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Abstract 
An integral part of modeling the global view of network security is constructing attack graphs. In practice, 
attack graphs are produced manually by Red Teams. Construction by hand, however, is tedious, error-
prone, and impractical for attack graphs larger than a hundred nodes. In this paper we present an 
automated technique for generating and analyzing attack graphs. We base our technique on symbolic 
model checking [4] algorithms, letting us construct attack graphs automatically and efficiently. We also 
describe two analyses to help decide which attacks would be most cost effective to guard against. We 
implemented our technique in a tool suite and tested it on a small network example, which includes models 
of a firewall and an intrusion detection system. 
 
1. Overview 
 
 As networks of hosts continue to grow in size and complexity, evaluating their vulnerability to 
attack becomes increasingly more important to automate. There are several tools, such as COPS [10] and 
Renaud Deraison’s Nessus Security Scanner [9], that report vulnerabilities of individual hosts. To evaluate 
the vulnerability of a network of hosts, however, we also have to analyze the effects of interactions of local 
vulnerabilities and find global vulnerabilities introduced by the interconnections between hosts. A typical 
process for vulnerability analysis of a network proceeds as follows. First, we determine vulnerabilities of 
individual hosts using scanning tools, such as COPS and Nessus Scanner. Using this local vulnerability 
information along with other information about the network, such as connectivity between hosts, we then 
produce attack graphs. Each path in an attack graph is a series of exploits, which we call atomic attacks, 
that leads to an undesirable state, e.g., a state where an intruder has obtained administrative access to a 
critical host. We can then perform further analyses, such as risk analysis [21], reliability analysis [13], or 
shortest path analysis [23], on the attack graph to assess the overall vulnerability of the network.  
 
 Constructing attack graphs is a crucial part of doing vulnerability analysis of a network of hosts. 
Construction by hand, however, is tedious, error-prone, and impractical for attack graphs larger than a 
hundred nodes. Automating the process of constructing attack graphs also ensures that the attack graphs are 
exhaustive and succinct. An attack graph is exhaustive if it covers all possible attacks, and succinct if it 
contains only those network states from which the intruder can reach his goal. We follow these steps to 
produce and analyze attack graphs: 
 
 1. Model the network. 
 We model the network as a finite state machine, where state transitions  correspond to atomic 
attacks launched by the intruder. We also specify a  desired security property (e.g., an intruder should 
never obtain root access to  host A). The intruder’s goal generally corresponds to violating this 
property. 
 
 2. Produce an attack graph. 
 Using the model from Step 1, our modified version of the model checker  NuSMV [16] 
automatically produces the attack graph. The graphs are  rendered using the GraphViz visualization 
package [1]. 
 
 
 
 
XML spec    NuSMV                                                Graph               Minimality 
       ↓             Model &                                              Query               Analyzer 
                      Safety                            Attach               ↓                  →   ↑ 
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Figure 1. Tool Suite 
 
 
 3. Analysis of attack graphs. 
 A raw attack graph is a low-level state transition diagram. To allow the  domain specialist to 
analyze it in a meaningful way, we parse the graph and  reconstruct the original meanings of the state 
variables as they relate to the  network intrusion domain. In Section 4 we discuss two different 
analyses on  attack graphs that quantify the likelihood of intruder success.  
 
 Figure 1 shows the architecture of our tool suite. We do not require or expect users of our tool 
suite to have model checking expertise. Instead of using the input language of the NuSMV model checker, 
a user may describe the network model and desired property in XML [5]. We built a special-purpose 
compiler that takes an XML description and translates it into the input language of NuSMV.  
 
 In the field of model checking, the use of fundamental data structures, such as Binary Decision 
Diagrams (BDDs) [2], enabled significant advances in the size of the systems that can be analyzed [3, 4]. 
More recently, model checking researchers have developed a variety of reduction and abstraction 
techniques to handle even larger, possibly infinite state spaces. Since our techniques build upon the 
underlying representation and algorithms used in model checking, we are able to leverage the recent 
success in that field. As model checkers handle larger state spaces, our analysis can be applied to larger 
networks.  
 
 Our paper reports on the following contributions to analyzing vulnerabilities in networks: 
 

• We exhibit an algorithm for automatic generation of attack graphs. The algorithm generates 
exhaustive and succinct attack graphs. We provide a tool, as a part of a larger tool suite, which 
implements the algorithm. 

• Through a small case study, we identify a level of atomicity appropriate for describing a model of 
the network and an intruder’s arsenal of atomic attacks. The model is abstract enough to be 
understood by security domain experts, yet simple enough for our tool to analyze efficiently. 

• Our network model includes intrusion detection components and distinguishes between stealthy 
and detectable attack variants. We are able to generate “stealthy” attack subgraphs (i.e. subgraphs 
with attacks that are not detected by the intrusion detection components). Analysis of stealthy 
attack subgraphs reveals the best locations for placing additional intrusion detection components. 

• We describe two ways of analyzing attack graphs: an algorithm for determining a minimal set of 
atomic attacks whose prevention would guarantee that the intruder will fail, and a probabilistic 
reliability analysis that determines the likelihood that the intruder will succeed. 

 
Paper organization:  We give a detailed description of our attack graph generation algorithm in 
Section 2. We describe an intrusion detection case study in Section 3 and results of attack graph analysis in 
Section 4. We discuss related work in Section 5 and close with suggestions for future work in Section 6. 
 
2. Attack Graphs 
 
 First, we define formally attack graphs, the data structure used to represent all possible attacks on 
a network.  
 
Definition 1  An attack graph or AG is a tuple G = (S, τ, S0, Ss),where S is a set of states, τ C S x S is a 
transition relation, S0 C S is a set of initial states, and Ss C S is a set of success states. 
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 Intuitively, Ss _denotes the set of states where the intruder has achieved his goals. Unless stated 
otherwise, we assume that the transition relation τ is total. We define an execution fragment as a finite 
sequence of states s0s1…sn such that (si, si+1) Є τ for all 0 ≤ i ≤ n. An execution fragment with s0 Є S0 is an 
execution, and an execution whose final state is in S0 is an attack, i.e., the execution corresponds to a 
sequence of atomic attacks leading to the intruder’s goal state. 
 
2.1. Constructing Attack Graphs 
 
 Model checking is a technique for checking whether a formal model M of a system satisfies a 
given property ρ. If the property is false in the model, model checkers typically output a counter-example, 
or a sequence of transitions ending with a violation of the property.  
 
 In the model checker NuSMV, the model M is a finite labeled transition system and ρ is a property 
written in Computation Tree Logic (CTL). In this paper, we consider only safety properties, which in CTL 
have the form AGƒ (i.e., ρ = AGƒ, where ƒ is a formula in propositional logic). If the model M satisfies the 
property ρ, NuSMV reports “true.” If M does not satisfy ρ, NuSMV produces a counterexample. In our 
context M is a model of the network and ρ is a safety property. A single counter-example shows an attack 
that leads to a violation of the safety property. 
 
 Attack graphs depict ways in which an intruder can force a network into an unsafe state. We can 
express the property that an unsafe state cannot be reached as:  
 
                                     AG(¬unsafe) 
 
When this property is false, there are unsafe states that are reachable from the initial state. The precise 
meaning of unsafe depends on the network. For example, the property given below might be used to say 
that the privilege level of the adversary on the host with index 2 should always be less than the root 
(administrative) privilege. 
  
 
 
Input: 
               S – set of states 
               R C S x S – transition relation 
               S0 C S – set of initial states 
               L : S → 2AP - labeling of states with propositional formulas  
               Ρ =   AG(¬unsafe)(a safety property) 
 
Output: 
 attack graph Gp = (Sunsafe, Rp,Sp

0, Sp
s) 

 
Algorithm: Generate Attack Graph (S, R, S0, L, p) 
 (* Use model checking to find the set of states Sunsafe that violate the safety  property 
AG(¬unsafe).*) 
 Sunsafe = modelCheck(S, R, S0, L, p) 
 (* Restrict the transition relation R to states in the set  Sunsafe *) 
 Rp = R ∩ (Sunsafe x Sunsafe). 
 Sp

0 = S0   ∩ Sunsafe 

 Sp
s = {s │ s Є Sunsafe  ^   unsafe  L (s)}. 

 Return(Sunsafe, Rp, Sp
0, Sp

s).  
 

Figure 2. Algorithm for Generating Attack Graphs 
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AG(network.adversary.privilege [2] < network.priv.root)  
 
 We briefly describe the algorithm for constructing attack graphs for the property AG(¬unsafe). 
The first step is to determine the set of states Sτ that are reachable from the initial state. Next, the algorithm 
computes the set of reachable states Sunsafe that have a path to an unsafe state. The set of states Sunsafe is 
computed using an iterative algorithm derived from a fix-point characterization of the AG operator [4]. Let 
R be the transition relation of the model, i.e., (s, s′) Є R if and only if there is a transition from state s to s′. 
By restricting the domain and range of R to Sunsafe we obtain a transition relation Rp that encapsulates the 
edges of the attack graph. Therefore, the attack graph is (Sunsafe, Rp, S0

p, Ss
p), where Sunsafe and Rp represent 

the set of nodes and set of edges of the graph, respectively; S0
p = S0 ∩ Sunsafe is the set of initial states; and 

Ss
p = {s│s Є Sunsafe ^ unsafe Є L(s)} is the set of success states. This algorithm is given in Figure 2.  

 
 In symbolic model checkers, such as NuSMV, the transition relation and sets of states are 
represented using BDDs [2], a compact representation for boolean functions. There are efficient BDD 
algorithms for all operations used in our algorithm. 
 
2.2. Attack Graph Properties 
 
 We can show that an attack graph G generated by the algorithm in Figure 2 is exhaustive (Lemma 
1a) and succinct (Lemma 1b). Whereas succinctness is a property about states in an attack graph, Lemma 
1c states a similar property for transitions. Appendix A contains a proof of the lemma.  
 
 
Lemma 1  
(a) (Exhaustive) An execution e of the input model (S, R, S0, L) violates the property ρ = AG(¬unsafe) if 
and only if e is an attack in the attack graph G = (Sunsafe, Rp, S0

p, Ss
p).  

(b) (Succinct states) A state s of the input model ( S, R, S0, L) is in the attack graph G if and only if there 
is an attack in G that contains s.  
(c) (Succinct transitions) A transition t = (s1, s2) of the input model (S, R, S0, L) is in the attack graph G 
if and only if there is an attack in G that includes t. 
 
3. An Intrusion Detection Example 
 
 Consider the example network shown in Figure 3. There are two target hosts, ip1 and ip2, and a 
firewall separating them from the rest of the Internet. As shown, each host is running two of three possible 
services (ftp, sshd, a database). An intrusion detection system (IDS) watches the network traffic between 
the target hosts and the outside world. There are four possible atomic attacks, identified numerically as 
follows: (0) sshd buffer overflow, (1) ftp .rhosts, (2) remote login, and (3) local buffer overflow (an 
explanation of each attack follows). If an atomic attack is detectable, the intrusion detection system will 
trigger an alarm; if an attack is stealthy, the IDS misses it. The ftp .rhosts attack needs to find the target 
host with two vulnerabilities: a writable home directory and an executable command shell assigned to the 
ftp user name. The local buffer overflow exploits a vulnerable version of the xterm executable.  
 
 The intruder launches his attack starting from a single computer, ipa, which lies outside the 
firewall. His eventual goal is to disrupt the functioning of the database. For that, the intruder needs root 
access on the database host ip2.  
 
 We construct a finite state model of the network so that each state transition corresponds to a 
single atomic attack by the intruder. A state in the model represents the state of the system between atomic 
attacks. A typical transition from state s1 to state s2 corresponds to an atomic attack whose preconditions are 
satisfied in s1 and whose postconditions hold in state s2. An attack is a sequence of state transitions 
culminating in the intruder achieving his goal. The entire attack graph is thus a representation of all the 
ways the intruder can succeed. 
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3.1. Finite State Model 
 
The network. We model a network as a set of facts, each represented as a relational predicate. The state of 
the network specifies services, host vulnerabilities, connectivity between hosts, and a remote login trust 
relation. Following Ritchey and Ammann [20], connectivity is expressed as a ternary relation R C Host x 
Host x Port, where R(h1, h2, p) means that host h2 is reachable from host h1 on port p. Note that the 
connectivity relation incorporates firewalls and other elements that restrict the ability of one host to connect 
to another. Slightly abusing notation, we say R(h1, h2) when there is a network route from h1 to h2. 
Similarly, we model trust as a binary relation Tr C Host x Host, where Tr(h1, h2) indicates that a user may 
log in from host h2 to host h1 without authentication (i.e., host h1 “trusts” host h2).  
 
 Initially, there is no trust between any of the hosts; the trust relation Tr is empty. The connectivity 
relation R is shown in the following table. An entry in the table corresponds to a pair of hosts (h1, h2). Each 
entry is a triple of boolean values. The first value is ‘y’ if h1 and h2 are connected by a physical link, the 
second value is ‘y’ if h1 can connect to h2 on the ftp port, and the third value is ‘y’ if  h1 can connect to h2 
on the sshd port. 
 
The intruder. The intruder has a store of knowledge about the target network and its users. This 
knowledge includes host addresses, known vulnerabilities, information about running services, etc. The 
function plvlA: Hosts → {none, user, root} gives the level of privilege that intruder A has on each host. 
There is a total order on the privilege levels: none < user < root. Initially, the intruder has root access on 
his own machine ipa, but no access to the other hosts. 
 

 
 
Intrusion detection system. Atomic attacks are classified as being either detectable or stealthy with 
respect to the Intrusion Detection System (IDS). If an attack is detectable, it will trigger an alarm when 
executed on a host or network segment monitored by the IDS. If an attack is stealthy, the IDS does not see 
it.  
 
 We specify the IDS with a function ids: Host x Host x Attack → {d, s, b}, where ids(h1, h2, a) = d 
if attack a is detectable when executed with source host h1 and target host h2; ids(h1, h2, a) = s if attack a is 
stealthy when executed with source host h1 and target host h2; and ids(h1, h2, a) = b if attack a has both 
detectable and stealthy strains, and success in detecting the attack depends on which strain is used.  When 
h1 and h2 refer to the same host, ids(h1, h2, a) specifies the intrusion detection system component (if any) 
located on that host. When h1 and h2 refer to different hosts, ids(h1, h2, a) specifies the intrusion detection 
system component (if any) monitoring the network path between h1 and h2.  
 
 In addition, a global boolean variable specifies whether the IDS alarm has been triggered by any 
previously executed atomic attack.  
 
 In our example, the paths between (ipa, ip1) and between (ipa, ip2) are monitored by a single 
network-based IDS. The path between (ip1, ip2) is not monitored. There are no host-based intrusion 
detection components. 
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Figure 3. Example Network 
 
Atomic Attacks. We model four atomic attacks: 
 
1. sshd buffer overflow: This remote-to-root attack immediately gives a remote user a root shell on the 
target machine. It has detectable and stealthy variants. 
 
2. ftp .rhosts: Using an ftp vulnerability, the intruder creates an .rhosts file in the ftp home directory, 
creating a remote login trust relationship between his machine and the target machine. This attack is 
stealthy. 
 
3. remote login: Using an existing remote login trust relationship between two machines, the intruder logs 
in from one machine to another, getting a user shell without supplying a password. This operation is usually 
a legitimate action performed by regular users, but from the intruder’s point of view, it is an atomic attack. 
This attack is detectable. 
 
4. local buffer overflow: If the intruder has acquired a user shell on the target machine, the next step is to 
exploit a buffer overflow vulnerability on a setuid root file to gain root access. The intruder may transfer 
the necessary binary code via ftp (or scp) or create it locally using an editor such as vi. This attack is 
stealthy.  
 
 Each atomic attack is a rule that describes how the intruder can change the network or add to his 
knowledge about it. A specification of an atomic attack has four components: intruder preconditions, 
network preconditions, intruder effects, and network effects. The intruder preconditions component lists the 
intruder’s capabilities and knowledge required to launch the atomic attack. The network preconditions 
component lists the facts about the network that must hold before launching the atomic attack. Finally, the 
intruder and network effects components list the attack’s effects on the intruder and on the network state, 
respectively. For example, the sshd buffer overflow attack is specified as follows: 
 

^dvei"saiv 
i IDS 

^. 

I Pa t. fifowall ro lifer 



     

 

 

7

 
 
3.2. NuSMV Encoding 
 
 It is necessary to ensure that the model checker considers all atomic attacks in each state, so that 
the resulting attack graph enumerates all possible attacks. So the model checker must choose attacks 
nondeterministically, subject to preconditions being fulfilled. We also allow nondeterministic choices for 
the source host and the target host of each atomic attack. The NuSMV encoding of the model contains 
nondeterministically assigned state variables that specify: 
 

• which attack (concretely, an attack number) will be tried next 
• the source host from which the atomic attack will be initiated 
• the target host of the atomic attack 
• whether the next attack is detectable or stealthy with respect to a given intrusion detection system. 

This variable is set deterministically when the next attack is known to be detectable or stealthy. 
When the next attack has both detectable and stealthy strains, the variable is set 
nondeterministically. 
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Figure 4. Attack Graph 

 
 In an effort to reduce the state space of the model, the NuSMV encoding restricts the legal states 
to those where the attack number, source, and target variables correspond to an enabled attack. In addition, 
when a variable’s value is irrelevant in a particular context, we deterministically set the variable to a fixed 
value in that context. As an example, when the next attack is local to one host, we force the value of the 
variable designating the source host of the attack to be the same as the target host of the attack. 
 
3.3. Experimental Results: Attack Graphs 
 
 Recall that the goal of our intruder is to obtain access to the database service running on host ip2. 
For that, the intruder needs to get root access on ip2 without triggering an IDS alarm. Thus, the property we 
want to violate (in order to get the attack graph) is that either an intruder never gets root privilege on host 
ip2 or he is detected by the IDS: 
 

AG(network.adversary.privilege[2] < network.priv.root│network.detected) 
 
 Figure 4 shows the attack graph produced by NuSMV for this property. Each node is labeled by an 
attack id number (see table below), which corresponds to the atomic attack to be attempted next; a flag S/D 
indicating whether the attack is stealthy or detectable by the intrusion detection system; and the numbers of 
the source and target hosts. The following tables show attack and host numbers.  
 

 
 
 Any path in the graph from a root node to a leaf node shows a sequence of atomic attacks that the 
intruder can employ to achieve his goal while remaining undetected. For instance, the path highlighted by 
double boxed nodes consists of the following sequence of four atomic attacks: overflow sshd buffer on host 
1, overwrite .rhosts file on host 2 to establish rsh trust between hosts 1 and 2, log in using rsh from host 1 to 
host 2, and finally, overflow a local buffer on host 2 to obtain root privileges. 
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3.4. Performance Observations 
 
 We conducted the experiments on a Pentium III/1Ghz RAM running RedHat Linux 7.0. 
 
 The NuSMV encoding of the simple network in Figure 3 has 91 bits of state (i.e., potentially 291 
states), but only 101 states are reachable. The tool automatically found an appropriate BDD variable 
ordering under which the run time of the tool on this example is about 5 seconds.  
 
 To gauge how the run time depends on the scale of the model, we enlarged the example with two 
additional hosts, four additional atomic attacks, several new vulnerabilities, and flexible firewall 
configurations. The enlarged model has 229 bits of state and 6190 reachable states. The attack graph has 
5948 nodes and 68364 edges. NuSMV took 2 hours to construct the attack graph for this model; however, 
the model checking part took only 5 minutes. The performance bottleneck is inside our graph generation 
procedure, and we are working on performance enhancements. 
 
4. Analysis of Attack Graphs 
 
 Once we have an attack graph generated for a specific network with respect to a given safety 
property, the user may wish to probe it for further analysis. For example, an analyst may be faced with a 
choice of deploying either additional network attack detection tools or prevention techniques. Which would 
be more cost-effective to deploy? In doing the minimization analysis described in Sections 4.1 through 4.3, 
the analyst can determine a minimal set of atomic attacks that must be prevented to guarantee that the 
intruder cannot achieve his goal. In doing the reliability analysis described in Section 4.4, the analyst can 
determine the likelihood that an intruder will succeed or the likelihood that the IDS will detect his attack 
activity. 
 
4.1. Minimization Analysis 
 
 Given a fixed set of atomic attacks, not all of them may be available to the intruder. Can we find a 
minimal set of atomic attacks that we should prevent so that the intruder fails to achieve his goal? To 
answer this question, we modify the model slightly, making only a subset of atomic attacks available to the 
intruder. For simplicity, we nondeterministically decide which subset to consider initially, before any attack 
begins; once the choice is made, the subset of available atomic attacks remains constant during any given 
attack. We ran the model checker on the modified model with the invariant property that says the intruder 
never gets root privilege on host ip2: 
 
AG(network.adversary.privilege[2] < network.priv.root) 
 
 The post-processor marked the states where the intruder has been detected by the IDS. The result 
is shown in Figure 5. The white rectangles indicate states where the attacker had not yet been detected by 
the intrusion detection system. The black rectangles are states where the intrusion detection system has 
sounded the alarm. Thus, white leaf nodes are desirable for the attacker in that the objective is achieved 
without detection. Black leaf nodes are less desirable, the attacker achieves his objective, but the alarm 
goes off.  
 
 The resolution of which atomic attacks are available to the intruder happens in the circular nodes 
near the root of the graph. The first transition out of the root (initial) state picks the subset of attacks that 
the intruder will use. Each child of the root node is itself the root of a disjoint subgraph where the subset of 
atomic attacks chosen for that child is used. Note that the number of such subgraphs descending from the 
root node corresponds to the number of subsets of atomic attacks with which the intruder can be successful. 
The model checker determines that for any other possible subset, there is no possible successful sequence 
of atomic attacks. 
 
 The root of the graph in Figure 5 has two subgraphs, corresponding to two subsets of atomic 
attacks that will allow the intruder to succeed. In the left subgraph the sshd buffer overflow attack is not 
available to the intruder; it can readily be seen that the intruder can still succeed, but cannot do so while 



     

 

 

10

remaining undetected by the IDS. In the right subgraph, all attacks are available. Thus, the entire attack 
graph implies that all atomic attacks other than the sshd attack are indispensable: the intruder cannot 
succeed without them. The analyst can use this information to guide decisions on which network defenses 
can be profitably upgraded.  
 
 The white cluster in the middle of the figure is isomorphic to the scenario graph presented in 
Figure 4; it shows the ways in which the intruder can achieve his objective without detection (i.e., all paths 
by which the intruder reaches a white leaf in the graph).  
 
 Checking every possible subset of attacks is exponentialing the number of attacks. In the next 
subsection, we show that finding the minimum set of atomic attacks which must be removed to thwart the 
intruder is in fact NP-complete. Then in the following subsection we also show how a minimal set can be 
found in polynomial-time. 
 
4.2. Minimum and Minimal Critical Attack Sets 
 
 Assume that we have produced an attack graph corresponding to the following safety property: 
 
  AG(¬unsafe) 
 
 Let A be the set of attacks. Let G = (S, E, s0, L) be the attack graph, where S is the set of states, E 
C S x S is the set of edges, s0 Є S is the initial state, and L: E → A U {ε} is a labeling function where L(e) = 
a if an edge e = (s → s’) corresponds to an attack a, otherwise L(e) = e. Given a state s Є S, a set of attacks 
C is critical with respect to s if and only if the intruder cannot reach his goal from s when the attacks in C 
are removed from his arsenal A. Equivalently, C is critical with respect to s if and only if every path from s 
to an unsafe state has at least one edge labeled with an attack a Є C.  
 
 A critical set corresponding to a state s is minimal (denoted A(s)) if no subset of A(s) is critical 
with respect to s. A critical set corresponding to a state s is minimum (denoted M(s)) if there is no critical 
set M’(s0) such that │M’(s)│<│M(s)│. In general, there can be multiple minimum and multiple minimal 
critical sets corresponding to a state s. Of course, all minimum critical sets must be of the same size. 

 

 
Figure 5. Attack Graph Analysis 

 
 Given an attack graph G = (S, E s0, L), consider the problem of finding a minimum critical set of 
attacks M(s0). We will call this problem the Minimum Critical Set of Attacks (MCSA) problem. We prove 
that the decision version of MCSA is NP-complete.  
 
Lemma 2 Assume that we are given an attack graph G = (S, E s0, L), and an integer k. The problem of 
determining whether there is a critical set C(s0) such that│C(s0) │ ≤  k is NP-complete. 
 
Proof Sketch: First, we prove that the problem is in NP. Guess a set C C A with size   ≤ k. We need to 
check that C is a critical set of attacks. This can be accomplished in polynomial time using the procedure 
isCritical(G, C) described below. Therefore, the problem is in NP.  
 
 To prove that the problem is NP-hard, we give a reduction from the minimum cover problem [11, 
Page 222]. See Appendix B for the remaining details of the proof.  
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4.3. Computing Minimal Critical Sets 
 
 Consider now the problem of finding a minimal critical set A(s0) corresponding to the initial state 
s0. We give an algorithm for computing A(s0) that runs in time O(mn), where m = │S│ + │E │is the size of 
the attack graph G and n = │A │is the number of attacks. First, we describe a procedure isCritical (G, C), 
which determines whether a set C C A is a critical set corresponding to the initial state s0. This procedure 
runs in O(m) time. We simply delete all edges from G that are labeled with an action from the set C. After 
that, if an unsafe state is still reachable from the initial state s0, then C is not a critical set (because there is a 
path from s0 to an unsafe state which does not use an attack from the set C). This step can be performed in 
O(m) time using standard graph algorithms [6]. The algorithm starts with A as the empty set. At each step 
of the algorithm we perform the following procedure:  
 
 if isCritical (G, C) returns true, the algorithm stops and returns A. Otherwise,  pick an a Є a\C 
and add it to the set C.  
 
 We start with an empty set and keep adding attacks until we obtain a critical set. Notice that since 
A is a critical set, the number of steps taken by the algorithm is at most n. Each step takes O(m) time, so 
that the worst case running time of the algorithm is O(mn). If attacks have costs associated with them, then 
at each step we can pick an attack that has the minimum cost, i.e., pick an a Є A\C with the minimum cost. 
This will bias the procedure to pick sets with lower cost.  
 
 Next, we show how the procedure described above can be carried out using model checking. 
Assume that the set of attacks is A is (a1, …, an). We associate a boolean variable xi with each attack ai. If 
attack ai is activated (the intruder can use the attack), xi = 1, otherwise xi = 0. The variable xi appears in the 
precondition corresponding to the attack ai. Initially, all xi s are set to 0, representing that the set C is 
empty. Notice that if the model checker returns a counter-example, then there is a path from the initial state 
to an unsafe state. Recall that the specification is:  
 
   AG(¬unsafe) 
 
 Now in each step in the procedure, we pick an index i such that xi = 0 and set xi = 0. We stop the 
first time the model checker provides a counter-example. The set of attacks whose corresponding variables 
are set to 1 represents a critical set. The worst case complexity of this procedure is the same as the one 
given before, but in practice symbolic model checkers, such as NuSMV, will perform efficiently. 
Intuitively, we are using the model checker to implement the procedure isCritical(G,C). 
 
 
4.4. Probabilistic Reliability Analysis 
 
 When empirical information about the likelihood of certain events in the network is available, we 
can use well known graph algorithms to answer quantitative questions about the attack graph. Suppose we 
know the probabilities of some transitions in the scenario graph. After appropriately annotating the attack 
graph with these probabilities, we can interpret it as a Markov Decision Process (see [12] for details).  
 
 The standard MDP value iteration algorithm [19] computes the optimal policy for selecting 
actions in an MDP that results in maximum benefit (or minimum cost) for the decision maker. Value 
iteration can compute the worst case probability of intruder success in an attack graph as follows. We 
assign all nodes where the intruder’s goal has been achieved the benefit value of 1, and all other nodes the 
benefit value of 0. Then we run the value iteration algorithm. The algorithm finds the optimal attack 
selection policy for the intruder and assigns the expected benefit value resulting from that policy to each 
state in the scenario graph. The expected value is a fraction of 1, and it is equivalent to the probability of 
getting to the goal state from that node, assuming the intruder always follows the optimal policy.  
 
 We implemented the value iteration algorithm in an attack graph post-processor (“Reliability 
Analyzer” of Figure 1) and ran it on a slightly modified version of our example. In the modified example 
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each attack has both detectable and stealthy variants. We assumed that for a typical network, a certain 
percentage of attempted intrusions is performed by sophisticated attackers who keep on top of latest IDS 
technology and use stealthy attack variants. We arbitrarily assigned probabilities of detecting each atomic 
attack as follows: 0.8 for sshd buffer overflow, 0.5 for ftp .rhosts, 0.95 for the remote login, and 0.2 for 
local buffer overflow. The intruder’s goal is to get root access at host ip2 while remaining undetected. 
Accordingly, the states where this goal has been achieved were assigned benefit value 1.  
 
 In this setup, the computed probability of intruder success is 0.2, and his best strategy is to attempt 
sshd buffer overflow on host ip1, and then conduct the rest of the attack from that host. The only possibility 
of detection is the sshd buffer overflow attack itself, since the IDS does not see the activity between hosts 
ip1 and ip2.  
 
 The system administrator can use this technique to evaluate effectiveness of various security fixes. 
For instance, installing an additional IDS component to monitor the network traffic between hosts ip1 and 
ip2 reduces the probability of the intruder remaining undetected to 0.025; installing a host-based IDS on 
host ip2 reduces the probability to 0.16. Other things being equal, this is an indication that the former 
remedy is more effective. 
 
5. Related Work 
 
 The work by Phillips and Swiler [18] is the closest to ours. They propose the concept of attack 
graphs that is similar to the one described here. However, they take an “attack-centric” view of the system. 
Since we work with a general modeling language, we can express in our model both seemingly benign 
system events (such as failure of a link) and malicious events (such as attacks). Therefore, our attack graphs 
are more general than the one proposed by Phillips and Swiler. Recently, Swiler et al. describe a tool [23] 
for generating attack graphs based on their previous work. Their tool constructs the attack graph by forward 
exploration starting from the initial state. A symbolic model checker (like NuSMV) works backward from 
the goal state to construct the attack graph. A major advantage of the backward algorithm is that 
vulnerabilities that are not relevant to the safety property (or the goal of the intruder) are never explored. 
Our approach can result in significant savings in space. (Swiler et al. refer to the advantages of the 
backward search in their paper [23].) More generally, the advantage of using model checking instead of 
forward search is that the technique can be expanded to include liveness properties, which can model 
service guarantees in the face of malicious activity.  
 
 Moreover, by using model checking we leverage all the advanced techniques developed in that 
area. For example, the cone of influence reduction [14] in model checking abstracts away part of the system 
that is not relevant to the specification. In our context, if there is a vulnerability that is not relevant to a 
safety property, it will not be considered during model checking. Finally, the attack graph analysis 
suggested by Phillips and Swiler is different from the ones presented in this paper. We plan to incorporate 
their analysis into our tool suite.  
 
 Templeton and Levitt [24] propose a requires/provides model for attacks. The model links atomic 
attacks into scenarios, with earlier atomic attacks supplying the prerequisites for the later ones. Templeton 
and Levitt point out that relating seemingly innocuous system behavior to known attack scenarios can help 
discover new atomic attacks. However, they do not consider combining their attack scenarios into attack 
graphs.  
 
 Dacier [8] proposes the concept of privilege graphs. Each node in the privilege graph represents a 
set of privileges owned by the user; edges represent vulnerabilities. Privilege graphs are then explored to 
construct attack state graphs, which represents different ways in which an intruder can reach a certain goal, 
such as root access on a host. He also defines a metric, called the mean effort to failure or METF, based on 
the attack state graphs. Orlato et al. describe an experimental evaluation of a framework based on these 
ideas [17]. At the surface, our notion of attack graphs seems similar to the one proposed by Dacier. 
However, as is the case with Phillips and Swiler, Dacier takes an “attack-centric” view of the world. As 
pointed out above, our attack graphs are more general. From the experiments conducted by Orlato et al. it 
appears that even for small examples the space required to construct attack state graphs becomes 
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prohibitive. By basing our algorithm on model checking we take advantage of advances in representing 
large state spaces and can thus hope to represent large attack graphs. We can perform the analytical 
analysis proposed by Dacier on attack graphs constructed by our tool. We also plan to conduct an 
experimental evaluation similar to the one performed by Orlato et al. 
 
 Ritchey and Ammann [20] also use model checking for vulnerability analysis of networks. They 
use the (unmodified) model checker SMV [22]. They can obtain only one counter-example, i.e., only one 
attack corresponding to an unsafe state. In contrast, we modified the model checker NuSMV to produce 
attack graphs, representing all possible attacks. We also described post-facto analyses that can be 
performed on these attack graphs. These analysis techniques cannot be meaningfully performed on single 
attacks.  
 
 Graph-based data structures have also been used in network intrusion detection systems, such as 
NetSTAT [25]. There are two major components in NetSTAT, a set of probes placed at different points in 
the network and an analyzer. The analyzer processes events generated by the probes and generates alarms 
by consulting a network fact base and a scenario database. The network fact base contains information 
(such as connectivity) about the network being monitored. The scenario database has a directed graph 
representation of various atomic attacks. For example, the graph corresponding to an IP spoofing attack 
shows various steps that an intruder takes to mount that specific attack. The authors state that “in the 
analysis process the most critical operation is the generation of all possible instances of an attack scenario 
with respect to a given target network.” Therefore, we believe that our tool can help network intrusion 
detection systems, such as NetSTAT, in automatically producing attack scenarios. We leave this as a future 
direction for research.  
 
 Cuppens and Ortalo [7] propose a declarative language (LAMBDA) for specifying attacks in 
terms of pre- and postconditions. LAMBDA is a superset of the simple language we used to model attacks 
in our work. The language is modular and hierarchical; higher-level attacks can be described using lower-
level attacks as components. LAMBDA also includes intrusion detection elements. Attack specifications 
include information about the steps needed to detect the attack and the steps needed to verify that the attack 
has already been carried out. We are studying the possibility converting our representation of attacks to 
LAMBDA. 
 
6. Future Work 
 
 We have so far restricted our work to only safety (invariant) properties. To exploit the full power 
of model checking, we need a method of generating attack graphs for more general classes of properties. 
For example, the following liveness property states that a user will always be able to access a server 
whenever he wants to. 
 
AG(server.user.request →AF(server.user.access)) 
 
 This property would not be true if the server can be disabled using a denial-of-service attack. We 
plan to explore generation of attack graphs for universally quantified fragments of Computational Tree 
Logic and Linear Temporal Logic.  
 
 To make our tool suite more usable by security experts and system administrators, we see the 
value of building a library of specifications of atomic attacks. Our hope is that increasing this arsenal of 
specifications outpaces the growth in the arsenal of known attacks. Furthermore, one reason model 
checking has been so successful is that it discovers unknown bugs in hardware circuits and protocols 1. 
Analogously, by using our tool suite based on the power of model checking techniques, we can potentially 
discover new, unexpected attacks, and hence identify new network vulnerabilities.  
 
 In principle, our technique is not limited to modeling attacks only. The expressive power of model 
checkers lets us model benign system activity as well. We believe that the ability of modern model 
checkers to handle more complex properties can be adapted to our tool. For example, “liveness” properties 
such as “a legitimate user’s transaction will finish despite intruder interference” are easily specified in 
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temporal logic and checked by a model checker. Unlike invariants, such properties cannot be handled by 
simple Reachability analysis or other classical graph algorithms. Adapting the power of model checking to 
analyze such properties opens a promising research direction in automated security analysis. 
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A. Exhaustive and Succinct Attack Graphs 
 

Lemma 1: (a) (Exhaustive) An execution e of the input model (S, R, S0, L) violates the property p = 
AG(¬unsafe) if and only if e is an attack in the attack graph G = (S¬unsafe, Rp, Sp0, Sps). 
(b) (Succinct states) A state s of the input model (S, R, S0, L) is in the attack graph G if and only if there is 
an attack in G that contains s. 
(c) (Succinct transitions) A transition t = (s1, s2) of the input model (S, R, S0, L) is in the attack graph G if 
and only if there is an attack in G that includes t. 
 
Proof: 
 (a) (=>) Let e = s0t0...tn-1sn be a (finite) execution of the input model such that sn is an unsafe state. 
To prove that e is an attack in G, it is sufficient to show (1) s0 Є S0

p, (2) sn Є Ss
p, and (3) for all 0 ≤ k  ≤ n, sk 

Є S and tk Є Rp.  
  
 Since unsafe holds at sn and for all k there is a path from sk to sn in the input model, by definition 
every sk along e violates AG(¬unsafe). Therefore, by construction, every sk is in unsafe   and every tk  
is in Rp. (1) and (2), and (3) follow immediately.  
 
 (<=) Suppose that e = s0t0...tn-1sn  is an attack in the attack graph G. By construction, all states and 
transitions of e are also states and transitions in the input model. Since e is an attack, s0 Є S0

p and sn Є Ss
p . 

Therefore, s0 Є S0
  and sn Є S. So e is an execution of the input model, its first state is an initial state of the 

model, and p is false in its final state. It follows that e violates the property AG(¬unsafe).  
 
 (b) (=>) By construction of the algorithm in Figure 2, all states generated for the attack graph are 
reachable from an initial state, and all of them violate AG(¬unsafe). Therefore, for any such state s in the 
input model, there is a path e1 from an initial state to s, and there is a path e2 from s to an unsafe state.  
 
 The concatenation of e1 and e2 is an execution e of the input model that violates AG(¬unsafe). By 
Lemma 1a, e is an attack in G. Since e contains s, the proof is complete.   
 
 (<=) If there is an attack in G that contains s, then trivially s is in G.  
 

(c) (=>) By lemma 1b, there is an attack e1 = q0t0…s1…tm-1qm that contains state s1 and an attack 
e2 = r0u0…s2…un-1rn that contains state s2. So the following attack includes both states s1 and 
s2 and the transition t: e = q0t0…s1ts2…un-1rn. 

 
(<=) If there is an attack in G that contains t, then trivially t is in G. 

_ 
 

 
 
Figure 6. Attack graph corresponding to the 
set cover problem. 
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B. NP-Completeness of MCSA 
 
 Given an attack graph G = (S, E, s0, L), consider the problem of finding a minimum critical set of 
attacks M(s0). We will call this problem MCSA or the minimum critical set of attacks problem. We prove 
that the decision version of the problem is NP-complete.  
 
Lemma 2: Assume that we are given an attack graph G = (S, E, s0, L) and an integer k. The problem of 
determining whether there is a critical set C(s0) such that │C(s0) │   ≤  k is NP-complete. 
 
Proof: First, we prove that the problem is in NP. Guess a set C C A with size  ≤ k. We need to check that C 
is a critical set of attacks.  
 
 This can be accomplished in polynomial time using the procedure isCritical (G, C) described 
below. Therefore, the problem is in NP. 
 
 Next, we prove that the problem is NP-hard. The reduction is from the minimum cover problem 
[11, Page 222]. In the minimum cover problem one is given a collection C of subsets of a finite set U and a 
positive integer k ≤ │C│. The problem is to determine whether C contains a cover for U of size k or less, 
i.e., a subset C’ C C with │C’│≤  k such that every element of U  belongs to at least one member of C’. We 
construct an attack graph Gc corresponding to the collection C. The set of attacks A is equal to C. The 
attack graph Gc has an initial state s0 and a final state sf that is unsafe. Let U = {u1,…uz} and c1,…,cm be an 
enumeration of the collection C. For each collection ci where i < m we have z new states si,1,,…siz. There is 
an edge from s0 to all the states si,1,,…siz corresponding to the collection c1. There is an edge from si,j to 
si+1,j for all  i < m-1 and 1 ≤ j ≤ z . From each state in the set {sm-1,1,…,sm-1,z} there as edge to the unsafe 
state sf. Label of the edge with tail si,j is ci if uj Є ci, otherwise the label is e. Label of the edge with head sm-

1,j is cm if uj Є cm otherwise the label is e. It is easy to prove that there is a critical set of attacks C such that 
│C│≤ k if and only if there is a cover of size less than or equal to k.  
 
 We give a short example to illustrate the reduction. Consider a set U = {u1,u2,u3}. Suppose that the 
collection C consists of the following subsets: 
 

 
 
Notice that there is a cover of size 2, i.e., c1 and c2 form a cover. The attack graph corresponding to this 
problem is shown in Figure 6. The set of attacks is {c1,c2,c3}. The set of attacks {c1,c2} is critical because 
every path from s0 to the unsafe state uses at least one edge with the label in the set {c1,c2}. 
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Abstract 
 
An attack graph is a succinct representation of all paths through a system that end in a state where an 
intruder has successfully achieved his goal. Today Red Teams determine the vulnerability of networked 
systems by drawing gigantic attack graphs by hand. Constructing attack graphs by hand is tedious, error-
prone, and impractical for large systems. By viewing an attack as a violation of a safety property, we can 
use model checking to produce attack graphs automatically: a successful path from the intruder’s 
viewpoint is a counterexample produced by the model checker. In this paper we present an algorithm for 
generating attack graphs using model checking.  
 
Security analysts use attack graphs for detection, defense, and forensics. In this paper we present a 
minimization technique that allows analysts to decide which minimal set of security measures would 
guarantee the safety of the system. We provide a formal characterization of this problem: we prove that it is 
polynomially equivalent to the minimum hitting set problem and we present a greedy algorithm with 
provable bounds. We also present a reliability technique that allows analysts to perform a simple cost-
benefit analysis depending on the likelihoods of attacks. By interpreting attack graphs as Markov Decision 
Processes we can use a standard MDP value iteration algorithm to compute the probabilities of intruder 
success for each attack the graph.  
 
We illustrate our work in the context of a small example that includes models of a firewall and an intrusion 
detection system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 As networks of hosts continue to grow, evaluating their vulnerability to attack becomes 
increasingly more important to automate. When evaluating the security of a network, it is not enough to 
consider the presence or absence of isolated vulnerabilities. A large network builds upon multiple platforms 
and diverse software packages and supports several modes of connectivity. Inevitably, such a network will 
contain security holes that have escaped notice of even the most diligent system administrator. 
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Figure 1: Vulnerability Analysis of a Network 

 
 To evaluate the vulnerability of a network of hosts, a security analyst must take into account the 
effects of interactions of local vulnerabilities and find global vulnerabilities introduced by interconnections. 
A typical process for vulnerability analysis of a network is shown in Figure 1. First, scanning tools 
determine vulnerabilities of individual hosts. Using this local vulnerability information along with other 
information about the network, such as connectivity between hosts, the analyst produces an attack graph. 
Each path in an attack graph is a series of exploits, which we call atomic attacks, that leads to an 
undesirable state (e.g., a state where an intruder has obtained administrative access to a critical host). 
 
1.1 Attack Graphs and Intrusion Detection 
 
 Attack graphs can serve as a basis for detection, defense, and forensic analysis. To motivate our 
study of the generation and analysis of attack graphs, we discuss the potential applications of attack graphs 
to these areas of security. 
 
Detection 
 
 System administrators are increasingly deploying intrusion detections systems (IDSs) to detect and 
combat attacks on their network. Such systems depend on software sensor modules that first detect 
suspicious events and activity and then issue alerts. Setting up the sensors involves a trade-off between 
sensitivity to intrusions and the rate of false alarms in the alert stream. When the sensors are set to report all 
suspicious events, the sensors frequently issue alerts for benign background events. Frequent false alarms 
results in administrators turning off the IDS entirely. On the other hand, decreasing sensor sensitivity 
reduces their ability to detect real attacks.  
 
 To address this trade-off, many intrusion detection systems employ heuristic algorithms to 
correlate alerts from a large pool of heterogeneous sensors. Valdes and Skinner [VS01] describe a 
probabilistic approach to alert correlation. Successful correlation of multiple alerts increases the chance that 
the suspicious activity indicated by the alerts is in fact malicious.  
 
 Attack graphs can enhance both heuristic and probabilistic correlation approaches. Given a graph 
describing all likely attacks (i.e., sequences of attacker actions), an IDS can match individual alerts to 
attack edges in the graph. Matching successive alerts to individual paths in the attack graphs dramatically 
increases the likelihood that the network is under attack. This on-line vigilance allows the IDS to predict 
attacker goals, aggregate alarms to reduce the volume of alert information to be analyzed, and reduce the 
false alarm rates. Knowledge of attacker goals and likely next steps helps guide defensive response.  
 
 In this paper we show how to generate attack graphs automatically from models of the network; 
our models are expressive enough to reflect the administrator’s choice of security policy for an IDS and his 
choice of network configuration. Attack graphs enable an administrator to perform several kinds of 
analyses to assess their security needs: marking the paths in the attack graph that an IDS will detect; 
determining where to position new IDS components for best coverage; exploring trade-offs between 
different security policies and between different software/hardware configurations; and identifying the 
worst-case scenarios and prioritizing defense strategy accordingly. 
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Forensics 
 
 After a break-in, forensic analysis is used to find probable attacker actions and to assess damage. 
If legal action is desired, analysts seek evidence that a sequence of sensor alerts comprises a coherent attack 
plan, and is not merely a series of isolated, benign events. This task becomes even harder when the 
intruders obfuscate attack steps by slowing down the pace of the attack and varying specific steps. We can 
construct a convincing argument as to the malicious intent of intruder actions by matching data extracted 
from IDS logs to a formal reference model based on attack graphs [Ste].  
 
 Given that attack graphs can be used to perform a variety of analysis, we can use them to answer 
the following kinds of questions, of particular interest to system administrators: 
 
Question 1: What successful attacks are undetected by the IDS? 
 
Question 2: If all measures for protecting a network are deployed, does the system become safe? 
 
Question 3: Given a set of measures M, what is the smallest subset of measures Ml whose deployment 
makes the system safe? 
 
 Answers to these questions, can help a system or network administrator choose the best upgrade 
strategy. We address these questions in Section 5.  
 
 When we are modeling a system operating in an unpredictable environment, certain transitions in 
the model represent the system’s reaction to changes in the environment. We can think of such transitions 
as being outside of the system’s control—they occur when triggered by the environment. When no 
empirical information is available about the relative likelihood of such environment-driven transitions, we 
can model them only as nondeterministic “choices” made by the environment. Moreover, for new 
vulnerabilities data for estimating likelihoods might not be available. However, sometimes empirical data 
make it possible to assign probabilities to environment-driven transitions. We would like to take advantage 
of such quantitative information added appropriately to attack graphs. In this context, a system 
administrator might be interested in answering the following question: 
 
Question 4: The deployment of which security measure(s) will increase the likelihood of thwarting an 
attacker?  
 
 The system administrator can use the answer to question 4 to perform a quantitative evaluation of 
various security fixes. We address this question in Section 6.2. 
 
1.2 Our Contributions 
 
 Constructing attack graphs is a crucial part of performing vulnerability analysis of a network of 
hosts. Currently, Red Teams produce attack graphs by hand, often drawing gigantic diagrams on floor-to-
ceiling whiteboards. Doing this by hand is tedious, error-prone, and impractical for attack graphs larger 
than a hundred nodes.  
 
 The main contributions of our work, some of which have appeared in an earlier paper [SHJ_02] 
are:  
 

• We demonstrate how model checking can be applied to generate attack graphs automatically. We 
show that the attack graphs produced by our method are exhaustive, i.e., covering all possible 
attacks, and succinct, i.e., containing only relevant states and transitions (see Section 3.2). 

 
• Each state transition corresponds to a single atomic attack by the intruder. A state in the model 

represents the state of the system between atomic attacks. A typical transition from state s1 to state 
s2 corresponds to an atomic attack whose preconditions are satisfied in s1 and whose effects hold 
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in state s2. An attack is a sequence of state transitions culminating in the intruder achieving his 
goal. The entire attack graph is thus a representation of all the possible ways in which the intruder 
can succeed.  

 
• We prove that finding a minimum set of atomic attacks that must be removed to thwart an intruder 

is NP-complete. Beyond the proof sketched in our earlier paper [SHJ_02], here we further explore 
the complexity of this problem. Section 5.2.1 proves that the problem is polynomially equivalent 
to the minimum hitting set problem where the collection of sets is represented as a labeled directed 
graph. This reduction provided us with additional insight, enabling us to find a greedy algorithm 
with provable bounds, which can be used to answer questions 1, 2, and 3.  

 
• We present an algorithm to compute the reliability-defined as the likelihood of an intruder not 

succeeding– of a networked system. An advantage of our algorithm is that it allows incomplete 
information, i.e., probabilities of all transitions need not be provided. To our knowledge, previous 
metrics in the area of security require complete information. We can use this algorithm an answer 
question 4 precisely.  

 
 We present related work in Section 2. Section 3 describes our model and our algorithm to generate 
attack graphs. We give details of an example networked system in Section 4 and use it throughout the 
paper for illustrative purposes. In Section 5 we present a minimization analysis to help administrators 
decide what measures to deploy to thwart attacks. In Section 6 we present a reliability analysis over 
probabilistic attack graphs based on the value iteration algorithm defined for Markov Decision 
Processes; this analysis can help administrators determine how deployment of one measure can 
decrease the likelihood of certain attacks. Finally, we present a brief summary and directions for future 
work in Section 7. 

 
2 Related Work 
 
 Phillips and Swiler [PS98] propose a concept of attack graphs similar to the one we describe. 
However, they model only attacks. Since we have a generic state machine model, we can simultaneously 
model not just attacks, but also seemingly benign system events (e.g., link failures and user errors) and 
even system administrator recovery actions. Therefore, our attack graphs are more general than the one 
proposed by Phillips and Swiler. They also built a tool for generating attack graphs [SPEC00]; it constructs 
the attack graph by forward exploration starting from the initial state. In our work, we use a symbolic 
model checker (i.e., NuSMV) that works backward from the goal state to construct the attack graph. A 
major advantage of the backward algorithm is that vulnerabilities that are not relevant to the safety property 
(or the goal of the intruder) are never explored; this technique can result in significant savings in space. In 
fact, Swiler et al. [SPEC00] refer to the advantages of the backward search in their paper. Finally, the post-
facto analysis suggested by Phillips and Swiler is also different from the ones we present in this paper. We 
plan to incorporate their analysis into our tool suite.  
 
 Dacier [Dac94] proposes the concept of privilege graphs, where each node represents a set of 
privileges owned by the user and arcs represent vulnerabilities. Privilege graphs are then explored to 
construct attack state graphs, which represent different ways in which an intruder can reach a certain goal, 
such as root access on a host. Dacier proposes a metric, called the mean effort to failure or METF, based on 
the attack state graphs. Orlato et al. [ODK99] describe an experimental evaluation of this framework. At 
the surface our notion of attack graphs seems similar to Dacier’s. However, as in the case with Phillips and 
Swiler, Dacier takes an “attack-centric” view of the world; again, our attack graphs are more general. From 
the experiments conducted by Orlato et al. it appears that even for small examples the space required to 
construct attack state graphs becomes prohibitive. Model checking has made significant advances in 
representing large state spaces. Therefore, by basing our algorithm on model checking we leverage off 
those advances and can hope to represent large attack graphs.  
 
 Ritchey and Amman [RA01] also used model checking for vulnerability analysis of networks. 
They used the unmodified model checker SMV [SMV]. Therefore, they could only obtain one counter-
example or one attack corresponding to a intruder’s goal. In contrast, we modified the model checker 
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NuSMV to produce complete attack graphs, which represents all possible attacks. We also described 
analyses that can be performed on these attack graphs. These analyses cannot be meaningfully performed 
on single attacks. 
 
3 Generating Attack Graphs using Model Checking 
 
 First, we formally define attack graphs, the data structure used to represent all possible attacks on 
our networked system. We restrict our attention to attack graphs representing violations of safety 
properties1. 
 
Definition 1 Let AP be a set of atomic propositions. An attack graph or AG is a tuple G = (S, τ, S0, Ss, L), 
where S is a set of states, τ C S x S is a transition relation, S0 C S is a set of initial states, Ss C S is a set of 
success states, and L: S → 2AP is a labeling of states with a set of propositions true in that state.  
 
 Unless stated otherwise, we assume that the transition relation τ is total. We define an execution 
fragment as a finite sequence of states s0s1…sn such that (si, si+1) Є τ for all 0 ≤i ≤ n. An execution fragment 
with s0 Є S0 is an execution, and an execution whose final state is in Ss is an attack, i.e., the execution 
corresponds to a sequence of atomic attacks leading to the intruder’s goal state. Intuitively, Ss denotes all 
states where the intruder has achieved his goal, e.g., obtaining root access on a critical host. 
 
 Next we turn our attention to algorithms for automatic generation of attack graphs and properties 
that we can guarantee of them. Starting with a description of a network model M and a security property p, 
the task is to construct an attack graph representing all executions of M that violate p. These are the 
successful attacks. For the kinds of attack graph analyses suggested in Section 1, it is essential that the 
graphs produced by the algorithms be exhaustive and succinct. An attack graph is exhaustive with respect 
to a model M and correctness property p if it covers all possible attacks in M leading to a violation of p, and 
succinct if it only contains those states and transitions of M that lead to a state violating p. 
 
3.1 Reachability Analysis 
 
 If we restrict ourselves to safety properties, an attack graph may be constructed by performing a 
simple statespace search. Starting with the initial states of the model M, we use a graph traversal procedure 
(e.g., depth first search) to find all reachable success states where the safety property p is violated. The 
attack graph is the union of all paths from initial states to success states.  
 
 While this algorithm has the advantage of simplicity, it handles only safety properties and may run 
into the state explosion problem for non-trivial models. Model 1checking has dealt with both of these issues 
with some success, so we will consider algorithms based on that technology. 
 
3.2 Model Checking Algorithm 
 
 Model checking is a technique for checking whether a formal model M of a system satisfies a 
given property p. In our work, we use the model checker NuSMV [NuS], for which the model M is a finite 
labeled transition system and p is a property expressed in Computation Tree Logic (CTL). For now, we 
consider only safety properties, which in CTL have the form AGf (i.e., p = AGf, where f is a formula in 
propositional logic). If the model M satisfies the property p, NuSMV reports “true.” If M does not satisfy p, 
NuSMV produces a counter-example. A single counter-example shows an execution that leads to a 
violation of the property. In this section, we explain how to construct attack graphs for safety properties 
using model checking.  
 

                                                 
1 We say more on liveness properties in Section 7. 
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Figure 2: Algorithm for Generating Attack Graphs 

 
 Attack graphs depict ways in which the system can reach an unsafe state (or, equivalently, a 
successful state for the intruder). We can express the property that an unsafe state cannot be reached as:  
 

AG(¬unsafe) 
 

 When this property is false, there are unsafe states that are reachable from the initial state. The 
precise meaning of unsafe depends on the application. For example, in the network security example given 
in Section 4, the property given below is used to express that the privilege level of the intruder on the host 
with index 2 should always be less than the root (administrative) privilege.  
 

AG(network.adversary.privilege[2] < network.priv.root) 
 

 We briefly describe the algorithm (see Figure 2) for constructing attack graphs for the property 
AG(¬unsafe). The first step is to determine the set of states Sr that are reachable from the initial state. Next, 
the algorithm computes the set of reachable states Sunsafe that have a path to an unsafe state. The set of states 
Sunsafe is computed using an iterative algorithm derived from a fix-point characterization of the AG operator 
[CGP00]. Let R be the transition relation of the model, i.e., (s,s’) Є R if and only if there is a transition from 
state s to s’. By restricting the domain and range of R to Sunsafe we obtain a transition relation Rp that 
represents the edges of the attack graph. Therefore, the attack graph is (Sunsafe, Rp, Sp

0, Sp
f, L), where Sunsafe 

and Rp represent the set of nodes and edges of the graph respectively; Sp
0 = S0 ∩ Sunsafe is the set of initial 

states; and Sp
f = {s│s Є Sunsafe ^ s =  unsafe} is the set of success states. 

 
 In symbolic model checkers, such as NuSMV, the transition relation and sets of states are 
represented using BDDs [Bry86], a compact representation for boolean functions. There are efficient BDD 
algorithms for all operations used in the algorithm shown in Figure 2. 
 
3.3 Attack Graph Properties 
 
 We can show that an attack graph G generated by the algorithm in Figure 2 is exhaustive (Lemma 
1(a)) and succinct with respect to states and transitions (Lemmas 1(b) and 1(c)). 
 
Lemma 1  
(a) (Exhaustive) An execution e of the input model (S, R, S0, L) violates the property ρ = AG(¬unsafe) if 
and only if e is an attack in the attack graph G = (Sunsafe, Rp, S0

p, Ss
p).  



     

 

 

24

(b) (Succinct states) A state s of the input model ( S, R, S0, L) is in the attack graph G if and only if there 
is an attack in G that contains s.  
(c) (Succinct transitions) A transition t = (s1, s2) of the input model (S, R, S0, L) is in the attack graph G 
if and only if there is an attack in G that includes t. 
 
Proof: 
 (a) exhaustive. (=>) Let e = s0t0...tn-1sn be a (finite) execution of the input model such that sn is an 
unsafe state. To prove that e is an attack in G, it is sufficient to show (1) s0 Є S0

p, (2) sn Є Ss
p, and (3) for all 

0 ≤ k  ≤ n, sk Є S and tk Є Rp.  
  
 Since unsafe holds at sn and for all k there is a path from sk to sn in the input model, by definition 
every sk along e violates AG(¬unsafe). Therefore, by construction, every sk is in Sunsafe   and every tk is in 
Rp. (1) and (2), and (3) follow immediately.  
 
 (<=) Suppose that e = s0t0...tn-1sn is an attack in the attack graph G. By construction, all states and 
transitions of e are also states and transitions in the input model. Since e is an attack, s0 Є S0

p and sn Є Ss
p . 

Therefore, s0 Є S0
  and sn Є S. So e is an execution of the input model, its first state is an initial state of the 

model, and p is false in its final state. It follows that e violates the property AG(¬unsafe).  
 
 (b) succinct state (=>) By construction of the algorithm in Figure 2, all states generated for the 
attack graph are reachable from an initial state, and all of them violate AG(¬unsafe). Therefore, for any 
such state s in the input model, there is a path e1 from an initial state to s, and there is a path e2 from s to an 
unsafe state.  
 
 The concatenation of e1 and e2 is an execution e of the input model that  violates AG(¬unsafe). By 
Lemma 1a, e is an attack in G. Since e contains s,  the proof is complete.   
 
 (<=) If there is an attack in G that contains s, then trivially s is in G.  
 

(C) Succinct-transition. (=>) By lemma 1b, there is an attack e1 = q0t0…s1…tm-1qm that contains 
state s1 and an attack e2 = r0u0…s2…un-1rn that contains state s2. So the following attack 
includes both states s1 and s2 and the transition t: e = q0t0…s1ts2…un-1rn. 

 
(<=) If there is an attack in G that contains t, then trivially t is in G. 

 
4 A Simple Intrusion Detection Example 
 
 Consider the example network shown in Figure 3. There are two target hosts, ip1 and ip2, and a 
firewall separating them from the rest of the Internet. As shown, each host is running two of three possible 
services (ftp, sshd, a database). An intrusion detection system (IDS) monitors the network traffic between 
the target hosts and the outside world. There are four possible atomic attacks, identified numerically as 
follows: (0) sshd buffer overflow, (1) ftp .rhosts, (2) remote login, and (3) local buffer overflow. If an 
atomic attack is detectable, the intrusion detection system will trigger an alarm; if an attack is stealthy, the 
IDS misses it. The ftp .rhosts attack needs to find the target host with two vulnerabilities: a writable home 
directory and an executable command shell assigned to the ftp user name. The local buffer overflow 
exploits a vulnerable version of the xterm executable.  
 
 In this section, we construct a finite state model of the example network so that each state 
transition corresponds to a single atomic attack by the intruder. A state in the model represents the state of 
the system between atomic attacks. A typical transition from state s1 to state s2 corresponds to an atomic 
attack whose preconditions are satisfied in s1 and whose effects hold in state s2. 
 
 The intruder launches his attack starting from a single computer, ipa, which lies outside the 
firewall. His eventual goal is to disrupt the functioning of the database. For which, the intruder needs root 
access on the database host ip2. 
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Figure 3: Example Network 
 
 
4.1 States of the Finite State Machine Model 
 
The Network 
 
 We model the network as a set of facts, each represented as a relational predicate. The state of the 
network specifies services, host vulnerabilities, connectivity, and a remote login trust relationship between 
hosts. There are six boolean variables for each host, specifying whether any of the three modeled services 
are running and whether any vulnerabilities are present on that host. 
 

 
 
 Connectivity is expressed as a ternary relation R C Host x Host x Port, where R(h1, h2, p) means 
that host h2 is reachable from host h1 on port p. The constants sp and fp will refer to the specific ports for 
the ssh and ftp services, respectively. Slightly abusing notation (by overloading R), we write R(h1, h2) when 
there is a network route from h1 to h2. We model trust as a binary relation RshTrust C Host x Host, where 
RshTrust(h1, h2) indicates that a user may log in from host h2 to host h1 without authentication (i.e., host h1 
“trusts” host h2). 
 
The Intruder 
 
 The function plvlA: Hosts →{none, user, root} gives the level of privilege that intruder A has on 
each host. There is a total order on the privilege levels: none < user < root.  
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 Several state variables specify which attack the intruder will attempt next: 
 

 
 
 If detectable, it will trigger an alarm when executed on a host or network segment monitored by 
the IDS; if an attack is stealthy, the IDS does not detect it.  
 
 We specify the IDS with a function ids: Host x Host x Attack → {d, s, b}, where ids(h1, h2, a) = d 
if attack a is detectable when executed with source host h1 and target host h2; ids(h1, h2, a) = s if attack a is 
stealthy when executed with source host h1 and target host h2; and ids(h1, h2, a) = b if attack a has both 
detectable and stealthy strains, and success in detecting the attack depends on which strain is used. When 
h1 and h2 refer to the same host, ids(h1, h2, a) specifies the intrusion detection system component (if any) 
located on that host. When h1 and h2 refer to different hosts, ids ids(h1, h2, a) specifies the intrusion 
detection system component (if any) monitoring the network path between h1 and h2. In addition, a global 
boolean variable specifies whether the IDS alarm has been triggered by any previously executed atomic 
attack. 
 
4.2 Initial States 
 
 Initially, there is no trust between any of the hosts; the trust relation Tr is empty. The connectivity 
relation R is shown in the following table. An entry in the table corresponds to a pair of hosts (h1, h2). Each 
entry is a triple of boolean values. The first value is ‘y’ if h1 and h2 are connected by a physical link, the 
second value is ‘y’ if h1 can connect to h2 on the ftp port, and the third value is ‘y’ if h1 can connect to h2 on 
the sshd port. 
 

 
 
 We use the connectivity relation to reflect the firewall rule sets as well as the existence of physical 
links. For the table above, the firewall is open and does not place any restrictions on the flow of network 
traffic. 
 
 Initially, the intruder has root privileges on his own machine ipa and no privileges on the other 
hosts. 
 
 The paths between (ipa, ip1) and between (ipa, ip2) are monitored by the single network-based IDS. 
The path between (ip1, ip2) is not monitored. There are no other host-based intrusion detection components. 
The IDS detects the remote login attack and the detectable strains of the sshd buffer overflow attack. 
 
4.3 Transitions 
 
 Our model has nondeterministic state transitions. If the current state of the network satisfies the 
preconditions of more than one atomic attack rule, the intruder nondeterministically “chooses” one of 
those attacks. The state then changes according to the effects clause of the chosen attack rule. The intruder 
repeats this process until his goal is achieved.  



     

 

 

27

 
 We model four atomic attacks. Throughout the description, S is used to designate the source host 
and T the target host. Recall that R(S, T, p) denotes that host T is reachable from host S on port p. 
 
Sshd Buffer Overflow 
 
 This remote-to-root attack immediately gives a remote user a root shell on the target machine. 
 

Ftp .rhosts 
 
 Using an tp vulnerability, the intruder creates an .rhosts file in the ftp home directory, creating a 
remote login trust relationship between his machine and the target machine. 
 

 
 
Remote Login 
 
 Using an existing remote login trust relationship between two machines, the intruder logs in from 
one machine to another, getting a user shell without supplying a password. This operation is usually a 
legitimate action performed by regular users, but from the intruder’s viewpoint, it is an atomic attack. 
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Local Buffer Overflow 
 
 If the intruder has acquired a user shell on the target machine, the next step is to exploit a buffer 
overflow vulnerability on a setuid root file to gain root access. 
 

 
 
 It is easy to see that each atomic attack strictly increases either the intruder’s privilege level on the 
target host or remote login trust between hosts. This means that the attack graph has no cycles. 
 
 From our finite model we can now automatically construct attack graphs that demonstrate how the 
intruder can violate various security properties. Suppose we want to generate all attacks that demonstrate 
how the intruder can gain root privilege on host ip2 and remain undetected by the IDS. The following CTL 
formula expresses the safety property that the intruder on host ip2 always has privilege level below root or 
is detected: 
 

AG(network.adversary.privilege[2] < network.priv.root │ network.detected) 
 
 Figure 4 shows the attack graph produced by our tool for this property. Each node is labeled by an 
attack id number, which corresponds to the atomic attack to be attempted next; a flag S/D indicates whether 
the attack is stealthy or detectable by the intrusion detection system; and the numbers of the source and 
target hosts (ipa corresponds to host number 0).  
  
 Any path in the graph from the root node to a leaf node shows a sequence of atomic attacks that 
the intruder can employ to achieve his goal while remaining undetected. For instance, the path highlighted 
by dashed-boxed nodes consists of the following sequence of four atomic attacks: overflow sshd buffer on 
host 1, overwrite .rhosts file on host 2 to establish rsh trust between hosts 1 and 2, log in using rsh from 
host 1 to host 2, and finally, overflow a local buffer on host 2 to obtain root privileges.  
 
 We have also expanded the example described above by adding two additional hosts, four 
additional atomic attacks, several new vulnerabilities, and flexible firewall configurations. For this larger 
example the attack graph has 5948 nodes and 68364 edges. 
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5 Minimization Analysis 
 
 Once we have an attack graph generated for a specific network with respect to a given safety 
property, we can utilize it for further analysis. A system administrator has available to him a set of 
measures, such as deploying additional intrusion detection tools, adding firewalls, upgrading software, 
deleting user accounts, 

 
 
 

 
Figure 4: Attack Graph 

 
 
 

 
Figure 5: Attack Graph Analysis 

 
 Minimization analysis helps analysts make decisions about what measures to deploy depending on 
what set of atomic attacks they thwart. It helps us answer questions such as 1, 2, and 3 posed in Section 1.1. 
Let us look at each question in turn since they suggest different solution approaches. 
 
5.1 Minimal Subsets of Atomic Attacks to Thwart 
 
 Suppose we want to find a minimal set, A, of atomic attacks that must be prevented to guarantee 
the adversary cannot achieve his goal. A system analyst can use this information in deciding to choose one 
measure m1, which eliminates this minimal set of attacks over another measure, m2, perhaps cheaper than 
m1, but ineffective with respect to A. 
 
 A naive solution is as follows: 
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 1. Make only a subset of the atomic attacks available to the intruder. 
 
 2. Run the model checking algorithm to determine if the adversary can  succeed. 
 
 3. Do Steps 1 and 2 for all possible non-empty subsets of atomic attacks. 
 
 Clearly this solution is exponential in the number of atomic attacks. For our example, however, 
the number is small, and we can easily determine this minimal set. As a by-product of determining this set, 
we can easily answer the first question posed in Section 1. 
 
Question 1: What successful attacks are undetected by the IDS? 
 
Answer: To answer this question, we modify the model slightly. For simplicity, we nondeterministically 
decide which subset to consider initially, before any attack begins; once the choice is made, the subset of 
available atomic attacks remains constant during any given attack. We ran the model checker on the 
modified model with the invariant property that says the intruder never obtains root privilege on host ip2: 
 

AG(network.adversary.privilege[2] < network.priv.root) 
 
 The post-processor marked the states where the intruder has been detected by the IDS. The result 
is shown in Figure 5. The white rectangles indicate states where the attacker had not yet been detected by 
the intrusion detection system. The black rectangles are states where the intrusion detection system has 
sounded an alarm. Thus, white leaf nodes are desirable for the attacker because his objective is achieved 
without detection. Black leaf nodes are less desirable. The attacker achieves his objective, but the alarm 
goes off. 
 
 The resolution of which atomic attacks are available to the intruder happens in the circular nodes 
near the root of the graph. The first transition out of the root (initial) state picks the subset of attacks that 
the intruder will use. Each child of the root node is itself the root of a disjoint subgraph where the subset of 
atomic attacks chosen for that child is used. Note that the number of such subgraphs descending from the 
root node corresponds to the number of subsets of atomic attacks with which the intruder can be successful. 
The model checker determines that for any other possible subset, there is no possible successful sequence 
of atomic attacks.  
 
 The root of the graph in Figure 5 has two subgraphs, corresponding to the two subsets of atomic 
attacks that will allow the intruder to succeed. In the left subgraph the sshd buffer overflow attack is not 
available to the intruder; it can be readily seen that the intruder can still succeed, but cannot do so while 
remaining undetected by the IDS. In the right subgraph, all attacks are available. Thus, the entire attack 
graph implies that all atomic attacks other than the sshd attack are indispensable: the intruder cannot 
succeed without them. That is, for no other subset of atomic attacks can the intruder succeed in achieving 
his goal. The analyst can use this information to guide decisions on which network defenses can be 
profitably upgraded. 
 
 The white cluster in the middle of the figure is isomorphic to the attack graph presented in Figure 
4; it shows attacks in which the intruder can achieve his objective without detection (i.e., all paths by which 
the intruder reaches a white leaf in the graph). 
 

AG(¬unsafe) 
 
 Let A be the set of atomic attacks, and G = (S, E, s0,ss, L) be the attack graph, where S is the set of 
states, E C S x S is the set of edges, s0 Є  S is the initial state, ss Є S is the success state for the intruder, and 
L: E → A U {ε}  is a labeling function where L(e)= a if an edge e =(s → s’) corresponds to an atomic 
attack a, otherwise L(e)=e. Edges labeled with e represent system transitions that do not correspond to an 
atomic attack. Moreover, as demonstrated below additional e edges can be also introduced by our 
construction. Without loss of generality we can assume that there is a single initial and success state. For 
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example, consider an attack graph with multiple initial states s0
1… s0

j and success states ss
1… su

s.  We can 
add a new initial state s0 and a new success state ss with e-labeled edges (s0, s0

m ) (1 ≤ m ≤ j) and (ss, ss
t)(1≤ t 

≤ u). 
 
 Suppose we are also given a finite set of measures M = (m1,… ,mk) and a function covers: M → 2A. 
An atomic attack a Є covers(mi) if adopting measure mi removes the atomic attack a. 
 
 We are now ready to address the question of what measures a system administrator should deploy 
to ensure the system is safe. Again, there is a naive solution, that is, to try all possible subsets of measures 
M’ C M and determine which of those make the system safe. We discuss this approach in the context of 
question 2: 
 
Question 2: If all measures for protecting a network are deployed, does the system become safe? 
 
Answer: A network administrator wants to find out whether adopting measures from a set M’C M will 
make the network safe. This question can be answered in linear time using the attack graph G. First, we 
define covers(M’) as UmЄM’ covers(m). Next, we remove all edges e from G such that L(e) Є covers(M’). 
The network is safe iff the success state ss is not reachable from the initial state s0. This simple reachability 
question can be answered in time that is linear in the size of the graph. 
 
 As the set of measures grows (and as the set of atomic attacks grows), we really would like to have 
the system administrator choose the smallest subset of measures that would guarantee the networked 
system is safe. We address this decision in the context of question 3: 
 
Question 3: Given a set of measures M, what is the smallest subset of measures M’ whose deployment 
makes the system safe? 
 
Answer: A network administrator wishes to find a subset M’ C M of smallest size, such that adopting the 
measures in the set M’ will make the network safe. Unfortunately, this problem is NP-complete, but we 
develop good approximation algorithms. We proceed in two steps: 
 
Step 1: Finding a small set of atomic attacks. 

In this step, we find a set of atomic attacks whose removal makes the network safe. As described 
in the previous section, checking every possible subset of attacks is exponential in the number of 
attacks. In an earlier conference paper [SHJ_02], we show that finding the minimum set of atomic 
attacks which must be removed to thwart an intruder is in fact NP-complete. We repeat part of the 
proof below (see Lemma 2). We also demonstrated how a minimal set can be found in 
polynomial-time.2 In this paper, we further explore the complexity of this problem. Section 5.2.1 
proves that the problem of finding a minimum set of attacks is polynomially equivalent to the 
minimum hitting set problem, where the collection of sets is represented as labeled directed graph. 
This reduction provided us with additional insight. This additional insight enabled us to find a 
greedy algorithm with provable bounds. Recall that M = (m1,… ,mk) is the set of measures and 
covers: M → 2A is a function, where covers(mi) represents the set of atomic attacks that are 
removed by adopting the measure mi. With each attack a in the set A’, we associate a set of 
measures M(a) which is {mi  │ a Є covers(mi)}. The set of attacks A’ defines a collection CA’ of 
subsets of M. We wish to find the smallest subset M’ C  M such that for all a Є A’ there exists an 
mi Є M’ such that a Є covers(mi), or equivalently M’ ∩ M(a) ≠ 0. This is known as the minimum 
hitting set problem, which is NP-complete, but good approximation algorithms exist to solve this 
problem (see Section 5.2.2) 

 
5.2.1 The Minimum Critical Attack Sets and the Minimum Hitting Set Problem 
 
 This section addresses the first step in the answer to question 3. Assume that we are given an 
attack graph G = (S, E, s0, ss, L), where S is the set of states, E C S x S is the set of edges, s0 Є S is the initial 
state, ss Є S is the success state for the intruder, and L : E →A U {e} is a labeling function. 
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 Given a state s Є S, a set of attacks C is critical with respect to s if and only if the intruder cannot 
reach his goal from s when the attacks in C are removed from his arsenal. Equivalently, C is critical with 
respect to s if and only if every path from s to the success state ss has at least one edge labeled with an 
attack a Є C. 
 
 A critical set corresponding to a state s is minimum (denoted M(s)) if there is no critical set M’(s) 
such that │M’(s)│ < │M(s)│. In general, there can be multiple minimum sets corresponding to a state s. Of 
course, all minimum critical sets must be of the same size.  
 
 A critical set of an attack graph G = (S, E, s0, ss, L) is defined as a critical set corresponding to the 
initial state s0. Therefore, the Minimum Critical Set of Attacks (MCSA) problem is the problem of finding a 
minimum critical set of attacks M(s0). The decision version of the problem is defined as follows: given an 
attack graph G = (S, E, s0, ss, L) and a positive integer K, is there a critical set of attacks A C A such that 
│A│ ≤ K? 
 
Lemma 2 Assume that we are given an attack graph G = (S, E, s0, ss, L) and an integer k. The MCSA 
problem of determining whether there is a critical set C(s0) such that │C(s0)│ ≤ k is NP-complete. 
 
Proof: First, we prove that the problem is in NP. Guess a set C C A with size ≤ k. We need to check that C 
is a critical set of attacks. This can be accomplished in polynomial time using the reachability algorithm 
described before (see answer to question 2). Therefore, the problem is in NP. 
 
 Next, we prove that the problem is NP-hard. The reduction is from the minimum hitting set 
problem, details as given in the remainder of this section. 
 
 Assume that we are given an attack graph G = (S, E, s0, ss, L). A path π is a sequence of states 
q1,…, qn, such that qi Є S and (qi, qi+1) Є E. A complete path starts from the initial state s0 and ends in the 
success state ss. The label of a path π = q1, … qn (abusing notation, we will denote it also as L(π )) is a 
subset of a set of attacks A. 
 

Ui=1 
n-1 L(qi, qi+1)} \ {e}. 

 
L(π) represents the set of atomic attacks used on the path π. A set of attacks A C A is called realizable in the 
attack graph G iff there exists a complete path π in G such that L(π) = A. In other words, an intruder can use 
the set of attacks A to start from the initial state and reach the success state. The set of all realizable sets in 
an attack graph G is denoted by Rel(G). The following lemma is easy to prove and follows straight from the 
definitions. 
 
Lemma 3 Assume that we are give an attack graph G = (S, E, s0, ss, L). A set of attacks A is critical iff 
 

 ¥A’ Є Rel (G).A’∩ A ≠ 0.  
 

In other words, all realizable sets have a non-empty intersection with a critical set A. 
 
Question: Is there a subset S C S with (S) ≤ K such that S contains at least one element from each subset in 
C?  
 
Lemma 3 proves that the problem of finding whether the attack graph G has a critical set of size ≤ K is the 
hitting set problem with C = Rel (G), S = A, and K. 
 
 Next suppose we have an instance (C, S, K) of the hitting set problem. We will construct an attack 
graph G = (S’, E’, s0’, ss’, L’), where L’:E’→ S U {e}, i.e., the set of attacks used in the attack graph G’ is S. 
Moreover, the set of realizable sets Rel (G’) of the graph G’ is the collection C. A critical set of size ≤ K of 
the attack graph G’ is a hitting set for the collection C. Next, we describe the construction of G’. Let C = 
{C1,…,Cm} be the collection of sets and S = {s1,…,sn} be the set. We make m copies S1,…, Sm of the set S. 
The set of elements in Si will be denoted by {si,…,si n}. The set of states S’ in the attack graph G’ is 



     

 

 

33

 
{s0’ ,ss’}U S1U…U Sm. 

 
 The initial state is s0’ and the final state is ss’. The set of edges E’ and the labeling function L’ are 
defined as follows: 
 

• There is an edge from s’0 to every state in the set {s1
1, s2

1,…,  sm
1}, and label of the edge (s’0, s1

i) is 
si if s1 Є Ci, otherwise it is e. 

• For all 1 ≤ i ≤ m and 1 ≤ j ≤ n -1, there is an edge (si
j, si

j+1), and the label of edge (si
j, si

j+1) is sj+1 if 
sj+1 Є Ci, otherwise it is e.   

• There is an edge from every state in the set {s1
n, s2

n,…,  sm
n} to the state s’ s, and labels of all these 

edges is e.  
 
 The sizes of the sets S’ and E’ in the attack graph G’ are mn + 2 and 2m + mn respectively. It is 
easy to see that Rel(G’) is equal to C, and S’ C  S is a critical set of the attack graph G’ iff S’ is a hitting set 
for the collection C. Since the size of G’ is polynomial in the size of the instance of the hitting set problem 
and the hitting set problem is NP-complete, the MCSA problem is NP-hard. Lemma 2 proves that MCSA is 
in NP. Therefore, MCSA is NP-complete. The next example illustrates our construction. 
 
Note: The discussion above also proves that the problem of finding a minimum set of measures whose 
adoption will make the network safe is also NP-complete. One can simply take the set of measures M to be 
the set of attacks A. 
 
Example 1 We give a short example to illustrate the reduction. Consider a set S = {s1, s2, s3}. Suppose that 
the collection C consists of the following subsets: 
 

 
 
 The attack graph G’ corresponding to this problem is shown in Figure 6. The set of attacks is {s1, 
s2, s3}. The set of realizable sets Rel (G’) is exactly the collection C. The set of attacks {s1, s2} is critical 
because every path from s’0 to the success state s’s uses at least one edge with the label in the set {s1, s2}. 
Moreover, {s1, s2} is a hitting set for the collection C = {C1, C2, C3}.  
 
 The above discussion proves that the problem of finding critical sets in attack graph is 
polynomially equivalent to finding hitting sets for a collection, with one caveat–the collection of sets C is 
represented as an attack graph. An attack graph can be an exponentially succinct representation of a 
collection of sets. Figure 7 shows an attack graph of linear size whose set of realizable sets is the power set 
of {s1,…,sn}. Therefore, the minimum critical set problem is polynomially equivalent to the hitting set 
problem where the collection of sets C is represented as a labeled directed graph. 
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Figure 6: Attack graph corresponding to the collection C. 

 

 
Figure 7: Attack graph representing an exponential number of realizable sets. 

 
Let (C, S, K) be an instance of the hitting set problem. Let S’ and C’ be initially the empty set. The greedy 
algorithm executes the following step until C’= C. 
 

• Pick an element s out of the set S \ S’ that covers the maximum number of sets in the collection C \ 
C’. An element s is said to cover a set S1 C  S iff s Є S1.  

• Let s be the element picked in the previous step and C(s) be the collection of sets in C covered by 
s. Update S’ and C’ as follows: 

 
     S’ ← S’ U {s} 
     C’ ←C’ U C(s) 
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• Let Hd be the d-th harmonic number ∑d i=1 1/i.  Let C(s) be the number of sets in the collection C 

that are covered by the element s. 
 
Lemma 4 GREEDY-HITTING-SET is a polynomial-time p(n)-approximation algorithm, where p(n) = 
H(maxsЄS{│C(s)│}. 
 
 The proof of the lemma follows from the equivalence between the minimum hitting set and the 
minimum cover problem [ADP80] and the proof of the approximation factor p(n) for the greedy algorithm 
for the minimum cover problem [CLR85]. Using the equivalence between the problems of finding a 
minimum critical set and a minimum hitting set, we can construct a greedy procedure (called GREEDY-
CRITICAL-SET) for finding a critical set for the attack graph. Assume that we are given an attack graph G 
= (S, E, s0, ss, L), where S is the set of states, E C S x S is the set of edges, s0 Є S is the initial state, ss Є S  is 
the success state for the intruder, and L : E → A U {e} is a labeling function. Moreover, assume that we can 
compute in polynomial time the function µG :A → N, where µG (a) is the number of realizable sets in the 
attack graph G that contain the attack a. Formally, µG (a) is equal to 
 

│{A’│a Є A’ and A’ Є Rel(G)}│ 
 

Initially, let A’ be the empty set and G’= G. The greedy algorithm GREEDY-CRITICAL-SET executes the 
following step until G_ is empty. 
 

• Pick and element a from the set A \A’ that maximizes µG’ (a). 
• Let a be the element picked in the previous step. Update A’ and G’ as follows: 

  
  A’ ← A U {a} 
  Remove all edges labeled with a from G’ 
 
Lemma 5 GREEDY-CRITICAL-SET is a polynomial-time p(n)-approximation algorithm, where p(n)= 
H(maxaЄA{µG(a)}).  
 
 Next, we explore conditions when the function µG can be computed in polynomial time. Assume 
that the attack graph G is a DAG. An argument for this was given in Section 4.3. Moreover, assume that 
each atomic attack is used only once on a path from the initial state s0 to the success state ss. This is not an 
unreasonable assumption because the attack graph edges are labeled with instantiations of attack templates 
shown in Section 4.3, e.g., a local-setuid-buffer-overflow attacks on two different hosts are distinct in the 
attack graph. Such attack graphs are called use-once DAGs. The following lemma is easy to prove. 
 
Lemma 6 For an attack graph that is a use-once DAG, the function µG can be computed in time that is 
linear in size of the attack graph.  
 
 Suppose a system administrator would like to know which measures would increase or decrease 
the likelihood of thwarting an attack? If we have probabilities available to us, we can annotate attack 
graphs to help system administrators answer such questions.  
 
 In our work, we do not require that all transitions be given probabilities; in general, our annotated 
attack graphs can have a mix of probabilistic and nondeterministic state transitions. We pursue the 
implications of this general kind of attack graph in this section.  
 
 In general, we also do not require probabilities to be numeric; they can be symbolic, e.g., “high,” 
“medium,” or “low,” and even partially ordered. In an earlier paper [JW01], we discuss an analysis that 
uses symbolic probabilities; in this paper, however, we restrict ourselves to numeric values. 
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6.1 Probabilistic Attack Graphs 
 
 Suppose that the graph has a state s with only two outgoing transitions. In a regular attack graph, 
the choice of which transition to take when the system is in state s is nondeterministic. However, we may 
have some empirical data that enables us to estimate that whenever the system is in state s, on average it 
will take one of the transitions four times out of ten and the other transition six remaining times. We can 
place probabilities 0.4  and 0.6 on the corresponding edges in the attack graph. Intuitively, the 
probability of the transition s → s‘ represents the likelihood that the atomic attack corresponding to the 
transition will succeed. We call a state with known probabilities for outgoing transitions probabilistic. 
When we have assigned all known probabilities in this way, we are left with an attack graph that has some 
probabilistic and some nondeterministic states in it. We call such mixed attack graphs probabilistic attack 
graphs. We use probabilistic attack graphs to evaluate the reliability of a network. Note that probabilities of 
all the transitions might not be available because of lack of data, e.g., a new type of atomic attack.  
 
 Since the attack graph includes only those states and transitions that can lead to success states, it 
excludes some transitions that exist in the complete model M. These excluded transitions can have non-zero 
probability, so that the sum of probabilities of transitions from a probabilistic state will be less than 1. To 
address this problem, we must model the rest of M in some way. We add a “catch-all” escape state se to the 
attack graph. A probabilistic state s in the attack graph will have a transition to se if and only if in M there is 
a transition from s to some state not in the attack graph. The probability of going from s to se will be 1 
minus the sum of the probabilities of going to other states. There are no transitions out of se except a self-
loop (which preserves the totality of the transition relation τ).  
 
 In an attack graph containing the escape state se attacks are allowed to terminate in se. We will call 
them escape attacks, or attacks that were pre-empted by the intruder before he reached his goal. 
 
6.1.1 Definition of PAGs 
 
Definition 3 A probabilistic attack graph or PAG is a tuple G = (Sn, Sq, se, S, τ, π, S0, Ss, L), where Sn is a 
set of nondeterministic states, Sq is a set of probabilistic states, se Є Sn is a nondeterministic escape state (se 
€ Ss), S = Sn U Sq is the set of all states, τ C S x S is a transition relation, π → Sq → S → R are transition 
probabilities, S0 C S is a set of initial states, Ss C S is a set of success states, and L : S → 2AP is a labeling of 
states with a set of propositions true in that state. 
 
 A probabilistic attack graph distinguishes between nondeterministic states (set Sn) and 
probabilistic states (set Sq). Moreover, the sets of nondeterministic and probabilistic states are disjoint (S n 
∩ Sq = 0). The function π specifies probabilities of transitions from probabilistic states, so that for all 
transitions s1 → s2 Є τ such that s1 Є Sq, we have P(s1 → s2) = π(s1)(s2) > 0. Thus, π(s) can be viewed as a 
probability distribution on next states.  Intuitively, when the system is in a nondeterministic state sn, we 
have no information about the relative probabilities of the possible next transitions. When the system is in a 
probabilistic state sq, it will choose the next state according to probability distribution π(sq). 
 
 Let G = (S, τ, S0, Ss, L) be the attack graph and P a function that assigns probabilities to 
transitions. The probabilities can be loosely interpreted as the probability of the atomic attack 
corresponding to the transition succeeding. We are interested in finding the reliability of the attack graph, 
i.e., the probability that the intruder will not succeed. We can view G as a Markov chain with S as its state 
space and P(s1 → s2) as its transition probability. Let U : S → R+ be the steady state probability of the 
Markov chain (see [Dur95] for definitions and technical conditions). In this case, the reliability of the 
attack graph G is given by the following expression: 
   1 - ∑sЄSs U(s) 
 
In other words, the reliability is the probability that in the “long run” the Markov chain will not be in a state 
in the set Ss.  
 
 In general, however, we do not have probabilities assigned to all transitions; thus in Section 6.2 we 
show how to perform similar reliability analysis on probabilistic attack graphs in the presence of 
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nondeterministic states. The justification of our approach relies on converting a probabilistic attack graph 
(PAG) into an alternating probabilistic attack graph (APAG) and then interpreting the result as a Markov 
Decision Process; we give this construction and interpretation in Section 6.3; we give the proof of 
correctness of the MDP value iteration algorithm applied to PAGs in Section 6.4. Sections 6.3 and 6.4 can 
be skipped upon a first reading. 
 
6.2 Reliability Analysis of PAGs 
 
 Assume that we are given a PAG tuple G = (Sn, Sq, se, S, τ, π, S0, Ss, L). Intuitively, we are 
interested in finding out the probability that the intruder will reach a success state starting from one of the 
initial states. As shown above, in the absence of nondeterministic states we can compute this metric by 
using the steady state probabilities of the Markov chain. In the presence of nondeterministic states the 
intruder will choose transitions in order to maximize his probability of succeeding. For example, if an 
intruder reaches a nondeterministic state s with transitions to s1,…,sk, he will choose to transition to state 
si(1 ≤ i ≤ n) which will maximize his probability of reaching a success state. This idea can be “formalized” 
using concepts from the theory of Markov Decision Processes [Alt99, Put94]. 
 
6.2.1 Value Iteration for PAGs 
 
 Given a state s, the set of successors of s is denoted by succ(s). Formally, succ(s) is equal to {s’│ 
(s, s’) Є τ}. First, we define a value function V : S →R+. For all s Є Ss, V(s)= 1.0. For all states s Є S \Ss the 
value function is iterated according to the following equations until convergence. 
                                                                                                                                                                                                        
  V(s) =    maxs’Єsucc(s)V(s’)             if s Є Sn \ Ss 

                                                                         ∑s’succ(s)P(s →s’)V(s’)   if s Є Sq \ Ss 
 
 Let V* be the value function after convergence. Intuitively, ∑sЄS0V*(s) is the probability for the 
intruder to reach a success state if he “breaks” the nondeterminism to maximize the probability of 
succeeding. Therefore, the worst case reliability of the network is 1 - ∑sЄS0V*(s). This algorithm is known 
as value iteration. The justification of the value iteration algorithm as applied to PAGs is presented in 
Section 6.4. 
 
6.2.2 Example Revisited 
 
 We implemented the value iteration algorithm in our attack graph post-processor and ran it on a 
slightly modified version of the intrusion detection example from Section 4. In the modified example, each 
attack has both detectable and stealthy variants. The intruder chooses which atomic attack to try next, and 
he has a certain probability of picking a stealthy or a detectable variant. We assigned imaginary 
probabilities of picking a stealthy attack variant as follows: 0.2 for sshd buffer overflow, 0.5 for ftp .rhosts, 
0.05 for the other. 
 
 In this setup, the computed probability of intruder success is 0.2, and his best strategy is to attempt 
sshd buffer overflow on host ip1, and then conduct the rest of the attack from that host. The only possibility 
of detection is the sshd buffer overflow attack itself, since the IDS does not see the activity between hosts 
ip1 and ip2. Given this context, a system administrator can answer the following question: 
 
Question 4: The deployment of which security measure(s) will increase the likelihood of thwarting an 
attacker? 
 
Answer: Installing an additional IDS component to monitor the network traffic between hosts ip1 and ip2 
reduces the probability of the intruder remaining undetected to 0.025; installing a host-based IDS on host  
ip2 reduces the probability to 0.16. Other things being equal, this is an indication that the former remedy is 
more effective. 
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6.3 Alternating Probabilistic Attack Graphs and Markov Decision Processes 
 
 In this section we show that probabilistic attack graphs can be reduced to Markov Decision 
Processes (without the reward function). We then demonstrate how we can assign a reward function to 
attack graphs such that standard MDP algorithms can be used to compute reliability metric of the network 
being modeled. 
 
 
Definition 4 [Alt99, Put94] A Markov Decision Process is a tuple (X, A, P, c) where 
 

• X is a finite state space. Generic notation for MDP states will be x, y, z. 
• A is a finite set of actions. A(x) C  A denotes the actions that are available at state x. Set K = (x, a) 

: x Є X, a Є A(x) is the set of state-action pairs. A generic notation for an action will be a. 
• P :  X x A x X are the transition probabilities; thus, P(xay) (also written as Pxay) is the probability 

of moving from state x to y if action a is chosen. 
• r : K → R is an immediate reward. Cost may be equivalently viewed as a negative reward. We will 

freely use the term cost to mean negative reward, and vice versa. 
 

An execution fragment (also known as history in the traditional MDP literature) of an MDP is a sequence 
x0a1x1…anxn of alternating states and actions such that the sequence begins and ends with a state, and for all 
0 < k ≤ n, ak Є A(xk-1) and 0 <  
P(xk-1, ak, xk) ≤ 1. Given an execution fragment e = x0a1x1…anxn , the probability of the execution fragment 
(denoted by P(e)) is given by the following expression: 
                               n 

  Π P(xk-1, ak, xk) 
                              K=1 
 
 It is possible to convert a probabilistic attack graph into an MDP such that the behaviors of the 
PAG and the MDP are identical. To explain the conversion procedure, we define a restricted kind of 
probabilistic attack graph. 
 
Definition 5 An alternating probabilistic attack graph or APAG is a tuple G = (Sn, Sq, se, S, τ, π, S0, Ss, L), 
where Sn is a set of nondeterministic states, Sq is a set of probabilistic states, se Є Sn is a nondeterministic 
escape state, S = Sn U Sq is the set of all states, τn C S n x Sq is a set of nondeterministic transitions, τq  C  Sq 
→ Sn is a set of probabilistic transitions, π : Sq → Sn →R are transition probabilities, S0 C S is a set of initial 
states, Ss C S is a set of success states, and L : S → 2AP is a labeling of states with a set of propositions true 
in that state. 
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Figure 8: Converting PAG to APAG 
 
 An alternating probabilistic attack graph (APAG) does not have any transitions between two 
nondeterministic or between two probabilistic states. In other words, a nondeterministic state has 
transitions to probabilistic states only, and vice versa. An execution of an APAG will always have strictly 
alternating nondeterministic and probabilistic states. 
 
 Next we describe an algorithm that converts a PAG Gp = (Sn, Sq, se, S, τ, π, S0, Ss, L) into an APAG 
Gp

A = (Sn
A, Sq

A, se, S, τnA, τqA, πA, S0, Ss, LA) that has equivalent behaviors. The algorithm works by adding 
hidden states and transitions to the graph such that every execution becomes strictly alternating, yet does 
not change its observable (non-hidden) components. 
 
 We start with Sn

A = Sn, Sq
A = Sq ,  τnA := 0,, , τqA := 0, πA := 0, and LA = L. Next, 

 
1. Whenever τ has a transition from probabilistic state s1 to nondeterministic state s2, we add the transition 
to τqA and its probability to πA. 
 
2. Whenever τ has a transition from nondeterministic state s1 to probabilistic state s2, we add the transition 
to τnA. 
 
3. Whenever τ has a transition between two nondeterministic states s1 and s2, we add a hidden probabilistic 
state sh to Sq

A, an observable transition s1 → sh to τnA, and a hidden transition sh → s2 to τpA, assigning the 
latter probability 1.0 in πA (Figure8a). We also set LA(sh) = L(s1). 
 
4. Whenever τ has a transition between two probabilistic states s1 and s2, we add a hidden nondeterministic 
state sh to Sn

A, a hidden transition sh → s2 to τnA, and an observable transition s1 → sh to τpA, assigning the 
latter the original probability p of going from s1 to s2 (Figure 8(b)). We also set LA(sh) = L(s1). 
 
Let Gp be a PAG and Gp

A be the corresponding APAG. An execution fragment e = s0s1…sn in Gp
A is called 

proper if the start and end states (s0 and sn) are observable states. Let e be a proper execution fragment of 
Gp

A. We define eobs by removing hidden states and hidden transitions from e, i.e., restricting the execution 
to observable states and transition. Consider an execution fragment e = s0s1…sn. Let SP (e) be the set of 
probabilistic states in the set (s0,…, sn-1). Define the probability of an execution fragment e (denoted by 
P(e)) as: 
 
     Π       P(si → si+1). 
                                  siЄSp(e) 
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In other words, the probability of an execution fragment is the product of the probabilities of the 
probabilistic transitions in it. The following lemma follows straight from the construction. 
 
Lemma 7 Let Gp be a PAG and Gp

A be the corresponding APAG. Let e be a proper execution fragment of 
Gp

A. The following three statements are true: 
 
1. eobs is an execution fragment of Gp. 
 
2. P(e) =  P(eobs), where the first probability is interpreted in Gp

A and the second probability is interpreted 
in Gp. 
 
3. For all execution fragments e1 of Gp there exists proper execution fragment e in Gp

A such that e = e1
obs. 

 
 

 
 

Figure 9: Converting an APAG to a MDP 
 
 Lemma 7 clearly shows that there is a one-to-one correspondence (given by obs) between proper 
execution fragments of a APAG and corresponding execution fragments of a PAG. Moreover, this 
correspondence preserves probabilities. We have shown that APAGs have the same expressive power as 
PAGs, so hereafter we consider them interchangeable. 
 
 An APAG G= (Sn, Sq, se, S, τn, τq, π, S0, Ss, L), has a direct interpretation as an MDP MG = (X, A, P, 
c), where X = Sn, A = τn. That is, each action in the MDP represents a transition from a nondeterministic to 
a probabilistic state. Further, let x, y Є X and a Є A(x), so that a represents a transition from x to some 
probabilistic state sq in the APAG. Then we have P(x, a, y) = π (sq)(y). 
 
 It is preferable to have all APAG success states represented explicitly as MDP states, so that we 
can reason about attacks in the MDP context. For this reason, we add a hidden nondeterministic state (and a 
transition thereto) to every probabilistic success state in the APAG. We omit proofs of equivalence of an 
APAG before and after this modification.  
 
 Figure 9(a) shows an example APAG, with the corresponding MDP shown in Figure 9(b). The 
nondeterministic transitions from the root node in the APAG are represented by the MDP actions a, b, and 
c. The leftmost leaf in the APAG is a probabilistic success state; in the MDP it is represented by the 
appended hidden nondeterministic state. 
 
 This however, plays a role in our interpretation of results obtained through MDP algorithms. 
Finally, we can choose the reward function r depending on the questions we are trying to answer. 
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 Let e = s0

ns1
ps1

n…s1
n-1sn

psn
n be an execution fragment of the APAG G, where sk

n and sk
p represent 

nondeterministic and probabilistic states respectively. Let mdp(e)=  emdp = s0
nt1

ns1
n…sn

n, where ti
n is the 

action that corresponds to the transition si-1
n → si

p . Notice that in mdp(e) probabilistic states do not occur. 
The proof of the following lemma follows straight from the construction. 
 
Lemma 8 Let G be a APAG and MG be the corresponding MDP. Let e be an execution fragment of G and 
mdp(e) be the corresponding execution fragment in the MDP MG. The following statements are true. 
 
1. mdp(e) is an execution fragment of the MDP MG. 
 
2. P(e) = P(mdp(e)), where P(e) and P(mdp(e)) are interpreted in G and MG respectively. 
 
3. For all execution fragments em in the MDP MG, there exists an execution fragment e in G such that 
mdp(e) = em. 
 
6.4 Correctness of the Value Iteration Algorithm for Attack Graphs 
 
 Let G = (Sn, Sq, se, S, τ, π, S0, Ss, L) be a PAG, and GA = (Sn

A, Sq
A, se, SA, τnA, τqA, πA, S0, Ss, LA) be 

the corresponding APAG. Recall that the APAG GA is obtained from the PAG G by adding hidden states 
whenever there is a transition between two nondeterministic or probabilistic states (see Section 6.3). An 
APAG G = (Sn, Sq, se, S, τn, τp, π, S0, Ss, L) has a direct interpretation as an MDP MG = (X, A, P, r), where X 
= Sn, A = τn. That is, each action in the MDP represents a transition from a nondeterministic to a 
probabilistic state. Further, let x, y Є X and a Є A(x), so that a represents a transition from x to some 
probabilistic state sq in the APAG. Then we have P(x, a, y) = π (sq)(y). We first demonstrate that the value 
iteration algorithm (or VI for short) on the APAG GA is simply a transformed version of the value iteration 
algorithm on the corresponding MDP MG with an appropriate reward function r. After that, we prove that 
the value iteration algorithm on the PAG and the corresponding APAG converge to the same value. The 
advantage of this approach is that all the technical results in the context of value iteration in MDPs can be 
directly applied to value iteration in PAGs [Put94, Chapter 9]. 
 
6.4.1 Correspondence Between Value Iteration in MDPs and APAGs 
 
 Consider a MDP M = (X, A, P, r). A value function is positive real valued function V : X → R+. 
The value iteration algorithm uses the following equation to update the function V: 
  
   V (x) =  max[r(x, a) +  ∑ P(x, a, y)V(y)] 
                                                       aЄA(x)                   yЄX 
 
Technical conditions that guarantee the convergence of the value iteration algorithm can be found in 
[Put94, Chapter 9]. 
 Let GA be an APAG and MG be the corresponding MDP. Recall that we assumed that all success 
states in GA are nondeterministic states so that they are explicitly represented in the MDP MG. Before we 
proceed, we need to slightly modify the MDP MG. We add a new state snew and action anew to the MDP MG. 
The only action allowed from snew is anew  (A(snew) = (anew) and P(snew, anew, snew) = 1.0 (so by definition P( 
snew , anew , s) = 0.0  if s ≠ snew). Moreover, we add the action anew to the action set corresponding to the 
success states Sf and for all s Є Sf we have P(s, anew , snew) = 1.0 (so by definition P(s, anew, s’) = 0.0 if s’≠  
snew). We have the following reward function r: 
 
   R(s, a) =  1.0 if s Є  Ss and a = anew  
     0.0 otherwise 
 
 
We have a value function that assigns 1.0 to every state. It is easy to see that the value function assigns 1.0 
to the newly added state snew and 1.0 to a state in the set Sf. For states that are not in the set {snew} U Ss the 
value function V changes according to the following equation: 
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   V (x) =  max  ∑ P(x, a, y)V(y) 
                                                       aЄA(x)  yЄX 
 

            =  max  ∑ P(sq→ y)V(y) 
                                                     sqsucc(x)  yЄX 
 
 The second equation follows from the construction of the MDP MG from the APAG GA. Recall 
that actions in the MDP correspond to the transitions from nondeterministic to probabilistic states. Next we 
extend the value function V to probabilistic states Sq by defining V(s) (for all s Є Sq) as: 
 
    ∑ P(sq→ y)V(y) 
                                                          yЄX 
 
 Notice that in an APAG only successors of a probabilistic state s are nondeterministic state, so 
V(y) is well defined. Using this definition the value iteration algorithm can be re-written as: 
 
   V(s) =  maxs’Єsucc(s)V(s’)                 if s Є Sn \ Ss 

                                                                     ∑S’Єsucc(s)P(s→ s’)V(s’)     if s Є Sq \ Ss 
 
 
 The value iteration (VI) equation given above was obtained by transforming the VI equation for 
the corresponding MDP. Moreover, the equation we obtain is exactly the VI equation for an APAG that 
was provided earlier (see Section 6.2). 
 
6.4.2 Correspondence Between Value Iteration in MDPs and PAGs 
 
 Let G= (Sn, Sq, se, S, τ, π, S0, Ss, L) be a PAG, and GA = (Sn

A, Sq
A, se, SA, τnA, τqA, πA, S0, Ss, LA) be 

the corresponding APAG. Recall that GA is obtained from G by adding hidden states whenever there is a 
transition between two nondeterministic or probabilistic states (see Figure 8). Suppose there is a transition 
between two nondeterministic states s1 and s2 in G. In GA, we add a new probabilistic state sh and add 
transitions s1→ sh and sh → s2, where the probability of the transition sh → s2 is 1.0. Consider the i-th 
iteration of the VI algorithm in G. In this case, the value V(s2) in the (i – 1)-the iteration is used to update 
the value of the state s1. Now consider the value iteration algorithm in GA. The value V(sh) of the hidden 
state sh  in the (i -1)-th iteration is used to update the value of V (s1) in the i-th iteration. It is easy to see that 
V(sh) in the (i -1)-th iteration is V (s2) in the (i -2)-th iteration. Therefore, hidden states add a delay of 1 in 
the value iteration algorithm. The case for transition between two probabilistic states is analogous. 
 
 Consider a PAG G= (Sn, Sq, se, S, τ, π, S0, Ss, L). The equation for the value iteration algorithm 
without delay is: 
 
  Vi(s) =  1.0                                 if s Є  Ss 
               maxs’Єsucc(s)Vi-1(s’)                 if s Є Sn \ Ss 
                                                    ∑S’Єsucc(s)P(s→ s’)Vi-1(s’)      if s Є Sq \ Ss 
 
 We have added the iteration index i to the VI algorithm so that we can refer to it in the proof. The 
value iteration algorithm with the delay is: 
 
V1

i(s) =  1.0                                                                               if s Є  Ss 
               Max{maxs’Єsucc(s)∩SnVi-2(s’), Max{maxs’Єsucc(s)∩SqVi-1(s’)          if s Є Sn \ Ss 
                   ∑S’Єsucc(s) ∩Sq P(s→ s’)Vi-2(s’) +∑S’Єsucc(s) ∩Sn P(s→ s’)Vi-1(s’)     if s Є Sq \ Ss 
 
 Initially, both sequences start with the value functions V0 and V1

0 that assign 1.0 to states in Sf  and 
0.0 to all other states. Notice that in the value iteration algorithm for V1

i there is delay of 1 added (the (i -2)-
th value for all s Є S , V (s’) Є  
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V (s) and V i(s’) Є V i (s). For i  ≥ 2i, the following inequality also holds for all s Є S and i  ≥ 2: 
  Vi(s) ≥ V1

i(s) ≥ Vi-2 (s) 
 
 The equation given above directly follows from the monotonicity property and the equations that 
define value iteration. 
 
 Suppose V converges to V* pointwise, i.e., for all s Є S, V(s)→ V*(s). Next we prove that for all s 
Є S, if V1 i(s) → V*(s), then V 1

i(s) → V*(s). This proves that V1also converges to V*. By definition of 
convergence, for all e > 0, there exists a positive integer N(e) such that for all i > N(e) we have: 
 
    │V*(s) - V i(s)│ <  e  
 
 Assume that we are given a Β > 0. It is easy to see that the limit V*(s) ≥ Vi(s) for all i (this follows 
from the fact that Vi(s) is a monotonic sequence). Therefore, we have the following inequality: 
 
   │V*(s) – V1 i(s)│ ≤ │V*(s) - V i-2(s)│   
 
 The equation given above follows from the inequality V1

i(s) ≥  Vi-2(s) for all s.  Since V i(s) → 
V*(s), there exists an N(B) such that if i > N(B), then: 
 
   │V*(s) - V i(s)│ <  B 
 
 By the argument given above │V*(s) – V1 i(s)│ <  B for i  > N(B) + 2. This proves that V1 i(s) → 
V*(s). Conversely assume that V1 converges to V *’. Using the inequality given below it is easy to prove that 
V i(s) → V*’(s). 
 
        │V*‘(s) - V i(s)│ <  │V*‘(s) – V1 i(s)│  
 
 Therefore, we prove that the value iteration algorithm with and without delay converge to the 
same value. The VI algorithm with delay is essentially the VI algorithm on the APAG GA, which was 
derived from the VI algorithm on the corresponding MDP. Therefore, the correctness of the VI algorithm 
on the PAG G follows. 
 
7  Summary of Contributions and Future Work 
 
 Our foremost contribution is the automatic generation of attack graphs. Our key insight is that an 
attack is equivalent to a counterexample produced by off-the-shelf model checkers; the 
attack/counterexample is a witness to a violation of a safety property. By a small, but critical enhancement 
to an existing model checker, i.e., NuSMV, we can easily produce attack graphs automatically; moreover, 
these graphs are succinct and exhaustive. A by-product of this part of our work is showing, by example, 
what level of abstraction is appropriate for modeling attacks. We use simple state machine specifications to 
model not just intruder behavior (by a set of atomic attacks), but also normal system behavior, system 
administrator recovery actions, and connectivity (communication) between subsystems.  
 
 Our second most important contribution is support for a range of formal analyses of attack graphs. 
Security analysts use attack graphs informally for attack detection, defense, and forensics. In this paper, we 
explain how they can now use our minimization analysis technique on attack graphs to more precisely 
answer questions like “Which security measure should I deploy in order to thwart this set of attacks?” and 
“Which set of security measures should I deploy to guarantee the safety of my system?” To do reliability 
analysis, we annotate attack graphs with probabilities and then interpret them as Markov Decision 
Processes (MDP). Then, by using MDP algorithms such as value iteration, security analysts can more 
precisely answer questions like “Will deploying this intrusion detection system increase or decrease the 
likelihood of thwarting this type of attack?”  
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 On the theoretical front, we have so far restricted our work to only safety (invariant) properties. To 
exploit the full power of model checking, we need a method of generating attack graphs for more general 
classes. 
 
  AG(server.user.request → AF(server.user.acesss)) 
 
 This property would not be true if the server can be disabled using a denial-of-service attack. 
Another such liveness property is that a legitimate user’s transaction will finish despite intruder 
interference. We plan to explore generation of attack graphs for universally quantified fragments of 
Computational Tree Logic and Linear Temporal Logic. On the practical front, we plan to conduct larger 
case studies to illustrate the usefulness of automatically generating attack graphs. To make our tool suite 
more usable by security experts and system administrators, we see the value of building a library of 
specifications of atomic attacks. Our hope is that increasing this arsenal of specifications outpaces the 
growth in the arsenal of known attacks; we can potentially discover new, unexpected attacks, and hence 
identify new network vulnerabilities. Finally, we also intend to build a tool that merges our work on attack 
graphs with existing intrusion detection technologies. The tool is intended help security analysts evaluate 
and enhance the security of a network. 
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Abstract 

Survivability is the ability of a system to continue operating despite the presence of abnormal events such 
as failures and intrusions. Ensuring system survivability has increased in importance as critical 
infrastructures have become heavily dependent on computers. In this paper we present a systematic 
method for performing survivability analysis of networked systems. An architect injects failure and 
intrusion events into a system model and then visualizes the effects of the injected events in the form of 
scenario graphs. Our method enables further global analyses, such as reliability, latency, and cost-benefit 
analyses, where mathematical techniques used in different domains are combined in a systematic manner. 
We illustrate our ideas on an abstract model of the United States Payment System. 

 
Keywords: survivability, model checking, reliability analysis, cost analysis, Markov Decision Processes, 
fault-tolerance, security 
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1 Introduction and Motivation 

 Increasingly our critical infrastructures are becoming heavily dependent on computers. We see 
examples of such infrastructures in all domains, including medical, power, telecommunications, and 
finance. Whereas automation provides society with the advantages of efficient communication and 
information sharing, the pervasive, continuous use of computers exposes our critical infrastructures to a 
wider variety and higher likelihood of accidental failures and malicious attacks. Disruption of services 
caused by such undesired events can have catastrophic effects, including loss of human life. 

 Survivability is the ability of a system to continue operating in the presence of accidental 
failures or malicious attacks [7]. We use the term fault for both accidental failures (e.g., a disk crash) and 
malicious attacks (e.g., a denial-ofservice attack). The precise semantics of continuous operation is 
application dependent; it is related to critical services that the system provides. For example, check 
clearing is a critical service of a banking system, and a survivable banking system will continue providing 
this service despite the presence of faults. 

 In this paper we present a method for analyzing a networked system for survivability. A 
networked system consists of nodes and links connecting the nodes. Communication between the nodes 
occurs by passing messages over the links. An event in the system can be either a user event (e.g., a user 
issues a check), an internal event (e.g., a user's account is debited), a communication event (e.g., sending 
a message between two banks), or a fault (e.g., a bank under a malicious attack). A service is associated 
with a start event (e.g., a user issues a check) and an end event (e.g., the check clears). The start event 
and the end event correspond respectively to when "a service is issued" and when a "service is finished." 

 Our main goal is to provide information to the system architect during the design phase, the 
early planning stage of the software lifecycle. With this information, the architect can weigh the pros 
and cons of decisions related to survivability. The method we present in this paper, however, is just as 
suitable for post facto analysis of existing systems. 

 Our method is general enough to support many different types of analysis. In this paper we focus 
on three specific kinds of questions. 
 

Question 1: What is the effect of a fault? 

Example: Imagine an architect is designing a power grid. He wants to know the effect of an outage of a 
power plant located in upstate New York on customers living hundreds of miles away in western 
Pennsylvania.  
 
Answer (Fault-Effect Analysis): Using our method the architect can visualize the global effect of a 
local fault through a data structure that we call a scenario graph. In our method, we automatically 
generate scenario graphs using model checking. 
 
Question 2: What is the reliability and latency of a service? Here, reliability is defined as the 
probability that a service that has been issued will finish. Latency measures the expected time it takes a 
service to finish. 
 
Example: Suppose an architect designing a banking system wants to find out the probability that a check 
issued actually clears.  
 
Answer (Reliability and Latency Analysis): To find the reliability of the banking system with respect 
to the check clearing service, we query an annotated scenario graph. The architect first identifies a set of 
"critical" elements in the network, i.e., nodes and links whose failures would have a severe effect on the 
provision of the service in question. He then assigns probabilities to each fault (i.e., the failure of each 
node or link). Then, using our method, he can automatically compute both the reliability and latency 
of the network. 
 
Question 3: Given cost constraints, which network nodes/links should be upgraded to maximize benefit 
(e.g., reliability)? 
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Example: Suppose an architect is allowed to spend newly allocated funds to upgrade a fraction of the 
network's links to newer links that are faster and more reliable. Given the constraints imposed by his 
manager's limited budget, which links should he choose to upgrade to maximize the network's reliability?  
 
Answer (Cost-Benefit Analysis): To perform a cost-benefit analysis, we further extend our annotated 
scenario graphs with additional cost information related to upgrading the links. We then can 
automatically compute how to maximize a given benefit given a set of cost constraints. 
 
 Survivability analysis is fundamentally different from analysis of properties found in other areas 
(e.g., algorithm analysis of fault-tolerant distributed systems, reliability analysis of hardware systems, and 
"security" analysis of computer systems). First, survivability analysis must handle a broader range of 
faults than any of these other areas; we must minimally handle both accidental failures and malicious 
attacks. To achieve this goal our method allows an architect to incorporate any arbitrary type of fault in 
the system model; however, we still allow distinctions among faults by assigning different weights 
(e.g., probability of occurring, cost to repair, etc.) to each fault. 
 
 Second, events may be dependent on each other, especially fault events. In contrast, for ease of 
analysis, most work in the fault-tolerant literature makes the independence assumption: assume that 
abnormal events are independent. We cannot make this assumption in analyzing systems for 
survivability. For example, if a server crashes, then it is easier for a malicious intruder to spoof the crashed 
server; the chance that an intruder will succeed in spoofing a server depends on the event that the server 
crashes. Or, if an attacker learns how to compromise one disk of a replicated server, then he can easily 
compromise the replicas too; the chance of bringing down an entire service depends on the likelihood of 
success of the original attack. In our method we allow users to express such dependencies. Representing 
dependence between events allows us to model phenomena such as correlated attacks, where local attacks 
might not succeed, but when they occur in tandem or in succession they can have a severe effect on the 
system. Distributed denial-of-service attacks is an example of a correlated attack (see CERT advisory CA-
2000-0). Representing dependence also allows us to handle cascading effects, where one fault triggers 
another, which then triggers another, and so on. While it is cleaner to design a system to avoid cascading 
effects (e.g., by using a strict locking protocol to avoid cascading aborts in a transactional database), 
in practice it may be impossible to anticipate faults induced by a system's environment that violates the 
assumptions made by the system's original designer. Since survivability is of particular concern to those 
building systems of systems, system architects will have to face the possibility of cascading effects in their 
analysis. 
 
 Third, survivability analysis should also be service dependent. For example, the architect for a 
banking system might choose to focus on the check clearing service as being critical, although the banking 
system provides other services such as accounting, auditing, and cash distribution; for a different 
analysis, cash distribution might be the critical service to focus on. Taking into consideration the 
specific service a system is to provide enables more targeted analysis, which is often amenable to fully 
automated support. Also a method that focuses the architect's attention on specific services rather than the 
general system design is likely to be more appreciated and better understood by the end customer 
(who cares about the reliability of the applications' services). The analyses in our method are all driven by 
the properties that the architect specifies as they relate to a critical service. 
 
 Finally, survivability analysis deals with multiple dimensions. It simultaneously deals with 
functional correctness (modeling the service itself), fault-tolerance (modeling the effects of accidental 
failures), security (modeling the effects of malicious attacks), reliability (the likelihood of a service 
finishing), performance (network latency), and cost. To achieve this goal, the analytical approach 
described in this paper combines several different kind of analysis techniques into one framework. 
 
 The next section introduces constrained Markov Decision Processes which form the basis for 
reliability, latency, and cost-benefit analysis. A general overview of our method appears in Section 3. 
We describe a small example based on the United States Payment System in Section 4, which we 
use as a running example throughout the remainder of the paper. Section 5 provides additional details 
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related to each step in our method. Section 6 briefly describes a prototype tool Trishul that we have 
implemented based on our method, and briefly describes two case studies that we have performed. 
Sections 7 and 8 discuss related work and conclusions respectively. 

2 Model  of  Computat ion 
 
 Our formal model is based on constrained Markov Decision Processes or simply CMDPs. 
CMPDs are a generalization of Markov chains, where the transition probabilities depend on the past 
history. CMDPs enable us to model history dependent transition probabilities and provide a framework to 
perform cost-benefit analysis. Our exposition of CMDPs is based on Altman [2]. A CMDP is 5-tuple (S, A, 
P, c, d) where: 

• S is a finite state space. 
 
• A is a finite set of actions. For a state s Є S, A(s) C A is the set of actions available at state s. 

• P are transition probabilities, where Psas’  is the probability of moving from state s to s' if action a is 
chosen. 

• c : (S x A) → R is the immediate cost, i.e., c(s, a) denotes the cost of choosing action a at state s. 
This cost will be related to the value function to be minimized. 

• d : (S  x A) →Rk is a k-dimensional vector of immediate costs. This will be related to cost 
constraints. 

A Markov Decision Process (MDP) is a CMDP without the last component d.  
  
 History at time t (denoted by ht) is the sequence of states encountered and actions taken up to 

time t. A policy u takes into account the history ht and determines the next action at time t. Specifically, 
ut(a│ht) is the probability of taking action a given history h t .  A policy u defines a value function V u : S 
→ R, where V u(s) is the expected cost of the actions taken if the CMPD uses policy u and starts in state s 
(the cost c is used to define expected cost). The technical definition of V u can be found in [2]. 
Analogously, starting in state s let the expected value of the immediate costs d under the policy u be 
denoted by Du(s). Since the result of d is a k-dimensional vector, Du(s) is also a k-dimensional vector of real 
numbers. Assume that we are also given a k-dimensional vector C = (cl, ..., ck), where ci is the cost 
constraint on the i-th component of Du(s). Our aim is to find a policy that minimizes the value 
function V u given the constraint imposed by the vector C, or 

Given an initial state so Є S, find a policy u that minimizes V u(so) subject to Du(so) < C. 

Remark: Do not confuse a Markov process with a Markov policy, which is a policy where the probability of 
an action depends only on the current state of the CMDP and not the entire history. 

Example 2.1 Imagine a bakery where there can be at most 10 customers waiting at any time. At each 
time the bakery manager has the option of having one or two servers behind the counter. The state of the 
CMDP corresponds to the number of servers behind the counter and the number of customers waiting. The 
action at each state is to decide on how many servers should be behind the counter. In Figure 1 we show 
a few transitions. Consider the transition from state (S=1, C=m) to (S=2, C=m-1). The action label a 
= 2 on the transition indicates that the manager decided to switch to two servers behind the counter. The 
probability that a waiting customer leaves with his/her order is 0.5 or 0.75 depending on whether there are 
one or two servers behind the counter. Notice that the probability that a customer gets serviced is higher 
when there are two servers behind the counter. Therefore, the transition from state (S=1, C=m) to (S=2, 
C=m-1) has probability 0.75. The rest of the transitions have a similar explanation. Given a state and an 
action, the probability that a customer is serviced in the next time period determines the cost function c. 
For example, the cost of the state action pair h  (S=1, C=m), a=1 i is -0.5 because if an action a=1 
is chosen from the state the expected number of customers that are serviced during the next time step is 
0.5. Notice that the negative of the cost determines the throughput, i.e., the expected number of 
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customers that are serviced in the next time period. The number of servers behind the counter 
determines the cost function d, i.e., two servers cost more than one. The aim of the manager is to 
maximize expected throughput (or minimize expected cost related to c) given a constraint on the wages of 
the servers. Achieving this goal can be easily seen as a problem of value maximization under cost 
constraints and naturally fits the CMDP framework. The optimal policy for this CMDP will indicate to 
the bakery manager when to change the number of servers behind the counter. 

 

 

    Figure 1: A Bakery 

3  The General Method 

 In this section we provide a brief overview of our method; Section 5 gives more details about the 
techniques we use and our implementation. In steps 1, 2, and 3 we model the network, inject faults into our 
model, and specify survivability related properties. Then in steps 4, 5, and 6 we analyze the effects of 
faults, perform reliability and latency analysis, and do cost-benefit analysis to parallel answering the 
three kinds of questions posed in the introduction. 

3.1 Step 1: Model the Network 
 
 First, the architect models a networked system, which can be done using one of many 
formalisms. We choose to use state machines and we use them to model both network nodes and 
links. We use shared variables to represent communication between the state machines. 
 

3.2 Step 2: Inject Faults 

 Both links and nodes may be faulty. With our state machine model of the networked 
system, we need not make a distinction between nodes and links when considering faults. That is, a 
link is simply a node that passes data between two other nodes. Injecting a fault then requires first 
representing that a fault has occurred and then determining the behavior of the faulty node for each kind 
of fault that may occur. The exact behavior of a faulty node, specified by the architect, depends on the 
application. 
 
 To represent faults in our method, for each state machine representing a node, we introduce 
a special variable called fault, which can range over a userspecified set of symbolic values. For example, 
the following declaration states that there are three modes of operation for a node, representing whether it 
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is in the normal mode of operation, failed, or compromised by an intruder. 

fault: { normal, failed, intruded } 

 
 Given this simple representation, we can then choose to specify the precise behavior of the 
node in each mode of operation. For example, for any given state we can specify that the machine 
makes a transition from the normal mode of operation to one of the abnormal modes (failed or intruded) 
and further specify what state the machine is in once such a transition occurs. We also have the option of 
leaving state transitions completely nondeterministic. 

3.3 Step 3: Specify Survivability Properties 
 
 The architect specifies properties related to survivability using some kind of formal logic. In our 
method, we use a temporal logic called Computation Tree Logic (CTL), but other temporal logics such 
as Linear Time Logic [15] would also be appropriate. 
 
 In this paper, we focus on two classes of survivability properties: fault and service related. The 
first class captures properties of the networked system under scrutiny when it enters a faulty state. The 
second class captures properties specific to the system's services. 
 
3 .4  Step 4: Generate Scenario Graphs 
 
 Given a state machine model, M, of the networked system (with injected faults) and a 
survivability property, P, we then generate a scenario graph, which is a concise representation of a 
set of traces of M  with respect to P. For fault properties, a fault scenario graph represents all 
system traces that end in a faulty state; for service properties, a service success (fail) scenario graph 
represents all system traces in which an issued service successfully finishes (fails to finish). An 
architect can use scenario graphs to visualize the effects of injected faults on a certain service. 
(In the operational security literature, scenario graphs are similar to attack state graphs [13].) 

3.5  Step 5: Reliability and Latency Analysis 
 
 Once we have a scenario graph, we can perform further analyses, such as reliability and 
latency analysis. First, the architect specifies the probabilities of certain events of interest, such 
as faults, in the system. Since we do not assume independence of events, we use a formalism 
based on Bayesian networks [14] to specify the conditional probabilities of the events. We combine 
the specified probabilities with the scenario graph to obtain an MDP. We can then readily 
compute reliability and latency by solving for optimal policies using the relevant cost functions c, 
i.e., for reliability analysis the cost function is identically zero; for latency analysis, it is a function 
of the times associated with making state transitions. 
 
 An advantage of our method is that an architect need not specify probabilities for all 
events; an MDP can have both probabilistic and nondeterministic transitions. 

3.6 Step 6: Cost-Benefit Analysis 
 
 In this step we transform the MDP from Step 5 into a CMDP. First we enhance the 
MDP's set of actions A with actions corresponding to decisions that an architect has to make. 
For example, these additional actions might correspond to upgrading links to produce a more 
reliable/faster system, and the architect must decide which links to upgrade. Each added action 
has a cost; the architect wants to simultaneously minimize cost and maximize some benefit (e.g., 
reliability). Thus, we also associate costs with these actions and provide constraints on these costs 
(i.e., specify the function d in the definition of CMDPs). The optimal policy corresponding to the 
CMDP so constructed provides the architect with the optimal decision under the specified cost 
constraints. 
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4 Example 

 We consider a simplified model of the United States Payment System, depicted in Figure 2. 
There are three levels of institutions: Federal Reserve Banks at the top, money centers in the 
middle, and small banks at the bottom. If banks are connected to the same money center, then 
transactions between them are handled by the money center; there is no need to go through the 
Federal Reserve Banks. For a detailed description of the system see [11]. 
 
 To illustrate the architecture, suppose a customer A writes a 850 check to customer C so that the 
check has a source address Bank-A and destination address Bank-C. The following steps occur for the 
issued check to clear: 
 
1. Bank-A and Bank-C are not connected through a money center, so the check is then sent to a money 
center connected to Bank-A. In this case, let's choose money center MC-1. 
2. The check is then transferred to the Federal Reserve Bank closest to MC-1, in this case FRB-2. 
3. The check is then transferred to the Federal Reserve Bank that has jurisdiction over Bank-C, in this case 
FRB-3. 
4. The check finally makes it way to Bank-C through the money center MC-3. 
In Figure 2 the path of the check is shown using dot-dashed lines. 

  

Figure 2: United States Payment System 

5 Detailed Description 

 We now present the details of each step in our method in more detail, illustrating them with the 
check clearing example. 
 
5.1 Step 1: Model the Network 
 
 We model each node and link in the system as a finite state machine, and the entire 
networked system as the composition of these machines. In our implementation, we use the model 
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checker NuSMV [1], and hence we use NuSMV's input language to describe the state machines 
representing a given system. Using this off-the-shelf model checker makes it convenient for us at 
later steps in our method to perform further global analyses; NuSMV's output lets us automatically 
derive information that we would otherwise have to reconstruct. 
 
 In our banking example, we use state machines to model the banks, the money centers, 
the Federal Reserve Banks, and the links. Each element in the banking infrastructure corresponds 
to a MODULE description in NuSMV and communication is achieved by parameter passing. We 
make some simplifying assumptions in the model of our system: (1) There is just one user who 
issues checks; the source and destination address of these checks are decided nondeterministically, 
i.e., the source address can be banks A, B, or C, and similarly for the destination; (2) There is 
only one check active at any time, and the exact amount of the check is irrelevant. 

5.2  Step 2: Inject Faults 
 
 Next we inject faults in our model by including a special state variable (fault) with each 
state machine to indicate the mode of operation. We modify the specification of each state machine to 
take into consideration its faulty modes of operation. 
 
 In our banking example, what faults we inject and how we handle them in our model are 
based on the following assumptions: 
 
• The only network elements that can be faulty are (1) links between the banks and the money 
centers; and (2) small banks, representing that penetration by a malicious intruder has occurred 
(i.e., fault = intruded). No other links or institutions may become faulty and banks cannot fail 
accidentally. 
• When a link is faulty, it blocks all messages and consequently no message ever reaches the 
recipient. 
• Links may become faulty at any time. Thus, in our finite state machine model of a link, we 
allow a nondeterministic transition to the state where fault is equal to failed. The third value 
intruded for the variable fault is not used in this case. 
• Banks can sense a faulty link and route the checks accordingly. 
 
 These assumptions show how we take into consideration the semantics of the application; 
e.g., we are implicitly assuming that Federal Reserve Banks are impenetrable and links between 
them are highly reliable and secure. 
 
 Our model reflects the following behavior. Under the normal mode of operation, a bank 
receives a check (nondeterministically issued by the user~ with its source address. Depending on the 
destination address of the issued check, the bank either clears it locally or routes it to the 
appropriate money center. For example, if a check with source address A and destination address B is 
issued, then it is sent to the money center MC-1 and then sent to bank B. On the other hand, a check with 
source address A and destination address C has to clear through the Federal Reserve Banks (as in Figure 2). 
If a bank is faulty, then checks are routed arbitrarily by the intruder (thereby ignoring the check's 
destination address). A bank can then at any time nondeterministically transition from the normal mode 
(fault=normal) to the intruded mode (fault=intruded). Once the bank is faulty it stays in that state forever. 
 
 The precise behavior of a faulty node depends on the application, but two types of behaviors under 
failure conditions are common. In the case of a stuck-at fault the node becomes stuck, i.e., it accepts no 
input on its channel and consequently produces no output. A node with a Byzantine fault exhibits 
completely nondeterministic behavior, i.e., accepts any inputs and produces arbitrary outputs. A Byzantine 
fault can also be used to model an intruded node. 
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5.3 Step 3: Specify Survivability Properties 

 In this step, we specify survivability properties in CTL, a logic chosen for convenience since the 
model checker we use accepts CTL specifications. Although CTL is a rich logic and allows us to express a 
variety of properties, we focus on two classes of survivability properties: fault and service related. 

Fault Related Properties 
 
 Suppose we want to express the property that it is not possible for a node N to reach a certain 
unsafe state if the network starts from one of the initial states. The precise semantics of an unsafe state 
depends on the application. Let the atomic proposition unsafe represent the property that node N is in an 
unsafe state. We can then express the desired property in CTL as follows: 

AG(¬unsafe) 

which says that for all states reachable from the set of initial states it is true that we never reach a state 
where unsafe is true. The negation of the property is 

    EF(¬unsafe) 

which is true if there exists a state reachable from the initial state where unsafe is true; in other words if the 
network starts in one of the initial states it is possible to reach an unsafe state. The atomic proposition 
unsafe can stand for a property as complex as we desire. It could mean that a certain critical node has 
entered an undesirable state (e.g., a critical valve is open in a nuclear power plant), or it could mean that a 
certain unauthorized operation occurred at a critical node. For example, if a node represents a computer 
protecting a critical resource, it could represent the fact that somebody without the appropriate authority 
has logged onto the computer. The precise nature of a faulty state depends on the example at hand. 

Service Related Properties 
 
 Many networked systems are built for distributed applications. For these cases we want to make 
sure that if a node N issues a service, then the service eventually finishes executing. Let the atomic 
proposition start express that a service was started, and finished express that the transaction is finished. 
The temporal logic formula given below expresses that for all states where a service starts and all 
paths starting from that state there exists a state where the service always finishes, or in other words 
a service issued always eventually finishes. 

AG (s tar t  → AF(finished )) 

For the banking example, we would like to verify that a check issued is always eventually cleared. This can 
be expressed in CTL as: 

AG(checkIssued → AF(checkCleared)) 

We can also analyze the effect of a compromised node (say N). Suppose we have modeled the effect 
of a malicious attack on node N (see discussion on injecting faults). Now we can check whether the 
desired properties are true in the modified networked system. If the property turns out to be true, the 
network is resistant to the malicious attack on the node N. This type of analysis is useful in determining 
vulnerable or critical nodes of a network with respect to a certain service. Using this analysis, if a node 
is found to be vulnerable or critical for a given service to complete, then the system administrator can 
deploy sophisticated intrusion detection algorithms for that node or bolster the security infrastructure 
around it. Thus our analysis can help identify the critical nodes in a networked system and therefore help 
determine whether it is survivable with respect to desired properties of a given service. 
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5.4 Step 4: Generate Scenario Graphs 
 
 We automatically construct scenario graphs via model checking. When a specified property is 
not true in a given model, a model checker will produce a counterexample, i.e., a trace or a scenario 
that leads to a final state that does not satisfy the property. (Details of model checking, e.g., see [5], are 
not needed to understand our method.) We exploit this functionality of model checkers to generate scenario 
graphs; i.e., a scenario graph is a compact representation of all the traces that are counterexamples of a 
given property 1. For example, suppose we want to check whether during the execution of a networked 
system a certain event (e.g., buffer overflow~ never happens. If the property is not true (i.e., buffer overflow 
can happen), the scenario graph encapsulates all sequences of states and transitions that lead the system to a 
state where a buffer overflow occurs. 
 
 Scenario graphs depict ways in which a network can enter an unsafe state or ways in which a 
service can fail to finish. Scenario graphs encapsulate the effect of local faults on the global behavior 
of the network. If the architect models malicious attacks, the scenario graph is a compact representation 
of all the threat scenarios of the network, i.e., a set of sequences of intruder actions that lead the network 
to an unsafe state. 
 

Fault Scenario Graphs 

 Recall that we can express the property of the absence of an unsafe reachable state as: 
 
    AG(¬unsafe) 

 
 If this formula is not true, it means that there are states that are reachable from the initial state 
that are faulty. 

 We briefly describe the construction of a scenario graph. Assume that we are trying to verify using 
model checking whether the specification of the network satisfies AG(¬unsafe). Usually, the first step in 
model checking is to determine the set of states Sr that are reachable from the initial state. After having 
determined the set of reachable states, the algorithm determines the set of reachable states Sunsafe that have 
a path to an unsafe state. The set of states Sunsafe is computed using fix-point equations [5]. Let R be the 
transition relation of the network, i.e., (s, s') Є R iff there is a transition from state s to s' in the network. 
By restricting the domain and range of R to Sunsafe we obtain a transition relation Rf that encapsulates the 
edges of the scenario graph. Therefore, the scenario graph is G = (Sunsafe7Rf), where Sunsafe and Rf represent 
the nodes and edges of the graph respectively. In symbolic model checkers, like NuSMV, the transition relation 
and sets of states are represented using binary decision diagrams (BDDs) [4], a compact representation 
for boolean functions. All the operations described above can be easily performed using BDDs. The 
BDD for the transition relation Rf is a succinct representation of the edges of the fault scenario graph. 
Since BDDs are capable of representing a large number of nodes, very large scenario graphs can be 
computed using our method. 
 

Service Success/Fail Scenario Graphs 

 In the case of services, we are interested in verifying that every service started always eventually 
finishes. Recall that we express this property in CTL as: 

AG (s tar t  → AF(finished )) 
 
 Since we allow several nodes to be faulty, in our experience we find that most of the time this 
property fails to hold. Thus more interestingly, during the model checking procedure, we derive two 
graphs: a service success scenario graph and a service fail scenario graph. The success scenario graph 
captures all the traces in which the service finishes; the fail scenario graph, all the traces in which the service 
fails to finish. These scenario graphs are constructed using a procedure similar to the one described for the 
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fault scenario graphs. 
 
 In our banking example, issuing a check corresponds to the start of a service. The scenario graph 
shown in Figure 3 shows the effect of link failures on the check clearing service for a check issued with 
source address Bank-A and destination address Bank-C (the start event is labeled as issueCheck(Bank-
A,BankC) in the figure). The event corresponding to sending a check from location L1 to L2 is denoted as 
sendCheck(L1,L2). The predicates up(Link-A-2) and down(Link-A-2) indicate whether Link-A-2 is up or 
down. Recall that we allow links to fail nondeterministically. Therefore, an event sendCheck(Bank-A,MC2) 
is performed only if Link-A-2 is up, i.e., up(Link-A-2) is the pre-condition for event sendCheck(Bank-
A,MC-2). If a pre-condition is not shown, it is assumed to be true. Note that a fault in a link can also be 
construed as an intruder taking over the link and shutting it down. From the graph it is easy to see that a 
check clears if Link-A-2 and Link-C-3 are up, or if Link-A-2 is down and Link-A-1 and Link-C-3 are up. We 
modified the model checker NuSMV to produce such scenario graphs automatically. 
 
 For realistic examples scenario graphs can be extremely large. Therefore, it is not feasible to 
enumerate all the scenarios or traces corresponding to a scenario graph. We developed a querying 
process by which an architect can select a subset of scenarios. First an architect identifies events of 
interest in the network; then, using these events as alphabet symbols, the architect provides a regular 
expression to specify the traces of interest. Consider the scenario graph shown in Figure 3 and this regular 
expression for the alphabet ∑: 

  ∑* sendCheck(FRB-2,FRB-3) ∑* 

 
This query captures the architect's interest in all traces where the check is transferred from FRB-2 to 

FRB-3, as denoted by the event sendCheck(FRB2, FRB-3). A trace that satisfies the regular expression 
is shown by a dotted line in Figure 3. 

5.5 Step 5: Reliability and Latency Analysis 
 
 Once we have generated scenario graphs, we can perform reliability and latency analysis. First, 
we need to incorporate probabilities of various events into a given scenario graph to produce an 
MDP; then using the MDP we compute reliability and latency by calculating the value function 
corresponding to the optimal policy. 
 
 We first explain this analysis using the banking example and then provide a formal explanation. 
Let the boolean state variable A1 indicate whether Link-A1 is up, so A1 corresponds to Link-A-1's being 
down. Analogously, A2 and C3 are the boolean variables corresponding to Link-A-2's and Link-C-3's being 
up. In general an event will be associated with a boolean variable and the negation of the variable will 
denote that the event did not occur; we will use the boolean variable and the event it represents 
synonymously, e.g., event A1 corresponds to Link-A-1's being up. 
 
 We now explain how we handle dependencies between events. Assume that event A2 is dependent 
on A1 and there are no other dependencies. Let P (A1) and P (C3) both be a a where P (A1) and P 
(C3) are the probabilities of Link-A-1 and Link-C-3 being up. The probability of event A2 depends on the 
event A1, and we give its conditional probability as: 

P (A2│A1) = 1/2 

P (A2 │Ā1) = 1/4 
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Figure 3: A Simple Scenario Graph 
 
  

 Reflect that if Link A-1 is down, it is more likely that Link A-2 will go down. In general, if an 
event A depends on the set of events {A1, ..., Ak}, then the probability of A has to specified for each 
possible case in the set of events {A1, ... , Ak}.  For example, if  A depends on {A1 , A2}, then P(A│A1 Λ 
A2), P(A│A1 Λ Ā2), P(A│ Ā 1 Λ A2), P (A│A1 Λ A2), and P(A│ Ā 1 Λ Ā 2) have to be specified. This technique 
is the Bayesian network formalism. 
 
 In our example, first we have to compute the probability of the two events A2 and Ā2 Λ A1. 
These events correspond to events up(Link-A-2) and down(LinkA-2) & up(Link-A-1) in the scenario 
graph. The probabilities for these events are derived below. 
 
 P(A2)       = P(A2│Ā 1)P(Ā 1) + P(A2│A1)P(A1) 
                  = ¼(1-1/2) + ½ + ½ 
                  = 3/8 
 
 P(Ā2 Λ A1) = P(Ā2 │A1)P(A1) 
                                  = (1 - P(A2│A1)P(A1)) 
       = 1/4 

 
 We add these probabilities (shown inside little boxes) to the relevant edges of the scenario graph in 

Figure 3. Since we might assign probabilities to only some events (typically faults) and not others, we 
obtain a structure that has a combination of purely nondeterministic and probabilistic transitions. In our 
banking example, the architect might assign probabilities only to events corresponding to faults; the user 
of the banking system still nondeterministically issues checks. Intuitively, nondeterministic transitions are 
actions of the environment or the user, and probabilistic transitions correspond to moves of the adversary. 
If we view nondeterministic transitions as actions, the structure obtained after incorporating probabilities 
into the scenario graph is an MDP. (In the distributed algorithms literature [12], structures that have a 
combination of nondeterministic and probabilistic transitions are called concurrent probabilistic 
systems.) 

 
 We now explain the algorithm to compute reliability and latency by first considering a property 

about services. Recall that we are interested in the following property: 
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AG(start → AF(finished)) 
 

 Let G be the service success scenario graph corresponding to this property. Suppose each 
edge s → s' in G has a cost c(s → s') associated with it. Now the goal of the environment, which is assumed 
to be malicious, is to devise an optimal policy or equivalently choose nondeterministic transitions in order 
to minimize reliability or maximize latency. A value function V assigns a value V(s) for each state s  in 
the scenario graph. Next we describe an algorithm to compute the value function V * corresponding to 
this optimal policy. This algorithm is called policy iteration in the MDP literature. (Later we explain 
how the value function can be interpreted as worst case reliability or latency. In the initial step, V(s) = 1 
for all the states that satisfy the property finished, and for all other states s we assume that V(s) = 0. 
A state s is called probabilistic if transitions from that state are probabilistic. A state is called 
nondeterministic if it is not probabilistic. For all states s that satisfy finished the value V(s) is always 1; 
and for all other states the value function is updated as follows: 
 
• If s is nondeterministic then 

V (s) = min s’Єsucc(s) c(c→s’)  +V(s’)  

• If s is probabilistic then 
 

      V (s) =      ∑ p(s, s') (c(s → s') + V (s'))     s'Esucc(s) 

 In the equations given above, succ(s) is the set of successors of state s and p(s, s') is the 
probability of a transition from state s to s'. Intuitively speaking, a nondeterministic move corresponds 
to the environment choosing an action to minimize the value. The value of a probabilistic state is the 
expected value of the value of its successors. Starting from the initial state, the value function V is updated 
according to the equations given above until convergence. 

 After the above algorithm converges, we end up with the desired value function V *. Let so be 
the initial state of the scenario graph. 

 
• If the cost, c, associated with the edges is zero, then V *(so) is the worst case reliability metric 
corresponding to the given property, i.e., the worst case probability that if a service is issued it will 
eventually finish. 
• If the cost, c, associated with the edges correspond to negative of the latency, then the value -V *(so) 
corresponds to the worst case latency of the service, i.e., the worst case expected finishing time of a 
service. Notice that in this setting, minimizing cost corresponds to maximizing latency. 
 
  
 Consider the scenario graph shown in Figure 3. The worst case reliability using our algorithm is 
(1/2 x 3/8) + (1/2 x 1/4) = 5/16. That is, the worst case probability that a check issued by Bank-A on 
Bank-C is cleared is 5/16. Latency in days for all the events is shown in Figure 3 inside square brackets, 
e.g., latency of the event sendCheck(FRB-3, MC-3) is 2 days. The worst case latency using our algorithm 
computes to be 4 days. 

5.6 Step 6: Cost-Benefit Analysis 
 
 Finally, we add more cost information and extend our MDP to a CMDP. Again, we will explain 
this analysis using the running example first. Suppose an architect wants to upgrade some links to 
improve the overall robustness of the system. Three links Link-A-1, Link-A-2, and Link-C-3 are 
candidates for being upgraded. Assume that if Link-A-1 and Link-C-3 are upgraded then the probabilities 
P(A1) and P(C3) increase to 3/4 respectively. If Link-A-2 is upgraded then the probability of Link-A-2 
being up is given below. 
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P(A2│A1) = ¾ 

 
P(A2│Ā1) = 3/8 

 
 If the links are not upgraded, then the probabilities do not change. In addition to the actions 
corresponding to the nondeterministic transitions, three extra actions (corresponding to upgrading Link-
A-1, Link-A-2, and Link-C-3) are added to the action set, A, of the MDP that was constructed previously. 
Moreover, assume that the architect has a cost constraint so that only two links can be upgraded. 
Therefore, in this case we obtain a CMDP, where the cost of upgrading the links is expressed by the 
cost function d (Section 2). Algorithms for finding optimal policies in the case of CMDPs exist but are 
complicated [2]. Fortunately, our problem is easier because the decisions to upgrade the links are static, 
i.e., do not depend on the state of the system. In this case the optimal decision can be found by 
solving an auxiliary integer programming problem. With each of the three links Link-A-1, Link-A-2, and 
Link-C-3 we associate 0-1 variables XA1, XA2 and XC3. Intuitively, XA1 = 1 indicates that Link-A-1 has 
been upgraded. Now the worst case reliability is a function of XA1, XA2, and XC3. We denote this by 
Rel(XA1, XA2, XC3). Our aim is to maximize the worst case reliability Rel(XA1, XA2, XC3) subject to the 
constraint that at most two links can be upgraded, i.e., 
 

XA1+XA2+XC3 ≤ 2 

 This is a non-linear integer programming problem. Although the problem in its full generality 
is hard, several heuristics for solving these class of problems have been studied [16]. For our example, 
Figure 4 lists the worst-case reliability for the three possible cases. It is clear that the best option is to 
upgrade Link-A-1 and Link-C-3. 

 

 

Figure 4: Table of Three Cases 

6  Status 
 
 We built a tool Trishul based on the ideas presented in this paper. We implemented all the 
basic algorithms. We are finishing the graph visualization component and a customized editor. 
 
 We also finished two major case studies: an extended banking system and a bond trading floor. 
Our model of the banking system is much more complicated than the simplified example presented in this 
paper. For example, we handle protocols such as Fedwire and SWIFT (used for transfer of funds and 
transmitting financial messages respectively) that we did not show here. The entire banking system model 
is about 2,000 lines of NuSMV code. The scenario graph has about 25,000 nodes and computing reliability 
and latency takes only a few minutes. 
 
 We also modeled and analyzed the system architecture of a bond trading floor of a major 
investment company in New York. The model is about 10,000 lines of NuSMV code and has about 100 
state variables. Our tool found several attacks. Two of these attacks were considered serious by the 
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architects. One attack enabled a junior trader to acquire a head trader's password. The second attack 
enabled a junior trader to obtain sensitive information from the company's database, i.e., a junior trader 
could find out the nature of the pending trades. Not surprisingly, we gained valuable experience during 
this case study. The most cumbersome part of the modeling process was the fault injection phase because 
the nature of the faults injected was heavily dependent on the security policies and technologies deployed 
at that node. We plan to automate the fault injection process in the near future. 

7 Related Work 
 
 Survivability is a fairly new discipline, and viewed by many as distinct from the traditional 
areas of security and fault-tolerance [7]. The Software Engineering Institute uses a method for analyzing 
the survivability of network architectures (called SNA) and conducted a case study on a system for 
medical information management [8]. The SNA methodology is informal and meant to provide general 
recommendations of "best practices" to an organization on how to make their systems more secure or 
more reliable. In contrast, our method is formal and leverages off automatic verification techniques 
such as model checking. Other papers on survivability can be found in the Proceedings of the 
Information Survivability Workshop [10]. 
 
 Research on operational security by Ortolo, Deswarte, and Kaaniche [13] is closest to Step 4 of 
our method. Their attack state graphs are similar to our scenario graphs. However, since we use 
symbolic model checking to generate scenario graphs, represented by BDDs, we can handle extremely large 
graphs. Moreover, in our method a scenario graph corresponds to a particular service; in contrast their 
graph corresponds to a global model of the entire system. We are currently investigating how to 
incorporate concepts and analysis techniques presented in their paper [13]. into our method. 
 
 Fault injection is a well-known technique in the fault tolerance community. We allow the 
designer to specify any kind of fault, and thus we can consider a wider class of faults. Moreover, we 
allow fault events to be dependent and thus can model correlated attacks. Computing reliability is also not 
new. There is a vast amount of literature on verifying probabilistic systems and our algorithm for 
computing reliability draws on this work [6]. The novelty in our work is the systematic combination of 
different techniques into one method. 
 
8 Summary of Contributions and Future Work 
 
 Survivability has become increasingly important with society's increased dependence on critical 
infrastructures run by computers. In this paper, we presented in a single framework a systematic method 
for analyzing a networked system for survivability. A fundamental contribution of our work is to use 
constrained Markov Decision Processes as the sole underlying mathematical model for this framework. A 
second contribution is the natural integration of a set of analysis techniques from disparate communities 
into this framework: model checking (popular in computer-aided verification), Bayesian network analysis 
(popular in artificial intelligence), probabilistic analysis (popular in hybrid systems and queueing 
systems), and cost-benefit analysis (popular in decision theory). In combination, these techniques let us 
provide a multi-faceted view of the networked system. This holistic view of a system is at the core of 
achieving survivability for the system's critical services. 
 
 There are several directions for future work. First, we plan to finish the prototype tool that 
supports our method. We are working on several case studies, including protocols used in an electronic 
commerce system. Since for real systems, scenario graphs can be very large, we plan to improve the display 
and query capabilities of our tool so architects can more easily manipulate its output. Finally, to make the 
fault injection process systematic, we are investigating how best to integrate operational security analysis 
tools such as COPS [9] into our method. 
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Survivability
• What if

– a terrorist hacker brings down the nation’s 
power grid?

– an act of Mother Nature causes the US 
banking network to fail?

• Critical infrastructures
– Utilities: gas, electricity, nuclear, water, …
– Communications: telephone, networks, …
– Financial: banking, trading, …
– Medical: emergency services, hospitals, …
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Survivability
• A system is survivable if it can continue to provide end services

despite the presence of faults.

• Faults
– Accidental or malicious
– Not necessarily independent
⇒ Finer-grained reliability analysis is enabled/required 

(and more relevant).

• Service-oriented
– Exploit semantics of application
⇒ Not all network nodes and links are treated equally.
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Foundational Questions
• What is the difference in models for survivability and 

those for
– Fault-tolerant distributed systems?
– Secure systems?

• Our starting point:
– Independence assumption goes out the 

window.
– Cost must be included in the equation.
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Key properties

• Mission Focus
– Identification of risks and trade-offs
– Alternative means to meet mission

• Assume imperfect defenses
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2 Parts in Cooperation

• The Survivable Network Architecture Method
– Measures existing systems for survivability
– Focuses on user and intruder models

• Inverting Formal Methods Techniques for Survivability
– Applies model checking and other techniques 

to survivability
– Allows systems that are formally specified to 

submit to survivability analysis
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The Survivable Network Analysis Method

• Focus
– early phase of life cycle
– applications as well as system infrastructure 
– tailorable depending on stage of development.

• Three options for SNA analysis
– survivability architecture
– survivability requirements
– mission lifecycle 
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Architectural Focus
• Capture assumptions such as boundaries and users
• Support system evolution as requirements and 

technologies change
– evolving functional requirements
– trend to loosely coupled
– requirements for integration across diverse systems

• Assist with product selection and integration with 
respect to rapidly changing security product world
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• Identify essential services with normal usage.
• Generate intrusion scenarios which are use cases for 

intruder
• Evaluate system in terms of response to scenarios

– Requirements: propose response to intrusions
– Architecture: evaluate system and operational 

behavior
• Mission impact

– applications as well as system components
– stakeholders input essential

General Method
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• Make recommendations for survivability 
improvements

• Identify decision and tradeoff points - areas of high 
risk 

• Identify trade-offs with other software quality attributes 
– safety, reliability, performance, usability 

Survivability Architecture

 
 

 

12

The Survivable Network Analysis Method

STEP 1 
SYSTEM DEFINITION
• Mission requirements definition
• Architecture definition and elicitation

STEP 2 
ESSENTIAL CAPABILITY DEFINITION
• Essential service/asset selection/scenarios
• Essential component identification

STEP 3 
COMPROMISABLE CAPABILITY DEF’N 
• Intrusion selection/scenarios
• Compromisable component identification

STEP 4 
SURVIVABILITY ANALYSIS
• Softspot component (essential & 
compromisable) identification
• Resistance, recognition, and 
recovery analysis
• Survivability Map development
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Determining Survivability Strategies  

System 
Requirements/
Architecture

Survivable
Network 
Analysis

Essential Services
Intrusion Effects
Mitigation Strategies

SEI CERT/CC
Intrusion
Knowledge

Improved
Requirements/
Architecture
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Survivability Map  

Intrusion
Scenario

Softspot
Effects

Architecture
Strategies for

Resistance Recognition Recovery

Current(Scenario
1)

… Recommended

Current(Scenario
n)

Recommended

• Roadmap for management evaluation and action
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Option: Survivability Requirements

• Identify requirements for mission-critical functionality 
– minimum essential services 
– graceful degradation of services
– restoration of full services

• Identify explicit requirements for 
– recovery
– recognition
– resistance
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Option: Mission Lifecycle

• Factor survivability into the development and operational 
lifecycle 

• Capture security and survivability assumptions
– boundaries, users

• Identify survivability decision points
– impact of changes on recovery, intrusion detection, etc.
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• Clarified requirements

• Documented basis for system decisions

• Basis to evaluate changes in architecture

• Early problem identification

• Increased stakeholder communication

Benefits of the SNA
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Additional Information
• SNA Case Study: The Vigilant Healthcare System

– IEEE Software:  July/August 1999
• Survivability: Protection Your Critical Systems

– IEEE Internet Computing:  Nov/December 1999
• Web site: IEEE article and other reports 

www.sei.cmu.edu/organization/programs/nss/surv-net-tech.html
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Overview of Formal Method
Network Model Survivability Property

Phase I

Scenario Graph

Checker

Reliability Query

Analyzer

Scenario Set

Phase 2
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Phase 1
Network Model = Survivability Property =

Scenario Graph =

Model Checker = 
(modified) NuSMV

A set of concurrently executing 
Finite State Machines.

A predicate in CTL.

A set of related examples.
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Network Model
• Processes

– Nodes and links are processes (i.e., FSMs)
• banks, money centers, federal reserve banks, and links

– Communication via shared variables (i.e., finite queues)
• representing channels, and hence interconnections.

• Failures
– Faults represented by special state variable

• fault:{normal, failed, intruded} 
– Links and banks can fail at any time

• Failed link blocks all traffic.
• Failed bank routes all checks to an arbitrarily chosen money center.

– Money centers and federal reserve banks do not fail.
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Survivability Properties
• Fault-related

– Money never deposited into wrong account.
•AG(¬error)

• Service-related
– A check issued eventually clears.

•AG(checkIssued →
AF(checkCleared))
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Inputs to Model Checker
• State machines

MODULE main
fault: {normal, fail-stop, Byzantine, hacker-attack, terrorist-attack, link-down, …}
…
next (fault) := case

fault = normal : {normal, fail-stop, …}
…
Pi(vn) : {hacker-attack, terrorist-attack}
default : fault
esac

MODULE bank(user, <other input parameters>)
next (…) := case

Pj(vm) & fault = normal => <route check to user.destination>
...

• Property
AG not(faulty)

 
 

 

24

Output From Model Checker

• Scenario Graph
Intuition:
• Each “counterexample” spit out by 
the model checker is a scenario.
• Survivability property gives a slice 
of the model.

Each path is a scenario of how a fault can occur.

Fault
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A Service Success Scenario Graph
issueCheck(A, C)

send(A, MC-2)

send(MC-2, FRB-1)

send(FRB-1, FRB-3)

send(FRB-3, MC-3)

send(MC-3, C)

debitAccount

send(FRB-2, FRB-3)

send(MC-1, FRB-2)

send(A, MC-1)

up(a2)

up(c1)

down(a2) & up(a1)
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A Service Fail Scenario Graph
issueCheck(A, C)

FAIL

down(A)

up(a2)

up(A)

pick(MC-2)

down(c1)

down(a2)

pick(MC-1)

down(a1)

down(c1)

down(a1)

up(a1)

send(A, MC-2) send(A, MC-1)

FAIL

FAIL

FAIL
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Overview of Method
Network Model

Reliability Query,
Cost Query, etc.

Analyzer

Scenario Set

Survivability Property

Phase 2

Phase I

Scenario Graph

Checker

Annotations
(e.g., probabilities, 
cost)
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Phase 2: Reliability Analysis

• Annotations = Probabilities
– Use Bayesian Networks to model dependence of 

events.

• Symbolic
– Use symbolic probabilities

• high, medium, low
– Use NDFA theory to compute scenario set.

• Continuous
– Use numeric probabilities

• [0.0, 1.0]
– Use Markov Decision Processes to model both 

nondeterministic and probabilistic transitions.  
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State of Project
• Tools

– Trishul tool
• Uses NuSMV model checker, done by Somesh Jha

– New tool
• Uses SPIN, ongoing by Oleg Sheyner

• Case studies (Jha, Sheyner)
– Trading floor model of major investment bank (being 

“sanitized” by Jha)
• 10K lines of NuSMV
• half-million nodes in scenario graph
• 50 threat scenarios
• 45 found by system
• 5 new threat scenarios found
• With independence assumption, too many misses.

– B2B e-commerce NYC start-up (Jha)
• 50K lines of Statecharts, 2 million NuSMV beyond capability of tool  
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Sample Open Research Questions
• Foundational

– What is an appropriate fault-model for survivable systems?
• Malicious attack versus Byzantine failure

– What role does “service-oriented” really play in the notion of 
survivability?

– What is an appropriate logic for describing survivability 
properties?

• What logic or subset of CTL corresponds to finite scenario graphs?
• Pragmatic

– How applicable is the CMDP model for other critical 
infrastructure examples?

• How far can we push the analysis techniques?
– What combination of tools can further automate the analysis?

• Linear programming packages, theorem provers, …
– How can you design a system for survivability?

 
 

 


