

AFRL-IF-RS-TR-2004-65
Final Technical Report
March 2004

MOBILE CODE SECURITY

Fraunhofer Center for Research in Computer Graphics, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-65 has been reviewed and is approved for publication.

APPROVED: /s/
 WILLIAM E. WOLF
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, JR.
 Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2004

3. REPORT TYPE AND DATES COVERED
FINAL Feb 01 – Feb 02

4. TITLE AND SUBTITLE

MOBILE CODE SECURITY

6. AUTHOR(S)

Chenghui Luo

5. FUNDING NUMBERS
G - F30602-01-2-0505
PE - 62702F
PR - OIPG
TA - 32
WU - P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Fraunhofer Center for Research in Computer Graphics, Inc.
321 South Main St.
Providence RI 02903

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-65

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: William E. Wolf/IFGB/(315) 330-2278 William.Wolf@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Mobile code is computer code that is produced on one node of a computer network but is transferred and executed on
another network node. A mobile agent is a mobile software module composed of autonomous mobile code. Mobile
agent software is a promising new computing paradigm for distributed computing in a large computer network
environment, because of the autonomy and efficiency of mobile code.

In the course of the Mobile Code Security (MCS) project supported by the U.S. Air Force Research Laboratory, a MCS
Framework has been developed by Fraunhofer CRCG. The MCS Framework provides a multi-layered approach to
safeguarding mobile agents, and includes technologies to support: complete obfuscation, and encrypted execution and
code watermarking technologies.

15. NUMBER OF PAGES14. SUBJECT TERMS
information assurance, information security, assured software, secure mobile code

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

23

 i

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1
1. Introduction and Overview .. 3

1.1. The Mobile Code Security Problem .. 3
1.2 Solutions Developed by Fraunhofer CRCG ... 3

2 Research Background ... 4
2.1 Mobile Code Security Prqblems... 5
2.2 Related Work.. 5

2.2.1 Secure Hardware .. 5
2.2.2 Mobile Cryptography ... 6
2.2.3 Time Limited Blackbox ... 6
2.2.4 Detection Objects ... 7
2.2.5 Protective Assertions.. 7
2.2.6 Cryptographic Traces ... 7

3. Fraunhofer CRCG Mobile Code Security Framework .. 8
3.1 The Fraunhofer CRCG 3-layerSolution ... 8
3.2 Complete Obfuscation .. 9
3.3 Encrypted Execution... 11
3.4 Code Watermarking.. 13

4 Results and Discussion ... 14
4.1 Challenges of Encrypted Execution ... 15
4.2 Watermarking and Obfuscation.. 16
4.3 Discussion... 16

5. Conclusions and Future Work ... 17
6. References.. 18

LIST OF FIGURES

Figure 1. CRCG 3-1ayer information armor for agent protection. ... 9
Figure 2. The Complete Obfuscation Framework ... 10
Figure 3. Encryption to link .. 11
Figure 4. Customized Class Loader-based Encrypted Execution Framework 12
Figure 5. Graphics User Interface of CRCG’s Mobile Code Security Framework 15

 1

EXECUTIVE SUMMARY

Mobile code is computer code that is produced on one node of a computer network but is
transferred and executed on another network node. A mobile agent is a mobile software module
composed of autonomous mobile code. Mobile agent software is a promising new computing
paradigm for distributed computing in a large computer network environment, because of the
autonomy and efficiency of mobile code.

However, mobile code is vulnerable to security problems, including malicious agents,

and malicious hosts. A malicious agent is an agent that performs harmful actions on an agent
host. Possible damaging actions include unauthorized access, modification and overuse of local
resources, such as sensitive data, system calls, and CPU time. A malicious host is a host
computer that performs harmful actions on a mobile agent. Because an agent is executed in an
environment that an agent host provides, there are a number of ways that an agent host can attack
an agent, including spying out and manipulating agent code, data, and control flow; listening to
and tampering with data exchange between an agent and agent owner; executing code
incorrectly; and denying execution and masquerading as another host. In addition, reverse
engineering (the process of decompilation of a mobile agent bytecode to obtain its source code)
is also a great threat for Java-based mobile agents. That is, if a malicious host can obtain the
source code of an agent, the agent can be manipulated with possibly harmful results.

All of the information attacks listed above, for example, become much easier based on

the analysis of the source code of a mobile agent. To defend against terrorist attacks in
cyberspace, it is clear that mobile code -as part of the nation’s information infrastructure - must
be well-protected.

In the course of the Mobile Code Security (MCS) project Supported by the US All Force
Research Laboratory, a MCS Framework has been developed by Fraunhofer CRCG. The MCS
Framework provides a multi-layered approach to safeguarding mobile agents, and includes
technologies to support:

• complete obfuscation,
• encrypted execution, and
• code watermarking technologies.

Complete Obfuscation

Code obfuscation is a technology to hide or remove symbolic information in mobile code

so that source code can be protected even if a program is decompiled. Using the MCS
Framework developed by Fraunhofer CRCG, mobile code is protected up to the Java system
class level. This technology provides mobile code complete obfuscation from application classes
to system classes, so it is a much stronger protection than traditional obfuscation approaches
which only obfuscate application classes. Mobile code protected with the MCS Framework is
very difficult to reverse-engineer and manipulate, and this technique can also be used for
protection of intellectual property rights and classified data.

 2

Encrypted Execution

An encrypted execution framework based on a customized Java class loader has also
been developed as part of the MCS Framework. With the customized mobile code class loader,
Java system classes remain obfuscated and encrypted at run time, therefore static or dynamic
analysis of the mobile code is extremely unlikely, which greatly enhances mobile code security.

Code Watermarking

Code watermarking is a technology to embed a secure and invisible label in mobile code.
Watermarks embedded in mobile code can authenticate not only mobile code, but watermarks
embedded in system classes can be used to authenticate the execution environment on a remote
host. The robustness of a watermark measures the difficulty of removing the watermark from
mobile code. A non-robust watermark is called a “fragile watermark,” and it is this fragility that
helps to authenticate mobile code. More robust watermarks can survive piracy attacks, and thus
can be used for intellectual property protection. The fragile Java bytecode watermarking
techniques developed at Fraunhofer CRCG currently support mobile code authentication. Robust
watermarking techniques for copyright protection have been desired and are currently being
implemented. The encrypted execution mechanism described above also supports secure
execution of watermarked mobile code, which provides additional protection from attack for
software watermarks.

Remote execution of mobile code was formerly risky and dangerous in an insecure
malicious host environment. However, using the MCS Framework developed at Fraunhofer
CRCG -consisting of complete obfuscation, encrypted execution and code watermarking -
mobile code can be safely executed on remote hosts. With security risks minimized, large scale
mobile agent-based applications such as network management can now be developed.

 3

1. Introduction and Overview

Mobile code is computer code that is produced on one node of a computer network but is
transferred and executed on another network node. A mobile agent is a mobile software module
composed of autonomous mobile code. Mobile agent software is a promising new computing
paradigm for distributed computing in a large computer network environment, because of the
autonomous and efficient nature of mobile code.

1.1. The Mobile Code Security Problem

However, the mobile code is vulnerable to security problems, including malicious agents,
and malicious hosts. A malicious agent is an agent that performs harmful actions on an agent
host. Possible damaging actions include unauthorized access, modification and overuse of local
resources, such as sensitive data, system calls, and CPU time. A malicious host is a host
computer that performs harmful actions on a mobile agent. Because an agent is executed in an
environment that an agent host provides, there are a number of ways that an agent host can attack
an agent, including spying out and manipulating agent code, data, and control flow; listening to
and tampering with data exchange between an agent and agent owner; executing code
incorrectly; and denying execution and masquerading as another host.

In addition, reverse engineering (the process of decompilation of a mobile agent bytecode

to obtain its source code) is also a great threat for Java-based mobile agents. That is, if a
malicious host can obtain the source code of an agent, the agent can be manipulated with possible
harmful results.

All of the information attacks listed above become much easier based on the analysis of

the source code of a mobile agent. To defend against terrorist attacks in cyberspace, it is clear
that mobile code - as part of the nation’s information infrastructure - must be well-protected.

1.2 Solutions Developed by Fraunhofer CRCG

Fraunhofer CRCG’s solution to the mobile code security problems is its Mobile Code
Security Framework, including complete obfuscation, encrypted execution and code
watermarking technologies. These technologies were developed in 2001 with the support of the
US Air Force Research Laboratory.

Complete Obfuscation

Code obfuscation is a technology to hide or remove symbolic information in mobile code
so that source code can be protected even if a program is decompiled. Using the MCS
Framework developed by Fraunhofer CRCG, mobile code is protected up to the Java system
class level. This technology provides mobile code complete obfuscation from application classes
to system classes, so it is a much stronger protection than traditional obfuscation approaches
which only obfuscate application classes. Mobile code protected with the MCS Framework is
very difficult to reverse- engineer and manipulate, and this technique can also be used for
protection of intellectual property rights and classified data.

 4

Encrypted Execution

An encrypted execution framework based on a customized Java class loader has also been
developed as part of the MCS Framework. With the customized mobile code class loader, Java
system classes remain obfuscated and encrypted at run time, therefore static or dynamic analysis
of the mobile code is extremely unlikely, which greatly enhances mobile code security.

Code Watermarking

Code watermarking is a technology to embed a secure and invisible label in mobile code.
Watermarks embedded in mobile code can authenticate not only mobile code, but watermarks
embedded in system classes can be used to authenticate the execution environment on a remote
host. The robustness of a watermark measures the difficulty of removing the watermark from
mobile code. A non-robust watermark is called a “fragile watermark,” and it is this fragility that
helps to authenticate mobile code. More robust watermarks can survive piracy attacks, and thus
can be used for intellectual property protection. The fragile Java bytecode watermarking
techniques developed at Fraunhofer CRCG currently support mobile code authentication. Robust
watermarking techniques for copyright protection have been designed and are currently being
implemented. The encrypted execution mechanism described above also supports Secure
execution of watermarked mobile code, which provides additional protection from attack for
software watermarks.

Remote execution of mobile code was formerly risky and dangerous in an insecure

malicious host environment. However, using the MCS Framework developed at Fraunhofer
CRCG -consisting of complete obfuscation, encrypted execution and code watermarking - mobile
code can be safely executed on remote hosts. With security risks minimized, large scale mobile
agent-based applications such as network management can now be developed.

2. Research Background

Mobile code is now ubiquitous on the Internet. Many web pages become “active” by
including mobile code such as JavaTM applets and JavaScript or Active X scripts. Mobile code is
also used to implement features in devices such as cellular phones. When a user accesses one of
these features on a cellular phone, mobile code for the feature is downloaded to the cellular
phone and then used in the interactions that involve the feature

When mobile code becomes an autonomous program and travels from host to host on a

network, it evolves into mobile agents. Compared to mobile code, mobile agents typically move
from host to host to accomplish specified missions autonomously and collaboratively. Mobile
agents emerge as promising distributed computing paradigm to replace the conventional client-
server model. With mobile agent platforms such as IBM Aglets [Karjoth et al, 1998] and
Mitsubishi Concordia [Walsh et al, 1998], more and more mobile agent applications such as
travel agents, auction agents and e-commerce agents, can be conveniently developed. Partially
supported by DARPA and ARL during 1997-1999, Fraunhofer CRCG also developed a Digital
Watermark Agent application with CRCG’s own lightweight mobile agent platform [Zhao and
Luo, 1999].

 5

2.1 Mobile Code Security Problems

Because mobile code originates from a remote, possibly “untrusted” system, mobile code
could be a potential security threat to mobile agent host, e.g., unauthorized access, modification
and overuse of local resources, such as sensitive data, system calls, and CPU time, just like
viruses. This problem is called “malicious agent” problem and although this problem seems the
major and natural security problem for a mobile agent host, it can be basically solved by
confining a mobile agent in a sandbox with fine-grained access control policies. A surprisingly
much more difficult problem is the “malicious host”, which can exploit a mobile agent almost
freely, because a mobile agent is executed in an environment that is provided and controlled by
the malicious host, and thus can be easily accessed by a mobile agent host. Because an agent is
executed in an environment that an agent host provides, there are a number of ways that an agent
host can attack an agent [Hohl, 1998], including

• spying out and manipulating agent code, data, and control flow;
• listening to and tampering with data exchange between an agent and agent owner;
• executing code incorrectly; and
• denying execution and masquerading as another host.

Besides these malicious host attacks, agent reverse engineering, the process of decompilation

of a mobile agent bytecode to obtain its source code, is also a great threat for mobile agents [Luo
and Zhao, 1999]. Today, it is not a secret that Java programs (applets or applications) can be
easily decompiled and reverse engineered from Java bytecode to Java source code. Although all
computer programmers theoretically subject to decompilation, Java’s rich symbolic information
in class files Java’s dynamic link mechanism makes the chance of successfully decompiling Java
programs great, using some commercial decompilers. The consequence of decompilation is
serious, e.g., it will become cheap and easy to steal intellectual property or classified data
embedded in mobile code, to alter legitimate programs and redistribute them, and for the case of
a mobile agent, a malicious host can easily manipulate a mobile agent. All of the information
attacks listed above, for example, become much easier based on the analysis of a mobile agent’s
source code. Because of these reasons, research efforts of Fraunhofer CRCG have focused on the
protection of mobile code against malicious hosts.

2.2 Related Work

The malicious host problem is recognized by many researchers as a much harder task;
currently there are many diverse options about this problem and various solutions have been
proposed to solve it.

2.2.1 Secure Hardware

Some researchers argued that it is doubtful that an agent could keep a secret (e.g. a secret
key for decryption) [Gong 1997], since the information belonging to a mobile agent is completely
available to its host system. Some even claimed that it is impossible to prevent agent tampering

 6

unless trusted hardware is available in agent platforms [Karjoth et al 1998]. Such belief gives an
impression that the hardware approach is the only one that can lead to highly secure agent
systems. Currently there are some commercial products in this category, such as smart cards,
including Sun Microsystems’ Java Card [Sun Microsystems 1997]. However, a closer look into
Java Card finds that currently Java Card is not sufficient for large-scale computation. For
example, the current specification of the Java Card only supports a small subset of the Java
language, and it is not able to load classes dynamically, though it is enough for typical smart card
applications, such as payment and some intelligent features. A hardware approach could be
successful, provided that serious hardware can be developed and somehow integrated into current
computer hardware. Otherwise, it is not a practical approach.

2.2.2 Mobile Cryptography

Although protecting mobile agents against tampering attempts by the executing host is
much harder, not everyone believes that computation privacy for mobile code is impossible
without tamper resistant hardware, or that an agent cannot keep a secret, such as a secret key. In
[Sander and Tschudin 1998], for the first time, it was pointed out that indeed there was an error
in this reasoning. They explained that although that opinion was true for agents in clear text form,
it was not for agents in cryptographic form in which both the data and the functions of an agent
were encrypted. In such a case, through computing with encrypted data and function, a software-
only approach for providing computation privacy for mobile code is possible. Sander and
Tschudin demonstrated this approach with a mobile code fragment that computes an algebraic
circuit (a polynomial). They also described another method in which a mobile agent could
digitally sign its output securely. This second approach is on the right track, and with
modification and customization, the basic idea of computing with encrypted data and function
could work successfully for more and more mobile agent applications. But, in practice, this
approach is still incomplete; the transformation that Sander and Tschudin used can only be
applied to algebraic circuits, a universal transformation is hard to construct.

2.2.3 Time Limited Blackbox

In [Hohl 1998], another approach was presented that partially solved the malicious host
problem. The idea here is to create a blackbox out of an original agent. A blackbox is an agent
that performs the same work as the original agent, but is of a different structure. This difference
allows the agent dispatcher to assume a certain agent protection time interval, during which it is
impossible for an attacker to discover relevant data or manipulate the execution of the agent.
After that time interval the agent and some associated data become invalid, and the agent cannot
migrate or interact anymore, which prevents the exploitation of attacks after the protection
interval. This idea seems vague because it is hard to implement with different CPU clocks and
execution environments, and there are no mechanisms to block a host’s access to an agent’s
secret data.

 7

2.2.4 Detection Objects

Because complete prevention of a host’s attacks on an agent is hard to achieve, some
researchers have turned to methods that detect evidence of a host’s attacks. In [Meadows 1997], a
rough idea about “detection objects” was proposed. Detection objects are objects sent to hosts
solely for detection purposes, therefore they may contain some data or function to fool a host
system so that if an host tries to tamper with them, the objects dispatcher has a way to detect the
host’s misbehavior. This way, an agent dispatcher can verify if a host is a malicious one.

2.2.5 Protective Assertions

A similar approach, called “protective assertions”, was presented in [Kassab & Voas
1998]. Their goal was to make it much harder for an agent to be tampered with. By inserting
some assertions into the agent source code, an agent can check the conditions specified in the
assertions at runtime. Agent assertions are usually Boolean functions that evaluate to be true
when an agent execution state satisfies a semantic condition, and false otherwise. Kassab et al.
also proposed to let the agent assertions output more than Boolean values in order to increase the
agent observability. Based on the output results of assertion checking which are sent to the agent
dispatcher, an agent dispatcher (owner) has a way to detect if its agent has been attacked.

2.2.6 Cryptographic Traces

In [Vigna 1998], a detection mechanism was presented based on execution cryptographic
traces. It allows one to detect attacks against code, state, and the execution flow of mobile
software components. Cryptographic traces are logs of the operations performed by an agent
during its lifetime. Using these traces, an agent dispatcher can check - following agent
termination - to see if the execution history of the agent conforms to a correct execution. For
example, an agent dispatcher may verify part of the agent’s logs, to discover if there are any signs
of a host’s attacks, by repeating the agent’s execution on the same secure environment. This
method gives a somewhat reasonable way for the detection of malicious hosts, but how to
generate this cryptographic trace is not further discussed.

Based on this research review, although there was much research work towards the

malicious host problem, the problem is far from being solved. Based on the current research, and
previous work at Fraunhofer CRCG on mobile agent security, it was found that a multi-layer
approach is practical - in this case, a mobile agent could be armed with 3 layers of information
armors as described below.

 8

3. Fraunhofer CRCG Mobile Code Security Framework

3.1 The Fraunhofer CRCG 3-layerSolution

The malicious host is a very difficult problem, and some researchers have even claimed that it
is impossible to verify if an agent is correctly executed on a malicious host [Karjoth et al., 1998].
After reviewing the literature, it was determined that a multi-layer approach could provide
mobile agents much better protection. Please refer to Figure 1. The mobile agent protection
mechanism developed at Fraunhofer CRCG consists of 3 layers of information armor:

1. The first layer is agent code obfuscation. This layer significantly hides symbolic

information such as class, field and method names; prevents understanding of an agent’s
source code based on static analysis; and helps to protect an agent’s internal procedures
and secrets.

2. The second layer is for secure execution of completely obfuscated agent code. This layer

provides a customized class loader to dynamically load obfuscated mobile code and
execute the code in an encrypted fashion. Both the first (obfuscation) and the third
(dynamic watermarking) layers are supported through this layer.

3. The third layer is to watermark an agent’s code, which is used to detect attacks from a

malicious host. This third layer allows a mobile agent to detect intrusion and dispatch
information back to its agency (original agent dispatcher), so that the agency is notified
that its agent has been attacked.

The integration of all of these complementary layers greatly limits the possibility of

successful malicious attacks. In previous research, some techniques such as secret spreading,
assertions [Kassab & Voas 1998] and time constraints [Hohl 1998], were quite different from
each other, and it has been difficult to integrate them together into a single, mobile agent
application. Based on CRCG’s customized class loader-based encrypted execution framework,
these three layers of information armor have been successfully integrated by Fraunhofer CRCG
into a mobile code security framework and it supports secret spreading and assertions in a
consistent way. This greatly simplifies the complexity of mobile code security management.

 9

Figure 1. CRCG 3-1ayer information armor for agent protection.

3.2 Complete Obfuscation

There exist a few obfuscation techniques [Collberg, 1997]. For example, data obfuscation
changes the storage modes, encoding methods, aggregation, and/or ordering of data structures.
Control obfuscation may hide the real control flow behind irrelevant or never executed
statements, or change the reducible code to non-reducible. All of these obfuscators generally take
the common approach of renaming meaningful symbolic names to meaningless names. This
technique effectively renders the decompiled source code difficult for a human being to
understand, even if one has plain text source code. Some of these obfuscators also obfuscate the
control flow of a Java program, e.g., by inserting many GoTo instructions to confuse
decompilers. In practice, this approach works well, and not many decompilers can correctly
analyze the obfuscated control flow and output the corresponding source code.

As seen above, one common way of obfuscating a program is to replace all of the names

in the program with names that are legal in the programming language but are as meaningless as
possible to a human being reading the program. One of the key observations in the Fraunhofer
CRCG research effort has been that this kind of technique is generally only applied to a bytecode
of an application package, but not to the Java library system classes. Without a developer’s
meaningful symbolic names, an obfuscated package is harder to understand, but all the
meaningful symbolic names of Java library classes in source code still gives a clear clue about
the internal logic of a Java package.

Directly extending traditional obfuscation techniques to Java library classes will simply

make an application package not executable, because a Java virtual machine may not be able to
link those application and library classes. Although Java’s design essentially makes it vulnerable
to decompilation, it is also Java’s dynamic class loading feature that make it possible to fix the
hole. Simply speaking, the complete obfuscation technique developed at Fraunhofer CRCG
obfuscates all symbolic information in a Java software package including static data, and uses a
customized Java class loader to load, link and execute the completely obfuscated package.

Obfuscation

Encrypted
Execution

Watermarking

Agent

Obfuscation

Encrypted
Execution

Watermarking

Agent

 10

The Fraunhofer CRCG obfuscation framework contains the following three major components:

• symbolic name obfuscating,

• library-related symbolic name encrypting, and

• runtime library-related symbolic name recovering.

The encrypting and recovering steps are associated with a key.

At the symbolic name obfuscation step, all symbolic information is transformed to
meaningless names, for both the application and library level classes. Next, for security reasons,
to prevent attackers from finding the original library classes, all library-related symbolic
information in an application is encrypted using a key. Finally, at runtime, the symbolic
information of library classes will be recovered by encrypting Java library classes with the same
encryption key so that the two encrypted symbolic names can link and execute. This global
picture is illustrated in the following figure.

Figure 2. The Complete Obfuscation Framework

The above three components correspond to three different time periods of the software:

the obfuscating and encrypting processes happen after the development and before the release of
the software; and after a software is released, the recovering process happens at the software
execution phase. At the development and the execution phases, the software package is well-
linked with a library, but during the release and before the execution phase, the library data
names remain encrypted and the package is not well linked with the library.

Library data linking is a very critical component in this obfuscation architecture. For

security reasons, this part must be made hard enough for a pirate to attack at runtime. To achieve
this goal, in the Fraunhofer CRCG framework, the plain library data names are first encrypted
with a key, and then the encrypted names are mapped to the obfuscated library data names. Thus,
in the release version of a software package, the library data names are both encrypted and
obfuscated.

Package Package Package

LibraryLibraryLibrary

Development Release Execution

obfuscating

encrypting encryption key

 11

To link and execute the package, one must have a key to encrypt library-related symbolic
names. Note that here one does not use a key to decrypt those names because doing so will reveal
the original library names. Instead, one encrypts the library classes with the original encryption
key. See Figure 3. This way, the library classes can still be linked together.

encrypt

Figure 3. Encryption to link

3.3 Encrypted Execution

Encrypted execution (also called “computing with encrypted data” or “computing with
encrypted function”) might be the last resort for strong mobile code protection. This approach is
a pure software approach, and its key point is to execute an agent on a host while the agent keeps
its data (or function) encrypted [Sander and Tschudin, 1998]. But for computing with encrypted
data, a large set of natural privacy homomorphism approaches are shown to be insecure [Brickell
and Odlyzko, 1992], and a secure privacy homomorphism is hard to construct (for example, some
approaches only work for polynomials [Sander and TschudJln, 1998]), which renders this
encrypted data approach impractical for mobile code protection.

The major drawback of computing with encrypted function is complexity in terms of

computation, communication and rounds, and this is the cost of’ having very strong security
properties related to cryptographic or information-theoretic assumptions. The complexity and
interactive rounds of the encrypted function approach is also not practical for mobile code, since
it makes it very difficult to autonomously deploy and execute tasks remotely.

Based on the above review, it was found by Fraunhofer CRCG that, although the

encrypted computing approach was on the right track, many open research questions remained,
such as how to encrypt data and functions to achieve the non-interactivity of mobile computing.
For practical strong security, a class loader-based encrypted execution framework was developed
by Fraunhofer CRCG.

The idea of the Fraunhofer CRCG class loader-based encrypted execution framework is

to execute a mobile code package with encrypted Java system classes, through the means of the
Fraunhofer CRCG customized class loaders. Please refer to Figure 4. This way, although the

Library

Encrypted
Library Names

Library

Encrypted
Library Names

Library

Encrypted
Library Names

Library

Encrypted
Library Names

 12

whole mobile code package is not completely encrypted during execution, if the system classes
are encrypted, static or dynamic analysis of the mobile code is much harder, because all the
system-related parts are encrypted in the mobile code application.

Figure 4. Customized Class Loader-based Encrypted Execution Framework

To make mobile code even harder to modify at both static and dynamic code level, a class
evolution solution has been developed by Fraunhofer CRCG .Class evolution means that the
definition of a class can be changed at runtime through a customized class loader. Even with a
debugger, a class controlled in this way is hard to modify, because certain bytecode or internal
states of a mobile code application may remain encrypted, and an attacker will not be sure which
code or data to modify at a certain time during the execution. Class evolution is also used for the
dynamic watermarking techniques developed by Fraunhofer CRCG (section 3.4).

Compared with the general purpose encrypted computing approach, the class loader-

based encrypted execution framework developed by Fraunhofer CRCG may be considered a
software engineering-oriented approach because the encryption and execution occurs within
customized Java class loaders, instead of keeping all the data and functions encrypted during
execution as in the case of encrypted computing.

Recall that decompilation is one of the major practical means of malicious host attacks.

This class loader-based encrypted execution framework significantly deters this attack, because
with partial encryption, all the classes are correctly generated and linked based on the encrypted
system classes only at runtime, thus source code is hard to obtain through decompilation of static
bytecode of a mobile code application. This shift of static information to runtime generation is
very useful for preventing decompilations.

This customized class loader-based encrypted execution framework is well adapted to the

Fraunhofer CRCG 3-layer information armor for mobi1e code security. This framework is
seamlessly integrated with:

Encrypted Execution Framework

Obfuscation WatermarkingClass
Evolution

Key

Class
Encryption

Class
Loading

Encrypted Execution Framework

Obfuscation WatermarkingClass
Evolution

Key

Class
Encryption

Class
Loading

 13

• the obfuscation framework that protects the source code of mobile code,
• the watermarking component which supports detection of malicious host attacks,
• dynamic loading and class evolution for assertions and time limited constraints.

3.4 Code Watermarking

Generally speaking, a watermark is an invisible, robust, and secure label embedded in a
digital content for the purpose of ownership identification. Software watermarks are used for
software copyright protection, just same as the media watermark case [Cox et al, 1996; Zhao and
Koch, 1995]. In a mobile code scenario, however, watermarks embedded in mobile code can be
used to detect attacks from mobile hosts.

The idea of watermarking agent code is as follows. Before an agent is dispatched, it is

first watermarked by the agency. When the watermarked agent arrives at a host, it signals its
arrival and executes. Upon completion, the agent will check its watermark, and communicate
back to the remote agency. If the watermark has been changed or cannot be found, then the agent
will detect that, and notify the remote agency. If, however, the agency does not receive a signal at
all from an agent within some expected time interval after arrival at a host, the agency knows that
the agent has been significantly modified. So an agency can use this as a way to detect
modification of agent code by a malicious host.

There are currently two approaches to watermark a Java program, to embed a watermark

statically in the program’s bytecode, or dynamically in the status of a program’s execution.
Generally, for all watermarking techniques -both media and software watermarking - robustness
is a major problem. But for software watermarking, the: invisibility requirement is an additional
difficulty. Research by Fraunhofer CRCG has shown that many of these watermarking
techniques require some amount of extra code in a certain format to be inserted into a program,
such as [Monden et al, 2000], [Townsend and Collberg, 2000] and [Palsberg et al, 2000]. Some
of them even require that the insertion occur at the source code level, which complicates software
engineering and maintenance.

The static watermark embedded in mobile code developed by Fraunhofer CRCG is a

simple and easy scheme. Given a key, one first generates a set of locations in the bytecode (based
on also some class information, such as the number of bytecodes in a method. This issue is
discussed in section 4.3). Based on these locations, one inserts a bytecode “nop” - a no-op
instruction which does nothing in a Java virtual machine, and thus doesn’t change the
functionality of the mobile code. When this same operation is performed at some later time to
retrieve the watermark on a bytecode stream, the watermark is valid if and only if the result of
this secret operation is identical to the watermark value.

Compared with other static watermark techniques, the Fraunhofer CRCG implementation

does not rely on a Java application’s source code, but only bytecode. This approach relieves
software developers from the burden of maintaining watermark-related source code.

 14

Fraunhofer CRCG uses class evolution to construct a dynamic watermark. First one
inserts into the class a few extra, secret assertion methods with the known watermark as return
value under certain conditions. Then these assertion methods are encrypted by encrypting blocks
of the bytecode of the methods with the given watermark key. Other class methods are encrypted
by scrambling based on other keys or runtime values of certain fields. Next, each class is
encrypted using class evolution (class evolution is a runtime class transforming mechanism that
was used for encrypted execution. Here it is used for watermarking purposes). To do class
evolution, one can develop a class loader for this class and make it dynamically load the bytecode
streams of all of its methods from a byte array generated from all the methods, including the
extra methods.

To retrieve the watermark, execute the watermarked class using the customized class

loader. Load the regular methods, then with the given watermark retrieval key, decrypt the
bytecode of the extra methods and then load and execute them. The original watermark will be
returned if there are no modifications.

This dynamic watermarking technique can detect illegal runtime modifications, because if

the assertions fail, the return value will be different from the original one, and the mobile code
owner will know that this code has been executed incorrectly. Since the encrypted assertion
method will be executed as usual, without giving extra clues that the agent is detecting
modifications, this detection module may not be visible to a malicious host.

4. Results and Discussion

The following is a snapshot of the GUI (Graphical User Interface) of the Fraunhofer
CRCG mobile code security framework. Currently the framework allows a user to load a
package, watermark it, specify a set of obfuscation policies, obfuscate the package, and view the
obfuscation log file and the simulated encrypted execution information. It supports a complete
work flow of a typical watermarking, obfuscation and encrypted execution process. In the current
implementation, Java Bytecode Engineering Library [Dahm, 2000] was used to perform bytecode
engineering of the mobile code.

 15

Figure 5. Graphics User Interface of CRCG’s Mobile Code Security Framework

4.1 Challenges of Encrypted Execution

During the research performed at Fraunhofer CRCG, it was found that in the system class
encryption step, it is difficult to encrypt the bytecode stream of a method, and the security of the
entire encrypted execution framework is dependent on the effectiveness of this procedure.

Another challenge is to encrypt a whole class. Java classes follow a specific class file

format, and a class file is highly structured. For example, a constant pool has a specific structure.
One natural approach to constant pool encryption is to encrypt constants one by one, but this
again leads to easy, small dictionary attack, since a constant pool is not that big and an attacker
might be able to find the correspondence between the original and encrypted ones.

While the Fraunhofer CRCG approach to encrypted execution is currently vulnerable to

these difficulties, it is believed that the Fraunhofer CRCG class loader-based encrypted execution
framework is still quite strong and effective for mobile code security.

It will require a challenging research effort to remove these security vulnerabilities. It is

expected that the class encryption problem can be solved in the future using some cryptographic
techniques such as oblivious transfer or a modified public key cryptography to separate the
development and execution encryption processes.

 16

Another issue of this encrypted execution approach is that for a transformed mobile code
package, a customized class loader must be attached. Contrary to classical obfuscation, which
typically reduces the size of a Java package because of using shorter new names, the attachment
may sometimes increase the size of a package. The Fraunhofer CRCG customized class loader is
also completely developed in Java, and the size is generally around 40-120 kilobytes, depending
on the size of the package and also on the use of class evolution. Except for this customized class
loader, other parts of a package have a much smaller size than the original package, because all
the Java system symbolic names (typically long, for example, java.lang.String) are also shortened.

4.2 Watermarking and Obfuscation

Note that in Figure 5, the watermarking component has been integrated with the
Fraunhofer CRCG complete obfuscation framework. This GUI prompts a user to first embed a
watermark into a Java package, and then obfuscate the watermarked package. The new package
obtained this way is both watermarked and obfuscated, so for mobile agent security, a mobile
agent code will have these two layers of protection: watermarking and obfuscation.

During the test of the integrated framework, it was discovered that the order of first

watermarking, and then obfuscating a code package is significant (but even in the current
implementation, a mobile agent is still well-protected by first watermarking and then obfuscating
its bytecode). This is because the Fraunhofer CRCG complete obfuscation technique is based on
a customized class loader. However, the Fraunhofer CRCG static watermarking component
currently does not support customized class loaders. In the future, these two watermarking and
obfuscation components will be integrated by Fraunhofer CRCG, so that they are independent of
the order of watermarking and obfuscation.

4.3 Discussion

Notice that in the static watermarking component, watermark locations in the bytecode
are determined based on a secret key and some class information, such as the number of
bytecodes in a method. This is necessary to make sure that the watermark for each mobile agent
is adaptive and unique, otherwise a malicious host might be able to just first modify the bytecode
of a mobile agent, then copy the “nop”s from the unmodified bytecode -and the watermark
retrieval method may just return the same watermark bit streams even after malicious
modifications, if the locations are not adaptive to the mobile code.

To support detection of all possible modifications of a Java class, one needs to embed the

same watermark in every method of a class for each of multiple invocations of the method, such
that all the bytecode segments of all the methods of a class are effectively covered by the
watermark. This is similar to the error correction technique that is used in media watermarking
for better robustness.

Watermark redundancy also has a side effect: it increases the size of Java package. For

the tests that were performed, a watermarked package is about 2% bigger than the original
package. This may be an undesirable side effect if it’s used with obfuscation mainly for the goal

 17

of size reduction. But if the goal is for mobile code security, this small increase of size may not
be a big problem.

In this implementation, only static watermarking techniques were implemented. Dynamic

watermarking is more powerful for mobile code security and Java software copyright protection,
but it is also more complex to implement because of its broad connections with general purpose
secret method insertion, method encryption and class evolution. In this project, the necessary
research was conducted by Fraunhofer CRCG to develop a design for future implementation.

5. Conclusions and Future Work

While mobile code-based computing is a promising new computing paradigm, security is
a bottleneck, especially because it is very difficult to protect a mobile agent against malicious
host attacks, such as decompilation. To better protect a mobile agent, various obfuscation
techniques have been proposed and developed. In this research, Fraunhofer CRCG developed
innovative complete obfuscation technologies, which push the frontier of obfuscation to Java
library classes, and Fraunhofer CRCG further achieved stronger security by obfuscating and
encrypting the Java library class-related symbolic names in a Java package.

Research on general mobile code security has shown that secure execution may be the

utmost solution of mobile code security problem. To achieve stronger mobile code security,
Fraunhofer CRCG designed and developed a Java system library based encrypted execution
framework. This framework makes use of Java’s sophisticated class loading mechanism to load
Java system classes and in execution of mobile code, it keeps these system classes hidden and
encrypted. This approach naturally integrates with the Fraunhofer CRCG complete obfuscation
framework, and it significantly improves the security of mobile code. Static analysis and dynamic
modification of the mobile code are now much harder within this framework.

While encrypted execution makes it almost impossible for a malicious host to modify and

extract useful information at runtime, the Fraunhofer CRCG watermark approach makes it
possible to detect any modifications that a malicious host try to perform before or during the
execution by embedding an invisible label. A static watermark is embedded into mobile code to
detect modifications of code, and a dynamic watermark is embedded to detect runtime
modifications of code and data.

To further expand the techniques developed in this project, future work might include the

research of a more secure system class encryption method of the public key cryptography style,
the development of the class evolution mechanism for dynamic watermarking, and the
exploration of new approach for static data protection in mobile code.

In summary, Fraunhofer CRCG has developed complete obfuscation and encrypted

execution technologies for stronger mobile code security. While complete obfuscation and
encrypted execution are proactive protection of mobile code against malicious host attacks, the
Fraunhofer CRCG Java bytecode watermarking framework provides a passive protection of
mobile code by providing means of attack detection. The combination of watermarking, and

 18

obfuscation, as well as encrypted execution of Java bytecode, now provides a unified,
complementary multi-layer protection - the Fraunhofer CRCG information armor for Java-based
mobile code.

6. References

1. Brickell, E. and Odlyzko, A. Cryptanalysis: A survey of recent results, chapter

Contemporary Cryptology -the Science of Information Integrity, pages 501-540. IEEE
Press, 1992.

2. Collberg. C.; Thomborson. C.; Low. D. (1997). A taxonomy of obfuscating
transformations. Technical Report 148. Department of Computer Science. University of
Auckland. New Zealand. July 1997. http://www.cs.auckland.ac.nz/-
collberg/Research/Publications/CollbergThomborsonLow97a/index.html.

3. Cox, I.; Killian, J., Leighton, T. and Shamoon, T. A Secure, Robust Watermark for
Multimedia, Proceedings of Information Hiding First International Workshop, pp. 185-
206, Cambridge, UK, 1996.

4. Dahm, M. (2000). Byte Code Engineering Library, http:/bcel.sourceforge.net/, 2000.
5. Gong, L. (1997). Survivable Mobile Code is Hard to Build. In: Proc. of the DARPA

Workshop on Foundations for Secure Mobile Code Workshop, 26 -28 March 1997.
6. Hohl, F. (1998). Time Limited Blackbox Security: Protecting Mobile Agents From

Malicious Hosts. In: Mobile Agents and Security. pp 92-113. Springer-Verlag, 1998.
7. Karjoth, G.; Lange, D.; Oshima, M. (1998): A Security Model for Aglets, in: Giovanni

Vigna (Ed.): Mobile Agents and Security. pp 1-14. Springer-Verlag, 1998.
8. Kassab L.; Voas, J. (1998). Agent Trustworthiness. In: Proceedings of ECOOP Workshop

on Distributed Object Security and 4th Workshop on Mobile Object Systems Secure
Internet Mobile Computations. pp. 121-134, Brussels, July 20-21, 1998.

9. Luo, C.; Zhao, J. (1999): Obfuscating and Watermarking Java Software for Copyright
Protection, Computer Graphik Topics, No.4, V 01. 11 (1999), 31-32. .

10. Meadows, C. (1997). Detecting Attacks on Mobile Agents. In: Proc. of the DARPA
Workshop on Foundations for Secure Mobile Code Workshop, 26 -28 March 1997.

11. Monden, A.; Iida, H.; Matsumoto, K. A Practical Method for Watermarking Java
Programs, Proceedings of the The Twenty-Fourth Annual International Computer
Software and Applications Conference, Taipei, Taiwan, Oct., 2000.

12. Palsberg, J.; Krishnaswamy, S.; Kwon M.; Ma, D.; Shao, Q.; Zhang, Y. Experience with
Software Watermarking, Proceedings of A CSA C’OO, 16th Annual Comp~ter Security
Applications Conference, New Orleans, Louisiana, December 2000.

13. Sander, T. and Tschudin, C. Protecting Mobile Agents Against Malicious Hosts, in:
Giovanni Vigna (Ed.): Mobile Agents and Security. pp 44-60. Springer-Verlag, 1998.

14. Sun Microsystems Inc. (1997). Java Card 2.0 Language Subset and Virtual Machine
Specification, 1997, Sun Microsystems Inc.

15. Townsend, G. and Collberg, C. Sandmark. http://www.cs.arizona.edu/sandmark/
16. Vigna, G. (1998). Cryptographic Traces for Mobile Agents. In: Mobile Agents and

Security. pp 137-153. Springer-Verlag, 1998.

 19

17. Walsh, T.; Paciorek, N.; Wong, D. (1998). Security and Reliability in Concordia.
http://www.meitca.com/HSU Projects/Concordia/HICS S 9 8_Final.htm.

18. Zhao, J. and Koch, E. Embedding Robust Labels Into Images For Copyright Protection,
Proc. of the International Congress on Intellectual Property Rights for Specialized
Information, Knowledge and New Technologies, Vienna, Austria, August 21-25,1995.

19. Zhao, J. and Luo, C. Digital Watermark Mobile Agents. Proc. of NISSC’99, Arlington,
Virginia, Oct. 18-21, 1999. 138-146.

