

AFRL-IF-RS-TR-2004-67

Final Technical Report
March 2004

ORGANICALLY ASSURED AND SURVIVABLE
INFORMATION SYSTEMS (OASIS) TECHNOLOGY
TRANSITION ASSESSMENT (OTTA)

Wetstone Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K128, N684, P004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-67 has been reviewed and is approved for publication

APPROVED: /s/

PATRICK M. HURLEY
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2004

3. REPORT TYPE AND DATES COVERED
Final Sep 01 – Jun 03

4. TITLE AND SUBTITLE
ORGANICALLY ASSURED AND SURVIVABLE INFORMATION SYSTEMS
(OASIS) TECHNOLOGY TRANSITION ASSESSMENT (OTTA)

6. AUTHOR(S)
Mike Duren

5. FUNDING NUMBERS
C - F30602-01-C-0207
PE - 63760E
PR - K128
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Wetstone Technologies
17 Main Street, Suite 237
Cortland New York 13045

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-67

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Patrick M. Hurley/IFGA/(315) 330-3624/ Patrick.Hurley@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This effort examined a development beneath the Defense Advanced Research Project Agency's (DARPA's) umbrella
program, OASIS (Organically Assured and Survivable Information Systems). The focus of this effort was on the
identification of promising technology and assessing the readiness, applicability, and maturity of research and
technology derived from or created during the research process. Effective and rapid transition of new technology is
essential to the nation's security. With advancements in computing and with States worldwide becoming increasingly
technologically sophisticated, we must create an environment that not only fosters cutting edge research, but does so in
a way that considers how this research can be deployed most effectively and efficiently. Efficiency must always be a
consideration in planning and performing research. It is supposed here that, in some cases, an effective transition
environment can improve the quality of research, particularly in the output of research projects, and that early
assessment is one means to provide feedback to the research processes at a time when important research decisions
are being made or need to be made.

15. NUMBER OF PAGES
56

14. SUBJECT TERMS
Information Assurance, Technology Transition, Organically Assured, Survivable
Information Systems 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1 INTRODUCTION... 1
1.1 DOCUMENT .. 1

1.1.1 Purpose ... 1
1.1.2 Disclaimer... 1

2 PROJECT OVERVIEW .. 2
2.1 BACKGROUND.. 2
2.2 OBJECTIVES ... 3
2.3 TASKS AND PRODUCTS... 3

2.3.1 Technology Analysis ... 3
2.3.2 Transition Plans & Designs.. 4
2.3.3 Integration Experiment ... 4

3 TECHNOLOGY ANALYSIS AND SELECTION .. 5
3.1 PROJECT SUMMARY ... 5
3.2 OASIS PROJECT CLASSIFICATION ... 13
3.3 SELECTED TECHNOLOGY ... 17

3.3.1 Autonomix ... 17
3.3.2 Distributed Intrusion Tolerant Database ... 18
3.3.3 Aspect-Oriented Assurance... 18
3.3.4 PASIS .. 19
3.3.5 Enterprise Wrappers for Windows.. 19

4 PROJECT METHODOLOGY.. 20
4.1 INTEGRATION EXPERIMENT PLAN.. 20

4.1.1 Integration Target: Seeing Stone ... 21
4.1.2 Integration Approach.. 27
4.1.3 Assessment Process... 29

4.2 FINAL INTEGRATION STATUS ... 31

5 FINDINGS... 32
5.1 INTEGRATION PROCESS BY SUBJECT ... 32

5.1.1 Automonix Integration Process... 32
5.1.2 Pasis Integration Process ... 36
5.1.3 Aspects Integration Process.. 38
5.1.4 ITDB Integration Process ... 40
5.1.5 Wrappers Integration Process .. 43

5.2 CONCLUSION.. 47

6 REFERENCES.. 50
6.1 PROJECT DOCUMENTS.. 50
6.2 REFERENCES .. 50

i

List of Figures

FIGURE 1 – SEEING STONE OPERATIONAL ENVIRONMENT ... 22
FIGURE 2 – SEEING STONE FUNCTIONAL ARCHITECTURE .. 23
FIGURE 3 – INTEGRATION CONFIGURATION ... 28

List of Tables

TABLE 1 — OASIS PROJECT SUMMARY... 5
TABLE 2 — PROJECT CLASSIFICATION: PROJECTS RELATED TO SYSTEM BUILDING...................... 15
TABLE 3 — PROJECT CLASSIFICATION: PROJECTS RELATED TO AIDS.. 16
TABLE 4 — INTEGRATION STATUS BY SUBJECT.. 31

ii

1 Introduction

1.1 Document

1.1.1 Purpose

This Program Final Technical Report contains the results and findings for the OASIS
Technology Transition Assessment (OTTA) project. It documents the accomplishments
of the project and makes recommendations based on the research and development work
performed within the project, in its entirety. This report is provided as required by the
Statement of Work (SOW) under Air Force Research Laboratory (AFRL) contract
F30602-01-C-0207. This report serves as the Contract Data Requirements List (CDRL)
CLIN 0002, Item A004 for the said contract.

1.1.2 Disclaimer

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the defense advanced research projects agency or the U.S. Government.

1

2 Project Overview

2.1 Background
Successful rapid transition of technology to operational environments requires early
insertion of promising technologies into military environments, infrastructures, and
experiments. In many cases, research that is ongoing can positively impact operational
readiness and provide critical input back to the research process. This effort examined a
broad range of Information Assurance (IA) technologies, specifically those under
development within the Defense Advanced Research Project Agency’s (DARPA’s)
Organically Assured and Survivable Information Systems (OASIS) program.

This effort was focused on the identification of promising technology and assessing the
readiness, applicability, and maturity of research and technology derived from or created
during the research process. Effective and rapid transition of new technology is essential
to the nation’s security. With advancements in computing and with countries worldwide
becoming increasingly technologically sophisticated, we must create an environment that
not only fosters cutting edge research, but does so in a way that considers how this
research can be deployed most effectively and efficiently. Efficiency must always be a
consideration in planning and performing research. It is supposed here that, in some
cases, an effective transition environment can improve the quality of research,
particularly in the output of research projects, and that early assessment is one means to
provide feedback to the research processes at a time when important research decisions
are being made or need to be made.

Assessment can also help determine the relevance and value of a particular technology to
the operational theater. It should be cautioned, however, that technology assessment such
as was performed on this project is not necessarily an effective means for valuation of a
technology or research area. The separation between researchers and implementers is
necessary in order to give the research community the creative freedom that enables
innovation without significant constraints imposed through operational and deployable
system requirements. This is not to suggest that research and operations should not share
a common high-level goal. For example, in the OASIS program, the focus of the
research is on survivable systems and it is clear how such systems can benefit operational
systems.

It is our hope that this project provides and has provided some insightful and useful
feedback to individual OASIS projects and to the OASIS program as a whole. In

2

addition, we hope the output from this project is helpful in understanding how the
transition process can be improved.

2.2 Objectives
The top-level objective of this project is to assess OASIS technologies for transition
readiness. The general process followed for this assessment is as follows:

� Identify OASIS program(s) that fit a model for early transition and adoption
� Develop preliminary designs and recommendations for the integration of the

promising technologies into operational environments and exercises
� Facilitate the prototype integration of these results into operational experiments(s).

By defining and executing an operational experiment, selected technologies from OASIS
could be thoroughly exercised by integrating them into an existing system. This process
enables us to get close to a particular technology and its implementation. As part of this
assessment, a well-defined, systematic process was developed in order to provide
structure during the assessment. This process also enabled us to report our results in a
consistent fashion.

2.3 Tasks and Products
This section contains an overview of the tasks defined for the project.

2.3.1 Technology Analysis

Available OASIS projects are to be reviewed to determine those projects having the
highest potential for a successful early transition. Information for the assessment is to be
extracted from data generated by the projects themselves, including briefings,
demonstrations, reports, and publications, and from interviews with their respective
Principal Investigators (PIs), Sponsors, and potential users.

With the aid of AFRL, acquire executable versions of, and documentation for, candidate
OASIS products. Meet with the source project teams as necessary to understand how the
products can be integrated and/or used with a target system. Run small, preliminary
experiments to validate the interfaces and functionality of each candidate. Prepare a
report that documents the findings of the product qualification task and identifies any
candidates that are not ready for immediate transition.

3

2.3.2 Transition Plans & Designs

For each high-potential transition candidate, a transition plan is to be developed that
designates a transition experiment and the modifications and integration steps necessary
to effect the experiment. AFRL, PIs, potential transition partners, and potential users are
to be consulted with regard to specific technology selections, experiments, and transition
approaches.

Preliminary transition designs are to be prepared for the highest potential candidate(s).
Technology(s) will be mapped to a specific operational need, such as an experiment or
exercise. The preliminary design is to describe the integration and experiment approach,
including consideration of goals, objectives, experiment guidelines, evaluation criteria,
experiment definition, and qualified transition partner(s).

2.3.3 Integration Experiment

Build, integrate, and test an integration experiment as planned. Communicate with the
OASIS source project teams as necessary. Prepare a report that summarizes the
experience of integrating each OASIS product, its behavior, stability, and performance.
Demonstrate the integration experiment on two occasions, at AFRL and at an OASIS PI
conference.

4

3 Technology Analysis and Selection
This task has evolved over time as the initial work in the project focused on analysis of
the complete OASIS project and all of the research projects therein.

3.1 Project Summary
The following glossary of the current OASIS projects was prepared in conjunction with
the initial OASIS project survey using information provided by AFRL. The table served
as a quick reference guide when comparing the various projects.

Table 1 — OASIS Project Summary

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

A Scalable
Intrusion-
Tolerant
Architecture for
Distributed
Services
(SITAR)

Feiyi Wang,
MCNC

http://projects.an
r.mcnc.org/SIT
AR/

Develop prototype server cluster
based on proxy front ends to
redundant COTS servers, voting
results, with degree of voting
dependent on overall system
survivability posture. Also develop
system models for prototype
architecture to support reasoning
about system behavior and
system “health”

System design/
composition:
servers; also
System modeling

Redundancy,
graceful
degradation,
diversity, and
dynamism.

Distributed
Framework for
Perpetually
Available and
Secure
Information
Systems
(PASIS)

Greg Ganger,
CMU;

http://pasis.ices.
cmu.edu

Apply fragmentation, scattering,
redundancy techniques using
threshold cryptography to
prototype data storage
subsystems to assess
engineering tradeoffs, usability

System design/
composition:
client, server

Redundancy,
redundancy
management,
disperse/ hide
sensitive data

Tolerating
Intrusions
Through Secure
System
Reconfiguration
(Willow)

Alex Wolf, U. CO
J. Knight, U. VA
P. Devanbu UC
Davis

http://www.cs.col

orado.edu/serl
/its/

Develop and demonstrate prototype
system showing graceful
degradation through
reconfiguration as attacks/ failures
occur, using Software Dock for
software distribution and modeling
overall system behavior.

System design/
composition,
System
modeling/
assurance

Graceful
degradation,
self monitor and
control

5

http://projects.anr.mcnc.org/SITAR/
http://projects.anr.mcnc.org/SITAR/
http://projects.anr.mcnc.org/SITAR/
http://pasis.ices.cmu.edu/
http://pasis.ices.cmu.edu/
http://www.cs.colorado.edu/serl/its/
http://www.cs.colorado.edu/serl/its/
http://www.cs.colorado.edu/serl/its/

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

Engineering a
Distributed
Intrusion
Tolerant
Database
System using
COTS
Components

Peng Liu, UMBC

http://www.resea

rch.umbc.edu/
~pliu/ItDBMS/i
ndex.html

Detect, contain, mask, assess
damage, and recover from
malicious transactions submitted
to COTS relational database.

System design/
composition:
application

Self-Protecting
Mobile Agents

Lee Badger, NAI
Labs;
http://www.nai.
com/nai-
labs/asp-
set/environme
nts/spma.asp

http://www.nai.c
om/ research/
nailabs/
secure-
execution/
self-
protecting.asp

Develop and prototype agent-based
software system supporting
computation on potentially hostile
platforms, using Aglet
infrastructure with heartbeats,
periodic re-obfuscation

Programming
infrastructure,
attack
prevention/
system design/
composition:
application

Redundancy and
redundancy
management,
self-monitoring,
disperse/
obscure
sensitive code/
data

Semantic Data
Integrity

David Rosenthal,
ORA;
www.oracorp.c
om/

http://www.oracor

p.com/ projects/
Current/
DataIntegrity.ht
m

Develop and demonstrate
techniques for detecting and
repairing damage to the integrity
of stored images, includes
hierarchical hashing schemes
(DSI mark).

System design/
composition:
application

Graceful
degradation

Cornell On-line
Certification
Authority
(COCA)

Fred Schneider,
Cornell
University,
http://www.cs.
cornell.edu/
home/ ldzhou/
coca.htm

On-line Certification Authority

6

http://www.research.umbc.edu/~pliu/ItDBMS/index.html
http://www.research.umbc.edu/~pliu/ItDBMS/index.html
http://www.research.umbc.edu/~pliu/ItDBMS/index.html
http://www.research.umbc.edu/~pliu/ItDBMS/index.html
http://www.nai.com/nai-labs/asp-set/environments/spma.asp
http://www.nai.com/nai-labs/asp-set/environments/spma.asp
http://www.nai.com/nai-labs/asp-set/environments/spma.asp
http://www.nai.com/nai-labs/asp-set/environments/spma.asp
http://www.nai.com/nai-labs/asp-set/environments/spma.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://dev.nai.com/nai_labs/asp_set/environments/self-protecting.asp
http://www.oracorp.com/
http://www.oracorp.com/
http://www.oracorp.com/1999/semanticdataintegrity.htm
http://www.oracorp.com/1999/semanticdataintegrity.htm
http://www.oracorp.com/1999/semanticdataintegrity.htm
http://www.oracorp.com/1999/semanticdataintegrity.htm
http://www.oracorp.com/1999/semanticdataintegrity.htm
http://www.cs.cornell.edu/home/ldzhou/coca.htm
http://www.cs.cornell.edu/home/ldzhou/coca.htm
http://www.cs.cornell.edu/home/ldzhou/coca.htm
http://www.cs.cornell.edu/home/ldzhou/coca.htm

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

New approaches
to mobile code:
reconciling
execution
efficiency with
provable
security

Michael Franz,
UCI

http://www.ics.
uci.edu/
~franz/
ITS.html

Develop and demonstrate new
mobile code transportation
schemes that support the
deployment of large mobile
programs at a much better
performance point than current
solutions (e.g., Java) and with
guaranteed statically verifiable
security (i.e., representations that
guarantee that any program
written in the language will be
type-safe).

Programming
infrastructure.
Error/ Attack
prevention.
Provide
underlying
infrastructure for
creating,
distributing, and
executing type-
safe programs.

Hardened Core

A Binary Agent
Technology for
COTS Software
Integrity

Dick Schooler,
InCert, Anant
Agarwal

http://www.inc
ert.com/
research/
cots-int/
project.html

Develop and demonstrate
technology to instrument pre-
existing binaries to detect
violations of policy (e.g. out of
bounds memory references,
including buffer overruns, memory
leaks) and report to system
monitoring software.

Programming
infrastructure.
Error/ attack
detection and
containment.
Provide
underlying
infrastructure for
detecting policy
violations in
running
programs

Scaling Proof-
Carrying Code
to Production
Compilers and
Security
Policies

Andrew Appel,
Princeton,

Zhong Shao, Yale
U., Ed Felten

http://www.cs.pri
nceton.edu/
sip/ projects/
darpapcc.php
3 and

http://flint.cs.yale
.edu

Develop and demonstrate
programming languages and
infrastructure to support
widespread deployment of type
safe mobile code programs
together with proofs of advanced
security policies that can be
checked by the recipient.

Programming
infrastructure.
Error/ Attack
prevention and
detection.
Provide program
development and
execution
infrastructure.

Hardened core
(smaller TCB);
abstraction
(disperse/
obscure
sensitive data);
Enforcement
via formal
specification
and verification;
self-monitor and
control; ACLs &
authentication

Sandboxing
Mobile Code
Execution
Environments

Tim Hollebeek,
Cigital

http://www.rstcor
p.com/researc
h/sandboxing.
html

Develop software to detect and
contain attacks attempting to
exploit scripting mechanisms on
Windows platforms.

Programming
infrastructure:
error/ attack
detection,
containment,
reporting.

Access control /
intrusion
detection

7

http://www.ics.uci.edu/~franz/ITS.html
http://www.ics.uci.edu/~franz/ITS.html
http://www.ics.uci.edu/~franz/ITS.html
http://www.ics.uci.edu/~franz/ITS.html
http://www.incert.com/research/cots-int/project.html
http://www.incert.com/research/cots-int/project.html
http://www.incert.com/research/cots-int/project.html
http://www.incert.com/research/cots-int/project.html
http://www.incert.com/research/cots-int/project.html
http://www.cs.princeton.edu/sip/projects/darpapcc.php3
http://www.cs.princeton.edu/sip/projects/darpapcc.php3
http://www.cs.princeton.edu/sip/projects/darpapcc.php3
http://www.cs.princeton.edu/sip/projects/darpapcc.php3
http://www.cs.princeton.edu/sip/projects/darpapcc.php3
http://flint.cs.yale.edu/
http://flint.cs.yale.edu/
http://www.rstcorp.com/research/sandboxing.html
http://www.rstcorp.com/research/sandboxing.html
http://www.rstcorp.com/research/sandboxing.html
http://www.rstcorp.com/research/sandboxing.html

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

A Compre-
hensive
Approach for
Intrusion
Tolerance
Based on
Intelligent
Compensating
Middleware

Amjad Umar,
Telcordia

http://govt.argre
enhouse.com/
intrumid/

Develop more a generic approach
for robust middleware through
application of fragmentation,
redundancy, scattering (FRS)
techniques to a wide range of
COTS middleware technologies
including CORBA, Message-
Oriented-Middleware (MOM),
VoIP, and WAP.

System design/
composition:
middleware

Disperse/ obscure
sensitive data,
deception,
graceful
degradation,
dynamism

Intrusion
Tolerance
Using Masking,
Redundancy,
and Dispersion

Janet Lepanto,
William
Weinstein,
Draper
Laboratory

Develop and demonstrate system
architecture to protect servers
against attack, using redundant
proxy servers, masking system
fingerprint to attackers, and
maintaining integrity of COTS
backend database.

System design/
composition:
servers,
application
(databases)

Disperse/ obscure
sensitive data,
deception,
diversity,
dynamism, self
monitor and
control,
recovery/
restoration

Active Trust
Management
for Autonomous
Adaptive
Survivable
Systems

Howie Shrobe,
MIT

http://www.ai.mit
.edu/ projects/
its/ index.html

Build Self-monitoring and adaptive
systems that detect failures, infer
underlying compromises, and
steer computations away from
compromised or questionable
resources.

Programming
infrastructure:
execution, error/
attack detection,
containment, and
reporting. Also
system design/
composition:
application

Hierarchical
Adaptive
Control for QoS
Intrusion
Tolerance
(HACQIT)

Jim Just,
Teknowledge

Develop prototype survivable
COTS-based server cluster for
COTS/ GOTS applications behind
a firewall and with remote access
for critical users via VPN. Cluster
employs redundancy, diversity
and migration, and decoy servers,
internal sensors, adaptive content
and separate communication
paths for control in effort to meet
goal of four hours uptime in the
face of red team attack. Not
dealing with flooding or other
attacks on network infrastructure.

System design/
composition:
servers

No single points
of failure
(redundancy
and redundancy
management),
graceful
degradation
(reconfiguration
, self monitoring
and control)

8

http://govt.argreenhouse.com/intrumid/
http://govt.argreenhouse.com/intrumid/
http://govt.argreenhouse.com/intrumid/
http://www.ai.mit.edu/projects/its/index.html
http://www.ai.mit.edu/projects/its/index.html
http://www.ai.mit.edu/projects/its/index.html

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

Intrusion
Tolerant
Distributed
Object Systems

Greg Tally,
Network
Associates, Inc.,
-- NAI Labs.

Design and develop prototype
intrusion tolerant middleware
(CORBA ORB), based on prior
fault tolerant CORBA work.

System design/
composition:
middleware

1GS: link
encryption,
2GS: firewalls;
no single points
of failure,
graceful
degradation,
diversity, self
monitor and
control,
hardened core
(in firewall)

Dependable
Intrusion
Tolerance

Alfonso Valdes,
SRI
International

http://www.sdl.sr
i.com/
emerald/

Design and prototype intrusion
tolerant server architecture for
intrusion detection application;
tolerance proxy masks redundant
server configuration with degree
of operational redundancy/ voting
controlled based on detected
attack level.

System design/
composition:
server; also
intrusion
detection

Intrusion
Tolerant Server
Infrastructure

Dick O’Brien,
Secure
Computing
Corp.

Prototype intrusion tolerant server
cluster based on hardened
servers and custom hardware at
network layer – Policy enforcing
NIC card – packet filter controlled
from outside host system

System design/
composition:
server.

Graceful
degradation, no
single points of
failure,
diversity,
hardened core

Intrusion
Tolerance by
Unpredictable
Adaptation
(ITUA)

Partha Pal, BBN
(also U. Illinois,
Boeing)

http://www.dist-
systems.bbn.c
om/ projects/
ITUA/
index.shtml

Design and develop middleware-
based mechanisms to make
distributed systems intrusion
tolerant using adaptation,
redundancy, and uncertainty. and
multi-mode redundancy
mechanisms that present
intrusion-tolerant view of system
resources to application.CORBA
base, designed to tolerate hybrid
faults, combines 1GS and 2GS
security mechanisms, brings
awareness and control of
resources for intrusion tolerance.

System design/
composition:
middleware,
application
objects

No single points
of failure,
adaptation,
uncertainty,
dynamism,
graceful
degradation,
incorporate
1GS and 2GS
mechanisms

9

http://www.sdl.sri.com/emerald/
http://www.sdl.sri.com/emerald/
http://www.sdl.sri.com/emerald/
http://www.dist-systems.bbn.com/projects/ITUA/index.shtml
http://www.dist-systems.bbn.com/projects/ITUA/index.shtml
http://www.dist-systems.bbn.com/projects/ITUA/index.shtml
http://www.dist-systems.bbn.com/projects/ITUA/index.shtml
http://www.dist-systems.bbn.com/projects/ITUA/index.shtml

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

Randomized
Failover
Intrusion
Tolerant
Systems
(RFITS)

Ranga
Ramanujan,
Architecture
Technology
Corp. (also
ORA)

http://www.atcor
p.com

Develop and document in handbook
design patterns for survivable
systems resistant to DoS attacks,
based on redundancy with failover
and recovery process when
attacked. Prototype selected
survivability design techniques

System design/
composition

no single points of
failure, graceful
degradation,
diversity,
dynamism,
deception
(hiding,
obfuscation,
dodging)

Applicability of
Model
Predictive
Control (MPC)
to Intrusion
Tolerance

Pavan Allaghatta
or Walt
Heimerdinger,
Honeywell Labs

Model attack and control of
intrusion tolerant system
responses using MPC
mechanisms.

System modeling/
assurance

self-monitoring
and control
(esp. closed-
loop control);
automatic
countermeasur
es
(adaptation?) to
improve
survival
probability

Computational
Resiliency

Steve Chapin,
Syracuse

Intrusion tolerance through
replication, migration and
recovery of processes when
attack is detected. Also formal
model using pi-calculus

Programming
infrastructure:
attack
prevention/
detection/
recovery; also
system modeling/
assurance

Graceful
degradation,
Deception, no
single points of
failure,
dynamism

Intrusion
Tolerant
Software
Architecture

Bruno Dutertre /
Victoria
Stavridou SRI

http://www.sdl.sr
i.com/ dsa/
projects/
itarch/

Develop models of intrusion tolerant
system architectures, analyze
models using game-theoretic
techniques, develop intrusion-
tolerant architectures for existing
systems (GENOA, SEAS).

System modeling/
assurance

Survivability
Analysis of
Networked
Systems

Jeannette Wing,
Tom Longstaff,
CMU

Develop and demonstrate models
and methods for analyzing system
survivability, incorporating
probabilistic behavior and cost
functions.

System modeling/
assurance

Dynamism,
(attack/
defender/
intruder/ system
modeling)

10

http://www.atcorp.com/
http://www.atcorp.com/
http://www.sdl.sri.com/dsa/projects/itarch/
http://www.sdl.sri.com/dsa/projects/itarch/
http://www.sdl.sri.com/dsa/projects/itarch/
http://www.sdl.sri.com/dsa/projects/itarch/

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

Dependence
Graphs for
Information
Assurance of
Systems

Tim Teitelbaum,
Grammatech

Develop tool for exposing control
and data dependencies within a
software component/ system

Programming
infrastructure:
error prevention

Aspect-oriented
Security
Assurance

Tim Hollebeek,
Cigital

Capture security aspects of software
development and make available
to non-security aware developers

Programming
infrastructure:
error prevention

Hardened Core at
reduced cost

Integrity through
Mediated
Interfaces

Bob Balzer,
Teknowledge

http://www.isi.ed

u/ software-
sciences/
integrity-
through-
mediated-
interfaces.html

Develop and demonstrate integrity
protection for COTS (MS-Office)
application documents on
Windows platform, using wrapper
technology

Programming
infrastructure:
error/ attack
detection/
containment,
also system
design/
composition:
application

Hardened core
(application),
disperse/
obscure
sensitive data,
deception

Enterprise
Wrappers for
Windows

Bob Balzer,
Teknowledge,
Mark Feldman,
NAI Labs;
http://www.nail
abs.com;

distribution of
toolkit and
papers at
ftp:ftp.tislabs.co
m/ pub/
wrappers

http://www.pgp.c

om/ research/
nailabs/
secure-
execution/
wrappers-
overview.asp

Develop infrastructure for
distribution and control of
wrappers throughout diverse
(Unix and Windows) system of
systems

Programming
infrastructure:
development and
distribution,
execution, error/
attack
containment,
reporting;
System design/
composition:
system
management

Hardened core
(application),
disperse/
obscure
sensitive data,
deception, self-
monitor and
control

11

http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.isi.edu/software-sciences/integrity-through-mediated-interfaces.html
http://www.nailabs.com/
http://www.nailabs.com/
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp
http://www.pgp.com/research/nailabs/secure-execution/wrappers-overview.asp

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

Autonomix:
Component,
Network, and
System
Autonomy

Crispin Cowan,
WireX

Develop methods for detecting and
preventing damage from
commonly exploited software
vulnerabilities such as buffer
overflows, format bugs, etc.

programming
infrastructure:
error/ attack
prevention and
reporting,
software
execution
integrity. Also
System design/
composition:
clients and
servers

Containment and
Integrity for
Mobile Code

Fred Schneider,
Cornell (Andrew
Myers)

http://www.cs.co

rnell.edu/ fbs/
darpaISO.99/
Project.Site.ht
ml

Develop concepts and infrastructure
to enforce security policies on
low-level programs via type
safety.

Programming
infrastructure:
error/ attack
prevention and
containment.

TCBs, No single
points of failure,
disperse/
obscure
sensitive data,
reconfiguration,
and static
analysis

[NOTE: some of
these apply to
proactive secret
sharing work; is
this part of this
project?]

Intelligent Active
Profiling for
Detection and
Intent Inference
of Insider
Threat in
Information
Systems

Joao Cabrera
(Scientific
Systems) /
Lundy Lewis
(Aprisma)

Investigate the application of
network management systems for
the monitoring, detection and
response of security violations
carried out by insiders.

Programming
infrastructure:
error/ attack
detection, attack
response; attack/
fault
classification

A High Security
Information
System

Joe Johnson, U
South Carolina

Assure high availability of Oracle-
based operational state
emergency management system
against both natural and
maliciously induced failures;
mathematical models of system/
components for evaluation

System design/
composition:
application,
system
management;
system modeling/
assurance

1GS, 2GS, no
single points of
failure,
redundancy,
redundancy
management

12

http://www.cs.cornell.edu/fbs/darpaISO.99/Project.Site.html
http://www.cs.cornell.edu/fbs/darpaISO.99/Project.Site.html
http://www.cs.cornell.edu/fbs/darpaISO.99/Project.Site.html
http://www.cs.cornell.edu/fbs/darpaISO.99/Project.Site.html
http://www.cs.cornell.edu/fbs/darpaISO.99/Project.Site.html

Project Contact, URL Objective Survivability
Focus

Principles
& Techniques

Efficient Code
Certification for
Open Firmware

Matt Stillerman,
Odyssey
Research Corp.

http://www.oraco

rp.com/
projects/
current/
EfficientCode.
html

Detect potentially malicious
firmware (Fcode) programs at
boot time by detecting deviations
from “type safe” behaviors

Programming
infrastructure:
error/ attack
prevention (low
level/ firmware)

hardened core,
self-monitoring
and control

Novel
Applications of
Military Science
to Intrusion
Tolerant
Systems

Matt Stillerman,
Odyssey
Research Corp.

http://www.oraco

rp.com/
projects/
current/
MilitaryScienc
e.html

Identify helpful analogs between
conventional military science and
cyber warfare, intrusion tolerant
systems (e.g., citadels, combined
arms warfare, etc.)

System design/
composition

(all? – paper
study)

Encoded
Program
Counter: Self-
protection from
Buffer Overflow
Attacks

Akhilesh Tyagi,
Iowa State
University

Protect return addresses on stack
and function pointers against
malicious corruption by encrypting
them; attacker cannot alter with
predictable results.

Programming
infrastructure:
error/ attack
prevention/
detection

Obscure sensitive
data

3.2 OASIS Project Classification
In order to facilitate technology transfer and determine which particular OASIS
technologies could be integrated, where, and in what capacity, OASIS projects can be
broadly classified according to their functionality. In our approach, we broadly classified
OASIS projects at the highest level into two basic categories:

� Projects related to contributions in System Building, such as infrastructures, complete
systems, or system components

� Projects related to contributions to the Aids used for system building and information
assurance, such as software tools or methodologies

13

http://www.oracorp.com/projects/current/EfficientCode.html
http://www.oracorp.com/projects/current/EfficientCode.html
http://www.oracorp.com/projects/current/EfficientCode.html
http://www.oracorp.com/projects/current/EfficientCode.html
http://www.oracorp.com/projects/current/EfficientCode.html
http://www.oracorp.com/projects/current/EfficientCode.html
http://www.oracorp.com/projects/current/MilitaryScience.html
http://www.oracorp.com/projects/current/MilitaryScience.html
http://www.oracorp.com/projects/current/MilitaryScience.html
http://www.oracorp.com/projects/current/MilitaryScience.html
http://www.oracorp.com/projects/current/MilitaryScience.html
http://www.oracorp.com/projects/current/MilitaryScience.html

Furthermore, projects classified as related to ‘system building’ can be further classified
as:

Projects related to Architectures and Systems, where Architectures refers to
theoretical infrastructures, models and frameworks, while Systems refers to
implemented systems.

Projects related to design and building of System Components.

Each System Building project can be further classified as:

Implementation or Model.
COTS/Middleware or Proprietary
Database-specific application or Not.

Projects classified as related to Aids can be further classified as related to:

Software Checking, such as checking binaries to detect malicious code
System Analysis, such as formal analysis
Design Techniques, such as how to construct correct software systems.

Each Aids project can be further classified as a:

Tool or a Method.

A summary of this classification approach is shown here, and the resulting categorization
of the individual projects is shown in Table 2 and Table 3.

OASIS Project Classification Criteria

Level 1 Level 2 Level 3

System Building • Architectures/Systems
• System Components

• Implementation
• Model

• COTS/Middleware
• Proprietary

• Database-specific application
• Not database specific

application

Aids • Software checking
• System analysis
• Design techniques

• Tool
• Method

14

Table 2 — Project Classification: Projects Related to System Building

System Building
Level 3 Classification

Level 2
Classification

Project

A
rc

hi
te

ct
ur

e/
Sy

st
em

Sy
st

em
 C

om
po

ne
nt

s

Im
pl

em
en

ta
tio

n

M
od

el

C
O

TS

Pr
op

rie
ta

ry

D
at

ab
as

e
sp

ec
ifi

c

N
ot

 d
at

ab
as

e
sp

ec
ifi

c

PASIS 9 9 9 9
SITAR 9 9 9 9 9
Willow 9 9 9 9
Active trust

management
9 9 9 9

Intr. Tol. Server
infrastr.

9 9 9 9

Dependable intr. Tol. 9 9 9
HACQIT 9 9 9 9
Intr. Tol. Using

masking
9 9 9 9

Intr. Tol. Distributed
Object Systems

9 9 9 9

Intr. Tol. By
Unpredictable
Adaptation

9 9 9 9

High Security
Information
System

? 9 9

Comprehensive
Approach for Intr.
Tol.

9 9 9

Eng. Distr. Intr. Tol.
Database

9 9 9 9

Computational
resiliency

? 9

15

Table 3 — Project Classification: Projects Related to Aids

Aids

Level 2 Classification Level 3 Classification

Project Name Software
checking

System
Analysis

Design
Techniques Tool Method

Encoded Program
Counter

9 9

Efficient Code
Certification for
Open Firmware

9 9

Enterprise
Wrappers

9 9

Integrity through
Mediated
Interfaces

 9 9

Autonomix 9 9

Self-protecting
mobile agents

 9

New approaches
to mobile code

 Infrastructure

Containment and
integrity for
mobile code

 Infrastructure

Sandboxing
mobile code
environments

9 9

Scaling proof-
carrying code

9 Infrastructure

Binary agent
technology

9 9

Dependence
graphs

9 9

COCA 9 Infrastructure

SDI 9 Infrastructure

16

Aspect-oriented
sec. assurance

 9 9

Intr, tol. Software
architecture

 9 Modeling
Develop

architectures

Intelligent active
profiling

 9 9

Applicability of
MPC

 9 Modeling

RFITS 9 9
Survivability of

networked
systems

 9 9

Novel apps. of
military science

 9 9

3.3 Selected Technology
Once the broad categorization of OASIS technologies was made several technologies
were honed in on in order to continue the assessment process. The selection process
considered maturity, applicability, technology stability, as well as input from AFRL.

The following technologies were selected for the assessment:

• PASIS

• Aspect Oriented Programming

• Autonomix

• ITDB: Intrusion Tolerant Database

• Generic Software Wrappers

The remainder of this section introduces each technology

3.3.1 Autonomix

The “Autonomix” project has sought to improve system survivability by removing
vulnerabilities from the operating system and critical applications without requiring

17

special modifications to existing or future applications. Results of this effort have grown
into the Immunix family of products, which includes a hardened Linux operating system
and various tools to eliminate applications’ exposure to common threats. Among the
attacks addressed are: buffer overflows, data format corruption, race conditions, and
stack overflows.

3.3.2 Distributed Intrusion Tolerant Database

The object of the “Engineering a Distributed Intrusion Tolerant Database System Using
COTS Components” project has been to layer intrusion tolerance on top of commercial
database systems in order to provide data survivability with no impact to existing
database products. The overall effort was divided into six focus areas:

Transaction-level Intrusion Detection – adapting existing network intrusion detection
models to database access

Intrusion Isolation – “sandboxing” transactions identified as highly suspicious in an
isolated environment where they can be executed without harm to operational
data

Intrusion Masking – minimizing the potential damage caused by moderately
suspicious transactions at a lower cost than isolation

Multi-phase Damage Location and Confinement – identifying and confining damage
as quickly as possible

Damage Assessment and Trusted Recovery - assess damage caused from an incident
and attempt to repair the system to some known, trusted state.

Self-stabilization – automatically achieving a known level of data integrity as the
environment changes.

3.3.3 Aspect-Oriented Assurance

The goal of the “Aspect-Oriented Security Assurance Solution” project has been to apply
the concepts of Aspect-Oriented Programming (AOP) to facilitate the incorporation of
security practices and procedures into:

New code written by security-unaware programmers, and
Legacy code written with unknown security awareness.

AOP, itself, is a more general programming tool concept in which specific programming
concerns, or aspects, are defined in an abstract grammar. The scope of an aspect can be
narrow, such as substituting one function reference for another, or broad, such as defining

18

a preamble and postamble framework around a sensitive resource reference. Aspects are
consumed by an aspect weaver, which inspects the original source code and transforms
that code in conformance with the aspect. Ignoring specialized terms, the AOP concept is
remarkably similar to previous methods such as precompilers and macro-assemblers. In
each case, the objective is to expand, harden, or otherwise beneficially interpret original
source code, while demanding little or no knowledge of the transformation on the part of
the original source programmer.

Products of the Aspect-Oriented Security Assurance Solution project include an aspect
grammar for security related concerns, a weaver, and a selection of security-related
aspects for application to the C programming language.

3.3.4 PASIS

Survivable storage subsystems have been the objective of the “PASIS” project, where
survivability is meant to include confidentiality, integrity, and high availability in the face
of storage component failures, as well as overt and covert attacks. The design philosophy
for PASIS assumes that no service, node, or user can be fully trusted, and that at any time,
some subset of the entities within the storage-using community will be compromised.
The PASIS approach combines traditional methods of data replication with techniques for
distributed secrets to construct experimental storage subsystems that take unique
advantage of the secret sharing (m of n) technology for securely distributing and sharing
data across multiple nodes. The focus of the project has been to optimize the execution
of these systems to achieve acceptable levels of operational performance. Because the
commercial server-to-storage interface remains unchanged, PASIS data survivability
requires no change to existing applications.

3.3.5 Enterprise Wrappers for Windows

Enterprise Wrappers for Windows, also known as Mediated Connectors, exploits
Windows’ use of dynamically linked libraries to systematically intervene in routine
operations that affect sensitive resources. A framework has been developed that allows
the programmer to construct prolog, postlog, or full substitute modules that enforce
security policy as required with a minimum knowledge of the wrapper mechanism itself.
By focusing on the interface between applications and common Windows systems
services, security policies can be developed and enforced without modification of
existing applications.

19

4 Project Methodology

4.1 Integration Experiment Plan
The goal of the OASIS Integration Experiment is to demonstrate the viability of rapidly
integrating selected OASIS products into an existing Information Assurance application.
Intermediate objectives include determining the applicability of selected products or
technologies to an existing system, the ease with which the products are integrated, and,
to a lesser extent, the apparent effectiveness of the products with regard to their
functional claims. The result may be an assessment of the transition potential for a
subclass of OASIS products and technologies.

In order to successfully support the experiment, the target host application must be
sufficiently:

Mature, so that latent host defects do not obscure the new technologies
Complex, so that several OASIS technologies can be hosted within its architecture
Straightforward, for the integrator to understand, modify, and demonstrate
Open, with access to source code and development engineers.

Based on these criteria, as well as the available schedule, WetStone’s Network Fuzzy
Logic Attack Recognition (NET-FLARE) Intrusion Detection System (IDS) was selected as
the target application to incorporate the selected OASIS technologies. The NET-FLARE

system was renamed to Seeing Stone and will be described in the following sections.
Seeing Stone is a heterogeneous system that includes multiple operating systems, and
various communications and data storage mechanisms.

Previously, a list of high-potential OASIS candidates for rapid technology transfer was
identified based on a review of available program literature, presentations, and product
demonstrations. The objective of the assessment was to select product technologies
based on overall maturity and stability, ease of integration with existing software, and
functional assimilation with regard to information assurance. Five product technologies
were selected as meeting the overall criteria while presenting an acceptable integration-
risk profile:

Autonomix: Component, Network, and System Autonomy
Distributed Intrusion Tolerant Database System using COTS Components
An Aspect-Oriented Security Assurance Solution

20

Perpetually Available and Secure Information Systems (PASIS)
Wrappers for Windows

This Experiment Plan describes the concept, objectives, and approach for integrating
these five OASIS product technologies within the existing Seeing Stone architecture.

4.1.1 Integration Target: Seeing Stone

Seeing Stone has grown steadily through three programs with the goal of realizing an
Intrusion Detection System (IDS) that simplifies the work of the analyst, by means of
computer-aided decision support, and is:

� Flexible in deployment, because few networks are identical or homogeneous
� Scaleable in capacity, because the size range of target networks is large
� Adaptable in detection and correlation, because the threat changes over time
� Field configurable, because analysts have more domain knowledge than engineers
� Easy to use, so that no special skills or training are required for operation.

From its inception, the focus of Seeing Stone’s purpose has been policy-based event
assessment and that concept has remained at the heart of the system throughout its
evolution. Seeing Stone’s Policy Editor and Decision Engine together enable the tailored
review and disposition of network events in real time. Visualization presents events and
event data to the analyst in displays that are tailorable to meet immediate needs.
Subsequent programs, NET-FLARE1 and NET-FLARE2, enhanced the power of the Seeing
Stone system with increased flexibility, deployability, and decision aides.

4.1.1.1 Seeing Stone Operational Environment

The intended operational environment for Seeing Stone is depicted in Figure 1, which
shows Seeing Stone surrounded by the major external components that support or affect
its operation.

21

Sensors

Events

NET -F LARE
Tier n Analyst

Results

Policies

Administrator

Policy Coordination

NET -F LARE
Tier n-1

NET -F LARE
Tier n+1

Collateral
IDS

Collateral
IDS

Figure 1 – Seeing Stone Operational Environment

A Seeing Stone administrator controls and tailors Seeing Stone behavior through the
creation of Policies using Seeing Stone’s graphical Policy Editor. Multiple policies can
be created that optimize for specific situations, such as threat conditions or missions, and
customized for specific sensors. Policies are loaded and executed on initialization, and
subsequently at Administrator command. In support of organizational and distributed
deployment, Policies can also be exported and imported, allowing policy coordination
among Seeing Stone systems based on doctrine and/or technical performance.

Seeing Stone accepts event inputs from a variety of sources: sensors, collateral intrusion
detection systems, and subordinate Seeing Stone systems. Sensors can be either network
or host based, and physically remote as well as local, provided that communications
between the sensor and Seeing Stone are secure. Other detection and network
management systems that produce alarm or event records can be used as event sources by
Seeing Stone, in order to layer Seeing Stone capabilities on top of existing legacy
systems.

When complex deployments involve multiple organizations, hierarchies of command, or
physical distribution, one Seeing Stone system can forward its results to another Seeing
Stone that may be serving as a central clearing house or a command-and-control node.
Operating under different policies, different Seeing Stone nodes can derive different
meanings from the same set of events, depending on their individual missions.

22

The chaining of Seeing Stone systems is symmetric so that large organizations and
hierarchies can be accommodated. Similarly, Seeing Stone results can be forwarded to
other detection or management systems in order to support existing, consolidated
management and reporting systems. However, the richest access to results is provided to
local analysts, who have access to reports and statistics as well as processed event data.

4.1.1.2 Seeing Stone Functional Architecture

Seeing Stone’s functional architecture is illustrated in Figure 2.

Figure 2 – Seeing Stone Functional Architecture

A Seeing Stone system is a multiprocessing (potentially multiplatform), configuration
that consumes events and alarms from sensor systems, analyzes the events singly and in
aggregate to identify attacks in real time, and presents status and recommendations to
using analysts. The process is organized into a series of four stages, with continuity
provided by a central repository containing all events and related decisions. The process
is controlled by a central collection of Policies, which guide the disposition of each event
and decision.

Stage 3Stage 3
AnalysisAnalysis

Stage 2Stage 2
CorrelationCorrelation

Stage 1 Stage 1
Assessment Assessment Stage 4 Stage 4

Forwarding Forwarding

External
Data

Policy
Editor

Policy
Base

VisualizationVisualization

Analyst

Admin

DE DE

TM TM

TM TM

RMRMDEDE DEDECMCM AMAMDE DE

RM RM

RM RM

RM RM

DE = Decision Engine
RM = Receive Module
CM = Correlator Module
AM = Analysis Module
TM = Transmit Module

RM RM LONC LONC

Event
Base
Event
Base

23

4.1.1.3 Stage-1, Event Assessment

Event records are received from upstream sensors, collateral systems, or separate Seeing
Stone systems for an assessment of significance. Event data, fresh from a sensor, is
parsed and normalized by a Receive Module (RM) tailored for that sensor. The resulting
raw event record is transferred to the Stage-1 Decision Engine (DE1), which performs a
series of steps in accordance with the active Policy for the originating sensor. Raw data
is augmented by metadata, then the aggregate is abstracted to create values suitable for
fuzzy-logic assessment.

The resulting composite event record containing raw data, metadata, and abstracted data
is then evaluated against the active assessment rules for its sensor of origin. When an
assessment rule is satisfied, DE1 adds the associated event significance and recommended
CoA to the event record. The completed event record is added to the EventBase and
forwarded to Stage-2. Designed to dispose of events in near real time, Stage-1 is
scalable; many Decision Engines may reside in this stage and assess multiple sensor
inputs in parallel.

The LONC, which monitors a Seeing Stone system’s own platforms and inter-platform
communications, is treated from a dataflow perspective as another symmetric sensor
input. Special significance that may be due LONC events is provided by the Policy
created for LONC inputs.

4.1.1.4 Stage-2, Event Correlation

Event correlation for the detection of attacks has been separated from analysis processing
so that correlations can proceed in parallel, and configurations can scale for anticipated
loads. Stage-2 contains one or more Correlation Modules (CMs) and a Decision Engine
(DE2). Each CM is structured to detect a particular attack so that the correlator can be
focused, configured, and updated as necessary to support specific missions and threat
conditions. Based on the input stream of new events from Stage-1 and on reviews of
prior events from the EventBase, a CM collects statistics and correlates against attack
models using techniques appropriate to the model, which may detect patterns, clusters,
trends, or hypotheses.

When an attack is detected, the CM creates a synthetic event, which is then assessed by
DE2. Consistent with the basic Seeing Stone approach, significance assessment of Stage-
2 synthetic events is controlled by a specific Policy for that activity. DE2 adds metadata,

24

abstracts fuzzy values, and evaluates the entire event record against the rules for attack
detection. As in Stage-1, DE2 adds the associated event significance and recommended
CoA to the event record, stores the record in the EventBase, and forwards the record to
Stage-3.

It is important to note that although events are treated symmetrically throughout Seeing
Stone, events can have significantly different semantic values. Synthetic events created
in Stage-2 represent not just alarms or observations, but the potential detection of an
attack. Similarly, not all Stage-1 events have equal semantic value. In the case of a
distributed attack, many observations must be reviewed to detect the pattern; in other
cases, the presence of a single, significant observation may indicate attack. It is for this
reason that Stage-2 reviews all incoming events after they are assessed by Stage-1.

Stage-2 may contain multiple CMs as necessary to detect anticipated attacks, where some
correlations are very specific, while others are more general in nature. It is also
anticipated that CMs will respond to different stimuli depending on attack model; for
example, some may respond to the arrival of an event record, while others may activate
based on elapsed time.

As appropriate for fuzzy-logic assessment, a Confidence Factor (CF) is assigned to each
correlation that is carried forward through assessment and into Stage-3. CFs allow
evidence to be accumulated and weighed appropriately in subsequent decisions and
assessments.

4.1.1.5 Stage-3, Situation/Risk Analysis

The determination of system status with regard to situation and risk is performed in
Stage-3 by Analysis Modules (AMs), which are similar in form to CMs, but which
operate against different data with different models. Stimulated by the arrival of attack
events from Stage-2, by elapsed time, or other factors, AMs identify changes to
situation/risk as a function of inputs, current state, and pattern correlation. When a
change to situation or risk is detected, the AM generates a synthetic event, which is
transferred to the Stage-3 Decision Engine (DE3) for assessment.

Once again, a Policy created for Stage-3 is employed by DE3 to determine the
significance of the situation/risk change, following the addition of metadata and
abstraction as required. Completed situation/risk events, with significance and CoA, are
added to the EventBase.

25

4.1.1.6 Stage-4, Event Forwarding

The fourth stage supports down-stream reporting of Seeing Stone results to separate
Seeing Stone or other collateral systems. For this activity, an RM is employed to monitor
the addition of events to the EventBase. New events are transferred to the Stage-4
Decision Engine (DE4), which determines, based on the Policy for each down-stream
system, whether or not the event is to be forwarded to that system. Transmit Modules
(TMs), in the converse of RM functionality, accept event records, format them for the
target down-stream system, and negotiate their transfer.

4.1.1.7 Visualization

Visualization (VIZ) is structured to be responsive to the needs of the analyst to select and
report only the events and data of immediate interest. Because the EventBase contains all
event records, including both events from external sensors as well as synthetic events
generated by attack detection and situation/risk analysis, the analyst has access to critical
alerts and correlations using the same mechanisms used against raw events. VIZ is
composed of four major subcomponents:

Status – provides an instantaneous overview of situation/risk and attacks in progress
Summary – graphically portrays the statistics and other correlations that result in the

current system status
Reports – provide an in-depth review of specific statistics and trends as tailored by

the needs of the analyst
Queries – allow the analyst to perform free form, on-line, data mining and correlation

in response to spontaneous changes in system conditions, as well as to test new
theories and attack models.

4.1.1.8 Policy Administration

Seeing Stone’s Policy Editor is used to create all of the policies consumed by the
Decision Engines. Multiple policies coexist within a Seeing Stone system. DE1 policies
are tailored to each different sensor, and all policies are tailored to different threat
conditions and/or missions as appropriate. Regardless of stage, each policy defines three
things about the event or synthetic event considered: 1) how raw data, metadata, or
statistics are to be abstracted for fuzzy evaluation, 2) rules for classifying the event based
on combinations of raw, meta, and fuzzy data, and 3) a recommended CoA for each
possible rule result.

26

No special grammar, predicate language, or knowledge engineering is required to
construct policies, and policies may be as detailed as necessary to achieve the desired
behavior. Because individual policies can become complex, two built-in tools are
available to evaluate policies for completeness and consistency. The completeness check
ensures that all possible cases (combinations of data) will result in the firing of a
classification rule. The consistency check ensures that only one rule will fire for a given
case, and that no rules contain contradictory expressions.

The exchange of policies between Seeing Stone locations is facilitated through import
and export functions, which utilize Extended Markup Language (XML) to achieve full
expressions of the policies, and easy transport between platforms.

4.1.2 Integration Approach

The overall concept of integrating the subject OASIS product technologies with the
existing Seeing Stone IDS application is to apply each OASIS product to a selected Seeing
Stone component, so that Seeing Stone sustains no appreciable change its implementation
or functional characteristics.

4.1.2.1 Integration Configuration

The five OASIS product technologies are to be applied to Seeing Stone components as
shown in Figure 3. In order to avoid unnecessary complexity, the integration target is a
minimized configuration of Seeing Stone containing only one stage. However, as the
figure indicates, sufficient components remain to serve as targets for each of the subject
OASIS subjects. The designated approach for each of the OASIS subjects is outlined in the
following sections.

27

Aspect
Assurance

PASIS

Autonomix

Distributed
Intrusion
Tolerant
Database

Wrappers for Windows

External
Data

Policy
Editor

Policy
Base

VisualizationVisualization Analy
st

Admin

DEDE

RMRM

EventEvent
BaseBase

Figure 3 – Integration Configuration

4.1.2.2 Integrating Autonomix

The Seeing Stone system includes a SNORT network-based intrusion detection sensor, the
profiles of which have been tuned and optimized for Seeing Stone’s use. SNORT itself is
an Open Source C language component that executes over Linux. Seeing Stone’s SNORT
component is to be ported to Autonomix’s hardened Linux and itself hardened using
Autonomix tools as appropriate, such as the SafeStack compiler. No significant changes
to SNORT’s implementation are anticipated.

4.1.2.3 Integrating PASIS

Seeing Stone Decision Engines obtain policies, initialization data, and external data used
in creating event record metadata from conventional files via operating system file
services. These files will be ported to a minimal PASIS storage subsystem selected in
consultation with the PASIS project team. No changes to the subject files, file access
methods, or the Decision Engine implementation are expected.

28

4.1.2.4 Integrating Aspect Assurance

Based on knowledge of Decision Engine internals, an aspect that addresses a vulnerable
or irregular coding construct is to be devised and woven into a broad cross section of the
Decision Engine’s implementation. No coding changes to the implementation are
anticipated to enable weaving, and no functional changes to the resulting component are
expected post weaving.

4.1.2.5 Integrating Intrusion Tolerant Database

All Seeing Stone event records and decisions are journalled within the EventBase, which
is currently implemented using the Microsoft SQL database product. Distributed
Intrusion Tolerant Database (ITDB) components are built to operate over an Oracle
database. Therefore, the EventBase schema is to be ported to Oracle, and the Decision
Engine and Visualization transactions are to be redirected to the Oracle instance via the
ITDB mediation components. Transition of the EventBase from SQL to Oracle is not
expected to require implementation changes to either the Decision Engine or
Visualization.

4.1.2.6 Integrating Wrappers for Windows

Visualization utilizes data that it does not own extensively. Wrapper(s) are to be
developed that enforce communications access policy so that inappropriate data is not
subject to compromise through the subversion of the Visualization component. No
implementation changes to Visualization are envisioned as the result of wrapper
integration.

4.1.3 Assessment Process

A process was required in order to perform the assessment in a structured, well-defined
fashion. The focus of the project was not on researching methodologies for assessing
technologies, however, we found it interesting to consider such research. It’s plausible
that a more formal methodology could be developed and/or applied to the assessment
process, but consideration would need to be made for the variations in technological
approaches, for the fine-grained requirements imposed through deployment, and for the
detailed issues that complicate transition. The introduction of a new technology can have
significant impact on an operational system. Regardless of the effectiveness and maturity
of a specific technology, the impact on a deployed system can be far reaching.

29

Consideration for operator training, complexity, technological dependencies, and impact
on systems must be made.

In this project, a straightforward criterion was defined for the assessment process. The
following assessment steps are defined:

Acquisition. Each OASIS subject is to be acquired directly from the source program
office along with such documentation as may be available.

Qualification. Each OASIS subject is to be inspected to determine disparities between
claims and implementation, as well as release features that may impact the integration
process. Detailed integration steps may be based on the findings of subject qualification.

Independence. Each OASIS subject is to be integrated independently, so that the subject
can be evaluated without interference from the other subjects.

Static Evaluation. Each OASIS subject is to be evaluated based on the prima fascia
effectiveness of the technology with regard to ease of understanding and use, and
practicality.

Development Evaluation. Each OASIS subject is to be evaluated based on the actual
attempt of integration with its designated Seeing Stone target component, with emphasis
on identifying implementation changes that may be required, or other difficulties in
rebuilding or reconfiguring the target component.

Dynamic Evaluation. Each OASIS subject is to be evaluated with regard to any adverse
functional or operational impact to the target Seeing Stone components.

Security Assessment. It is a second-order objective of this project to assess the security
efficacy of each OASIS subject. However, such assessment is optional due to limitations
imposed by the effectiveness of the individual integrations as well as test fixtures and/or
stimulus that may be required in order to activate the subject under controlled
circumstances.

Documentation. Reporting of the complete process from acquisition to transition was on
going with details and plans for transition of the OASIS subjects being documented in
regular status reports.

30

4.2 Final Integration Status
During the contract period, integrations proceeded according to plan, with:

Three subjects successfully integrated and dynamically evaluated
Two subjects disqualified for integration.

Details of the integration status are provided in Table 4.

Table 4 — Integration Status by Subject

Subject Acquisition Qualification Static Development Dynamic Security

Autonomix √ √ √ √ √ √

PASIS √ √ √ √ √

Aspects √ √

ITDB √ √ √ Partial

Wrappers √ √ √ √ √ √

The two Subjects disqualified for integration were Aspects and ITDB. For Aspects, the
methodology and technology were not well developed enough for integration with most
operational systems. While there were some questions about compatibilities between the
Seeing Stone Decision Engine and Aspects, the primary reason for disqualification was
the overall maturity of the Aspects methodology. The concept of the Aspect Oriented
methodology is well intended, but the current implementation is weak and incomplete.
Also, there are security and architecture concerns in cases where an application is not
properly modeled, in particular with multi-programming-language projects.

With ITDB, the approach seems very sound and the sample application provided with the
delivery was helpful and demonstrated the ITDB’s capabilities and its theoretical
approach well. However, the integration of ITDB can be extensive and requires a very
in-depth analysis of a subject database and its design in order to determine vulnerabilities
and sensitive areas. Our team was able to run the ITDB demo and consider how it might
be applied to the Seeing Stone database. We began to modify the Seeing Stone database
based on the ITDB model, however, we quickly discovered that a significant amount of
analysis was required for proper integration and the work was, therefore, abandoned. It is
recommended that more work be performed to assist more general applications in
applying the ITDB.

31

5 Findings

5.1 Integration Process By Subject
This section describes the results of the assessment on a subject-by-subject basis. The
assessments are reported in accordance with the assessment process defined in Section
4.1.3.

5.1.1 Automonix Integration Process

Acquisition. Each OASIS subject is to be acquired directly from the source program
office along with such documentation as may be available.

The Immunix system is a Linux based operating system. Since this was an operating
system different than the target applications operating system, it was necessary to acquire
additional hardware to implement this product. Once hardware was identified the
ImmunixOS 7.0 was downloaded from the vendor website and installed on an Intel-based
computer to be used as the operating environment for the SNORT network sensor
integration. Documentation is thorough and updates were easily accessible via
Immunix’s website. WireX Communications presents this product as a professional and
mature solution.

Qualification. Each OASIS subject is to be inspected to determine disparities between
claims and implementation, as well as release features that may impact the integration
process. Detailed integration steps may be based on the findings of subject qualification.

Research and investigation of the theory behind the security of the Immunix family of
product increased the enthusiasm behind this product. Since there are options of how to
use the security this system offers, it was decided to try implementing the Snort sensor
two ways to verify security enhancements.

Immunix offers protection in its SubDomain kernel for those products that do not allow
compilation of source. One installation configuration is to install only the RPM version
of SNORT. By doing this it is intended to test the SubDomain kernel that protects a
system from vulnerability rot. The classical security solution to vulnerability rot is the
notion of least privilege: the technique of granting subjects in a system precisely the
capabilities they need to perform their function, and no more. Effective use of least

32

privilege minimizes the potential damage that results when a trusted program is
penetrated by minimizing the degree to which the program is trusted.

Stack smashes and format string bugs are popular software vulnerabilities. Immunix 7.0
attempts to limit these attacks by adding FormatGuard and StackGuard to their toolset to
assist in compilation of application binaries. To test this security enhancement, the
source for SNORT will be compiled and the binary produced will also be tested within
the target setup verifying this security enhancement.

Independence. Each OASIS subject is to be integrated independently, so that the subject
can be evaluated without interference from the other subjects.

Independently, the implementation was successful. The SNORT sensor binaries were
installed and configured likewise; the SNORT source was successfully compiled,
installed, and configured. However, some errors had to be overcome.

In the instance of the Source method, the libpcap library and header files were not found
on the system. For this specific version of Immunix, the libpcap-0.4 development
package was installed but produced errors during the compilation of SNORT. It was
necessary to update the library to libpcap-0.6.2-11.7.0.1.i386 rpm before a successful
compilation was accomplished. For the RPM method, a similar error occurred because of
SNORT’s dependence on the libpcap library. Again the updated libpcap library was
downloaded from the RedHat site and installed. With this done, the system worked as
expected. It is important to note at this point the full benefit of integration with
ImmunixOS 7.0 is not achieved since the SNORT and Libpcap-0.6.2-11.7.0.1 binaries are
not compiled using the StackGuard and FormatGuard compilers.

As for the implementation of the product, the final product worked successfully giving an
alerts file, which could be used by Seeing Stone.

Static Evaluation. Each OASIS subject is to be evaluated based on the prima fascia
effectiveness of the technology with regard to ease of understanding and use, and
practicality.

Because of the ease with which SNORT was added to the system an additional module
was added to the Immunix system called WebMin, which is an administrative interface to
Linux. This allowed easier server administration, SNORT administration and also

33

showed yet another example proving the ease with which Immunix’s security
enhancements could be implemented.

A profile was written for the SubDomain kernel to implement the least privilege security
on SNORT as an application. Much work was done to try to counter the security of this
system. Snort configuration files were changed to areas of the file system that were not
defined within the profile. Not only did the system not allow the action but also SNORT
would not start as long as these configurations were in place. However, if the SNORT
configuration were defined for any file location allowed in the profile the system would
function properly. From an administrative standpoint, this type of security is much easier
to manage than User privileges.

Development Evaluation. Each OASIS subject is to be evaluated based on the actual
attempt of integration with its designated Seeing Stone target component, with emphasis
on identifying implementation changes that may be required, or other difficulties in
rebuilding or reconfiguring the target component.

Immunix is a hardened version of Red Hat 7.0. Seeing Stone is hosted on a Windows
2000 Server. Since there is a disconnect between the two operating systems it was
necessary to provide a way for the Windows server to read a file, the SNORT Alerts file
specifically, on a linux-based system. To solve this problem a Samba server was
implemented on the Immunix system. The latest binaries for the Samba server were
acquired from the Immunix website to ensure to maintain the security of the system.
With Samba in place this provided the ability to serve the SNORT log directory as a
windows share. Once the Windows server could access the share, the Alerts file could be
configured for Seeing Stone.

This proved to be a simple and sufficient configuration. No modifications were needed
on the target system and little effort was needed to integrate the SNORT sensor into the
Seeing Stone system.

Dynamic Evaluation. Each OASIS subject is to be evaluated with regard to any adverse
functional or operational impact to the target Seeing Stone components.

A network sensor is usually hosted on an external device. Since implementing the
SNORT sensor on the Immunix host does not change that, there were no ill effects based
on the fact that the system is distributed. Performance tests were run to verify differences
between the SNORT sensor run on Red Hat 7.3 and the SNORT sensor run on Immunix

34

7.0. There did not appear to be any appreciative differences in performance introduced
when the binary for SNORT was compiled on the ImmunixOS with StackGuard and
FormatGuard. Operationally, the additional ‘least privilege’ security implemented using
SubDomain caused no operational problems as long as all file systems were identified in
the profile for SNORT properly.

Security Assessment. It is a second-order objective of this project to assess the security
efficacy of each OASIS subject. However, such assessment is optional due to limitations
imposed by the effectiveness of the individual integrations as well as test fixtures and/or
stimulus that may be required in order to activate the subject under controlled
circumstances.

The overall security assessment for Immunix is very positive. The StackGuard and
FormatGuard components are easy to understand and use, and have the potential to
greatly improve the security of a system, particularly with regard to the damage caused
by an attack. As these technologies improve, the Immunix solution can become a very
viable Linux solution for all types of applications.

This project did not identify any specific security shortfalls with the Immunix system.
There were some concerns and questions, however, that arose with regard to system
maintenance and update. The Immunix web site contains detailed information about the
baseline Lunix system that was used and what Linux updates are included in the system.
This documentation list packages, or Red Hat Package Manager (RPM) packages, that
were compiled with StackGuard/Format Guard and included in the Immunix System 7
distribution. According to the Immunix site, many of the Red Hat 7.0 packages
(approximately 70) were modified in order to be successfully linked with FormatGuard
version of glibc which brings up the general question of how an Immunix system is to be
maintained and how it can be determined that a given update, or RPM package, can be
trusted. This observation can be handled through procedure and based, on the evolution
of the Immunix system, it appears they are considering these issues and trying to make
the process easier. The latest Immunix version, Immunix Secured OS 7.3, deploys a
system utility called up2date that, through automation, enables users to more readily see
what needs updating on a particular system.

As with any application or operating systems, a well-defined security policy should
consider issues about integrity and security. The issue of patch management is
particularly difficult and the process of adding security to a baseline OS such as Red Hat
Linux can complicate this issue. Users will have to take care to ensure their systems are

35

up to date, not just with the base Red Hat update, but with the Immunix-compiled updates
as well.

5.1.2 Pasis Integration Process

Acquisition. Each OASIS subject is to be acquired directly from the source program
office along with such documentation as may be available.

Software and documentation acquisition was slow because of unresponsive original
requests that stemmed from miscommunications on our behalf. Original requests to the
PASIS team were sent to a an incorrect e-mail address. Once contact was made with the
PASIS group, the technology was made available almost immediately. This cooperation
was very helpful.

Once the documentation was received it was sufficient for theoretical concept, but quite
inadequate for implementation. The software was complete and was compiled
successfully.

Qualification. Each OASIS subject is to be inspected to determine disparities between
claims and implementation, as well as release features that may impact the integration
process. Detailed integration steps may be based on the findings of subject qualification.

PASIS requires a considerable amount of analysis to determine the correct
implementation. This system is designed to be configurable to the needs of any
environment. It has taken much investigation to find the optimal configuration for the
Seeing Stone system. However, using the results of the performance tests showed how
flexible this system is. Because of the limitation of hardware, storage nodes were limited
to 2, so some configurations were not tested.

Problems with the product appear to be caused a lack of maturity. PASIS as tested was
very specific in having to match the Linux version the model was created on and
unyielding in its configuration setup. Several attempts were made to set PASIS up on
other Linux versions causing a lot of investigative time before realizing the software was
incompatible with any other version of Linux other than the one the engineering team
created their model with.

Independence. Each OASIS subject is to be integrated independently, so that the subject
can be evaluated without interference from the other subjects.

36

The limited and somewhat confusing documentation made setup of the PASIS system
difficult. While there is some documentation of the concept of PASIS, actual
implementation documentation was inadequate. This caused much trial and error setups
to figure out how things worked before determining the best scenario to test under. Once
this was accomplished, PASIS was ready for integration with the target system.

Numerous tests were performed to determine the best performance scenario for
NET_FLARE. It was discovered during these tests that no matter what the configuration
of PASIS, the file system was incapable of handling excessive load. When numerous
files were sent to the system, the PASIS system would write only 2 files, one 32 KB file
and one 8 KB file and then end with a segmentation fault. There was no debugging or
error information provided making the cause of the failure unknown. Since Samba had to
be used to make the system accessible to a Windows target, it may have been a factor that
contributed to the problems but the objective was to integrate PASIS into our target
environment without modifications. This part of the integration left considerable doubt
to the usability of the product in a production environment.

Static Evaluation. Each OASIS subject is to be evaluated based on the prima fascia
effectiveness of the technology with regard to ease of understanding and use, and
practicality.

Static evaluation for PASIS was based on file accessibility. The prior stages addressed
the best configuration solution for the target system, but the next step was to find a way
to make a LINUX based file system available to a Windows based target. Since PASIS is
setup more to the Linux world and with it running NFS in loopback mode on a client, it
took some research to find a way to make the file system available to yet another client, a
Windows 2000 server. The way this was solved was to use Samba on the PASIS client to
distribute the PASIS file system. It is not clear whether or not using this method to
distribute the files introduces security risks into the system but with the requirement of
least modifications to the target system it was felt this was a viable way to make the file
system available.

Once this was accomplished, PASIS functioned as expected and provided a way for
Seeing Stone to take advantage of its security enhancements.

Development Evaluation. Each OASIS subject is to be evaluated based on the actual
attempt of integration with its designated Seeing Stone target component, with emphasis

37

on identifying implementation changes that may be required, or other difficulties in
rebuilding or reconfiguring the target component.

For the development phase, no changes were made to the target system. Since the target
system resides in a Windows environment and since the Static phase solved the file
accessibility problem this stage had no work required to complete.

Dynamic Evaluation. Each OASIS subject is to be evaluated with regard to any adverse
functional or operational impact to the target Seeing Stone components.

While there were considerable hurdles to overcome when configuring the PASIS file
system for use with Seeing Stone, the actual effect to the system itself were minimal.
There were no changes required to the target other than to point the path locations of
policy files and configuration files to the PASIS system. Using PASIS to store these
crucial files provided a security factor to the system that would otherwise be at risk on the
standard Windows system, especially one with an http port open that is required for
Seeing Stone.

5.1.3 Aspects Integration Process

Acquisition. Each OASIS subject is to be acquired directly from the source program
office along with such documentation as may be available.

From an acquisition point of view, multiple compilers exist to develop Aspects for
different programming languages. This is both good and bad in that the methodology can
be applied to many different programming languages but each Aspect language and its
associated compiler is specific to the language being targeted.

Qualification. Each OASIS subject is to be inspected to determine disparities between
claims and implementation, as well as release features that may impact the integration
process. Detailed integration steps may be based on the findings of subject qualification.

The theory of well-defined Aspects like synchronization free a developer up from dealing
with adding synchronization software throughout the system and can be applied via an
Aspect grammar and compiler. Additionally, primitive security concerns like misuse of
buffers or buffer overruns can be developed as Aspects and applied in an automated
fashion via an aspect compiler.

38

However, the approach for developing Aspects is different depending on the language
under consideration. For AspectJ the developer writes both the core software and the
Aspect software in the same Java like language, and this is then translated into Java. For
the Aspect C++ developer the Aspects are developed in an Aspect language and reside in
their own files. The native C++ core software is developed in its traditional manor.

All the Aspect grammars appear to support wildcards for developing generic Aspects,
although this only works well for very well defined and very limited Aspect functionality.
The reason for this is an Aspect has to produce join points in the core software where the
Aspect will be called or a pattern match where the Aspect belongs. For even well defined
Aspects like synchronization the development of generic Aspects is nearly impossible
because the Aspects have to be developed for the data and or methods of objects that
require synchronization. While abstracting synchronization into an Aspect is still very
useful in that the developer of the core software doesn’t need to know how to allow their
code to be thread-safe, most complex Aspects require intimate knowledge of the core
software that the Aspect is crosscut from, to correctly apply the join points. Finally,
Aspect grammars are reasonably complicated and require a fairly large learning curve to
become proficient in developing Aspects with them.

Implementing Aspects has its advantages in that debug hooks and logging capabilities can
have well defined Aspects and can be applied as needed to legacy and new software. A
system whose Aspects are correctly abstracted will sustain its core structure over time as
new functionality and or aspects are added because the aspects correctly separate
concerns that crosscut the system.

But, the debugging of the system developed using AOP may be more difficult because
bugs could be present in both the Aspect grammars and the core software. Also, the bugs
may not be obvious in either because they only occur in the merged software hence,
debugging of the generated software is required. Debugging generated software is more
difficult than developed software due to the fact that readability suffers greatly when
dealing with generated software. Finally, adding new functionality to a system developed
using AOP may be more difficult in that the new functionality may be required in both
the core software and the Aspect grammars. Incorrectly abstracted Aspects will increase
this problem by applying the new functionality in many places.

Based on the findings at this stage of Integration Process all assessment efforts for this
product were abandoned.

39

5.1.4 ITDB Integration Process

Acquisition. Each OASIS subject is to be acquired directly from the source program
office along with such documentation as may be available.

Acquiring the software and its relative documentation were easily obtained and the point
of contact for the deliverables was available and quite responsive to any and all requests.
Installation of the software components acquired along with configuration of their
demonstration model was adequate but never completely worked. At least one
application consistently refused to operate and this problem was never solved.

Qualification. Each OASIS subject is to be inspected to determine disparities between
claims and implementation, as well as release features that may impact the integration
process. Detailed integration steps may be based on the findings of subject qualification.

The object of “Engineering a Distributed Intrusion Tolerant Database System using COTS
Components” has been to layer intrusion tolerance on top of commercial database
systems in order to provide data survivability with no impact to existing database
products.

All Seeing Stone event records and decisions are journalled with the EventBase, which is
currently implemented using the Microsoft SQL database product. Distributed Intrusion
Tolerant Database (ITDB) components are built to operate over an Oracle database.
Therefore, the EventBase scheme is to be ported to Oracle, and the Decision Engine and
Visualization transactions are to be redirected to the Oracle instance via the ITDB
mediation components. Transition of the EventBase from SQL to Oracle does require
implementation changes. Once the implementation changes are performed, the source
code for the ITDB external applications to inject, monitor and repair suspicious activity is
needed so modifications can be made to further the experiment and testing.

Finally a determination is needed for the triggers that must be programmed in the new
table to key the Intrusion Detection. To do this, much investigation and thought must be
put into how a suspicious transaction will be determined.

Independence. Each OASIS subject is to be integrated independently, so that the subject
can be evaluated without interference from the other subjects.

40

Integration with ITDB was more complex than expected. While the implementation
theory of intrusion detection on a database is all well proven via their demonstration,
much work is needed on any specific application implementation.

Originally, it was theorized that porting the SQL database from Seeing Stone to the
Oracle domain would solve the problem of the difference of databases. When that was
attempted it turned out to be more complicated. What was then decided was to update
Seeing Stone to write directly to Oracle instead of SQL. While this made the integration
task easier with respects to database differences and changing the target database may
contradict some of the guidelines of this project, it was felt that the change was necessary
to further facilitate the evaluation.

Static Evaluation. Each OASIS subject is to be evaluated based on the prima fascia
effectiveness of the technology with regard to ease of understanding and use, and
practicality.

For this step of the integration process, it was important to understand the concept and
usability of the system. To accomplish this it was imperative to get the demonstration
model working. The Mediator and Intrusion detector started without any problems,
however, the Repair Manager more so than not, would get an "execute statement error"
when attempting to send a transaction from the POCI test application. Also no records
were inserted into the Repair_det_logs table. The Containment/Uncontainment Manager
never worked successfully and after starting the process via the "Start DCMgr" option,
the application crashed without an explanation. Finally, the SSM application starts and
there is data displayed in the "All Parameters" window, but nothing ever displays in the
"SSM Log" window.

Based on these issues several questions were submitted to the development team, these
questions are listed below.

1) Is there any more documentation available? The User Manual does not provide
much help in how to use the system. The provided manual is more of a demo
script than a manual. There are no explanations of what each component is and
what exactly it does, nor are there detailed descriptions of the application
interfaces.

2) Is there more recent software? The set of files delivered in the tar archives
contains the debug versions of the MS C++ development DLLs. Is there a
release set of binaries available? Are there newer files?

41

3) Is there an SQL script (or set of scripts) to build the schemas necessary to run the
ITDB system? Since we are integrating ITDB into Seeing Stone, there should be
an easier way to get the necessary tables, users, triggers, etc., into the database
(i.e., one that is not called ORCINEW).

4) Are there any guidelines on what triggers should be added to my tables in order to
invoke the ITDB functionality?

5) Are there any guidelines on how to update the Transaction Patterns file
(TranPatt.ctr) in order to get the Mediator to work correctly with Seeing Stone’s
database?

6) What are the SQL scripts in the Mediator/SQL folder used for? What do I need to
place in this folder in order to get the system to work with Net Flare’s database?

7) What does the Transaction Type file (Unconfine_Log.txt) do for the DCM
application?

Responses from the team were specific and very informative. Not only did they provide
answers to the questions, but also provided some updated software, technical design
documents and research papers regarding system concepts.

Development Evaluation. Each OASIS subject is to be evaluated based on the actual
attempt of integration with its designated Seeing Stone target component, with emphasis
on identifying implementation changes that may be required, or other difficulties in
rebuilding or reconfiguring the target component.

Once the problems of the previous step were solved, the development evaluation stage
began with many obstacles. However, it was expected as the investigation and research
required in the static evaluation stage brought to light many areas that would prove to be
expensive to solve when integrating the ITDB with Seeing Stone. It was decided to
abandon the integration effort because the target application had been altered, additional
programming was necessary to produce the triggers for the specific database functions,
and insufficient guidelines existed to assist the integrator to fully configure the system.

Having said this, it is important to note that the proof of concept was well done and
documented. With more work in the area of configuration, it would be a viable
technology. It is not however, ready as a COTS solution due to the problems discussed
herein.

42

5.1.5 Wrappers Integration Process

Acquisition. Each OASIS subject is to be acquired directly from the source program office
along with such documentation as may be available.

Documentation is bundled with the distribution and contains basic and necessary
information for installing and using wrappers. Upon further investigation of the
documentation received with the software, some sections of the document were missing
and the section of the user manual which describes possible issues with secure wrapped
processes does not provide any information about which operations will be considered
malicious and should be avoided.

Installation problems ranged from missing dlls to the Control Panel applet never working.
This was an error that was overcome by using command line options, but it was a
deterrent during installation.

Qualification. Each OASIS subject is to be inspected to determine disparities between
claims and implementation, as well as release features that may impact the integration
process. Detailed integration steps may be based on the findings of subject qualification.

Installation will install documentation, several examples,utility applications for
registering/unregistering wrappers and monitoring processes.

NT Wrappers project wizard will be added to Microsoft Visual C++.

Independence. Each OASIS subject is to be integrated independently, so that the subject
can be evaluated without interference from the other subjects.

A wrapper is implemented by a Windows NT shared library (DLL). Any program
construction tool capable of building Windows NT DLLs may be used to build a
wrapper’s implementation. Authors used (and recommend) WindowsNT SP4 and
Microsoft Visual C++ to develop and test wrappers

A Tool that monitors calls made by an application to functions in libraries is provided in
the distribution (Smiley.exe). Smiley will not monitor calls to APIs from static libraries
and it will not update itself in response to process creation, termination or dynamic
library (un)loading. When Smiley starts, the display obtains a snapshot of the active
processes on the host. The only circumstance under which a new process will appear in
the list is if it is created with Smiley”s process creation tool. These limitations imply that

43

we need another tool capable of dynamically monitoring processes. Because of this and
because of the decision made to monitor Winsock connections, much investigation was
needed to find what exactly was available to the programmer to configure the wrapper for
the implementation.

Implementation itself was little more than a skilled programmers task, however, put into a
user’s hands without these skills makes the integration not only a major task, but could
put the system at risk both operationally and securitywise.

Static Evaluation. Each OASIS subject is to be evaluated based on the prima fascia
effectiveness of the technology with regard to ease of understanding and use, and
practicality.

Wrappers support only mediation by process scope. The same wrapper may be active in
multiple processes simultaneously if it has been invoked multiple times. Restricting the
mediation by thread or trustee can only be accomplished through conditionality in the
mediation code itself. Mediating by process scope has a consequence that we have to
have a running process in order to install wrappers on it. If a malicious application is
started at one point in time on the system, we need a mechanism to wrap it before any
call from that application is made. Additional software can be developed that will be
notified when the process is started on the system (most likely by WindowsNT system
functions or by wrapping a WindowsNT security manager) and then we can try to install
a mediator on it.

If a malicious program is wrapped, the wrapper must implement a policy that will restrain
its behavior to protect the system. Policies must be written by system and security experts
to cover every security critical operation in a system.

It is highly desirable to have source code or protocol specifications for all programs that
will run on the system, and since this is not always possible, programs must be reverse
engineered or carefully observed during their execution. Observing, no matter how
careful, will not guarantee the developer that that application went through all possible
states and that he can be certain what DLLs are called by the application. An application
might load a DLL at one point during its execution, perform malicious action and then
unload the library. In general, starting an malicious program with unknown behavior
implies that a wrapper(s) must be installed on that process protecting and monitoring all
critical parts of the system, which would introduce overhead.

44

It is not quite clear which operations are considered malicious by the secure-mode
wrapped process (if a secure-mode wrapped process blocks a non-malicious operation it
will prevent the process from operating correctly). The blocked operations are ones that
are found to be rarely used by non-malicious programs, but it still imposes limits to the
developer. Also, it is not possible to mediate functions that accept a variable number of
parameters and functions that are returning more than 8 bytes.

When a process with installed wrappers spawns a new process (via one of Window’s
CreateProcess functions), any self-propagating wrappers from the spawning process will
be installed in the new process as well. The method by which wrappers are propagated
ensures that they are installed in the new process before that process’s main thread begins
execution. Propagated wrappers will have the same nesting relationships in the new
process as they had in the spawning process. No wrapper state is propagated to the new
process and removal of a wrapper from a process has no affect on its presence in
processes to which, or from which, the wrapper was propagated.

Development Evaluation. Each OASIS subject is to be evaluated based on the actual
attempt of integration with its designated Seeing Stone target component, with emphasis
on identifying implementation changes that may be required, or other difficulties in
rebuilding or reconfiguring the target component.

The Seeing Stone target component must have the ability to parse log files created by
wrappers that are deployed on the system. We can also reuse existing parsers by creating
log files with the same structure as logs that we already have a parser for.

When all security critical operations in a system are identified and we have security
policies, it is fairly easy to write a wrapper implementation.

Dynamic Evaluation. Each OASIS subject is to be evaluated with regard to any adverse
functional or operational impact to the target Seeing Stone components.

The technique used to implement mediators imposes some overhead on each call to a
mediated function. This overhead is independent of the number of mediators placed on a
function and also independent of the function being mediated, except for a small amount
of code that copies parameters and is proportional to the number of bytes of parameter.

Tests were performed using IIS and two different wrappers for winsock DLL send and
receive functions. The first wrapper was implemented as a proxy and the second one had
a simple file logging capability (for Seeing Stone).

45

Requests per second

148
150
152
154
156
158
160

No wrappers Proxy wrapper Wrapper with
I/O

Number of hits

89000
90000
91000
92000
93000
94000
95000
96000

No wrappers Proxy wrapper Wrapper with
I/O

Results show that wrappers introduce 1-2% overhead to the IIS server, which is
considered to be minimal.

Security Assessment. It is a second-order objective of this project to assess the security
efficacy of each OASIS subject. However, such assessment is optional due to limitations
imposed by the effectiveness of the individual integrations as well as test fixtures and/or
stimulus that may be required in order to activate the subject under controlled
circumstances.

Wrappers can protect an underlying operating system from malicious programs but it is
assumed that the underlying operating system is functional and that there are no
processes with enough privileges to turn the wrappers off or uninstall them. To prevent
malicious processes to perform certain operations that would circumvent or nullify the
effect of a wrapper every wrapped process can be wrapped in secure mode. A secure-
mode wrapped process expends a small amount of resources attempting to detect and
block these operations. Since it is not generally possible to determine with absolute
certainty whether an operation is malicious – or more generally, part of a malicious
sequence of operations – it is possible that a secure-mode wrapped process will block a
non-malicious operation, preventing the process from operating correctly.

Wrapper implementation must not introduce any additional security risks and it needs to
be designed and coded carefully. Any errors that will result in wrapper termination will
also terminate the whole application that has a wrapper registered to it. If that happens, an
additional mechanism must be in place to perform integrity checks on the application. It
must be applied to both the wrapper and system data files.

46

This technology can be used for a wide variety of security applications. Wrappers are
already developed for safe email attachments, safe web browser activity, safe office
operations, executable corruption detector, protected path, local/remote process tracker,
no interprocess meddling…and much more. It is obvious that this is a valuable security
enhancement when integrated with considerable skill.

5.2 Conclusion
In these parting remarks, we would first like to thank all of the OASIS researchers for
working with us in our assessment; their cooperation enabled us to perform this work.
While our results tend to focus on difficulties encountered in using and deploying the
selected technologies, this is not to say that a given technology or a given research project
is not valuable. The relative maturity of the OASIS technology implementations varies
significantly from project to project and that maturity level greatly affects the degree to
which a technology can be deployed.

In general, the maturity levels of the technology from most the Subjects were low. This
is to be expected as researchers are trying to prove their methods or innovative
approaches. Researchers innovating to create new, more advanced technologies are
focusing on new methodologies and on sound research principles that will help ensure
that a given approach is viable on its own. However, for effective and rapid deployment
for newly researched technologies, consideration must be made for real-life environments
and, in the case of survivable systems, the operational environment must be considered
during the research process. This presents a problem in that researchers are typically not
skilled implementers and do not necessarily possess the same experience as an expert in
the field and their goals are not necessarily the same.

For deployment, system designers must often consider the more broad impact that a
particular piece of technology has on a system, such as training, complexity, or
interoperability. Also, quality standards such as SEI-CMM or ISO/IEC 9001 for software
and system development are often important considerations for government and
commercial software development efforts and system integration jobs. In military
applications, the DITSCAP process is an integral part of operational system security and
focuses on the technology being deployed, the target operational environment
requirements, and the defined processes that go along with a particular system. These
processes are all considerations that are made at some point in the deployment process,
whether it is during design and development, system planning and deployment, or system
operation. It is argued here that in most circumstances researchers cannot be restrained

47

by such considerations as the CMM or DITSCAP. These processes are complex and their
influence on the research process would be negative.

To overcome this problem, it is suggested that researchers team more closely with
developers and integrators during the research process. Through teaming or through
separately funded efforts, skilled implementers can work directly with researchers to
develop quality implementations that represent the work of the researcher and that
consider deployment issues. Within this operational experiment for the OASIS program,
we have had the opportunity to experience deficiencies in the technology resulting from
research. In all cases, the research that was studied here was well-intended and well
thought out. Unfortunately, most of the technological components from the projects were
lacking in one sense or another.

There was however, one project that set the standard for maturity and ease of
deployment. The Autonomix project developed technology that was mature, well
documented, and easy to use. Its effectiveness and success in this assessment is not just
based on the maturity of its implementation, it is also based on the results of our static
evaluation. The Autonomix system is autonomous and its deployment does not introduce
significant complexity into a system or network of systems. In addition, the system does
not introduce significant interdependencies on other systems and can be deployed by
swapping out base Linux systems. Note that it’s clear the Autonomix system has
commercial potential and is being licensed commercially. It’s not clear to what degree
the maturity of the technology has been, or will be, instrumental in the commercial
success of Autonomix or if the commercial applicability of the technology and the
commercial ambitions of the Autonomix author forced the technology to reach a higher
level of maturity, however, one might postulate that there is a relationship between these
factors.

In conclusion, we have determined that the largest inhibitor for effective and efficient
assessment is in the maturity of the OASIS technologies. This translates directly to the
deployment problem, specifically how closely the performed operational experiment
mimics actual deployment. Logically, if considerable time is spent achieving operational
status in a mock environment, the same will hold true during a real transition.

During this project, OASIS researchers were quick to point out that their implementations
might not be sufficiently mature. Although implementation maturity is not necessarily
high on the priority list for researchers, certainly placing more emphasis on

48

implementation will serve to facilitate transition into the operational environments
demanding new and innovative approaches.

Clearly, there is a need for more early-on consideration of transition issues and
technology maturity. The process must definitely improve in order to allow operational
experiments such as the one performed under this contract, to effectively provide more
insight and ultimately improve the research – transition – operation pathway.

49

6 References

6.1 Project Documents
Note: The following referenced documents were previously delivered under this effort.

• Program Progress Reports. Recurring monthly; contractor format, electronic
delivery.

• Presentation Material. As required; contractor format.

• Technical Information Report: Selection Criteria / Prioritization.
Initial, 18 January 2002; Final, 18 September 2002.

• Scientific & Technical Report: Experiment Summary Report. 18 September
2002.

• COTS Manuals and Associated Data. As required; commercial format(s).

6.2 References

[COCA] Cornell On-line Certification Authority (COCA) home page,
http://www.cs.cornell.edu/home/ldzhou/coca.htm. Last updated on April 25, 2001.

[DITP] P. Liu, UMBC Lab for Information and System Security, ‘Engineering a Distributed
Intrusion Tolerant Database System using COTS Components,”
http;//www.research.umbc.edu/~pliu/ItDBMS/home.html.

[PASIS] CMU PASIS home page, http://www.ices.cmu.edu/pasis/. Last updated on July 17, 2001.

[SDI] Odyssey Research Associates, Inc., “Semantic Data Integrity.”
http://www.oracorp.com/projects/current/dataIntegrity.html. Last updated January 2,
2001.

[SITAR] R. Wang, MCNC, “SITAR – a Scalable Intrusion Tolerant Architecture.”
http://projects.anr.mcnc.org/SITAR.

[SPMA] Network Associates Technology, Inc., “Secure Execution Environments: Self-Protecting
Mobile Agents,” http://www.nai.com/research/nailabs/secure-execution/self-
protecting.asp. Last updated 2001.

50

http://www.cs.cornell.edu/home/ldzhou/coca.htm
http://www.ices.cmu.edu/pasis/

[Willow] Software Engineering Research laboratory, University of Colorado, ‘Tolerating
Intrusions Through Secure System Reconfiguration.” http://www.cs.colorado.edu/serl/its.
Last updated 2000.

[OASIS] OASIS Site, ‘OASIS Project Summaries’,
http://www.tolerantsystems.org/ProjectSummaries/Project_Summaries.html

51

http://www.cs.colorado.edu/serl/its

	Introduction
	Document
	Purpose
	Disclaimer

	Project Overview
	Background
	Objectives
	Tasks and Products
	Technology Analysis
	Transition Plans & Designs
	Integration Experiment

	Technology Analysis and Selection
	Project Summary
	OASIS Project Classification
	Selected Technology
	Autonomix
	Distributed Intrusion Tolerant Database
	Aspect-Oriented Assurance
	PASIS
	Enterprise Wrappers for Windows

	Project Methodology
	Integration Experiment Plan
	Integration Target: Seeing Stone
	Seeing Stone Operational Environment
	Seeing Stone Functional Architecture
	Stage-1, Event Assessment
	Stage-2, Event Correlation
	Stage-3, Situation/Risk Analysis
	Stage-4, Event Forwarding
	Visualization
	Policy Administration

	Integration Approach
	Integration Configuration
	Integrating Autonomix
	Integrating PASIS
	Integrating Aspect Assurance
	Integrating Intrusion Tolerant Database
	Integrating Wrappers for Windows

	Assessment Process

	Final Integration Status

	Findings
	Integration Process By Subject
	Automonix Integration Process
	Pasis Integration Process
	Aspects Integration Process
	ITDB Integration Process
	Wrappers Integration Process

	Conclusion

	References
	Project Documents
	References

