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STATUS OF EFFORT, ACCOMPLISHMENTS and NEW FINDINGS 

Transient plasma discharges utilizing short (30 to 100 nsec), spatially distributed 
streamers energized by pulsed power have been investigated as a potential new method 
for flame ignition. Experimental results show shorter ignition delay and pressure rise 
time (typically by a factor of 3 for CHU/Air), as well as higher maximum pressure 
compared to conventional spark ignition. These benefits might be of interest for many 
combustion apphcations. 

In all cases significant modification of initial combustion chemistry appears to be 
occurring, leading to more effective combustion over a wider range of parameters, such 
as pressure and fiiel composition. Such effects can have significant impact on operation 
of a rocket, gas turbine, or combined cycle engines, by extending capability and by 
stabilizing transitions between phases. 

Based on studies of quiescent fuel mixtures at the University of Southern California 
(USC), off-campus studies of pulse detonation engine (PDE) ignition at the Naval 
Postgraduate School (NPS), and initial studies of transient plasma enhanced radical 
production, we conclude that transient plasmas have strong potential for improved 
ignition, flameholding, and other combustion enhancement. Future work is planned 
specifically to delineate the production and effect of key species. Collaborations are 
planned to address diagnosis, fuel mixing strategies, and theoretical support necessary to 
develop fundamental understanding and provide a pathway to implementation. 
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SUMMARY OF THE RESEARCH 

Transient plasma discharges were studied for application to the ignition and combustion 
of fuels. The phrase "transient plasma" refers to a transitional phase of plasma, occurring 
during the formative phase of an electrical discharge and typically lasting lO's of 
nanoseconds. For these studies, during the transient phase, an array of streamers was 
produced. Streamer-initiated combustion was studied for a variety of fiiels, under varied 
operating conditions, described in more detail below. 

It was found that improved ignition over a broad range of conditions occurs employing 
this transient phase of plasma for ignition. Substantially reduced ignition delay times 
(factors of 3X were typical [1-3], and under some flowing conditions, even more 
reduction [4]) and other useful results were achieved, partially by employing advanced 
power conditioning technology [5-7]. The method did not require excessive energy for 
implementation. 

As an example, experimental results showed that transient plasma discharge resulted in 
shorter ignition delay and pressure rise time (typically by a factor of 3 for CtU/Air 
quiescent mixture [2, 3, 8 ] and even more for flowing pulse detonation engine ethane-air 
mixtures [4, 8, 9]). We conducted experiments in quiescent fuel air mixtures including 
methane, ethane, propane, butane and octane for various equivalence ratios. Further 
benefits included higher maximum pressure, indicative of improved efficiency. Pulse 
energies were typically 50 mJ to 1 J, demonstrating that energy requirements were 
comparable to traditional spark ignition. 

The rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- 
octane mixed with air ignited by transient plasma discharges were investigated and 
compared with spark discharge ignition. The transient plasma discharges cannot be 
produced by conventional ignition systems [10, 11]. Moreover, the ignition method 
examined here is entirely different from "plasma jets [12]," whereby sparks are 
discharged in a prechamber (sometimes containing different reactants) and radials/ions 
thereby generated expand via gasdynamics into the main combustion chamber. The 
system for quiescent studies has no prechamber or auxiliary reactants. 

A major difference between pulsed transient plasma discharges and spark discharges that 
is visually apparent is the production of multiple simultaneous discharge channels. This 
volume distribution causes the initial phase of ignition to occur over a large (compared to 
spark discharge) spatial volume, thus making spatially extensive ignition possible. The 
number of streamer discharge channels can be higher than 100. 

A fiirther major difference is that a significant fraction of electrons in the head of a 
streamer have higher electron energy than a spark discharge [13,14]. The electron energy 
disfribution of a streamer occurring during the transient phase is very inhomogeneous in 
space and time. However, the streamer head will have a high elecfric field, which is 
responsible for ionization and the formation of a plasma. The electron energies are 
sufficient for not only ionization, but also dissociation of hydrocarbons, as well as radical 
production. Therefore, it is reasonable to consider transient plasma for the production of 
spatially extended ignition and higher burning rates. 
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Experimental Setup and Results 

A typical experimental setup used for transient plasma discharge studies in quiescent mixtures is 
shown in Figure 1. A pulsed corona discharge was created by a high voltage pulse generator, 
which provides typically of 60 KV peak voltage, 100 ns pulse width (using a thyratron switch) or 
50 ns (using a pseudospark switch). A commercially available ignition circuit was also used for 
comparisons. These experiments are described in more detail in references 1-4. The pressure 
history was measured with a pressure transducer (ASCX) with response time of 0.1ms (for the 
cylindrical combustion chamber) or with a Kistler presstire transducer (for a pancake combustion 
chamber) with 100 KHz response frequency. Voltage a.hd current were measured with a voltage 
divider (1000:1) and a current transformer (O.IV/A). Pressure, voltage and current signals were 
recorded with a digital oscilloscope (Tektronix 640C). The electric pulse energy was calculated 
from product of voltage and current integrated with respect to time. 

High Voltage DC 
Power Supply 

Current ~PC^ 
Transformer     ^\ , Gas outlet 

Cylinder 

Location of Spark 
Rug at End Plate 

Pressure 
Guage 

Fig.l. Experiment setup and cylindrical combustion chamber. 

Rod electrode Single pin electrode 

^    c 
J _L 

T—I—r 

1 ring with multi-pins 
(only 4 pins case is shown) 

Multi-rings with 2 pins/ring 
(Only 4 rings case Is shown) 

I       I   Insulation is indicated with shaded palem 

Fig. 2. Various inner electrode configurations for the cylindrical combustion chamber 
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In the cylindrical combustion chamber, experiments were conducted for four kinds of 
electrodes (Fig.2): single pin, 1 ring with multi pin, multi ring with 2 pins each ring, and 
rods. Different electrode structures were intended to produce different numbers of 
ignition sites. In the single pin electrode case, the corona discharge concentrates in a 
narrow space volume, even though the corona discharge is still multi-channeled. 
Therefore, the single pin electrode experiments show single ignition site effects. 1 ring 
with multi-pin electrode and multi-ring with 2 pins per ring electrodes were intended to 
show multi-ignition site effects. The rod electrode results in many (10s to 100s) 
discharge channels simultaneously. For comparison, a spark discharge gap was used that 
has a 1mm gap and was located either at the center or on the end plate of the combustion 
chamber. 

A pressure transducer (Omega PX4201) with 0.2ms response time was adopted, along 
with a digital oscilloscope (Tektronix TDS 420A) to measure the pressure waveform. 
The delay time (defined as the time lapse between the trigger and the pressure rise to 10% 
of its total pressure rise), rise time (defined as the time lapse between the pressure rise to 
10% and 90% of its total pressure rise), and peak pressure were measured fi-om pressure 
waveforms. 

Typical delay and rise times versus energy for discharges in stoichiometric Clii/air and 
other fiiels are shown in the data included as an Appendix. As the energy increased, the 
delay time decreased shghtly, and the rise time was observed to become significantly 
faster with increasing energy. There is an energy value (e.g. typically 350 mJ) above 
which the rise time has its smallest value and remains almost constant. Below this value, 
rise times are relatively long and scatter. This energy level is the "optimum energy" 
because it produces the shortest stable rise time with the lowest energy. The optimum 
energy is higher for leaner mixtures. 

Iso-octane-air mixtures showed behavior similar to the other fuels. As shown in the 
appendix, over a wide range of equivalence ratios (0.8-1.4) and initial pressures (0.2-1.0 
atm), the delay time and the rise time of pulsed corona-ignited flames are shorter than 
those of spark ignited flames. 

To compare ignition behavior between pulsed corona and spark discharges more 
expUcitly, an improvement factor of delay time (rise time) was defined as the ratio of 
delay times (rise times) of flames ignited by spark discharges and pulsed corona 
discharges. For methane-air mixtures, the average values of improvement factors of delay 
times and rise times over an equivalence ratio range of 0.7-1.2 are 3.0 and 3.8, 
respectively. For iso-octane-air mixtures, the improvements are 2.5 and 2.4, respectively, 
over an equivalence ratio range of 0.9 to 1.4. 

The low pressure ignition limit, defined as the lowest pressure under which the flame is 
ignitable in our pulsed corona discharge ignition device, for both methane-air and iso- 
octane-air, is 0.1 atm in the stoichiometric case and varies irom O.latm. to 0.4 atm. for an 
equivalence ratio range from 0.7 to 1.4 for methane-air mixtures or from 0.1 atm. to 0.2 
atm. for an equivalence ratio range from 0.8 to 1.4 for iso-octane-air mixtures. We believe 
that this may be of interest for high altitude reUght applications 
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DISCUSSION 

Experiments show that corona discharge ignition provides shorter (by typically 3x) delay 
and rise times than flames ignited by spark discharge, even at the most favorable spark 
location. 

Geometrical advantages of pulsed corona ignition probably exist because pulsed corona 
discharge creates several hundred discharge channels, fiUing the chamber volume 
compared to one unnecessarily intense channel for spark discharges. If a significant 
fi-action of these channels produce successful ignition kernels, the distance and time each 
kernel must travel to consume its share of combustible mixture is greatly reduced 
compared to a single spark, and thus delay and rise times are decreased. 

The significantly shorter delay times suggest the possibility of creating initial conditions 
for ignition that are different fi-om traditional ignition and enhancing the creation of 
excited species, such as radicals [15]. The presence of electi^ons with greater energy 
during the transient phase qualitatively suggests the possibility of dissociation of fuels into 
fragments, such as hydrogen. The microscopic processes involved are very complex, and 
it was not possible to discover the amount of fragments produced. Thus, it is of interest to 
not only exploit this methodology for possible appHcations, but to also endeavor to better 
understand the physics, through experimental and theoretical studies. The level of effort 
required for a thorough understanding of the microscopic processes is beyond the scope 
of the current effort, but can be addressed through future collaborative experimental and 
theoretical work. 
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The appendix collects figures showing data for ignition of a variety of fuels and fuel 
conditions with transient plasma ignition, and provides comparisons with traditional 
spark ignition. 

Figures 1-3 show the electrical characteristics of a pulsed, transient plasma (sometimes 
termed "corona") discharge in the apparatus for quiescent studies. In the data shown, the 
pulse generator provided a 50KV voltage pulse with 100 ns pulse width and 1 Joule 
energy. The apparatus is shown in the report. The figures also contrast performance with 
arc discharges. 

Figure 4 shows the relation between energy and peak voltage of a transient plasma 
discharge for various electrode structures. Pulsed positive voltage produces 
much higher energy than negative at the same peak voltage. Thinner electrodes have 
lower intercept voltage than thicker electrodes, and brush like electrodes provide the 
highest energy compared to all the other tested electrode structures. 

Figures 5-15 show combustion performance (ignition delay time, pressure rise time and 
peak pressure) for various fuel/air mixtures including methane, propane, iso-butane, n- 
butane and iso-octane, and comparisons with spark ignition. All tested fuel/air mixtures 
have shorter ignition delay (3x for CH4/air) and pressvire rise times (3x for CEU/air) and 
higher peak pressure with pulsed corona ignition compared to spark ignition in a wide 
equivalence region (0.7-1.4 for CIVair) and initial pressure regions (0.2-1.0 atm. for 
CHVair). 

Figure 16 presents data showing that an iso-octane/air mixture can be ignited with 
transient plasma at an initial pressure as low as 0.1 atm. over a very wide equivalence ratio 
region (0.9-1.4). This broadening might be of interest for high altitude rehght of gas 
turbine engines. 

Figures 17 and 18 show the minimum energy for transient plasma ignition variation with 
equivalence ratio, and initial pressure, for CH4/air and CsHg/air. Note that CEU/air can 
be ignited at initial pressures as high as 8 atm. (a pressure close to the pressure in 
automobile spark ignition engines before ignition) with moderate minimum ignition energy. 

Figure 19 shows a comparison between transient plasma ignition with spark ignition in a 
combustion chamber geometrically similar to an automobile engine cylinder. The pulsed 
corona ignition has a shorter (2x) pressure rise time and higher peak pressure than that of 
spark ignition. 

Figure 20 shows the discharge efficiency (the ratio between energy absorbed by a gas to the 
total discharge energy) over a wide energy range for various transient plasma and spark 
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discharges. The transient plasma has significantly (approximately an order of 
magnitude) higher discharge efficiency than that of a spark discharge. 

Figure 21 shows pressure waveforms for a transient plasma discharge in turbulent 
flow conditions. Even in a turbulent flow, the transient plasma can ignite a CBU/air 
mixture under a very lean condition (equivalence ratio: 0.65). 

Figure 22 shows a comparison of pressure waveforms between transient plasma and 
spark ignitions in turbulent flow conditions. Pulsed tiransient plasma ignition has a 
shorter ignition delay time and a higher peak pressure than that of spark ignition. 



Appendix: "Energy-Efficient Transient Plasma Ignition & Combustion" 
AFOSR Grant No. F49620-01-1-0322 M. Gundersen, P.I. 2001 - 2003 

I.       Pulsed corona discharge performance 
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Figure 1: Transient plasma discharge waveforms: (a) energy vs. time. 
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Figure 2: Transient plasma discharge waveforms: (b) voltage vs. time. 
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Figure 3: Transient plasma discharge waveforms: (c) current vs. time. 
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Figure 4: Electrode structure effect: energy vs. peak voltage for various electrode 
structures. 
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II. Combustion performance of various fuels: 

Comparison between pulsed corona discharge and spark ignition 
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Figure 5: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CHVAir, delay time vs. equivalence ratio for various pressures. 
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Figure 6: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CHVAir, rise time vs. equivalence ratio for various pressures. 
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Figure 7: Combustion performance of transient plasma ignition and cornparison with 
spark ignition : CH4/Air, peak pressure vs. equivalence ratio for various pressures. 
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(2) CsHg/Air 
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Figure 8: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CsHg/Air, delay time vs. equivalence ratio for various pressures. 
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Figure 9: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CsHg/Air, rise time vs. equivalence ratio for various pressures. 
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Figure 10: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CsHg/Air, peak pressure vs. equivalence ratio for various pressures. 

12 of 25 



Appendix: "Energy-Efficient Transient Plasma Ignition & Combustion" 
AFOSR Grant No. F49620-01-1-0322 M. Gundersen, P.I. 2001-2003 
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Figure 11 (a): Combustion performance of transient plasma ignition and comparison with 
spark ignition : C4Hio/Air, delay time vs. equivalence ratio for various pressures. 
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Figure 11 (b): Combustion performance of transient plasma ignition and comparison with 
spark ignition : C4Hio/Air, rise time vs. equivalence ratio for various pressures. 
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Figure 12: Combustion performance of transient plasma ignition and comparison with 
spark ignition: C4Hio/Air, (c) peak pressure vs. equivalence ratio for various pressures. 
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Figure 13: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CgHig/Air, delay time vs. equivalence ratio for various pressures. 
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Figure 14: Combustion performance of transient plasma ignition and comparison with 
spark ignition: CgHig/Air, rise time vs. equivalence ratio for various pressures. 
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Figure 15: Combustion performance of transient plasma ignition and comparison with 
spark ignition : CgHig/Air, peak pressure vs. equivalence ratio for various pressures. 
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Figure 16: Low pressure ignition energy vs. equivalence ratio, CsHlg/Air. 
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III. Minimum ignition energy 
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Figure 17: Minimum ignition energy of CKU/Air and CsHg/Air vs. equivalence ratio by 
transient plasma discharge, and comparison with spark discharge ignition. 
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Figure 18: Minimum ignition energy of CH4/Air vs. pressure. Electrode structure: 1 pin 
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IV. Pulsed corona ignition in a car cylinder like combustion chamber 
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Figure 19: Pressure waveform in a car cylinder like combustion chamber and 
comparison with spark ignition. CH4/Air. 
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V. Discharge efficiency 
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Figure 20: Discharge efficiency vs. discharge energy. Comparison between transient 
plasma and spark discharge in two different combustion chambers. 
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VI. Transient plasma Ignition in turbulent flow 

Figure 21: Pressure waveforms of transient plasma ignition in turbulent flow with various 
equivalence ratio. CH4/Air. Electrode structure: threaded rod-cyhnder. 
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Figure 22: A comparison between pressure waveforms of transient plasma and spark 
ignition in turbulent flow. 
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