = {UL)/v measures the strength of inertia relative to 
viscosity, the Peclet number Pe = {UL)/K compares inertia to buoyancy diffusion, the 
Proude number Pr = U/{NQL) measiures buoyancy relative to inertia and the Rossby number 
Ro = U/{2flL) compares the rotational timescale to the dynamical timescale. There are 
two additional non-dimensional parameters P = P/{U^PQ) and T = {BL)/U^ that measure 
the strength of their respective terms of the equations. 

Since the ocean is vastly shallower than it is wide, even at the horizontal scales considered 
here, we consider an asymptotic expansion in the aspect ratio e = H/L. In the ocean, the 
Rossby number is also small so we set Ro = e. We neglect the effects of diffusion, by setting 
Re = Pe = 00. Proude numbers in the ocean are smaller than the Rossby numbers, so we 
choose Pr = e^ and for the other two parameters we taJie P = e~^ and P — e~^ to give the 
hydrostatic and geostrophic balances at leading order. Expanding the dependent variables 
in asymptotic series {u = UQ + eui -I- e«2 + • - •, etc.) and collecting ternas of the same order 
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we have the following balances from the momentum equations, 

0(e-2) :     - 9^po + &o = 0 

ClxuQ = -Vjj»o + z{bi - dzPi) 

DfUo + Clxui = - Vj_pi + z{b2 - dzP2) 

0{e-') 

0(1) 

the buoyancy equation, 

0(6-2) 

0{e-') 

0(1) 

S{z)wo = 0 

wodzbo + S{z)'wi = 0 

D% + widzbo + S{z)w2 = 0 

and the continuity equation 

0(1):    Vx-uo = 0 

0(e) :    Vx • ui + dzW2 0. 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

(3f) 

(3g) 

(3h) 

(3i) 

From (3d) and (3e) we see that the fluid velocities axe aU horizontal. The hydrostatic 
balance is present at leading order in (3a) and the geostrophic balance in the x- and y- 
components of (3b). The incompressibiUty condition (3h) leads us to a streamfunction 
UQ = z X VV'o- The geostrophic aad hydrostatic balances relate that streamfunction to the 
pressure and buoyancy fields at leading order: po = J^aV'o and bo = fia^^V'o- Taking the 
curl of (3c) and using (3i) to relate W2 and ui we have two closed equations for tp and 1U2 

' A°ViV'o - ^3dzW2 = 0 

D^nsdzipo + S{z)w2 = 0. 

(4a) 

(4b) 

Finally, eliminating W2 and dropping the 0 subscripts we have the quasigeostrophic (QG) 
equations 

Dtq = dtq + J{i>,q)=F 

q = V^ip + Qg^; {wf'^'"^)' 
(5a) 

(5b) 

where F represents any forcing or dissipation in the system. 
We will use these equations as the starting point of our investigations. It is important 

to note that even in the three-dimensional case there is no vertical velocity; all fluid motion 
is in horizontal planes. If there is no dissipation, F = 0, then the QG equations express 
the conservation of the potential vorticity q on fluid elements. Additionally, there are two 
global conserved quantities: the energy 

^ J-B? 
qipdx 

and the enstrophy 

j ■ j^da:. 

(6) 

(7) 

255 



Related to the energy ajid enstrophy axe the energy and enstrophy spectra defined by 5 = 
/ E{K) dfe and 2 = f Z{K) dfe. We can define a mean wave number by the centroid of the 
energy spectrum 

Km = !/"«£?(«) dfe. (8) 

In the absence of vertical variation, these are just the equations for two-dimensional 
fluid dynamics where q is the ordinary vorticity and ip is the streamfunction of the flow. 
The dynamics of this type of flow are well known (see, for example [6, 7, 8, 9, 10, 11]). 
For the case of small F, energy is approximately conserved and moves to larger scales 
in an inverse cascade, enstrophy is not conserved and participates in a direct cascade to 
smaller scales and for unforced flow the evolution is dominated by the interaction of coherent 
vortices (which may be studied independently [12, 13, 14]). A quantitative scaling theory 
for the regime dominated by coherent vortices predicts algebraic evolution for many of the 
flow characteristics, including enstrophy, vortex number, vortex size and vortex amplitude 
[15, 9]. We will use these self-similarity properties later for our novel model. 

The smallest amoimt of auiditional vertical variation that we can admit is a two-layer 
quasigeostrophic model. Considering two layers of fluid with diffierent densities (see figure 
2) the QG equations reduce to 

dtqi + Mi,qi)=0, (9a) 

qi = V^iPi+Fi{iP2-i>i), (9b) 

92 = V2V2 + ^2(V'i - ip2) (9c) 

Fi = -—-,    / = 2S23,    g = g———. 
gHi P2 

(See [16] or [17] for a derivation of these equations.) In the interest of further simplicity, 
assume H2 -^ oo 4^ F2 = 0. Then the motion in the lower layer is decoupled from that in 
the upper layer (although not vice-versa). If we assume that this infinitely deep lower layer 
was initially at rest, then it will always be at rest with ^2 = 0. This quiescent lower layer 
then has no effect on the upper layer and we get the one-and-a-half layer QG equations 
(also called the equivalent barotropic QG equations) 

Dtqi = 0 (10a) 

9i = (V2-Fi)Vi. (10b) 

The parameter JFi is related to an intrinsic length scale of this flow, the Rossby deformation 
radius, fcf ^ = F^ ' . The dynamics of this system in the case of unforced, decaying 
tiu-bulence are similar to that of the one-layer equations for short times with the formation 
and interaction of coherent vortices. As the vortices grow to the size of the deformation 
radius, their motion begins to slow down [18, 19, 20]. This stops the inverse cascade of 
energy at that scale, in contrast to the one layer case where the inverse cascade continues 
to the largest scales in the problem. 

Neither the one layer QG model nor the equivalent barotropic model can adequately 
explain the energetic distribution in the world's oceans. The inverse cascade in 2D tur- 
bulence moves to the largest available scales.  In fact, there is no intrinsic length scale in 
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Figure 2: Two fluid layers. 

the system. The one-and-a-half layer model does have a distinguished length scale, the 
deformation radius, but the energy cascade stops completely at that scale. The one layer 
model is overly simplistic, containing no contributions from rotation or stratification, nor 
any variation with depth. The addition of an infinitely deep lower layer contributes some of 
the dynamical features of the ocean, namely the rotational and stratification efiects of the 
deformation radius, but at the cost of the long-time evolution of the flow. This Umitation 
arises from the blatantly umrealistic assumption of infinite depth in the lower layer. For 
these reasons, we seek a slightly more complicated model that will retain essential features 
of the oceanic evolution, in particular the distinguished role of the first Rossby deformation 
radius. 

3    The Finite-depth One-and-a-half Layer Model 

In our derivation of the equivalent baxotropic model, we assumed that the lower layer was 
infinitely deep. If we relax that assinnption, then we cannot continue to insist that ^"2 = 0 
for all time. For any finite depth, any motion in the upper layer wUl induce a flow in 
the initially quiescent lower layer. Fundamentally, this is because the fluid velocity in the 
lower layer is not a materially conserved quantity: it may evolve with time. On the other 
hand, the potential vorticity in the lower layer 92 is conserved, so if the flow initially has 
92 = 0 then it wiU for all time, irregardless of the motion of the upper or lower layers. This 
assumption is also consistent with observations [21] which show no potential vorticity signal 
below eddies in the North Atlantic. Finally, in the three dimensional calculations of Smith 
and VaUis [4, 5] they compute the eigenfunctions <i>i for the vertical structure of the 3D QG 
equations, 

dz (5^9^) <i>i = ->^Ui. (11) 

for a surface-intensified stratification profile and they are quite small at large depths. One 
hmitation of the assumption that 02 = 0 for all time is that it there cannot be any bot- 
tom friction present in our model, because that would break the conservation of potential 
vorticity in the lower layer. 

Proceeding with the assumption that 92 = 0, (9c) just expresses a relation between the 
two streamfunctions 

V2V2 + i^2(V'l-V'2)=0. (12) 
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Thus, given ^"1 we can solve this equation for ip2 in terms of '^i the Fourier transform of -^i 

M^,t) = /^r^^ie-''="dfc (13) 

where k is the horizontal wavenumber and K= \k\. We will represent this solution schemat- 
ically by 

^2 = ^r^^i (14) 

where (13) is meant by this symbol in all cases. Having solved for ip2 (9b) and (9a) are now 
a closed set of equations for the motion of the upper layer 

Dtqi = 0, (15a) 

We refer to these as the finite-depth one-and-a-half layer QG equations. Note that in 
contrast to the model with an infinitely-deep lower layer, the lower layer is not at rest 
in this model, but instead moves with exactly the relative vorticity V'^V2 necessary to 
cancel the vorticity added to the layer by stretching of the backgroimd planetary vorticity, 
F2{tl'i — ^2)- These equations also contain both of the models talked about previously: if 
Fi = 0 then we recover the one layer model and if JP2 = 0 we have the same equations as 
the one-and-a-half layer model. As far as we know, this model has not been studied for its 
turbulent cascade properties as we do here. Since it is a special case of the two-layer QG 
equations, solutions of this type have certainly appeared, most notably in studies of the 
merging of baroclinic vortices [22, 18, 23, 24]. 

4    Spin-down Simulations 

The main component of this study is a series of nimierical simulations of layered QG equa- 
tions with a single active layer. The numerical code is pseudospectral in spax;e and leapfrog 
in time. An isotropic trimcation is applied with wavenumbers with K < Kmax = 176. When 
computing the nonlinear term, dealiasing is used, keeping wavenumbers up to (3/2)K;niax- 
Dissipation is present in the form of hyperdiflFusion F = —uV^q (as in [4]). All of the simu- 
lations presented here use v = 1.43 x 10~^^ which was chosen to absorb the direct cascade of 
enstrophy while dissipating as little energy as possible. The initial vorticity field is a random- 
phase realization with an initially narrow-band energy spectnma E{K) OC K^/{K-{-2KO)^^ with 
Ko = 30 and the normalization that 5(i = 0) = 0.5. The simulations continue up to f = 80. 

Figure 3 shows representative evolutions of energy, enstrophy and Km for the one layer 
model. Over the length of the simulation, the energy falls to approximately 86% of its initial 
value while the enstrophy declines by a factor of over 60. The decrease in Km is evidence 
of the inverse cascade of energy to larger scales (lower wavenumbers). Figure 4 shows the 
vorticity field for the one layer model. As time progresses, there are fewer, larger coherent 
vortices. The same quantities are shown in figm-es 5 and 6 for the equivalent barotropic 
model with ki = 15. Here by comparison, the coherent vortices fill much more of the domain 
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Figure 3: Time series of (a) 5, (b) Z and (c) K^, for the one layer equations. 

than in figure 4. The stopping of the inverse cascade of energy at a scale neax the Rossby 
radius of deformation can be seen in the evolution of K^ in figure 5. 

For the finite-depth model, corresponding data are shown in figures 7 and 8 for fci = 
24 and fe2 = 12- A number of notable features are present in these latter simulations. 
The inverse cascade of energy continues for the finite-depth case where it did not for the 
equivalent barotropic model (ACTO(< = 80) = 7.5 and Kmj<t = 80) = 10.1 respectively). Also, 
the coherent vortices for the finite-depth model fill more of the space than in the one layer 
model (figure 4) but less space than in the equivalent barotropic model (figure 6). For 
increasing values of A = 1 -I- F1/F2 the vortices fill more of the domain and are less circular 
(see figure 9). This is consistent with the position of the finite-depth model as intermediate 
between the other two models (in the sense that the one layer model corresponds to A = 1 
and the equivalent barotropic model to A = 00). Finally, for the time evolution of this 
model: vortex dipoles are more active than in either of the other two models and vortex 
motions axe slower than in the one-layer model but faster than in the equivalent barotropic 
model. 

4.1    Vigorous Vortex Dipoles 

To analyze the apparent vigor of close associations of two opposite signed vortices, we 
consider the induced velocity field for a point charge of potential vorticity. This profile is 
closely related to those of hetons [25]. Hogg and Stommel give the following solution in the 
special case Fi = F2. The azimuthal velocity field is 

ve{r) = -(- A \r 
+ ^^kRKi (fcRr)) (16) 

where kR = (JPI -I- -Fb)"^^^, A = 1 -t- F1/F2 and Ki{z) is the modified Bessel function of 
the second kind. While the vortices in our simulations are not point vortices, this solution 
should still hold outside of the cortex core, as in the case of the Rankine vortex for the 
one-layer model. For r <C l/kR the hmiting behavior of this velocity is VQ ~ (1/r) while 
for r » l/kR, vs ~ (l/A)(l/r).   Since A > 1 the far-field velocity of a point vortex in 
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Figure 5: As in figure 3, but for the equivalent baxotropic model with fci = 15. 

the finite-depth one-and-a-half layer model is smaller than the near-field velocity. This 
explains the heightened activity of vortex dipoles in the simulations of these equations. 
When two opposite signed vortices come close together under the influence of the other 
vortices in the system, their mutual interaction is strengthened by a factor of A, resulting 
in a (possibly dramatic) increase in their activity for the time of their close approach. 
The increased activity of vortex dipoles also leads to an increased number of dipole/dipole 
exchange interaxitions, where two dipoles collide and rebound having exchanged partners. 

4.2    Vortex slowdown and self-similarity 

A complementary view to the fundamentally physical space approach in section 4.1 is pro- 
vided by examining the properties of the equations in Foiurier space. We will see that there 
is an intimate connection between these two approaches in the form of the potential vorticity 
inversion operator. Acting between the Fourier transforms qi{k) and ^i(fe) this operator 
taJces the form 

2      „   ,     F1F2 
91 = (-^--a^) ipi. (17) 

,1/2 For short scales, when K ^ F^''^, qi « —K^i'i which is the same form of the operator as we 

would see in the one layer model where q = V^V- At much larger scales, where K ■< F2' , 
qi m —K^X^i. The appearance of A in the operator for the large scale interactions in spectral 
space is parallel to that of the factor of 1/A in the velocity profile of a point vortex at large 
distances. To see this efiect, note that if we rescale q = Itj} -^ cf = jq = jLtp, then the 
original equation for the material conservation of potential vorticity 

dtq + J{ip,q)=0 

is invariant if we rescale time by t' = t/j 

dt'q' + J{^,q')=0. 
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(a) 

111 0.45 

Figure 7: As in figure 3, but for the finite-depth model with fci = 24, ^2 = 12. 

Prom this we can see that any factor that intrudes in the relationship between ^ and q acts 
analogously to slowing down time by that same factor. Time also slows down by that factor 
when we consider the reduction of velocity vg at large distances from a point vortex. 

We can go further with the idea of rescaling time in our evolution equation by re-writing 

1-1- 91 = -K^ f 
Fi F1F2      \ 

{F2 + n^)) 
i'l 

(18) 

where 7(K) is the factor by which the finite-depth PV inversion operator differs firom that 
of the operator for the one layer model. This function 7 then determines a scale-dependent 
factor by which the evolution of the system should slow down. Note that UmK->oo7(K) = 1? 
7(0) = A, consistent with what we saw earlier for small and large scales. This slowing down 
of time should be apparent in our modified system in the self-similar evolution of the flow. 
In this regime, Km. ~ {t/l)^ for some factor 7. While it is not certain that such a self-similax 
regime exists, the apparent power-law behavior of Km for a range of values of A (figure 10) 
suggest that it does. Prom a fit to this data we can determine a value for 7 as a function 
of A as shown in figure 11. If all of the energy of the flow were at the largest scales then 
we would expect 7 = A in accordance with the limit of J{K) for small K. Clearly this is not 
a good prediction for 7, except for cases of small A where most of the energy is at larger 
scales. A better prediction is given by considering the value of 7 for the wavenumber that 
contains the most energy, as measured by Km at the end of the simulation, (/c^ dianges by 
very little over the final half of the simulation.) In fact, the good agreement between these 
two measures of the slowing down of time is support for the interpretation of 7(K) that we 
gave earlier. 

4.3    Reduced axisymmetrization 

Another feature of the finite-depth one-and-a-half layer model that is seen in the simulations 
is a decUning tendency for coherent vortices to become axisymmetric with increasing values 
of A (figure 9).   The process of axisymmetrization is important because it is thought to 
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Figure 11: 7 vs.   A (D).  The dotted line is the prediction 7 = A and the stars are the 
prediction 7 = 7 («m(* = 80)) 
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Figure 9: Tho final vorticity field for (a) A = 2 and (b) A = 17. 
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Figure 10: (a) Km vs time for A = 2 (solid line), A = 4 (dashed line), A = 9 (dash-dotted 
line) and A = 17 (dotted line), (b) Decay exponent a as a function of A. 
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(b)^ (c) 

Figure 12: Vorticity field at i = 20 for an initially elliptical vortex with aspect ratio 8 for 
(a) one layer model, (b) h = 15, ^2 = 15 and (c) ki = 18, A;2 = 6 

be prototypical of the process of vortex merger [12]. Vortex merger is the major process 
controlling the evolution of a flow that is dominated by coherent vortices. We performed 
a series of simulations on the evolution of a single initially elliptical vortex in the model 
proposed here. While we have no quantitative results on the influence of finite-depth lower 
layers on vortex axisymmetrization, the qualitative differences are similar to those seen in 
the spin-down simulations. As A increases, a given vortex undergoes less axisymmetrization, 
imtil for a critical value of A there seems to be no trend at all to axisymmetrize, with wildly 
asymmetric vortex shapes persisting for long times (figure 12). Further characterization of 
the influence of kR on the axisymmetrization process is also important. 

5    Conclusion 

The observation that initially motivated this investigation was of a correlation between the 
first Rossby deformation radius and the energy containing scales of the ocean ckculation. 
Smith and VaUis showed that with surface-intensified stratification, such a correlation would 
be possible [4, 5]. Oin: model is much simpler, but can incorporate surface-intensified 
stratification by using deeper quiescent lower layers (i.e. A > 2). We have shown that there 
is a scale-dependent slowing down of the evolution of this system. This slowing-down is a 
possible explanation for the build-up of energy at these scales in the ocean. In an equilibrium 
situation such as the ocean where input of energy at small scales is balanced by dissipation 
at large scales, retarded motion at a certain scale slows the inverse cascade of energy leading 
to an increased amount of energy at the retardation scale. To see quantitatively the effect of 
this in our model requires further simulations in the forced-dissipative equiHbrium regime. 

Further investigations of the evolution of the population of coherent vortices would give 
confirmation and additional understanding of the self-similar evolution and its slowdown at 
larger scales. To unify the spectral and physical space views of these equations, it would 
also be helpful to investigate the (physical space) interactions of individual vortices at a 
variety of length-scales.   The study of the axisymmetrization of a single vortex and the 
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merger of two vortices would both be useful. Of paxticulax interest is the eflfect of the finite 
lower layer depth on the critical merger separation for two vortices. 

6    Acknowledgments 

I would like to thank Oliver Biihler for the inspiration for and continual assistance with 
this work. Computational assistance was provided by Jeff Weiss, Keith Julien and Mark 
Petersen. The fellows of the 2003 GFD program also provided useful (and delicious) con- 
tributions. 

References 

[1] D. Stammer, "Global characteristics of ocean variability estimated from regional 
topex/poseidon altimeter measurements," J. Phys. Ocean. 27, 1743 (1997). 

[2] D. Stammer and C. Wunsch, in Warm Water Sphere of the North Atlantic Ocean, 
edited by W. Krauss (Gebriider Bomtrager, Berlin, 1996), pp. 159-194. 

[3] A. Beckmann, C. W. Boning, B. Briigge, and D. Stammer, "On the generation and 
role of eddy variabiUty in the central north atlantic ocean," J. Geophys. Res. 99, 20381 
(1994). 

[4] K. S. Smith and G. K. Vallis, "The scales and equiUbration of midocean eddies: Freely 
evolving flow," J. Phys. Ocean. 31, 554 (2001). 

[5] K. S. Smith and G. K. Vallis, "The scales and equiUbration of midocean eddies: Forced- 
dissipative flow," J. Phys. Ocean. 32, 1699 (2002). 

[6] R. H. Kraichnan and D. Montgomery, "Two-dimensional turbulence," Reports on 
Progress in Physics 43, 547 (1980). 

[7] J. C. McWilliams, "The emergence of isolated coherent vortices in turbulent flow," J. 
Fluid Mech. 146, 21 (1984). 

[8] J. C. McWilMams, "The vortices of two-dimensional turbulence," J. Fluid Mech. 219, 
361 (1990). 

[9] J. B. Weiss and J. C. McWiUiams, "Temporal scaling behavior of decaying two- 
dimensional turbulence," Phys. Fluids A 5, 608 (1993). 

[10] A. Bracco, J. C. McWiUiams, G. Murante, A. Provenzale, and J. B. Weiss, "Revisiting 
freely decaying two-dimensional tmrbulence at millenial resolution," Phys. Fluids 12, 
2931 (2000). 

[11] A. Provenzale, "Transport by cooherent barotropic vortices," Ann. Rev. Fluid Mech. 
31, 55 (1999). 

[12] M. V. Melander, N. J. Zabusky, and J. C. McWilliams, "Symmetric vortex merger in 
two dimensions: causes and conditions," J. Fluid Mech. 195, 303 (1988). 

268 



[13] D. G. Dritschel and D. W. Waugh, "Quantification of the inelastic interaction of un- 
equal vortices in two-dimensional vortex dynamics," Phys. Fluids A 4, 1737 (1992). 

[14] D. G. Dritschel, "A general theory for two-dimensional vortex interactions," J. Fluid 
Mech. 293, 269 (1995). 

[15] G. F. Camevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, and W. R. Young, "Evo- 
lution of vortex statistics in two-dimensional turbulence," Phys. Rev. Lett. 66, 2735 
(1991). 

[16] R. Salmon, Lectures On Geophysical Fluid Dynamics (Oxford University Press, New 
York, 1998). 

[17] J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed. (Springer Verlag, New York, 1987). 

[18] L. M. Polvani, N. J. Zabusky, and G. R. FUerl, "Two-layer geostrophic vortex dynamics, 
part 1. upper v-states and merger," J. Fluid Medi. 205, 215 (1989). 

[19] V. D. Larichev and J. C. McWilliams, "Weakly decaying turbulence in an equivalent- 
barotropic fluid," Phys. Fluids A 3, 938 (1991). 

[20] N. Kukharkin, S. A. Orszag, and V. Yakhot, "Quasicrystallization of vortices in drift- 
wave turbulence," Phys. Rev. Lett. 75, 2486 (1995). 

[21] M. Arhan and A. Colin de Verdiere, "Dynamics of eddy motion in the eastern north- 
atlantic," J. Phys. Ocean. 15, 153 (1985). 

[22] R. W. Griffiths and E. J. Hopfinger, "Coalescing of geostrophic vortices," J. Fluid 
Mech. 178, 73 (1987). 

[23] J. Verron, E. J. Hopfinger, and J. C McWilliams, "Sensitivity to initial conditions in 
the merging of two layer baroclinic vortices," Phys. Fluids A 2, 886 (1990). 

[24] J. Verron and S. Valcke, "Scale-dependent merging of baroclinic vortices," J. Fluid 
Mech. 264, 81 (1994). 

[25] N. Hogg and H. Stommel, "The heton, an elementary interaction between discrete 
baxoclinic geostrophic vortices and its implications concerning eddy heat-flow," Proc. 
Roy. Soc. London 397, 1 (1985). 

269 



DOCUMENT LIBRARY 
Distribution List for Technical Report Exchange - July 1998 

University of California, San Diego 
SIO Library 0175C 
9500 Oilman Drive 
Lajolla, CA 92093-0175 

Hancock Library of Biology & Oceanography 
Alan Hancock Laboratory 
University of Southern California 
University Park 
Los Angeles, CA 90089-0371 

Gifts & Exchanges 
Library 
Bedford Institute of Oceanography 
P.O. Box 1006 
Dartmouth, NS, B2Y 4A2, CANADA 

NOAA/EDIS Miami Library Center 
4301 Rickenbacker Causeway 
Miami, FL 33149 

Research Library 
U.S. Army Corps of Engineers 
Waterways Experiment Station 
3909 Halls Ferry Road 
Vicksburg, MS 39180-6199 

Marine Resources Information Center 
Building E38-320 
MIT 
Cambridge, MA 02139 

Library 
Lamont-Doherty Geological Observatory 
Columbia University 
Palisades, NY 10964 

Library 
Serials Department 
Oregon State University 
Corvallis, OR 97331 

Pell Marine Science Library 
University of Rhode Island 
Narragansett Bay Campus 
Narragansett, RI 02882 

Working Collection 
Texas A&M University 
Dept. of Oceanography 
College Station, TX 77843 

Fisheries-Oceanography Library 
151 Oceanography Teaching Bldg. 
University of Washington 
Seattle, WA 98195 

Library 
R.S.M.A.S. 
University of Miami 
4600 Rickenbacker Causeway 
Miami, FL 33149 

Maury Oceanographic Library 
Naval Oceanographic Office 
Building 1003 South 
1002 Balch Blvd. 
Stennis Space Center, MS, 39522-5001 

Library 
Institute of Ocean Sciences 
P.O. Box 6000 
Sidney, B.C. V8L 4B2 
CANADA 

National Oceanographic Library 
Southampton Oceanography Centre 
European Way 
Southampton S014 3ZH 
UK 

The Librarian 
CSIRO Marine Laboratories 
G.RO. Box 1538 
Hobart, Tasmania 
AUSTRALIA 7001 

Library 
Proudman Oceanographic Laboratory 
Bidston Observatory 
Birkenhead 
Merseyside L43 7 RA 
UNITED KINGDOM 

IFREMER 
Centre de Brest 
Service Documentation - Publications 
BP 70 29280 PLOUZANE 
FRANCE 



50272-101 

REPORT DOCUMENTATION 
PAGE 

1. REPORT NO. 
WHOI-2004-03 

3. Recipient's Accession No. 

4. TtUe and Subtitie 

Conceptual Models of the Climate 
2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics 

5. Report Date 
February 2004 

7.Auttior(s) NeilJ. Balmforth, Director, John Hinch, Principal Lecturer 8. Performing Organization Rept No. 

WHOI-2004-03 

9. PerTorming Organization Name and Address 

Woods Hole Oceanographic Institution 
Woods Hole, Massachusetts 02543 

10. Projectn'asl(/Work Unit No. 

11. Contract(C) or Grant(G) No. 

(C)     N00014-97-1-0934 
(g)    OCE 98-10647 

12. Sponsoring Organization Name and Address 

Office of Naval Research 

13. Type of Report & Period Covered 

Technical Report 

14. 

15. Suppiementary Notes 

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-2004-03 

16. Abstract (Limit: 200 words) 

Non-Newtonian fluids occur commonly in our world. These fluids, such as 
toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are 
different from Newtonian fluids and have a number of additional material 
properties. In general, these differences arise because the fluid has a 
microstructure that influences the flow. In section 2 we will present a collection of 
some of the interesting phenomena arising from flow nonlinearities, the inhibition 
of stretching, elastic effects and normal stresses. In section 3 we will discuss a 
variety of devices for measuring material properties, a process known as 
rheometry. 

17. Document Analysis     a. Descriptors 
fluids 
flow 
Non-Newtonian 

b. identifiers/Open-Ended Terms 

c. COSATI Fieid/Group 

18. Availability Statement 

Approved for public release; distribution unlimited. 

19. Security Class (This Report) 

UNCLASSIFIED 
20. Security Class (This Page) 

21. No. of Pages 

306 
22. Price 

(SeeANSI-Z39.18) See Instructions on Reverse OPTIONAL FORia 272 (4-77) 
(Formerly NTIS-35) 
Department of Commerce 


