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Abstract 
The research supported by this grant consisted of developing improved algorithms and 
theory for designing and analyzing robust control systems for spatially interconnected 
systems. There are many examples of such systems, including automated highway 
systems, airplane formation flight, satellite constellations, cross-directional control in 
paper processing applications, and micro-cantilever array control for massively paral- 
lel data storage. One can also consider lumped approximations of partial differential 
equations - examples include the deflection of beams, plates, and membranes, and the 
temperature distribution of thermally conductive materials. Spatially interconnected 
control systems were studied in the context of fractional transformations on temporal 
and spatial shift operators, leading to multidimensional system optimization. These 
techniques were tested in simulation, and on the Cornell Formation Flight test-bed, 
in order to assess the validity of these approaches and to motivate further research. 

Systems of Interest 
The systems of interest that we considered in our research are captured in Figure 1. 
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Figure 1: LEFT: Representative subsystem. RIGHT: Representative control subsys- 
tem. 

Consider a collection of A'' dynamical systems: 

{{xi){t),ri{t),Wi{t),Ziit),yiit)) = Fi{xi{t),Piit),Vi{t),di{t),Ui{t)),   l<i<N,   (1) 

where a representative subsystem is captured in Figure 1, and 



1. Each Fi is a memoryless, nonlinear function, which belongs to some given set !Fi 
(which could contain only one element). Set J^i can be used to capture parametric 
system uncertainty. Each Fi generates a state space system d, as per Figure 1. 

2. Signals r^ and pi are used to capture dynamic system uncertainty, and are required 
to be in some given set Hi. For simpHcity, this is loosely represented by the input- 
output block in Figure 1; in general, set Ui does not have to be defined as pairs of 
inputs and outputs. 

3. Signals Wi and Vi are the interconnection variables. In particular, 

Wi = (lyj.i, • • •, Wi^N),   Vi = (vi.i, • • •, Uj,;v),  Wij = Vj^i,    l<i<N,   l<j<N 

Wij is the signal originating from system i and terminating at system j, and Vij is 
the signal terminating at system i and originating from system j. 

4. Signals Zi capture the performance requirements, which consists of making Zi 
small in some given metric. Signals di capture the exogenous subsystem inputs, and 
consist of disturbances, reference signals, etc. 

5. Signals yi are the local sensor outputs, while signals Ui are the local actuator 
inputs. 

Ultimately, we are interested in control design, and consider interconnections of the 
system described by (1) with what can be considered the control system, depicted in 
Figure 1: 

[ii){t),ri{t),Mt),^iit)) - Fi{t) {Xi{t),pi{t),vi{t),yi{t)),   l<i<N.        (2) 

To place the class of systems in context, when iV = 1, F is a fixed linear function 
and there are no signals p and r (no uncertainty), and no interconnection signals 
V and w, one could pose various induced gain control problems, such as H-infinity 
control, H-2 control, and LI control. One can also consider various extensions and 
combinations of these problems, such as mixed performance objective optimization. 
With an appropriate choice of sets T, U, and signals r and p, this special case can be 
augmented to capture various types of system uncertainty. Many important results 
in this area were established in the last two decades, and this area of research is 
considered mature. 

The research that we have been conducting as part of this grant has been focused on 
systems where A'' is large and the functions Fi are linear. The tools we have developed 
have been tried out on the Cornell Formation Flight Test-bed. 

Summary of Results 
Homogeneous, linear time invariant systems, without uncertainty are a special case 
of the above problem class: the Fi are linear and identical, there is only one element 



in set T, and there are no signals pj and rj. We have approached this problem class 
using semidefinite programming techniques. The relevant results are found in [1], [2], 
[3], [4], [5], [6], [7], [8], [9], [10], [11]. In these papers, we considered control design 
problems where each subsystem is interconnected to its nearest neighbors and form 
a lattice. This is depicted in Figure 2 for a one dimensional and a two dimensional 
periodic lattice. 

Figure 2: Left: one dimensional periodic lattice. Right: section of a two dimensional 
periodic lattice, with inputs and outputs omitted for clarity. 

The optimization objective is to reduce the L-2 induced gain of the system. In 
particular, the following L-2 induced gain problem for continuous time systems can 
be posed. Consider the following A'' interconnected subsystems 

(ii, Wi, Zi, yi) = F {xi,Vi, di, Ui),   Wij = Vj^i. (3) 

Design the following A'' interconnected subsystems (the control system) 

(xi, Wi, Ui) = F{xi, Vi,yi),   Wij = Vj^i (4) 

such that the closed loop system 

(^i,Wi,Zi^ = F {xi,Vi,di),   Wij = Vj^i (5) 

is internally exponentially stable, and the following inequality is satisfied for all non- 
zero, square integrable df. 

Jt=o fr{ Jt=o .^1 

where | • | is the euclidian vector norm. This is depicted in Figure 3 for the case 
where the subsystems form a one dimensional periodic lattice. The resulting control 
synthesis conditions take the form of a semidefinite program: 

M 

minimize c'^q, subject to ^ Qk^k + ^o < 0) (7) 
k=l 

where vector c and symmetric matrices Ak are given, the Qi are the decision variables 
(the free parameters), and the inequality is understood in the sense of a quadratic 
form (yl < 0 is equivalent to the eigenvalues of A being negative). The key features 
of this approach are the following: 



Figure 3: Closed loop system, one dimensional periodic lattice. The top lattice is the 
open loop plant, the bottom lattice is the control system. 

1. The size of the resulting semidefinite program is only a function of the size of 
each subsystem. In particular, the number of decision variables M and the matrix 
dimensions of the Ak do not grow with the number of interconnected elements N. 

2. The implementation of the control system is distributed. Each controller subsys- 
tem contains a computational unit, which is interconnected with its nearest neigh- 
bors. Global performance objectives can be obtained because the control system is 
connected via a distributed communication network. 

3. The control subsystems do not need to be altered if the number of elements 
change, provided that the spatially invariant structure is preserved. The system can 
thus be reconfigured without being redesigned. 

These tools have recently been used to design distributed control systems for a model 
of a vibrating cable [3], a vibro-acoustic problem [12], and a model of an adaptive 
secondary mirror for a high performance telescope [13], [14]. They have also been 
used to design distributed control strategies for the Cornell Formation Flight Test- 
Bed [15], [16], depicted in Figure 4. We have recently extended these results to 
the heterogeneous case, and to more general interconnection structures. Preliminary 
results may be found in [17], [18], [19], [20]. 
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Figure 4: Cornell Formation Flight Test-Bed. 
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