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EXECUTIVE SUMMARY
OVERVIEW

The goal of this effort is to develop a firm theoretical foundation for the acoustic parabolic equation
(PE) used in the presence of penetrable rough interfaces. As the interface roughness extends through the
wavelength scale, it induces Bragg scattering (i.e., it behaves like a diffraction grating). This is a
nontrivial, phase-sensitive problem that involves theoretical and computational challenges that go beyond
those found in problems to which the PE is most typically applied. A satisfactory formalism that
addresses Bragg scattering should fully integrate the parabolic equation with field and rough surface
scattering theories. Such a formalism is available for impenetrable rough surfaces (i.e., infinite density
jumps), but the traditional PE formalism for a finite density jump is based on ad hoc arguments rather
than on a formal development grounded in these theories. In this report, the Foldy-Wouthuysen
transformation is used to design a parabolic equation formalism that addresses this challenge. The
associated parabolic eguations predict phenomena not previoudly noted, and two of these are examined in
detail:

1. theclassica equivalent of vacuum polarization
2. thebuffering of jumps in the downrange flux at a density jump.

The former involves interesting physics, but it is a modest effect and there are no immediate
applications related to underwater sonar. The study of the classical “vacuum polarization” is primarily
significant for the insightsit provides about the nature of the parabolic equations generated by our formal
approach. The second topic of this study, on the other hand, leads to significant practical applications.
Along an interface where the density jumps, the full-wave problem predicts a jump in the downrange
flux, but the parabolic equation generated by the Foldy-Wouthuysen transformation buffers this
discontinuity by absorbing it into the higher-order boundary conditions. The new formalism is free of the
ad hoc fixes that have characterized the parabolic equation methods currently used in the vicinity of a
jump in the density. Thisis significant because the techniques used to adapt the PE to rough impenetrable
interfaces ultimately rely on conformal mappings, alocal method of images, perturbation theory, or some
similar digtortion of the range-independent problem, while the ad hoc fixes currently employed at a
density jump prevent the use of such distortions. The new PE, on the other hand, alows interfaces where
the density jumps (such as the ocean bottom) to be distorted into rough ones, and so it is ideally suited
for the modeling of (forward) scattering from multiscale rough surfaces. The formalism can also be used
to generate stochastic equations in circumstances where it has been impossible until now to do so.

TECHNICAL APPROACH

The parabolic equation (PE) is widely used to model the propagation of classica fields in ducted
environments. This equation is essentially the Schrodinger equation for a classical field, where the range
plays the role of the time. One of the principa challenges in constructing this type of 1-way stepping
algorithm is the incorporation of multiscale stochastic range-dependent fluctuations of the environment
near interfaces where the environmental parameters or their gradients are discontinuous. Atomic physics
suggests a technique for doing so. As the hydrogen atom is advected by vacuum fluctuations, the electron
field encounters a turbulent environment similar to that encountered, for example, by an underwater
acoustic field. In Welton’s semi-classical model, the atomic Lamb shift is generated by a contact potential
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that is a direct consequence of time-averaging the interaction of the electron field with these fluctuations.
This contact potential at the nucleus of the atom is connected to a singularity in the gradient of the
potential that is step-like in the sense that its divergence is a d -function. This contact potential shifts the
energy levels (i.e., eigenvalues) for the stochastic coherent (i.e., average) field. A Schrodinger equation
derived using the Foldy-Wouthuysen transformation introduces an aspect of this phenomenon that is often
missed by semi-classical treatments. Although the fluctuations in 3-dimensional physical space are
imposed by hand, the resultant time-dependent potential aso induces virtual fluctuations in the time
domain, and this effect appears in the form of new terms that appear in the Schrédinger equation derived
using the Foldy-Wouthuysen transformation. Even before time averaging, the fluctuating singularity at
the nucleus has been buffered by a cloud of virtual particle pairs. Using the terminology of field theory,
“vacuum polarization” has “dressed” the bare singularity. The “vacuum polarization” effect also inducesa
o -function, and it provides a correction to the basic Lamb shift effect.

This provides a context for using the parabolic equation to explore acoustic effects directly analogous
to the Lamb shift. Consider a sound speed profile that contains singularities such as jumps in the sound
speed and/or its gradient. Take a stochastic average, and consider the coherent (i.e., average) field. The
averaging process leaves us with contact potentials aong the range-independent average of the interfaces,
where the sound speed profile contains singularities. By taking transverse integrals, we see that the
contact potentials modify the boundary conditions on the wave function a the interface. We can
decompose the coherent field solutions into modes (i.e., eigenfunctions). In the acoustic Lamb shift, the
downrange components of the wavevectors characterizing the modes are the eigenvalues, and so these
take the place of the energy in the atomic problem, and so it is shifted by the changes in the boundary
conditions. In a realistic shalow-water scenario, this in turn shifts the features of the transmission loss
curve. While this can be “significant” in aformal sense (10 dB or more at a fixed location if we aso go
on to include for this particul ar effect the contribution from a density jump at the ocean bottom), given the
nature of field experiments and current sonar implementations, the data are rarely taken in a way that
would readily lend itsef to an examination of this phenomenon. Therefore currently, the primary
significance of the classical Lamb shift lies in what in tells us about the nature of the parabolic equations
generated by our formal approach. The dominant contribution to the Lamb shift results from the smearing
of a stochastic rough surface, but the Foldy-Wouthuysen transformation applied to the acoustic wave
equation also generates a classical manifestation of the “vacuum polarization” correction to the Lamb
shift. As with the quantum problem, this effect provides only a modest contribution to the classical Lamb
shift, but it is significant because it is intrinsic to the parabolic approximation and so the smearing already
occurs in the deterministic problem. While thisis the first example in acoustics of the Foldy-Wouthuysen
transformation “dressing” a bare singularity, the formalism similarly addresses other singularities that are
apparently unique to classical fields. Most importantly, it “dresses’ the jump in downrange flux
associated with a density discontinuity, thus eliminating the need for the ad hoc fixes usualy employed
whenever the parabolic egquation is used to model an acoustic field near a 2-fluid interface (such as a
penetrable rough ocean bottom). The formalism reproduces as special cases the most successful methods
currently in use, and puts them on a firm theoretical foundation. It also suggests higher-order corrections
to these results. Most significantly, by buffering the singularity, the new formalism imposes well-behaved
boundary conditions along the interface that can be incorporated naturally into a stepping algorithm —
even along a doping interface. In this way, the formalism is uniquely applicable to multiscale
deterministic rough interfaces. he second-order deterministic theory is specifically examined in this
report. The formalism moreover alows consideration of stochastic rough ocean bottoms in realistic
scenarios, where it has not been previously possible to do so.

Similar issues appear with electromagnetic and elastodynamic fields, and this technique can be applied

to these problems as well. Here, the creative insights needed to adapt the formalism to these cases are
addressed.
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USING THE FOLDY-WOUTHUYSEN TRANSFORMATION
TO DERIVE ACOUSTIC PARABOLIC EQUATIONS THAT
PROPERLY “DRESS’ DISCONTINUITIES

1. INTRODUCTION AND ROADMAP

A new systematic technique for deriving the parabolic equation (PE) for classical fields has been
developed over the last severa years. This effort began with a novel derivation of the acoustic PE that
introduced a new physical effect into the context of long-range propagation in the underwater sound
channel [1]. Over the ensuing years, this line of research has spawned a wide range of new developments.
Preliminary reports of aspects of this long-term effort have been presented orally [2-6], while in two
recent articles by the author [7, 8] the result of this effort that is of most immediate practical concern was
discussed: an acoustic PE that inherently buffers density discontinuities in a manner dictated by a precise
physical theory. The practical relevance of this result lies in the fact that it addresses a key challenge
confronting the PE technique: the need to model scattering from and propagation through penetrable
rough interfaces characterized by a density jump (such as are found at the ocean bottom).

This NRL report provides a comprehensive treatment covering the entire body of work performed on
this topic during the last seven years. It provides a new formal development of the physical and
mathematical theory associated with the range-dependent PE. The narrative below is structured in a way
that provides insight into the evolution of the formalism. It involves both a deeper look at topics
introduced in previous papers[1, 7-8] and alook at new topics.

After the effort motivation is described in Section 2, Section 3 develops the tools that lie at the core of
the new approach. Section 4 introduces jumps in the sound speed, and looks at a comparatively
straightforward phenomenon associated with such jumps: the classical Lamb shift, including a small
correction term that is very significant for what it reveals about the basic nature of the PE. Section 5
introduces the density jump, and expands the analysis of Section 4 to include the density jump. Section 6
leverages the insights gained in Sections 3 through 5 to develop a full understanding of the issues related
to the PE in the vicinity of adensity jump, while Section 7 extends the basic technique to electromagnetic
and elastodynamic fields. The discussion is summarized by Section 8.

Therest of this section provides a detailed roadmap of the report.

Section 2. This section aims to establish the need for designing a PE adapted for use near a penetrable
rough surface, and to explore its potential significance to underwater acoustics. Section 2.1 provides an
overview of the relevant aspects of the PE formalism, while Section 2.2 discusses the basic approaches
used to adapt this formalism to an interface where the density jumps. Section 2.3 examines previous
adaptations of the PE formalism specifically tailored to the very tricky problem of Bragg scattering® from
a rough interface associated with a density jump, and then identifies the shortcomings that have limited
the utility of these approaches. This state of affairs has resulted in a dearth of adequate PE models for the

& Bragg scattering occurs when the surface has wavel ength-scal e roughness, and consequently scatters the field like a
diffraction grating.
Manuscript approved June 6, 2003.



2 Daniel Wurmser

very important problem of roughness-induced acoustic penetration into the ocean bottom. The primary
goal of thiswork is, therefore, to design anew PE that is well-suited for this problem.

Figure 1 provides a more detailed schematic overview of Section 2. The basic PE in the water column
essentially corresponds to a factorization of the Helmholtz equation. However, when range dependence is
added, the PE actually propagates an auxiliary field that roughly corresponds to the square root of the
downrange flux. Many common ocean bottoms consist of sand and mud, which are typically modeled as
fluids. Then, the associated density jump is treated using one of two formal approaches. The first involves
a globa change of variables, and then replaces the interface with a gradual transition. The second
approach breaks the interface into stair steps, and once again, an auxiliary field corresponding roughly to
the square root of the downrange flux is conserved at the vertical interfaces. Because of its success in
matching benchmark solutions, the second method is now usually used to model standard problems in
underwater acoustics. However, when the interface is rough through the wavelength scale, the physics of
the problem changes. The standard approach ceases to be practicable, and it is consequently preempted by
a host of aternate approaches. None of these alternatives is entirely satisfactory. This report, therefore,
provides a new approach that is designed for the rough interface problem and solves the shortcomings of
both the stair step approach and the aternatives that have been used for the rough interface problem.

Section 3. The formal approach used to develop the new PE theory is examined here. The development
begins with the introduction of the Foldy-Wouthuysen (FW) transformation in Section 3.1. This
transformation was originaly developed in order to connect the full relativistic theory of the hydrogen
atom to the widely used non-relativistic theory based on the Schrodinger equation, and here it is adapted
to the similar problem of connecting the Helmholtz equation for an acoustic field with the corresponding
PE. Section 3.2 discusses the direct acoustic equivalent of the atomic Lamb shift, which occurs when a
cusp in the sound speed (i.e., a discontinuity in the sound speed gradient) is advected by a stochastic
rough surface. The dominant component of the classical Lamb shift is associated with roughness-induced
smearing of the interface in the transverse direction, but it is also shown that the new terms generated by
the FW transformation produce a correction to the Lamb shift associated with uprange/downrange
smearing. These assertions are backed up by the development of a“toy model” of the atomic Lamb shift
that shows the connection between the classical and the quantum mechanical Lamb shift. Our
consideration of the sound speed cusp along a stochastic rough surface is unique in that it both has a clear
precedent and aso involves the new contact potentials imposed by the FW transformation along a
penetrable rough surface. Subsequently in Section 3.3, the systematic construction of a new downrange
stepping procedure begins with an examination of the mechanics of discretizing a PE in order to create a
downrange stepping agorithm near a sloped penetrable interface. (This issue of interface dope was
sidestepped by the approaches discussed in Section 2.3). Section 3.3.1 discusses the discrete form of the
PE, while Section 3.3.2 addresses the crucial problem of evaluating the Hamiltonian at the interface in the
discrete problem. It is shown that higher-order boundary conditions are a key ingredient of this stepping
procedure. The existence of such conditions has occasionally been noted in the past, but no procedure for
determining (let alone exploiting) them has met with wide acceptance. Section 3.3.3 outlines the way that
the FW transformation imposes boundary conditions at an interface. These boundary conditions are
generated by contact potentials, which emerge from the FW procedure. The examination in Section 3.2 of
the contact potentials generated by the classical Lamb shift serves to lay the groundwork for the expanded
role that contact potentials play in the context of Section 3.3.3.

Section 4. This section examines the issue of an interface, where the sound speed itself (and not just its
gradient) is discontinuous. At the core of this study once again lie the two ways in which interface
roughness buffers the singularity at a sound speed cusp—uprange/downrange and transverse smearing (i.e.,
the classical Lamb shift)—and examines these phenomena in the context of the sound speed jump. Our
study of these phenomena will provide a vehicle allowing us to further develop various aspects of
the formal structure that were introduced in Section 3. In Section 4.1, a “quasi-first-order” theory
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is considered. The term from the FW transformation that is known to be responsible for uprange/
downrange smearing is paired with the basic lowest order Hamiltonian. The result is a hybrid between
first- and third-order PE theory, but the two extra orders in the FW term come from downrange
derivatives, which are in this context excluded from the power counting. Next, in Section 4.2, the
resultant boundary conditions along a deterministic interface are examined in detail. In order to interpret
these conditions, it is necessary to consider how boundary conditions “migrate” as the lead order in the
Hamiltonian changes. Indeed, we find that the relationships between some of the boundary conditions that
appear in the PE and their corresponding manifestations in the full wave problem are often the most
apparent for a PE of specific order, and that the connections can become quite obscure at other orders.
This finding will play a pivota role later in Section 6.1. Section 4.3 includes stochastic effects, most
notably the classical Lamb shift induced by a sound speed jump. This time, uprange/downrange smearing
cancels out in the stochastic problem, leaving only transverse smearing to contribute to the Lamb shift
associated with a sound speed jump. In Section 4.4, the various physical phenomena examined in this
effort are placed into a broader context.

Section 5. The density jump is introduced here. In Section 5.1, the basic components of the FW
procedure are adapted to the case where the density jumps, and then Section 5.2 discusses J -function
bifurcation, an important new tool needed for adapting the results to interfaces where the density jumps.
In Section 5.3, the interface where the density jumps is examined for the first time. Once again,
deterministic “quasi-first-order” theory is used to examine the smearing induced by the new FW term.
Then, the stochastic problem is considered and the classical Lamb shift associated with a density and
sound speed jump is obtained. Transverse smearing induced by averaging the rough interface once again
dominates, but now with a density jump present, the smearing induced by the FW term survives the
averaging process. The examination of the classical Lamb shift concludes with adiscussion of its possible
relevance to underwater acoustics.

Sections 4 and 5 juxtapose the dominant component of the Lamb shift, transverse smearing in the
stochastic problem, with tilt-induced smearing in the deterministic problem in order to demonstrate that
the PE buffers (i.e., smears out) singularitiesin the deterministic problem in away that closely mimicsthe
buffering imposed by the stochastic problem.

Section 6. With the conclusion of our discussion of the classical Lamb shift, we finally have developed
the formal wherewithal to pursue the primary goal of this report: the construction of a PE suitable for a
rough interface characterized by a density jump. This issue, which is the most pressing one from a
practical point of view, is addressed in Section 6. In Section 6.1, a new effect associated with a density
jump is identified, named (as Bragg-scale vorticity), and then incorporated into the PE formalism. Bragg-
scale vorticity occurs because along a density jump, the fluid picks up an oscillating twist at the
wavelength scale. Although Bragg-scale vorticity enters the acoustic problem in a way that evokes no
direct anal ogies from atomic physics, the mathematical formalism built up to this point imposes a specific
procedure for incorporating this effect. It emerges naturally from the high-order PE at an interface, where
the density jumps. A full second-order PE at the interface is derived and analyzed. The subtle mechanics
associated with the formalism is discussed as well. Once again, we find that the singularity (in this case
the density jump) has been buffered. This type of buffering is more subtle than the ones studied in
Sections 3.2, 4, and 5.3, and these previous results provide a conceptual groundwork for recognizing and
understanding this phenomenon. The new result is then placed into the context of current PE techniques
in Section 6.2.

Section 7. This section adapts the formal approach developed for the acoustic field with varying
density to the electromagnetic (Section 7.1) and elastodynamic (Section 7.2) problems. The discussion
sets up the problem by deriving the state space equation and by taking a brief look at the transformations
connecting the familiar full-wave fields with the associated auxiliary fields that are propagated by the PE.
It turns out that jumps in electric and magnetic permeability (in e ectromagnetic theory) and in the second
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Lamé parameter (in the theory of eastic waves) involve issues that are similar to those associated with
jumps in the density in the acoustic problem (i.e., the issues associated with Bragg-scale vorticity).

Section 8. This wraps up the current discussion. The results are summarized in Section 8.1, and finally
future developments are discussed in Section 8.2.

2. BACKGROUND AND MOTIVATION

This section examines the context of this work. Section 2.1 establishes the basic PE formalism to be
used in this report, while in Section 2.2 examines the implications of an interface where the density
jumps. Section 2.3 reviews previous adaptations of the PE formalism to Bragg scattering from a rough
interface associated with a density jump, and then identifies the shortcomings that have limited the utility
of these approaches.

2.1 TheParabalic Equation (PE)
2.1.1 The Sgnificance of the Parabolic Equation

The salient features of the PE are that it inherently selects out a preferred direction designated as the
range and then further stipulates that the range dependence of the environmental parameters is modest and
that the propagation is mostly in the downrange direction. A more precise definition of these conditions
will emerge as we examine the formalism below. For the moment, note that this scenario is most typical
of ducted propagation — in other words, it occurs in environments where the propagation is by and large
constrained to the vicinity of the downrange direction for a broad range of initial conditions. Two
examples commonly found are long-range propagation in the deep-water sound channel and shallow
water propagation (for current purposes, the shallow water problem is characterized by depths on the
order of 30 to 100 m and ranges in the 1 to 40 km range). The latter is currently of more interest from a
practical point of view, and it aso involves the more challenging issues from a modeling perspective. In
this context the PE is typically applied to the 50 to 5000 Hz frequency range, but the results developed in
the discussion that follows are not a priori restricted to this range. The theoretical work developed here
therefore aims to broaden the techniques that are available for modeling the propagation of acoustic
waves in a ducted underwater environment.

If the features of the ducted environment are all significantly larger than a wavelength, then the
geometrical acoustics limit applies, and the propagation can be modeled by tracing rays. This method is
attractive because it is fast. This advantage is particularly significant in time-dependent problems. The
time imposes an extra dimension, and one must either discretize the time domain or use Fourier
decomposition. This complicates the problem and slows the numerical algorithms used to model the field,
but ray tracing bypasses this need. The widespread use of ray tracing is further guaranteed by the fact that
it is a very effective way to model signal spread due to multipathing, which is of particular interest to
those that evaluate afield’ s utility asasignal carrier.

The utility of ray tracing is, however, limited by several factors. In complex environments, rays
proliferate dramatically, and the bookkeeping associated with this technique can become prohibitive. In
fact, in environments with significant range dependence, a ducted environment can exhibit chaos-like ray
proliferation, and the breakdown of ray-tracing method occurs on a fundamental level [9,10]. On an
equally fundamenta level, ray tracing cannot model full-wave effects associated with physical acoustics.
These are present when the environmental parameters vary on the wavelength-scale (as often occurs in
acoustics). For these reasons, in underwater acoustics, ray-tracing will often have to be abandoned in
favor of full-wave techniques.
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In principle, ducted propagation problems can be solved using full-wave techniques such as numerical
inversion or coupled modes. In such approaches, al points are causally connected in the sense that the
field at any given point is influenced by what happens to the field at every other point. In one manner or
another, the formalism is ultimately forced to calculate al these mutua relaionships. In many
realistically complex environments, these techniques become so numerically intensive that they often fall
beyond the practical range of even the fastest computers. Furthermore, brute force calculations of this
type are so divorced from physical insight that their utility as diagnostic tools is limited, and it is often
difficult to separate numerical artifact from bona fide physical effect.

The PE is a one-way stepping algorithm based on the physical insight that in ducted propagation the
value of the field at a given point in space can be by and large determined without knowledge of what
subsequently happens to the field downrange from that point®. The scaled-back causal structure
significantly streamlines numerical calculations based on the PE. Furthermore, in range-dependent
environments, the PE correctly models mode coupling, and strong mode-coupling is precisely the
phenomenon that leads to the breakdown of the coupled-mode and ray-tracing approaches’. The PE thus
expresses the wave equation in a representation that is ideally suited for the computer modeling of
classical wave propagation in a ducted environment®.

2.1.2 The Underlying Physical Problem

This section establishes a basic notation for our study of the PE and then uses it to outline the physical
problem that isto be approximated by the PE.

2.1.2.1 TheBasic Geometry of the Environment

Assume a Cartesian coordinate system with the positive x-axis pointing in the downrange direction and
z the depth coordinate (the convention in this report has the z-axis point upward, for example, away from
the ocean bottom and towards the air-sea interface). Denote the two-dimensional vector transverse to the
rangeby R =(y,z)° The geometry of the ducted environment is shown in Fig. 2.

® To see this, note that Huygens' principle recovers all the geometrical and physical optics (or acoustics) associated
with forward propagation, is valid in the physical three-dimensional space, and only depends on the same one-way
causality inherent in the PE.

¢ The former breaks down because solutions constantly need to be glued together, and the latter because of ray
proliferation.

4 |t should also be noted that the PE often provides more physical intuition than do “brute-force” simulations based
on full-wave theory. That is ultimately the reason why the Schroédinger equation is till widely taught and used to
study the hydrogen atom, even though simulations based on numerical solutions to relativistic quantum mechanics
arein principle available.

® This coordinate system is preferable for the formal work pursued in this report, although cylindrical coordinates are
more appropriate for many physical applications. The result in cylindrical coordinates is mathematically identical to
that obtained when the Cartesian coordinate system is used, provided that the radial coordinate r is substituted for X,
the wave function is rescaled by afactor ]/ r , and nonpropagating terms proportional to 1/r are dropped.
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z= depth
y, Ztransverse

X = range

Ducted environment
Fig. 2— The geometry of atypical ducted environment

2.1.2.2 The Related Full-Wave Equation

The acoustic pressure field P(x,R;,t) is assumed to propagate according to the acoustic wave
equation (see Ref. 11)

- (1= 1 9°
V.| =vp|-=Z p=0
P {p j ¢’ ot’

through a time-independent environment. The three-dimensiona gradient is given by V =(9/0x,V,),
where V. =(d/dy,d/0z) is the two-dimensional gradient in the transverse direction. In general, the

density p and the sound speed € can depend on the coordinates (x,R; ). Since the problem is time-
independent, each frequency @ can be considered separately, and so the pressure is given by the integral
over o of P (xR t)= Re[A(x,Br)e‘i“’tJ , where A isacomplex field obeying the equation

2
pv-(ivAj+“’—2A=o. 1)
0 c

By time averaging over the period of the wave, observable physical quantities such as the downrange
energy flux and the scattering cross-section can be calculated directly from the complex field A.

Note that c and o depend on the two-dimensional transverse coordinate R; . In many instances below,
we consider the two-dimensional problem where the y-coordinate falls out and the depth z is the only
transverse coordinate. To be specific, general formal development will apply both to the full three-
dimensional x—y— z-space and to two-dimensional x—z space. However, in the current report, once
interfaces are explicitly introduced into the formalism, only one-dimensional interfaces z= f (x)
embedded in two-dimensiona x—z space are considered. The generdization to the full three-
dimensiona space is very briefly examined at the end of Section 3.3.1 and again in Section 3.3.3.
Although this treatment is supplemented by Appendix G, the full development of a formalism good for
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two-dimensional surfaces z= f (x,y) embedded in three-dimensional x—y—z space is deferred to
future work. Currently available applications of the PE formalism also typicaly apply to the two-
dimensional problem ( x— z-space).

2.1.3 AFirst Look at the PE

Let us now introduce the PE with an intuitive and frequently used derivation of its most basic form and
then briefly examine how the result is used by modelers. The effects of range-dependence are examined
next, and thisis followed by a discussion of the fundamental limitsinherent to the kinds of PEs developed
by the approaches pursued in this report.

2.1.3.1 A “Quick And Dirty” Derivation

For the moment assuming that the density is constant, A obeys the Helmholtz equation:
2

aT+V A+k°(x,R/)A=0. 2

The wave number k is the frequency @ divided by the sound speed c. In the traditional derivation of the
PE, the range dependence of the sound speed profile is assumed to be sufficiently modest that it can be

ignored (i.e., temporarily assume that k = w/c(R;)=k(R;)). It isthen possible to unambiguously factor
the Helmholtz equation:

( |%+‘/V2+k2j(|%+,lvz+k2jA 0. (3)

Since k is range-independent, id/ox and |/V3 +k? commute’ and the crossterms cancel so that the

product above indeed reproduces the Helmholtz operator. Furthermore, the order of the factors in the
product does not matter, and thus A is a solution to the Helmholtz equation whenever either factor
operating on A is zero. Typicaly, the branch that corresponds to downrange propagation is chosen, and
the terms are reorganized to create an operator “ 24/k, " that is small in some sense®:

22

_.——JV2+k2A JVZ-(-m)kE +k2 A=K, LA @)
where
k =nk, for reference k, ,
v 5)
% HK,,
and
_1-n’
1=

Complying with usage standard in Quantum Mechanics, differentia operators (such as 1) embedded
inside functions are understood to be the Taylor series expansions of the function with the operator acting

" Two operators & and # commute if [e, B]=off - far=0. [e, B] is called the commutator of o and 3. We
will also make frequency use of the anti-commutator {¢, 5} = of + pex . If {e, B} =0, then the two operators are
said to anti-commute.

9 Typically small means “corresponds to small (dimensionless) eigenvalues in the range independent case,” but this
has to be generalized when the density varies.



Using the Foldy-Wouthuysen Transformation 9

as the expansion parameter”. Specifically, the operator /1+ 24/k, will always be understood to be
synonymous with the Taylor series expansion obtained by treating 24/k, as an expansion parameter. The
finite expansion of k,/1+24/k, is known as the Hamiltonian H. For example, in Section 6.2.2, it will be

convenient and illuminating to use the shorthand whereby functions of the operator k,./1+24/k, are
written as functions of —id/ox (following Eq. (4)).

The PE derived from the Helmholtz equation closely parallels the Schrédinger equation derived from
the Klein-Gordon equation’. The first-order version of the PE was applied to electromagnetic fields by
Leontovitch and Fock [12], and it was later applied to problems in geophysics by Claerbout [13].
Claerbout introduced the full square root operator to the classical problem in 1971 [14]. Tappert brought
the PE formalism to underwater acousticsin 1977 [15].

2.1.3.2 The Numerical Implementation

When the PE is used in numerical calculations, it is discretized and transformed into a stepping
algorithm as follows. Consider some field y that obeys a generic PE —idy/ox=H y . The Hamiltonian
H is a function of the transverse derivative V.. The leading order term is proportional to Vi y. The
equation is discretized to first-order in the step size Ax using the Mean Vaue Theorem. This constitutes
the basic stepping algorithm. In a practica application, a pair of additional manipulations would typically
be superimposed on top of this basic agorithm. The Crank-Nicholson procedure is usually used to make
the agorithm manifestly unitary (even for finite step size) [16], and often (for a variety of technical
reasons, including most notably to speed convergence), H would also be broken into fractions using a
Pade approximation (pioneered by M. Collins — see, for example, Refs. 17 or 18; more precise
terminology would be to cal this a rationa function approximation). Since these operations are imposed
in separate formal steps after the basic stepping algorithm has been fully specified, it is not appropriate to
consider them in the formal development being pursued in this report. Only the basic stepping algorithm
is therefore discussed here. Subsequent imposition of the Crank-Nicholson agorithm should be fairly
straightforward since it involves the same Hamiltonian, but adaptation of the Padé approximation to the
new basic formalism will be a nontrivial topic for future research.

" Differential operators embedded inside functions are more generally called pseudo-differential operators, but this
terminology also incorporates circumstances where the Taylor series expansion does not converge.

"In this case, (using units where the Planck’s constant 7 and the speed of light are set equal to one) the reference
wave number k, becomes the rest mass, time takes the place of the range X, the transverse space is physical
X—y—z-space, and the Minkowski metric of four-dimensional space time imposes an extra minus sign in front of
the transverse gradient: V2=V, -V, =-V.V=-V?. Second and higher orders in 21/k, provide relativistic
corrections. Usualy, u« (now some dimensionless measure of a scalar potential) is set to 0 in this case. Scalar
potentials affecting bosons are not typically introduced directly into the scalar Klein-Gordon equation. In fact, the
physically realistic version of that problem would involve subtleties not relevant to the discussion here.

IThe Crank-Nicholson procedure is necessary because we have discretized with finite steps:
—iAA=(HA)Ax+O((Ax)2). At finite order in Ax, this operation is unitary only in the limit as Ax— 0. The
Crank-Nicholson procedure replaces this with a stepping prescription that is the sameto O (Ax)2 , but preserves
unitarity exactly (even for finite Ax). For example: A, =1+i(AX)H)A,, = Ao, =[A+i(AX)H 2]/
(1-i(A)H /2)]Ajgor (1-i(AX)H /2) A, =(1+i(AX)H /2) A,4. When the problem is formulated in this form, it is
possible to solve for A, using standard techniques in numerical analysis. The Padé approximation represents yet
another step beyond this. Now H =p/q and we have (q-i(Ax)p/2)A,, =(d+i(AX)p/2)A,. This is a
convenient way to obtain H to high ordersin 24/k; .
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2.1.3.3 Range Dependence

The formalism related to the PE can be upgraded to incorporate the effects of range dependence® viaa
two-step process. The first step isintuitively straightforward, while the second step is subtler'.

The procedure begins with the observation that in a range-dependent environment, a factorization of
the type given in EQ. (3) generates an unwanted commutator term in addition to the terms in the
Helmholtz Eq. (2). The first step for incorporating this artifact of range dependence into the PE formalism
occurs when we introduce order-by-order correction terms into the Hamiltonian to cancel the unwanted
commutator terms (maintaining the symmetry between the uprange and downrange classes of solutions).
Note that every time we add a new term to the Hamiltonian, we end up generating a new unwanted
commutator term of higher order, so the procedure is iterative. A term proportional to s

(=i0u/ox=[i %, 1] < [i %k, + A]; in this report the dot above a variable always denotes the downrange

derivative d/dx) is added to perform the first iteration on the O(4) Hamiltonian. To O( AA) this term

indeed cancels the commutator term produced by a factorization of the type given in Eq. (3) above. A
lucid and well-devel oped examination of the effects of such atermis given in Schurman et al. [19]. Some
interesting results are obtained, for example, for the case of fronts, but there is a potential problem with
this formulation that can cause trouble if this procedure is applied to the general range-dependent
problem. The additional term induced by the range dependence is non-Hermitian, so the integral over

transverse space of the magnitude of the field I dr; |A|2 is no longer conserved. Lacking a conservation
law, there is nothing to enforce stability in numerical calculations.

The second step of the procedure for incorporating the effects of range dependence sidesteps this
problem by noting that the non-Hermitian terms in the Hamiltonian do not accumulate with downrange
propagation, but only operate at the endpoints. Taking a cue from earlier work by Bremmer [20], Tappert
had already by 1977 incorporated this insight to form an optimal range-dependent formalism for the PE
[15, 21-22] (in Ref. 15, see especialy pp. 278-279, and in Ref. 21, note the discussion following Eq.
(11)). This formalism can be derived from the first step described above using the following logic. Since
i isaperfect range-derivative in the sense that

c 04, .dA
1=1 2 Zii+[H,]=1-2,
=i =i +[H, 4] e

(where recall that H is the expansion in 21/k, of k, /1+f<.—f“), we can immediately recognize that this

term only operates at the endpoints, and so it is not an inherent part of the propagation itself. It can
therefore be removed from the propagation equation, and applied as a transformation at the endpoints.
Generalizing to include higher orders, this class of effects can be incorporated into the theory using the
following prescription: take out the WKB amplitude at the initial range to form the auxiliary field

Z=(1+[22/k0])%‘ A, propagate the field y, and put the WKB amplitude back in after propagation is

completed A:(1+[2/1/k0])7%‘ % - (A nice derivation of this result for the one-dimensiona string

displacement problem can be found in Ref. 23.) The Hamiltonian used to propagate this auxiliary field is
Hermitian, which implies that the integral across transverse space of the magnitude squared of the field

“ This means that the sound speed now depends on the range: c=c(x,R ), and so w/c=k=Kk(x R ), but for the
moment the density p still remains everywhere the same.

' The two-step argument outlined here is provided primarily for historical context. While the basic results that
emerge from this process will in one way or another reemerge from all the techniques we will subsequently be
examining, they will be the product of very different lines of reasoning.
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¥ isconserved. Since | ;(|2 is to within an integration by parts the downrange flux (see Appendix A),

this conservation rule also guarantees energy conservation. Note that Hermiticity of the Hamiltonian also
produces a propagation equation that is numerically stable. Since energy conservation is so intimately
connected to numerical stability, it isavery desirable attribute to find in a PE.

2.1.3.4 Phenomena Not Addressed by this Formalism

It is important to bear in mind that this formalism is designed to model downrange propagation. It
ignores coupling between downrange and uprange propagation (backscatter). Furthermore, by considering
24/k, asasmall parameter, we exclude an entire class of solutions to the Helmholtz equation associated
with purely transverse energy flow (evanescent solutions; for more on this phenomenon, see the recent
work by Fishman and collaborators [24, 25] and a brief discussion in the next to last paragraph of
Appendix A). Both backscatter and evanescent modes are coupled to the downrange propagating
solutions by terms that go to zero faster than any finite order of the PE expansion in the [imit as the range
dependence goes to zero. Specifically, this type of coupling comes from a physical process known as
“pair-production” and the probability of pair-production occurring in a given unit volume goes to zero as
exp(—constant/ \/Z ) (see Appendix B for more on this topic). The coupling is quite weak in many
typical underwater propagation problems, and in such casesit can safely be ignored.

2.2 TheOcean Bottom: Introducing a Density Jump

2.2.1 The Change of Variable Technique

A premier example of an effort based on the PE to model shallow water ducted propagation isgiven in
arecent article by Rouseff and Ewart [26]. A series of smulations are conducted. At first, the bottom, air-
sea interface and depth-dependent sound speed profile are all smooth — in other words, they are not
functions of the range. Then random roughnessis added to the air-sea interface and bottom (e.g., see Figs.
1 and 3 of the reference). There is aso a gentle sope to the bottom (a slope of roughly 4 m/km or an
angle of about 0.2°), but this range dependence is very small compared with stochastic roughnessand it is
neglected for the purposes at hand (both in Ref. 26 and below in this report). The simulation by Rouseff
and Ewart confirms the intuitive result that in the absence of significant range dependence, mode
stripping eliminates bottom-penetrating modes, and the field is confined to the water column. The
numerical simulation also plausibly predicts that with the introduction of multiscale range dependence,
energy is pumped back into bottom-penetrating modes, and there is enhanced bottom penetration. This
kind of bottom penetration is currently the focus of active research [27-30] and it has potential relevance
to practical applications. For example, an acoustic field that penetrates the bottom can scatter from buried
objects, and so it can in principle be exploited to remotely image these objects. However, in order to
extract such information from the field, it is necessary to accurately model its behavior as it traverses the
range-dependent environment on the way to and from the object being imaged. This accuracy must not
only be qualitatively correct, but also quantitatively accurate.

As the field propagates downrange, three multiscale stochastic processes continuously pump energy
back into the bottom-penetrating modes (i.e., modes such that for one reason or another the grazing angle
is effectively greater than the critical angle):

¢ Roughness of the air-sea interface.
Advection of the water column by internal waves and turbulence (Rousseff and Ewart do not
pursue this in the referenced paper, but the phenomenon exists in the real ocean, and could be
added to such asimulation as well.)

¢ Roughness of the ocean bottom.
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The interaction of the field with the impenetrable rough air-sea interface is well described using a
theory by Tappert and Nghiem-Phu [31], and advection of the layers in the water column by interna
waves and turbulence can be adequately modeled using the basic PE described above.

The treatment of the rough bottom, however, requires further scrutiny. This problem is challenging
because the density jumps at the ocean bottom. The classic PE technique outlined in Section 2.1 assumes
that the density is everywhere uniform, but at the ocean bottom the density jump is significant. The
density may jump by as much as a factor of 2, while the sound speed jump is typically much more modest
(often just a few percent). Furthermore, we know from rough surface scattering theory that at a two-fluid
interface, the density p formally plays just as prominent a role in the formulas for the reflected and
transmitted scattering amplitudes as does the sound speed (e.g., see Appendix C of Ref. 32). Therefore, to
properly model scattering from the ocean bottom, the PE technique must be modified to alow the density
to change.

Reference 26 employs a technique by Tappert (see pp. 262 through 264 of Ref. 15) to incorporate
density variation into the PE formalism. The auxiliary field defined by u= A/\/; obeys a Helmholtz
equation with an effective index of refraction, and this Helmholtz equation can be converted to a PE ( o
isthe density as afunction of the coordinates). However, in the limit as the density dependence acquires a
step, the effective index of refraction acquires o -functions, and the following ad hoc fix must be
imposed: the step is replaced with a gradual transition. The PE that is produced by this technique will
henceforth be referred to as the Change of Variable (COV) PE.

2.2.2 The" Sair Sep” PE

As attested to by Ref. 26, the COV PE is still used for specialized problems such as scattering from
rough surfaces, but for most standard problems in underwater acoustics, it has been supplemented by an
aternate technique by Collins and Westwood [18]. In this approach, the interface is approximated by stair
steps in order to the exploit the fact that it is possible to directly take the square root of the range-
independent problem (even when the density varies as a function of a transverse coordinate such as the
depth). When the interface steps vertically, energy conservation is explicitly forced (by demanding
continuity of the downrange energy flux). This much of the procedure was concurrently proposed by
Porter et al. [33], but Ref. 18 perfects the technique with an additional ingredient. Forcing energy
conservation at a vertical interface leads to a discontinuity of the pressure field, while the boundary
conditions aong the horizontal interface demand pressure continuity. This leads to an unphysica
discontinuity in the pressure at the corners of the stair step, which in turn spawns Gibbs oscillations.
These are eliminated using complex Padé coefficients™. The imaginary parts of the Padé coefficients
effectively introduce (in this case unphysical) evanescent modes that restore field continuity without
introducing a superfluous downrange flux. Below in this report, the approach by Collins and Westwood is
referred to as the Stair Step PE.

The current prominence of the Stair Step PE dates back to its record of accuracy established during the
late stages of a program that during the late 1980's and early 1990’ s systematically benchmarked various
PE methods [34-36]. The Stair Step PE generally produced the most accurate results [36], and it has been
dominant ever since.

™ Strictly spesking, these coefficients actually appear in rational function approximations to the Hamiltonian
generated by the PE. These rational functions are not designed to formally match the Taylor series expansion order
by order (atype of least squares fit is generally used to generate the optimal coefficients in the rational functions).
As Frank Henyey has pointed out that (personal communication), these rational functions are thus not strictly
speaking true Padé approximations, but the terminology has become so ubiquitous in this context that we will use it
here as well.
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2.3 Adapting the PE to the Rough Surface Scattering Problem
2.3.1 Previous Effortsto Design a PE Optimized for Rough Surface Scattering
2.3.1.1 Bragg Scattering Taxesthe Stair Step PE

The Stair Step PE can become somewhat unwieldy if the imposition of the energy conservation
condition and the accompanying introduction of evanescent waves have to be done very often. As a
conseguence, athough the state-of-the-art PE (Stair Step PE) has been used to model a wide range of
problems, the issue of Bragg scattering from penetrable interfaces has typically been explored using
aternate techniques.

In fact, while PE techniques that apply to rough surface scattering from impenetrable boundaries have
been adequately benchmarked [37, 38], the first effort to benchmark the Stair Step PE applied to rough
penetrable boundaries is only now being pursued by Thorsos (APL-UW). This is significant for several
reasons:

1. Bragg scattering is phase sensitive in a way that typical benchmark problems are not. The
typical benchmark problem involves a wedge with a tilted interface separating two media that
have different sound speed and density. Since the slope and curvature are the same along the
entire interface, the effects of introducing an overdl phase shift would be invisible. On the
other hand, the Bragg scattering that is so characteristic of scattering from multiscale rough
surfaces depends on a delicate interplay of the relative phases of the field scattered from nearby
points on the interface. Without accurate information about the relative phase of the different
components of the field, it is impossible to model Bragg scatter. Furthermore, in ducted
propagation, errors accumulate with the range. For this reason, we need a rigorous theory that
unambiguously imposes a unique phase.

2. The Stair Step PE implicitly makes a number of ad hoc choices, and so one cannot a priori
assume that it will produce the one uniquely correct value of the phase for the field generated at
a given point on an interface. Let us consider several arbitrary choices made by the Stair Step
PE. The energy conservation condition coupled with behavior of the field along horizontal
interfaces forces the use of evanescent waves to eliminate Gibbs oscillations. There is some
arbitrariness in how the Gibbs oscillations are removed, and the actual choice constitutes one ad
hoc imposition that can only be validated by benchmarking. Similarily, the stair steps are
artificial, and energy need not be independently conserved on the treads and risers. The
assumption that it is constitutes another ad hoc imposition.

3. The Stair Step PE leaves out parts of both the physics and mathematical requirements related to
the PE problem. For example, as discussed in Section 3.3.3, the full PE has higher-order
derivatives right up to the interface, and these carry extra boundary conditions that are not
specified by the Stair Step PE in its present form. Furthermore, athough the Stair Step PE, like
al PE methods, is sensitive to physica acoustics effects like diffraction, which in turn depend
on the curvature of the surface over an extended distance, it does not alow for effects that are
sensitive to theintrinsic local curvature (cf. polaritons in electromagnetic theory).

All these factors can play an important role in Bragg scattering, particularly within a ducted
environment, where errors accumulate, even though the same factors are insignificant in the benchmark
problems that have given the Stair Step PE its current dominance.

Thus, it is premature to assume that the success of the Stair Step PE in less challenging problemsis a
reliable indication of the approach’s capabilities regarding the Bragg scattering problem. The Stair Step
PE cannot be used with confidence to model Bragg scattering until Eric Thorsos benchmarking is
complete, and its validity is fully established in this context.
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2.3.1.2 Existing Alternatives M ore Appropriateto Rough Surfacesthan the Stair Step PE

Idedlly, an aternate formulation that does not rely on ad hoc arguments in its development would
improve on the Stair Step PE in two ways:

1. Being a systematic theory, it would be improvable by adding higher orders until its predictions
benchmark to the required tolerance.

2. ltisalso reasonable to hope that a theory constructed from fundamental principles will pose the
problem in itsirreducible form, and consequently be easier to implement.

For the purpose of examining scattering from penetrable rough surfaces, Collins (with collaborators)
has developed two approaches that are alternatives to the Stair Step PE. Both of these represent progress
toward the goals listed above. The first is designed so that its predictions can be made to agree with a
given result to a required tolerance, and is fairly easy to implement. The second approach returns to the
fundamental assumptions behind the Stair Step PE, and recasts the problem so that ad hoc mathematical
patches are no longer necessary.

The first approach, developed by Collins and Chin-Bing, actually predates the Stair Step PE [39]. It
consists of a phenomenological theory applicable to the stochastic problem. Along the flat average
surface, roughness-induced changes in the phase and amplitude of the field are modeled by effective
boundary conditions that correspond to angle-dependent complex transmission and reflection coefficients.
As with all phenomenological methods, previously obtained results are reliably reproduced, but the
technique is not designed to accurately predict the general problem.

In the second alternative to Stair Step PE, Collins and Evans replace the rough surface with a
crenellated surface (resembling battlements on a medieval castle) [40]. These features are a little bigger
than a wavelength. A PE is used to step whenever the interface is localy flat. At vertical interfaces, the
full Helmholtz boundary conditions including backscatter are imposed. (These boundary conditions are
called the “single-scatter” boundary conditions.) Although the problem chosen is modeled accurately, this
scenario is quite different from the rough surface scattering scenario. The most important difference is
that a rough surface typically involves tilted interfaces (with slope < 45°) that produce only subtle
curvature-induced backscatter, while the vertical interfaces found on a crenellated surface naturally tend
to backscatter strongly.

This digtinction is so fundamental that it continues to cause trouble even if more sophisticated
implementations of the single-scatter technique are constructed. In principle, the basic approach could be
applied to interfaces that are continuous functions of the range. The surface would then be broken into
stair steps, and the PE would be used to step downrange when the surface is horizontal, while the single-
scatter boundary conditions would be applied at the vertical interfaces. The problem begins to appear
when we note that it is possible to design scenarios where even a correct solution to the full Helmholtz
equation does not backscatter. For example, consider a field incident on a surface with tilt but no
curvature, and assume that the grazing angles of the incoming spectral components of the field and the
surface tilt are all sufficiently small that the reflected and transmitted wavevectors al point downrange.
There is obvioudy no backscattering in this case. On the other hand, a calculation that discretizes a
surface to form stair steps and additionally imposes the full Helmholtz-equation boundary conditions on
the vertical interfaces, will continue to predict backscattering from these vertical interfaces deep into the
physical acoustics limit. It would be necessary to discretize the interface to a very fine (much smaller than
one wavelength) resolution before backscatter would finally fade away. A numerical solution based on
this formalism would be much more resource-intensive than necessary, and it would involve one-way
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stepping without a built-in conservation law and so it could be numericaly unstable (recalling the
relationship between energy conservation and stability discussed in Section 2.1)".

2.3.2 Towards A New Approach
2.3.2.1 ThePhysical Significance of Conserving Energy in Downrange Propagation

Scattering from penetrable quasi-planar rough interfaces typicaly involves tilts, grazing angles, and
environmental parameters that are compatible with the scenario examined in the previous paragraph
(aside from surface curvature, which induces arelatively weak type of backscatter). Thus, for the purpose
of calculating the scattering from a typical rough surface, an energy-conserving PE would have an
important advantage over the PE based on the single scattering boundary conditions. Since the energy-
conserving PE a priori assumes small departures from range independence, it correctly anticipates the no-
backscatter result, and consequently closdly reflects the physics of the problem. As a result, its numerical
implementation is more efficient and robust.

The thought experiment above also assures us that a better energy-conserving PE must exist. Once
again, consider the tilted interface without curvature. Since there is no backscatter, it should be possible to
construct a downrange stepping algorithm that generates a field that can be made arbitrarily close to the
full-wave solution. In other words, there is nothing inherently special about a variable density that would
preclude the existence of a systematic expansion of the field equation. An ad hoc procedure that reaches a
[imit beyond which improvement is impossible cannot be the final word.

Now that we have a better idea of what we are looking for, we can proceed to find it. Collins' and
Evans' decision (in Ref. 40) to construct a new formalism directly from the underlying field equation was
a sound one. In fact, we have just seen that the basic approach they specificaly used to describe a
crenellated interface could in principle be applied to any interface to obtain an answer that is accurate to
any given precision. However, such an approach turns out to be poorly suited for the broad class of
scattering problems where the incident grazing angle and interface slope are modest. On the other hand,
the approach developed in this report begins with the same starting point, but then it employs a strategy
more closely attuned to the physics and the modeling requirements of the problem: begin with the original
field equation, and then perform a series of canonica transformations to systematically generate the PE.
(These transformations are known as FW transformations, and they are discussed in Section 3.1.) In this
way, an energy-conserving PE that is accurate to any given precision is constructed.

2.3.2.2 ThePractical Utility of the New Energy-Conserving PE

Thereis avery rea need for such arobust energy-conserving PE, particularly if it aso turns out to be
efficient when applied to the penetrable rough interface. The genera utility of the PE is underscored by
the fact that in the past, as soon as the technique was adapted to a new context, it rapidly gained wide
acceptance. The examples that are particularly relevant to our discussion here concern the application of
PE techniques to model rough surface scattering from impenetrable rough surfaces. Particularly useful
results were obtained when various techniques were employed to introduce the Dirichlet (air-sea

" Similarly, one could impose one-way stepping on the full Helmholtz equation (e.g., see J.A. DeSanto, J.S. Perkins,
and R.N. Baer, “A Correction to the PE,” J. Acoust. Soc. Am. 64, 1664-1666, 1978). In this case, one would have to
start with the field specified on two range grid points rather than one and subsequently use the second downrange
derivative to generate downrange stepping. Once again, in the absence of energy conservation, such a procedure
runs into problems with numerical stability. These can be solved by artificially enforcing energy conservation, but
this introduces ad hoc changes to the problem with unknown consequences. To consider a final permutation of the
examples in this footnote and in the paragraph that references it, one could of course use the ordinary PE to step
downrange and impose the single-scatter boundary conditions for a truly tilted (i.e., not stepped) interface. Again,
thiswill lead to stability problems associated with the absence of a stabilizing conservation law.
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interface) and sometimes also the Neumann (ideal infinitely hard bottom) boundary conditions directly
into the stepping agorithm, which was then used to propagate a field adjacent to the rough impenetrable
interface [31, 37-38, 41-46]. A hybrid Green’s function/PE technique for calculating acoustic scattering
from rough impenetrable boundaries is aso available [47-52]. The PE technigue has even been
successfully applied to obtain good models of electromagnetic scattering from rough interfaces bordering
conducting materials [53-55]. In this case, impedance boundary conditions® were imposed along the
interface with the conducting surface. Strikingly, there has been virtually no analogous work employing
the PE to model the general problem of scattering from and propagation through reaistic rough
penetrable surfaces (as opposed to artificially smoothed ones or crendllations). Thisis significant in light
of the facts that, as we have seen, the problem is relevant to the important issue of roughness-induced
penetration into the ocean bottom [26-30], and that the PE is generally the preferred method for modeling
underwater acoustics.

We are now in a good position to better understand why the modeling community has been so
reluctant to use the current state of the art PE formalism for the penetrable interface (the Stair Step PE) to
model the rough interface problem. The key difference between this formalism and those for impenetrable
interfacesisthat in the latter case, aflat (range-independent) interface can easily be distorted into a rough
one, while in the former case it cannot. This is significant because the techniques that allow us to adapt
the PE to rough impenetrable interfaces ultimately rely on conformal mappings, aloca method of images,
or some similar distortion of the range-independent problem. On the other hand, as alluded to in Section
2.2 and as will be further elaborated in Section 6.2.2, the current state of the art theory for a flat
penetrable interface cannot be distorted in thisway. The stair step method trests the vertical interfacein a
way that is fundamentally different from the way it treats the horizontal interface — hence the
superfluous Gibbs oscillations that then need to be eliminated by the ad hoc introduction of evanescent
waves. This procedure is so unwieldy and therefore so ill suited to the rough surface scattering problem
precisely because surface roughness cannot be imposed as a straightforward distortion of the range-
independent problem. Seen in this light, the objective here is to develop a PE for the penetrable interface
such that a flat surface can naturally be distorted into a rough one. This is a basic property of any good
field theory, and we can therefore expect it to emerge from a PE that is produced by a systematic
expansion of the field equation.

2.3.2.3 A Concrete Strategy for Replacing the Current Techniques

Such a PE will be developed below by adapting and extending a technique that was developed
previoudy for asimilar problem. Underlying this approach is the recognition (alluded to above in Section
2.1) that the Schrodinger equation is the PE that corresponds to the Klein-Gordon equation of relativistic
guantum mechanics. Once the relationship between the quantum and acoustic problems is recognized,
then the method used to systematically derive the Schrédinger equation from the Klein-Gordon equation
can be applied to acoustics. (This method is constructed around the FW transformation mentioned a few
paragraphs above.) Then the recognition that the semi-classical (i.e., non-relativistic) theory of the atomic
Lamb shift essentidly involves a rough-surface scattering problem will be leveraged to establish the
validity of the PE based on our technique to the acoustic rough surface scattering problem.

° The impedance boundary conditions involve constants of proportionality that are imposed a priori and do not
directly depend on the value of the field. They are not to be confused with impedance matching conditions of the
sort found, for example, at two-fluid interfaces. The PEs for the Neumann and Dirichlet boundary conditions
typically conserve energy, but these impedance conditions may violate this conservation rule. As noted earlier,
energy conservation is adesirable attribute for a PE since it helps ensure numerical stability.
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3. THE FORMAL APPROACH

Section 3 establishes the basic formal approach that will be used to construct a new PE for classica
fields (initially the acoustic field, but in Section 4.3 the approach will also be applied to two classical
vector fields). At the core of this approach is the FW transformation. The FW transformation was
developed in the late 1940s for use in quantum mechanics [56], and it has recently been applied to the
acoustic problem [1]. The latter treatment is based on Chapter 4 and Section 9.7 of the text by Bjorken
and Drell [57]. Section 3.1 provides an overview of the resulting formal structure, while the rest of
Section 3 begins to probe the behavior of this formalism near range-dependent discontinuities of the
environmental parameters or their derivatives. (As discussed in Section 2.2, such singularities do in fact
occur in aredigtic ocean environment.) In Section 3.2, we examine the effects of range dependence, and
then concentrate on the way that a cusp in the sound speed profile (i.e., a discontinuity of the sound speed
gradient) induces a classical Lamb shift when it is advected by stochastic range-dependent fluctuations.
We aso examine a “toy model” of the atomic Lamb shift, and thus provide a justification for our
identification of the acoustic field effect with the atomic Lamb shift. Finally in Section 3.3, we will move
from the stochastically advected cusp to the numerical evaluation (in a discretized space) of an acoustic
field propagating through deterministic interfaces that have slope and curvature. This will prepare us for
our consideration in Section 4 of the classical Lamb shift associated with a rough interface where the
environmental parameters themselves jump, and then in Section 6 of the main result of this work: a PE
that incorporates Bragg-scale vorticity (i.e., ajump in the flux transverse to an interface where the density
jumps). Thus, the results of Section 3 are in Section 4, and the understanding gained in these two sections
will be used to mount a broad-based assault on the core problem associated with a rough interface where
the density jumps.

3.1 TheFoldy-Wouthuysen Transformation

The FW transformation is a canonica transformation that can be used to convert the full-wave
equation into a PE. Here in Section 3.1, the related procedure is introduced and formally applied to the
basic (i.e., fixed density) acoustic problem, and later (in Section 7) the technique will be used to develop
PEs for other classical fields aswell.

3.1.1 The Conceptual Framework

This subtle procedure is best introduced by briefly reviewing its origins, and then examining its broad
outlines.

3.1.1.1 Exploiting Similarities Between Quantum Mechanics and Acoustics

The well-developed formalism from the quantum mechanical description of hydrogen's atomic
spectrum will be exploited to derive a new acoustic PE. This effort is built upon the well-known
observation that the PE has the same form as the Schrédinger equation of quantum mechanics (e.g., see
Refs.15 (pp. 282-283), 58 (pp. 286-289)), and, consequently, that it approximates the Helmholtz equation
for an acoustic field in much the same way that the non-relativistic Schrodinger equation approximates
the relativistic Klein-Gordon equation®. The basis of the andogy is summarized in Table 1. Time
development of the quantum mechanica field corresponds to down-range propagation of the acoustic
field. The solutions to the forward- propagating PE of the acoustic problem correspond to the components
of the quantum field, which propagate forward in time. The latter are commonly referred to as “ particles’
in contrast to “antiparticles,” which, mathematically speaking, propagate backwards in time and are

P Note that the Klein-Gordon equation describes bosons (such as mesons) and not fermions (such as the electron and
proton in the hydrogen atom), so the direct analogy being drawn is between a classical scalar field and a mesonic
atom, and not exactly with the hydrogen atom.
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Table 1 — The nature of the analogy between the Schrédinger equation for a
relativistic quantum wave function obeying the Klein-Gordon equation and the
PE for a scaar classical field obeying the Helmholtz equation. (For a more
detailed discussion of the nonrdativistic limit and the shalow grazing angle
condition, see Appendix C2.3.1.)

QUANTUM FIELD CLASSICAL FIELD
Klein-Gordon equation Helmholtz equation (k, = m)
Schrdadinger equation Parabolic equation (PE)
time range
rest mass m reference wave number K,
4-dimensional space-time 3-dimensional space
Minkowski metric [1,-1,-1,-1] Euclidean metric[1,1,1]
non-relativistic limit shallow grazing angle
antiparticles backscatter

analogous to the backscattered acoustic wave. In this report, we complete the analogy by introducing a
scalar time-dependent external potential into the quantum mechanical problem. This is the direct analog
to range dependence of the environment in the acoustic problem, but as discussed below, it isreally a“toy
model” and not an accurate physical description of an atom made up of bosons (e.g., @ mesonic atom).

A number of important insights emerge from the analogy between quantum mechanics and acoustics.
Most significantly, quantum field theory suggests a systematic technique for generating PEsS. The
Schrodinger equation, complete with relativistic corrections, can be derived using the FW transformation
[56, 57, 59]. This transformation provides an order-by-order prescription for decoupling the forward- and
backward-propagating solutions of the Klein-Gordon equation. The iterative procedure superficially
resembles renormalization in the narrow sense that, with each iteration, terms with an undesirable
characterigtic (in this case coupling between forward and backward propagation) are shifted to higher and
higher order.

3.1.1.2 A General Overview of the Foldy-Wouthuysen Procedure

The FW procedure consists of severa steps. In the ansatz, a second-order differential equation is
converted to afirst-order equation by adding a degree of freedom. A vector isformed, and its components
are linear combinations of the pressure field and its first derivative. The linear combinations are chosen so
that the two components of the vector are carriers of the downrange and uprange flux. This two-
dimensional vector obeys a PE where the Hamiltonian is a 2x2 matrix. A series of canonical
transformations are employed to uncouple the fluxes order by order in the PE expansion parameter(s). In
other words, the off-diagonal terms in the matrix Hamiltonian ® are removed, and each flux now
propagates independently using a scaar PE (containing a scalar Hamiltonian H). The now uncoupled
fluxes differ from the field by an operator that corresponds to a WKB amplitude. Typically, the scalar PE
is used to propagate the carrier of the downrange flux, while the uprange flux is zero. The WKB
amplitude is applied at the endpoint of the downrange propagation to recover the acoustic pressure field.
When the range dependence is weak, the WKB amplitude involves a near-eigenoperator, and the
transformation from the pressure field to the carrier of flux (before propagation) and the transformation
back from the carrier of flux to the pressure field (after propagation) nearly cancel. Under these
circumstances, the distinction between propagating the auxiliary field and the actual acoustic field can be
ignored. Finally, we note that the PE derived using the FW transformation contains unique new terms.
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Thus, the PE of motion propagates an auxiliary field y, which is related to the pressure field A, but
not identical to it. To further familiarize ourselves with the fundamental attributes of the procedure, let us

fix the density and review the treatment given in Ref. 1. The details from Ref. 1 are reproduced in
Appendix C for completeness. (Since we are not yet explicitly introducing interfaces, the rest of this
subsection will apply to both two-dimensional x-z and three-dimensional x-y-z spaces.)
3.1.2 Implementing the Procedure

Now the broad outline presented above is converted into a specific procedure.

3.1.2.1 The Ansatz for Acoustics

Given the Helmholtz equation

2
3—2A+V$A+ KC°A=0, ()
the FW ansatz becomes
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@ isatwo-dimensional vector. Taking theinner product of ® with itsef under the metric®
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we have

Thus, @ and y areindeed carriers of the uprange and downrange flux, respectively.

3.1.2.2 Using Canonical Transfor mationsto Decouple Uprange and Downrange Solutions

Asshown in Appendix C.1.1 (andin Section I.A of Ref. 1), the definitions in Eq. (7) combined with
the Helmholtz equation (EQ. (6)) generate the state space eguation:

L))
|—=HD,
oX

where
H=0+E+kn. 9)

n isdefined in Eq. (8) above, and the odd operator © and the even operator £ are given by

0=

e (10)
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A isasinEq. (5) and & isa 2x2 matrix that is*odd” in the sense that it anti-commutes with 7 :

0 1
55(_1 oJ' (11)

Notethat 77 is“even” in the sense that it anti-commutes with itself.

As described in Refs. 1 and 57 and in Appendix C.2.3.2, the FW transformation consists of a

transformation
p ) -
D =£ J—>® =(63J
y4 X

such that
b-c'd with s=119 (12)
2k,
and the transformation H — H
H = €“He™ +[terms generated by the range dependence] . (13

Thistransformation is canonical in the sense that the basic form of the equation is unchanged:

It is iterative in that it is used over and over again to eiminate odd terms that couple uprange and
downrange propagation. The order of the remaining odd terms increases with each iteration of the
procedure.

The Hamiltonian diagonalized (denoted by a tilde) to fourth order (denoted by the Roman numeral
IV ) isgiven by

HN — k077+5“ , (14)
where
02 04 1 | .
|5+ e-alol0])-gal0.0]
o= (2K 8k 8Ky 8Ky _ (15)
+8ik§(—[(’),5]2—i{@,[O,S]}+OZ)+ 5" order

As always, the dot denotes the downrange derivative d/dx. Orders are denoted by powers of the
original odd and even operators O and &, as well as powers of the downrange derivative d/dx. (The
commutator [] and anti-commutator {} are defined in footnote f.) Equation (15) is a result taken from
the treatment of the FW transformation in Ref. 57 extended up an order in Ref. 1. The calculation is
reproduced in Appendix C.2.4, where Egs. (14) and (15) are simply Eq. (C.28) and (C.29).

Equation (15) is quite general. It is a direct consequence of the fact that the initial odd operator O isa
sum of operators’ multiplied by & or n&, and the initial even operator £ is a linear combination of

9 These operators are Hermitian or anti-Hermitian depending of whether they are coefficientsto & (which is anti-
Hermitian); or of either £, n or 1 (which are all Hermitian); and whether the overall Hamiltonian H is
Hermitian or pseudo-Hermitian.
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operators’ multiplied by 7 or 1. Since these four matrices span the space of 2x2 matrices, it is always

possible to break agiven 2x 2 matrix Hamiltonian H into such O and £ operators. As discussed at the
end of Appendix C.2.3.2, the result shown in Eq. (15) depends on the fact that +7, +&, +1&, and +1
(the 2x 2 matrices that operate on state space vectors) are closed under multiplication. (In fact, they form
a group. Again, this is no surprise since the four matrices span the space of al 2x2 matrices). This
means that at all iterations of the procedure, the odd operator O continues to be a sum of operators’
multiplied by & or £, and the even operator £ continues to be a sum of operators’ multiplied by 7 or

1. Thematrices £ and n¢ are called odd, because they anti-commute with 77, and the matrices 77 and 1
are called even because they commute with 7. The anti-commutation relation implies that {O,7} =0.

This condition, along with the basic form of the definition of Sgiven in Eq. (12) and the basic form of the
Hamiltonian given in Eq. (9), are al that is needed so that the FW transformation works properly.

Thus, the procedure developed by Foldy and Wouthuysen applies whenever the field equation can be
written in the form of the state space equation (Eq. (9)), where in some sense the initial odd operator O
isalinear combination of £ and 77&, and the corresponding even operator £ is alinear combination of
n and 1. It turns out that this will trivially be the case when we consider the variable-density acoustic
equation (here, 'H is still abasic 2x2 matrix), and it will also hold in some broader sense when we
consider vector fields (e.g., electromagnetic and elastodynamic fields). For the vector fields, the situation
will be similar to that in the quantum mechanical problem. In the quantum problem, O is constructed of

matrices that are outer products of the form o, ® (775) (o, are Pauli spin matrices), and both £ and the

term corresponding to K, are proportional to 1®7. The closed multiplicative structure and

commutation rules needed for the FW transformation are again generated by the group of 2x2 matrices
made up of &, &, i, 1, and their negatives. As the FW procedure is implemented, these will cycle
through in the right-hand slot of the outer product. (As discussed in Appendix C.2.3.1, the quantum
mechanica problem also follows a dlightly different set of power-counting rules, and as we see at various
points throughout the treatment below, it subtly differsin various other respects.) We see in Section 7 that
the Hamiltonians H for electromagnetic and elastodynamic fields are also constructed from matrices that
involve outer products between submatrices related to the detailed properties of the field, and the usual
group of 2x 2 matrices associated with state space.

3.1.2.3 The Decoupled State Space Equation for Acoustics
Substituting for the values of O and £ specific to the acoustic constant-density problem and

performing two extra FW transformations to generate manifest range-reversal symmetry (denoted by the
superscript 2), thisleadsto

) . so 3 2,21
HY? =k, 1_,_2_/1_ A +/1_4+ { 4J + 5th order . (16)
k, 8k’ 4k; 16k,

Thisis Eq. (51b) of Ref. 1 and Eq. (C.345) in Appendix C.2.5. Here, orders are obtained by counting the
powers of A, and the number of times the downrange derivative d/dx operateson a A . For example, A

is third order, and A? isfourth order. The significance of range-reversal symmetry is discussed briefly in
Section 3.1.3.3 and Appendix C.2.5.
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Defining the scalar Hamiltonian H :

[ 24 ]
H:kn[ 1+K_8k§+mj’ (17)

(where the square root operator must be expanded to finite order in 2/1/ K, ), we have the result H = nH .
Note that

9% _ 516 where d):[ej.
ox 7

We will generaly be interested in one-way (downrange) propagation (i.e., 0= 0). In such propagation,

we drop the tilde on }, and from now on just use y . Thus, the scalar Hamiltonian H generates

downrange propagation viathe PE:

%y (18)

ox

We notice that the Hamiltonian associated with this PE involves the familiar expansion of the square root
operator, and new terms that involve downrange derivatives. These additional terms are strictly associated
with the range dependence.

3.1.2.4 TheAuxiliary Field y

Note that Eg. (18), the PE obtained using the FW transformation, actually propagates an auxiliary field
% - In Appendix D.1, we show that, ignoring the range dependence locally (but not necessarily at more

distant values of the range or the transverse coordinates), the field y isrelated to the physical pressure

field by the equation
1/4
z=(1+%] A= A (19

In other words, the FW transformation indeed recovers the result so that the PE actualy propagates an
auxiliary field where the WK B amplitude has been removed from the pressure field.

3.1.2.5 How Energy Conservation isBuilt into the Formalism

Asdiscussed in Ref. 1, the FW procedure is designed to maintain certain conservation laws. In Section
I.B of this reference (or equivaently Appendix C.2.1 below), it is demonstrated that conservation of the
total downrange energy flux forces the matrix Hamiltonian H originaly generated by the FW ansatz to
obey a property called pseudo-Hermiticity. (Pseudo-Hermiticity means that (777-()T =nH , where 77 is,
as always, the matrix defined in Eq. (8) above and the dagger ' denotes Hermitian conjugation.) As
shown in Section 1I.A of Ref. 1 (or equivaently in Appendix C.2.1 below), the FW transformation is
designed to be pseudo-unitary so that pseudo-Hermiticity of the matrix Hamiltonian H is maintained as
it is diagonalized by the FW procedure. (Some of the formal issues discussed just above are also briefly
revisited at the beginning of Appendix | below.) Pseudo-Hermiticity of the diagnonalized matrix
Hamiltonian in turn forces the scalar Hamiltonian H defined in Eq. (17) to be Hermitian (i.e, H' = H
since the diagonalized matrix Hamiltonian is 7H and 7 =1). The Hermiticity of H is also confirmed
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by direct inspection of Eq. (17) (provided, of course, that the square root is understood to be a placehol der
for its finite series expansion). If we tage arange derivative of the integral over transverse space of the
magnitude squared of y (i.e., J'dBr | ;(| ), use the parabolic Eqg. (18) to replace downrange derivatives of
¥ with tzhe Hamiltonian operating on y , and apply Hermiticity of the Hamiltonian H, it follows that
J'dBr | ;(| is conserved during downrange propagation. The line of reasoning just completed ties the
conservation rule for | ;[|2 to the conservation of the downrange flux, and so to the conservation of energy.
As discussed in Appendix A, the connection between the auxiliary field y and the energy flux serves to
illuminate the relationship between y and the pressurefield A asgiven by Eq. (19).

An important related point is also discussed in Appendix A. If there is no range dependence, there is
no mode coupling, and the endpoint transformations from A to y at the beginning and y back to A at

the end precisely cancel. If the coupling is weak in the sense that most of the coupling is between nearby
eigenfunctions—nearby means the eigenvalues are close, the endpoint transformations nearly cancel. In
such typical cases, reasonably accurate answers can be obtained using the PE to directly propagate A.
Although this is often done, it is good practice to keep in mind that thisis an approximation, and that the
PE really propagates an auxiliary field y .

3.1.3 Comments and Implications

Recall that in this section interfaces were not explicitly introduced, and so the discussion here applies
to both three-dimensional and two-dimensional spaces. In Section 3.3.3, we return to the interface
problem, and once again restrict ourselves to two-dimensional space and one-dimensional interfaces.

Thus, here in Section 3.1, the FW transformation has been borrowed from quantum mechanics and
applied to derive the basic acoustics PE (i.e., constant density, but the sound speed can vary). The
treatment in this section is similar to the derivation of the Schrodinger equation from the Klein-Gordon
equation given in the classic relativistic quantum mechanics text by Bjoken and Drell (Ref. 57; Section
9.7). Two aspects of the problem known previoudly to the acoustic community from other considerations
have been brought into the FW formulation for the first time. These are the explicit relationship between
the PE field and the full-wave field, and the introduction of atrue scalar potential into the PE formalism.
New ideas also flowed in the other direction as the FW transformation for the first time introduced into
the acoustic PE terms, which are related to range dependence, and which, as we will see in the next
section, generate the classical equivalent of an often-overlooked component of the atomic Lamb shift
(known as “vacuum polarization”). Finally, an entirely new innovation to the FW procedure was
introduced as an extra FW transformation was performed to make the scalar Hamiltonian H (and so

H = nH ) manifestly range-reciprocal. Let us examine these features more closely.

3.1.3.1 Insights Brought from Acousticsinto the Foldy-Wouthuysen Procedure

The first insight brought from acoustics into the FW formal structure is the relationship between the
auxiliary field y propagated by the PE and the acoustic pressure field A propagated by the Helmholtz

equation. As shown in Eq. (19), the two fields differ by a quarter-power operator sometimes known as a
WKB amplitude (because the same operator shows up as an amplitude term in the WKB approximation).
This was never a consideration in the quantum problem as described in Ref. 57, Section 9.7, because in
that problem one is only concerned with expectation values. These are integrals over transverse (in this

case, three-dimensional physical) space of the inner product ®'7® , where ® is as always the fidd in
state space. The operator transforming the original field ® to @, the field propagated by the diagonal
Hamiltonian, is pseudo-unitary, and so the transverse integral of the inner product ﬁ)*nﬁ) is the same as
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that of ®'pd, and so it automatically yields the desired expectation value, and there is no need to

directly calculate the original field @ . In the acoustic problem, on the other hand, we can observe and
therefore need to recover the actual acoustic field A, and so in this case we need to be able to explicitly

transform back and forth between the PE field y and A

The second innovation brought from the acoustic formalism into the FW formal structure is the
concept of the true scalar potential. The acoustic scalar potential was introduced directly into the
Helmholtz equation (as a spatia dependence on the sound speed). It shows up in the odd operator

O = A&, since the operator A incorporates both a “kinetic energy” part V-V, /2k, and a potential
—K,4¢ . On the other hand, for a quantum field obeying the Klein-Gordon equation (e.g., a pionic atom),
the operator corresponding to A only includes a kinetic energy term 7 - 7/2m, where 7 is a generalized

momentum 7 = p— A (here A is a vector potentia). In Ref. 57 (Section 9.7), the scalar potentia is
introduced directly into the state space equation as a scalar times the unit matrix. Since it has intrinsic

matrix properties, it only shows up in the even operator £ , but not in the odd operator O. The true scalar
potential is therefore new to the blend of the FW approach and acoustics.

3.1.3.2 Insight that the Foldy-Wouthuysen Procedur e Bringsto Acoustics

The approach based on the FW transformation introduces something new into the basic acoustic
PE. These are new terms that are generated by range dependence — for example, the term —ﬂ:/ 8k§ in Eq.

(17). We will examine these in detail shortly and discover that these terms are connected to the classical
equivalent of the atomic Lamb shift.

3.1.3.3 What is Completely New in the Approach Developed Here?

Finally, there is something entirely new to the treatment of the FW transformation outlined above.
Following a suggestion by Dashen, an extra FW transformation is used so that the new range-dependent
terms introduced by the basic FW transformation exhibit rangereversal symmetry (i.e,

7:((—X) =H (x) ). Thisis a symmetry exhibited by the Helmholtz equation, and it is therefore expected
that an optimal parabolic approximation to it obeys it as well. In the deterministic problem, the term
—/'1'/8k02, for example, replaces the term %koz [/1,/1]. In the stochastic problem, this change will

effectively move incoherent terms like <(V$ /1)5;(> and <(VT ﬂ)VT5Z> to the purely coherent term

(i1){x) (S istheincoherent part and () the coherent part of thefield: y = (¥)+dy). Thiswill be

very important so that we will be able to correctly recognize the Lamb shift as a purely coherent effect.
Thus, the range-reversal-invariant formulation transparently leads to correct physical interpretations that
would otherwise be obscured. This version of the result also happens to be easier to evaluate, again
because it exploits a key symmetry of the problem. However, we need to note that the Dirac equation
exhibits a symmetry that is a little more subtle than pure time reversal, and so this particular operation is
not appropriate for the atomic problem.

3.1.3.4 Summing up the Flow of |deas
An accounting of what has been brought from acoustics into the FW formalism, what has come from

the FW formalism into acoustics, and what is unique to the new synthesisis given in Table 2. From here
on, the material is generally unique to the effort developed here.
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Table 2 — This table summarizes the six paragraphs above. It catalogues what is new to the
approach here, what has come from the existing knowledge base in acoustics, and what has come
from the existing formal structure developed for the FW transformation in the context of quantum

mechanics.
The FW
Transformation as PE Developed by the | New Treatment of the
used for Scalar Acoustics Community | Acoustics PE Using
Quantum Fields Using Traditional the FW
(Bjoken-Drell [57], Methods Transformation
Section 9.7)
Known relationship No Yes Yes
between PE field
 and full wave field
(g or A)
True scalar potential No Yes Yes
Unique range- Yes No Yes
dependent terms
(ultimately connected
to a new type of
Lamb-shift effect)
ExtraFW No No Yes
transformations so
that the new terms
exhibit range/time-
reversal symmetry

3.2 TheClassical Lamb Shift for a Cusp and a“Toy Model” for the Atomic Lamb Shift
3.2.1 The Physical Implications of a Sngularity

When thereisajumpin g or in the derivative of 1, then the “new” term in the FW transformation

- /1/ 8k§ = ,u/ 8k§ generates &~ or o-functions, respectively. The appearance of such J-function

potentialsin a PE has interesting precedents in the Schrddinger equation for the hydrogen atom. These so-
called contact potentials are associated, for example, with the fine and hyperfine structure of the spectrum
of the atom. One of these contact potentials has particular relevance to the present discussion. It emerges
when the FW transformation is used to obtain a semirelativistic picture of the atomic Lamb shift [60, 61].
In these calculations, vacuum fluctuations are imposed by hand as a kind of incident radiation, or
aternately as atime dependence of the scalar and/or vector potentias. The calculations presented in Refs.
60 and 61 are sophisticated extrapolations of Welton's qualitative description of the Lamb shift [62],
which is nicely described in Ref. 57.

From Eqg. (4.5) in Ref. 61 and the discussion that follows, we learn that the Lamb shift occurs when the
Coulomb (i.e., the electrostatic) potential, which is singular at the origin, is averaged as the electron
vibrates under the influence of vacuum fluctuations. The averaging process generates a distribution (we
also need to make use of the general result V?(1/r) =478 (F)). Cohn-Tanoudi et &. note elsewhere
that “the average potential differs from the value of the potential at the average position only inside the
source of the Coulomb potential, hence the function & (r) " [63]. Immediately below, they note “...the
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Lamb shift is a quantum effect, just like the vacuum fluctuations that give rise to it. Nevertheless, once
the existence of these fluctuations is acknowledged, their effect is the same as the one which would be
produced by a random classical field characterized by a spectral density corresponding to an energy
hw/2 per mode’ [63].

Significantly, the very same singularities that are responsible for the traditional Lamb shift discussed
in the previous paragraph also cause the new FW terms associated with vacuum fluctuations to include
digtributions (e.g., o-functions). These d-functions (and sometimes aso other distributions such as
some of those proportional to &’-functions) are immune to cancellations during averaging, and they
provide correction terms to the standard Lamb shift.

Moving to the classical problem, range dependence takes the place of time dependence, and a
stochastic range dependence in the environmental parameters replaces the vacuum fluctuations. This
analogy explaits the fact that vacuum fluctuations can be interpreted as a stochastic time dependence of
the potentials in the atomic problem. For example, we can imagine vacuum fluctuations advecting the
nucleus of an atom. As the source of the scalar potential (for example) moves back and forth, a time
dependence of this potential is induced. The world line of the nucleus (embedded in four-dimensional
space-time) forms a rough surface along which the potential is singular. Similarly, in the classica
problem, a quasiplanar interface along which an environmental parameter or its gradient is singular forms
arough surface in three-dimensional space.

Building on the analogy to atomic physics, the classical Lamb shift occurs when the second derivative
in transverse space becomes a distribution. This, in turn, means that when the singularity is advected by
stochastic fluctuations, it will average to a distribution at the origin. The new terms from the FW
transformation involve the fluctuations in the uprange/downrange direction, and these terms are
associated with a comparatively obscure contribution to the Lamb shift. The better-known and larger part
of the Lamb shift effect involves fluctuations in transverse space. The semiclassical theories that deal with
the Lamb shift often involve only the latter. We consider both below, but concentrate particularly on the
part associated with fluctuations in the downrange direction (i.e., the new terms that only appear when the
FW transformation is used to generate the PE), since these are completely new to acoustics. Eventualy,
we recognize that the acoustic effect induced by these terms is analogous to the vacuum polarization
contribution to the atomic Lamb shift.

Specifically in the constant-density acoustic problem, a discontinuity in the sound speed or in its first
derivative will force the second derivative with respect to the variable(s) of transverse space, and so also
the lowest order FW term (involving a second range derivative of u = %(l— n2) ), to pick up a &’
and/or a o-function, respectively'. Types of the sound speed profiles that will lead to these contact
potentials are illustrated in Fig. 3. After stochastic averaging, a d-functionsurvives along the average
plane of a cusp of the sound speed, but the FW term associated with a sound speed jump will average to
zero. Furthermore, it turns out that stochastically averaging the sound speed jump or cusp as it fluctuates
in transverse space will lead to a ¢’- and/or a d-function, respectively, along the average plane. The
effects associated with downrange and transverse fluctuations combine to form the acoustic Lamb shift,

" As discussed in Section 3.3.3, these contact potentials modify the boundary conditions of the field at the surface
along which u or its derivative jumps. This will be examined in much more detail throughout Section 4, where it is
shown that these contact potentials, coupled with the lowest-order part of the basic range-independent Hamiltonian,
H =k, + 4, lead to new boundary conditions on the field and/or itsfirst derivative.
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functions) are /
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Fig. 3— The traditional Lamb shift emerges as a fluctuating singularity, such as
a sound speed cusp or jump, is averaged. The new terms introduced by the FW
transformation will in the context of acoustics generate contact potentials at
jumps in the sound speed or its gradient. These contact potentials very closely
resemble the true Lamb shift effects. In fact, at a sound speed cusp and
apparently also at a density jump (but not a sound speed jump), the new FW
term survives averaging to contribute to the stochastic problem, and so
contribute to the true Lamb shift. The contribution from the FW term will be
called a downrange Lamb shift, as opposed to the traditional Lamb shift (also
caled here a transverse Lamb shift). The meaning of this terminology will
become clearer below.

_____________
- -

with the discontinuity in the first derivative of the sound speed forming the direct analogy to the quantum
Lamb shift. The assertionsin this section are summarized in Fig. 4.

3.2.2 A Range-dependent Environment Generated by Stochastic Fluctuations

3.22.1 Parameterizing a Range-dependent Environment as a Perturbation of a
Range-independent Environment

Now, let us examine the specifics. For the current context, assume two-dimensional space
where X is the range and z is the depth. To begin with, consider a sound speed profile without

discontinuities in either the sound speed or its gradient (or equivalently, in either u :%(1—%) or

=[#](z). Now distort it by a function of the range:

undistorted -

=)@ = u(x2) = [u](z- () (Fig.5).

its gradient). We have (X, 2)

#(%2)

More generdly, we should consider a distortion that varies with the depth: f (X, Z) . This problem is
similar, but there is one extratricky issue. Aslong as the scalar Hamiltonian H isasimple function, then
we can fix z and Taylor series expand in f (x, Z). However, higher-order Hamiltonians contain cross-

terms, proportional to a“g/ 0Z", and these will also pull down extra terms proportional to 0" f / 0z" .
This can add considerable complexity to our calculation, without adding anything new conceptually.
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An example of a classical Lamb shift

Atomic Physics Acoustics
R z

interface where

/ world line of nucleus environmental parameters jump

>t X

Roughness induced by Rough surface induced by the
vacuum fluctuations complexities of a macroscopic
(2nd quantization) environment
Contact potential comes from: Cusp: Vi(z6(2)|=5(2)

2 _ ’
Vi (1/ IR |)— —-476 (R) Interface: VZ(0(2))=5"(2)
Average energy eigenvalue Average downrange wavenumber
shifts (of s-state) shifts

Fig. 4— The new terms predicted by the FW transformation are related to time-
(or range-) dependence. In atomic physics, vacuum fluctuations induce a time-
dependence, while for classical fields the complex environment involves a
range-dependence. The FW transformation predicts new terms, which lead to
contact potentials either at the source of field acting on a electron, or alternately
when the sound speed or its gradient is discontinuous. In the stochastic problem,
an averaged rough surface essentially generates similar terms, which directly
modify the coherent field. As discussed in greater detail in Section 4.4, these
terms modify eigenvalues of the coherent field rather than coupling its modal
components. The connection between the new terms induced by the FW
transformation and the stochastic problem suggests that the FW transformation
effectively induces a kind of averaging, which buffers the singularity.

[ ]
) — ——
IU(X, Z)lundiaorted = ['u] (Z) 'U(X’ Z) - ['u] (Z_ f (X))

Fig. 5— A range-dependent sound speed profile is generated by distorting
arange-independent sound speed profile by afunction f(x)

Since this is a side issue in the current context, and these terms are generally small anyway, we will
ignore them here. What is of particular interest to the current investigation is the lowest-order of the new

terms introduced by the FW transformation: —/'1'/ 8K = i / 8k; , and for this term, we explicitly evaluate

the contribution to this term from volume scattering and show for the stochastic problem that the z-
dependencein f does not change the result at all (see Appendix E).
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3.2.2.2 Stochastically Averaging the Perturbative Range-Dependence

Recall the Hamiltonian (Eq. (17)). For the time being, let us include only powers of 4 and not
downrange derivatives in the power counting. This alows us to examine the lowest-order FW term in a
workable and familiar environment — as a modification to the familiar first-order PE. We now have a
“quasi-first order” Hamiltonian:

ka2 e A
H(xz)=k,+4 8k02_[H](z f)+8k0, (20)

where [H](Zz) is the undistorted range-independent Hamiltonian (i.e, H(x,z)=[H](z- f (x))).
Now, average the equation
. dy
%4 _nH
(%)

and expand

H] f20%[H
fM+f—L2] +0(f?).
0z 2 0z

- A
H(x,z)—[H](z)+8k0+

As we will see shortly, the terms in the box are related to previously known types of scattering. Break the
field into coherent () and incoherent &y components:

1(%2)=(x)(x2)+ 8
and make use of the fact that

(ox).(f)=0
f2)20

(fr).(1?)
Thisleadsto
AU 1) ) 1 ) LTI “

The first term on the right-hand side of Eq. (21) is the right-hand side of the unperturbed (range-
independent) problem. The second term is the averaged “FW term.” We evaluate this term in Section
3.223.

The third term, <f -5;(}8[H ]/az, is the well-known diffuse-scattering term. This non-Hermitian
term measures the losses to the coherent wave as some of it is scattered into the incoherent field®. One

® This use here of the term “diffuse scattering” is quite broad. It subsumes several types of coherent-incoherent
coupling, including Bragg scattering, mode coupling and, as is noted in Section 4.4, the transition probabilities in
time-dependent perturbation theory in quantum mechanics. When f encompasses wavelength scales, the contribution
from this term is dominated by Bragg scattering, and for this reason diffuse scattering is often associated with this
phenomenon. Bragg scattering emerges naturally from perturbation theory (both in the context of the PE and in full-
wave theory). For this effect, the inhomogeneities in the volume (or similarly the rough surface) look like a
collection of diffraction gratings, which in higher-order perturbation theory become modulated by diffraction effects
induced by scales larger than the Bragg wavelength (i.e., the size of the effective diffraction grating). As used here,
diffuse scattering aso includes weak mode-coupling induced by large scales acting alone in the absence of Bragg-
scale roughness. The latter effect is very similar to the coupling between atomic levels induced by slow time
dependence. Vacuum fluctuations are multiscale and can in principle induce a kind of mode coupling between
electron states in the hydrogen atom that is quite similar to Bragg scattering (including modulation by larger scales).
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can use the WK B approximation and the assumption that thisis a Markov process to show the incoherent
wave is proportional to the coherent wave:

Sy <if ()

and so incorporate this term into an equation of motion involving the coherent field alone [64, 65]. This
class of scattering events is relatively well understood' (at least in the present context where the density
never changes), and the related term is from time to time dropped from our discussion below with the
understanding that the coherent field calculated neglecting this term (crudely speaking) has to be
multiplied by an exponentially decaying envelope”.

Thedlipsisin Eq. (21) subsumes a new cross-term between the incoherent field 0y and the new term

yzi / 8k, . This provides a modest correction to the Bragg scattering loss term, and it will also be neglected.

Also subsumed in the ellipsis are fourth-order and higher terms, and these are also dropped from the
present discussion.

Thefourth termin Eq. (21),

2 97

Uﬁywk@,

involves a kind of “smearing out” to the rough interface as far as the coherent wave is concerned. Thisis
the term that produces the well-known form of the Lamb shift effect when the second derivativeisa o -
function — as opposed to the more obscure aspect of the Lamb shift effect that emerges from the term

((i)/8Kk,){ ¥}, whichis examined next in Section 3.2.3.3.

3.2.2.3 Stochastically Averaging the New Term Introduced by the Foldy-Wouthuysen
Transformation

Having examined the incoherent scattering and the smearing terms in Eq. (21), we still need to
evaluate the new term (/i/8K,)(x). Assuming that the range dependence f (X) is independent of the
depth, thisis easy to do. We start with

u(x2)=[u)(z- 1 ().

The new term is proportional to

_ 29704

|z=z0 822 - f M

> (22)

z=75—f z=7y—f

' For a good discussion of the parabolic equation and diffuse scattering induced by volume inhomogeneities, see the
classic text by Ishimaru [64]. A discussion similar to the one being pursued here, but for rough surfaces in the
context of normal mode theory, is presented in a classic paper by Kuperman [65].

Y By no means is it being claimed here that diffuse scattering is small, or that it would be trivial to graft it to a
solution later. However, the goal below will be to examine the newly introduced physics in isolation so that its
potential impact in the context of underwater acoustics can be determined. Thisis not unlike atomic physics, where
the set of hydrogen eigenstates (including the Lamb shift) is examined independently of any consideration of
transition probabilities, induced for example by the same vacuum fluctuations as those that cause the Lamb shift and
similar in nature to the diffuse scattering found in acoustics.
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Since d [ ,u] / 0z is here assumed to be continuous, we can Taylor expand it:

olul| _ o*[u]]

= +0O(f? 23
0z | 0z | 0z° | (1) (23)
7-f % 2
to get
92 .| o 0°
|7 — 2 [él] —f [lu] —f [/;] +O(f3) (24)
=% 0z 0z 0z
7=7,—f(X) FA) %
Similarly,
92 9?
2l o)
0z 0z
z=7y—f(x) 7=2,

Substituting thisin Eq. (24) and averaging yields

o\ 97 [4]
+<f-f> 2>

+0O(f3). (25)

=7 %

By construction, <f> =0 (the digtortion is assumed to be symmetric). Furthermore, writing
(f(%)f(x))= jdk[S(k) e"‘(XrXZ)} (this form follows from the assumption that the statistics of the

distortion are range-invariant), and taking derivatives, it is easy to show that < f- i"> = —< f 2> . It follows

that there is a cancellation to force <ﬂ>‘2220 =0. When we alow the range dependence to vary with the

depth (f = f (X, Z)), then the calculation is a bit trickier, but once again we find that as long as the

sound speed and its gradient are continuous, the average </¢> IS zero. The details are provided in
Appendix E.

Finally, note that if d[u]/0zor [x] have jumps (i.e., thereis asingularity in transverse space), it is
gtill possible to perform a Taylor series expansion everywhere except at the discontinuity. Rather
obviousdly, it is however not legitimate to use a Taylor series to generate o -functions that were not in the
function to begin with (effectively, the Taylor series generates the principal value of the derivatives).
Thus, the bona fide o -functions generated by i do not cancel (recall that the FW transformation is not
an expansion based on the Mean Vaue Theorem, but rather a canonical transformation of the wave
equation), and we are left with & -functions (or 8" -functions) at the discontinuity, even after performing
the stochastic averaging procedure outlined above. Later in Sections 4.1 to 4.4, when we examine the case
of [ 4] discontinuous, we take a much more detailed look at what happens when we distort the world line
of a singularity in transverse space to create a rough surface. For the time being, let us familiarize
ourselves with the concepts involved by taking a rudimentary look at the milder singularity where the
derivative 0 [,u]/az is discontinuous (i.e., acusp in the sound speed profile). Then to illustrate this result,

and in the process further justify the line of argument that led to it, the deep connection between this
phenomenon and the quantum Lamb shift will be explored by examining a “toy model” of the atomic
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Lamb shift that essentially extends the sound speed cusp in two-dimensional depth-range space so that it
can be embedded into four-dimensional space-time.

3.2.3 A Cusp in the Sound Speed Profile

This section considers the cusp in the sound speed profile. The boundary conditions are evaluated in
Section 3.2.3.1 and then in Section 3.2.3.2 they are projected down to the line z= 0 in preparation for the
stochastic averaging performed in Section 3.2.3.3. The step in ji is averaged in Section 3.2.3.4 and the
smearing term is simplified to a familiar form in Section 3.2.3.5. Finally in Section 3.2.3.6 the boundary
conditions are converted to contact potentials. This calculation forms the prototype for many that follow,

and so it is considered explicitly here rather than being relegated to an appendix as are some comparable
calculations later in this study.

3.2.3.1 TheBoundary Conditions Along a Cusp

Figure 6 below illustrates aprofile [ 1](z) that hasacusp at the origin z=0.

A
¥ 1=t 220 o)
Z
0 ! #(2)
e e =

Fig. 6 — The basic cusp a& z=0. We expand in a Taylor series to keep track of the
discontinuities of derivatives of the sound speed function [x]. In this report the two sides of an
interface are labeled 11 and I, with the positive z-axis pointing from Il into I.
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We use a Taylor series expansion to O(zz) to break [ 4] into apart that will induce discontinuities

and a ¢ -function in ji, and a part that contributes to the continuous part of ji (which as we have just
seen averages to zero). Therefore, we begin with

[1](z)=[u](0)+ Z@(Z)% + Z@(—Z)%

z=0

=0 , (26)
+ O( 23)

z=0

where ©(z) isthe Heaviside step function

1 21
@(z):{o Zo' @7)

Note that

a[ﬂ|]| ’a[/uu” az[ﬂ|]| and 82[/,1”]

0z gz | = o7 0z’

z=0 z=0 z=0

are now treated as constants.

Using thefact that 25 (z) =0;2°6(z) =0, we have

SRR [T

9° [M] az[ﬂn]
07 o 07

:5(2)(8[;1'” _a[ﬂu” J

o[u]
0z

z=7

+20(2)

+20(-2)

= (28)
0*[u]
0z

0z 0z

%[, ]
0z

z=0

%[y ]
0z

+0(2) +0(-2)

z=0

z=0
Now, setting Z= 7z, — f and substituting into Eq. (22), we have

a[ﬂl” _a[/un ]| J

ﬂ|z(,:f25(zo_f)£ - -

z=0

+f2[9(%—f)aza[§l]

—f{@(zo—f)%

+ apart that is continuous

z=o] . (29)

+o(z- )24l

z=0

z=0
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Substituting into the “quasi-first order” Hamiltonian H :k0+/1—):/8k§ given by Eg. (20), and
dropping the“ 0” in z,, the basic PE —idy/ox=H y (Eq. (18)) givesus

v i 8[ ]| 8[ ]| terms that are continuous
2Tz+8_{ e Jg(z_ Dzt o@wos) . (30)
ko 8k Z |ro Z o proportiona to a step function

Here we find a ¢ -function “potential” in the PE much like that found in the Kronig-Penney model known
from quantum mechanics (e.g., see Ref. 66). Let us follow the precedent from that context and evaluate

f+
this contact potential by taking an infinitesimal integral in the transverse space .[ f gdz-n (we take a
£

much closer look and generalize the result in Section 3.3.3). The terms that are continuous or proportional
to the step function potential do not contribute to the infinitesimal integration and so they drop out.
Following the conventionsin Fig. 7, this leaves us with the boundary conditions’

z, Az, f2lofu] 9w ]
o R e ) @
Zu(f):/?ﬁ(f):}v/(f)

z+ |

Fig. 7 — By convention, in this report, the
z-axis aways points from side 11 into side I.
Integration is also from side Il to side |I.
Note that here the horizontal axis is in the
downrange direction, while in Fig. 6, the
horizontal axis measures the sound speed

parameter /(z).

3.2.3.2 Effective Boundary Conditions AongtheLine z=0

Now, convert the boundary conditionson y and dy/dz a z= f to effective boundary conditions
down at z=0 by performing, independently on each of the two sides of the interface, Taylor series
expansions of the function y and dy/dz, respectively. Beginning with ¥, we have

+f_ZaZZ|

/A
1O=x(f=1=p (-2 +24

0z

+0(1°%),

z=f

z=f

¥ Note that continuity of y guaranteesthat it and dy/ox are free from & -functions. Thisin turn guarantees that the
related termsin Eq. (30) are indeed free from ¢ -functions as asserted.
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and exactly the samefor y,, . Subtracting the equationsfor y, and ¥, givesus

f_z az/7L’|| _aZZ||| 3
el -2 Jeorey

z=f z=f

_
0z

0z

z=f

i2( 92 2’
:7(az2|| _aleli Jm(fs)

z=f z=f

2 (0)=x, (0)=-f (%

(32)

Here we have used the fact that dy/0z is continuous to O( i 2). Similarly, we seethat y is continuous

onthesurface z= f , so the tangential derivative
PR 0 aZ
t-Vye2+f2=
d oX 0z

is continuous. Since dy/dz is continuous to O( f 2), dy/ox at the surface is continuous to O( fS),

and from the PE so must H . Evaluating H, 7, —H,, 7, =0, and noting that » and x are continuous
at theinterface z= f , we have

2 2
Gl I 71 R ()
82 |z:f 82 |z:f
and so Eq. (32) gives us
7(0)= 7, (0)=0+0( 7). (34)

Similarly, taking a Taylor series expansion of thefirst derivative of y,

| _om| _om| _oml| _[¥x] _ou]
oz|., 0zl 0dz|_. o0z|,_ oz |, 9|
21n] . 35
53, Jrer =
REEAKI HEFAREr A )
el A0 ] 2] 22 Jeor)

3.2.3.3 Averaging the Effective Boundary Conditions

Now adapt a technique originally developed by Kuperman for the dlightly different context of rough
surfaces in normal mode theory [65]. In Egs. (32) and (35), once again break the wave function into

coherent and incoherent parts: | =(x)(0)+ &y , and average these boundary conditions. This gives
us
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J I d 1 f2 d 0 d \
<a}i >|Z=O <at>z=0:<4>{ [ai]_ E-;;]}(Z)(O) . (36)
+<f2>{a3<z.>| ) }ow)
2 02 | P |,

Note that we have effectively replaced the actual boundary conditionat z= f with an effective boundary

condition at z= 0. Thus, we have effectively moved the ¢ -function in Eg. (29) down to the z=0 line.
As described in Appendix E, to ensemble average away from the interface, we must similarly express the
(in this case very well-behaved) environmental parameter ji interms of a Taylor series that measures its

departure from its unperturbed values. Obviously, the same applies to the part of j that is continuous at
the interface.

3.2.3.4 Averaging the Step Functionsin

It only remains to do the same for the step functions @(J_r(z— f )) found in Eq. (29). To move such a
step function back to the z=0 line, use a Taylor series to project the coefficients of the step
©(£(z-f)) down adistance —f . This effectively extends the half-spaces down to the z=0 line,
with the Taylor series analytically extending the coefficients of the step @(i(z— f)) as necessary. This

changes the location of the step without affecting the function outside the interval ze [O, f ] . For the step
functionsin Eq. (29), this gives us

i, =+f2{e<zo>aza[j§'] ro(-z) k] J
f'[®(zo)a[§:] Ny +®(zo)a[§lz”] 7 J
o] vornltl | @
(oofe] 2 ool e )

+O( £°).

Note that like the continuous part of i, thisaverages to zero: < ,u| Step> =0.
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3.2.3.5 Simplifying the Smearing Term

Now, let us look a the smearing term in the boundary condition for d()/dx given by the second

part of Eq. (36). This term involves the boundary condition for the third derivative 9° < ;(}/8x3. To
obtain this, consider Eq. (21),

SAED_ () (2) () o (1) (1) ( F o) ( 7).

and take the transverse derivative V; =9/dz of this stochastic Helmholtz equation on either side of the
interface:

(A —i%=[H](Z)<z>+---=m—ko[,u](2)<,}j>+0(<f5j{>,<f2>...) =

2K,
i 8V5)§Z> _ V;ioﬂd —ko(VT [ﬂ](Z))Q')—ko([g](z))vT <Z>+O(<f52,>’< f 2>)

(38)

and evaluate the second equation on both sides of the interface and subtract. Notethat (), V- (x) and

consequently its transverse oV (y)/ox only violate continuity at O(< foy) < f 2>) or higher.
Therefore subtracting Eq. (38) evaluated just inside the two regions gives us

V),V )

2k, =2~k (VT [ll'l| ]

V? <Z| >L=0 _Vi <Z|| >L=o = 2k§ (VT [/ul ]

0

z:o_VT ['u” ]|z:o)<Z>+o(<fJZ>’< f 2>)

o) () +O((F8).(12)),

(39)

,-0 -V; [:Uu ]

and Eqg. (36) becomes”

(40)

" Note that we have demonstrated that here in in quasi-first order (i.e, O(/l,}i)) theory — or for that matter in
ordinary first order O(4) theory —jumps in the third derivative 0° Y{)/af are generated by jumps in the gradient
of [u] (i.e, o[u]/oz). Later, when we relax the condition that [ | be continuous, then will see that jumps in the
sound speed ] similarly lead to jumps in the second derivative of the field 0% (y)/9z” . Ultimately, these jumps
in the higher-order derivatives of the field provide the underlying physics behind the contact potentials that appear in
perturbation theory. Interestingly, in the context of first order O(A) and quasi-first order (i.e., O(/l,}i)) theories,
these contact potentials in turn spawn effective boundary conditionson 9(y)/dz and later alsoin{y). Thiskind of
transference of discontinuity from higher-order down to lower-order derivatives is examined further in Section 4.2.2.
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Note that there are no Bragg scattering terms (i.e., proportional to dy ) in the boundary conditions (Eq.

(40)). If we assume Gaussian statistics, then the expectation values of odd powers of the surface
displacement function f and its derivatives are zero, and consequently the error terms in the boundary

conditions (Eqg. (40)) arein fact fourth-order.

3.2.3.6 The Effective Boundary Conditions as a Contact Potential

In the quasi-first order (i.e., O(l,)i)) theory currently being used, the lead-order derivative in the
kinetic termis V? < ;() / 2K, . This allows us to replace boundary conditions (Eq. (40)) by adding a contact

potential to the unperturbed sound speed function [ 4] — [u]+[u]_ .. where
PO O i 173 72 9 73 [ P
[lu]oonta:t _5(2){_ 8k02 [ Jz 2:0_ oz |Z:0 + 2 oz Z:O_ 9z B . (41)

The < f 2> contribution to this o -function happens to be the same as if we added

(12)9%[u]

0z

to i, so we can interpret this term as representing the smearing of the sound speed profile in the

transverse direction by a root mean distance , /< f 2> and average displacement < f > =0.The < i 2> part

of the ¢ -function came from the new term contributed by FW transformation, and it can be written as

_a\ A ) o
8k2/ 2\ 2k, ) \ox*/
As discussed in Appendix A, this implies that the new term contributed by the FW transformation

corresponds to the smearing of the potential in range-domain by virtual fluctuation of size i /2k0. The
imaginary factor occurs because the phenomenon is evanescent in the downrange direction.

Returning to the very important result (Eg. (41)), note that we could have obtained the part
proportiona to < f 2> immediately by

» taking Eq. (22), and

= treating the term proportional to f? asa principal value plus a bona fide d -function, which to

this order can simply be translated down to the origin,
= taking the term that is merely discontinuous, but free of ¢ -functions (i.e., the one proportional to

f ), and expanding it in a Taylor series, being sure to keep only the principal values of any
derivatives generated by the Taylor series,
= and finally taking an ensemble average and noting that < f 2>+< f.f > =0.
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Also note that we could have immediately obtained the transverse smearing term proportional to < f 2> by

adding (f %-82[%2 and this time accepting any o -functions generated (this particular shortcut will
work until we introduce a density jump in Section 4). For our next example, we will exploit some of these
shortcuts.

3.2.4 A" Toy Model” of the Atomic Lamb Shift

3.24.1 Transferringthe Resultsfor a Cusp in Two Dimensionsto a
Central “ 1r” Potential in Four-dimensional Space-time

Now, let usillustrate the connection between the cusp in a sound speed profile and the quantum Lamb
shift. To do so, we will consider a crude “toy model” of the atomic Lamb shift that will not only
reproduce a well known non-relativistic model of the atomic Lamb shift but aso add some very
interesting new physicsto it. Begin with aKlein-Gordon equation with a scalar potential:

[aTzz—czvz +awf (1+U (r,t))}p:o. (42)

Now, compare Eq. (42) to the Helmholtz (Eq. (2)):

82
(y+vi+k§n2(x,&)jA:O (43)
and make the identifications
ekl teox VeV noltU(). (44)

Note that 71, = Rest energy = myc” . The fourth identification in Eq. (44) implies

1_n2:> _1-(1+U) U
Hesteciive 2 5"

ﬂ:

Now, the expansion parameter for the FW transformation goes as

V2 —c?V? —c?V? U
A=—T- = = - =t @, — 45
2k0 kO/u ﬂ‘new 2(()0 Olueffectlve 2(()0 0 2 ( )

and the corresponding PE (in this case, a Schrodinger equation) is

iia_¢: w0+ﬂnm+@+... @
ot 8w

0

(46)

]

202 g
= w0+c—v+wog+m_|_...
20, 2 8w,
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Now, make the replacement ¢ = exi“")t(p to remove the rest energy @, . Also, multiply through by 7 and
use ¢’/aw, = h/m, to get

ot

_p202 hii .
420 _[ IV +ha)og+ Heteae | . P,
om, 2" 8w,

and this time choose the top branch to match conventions in quantum mechanics. Make the identification

U
V =ha, 57 N stesive

to get

2v72
iha—(pz[_hv svot ava o (47)

ot 2m, 8w ot

Now, let us consider the standard radia potential corresponding to an electric field around a point source
(typically the nucleus of an atom):

(Where r = |f| ). Impose second quantization (vacuum fluctuations) by perturbing the spatial coordinate”:

F—>F+07F(t) sotha V(F)-V(F+67(t)).

Now the world line of the nucleus is arough interface (Fig. 8)".

/ world line of nucleus

>t

Fig. 8— The world line of the nucleus is a rough surface

* We could have used the more general 7 (F,t), and applied the basic derivation given in Appendix E to evaluate
this problem. We would once again determine that adding the spatial dependence in o adds a great deal of
complexity to the calculation without adding much new to the problem or changing the result.

Y Incidentally, it is primarily the very light electron that is advected by the fluctuations, and not really the very heavy
nucleus. However, in the current context it does not really matter which is moving, since only the relative position is
relevant.
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Taking derivatives, we have

—=67-VV(F +7)
ot
ON _ st 9v(r +or)+ of .7 AT HO0)
ot ot
=07 -VV (T +07)+ 07T : VVV (T +6T)

Now expand in OT to O(&Fz) using the shortcuts we just developed by examining the cusp (PV =
principal value)

and average (noting that <§F> =0)

<%TZ\2’> = (87T ): PV[VVV (1) |+(678T): VIV (T).

Now —<5?5?> = <5?5?> = (W), where ST =V is the velocity of the displacement. Furthermore,

assume the displacement follows Gaussian statistics;, specificaly, that the motions in the X,y,z

directions are not correlated to obtain

(9)=25,.

ij

(To see where the factor of 3 came from, take the trace of both sides.) Thisleadsto

<%T2\2’>=_<\’T>w[v2\/(r)]+<v_3>v2vm. (48)
From the basic identity
VZGJ =-475(7), (49)

we have PV [Wv (F)} =0 and V¥V (1) =V, [—47:5(F):| . Thus, substituting Eg. (49) into Eq. (48) and
then the result into Eq. (47), we find that the new term introduced by the FW procedureis

_L<V_2>vzv(r) :_i@vo(—ma(r)). (50)

8wf 3 807

Via the uncertainty principle, we have that the lifetime t;, of the virtual particle pair (or equivalently
fluctuation) is given by
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Atmax :to :i1
20,
and so the new term becomes
2 Ar.ime uctuation ? —
—ti<v2>VZV=—<( smetcaion) >V2\/ . (51)

To within a sign, thisis just the smearing out of the Coulomb potentia due to virtual fluctuations (i.e.,

particles) in the time domain that travel an average distance \/<(Arﬁmeﬂucmaﬁon)2> during their lifetime.

The negative sign occurs because time-domain fluctuations are evanescent. Since the frequency 2w,

corresponds to the rest mass of the “€electron-positron”” pair, it is very large. There is no reason to expect
the velocities of the virtual particles to be relativistic, and so we would not a priori expect Eq. (50) (or
equivalently Eq. (51)) to be very large in this context. The precise nature of the fluctuations is determined
by quantum field theory, which is outside the scope of this report.

Now, let us add the smearing term. We could just replace <f2% : az[%z with <5r2% .VA/ , and use the
shortcut describe above. However, adapting the relevant term from EQ. (41) directly provides an
opportunity to further explore the relationship between the atomic problem and the classica field. In the
R? radial transverse space with a point singularity, the infinitesmal integral

£ 2
—tim [ dz2 4

Au]  olm]| ou
dz |Z:O e0d 97

0z

|z:0

gets replaced as follows:

a a £ 2 .
[M” _ [,u,,]| —lim dza_'tzl:>|im q& d*rVav . (52)
0z |z=0 0z -0 €0 e 0z €20 Sphere
o 0

Now, use Stokes' theorem to evaluate thisinfinitesimal integral™:

lim ¢ drVv=lim ¢  ds(A-VV)

-0

Sphere Surface of Sphere
of radius & of radius €
centered at 0 centered a 0

(53)

= <j> dQ vo[rz(—r‘-rr_zﬂ =47V,
al r=¢

directions

*Thetermis, of course, used very loosely here since these objects are spinlessin our toy model.
# The differential element of solid angle dQ can be parameterized, for example, by dQ =sin(8)dédg, where 8
isthe azimuth angleand ¢ the polar angle.
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This leaves us with the identification

olu] 9w ]
0z 0z

= —4nV,,
z=0

z=0

and replacing < f 2> with <5r2>/3, we have from the second term on the right-hand side of Eq. (41)

avmmm=5<z>{@[—4nv01}<5:>v2v, 5

which precisely agrees with Welton's qualitative description of the Lamb shift [62] (see also Ref. 57,
page 59 for a clear exposition of Welton'stheory). Note that overall, we have generalized Welton’s model
by adding time-domain smearing — Eq. (51) — to his smearing in the transverse-domain (three-
dimensional space) — Eq. (54). This is the contribution of the Foldy-Wouthuysen transformation in this
context.

3.2.4.2 Insights Concer ning the Two Contributions to the Lamb Shift

Thus, the “toy model” used here nicely confirms the identification of the acoustic phenomenon given
in Egs. (40) and (41) as a classical-field Lamb shift. We have also discovered that there are two types of
Lamb shift: a downrange Lamb shift and a transverse Lamb shift. Welton's modd of the Lamb shift only
includes the latter effect. The [time/range]-domain smearing (or downrange Lamb shift) is new here. Note
that it occurs because the transverse space oscillations, which are imposed by hand, automatically induce
secondary oscillations in the time/range-domain, and that our field theory automatically generates this
effect.

An interesting distinction between the downrange Lamb shift and the traditional Lamb shift emerges
when we consider the volume scattering problem. As noted in the discussion following Eq. (25), for
volume scattering (i.e., when the potential does not contain singularities), the downrange Lamb shift
invariably disappears™. (Equation (25) addresses the acoustic problem, but it is trivia to transfer the
result over to the “toy” atomic problem.) Thisis not necessarily true of the traditional or transverse Lamb

shift. For the radial potential V,/r in R®, VA/ isinvariably O, except at the origin, so there is no

smearing of the potential away from the origin. Thus, in the atomic problem, there is aso no volume-
induced transverse Lamb shift (at least at lowest order). On the other hand, for an arbitrary sound speed

function [/z] , it is perfectly possible for the term 82ﬂ/azzto be nonzero, and so we can see from Eq.

(21) that we can have a nonzero transverse smearing term, even in the absence of any singularities. The
transverse (or traditional) Lamb shift comes from this term, and so it follows that fluctuations in a volume
can in general generate atransverse (or traditional) Lamb shift effect in the acoustic problem.

Whether the downrange Lamb shift or the transverse Lamb shift dominates depends on whether the
interface is slowly oscillating while eventually achieving a fairly large amplitude (on the scale of a
wavelength), or rapidly oscillating with a more modest amplitude. If the fluctuations fall into the second
category, then the downrange Lamb shift will dominate. It isin principle possible that in some classical
environments, fluctuations at the Bragg wavelength may fall into the second category. However, atypical
scenario in underwater acoustics is assessed in Section 5.4, and there the transverse Lamb shift still turns
out to be the dominant effect.

® However, recall that the new FW term also induces a small correction to diffuse scattering, which was relegated to
the ellipsisin Eq. (21). This effect need not disappear in the volume scattering problem.



44 Daniel Wurmser

If the fluctuations fall into the first category, then we would expect the transverse Lamb shift to
dominate. As aluded to above, this is the case for the atomic Lamb shift. The reason is that imposed
fluctuations or are caused by vacuum fluctuations of the electromagnetic field (i.e., virtual photons), and
not by virtual electron-positron pairs’. The lifetime of a massless virtual photon can be much longer than

t,, the lifetime determined by the uncertainty principle for a virtual electron-positron pair with rest mass
2m,. Thus, r ~t,,,,V can be much larger than Ar, =1,V . (Note that the electron-positron

pair is stationary aside from the velocity of the field fluctuations on which it (along with the nucleus) is
advected’.) Indeed, Welton's model of the Lamb shift falls a little short of the correct answer, and the
time-domain Lamb shift has the wrong sign to narrow the difference™. Therefore, the time-domain Lamb
shift must be pretty small.

ime fluctuation

3.2.4.3 Limitations of the* Toy” Model for the Hydrogen Atom

The failure of our semiclassical “toy model” to fully account for atomic Lamb shift should come as
absolutely no surprise. There are severd layers of approximation between this model and a redistic
hydrogen atom. A realistic hydrogen atom is described by Quantum Electrodynamics (QED). Thereis a
great dea going on in QED that lies well beyond the scope of any model that approximates second
quantization as the simple advection of space by vacuum fluctuations™. Our simple model for second
hydrogen atom in the absence of second quantization would be the Dirac equation, which describes afield
with ¥>integer spin. Rather than performing the FW transformation directly on the Dirac equation, we
first replaced the Dirac equation with the Klein-Gordon equation describing a scalar (spinless) field®. As
described in Chapter 9 (pp. 202-203) of Ref. 57, such afield would describe a pionic atom. Replacing the
hydrogen atom with a pionic atom therefore constitutes our second approximation. Now, it isimportant to
note that Eq. (42) does not even provide a realistic model of a pionic atom. A realistic pionic atom would
have a diagonal matrix potential imposed on the state space equation, while Eq. (42) involves a scalar
potential directly in the original Klein-Gordon equation. Replacing the diagonal matrix potential with a
bonafide scalar potential constitutes our third major approximation.

The problem loses some of its richness with each of the three approximations above. Quantum
Electrodynamicsis far beyond the scope of the discussion here, and we will not be able to go further into
this fascinating topic. The Dirac equation is somewhat richer than the Klein-Gordon equation. In a
readlistic hydrogen atom, the effects of spin are fairly significant®, but also relevant to the discussion here
is the fact that the Dirac equation contains first-order derivatives with respect to the spatial coordinates
rather than second-order derivatives. This leads to a richer FW transformation with more terms, and so
more physics. The significance of replacing the Dirac equation with the Klein-Gordon equation (what was
called the second approximation in the paragraph above) is discussed a little further in Appendix F.1. The
third major approximation mentioned in the paragraph above involves replacing the diagonal matrix
potential of a pionic atom with a bonafide scalar potential that |ooks more like a sound speed function u

from the acoustic problem. As discussed in Appendix F.2, this|eads to further loss in the rich structure of
the problem. Since the so-called Darwin term associated with the atomic problem provides a window into

“ In fact, this term corresponds to vacuum polarization, which should indeed be modest in size compared with the
primary contribution to the Lamb shift, and it should also carry the opposite sign. See Section 4.4 for alittle further
discussion on this topic.

% For example, quantum field theories such as QED address the symmetry properties of the particle field. Thus,
electrons are fermions and their wave functions must be made antisymmetric, while solutions to the Klein-Gordon
equation such as pions are bosons and their wave functions should be symmetrized. Such considerations are omitted
from our semiclassical approach.

* This is the most significant omission in our “toy model.” A properly modified time-dependent Dirac equation
would predict an anomalous magnetic moment, and this provides most of the missing shift. This will be discussed a
little further in Section 4.4.
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the diminishing richness of the problem, and it isin some contexts similar enough to the Lamb shift that it
may cause some confusion, it is briefly examined in Appendix F.3.

3.2.5 The Key Insights to Emerge from these Examples

To conclude this section, note that there are two significant insights that we should take out of our
examination of the classical Lamb shift. They both center on the discovery of the downrange Lamb shift
(as noted in footnote cc, this is the classical equivalent of the “vacuum polarization” correction to the
Lamb shift). Thisisanew physical effect that has not previously been included by classical field PEs, and
in the future it may need to be incorporated to improve the accuracy of PE models. Perhaps even more
significantly, we have discovered something profound about the PES generated by the FW transformation.
Let us take a moment to reflect on what we have just seen. The time (or downrange) fluctuations were
introduced by hand. When the resultant [time/range]-dependent potential (or equivalently sound speed
function ) are [time/range]-averaged, these will induce a contact potential correction to the (now

[time/range]-independent) average problem. This much constitutes Welton's model of the atomic Lamb
shift. However, the externally imposed [time/range] dependence also induces secondary virtua
fluctuations, and these automatically show up in the form of new terms in the FW transformation. This
forms the new type of Lamb shift effect: the downrange Lamb shift. Very significantly, note that the FW
transformation has automatically dressed the singularity, even before there has been any explicit time
averaging. This will be very significant later, when we will count on the FW transformation to similarly
dress the singularity associated with a density jump.

3.3 The Downrange Stepping Procedure Near an I nterface

In quantum mechanics, the usual concern is determination of observables expectation values. In a
typical calculation, these are obtained using quantum mechanical perturbation theory. Needed in this case
are aligt of various (in some sense small) perturbing potentias to be added to the basic problem, and the
eigenstates for the basic problem. In classical field theory, on the other hand, we are primarily interested
in using the PE to simulate downrange propagation of the field, often for a specific deterministic problem.
In problems involving propagation through large-scale features, this usualy means propagating through
an environment that has been mapped out by independent measurements. When the problem also involves
a stochastic distribution of small (Bragg) scale features, the known large-scale deterministic environment
may be augmented with a synthetic realization generated, for example, in the context of a Monte Carlo
calculation. As discussed briefly in the introduction, it is possible to model a field propagating through
such a complex environment by discretizing the problem onto a grid and using the PE to step downrange.
When range-dependent interfaces (or a cusps) are present, this will entail stepping across tilted
boundaries. This is a nontrivial operation, and we need to devise a robust procedure for doing so.
Therefore, this section closely examines the mechanics of stepping across atilted interface.

As noted in Section 2.1, the explicit formal development conducted in this report is restricted to a
consideration of quasiplanar one-dimensional interfaces of the basic form z= f (x) embedded in atwo-
dimensional space where X isthe range and z is the depth (recall that the positive z-axis points upward
by convention). In this case, the (now) scalar transverse gradient V; will be used interchangeably with

d/dz. The key ideas needed to generalize the procedure applicable to the restricted two-dimensional
problem to the full three-dimensional problem are briefly outlined in Appendix G.

By our convention, in this report quantities above the interface (typically the water column) will be
associated with a Roman numeral |, and those below the interface (typically the sub-bottom) will be
associated with a Roman numeral I1. Note that the positive z-axis then pointsfrom region Il into region |.
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3.3.1 Discretizing the PE

Consider some field y that obeys a generic PE —i dy/dx = H y . The Hamiltonian H is a function

of the transverse derivative V.. The leading order term is proportional to Vi y. The equation is

discretized to first order in the step size AX using the Mean Vaue Theorem. The basic stepping
agorithmis'™

Xnew = Xold +i(HoIdZOId)'AX+ O((AX)Z) . (55)

To implement this algorithm, set a certain default (maximum) downrange step size AX,, and fix the
vertical grid spacing Az. Note that the dope is small and the transverse derivatives are of higher order
than the downrange derivative. Both these observations independently suggest that the vertical grid
spacing should be somewhat finer than the default step distance® (i.e., Az< AX_,, ). Next, adjust the
downrange step size AX so that the surface falls on a grid point at each and every step. (See Fig. 9; for
the purposes of illustration, vertical distances have been exaggerated in the figure.)) The default
(downrange) step increment AX_,, only gets used when the surface isflat (i.e., range-independent). Since
the slope of the interface is always small (we will see that it must be < 45°), the vertical grid spacing
always remains finer than the horizontal step size, even when the adjusted downrange step size is smaller
than the default step size (i.e., Az< AX<AX_,, ). If the surface does not reach the next higher vertical
grid point during a maximum X -increment, the surface is effectively flat. The minimal resolvable slopeis
therefore determined by the size of the (fixed) vertical grid spacing Az relative to the default (maximum)
downrange step size AX., -

Fig. 9— The grid to be used in the stepping algorithm is set up according to the
following rules:
i. Choose a maximum downrange step size as the default step size.
ii. Choose vertical grid spacing (less than the default downrange step size).
iii. Adjust downrange stepping so the interface falls on a grid point.
iv. Minimal resolvable slope is determined by the size of the vertical grid
spacing relative to the default downrange step size.

 As discussed in Section 2.1, in practice this basic algorithm is modified using the Crank-Nicholson procedure, and
sometimes also the Padé approximation. These modifications are not used in the formal development pursued here.
It is straightforward to implement the Crank-Nicholson procedure on the results developed here, but the
development of the appropriate Padé approximations necessitates future research.

% Note that, in practice, one typically takes out an exp(ik,x) from the wave function, so away from the interface,
the wave function’s rate of change associated with x-dependence and that associated with z-dependence are
comparable. Therefore, a higher-order derivative in the (vertical) z-direction indeed demands a finer step size in that
direction.
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Appendix Section G.1 discusses the mgjor issues related to generalizing the stepping al gorithm derived
here (i.e,, for a one-dimensional interface embedded in two-dimensional space) to the problem of a two-
dimensional surface embedded in three-dimensiona space. Assuming the third dimension is given by the
unit vector Y, different y = constant lines of grid points would have to be stepped separately so that

they always hit the interface. Since, as discussed in Section 3.3.2.1, evaluation of H y in a discretized

space inherently involves a neighborhood of nearby points in the transverse grid, it is impossible to
completely isolate y = constant lines, and some fancy formal work must be used to address thisissue. As

we continue with the development of the basic problem begun here in Section 3.3.1, it is important to
once again remind ourselves that along with the current report, virtually all other current implementations
of the PE are aso restricted to one-dimensional interfaces embedded in two-dimensiona space (i.e.,

z=f (x) and V; =0/0z).

The variable-step algorithm described here is useful for theoretical development. In a practica
numerical implementation, it may prove useful to fix the step size. This smplifies the numerical
procedure, particularly in the three-dimensional case or if there are multiple interfaces present. The
aternative stepping algorithm with fixed step size is briefly examined at the end of Section 3.3.2.4.

3.3.2 Evaluating the Hamiltonian at a Penetrable Interface
3.3.2.1 Implementing the Stepping Procedure at a Boundary

As we begin our examination of the stepping procedure, assume that the wavefunction y is
continuous at the interface, but make no assumption about the continuity of the transverse derivative
dy/dz at the interface. The somewhat artificial, but nonetheless useful, case of y discontinuous at the
interface is considered separately in Section 3.3.4. On the other hand, there is little point in separately
considering the case dy/dz continuous. As is explained in Section 3.32.3 (just after Eq.
(57)), very little smplification and no new insights emerge from the imposition of this condition.

The stepping procedure is iterative. Assume that the field y is given at a certain value of the range,

and that downrange stepping advances to the right. Along the old (i.e., already given) slice of grid paints,
specifically assume that where the interface crosses the grid, the field is known on the right side (i.e., the
downrange side) of the interface. The stepping algorithm is now used to step infinitesimally close to, but
just to the left of the next point where the grid intersects the interface. The field y is continuous at the

interface and so the value of the field y is now known at al the new grid points to the right of the
interface. The next step isto operate on y with the discretized form of H in order to evaluate H y (the
generator of downrange stepping) just to the right of the interface. Once this quantity is obtained, a new
downrange step follows immediately. The challenge lies in the mechanics of evaluating H 3 in the
vicinity of the interface. Specifically, recaling that the leading order term in H y involves Viy , we
need to take derivatives up to and including this order. It turns out that in order to do so, it is necessary to
evaluate al the transverse derivatives V'T with | up to but not necessarily including this order on both
sides of the interface. The m" order derivative will then be obtained on one side of the interface and H y

is evaluated directly on that side. If that side happens to be to the right of the interface, then we are ready
for the next step. If the side where H y is known happens to be to the left of the interface, an implicit

boundary condition will be used to obtain H  ontheright side.
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3.3.2.2 Using Boundary Conditionsto Evaluate Derivatives at an I nterface

We now examine the procedure for using boundary conditions to take derivatives (up to the needed
order) of the discretized field y in the vicinity of the interface. The procedure is iterative. The lowest

order is calculated first, and then this information is used to obtain the second derivative, and so forth™.
Thus, we begin by considering the first derivative. The discretized transverse derivative of y is given by

the difference between the values of y evaluated at two adjacent vertical grid points divided by the

separation distance Az between them. Whether this discretized derivative is assigned to the top point or
the bottom point is a matter of convention. For the first derivative, choose to identify it with the top point.
Now there is an orphaned grid point: the point just above the interface. No finite difference can be
assigned to it. Thisis where the boundary condition on the first derivative comesin. It is used to deduce
the value of the grid point just above the interface from the value of the derivative just below the
interface. All odd number derivatives will turn out to work the same way. (See Fig. 10a.) For the even
derivative, things arejust alittle different.

The reason the second derivative and all even-order derivatives are different is that the derivatives
should be kept roughly centered on the point to which they are assigned. For example, the second

derivative of y a the point labeled j+1 should be given by [azg/azﬂ =

=Zjy

(,{/”2 — 2y 4 )/(Az)z. This is the value typically used in numerical implementations. To obtain

this value, recall that the second derivative is the derivative of the first derivative, and postulate that the
discretized derivatives of the first derivative must be assigned to grid points using the opposite convention
from the one used to obtain the first derivative. Since the first derivative was assigned to the upper grid
point, the derivative of thefirst derivative is assigned to the lower grid point. These conventions give us

%@_;Z{j :{Z Z]J/AZZ[;((ZHZ)A—Z)((ZJH)_z(ZM)A;z(Z;)J/AZ,

and the desired result above follows immediately. Note that when we take the derivative of the derivative,
the orphaned grid point lies below the interface, and now this value must be obtained from the result just
above the interface using the boundary conditions. Since the procedure is iterative, it continues as
described for the first and second derivatives, with the convention assigning derivatives to grid points
alternating as described above'. (See Fig. 10.)

_x
0z

Z=Zjy Zj2

" 10 most cases, boundary conditions for derivatives of given order are independent of any higher-order derivatives,
and the implementation is completely straightforward; if not, the iterative procedure outlined below at least produces
the appropriate number of equations and unknowns, and the problem remains well-defined and soluble.

" Note that as we continue to go up to higher orders n, the numerical evaluation of V! y in the discrete problem will
require the participation of an increasing number of vertical grid points.
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Fig. 10— The conventions for discretizing the derivative V7 y near an interface

is shown for @) n odd and b) n even. When n is odd, the convention assigns finite
difference approximations of the derivative to the top point. When n is even, the
convention flips so that higher-order derivatives remain centered: for example
for n = 2, the second derivative is assigned to the bottom point and we end up
with

(veg)* ) )" gty
T Az (Az)?

At theinterface, there is always one orphaned value that must be evaluated using
the boundary conditions.

3.3.2.3 The PE Spawns a New Family of Boundary Conditions

Thereisasubtle, but very important distinction between the PE and the Helmholtz equation. The latter
is second order in the transverse derivative, so the solution is fully specified by two boundary conditions
at a penetrable interface. However, a PE that is m™ order in the transverse derivative is well posed only
once M boundary conditions have been specified on the penetrable interface [67, 68]. This formal issue
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of well-posedness in the continuum limit is directly tied to the practical problem of how to calculate the
higher-order derivative needed to numerically solve the discrete problem.

In practice, researchers have usually sidestepped this issue by truncating the entire PE (including the
stepping algorithm) at the order m=2 near the boundary (i.e., a first order in the PE expansion
parameter A1), and in this way avoided the issue of determining the extra boundary conditiong’. In fact, as
outlined in Ref. 69 (Appendix B), the technique developed above for evaluating derivatives near the
interface has not been used in the standard implementation of the stair step PE. The alternate approach
described in the reference does not lend itself to the use of the higher-order boundary conditions, and it is
not appropriate for use with bona fide tilted surfaces (it only works for a step-like interface). In this
report, however, a method for determining the higher-order boundary conditions is developed in Section
3.3.3. For the moment, we are exploiting the fact that these m boundary conditions must exist and must
have been specified by the correct formulation of the problem.

The complete formulation of the problem involves m explicit boundary conditions, generaly
providing boundary conditionson } to VrT“‘l;g. This alows our procedure for calculating the derivatives

to work up to VrT“‘l;g . Although this formally specifies the problem, this al by itself is not yet enough to
evaluate the quantity H y , which must be evaluated in order to proceed with our stepping algorithm. The

reason is that this quantity contains a term proportional to VT y . Our technique for taking derivatives
near the interface will allow usto determine V7' y on one side of the interface (for the conventionsin Fig.
10, above the interface if m is even and below if m isodd), but we now do not have the value of V? V4

on the other side. Recall that this quantity would be needed to directly evaluate H ¥ on that side of the

interface. Since the Hamlitonians H for the PE problems that interest us always have leading order m
that is even, we can evaluate H y above the surface. If the dope is negative, we have al we need to

proceed to the next step of the stepping procedure. On the other hand, if the slope is positive, we need to
find an implicit boundary condition that allows us to deduce the value of H 3 below the interface. (Note

that we can circumvent the need to explicitly evaluate the missing partial derivative Viy below the
interface if we have some way to directly determine H 3 on that side of the interface.)

The implicit boundary condition comes from the equation of motion tying H y to the downrange
derivative combined with the (a priori specified) boundary conditions on y and dy/0z. The latter are

used to deduce the boundary condition on dy/dx, which is then used in conjunction with the PE
equation to deduce the boundary condition on H y . For most PE applications, it can be assumed that y

I This is a significant omission. Over the last 20 years, much of the research related to the PE has focused on
obtaining ever-higher orders. For example, one of the key advantages of the Padé approximation is that it allows the
efficient calculation of the high order PE. Progressin this direction has allowed the PE method to be applied to steep
grazing angles, and to cases where the environmental parameters significantly vary as a function of the depth. The
latter is of particular relevance to the issue of a density jump at the ocean bottom. Here, the density may jump by as
much as a factor of two, usualy the largest variation of the environmental parameters to be found in the entire
problem. Furthermore, high grazing-angle results are suspect when such a crucial part of the problemis restricted to
first order.

K Instead, one places the interface in between two grid points. Then, one overlaps the upper and lower half-spaces
by extending each out beyond the interface by one extra grid point. Lowest order theory (i.e., the one with a lead
second order transverse derivative in the Hamiltonian) is used, so there are only two boundary conditions involved.
The two boundary conditions are used to solve for the field at the extra (nonphysical) points. The extra points
provide enough information to calculate the second transverse derivative in the first order Hamiltonian, which is the
one used to generate downrange stepping right at the surface.
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is continuous; however, density jumps will lead to discontinitiesin dy/dz. The continuity of y implies
that the difference between the values of the field y evaluated on the two sides of the interface is zero

(i.e, x,—x =Ay =0o0n the surface), which implies the tangential derivative of the difference is aso
zero: 1-V(Ay)=0. Writing out the tangential derivative in terms of dy/dx, dy/dz, and the local

slope f leadsto an equation for dy [ox:

a(Az).H“a(Az)=oz>%=%_f{%_%}:0, (56)
ox 0z oxX  oX dz 0z
and fromthe PE dy/ox = H y/—i wehavefor H y :
2|0 %)
H,z =Hx +if {%_é} (57)

The dope f used is that of the upcoming step. The quantities on the right-hand side of Eq. (57) are

known and used to calculate H, #, (recaling that side Il isbelow the interface, and so H, x, cannot
be determined directly under the conventions used in this report).

3.3.2.4 SomeFinal Thoughts Concerning the Hamiltonian at an I nterface

Now we can see how little would have been gained had we separately considered the case dy/dz
continuous. Equation (57) would reduce to the simple condition that H y be continuous at the interface,

but thisis the only gain and it represents a very minor simplification. The derivative V7 y can till jump
dramatically at the boundary, since the continuity of H 3 depends on delicate internal cancellations. For
example, consider the very simple Hamiltonian H =k, + 4. Infinitesimal integration of the equation
across the interface of the type discussed in Section 3.2.3 showsthat y and dy/dz are both continuous.
Then, from Egs. (56) and (57), d/dx and H y, respectively, are continuous as well. Continuity of H y
implies that H, 7, —H, #,, =0 and so we have shown that VZ » has a jump proportional to kZiy .

Note that just as for more complicated situations where we do not have continuity of dy/dz, we still will
need to use our full set of boundary conditions to step across the interface.

Although the given set of boundary conditions that fully specifies our problem may or may not
explicitly contain the slope, the algorithm nevertheless remains sensitive to the local slope. For instance,
slope dependence is built into Eq. (57), the implicit boundary condition for H » . A very small slope that
is below some minimum threshold will generate a flat surface where successive grid points on the
interface remain at the same height. As illustrated in Fig. 11, such aflat interface may be punctuated by
intermittent “boosts” where the slope takes on its minimum value for a single step. This minimum

alowed value for the dopeis fixed by the grid size: fﬁxed = fin = AX o /AZ.
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When the actual slopeis below the
minimum threshold for the discretization or
when the downrange step size isfixed

f =f, ., for onestep

f =0 for most steps

Fig. 11 — For a discretization to resolve smaller and smaller slopes, a vertical grid that is finer
and finer relative to the default (downrange) step size is needed. If the vertical grid is too coarse
relative to the step size, the interface remains at the same height during successive steps, and only
jumps occasionally. Now, the discretization can no longer resolve the local slope. The presence of
asmall localy invisible slope can still cause a cumulative effect whereby after many downrange
steps, a jump in the interface is eventually needed. At this jump, the slope is artificially high for
one step. Thisis an artifact that can be made to disappear by using a finer vertica grid or alarger
maximum step size, but this might not always be a viable option. At any rate, the occasional
appearance of a“boost” that gives the slope a nonzero value for asingle step is only a mild source
of error since the dope here is just the minimum slope that our discretization would be capable of
resolving. There are still no corners and steps on the surface, just mild stepsin the slope associated
with discretization. Note that since we always use the slope for the upcoming step, our procedure
always gives H y continuous along a horizontal portion of the interface. Also note that for the
purposes of illustration, the slopes have once again been exaggerated. Finally, note that the figure
also applies when the downrange step size is fixed. Now, the fixed dope is the maximum slope
resolvable by the algorithm.

Fig. 11 also suggests an aternate to the variable-step-size algorithm presented in Section 3.3.1.
Particularly in the three-dimensional case or if there are multiple interfaces present, it is useful to ssimplify
the numerical implementation by dispensing with variable sizes Ax atogether, and fixing the downrange

step: AX = AX;,, - This would be similar to current implementations, but the (distorted) interface would
lie right on top of the grid (rather than in the middle between grid points), and (more significantly) rather
than having stair steps, the (distorted) interface would remain flat for a series steps before acquiring some
fixed finite slope for a step (as in Fig. 11): fﬁxed = AX;yeq /AZ .. This fixed slope is now the maximum

slope compatible with the given implementation (i.e., when the interface is at maximum slope, it would
move vertically with every downrange step). In this case, the relative size of vertical and horizontal grid
spacing would be determined by the desired maximum slope and not by the considerations mentioned in

the second paragraph of Section 3.3.1 (i.e., now fﬁxed = fmax )- Inthis case, note that the generalization of

the stepping algorithm to three dimensions is now comparatively trivial (i.e., the need for interpolation
described in Appendix G.1 has been eliminated). Also note that the presence of more than one surface
poses no problems for this alternate stepping algorithm. Finally, in a practical implementation of the new
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theory, one would expect streamlined efficient programs to work best. The stepping convention outlined
in this paragraph avoids the complex code needed to vary the step size (along with its associated
numerical overhead), and so it may well be the preferred choice for typical practical implementations.
However, the variable-step-size algorithm described above provides a very nice context for the formal
discussion that follows, and we implicitly assume that it is the one being used throughout the rest of this
manuscript.

3.3.3 The Boundary Conditions

To facilitate our look at the manner in which boundary conditions arise from the formalism, let us
begin by considering the standard two-dimensional problem with the range X and the transverse
coordinate the depth z. The generalization to the three-dimensional problem with a two-dimensional

transverse coordinate R = ('y,z) will be briefly considered at the end of Section 3.3.3.2 and then further
developed in Appendix G.2.

3.3.3.1 The Relationship Between Contact Potentials and Boundary Conditions

Boundary conditions such that V5 (k=1 for now) are discontinuous come from *distributions’

in the Hamiltonian H . In this context, a distribution is a generalized function that constitutes a “spike” or
a“contact” potential (such asthe ¢ -function). For example, as we saw in Section 3.2.3, if H contains a
0 -function at the interface, then as in the Kronig-Penny model in solid state physics (see Ref. 66) or
equivalently as for the cusp in our discussion of the classical Lamb shift, we obtain a boundary condition
by integrating the PE along the transverse dimension across an infinitesimal interval bracketing the

- f - . . - . . . .
interface (Ilrrol'[f - dz--- for the cusp in the two-dimensional problem; there is a very similar integral in
£ £

the spatia dimension of the Kronig-Penny model for a one-dimensiona lattice). With the leading
derivative of second-order (i.e., alead order term o< V$ 7 ), this procedure will generate a discontinuity in
the first derivative of the wave function.

When higher-order derivatives of the o -function are present, this example can be generalized by
adapting a procedure originally derived by Heaviside [70, 71]. Before applying Heaviside's procedure,
however, the rules for converting J -functions times functions of the transverse coordinate variable z to
J -functions times something evaluated at the fixed point (on the surface) z= f (x) need to be

employed (specificaly, use the equation taken from the classic text by Lighthill [72] and adapted in Eq.
(59)). This leaves us with a sum of distributions times a “constant,” where the “constant” is the field and

its derivatives evaluated at the fixed height of the interface: y(f) and V.‘F,(L:f . Now following
Heaviside, the key step once again consists of an integration across the interface over an infinitesimal

. . . .
interval in the transverse direction (i.e., IlmO “dz--- for the two-dimensional problem). This time, the
£

f-¢e
definite integration over the infinitesmal interval may in general come after one or more indefinite
integrations — or completely equivalently, integration over the interval from —eo to the new variable 7, ,
whereit is understood that the field is“turned off” at —oo .

To write all this symbolically, take the basic PE H y +idy/dx=0 and perform n+1 “indefinite’
integrations followed by one definite integration. This gives us (for the two-dimensiona problem):
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f+e a
[de|” dz [z (Hy)|, +], e aze [ dzm[ = jzm=0, (58)
whereit is understood that we must always make the substitution':
(K09
s (z-f ( S P (z-f =5 (z— ) p(f)+---. 59
(- 22> S s 2= 5L <o (- 1) (1) (59)

The current assumption that the wave function y is continuous implies that the first downrange

derivative dy/dx does not contain a distribution and so J' :jgdza%xao (or more generaly

jw dzJi dz,-- Ji dz.., (a%x) — 0), and only infinitesimal integration over H  can give a nonzero

contribution to Eq. (58). Thus, we can confine ourselves to integrating over H y to obtain the boundary
conditions:
=0. (60)

Zn41

[z dz ["dz,. (Hy)

Equation (60) is of course subject to the understanding given by Eq. (59). Note that when n =0, we have

=0,

f+e z
J‘f—g dZJ‘—wdzi(HZ) 7
and we additionally also have the equation
_dz(Hy)|, =0. (62)

The indefinite integrations pull off V;’'s from the lead order derivative in H. After n indefinite
integrations, the leading order term (|n our notation, it is < Viy) is left with m—n transverse
derivatives operating on the wave function V7" y. The infinitesi maI definite integration peels off one
more transverse derivative and then gives the difference between the value of this function evaluated on
the two sides of the interface: VI, — VI, . Nonzero values for this difference come from the
spike potentials. A J -function prow des a nonzero contrlbutl on after just one (infinitesimal) integration
and in this way generatesajumpln VT X — Vm Al Snceeachlndeflnltelntegratlon aso pulls off an
order from the derivative in the spike potentlal a o -function becomes a ¢ -function after one
(indefinite) mtegratlon and it therefore provides the jump after a tota of two integrations. More
generally, &' -functions WI|| generate jumps after a total of n+1 integrations™. Note that if no
distribution proportional to 5"is present, then performing a total of N+1 integrations smply yields a
continuity condition.

" This equation can be derived using the following iterative argument: Take the derivative of the formula for
st (z—f) x(z), and expand using the product rule for differentiation. For example, treating f like a constant and
taking y(z) to be some general test function, take d/dz of the equation &(z—f)y(z)=6(z-f)x(f) and
rearrangeto get 6'(z—f) y(z)=06"(z-f) x(f)-d(z— f)x'(f). The procedure can then be repeated.

™ Note the integrals of these distributions are zero unless the number of integrations is just right: too few
integrations, and the function integrates to zero under the definite (infinitesimal) intergration (i.e., the positive and
negative areas under the curve cancel); too many, and the infinitesimal integration kills the term off (i.e., the J -
functions have all integrated out, leaving behind an integral of a bounded function over an infinitesimal interval).



Using the Foldy-Wouthuysen Transformation 55

3.3.3.2 Related Technical Issuesthat are Addressed Elsewherein this Study

The needed distributions in H y are generated both by higher-order cross-terms as we expand the

standard square root operator (/1+ 22/ K, when the density is the same everywhere) — eg., see

Appendix K.1.1 — as well as by the new FW correction terms — as we have seen in Section 3.2 and will
again see in Section 4.1 and Appendix M. Note that by deriving the boundary conditions from
distributions embedded within a Hermitian Hamiltonian, we guarantee energy conservation (and so
stability as well).

If the needed “constant” coefficient of the distribution jumps (e.g., we have &(z—f)-V;sx(f)

where we have aready determined that V¥ y () is not continuous at the interface), use * & -function

bifurcation.” This subtle issue is explored in Section 5.2 when an understanding of it becomes
indispensable for considering an interface with a density jump at even the most rudimentary level. o -
function bifurcation will follow rules determined by examining a series of test cases for which the
solution is known. For convenience, the rules are summarized in the footnote below™, but the topic is
revisited in Section 5.2 and again in more detail in Appendix K.

Appendix G.2 presents a brief examination of the generalization to the full three-dimensional problem
of the procedure developed here in Section 3.3.3. Again, the Y -axis provides the extra dimension. The
integrations used to determine the boundary conditions are now in the direction normal to the cut of
interface in the X = constant plane. Call this two-dimensional normal f,,. Call the two-dimensional

tangent f2D . The boundary conditions are expressed in terms of A, f2D and V., whichin turn can be

expressed in terms of of /dy and §9/dy +29/dz. The downrange slope f isas before. (Keep in mind
that the explicit boundary conditions obtained in Sections 4.1, 5.3.2, and 6.1 (specificaly Egs. (71), (99),
and (120), respectively) will reflect only the basic formalism for the two-dimensional problem as
developed herein Section 3.3.3.)

3.3.3.3 Reationship Between the Boundary Conditionsin the PE Problem and
those for the Full-wave Problem

As noted in Section 3.3.2 (and in Refs. 67 and 68), the boundary conditions that emerge from the
procedure described here more or less substitute for a smaller set of boundary conditions associated with
the full-wave problem. The manifest reason for the appearance of all these new boundary conditions is
that as soon as powers of A appear in the Hamiltonian, then the leading order derivative is some number
m> 2, and afull set of m boundary conditions must be explicitly specified in order that the PE problem
be well posed. As the order of the PE approaches oo, the number of required boundary conditions aso
goes to o, even though the full Helmholtz equation it approximates is only second order, and thus
requires only two boundary conditions.

™ The basic rule is that the first § -function obtained splitsin half (i.e., bifurcates). The two halves are displaced in
opposite directions away from the interface. Any other distributions in the product collapse since they are smooth
functions in the half-spaces away from interface. The procedure is associative in the sense that it does not matter
which ¢ -function is chosen to be the first one. On the way to generating that first ¢ -function, the chain rule for
differentiation applies. The V., operating on the ¢ -function will generate higher-order derivatives of the J -
function. It is permitted to multiply through by a density since it involves an undistorted step, but in general it is not
permitted to multiply through by distorted steps produced by taking functions of steps. These rules, and the
empirical evidence justifying them, are examined in Section 5.2 and in further detail in Appendix K.
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There is a rather interesting complementary interpretation for these new boundary conditions. Along
the tilted interface, these “new” boundary conditions also serve as replacements for the downrange
derivative of the field in what would, in the full-wave problem, be the boundary condition on the normal
derivative of the field. Specifically, when the normal has a downrange component, the normal derivative
dy/ofi=h- Vy picks up a contribution from the downrange derivative, but in the PE, we now find that

the explicit boundary conditions involve only transverse derivatives of the field. In other words, only the
transverse portion of the normal derivative has survived to play arole in specifying the PE problem. This
turns out to be a very desirable result, since the downrange derivative plays a special roleinthe PE: itisa
downrange stepping operator, and as such it cannot appear in the Hamiltonian. Including the stepping

operator id/dx into our boundary conditions would amount to inserting this operator into the

Hamiltonian, in which case the equation would cease to be parabolic! (The implicit boundary condition
(Eq. (56)) and its aternate form (Eq. (57)) are simply consequences of the continuity condition on y .

Note that they are derived conditions on the Hamiltonian, but they do not add new information to the
Hamiltonian beyond that already contained within the continuity condition on y, and so they play no

role in the formal specification of the problem. Thus, they are fundamentaly different from the explicit
boundary conditions discussed here in Section 3.3.3. In particular, they do not contradict the assertionsin

this paragraph.)

Before taking alook at examples, which illustrate many of the ideas discussed here in Section 3.3.3, let
us examine what happens if we relax the continuity condition on y .

3.3.4 Relaxing the Continuity Condition on the Wave Function y

We will shortly find it useful to consider a problem such that y is discontinuous. This result is
associated with the relatively artificial problem, where we consider “mixed orders.” These are obtained by
matching high order FW correction terms with low orders of the expansion of the \/1+ 2&/ k, operator.

For example, once again asin Section 3.2.2 include only A’s but not downrange derivativesin our power
counting to get the quasi-first order Hamiltonian

ﬂ.:
H:k0+2,—8—k02. (62)

Ay -discontinuity boundary condition emerges from a Hermitian Hamiltonian (such as Eq. (62))
containing distributions as follows. Integrate down a vertical line as before. Given that the leading order

of thePEis Vy,a "™ inthe “potential” will produce ajump in 7.

Now, given the needed boundary conditions, propagate to the interface as described above in Section
3.3.1, and use the boundary conditions on the field y and its transverse derivatives to move to the far

side and obtain the new value for H y needed to perform the next step.

For our current purposes, we ignore the & -function-like singularity generated by dy/ox when the
interface of y -discontinuity is range-dependent (i.e., tilted). There are two justifications for this. In the
examples that will interest us, the missing term is of higher order than the Hamiltonian (for constant

density theory, the missing terms are O( i 3) or O( f.f -V; )) and it vanishes completely in the purely
coherent part of the stochastic case. More significantly, y will jump at an interface in only a handful of
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relatively artificial cases. Using a full higher-order theory, where for example —):/8k§ is considered
third order and matched with the O(2°) leading term, then the &” -function in —/8k; will not lead to

adiscontinuity in ¥ (much moreis given in Section 4.2 about changes in the meaning of a given contact
potential as the lead order of the PE changes). The continuity of y isaso used extensively in Appendix

G.2 to extend the procedure for extracting boundary conditions to the full three-dimensiona problem.
Thus, it will ultimately prove fortuitous that all consistent and fully realistic problems will have ¥
continuous. Nevertheless, the Hamiltonian (Eq. (62)) will prove useful in isolating the new physics
associated with the downrange Lamb shift generated by an interface such as the ocean bottom, and
assessing its possible significance in underwater acoustics, so we will press on with the analysis.

Finally, let us generalize the implicit boundary condition. Assume y, = ay,, a the surface. Now, we
have
ay, —x =0onthesurface

= tangential derivative of ay, — y, iszero
= ie,t-V(ay, -x)=0

_9(ax —z.%(+ ¢ 9(ay, —z%zzo (63
54 [P 54 o

= use a%x - H)%i

L =

Thus, we have all we need to apply the technique outlined in Sections 3.3.1 to 3.3.3 for the instance where
 isdiscontinuous. Thiswill prove useful in Section 4, as we move first to an interface where the sound

speed jumps and then also consider the case where the density is allowed to jump as well.

4. THE SOUND SPEED JUMP—TILT-INDUCED SMEARING AND THE
CLASSICAL LAMB SHIFT

In this section we consider a sound speed to jump and closely examine two examples where the
surface roughness buffers the singularity (i.e., smearsit out):

e uprange/downrange smearing induced by a deterministic tilt and associated with the new term
introduced by the FW transformation

o the classica Lamb shift induced by a stochastic rough interface, and associated primarily with
smearing in the transverse direction.

In Sections 5.3.2. and 5.3.4, the study here in Section 4 is extended to the case where the density jumps
as well. We study these phenomena both to assess the effects potential importance in underwater
acoustics, and also as a vehicle for the further development of our formal structure in anticipation of the
development of a PE suitable for modeling Bragg scattering from a rough interface where the density
jumps. We begin here in Section 4 with the case of a sound speed jump alone in order to fully develop
our understanding of the problem in this relatively simple context. In Section 4.1, we once again consider
a quasi-first-order theory that combines first PE theory with the new nominaly third-order term
introduced by the FW transformation. Thisterm is the one associated with new tilt and curvature-induced
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effects. Next, in Section 4.2 we set the curvature of the interface to zero, leaving us with an effect
associated with tilt-induced smearing. The resultant boundary conditions along a deterministic interface
are examined in detail. We find that the relationships between some of the boundary conditions for the
PE and their corresponding manifestations in the full-wave problem are often quite apparent at a specific
order, only to become surprisingly obscure at other orders. In Section 4.3, we examine the stochastic
problem and obtain the classical Lamb shift associated with a sound speed jump. Unlike for the cusp, the
tilt/curvature-induced correction (essentially smearing in the uprange/downrange direction) associated
with the new FW term disappears from this stochastic problem, leaving us only with smearing in the
transverse direction. In Section 4.4, the new physics associated with the tilt/curvature-induced correction
and with the classical Lamb shift is placed into the context of other physical phenomena. In particular,
we see at the end of Section 4.4.3 that tilt-induced smearing is related to vacuum polarization in the
guantum problem.

This prepares us for Sections 5 and 6, where the density jump is introduced into our study. The
possible relevance in underwater acoustics of the classical Lamb shift is considered in Section 5.4, and the
crucial tools needed to consider Bragg scattering from a rough interface where the density jumps are
considered in Section 6.1. As discussed in Section 6.1.3, our study of tilt-induced smearing will be
valuable primarily for the insightsit gives usin the way that the PE buffers singularities.

4.1 A Simple Model for a Sound Speed Discontinuity at the I nterface

Here, we consider an interface where the sound speed jumps and pursue a calculation much like that
for the cusp (where the sound speed gradient jumps) in Section 3.2.3.

We consider the standard two-dimensional (X — z) space, where (for now) the sound speed is constant
in the half-spaces | and |1, and the reference sound speed is the sound speed in Region I. The two regions

are separated by the rough surface z= f (x) . The conventions for this problem are summarized in Fig.
12.

Physical parametersin region |:
¢, =sound speed in region |
Region I: “ =1(1—°'z]=0
2 C
Typ' Cal |y water Density is constant: p, = p,,
z+
W

rough interface given by: z= f (x)

Field that carries
downrange flux: z,

X+ (dowdr;range) Fidd thet carmies R ion - Physical paramete.rsin rlegion I
i downrange flux: g, ] e . ¢, =sound speed in region ||
e Typically the bottom | _ 1[1_ g j
f= ax2 .2 . C|2|
Density is constant: p, = p,

Fig. 12— The conventions for a rough interface where the sound speed jumps. Regions |
and |1 are separated by a rough surface z= f (x) along which the sound speed jumps. As
before, u=(1- nz)/z (this will be generalized later), where n=c,/c such that k = nk, .
Here, ¢, =c, . For the moment, both regions are still assumed to have the same density.
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4.1.1 The Boundary Conditions for Quasi-first Order Theory

Let us also use the quasi-first order Hamiltonian

H=ky+A—A/8K; =k, + A+ i1/8K, , (64)

where

u=(1-(%)) /2:[(1_(%, F) /2}@(—z+ £ (X)) =11, ©(~2+ f (x)). (65)
Note that Eq. (65) simply restates the fact that ¢ =0 in Region | and = g, in Region Il. Now, we

have
f=fu,8(-z+f)="fu,d6(z-1)

ji="fu,6(z—1)-1°u,6(z- ). (66)
So now we have
a_ t7, 5z ) g 5(z- 1), (67)
8k0 8k0 1l 8k0 I

These ¢ - and &’ -functions generate perfectly good Hermitian contact potentials. Now use Eq. (59) with
k=1toget

, , o)
5(2—f);((z)zd(z—f);g(f)—d(z—f)a—;Z{ . (68)
z=f
The equation of motion —i dy/dx = H y with the Hamiltonian (Eqg. (64)) becomes
H—ﬂf25’(z—f)z(f)+&5(z—f) o)+ 2% |ez0 (69)
2k, 8k, 8k, 0zZ|, ¢
wherethe elipsis“---” stands for terms that are at worst steps and are deltafunctions or their derivatives.

As discussed in Section 3.3.4, we are throwing out the step in dy/dx because it is higher order in the

variables f, f and because it is an artifact of the unusual power counting convention implicit in the

quasi-first order Hamiltonian (Eq. (64). We can use the transverse integrations given in Eg. (60) with
n=0 andin Eq. (61) to get

X = Zu :%le(f)
(70)
% _a’?’/_“ :—& fz(f)+fza_z ,
oz |,_, 0z |, 4 z|,_;

respectively. Note that there is an ambiguity concerning the proper way to evauate ;(( f) and
[0/0z]__, , since these quantities jump at the interface. The discontinuity is generated by & - and & -
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functions that are multiplied by f2 and f, and so the discontinuities themselves are O( f f 2) . When

such discontinuities are inserted back into the & - and &’ -terms, the overall order of the ambiguity
becomes O( f 4 fzf', f'z) . This is a higher order than concerns us in the present context. Thus to

O( f f 2), on the right-hand sides of Egs. (70) we can choose to evaluate y anywhere in the interval

xelx.xn] and dy/oz anywhere in the interval dy/dze [dy, /dz,dy, /dz]. Anticipating the
intuitively appealing ¢ -function bifurcation result (see footnote nn, as well as Section 5.2 and Appendix
K), we can choose to evaluate y(f) and [dy/dz] _, at the midpoint of the intervals (i.e, at the

z=f

averages denoted by abar “ 7,0y /dz”). Thiswould leave uswith

f2

Xn =X _Tﬂnf

aZ_”:%+ﬂ ff+f2§ .
0z 0z 4 0z

(71)

Recall that other conventions implicit in Eq. (71) were summarized in Fig. 12. (In the analyses in Section
4.2, and then again beginning with Eq. (83) in Section 4.3), we choose to simplify our work alittle bit by

selecting y, (f) and [0y, /dz] _, rather than the average values. To the order that concerns us here,
thisisaperfectly valid thing to do.

z=f

4.1.2 The Boundary Conditions Only Conserve Energy When Taken Together asa Pair

Our “toy model” provides us with interesting subtleties concerning energy conservation. For example,
since 0 and ¢’ act just like bona fide functions, the Hamiltonian (Eq. (64)) is Hermitian, and so energy
must be conserved by the resultant boundary conditions (Eq. (71)). However, recal that in deriving Eq.
(71), we made the substitution Eq. (68):

5(2-1)r(2)=8 (2= Nr(1)-6(-1)F .

These two terms only correspond to a Hermitian operator times the field y when taken together. Since

the 6" -term gives the y discontinuity, and the ¢ -term contributes to the dy/dz discontinuity, we can
conclude that these contributions to the boundary conditions only conserve energy when taken together as
apar. Similarly, a close examination of the boundary conditions (Eq. (71)) reveals that the horizontal
and vertical interfaces in a discretization conserve energy in concert, but not individually. To see this,
note that a boundary condition of the general form y — ay cannot conserve energy aong a vertical
interface, since y is basically a carrier of the downrange flux. The missing energy must be made up

along the horizontal interface. Thisis acceptable, since the vertical and horizonta interfaces are artifacts
of discretization, and our formalism actually appliesto a sloping interface.
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4.2 The Deterministic I nterface and a L ook at How Boundary Conditions“Migrate”
with Increasing Order

4.2.1 A Deterministic Interface with Tilt, but No Curvature

To explore the meaning of the contribution of the new term / 8k§ to the behavior of the PE near an
interface, where the sound speed (but not yet the density) jumps, let us consider an interface with tilt

( f = 0), but no curvature ( f= 0). As mentioned in Section 2.3, here there is no backscatter, and so the

PE should model the full-wave result to arbitrary precison. Thus, we should be able to find a fairly
straightforward explanation for all aspects of the PE result.

4.2.1.1 Tilt-induced Boundary Conditions are Difficult to Interpret in Quasi-First-Order Theory
We begin with the smple model asin Eq. (6)
H =k, +A-A/8k2 =k, + A+ /8K

and note that for a tilted interface without curvature, the resultant boundary conditions (Eq. (13)) now
lead to the boundary following conditions

f2
X = (1_71% J%

ale fz aZl .
A 141 |4
0z ( " el

(72)

Here we are exploiting the fact that ¥ and dy/dz are continuous at 0" order in f.
p g X X

At first glance, the O( f 2) terms contributed by the new term ﬂ/ 8k02 do not seem to make any sense.

To be specific, these boundary conditions (Eq. (72)) are a step in the wrong direction compared with the
boundary conditions that emerge from the simplest possible Hamiltonian H =k,+A. For this

Hamiltonian, we can use infinitesimal integrations to show that » and 8;(/82 are continuous. Thus,
dy/ox and so Hy are continuous, and so to O(A), so is A, and consequently so is the O(4)

expansion of H ¥ . This gives us continuity of A and dA/0z, where A solves the Helmholtz
equation. So far, thisis exactly what we would expect.

Now, note that continuity of H y also gives a boundary condition on V$ % and so also on ViA.
Note that the boundary condition on V2 7 does not involve f2, and the transformation connecting y to
A only involves Ay and y, so it cannot introduce a dependence on f2, nor can afurther operation by
the V2 operator to take us from an equation connecting y <> A to one connecting V3 y <> VZA.
Thus, the boundary conditions on Vi x and VﬁA are the same as for a flat z=0 interface, noting in

particular that thereis no O( i 2) connection. In Appendix H, it is shown that the boundary condition on
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V2A should in fact contain aterm that goesas 2. Thisisan indication that the O(fz) term that leads

to boundary conditions (Eg. (72)) is ultimately somehow related to the boundary condition on ViA rather
than to thoseon A and dA/0z.

Before exploring this further, let us note a very interesting aspect to the result in Appendix H. The

term proportiona to O( f') back in Eq. (71) (which is set to zero in Eq. (72)) is apparently associated

with the implicit boundary condition on 83A/ 0z%®. This O( f) term induces physical effects that are

implicit in full-wave theory, but have to be made explicit in the context of the PE®. The new physical
effect introduced by the O( i") term appears to involve coupling to interface waves. These interface

waves are briefly discussed in Appendix H, and the effect is be examined again in Section 5 and in
Appendices N.2 and O. For the moment, it is valuable to develop a better understanding of the

comparatively straightforward O( i 2) terms without having to become enmeshed in theseissues. That is
the reason we concentrate on a surface without curvature here.

Before seeking the needed O( f 2) contribution to the boundary conditions in the exotic new terms
generated by the FW transformation, let us first eliminate the conventional higher-order terms in the PE
(i.e., those that come from expanding the square root operator m ) as possible sources for the
missing contribution to the boundary conditions. Considering the 0(22) Hamiltonian

H =k, + 41— A%/2k,, we can use the standard infinitesimal integrations to find that  and dy/dz are
constant, and that the boundary conditions on VZy and V3y come from §- and & -functions

generated by crossterms in A%. These are exactly the same boundary conditions as those for a flat
horizontal surface ( f = 0), and there is no source for O( i 2) terms in the boundary condition for V$ X

The transformation from the auxiliary field y back to the actual pressure field A involves powers of A
(the transformation is performed an infinitesmal distance on either side of the interface), and again there

is no source for terms explicitly proportional to f2.

4.2.1.2 Using O(/lz,/'l') Theory to Under stand the Tilt-induced Boundary Conditions

Now, let us add the new FW —Z/Skg = j1/8K, term to the second order Hamiltonian to get

A

H =k0+ﬂ—£—@.

® Thisis somewhat similar to backscatter as discussed in Appendix B. Notethat f isthe curvature of the surface,
and in a sense (for the shallow grazing angles that we are implicitly restricting ourselves to here, and operating
within the PE picture based on small perturbations from range independence) backscatter is basically induced by the
curvature of the surface, and not the tilt. (Recall that with shallow tilt and grazing angles, an interface with tilt, but
no curvature, will not backscatter.)
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This qualitatively recovers the expected behavior. The term proportiona to fzd’(z— f) generates a

jump in V2 2, but infinitesimal integration reveals that there is no jump in ¥ and dy/dz (we would
need terms proportional toa 8” and &7, respectlvely, to generate jumps in these quantities). Expanding

the so-called WKB operator H 7 = (1+24/k,) * to O(A?), and using it to convert from g back to

A on either side of the interface, there are cancellations between the implicit jump in V3 T and the
explicit one in Viy so that A and 0A/dz remain continuous®. Using the usua infinitesimal
integration, it is easy to show that to within a factor of 2, the boundary condition on V2 Tx that is
proportional to f 2 isindeed like that expected for VZA (and givenin Eq. (H.9)) VZA depends not only

on VZy butasoon Viy and VS y, and so the precise relationship between VZA and V2 y is quite

complicated. A rigorous as opposed to qualitative rederivation of Eqg. (H.9) would involve much more
effort than is warranted here. For our current purposes, it is enough that we have been able to demonstrate

gualitatively that the new FW terms are indeed needed to reproduce the boundary conditions for ViA
that properly include a component that is proportional f2 (asin Eq. (H.9)).

4.2.1.3 A Morelnformed Second L ook at Quasi-First-Order Theory

Now, if we drop the /12/ 2k, " term, and just use the quasi-first-order Hamiltonian
H=k,+ ﬂ—iz,
8k,

then the formalism retains amemory of the jump in V2 Tx , abeitin modified form. Recall that the quasi-
first order Hamiltonian generatesjumpsin y and dy/dz (Eq. (70))

2
X — X _Tﬂu)ﬁ =0
) . (73)
o f 0

+ — =
az az 4 /uIIZI

P Here we demonstrate that the cancellations needed so that A and JdA/dzlike y and dy/dzare continuous in
O(4%,4) theory. First consider the artificial problem where the interface iss flat, but we insert by hand the O( f?)
boundary condition for the fixed value of f? (recall we are here considering the tilted interface with a constant
dope). This range-independent problem is now an eigenvalue problem. Decompose y into eigenvectors y,, , and
use g, continuity to show that H~ Z A is continuous. Thus, for this case, the boundary conditions on in
Viy,VZy,and y must lead to algebraic identities that conspire to produce cancellations such that A (and similarly
0A/dz) are continuous. Now, restore a true tilt and show the same algebraic identities still apply. The boundary
conditionson V3 y ,VZy, dy/dz, and y must al remain the same, since these al come from & -functions in the
Hamiltonian (or in the case of continuity conditions, the lack thereof). As aways, we can use tangential
differentiation to show that continuity of y and dy/dz imply continuity of dy/ox, which via the PE implies
contlnuny of Hy, and this also fixes the boundary condition on V3 y. These fix the algebraic relations between
Viy,Viy,and y, and we aready know that these lead to cancellations in the O(ﬂz) transformation from y to A
that produce the continuity of A.
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If we take the tangential derivative (o< d/ox+ f 9/dz) of the first equation in Eq. (73), we have
(recalling f =0)

% 9%, f2 9% n f‘(a}ﬁ A j+f_3 W _
Jdz oz

ox ox 4" ox

4 My E‘
Using the second boundary condition and as always retaining only terms to O( i z)qq, we have the

rescaling
f2 dy, Oy
1-—up, |2 =20
[ 4ﬂ”J8x ox

Substituting back into the PE, it followsthat H 3 obeys the same rescaling and we now have

f2
(1_TﬂuJV$Z| =V$Zu _2k02/uIIZII
or

f2
V$Z| _V$Z|| 27ﬂ||V$Z| _2k02xu||2’||-

Again noting that H EG ¥ = A, and more specifically that in quasi-first-order theory this gives us in the
half-spaces A=H 7y = (ky—4/2) y , we can see that A (and its transverse derivative) picks up
similar behavior. We no longer have a boundary condition similar in form to Eqg. (H.9). We have
discovered that quasi-first-order theory picks up jumpsin ¥ and A to compensate for modifications to

the jumpsin V2 and VZA.

In other words, quasi-first-order theory is characterized by jumpsin y and A that do not appear in

the full-wave theory — these jumps are, however, placeholders for a bona fide physical effect that is
present in full-wave theory. In that sense, the effect isreal and must be taken seriously. The sameistrue

for the cusp, and the atomic Lamb shift. For example, for the cusp, the tilt-generated (i.e., o< i %) contact
potential is really related to ajump in ViA, and so the boundary condition on VA that was obtained
earlier isaresidual of this effect. A closelook at the derivation of the traditional (transverse) Lamb shift
(i.e.,, the one proportional to k02<f2>) also reveals that it is related to a discontinuity in the third

derivative V? % - Nevertheless, we know from quantum mechanics that the predicted contact potential
indeed leads to an observable physical effect, even when inserted into the standard (nonrelativistic)
Schrodinger equation. This teaches us that the artificial boundary conditions of quasi-first-order theory
can be productively used to model the legitimate physical result.

% Recall that at O(f3), the quasi-first-order model would begin to pick up very problematic o -functions in
dy/ox.
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4.2.2 Migrating Boundary Conditions
4.2.2.1 Changing Boundary Conditionsasthe Lead Order of the PE Changes

The interpretation of a contact potential in terms of induced boundary conditions depends on its
context. For example, consider what happens as we modify the order p ( p =m/2 following the notation
of Section 3.3.2) of the expansion of the sguare root operator /1+ 2/1/ k, . Then, rather obviously, the
leading-order term AP in the Hamiltonian H changes, and with it the leading order derivative of the
field V%p;(/(Zko)p . We have just seen in Section 4.2.1 that as this happens, a given fixed contact
potential will induce different boundary conditions. In particular, we saw how the boundary conditions

induced by a &” -function potential morphed from discontinuitiesin V2 7 and V3 only into a different

and somewhat larger set of discontinuities that now also includes the discontinuity of the wave function
y itself and itsfirst derivative. The implications of this statement are illustrated in Fig. 13.

The field y as a function of transverse coordinate z

22
1st order w/tilt: H :k0+,1_i ....................
z 8k,
,
2nd order witilt: H =k0+ﬂp—/1——i2
2k, 8k
/12
2nd order w/otilt: H =k + A ——
2k,

z = f(x) (interface)

X is held constant

Fig. 13— The FW transformation introduces a term proportional to A into the Hamiltonian H. This term becomes a
o’ -function along a tilted interface where the sound speed jumps. In the context of second order (i.e., O(/iz))
theory, this tilt-induced contact potential introduces an expected jump in boundary conditions for the second
derivative of the auxiliary field y: 0°y/0z*. In the context of first order (i.e., O(4)) theory, this tilt-induced
effect changes, and partly becomes ajump in the auxiliary field » . The behavior of the corresponding full acoustic
field A would be similar. Note that the sketch is an illustration of the concepts involved, and not an actual numerical
calculation. (The numerical calculation of these concepts will be a topic for follow-on research.) For the purposes
of comparison, the field behavior with the A term entirely removed is sketched as well.

The ¢ -function potentia discussed in Section 4.2.1 and in Fig. 13 results when the new FW term was
evaluated at an interface where the sound speed jumps. For the case of the cusp (i.e., a jump in the
gradient of the sound speed; see Section 3.2.3), replace the field in Fig. 13 with its transverse derivative

¥(2) > dy/dz. Recal that a similar contact potential occurs in the stochastic problem, where it is
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called a“Lamb shift.” For the classical Lamb shift associated with a sound speed cusp (see Section 3.2.3),
replace the average field with its derivative ()(z) — d()/dz, and for the “toy model” of the atomic

Lamb shift (see Section 3.2.4), replace the stochastic field in Fig. 13 with its gradient (¢) — V().

Note that in higher-order theory, a contact potential acting at a point leads to a honlocal change in the
field that can be interpreted as a diffuse cloud. Specificaly, the higher-order boundary conditions are
changed in away such that the wave function is “launched” differently. This modifies the behavior of the
field not just at the one point where the contact potential is located, but also in the vicinity of the point.
The difference between the field with and without the contact potential present can be interpreted as a
cloud in the vicinity of the contact potential. Thus, we see that this physically real cloud is ultimately
touched off by boundary conditions on higher-order derivatives, which are implicit in full wave theory,
and explicit in higher-order PEs. At lower order theory (say in the world of the nonredativistic
Schrodinger equation), the contact potential induces alocal field discontinuity in lieu of the effect of the
diffuse cloud. Thisdoes not look much like a cloud, but it provides a model of sortsfor the effects related
to the physically rea cloud.

4.2.2.2 General Principles Regarding the Migration of Boundary Conditions

Let us now draw a genera conclusion based on the set of examples we have just considered. We
stipulate that boundary conditions are in reality contact potentials, and then we take the consequences of
that statement seriously. These assertions mean that as we:

= convert the boundary conditions into contact potentials,

= add termsthat increase the order of the lead derivative in the differential equation,

» trandate the contact potentials (e.g., o -functions) back into explicit boundary conditions on the
wave-function and its derivatives,

» then we find that the given phenomenon at the interface now influences the solution via the
boundary conditions on higher-order derivatives than was previously the case. In other words, it
migrates up to higher-order transverse derivatives of the wave function.

The converse happens if we remove the leading order derivative in adifferential equation:

» agiven effect will now induce explicit boundary conditions on lower-order derivatives of the
solution to the wave equation. In other words, it migrates down to lower-order transverse
derivatives of the wave function.

Thus, boundary conditions migrate as leading order derivatives are added or subtracted.

In the discussion just concluded here and in the previous subsection, we considered an effect that
occurs naturally in O(/lz) theory, and migrated down to the O(A) theory. Specifically, when the

O(lz) PE is used, the effect spawns associated boundary conditions that are obviously related to the

corresponding boundary condition for the solution of the Helmholtz equation: there is a discontinuity in
the second derivative of the wave function: V2 y . However, the effect migrates down to the O(A)
theory in a very nonintuitive way: for example, there is now aso a discontinuity in the wave function ¥

itself. However, we saw that the O(4) theory retains physical significance.
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Later in Section 6.1 as we examine density jumps, we come across an effect that naturally migrates up
from O(l) theory to the O (/12) (and higher) PE. This turns out to be the most important application of

the concept of migrating boundary conditions, so it is worthwhile to take a moment to foreshadow the
following result: The known attributes of the solution to the (full-wave) Helmholtz equation suggest that
the wave function y, which is a carrier of downrange flux, should be discontinuous along a tilted

interface where the density jumps. This discontinuity should aready be apparent in O(l) theory.

Nevertheless, the discontinuity in y is automatically forced upward into the O(lz) theory (and higher
orders) by the structure that the FW procedure imposes on the PE. In this context, the discontinuity in y
automatically migrates up to become a discontinuity in its second derivative: V$ % - The needed
discontinuity in y can only be placed into O(l) theory by hand, and then only in an incomplete form
that is not entirely consistent with the other physical demands on the theory.

4.3 Sound Speed Discontinuity Along a Stochastic Interface: The Lamb Shift for a
Sound Speed Jump

Here the calculation for a sound speed cusp given in Section 3.2.3 is adapted to calculate the effective
boundary conditions induced by a sound speed discontinuity along a stochastic rough interface. Since it
both reinforces many of the basic insights obtained in Section 3.2.3 and additionally provides insightsinto
the core issue of our study — incorporating discontinuities of the environmental parameters into the PE —
the calculation is once again explicitly considered here rather than being relegated to an appendix as are
some comparable calculations later in this study.

4.3.1 The Effective Boundary Conditions for the Sound Speed Jump

Begin with the boundary conditions (Eq. (71)). Now follow the stochastic procedure outlined in
Section 3.2.3. Once again, convert the boundary conditions at z= f to effective boundary conditions

down at z=0 by performing, independently on each of the two sides of the interface, Taylor series
expansions of the function y and its derivative. Incorporating boundary conditions (Eg. (71)), we have

an updated version of Eq. (32):
A (O)_Zu (0)

_ I
=x(f)-x (f)_f[g

_ 9
0z

AT ;
J*z{aﬂ o |, o)

z=f z=f z=f

74
_ f2 7(0 f /'l|| f_ f2 azz| | aZZ||| o) f3 ( )
—Tﬂu){( )- 4 X +? 92 T + ( )

z=f

- f2+fflu”/1_/(o)+f_2{821|| _82}{n| J+O(f3)

4 2| a2 |, o7

=f

whereas for the cusp, we used the boundary condition (Eq. (71)) on dy/dz, but now it is nonzero at first-
order in f . Similarly, we see that y is continuous at the surface z= f to O( i 2), so the tangential

derivative
t-Vyo X
ox 0z
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is continuous to O(f ) Since dy/0z is continuous to O( ) dy/ox at the surface is continuous to
O(f'z,f'-i"), and from the PE, so must Hy. Evaluaing H,7, —H, x, =0, we have to
o(f2 f¥)

82){ 82,’{ A
azzl |Zf - azzu |Zf :—2k02/u”2/+0(f2, f f) (75)
and
f2+f.f _ oeo 3
2 (0)- 2, (0)= 4 1 Z(0)—K; f xuu/?f(o)"'o(f ) (76)

Similarly, modifying Eq. (35) we find:

aﬂ{|| _aZ||| :a/?f|| _aZ||| _f a2/?,’|| _azl’u|
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]+2k§fﬂnf(f)

z=0 (77)
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Again adapting the technique originally developed by Kuperman for a dightly different context [65],
break the wave function into coherent and incoherent parts: x|, =(¥)(0)+dy , and average these
boundary conditions. Thisgivesus

<Z,>(O)—<z,|>(0)=mﬂ”< >( )- k§< >/“n< )(0)+O(f3)

4
:_k§<f2>:uu <Z (fs)
= >|Zo—a<§i” >|ZO =—“—:[<f‘5f>+[< o)1) 22 Zzo}zﬂ”kgw@ 79
+2k0< >ﬂ”? +<f22>(aga<j;|>|= aga<;€|l>|=}+o(f3)
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Note that quite generaly, <f‘ - f>+< f 2> =0, so the downrange Lamb shift for a sound speed jump
disappears immediately from Eq. (78).

4.3.2 Converting the Smearing Termto Familiar Form

Now, let uslook at the smearing term in the boundary condition for d{7)/0x given by the last part of
Eq. (78). Thisterm involves the boundary condition for the third derivative 9° < ;{} / 0x’. To obtain this,

flatten the interface so that f =0, and take the transverse derivative V,; =d/dz of the stochastic
Helmholtz equation on either side of the interface:

v, 4%:[H](z)<z)=m—ko[ﬂ](z)<1> =

2k,
i 8V5)§Z>:V$2l<<oﬂt>_ko(VT [’u](z))<1>_k0<[ﬂ](z))VT<Z>+O(<f§z>’<f2>)’

(79)

and evaluate the second equation an infinitesimal distance on both sides of the interface and subtract. So
far, Eq. (79) isthe same as Eq. (38). However, here we are assuming that the sound speed is constant in

the half spaces, so V, [#](z) =0 away from the interface. On the other hand, [#] now jumps at the

interface. Also, to O( f 0) , V. x isstill continuous, so subtracting Eq. (79) evaluated just inside the two
regions gives us

Zoz—kovT <Zn>zzo —ko([ﬂu —[u, ]‘ ) Z”>+O(f)

-V <}{” >‘Z=0 = =2k, V+ <X|| >+O( f),

(80)
Vi L

and Eg. (78) becomes

(2)(0)= (2 )(0) =K (121, (7)(0)+O( £°)

) )l i) k(1)

z=0 z=0

% _k§<f2>ﬂHVT<Zn>+O<f3) (81)
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4.3.3 Terms Associated with Diffuse Scattering

Note that unlike for the cusp (e.g., Eq. (40)), there are now lossy diffuse (Bragg) scattering terms
(proportional to <f§g> and <f§g>) in the boundary conditions for the coherent field. Although they

will be ignored for the moment so that we may concentrate on the purely coherent effects, these terms
provide awindow into a very interesting set of physical processes. They both contribute an overall energy
sink.

a istypicaly proportional to f , and it follows that the term proportional to <f§> is proportiona

to <f2> . This term corresponds to the well-known Bragg scattering phenomenon associated with the

first-order perturbation result of rough surface scattering theory (for an general overview of first-order
perturbation theory and Bragg scattering, see, for example, Ref. 73). S. McDanid presents a nice

discussion bringing the Bragg scattering term < f §> (for a rough surface where the sound speed jumps)

into the context of the PE (Ref. 74, Section I1.A). As in the discussion here, she bases her discussion on
the normal-mode work of Kuperman [65].

The term proportiona to <f§g> is particularly interesting. It describes curvature-induced diffuse

Bragg scattering, and again noting that @ is typicaly proportional to f , this type of incoherent
scattering phenomenon is proportiona to < f- i"> = —< f 2> . This quantity, the mean square of the sope,

is related to the need for renormalization in scattering theory. This very interesting topic is explored a
little further in Section 4.4.

4.3.4 Pure Coherent Field Effects
4.3.4.1 The Effective Boundary Conditions on the Coherent Field

Until then, however, we will drop the diffuse scattering terms and concentrate on the propagation of
pure coherent field effects. This is not unlike dropping the diffuse scattering contribution from volume

scattering surrounding (but not right on top of) the sound speed cusp of Section 3.2.3 or the 1/r potential

in the atomic problem of Section 3.2.4, and calculating only the coherent radiation. We also need to keep
in mind that the coupling between coherent and incoherent radiation should be relatively modest, even if
previous incoherent scattering has produced a great deal of incoherent radiation. To see why thisistrue,

note that in <f5{> and <f5{> f and f are only correlated to the locally generated part of the

incoherent field @ (i.e., that having been generated within a distance of the correlation length of the

interface), and not that generated by the entire surface. The local part of the incoherent field @ should

thus remain relatively modest, and the Bragg terms should never overwhelm the rest of Eq. (81). Keeping
all thisin mind, we eliminate the diffuse scattering terms from Eq. (81), and are left with

<z|>()< (0) ==k (%), (2)(0) +O(*)

e I R

0z

(82)
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Once again, note that the downrange Lamb shift for an interface has disappeared for an interface with a
sound speed jump, and we are only |eft with the traditional (transverse) Lamb shift phenomenon.

For our subsequent analysis, it will be useful to take advantage of the fact that

<;7>=<;(|>=<;(”>+O(<f2>)

to rewrite Eq. (82) as

o) - (83)

(Note that the conventions implicit in Eq. (83) are illustrated in Fig 12. Most relevantly, recall that the
curve z=f (x) separates region | from region 11, that the reference sound speed is the one in region I,
and p=(1- C,z/cz)/Z. This implies that 4, =0 and 4, =(1-¢?/c} )/2 . The positive z axis points
fromregion Il into region 1.)

4.3.4.2 Understanding the Coherent Field Boundary Conditions

An interesting interpretation for both Eq. (83) and the earlier result (Eq. (40)) isillustrated in Fig. 14.
A sound speed jump along a stochastic rough interface looks like a dipole sheet, while a jump in the
sound speed gradient along the same surface looks like a monopol e (charge sheet).

Fig. 14 — In the stochastic problem, a rough interface decomposes into
contributions that look like a monopole sheet, a dipole sheet, etc. A jump inthe
sound speed gradient generates the former, while the dipole is generated by a
jump in the sound speed itself.

Finaly, note that Eq. (83) indicates that the stochastic wave function < ;() Is discontinuous at the

horizontal interface separating the two regions. This boundary condition is perfectly compatible with the
straightforward eigenvalue problem. To justify this general assertion, use the generic field y rather than

the stochastic field ( 7), and assume that —i dy/dx = H y for range-independent H and that y, = ay,

aong a horizontal line (say z=0). Now y, —ay, =0 aong the line, and the same is true for the
tangential derivative

0=0(x, —ay, )/ox=0y, /ox—ady, [oxX.

In other words, ¥ and dy/dx jump in tandem. Recalling that a given eigenfunction y, obeys the
eigenvalue equation y, =k, (dy,/dx), note the tandem jumps in y, and dy,/dx are crucid if this
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equality isto hold at the interface. While this may seem obvious in hindsight, a failure to recognize this
result can lead to considerable confusion as we pursue our analysis.

4.4 The“New Physics’ in Context

The new physics discovered so far is placed into a broader physical context in Fig. 15. In this section,
we explore some of the implications of the figure.

Diffuse Scattering Virtual
P E (Bragg scatter and weaker Oscillations Singular
Parabolic types of mode coupling) I environmental

Foldy- Wouthuysen

‘ Curvature-induced
— Deterministic Volumes ™| Sound speed P diffuse scattering and

Impenetrable ! | renormalization &<_ _-’ | boundary waves
boundaries | =~
] -

| |
| I
1 |
i i
Equation i . o || parameters
| FW: PE “+ i
| |
[ |
1 |
| I

(Tappert) e —— - *| Tilt-induced
[ | 57| interface buffering
1 Lo
Bragg scatter = Loss term i !‘amb shift . 26\6@ :
. near cusps an N N -
L Stochastic Impenetrable i | boundaries; can Comparison validates
boundaries { | induce boundary |- notion that FW
| q
(Tappert) : waves near cusps) transfor_matlon_c_an
- ' buffer singularities
Sound speed jumps 11 | i-| verifies applicability of i
(McDaniel) ! PE to penetrable rough
Volumes (e.g., i surfaces Bonus:
turbulent media) 1 New result m_ost rele_vant
.. | to current issues in
(Tatarskii and others) underwater acoustics

v

|

|

|

~ [

Atomic transition probabilities i = New = Neyv P12 30 BEEhELE
! interfaces (dp # 0)

time-dependent perturbation theory

Fig. 15— The classical Lamb shift in context. The PE (cf. the Schrodinger equation in atomic physics) is used to
propagate the field (cf. the electron wave function), often in the vicinity of arough interface (cf. the world line of the
nucleus advected by vacuum fluctuations). Along the interface, the sound speed (or more generally any
environmental parameter) or its transverse derivative (in atomic physics, the gradient of the potential) is
discontinuous. It is well known that the rough interface couples eigenstates (or modes to use the terminology of a
classical wave guide). The most pronounced manifestation of this is Bragg scattering. The stochastic problem also
generates a shift of the eigenstates (and associated eigenvalues) in addition to the mixing of eigenstates. This is the
Lamb shift. More obscure is the fact that the lope and curvature of such interfaces spawn anew class of effects (for
the atomic problem, the slope of the world line corresponds to the velocity of the nucleus as it is advected by
vacuum fluctuations, and the curvature is the acceleration). For instance, tilt buffers the interface in a way that is
very reminiscent of the Lamb shift, but it is automatically generated by the deterministic formalism without the need
for stochastic averaging. The formalism built up also suggests a method for modeling an interface characterized by a
density jump. Since the Lamb shift is a true rough surface effect, the proven success of the method in modeling this
class of effects validates its use in modeling a rough interface where the density jumps. Asdiscussed in Section 6.1,
the formalism buffers a density jump much like it buffers a tilted interface. The aspects of the problem most closely
examined in the current paper are shaded.
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4.4.1 The Classical Lamb Shift in Context

Note that the Lamb shift emerges from the stochastic problem. The transverse (or traditional) Lamb
shift is proportional to the mean square surface height < f 2> , and it isaresult of smearing of the interface

in the transverse direction. This is a purely coherent field effect, and as such it involves mode shifts
rather than mode mixing. The corresponding eigenvalues for the modes (the modes are eigenfunctions)
shift as well. This is noted in the classic quantum mechanics textbook by Cohn-Tanoudji et al. [75],
where it is pointed out that there are in fact two types of effects associated with the time-dependence
introduced by vacuum fluctuations (or similarly range-dependent roughness in the acoustic waveguide
problem):

e The mixing of eigenstates producing transition probabilities and characterized by time-dependent
perturbation theory. (This corresponds to Bragg scattering described by the Born series in the
acoustic scattering problem.)

e The Lamb shift modifying eigenstates — i.e., time-averaging creates a new stochastic problem
that is effectively static (time-independent). (For the acoustic problem, replace “time” with
“range” in this statement.)

In the deterministic problem, a similar effect is introduced by surface tilt. Once again the interface is
smeared, this time by the shielding (or buffering) by a cloud of virtual particle pairs (i.e., bound uprange-
downrange oscillations). The FW transformation automatically generates this without the need for
explicit stochastic averaging. This forms an important precedent, which will help us understand how the
PE deals with Bragg-scale vorticity, an effect that occurs along an interface where the density jumps (see
Section 6.1). Sometimes, tilt-induced buffering survives into the stochastic problem. This is called the
“downrange Lamb shift,” because it is caused by smearing in the downrange direction rather than in the
transverse direction (as is the traditional Lamb shift). The downrange Lamb shift occurs when there is a
sound speed cusp along a stochastic rough surface and, as we will soon see, apparently a weak form of
this effect also occurs when there is a density jump along such an interface.

4.4.2 Terms Proportional to Surface Curvature and Tilt

Figure 15 also takes note of the fact that in Eq. (81), there is an exotic new curvature-induced diffuse

scattering term: —( yn /4)< i"§;(> o This interesting scattering effect couples modes, but it will not be
Z=

considered very deeply in the present context. However, assuming the incoherent field is proportional to
the surface height (i.e, Jye f), the term involves the important expansion parameter

<i" - f>= —< f 2> , which is worth a closer look.

Recall that tilt-induced buffering associated with a sound speed jump is proportional to f2 (eg., see
Eq. (72)), and similarly, if the surface corresponds to a jump in the first derivative of the sound speed,
there is also a virtual cloud that generates a term proportiona to f2 (see EQ. (31)). The Foldy-
Wouthuysen procedure will eventually add higher-order downrange derivatives that create terms
proportional to higher powers of f . Thismakes f atrue expansion parameter, limiting the slope f<1

and so the interface grade to under 45 deg. This atrait shared with rough surface scattering theories based
on the Kirchhoff approximation or perturbation theory. For the sound speed cusp and apparently also for
a dengity jump, there is a “downrange Lamb shift” effect that is proportiona to the mean square sope

< f 2> . As we have just seen, this quantity also shows up in the stochastic diffuse scattering problem,
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where we would obtain a term proportional to <i" -[incoherent field]>oc<i"- f>=—<f2>. The

expansion parameter < f 2> is a broad-spectrum parameter in the sense that it is sensitive to all scales. For
the typical scenario where surface roughness is characterized by a power-law tail such that the quantity
< f 2> blows up (e.g., the spectrum S(K) ~ :I/ kP; p<4 for atwo-dimensiona rough surface), we have
to impose a cutoff. For the PE, we follow the convention from quantum mechanics (e.g., Ref. 57, p. 60)
and cut off the wave number at the reference wave number k. This cutoff is associated with a limit of
spatial resolution. From the uncertainty principle, an allowed wave number range of O to K, corresponds

to amaximum spatial resolution of 1/2k, =4, /47 , where 4, is the reference wavelength. The sensitivity

to an upper cutoff of the downrange Lamb shift and the curvature-induced diffuse scattering is associated
with a sensitivity of the underlying physical effect to all scales down to thislength scale.

Several more remarks are appropriate concerning the need to provide a cutoff beyond which the field
cannot resolve features of the surface. There are two related, but distinct scenarios at issue here:

1. The first is when <f2> and perhaps also <f2> blow up. Specifically for a two-dimensional

surface, if the tail of the spectrum goes as a power p<2, < f 2> blows up and the cumulative
effect of small-scale features causes the surface height to be unbounded, and if the tail of the
spectrum goes as apower p < 4, the mean square slope < f 2> does not exist and the surfaceisa
fractal. Clearly, some cutoff is necessary if our theory isto avoid unphysical infinities".

2. The second is when <f2> and <f2> are both finite, but scales very much smaller than the

wavelength nevertheless make a major contribution to these values. This can occur if the power
law isintegrable for k — o, or if some external physical constraint forces the spectrum to cutoff

at some large value of k. For example, when p> 2, <f2> is finite and when p> 4, then

<f2> is finite, but there may still be a significant contribution from scales that are very small

compared to the wavelength of the field. Alternately, note that for al naturally occurring
classical phenomena, the spectrum must cut off at some scale (at latest at the atomic scale). Even

if that occurs at far below the Bragg scale, < f 2> and < i 2> must still exist evenif p<4 and/or
p <2, and so the surface is never realy of infinite height, nor does it continue to behave like a

fractal all the way down to the smallest scales. When <f2> and <f2> exist, but depend on the

characterigtics of the surface at very small scales, then the question becomes: do the scales well
below a wavelength really matter as far as the field is concerned? The answer is no. Since the
field cannot possibly react to what happens at scales far below that alowed by the uncertainty
principle, it cannot, for example, directly depend on the nature of some physical cutoff in the far
UV (i.e., large k). (It can indirectly depend on these scales via the values of the environmental
parameters, but that is another issue.) The theory as currently constituted is thus overly sensitive
to small scales.

™ On a semantic note, once we introduce the cutoff on the fractal surface, it is no longer, strictly speaking, a true
fractal. It is now known as a self-affine surface. By this we mean that the surface behaves like a fractal within the
length scales that matter to the physical process that concerns us. Any naturally occurring “fractal” isrealy a self-
affine surface.
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Both of these scenarios imply that some imposed cutoff at the limits set by the uncertainty principle is
absolutely necessary. In the first case, that fact is impossible to ignore. This happens, say, in
unrenormalized Quantum Electrodynamics (QED). In the second case, the issue is redly the same (an
imposed cutoff is necessary because small scales are oversampled), but now it is easier to ignore, and in
fact it is often overlooked. Thisis an illustration of an important issue Weinberg addresses in his field
theory text [76, p. 441] “... the renormalization of masses and fields has nothing directly to do with the
presence of infinities, and would be necessary even in a theory in which al momentum space integrals
were convergent.” In other words, tractable approximations to field theory tend to be overly sensitive to
small scales, and they need to be cured of it.

4.4.3 Understanding the Cutoff as a Crude Form of Renormalization

Our artificially imposed cutoff is a crude form of renormalization (valid in the PE /Schrédinger
equation (PE/SE) limit). The Lamb shift was historicaly the phenomenon that first raised the issue of
renormalization [76, pp. 31-38]. Interestingly, as noted by Weinberg (p. 38), “A fully relativistic
calculation of the Lamb shift including positrons in intermediate states could have been attempted in the
1930's, using the old non-relativistic perturbation theory” [76]. In this report, we present a variant on the
idea that classical PE/SE theory can be used to obtain Lamb shift phenomena. It is based on Welton's
approach as described in Refs. 57 and 62, but additional information is also extracted from the new terms
introduced by the FW transformation.

Note that in the “toy model” of the atomic Lamb shift, it is aready <5r2> that diverges, and not only

<5r‘2> = <v2> . This is analogous to the case where both < f 2> and < i 2> diverge for a rough one- or

two-dimensional surface. In other words, the roughness of the vacuum fluctuations™ corresponds, for
example, to the p=2 case for a rough two-dimensiona surface. Renormalization is thus necessary to
handle divergences in both components of the Lamb shift that appear in our “toy model.”

It is also instructive to approach the issue of renormalization from another point of view. In the “toy
model” of the atomic Lamb shift, the new term imposed by the FW transformation is associated with a
virtual electron-positron pair (note the quote in the paragraph above). This becomes aloop diagram in the
language of Feynman diagrams, and it is loop diagrams that force the issue of renormalization. The
electron-positron loop is associated with a phenomenon known as vacuum polarization", and it is the root

cause behind the divergence of <5r‘2> = <v2> . (Theloop diagram associated with vacuum polarization is
shown, for example, in Fig. 8-4, p. 152 of Ref. 57.) Similarly, the fluctuations introduced into the
Schrodinger equation by hand correspond to virtual photon-electron loops. These virtual photon-€lectron
loop diagrams also diverge unless some kind of renormalization procedure is invoked, but more slowly

than do the loops generated by electron-positron pairs. The photon-electron loops are connected to the
vertex correction term and to some extent also to the electron self-energy, and these loop diagrams (also

shown in Fig. 8-4, p. 152 of Ref. 57) are the root cause behind the divergence of <5r2>. The photon-
electron loops™ (connected to the transverse Lamb shift) form the bulk of the atomic Lamb shift effect.

= Recall that in this context, the fluctuations are imposed artificially by hand since our model imposes second
guantization as an ad hoc modification to first quantization.

"V acuum polarization also involves a virtual photon, sinceit is a consequence of the interaction of the electron with
vacuum fluctuations, which in turn involve virtual photons.

" Recall that these are associated with the transverse Lamb shift.
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The vacuum polarization” is much smaller, and it has the opposite sign. This leaves a small shortfall in
the effect, which is mostly made up by the contribution from an anomal ous magnetic moment [77]. There
are also small higher-order corrections.

4.4.4 Towards Incorporating the New Physics into Underwater Propagation

Having developed a general understanding of the context of the classical Lamb shift relative to other
field effects, the next step in examining this effect is to explore the significance of the classical Lamb
shift in the context of underwater propagation. The rough sound speed cusp Lamb shift may appear when
the acoustic field is confined in a duct, and propagates for long ranges (see Fig. 16). The ducting occurs
because the sound speed profile is downward refracting on the top portion of a layer (or aternately the
air-sea interface bounds the field from above), and upward refracting below, and thus it is not directly
caused by the cusp. However, this ducting causes a significant amount of acoustic energy to be
concentrated in the vicinity of the cusp, and this provides the cusp with an opportunity to influence its
behavior. This may cause a significant phase shift of the acoustic wave. Futhermore, the rich impedance
boundary conditions induced by the classical Lamb shift for a cusp permit the existence of interface
waves trapped near the stochagtic rough interface. These boundary waves form a part of the coherent
field that decays exponentially away from the interface. In other words, some fraction of the acoustic
energy is confined to the immediate vicinity of the interface. Thisis akind of localization. For a one-
dimensiona interface embedded in two-dimensional X— z space, this is a one-dimensional localization
effect, while for the atomic Lamb shift, we would have localization in three-dimensional space. This
explains why the Lamb shift is sometimes tied to Anderson localization (for example, see Ref. 78,
especialy thetop of columniii, p. 39).

\ /
\\\ ol The cusp is advected by
- the motion of the water so
that it falls along this rough
surface
The sound .
speed profile Ray symbolizing an

acoustic field trapped in a duct

Fig. 16 — The acoustic Lamb shift associated with a rough cusp may appear in
long-range propagation associated with a duct formed by pronounced near-
surface layering.

" Recall that this is associated with the downrange Lamb shift, and so with the new terms introduced by the FW
transformation. Note that this implies that structure of the field equations automatically forces vacuum polarization
once photon loops such as the vertex term are introduced.
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The acoustic Lamb shift associated with a sound speed jump may affect shallow water propagation via
the interaction of the field with a rough ocean bottom. Here the effect shifts the downrange wave number
of the coherent field in a way that may accumulate within the phase. However, the sound speed jump is
typically quite modest for ocean bottoms that acoustically behave like a fluid such as mud, sand, and
relatively unconsolidated rock (as opposed to elastic solids such as limestone and basalt), while the
density jump can approach a factor of two. Thus, to properly model a rough ocean bottom, it will be
necessary to consider a density jump as well as a sound speed jump. In the next section, we will see that a
straightforward generalization of the FW ansatz permits usto include a density jump.

5. INTRODUCING A DENSITY JUMP

The density jump as found, for example, at the ocean bottom, is introduced here in Section 5. In
Section 5.1, the basic components of the FW procedure are adapted to the case where the density jumps,
and then Section 5.2 discusses o -function bifurcation, an important new tool needed for adapting the
results to interfaces where the density jumps. In Section 5.3, the interface where the density jumps is
examined for the first time. Tilt-induced smearing is examined in the context of the deterministic
problem, and then the resultant insights are used to obtain the classical Lamb shift associated with a
density and sound speed jump. Here, as with the sound speed cusp but unlike the sound speed jump, we
obtain a small tilt/curvature-induced “vacuum polarization” correction to the classica Lamb shift. The
examination of the classical Lamb shift concludes with a discussion of its possible relevance to
underwater acoustics.

In addition to their direct effect on the scattering problem, the phenomena examined in Sections 4 and
5 aso teach us something very important about the PE. They use the dominant component of the Lamb
shift, transverse smearing induced by stochastic averaging, to develop a solid understanding of stochastic
smearing (i.e., buffering) of a singularity associated with the environmenta parameters. Juxtaposing this
phenomenon with tilt-induced smearing in the deterministic problem, we discover that the PE buffers
(i.e., smears out) singularities in the deterministic problem in a way that closely mimics the buffering
imposed by the stochastic problem.

Section 5 aso serves to build our understanding of some of the issues associated with the density
jump. In Section 6, the knowledge acquired in Sections 4 and 5 will be used to examine a very important,
but also very subtle issue that must be addressed if density jumps are to be properly incorporated into the
PE.

5.1 TheBasic Formalism

When the density varies, the problem generaizes in arather straightforward manner. In the formulas
below, the changes associated with density variation are enclosed in box@.

The formal development in this section applies equally to two-dimensional and three-dimensional
spaces. Interfaces are explicitly introduced in Section 5.2. Once interfaces are considered, consideration
will once again be restricted by convention to two-dimensional spaces.

5.1.1 The Ansatz

Recalling Eq. (1), the Helmholtz equation generalizes to

2.2
V-(EA} " A=o0, (84)

p
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where p isthe density. Now, the Foldy-Wouthuysen ansatz becomes
P :
o= ast Po|9A] (85)
x) 2 k| pox

where p, is some reference density. The time-averaged downrange energy flux

1 . 0A
=——Im| A —
> 2p0 m( 8x]

is proportional to afactor of 1/ p and thisisbuiltinto & and y, so that

6] =[] =2p06S,

and so € and y areindeed carriers of flux as before (the reference density p,and the reference sound
speed ¢, = a)/ Kk, arejust constants). In Appendix I, it is shown that the state space equation is once again

iaa;q):HQJ with H=0+&+kn,
X

where now
O=A¢

e=(i-2eri)n’ >

with the matrices 77 and & as before, and

YT'( YT
ol
e R
1 K AK 1 P,
=—1-—|=— ==|1-n? |, 8
g 2( Ko 2K, 2( P ] &

751[1_£J=_A_P
2 Po 2,

Note that now « is defined in terms of the compressibility K = ]/ (czp) rather than the sound speed
squared, but the definition for 4 reduces to the previous expression if the density is everywhere the
same. K, is some reference compressibility. Note aso that A (the coefficient of the odd matrix &) is
still Hermitian, but it acquires an extra term related to the departure of the local density p from its
reference value p,. The state space equation is very similar to what it was when the density was

everywhere the same, but now the even operator £ has also acquired an extra factor proportional to ¥
that measures how much the local density differs from its reference value.
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5.1.2 The Diagonalized Hamiltonian

To obtain the diagonalized matrix Hamiltonian H to fourth order, consider the general results shown
in Egs. (14) and (15), which are reproduced here for convenience:

HY =kp+E" (88)
where
(;9—2—;9—4j 5—8i 0,[0,€] —8—[(9 0]
S” kO kO kO kO , (89)

8k0( (0.6 -i{0,[0,]}+0%)+ 5" order

and insert the definitionsfor £ and O from Eq. (86). Thisgivesus H to fourth order (counting powers
of A,7 and d/dx (actingon A,y ) asorders):

o 2 28 8 | ©0)

z{ﬂ antt5s {/12 - A

kop A]- kopz A+ iz[{ﬂ,;f},/i]+5thorder

The details of the derivation of Eq. (90) are given in Appendix J.1 on the CD. Note that we wave-dropped
the tilde and the superscript |V . (Recall that the commutator [] and anti-commutator {} are defined in
footnotef.)

The next step is to modify Eq. (90) for the specia case where the density variation is ajump. Thisis
particularly useful, since the density is often fairly constant within a given material, but jumps as one
passes from one materia to another. As long as the transition region from material to materia is very
small on the order of a wavelength (and it often is, particularly in the context of low frequency acoustic
scattering from the ocean bottom), it is a good approximation to model the jump in the density function
by a step function along a precisely defined interface dividing the two materials. However, before
proceeding to develop aform of the Hamiltonian H given by Eq. (90) fine-tuned for such density jumps,
we have to explore avery important formal result: ¢ -function bifurcation.

5.2 ¢ -function Bifurcation

Once steps are introduced into the environmental parameters, the field theory will invariably generate
scenarios where distributions are multiplied. From a mathematical standpoint, there is no completely
general way to define such quantities. However, it is possible to develop empirical rules for interpreting
these quantities in the context of field theory. This reflects the fact that the mathematics in this context
describes underlying physical effects that are well behaved.
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5.2.1 The Bifurcation Rules

To deduce the rules for the multiplication of distributions, consider two prototypical problems, which
cover the key physical circumstances of interest in the current discussion, and where we know an
acceptable interpretation for a product of derivatives must exist. Specifically demand that:

* |t must be possible to use the chain rule in the full wave eguation to recover the boundary
conditions for an interface where the density jumps:

2,2
k" A= 0= continuity of A,lai‘

L
V- (pVA)+ >n

* In the constant density PE (dp =0), where the sound speed jumps along a flat (range-
independent) surface, adding orders to the PE recovers the explicit boundary conditions for the
higher-order derivatives of the field (i.e., the boundary conditionson V7 y, n> 2)".

These conditions force & -function bifurcation. This means that the first time a step function is
differentiated to form a O -function, that o -function bifurcates into two half-o -functions an
infinitesimal distance on either side of the interface:

00(z-f)

z _J(Z_f):>5+(z_f) 5’(z—f).

+
2 2

Now, other factors in the product are no longer distributions, since all are evaluated just inside the half-
space on either side of the interface.

5.2.2 ¢ -function Bifurcation in Other Contexts

This result has in the past appeared in another context. Green's function integral formulas for the
solution to the Helmholtz equation in a bounded region pick up factors of %2, and this ultimately comes
from a similar & -function bifurcation at the normal derivative of the Green's function on the boundary
[79-81]. (The first two references do not explicitly use the terminology of distribution theory, but the
result isthe same.)

The issues related to the multiplication of distributions are relatively hidden in quantum mechanics,
and to some extent aso for the sound speed cusp. Since the wavefunction itself is continuous, the
products that involve distributions occur in third and higher-order terms in the Hamiltonian H —
examples include the terms proportional to

(VAV) V2,9V (V) VV (V) V2, (VA ) (92)

(On the other hand, products of distributions are aready in Section 4.1, where we consider quasi-first
order theory for an interface where the sound speed jumps.) Obscuring the whole issue even further is the

¥ In considering this range-independent problem, we will exploit the fact that the eigenvector structure of the
solution will force the ordersin the operator A to decouple. Basically, this means that any distribution generated in
A"y must cancel internally, and so adding a higher order to the PE will add new boundary conditions, but not
change preexisting boundary conditions extracted from lower order theory. The details of this assertion are
discussed at the beginning of Appendix K.2.1.2.
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fact that in quantum mechanics, one typically calculates expectation values, often using decompositions
of unity to smplify the evaluation of these expressions. Specifically, physical quantities are characterized
by expectation values of (Hermitian) operators, and products within these expectation values can be
broken apart by interjecting decompositions of unity of the form Z|(Pn><(/’n| (where the set of

eigenvectors {qon} (for the time-independent problem) form a basis for the solution set). Then, products

of distributions such as in Eq. (91) seem to go away. Decompositions of unity are also useful because
they reduce the number of distinct expectation values that need to be calculated, and the technique is
particularly appeding when used in the context of the atomic problem, because it helps to skirt the issue
that V itself isalready infinite at the origin®.

5.2.3 Caveats

It isimportant to keep in mind that the multiplication of distributionsis not defined in general. Thus,
theo -function bifurcation prescription only applies in certain specified contexts, and it must be applied
with care. The prescription works well when the associated step functions are raised to smple powers

(eg., aterm proportional to ©"(z— f (x))&(z— f (x))), and when it is used in conjunction with the

ordinary rules of differentiation such as the chain rule and the product rule. An example of the proper use
of the o -function bifurcation prescription in conjunction with the chain rule would be if we are given

some function of the step function g(@(z— f (x))) , and then define its derivative

99((z~f))/oz=g'(0(2~ f))-00(z~ f)/oz=[dg/dy] ,, ., &(z~ f (X))
(and similarly for dg/ox). Similarly, the product rule would imply that

2 g(0(z- 1 (x)))-h(e(z- (x)]-

9O L0 oz 1))+ gz 1 (x)) 2O LK

However, naively multiplying through by functions of the step function will cause problems. For
example, multiplications such as [\/1+constant-®]-5 or [1/(1+constant-©)|-& will produce

incorrect results when combined with the bifurcation prescription (at least if both sides are weighted
equally). These functions apparently distort the step and change the weighting factor. On the other hand,
we can expand these functions in a Taylor series expansion, which consists of a sum of terms that are

products of the form ®"-&. Now, for these clean undistorted steps we can use the & -function
bifurcation prescription.

* However, keep in mind that for the time-independent case, the higher-order Hamiltonian H is strictly made up of
powers of A =—#?*V? / 2m, +V , and as noted in the previous footnote, 4 is, crudely spesking, interchangeable with
an eigenvalue. Thus, A"p < ¢ and so the infinities associated with powers of V, with the distributions of the type
shown in Eq. (91), and with derivatives of the wavefunction ¢, must cancel when all are taken together. (Also note
that there must be internal cancellations between infinities generated by the operators V2 and V associated with
each specific application of the operator 4 .)
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The observation that ¢ -function bifurcation works for undistorted steps is an intuitively sensible
result. On the other hand, it is not a priori clear that there would not be a problem with distorted steps
generated internal to the chain rule. In other words it is somewhat surprising that in this context the step
in g’(@) is apparently undistorted with respect to the step ©. For present purposes, it is sufficient to

note that the result seems to hold in the two rather different examples we consider in the Appendix K¥ as
well asin the Green’s function integral formulain scattering theory, and that these examples are typical of
scenarios that arise in the context of the PE. Development of a full mathematical theory of the genera
result (including possible restrictions on its validity) will be deferred to future research®. Similar issues
apply to the product rule. For our purposes, we note that the product ruleis used in one form or another in
all four examples discussed in the Appendix K as well asin the Green's function integral formulas from

scattering theory, and that it consistently produces correct results. Thus, in this context the stepsin g (@)

and h(@) are apparently undistorted and the product rule can be used in conjunction with & -function

bifurcation. (There is some further discussion concerning the need for undistorted steps in Appendix
K.2.2)

5.2.4 Plausibility Arguments

Appendix K provides a plausibility argument for the o -function bifurcation rules given above.
Section K.1 considers two cases where the rules apply:

=  Subsection K.1.1 examines aflat interface where the sound speed jumps, but not the density,
= Subsection K.1.2 considers the full two-fluid interface in the full wave (Helmholtz equation)
problem.

Then, Section K.2 examines two cases where the prescription only seems to work to first order:

= Thesubstitution & =1/ p isanalyzed in Subsection K.2.1.1and
=  Tappert’s change of variable substitution U = A/ \/; isevaluated in Subsection K.2.1.2.

In Section K.2.2, we examine why some cases only seem to work to first order. In particular, the need for
undistorted steps is discussed in this section, and then our observations are verified in Subsection K.2.3,

when the o=1/p case is extended to second order using a Taylor series expansion. Finally, the
associative property for our prescription is briefly examined in Section K.3.

Before closing this subject, it should be emphasized that it is implicitly assumed in the ¢ -function-
bifurcation rules that the parameters jump at an interface, but do not otherwise vary in the vicinity of the
interface. Aswe seein Appendix J.2 (the argument leading to Eq. (J.19)), extra care must be exercised if
we apply o -function bifurcation in situations where this condition is violated. In particular, the
associative property (see Appendix K.3) in choosing which distributions to bifurcate may not hold, and
explicit symmetrization may be necessary.

¥ The chain rule for differentiation and the product rule for differentiation are both used in the full wave two-fluid
problem considered in Appendix K.1.2, and following a more complicated scenario, they are also ultimately needed
for the successful implementation of the change of variable (COV) substitution discussed in Appendix K.2.1.2.

# The result appears to be related to the fact that in g’(©(z)) = [dg/dy] ., » the discontinuous function ©(z) is
not really embedded inside the function dg/dy. Instead, it is applledy after the fact to produce a “clean” (i.e.,
undistorted) step. In fact, given the discontinuitiesin both g and ©, there does not appear to be any way to make
sense of g’(©) other than the interpretation g’(y) with y first treated as a general, continuous function, and only
subsequently set equal to a discontinuous function.
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5.3 Thelnterface Wherethe Density Jumps

In Section 5.3.1, the Hamiltonian (Eg. (90)) is converted to a form that is useful for the special case
where the density jumps along an interface, but is otherwise constant in the half-spaces. This section aso
examines the transformation between the pressure field A and the auxiliary field y associated with the

PE. Section 5.3.2 generalizes to the density jump the discussion of Section 4.1 by examining the
boundary conditions in quasi-first-order theory. The previous discussion is extended as the new FW
terms are examined closely in Section 5.3.3. Section 5.3.4 examines the classical Lamb shift for a rough
interface where the density and compressibility jump and so it is a generalization of Section 4.3. Finally,
Section 5.4 examines the significance of the classical Lamb shift in a typical scenario for acoustic
propagation in a shallow water (coastal) environment.

5.3.1 The Basic Formal Srructure
5.3.1.1 The Form of the Hamiltonian Useful When the Density Jumps

We are now in a position to use the ¢ -function-bifurcation prescription established in Section 5.2 to
tailor the general fourth-order Hamiltonian for an acoustic field in an environment where the density
varies (Eg. (90) of Section 5.1) to the specia case where the density jumps at interfaces, but is otherwise
constant:

2 3 4 s M
1—2}/+i_ﬂ_+ﬂ__%_(1+4}/)i+3{/1’/1J
H =1k, ko 2k02 2k§ 8k§ 8k§ 16k51 -
1 1y, 1 2
_4_k02{/1'{/1'7}}+ Tkg{ﬂ -{/1-7}}—2—%3{/1-7}

+ 5™ order.

This result is derived in Appendix J.2. In the derivation, it is assumed that a quasi-planar interface
separates two half-spaces, where the compressibility K (or equivalently u« = }é(l— K/ KO)) is assumed

to be range-independent in the half-spaces and the density p (or equivalently 7=}§(1— p/po)) is

assumed to be constant in the half-spaces. Both quantities may jump along the range-dependent interface.
The assumption that there are only two half-spaces is made to keep the discussion straightforward, but
there is nothing in the derivation itself that disallows a scenario where several interfaces are present.

As discussed in Appendix J.2 (and to a lesser extent later here in Section 5.3.1), in the half-spaces
where the density is constant, the terms involving the anticommutator {2, 7/} simplify dramatically.

Equation (92) maintains the more complicated form because these terms will generate o -functions at the
interface, and only the full form involving these anticommutators will produce the correct distributions
along theinterface.

During the derivation in Appendix J.2, we aso monitor the possibility that the compressibility K (or
equivalently 4) may be range-dependent in the half spaces. At the end of the derivation, we will find

that if & isrange-dependent in the half-spaces, we pick up an extra (nominally fourth-order) termin H :

1 1jfaay A )| [ L L[ A
”%[4@5{(§J ,;LS}+PV(4—kgﬂ_nko( 4k§ 2{ v ,/15}+PV(4K§D. (93)
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The subscript S indicates that 2.5 is to be evaluated precisely on the interface S. The superscript +

serves to remind us that as 2.5 bifurcates, du/dx is evaluated just inside the half-spaces. Furthermore,
since we are now alowing 4 and, consequently, A to depend on the range away from the interface, the
usual term proportiona to A? must also be added to the Hamiltonian H in the half-spaces away from the
interface. Indicating that this quantity is evaluated in its standard form everywhere except right on top of

the interface, we identify the standard A?term as a principa value (PV). Note that if u« is range-
independent in the half-spaces, then both sides of Eq. (93) indeed reduce to zero.

Equations (92) and (93) define adiagonal matrix Hamiltonian H to be used in a wave equation of the

form
ox\ ¥ X

where @ and y are decoupled scalar fields that propagate in the uprange and downrange direction,
respectively (as always, we will study the behavior of ). (Thefields 8 and y differ from the fields of

the same name defined in Eq. (85) by a sequence of FW transformations. As with the Hamiltonian H ,
we have dropped the tildes that we sometimes associate with quantities that come out of the FW
procedure. Once the diagonalization procedure has been completed, these tildes have outlived their
usefulness.)

Note that the assumption that the density is constant within a given medium, and only changes when
one passes from one medium to another, is very reasonable. The compressibility is much more likely to
vary significantly within a medium. Indeed, sound speed fluctuations within a given medium are
typically generated by fluctuations of the compressibility rather than of the density.

5.3.1.2 TheHamiltonian in the Half-spaces

The PE formalism not only picks out a specific downrange direction, but also reference values for the
density and compressibility. These are typically chosen to be the maximum values of these quantities.
For the basic interface problem, there are two values of the density in play, and ¥ will be nonzero on the

side where the density is smaller (i.e., different from the reference value p, = Py aimum )- ON that side of

the interface, the Hamiltonian will involve an expansion not only in A as before, but also in ¥, the

measure of the departure of the local value of the density from its reference value. (In power counting,
both 4 and ¥ contribute equally.) As before, the expansion must eventually converge to the “exact”

square root operator (neglecting any local range dependence in the half-spaces). There are severa ways
to combine terms to verify that thisis indeed the case. In the Appendix L.1, one of theseis derived:

H :% 1+ 2%1 =JV2+k?, (95)

where o = po/p . (Note that this result is only valid in half-spaces where p islocaly constant and the
range dependence in K is locally weak.) The second instance of « in Eq. (95) (i.e., the one in the
product 2@2 ) comes from the series
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1+(27/)+(27)2+(2}/)3+(27)4---:$:%:a, (96)

and the factor of 1/ex in front simply comes from 1/ =1—2y. Notethat this expansion indeed recovers

the correct result H =/VZ +k?. The result (Eq. (95)) emerges from a resummation of terms that

misses out on some cancellations, and therefore implies a more stringent convergence condition than is
realy the case. It is, however, a particularly compact form of the full expansion, and therefore useful as a
mnemonic for reproducing the new PE expansion in the half-spaces. & should always be written in terms
of ¥, andtheresult for H should be expandedin A and y to the desired order (with 4 and y counting

equally in determining the order).

An alternate closed form for «-order H that is based on a different grouping of the termsin the 4 -
¥ expansion is derived in Appendix Subsection L.2. This form more accurately reflects the convergence

properties of the expansion — in fact, the infinite-order result looks just like the traditional form of the
Hamiltonian in the water column (i.e., the form that leads to an expansion in the sound speed deviation
only, EqQ. (4)). Thisresult suggests that we will be able to proceed as before and use traditional PE codes
in the water column, even though formally the Hamiltonian in the water column now contains an
expansion in the parameter measuring the density jump: y. However, note that to determine the actual

order of such aresult, wewill still haveto formally expandin 4 and ¥ the Hamiltonian we actually use.

5.3.1.3 The Transformation Between the Pressure Fidd and the
Auxiliary Field Associated with the PE

As briefly discussed near the beginning of Appendix C.2.1, the fact that the FW transformation is by

construction pseudo-unitary guarantees that the integral over transverse space of the quantity |49|2 —| ;(|2

always remains proportional to the total energy flux in the uprange/downrange direction. Thisistrue even
if & and y are the decoupled fields that have emerged after repeated applications of the FW

transformation (e.g., as in Eqg. (94)). This implies that y will always be some kind of carrier of
downrange flux. Specifically, | 1|2 should differ from the downrange energy flux by no more than an

integration by parts. This leads us to surmise that the carrier of flux y must have arelationship vis-a-vis
the pressure field A that is similar to the one it had when the density was constant; however, now an

extra factor of :I/ \/; must be thrown in because the square of this quantity isin the energy flux, but it is

no longer globally constant. The result (again valid in half-spaces where the density is locally constant
and the range dependence of the compressibility islocally weak) is

%
1 .0 o 204
A=A |[ZJH - -A=|1+Z2 A=y 97
i ko\/ (+kOJ X 97)

Examining the first and second orders explicitly verifies that our conjecture is correct (see Appendix D.2).
Again note that Eq. (97) is essentially a mnemonic for the corresponding finite order expansionin A4 and

¥ . Also note that \/ﬁ is still a near-eigenoperator and so nearly cancels in weakly range-dependent
environments, but now there is also a factor «/E that cannot be dropped even if there is no range
dependence at al. (For this argument to work, we also need to recall that the commutator of \/E and
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\/ﬁ is nonzero only right on top of the interface, where Eq. (97) is not valid anyway, and where we do
not need to transform from the auxiliary field y back to the pressure field A.) Note that, strictly

speaking, the result for the endpoint calculation is only as accurate up the same order in 4 and ¥ asthe
Hamiltonian used.

5.3.2 Deterministic Quasi-First-Order Theory

We now have everything we need to examine quasi-first-order deterministic theory for the case where
the density jumps along an interface. This study extends the calculation in Section 4.1 (which isitself an
extension to a sound speed jump of the discussion in Section 3.2.3 for the sound speed cusp).

The current situation is similar to that described toward the end of Section 5.3.1, but here we
specifically restrict ourselves to the standard two-dimensional X—z space. Regions | and |l are

separated by a rough surface z= f (x) along which the density p and the compressibility K jump.
These parameters are now both assumed to be constant in Regions | and |1 (but this will again be relaxed
for K in Section 5.4). The reference values for these parameters are in general p, and K,. Since the

density is no longer globally constant, u generalizes to (= (1—KK /2: (1— nz-”O /2, where as

before n=c,/c=/[pK]/[pK,]. Similaly, y= /2 As just noted in Section 5.3.1, the
reference parameters p, and K, aretypically chosen to be the|r maximal values. In the conventions used

here, p,, and K, are the maximal quantities, and so K, =K, and p, = p, . This corresponds to the

prototypical case where Region | is the water column and Region Il is sediment in the sub-bottom
(generdly of the ocean). These conventions are summarized in Fig. 17.

As in Section 3.1, express the diagonaized matrix Hamiltonian in terms of a scaar Hamiltonian:
‘H =nH . Thequasi-first order scalar Hamiltonian H based on Eq. (92) is then

H=k0+/1—2k07—%k§. (98)

From Eq. (94), we see that this Hamiltonian is associated with the usua scalar PE (Eq. (18)) for
downrange propagation:

The ¢ -function-bifurcation rules outlined in Section 5.2 are used as needed to evaluate H. The
infinitesimal transverse integrations described in Section 3.3.3 (and dready used in the simpler version of
this problem described in Section 4.1) are applied to the PE. The boundary conditions that emerge are

[ 2 _ 2
g (T
8oy (K, py 8k; 0z p 0z
1 8}(” ziall _ 1 [ﬁ 5pj[ff fzaﬂ(J
Py 9z p 0oz 8p\ K, p, 0z

X =X
(99)
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Physical parametersin region I:
p, =density inregion |
¢, =soundspeed in region |

Field that carries

Region I: T
downrange flux: g, ,eg K, = compressibility in region| = —;
Typically water PG
7+
rough interface given by: z= f (x)
x+(downrange) |Field that carries Physical parametersin region I1:
_df downrange flux: z, Region I1: py =density in region Il
dx Typical |y the bottom ¢, =soundspeed in region Il
. d?f AT ] 1
f=—yu K, =compresshility inregion| =——-
dx 1 Ci

oK =K, —K,;K, isthereference value K,
op=p, —p,:p, isthereference value p,
Usefor K, >K,;p, > p,

Reference wavenumber: k, = %0 = wKop, =0K, p,

Reference sound speed calculated using
reference density and compressibility;

note that the reference values are typically chosen
to be the largest values of the parameter

Fig. 17 — We consider the standard two-dimensional x—z space. Regions | and Il are separated by the
rough surface z= f (x). The positive z-axis points from Region Il into Region I. The density p and (for
the moment) also the compressibility K are constant in the half-spaces. Region | is typicaly the water
column, and Region Il istypically sediment in the sub-bottom. In order to minimize the related PE expansion
parameters ¥ and u , the reference values should be chosen to be the maximum values of the parameters. In
this case, this means that the reference density is chosen to be that in Region Il (the bottom) and the reference
compressibility is chosen to be that in Region | (the water column).

A bar denotes an average between the respective quantities evaluated on the two sides of the interface.
Details of the derivation of boundary conditions (Eq. (99)) are given in Appendix M. Setting
O0K/K, =-2u, and dp =0, we verify that Eq. (99) is indeed a straightforward generalization of Eq.
(72).

We defer the extension of the discussion in Section 4.2.1 to Section 6.1.5. In that section, we again use
the full-wave boundary conditions to gain an understanding of the deterministic boundary conditions

generated by distributions in /A — thistime, the more genera A responsible for the boundary conditions
given by Eq. (99).

Having derived the boundary conditions for quasi-first-order theory, let us gain further insight into the
new terms uniquely generated by the FW transformation (i.e., those with an explicit range derivative; as
we have already argued, such terms are loosely associated with “vacuum polarization”). Thisis donein
the next section. There, Section 5.3.4 examines the stochastic problem.
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5.3.3 A Close Look at the New Foldy-Wouthuysen Terms
5.3.3.1 Higher-order FW Terms

As frequently discussed above, the FW procedure generates a Hamiltonian that uniquely includes a
series of terms explicitly associated with the range dependence. It was noted in Section 4.4 that the terms

of this series that are proportional to A correspond to the phenomenon of “vacuum polarization” known
from guantum mechanics (because this type of term involves virtua particle pairs)®*®. The lowest-order

member of this class of termsiis the third-order term —/'1'/ (8k§) , that was just evaluated in Section 5.3.2.
Examining Eq. (92), we see that there are also two nominally fourth-order termsin this class:

3{. 4] i
W and —4;/8—k03 .

Below, we present an estimate for the magnitude of these terms for typical values of the environmental
parameters, and verify that they are indeed getting smaller. Furthermore, ¢ -function bifurcation can be

used to convert the —(4y) l/ (8k§) term into a form that suggests an infinite series encountered

previoudy. The infinite series can be evaluated in closed form. This allows us to examine the boundary
conditions for Dirichlet ( ¥ = 0) and Neumann (dy/dn =0 for the full wave problem, but this changes a

little bit for the PE) boundary conditions. The Neumann boundary condition for the PE implies the
existence of curvature-induced boundary waves. Curvature-induced boundary waves have not yet been
fully incorporated into modern scattering theory, and the PE based on the FW transformation presents a
promising new technique for doing so. Curvature-induced boundary waves were studied by Biot and
Tolstoy in aline of development that has until now run parallel to mainstream rough-surface scattering
theory. The relationship between the Biot-Tolstoy scattering theory and the curvature-induced boundary
waves predicted by the parabolic equation based on the FW transformation is discussed at the end of this
subsection.

5.3.3.2 Specific Examples

Asin Section 5.3.2, we consider two-dimensional X— z space, and Regions | and |1 separated by the
rough surface z= f (x) Vaues p and K are constants in the half-spaces, but jump at the interface.

The reference compressibility is K, , and the reference density is p,, . Thisimpliesthat &, =7, =0. In
this section, we choose the values

Kwater = KI = KO :3KII :3Ksand

2P =201 = Po = Pi = Peng : (100)
Coue =1500mM/s = c_,, =1840m/s

These parameter values are representative of underwater acoustics scenarios.

Comparing the fourth-order term lﬁig{l,i} with the third-order term —)i/ (8k§) we find terms that

differ from the corresponding (bifurcated) third-order contributionsin one of two basic ways:

#4 An example of a new term introduced by the FW that is not of the “vacuum polarization” class of terms would be
the term given by Eq. (93).
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= Termsthat differ from the corresponding third-order term by afactor ([-3K,]/[4K,])(VZ/kZ)

(operating on the wave function y, ).
»  Termsthat differ from the corresponding third-order term by afactor 3( M, — 7@) .

(Recall that the subscript £ indicates that the parameters are to be evaluated just inside Region | (+) or
Region Il (-).)

In Appendix N.1.1, it is argued that for the parameters given in Eq. (100), terms of the first sort will
typically provide a negligible correction on the order of 1% to 2% while terms of the second sort
introduce a still-modest 12.5% correction.

In Appendix N.1.2, it is established that for the usual scenario, where ¥, =0(i.e., the reference
density isin Region I1), o -function bifurcation reduces the term —47(1/ 8k§) to

A A
by ==y . 101
Given the parameters listed in Eqg. (100), this represents a 50% correction to the third-order term

- l/ 8k§ . Thiserror is significant enough to cause concern that in many practical instances, it may prove

necessary to use higher-order theory to correctly evaluate this term. Therefore, in Appendix N.2, the
result is extrapolated to infinite orders.

5.3.3.3 Infinite-order Theory

The extrapolation is obtained as follows. Theterm given in Eq. (101) hints at the sequence of terms

A
1+ 2y )—,
which contains the familiar factor (1+ 27/+). This hints a the beginning of a series that plays a
prominent role in our expansion of the PE, namely the series given in Eq. (96):

1+(2y) + (2;/)2 + (2;/)3 = p,/ P - Thissuggests that at infinite order, we have —(/1/8k03) (pu/p))-

Modifying the boundary conditions accordingly, and then taking the limits p, > p, and K,, < K,

we get the Dirichlet boundary conditions for the field in Region Il and the Neumann boundary conditions
for the field in Region I°®. The details are in Appendix N.2. The Dirichlet boundary condition is
unchanged, but note what happens to the Neumann boundary condition. It becomes

¢
Vix = _ZZ' . (102)

bbb Note that these boundary conditions would apply, for example, if Region 11 represents the water column under an
air-sea interface or Region | represents the water column above a very hard bottom. Note, this implies that the
Dirichlet boundary condition would apply for an acoustic field incident from a hard bottom onto the water column
and the Neumann boundary conditions would apply on a sound field incident from the air onto the ocean surface.
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Thisis significant because such boundary conditions allow solutions containing transverse dependence of
the form exp(— f. z/ 4) — i.e, boundary waves. As noted above, these curvature-induced boundary

waves have not yet been fully incorporated into modern scattering theory, and the PE based on the FW
transformation presents a promising new technique for doing so.

5.3.3.4 Boundary Waves

Boundary waves have proven to be quite problematic in scattering theories based on the full-wave
acoustic equation. For example, they do not show up at low orders of perturbative, small-slope or
Kirchhoff scattering theory. If they show up at al, boundary wave phenomena creep in as multiple
scattering effects at high orders of these approximations. As Thorsos and others have pointed out [82-85],
the fact that a given order can ignore boundary waves is intimately connected to the fact that the above
rough surface scattering theories do not conserve energy at each order. A prominent example is lowest
order perturbation theory for the Neumann boundary condition, which predicts a scattered field even at
glancing incidence, when the energy flux incident on the surface goes to zero. The perturbation, small-
slope, and Kirchhoff approximation (and others less well known) are all part of a closely related family of
approximations, and therefore they share many advantages and deficiencies, including their problems
associated with boundary wave phenomena such as the lack of order-by-order energy conservation. Note
that the PE has energy conservation built in, so a rough surface scattering theory directly based on it
should include the phenomenon of roughness-induced boundary waves. Thisisakey distinction between
traditional theories of rough surface scattering and the energy-conserving PE, and it is potentialy a
fruitful topic for future research.

Appendix O presents a closer look at curvature-induced boundary waves in the context of modern
acoustic scattering theory and points to ways in which the PE based on the FW transformation may
contribute to our understanding of thisissue. This appendix aso notes that effects that explicitly depend
on the square of the local slope™ raise issues that are similar to the ones posed by curvature-induced
boundary waves. Both effects are artificialy pushed to high orders by the various perturbative
approximations in widespread use, and both involve physics that is new to the theoretical framework and
is uniquely sensitive to the size scale between the Bragg (wavelength) scale and [wavelength] /27 (this
is athird scale in addition to the large (> wavelength) scale and the Bragg scale). The new physicsis a
conseguence of the fact that the curvature f andthe square of the slope f2 typically remain sensitive to
subwavelength scales, while the surface displacement f does not™. However, this sensitivity to small

scales also causes trouble. Such terms fail to properly cut themselves off at very small scales, and,
therefore, they raise the issue of renormalization. The PE provides a serviceable solution to the
renormalization problem: the issue of renormalization can be sidestepped with the use of a single upper
cutoff. The advantages of the PE are, then, that it brings curvature and tilt-induced effects to their natural
place at low order, and that it presents a serviceable solution to the renormalization problem.

°C This refers to effects explicitly proportional to f?2 such as those discussed in Section 4.2.1, and not to effects that
implicitly depend on the slope, such as tilting of the diffraction grating introduced by the small slope approximation
Ssee Appendix O).

% This statement applies to the rough surfaces typically encountered by classical fields. As noted in Section 4.4,
this does not hold in the analogous problem from atomic physics, where even the equivalent of f becomes sensitive
to small scales.
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5.3.3.5 Rdationship to Other Approaches Such asBiot-Tolstoy Theory

There is an independent line of research that shares many of these advantages. However, it has
remained outside the mainstream of scattering theory. M. A. Biot and |. Tolstoy have developed a theory
for scattering from bossed surfaces that predicts curvature-induced boundary conditions that are very
similar to those generated by the “vacuum polarization” term. This work was outlined in a series of
articles beginning in the late 1950s. A flavor of the effort is provided by Refs. 86 through 88, and a more
complete reference list is available in the annotated bibliography at the end of Ref. 8. Their boundary

conditions contain terms that are proportional to the curvature f , and resemble the O( f ) contribution
to boundary conditions on dy/dz given Eqg. (71) for a sound speed jump, Eqg. (99) for a density and
compressibility jump, and Eqg. (102) for the Neumann boundary condition. (For that matter, the O( i 2)

term in the d/dz boundary term associated with the sound speed cusp and given in Eq. (31) is similar
aswell.)

The similarities reflect profound links between the results obtained using the two very different
approaches. The physics of Biot-Tolstoy theory is basically the same as that associated with the
curvature-generated component of the “vacuum polarization” term. The dependence on the curvature
ensures that the associated physical effects are sensitive to a broad spectrum of wave numbers in the
rough surface spectrum. Therefore, via the uncertainty principle, we know that they are also sensitive to
scales smaller than a wavelength. The associated physical effects include curvature-induced boundary
waves and other emergent multiple scattering phenomena. Although these effects are obscured by
perturbation theory, they are not vanishingly small. Biot-Tolstoy boundary waves have been observed in
the [aboratory [89-90].

There are also severa differences between the “vacuum polarization” contribution to the PE and Biot-
Tolstoy scattering. The PE deals with both cusps and jumps in the environmental parameters, while Biot-
Tolstoy theory only handles jumps. The remaining differences between the two approaches reflect the
different ways that the rough surface is constructed. Biot-Tolstoy theory constructs the surface using
bosses (hemispheres, sections of hemispheres, and indentations of the same shape). Generally speaking,
Biot-Tolstoy theory allows for surfaces that are rougher than those allowed by the PE, which only allows
surfaces that are smooth displacements from the range-independent problem and have modest dope and
curvature. The PE thus operates towards the smooth-surface end of Biot-Tolstoy theory. To use Biot and
Tolstoy’ s terminology, the parabolic equation is restricted to surfaces with small form factors. Thus, it
can only generate boundary waves along concave deterministic surfaces (associated with parameter
jumps) or along cusps. Bossed surfaces of the type addressed by Biot-Tolstoy theory can have non-zero
average curvature, and so boundary waves are possible even in the stochastic problem. On the other
hand, the parabolic equation deals directly with the surface relief function f, and so it can easily handle

relatively smooth deterministic surfaces. More generdly, there are a number of complications associated
with decomposing surfaces into bosses, and these are avoided by the PE.

Finally, we should also note that Barbone and Spivak have also combined effective impedance
boundary conditions (vaguely like Eq. (102) above) with the PE to model scattering from the ocean
bottom [91]. Here acoustic scattering from the bottom is modeled using an apparent impedance that is
treated as a perturbation from the boundary conditions for a rough pressure-release (i.e., Dirichlet
boundary condition) surface. The physics here is not the same as the phenomena described by the
“vacuum polarization” termin the PE.

Next, let us consider the stochastic problem for the PE where the density and compressibility both
jump.
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5.3.4 The Classical Lamb Shift for dp # 0

This section examines the stochastic boundary conditions corresponding to a field that obeys the
boundary conditions shown in Eg. (99) in the deterministic case. All the assumptions described by Fig.

17 must, of course, continue to hold here. Specifically, assumethat K, > K,, and p, < p,, , and that the

reference values are chosen to be the larger value. As in Sections 3.2.3 and 4.3, adapt the technique
originally developed by Kuperman [65]. Project the boundary conditions at z= f down to the line

z=0. Then break the wave function evaluated at z=0 into coherent and incoherent parts:
2|, = (¥)(0)+ 8y , and average these boundary conditions.

The stochastic version of the boundary conditions shown in Eq. (99) turns out to be:

(x)

-0 =<Zl| >

z=0

437 7] S

_J_pr.Mﬂ +5prM> ro(14)
8k; | P 0z o Iy 0z

1z=0

1) _10(n) +<f'5’>(§_5_f’}@[ﬁ—5—pj

(103)
p 0z |z=0 Py 0z |z=0 8o, \K, p P K, py
_k§<f2>(§_§_pJ_8<;(> _<f2>5_p{ia3<ﬂt>}
2p, \K, p,) oz o 2| p* o7 0

—<f2>%{%a;¥(>lo+o(f4).

As always, an overbar ~ indicates an averaging between the values from Regions | and Il. Note that if
weset p, =p,, op=0 and OK/K, =-2u, , werecover Eq. (81). Recall that as aways, the surface

spectrum used to cal cul ated < f 2> and < f'5,{> cuts off at k, = /K, p,, . The details of the derivation of
Eq. (103) are presented in Appendix P.

In the dy/dz boundary condition of Eq. (103), there is an apparent “vacuum polarization” term (i.e.,
downrange Lamb shift):

~(i%)2 1 3(x)
8k?| p* oz Z:O'

This time, unlike for the sound speed cusp and our “toy model” for the hydrogen atom (Egs. (40) and
(51), respectively), this “vacuum polarization” contribution has the same sign as has the “traditiona” (or
transverse) Lamb shift (caused by smearing). That is because this term is generated by a“hole.” In other
words, it results from the absence of aterm rather than from the active presence of aterm. The term that
is“missing” from the deterministic boundary conditions (Eq. (99)) is
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| 1%
8kZ| p? 9" |,

Thisisthe first time that we have encountered a“hole” like this, and for the time being, the result will be
treated as tentative. These issues are discussed further in Section P.2.

Appendix P.3 discusses the stepping algorithm for the discretization of the stochastic problem
characterized by the stochastic boundary conditions shown in Eq. (103). The complications discussed
there are adl related to the boundary conditions involving the second and third derivatives of the stochastic
field <,{> To get a quick and dirty idea of the magnitude of the classical (acoustic) Lamb shift in the
context of shallow water acoustics, these problematic terms are dropped in the calculation in Section 5.4.
For shallow grazing angles, these higher-order transverse derivatives of the field are small and this
approximation is perfectly legitimate. The remaining boundary conditions still conserve energy.

5.4 The Significance of the Classical Lamb Shift in Underwater Acoustics
5.4.1 The Basic Formalism

In this section, we consider long-range ducted propagation in a realistic shallow-water environment.
The depth of the water column is on the order of 100 m and the penetrable bottom is composed of rough
sand, mud, or soft fluid-like rock.

In many such shallow-water scenarios there are aso sound speed gradients in the water column and in
the bottom, and these gradients are not the same in magnitude. This generates a sound speed cusp along
the seafloor. Furthermore, the gradients in the sound speed may even experience discontinuities within the
media, and these too may occur along rough interfaces. Thus, both the surface and cusp Lamb shifts are
present. To describe downrange propagation under such a scenario, we employ the quasi-first order
stochastic variable density result with the sound speed cusp included. Note that Eq. (93), which adds a
term associated with a variable sound speed in the half-spaces, is nominally fourth order, while the term

proportional to A that is present in quasi-first order theory is nominally third order. Thus, to obtain quasi-
first order theory where there are parameter jumps and sound speed cusps, we should ssmply combine the
boundary conditions shown in Egs. (40) and (103). In order to put the results into a form suited for
numerical studies, we use boundary conditions Egs. ((P.14) and (P.20)) in lieu of those in Eqg. (103).
These alternate boundary conditions introduce the variables A and B :

2=0 _<X” >

<Zl> z=0=4k°2<f2>8{%¥} +4k§<f2>Amz=o

—B[%< f %ﬂzzo +8Kk2- BB< i %ﬂzzo +4™ order.

Diffuse (Bragg) scatter terms

: a<a;2> _ia<azz”> =A(fer),, -8sA(15), (104)
pl p” Diffuse (Bragg) scatter terms

z=0

_4k§<f2>A¥ 7 —4k§<f2>8_%a3a<zf>: =0+|3<f : f'){%al}fq )
J ) 29 P
st 2 oy Ao Yo

+ 4™ order,
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where
zi(é_K_é_p] . gt
8o, (K, py ) 8k;

Asin Section 4.3 (specificaly, the discussion leading to Eqg. (82)), we now drop the terms associated with
diffuse (Bragg) scattering. Furthermore, as discussed at the end of Section 5.3.4, we also drop the terms

proportional to the second and third derivatives of the stochastic field < ;() .The latter is a good
approximation for shallow grazing angles. Here in Section 5.4, as we are considering long-range ducted
propagation in a shallow-water environment, mode-stripping rapidly eliminates any high-grazing angle
modes, leaving us only with shalow-grazing angle modes. Thus, in the present context it is perfectly
legitimate to eliminate the wide-angle terms proportional to second and third derivatives of the stochastic

field (). Theresult of these approximationsis

<X'>z=o_<;{”>z=o :4k§<f2>ATZ>LO+4m order.
Lo _19ln)
P 0z .0 P 0z 0
8_ 0 9
_4k5<f2>A% +k§<f2>{ E—;:” - [ai”” ]<Z>2=0 (105)
f’ o4, 9|4, th
_< : >{ L ]I i JIZJ%M order.
A:L(‘s_K_fs_P] . B2
8oy LKy py %

-1
Next, let us relate this result to the acoustic pressure field. Let us define a new field w= (\/ﬁ) X
Now

[(ﬂ)l’H}:[(ﬂ)wﬁ\/ﬁ}:ﬂ—\/ﬁzo,

and so W obeys the same wave equation and consequently the same boundary conditions as does y .
Also note that in the half-spaces, we have

ﬁ(ﬂ)*z:Az 12 .
Po Po
Thus, with the usual choice p, = p,, , in Region | we have
&\NI = A ,
\ P

and in Region Il, w, =A,. Now, let us define a new field by multiplying w by the constant

\/,0||/,0| :
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W= &-W.

P

The field W obeys the same PE and the same boundary conditions as w and y, and in Region | it is
equal to the pressure field: W, = A. Taking stochastic averages, we now have (W, )=(A ), where
<W, > obeys boundary conditions (Eg. (105)). This effectively means that we are free to apply boundary
conditions (Eqg. (105)) directly to the stochastic acoustic field <A> in Region | (the water column). In
other words, given theinitial acoustic field in Region |, we implicitly convert to <\7vI > , propagate and then

perform the (trivial) conversion back to the acoustic field (A ). To perform the conversion from (W, )

to (A, ), wewould have to multiply by /p,, /p, , but wewill not need this at present.

Boundary conditions (Eg. (105)) apply to a stochastic quasi-planar rough surface. It is important to
appreciate that there is a fundamental difference between scattering from this kind of rough interface and
a simpler problem such as, for example, propagation through a simple penetrable wedge. A theory
describing the wedge problem can be checked against an analytical solution. On the other hand, recalling
the discussion in Section 2.3, we know that theories describing rough surface scattering phenomena, such
as diffuse (Bragg) scattering and the Lamb shift, cannot be similarly benchmarked against closed-form
solutions. Like chaos, these phenomena appear when analytical solutions are not available. The validity of
the theories and numerical implementations related to such phenomena must somehow be evaluated by
comparing existing stochastic data sets (taken either in the field or in the [aboratory) to ensemble averages
of deterministic calculations, or (alittle more easily) to stochastic theories. The classical Lamb shift given
by boundary conditions (Eg. (105)) is a stochastic result that can be used in this manner. Thus, it is useful
to employ boundary conditions (Eg. (105)) to simulate this phenomenon for typical values of the relevant
environmental parameters, and then examine the feasibility of using experimental results to validate the
theory.

5.4.2 A Numerical Study

Ralph Baer of NRL has conducted such a study. His calculations are based on the NRL Range-
dependent Acoustic Model (RAM) PE code [92], a standard PE code in widespread use today. Baer
incorporated boundary conditions (Eq. (105)) into this code, and used the result to simulate the classical
Lamb shift for arealistic shallow water environment. The results are presented in Fig. 18. In Fig. 18(a),
we show a typical shallow water sound speed profile, where a cusp (i.e., a knee in the sound speed
profile) is advected by internal  waves, and the interface between the water (light gray area) and the
bottom (dark grey areq) is stochastically rough. A typica water-column depth is 100 m. The internal
waves are given stochastically by the Garret-Munk spectrum, and the bottom roughness by a spectrum
typically taken from the work of Darrell Jackson [93-96] or Essen [97]. In Fig. 18(b), the transmission
loss (TL) as a function of range is graphed for a simple example. The solid line corresponds to the
traditional theory, while the dashed line is the result when the classical Lamb shift isincluded. The range
shown varies from 24 to 25 km. The source and receiver depths are both 50 m — i.e., midway in the
water column. In this particular example, the sound speed varies linearly from 1500 m/s at the flat air-sea
boundary to 1530 m/s at the rough bottom. The bottom roughness is characterized by the two-

dimensional spectrum S(k) =(0.002 m*)-(hk) " (with h, =1), which is then used to calculate
< f 2> and < f 2> . These values are then brought over to the one-dimensional problem. The peak of the

bottom spectrum kp is assumed to be kp =0.1m™ (corresponding to aperiod in the undulations along
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Fig. 18— (a) A typical shallow water sound speed profile, where a cusp (i.e., a knee in the sound speed profile) is
advected by internal waves, and the interface between the water (light gray area) and the bottom (dark gray area) is
stochagtically rough. (b) The transmission loss as a function of the range is graphed for a simple example in a
realistic shallow water environment: a 100 m-deep water column over a rough sandy, muddy, or fluid-like rock
bottom. Typical values are used for the various environmental parameters involved. (The precise values are laid out
in the text.) The solid line corresponds to the traditional theory, while the dashed line is the result when the classical
Lamb shift isincluded. For this example, note that there is no cusp advected by internal waves; but thereisacusp at
the rough bottom. Note that the classical Lamb shift illustrated above resembles a spatia shift. The actual Lamb
shift is in the downrange wave number, and after downrange propagation, this translates approximately into a spatial
shift (the different modes are shifted by different distances, and so overall there is a little more going on than a
simple spatial shift). When mode stripping eliminates all but a very small number of modes, this spatial shift
becomes clearly defined as seen above. Ralph Baer performed this cal culation.

the bottom on the order of 60 m). The sound speed in the bottom is a constant 2000 m/s, and the density
in the bottom is 1.5 times the density of water. For this particular example, note that there is no cusp
advected by internal waves; but there is a cusp at the rough bottom.

5.4.3 The Sgnificance of the Results

The Lamb shift appears for al types of rough interfaces, and in principle its effect can be quite large.
Examining Fig. 18(b) it isimmediately apparent that the classical Lamb shift, at least in this typical case,
represents a spatial shift. As discussed in the figure caption, this is no surprise since the actua shiftisin
the downrange wave numbers, and after propagation this trandates into a shift in the pattern of the
transmission loss as a function of the range. Unfortunately, in underwater acoustics, such a shift may be
relatively difficult to measure since both the field and the environment are usually sampled only
intermittently. The best way to measure the acoustic Lamb shift would be to isolate modes and look for
roughness-induced changes to the beat frequency between pairs of low modes. This effect could be most
easily measured in the laboratory. Such an experiment would certainly be instructive and have scientific
value, but from the point of view of systems development, it may not be of crucial importance, since the
directly analogous phenomenon has been measured in the quantum problem. On the other hand, interface
waves (i.e., localization) associated with the Lamb-shift effect near (stochastically advected) cusps could
have significant practical applications, and the full development of our understanding of such phenomena
will require further study.
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Furthermore, as noted at the end of Section 5.3.3, the curvature-induced (for a parameter jump) and
tilt-induced (for a cusp) boundary waves that we have found in the deterministic problem are related to
acoustic Biot-Tolstoy boundary waves and these have also been observed in the laboratory [86-90]. This
effect is probably quite small, but this assertion also requires further study.

In the context of underwater acoustics, an additional value of considering the acoustic Lamb shift lies
in theroleit plays as a thought experiment that establishes the validity of the techniques being employed.
Detailed experiments on the hydrogen atom have established the atomic Lamb shift as a bona fide
physical effect. This experience teaches us that the ¢ -functions spawned by the PE derived using the
FW transformation are associated with real physical effects rather than being unfortunate artifacts that
compromise the PE.

Significantly, our study of the Lamb shift also exposes the role that these contact potentials can play
specifically in the context of multiscale rough surface scattering. As discussed in Section 4.4, the Lamb
shift phenomena associated with the hydrogen atom and a sound speed cusp — and from Eq. (103)
apparently also that associated with a density jump — all include both a dominant contribution due to

“smearing” (i.e., the “transverse Lamb shift proportiona to k§<f2>) and a vacuum polarization

correction (i.e., the “downrange Lamb shift” proportional to < f 2> ). (In the hydrogen atom, thereisaso a

third contribution associated with an anomal ous magnetic moment, but this does not occur in acoustics.)
The vacuum polarization effect in particular is atrue “broad spectrum” rough surface effect (i.e., one that
involves al scales from the largest down to the limits of the uncertainty principle — about 1/12 of a
wavelength). Thus, our consideration of the Lamb shift, both atomic and acoustic, tells us that the o -
functions generated by the FW transformation play an indispensable role in bringing together the many
scales involved in the full rough surface scattering problem. The techniques that accurately describe this
effect can then be used with confidence to model more important aspects of the rough surface scattering
problem. We will shortly see that introducing a density jump leads to new FW-generated & -functions
(i.e., boundary conditions) that are directly relevant to the problem of underwater propagation near rough
ocean bottoms.

6. BRAGG-SCALE VORTICITY

This section addresses an important phenomenon associated with density jumps — Bragg-scale
vorticity. This effect is much more important than the classical Lamb shift (let alone its small “vacuum
polarization” component). In Section 6.1, the effect is defined, and then brought into the PE formalism.
Although Bragg-scale vorticity enters the acoustic problem in away that evokes no direct analogies from
atomic physics, the mathematical formalism built up to this point imposes a specific procedure for
incorporating this effect. The effects associated with Bragg-scale vorticity emerge naturally when the
high-order PE generated by the FW procedure is applied to an interface where the density jumps. The
second-order PE at the interface is anayzed below, and the subtle mechanics associated with the
formalism are discussed. The result is then placed into the context of current PE techniques in Section
6.2. Section 7 adapts the formal approach developed for the acoustic field with varying density to the
el ectromagnetic and elastodynamic problems.

6.1 The O(/iz) Parabolic Equation at an Interface Wher e the Density Jumps

In Section 6.1.1, we consider the range-independent problem and identify a discontinuity in the
transverse component of the energy flux that occurs when the density jumps along a horizontal interface,
but is not included in the first-order theory developed in Sections 5.3.1 and 5.3.2. At the conclusion of
this section, we note that higher orders of the theory must somehow account for this missing effect. This
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is quite subtle, so Section 6.1.2 opens the discussion with an intuitive overview of how the formalism
goes about constructing a solution. Section 6.1.3 supplements this with a discussion of the physical
significance of our formal results. This section identifies the underlying physical effect, Bragg-scale
vorticity. This has prepared us for Section 6.1.4, a systematic formal treatment of the second-order

(O(ﬂ2 )) range-dependent problem where the density jumps. The resultant boundary conditions given in

Eq. (120) are the most important results of this report. Section 6.1.4 also examines how the new physical
effect, Bragg-scale vorticity, appears in the formalism. It also discusses how a step function in the
downrange flux can gradually materialize as higher orders are added. This includes a discussion of the
role played by noncommuitivity relations that enable the migration of boundary conditions. Section 6.1.5
addresses the formal role that the “vacuum polarization” terms play in recreating the full wave problem,
where the density jumps. Section 6.1.6 underlines the distinction between the two effects newly
incorporated by the FW procedure: Bragg-scale vorticity and “vacuum polarization.”

6.1.1 TheBasic Issue

In Section 5.4, as our examination of the classical Lamb shift neared its conclusion, we touched upon a
result that holds great significance for our primary goals. These goals were outlined in Section 2.3: first
to understand why imperfect ad hoc solutions have until how proven to be the only way to apply the PE
formalism to a range-dependent interface where the density jumps, and second to use this understanding
to systematically improve upon the current standard PE techniques. The achievement of these goals is
needed if we are to apply the PE to multiscale penetrable rough surfaces where the density jumps, which
isthe ultimate goal that is of the most immediate practical importance.

To be specific, new insights that advance these goas emerge from an expanded consideration of the

, , L . % .
new function briefly examined in Section 5.4: w= (\/ﬁ) ¥ . Asin that context, for the moment we

consider the range-independent problem, and assume that the density jumps along a horizontal line (e.g.,

z=0), but is (as aways in our current study) constant in the half-spaces. Recall that \/ﬁ commutes
with the Hamiltonian H , and so in the range-independent problem, w obeys the same wave equation,

and consequently the same boundary conditionsas y itself. Insimple O(/l) theory, we have continuity
of y and of }/p-a%z and the same for w and }f,-a%z. As noted in Section 5.4, in the half-spaces, we

have
ﬁ(ﬂ)lzzAZF.w
Po Po

and with the usual choice p, = p,, , in Region | we have

F W=A, (106
P

andinRegion Il, w,, = A, . Substituting these resultsinto the continuity condition for w gives us

Pup=n,.
P
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with \/p, /p, - A — A, =0 along theinterface (i.e., the =0 line), we have

P OX X
using thefact that /p;, /p,

issimply a constant

along theinterface, and so continuity of )/J; -9 - Now consider the continuity conditionon %,- w

Low _ 1 aw,

= . (107)
py 9z p, 0z

Once again, since /p,, /p, isjust aconstant, we can use Eq. (106) to substitute /p,, /p, - A for w, in
Eq. (107). Similarly, substitute A, for w,, . Thisgivesus

p”aA LA, 1A 10
aZ Pu 0z p|% 0z pll 9z
Combining results, we have
A 1OALJA all continuous. (108)

Jp'Jp o' p* az
In Appendix Q.2, these results are obtained using a variation on the above argument.

Now, let us consider the time-averaged energy flux vector [98, Egs. (64.5 and 64.5)] and use a well
known result for the time averaged product of the real parts of two complex fields; aso see Eqg. (C.12):

s - Im( A* VA) (109)
ave Zpa) :

Combining Egs. (108) and (109), the PE gives us the boundary condition on the flux:

S ~éai‘ §~Aai‘ al continuous.

Y poxp p?oz
Now, let us compare this with the full wave result. In this case, we have

9A lgi‘ al continuous = pSX~Aai‘,S égi‘ al continuous.

"X p ox ° poz
Thus, athough the O(/l) (first order) PE conserves energy (the Hamiltonian is after all Hermitian), the

horizontal and vertical fluxes appear to be redistributed relative to the full wave result. On the other hand,
as discussed in Section 2.3, it should be possible to construct a downrange stepping algorithm that
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generates afield that can be made arbitrarily close to the full-wave solution. Somehow, as we add higher
orders, the correct behavior known from the full-wave result must reappear.

6.1.2 A Heuristic Approach

Let us now proceed to get a handle on how all this might fit into the formalism. First we will examine
a heuristic presentation drawing in aspects of the structure suggested by the FW transformation as needed.
Then Section 6.1.3 will supplement these new formal insights with a look at the underlying physical
processes, and subsequently in Section 6.1.4 we will move on to a more systematic discussion that builds
up directly from the formal structure generated by the FW transformation.

6.1.2.1 The Contact Potential Needed to Produce the Correct Jump in the Downrange Flux

The heuristic discussion echoes Appendix Q.2. To begin with, we follow the discussion surrounding
form (Q.10) and (Q.11) in Appendix Q.2. To keep our heuristic discussion as clear as possible, let us
maintain for one more section the assumption that the jump in the density occurs along the range-

independent line z=0. Then add to the first order Hamiltonian H =k, —2yk,+ A an extra (energy
conserving) term™®

1 ,
2 .&%5 (2) 7
P (110)
v _Pu=hP _ op
|
2p, 2p,

(For the moment, take the expression for ¥, as adefinition, but also keep in mind that the expression for
7, given in Eq. (110) is the same as that obtained if we set the reference density to be the density in
Region Il — p,, , and then take the definition for y first given in Eq. (87) (Section 5.1), and evaluate it in
Region | where the local density p isthe constant p, . Thisresultis, of course, anticipated when we use
the label 7, .)

Recall (again using the definition first given in Eq. (87))

V.2V, .
A = —2— y+termsthat have no §-functions

2,

= &V-?—_Z+|:VT(&J:|VT_Z+
p 2K P )] 2K

The second term on the right-hand side of the second line contains a ssimple ¢ -function that will not
survive an indefinite integration followed by an infinitesimal integration®®. Thus we drop this term as

well as terms that contain no & -functions. Now, we multiply through by 2k;-(p/p,) and find that the
key terms that generate the boundary condition on the wavefunction y itself are

Vix=r798 (2 g+

% Implicitly, we are again either truncating at first order or bifurcating & -functionsin order to make sense of terms
that contain ¢ -functions times field quantities that are discontinuous.
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Taking the infinitesimal integration across the interface, we have to first order

X=X —nx=0
or
s 2
X = X [1+2_Pj {{_p}J
P
= 2 1+—’OJ+ 2" order
= X -
/0|
= X,
P
or

\/IO_IZI =NPuXn T 2" order, (111)

which isindeed the boundary condition we would expect for a quantity y that isroughly the square root
of the component of the energy flux that is transverse to the interface.

Thus the term given by Eq. (110) will “fix” first-order theory. However, we cannot ssimply insert it into
our formalism by hand. We have no control over what such a term does to the boundary condition on

dy/0z or on the other boundary conditions (i.e., conditions on V} y;n> 2 that are al implicit in first-

order theory). We therefore want the term shown in Eq. (110) to emerge naturally from our theory.
Since this term needs to be present even in the range-independent problem, it cannot emerge from a

“vacuum polarization” term generated by the FW transformation such as —}i/ 8k§ . We must look for it
in terms that are higher ordersin A, say in the term proportional to A?. However, note that in the context
of O(lz) theory (with lead order term proportional to VT % ), theterm in EQ. (110) will have migrated

from being a boundary condition on y itself to being a boundary condition on 9° ;(/az . This has an

important side benefit. Actual jumps in the wavefunction cause problems, because then the X-derivative
of x would spawn a d -function, and this in turn would lead to a very problematic feedback loop in our
boundary conditions. This problem is eliminated when the term in Eq. (110) isintrinsicaly embedded in

0(4%).
6.1.2.2 O(iz) Theory Generates the Needed Contact Potential

Thetermin Eq. (110) will need to emerge from crosstermsin A>. The 0(22) Hamiltonian is

/12
H= 2 /1——
Kk, — 27k, + 2
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Now, let us echo the analysis that begins with the discussion surrounding Egs. (Q.20) and (Q.21), and
continues to the end of Appendix Q.2. The leading-order derivative comes from —22/ 2k, :

) (e )

Now, consider the two cross-termsin —1°/2k, that will generate &” -functions:

(~y2k,) (Z) (k)7 12)
and
(~y2k,) (pfo) (—kotr) 7. 113)

Thetermin Eq. (110) will have to emerge from these terms.

Let us examine the second term. With our usual conventions that K, =K, and p, = p, (useful if,
for example, medium | iswater and medium Il is mud), we find

ERoEa

andsoinRegionl, =0 andinRegion I,

DK -K, 8K
oK, 2k,

1(, K,p, ) 1
[ 1_ Il — 1__
o

Thus, with the positive z-axis pointing into Region I:

or

—kott —59(—2) —&QZJ

2 C
_ kg1 S
= e p.lj | o
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where n,, =¢,/c, is the perfectly standard index of refraction between the media and ©(z)is the

Heaviside step function. Now nZ, =1—2u,,,, where 4, is the familiar parameter measuring the
sound speed jump between the media, and

P p+dp 1+ZT p, Py

PP 1 P 1 %P

to first order (recall our conventions p,, — p, =Jp ). Thus

o
ntzotd & =1- zlutotal -2

to first order. Substituting into Eq. (114), this gives us

hott = ‘%9(—2) [1— (1— 2l _@D

2 ) (115)
o
=-k,0(-z +
kO ( )(tutotal 2,0” J
= _kO@(_Z)(Iutotal +7 )
(where we also used the second part of Eq. (110) to obtain the last equality). We aso have
}/El 1_£ :pll_p: §%P||:7/| inR@ionl
2 Po 2p, 0 in Region I
and so
y=%6(2). (116)
Combining Egs. (115) and (116), we have
~kott + Ko7 = KO (~2) g + ko7, [©(2) - O(~2)] (117)

at first order for our standard example K, =K, and p, = p,, .

Next, we demonstrate that the second term in Eq. (117) will lead to the term Eq. (110). From Egs.
(112) and (113), we seethat Eq. (117) gets operated on by

P
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to form
RGN G S A 61 G7)AC P
IR R o e R ) s
VT pop VT
- % ot -ot-))

Now it is the second term on the right-hand side of Eq. (118) that will reproduce the term shown in Eq.
(110). Thisterm becomes

_1p 1
ok p 2k Ko7

0°0(z) 0°©(-z)) [ termsthat will not survivea
0z 0z double infinitesimal integration |
Note that V. operating on 1/p generates a simple ¢ -function, which will not survive a double

integration across an infinitesimal integral, and so this operation has been dropped from the present
calculation. Finally use

’0(z) ., , 0°0(-2)
37 :5(Z)=—5(—Z):—T
to recover thetermin Eq. (110):
1 py o
—— 270 .
a7 (2)x

Thus, the second cross-term given in Eq. (118) indeed generates the term in Eq. (110) associated with the
discontinuity of y . (For more on this, aso see Appendix Q.2).

6.1.2.3 The TermsIntroduced by O 12) Theory That Are Not Associated
with the Jump in the Energy Flux

The first term on the right-hand side of Eq. (118) represents the remaining contribution from the cross-
terms of —A° / 2k, . It is quite straightforward to demonstrate that the contribution from this term recovers
the implicit boundary conditionson y that would be expected if Bragg-scale vorticity were not an issue.

To be specific, in the absence of Bragg-scale vorticity, we would expect that in the range-independent
problem we are considering here, the field ¥ would behave just like the pressure field A It is not

difficult to show that the contribution to the boundary condition generated by the first term in Eq. (118)
would, if taken alone, indeed cause the boundary condition on V$ ¥ to mimic the implicit boundary

condition on VZA.

Now that we have a handle on what is basically going on, Section 6.1.3 will outline the underlying
physical processes responsible for all this mathematical subtlety. After this is accomplished, Section
6.1.3 will put al of thison afirmer foundation.
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6.1.3 The Physical Sgnificance

The physica significance of our findings is that the FW transformation generates a one-way stepping
algorithm that incorporates bounded back and forth motion. In the case of the tilt-induced smearing
associated with the new FW terms, the transformation refines out the average influence of virtual
backscatter. When a density jump is introduced, the formalism contends with something new not found

in the quantum problem. The velocity of the oscillating fluid is given by VA/p . Sincethe pressure A is

continuous along the interface, so is (1— ﬁﬁ) - A, the component of VA tangent to the interface (N is as

always the normal to the interface). Note that the component of the velocity tangent to the interface is
given by

The period of oscillation T = 27/ @ isthe same everywhere. Therefore, when p is discontinuous on the

interface, the component of the velocity tangent to the interface must also be discontinuous. The materia
will move more rapidly on the side of the interface with the lower density. Asthe material dips aong the
interface, the material is displaced further on the side with the lower density™. On awavelength scale, the
fluid thus picks up an oscillating twist, which is called here Bragg-scale vorticity (BSV). Thisvorticity is

not associated with a circulation; it is just a bounded twisting oscillation. (However, the variability in p
is enough to ensure that curl of the velocity vector is non-zero, and so thisisindeed a bonafide vorticity.)

Since the energy flux S is proportional to Im[(A*VA)/p], Bragg-scale vorticity also forces ajump in

its tangential component along the interface. This might lead us to expect that y , a carrier of tangential
or near-tangentia flux along the quasi-planar interface, jumps as well.

The FW transformation takes both these bounded oscillations (i.e., virtual backscatter and Bragg-scale
vorticity), refines out the average influence, and incorporates them in the forward-stepping equation. In
particular, the fact that the new formalism allows us to bring the higher-order PE right up to the interface
is closely tied to the fact that it incorporates Bragg-scale vorticity. At lowest order, the formalism forces
the vorticity to be zero, but then it builds the vorticity order by order, intimately coupling it to the higher-
order transverse derivatives. Boundary conditions on the carrier of flux y (and on its lower order

derivatives) migrate up to the boundary conditions on higher-order derivatives, where they “launch” the
functions in away that appropriately simulates the full-wave boundary conditions.

6.1.4 A Systematic Formal Discussion

6.1.4.1 The O(/lz) Boundary Conditions Associated with a Sound Speed and Density Jump

Section 6.1.2 opened a window into the mechanism used by the PE to address the discontinuities
associated with a density jump. Then, Section 6.1.3 provided an insight into the physical issues involved,
and an argument outlining why the FW procedure addresses this physical process in a way that is in
significant respects similar to the way it handles the classical equivalent of the “vacuum polarization”
effect. Now, let us pull al of thistogether into a systematic formal discussion.

" Note that the relative displacement becomes greater as the density jump increases or the frequency @ decreases.
In this sense, the effect is similar to torsion in elastic solids.
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Begin with the O(/lz) PE generated by the FW transformation (thisis obtained by truncating Eq. (92)
of Section 5.3.1 or in this case, equivalently, Eq. (90) of Section 5.1):

oy _ A A
—I&—ko[l 2}/+ko ZKSJZ (119)

Once again, as we focus on the interface itself, consider the one-dimensional interface embedded in two-
dimensional space (i.e., no Yy -dependence and d/dz <> V). Theinterfaceis now once again allowed to

be range-dependent (e.g., z=f (X)). In Appendix Section Q.1, it is shown that this Hamiltonian
produces the boundary conditions

i[aﬁV?% _Vilu :|+k00{| nVex +Ktty Vox, =0

%[(14_ 2al Y )V'IZ'ZI _V‘IZ'ZII :|+ ko(/,l” +7 )ZZO (120)
ﬁVT% =p_1|VTZII
X =Xu-

As aways, the reference density is on Region |1 and the reference compressibility ison Region |. (Thus,
I (pu — P )/(ZPH ) v My = _(KII -K )/(2K| )and Yo =# =0. Wealso have ¢ = [PO/P]| =
P / p, . For aboundary between the water column and the sea bottom, Region | would typically be the
water, and Region Il would be the bottom.) Note that we do not include the O( f2, i") (and higher

order) “vacuum polarization” terms at this stage, since here we are considering them to be third order (and
higher) with each downrange derivative of A adding an order. Eguation (120) is the most important
result in this entire endeavor.

Let us take a quick look at how the result (Eg. (120)) comes about. We instantly see that the cross-

termsin A% will in principle generate & - and &’ -functions, but not higher-order derivatives of the & -
function. Therefore, taking two and three improper integrations followed by a proper integration over an
infinitesimal transverse interval straddling the interface, we immediately obtain the above continuity

conditions on (1/p)-V; x =(1/p)- 0y [0z and y, respectively. Take one improper integration and then
integrate over the infinitesimal interval to obtain the boundary condition for V2y (=0d%y/0z%). Take
one integration over the infinitesimal interval to obtain the boundary condition on V? % - The leading

order derivative V. (%,)V: (%) Vx as well as the crossterms V. (%) V iy and Vo (%) Vi
contribute to the last two results.

6.1.4.2 Reating the PE Boundary Conditionsto the Full-wave Result

Looking at the boundary conditionson y and V. y, one might conclude that y simply mimics the
full pressure field A in our PE formalism. This, of course, cannot be, because we know from our full-
wave result that A should be continuous, while Bragg-scale vorticity should produce a discontinuity in
% - Asillustrated in Section 6.1.2, the higher-order boundary conditions begin to correct this situation by
introducing Bragg-scale vorticity. Let us examine this a little more closely. The first two boundary
conditionsin Eq. (120) above can be rewritten in the form
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; I:O‘|ZV$Z| _Vizu :|_k0al 7 VTZI +k0/u||VT}{|| +2k00[I7IVTZI =0

s
A[V2r -V, ko (- 70) 24 2kon 2 + 422 4, | =0,

(121)

Here the V$ ¥ and the V? % boundary conditions are presented in a way to illustrate which part is

needed to reproduce the full wave behavior, and which part comes from “extra’ terms that reproduce
Bragg-scale vorticity. As demonstrated in Appendix Subsection Q.2, boundary conditions containing
only the terms outside the boxes are those that would hold if y truly mimicked A. The terms in the

come from the & - and &’ -functions formally generated by the crossterm V. (¥,)V,yr and
from the part of V; (}/p) V. 1y that is not needed to generate the portion of the boundary conditions on

V2 y and V2 y that mimic the (implicit) boundary conditionson V3 A and VZA.

If we take, for example, the &’ -function responsible to first order for the extra part of the
V2 y boundary condition: (-1/2k,)ey,8’(z— f (X)), and insert it by hand into the first-order
Hamiltonian, the required first-order jump in the carrier of downrange flux } isindeed generated (for
details, recall Section 6.1.2 or see the last paragraph of Appendix Q.2). However, note when this same
cross-term remains in O(A%) theory (where it truly belongs), this &”-function modifies the VZy
boundary condition rather than the } boundary condition. Thus, as predicted at the end of Section 6.1.3,

the boundary condition on } has indeed migrated to become a boundary condition on V$ X . Thus, we

once again encounter an interesting example of the topic of migrating boundary conditions first raised in
Section 4.2.2%%. This reminds us that the following result is very widely applicable: Quite generaly, we
must take serioudly the notion that a boundary condition is really a d -function-type term, and that the
effects associated with such a term will migrate to boundary conditions associated with derivatives of
different order as the leading order of the differential equation is changed.

This then tells us something about what the PE derived using the FW transformation is doing at an
interface where the density jumps. Although higher-order theory introduces the effects of Bragg-scale

vorticity, the boundary conditions will till force g and (1/p)V.x[=(1/p)(9x/92)] to be

continuous. The step is smoothed as the FW transformation builds it as a distribution. (Recall that in
distribution theory, the step function is built up as a sequence of continuous functions that progressively
approaches the profile of astep. A sequence of arctangent functionsis typically employed in this manner.)
The boundary conditions on the higher-order derivatives launch the field at the interface in such a way
that a step function is built up. Effectively, the interface is allowed to expand to fill the space alowed by
the uncertainty principle, and the bare interface is buffered (or “fuzzed out”). This type of smoothing
imposed by aone-way (i.e., non-relativistic) theory has a precedent. For example, [99 (especialy the first
full paragraph of p. 948)]: A point charge in Dirac theory becomesin nonrelativistic theory a distribution

of charge and current extending over a domain of linear dimensions 72/mc. The Darwin term and spin-

%9 1t is worthwhile at this point to remind ourselves of examples of boundary condition migration that we have
previously encountered. Recall from the discussion in Section 4.2.2 that, similarly, the contact potential associated
with cusp-induced Lamb shift really corresponds to boundary conditions on the third derivative of the wave
function, but when it is put into the lowest order PE (or Schrédinger equation), it nominally correspondsto ajump in
the first derivative. The classical Lamb shift generated by an interface (e.g., for a fluid, where the sound speed
and/or the density jump(s)) is ultimately to be associated with the Helmholtz-equation boundary conditions on
VZy,butin O(4) theory it generatesajumpin y .
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orbit interaction are consequences of this “fuzzing out” or buffering of the bare particle. (In quantum
mechanics, thisis also sometimes known as “dressing” the singularity.)

However, this raises an interesting issue. As just noted, when we keep on increasing the order of our
PE by repeatedly applying the FW procedure, the behavior of the field y should approach that of a step

function in much the same way that a series of arctangent functions approaches the Heaviside step
function in generalized function theory (i.e., distribution theory). This implies that y becomes rapidly

varying near the interface, and consequently that the lower order derivatives of the wave function should
become large. For example, at some point in the process of moving to ever-higher order, V$ ¥ and so

also the expansion parameter A would have to become quite large. Nevertheless, this type of
“convergence in the generalized sense” to a step function can still be reconciled with the notion that both
the generator of the FW transformation and the “left behind” off-diagonal elements are getting smaller as

we move to higher and higher order. The reason is as follows. The expansion parameters A" and
A™y"™ are aways small when they are actually being used to generate a FW transformation™. The
higher orders left in the off-diagonal (odd) operator are small as well. After the diagonalizing FW
procedure “has passed through” a given order n, then A" and A™y"™ now operating on a new higher-
order wave function ¥ may become large, but by this time they no longer function as expansion
parameters.

6.1.4.3 TheRole of Noncommutivity in Boundary Condition Migration

It is very interesting to note that the key structural condition that makes al of this possible is the fact
that 4 no longer commutes with the Hamiltonian:

[4,H]#0.

When this is the case, there is nothing to tie the value, of say, 47 to A" or of Ay from an earlier
iterationto Ay from alater iteration. Thus, A7 can be small in low-order theory, and then later become

large at higher orders. Furthermore, at the higher order where A% isbig, our formalism still allows A" 7
to be small.

In fact, the noncommutivity of 4 and H allows orders of the PE to change the behavior of y ina

number of fundamental ways. For example, it is a necessary condition for the boundary conditions to
migrate. Indeed, in the case of the variable density acoustic PE, we have just found that boundary
conditions are allowed to migrate even in the absence of range dependence. This follows from the fact

that [A4,y]#0 and so [A,H]#0. Similarly, when we add the new “vacuum polarization” terms
generated by the FW transformation (and associated with range dependence), here also we find that these

new terms end the commutivity of 4 with H since [/1, /1] #0.

" | ., when they are the actual expansion parameters embedded within the generator of the FW transformation S
— see Section 3.1 and Eq. (12); and note that S is proportional to O, the current odd operator in the Hamiltonian
left after some given number of iterations of the FW procedure, and that O contains operators of the form A" and
A™y"™ as well as operators with higher overall powers of A-y. Note that for the moment, we are temporarily
reverting to the tilde (~) notation to remind ourselves that the current wavefunction 7 and the currently remaining
odd operator O have emerged from repeated applications of the FW transformation, and not just from the original
ansatz.
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On the other hand, boundary conditions cannot migrate in the constant-density range-independent
problem where the sole expansion parameter 4 commutes with the Hamiltonian H. In this case, higher
orders only add new explicit boundary conditions, but they cannot change the boundary conditions at

lower orders. Let us examine why thisis so. Since the commutator [A,H | is now zero and there is no
range dependence, we could decompose the field ¥ into eigenvectors y; and replace the dimensionless

operator A/K, with the eigenvalues &; and then (A/k,)" with £]". Thenif A/k, and &, are small, so

are (A/k,)" and g]. Thus, we can no longer have the behavior where high orders of A/k, are small
while low orders are large. Furthermore, J -functions and other singularities within each term of the
form (A/k,)" x; =&} g, must al cancel one another internally”. It follows that incressing the order of

the PE can generate new boundary conditions, but it cannot modify boundary conditions previously
obtained at alower order. Recall that in Appendix K.1.1.2, thisinsight was used to verify that ¢ -function

bifurcation employed in the 0(23) PE for a sound speed jump (and, of course, constant density)

correctly reproduced the implicit boundary conditions on higher-order derivatives of the wave function.
Also note that since boundary conditions obtained at low orders remain fixed, and higher orders only
serve to supplement these conditions with new boundary conditions affecting higher-order derivatives, it
follows that boundary conditions can no longer migrate in this case. In this sense, the boundary
conditions generated by each order in A decouple.

For weak range dependence, we would in general not expect large deviations from the conclusions
based on the assumption that there is no range dependence. However, recall that, as noted above, for a
sound speed jump where the density is the same everywhere (dp =0), the only thing that alows

boundary conditions to migrate is the fact that range dependence adds new terms via the FW
transformation, and these force the crucial commutator to become non-zero: [A,H]#0. Thus, the new

“vacuum polarization” terms have introduced a fundamental change in the nature of the Hamiltonian H.

6.1.5 Tying Together “ Vacuum Polarization” with Bragg-scale Vorticity
and a Look at Other Future Extensions of the Results

6.1.5.1 Understandingthe O(l) Terms Introduced by the Foldy-Wouthuysen Transformation

Only now that we have established the predominant factor involved in the boundary conditions, Bragg-
scale vorticity, and the related O(5p) jump in the carrier of flux y, are we truly ready to go back and

generalize to the variable density (i.e., dp # 0) problem the discussion in Section 4.2.1, and establish the
meaning of the O( f f 2) “vacuum polarization” terms contributed to the deterministic problem by FW
transformation.

'l By switching to the dimensionless operator A/k, , we ensure that the corresponding eigenvalues &, are also
dimensionless. This allows us to unambiguously label the eigenvalues ¢; as small.

W Thisis ultimately the reason why contact potentials are allowed in the context of the PE. Similarly, it is also why
we can have a I/r potentia in the atomic Schrédinger equation and still have the overall operator —V?2 / 2m+V
remain small.
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The tilt-induced terms proportiona to f2 (5%0 - "%O) play arole that is essentialy the same as that

played by the fzﬂ -term in the constant density discussion of Section 4.2.1; they are related to the
boundary conditions for V?A (where A isasawaysthe pressure field).

The “new” term proportional to Jdp - f2 -5’(2— f) is related to the jump in y, which in turn is
related to the jump in downrange flux, recalling that y isroughly speaking a carrier of downrange flux in
the sense that to within a integration by parts, | ;[|2 is proportional to % Im(A* -0A/ ax) , Which isin turn
also proportional to the downrange flux. The effects of this term can aready be seen in first-order theory.
On the other hand, the other “new” term proportional to dp - f2- 0”(z— 1) onlykicksinat O(/lz) ,and

this one is related to corrections to the (1/ p) - JA/dz boundary condition.

As before in Section 4.2.1, the terms proportional to the curvature f lead to local curvature-induced
boundary phenomena such as boundary waves (cf. polaritons in el ectromagnetic waves).

6.1.5.2 A Term in the Full-wave Problem that isImplicit in the PE Formulation

The O( i -5,0) contribution to the downrange flux that exists in the full-wave problem apparently

does not enter the PE via an explicit term contributed by the FW transformation. Instead, the O( f. 5p)

contribution intrinsically migrates up to the highest order derivative of y (e.g., in quasi-first-order theory
of the sort considered throughout Section 3, the V$ J term), where it is introduced via the implicit
boundary conditionon H y . Note that the tendency of the O( f -§p) term to migrate to higher order is

not very different from the behavior of the O(5p) terms introduced by Bragg-scale vorticity. Both cases
reflect the tendency of the PE to force the auxiliary field  to remain continuous.

6.1.5.3 Future Extensions Beyond O(iz) or O(/l,ﬂ:) Theories

As before in the constant density case of Section 4.2.1, we have just now seen that also when the
density jumps (i.e., §o #0), we will need at least O( A%, 4) theory to fully understand all the “vacuum

polarization” (i.e., o< f2,f ) terms. In fact, for the variable density case (i.e., dp #0), we even have a
term proportional to 5"(2— f ) that does not contribute at all to quasi-first-order (i.e., O(l,ﬂt)) theory.

Therefore, future O(/iz,):) or even 0(23,)1') theories in both their deterministic and stochastic
versions will be interesting and worthwhile, but we will leave this synthesis to future work. Furthermore,
we will even defer for future work a consideration of the stochastic version of the basic O(/lz) theory of
Bragg-scale vorticity (which would of course include diffuse (Bragg) scattering). For the near term, we
will concentrate on the acoustic Lamb shift based on stochastic quasi-first-order O(/l, /l) theory (minus
diffuse scattering) separately and in isolation from the Bragg-scale vorticity based on deterministic
second-order O(/12 ) theory (which implicitly includes diffuse scattering).
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Furthermore, recall that we have all along assumed that p does not vary in the half spaces. Thus, we

have not yet allowed for the possibility that there may be stepsin V,p and in V$ p at the interface.
Such singularities will lead to new Lamb-shift-type stochastic effects on the coherent field even in basic
first-order (i.e., O(/l)) theory. In the future, this possibility will need to be examined as well. Finally,

all these versions of the theory will have to be thoroughly compared to data.
6.1.6 The Distinction Between Bragg-scale Vorticity and the Lamb Shift

It is appropriate to close our examination of Bragg-scale vorticity by clearly reviewing the distinctions
between this effect and the classical Lamb shift. The latter already occurs for first-order (i.e., O(/l))
theory, or if we want to include the classical equivalent of the vacuum polarization correction, quasi-first-
order (i.e., O(/l,/i)) theory. It modifies the coherent field near stochastic quasi-planar surfaces, where

the sound speed, sound speed gradient, and/or density jump. The effect takes the form of contact
potentials, which modify the boundary conditions, and there is a close analogy to the Lamb shift problem
of atomic physics. The validity of the new physics predicted by the FW transformation is confirmed by
the relationship between the new FW term for a scalar field and the phenomenon of vacuum polarization
known from atomic physics. It is relatively easy to incorporate the acoustic Lamb shift into existing
codes, and so this has been the first (and so far only) aspect of the new theory to be numerically
implemented (see Section 5.4).

Bragg-scale vorticity occurs at a density jump, and it is associated with second-order (i.e., O(/iz))

and higher theory. It applies most dramatically to diffuse (Bragg) scatter and to the deterministic problem.
The proper incorporation of Bragg-scale vorticity involves a basic restructuring of existing PE codes, and
there is no immediate quantum analogy. On the other hand, Bragg-scale vorticity is of greater importance
than the classica Lamb shift for modeling acoustic fields since it addresses the problem that has
ultimately motivated this effort: that of properly applying the PE to a tilted interface where the density
jumps (see Section 2.3 for a discussion of why thisis so important). Furthermore, as we see in Section 7,
jumps in electric and magnetic permeability (in electromagnetic theory) and in the second Lamé
parameter (in the theory of elastic waves) involve similar issues. The development of new PE codes that
include Bragg-scale vorticity will thus have a high priority in the future. However, since they will have to
be developed from scratch, the development of these codes will not be pursued in the current effort, but
will instead be deferred to follow-on work.

6.2 Comparison to the Currently Popular Parabolic Equation Techniques of Tappert and Collins

This section uses the new formalism developed in this report to reexamine the two PE methods first
mentioned in Section 2.2. These are currently the preferred techniques for describing range-dependent
interfaces with density jumps. In Section 6.2.1, the new formalism is used to examine Tappert’ s technique
of changing the variable and smearing out the interface, and in Section 6.2.2, Collins' stair step technique
is examined in light of the new formalism. Section 6.2.3 summarizes the relative merits of these
approaches and serves to guide the modeler toward the optimal method in a given context.

6.2.1 Tappert’s Change of Variable Formalism

The change of variable (COV) method by Tappert briefly described in Section 2.2 (see also Ref. 15,
pp. 262-264) rests on the observation that in the full-wave EqQ. (1), one can change the wavefunction to

u= A/\/; (i.e, make a change of variables from A— A:\/;-u). This leads to a standard
Helmholtz equation for u with a new effective index of refraction. Now, one can proceed as before to
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create a new PE. The discussion surrounding Eq. (19) demonstrates that this, like any other PE, will
actually propagate an auxiliary wave y :

I\
yo<JH u=vH \/_ _I&.ﬁ'

X is immediately recognizable as a carrier of flux (if this is not clear, see Eq. (97) and the related
discussion). The Hamiltonian that propagates this field is a Hermitian (i.e., magnitude-conserving or

“stable”) Hamiltonian, and so | ;(|2 and consequently the downrange flux are conserved quantities, and it
follows so isthe energy.

The result obtained using the COV technigue anticipates that obtained using the FW transformation,
but with a key difference that becomes important in the interface limit. For the substitution A — \/; -u,

the expansion parameter L ive = (1 n: / 2 picks up é-functions in the interface limit. The COV

effective

formalism therefore becomes too singular in this limit. The FW approach effectively differs from the
COV approach in that it takes the factor of :I/\/; in the auxiliary wave function u= A/\/; and

expandsitin 2y = (,0O - ,0)/p0 =—Ap/p, . Thisslows down convergence enough so that & -function

bifurcation can be used to evaluate those previously troublesome terms that involve products of
distributions at interfaces. More specifically, the Helmholtz equation generated by the COV substitution

can be properly interpreted even at an interface, provided that one properly expands in 2y = —Ap/ £o

and then uses ¢ -function bifurcation to evaluate the result (Appendix K.2.1.2 shows how things begin to
work out). Proceeding along these lines, a PE similar to that generated by the FW transformation could
then in principle be obtained from the Helmoltz equation containing o -function potentials. Such a PE
would effectively buffer the density jump™*. In summary, the COV substitution becomes too singular in
the interface limit, while the FW procedure smoothes out the discontinuity in the density p by

interjecting an extra expansion in Ap/ Po- In principle, the COV technique could be applied to an
interface by introducing this expansion by hand.

On the other hand, if the COV formalism is to be applied directly to an interface without such
additional modifications that bring it into line with the FW formalism, then the interface must be
artificially smoothed. Tappert originally adopted this ad hoc approach and it has been used since. Since
the formalism generated by the FW transformation effectively smoothes the surface in a manner precisely
determined by field theory, it is clearly the proper way to handle atrue interface. On the other hand, there
are many instances in nature where the transition from one medium to another is very gradual on the order
of a wavelength, and in such instances, there is no advantage to slowing down convergence by
interjecting an extra expansion. The substitution proposed and developed by Tappert would then work
very well, and indeed it would likely be the better approach.

Finaly, note that Tappert's COV technique shares an important physical insight with the result
predicted by the FW transformation. A centra result of the procedure based on the FW transformation is
that the density discontinuity is buffered. The COV technique reconciles the PE with a density jump by
smoothing out the interface. At least at low orders, the two pictures are quite similar, implying that the

kK| e, as discussed in Section 6.1.4, the PE would replace the (discontinuous) step in the downrange flux with a
distribution (i.e., a sequence of continuous functions) that only approaches the step function (at least to within the
tolerance of the uncertainty principle) in the limit asthe PE goesto « order. Thisissimilar to the effect that would
be produced by “fuzzing out” the density jump.
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COV technique was based on a very profound physicad insight: that the key to reconciling the PE with the
issues associated with a density jump liesin buffering the interface. The new technique generated by the
FW transformation represents an advance since it automatically introduces this smoothing in a manner
dictated by a precise physical theory, rather than by fiat.

6.2.2 Collins Sair Step PE
6.2.2.1 The Stair Step PE Exploits Several Attributes of the Range-independent Problem

The current state of the art PE (Stair Step PE) developed primarily by Collins and Westwood [18]
builds on a very clean solution to the truly range-independent problem. As long as an interface is
completely flat (i.e., range-independent), designing an appropriate PE is perfectly straightforward — even
when the density jumps (Jdp #0). In the range-independent environment, this PE can be written by
taking the square root of the wave equation:

p

2
[aa_” PV, V. + kZ}A:O:
X

. 0A
—|&:\/k§+pVT%VT—k§(1—n2)-A,
=k 1+ 2 - A

where
pVT %VT _ ko 1-n?
2k, 2

and A isthe pressure field. Note that this operator A is not quite the same as the one we have been
using in the context of the FW procedure — in fact, it is not strictly speaking Hermitian. However,
energy is nevertheless conserved for this PE. We can see this as follows: first, note that the operator
\/ﬁ commutes with H and d/0dx, and so in this range-independent scenario we can use the same
Hamiltonian to propagate the auxiliary field defined by

A

v=+H A= -id/oxA.

At al finite orders of the expansion in A, this Hamiltonian is Hermitian with respect to the metric J-d%r

(recall that dR; isadifferential element in transverse space: dR. = dydz). Thus,

O (SR (R OV +Idﬁ[\; .@}
ox?’ p P | 9% yo, oX

(W5

- J‘d%:(iHv)* -v} + jd%[v JiHV]

iR (i) vy _
|j , [ (Hv) v+v Hv}tj:gerggmﬁyco
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Thus, the total downrange flux (which is to within one integration by parts proportional to J' d%r|v|2), is
conserved, asisthe energy.

In atypical implementation of the stair step PE, one only uses the lowest order boundary conditions:
continuity of A and of (1/p)(9dA/dz). One could in principle use higher-order boundary conditions by

explicitly imposing the boundary conditions that are implicit in full-wave theory. Such an approach
would use the technique developed earlier in Section 3.3.2 (i.e., force the grid to fall on the interface, and
then use the boundary conditions to generate the derivatives that go into the Hamiltonian needed for
downrange stepping). However, this approach is not used in the standard implementation of the Stair Step
PE. Instead, as discussed in footnote kk and Ref. 69, one instead places the interface in between two grid
points, then overlaps the upper and lower half-spaces by extending each out beyond the interface by one

extra grid point, and then uses the two boundary conditions of O(/i) -theory to solve for the field at the

extra (nonphysical) points. The extra points are used to calculate the second transverse derivative in the
first-order Hamiltonian, which is the one used to generate downrange stepping right at the surface.
Unfortunately, this method does not readily generdize to higher-order theory, and so higher-order theory
has not typically been used in conjunction with the stair step PE. In a typica implementation, one
converts from the higher-order PE to first-order theory in a narrow band surrounding the interface.

The Stair Step PE has one clear advantage over the PE generated by the FW transformation. It exploits
the fact that when the problem is truly range-independent, it is possible to take the square root of the
wave equation and propagate the pressure A directly. Now the continuity condition is appliedto A and
not to the auxiliary field y, so Bragg-scale vorticity is present from the beginning and the Stair Step
formalism does not need to work to generate it. Furthermore, keep in mind that although it has not been
done in the past, there is no a priori reason why boundary conditions that are implicit in full-wave theory
could not be made explicit to generate a higher-order version of the range-independent Stair Step PE.
Thus, Collins Stair Step PE is clearly the method of choice when the interface is completely range-
independent.

6.2.2.2 Range-dependencein the Context of the Stair Step PE

Let us now examine how this picture changes when range-dependence is introduced (i.e., when
the interface acquires tilt and curvature). As aways, energy conservation is maintained by conserving

the downrange flux S,. Conservation of the downrange flux S, is achieved by conserving

\/gx o< [/ p-(9/0x) - A< \|H/p - A. This conservation rule must be explicitly applied globally along
the entire transverse space and not just in the immediate vicinity of the interface. This procedure has the
same effect as applying the endpoint transformation to go from the pressure field A to the carrier of flux
% , then applying the first boundary condition generated by the FW theory (continuity of y ), and then

transforming back to A

As noted in Section 2.2, forcing downrange-energy-flux conservation at a vertical interface leads to a
discontinuity of the pressure field, while the boundary conditions imposed aong the horizonta interface
demand pressure continuity. This leads to an unphysical discontinuity in the pressure at the corners of the
stair step, which in turn spawns Gibbs oscillations. The Gibbs oscillations are buffered by introducing

waves that are evanescent in the downrange direction (i.e., k, isimaginary). As noted towards the end of
Appendix B, evanescent waves cannot be propagated using the finite-order PE expansions of the sort

" An environment is truly range-independent if the sound speed and density profiles are independent of the range r
and all interfaces areflat (i.e., have zero dope).
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generated by the FW transformation since the expansion parameter kz/ K, >1. However, the exact

square-root operator can be inserted into the Hamiltonian by hand, and this is indeed what is done by
introducing complex Padé coefficients into the Hamiltonian. The evanescent waves do not harm energy
conservation, because they have no downrange flux, but they contribute to the total field and participate in
the boundary conditions along the horizontal interface for some distance behind a step (until they decay to
insignificance). For example, while they restore continuity of the field A at the step, as in the method
based on the FW transformation, the actual physical (propagating) waves remain discontinuous near a
range-dependent interface. In other words, the propagating component of the field — as opposed to the
total field consisting of both the propagating component and the evanescent waves — continues to obey
the same first boundary condition as that imposed by the FW procedure. The evanescent waves aso carry
vertical flux and contribute the second boundary condition (i.e., that on the derivative of the field

0A/dz). Among other things, this has the effect of modifying the effective boundary condition on the

derivative of the downrange propagating component of the field. In fact, the set of evanescent waves can
be chosen so that at a step the propagating field precisely obeys the second boundary condition demanded
by FW theory as well as the first boundary condition.

Note that once again as with the PE generated by the FW transformation and with an implementation
of the change of variable technique near an interface, the density discontinuity is effectively buffered in
the context of the Stair Step PE — this time by evanescent waves. Thus we see that by employing
physical intuition and by addressing practical considerations imposed on them, both Tappert and Collins
anticipated the key philosophical insight that emerges from the technique based on the FW
transformation.

6.2.2.3 Comparing the Stair Step PE with that Generated by the FW Transfor mation

We have just established that the Stair Step PE effectively goes over to first-order FW theory at the
vertical interface, and then gradually fades back to the range-independent theory as the evanescent waves
decay. Thus, the Stair Step PE is in essence a hybrid that combines lowest-order FW theory with the
range-independent theory. It isideally suited for cases where the range dependence is modest (i.e., where
there is relatively little wavelength-scale roughness). Indeed, as aready noted above, along a truly range-
independent (horizontal) interface, the Stair Step PE correctly generates jumps in the downrange flux
aready at first order, and so if the interface is flat or very nearly so, the Stair Step PE should be better
than the one generated by the FW proceduré™. Whenever the interface is localy flat and the
evanescent waves have all died out, the Stair Step method could be improved even further by imposing
the implicit boundary conditions on the higher-order derivatives, and then using the procedure outlined in
Section 3.3.2 to evaluate higher-order Hamiltonians.

For a multiscale rough surface (especialy one that induces Bragg scattering), the PE crosses the
interface very frequently. If the interface increments to a new level frequently enough, then the
evanescent waves never die off, and the Stair Step PE essentialy remains first-order of the theory
generated by the FW transformation™. Under such a scenario, the theory generated by the FW
transformation has several advantages:

e Itisonly necessary to perform the transformations from A— y and back again from y — A
once at the endpoints rather than at each step.

™M To be specific, in this case it would take fairly high orders of the PE generated by the FW transformation to
match the accuracy of the Stair Step PE.

"™ Note that changing the vertical and horizontal step size will not change this analysis. The decay range of the
evanescent range is determined by the size of the vertical step, but not that of the horizontal step. On the other hand,
if we reduce the size of the vertical step, then we have to step more often and generate evanescent waves more often.



116 Daniel Wurmser

e Itisnot necessary to insert the evanescent waves by hand; their presence is inferred by the nature
of the boundary conditionson y .

e The second boundary condition of FW theory effectively selects out an optimal subset of
allowable evanescent solutions.

e In the FW theory, it is possible to obtain higher orders™. At higher orders, the “on-shell”
unphysical evanescent waves are replaced by “off-shell” virtua particles (“off-shell” solutions do
not have to follow the Helmholtz equation, just the higher-order PE)™. These produce a field
that eventually agrees with the full wave result to within the tolerance of the uncertainty principle.

Note that the first two bullets imply that the approach based on the FW transformation is more efficient.
Furthermore, taken as a whole, these four advantages suggest that the theory based on the FW
transformation is the best method for modeling the scattering from multiscale rough surfaces (e.g., diffuse
(Bragg) scatter).

A potentially useful hybrid theory would employ Stair Step PE (Collins method) along relatively
smooth surfaces until the surfaces become so rough that steps in the interface become frequent; at that
point, the algorithm would go over to the theory based on the FW transformation. This should be
developed in future research.

6.2.3 Overview of Available Methods

It is now possible to examine the range of validity of the various approaches to modeling propagation
in a duct with rough quasi-planar interfaces™. The COV approach by Tappert (Section 6.2.1) is best
when changes to the density really are gradual (on the scale of a wavelength), even in the vertica
direction. The Stair Step PE by Collins (Section 6.2.2) is the best theory to use when the interface is
range independent (i.e., without tilt or curvature), and it continues to be the method of choice if the range
dependence is modest (i.e., the interface is dowly varying on the order of a wavelength). When quasi-
planar rough surfaces (with features of a wavelength and less) are present, then the theory based on the
FW transformation is the best one to use. Thisis aso a good general theory that can credibly be applied
to the previous two scenarios as well as to the rough-interface problem for which it was designed. Since
the FW approach is systematic, it includes higher orders, and so it can be adjusted to deal with larger
density jumps than can alternatives that do not have this capability.

For completeness, it is also appropriate that we briefly note two other methods used to model ducted
acoustic propagation: double sweep methods and the method of coupled modes. These are used, for
example, if vertica interfaces are present and/or there is an interest in caculating backscatter. Coupled
modes are also particularly useful in considering scenarios such as the fluid elastic interface where the

9% Some of the evanescent waves are not physical (since, for example, they do not appear in the full-wave solution
where a plane wave hits a tilted interface without curvature). The correct higher-order theory should make the non-
physical evanescent waves disappear as the higher orders are added. Thus, nothing would be gained, for example,
by simply imposing the higher-order implicit boundary conditions for the full wave on the combined evanescent
wave/propagating wave solution. It follows that although Collins' technique can be extended to higher orders along
a truly range-independent interface, there is no way to introduce the higher-order boundary conditions at the stair
steps. The new theory based on the FW transformation must then be used.

PPP For “off-shell” waves, the magnitude of the wave vector does not need to equal k = w/c as demanded by the
Helmholtz equation (or its generalization for the variable density problem). Such solutions are allowed, because the
higher-order PE has many extra derivatives (compared with the Helmholtz equation), and it ceases to operate
precisaly like the standard wave equation. By contrast, an “on-shell” wave has a wave vector with a magnitude that
is compatible with the given Helmholtz equation.

99 In this report, the terms “waveguide” and “duct” are more or less used interchangeably. For some authors,
waveguides are associated with an arrangement of impenetrable interfaces that confine and direct the propagation of
awave and ducts with environmental profilesthat achieve a similar effect without the presence of interfaces.
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(zero) speed of secondary waves in the fluid create a (dimensionless) PE expansion parameter of one (see
Section 7.2).

For an overview and comparison of available methods for propagating classical fields propagating
through a ducted environment in the presence of rough interfaces, see Table 3. Tappert's and Collins
approaches are discussed in Sections 2.2, 6.2.1, and 6.2.2. Bremmer’s approach is discussed in Ref. 20.
Modes with rough boundaries have been extensively discussed by Kuperman, Schmidt, and collaborators
[65, 100-104]. The approach used is a hybrid between mode theory and perturbative rough surface
scattering theory. The use of impedance boundary conditions to characterize propagation through
waveguides with rough boundaries has been examined by Berman [105, 106].

Table 3— The Optimal Use of the Various Approaches for Modeling Downrange
Propagation in a Ducted Environment

Underlyi :
APproRCh Method Optimal Use
Tappert’'s approach Density changes as a function of the range
(uses new field variable u = Ap) and depth really are gradual
g9, | Stair Step PE (Collins [1991]) Interface is allowed to vary but there is little
=B (use range independent theory + conserve energy at | Wavelength-scale roughness (density jumps allowed)_|
Q interface steps; use evanescent solutions to eliminate _
=7 | Gibbs oscillations) May be adequate for wavelength-scale roughness
% Theory based on the FoIdy-Wouthuysen A good ger_1era| theory that can credibly be applied to both
(@] transformation the scenarios above
g (developed systematically using canonical | Stochastic Problem ]
= | transformations; can be extended to higher | If 2" order correctionis needed |
QD orders) Quasi-planar penetrable rough interfaces (Bragg scattering
g- and density jumps allowed)
= Double Sweep " "
(Bremmer Se.rles: use§ full wave solution We are interested in Vertical
locally at the interface; uses PE to propagate back . ¢
between vertical interfaces) ackscatter Interfaces
Coupled Modes U U
20" | These become numerically expensive unless Very large iumos in the phvsical parameters
.= | the range dependence is very modest y large jump physical p .
— j [rough surfaces are treated by stochastic theory and this
For aspects of the stochastic rough surface component of the range-dependence effectively goes
E component of the approach, see Kuperman, away; other range dependence (e.g., from deterministic
Q<J Schmidt. large scale features) is modest — otherwise the approach
becomes very expensive]
(9]
Impedance boundary conditions Range-dependence is stochastic
(Berman) Applies to backscatter

7. SIMILAR EFFECTSIN THE ELECTROMAGNETIC AND
ELASTODYNAMIC PROBLEMS

This section adapts the forma approach developed for the acoustic field with varying density to
electromagnetic and elastodynamic (i.e., eastic) wave propagation. These results will be very useful
since there are currently unresolved issues in applying such vector field PEs to tilted interfaces, and the
results have many possible applications, including fiber optics, radio/radar (these involve el ectromagnetic
fields), and seismology (which involves elastic waves). Electromagnetic fields are considered in Section
7.1 and elastic waves are examined in Section 7.2.
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The discussion below sets up the problem by deriving the state space equation and taking a brief 1ook
at the transformations connecting the familiar full-wave fields with the associated auxiliary fields that are
propagated by the PE. Full development of the theory for the sake of practical implementations will not
be pursued below. However, beginning with the state space equation and the transformation between the
two fields (i.e., between PE and full-wave fields), it should be a strictly mechanical procedure to fully
develop the theory. Indeed, the first-order PE can be immediately read off: it is smply the even part of
the state space equation.

It turns out that jumps in electric and magnetic permeability (in electromagnetic theory) and in the
second Lamé parameter (in the theory of elastic waves) will involve issues that are similar to those
associated with density jumps in the acoustic problem (i.e., the issues associated with Bragg-scale
vorticity).

7.1 TheElectromagnetic Field
7.1.1 The Foldy-Wouthuysen Ansatz for the Electromagnetic Field

The discussion at the beginning of Appendix | provides genera guidelines for constructing an ansatz
that will lead to a state space equation that is a suitable starting point for the FW transformation.
Following these guidelines, the FW ansatz for the electromagnetic field is (in MK S units):

@:[éTJzé(HTi\/%XXE), (122)

Xr

where &, isthe reference electric permittivity and £, is the reference magnetic permeability. Asaways,
the X-axis denotes the downrange direction. The subscript T indicates that the given vector only
includes components in the transverse (i.e., y-z) dimensions. I:|T is the projection in (transverse) y-z
space of the magnetic field H and E isthedectricfield. The underlying tildein @ servesto remind us

that this quantity now has four rather than two components. To within a constant, @ isindeed a carrier
of the flux:

)" Sue- X, (123)

D=6 -6 -7 7 22(%
where, as before, S is the time-averaged energy flux associated with the field, and S = S-R isits

downrange component.

7.1.2 The State Space Equation for the Electromagnetic Field

This ansatz is used to generate the state space equation. This equation involves the following
operators:

L)V +o(L-z)sk ], (124)
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where K, j € (1,2) label the transverse directions y and z, 8’ isthe Kronecker delta, and

oE=¢€-¢,
QU = 1 —

w
k0=€=a) Eldy

A and y are 2x 2 matrix operators. To remind usthat they are no longer scalars, they are underlined.

Asderived in Appendix R.1, the state space equation for the electromagnetic field is

_89%( (0 1 " (1 0 (1 0Y]|(é
i =l A! + (A% = 2Kk, ™) 1 + k0 Py (125)

-1 0 0 -1

oH/ 0
X ¢ n n

This result assumes that the free current J ¢ Iszero (i.e, the material is nonconducting). It would not be

difficult to incorporate the correction for alinear isotropic conductor such that J (= oE.

Note that in Eq. (125) we have included the definitionsfor £ and 77 (Egs. (8) and (11)). The odd and
even operators are now 4x4 matrices defined by the outer products

0=4®¢
£=(A-2y)®n’

To remind ourselves that the odd and even operators are now 4x4 rather than 2x2 matrices, these
operators are now underlined with a tilde ~. Recalling that @ is a 4-component vector, the state

equation can be written in the standard form (cf. Eg. (9))
.00

—==(0+¢& 1®n)d.
Iax (O+&+k1®n)d

Just as for the Dirac equation (and harking back to the discussion just above Eq. (16) in Section 3.1), the
even and odd properties of Q and £ are defined by their commutation properties vis-a-vis the block

diagonal

12><2 0
5 ) o

To avoid confusion, the corresponding one-way Hamiltonian will not be denoted by H, but by the
underlined 2x 2 matrix operator H (its matrix character is denoted by the underline and the font is used

to clearly distinguish the Hamiltonian H from the magnetic field H ). Although itisnow a 4x 4 matrix
operator, the 2-way Hamiltonian will still be denoted by 'H .
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7.1.3 The Transformation Between the Auxiliary Field 67T and the Magnetic Field ﬁT

Next, we examine the approximate transformation connecting the transverse component of the familiar

full-wave magnetic field I:|T with the corresponding auxiliary field 67T that is associated with downrange

propagation by the PE. As shown in Appendix R.2, the two fields are approximately connected by the
equation

, i %
éTz(ﬁ] NS Py R g T (127)
Hy go(1+‘€i§)a) Ko k04l1+%

where

R 2
2k 2\ & My & Mo

Note that A is similar to other scalar A's defined above, but does not precisely match any of them. To
properly use Eq. (127), expand in 58/80 and A to get a finite-order transformation. The downrange

component of the magnetic field H, and the electric field E can be deduced from §T (or more generaly
éT — Y. if theuprangefield ¥, isnon-zero) and H, respectively, using Maxwell’s equations™.

Equation (127) (with definition in Eqg. (128)) neglects the range- and transverse- (e.g., vertical)
dependence of £ and u locally in the immediate vicinity of the point in space where the transformation

is performed. We usually only need to transform between the physical field I:|T and the PE field 67T at

the endpoints of the propagation. The endpoints of the propagation are at the values of the range and
transverse coordinates, where the source and receiver are located. Elsewhere, the field is only “passing

through,” and only the auxiliary field éT is needed. In other words, Eq. (127) (with definition in Eq

(128)) appliesin atypica implementation, where we only transform between HT and §T at a source or
receiver, and additionally have £ and ¢ slowly varying in the immediate neighborhood of the source

and receiver. Equation (127) also assumes that the material is a linear and isotropic such that ,uH =B,
where B isthe magnetic induction. As with the PE (Eg. (125)), it is assumed that the free current J ¢ Is
zero (i.e., the material does not conduct).

Note that this transformation does not involve near-eigenvalues, so it will have to evaluated even in the
range-independent case. In fact, the behavior of the field 67T can be quite different from that of HT.

However, as shown at the end of Appendix R.2, if we have very shallow grazing angles such that VT is
effectively “small,” then we have a“minimal correction”:

6, =(u/e)* H, +O(Z,_§J' (129)

" E.g., Eq. (R.6) (derived using Maxwell’s equations) gives H, o V. -(6; - 7 ) , and we also have Vx H /iwe = E
(assuming that the conductivity is zero); see Eq. (R.1) for alist of Maxwell’s equations.
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For amost all materials i = u,, and so ,u%‘ effectively acts like a constant that cancels at the endpoints.

In this case, the minimal correctionis 6, = (1/¢)™ Hy .

7.2 TheElastodynamic Field
7.2.1 The Foldy-Wouthuysen Ansatz for the Elastic Field

The basic environmental parameters that will appear in this treatment of the elastodynamic problem

SSS

are
U = displacement vector @ =frequency p =density
A, u are Lamé parameters
c’= \/% = gpeed of shear waves ¢’ =, /“% = speed of pressure waves
' = stresstensor = A(V-1)8" +u(V'u' +V'u') (130)
Aoy My, fl, arereference values for the Lameé parameters (usualy x4, = fi,)
P, isreference density

S _ [Ho p_ [A+2i
CO_\)PO CO_V P

Once again, we use the discussion at the beginning of Appendix | to guide us in constructing an ansatz
that will lead to a state space equation that is a suitable starting point for the FW transformation. The
appropriate ansatz for elastodynamic wavesis

(§J=1(Ui | X J (131)
Z) 2\ @pG

Equation (131) must be multiplied by /@p,C; to form atrue carrier of the flux.

=\

7.2.2 The State Space Equation

The state space equation for the elastodynamic field will aso involve a number of additional
parameters derived from the environmental parametersin Eq. (130):

s p s
ns_&;, np_&, nosp :&
c c? cy
s_@
=
ey et
P MU
Po _ A +24,

= Note that dispersive effects take the form of complex components to environmental parameters such as the
density and the Lamé parameters (i.e., the sound speeds).
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These quantities are used to define a set of operators that appear in the state space equation. Some will
play afamiliar role and are labeled accordingly:

(V ( 24u )V$ +V'TIuV'T (é‘ik —5°i5°k)+V$uW)
A=l (- g)er e Ha- ) (s" - 506%)
S0 i) S o

(132)
L
+k‘s’(nO ) (1 n2 p°)5'°5k°
while others will play entirely new roles:
$(-iVI8* +iVis™)
K=
+4| i A VE§I0 1V A gw
A+2u A+2u
(133)
pr=tgigio iy A g0
27 2 "\ A+2u

Note that
k, j€(1,2) - label transverse directionsy and z

K, j =0 - labels downrange direction x

As discussed in Appendix S.1.2.1 to use straightforward J -function bifurcation at an interface, we will
need to make the change of variable:

However, in the current treatment, we will stick with the familiar Lamé parameters A and .

Asderived in Appendix S.1.1, the state space equation for the elastodynamic field is

(0 1 . (1 0

+ﬁ”‘[ j+(/1”‘—27”‘)[ j
aéy -1 0 0 -1
. Tax

oz /|~ 0 1 1o 10 E{J (139
Z/ j s Qj V4
Yx +K‘Jk(1 o} (k- 25“)(0 1j+k05”‘(0 _J '
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Note the familiar 2x 2 matrices £, 77 and the unit matrix 1 have been labeled, asis the new matrix

S

In outer-product notation (see the treatment of the electromagnetic field in Section 7.1), the odd and even
operators are given by

O0=A0¢,+k®7 outer product defines 6x6 matrices
E=(A-2y)®n+(k-24)®1 A,y,x and § are 3x3 matrices

Now, the tilde reminds us that these are 6x 6 matrices. “Even” and “odd” are defined as commutation
and anti-commutation, respectively, vis-a-vis the block-diagonal

L, O
(0 '1&3}

Similarly, we have the six-component vector:

and, as always, we can write the result in standard form:

oD .
|a—)~(=((g+§+k01®n)q3.

In EQ. (132), there appears a new kind of expansion parameter:

(1-())= [1_ (%ﬂ . (135)

To understand the meaning of this parameter, note that PEs not only select out a preferred axis (the
downrange X-axis), but they also select a preferred wave number K, (i.e., the overal reference wave

number). For the elastodynamic waves, it is convenient to choose as the preferred wave number Kk, the
reference wave number for the shear waves k; . The expansion parameter (Eq. (135)) is intrinsic to the
elastic PE, and it reflects the discrepancy between the preferred wave number k3 and the reference wave

number associated with the primary (or pressure or p-) waves. k. It has much in common with the
expansion parameter associated with the acoustic (in this example constant density) PE

o< (1-n) = (1— (Co/c)z) , which reflects the discrepancy between the local wave number k and the

reference wave number K,. However unlike , the expansion parameter (Eq. (135)) is even present for

a downrange plane wave (i.e., one without any transverse ( Y, Z) -dependence) embedded in a completely

homogeneous medium. This s the first time we have encountered a PE parameter that does not vanish in
this basic case. Such expansion parameters will occur whenever the PE is applied to afield that has more
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than one characteristic wave number. Since the p-wave speed is generally around two times the swave
speed, the presence of the term (EQ. (135)) suggests that the PE for the elastic solid will tend to require
fairly high orders. Finally, it is worth noting that in the presence of a fluid-solid interface the expansion
parameter (Eq. (135)) goes to 1 (with the usual conventions; other conventions will cause even more
severe problems) and this limit is consequently quite problematical for the PE. The reasons for this are
discussed in footnote yyyyy in Appendix S.1.2.2. (More generally, a number of subjects addressed in this
paragraph are examined in further detail in Appendix S.1.2.2.)

7.2.3 The Transformation Connecting the PE Field ¥ to the Displacement Vector U

The endpoint correction for the elastic PE (tying the familiar full-wave displacement vector U to the
corresponding auxiliary field ¥ that is associated with downrange propagation by the PE) is quite
difficult to obtain, and for the present purposes as well as for most conceivable future applications, the
first-order (in VT) issufficient. Thisresultis

1

7= D-u (136)
\ PoCy
where
-\% >
- 1 \po w1 1 O
D= pa)Z(E] +35 (keky ) (k—ﬁ—EJ(IHEle(XVT+VTX)+O(V$) (137)
and

1%
(EJ =l o /J/JE o |. (138)

Thisresult isderived in Appendix S.2.

When A, and p are only localy, but not globally, constant, then VT is no longer an observable
(i.e, [VT,H];&O) even in the range-independent case, so there is no cancellation of endpoint

contributions in a range-independent environment, and of course no near-cancellation in a weakly range-
dependent environment. Thisis similar to the electromagnetic case. However, since for shallow grazing

angles VT is“small” and the endpoint contribution does not accumulate, it may be possible to get away
using the 0" order, but use of the first order in VT is the safer practice. Note that the second order (i.e.,
O(Vﬁ)) is the lowest order contribution in VT when one assumes that the medium parameters are

locally constant for the electromagnetic and acoustic fields, so the first-order effect appearing in Eq. (137)
is an unusually big endpoint effect associated with transverse differentiation. Note that in considering
“minimal” endpoint corrections, we have generally kept first order in jumps in the medium parameters.
Thus, it is best to consider the expression above as a “minimal” endpoint correction much like

Po/ P =1— A% 5, 1N the two-fluid acoustic problem.

This completes our examination of the PE for vector fields.
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8. SUMMARY AND FUTURE TRENDS

In this section, the core findings of this report are summarized in Section 8.1, and finally, desirable
future extensions of this research are explored (Section 8.2). The latter includes both plans to implement
the new formalism and extensions of the theory.

From a practical point of view, the chief goa of the effort outlined in this work has been to tie the
acoustic PE technigue to rough surface scattering theory. As the surface roughness extends through the
wavelength scale, it behaves like a diffraction grating and leads to what is called Bragg scattering. Thisis
a nontrivial, phase-sensitive problem that involves theoretical and computational challenges that go
beyond those found in problems to which the PE is most typically applied. Although there hasin the past
been some success in applying the PE to impenetrable rough surfaces, this record has until now not been
matched for penetrable rough surfaces. In this report, the FW transformation has been used to design a
PE that addresses this challenge. The paradigm employed is based on the nonrelativistic theory of the
guantum Lamb shift, where a PE (the Schrodinger equation) was used to model a field near a rough
surface (the world line of the hydrogen nucleus advected by vacuum fluctuations). The applicability of
this technique to the acoustic problem was established by examining the direct classical analogy to the
atomic Lamb shift. Then, the technique was extended to describe Bragg scattering from a rough interface
where the density jumps (such as is common at the water-sediment interface). The PE derived in this way
exploits higher-order boundary conditions to buffer the density discontinuity in a manner precisely
dictated by the formalism.

The results of this work complement the current state-of-the-art PE, and suggest a promising new line
of development. This approach is particularly well-suited for addressing a variety of important scattering
problems—particularly those where the density, electric permittivity, magnetic permeability, or the Lamé
parameters vary rapidly as a function of the transverse coordinates, while the range dependence involves
spectral scales down to the Bragg wave number. This scenario includes rough interfaces where these
parameters jump such as the ocean bottom.

8.1 Summary

The new PE applicable to a rough interface where the density jumps has the most immediate practical
relevance to the field of underwater acoustics, and it therefore constitutes the core of this report. The key
equations needed to implement this PE are presented by:

e Equation (95), the Hamiltonian in the half spaces (which can be resummed to give the familiar
Hamiltonians in the half spaces, but the error terms will involve powers of the new expansion
parameters A and 2y -these parameters are given by Eq. (87)),

e Equation (97), the transformation good in the half spaces that takes us from the auxiliary field
associated with the PE y to the physical pressurefield A,

e and Eqg. (120), the second order O(/iz) boundary conditions applicable aong a
density/compressibility jump.

The method for evaluating derivatives at the interface described in

Fig. 10 is needed for a numerical implementation of the new deterministic theory.

Figure 19 traces the development of this core result. These topics are covered in Sections 3.1, 3.3, 5.1,
5.3, and 6.1 of this report. The mechanics of discretizing the problem are discussed first, and it is
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established that the downrange stepping procedure requires that boundary conditions be specified on the
interface. The FW transformation is used to generate a PE for the auxiliary field that carriers the
downrange flux, complete with the needed boundary conditions. When this approach is applied to an
interface where the density jumps, the jump in energy flux becomes buffered in the PE. (In the full-wave
equation, the tangential component of the flux jumps at an interface where the density jumps.)

The mechanics of stepping downrange, and the related need for boundary conditions (Section 2.3)

< + interface

Sso . Boundary conditions used
< “to evaluate difference at
+ the orphaned grid points

A. Using the PE to step downrange such that

the interface always falls right on the grid. B. Using boundary conditions in finite difference

schemes to evaluate derivatives right on the interface and
so get the Hamiltoni an needed for downrange stepping.

Using the Foldy-Wouthuysen transformation to obtain boundary conditions

Ansatz:
X < energy flux Rough world line of a nucleus
field = = energy flux advected by vacuum fluctuations
time —
FW transformation: n n
Fudomsion 4 oz ]
H= h h - 10 H 0Z" oz" Rough boundary between
- h3 h4 0 -1 media in a waveguide
Result: range >
Scalar PE with scalar Hamiltonian H
A. Use aseries of canonical B. The Foldy-Wouthuysen C. Validate the approach by considering
transformations to generate the PE: i.e., transformation generates boundary  the classical field phenomenon
the Foldy-Wouthuysen transformation conditions along discontinuities analogous to the atomic Lamb shift
adapted to acoustics (Sections 2.1 and (Sections 2.2, 4.3 and 5.1). (Sections 2.2, 3.3 and 4.3).
4.1).

A new suite of boundary conditions along a density jump for the higher order
PE. These effectively buffer the density jump much like an electron cloud
buffers an atomic nucleus (Section 5.1). (Key result)

Flux =
........................................................... interface
Flux =

Fig. 19— A schematic summary of the most important
and resultsintroduced in this report

interface

As noted in Fig. 19, the classical Lamb shift places our formal efforts into context and enhances the
credibility of the results (Sections 3.2, 4.1, 4.2, 4.3, and 4.4). The key result is the classica Lamb shift
induced by the combined effect of sound speed cusps and sound speed/density jumps (Eg. (105)
complemented by Egs. (95) and (97)). The quasi-first-order stochastic boundary conditions for
(separately) a sound speed cusp (Eqg. (40)), the sound speed jump (Eg. (82)) and a sound speed/density
jump (Eg. (103)) provide examples of the classical Lamb shift, and when compared to the deterministic
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guasi-first-order boundary conditions (Egs. (31), (72) and (99), respectively), they indicate that the new
FW term, which is identified with “vacuum polarization” in Section 4.2.1, indeed involves a kind of
smearing associated with (imaginary — i.e., «<i) displacements in the uprange/downrange direction.
Thus, the examination of the classica Lamb shift reinforces the notion that the FW transformation can
smear a singularity — even in the deterministic problem. In addition to the field-theoretic interpretation,
the new FW term can also be explained in geometrical terms by tracing it back to the effects of tilt on the
normal derivative in the full-field boundary conditions (Section 4.2.1).

The discussion of the classical Lamb shift is further reinforced when, in the formalism for the acoustic
problem, it is used to create a toy model of the atomic Lamb shift (Section 3.2.4). The classical Lamb
shift is connected to boundary waves (Section 4.4.4). Curvature-induced boundary waves are induced by
the new FW term (Sections 5.3.3.4 and 5.3.3.5). There is a connection between these boundary waves and
Biot-Tolstoy boundary waves (Section 5.3.3.5).

Going beyond topics mentioned in Fig. 19, Section 5.2 addresses the important technical question of
what to do when the formalism seems to multiply distributions, Section 6.2 places the results into the
context of other work in the field (e.g., see Table 3 for an overview), and Section 7 extends the basic
approach to electromagnetic and elastic fields.

8.2 Future Trends

Now that the underlying formalism has been developed, a number of interesting extensions are
possible.

8.2.1 Direct Applications of Resultsin this Report

A researcher applying this formalism to acoustic modeling could begin by directly applying the results
developed in this report.

Acoustic Lamb shift. An initiad examination of this effect associated with cusps in the sound speed
and/or jumps in the density and sound speed would be based on the stochastic quasi-first-order O(ﬂ, /1)

theory reflected in boundary conditions (Eqg. (105)). Such an effort would build on the preliminary
modeling results presented in Section 5.4.2. These results could be expanded to include the effects of
classical vacuum polarization. An extensive parameter study would reveal scenarios where the classica
Lamb shift could play a significant role in shallow water propagation. Specificaly, a closer study of
localization induced by sound speed cusps would be very worthwhile, since it could suggest ways to
exploit signals trapped by this effect to deploy sonar more effectively.

Acoustic “vacuum polarization” within the water column. Previously, quas-first-order O(/l,/i)

theory was used to evaluate the effects of classical “vacuum polarization” in (deterministic) long-range
propagation in deep water. It was assumed that range dependence is induced as the sound speed profileis
advected by internal waves. Wurmser et a. assumed single-scale internal waves, but Frank Henyey
(APL-UW) has pointed out that a power law is much more realistic and the effect should be larger for
such a power law [107]. Furthermore, Henyey has also suggested that classical “vacuum polarization”
might be significant in the context of bubble clouds, since the scales of the bubbly medium and acoustic
wavelength are closely matched [107]. These hypotheses should be examined in the future.

Bragg scattering. Initialy, second-order 0(22) theory could be used to model scattering from a

determinigtic rough interface characterized by a density and compressibility jump. This study would be
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based on boundary conditions (Eg. (120)), and it will proceed with the problem of scattering from the
ocean bottom in mind. It would be useful to benchmark the results against finite difference solutions
and/or against controlled experiments (perhaps using scale models). Since the ratio of the jump in the
density relative to the reference density is an expansion parameter and the theory has initidly been
restricted to low orders, initial studies should begin by considering density jumps that are somewhat
smaller than the factor of two jump typical for a water-sand bottom. This will alow a preliminary,
gualitative investigation of subcritical-angle penetration into the ocean bottom. The theory could aso be
used to examine the effects of layered bottoms on the acoustic field.

8.2.2 Extensions of the Resultsin this Report

Straightforward extensions of the formalism derived in this result can lead to several promising new
avenues of research.

Higher-order theories. Once the second-order O(/iz) version of the theory is fully implemented and

understood, then the higher-order theory (e.g., third-order 0(23) theory) can also be devel oped and used

in a more definitive study of subcritical angle penetration into the ocean bottom. At some point in the
future, the formalism could aso be extended to include two-dimensiona surfaces embedded in the full
three-dimensional space.

As noted in the final two paragraphs of Section 6.1.5, second/third-order hybrid O(/lz,)i) and the
pure third-order 0(13,2) theories in both their deterministic and stochastic versions will be interesting

and worthwhile, as will consideration of the stochastic version of the basic O(lz) theory. The

stochastic theories will involve both “losses’ due to Bragg scattering and Lamb shift-type effects. The
O(l) terms introduce the classica equivalent of the vacuum polarization effect known in atomic

physics.

Variable dengities. At some point in the future, the possibility that o variesin the half spaces should

be allowed, and consideration given to the possibility that there may be stepsin V;p andin V$ p athe

interface. Such singularities will lead to new stochastic effects similar to the classical Lamb shifts
discussed above.

Other fields. The new approach based on the FW transformation has also been extended to elastic and
electromagnetic fields. It would be best to use these results at first to consider media without interfaces,
and then expand the approach to consider interfaces. The elastic-wave theory can be developed with an
eye toward seismic and seismo-acoustic applications. It remains to be seen whether this theory can be
applied to a fluid-elastic boundary such as appears adlong an ocean bottom consisting of an interface
between water and solid rock (e.g., see footnote yyyy in Appendix S.1.2.2).

Data. Finaly, al of these versions of the theory will have to be thoroughly compared to data.
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A Appendix: y as a carrier of downrange flux

It is shown in [1] that the FW procedure by design ties the conservation rule for

.[dRT | )(|2 to the conservation of the downrange flux, and so to the conservation of energy.

This connection also helps us understand the relationship between the auxiliary field y
and the pressure field 4. Here we examine the case of constant density. It can be shown
that y =,/%; [H (see the second to the last paragraph of Section 2.1, the discussion

around equation (3.14) in Section 3.1 and most of all Appendix D.1), which can be
rewritten in the suggestive form Y = (%U) 0 O [H (where recall functions of operators
are understood as expansions). To further illuminate the interpretation of Y as a kind of
carrier of flux, take |)(|2 =x*x U (H%A)* (H%A), split it in halves, integrate over

transverse space, and integrate the halves by parts each in the opposite direction from the
other to get

[ar, |x{" O [dr, [%(HA)* A UA (HA)} [dr, 1m[ 40f 4p x) |1 [dRS, (A1)
(S, is the downrange flux). In the eigenvalue problem (i.e., when the duct is range

independent), the eigenfunctions Y, form a basis for the solution set: Y = ch X, (c, are

n

constants), and each eigenfunction is (to within a phase) the actual square root of the
corresponding (downrange) flux. (The basis can be made orthogonal using the Graham-
Schmidt orthogonalization procedure; see, for example, reference [108].) For weak range
dependence, we can decompose the field A4 into its corresponding set of eigenfunctions

and replace the operator H with eigenvalues k_; and similarly we can substitute \/E for
JH . If there is no range dependence, there is no mode coupling and the endpoint
transformations from A4 to Y at the beginning and Y back to 4 at the end precisely

cancel. If the coupling is weak in the sense that most of the coupling is between nearby
eigenfunctions (nearby means the eigenvalues are close), the endpoint transformations

will involve factors of \/k /k! (unprime is from the 4 — x transformation, prime is
from the ¥ — A transformation) and the transformations nearly cancel. In such typical

cases, reasonably good answers can be obtained using the PE to directly propagate A .
Although this is often done, it is good practice to keep in mind that this is an
approximation, and that the PE really propagates an auxiliary field Y.
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B Appendix: The place of backscatter in the PE
formalism

The parabolic equation converges to the full wave solution asymptotically. Although the
expansion is of ever-higher order, there remains a small but finite probability of
backscatter. A complete description of propagation through a range-dependent

sound speed profile must take this into account. There is a precedent from quantum field
theory'”. A charged particle field in a constant uniform electric field has a finite
probability of initiating particle-antiparticle pair production. The probability of pair
production goes as the negative exponential of the reciprocal of the field, and it is
therefore non-perturbative. Backscatter for the acoustic field corresponds to pair
production in a quantum field''*'""-'12,

We now follow the procedure starting on p. 193 of reference [109]. Unlike the electric
field, the sound speed variation is automatically decoupled from the range momentum
component, and a transformation to a pure time-dependent gauge is unnecessary (see

equation 4-113 of reference [109]). Therefore, e’E> X, is replaced with k; 1. Now,
locally expand  through second order (note: for very strong range dependence, this

becomes a poor approximation). We now have an equation mathematically very similar
to the quantum harmonic oscillator (see reference [109], equation 4-115), but there is
now an extra term linear in the canonical coordinate. This term comes from the first
order of the Taylor expansion. The effect of a linear term added to the Hamiltonian of a
harmonic oscillator is simply to shift the zero point of the oscillator. This is not
physically significant, and it can be eliminated by redefining the zero point of the range.
Finally, we arrive at the result for bosons undergoing pair production (equation 4-119 in

reference [109]) with eE replaced by k,+/j1/2 :

Probability _ k2! i(—l)s+1 exp{-Sﬂko}' (B.1)

unit volume 1677 & §° %|,u|

Note that the crucial quantity is the second range derivative of =12, Also note that in
the limit as the range dependence disappears (i.e., i — 0), the quantity on the right hand
side of equation (B.1) goes to zero faster than any integer power of 7. In other words, it
is an essential singularity at 7 =0, and backscatter lies at a higher order than any finite

order of the parabolic equation. Equation (B.1) also suggests a technique for calculating
the backscatter. The intensity of the (incoherent) scattered field would be omni-
directional and proportional to the probability density given in (B.1) above.

Solutions evanescent in the downrange direction play a prominent role when there is
ducting in the direction transverse to the original downrange direction (for example, in
geoacoustics, when a downward propagating field can hit a salt dome that is elongated in
the transverse direction and so acts as a transverse duct), or as transients near a spherical
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wave source"’. These waves do not produce an energy flux in the downrange direction.
Since the expansion parameter k_/k, > 1, these solutions are not compatible with the

usual Taylor series expansion of the PE square root operator (as pursued in this paper).
Indeed, these solutions along with other more conventional near-transverse modes will
render the expansion techniques discussed in this paper ineffective. Like backscatter,
evanescent modes only have weak curvature-induced coupling to downrange-propagating
waves, and this coupling goes to zero faster than any finite order of the PE expansion. In
fact, pair production, the mechanism that gives rise to backscatter, is also responsible for
coupling propagating waves to evanescent pairs. Once again, we see that these effects
can be neglected in many problems of physical interest, including many typical ducted
propagation problems. In Sections 2.2 and 6.2.2, it is noted that Michael Collins exploits
the existence of non-physical evanescent solutions in order to eliminate Gibbs’
oscillations. Issues related to evanescent waves are fully discussed in the work of
Fishman et al. in reference [25] and in their subsequent work currently under preparation.

Note that like the PE, the pair-production calculation selects a preferred direction and
specifically postulates weak range dependence. Perturbation theory, which leads to the
Born series, begins with a fundamentally different assumption. It is based on an iterative
procedure that already at the 1% order of the iteration intrinsically generates solutions that
involve the full Fourier transform space of the spatial dependence of the environmental
parameters. The full Fourier transform space automatically incorporates backward
propagating causality, and so in the context of the Born series, backscatter becomes a 1%
order effect. The different properties of these expansions arise because we are expanding
about fundamentally different limits.

Finally, recalling the qualitative discussion in Section 2.3, we can see how the basic
insights in this appendix generalize to the interface problem. There, it was noted that
when a surface is single valued, has small slope, and furthermore, the incoming field
consists of spectral components with shallow grazing angles, then backscatter is a subtle

effect related to the surface curvature ( f for an interface given by z = f (x) ). In other

words, f roughly takes the role of j# when we go from the volume scattering to the
interface scattering problem. Backscatter goes to zero faster than any finite order PE as

7-o.

" Reflecting the fact that the Klein-Gordon equation is a hyperbolic partial differential equation (rather than
an elliptic one), the equivalent quantum mechanical solution must decay in at least one spatial (i.e.,

transverse) dimension in addition to being evanescent in the downrange (i.e., temporal) direction.
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C Appendix: Using the Foldy-Wouthuysen
transformation to derive the basic (constant density)
acoustic parabolic equation

This appendix provides the key features of reference [1]. These are reproduced here for
completeness. The Foldy-Wouthuysen transformation is used to derive a parabolic in a
fluid, where the density is everywhere the same (such as the water column in the ocean).
This is the most basic application of the Foldy-Wouthuysen transformation to a classical
field, and it establishes the paradigm to be used in all the subsequent formal development
in this paper.

Section C.1 recasts the problem so that uprange and downrange propagation are clearly
identified. The 2™-order scalar Helmholtz equation is converted to a 1*-order “state-
space” equation involving 2-dimensional vectors operated on by 2x2 matrices (Section
C.1.1). The components of the 2-dimensional vectors represent uprange and downrange
propagation. A basic attribute of the matrix operator and its connection to energy
conservation is then discussed (Section C.1.2).

In Section C.2, the Foldy-Wouthuysen transformation is used to decouple uprange and
downrange propagation. The canonical nature of the transformation is discussed (Section
C.2.1) and then a form of the transformation is derived for the range-independent
problem (Section C.2.2). This result is good to infinite order. Next, a number of issues
related to the range-dependent problem are examined (Section C.2.3). Most significantly,
a general iterative procedure for implementing the Foldy-Wouthuysen transformation is
derived. This basic procedure generates a perturbative expansion, and it will be used
again later as the formalism is extended to other problems, such as acoustics where the
density varies, electomagnetics and elastic solid waves. The Foldy-Wouthuysen
procedure is then explicitly applied to the range-dependent (constant density) acoustic
problem (Section C.2.4). The proper symmetry properties are made manifest (Section
C.2.5) and then the physical meaning of the results are discussed (Section C.2.6).

C.1 The vector formulation of the Helmholtz equation

In Subsection C.1.1 we develop the ansatz of the procedure developed by Foldy-
Wouthuysen, and then in Subsection C.1.2 examine an important attribute of the structure
of the equation generated by the ansatz: the pseudo-Hermiticity of the matrix
Hamiltonian.

C.1.1 Converting a 2nd order differential equation to 1% order
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The acoustic pressure field is assumed to propagate according to the (constant density)
wave equation through a time-independent environment:

2
op- 19 p o
¢’ or

Note that 0= [II] ~ where once again as in Section 2.1, (= Q g x1 T) with

= Q 9199 z) the gradient in the transverse direction.

Each frequency w can be considered separately, and so the pressure is given by

P(x,R,,1) ijRz

(C.1)
P,(x.R,.t) =Re[ A(x,R,)e™ ]
where the complex field 4(x,R;) solves the Helmholtz equation.
o4 A + 4 kon’ & 0. (C.2)

As in Section 2.1 k, = @w/c, , ¢, is a reference sound speed, and n (x,ET) is the index of

refraction.

In solving second or higher-order differential equations, it is common practice to reduce
the order of the derivatives by adding degrees of freedom. Here, we go from a second
order differential equation for a scalar A to a first order equation for a vector®. The
components of the vector @ must be linear combinations of 4 and its first derivative
04/0x . Following [57] (pp. 199-207), we make the usual choice (e.g., see Section 3.1)

()

where
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7 l A+La—A
2 k, Ox
1 i 04)
-

X 2[ koaxj

This is an ansatz, which has been used previously for the acoustic problem (see, for
example, [113],[114]). Later in Subsection C.1.2, we will see that ® is closely related to
the downrange energy flux.

(C.3)

The Helmholtz equation can be rewritten as

ik, (6-x) =k (6 x)y kin* (6 x). (C.4)

where as always @ denotes 0a/0x. Manipulating the definitions, we also have the
equation of constraint

ik, (6+X) =k (8- x). (C.5)

Adding and subtracting (C.4) and (C.5), expressing the answers in matrix form, and we
have

i® =[kyy +An +AE]| O,

where as in Section 2.1,

_ 07
A=k ~Hk
1 b
/155(1_712)

and as always

1 0 0 1
/7_(0 —J ’ 5_(—1 oj' (€6)

The “odd” operator @ = A¢ is off-diagonal and couples the components of @ while the
“even” operator £ = A7 is diagonal and does not couple & and y.

We now have (cf. equation (3.4))

AP (C.7)
Ox

where

178



H(A)= O +E +kp (C.8)

This formal result is the same as the quantum mechanical analog with the reference wave
number k, replacing the mass. This equation determines the behavior of ® as a function

of the range.

Note that (C.7) is nothing more than the Helmholtz equation rewritten in vector form. It
has previously been derived in references [114] and [115], where it is written in slightly
different form. This result is exact™".

Taking equations (C.7) and (C.8) as a starting point, the Foldy-Wouthuysen
transformation of Section 4.3 in reference [57] can now be used to solve the problem.

C.1.2 Energy conservation and pseudo-Hermiticity

Before proceeding to a solution of the problem, we digress to further examine the
structure developed up to this point. This will serve to provide a physical intuition for the
formal results above as well as motivate what comes later. It will be shown that @ is
related to the energy flux and that a simple mathematical property of the Hamiltonian H
known as “pseudo-Hermiticity” guarantees that the energy is conserved for all values of
the range.

To introduce the concept of pseudo-Hermiticity, it is first necessary to define Hermiticity.
The Hermitian conjugate of the wave function @ is its transpose and complex conjugate:

" Also note that there are a number of other ways to recast the Helmholtz equation as a first order matrix
equation; i.e. there are a number of “branches” for taking the square root of the operator. As pointed out in
reference [115], the Dirac operator would be another choice. However, unlike equation (C.7), the Dirac
equation introduces a superfluous non-physical degree of freedom (corresponding to quantum mechanical
spin). There are a number of other choices, including those corresponding to other spin states. These
introduce extra degrees of freedom, which are not present in the acoustic propagation problem. Equation
(C.7) is appropriate for spinless particles such as pions and K-mesons, as well as for the acoustic field,
which of course also has no quantum mechanical spin. (Incidentally, we will see later that classical
electromagnetic and elastic fields will automatically introduce vector properties into the Hamiltonian, but
the resulting vector behavior comes in addition to the spins being discussed here and the two classes of

phenomena should not be confused.)
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To extend the concept of Hermiticity to an operator & it is necessary to assume the
sturcture

j (o'ad)d’R, . (C.9)

The Hermitian conjugate @' is defined by the equation
[(o'a'®)a’k, <[ (@) ®)dR, .

The Hermitian conjugate of a matrix operator turns out to be the transpose and complex
conjugate of the matrix, while for operators containing powers of the differential operator

[, it is necessary to integrate by parts, picking up a minus sign for every power —i.e.,

after the necessary n integrations by parts we pick up a factor of (—1)" . It follows from
these definitions that the Hermitian conjugate of a product is the product of the Hermitian
conjugates in reverse order (i.e. (61',8)T = S'a’). (Note that it is here where we implicitly
assume that the field is zero at the boundaries.)

Note that the structure (C.9) is required specifically so that the concept of Hermiticity can
be extended to the differential operator [, . In quantum mechanics, the integral would

be over full 3-dimensional space, but for the PE, it becomes the 2-dimensional transverse
space given by R, . This is consistent with the notion that the range x takes the place of

the time. Continuing the analogy to quantum mechanics, R, is the coordinate vector and
the operator —ilJ, is the corresponding momentum £, .

An operator @ is Hermitian if @" =a . The definition of pseudo-Hermiticity is similar:
a is pseudo-Hermitian if (170’)T =na where 1 is defined in equation (C.6). (Note that
pseudo-Hermiticity is Hermiticity with the unit matrix replaced by the metric /7. As will

be shown below, the physical significance of this metric lies in the fact that the energy
associated with the two components of ® propagates in different directions.) Since

Aand 7 are Hermitian, & anti-Hermitian (i.e. &' =-& ) and né = =1, it follows that H
defined in (C.8) is pseudo-Hermitian.

This implies that

if {qawaﬁ}dz&

o [[onHo]d’R,

- J'[(/yHCD)TCD]dzRT, (C.10)
= —iIK%)TnCD}dZRT
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which in turn leads to the result

ai(j[qawq:]dzRT) =0. (C.11)

X

It will now be shown that this equation is an expression of total energy conservation. (By
total energy, it is meant that the forward and backward propagating components of the
field are both included.)

Consider

[[@'no]dR, | (6°6 -x x)d*R,

= szo | (A*OXA ~(9,4) A)dzRT

Im (4*04) ; (.12)

- [ G} 2
= 2:000_[[ > o0 @Jd R,

= 26, [(S,.. )R,

where S’ave is the time-averaged energy flux and p is, as always, the density (begin with
reference [98] (equations 64.6 and 65.4), and then use a well known result for the time-

averaged product of the real parts of two complex fields). It follows that I[GJTI]CD}d ’R,
is proportional to the total down-range flow of energy. Since it is the same for all values

of the range, there are no energy sources or sinks, and we have shown that the pseudo-
Hermiticity of H guarantees energy conservation. Furthermore, the physical

significance of the quantity ®'/7®, taken as a function of the position (x,I_QT) , has been

established. It is the time-averaged energy density flux in the direction of the range x .

C.2 The basic acoustic (op=0) Foldy-Wouthuysen
transformation

Here we examine the actual Foldy-Wouthuysen transformation. The canonical nature of
the transformation is discussed (Section C.2.1) and then a form of the transformation is
derived for the range-independent problem (Section C.2.2). Next a general procedure for
implementing the transformation is derived (Section C.2.3), and then applied to the
range-dependent acoustic problem (Section C.2.4). The equation is made manifestly
symmetric under range reversal (Section C.2.5) and physical interpretation of the results
are discussed (Section C.2.6).
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C.2.1 The use of canonical transformation to solve a problem

At its core, the Foldy-Wouthuysen technique exploits a procedure familiar from classical
mechanics (e.g., see references [116] and [117]). A canonical transformation is used to
simplify the problem, in this case to decouple the forward and backward propagating
solutions. The canonical problem is solved in the transformed space, and the final answer
is transformed back into the original space. In the present context, an additional step is
added. The Foldy-Wouthuysen ansatz recasts the scalar field in vector form (and the
scalar operator of the wave equation into a matrix Hamiltonian operator). The approach
is shown diagrammatically in Figure C.1.

The transformation ® — ® and H — H is canonical if the form of the equation is
preserved, i.e.:

0P O&D ~ ~
i—=H® -i—=H®P
Ox 6
The Foldy-Wouthuysen transformation is a canonical transformation where H is
diagonalized, and the components of ®, 6 and ¥, represent decoupled backward and
forward propagating solutions respectively.

Physical systems tend to be amenable to numerical simulations largely because they obey
physical conservation rules (e.g., energy conservation), which in turn force the related
mathematical equations to enjoy numerical stability. To maintain this source of
numerical stability, we also demand that our new canonical equation maintain the

conservation rule on ®7®. This implies that the transformation must be pseudo-unitary
(i.e. if ® =U® then U'nU =1), which in turn guarantees that the total energy flux

remains equal to — (2 ,0c0)_l J‘(&JHCND)d ’R, . As demonstrated by the argument in

Subsection C.1.2, the fact that this quantity remains conserved even after downrange
propagation implies that H must be pseudo-Hermitian. (It also turns out that  is
Hermitian. This can be seen as follows. Recall that H is diagonal, and so the equations
for the components of ® are decoupled, and each must independently conserve energy.
The corresponding components of the diagonal matrix H must then be Hermitian, and so

is H itself. See also the results (3.11), and the Hamiltonians (C.31) and (C.35) below in
this appendix to see this principle explicitly at work.)
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“Real” space

A (xinitial ) A (xﬁnal )
ansatz [e(xir_litial ) X (xinitial ):| [e(xﬁnal ) » X (xﬁnal )_

(inverse)
Foldy - Wouthuysen
Foldy - Wouthuysen

U

e m e — e ————————

transformation : )
transformation :
is” (inidiar) is’ (iniciar)
¢ ¢ -is! (finar) -is" (finar) v

Successive transformations are e e

labeled by Roman numerals

~ X Propagate in this space : ~
/Y initial g /Y 'xﬁnal

Forward ( ,Y) and backward (é)

propagating solutions are decoupled; 6=0

“Transformed” Space:
Hamiltonian is a diagonal matrix

Figure C.1 - The strategy to be employed is diagrammed above. The ansatz is used to convert the
scalar field into a 2-dimensional vector whose components are, roughly speaking, carriers of the
uprange and downrange flux. The Foldy-Wouthuysen transformation is used to reformulate the
problem such that forward and backward propagating solutions are decoupled. The problem is
solved in transformed space. After propagation, the physical field is recovered. For many
applications, propagation effects dominate, and it is possible to drop the contribution from the
transformations at the endpoints.

C.2.2 Example: the range-independent sound speed profile

We now illustrate the Foldy-Wouthuysen technique by examining the case where there is
no range dependence in the sound speed profile (i.e. ¢ can depend on the transverse

coordinate R, , but it is independent of the range x ). With the formal substitutions

n.Z

— A, m-k,
2m

the PE problem is identical to the non-relativistic reduction of the Klein-Gordon equation
in the absence of an external field. The latter is solved in reference [57] (p. 200). The
corresponding Foldy-Wouthuysen transformation is

=50
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s =pgo()) =G é} o)

A
ky+ A
(This particular form follows the notation of reference [57]; however, in Appendix D.1
below, when we examine the relation connecting ¥ and A for the downrange problem

(i.e., the transformation at the endpoints), the result will be recast in a form more
conducive to the calculations to be pursued there [see equation (D.5)].)

where (C.13)

o(4) = —étanh_l

The form of S was obtained heuristically by invoking an analogy to rotations about
coordinate axes commonly used in quantum mechanics, while the value of © given in

equation (C.13) comes from the requirement that off-diagonal elements of  must be
zero. Note that S is pseudo-Hermitian and e” is pseudo-unitary.

The relation d4/dx implies that 7= e“He™™ and, from the definition of H given in
(C.8), it follows that ¢“H =He ™. Finally, this leads to

H=He™ =nk, /1 +i—’]. (C.14)
0

(The factor of 2 in the exponential cancels the factor of )4 in ©.) The exponential

e*® =cosh| tanh™ A +sinh| tanh™ A ,
A+k, A +k,

which is easily reduced (e.g., using the symbolic manipulation program like Maple).

reduces to

For a forward propagating wave, we have

where

A= 14225, (C.15)

Since the operator on the right hand side of equation (C.15) is (in this case) independent
of x, this is an eigenvalue equation, and it follows that y must be expressible as a sum

of eigenvectors of A (Y = ch X, )- Therefore, the transformation at the endpoints

n

A=0+x=[1 1]e™V m X=Yc[t 1]e™ ™ m X (C.16)
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simply involves rescaling each eigenvector by a constant, and so A also satisfies
equation (C.15). This is the standard PE for a range-independent sound speed profile
(first introduced in equation 3.24 of [15]). Finally, expanding in 2A/k, , we have

o4 _ [
——=—"A+k (1-u)A, C.17
lax 2k, 0( ,u) ( )

and with 4 = We™" | we recover the basic, lowest order PE, as it appears, for example, in
[15] (equation 1.21). It has been recognized previously in [118] that this equation can be
obtained using the Foldy-Wouthuysen transformation. (Also note that to obtain this
range-independent result, it was not necessary to drop the contribution from the
endpoints.)

Thus for a range-independent sound speed profile, the Foldy-Wouthuysen transformation
recovers the various well known forms of the parabolic equation. Assuming 4 to be

slowly varying, 04/0x is a 2" order correction, and the 1% order result, equation (C.17),
is also applicable to the more general case of a range-dependent sound speed profile.

C.2.3 The general range-dependent problem

C.2.3.1 The expansion parameter

A perturbative solution to the range-dependent problem will now be obtained by repeated
applications of the Foldy-Wouthuysen transformation. The formal expansion parameter
is the dimensionless operator A = A/k, . Note that if we take the operator

AN=0; / 2k~ u, and operate it on eigensolutions (i.e., modes), we find that the first

operator [17 / 2k; roughly corresponds to the square of the grazing angle and the second
— /4 measures the deviation of the local sound speed from the reference value. A

sufficient, but strictly speaking not necessary, condition for the operator A to be small is
that the grazing angles and sound speed deviation both be small. (The pathological case
where both are large, but cancel will be discussed near the beginning of Appendix
K.1.1.2))

The range dependence is assumed to be small and slowly varying, and so the
dimensionless operator k;' 0A/dx = —k;"' 0p/dx is formally 2™ order. In general, either

the operator A or the operator k,' d/dx contributes an order.

Some of what follows can also be found in [57], but the full calculation is reproduced
here for completeness. Looking at the definitions O = A& and £ = A, we see that,
unlike for the calculation in the reference, these operators are now of the same order, and,
even on a formal level, some care must be taken in transferring the previous results. In
particular, when the calculation is carried through 4th order, it will be necessary to add
terms which did not appear previously.
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Before proceeding with the calculation, let us examine the source of these differences.
Consider the expansion parameter

_0
2%

_ﬂ.

For comparison to the quantum problem, make the usual identification of the transverse
derivative ilJ, with the momentum p, k,u with a scalar potential @, k, with the mass

m , and explicitly display the speed of light ¢ which was set equal to unity in the notation
of [57] (as was 7). The result is

2
N - p22+_(02 :
2m°ce  mc

With p~mv+0O (v/ c) (note that v is the velocity of the particle), the expansion

v? @
N> —| —+ .
(202 me?

This would mean that the expansion is in v/c and in the ratio of the potential energy to

the rest energy of the particle. Thus, following the practice appropriate for the acoustic
calculation, the kinetic and potential energies should be placed on an equal footing.

parameter becomes

While such an expansion would be very reasonable from a formal relativistic point of
view, it is not followed in many practical quantum mechanical applications. Of the
calculations performed in reference [57], the one most closely analogous to the acoustic
problem (because it is spinless; i.e., has no non-physical degrees of freedom) is given in
chapter 9. However in that particular calculation @ is not small compared to the rest

energy, and it is therefore not treated as an expansion parameter. On the other hand for
the calculation involving the hydrogen atom (chapter 4), @ is considered to be of smaller

order than the kinetic energy term.

C.2.3.2 The iterative procedure

To generate the expansion, a succession of transformations is used, each having the form
® = . With each iteration, S is of increasing order in A , and the transformation is
designed to diagonalize H to that order. Henceforth, Roman numeral superscripts will
denote the order of S and of the diagonalized part of H . The corresponding ®, © and
£ will also be labeled in this way. For example, ®' = AN obeys the equation
; 0P’
Ox

=H'®, (C.18)
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where ' =k +E&' +O" to O(A).

Substituting e '® for ® in the original equation of motion (C.7), we have the result

0=¢" (H —ii) S P (C.19)

X

From a theorem given in reference [57] (p. 49), and using H =O (/\0) and §' =0 (/\) ,

we have

S He™' = H+i[S[,H]—%[S’,[S’,Hﬂ —ﬂs’,[s’,[Sf,Hm 0
ryls s[5 [s' ] +o()

and, also using [S[,(a/dx)] = -3’ =O(/\2) ,
is! %e—is’ :;_x_l-sl +%[SI’S1:| +é[$1,[51,5'1ﬂ +O(/\5). (C.21)

e

These results are substituted into (C.19) and the expression for H' is obtained by
comparison to (C.18). (Recall that the commutator [,] is defined in footnote f.)

By analogy to the range-independent calculation, choose
g = _inO
2k,

(C.22)

and evaluate the expression for H' using 7O = -On, n€ =€n, n* =1, and equation
(C.3).

Since £/k,,O/k, =0(A), the anticommutation of O and 77 implies that

i[S ! ,H] =-0+0 ( /\2) . All other new terms such as those proportional to

[S ! ,[S ! Hﬂ or S’ are second order or higher. Thus, by construction, the Foldy-
Wouthuysen transformation cancels the odd 1st order terms, and replaces them with new

terms of higher order.

Note that this result depends only on the definition of S and the anticommutation
relation {l], (9} =0. The procedure can be repeated order-by-order, with the order of the

remaining odd terms increasing with each iteration. As can be seen from the following
argument, the anticommutation relation will always be met.

Beginning with the Hamiltonian H and applying repeated transformations of the sort just
discussed, the transformed Hamiltonian will consist of terms whose matrix part is
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constructed from products of /7's and &'s. Since & =(-1)"1, 7" =1 and {&,7} =0,

the matrix part of the odd operators will be either 7 or & while that of the even
operators /7 or 1. It follows that the odd operators all anticommute with 7.

The anticommutation relation, together with the iterative nature of the procedure also
insures that energy will be conserved no matter how many times the procedure is
repeated. Before iteration, 7 and therefore © are pseudo-Hermitian (O"H =HO),
which, using the anticommutation relation, also implies that S = —inO/2k, is pseudo-

Hermitian. Thus, e” is pseudo-unitary and the transformation preserves energy
conservation. The new Hamiltonian and consequently the new O are therefore once
again pseudo-Hermitian, and the process can start all over again.

In this way, we have provided an order-by-order prescription for diagonalizing the
Hamiltonian. This implies that the “true” coupling between forward and backward
modes (i.e. backscatter) is of higher order than any finite order of perturbation theory,
and that the perturbative expansion constructed in this way must be asymptotic. We will
return to this issue later.

C.2.4 Implementing the procedure

On page 50 of [57], the terms needed to implement the first Foldy-Wouthuysen
transformation are evaluated. The results are included here for completeness. Note that

any odd operator to an even power is even. Terms of O (/\5 ) and higher are dropped.

Recall that S is given by equation (C.22). The first iteration of the Foldy-Wouthuysen

procedure yields the Hamiltonian 7’ . From equations (C.19) to (C.21), H' is given by
the original matrix Hamiltonian H followed by a sum over the following terms:

i[5 H] = -0 +2ik0[o, ] +k10/702
1 . ono* 1 o’
_5|:S1,|:S1,Hj|:| - _2_](0 _%[0,[0,5]] _2_](5
. ~ O’ ,7@4
_é[SI,[SI,[SI,H}]J — 6_k§_6k§
1 _ no*
Z[SI’[SI’[SI’[SI’HHH - 24k}
_S! - i/](’j
2k,
—é[s’,S’] = —8’75[0(9]
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To the order that we are concerned with, it would at first appear that two terms are

missing:
48k2[ [o]o.€]] in —é[s’,[s’,[s’,nm

and
s [ss]) = s o[0.0]]

However, these terms are 4™ order and odd. The next Foldy-Wouthuysen transformation
will remove these odd terms, replacing them with terms of 5th order and higher, which is
of higher order than concerns us here. Therefore, to obtain the diagonalized Hamiltonian

to O (/\4) , we can use the results from [57] without modification. However, we have to

be careful to make sure we include all relevant terms during the next stages of the
diagonalization procedure. As mentioned already, the order counting in the reference is
different from that which must be used for the parabolic equation.

Combining the terms calculated above, we have the result

H' = kn+E +0' +O(N)
0’ o
g = ,7(2]{0 8k3] S—W[(’) [0, 5]]— [o O] (C.23)
- N O’ ”70 2
o = 2k0[0’€] 2k2 2k, (%)

So far, these results are the same as for the relativistic reduction problem in quantum
mechanics.

Now, the procedure is iterated to eliminate odd terms, which are 2" order in A . The
second Foldy-Wouthuysen transformation is:
SU - _”701 zo(/\Z)
2k,

7:211

A+l s"H' |- 2[5*” [S”,ﬂ’ﬂ -$" +0(~) (C.24)

inO'
2k,

0

k1 +E' +i[S”,51J+%[S”,Ol] +=—— +0( N),

where the result [S " ,kon] =i©' was used to simplify H". Simplifying the

commutators, we now have
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7:(11 — k0,7+€11 +O" +O(/\5)

(o)

1l — 1

g = ¢ e . (C.25)
O[

o = 2%[0’,5’] leo =0(N)

Note that the second term in £” is new; this term did not appear in the calculation of
reference [57] (see paragraph below equation (C.29)). Now, we apply the Foldy-
Wouthuysen transformation yet again

10011
2k,

s =~ =0(N) (C.26)

and obtain
H" = kg +E" +i[ $™,6"]-8" +O( N). (C.27)

The last two terms of H" are 4™ order odd terms. Once again, note that the only effect
of the fourth Foldy-Wouthuysen transformation will be to push such odd 4™ order terms
up to higher order, so we finally have

H" =kp+E", (C.28)
where
o O
) ”(g‘@}* [O (@ 5]]‘ [O 0]
£

( [(’) 8] —Z{O[O 8]} +(’)2) + 5™ order

(C.29)

8k3

(This recovers equation (3.10).) Recall that {,} denotes the anticommutator. The last

term is the expansion of 17((9’ )2 / 2k, .

Note that even on this formal level, we now have extra 4™ order terms, which do not
appear in the results of [57]. This is because powers of the expansion need to be
tabulated differently in that problem. On the other hand, note that this is the only
difference so far between the quantum mechanical and acoustic problems. Indeed, the
only assumption that went into obtaining equation (C.29) was that the Hamiltonian H
have the basic form (C.7), and that its constituents O and £ obey the commutation
relations described at the end of Subsection C.2.3.2 above. Equation (C.29) is therefore
quite general, and will apply to the acoustic problem where the density varies, and even
to vector fields (e.g., electromagnetic and elastodynamic fields).

Now substitute £ =An7 and O = A¢ into (C.29). This gives
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[0,€] =44*
-i{0.[0.£]} =20[2°.4]. (C.30)
O? = -}

Combining results, we have

2 3 4 ‘2
H" =k, 1+i_/1_2+/]3_5/]4 _)\4
k, kX 2k} 8k 8k
I Y | I 2 9 5
+%[M] 4—k3[/1 ,/]]+O(/\) , (C.31)

24 AP ' : j :
:ﬂko(,/l +k—0 —%] +817§[)|,A] —4%3[%,/1] +0( )

where recall A = (12 /2k~ ik, and there is an implicit unit matrix 1 in the last two
terms. In the last line, we have formally replaced the terms 1+ %} - A @ +% g A .

with /1+2A/k, , as always following the common practice of defining the function of an
operator by the Taylor-Series expansion (the classic example of this being identification
of the formal expression exp (a %) with translation by a ). As was assumed in deriving

equation (C.31) and everywhere else this paper, this implicitly assumes that the operator
2A/k, is small in some sense.

Note that in the limit A - 0 (i.e., no range dependence) we recover the expansion of
H= ko1 +2A/k, , which is indeed the result for a range-independent sound speed
profile. Also note that if there is no transverse dependence in //, then the commutator

terms disappear as well. Thus the commutator terms are associated with the simultaneous
presence of both range and transverse dependence.

For the diagonal Hamiltonian 7, the pure forward and backward propagating solutions,

~ (0 - 1
® D[l] and ® [ (Oj respectively,

remain of the same vector form as they propagate. For these solutions, /7 can be replaced
by F1, so that the energy flux is proportional to ®'®. Following the same reasoning as
before, it follows that the range propagation operator must be unitary and 7 must be
Hermitian. Being diagonal and Hermitian, it remains pseudo-Hermitian as well. Using

the expression for H” given in equation (C.31), Hermiticity can also be verified directly
by inspection. Note that the forward and backward propagating solutions independently
conserve energy, the perturbative formalism making no allowance for energy loss due to
backscatter.
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The explicit appearance of the complex number i as a coefficient in equation (C.31)
creates the illusion that the propagation may be diffusive. However, note the term is
actually Hermitian, and so overall energy is conserved, and there is be no diffusion here.
It will shortly be shown that it is possible to further transform the result (C.31), among
other things, removing these complex coefficients.

C.2.5 Manifestly range-reciprocal form

It is possible to apply a variation of the Foldy-Wouthuysen transformation to rearrange
terms without changing the order of the diagonalized part of the Hamiltonian. For the
Hamiltonian (C.31), choose

gz 1 04 _m =0(N?). (C.32)

(There is here a slight labeling change here. The Roman numeral on S still corresponds
to the order to which the Hamiltonian is diagonal, but not to that of S itself any more.

The “1” after the Roman numeral identifies S”"' as the generator of the first order-
preserving variant of the Foldy-Wouthuysen transformation.) Note that S is diagonal
and Hermitian, so the transformation e” s unitary, diagonal and pseudo-unitary, so

energy conservation considerations discussed in the previous section will not be affected
by the transformation.

Now, we have

7_21!/‘1 :7_211/ +{S1V'l,l7(k0 +1 _2/1_1:0}} —%[SIV'I,[SIV'l,Hko]} _S]V,l +0( /\5)

A A2 2 55 4 A 3i :
:nkoﬂHk__k_ﬁzH _8k4} 8k, 8k4J 16k3[/]2’/]]+O(R) (€.33)
0 0 0 0 0 0 0

20 A A2 3i .
:nko( 1+k—0—8k§ —Sng—m;g [,12,,1}0(/\5).

Perform a second such transformation;

—3n 0(A*) - ;
gl = 161% gx ) — 1632:;{A’/]} :0(/\3)’ (C.34)

where recall {/],/1} =) +A 1. Now,

192



7:(11/,2 :7:(11/,1 +i[SIV'2,I7(kO + )J _sz +O(/\5)

A A A s A ar 3{AA
=k, | |1+ 525 + 25 -2 | T + 4+{ ) 10 R)  (C35)
k, kX 2k S8ki| 8k 4k’ 16k

20 A A2 3{AA
T T T Eékg} J +0( ).

Equation (C.35) is the most important result of this appendix and it corresponds to
equation (3.11) in the main body of the text. Once again, note that the square root
operator above is essentially a placeholder for its Taylor Series expansion. The
distinction is important, when the expansion parameter 2A/k, > 1, but this is outside the

purview of this work (see the discussion in the third-to-last paragraph of Appendix B).

Thus, H =nH where

H =k, 1+2 _A +... 1, (C.36)
k, 8k,
and so
i® = npHO

: o\
X X
For one-way (downrange) propagation, 0=0 and dropping the tilde on Y, we have
—-iX=Hy.

Note that the new terms manifestly exhibit range reciprocity. This means that the
substitution x — —x will not change the form of the scalar Hamiltonian at all, and in the
overall matrix equation it only flips the uprange and downrange labels. The original
wave equation obeys this symmetry, and it is good to get a form of the PE that also
manifestly maintains this symmetry. For this reason, the form given in equation (C.36)
(and its higher-order versions) above will always be used in preference to the scalar
version of the form given in equation (C.31).

Recall that modern wide angle PE's based on the so-called Padé approximation do not
necessarily reproduce the series expansion in the appropriate limit (see footnote m), and

so adaptation of results such as equation (C.36) to these approaches will be non-trivial.

It can also be shown that, to the order obtained here, the result is independent of the
choice of &, .
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Also note that to 3" order, we have the straightforward substitution f — (- ,u/ (Skj)

(recall that A = (2. /2k;~ kyu and j1 =0/ dx> refers to the second derivative with
respect to the range). To this order, this is equivalent to rescaling the sound speed

c - c—'é/(Skoz).

The results may seem somewhat surprising at first. For example, the transformation
S"! roughly speaking, substitutes a dependence on 0 (Di,u)ﬁ x for one on

j1=0 ,u/ dx> . These terms can be zero at different times, but this apparent discrepancy
disappears after closer scrutiny. If /=0, then [H , /,'1] Od p/dx, and the commutator

terms simply contribute to the transformation at the endpoints. The contribution is only a
phase change, since the term is Hermitian. In fact, since we always assume the range
dependence is locally zero at the endpoints, this contribution is zero, and the commutator
terms do not contribute at all to the final answer. Now, lets consider the opposite

scenario: if [/1./1] =0, then [1=djt/dx and ji is a perfect derivative, and again we are

left with a trivial endpoint (phase) change, which goes away entirely if we neglect the
range dependence at the endpoints.

In this way, we can begin to see how these two very different representations of the same
problem still lead to the same solution. The notion that very different looking
Hamiltonians yield the same range propagation results is not unique to this problem.
Canonical transformations often have this attribute. This is most easily seen when the
problem is formulated in terms of the Lagrangian. The equations of motion are not
changed by the addition of a total time derivative of a function of the coordinates and the

time (df (q,t) / dt ). However, after returning to the Hamiltonian picture, the connection

between the corresponding Hamiltonians may be quite obscure.

C.2.6 A physically intuitive picture of the results

We are now in a position to develop physical interpretations of the Foldy-Wouthuysen
procedure. The transformations used to diagonalize the Hamiltonian seek out the effects
which accumulate during propagation, and separate them from effects which cancel
everywhere except at the endpoints. The former come from “virtual” oscillations
between forward and backward propagating modes. This concept can be developed as

follows. Recall the prescription (/ — (- ,u/ (Sk(f ) . Consider a coordinate shift
x - x+0x and expand #(x+Jx). We have

pi(x +3x) = () + () Ox +%,L'1(x)5x2,

and treating Ox as a random fluctuation to be averaged, we have
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(i +6x)) = () + () () +% i(x)(&¢°).

Comparing the prescription { — L — ,u/ (8k02) , we conclude that the fluctuation has

average <5x> =0 (this is perfectly reasonable; most random fluctuations have this

property) and root mean square displacement

(5x°) = %

Note that this corresponds to fluctuations on the order ox ~ i / (2k0) . The quantity is

imaginary because it is associated with an evanescent wave phenomenon. As alluded to
in Section 2.1, the 1¥-order boundary term is sometimes moved from the endpoint
transformation into the Hamiltonian, where it becomes i/1/2 (e.g., see Schurman e al. 19,

and also Appendix B of reference [1]). It was pointed out in Section 2.1 that this is not
usually a good practice, but here it is instructive. Including both the new Foldy-
Wouhuysen term and this term in the Hamlitonian, we are left with the simple

prescription ,u(x) - ,u(x +i/ 2k0) ; 1.e., a small shift of x into the complex plane.

Note that when averaged over any scale resolvable by the wavelengths of the field
involved, no energy flows from the forward into the backward propagating modes (or
vice versa). This is what is meant by a virtual oscillation between the modes. Higher-
order terms correspond to virtual fluctuations into multiple backward propagating modes.
(This can be deduced by once again appealing to the analogy to quantum field theory.
The Feynman diagram picture identifies the order of a term in the perturbative expansion
with the number of virtual particles [or modes] created.) The diagonalization procedure
also serves to push “true” (as opposed to virtual) backscatter to its “natural” place at
infinite order in perturbation theory.

The oscillations between forward and backward propagating modes have the attributes of
a harmonic oscillator. The transformations used to simplify the diagonal representations
of the Hamiltonian can be understood as translations of the zero point of the harmonic
oscillator. The crucial quantity characterizing both the virtual fluctuations and the “true”
backscatter is [/, which corresponds to the spring constant of the oscillator. For “true”
backscatter, the oscillator is not bound, and the spring constant is negative. Once again,
we are reminded that “true” backscatter is not a process that lends itself to this kind of a
perturbative approach. For virtual oscillations, on the other hand, the analogous
oscillator is bound, the spring constant positive, small fluctuations remain small, and
perturbation theory is appropriate.
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D Appendix: The transformation between the pressure
and the PE field

The goal here is to establish the relationship between the auxiliary field j that propagates

according to the PE (equation (3.13); in this appendix we put tildes on § and H to

clearly distinguish between the ansatz (no tildes) and the transformed problem where the
matrix Hamiltonian is diagonal (tildes)), and the actual pressure field A4 that propagates
according to the Helmholtz equation (equation (2.2)).

D.1 The transformation when the density is everywhere the
same

From the Foldy-Wouthuysen ansatz (equation (3.2); the definition of the 2-dimensional
vector @) we have immediately the equation

(1 No=4. (D.1)

We also need to be able to go from the 2-dimensional field vector that propagates

according to the diagonalized Hamiltonian ® back to the ansatz vector ®. Recall from
reference [1] (or equivalently Appendix C.2.3.2) that the Foldy-Wouthuysen procedure is

iterative. If CTDH_1 obeys a matrix equation of motion that is diagonalized to order n —1,

then one more Foldy-Wouthuysen transformation
b =D (D.2)

will produce a field @, that propagates according to a matrix equation of motion that is

diagonalized to order n. So, we can write in general
® = e—iS,e—iS,,e—iS,” (D

and
A=(1 N =(1 1)e™e™e™r...0. (D.3)

The Foldy-Wouthuysen (FW) procedure precisely determines S,,S,,,S,, -+, and we can

=iS; _—iSy _-iS,
1™ o,

substitute for these operators to calculate product e e -+ order by order. (Note
that in this context, Roman numerals enumerate successive FW transformations, and do
not refer to sides of an interface.) In Appendix D.2, we will employ precisely this

strategy to obtain the ¥ < A transformation good to O(A*,Ay) for the case when
V= (,00 - ,0) / 2  is non-zero (i.e., the density is not uniformly constant). However, here

where the density is held uniformly constant, let us do something a little different. If we
assume that there is no local range dependence (e.g., those extra Lamb-shift terms are all
zero), we can take advantage of the fact that we already know how to calculate
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e SieSe™m ... to oo-order. To do so, we follow Section IL.B in reference [1], Section
[9.7] in reference [57], and the treatment above in Appendix C.2.2. Rather than iterative
infinite series, only a single Foldy-Wouthuysen transformation is needed to fully
diagonalize the matrix Hamiltonian . In particular, we have

iai):koq 1+2d‘>, (D.4)
Ox k,

where (see, for example, equation 25 in reference [1] or equation (C.13) above)
d = s P

B

tanh™ {

S

ASS
]l

A+%}

The equations have been slightly recast into a form more conducive to the calculations to
be pursued below.

(0 lj¢
q) —_ iS(D —_ 1 0)2 q)

and we need to evaluate the exponential. Using the symbolic manipulation package
Maple™, we have

Hro M

5 el
S S

2 2

or

oS = [(1) (1)]%_ 1 [l+e'zj —l+e¢)

2\/e—¢ -1+ 1+

Thus, we have
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Now, we need to evaluate
¢’ =cosh¢ +sinhg = cosh[tanh_1 (x)} +sinh[tanh_1 (x)] ,

where
_ A
X = .
A+k,
Using standard identities (or Maple™), we now have
A
+1
¢ — x+1 _ /1 + kO

e

-2 _\/1_(/‘ jkj.

In all cases where the PE expansion (i.e., in 2A4/k, ) would also apply, A +%, >0 and so
we can multiply through by this operator and replace it with the square root of its square

in the denominator to get
go Atk [Oh
Jasry -2 VK

WA
Jo = (1 +ﬂj (D.6)

Thus, we have

and

YA
67+)~(=\/e7(9+)():{1 +QJ A (D.7)
Finally, restricting ourselves to the case of right (downrange) propagation only, we have

@ =0 and the final result
JA
X= (1 +2j A. (D.8)

0

D.2 The transformation when the density is only constant in the
half-space

In this case, we are only interested in the answer to second order (i.e., O(A*,Ay)). Thus
we begin with equation (D.3) adjusted to this requirement:
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A=(1 De™e™d (D.9)
and calculate S, and S, to the required order.

The Foldy-Wouthuysen procedure (see reference [1], equation (35); or equivalently
equation (C.22) above) gives us

5 =710 _~i(E)A =il (0 1) (D.10)
2k0 2k() 2kO 1 0
and so
A 0 1
oS =e_[mj(1 0]. (D.11)

Substituting equation (39c) from reference [1] (or equivalently the third part of equation
(C.23) above) into equation (40a) from reference [1] (or equivalently the first part of
equation (C.24) above), and dropping the term that goes away if there is no local range
dependence as well as the term proportional to (O°, which is higher order than concerns
us here, we have

0 0 0
= ﬁw,u ~2ky )]
—io (D.12)
= —(2k )2 (2/12 _2k(){ya /]} )5,7
0
i 0 1
= 247 =2k {y, A
(2k0)2( ¥ })(1 Oj
and
| . 01
e_[S” :eW[Z/i 2k0{y»/‘}][1 0]. (D.13)

Expanding the exponentials to O(A*,A)), we have

o 2 A0 1 2(1 0
e—lS,e—tS,, =1+4| - A _'_/1 - _{y’ } +l ﬁT +O(/13’}//12,y2/1)’(D14)
2k, 2k, 2k, 1 0) 2 4k;\0 1

and (using equation (C.8))

, <
4=(1 1)e"‘51e"‘5"d‘>:{1—/] +5"2 —{V’A}}(l 1)(6} (D.15)
2k, 8k; 2k, X
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Only now do we need to invoke the fact that the density is locally constant in the half-
spaces away from the interface so that {y,A} =2yA. Recalling from equation (5.13) that

a=p,/p=1+2y+0( ) we have to O(A*,Ay)

A:(l—ﬂ +5(CM)2 +---](6~? +)~() :[1 +2ﬂj_% (67 +)~(), (D.16)

2k, 8k k,

and setting uprange propagation @ to zero, we have indeed verified to O(A*,Ay) that

A
[1+ﬂj =3 (D.17)

E Appendix: A close look at volume fluctuations and
the PE

This appendix closely examines volume fluctuations where the range dependence is
generated by distorting the range-independent sound speed function [ ,u] (z) by an

arbitrary function of the range and depth f(x,z)"". This way of imposing range

dependence is crudely illustrated in Figure E.1.

"V Subject to the restriction that the range-derivatives of f  are small. This restriction comes explicitly

from the range-derivatives in the new terms generated from the Foldy-Wouthysen transformation (such as
—/1/ 8k§ ), and implicitly from the well-known PE requirement that fields are modestly inclined from the

horizontal.

200



How to construct range-dependence for the stochastic PE

2\l

Lines of constant
[WE) (e,
contour lines or
equipotentials)
are range

> X independent

Distort the contour lines to
create range dependence

Z
¥

- — ~———}t—————~_ ———___ Contour lines for
o O — — ____Mx,z)arenow a
—~— —  — series of rough

e S surfaces of the
form f(x,zy).

—_—
X

Figure E.1 — Range-dependent volume fluctuations of the sound speed function [/ = (1 - cé / c’ ) / 2

are generated by distorting contour lines in the range-independent problem.

The contour lines are now quasi-planar rough surfaces, and so the stochastic problem is
obtained by range averaging functions of f* (i.e., < f 2> (z) = %J.OL f? (x,z) dx ,etc.). The

parabolic equation implicitly assumes that the range-dependent problem is derived from
some range-independent problem by a distortion of this general form. This insight
becomes crucial when we consider volume fluctuations adjacent to cusps and
discontinuities. We will see below that this way of generating stochastic range
dependence allows the averaging process used within the volume to dip down into the
nooks and crannies adjacent to a rough line along which the sound speed has a cusp or a
discontinuity. Thus, the stochastic results derived in this appendix will still apply
everywhere except right on top of the singularity.

The basic geometry of a distorted contour line is shown in Figure E.2. The illustrated
contour line was located at a depth z, in the original undistorted problem. After

distortion, we have
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e (2

ox’ 0z
;= [_a_ﬂ a_ﬂj |
0z 0x
The slope of 7 (i.e., the slope of the tangent to the contour line) is given by
. ou
o
0z
or
ou = aa—/'l . (E.1)
Ox 0z

where a (x,z) = - f (x,zo) is the negative of the slope of the tangent to the contour line

passing through that point. It is a small random function of x, and it depends on z too.

The basic geometry of a contour line

) +f(x,zo)

Along this line

(v.2)=[#] (=)
=[] (z -/ (x.2))

Figure E.2 - Contour lines are formed by deformation of the range-independent problem.

Recall that in this appendix, we are concerned with the new term —)'I'/ 8k, =i / 8k, . Let
us drop the factor %kg and concentrate on /.

The starting point is formula (E.1). Taking the partial derivative with respect to the range
X gives us

2 2
a_é[:i(aa_’u) :aa_’u +a_a H .
Ox Ox 0z 0z 0x0z

Now use
2 2 2
Op _du_0 (aaﬂjza_aa_ﬂ wg M

0x0z 0z0x _E E 0z 0z 0z’
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to get

2 2
a’u:da_'u+a26_'u+aa_aa_'u_
ox? 0z 0z* 0z 0z

(E.2)

Result (E.2) is quite general. In particular, along the line z =z, , we have

. )6,u(x,zo) ‘g’ (x’zo)az,u(x,zo) . (x’zo)aa’(x,zo) ou (x,z,)

=a (E.3
,u(x, ZO) a'(x, “ Z, Ze 0z, 0z, (E3)
Now, let us use smoothness. From the geometry given in Figure E.2, we have
7 (x,z0 +f (x,zo)) = [ ,u] (zo) . Performing a Taylor series expansion, this gives us
ou\x,
,u(x,zo):[lu] (ZO)—f(x,ZO) /J((-; Z) +O(f2). (E.4)

2=z,

Truncating at 2™ order in / and its derivatives (including a ), we see immediately that
we can substitute [ ,u] (zo) for ,u(x, zo) in the second and third terms of (E.3). Similarly,

in these two terms we can slide a(x,z,) over to a(x,zO + f(x, ZO)) =—f (x,2,) .

However, we will have to use our knowledge of the distortion geometry to evaluate

C')’(x, ZO)—a'U(x’ZO)

0

Taylor series expansion gives us

- oa(x,z, ;
—f(x,zo)Za'(x,zo +f(x,zo)) =a'(x,zo) +f(x,zo) (x ) +O(f ),
and taking a derivative
§ oa(x,z, + f(x,z, . od(x,z,) . da (x,z,
~F(xz2,) = a(x axf(x ) =d(x,z,) +f (xz,) a(ax )+f(x,z0) a(a); )
or
- 0d (x,z,) 0a (x,z,)

d(x,zo) = —f(x,zo) _f(x’Zo)T _f(xazo) +O(f3)‘ (E.5)

From our Taylor series expansions above, to O ( 1 ) in equation (E.5) we can again slide

a(x,z,) and a(x,z,) to z, + f(x,z,) where they become —f(x,zo) and - f (x,2,)

respectively. This leaves us with

s of (x,zo)
0z

+f(x.z, +0(r). (6

d(x,zo):—f(x,zo) +f(x’zo) )af((;CZ,ZO)

Finally, let us take 0/0z, of equation (E.4) to get
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op(x,z,) _ a[u](zo) _Of(x,zo) Gu(x,z)|
0z, 0z, 0z, 0z

0% u(x,
- () T

0 z=z,

+0(1?).(E.7)

From equation (E.4), we see to first order in f* we can replace i (x, zo) with [ ,u] (ZO) in
equation (E.7), leaving us with

ou(x,z,) _ 0[/1] (z,) _af(x,zo) 6[/,1](20) _f(x,zo)w +O(f2), (E.8)

0z, 0z, 0z, 0z, 0z,

Thus we have
op(x,z,)

0z,

d’(x,zo)

af (x ZO)
) 0z

:[—f(x,zo)"‘f(xa 2 KA )%J

[Ea[:u] (ZO) _af(x,zo) 0[,u] (ZO) _f(x,zo)az[,u] (ZO)

+0( f° E.9
0z, 0z, 0z, 0z, J (f) E9)

:—f(x,zo)a[”](ZO) +f (%2 )af(xﬂo)a[ﬂ](zo) +f(x,zo)af(x z) 0[# (=)

oz, 0z 0z, 0z %
+f(x,zo)afg;20) a[g]zfzo) +f(x,zo)f(xazo)02[’u]o( ) O(f3)-

Now we substitute this back into equation (E.3). Recall that the last two terms are
already 2" order, so in these terms we are free to replace a (x,zo) with —f (x,zo) and

,u(x, zo) with [,u] (zo). This gives us:

(x.z,) a()%f (e 12 ¥ (e2) )
+(e)Y g’;’o%)a[‘if%) () (r) L)
eIy )l oy

=—f(x,zo)%fz°)+a%{f(x,zo)f(x 2) 47 (e G[Z]ZEZO)

+{f(x,20)f(x,zo) +f? (x,zo)} %+O(f3)_

0
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This equation holds for any x and any z =z,. Note that f (x,zo) is the distance the
point (x,zo) has been displaced by the deformation (note the displacement is by

construction vertical). It is also now the random variable characterizing j (or i for that
matter) at that point. Note that [/ now contains no information about any contour line
other than the one that ran along the line z = z; in the undistorted problem. Thus, when

we shortly average f to find < /J> (zo) , we will not be slicing along contour lines; we will

simply be measuring the amount the original contour line was distorted. In other words,
we have effectively collapsed the distorted contour line back down to the original line at

z=z,, withnow f, £, f, etc. giving information about the distortion. For volume

fluctuations near a rough interface along which our smoothness conditions are violated,
this method of averaging indeed continues the volume problem in each given region
down to where the undistorted interface used to be. This is true for all x regardless of
where the interface may be at that particular moment. At the rough interface, we will
proceed in a similar manner. We will convert the O -functions to effective boundary
conditions along the wavy interface, and then slide all necessary quantities down to the
undistorted surface, in the process obtaining effective boundary conditions along the
flattened undistorted surface. Again, the rough interface effectively collapses back to its
original position. All this implies that our results for a fluctuating volume will be good
right on down to the flattened interface, which then carries its own effective boundary
conditions. It is all fully consistent, and we are now ready to consider the stochastic
problem (which will be effectively range-independent).

When we take the stochastic average, we immediately use < f > =0 and
<f(xazo)f‘(xazo)> +<f2 (vaO)> = 0

at all values of the height z to show that < ,u> =0 everywhere within the volume.

In closing, we note that volume fluctuations can in principle give non-zero contributions
from the higher-order terms associated with range dependence. In this regard, note
Exercise 7 in reference [63]. In equations (26) and (29) of the exercise, there is a higher-
order term (in that context related primarily to the transverse smearing term rather than

the downrange smearing term considered here) quite similar to the term A* / 4k, in

equations (3.11) and (C.35) above. As shown in part e of Exercise 7, this provides a non-
zero contribution to the expectation value of electron states that are excited relative to the
s-state. These states are zero at the nucleus, and so will not see the contact potential
there, and consequently do not see the lowest order Lamb shift.
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F Appendix: Some idealizations inherent in the “toy
model” of the hydrogen atom

In this appendix, we examine various aspects of the sequence of approximations that take
us from a realistic hydrogen atom to our “toy model” (given by equation (3.37)). Issues
related to Quantum Electrodynamics take us too far afield from our discussion here, and
so the ramifications of replacing 2™ quantization with fluctuations in the underlying
space will not be further discussed here. Issues related to the other approximations,
however, are discussed below.

F.1 A fundamental distinction between the Foldy-Wouthuysen
transformation for the Dirac equation and that for the Klein-
Gordon/Helmholtz equation

Not only is the “toy model” crude vis a vis Quantum Electrodynamics, but it is even
crude relative to a more realistic description of the hydrogen atom based on the Dirac
equation instead of the Klein-Gordon equation. The distinction of most significance in
the context of our study of the Foldy-Wouthuysen transformation centers on the fact that
this transformation generates roughly twice as many terms for the Dirac equation as it
does for the Klein-Gordon/Helmholtz equation. These extra terms introduce new physics
into the Schrodinger equation.

To see how this occurs, consider the (O term in the Foldy-Wouthuysen expansion of the
Klein-Gordon/Helmholtz equation. Here, this term already gives the O (D;)

contribution to the Schrodinger equation, while the same term in the context of the Dirac
equation only provides an O (DzT) contribution to the Schrodinger equation. Formally,

we still have the same number of terms in the FW transformation as before, but now we
are approaching the Schrodinger equation more slowly.

This leaves room for a greater variety of terms. For example, consider the term
[O,[O,E ﬂ . For the Klein-Gordon/Helmholtz equation, this term participates in

recovering the expansion of the square-root operator associated in some general sense
with the relativistic kinetic energy (e.g., /1+2A/k, for the Helmholtz equation). In the

context of the Dirac equation, it becomes an “intermediate” term whose sole effect is to
introduce additional physical phenomena into the problem. This particular term leads to
various spin related effects in the fine structure of hydrogen, and also to the Darwin term
for the hydrogen atom (see page 51 or reference [57]). The new physics associated with
the Darwin term is Zitterbewegung. We will see below (in Appendix F.2) that unlike the
Helmholtz equation for a classical field, the Klein-Gordon equation for the pionic atom is

modified in a way that a non-kinetic energy contribution from [(9,[(9,8 ]] still “sneaks
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in” in the form of a Darwin term (of course there are no spin terms for this spinless field),
but the appearance of this Darwin term does not herald a doubling of terms in the FW

transformation as does [O,[O,S ]] in the context of the expansion of the Dirac equation.

(Incidentally, the Darwin term is interesting because in some contexts it resembles the
Lamb shift term even though it does not require time dependence, and so it is a product of
1* quantization rather than 2™ quantization. For further discussion concerning the
distinction between the Lamb shift and a Darwin term and between 2™ quantization and
1** quantization, see Appendix F.3.)

The Foldy-Wouthuysen transformation for the Dirac equation also contains new
explicitly time-dependent terms not found in the expansion of the Klein-
Gordon/Helmbholtz equation. In the context of the Dirac equation, the time dependent

term [O,@J in equation (C.29) goes roughly as ﬁé ;lﬁ t) (which in turn ends up in

(0 E ), while the same term goes as DzTQ u x) in the case of the Helmholtz equation.
Thus, for the FW expansion of the Dirac equation, we would not expect field-induced

time-domain (i.e., downrange) virtual fluctuations to show up until the {@,[O,E ]} term

from equation (C.29).

Thus, we see that replacing the Dirac equation for a spin % field with a Klein-Gordon
equation for a spinless field results in a significant change in the structure of the Foldy-
Wouthuysen transformation. This opens up room for a great deal of extra physics. Much
of the fine structure of the hydrogen atom is ultimately derived from this additional
physics. For more on this, see Chapter 4 of reference [57].

F.2 The impact of substituting a matrix scalar potential in state
space with a bona fide scalar potential

The potential in pionic atom is not introduced in the scalar problem as was the case in our
“toy model” (equation (3.37)). Instead, it is introduced as a diagonal matrix potential
directly into the state space equation (see pp. 202-203 of reference [57]).

The diagonal matrix potential associated with the pionic atom also leads to a Darwin term
that is absent from both the parabolic equation corresponding to the Helmholtz equation
and from the Schrédinger equation for our “toy model”. This Darwin term is emerges

from the operator [O,[O,E ]] , whose primary role in this context is to reproduce the 3™

order correction to the expansion of the operator /1 + 7T / m® (where 7T is the magnitude

squared of the generalized 4-dimensional momentum vector in the presence of an
electromagnetic 4-potential 4,: 77, = p, = A,). In this sense, this is an incidental

Darwin term associated with mixed products of odd and even operators, while the Darwin
term for the Dirac operator illustrates a fundamental change in the symmetries of the
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problem (i.e., an end to independent time- and range-reversal invariance), and as such it
is a precursor of a larger class of extra terms (more or less doubling the number of terms

at a given order of [, ).

Let us fold our further exploration of the Darwin term for the pionic atom into an
examination of the distinction between the downrange Lamb shift and the Darwin term.
This is pursued in the next section.

F.3 The distinction between the downrange Lamb shift and the
Darwin term

The Darwin term, vacuum polarization (i.e., the downrange Lamb shift), and stochastic
smearing (i.e., the traditional or transverse Lamb shift) are sometimes confused with each
other, and here we discuss the distinction. The key difference is that the Darwin term is a
product of 1 quantization, while both flavors of the Lamb shift contribution are products
of 2™ quantization.

The Darwin term comes out of the term [(9, [(9, & ]J produced by the Foldy-Wouthuysen

transformation. For a Helmholtz equation with a scalar potential, the potential gets

folded into the operator A and this term just leads to the standard A° term. Note that in
this case, the scalar potential is folded into both the odd part O and the even part £ of
the state space equation (i.e., the matrix representation of the wave equation).

On the other hand, if as for the pionic atom, the potential is a diagonal matrix (i.e.,
(a scalar function) a=v (? ) (1) that is tacked on directly to the state space equation,

then the potential is a part of the even operator £ only. In fact, O is a scaled back
version of the operator A times &, while £ is A times the matrix 77 plus the potential

term V' . ¢ and 77 are the same two odd and even 2 X2 matrices as always, while the
scaled back version of A only includes a generalized kinetic energy term of the form

T / 2m (where as above /T is the magnitude squared of the generalized 4-dimensional
momentum vector in the presence of an electromagnetic 4-potential 4,: 77, = p, —A4,).

Now [(’),[(’),8 ]] includes not only the A® term familiar from the PE expansion of the
Helmholtz equation, but also a term proportional to [/1,[)! ,V]] O [ﬂz,[nz,Vﬂ . This

extra term is a bona fide Darwin term provided that we use the following as our working
definition of the Darwin term for a scalar field (as opposed to a field with spin such as
the electron wave function, where other effects also emerge from the operator

[O,[O,EH ): the Darwin term for a scalar field is something that comes out of the
[O,[O,é’ H term other than some part of the omnipresent expansion of the square root

operator J1+2} . In Section 6.1, when we consider density jumps, we will have
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E=A —2k,y and this again leads to something that we might technically call a Darwin
term: a term proportional to [A,[/i , —2k0y]] .

Note that the Darwin term for the Dirac equation also came from the operator
[O,[O,é’ ]] , but in this case, this operator is in no way connected to reproducing the

basic Schrédinger equation (i.e., the expansion of the square root operator connected with
relativistic kinetic energy). The term [O,[O,E ]] instead contains a rich content

associated with the spin. As noted above, [(’),[(’),8 ]] is the first example of a much

larger class of terms in the context of the Dirac equation than it is in the context of the
pionic atom. (In fact, for a given order of the transverse gradient, the number of terms in
the FW transformation for a Dirac equation field is roughly doubled relative to the order
for a scalar field.)

To contrast the Darwin term with the downrange Lamb shift term, note that the Darwin
term is not proportional to a derivative with respect to time of the odd part of the
Hamiltonian in the state space equation. Thus, the Darwin term can be non-zero even
when it is assumed that all the parameters in the full wave equation do not vary with time.
Implicit in this assumption is the assumption that the underlying fabric of space-time
does not vary as a function of time. The Darwin terms, therefore, are a product of 1%
quantization.

On the other hand, the term that produces the downrange Lamb shift is non-zero only if
some parameter in the odd part of the state space equation fluctuates as a function of time
(at least to the orders considered here; eventually at very high order, a time dependence in
the even part could add terms as well). To induce time dependence in the odd component
of the state space Hamiltonian O, we need to introduce time dependence into the existing
time-independent potentials by imposing (by hand) fluctuations of the underlying fabric
of space-time (or equivalently introducing some time-dependent fluctuating external
field). These fluctuations are called vacuum fluctuations. Since our theory is based on
ordinary relativistic quantum mechanics (and its reduction down to its non-relativistic
limit), the vacuum fluctuations must be imposed by hand, and do not emerge
automatically from 1* principles as they would in quantum field theory. Nevertheless, the
introduction of vacuum fluctuations by whatever means is called 2" quantization. Thus,
the downrange Lamb shift is a product of 2™ quantization. In the context of quantum
field theory, the downrange Lamb shift is known as vacuum polarization.

Similarly, the well-known transverse (or traditional) Lamb shift also occurs when we
impose fluctuations by hand to create a time-dependent potential. This time, contact
potential associated with the transverse Lamb shift comes out of a stochastic averaging
process, but it does not take the form of a specific term in the deterministic Hamiltonian.
In this way, it is different from both the Darwin term and the downrange Lamb shift.
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G Appendix: Generalizing the formalism to
accommodate 2-dimensional interfaces embedded in
3-dimensional space

This appendix provides guidelines for constructing the stepping algorithm when a third
dimension given by the unit vector y is present. Full examination of the 2-dimensional

interface embedded in 3-dimensional space will be left to future research. This issue is
not particularly urgent from a practical point of view, as most current work in the
discipline is restricted to 1-dimensional interfaces embedded in 2-dimensional space.
However, the treatment here is provided both for completeness, and even more
importantly, because an understanding of this material provides a good feel for some
fundamental issues that are glossed over in simpler problem that is examined in some
detail in this paper (i.e., the 1-dimensional interface embedded in a 2-dimensional space).

G.1 The stepping procedure

In this subsection, we examine the generalization of the basic stepping procedure
developed for the simpler 2-dimensional problem in Subsection 3.3.1. Now, we should
also fix the step size Ay just as we previously fixed Az, and begin by choosing the step

size Ax so that the 2-dimensional y —z grid slides downrange until it first hits the

interface somewhere. The situation now becomes more complicated than it was before.
At this new value of the range, it is very likely that elsewhere within the 2-dimensional
vy —z grid, the interface will fall between grid points. Under such circumstances, it is

best to step different y = constant lines of grid points different downrange distances so

that they always hit the interface. These steps should be performed in order of increasing
downrange terminus.

Note that some supplementary downrange stepping would still have to be used to
evaluate expressions that involve many points on the transverse grid at once. Such
expressions are relevant, because evaluation of H Y in a discretized space inherently

involves a neighborhood of nearby points in the (transverse) y —z -grid. In particular,
H x contains the operator (17" y (n is some integer), which in turn contains the operator

0" x / dy>" . To calculate such a quantity at a given point on the grid, we need to make

available at the current value of the range at least a few neighboring grid points that lie on
other y =constant lines. (As described in Subsection 3.3.2, these additional points

appear in finite difference expressions for the y -derivatives.) The needed nearby

vy = constant lines of grid points would thus be temporarily stepped the downrange
distance needed to bring them to the same value of the range as the y =constant line
currently under consideration (i.e., the one that actually intersects the interface on a grid
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point). The resultant values would be used only to evaluate the non-local function
( H x in our case) along the y =constant line that is currently under consideration.

For points along this line that are near to but not directly on the interface (or directly on
the interface, but near an extremum), this procedure will typically need to be
supplemented by additional interpolation methods, because the interface might still pass
between a nearby pair of points on the z = constant line that emanates from the given
grid point. Note that this is an issue, because the procedure for calculating derivatives
using a discrete grid near an interface requires that we use the boundary conditions at grid
points that sit directly on the interface (see the analysis in Subsection 3.3.2). Thus, in an
ideal implementation of the procedure, we would temporarily add supplementary grid
points as needed, so that the interface always crosses the grid directly at a grid point. For
a relatively crude but serviceable alternative to this kind of interpolation, the interface
could be temporarily deformed to coincide with the transverse grid at its current location.
In this case, the true values of interface parameters such as 0f /0y (i.e., the specified

functions of x and y ) would still be inserted into the boundary conditions that are used

to calculate 0°" y / dy”>" . (These boundary conditions are obtained using the procedure
outlined in Appendix G.2 below.) We now have all we need to complete the procedure
outlined in Subsection 3.3.2 for calculating 0> y / dy”>" and consequently H x. Fora

typical quasi-planar surface, the interface is only slightly tilted relative to the horizontal,
and so the function ) and its y -derivatives should be nearly continuous near the

interface, and the issue of precisely where to place the interface while calculating the

0" )(/ dy" has at best modest importance.

The generalization of the stepping procedure discussed here in Subsection G.1 thus turns
out to be the subtlest issue related to adapting the PE formalism developed in this paper
(for a 1-dimensional interface embedded in 2-dimensional space) to the problem of a 2-
dimensional interface embedded in 3-dimensional space.

G.2 The boundary conditions

This subsection provides an overview of the key issues related to determining the
parabolic equation boundary conditions in the full 3-dimensional problem. The
discussion builds on the treatment of the 2-dimensional problem provided in Subsection
3.3.3. At the interface, we should make temporary use of a local right-handed orthogonal
coordinate system x — ' —Zz' such that z' is the direction locally normal to the cut of the
surface in the 2-dimensional x = constant plane (and of course Z' is in that plane too).
In a notation that is independent of the coordinate system, we denote this 2-dimensional
normal by 7,,. If z=f (x, y) in our original coordinate system, then

N 1 o AJ_ ~ P
Faiyy = -Z ez | =(0,-q/9.0) /{1 {9/ 3) .
J1+(or /o) ( 0y /
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The other axis is given by the unit vector

”=;A+‘12j:01 1+ ’,
j 1+(6f/6y)2(y 7z |=(019/2)/\1+(a/a)

AL -

Note that )’ is in the intersection of the plane locally tangent to the interface and the

[—t

x = constant plane, and so we will give it the alternate identification 7,, = 7'.

The boundary conditions are obtained using the )’ —z' -coordinate system. Then 0/0)'
and 0/0z" are expressed in terms of df /0y, d/dy and 0/0z so that we can evaluate
derivatives using the discrete grid tied to our fixed coordinate system. To be specific,

9/0y'=f,, M, andd @ 7= A, [T , (G.1)

with
.0d .0

U= ya“L 5

Note that higher-order derivatives of f* with respect to y will be generated as 0/dy

operates on £, or i,,. The downrange slope f of the interface is as before.

Now, let us examine some of the specific issues related to obtaining the boundary
conditions in our local y' —Zz' -coordinate system. Continuity of Y will guarantee that

derivatives of Y with respect to )’ (these are tangential derivatives) will also be
continuous. To show this, use the follow iterative argument. If some arbitrary function,
say X in our case, is continuous at the interface, then the difference between this
function evaluated on two sides of this interface is zero (i.e., Y, — X, =0). Since the
quantity X, — X, remains the same everywhere on the interface, its tangential

derivatives, which measure the rate of change of the function as one slides along the
interface, must be zero as well”™". This in turn implies that the tangential derivative of

the function Y is continuous. Choosing the specific tangential direction 7,,,, we have

;O el T ' ) 0
0=, Mx~ X, F L0 x &0 F I _x, 0 5x, _aj/({ _0_)%

Now, iterate and apply the same reasoning to the function 7, My to show:

"W This is one of several spots where things would get more complicated if for some reason Y were not
constant on the interface. In this case, the tangential derivatives would track the X -boundary condition,

whatever it is.

212



2
by DEJT )y i) S, 0 5 — 0 FI_ 3 o, - o=,
(@) (o)
and so on. There is a tricky point here. ' is an axis on a coordinate system that is only
used at one point, so it is itself a function of position. This is a little clearer when we give
it the label 7,,, = §". The issue is significant, because once we start taking higher-order
derivatives, [, will operate on 7,,, = 7'. In other words, we have to be very careful
never to treat 3’ and similarly Z' as ordinary static unit vectors attached to a fixed

coordinate axes. Provided this caveat is kept in mind, it is generally best to proceed using
compact notation that treats the y' and z' axes like any other axes, obtain the local

boundary conditions, and only then use the identification in equation (G.1) above to
incorporate the fact that these unit vectors may in fact vary with position.

Proceeding in this manner, note that A y will involve terms of the basic form 0" / ",

0" x/0z" , and 8" x/dy""dz" . These will be extracted from a system of equations
generated by the boundary conditions on 0" ¥ / (@')", 0"x / (0z')" and

0" )(/ " " 0 ')m . 0" )(/ (Oy')" are continuous at the interface. Just as with two

dlmensmns, terms of the form 0" )(/ (62’)" are evaluated using repeated integrations

down the z'-axis of the leading order derivative of Y with respect to z'. (Again, we
have an infinitesimal integration possibly preceded by one or more indefinite

n

integrations. Note that terms that only involve 0" ¥ / (ay') will fall out during the

infinitesimal integrations.) As we use repeated integrations to evaluate 0" Y / (az)” , the
only tricky part concerns the integration of cross-terms roughly of the form
9" )(/ )" (02')" . We have to place the 8/dy" and 8/dz' derivatives in the order

dictated by Hy . Aslongas “0/0z' s are to the left of “0/0y' s, we can integrate as

before. Problems arise when we come across the need to integrate expressions of the
basic form

0
dz 5( ). (G.2)

To evaluate something of the form (G.2), we will need to reorder the partial
differentiations earlier in the procedure than usual. To pick up subtle cross-terms related
to second and higher-order y -derivatives of / when we do so, temporarily fix the

y' =z -coordinate system, label the fixed axes by 7' and Z', and write the interface as

Z'= f (x, j/') . For convenience, choose the origin to be the location on the interface

currently under consideration. The higher-order derivatives of f~ reflect the curvature of
the surface (and derivatives of the curvature), so they not affected by translation and

rotation. Thus, aqf/(ay')q = aqf/(dy)q with ¢ =22. Now, convert
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9o 1 (o,
0y’ oy 0y 0z

1+(07 /o7')
o 1 @i241]
o [, (o7 /ay,)z o7 o7 o2

Note that we are ultimately only interested in the behavior at the origin where the slope
of / 07" is zero, so the distinction between (7',7') and ()',2') is quite subtle. Since the
axes are now fixed, the order of 0/0y" and 9/dZ' differentiations no longer matters, so
send to the right all the /0" derivatives (i.e., those remaining in the expression denoted
by the ellipsis in equation (G.2); assume there are p of these). Next, write H Y in terms

of ( ¥, 2’) , and take a sequence of indefinite integrations with respect to Z' to get
GP,Y/(GZ')p in terms of distributions of the form " (E' -f (x, )7')) (note that k< p—1)
and perhaps also steps of the form G)(E' -7 (x, )7')) , and then take n—m y'-

derivatives™”. The resultant expression can be integrated with respect to z'; we just have
to be careful to convert:

[d' — [A,, Uai,d2).

All this effort has finally given us the contribution from a handful of problematic terms to
the integrations that generate boundary conditions for the derivatives of the basic form

a'x / (az')i . (These troublesome terms have the basic form 9" )(/ (0z')" " (8v')" ™" (02)" )
From now on, keep track of these specific contributions. Later, when we use equation
(G.1) to convert to the y —z coordinate system, treat df /dy as a constant for these terms

only, because in these terms we have already effectively taken the higher-order y -
derivatives of f .

Recall that we currently are in the process of obtaining the full set of equations for the
boundary conditions on 0" ,\// oy", d" )(/ 0z" ,and 0"y / 0z"dy"™ . Furthermore recall that

= 0 simplifies the result. The main pitfall here involves the need to

X The fact that (af /oy )

7.2')=0
identify new step functions brought in by fresh derivatives a/ 07" . These we can deduce from boundary

conditions found at an earlier stage of the process, since we do the large number of integrations first in
order to bootstrap ourselves from the boundary conditions on the lower orders on up to the higher orders

(as in Appendix Q.1).
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these come from the boundary conditions on terms of the form 9" ¥ / (6y')" ,

2" )( / az " and 0" )( / " " az ) and that so far we have only have methods for the
first two forms. We still need to find a way to explicitly evaluate the boundary conditions
on cross-terms of the form 9" )(/ (0y')" " (0z')" . Note that the 9/dy" s and 9/dz's have
once again been grouped to bring the latter all to the right. Start with the boundary
condition on 9" )(/ (62')"1 , and this time write it as a difference that comes out to zero.
(Cf., X, — x, =0 above; the new expression equal to zero will, of course, also involve
various quantities evaluated on the two sides of the interface.) As above, all transverse
derivatives 0" / (8y')"™ of such a difference will also be zero. This gives us the needed

boundary conditions on 8" ¥ / (0y')"™(92)" (N.B., the derivatives must be taken in this

specific order.) We have to be careful to keep the d/dy" and 9/0z" operators in their
present positions, because the identifications in (G.1) generate cross-terms of the form
0,4,,51 ,A,,,and these in turn generate subtle modifications to the boundary conditions.
(Keep in mind that the now order-sensitive result for

o x/(v') " (82)" = (£, @) ™" (AT ,)" X

goes into a system of equations that give us all the needed boundary conditions on
6”)(/6y” , 6”)(/62” , and 6”)(/6)/”_’"62’” , and that once we have 6”)(/6)/”_’"62’” , we will
again be free to switch the order of d/dy and 9/dz as much as we want.)

This is all we need to evaluate the boundary conditions on a 2-dimensional interface

embedded in 3-dimensional space. Once we have the boundary conditions, then we use
the basic procedure outlined in Subsection 3.3.2 to evaluate transverse derivatives of the
wave function Y and so obtain H Y, which is then used to perform the next downrange

step.

H Appendix: Key aspects of the full wave boundary
conditions for the 2nd transverse derivative of the
field

This appendix addresses the following problem: Given that 4 solves the Helmholtz
equation (M kz) A 0 in 2-dimensional x —z space, and that the sound speed (but

not the density) jumps along a quasi-planar interface S given by z = f (x) , find the

boundary condition in terms of / and its derivatives to 2™ order. The appendix ends
with a brief discussion of the results.
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For the vector 7 normal to the surface z = f (x) we have
= oa(Ady @ A n-l-— {1 ) (H.1)

and

on n On (H.2)
+ (1-aa) MP[ (+ Ad) |
Nowon S, A4=4, -4, =0 and also
04, _04, _9(A4) o
on 0n on '
Consider
L U .9 .0(AA)
(= % Al H
" on [ A al( ) "on ' on (13)

The two terms on the second line involve tangential derivatives of quantities that are
always 0 on the interface, so they fall out, leavmg us w1th

ﬁ]]]]ﬁ( A% ﬁ—%ﬂ]& nlﬁ— n* n- nm
on on on
=i [N A)
for A 4=0 (i.e., A continuous) on a surface with normal 7 .
Now
soi- O
1+ f?
and so
R | TR ¥ PO
nn : [IF 1+f2(-z Q]x)(—z ﬂx)ﬁ]
:[f2x92+(1—f2)22—f()e2+2;e)}?|131 o(/?) (H.4)
0’ .5\ 0° . 0 -
= a—2+(1—f2)§—2f@+0(f3).
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Now, the tangent vector is given by 7 = X + f Z+0 ( f 2) and the tangential derivative is
A= 0 -0 .
(E —+ f—++O0(f?
fo++0(/)

Ox z

or

L. D N
imJo ok e

and substituting into 8° / 0x0z in equation (H.4), we have
ALN 4 DA ( 4)
_L0a4),,
_f27+(1 —fz)7 . (H.5)
.. =0(A4) _.,0°(A4)
2f tM——% 2f ———+
0z 0z

0* (A 4)

o)

The second to the last term in equation (H.5) involves a tangential derivative of a quantity
that is zero on the interface, so it goes away. Also

— =i o).

Ox

so that

which is just the repeated application of tangential derivatives on something that is zero
on the interface, and so 0° (A A) / dx*> =0. This leaves us with

w4 @ )78 of), (H6)

Also
0=01 4 k4,
O = E[DD—.I% k121A11
so evaluate each of these just on either side of the interface and subtract (recalling
A =4,=4on S):
0=00N 4) (i & )A. (H.7)

Now let the sound speed in medium 7 be the reference value c,.

Thus, with n =¢,/c, we get n, =¢,/c, ,and y, = (1 —n,z,)/Z. This implies:
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k, =k,

e = nko} =k —kj =k; (1-n") =2kt .

Substituting into equation (H.7), we have
0=00N 4) 2ku,A.

From equation (H.6), this leaves us with the boundary condition

.\0% (A 4 :
0=(1+7 2)—((922 ) +2k 1,4 +0( 1), (F.8)
or more usefully
GZA azA _ ; /
oot =2(1= 7 kw4 +0 (7). (H.9)

This suggests that the O ( f 2) terms in the parabolic equation boundary conditions
contributed by the Foldy-Wouthuysen transformation term j/8k, can be understood as

contributing to the boundary condition on 9°4/dz .

The O ( f ) term is a little different. We can get the implicit boundary condition on
0’ A/ 0z by taking [0, of equation (H.3). Now the second to the last term of equation

(H.3) is nonzero and can produce a term proportional to f , and so we would expect the
O ( f ) contribution to be associated with the implicit boundary condition on 9° A/ 0z’ .

The 3" order transverse derivative is a pretty obscure quantity in the context of the
Helmholtz equation. It shows up neither in the equation of motion nor in a finite

difference discretization of the Helmholtz equation. Thus, the O ( f ) contribution to the

boundary conditions for this quantity involves a subtle effect that is implicit in full wave
theory, but must be made explicit in the PE. To get a crude idea of the physics associated

with the O ( f ) term, consider the boundary condition

a)( __Hy

0z 4 /X
in isolation. For 4, />0, this allows a solution that decays exponentially away from the
surface as exp (— ( M, f ) z / 4) . This topic is considered briefly in Section 4.2, and again

in more detail later in Section 5.3.3, and in Appendices N.2 and O. Here, note that these
boundary wave solutions look like polaritons (see, for example the work of Soto-Crespo
et al.®”’, or Tang and Frisk directly in the context of acoustics®?).
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In Section 3.2, attention is concentrated on the O ( f 2) component to the boundary

conditions, and in particular to the part related to the boundary condition on [17 ¥ and by

extension on [J2 4. To do so, Section 4.2 considers the tilted interface with no curvature,
and examines this issue in some depth.

| Appendix: Constructing an ansatz and obtaining the
state space equation when the density is not
uniformly constant

The goal of this appendix is the construction of a state space equation that is a suitable
starting point for the Foldy-Wouthuysen transformation. To construct such an equation,
we need to fully understand the philosophy behind this transformation.

The state space equation will be the equation of motion for a vector of the basic form

® :(gj (L1)
Y :

(e.g., equations (3.2) and (5.2)). For the acoustic field, &and x are scalars, but for

vector fields they will be vectors. @ is a 2-dimensional vector in what may be called a
state space, where @ and Y are two possible states (of the field). The state space

equation has the basic form

LA (1.2)
Ox

where H is a 2 X2 matrix in state space. Each of the four elements of H can be
operators (for vector fields, they can even become matrices themselves). For a classical
field, the Foldy-Wouthuysen transformation assumes that the state space equation has
been constructed in such a way that H is pseudo-Hermitian®®”. As discussed in reference
[1] (or equivalently appendix C.1.2), an operator & is pseudo-Hermitian when

(170’)T =na with 7 as always defined in (3.3). (Note that /7 and ¢ are both 2 X2

matrices in state space. /7 is a kind of metric on our state space, and so magnitudes

Y More generally, this assertion holds for fields that have integer intrinsic spin (bosons). For fermions
(half-integer spin), the full matrix Hamiltonian is Hermitian. However, for a fermion field, the equation is
in the form of a state space equation from the beginning, and the derivation in this appendix is not needed.

Furthermore, this distinction has very minimal effect on the subsequent portions of the calculation.
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squared of vectors in this space ® are inner products of the vectors with themselves
under this metric: ®'7®.) As discussed in reference [1], (or equivalently appendix
C.1.2) pseudo-Hermiticity stabilizes the equation by guaranteeing that the magnitude
squared of the vector ®'7® is conserved under downrange propagation. In fact, this

conservation law and the pseudo-Hermiticity of the (matrix) Hamiltonian are simply two
manifestations of the same property.

Under the Foldy-Wouthuysen procedure, one then performs a series of canonical
transformations @, — P By canonical, it is meant that the transformation is

new °
constructed in such a way that the basic form of the equation of motion is preserved—in
this case:

0D
i

NEW =
ew ° new °

Ox

Furthermore, H, ., is still pseudo-Hermitian. This latter attribute is obtained by requiring

that the transformations be pseudo-unitary (i.e., if ®_, =U®,_ , then U'nU =7 ; again

new ?

this point is discussed in reference [1]). Note that then dDoldTnfbold =® 7. . and so

ew 2

the magnitude of ®__ must be preserved during downrange propagation as well, and

H,.,, must indeed be pseudo-Hermitian.

Thus, the first step toward applying the Foldy-Wouthuysen transformation is the
construction of an ansatz (i.e., a definition for & and Y ) that leads to a proper state space

equation. To guarantee that the Hamiltonian of the state space equation H be pseudo-
Hermitian, we choose @and Y such that there are physical constraints that force ®'7®d
to be conserved during downrange propagation. Specifically, if we construct € and Y

from the original field in such a way that ®'7®d = |0|2 —| )(|2 is proportional to the
downrange flux S, then energy conservation would force the required conservation of

®'nd. Specifically for an acoustic field with a variable density, this means that a factor
of 1/ p (as always p is the density as a function of position) will somehow need to be
built into dand Y. This leads to the ansatz given in equation (5.2) and repeated here:

o = L4+Pl
2 p k,

(1.3)

207 pk

(the dot stands for a downrange derivative A4 = 04/0x ). Note the general form of this

result. If the downrange flux is the product between the field and another quantity, then
the ansatz for dand Y becomes a sum and difference between this field and that other
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quantity times i. (When vector fields are considered in Section 7 and Appendices R and
S, @and x themselves become vector fields, but the above reasoning remains valid.)

Let us verify that this ansatz indeed WOI‘kS'

06 = Llaa +'00 2 i&(A*A -44)
4| 0’ k ky p
= Mg ~ 2Py (4d')
4 p kg ky p

Substituting —A4 for 4 gives

o _
p—gAf +3&Im(AA*) .
ok koo

S
=_| 44" +
XX i

Thus

g - xx =

B Im(AA ) . Im(AA*)
k, 0 = 2/0000{ 2 pw

} = _2100c0Save Iﬁ (14)

where §ave = Im(A*ElA) / 2 pw is the time-averaged flux (see reference [98], equations

64.6 and 65.4 and use a well-known result for the time-averaged product of the real parts
of two complex fields; also compare equation 20b in [1]).

Next, we need to manipulate the definitions for & and ) and the equation of motion for

the pressure field A4 to construct the state space equation. We will need to make use of
one more trick to proceed. To preserve Hermiticity down the line, we should follow

reference [98] (pp.245, 288-289) and group the overall factor of the density with k*as
follows:

(1) K
| = 4 ~4A 0. (L5)
P P

Note that
2 2 2 2

k™ _ (n ,OOJ Ky [" Ao _ljk_o : ﬁ}](lj% 4 (liﬂmq (EL ] (L.6)
poalp) a e Ja p ) ox | pox

Recall that when the density was everywhere the same, it was convenient to characterize
the index of refraction squared by a quantity /= (1 -n’ ) / 2 (see equation (2.5)). The

left result of equation (I.6) suggests that we now have to generalize this to

u=l(1 —ﬂ]. (17)
2 P
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Noting that n =¢,/c = ( PK ) / ( ,OOKO) (recall that K is a compressibility and
c=, /1/ ( PK ) ), we see that 4/ is in fact a measure of the change of compressibility

1K
u=s (1 Ko] (1.8)

rather than simply of the square of the index of refraction. The two turn out to be
equivalent only in the special case when the density is everywhere constant. Now let us
define an operator

js%—kou. (1.9)
0

(In this context, this operator turns out to be an intermediate quantity, but it will
occasionally reappear in our subsequent analyses—for example in Appendix L.2.)
Multiplying equation (I.5) by o, and making substitutions (I1.6) and (1.9), we end up with

the following form of the equation of motion:

i[E&AJ + 2k A +K2A =0, (.10)
ox | p
Recalling the ansatz (I1.3), we have

A = O+x

o _ kK 0P «\_kyts .

—4 = —=(6- —| =4 |=—=(0-x],

Jo i( X)jax(pj i( 2

leaving us with the following alternate form of the wave equation:

~ik, (6= x) +2k,A (6 +x) +k; (6 +x) =0. (L11)

Next, we obtain a second equation for € and ) by manipulating their definitions in
terms of 4 and A4 (i.e., the ansatz). Adding and subtracting the two equations in (I.3),
we have

A=0+xy = A=0+x

. . . I.12
iko%A:H—)( = A:—ikopﬁ(é’—)() (12

0

Removing 4 from the right hand pair of equations in (I.12), rewriting equation (I.11),
and multiplying through by ik, leaves us with the following pair of equations

ik, (6+ ) = kép%(é")() L13)
ik (6-X) = 2kA(0+x) +k; (6 +x)
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Adding and subtracting these two equations, and dividing by 2k, gives us

9 = /]~(¢9 +X) +&(3 +x) +%£(3 -X)
0

ix = —-A@+x)-

Recall y=%(1- p/ @) so that

and consequently

= [l i 4 )
k k ~ k k
154 |: ) (2 OVJ} |: 5 {2 oyj X

Applying the definition A = + k,y , this gives us

S )

and finally using (I.1), we have

1. o0 1 _ 1 0 1 0
zqa{/l(_l oj+(/] 2k0y)(0 _J +k0(0 _lﬂ ®, (1.14)

which is just the state space equation (5.3).

J Appendix: The 4th order Hamiltonian ~ for a variable
density

Appendix J.1 provides a derivation of the Hamiltonian H good for an acoustic field,
where the density and sound speed are both allowed to vary. The expression is quite
general, and it applies even if the density variation involves a discontinuity. Appendix
J.2 derives a simplified Hamiltonian for the special case where the density jumps at an
interface, but is otherwise constant.
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J.1 The general 4th order Hamiltonian 1 for a variable density

This appendix provides the details of the derivation of the matrix Hamiltonian H for a
variable density as it is given by equation (5.7).

The starting point deriving our general H is the state space equation given by equations
(5.3) and (5.4) (or equivalently equation (I.14) above), which are reproduced below:

zaﬁ—HCD with 'H =0 +&€ +kn,
Ox
where
O =A¢
) J.1)
g:(/} _2k0y)’7
with the matrices /7 and ¢ as always, and
(2.
A= —kold +k
2k, o TRy
_1 K AK 1 Ly >
=—|(]l-——1]|=- =— 1__0 . J.2
: 2[ Ko] 2K, 2( pnj 02
yzl(l —ﬁj = —M
2 ) 2p

These values for O and £ will be substituted into the general 4™ order result given by
equations (3.9) and (3.10) (and equivalently (C.28) and (C.29)), and reproduced below
for convenience:

H" =kp+E", (J.3)

where
o> o
o '7(2/{ _8k3j+ 8k2[0 [0 EH_ [O o]

L(-[o.e] -{0]0.d} +0°) + 5 order

(1.4)

8k3
(as always, the dot denotes the downrange derivative d/0x ). Beginning with the
substitution & = (/1 —2k0y)l7, this yields
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o 0 1
gl _HE_HW +An =29k ——2[(9,[(9,)l/7]}

+_[o [0, 2yk0/7]] - [O O] 15)

+8—]{3(—([O,A/7] —[O,2ykof7]) -i{0[0an] +i{o [0k} +07)
+ 5™ order.

Now expand
([0, 7] ~[0.27k] ) =
[0,.A0]" + 0,2y * O, A O,2vk ) | O.2vk M O

and recombine terms to get

T=kgr &7 =(1) +(2) +(3), )

where
O? N

k =
(1) = ko7 +n ”ng T

7 —lo. [OMH

e swlomT

" Lo, O] 8k3{0 @ /1/7]}
(2)= 2+ = [0 (0.2, ] - ™ [0 2k, 1}’ . 1.7)
+%[[am][o,zykw] 1 0.2pk/j[ 0.4 |

(3)= %{O,[O,Zykoq]}

Note that (1) identically reproduces the terms that were present in the constant density

formula, and note that according to equation (J.1), O is formally the same as it was in the
constant density case (only the definition of A changes a little, and that is immaterial
until we explicitly substitute for A ), and so these terms will reproduce the constant
density result given by (C.31):

/Y LI L7 R [ i _
=k 1+ - = e A4 A% A 1.8
)= 0( +k0 ks +2k3 8k, 8k§j +8k§[ ’ ] 4k3[ } (J-8)

Next, let us explore (2) , the new terms unique to the variable density problem that do not

contain explicit range derivatives. To do so, we exploit the following identities (obtained
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using the result 7& = =€77, which follows directly from equations (3.3) and (3.6), the
definitions of 77 and ¢):

=én

[0.4] =4°[£.1] :/12(&7 —g{] =20°8n

[0.2yky1] = 2k,[A€,71] =2ko(Ay£f7 —yng] (1.9)
=én

=2k, (Ay+ W) én =2k,{A. 1} &1

to obtain (again using equation (3.6), the definition of &, to get £> = -1)
[0.40][0.2vkp1] =42k {A.V} Enén = 21k (A} £
-1

—_—
-én 1,

=4’k { .1}

Similarly, we have
[Oa2yk0,7][OaA,7] :4]{0{/1 ,V}/]z EIJ\{” = _IZI'ICO{AJV}/12 qjgj

=én -1 1

2

=4k (A A

and so
[0,47][0.2yk 1] +[ O, 2pky7) [0.A7] = 4k, {27 {2 . V}}. (J.10)

Also, from the second equation in (J.9), we have

[0.2ykn]" = 4k2{A, ¥}’ snén = ‘4k§{/‘=y}zfj’2i
-&p -1 (Jll)

=4k { AN

To finish evaluating (2) , we also need
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e [(9 [0.2yk,1] ] _—[/15 2k, {A.1} én7]

= gz 2h (A @n{A) - Ay 2¢)

Lk MAR En Ak Aeng (1.12)
=én

I

pTaRIE n(Aavt {A4g 1)

= ‘4—,%{/17{/‘%} -

N

Thus,

(2)=2rkn = AMAN) - ;(&’/ { ;/%{M{w} =

2k, 263

and pulling out a factor of k7, we have

(2):k0/7(—2y—4;§{)l,{/1,y}} 2k2{/1 bE 2k3{/1 A, g}j (1.13)

Finally, for (3) we have

(3)= 8k3 {0 [0, 2%/7]} 8,{3{/'15,21«0{/'91/} &)

2ko{ A} &n

=én

;v/ (/ly}fﬁfﬂ{/ll}/lc‘nf] . (1.14)

4k0

= €I A A) = [A00 ]

Combining the three results, we have from equation (J.6)
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H"=(1)+(2) +(3)
A R

1-2y +i -—
ky ki 2k; 8k, 8k,
=k, 0o : (1.15)

-4%2{&{&1/}} k2{A B (A )

+WD AJ ak; [/1 /]] PE [A R J/}] + 5™ order

which is equation (5.7) in slightly rearranged form. In equation (5.7), the tilde ~ and
superscript /V have been dropped from H .

J.2 The 4th order Hamiltonian H good at a density jump

In this section, we take the general 4™ order Hamiltonian for an acoustic field in an
environment where the density varies (equation (5.7) and equivalently (J.15)) and adapt it

to the special case where the density p (andso y =) (1 -p/ ,q)) ) jumps at an interface,

but is otherwise constant. The result is equation (J.24), which is equivalent to equation
(5.9). While this discussion invokes single a quasi-planar interface, there is nothing to
preclude its application to multiple interfaces, or ones that are not quasi-planar.

To simplify the discussion, it will be assumed that in the half-space the compressibility
K (or equivalently g =4 (l -K/ KO) ) does not depend on the range in the half-spaces

(although it may, of course, jump along the range-dependent interface). A modest
correction to the formalism accounting for range dependence of 4 in the half-spaces will

be noted and tracked through the calculation. The resulting correction term is given in
equation (J.26), which is the same as equation (5.10).

This effort generalizes the calculation that led to the manifestly range-reciprocal form of
the parabolic equation for the case where the density was held constant (see Appendix
C.2.5) by applying the same basic strategy to the case where the density varies (i.e., now
use equation (5.7)/(J.15) as the starting point). The extra terms associated with the
parameter ) (which reflects density variation away from a reference value) would

significantly complicate the result. However, if we exploit the assumption that the
density is constant within a given medium and only changes along interfaces, then the
result simplifies to a rather straightforward generalization of result for the constant
density problem (i.e., the result expressed in equation (C.35) or equivalently in equation
(3.11)). Thus, we will apply extra Foldy-Wouthuysen transformations patterned after
those in Appendix C.2.5, use the O -function procedure outlined in Section 5.2 and
Appendix K to evaluate the resultant expressions, and exploit the assumption that the
density is constant away from the interface to simplify the result.
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The extra Foldy-Wouthuysen transformations that generate the manifestly range-
reciprocal form involve the terms in equation (5.7)/(J.15) that are induced by range
dependence. (Id est, those terms containing a downrange derivative signified with a dot.
These also happen to be the terms associated with “vacuum polarization” effects.) These

four terms are
e
~nk, (%] ™ [/1 A

L[] el ]

Since only these terms will be involved in the operations considered here, it is convenient

to isolate these terms from the rest of the Hamiltonian " by rewriting equation (5.7)
/(J.15) as
) _
i

0t e A0 B ] a1

where

PN B B
PRVERETERNTE

AR} LA+ |

H RI kO

(J.17)

(The subscript RI stands for range-independent. Note that for the moment we follow
equation (J.15) and retain the tilde and superscript /7 on H.) Equations (J.16) and
(J.17) reduce to the constant density result (C.31) if we set y=0.

Let us begin with the term proportional to A%. Note that
)12:3(/1)[)—/1)'. (J.18)

Ox

Since A and A are proportional to bifurcated o -functions, A is evaluated in the half-
spaces. Recalling the definition of A, equation (5.4), we note that the range derivative of
U, is zero and given our assumptions so are the range derivatives of ¢ and ) (evaluated
in the half-spaces), and consequently in the half-spaces A is also independent of the
range. Thus (J.18) becomes

A —AQ—AA = AN =0

Ox

and this term drops out.
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Now, note what happens when we drop our assumption that £/ is range-independent. At

the surface, A of course still involves a linear combination of bifurcating J and &' -

functions, and so when we multiply it by another A, we just pick up that factor evaluated
an infinitesimal distance in the half-spaces. In this case, the associative property to be

discussed in Appendix K.3 is violated: in other words it matters which A we choose to be

the first one (and consequently bifurcate), so we symmetrize the choice of which A to

PR [@j_ﬁs .
2 [\ ox

The subscript S signifies that /1S is to be evaluated right on the surface S. The

bifurcate. This gives us

superscript * serves to remind us that as )iS bifurcates, its coefficients are evaluated in
the two half-spaces. Note that since we now are allowing 4 and consequently A to

depend on the range away from the interface, the term proportional to A% will also have
to be added to the Hamiltonian H away from the interface. Indicating that the operator

A? in its usually understood simple form will be evaluated everywhere except right on
top of the interface, we will call it a principal value denoted by PV. This gives us result

Ao %{[%T,JS}+PV[/P] (J.19)

For the moment, we will put result (J.19) aside, and proceed assuming A = 0. It will turn
out that there is the only one other place where we use the assumption that 4 is range-

independent: in equation (J.23). Therefore, we will return to result (J.19) at the end of the
calculation, and examine how it would modify the final result for H".

Now, let us apply the extra Foldy-Wouthuysen transformations used in Appendix C.2.5
to create a manifestly range-reciprocal Hamiltonian. Once again, we have (as in equation
(C.32))

gV :’7_/1
812
and as in equation (C.33)
. ~ A2 1 )
HY =] +i S]V.I’I7 ko + 2y -2 __[S1V41,[S1V,1,,7k0:|:| —$1 45t order (1.20)
L 2
new! This term is always zero

because /7 commutes with itself

Note that the term — )4 [SW'],[S’ V‘l,/7koﬂ is always zero because it reduces to
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- an.A =0.
e bl

Note that here we do nof need to invoke our assumption that 4 is range-independent and
so that A2 =0.

This leaves us with

A2 A

V= i %,/7 ky +A 2ky 5 || = 45" order. J.21)
0 This is 0 0

new!

The only change between this result and the equivalent result in Appendix C.2.5 is the

additional term
’7/1
=2k, —, )
0 { 2 kg ny }

Once again, O -function bifurcation causes A to “lift off” the interface, so ) acts like a

constant, and this commutator is zero. The new term disappears. Thus, we fully
reproduce equation (C.33) with the range-independent “square-root operator” suitably

generalized as in equation (J.17), the A% -term gone (for now, but we note that it is
passing through as before and would now equal -7k, (/i 2/ 8k§) if we kept it), and we also

are carrying along a new term proportional to —[/1,{/1 , 1} ] The explicit answer (with
H,, given by equation (J.17)) is

Y =nH,, - nA __3i [)I 2’;[] _L[/].,{)l ,y}] + 5" order .

8k2 16k, 4k
Now, let us again continue as in Appendix C.2.5, and choose
_3/7 ;
S = AA J.22
o (122)

as in equation (C.34). Following equation (C.35), we have

231



7!11/.2 = HIVAI +j SIVAz n k. +A —2ky - SlVAz +5th order
’ 0 0 —_
—_— . -
This is This term includes

new contribution 0 A2
which falls out
given our current
assumptions

=NHy, +’7k0(_ A +3{/],/]}] i [/i’{A’y}] (J.23)

sk 16k' | 4k

| =31 \ I
+1L6kg{/1,/l} ,—2k0y/7} +5™ order

This extra term is zero

Once again, note that bifurcation of A lifts everything off the interface, and y operates

like a constant in the half-space and so commutes with {)l,/i} . Thus the new term falls

out. Also note that the term —S”? includes a portion that is proportional to A*. Given
our current working assumption that in the half-spaces f/ is range-independent and y is

constant, this contribution is zero. Otherwise, this term will provide exactly the same
contribution proportional to A* that it had previously in Appendix C.2.5. Recall that

rather than explicitly tracking the A% -terms, we are simply verifying that they are going
through unchanged as we follow the procedure pursued in Appendix C.2.5. At the end,
we will simply write down the final result of that previous calculation, and only then
make the substitution (J.19). Based on comparison with equation (3.11)/(C.35), the

current running value of the term proportional to A* is 77k, (/1 2 / 4k, ) . This will not

change anymore.

Thus, we used the assumption that the density is constant in the half-spaces and that the
compressibility is range-independent in the half-spaces to reproduce equation (3.11)
/(C.35) with the range-independent “square-root operator” suitably generalized as in

equation (J.17), the A? -term gone (for now), and with a new term proportional to

—[/]',{/1,}/}}:

7:(11/.2 :,7]_1}{I +I7k0[— /1 +3{A’A}J I [/f’{/] ,y}} +5th order.

sk 16k' | 4k

Now, let us consider that last term proportional to —[/1,{/1 , }} ] . Now:

_4];? [j,{jjy}] ~ bifurcate A — _4%{3[/]-,{/]1’1/:}]’

and y* works like a constant so that

232



4k2[ - 4k2[ B ,1}2,, [/1‘ )ID
A0 )

Thus, back in equation (J.16), we can drop the term proportional to —[/1,{/] , 1} ] and

replace it with the rescaling

™ [/1 /1] (1+4y)— ” [/1 ;l]

Now, S”! gets rescaled by the same factor. The “additional term” is still zero, but there

is a new term proportional to [yfl,ﬁ 2]. However, this is 5t order, and so we drop it.

Thus, the only change to H'""' is the rescaling
)'I' i
k, - nk,| —(1+4y)—|.

Transformation S” is unchanged, and so we have

4
0 0

- i 34,4
H"? =nHy, +nk, —13(1 +4y) +u +5" order, (J.24)
8k, 16
with H, given by equation (J.17). Dropping the tilde ~ and superscript /.2 on H,
this is just equation (5.9).

Now, we add the term proportional to A>. From comparison to equation (3.11)/(C.35),
noting that we have been careful to monitor our modifications to make sure that nothing

new crept in (i.e., the A?-term should be the same as in that equation), we have the
following contribution proportional to A%

AZ
nk, (4/{‘) (1.25)

Now making the substitution (J.19), we have the additional term

) e () (2 020

This is equation (5.10).
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K Appendix: A heuristic development of the rules for 5-
function bifurcation

This appendix provides a plausibility argument for the O -function bifurcation rules given
in Section 5.2. Appendix K.1 considers two cases where the rules apply:
= Subsection K.1.1 examines a flat interface where the sound speed jumps, but not
the density,
= Subsection K.1.2 considers the 2-fluid interface (including a density jump) in the
full wave (Helmholtz equation) problem.
Then Appendix K.2 discusses the limits of the O -function bifurcation prescription.
Appendix K.2.1 examines two cases, where the prescription only seems to work to 1
order:
» The substitution a =1/ p is analyzed in Subsection K.2.1.1 and

= Tappert’s change of variable substitution u = A/ \/; is evaluated in Subsection

K.2.1.2.
In Appendix Section K.2.2, we examine why some cases only seem to work to first order.
Specially, the need for undistorted steps is discussed in this section, and then in Appendix
Subsection K.2.3 our observations are verified when the a =1/p case is extended to 2™

order using a Taylor series expansion. Finally, the associative property for our
prescription is briefly examined in Appendix K.3. It should be noted that it is implicitly
assumed in this section that the parameters jump at an interface, but do not otherwise
vary in the vicinity of the interface. If this condition is violated, the associative property
in choosing which distributions to bifurcate may not hold, and explicit symmetrization
may be necessary.

For convenience, the J -function bifurcation rules given in Section 5.2 and supported by
the arguments in this appendix are repeated here: The basic rule is that the first O -
function obtained splits in half (i.e., bifurcates). The two halves are displaced in opposite
directions away from the interface. Any other distributions in the product collapse since
they are smooth functions in the half-spaces away from interface. The procedure is
associative in the sense that it does not matter which d -function is chosen to be the first
one. On the way to generating that first O -function, the chain rule for differentiation
applies. The [, operating on the O -function will generate higher-order derivatives of

the O -function. It is permitted to multiply through by a density since it involves an
undistorted step, but in general it is not permitted to multiply through by distorted steps
produced by taking functions of steps.

K.1 Cases where the o -function bifurcation rules clearly apply

In this section, we consider two cases where the formalism must somehow work, and
show that the J -bifurcation rules reproduce the known correct answers. Subsection
K.1.1 considers the parabolic equation for a flat interface with a sound speed jump only
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(no density jump), and Subsection K.1.2 considers the 2-fluid interface (including density
jumps) for the full Helmholtz equation.

K.1.1 Flat interface with no density jump (Jo=0)

Consider an interface with a sound speed jump (but a single value of the density
everywhere). In Appendix Subsection 0 we derive the implicit boundary conditions for

(074 and 0} 4 by using standard manipulations on the Helmholtz equation. Later, in

Appendix Subsection K.1.1.2, we re-derive these boundary conditions in the context of
the parabolic equation for a flat interface. In this context, the boundary conditions for

074 and 0,4 become explicit. They appear in cross-terms where derivatives operate

on step functions to produce O -functions, which in turn are converted to boundary
conditions using transverse integration. O -function bifurcation must be used to obtain
some of these boundary conditions. Note that when the interface is flat (i.e., range-
independent), there is no backscatter and the co-order parabolic equation is exact.
Therefore, the precise boundary conditions obtained for the Helmholtz equation in
Appendix Subsection K.1.1.1 should apply. Since the orders decouple (see the discussion
at the beginning of K.1.1.2; higher orders add new explicit boundary conditions but do
not modify existing lower-order boundary conditions), this agreement should hold even
for finite-order parabolic equations. Therefore, agreement between the results obtained
using O -function bifurcation (Appendix Subsection K.1.1.2) and those obtained using
conventional methods (Appendix Subsection K.1.1.1) establishes a context in which the
O -function bifurcation prescription is indeed valid.

K.1.1.1 Reality check: The implicit boundary conditions on >4 and
0,4 obtained directly from the Helmholtz equation

To serve as a point of comparison with the parabolic equation for a flat interface with a
sound speed jump (but a single value of the density everywhere); let us begin by first
considering the corresponding Helmholtz equation. This is a 2" order partial differential
equation

(0% &) 4 o (K.1)

with boundary conditions 4,7 [[4 constant (as always, 7 is the normal to the interface).
The boundary conditions on higher-order derivatives of 4 do not need to be explicitly
spelled out, because a 2™ order differential equation with 2 boundary conditions fully
determines the problem.

Now consider the simplest type of interface: the sound speed discontinuity (the density is

the same everywhere) is now assumed to occur along a flat range-independent interface.
The basic geometry is shown in Figure K.1 below.
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Region /

> x - Flat interface
Region 11

Figure K.1 - The basic geometry for a flat range-independent interface, where the sound speed
jumps, but not the density. When we consider the parabolic equation, we will simplify things yet

again, and let the 2-dimensional transverse vector R, = ( ¥, Z) become the 1-dimensional variable
z (the depth). For the moment, as we consider the full Helmholtz equation, we will keep the 2-
dimensional vector R, = ( ¥, Z) and its corresponding gradient [, , but keep in mind that although

results (K.3) and (K.8) below will in principle apply when the interface is a function of the transverse
coordinate ), it is the 1-dimensional result that will be of interest once we move on to Subsection

K.1.1.2.

Now, the boundary conditions are continuity of 4 and 0A4. The continuity of

components of 04 in the tangential direction comes as a bonus from the continuity of

A . Recall the discussion leading to equation (3.51) in Subsection 3.3.2 for a derivation of
this result. There, it was stated that the continuity of a given function implies that the
difference between the values of the function evaluated on the two sides of the interface

is zero, which in turn implies that the tangential derivative of the difference is also zero.
Note that we can iterate this argument, beginning with the continuity of the derivative in
the tangential direction, to show that a succession of two or more derivatives all in a
tangential direction is also continuous. Specifically, with x in a tangential direction and

A continuous, we have 8"4/dx" continuous at the interface for all 7 .

Now, let us examine some of the implicit boundary conditions on the higher-order
transverse derivatives [ . As discussed just below Figure 3.8 in Section 3.3.2, the

boundary conditions on higher-order derivatives become an issue in the higher-order
parabolic equation. Then, the boundary conditions on higher-order transverse derivatives
can no longer remain implicit.

The Helmholtz equation gives

2
R (— %— k,sz, just inside Region /
(K.2)
2 0’ 2 S .
Uz 4,7 (— Pl k,,j A, justinside Region //
Taking the difference between the two equations and using continuity of 4 and
024/dx* , we have the implicit boundary condition on 0% 4:
A AF - (oK) 4 (K.3)

where
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ADAED 140 34,

o (K.4)
Ok =k —k

Next, let us obtain the boundary condition on [1; 4. Take (I} of both parts of equation

(K.2):
4 4_ 2 0’ 2
DTAI_ B kl_ y TAI

4 2 0’ 2 ,
DTAU: E ku_ E)] TAII

and use (K.2) to substitute for [17.4:

2 2 62 64
05 4= (— k- —J(— ki— —J A= (k,“+ 2k} —+ —J A4,

(K.5)

ox> ox> "ox? oxt
0’ 9 > ot
O74,7 (‘ ki~ yj[‘ ki~ y}flﬂ: [k?1+ 2k;, y*‘ yjfln

Now, subtract these two equations, recalling that 8*4/dx* and 8°4/dx” are continuous.
This leaves us with
0’4

ox*

D140 54 (kK k)4 2(k &)

With ok as defined in equation (K.4) above and &> = (k,2 +k, ) / 2, this becomes

J— 2
Oiar0ta 20 (ak)n 2(ak) ‘;x‘f
(K.6)
— 0°4
=2(k*)| k4 -
(o) F4-5F
Adding the two parts of equation (K.2) and dividing by 2, we get
DiAE M—FA—&;?, (K.7)
Ox
and so
AOj4ED j40 7~ 2(08) 4. (K.8)

Thus, equations (K.3) and (K.8) give the implicit boundary conditions on (074 and [;.4

respectively. Note that as we compare results (K.3) and (K.8) to the corresponding
parabolic equation result in the next subsection, we will go to the 1-dimensional problem
where 0,—» 050 9/ z.
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K.1.1.2 The same boundary conditions on 00’4 and 0; 4 obtained from
the parabolic equation using J-function bifurcation

Recall that we are considering the range-independent constant density problem so that, as
discussed in Appendix C.2.2 (especially the discussion surrounding equation (C.16)), the
parabolic equation can be used to propagate the acoustic field A itself, and not just the
auxiliary field Y. Furthermore, the “exact” scalar Hamiltonian A is the infinite order

expansion in 2A/k, of ky\/1+2A/k, (keeping in mind the usual caveats concerning the
assumption that the operator A is in some sense small). It follows immediately that at
any finite order, the commutator [A,H ] =0, and so A is an observable. Therefore, we
can always in principle expand the solution A4 into eigenvectors and replace A with
eigenvalues. It follows that for any given power n, O -functions generated internally to

A" must cancel, and the orders (in » ) must decouple. Therefore, higher orders can only
add new boundary conditions, but they cannot modify the old ones (when one uses the
transverse integration technique outlined in Section 3.3.3 to convert the contact potentials

to boundary conditions). Specifically, when we add a new order A", only the first two
integrations count, and these will provide the boundary conditions on the two new

derivatives that now need specified boundary conditions: (2" 4 and (0" ?4. (The new
explicit boundary conditions become required in the context of the new Hamiltonian
where lead order is now [13"4 rather than just (2" 4.) For our current purposes, we

will only consider the boundary conditions on (7.4 and [J} 4, and use A theory and A’
theory respectively to derive them. We will use O -function bifurcation on distributions
generated by cross-terms in these products of differential operators. The fact that the
correct boundary conditions are indeed generated will contribute to our heuristic
validation for the O -function bifurcation technique.

The contact potentials (e.g., potentials proportional to 0 or ') generated by cross-terms
in A" play a crucial role. For example, in A° theory, a d' -contact potential is needed if
we are to avoid having our transverse integration incorrectly predict that (7.4 is

continuous (i.e., A (DZTA)= 0). Continuing on up to A’ theory, if we were to throw out

all contact potentials, then we would incorrectly conclude A(D‘}A)= 0. This, of course,

contrasts with the discussion just above in Section 0 concerning the Helmholtz equation.
In this equation, no derivatives of higher than 2™ order appear explicitly, and so the
additional boundary conditions involving discontinuity of the second and fourth
tangential derivatives of the wave function were extracted from the Helmholtz equation
only indirectly, and no contact potentials were needed in the Helmholtz equation itself.
(However, they effectively appeared when we took derivatives of the Helmholtz
equation.)
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From now until the end of this subsection (Appendix K.1.1.2), we will revert to the 2-
dimensional problem, where x is the range and z is the depth. Thus, zZ replaces

R, = ( y,z) and U, and 0/0z are the same. As always, the positive z-axis points up
from Region /I into Region / (e.g., see Figure K.1 with R, — zZ). We follow the
notation first outlined back in Section 2.1, noting especially that equation (2.5) implies
that (/= (1 —nz) / 2 and kyn =k . Then, choosing the reference wave number k, =k, , it

follows that (= @( ),UH and
2k =2k 11,0 (=2) =k (1 —nf,) o =) =(k,2 —k,z,) q =) ={5k2) d =).

Note that 0k* =k, —k, as in equation (K.4), and © is as always the Heaviside step
function given by equation (3.22). All this gives us
2ky A=T+ (oKD € 2). (K.9)

Irrelevant
overall
factor!

Note the A theory (i.e., 1* order) instantly gives us continuity of 4 and 0,4 (using
infinitesimal transverse integration).

Now let us look at A* theory and deduce the boundary condition on D2 A. Start with

(2k,4)" 4= (0 (0K°P € 2))0F (oK { 2))4(z
=0 Az} O T(J]E@ + 2)4 (Z)) : (K.10)

Expand this term

+0k* ©(~z) 4|+ (o) @ 2) 4(2)

These terms play no role in determining
the boundary condition on D%A

The last two terms in equation (K.10) do not matter in the present context. This is so
because [17.4 has at worst a step function and 4 is continuous, and neither has the
requisite O - (or O -) function for actually generating a discontinuity boundary condition
in 7.4 (or [0}.4) via the infinitesimal-transverse-integral procedure outlined in Section

3.3.3. In fact, if we integrate either of these terms over an infinitesimal transverse
integral, we will get zero.

Expanding the interesting term gives
07 (0k1® ¢ 2)A(z)F 0 A oD o(z)4(z) & A ) 4] ]
==0k* & (z) A(z) - o> O)(z) DTAL
=0k B(z) D, A+ B ¢ z)1 34 .

Once again there are no J's
here and this gives 0 after
infinitesimal integration
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Recalling equation (3.54) (for the flat interface z = f =0), we have
9(z) x(2) = (=) x(0)
9'(z) x(2)= 8 (2) x(0) - (=) X (0),
and so
07 (ok1® ¢ 2)4(z)f - K0S (2) 4(0F D)0 4 &® { A) 4 . (K.11)

Stays finite at the origin

Substituting into (K.10), this gives us
(2k,A) 4=(T+ (08P € 2))0F (oK A 2))4(:
=0 A(z) ok (2)4(0) KDz TA|O (K.12)
#20K° [©(—z) A+ (k)0 2)4(z) .

Finite stuff which
integrates to zero for
infinitesimal intervals

Now perform the infinitesimal-transverse-integral procedure outlined in Section 3.3.3,
noting the geometry in Figure K.2 below.

H|I
T

Interface
atz=0

Figure K.2 - For the infinitesimal integration, recall that the interface is along the z = ( line and
that the positive z -axis points from Region // into Region [ .

Following equation (3.53), we perform the integration J. a’z'J. dz (with € - 0)on
equation (K.12) to obtain
O74-0 7 4; o3 A(6) ©

or
Dm0 40 O Ay a8 4(0), (K.13)

which is exactly equation (K.3). Note that we needed the J' -function from the cross-

terms in A° to get this result. Incidentally, integrating (K.12) once also gives us the
similar result
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A0 AF - okt 4],

It is now possible to see where we are heading with this. On the one hand, we need the
cross-term between the differential operator [17. and step function © to generate the

proper boundary conditions on [J7.4. On the other hand, for higher-order A" (where

n >2) we will rapidly begin to pick up products of distributions: first the product
©0J appears and if we do nothing about that, then the cross-terms will eventually generate
products of O -functions. Note that all this is happening in a trivial range-independent
problem where the density is constant, and everything should work out! The bottom line
is this: if the first time we create a J -function, we split it into a pair of half O -functions:
g/ v
5_,5_+£:£+£ (K.14)
2 2 2 2

then we avoid problems associated with the multiplication of distributions. Very
significantly, we will also get boundary conditions that are fully consistent with the wave
equation.

With this in mind, let us examine the A°-term and use the & -function bifurcation rules to
reproduce the boundary condition on [0} 4 given by equation (K.8). We have

(2k,A) 4=(0 oK@ F2))0% oKD { )+ M —( z))4. (K.19)

Substitute for this

Next, using equation (K.12) evaluate the two right-hand appearances of the operator
(D§+ okT® 6 z)) first, and then operate on the result with the left-most appearance of

the operator (D§+ okt® £ z))m. This gives us

“” Since the evaluation of this expression will eventually require use of the new procedure of O -function
bifurcation, it is fair to question whether evaluating this expression by expanding it using the product rule
for differentiation first and only then replacing derivatives of the step function with O -functions is really
equivalent to expanding the two right-hand internal operators first, replacing them with O -functions, and
only after that applying the left-most operator. In other words, does the associative property for the
multiplication of distributions apply even when O -function bifurcation is involved? In Section K.3 this
issue will be addressed, and it will be argued that the associative property for multiplication applies, even

when O -function bifurcation is involved.
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(2k,A) 4=(03 ok1®  2)
074~ ok08 (2) 4(0y T =P 44|,
+20K> [©(—z) B4+ (k*)© 2)0 (2) 4(2)
= 0|+ 25K §G( « 4 ;AH (5"@2@% (€} ( Z)A(Z))(K.m)
~3k* (B (2) 4(0) = & B (z) DAl &T® ( z)0 34
+2(0k*) ©(—z) (=) B4 + (oK) © (-2)0 (-2)0 (-2) 4(2)
~(ok*)" ©(=2) @' (2) 4(0) - (k*)" O(~z) B(z) T, 4], -

o7 /2 )

Since these are the only ones that contribute as we take a double integral to obtain the
boundary condition on (134, we will only consider terms that pick up a 0" function:

=20k p ¢ )24 )
2l=(ok*) 26 € 2P € 2)4(2))

= 5> BE)(—Z) D‘;AL . (K.17)
= -(ok*) ©( =) B (=) 4(0)
— 7\
/2
Thus,
(2k,A) 4= D?AL+ non-J' terms . (K.18)
Now,

[]=20k* M2 € =)0 34

)

=20k M, - &(z)) ;440 o 4) ;4
\—ﬁf—J

use J-function
bifurcation

z

Follow the J -function bifurcation prescription: § — &'/2+ 8" /2=8/2+ 5/2:

5" J
3(z) D2 5 Tt 55 A, .
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Under the relevant infinitesimal integration j dz, [5+ / 2} 074, ‘ * [5 / 2ﬂ] ZTAH‘O

integrates to (DZTA,‘O-I- H ZTAH‘O)/Q H ﬂ

. Thus, as long as we are clear about how we
0

got there, we can use the shorthand

5" —
3(z) 24 - At 9;9 g o) 4.

Always exercising caution, it will often prove convenient to proceed in this way and
recombine are bifurcated O -functions into an ordinary O -functions times averages. We
will move freely from one form to the other as needed.

Thus,
=26k m, |- 5(= ;40 A 2) 34 ]

=20k B (z) d|+ 280 =)0 4 2380 { 4) 14

Again, J(z) is really ;[5*/2] = [5/2] +[§/2], and so
6(z)03d|= [&°/2 34t [o/2 4, B 4

>
0

and we have

=20k’ @'(z)m

2804 280 A{ ) 4. (K19

This term is not 0 9", so
it will not survive the double

integral j. dz' ] dz
Ze e

Now recall the argument at the beginning of this subsection (Subsection K.1.1.2). Range

independence implies that the distributions internal to A°4 must cancel. Equation (K.12)
therefore implies that

O34 0k (z) A(O) terms thatare notd  J.

In expression |1], this is multiplied by the step function
0 z>0 (Region/)

G)(—z) - {1 z<0 (Region I7)’ (K.20)
so that ) )
o)5(:) <2007 ()  00)9"() o)
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Noting that A4 is continuous even at z =0, we have

Wﬂﬁ%kéﬁ@&ﬂﬂﬂﬂ@{mwm”m}

not [0 &'
N (K.21)
" terms that are
o ) ()4 ,
2 not [J O
Again, at this point we might as well drop the superscript “— " from the J' -function.

Note the O -function-bifurcation prescription at work here: it has generated a factor of )4
that we would otherwise have missed!

Combining (K.19) and (K.21), we have
= -20k* B (z) 24

+ (a&)D8(2)4(0)

N terms that will not contribute (K.22)
to the double integration |
Next, let us evaluate |2|. This will be a great test for the O -function-bifurcation
prescription.
2l=(ok*) 6 € 2P € 2)4(z))
_ (sz)2 0 (00 € 2)0 € z)4(z)r0 (2)[00 { 2)]4(z))
(+0(=2) ©( =) 0.4(2)
Now use the prescription
0" o
0 -z =
PLF-5 5
and equation (K.20) to get
o o
(09 ¢ )P £ =0 E2)00 { 2} o 2=- 2
Again, since A is continuous and we will integrate, we can drop the superscript “—" to

get
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2] =(ok*) DT(— gA(O)— gA(O)j
+(oe) (00 £ 2)P E=7,4() (o) £ 2)po,-( ] ()

Again —% Again —%

+(5k2 )2 O(-z) (=) B 4(z)

=—(ok’) &(z)m(0)~(a) A=) 0,4(0y (&)o {2 (-2)074(z)

These terms go out after double integration
2
— 2
=—(ok*) & (z) (o) +{

terms that will not contribute }

to the double integration

Note that [2| and the 2" term in [1] will cancel.

Next we can use equation (K.21) to obtain
= 0k’ [®(~z) (4| = (sz)h@A(o)r {

terms that are
not 00 O

Now consider

=-(ok*) ©(=) @ (2) 4(0).

\_ﬂ——/
o
As already noted above, O splits:
6,(2) R J’ (Z) + 6' (Z)’
2 2

and @(—z) is given by equation (K.20) so that

o (2)
2 2

9" (2)
2

o(-2)

o(-)

and

5 ()

@(—z) Eﬁ'(z) = 5

Again dropping labels since A4 is constant and Jk” is just a constant parameter, we
simply pick up a factor of 4 and end up with

(K.23)

(K.24)
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=~(ar’) 7L) 4(0). (K.25)

Note that |3] and |4| cancel.

Combining (K.18), (K.22), (K.23), (K.24) and (K.25), we have

(2k,A) 4= DGTAL+ {terms that are}

not O o

— terms that are |
= 4|~ 20kT08 2A+-
T L (Z)] T o { nOt |:| 5! }

Now, substitute into the A° -parabolic equation corresponding to the Helmholtz equation
(e.g., see equation (C.35) or equation (5.7) or (J.15) with y=0). As noted at the

beginning of this subsection, since this particular problem is range-independent, we can
replace the auxiliary field Y with the acoustic field A4 :

2 3
_,-a_A :|:ko +1 A +A_}A
0. 2

X

This gives us
non-o’ terms

—— or
0= 05|~ 20kTIS ()0 ;4 K26
T (P 7 o |0 terms internal to A* that ( )
must cancel each other out
e z
Integrating twice (i.e., | dz' [ dz---), we obtain
0=04-0 74; 200 4
0
orwith A(D}AF O 450 54, we get
A(Op4F - 20K 34 (K.27)
0

which is exactly equation (K.8), the implicit boundary condition for the full wave
equation.

Thus, by requiring that as the PE adds higher-order powers of the transverse Laplacian
[07., the boundary conditions at a flat horizontal (i.e., range-independent) interface remain

consistent with those set by the wave equation, we find that the physics clearly forces a
specific extension to distribution theory: The O -functions on the interface must
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“bifurcate”. Next, in Subsection K.1.2 we will show that the same extension to
distribution theory is also necessary to recover the 2-fluid boundary conditions at an

interface where the density © and the sound speed parameter y = (1 - ‘%) / 2 both jump

(i.e., p and W are functions of the coordinates that contain step functions at the
discontinuity).

K.1.2 2-fluid full wave interface (0 #0)

In this subsection, we demonstrate that the O -function-bifurcation rules reproduce the
boundary conditions on a 2-fluid interface embedded in 2-dimensional x —z space.
Once again, let us set up the same (local) coordinate system we typically use in such
circumstances (see Figure K.3 below). In particular, note that in the local coordinate
system, the interface is at z =0 and the z-axis is (locally) normal to the interface.

Interface

| P
P }5/)

x is the direction I1 E I

tangential to the surface E
E z+: the positive
E _ z-axis points
' from Region II

Interface into Region I

Figure K.3 - The geometry used in this section. The Zz -axis is locally normal to the interface and the
X -axis is locally tangent.

The density jump is given by o = p, — p, and
p, z>0
p=p, —opo(z) ={ '

py z2<0

The field 4 obeys the variable density acoustic equation (equations (2.1) and (5.1))
2.2
9fL10 )y 910 4} Jhm 4. (K.28)
0z\ poz Ox\ o Ox Yo,

Tangent to the surface; no
distributions generated here
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Note that the x -direction is tangential to the interface, and so p,n, A are all locally
continuous with respect to this variable. A translation in the x -direction encounters no
jumps in the density, and so no distributions are generated by the 0/0x derivative. This

term is therefore not a player in determining the boundary conditions via transverse
integration.

Now, let us proceed to step one of our prescription: until we generate a d -function, treat
P just like any other variable (i.e., use the chain rule for differentiation and multiply,

etc.). The usual rules for differentiation give us
2
9(10 ). 1dpau 134
0z\ p o0z

— . K.29
0 0z 0z p oz’ ( )

Substituting (K.29) into the wave equation (K.28) and multiplying through by o, we get
0’4 _10po4 0’4

—— —— 2+ +kn’4=0. K.30
02 pozoz o (K.30)
Now, naively we have
0p _
—=-0p Bf(z)
0z

where Jp is a fixed “density jump” parameter.

Now we are ready to move to step two of our prescription and bifurcate O :

5(z) - 0" (z) N 5_2(2)

or

Substituting into the modified Helmholtz equation (K.30), this leads to
2 2
6A+ 1 opo4, 5+(z)+ 1 9pa4, 5_(2)+6A

7 p, 2 0z 0, 2 0z x>

+ken*4 =0.

0

£
Integrating once across the interface (over the infinitesimal interval: I dz---), we have

&
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_04, 0, 1 3p04| , 1 004,
0z 0z p, 2 0z|, p, 2 Oz

0
0:%—%+l &—1 % +l 1_& %
0z 0z 2 P 0z 0 2 Py 0z

O:l &H % +l -1 _Pr %
2\ /i 0z |, 2 Py ) 0z

0

0

0

or

(p11+p1jaA1 :[Io]1+IOIJaAII|
Pr 0z |, P 0z |o
Lo4] _ 1 o4, |
p, 0z, py 0z

(K.31)

0

Similarly, two integrations give us continuity of the field 4. Thus, the J -function-
bifurcation prescription correctly reproduces the boundary conditions on the field at an
interface where the density jumps: continuity of the field and of the normal derivative
divided by the density.

K.2 An important caveat concerning the o-function bifurcation
procedure

As noted in the discussion in Section 5.2, the J -function bifurcation prescription only
applies in certain specified contexts, and it must be applied with care. The prescription
works well when the associated step functions are raised to simple powers, and when it is
used in conjunction with the ordinary rules of differentiation such as the chain rule and
the product rule. However, naively multiplying through by functions of the step function
will cause problems. For example, in Subsection K.2.1, we will see that multiplications

such as [1/ (1+ constant BD)] [0 or [1/ 1+ constant BDJ [d will produce incorrect results

when combined with the bifurcation prescription (at least if both sides are weighted
equally). As discussed in Subsection K.2.2, these functions apparently distort the step
and change the relative weighting factor assigned to the two halves of the bifurcated O -
function. On the other hand, as will be demonstrated in Subsections K.2.1 and K.2.3, we
can expand these functions into Taylor series expansions, and these consist of sums of
terms that are products of the basic form ©" [d. Now, for these clean undistorted steps
we can use the J -function bifurcation prescription.
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K.2.1 Cases where J-function bifurcation only seems to work to 1%
order

Here we examine two cases, where the O -function-bifurcation prescription only works to
to 1% order: the substitution @ =1/p and Tappert’s change of variable (COV)

substitution u = A/ \/; .

K.2.1.1 2-fluid full wave interface with the substitution a =1/p

As in Appendix Subsection K.1.2, let us consider a 2-fluid interface embedded in a 2-
dimensional x —z space. Now, instead of using the variable o, let us consider the

variable @ =1/p. As shown in Figure K.4, @ jumps at the interface, and so it can be
expressed as a =a,, —oa BB(Z) where 0a = a, —a,. Note that once again we use a

local coordinate system so that the interface is at z =0 and the z-axis is (locally) normal
to the interface.

Interface

| o
a, JLéa

x is the direction II E I

tangential to the surface |
E z+: the positive
E . z-axis points
' " from Region II

Interface into Region I

Figure K.4 - The geometry used in this section. The Zz -axis is locally normal to the interface. We use
the new variable O = 1/,0, and 0 =a, —0Q BD(Z) where OO =0a, —Q,.

The variable density acoustic wave equation (K.28) now takes the form
0= DT([@ TAB

where the ellipsis stands for terms that will not a play a role in determining the boundary
conditions on the field 4. By integrating directly, we see the boundary conditions are

A continuous ; %ﬁ continuous . (K.32)

4
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Now, let us show that to 1* order in dar, J -function bifurcation reproduces the boundary
conditions (K.32). The continuity of A is trivial, because there is only a first derivative
of a, and so no J" will be generated. It remains to derive the continuity of a [#4/0z .

The chain rule for differentiation gives us

0=(0,0)0 ,4) @ 34

Now, 9 -function bifurcation gives us

DTa:—é'agD A - JGZ%EI JA- Ja[%: +4* [—lg; TA‘j

and the wave equation becomes

9 % j (K.33)

0=all 4 Jc{—D Y
2 2

Now comes the crucial (and as it turns out partly illegal) step: divide by
a=a, -oa BE)(Z) . Note that in Subsection K.1.2 above, we multiplied by
P, —O0p ED(Z) . In other words, earlier we multiplied by the step function, but now we

multiply by the step function @ embedded in another function; in this case the other
function has the basic form 1/ [1 + constant [(D] .

At any rate, dividing equation (K.33) by a gives us

0=04 iDTA, EE A, |éa
2a, 2a,

Next, we perform the infinitesimal integration j dz and recall that 0,=0 @ z for the 2-
dimensional problem. This gives us

O
DTAI_D r 47 _% ™, 46@’ r Ay

20, 2a,

04 (F S2E (v 220 4, (K.34)
2a, 2a,

Result (K.34) would produce a mess if we continued without imposing a trick: let us use
a 1% order Taylor series expansion to rewrite (K.34) as

and so
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50 50 (K.35)
I+ — 1-—
2a, 2a,
Now,
1+ 5a = 20] +a11 a] a] +a11
2a, 2a, 2a, 2,
. da _2a, a,-a, _a,+a,’
Zall 2al[ 2£YI[ 2a[l
leading to the correct answer
04 _ o (K.36)

a’az_”az'

However, note that we had to restrict ourselves to 1% order in . Let us consider
another example, Tappert’s change of variable substitution, and show that the same sort
of thing happens.

K.2.1.2 The change of variable substitution 4 - u/\/p

In this subsection, we will apply the change of variable substitution suggested by Tappert
(see pp. 262-264 of reference [15]), and show that to 1* order, J -function bifurcation

will be needed to correctly reproduce the continuity condition on the field 4 = u/ \/; .

Once again as in Subsections K.1.2 and K.2.1.1, let us consider a 2-fluid interface
embedded in 2-dimensional x —z space. We use a local coordinate system so that the
interface is at z =0 and the z-axis is (locally) normal to the interface. Thus, the
geometry outlined in Figure K.3 holds here as well.

Under the change of variable substitution, the wave equation becomes

O:pﬁ]][l—;ﬁ (Vi u)*} B P u. (K.37)

The boundary condition on u itself (as opposed to its normal derivative) will come from
terms involving the second transverse derivative on a step function (which in this case
comes from the density p) and terms involving the second transverse derivative of u

Thus, equation (K.37) becomes

aaaa

%% The first transverse derivatives of the step function and of u# will be involved in a calculation of the

boundary condition on [, much like that presented in Subsection K.1.2 for the calculation of [], 4.
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0=\JpCur 03 pfu - (K.38)

where the ellipsis once again stands for terms that will not be involved in determining the
boundary condition on . Now, we divide by \/; (or equivalently multiply by 1/ \/; ).

Once again, as in the calculation following equation (K.33), this is the crucial and, as it
turns out, partly illegal step. Once again in contrast to Subsection K.1.2, where we

multiplied by p,, — JpBD(z) , here we multiply by the step function © embedded in
another function of the basic form l/ 1+ constant [® .

At any rate, dividing equation (K.38) by \/; gives us the equation
1

0= ﬁ[m el (K.39)

Note that z is in the normal direction, and so [1>=9 @ z* stands for two derivatives in
the normal direction. Thus, it is undone by the infinitesimal double integration in the

I I

& z & z
normal direction [ dz' [ dz---,andso [ dZ' | dz00wF u- u,.
-£ -0 -£ -0

We will also need to use 9 -function bifurcation to evaluate
1
ﬁ[mzr\/;}u

Since p= p, —0p BB(Z) , we have

T 2 2ok o {2\/_6 5++7ﬂ
lEE s

and multiplying by u/ \/E gives us

Loriple- Bl oy - Sz 5)

p[[

Proceeding in much the same way as in the discussion in Subsection K.1.1.2 (a little
below equation (K.18)), we note that under the relevant infinitesimal integration

!

& z
[ dz' | dz---,
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[5'+/2] (”1/:01) +[5'_/2] (”u/pu)

integrates to (u,/p,)+(u,/p,), which is the same as

I

?dzlzj dZ[(“[/pl)-l_(”u/pu)]@’(Z)'
£ -

and so we now are free to pull out the bifurcated J' -function and replace it with an

: . bbbb
ordinary 9" -function™":

1 op(u, oo U, o- opl u, u
T e #(to ek Skt
ﬁ[ ad alp o alp P

Substituting (K.40) into (K.39) leaves us with

0=l @(“_14. “ijau
4 p[ p[[

I

& z
and integrating twice [ dz' [ dz--- gives us

(K.41)

Once again we need to restrict ourselves to 1% order (O (5,0/ ,0) ). Now equation (K.41)

becomes:
% A
u, 1+Q =u, 1—i . (K.42)
2p, 20,
Noting that
1+ %P :2'01+'0”_’01 :E
2p, 2p %
1—- P =21011_:011+:01 =£
2IOII 21011 IOII

PPPP The details have been repeated here in order to help us familiarize ourselves with this useful aspect of

the O -function bifurcation formalism.
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equation (K.42) implies

”1\/;1 = u[l\/?]]'

Furthermore,

and we have recovered the continuity condition
A, =4,. (K.43)

Thus, we have again shown that O -function bifurcation works to O (5,0/ ,0) )

The reason that we needed to restrict ourselves to 1* order (O (5,0/ ,0) ) in the example

just given here in K.2.1.2, as well as in the example given earlier in Subsection K.2.1.1,
will be examined in Subsection K.2.2 below.

Finally, note that in addition to casting light on the applicability of J -function
bifurcation, the change of variable procedure raises a number of other interesting issues,
and so we also further examine this substitution in Sections 2.2 and 6.2.1.

K.2.2 The need for clean (undistorted) steps

When applied “naively,” the J -function bifurcation procedure appears to work only to 1%
order in some cases and exactly in others. It turns out that the problem does not lie with
the O -function bifurcation prescription per se. It is perfectly sensible that a J -function
will pick up the average between the values of a discontinuous variable, provided that
once we introduce a step into a given parameter (and subsequently take derivatives of it
to produce a O -function), we do not expect the exact same (undistorted) step to also
govern the behavior of the jump associated with another parameter that depends on the
original parameter in some non-trivial manner. The reason is this: According to

generalized function (i.e., distribution) theory, the Heaviside step function G)(z) is really
a sequence of functions symmetric about the origin (z = 0) that converge to the step.
Once we operate on the functions in this sequence (e.g., take the reciprocal, the square

root, etc.), this distorts the symmetry, and the functions will be weighted differently when
they multiply the corresponding O -function. In other words, the O -function no longer

bifurcates evenly & — J'/2+ &7/2, but now we have the more general condition:
0-ad +(1-a)d 0<a<l. (K.44)
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To further examine these issues, we begin by once again considering the operator that
appears in the variable density acoustic equation (K.28): [, (1/ ,OD] - Recall that our
prescription requires that the chain rule (for differentiation) be applied first, and the step
is only subsequently put directly into the density ( 0 = p, —Jp [(B(z) ). It is important to

note that our concerns about distorting the step function do not extend to the —1/ o that
is generated when we have used the product and chain rules to expand the operator:

0, (1/p) 5 - 4ﬁ+ 2 (K.45)

One the other hand, as an alternative we could have proceeded roughly as in Subsection
K.2.1.1, and first put the step directly into 1/,0. To clarify certain issues relevant to the

current discussion, let us recast the equation a =a,, +da [©(z) to

1_1_ (Z){L _L} _ (K.46)
10][ p]

Substituting equation (K.46) directly into equation [, (1/ ,OD] -, We generate a O -

function by operating on the step function @(z) with 00, . Now it will be the step in 1/ 0
that is symmetric about z =0 and rather than the step in ©. By itself, this is fine.
However, in the other term in the expansion of O, (1/pI0 ,, (1/0) O}, we are left with a

factor of 1/ 0 in front of the leading operator [I7.. To integrate with respect to z (in our
usual 1-dimensional example) and obtain the boundary conditions, we will need to get rid
of that 1/ 0 in front of [J%. by multiplying through by a p. But now we are multiplying a

O -function by an asymmetric step, and we would have to adjust the weighting factor
accordingly. It is not obvious how to do that. Now we can understand why we are better
off putting our step directly into o (as originally suggested in the previous paragraph).

Somehow, the chain rule automatically provides extra coefficients for the two halves of
the bifurcated O -function generated by [, (1/ ,0) so that it properly corresponds to an

undistorted step for o itself (that the chain rule is really capable of doing so is not self-
evident—see, for example footnote zz and the related discussion in Section 5.2—but it
does seem to do the job!). Thus, we are free to multiply through by a p and apply
simple O -function bifurcation (i.e., a =1 —a =)4 in (K.44)). It is the coefficients
generated by the chain rule that provide the asymmetrical weighting.

Let us now summarize these insights in way that ties them to the parts of Appendix K
that have come previous to this point. We see that the trouble actually begins after the

O -bifurcation procedure has been completed, and we are left with a discontinuous
function in front of the leading order derivative (i.e., the one that will be integrated one,
two and in general three, four, or more times). For the constant density parabolic
equation (Jo =0), there is no such function, and the issue never comes up. On the other
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hand, as noted in the previous paragraph, for the [, (1/ pD] ; operator, we get (1/ ,0) 0 :
i.e., 1/ times the leading order derivative. Now we multiply by o (i.e., a simple step

function) so that the 1/,0 in front of [J}. cancels. Elsewhere, this leads us to multiply our
O -functions by a simple step. The step is effectively averaged, and our prescription
remains fine. However, in the two examples that fail at 2" order (see section K.2.1), the
leading order derivative [0} was multiplied by @, a function with a step, or /0, the
square root of a function with a step. If we now multiply through by the reciprocal
(formally 1/a and 1/ \/E in our examples), we run into trouble. Since we have distorted
the associated series of functions that (in the generalized sense) approach the step

function, we cannot expect the relative weights in the O -function bifurcation to provide a
simple averaging, and indeed they do not (i.e., a # }5). We obtain the wrong answer if

we assume that to be the case. On the other hand, if we content ourselves with a 1% order
result, then multiplication by the reciprocal is converted into multiplication by a clean
step, and we do indeed obtain the correct answer to 1% order in both our examples.

Note that this reasoning apparently implies that we can in general use Taylor series
expansions to guarantee that we are always multiplying by powers of undistorted steps,
and so place any problem into a form where the J -function-bifurcation prescription
applies. In Section K.2.3 just below, we will provide an example of this principle at
work.

Before proceeding to this example, let us consider one more issue: what happens if we
mix two independent parameters, say the density 0 and the compressibility K .

Everything should work fine without further consideration provided the parameters are
truly independent. However, what if we use the density o, but now replace the
compressibility K with the sound speed ¢ = 1/ \/,O_K ? This raises the question: does a
step in 0 go with a step in K or a step in ¢? The answer depends on the context. Either
K or ¢ may in principle be considered independent of ©. The context, however, will
determine which variable we choose to consider independent of p, and that is the one

with which we associate a clean (undistorted) step. In the full wave equation, the only
O -functions involve p, and these O -functions never multiply a sound speed or a

compressibility, so the point is mute. However, the issue arises in the parabolic equation.
In this case, the chain rule will keep things consistent, but one choice will be more

convenient. If we choose the compressibility K as the variable that is independent of the
density o, then the key PE parameter 4 depends (linearly) on K alone, and we can step

K (or absolutely equivalently /) and o in tandem, and make no further adjustments.
On the other hand, if we choose p and ¢ as our independent variables, now 4 picks up

a p-dependence (as well as a l/ ¢’ -dependence), and we will need to use the chain rule
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in evaluating ¢ when it is operated on by a derivative®. Since things are much simpler
when we use the compressibility K (or completely equivalently (), we will take this to
be the physical parameter that is independent of the density p.

K.2.3 Example: Extending the treatment of a =1/p to 2nd order using
Taylor series expansion

To further verify the hypothesis that the O -function-bifurcation procedure applies as long
as the J -function is multiplied by clean undistorted steps, let us return to the example in
Subsection K.2.1.1, and expand to 1* order in da the factor of 1/a multiplying the
bifurcating J -function. Previously, we used 0™ order, so this will overall generate an
extra order in da beyond that previously used. Having expanded in a Taylor series, we
are now simply multiplying through by a legitimate (undistorted) step function. Since the
step function multiplies a  -function that is already 1* order in da, this maneuver will
gain us one more order of accuracy overall than the order of the expansion of 1/a—an

overall accuracy to O (50’2) in this case.

Note that the geometry is again given by Figure K.4. We consider 2-dimensional x —z
space and we have a =a, —da [©(z), where da=a,, —a,. We are evaluating the

equation
0=0, ([m TA]")

(where the ellipsis stands for terms that will not a play a role in determining the boundary
conditions on the field 4). Applying the chain rule in this context gives us

0=0,([@ ,4) = @ }40( )}, 4

. (K.47)
=all 4 Ja{%a A ézé TA-F]

¢ Even cross-terms between [, (1/ ,Op r and 1/ £ should pose no problems provided we use the

chain rule for differentiation to generate our first O -function. In fact, the same is also true for all the cross-

terms associated with higher orders of the operator L1, (l/ ,OD] r - To see that this must be true for the

broad class of cases mentioned here, just let everything to the right of the leftmost [l (1/ ,OD] r operator

take the place of A in the calculation of Section K.1.2.
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Now we multiply through by a 1/@. The @ in the first term cancels. Now, as
advertised, let us take the factor of 1/a@ multiplying the bifurcating J -function and

1( oa (z)J +0(3e?). (K.48)

expand it to first order:
1 1 _

1+—0
a,

T o 1-2%0()|

11

Substituting (K.48) into (K.47) multiplied by 1/a, we obtain
o 1 [1+ @}] A 'S TA;;J + 0(0a’).  (K.49)
a[]

2 a,

0=04 50/[

Recall that for our 2-dimensional example, [,=0 @ z and integrate Idz to get

ﬂ(ﬂ o 4 N9 4y o(se),
%

0= DTA[_ O TAﬁ a
/i I

17

and consequently
da)’
04l 99 Q 0,4, (ﬂ Jaa 0(sa")
2a][ 2a,II 2a1[

2 2
04l 99 (502) (JO;)DT/gD TA,,{l ﬂ] 0(oa)
2a][ 4a[1 4a1[ 2a1]

Now, 0,470 ,4; O(Ja) and so to O(c)'cf) we can replace [0, 4, with 0.4, in the

term just to the left of the = sign and move it to the right side of the equation:

Ja)’ oa)’
U4, F ﬁ_ % O A4, ﬂ" Q 0(50'3). (K.50)
2a, 4a, . da;
Substitute a;
for ay; here
Now, note that
Lo ] :i(l —5_"J +0(da’)
a, a,

and
L1 yo(s).
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Thus to O (50'3 ) we can substitute a, for a, on the left side of equation (K.50):

DTA,[} da g M}M{& dq (0a) Q%

2a, a, ; 2, w; A,

1

50’+ (Ja)z}DTAHEﬂ % (50,)2% 0(503).

2 2
2 a] 4a1 17 11

U, 4, (l—

Now use

! =1+x +x>+--- with x=5a
l1-x 2a,
L:l—x+xz +..-  with x:5a
I+x 2a,

to obtain

0,4, — O 4,
oa oa

+— I-—
2aq, 2a,

+0(oar). (K.51)

1

This is exactly equation (K.35) in Subsection K.2.1.1. As noted there, this quickly leads
to

0,4, — O 4, +O(50'3)
20'1 ta, —a, 20’11 a, a,
2a, 2a,
U (K.52)

a0, A= al] 4 0(50'3)
as desired.

By expanding the coefficient of the bifurcating O -function in a Taylor series, we have
converted from multiplication by distorted steps to multiplication by undistorted steps,
and so we have been able to increase the order to which the final result is valid. Since the
bifurcating J -function already carries one order, the order of validity turns out to be one
greater than the order of the Taylor series employed.

K.3 Verification of the associative property for 9 -function
bifurcation

The associative property is built into basic distribution theory. This is the main reason
behind those expansions connecting o) (z=f) x(z) with ot (z= ) x(f) (see
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footnote 11 concerning equation (3.54)). O -function bifurcation is a linear operation, and
it does not affect these equalities.

However, the O -function bifurcation prescription begs the following question: does the
order in which we take nested derivatives and consequently “kick up” O -functions
matter? Interestingly, the answer seems to be that the order does not matter. Let us
consider several examples.

In the first example to be considered here in Section K.3, note that we evaluated equation
(K.15) by going from right to left, taking derivatives and converting to bifurcated O -
functions as they are generated. This is sensible, but if the associative property for
multiplication were to hold, we should also be able to apply the chain rule going from left
to right, and get the same answer. This is indeed the case.

To see why things will always work out, first consider

Fee)

05 ()

We could either begin with
9 (2)
2

and so (recalling ©" = @(z >0) =1 and O = O(z <0) =0)

o(:)2 -2
0z 2
and thus
0 007 _0"(z)

Alternately, we could proceed as follows:
9 [e(z) a@} _900 5,00

0z 0z a'Z+ 0z 6_22 + + (K.54)
_0"(z)of1) _a°(z)0[0] , 8"(z) _5°(2)
2 0z 2 0z 2 2

The “extra” terms go away, and we see that we can evaluate derivatives (and replace
them with bifurcating O -functions) at any time during the calculation.

Similarly, note that
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2 [o(e(] =2 Rof) + e 2] -2 £ .IL)]
=5 (2)

2 le()e(:)] =22 o) v o) L) 19099
() 5,80 gy 86 L 8
2 2 2 2
+20" (z)aa[—zl] +25(z)%
EACYCAC I

2 2

Again, the “extra” terms disappear and we can proceed in either order.
Now, consider 1* (dp =0) theory. Here, we would get a term roughly like
2 o(-)e(:) o]
=2[5(2)0(:)0(z) + @(-) o(2) of:) +el=) &) o(:)].

_6{5 o 5*} 3

2

2 2 2

Alternately, we could proceed with

Zle()e()

] 0’ @ 0@ 00 0@ ae
az 0z GZ GZ

2
a_ea_e@ 6790402200

0z 0z 0z’ 0z 0z .

6_@66_9 P 6@6_@ 62(9

0z 0z 0z 0z GZ
:25’+

2

Again, all the “extra” terms contain a product of the form
900 _ooll] _,
0z 0z 2 Oz
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and so they go away. The same goes for a term like 0O0G  (which is similar to one
associated with a term like [ [ a5 ( ,U)()] ).

We can start to see why things are working out. Cross-terms of the basic form
9000
0z 0z

always go away. Thus, every time we have a product of step functions, and start taking
derivatives, the chain rule for multiplication will lead to a sum of terms each with one
step function differentiated and the others untouched. Henceforth, all further derivatives
in a given product of step functions will focus only on one step function. In other words,
the first J -function caused the rest of them to collapse. We can either apply O -function
bifurcation right away and so avoid generating the superfluous terms; or we can wait and
drop the superfluous terms later. We will get the same answer either way.

Note that these arguments also apply to the theory for variable density (o #0). For

example, consider the “sandwich term” in A”-theory:
1
O, (;ﬂ r (/J)()j :

Whether we apply to the chain rule to the “inner” L1, operator first and bifurcate

immediately as O -functions are generated, or apply the chain rule for multiplication from
left to right and again bifurcate as J -functions are generated, or apply the chain rule for
multiplication from left to right and bifurcate at the end, we will get the same answer in
all cases.

Now, note also that as we introduce downrange derivatives 0/0x , the associative
property continues to apply. For example, let us consider the important example

[A.v]= {DTI—’iD T,y] (K.55)

(This expression shows up as we derive the manifestly reciprocal form for the
Hamiltonian where there is a density jump, equation (5.9); see also Appendix J.2 for the
details.) Of course, if we take dA/0x first, bifurcation puts us in one medium or the

other, and y is a constant in the half-spaces and commutes with everything, and so the

commutator in equation (K.55) is obviously zero. Now, let us evaluate the expression
another way:

—[ly}m{ga T(VX)'} Dy{Bg T)(}.

Expanding U, , we have

263



—[A',y]=§Di(yX)* (D{—‘;B - () U){ {’%D‘TX EV%( A
o O (F 0. N)% A X
and

07 (o F O H x A 2 0]
=(Ty) o 20 0 ) A 1x)

Thus, we have

{an)=2((E0 e 2000 )+ 3] 2o

(o]0 - el r- vl

Thus, we only have products of derivatives of steps left. Bifurcating [,y first, p is
constant in the half-space and 0 = 0; bifurcating o first, U, )= 0. Either way,

[/1, y] =0.
For clarity, we will always take d/0x first and generate our bifurcating J -functions right
away, but we could in principle proceed in any order.

Thus, here in Appendix K.3, we have seen that at least for the kind of simple scenarios
that arise in the context of the parabolic equation when the parameters jump (but do not
vary otherwise), the O -function bifurcating formalism obeys an associative property. To
be specific, even with our modifications to distribution theory, it does not matter which
order we take nested derivatives and in the process “kick up” bifurcating J -functions.

Finally, note that in Appendix J.2 (specifically, the argument leading to equation (J.19)),
we came across an example where the associative property did not hold. This is
connected to the fact that there, we not only had an interface where the parameters jump,
but we also allowed for further variation of the parameter 4 in the vicinity of the
interface. Thus, it should be emphasized that it is implicitly assumed in the J -function-
bifurcation rules that the parameters jump at an interface, but do not otherwise vary in the
vicinity of the interface. If this condition is violated, the associative property in choosing
which distributions to bifurcate may not hold, and explicit symmetrization may be
necessary.
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L Appendix: The Hamiltonian in the half-space where
the density is locally constant, but differs from the
reference density

In this appendix, we derive the Hamiltonian in the half-space where the density is locally
constant. We obtain two closed-form square-root operators that generate the same
infinite-order Hamiltonian. The square-root operator derived in Appendix L.1 and
presented at the end of equation (L.8) follows from an intuitive derivation and provides
an easily remembered closed form operator that generates the acoustic Foldy-
Wouthuysen expansion in the half-space where the density is locally constant (but
different from the reference density). However, this closed form suggests a grouping of
terms that provides overly pessimistic convergence criteria for the expansion. Appendix
L.2 explores the correct grouping of terms in the expansion, and demonstrates that broad
convergence criteria apply. In particular, the approach in Appendix L.2 does not mix
orders in the correct expansion parameters, while the expansion in Appendix L.1 does.
However, the closed form obtained using the approach of Appendix L.2 (equation (L.14))
is comparatively difficult to work with, so it is preferable in practice to generate the
finite-order half-space Hamiltonian using result (L.8).

L.1 Derivation of the form useful as a mnemonic

Recall from equation (5.3) that

= O+E&+kn
e = (A-[2ky)n. (L.1)
= Aé

where A and ) are again given by equation (5.4), while the box again in this appendix
indicates a term specific to the case when the reference density o, differs from the local
density p. 17 and £ are once again given by equations (3.3) and (3.6) respectively. For
present purposes, the properties

0 1 s s (1 0) , (10
né ==&n —(1 o} ;nt =< —(0 1] ; e —4[0 J (L.2)

will turn out to be useful.

From equations (3.9) and (3.10) with the (local) range dependence set to zero, we have to
4™ order

~ o> o 1 n 2
= - |+ -— _/ . L.
H /7(2/{0 8k§J+S 8k§[0,[(9,5]]+8k3(—[0,5]) (L3)
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Substituting for O and £ gives
2

H = k0,7+,7[ ;7 QJ n(/ --) [/15[/15/1/7]]

(L.4)
ezl + (e ] )
Expanding the last term:
[e.p -2 )] = (pean] e 2um]])
= [a&.0]"|Ha¢ An]a¢ 2km]
-[A&.2kym|[ A€, An] {A€.2k0]°
using identities (L.2) and [E ,[E ,/7]} = -4 leads to
H = ”ko[l +i_ /]22 +/133 _SA:j
k, 2k, 2k, 8k
_2koy’7+ [/k‘ [A&.ym] | (L.5)

g (1 anllag 2hym) 10g 2umliac an] $ag 240 7).

Next, again use [g‘ , [q‘ ,/7]] = —4n and the fact that y is locally constant in the half-space

to show

2k A
e

2l ag )] = [&16n]]= ’72k2 (2ky). (L.6)

8k2

Now, we consider the terms in the third line of equation (L.5). Holding ) locally
constant, we have

[A&.An]IAE 2kyn | =& 2k [PE A T=26A “E i | =4 (2% J * O

and

[A&.2kyn]’ = 4k2y> X [En] =4 (2ky) AT

so that
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;_;Z(-[AE,M][AE 2kyn] HA¢ 2] A€ A7) A€ 2407] )

. 12 It (L.7)
3 _ 2 A
%(8(2k0y)/1 4(2kp) 1) = k5 e A 2y) +kp e 2y).
Thus, we have to 4™ order (recalling a = g,/ p)
~ A A A A’ 2 /1 ’ /1 }
H=nk,|1-2y +— — ——(2)) - 2 -
T 4 ky 2k; 2k2( /) 2k2( N+ 2% 2k3 22 8k4]
A /l
=Nk,| 1 -2y +— — 1+2y +(2 +— 1202
2 3 4
=nk,| 1-2y +i A > ! +/] 3 ! 5 —5/]4 +5th order
ky 2ky1-2y 2k, (1—2y) 8k,
(L.8)
_ 1 A ad’ aA’ A’
=nk,| —+———5 +——5 ————— | +5th order
a k, 2k, 2k, 8k,

/7_{ L _(aA) (@) 5@ )4]+5thorder

a 2k2 2k; 8k,
ﬁ Za)l
a

This is the result we are looking for.

Finally we show that the final form of H obtained in equation (L.8) is indeed equivalent
to the known “correct” (i.e., o -order) answer for the Hamiltonian in a half-space where
the density is locally constant. We begin with

2
fi=p K 42
a a

and use equation (5.4) with the density locally constant to obtain

2k, 2k, «a 2k2 2k,
A== - k k 0% —og =2
a a (2]{0 T O#I- Oy): T # a y

Now,

2k§'u=2k§ (1-n"a) :k2(1 _”2j ; 2k§y_2k§ (1 _2%1) e (al L

a a 2 0 a a

Q
—

(3]
N—

and so
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2k
a

kK K

2
OA =0 2 kgn+ =0% kn*t =2,
a a

Note the cancellation leaving us with

ﬂ:m/a + 2A —/7\/52+ k=3 K. (L.9)

This is indeed the standard o -order PE Hamiltonian given, for example in equation
(9.52) of reference [57]. It is completely equivalent to equation (3.11) above with the
(local) range dependence set to zero (the square-root operator there also reduces to

n{O# k*). When there is no (local) range dependence, we can also use the PE

Hamiltonian to propagate the pressure field 4, and equation (L.9) then also recovers
equation (2.4) above. We have therefore shown that in the half-space where the density
is locally constant, the Foldy-Wouthuysen procedure generates a PE expansion of the PE
square root operator, where the expansion parameters now measure the departure of the
local values of both the sound speed and density from their reference values.

L.2 Heuristic derivation of a form that accurately reflects the
convergence properties of the expansion

Appendix L.2 considers the convergence properties of the series for the Hamiltonian in
the half-space. In Subsection L.2.1, we demonstrate that the convergence criteria
obtained by naively expanding the closed form of the scalar Hamiltonian obtained in
Appendix L.1 are quite strict. In Subsection L.2.2 we use general arguments to obtain an
alternate closed form for the Hamiltonian in the half-space that suggests that these
convergence criteria are too strict. Subsection L.2.3, we demonstrate that the looser
convergence conditions given in Section L.2.2 are indeed the correct ones. We begin by
grouping terms in such a way that we preserve the intra-order cancellations that are
present in the Foldy-Wouthuysen expansion and are needed to generate its true
convergence properties. The resultant closed form manifestly incorporates these
cancellations and thus reflects the true convergence properties of the expansion.

L.2.1 Why there is an issue here?

The result for the scalar Hamiltonian H :

(L.10)

derived in Appendix L.1 must be interpreted as an expansion in the dimensionless
operator 2A/k, and the dimensionless scalar function 2) (which comes from

a= 1/ (1 —2y) ). Used properly, this expansion is taken order by order with these
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expansion parameters (and more generally also the downrange derivative 0/0x acting on
A) contributing equally to the order. In this sense equation (L.10) is a mnemonic that
encapsulates this expansion. We have to be careful about taking this mnemonic too
literally. Specifically, we cannot treat the operator 2aA /k, as an expansion parameter.
To see why, note that if the density o and the compressibility K are range independent,
then we can decompose the solution into eigenvectors. For each eigenvector, we can
replace the operator /4 with its eigenvalue k_ (the downrange wave number of the

ko 1+2a/l k.,
a k,

and so noting that k; = wgK,, k> = woK and as always a = p,/p, we have
L 207 _ki L, _klp, K

1+ =8 g2 =5 o

k£ kK pkK,

eigenvector solution) so that

Since k_ is the x -component of the wavevector for the waveguide eigenvector solution,
and it is real since the finite-order Hamiltonian is Hermitian, we can write k_ / k =cos@,

where @ is the grazing angle corresponding to that particular solution. This leads to

204 _ ostoPe (L.11)
p K,

0

To maximize convergence, we typically choose the reference compressibility and
density K, and p, to be the maximum values of these parameters found in the problem.
A typical problem would involve an interface between water (labeled by the Roman
numeral I) and a muddy ocean bottom (labeled by II). Under this scenario, the higher
compressibility is the value in water (so K, = K, ), and the higher density is found in the

muddy bottom (so p, = p,, ). Thus for eigenvalue solutions, we have

200 020 -1 inmedium1

ko p]
o (L.12)
AN E{& -1 in medium II

k, K,

Now, we have an interesting problem: for the relatively common scenario p,, >2p, and
shallow grazing angle (8 small; cos (6?) =1), our apparent expansion parameter 2aA/k,
becomes greater than one. One is tempted to conclude that the validity of our PE is
limited to the region p, <2p,. However, as discussed in Section 2.3, the physics of the

problem imposes no such limit. We are forced to conclude that the apparent divergence
of the expansion is an artifact of the way the terms have been lumped together into the
nominal expansion parameter 2aA/k, . In the Subsections L.2.2 and L.2.3 we provide
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confirmation of this insight by explicitly constructing an alternate grouping of terms that
is specifically designed to accurately reflect the true convergence behavior of the
underlying PE expansion. We will find that convergence to the correct result

H =/0#+ k* is manifest for all Ap/p, <1.

L.2.2 The basic strategy

In the upcoming Subsection L.2.3 that immediately follows the current subsection, a new
grouping of terms will be constructed. This grouping, by design, will reflect the true
convergence properties of the PE expansion generated by the Foldy-Wouthuysen
transformation. The procedure will begin with the observation that the actual order-by-
order (in 2A/k,,2y ) expansion generated by the Foldy-Wouthuysen transformation

contains cancellations that are associated with cross-terms that come from taking powers
of A=y . (On the other hand, if we let the derivation in Appendix L.1 influence us to

consider 2a/k, as an expansion parameter, then we would be combining terms across
orders in the original expansion (i.e., in the expansion in the parameters 2A/k, and 2))

in a way that does not take advantage of these intra-order cancellations. Crucial
cancellations would occur between different orders in the 2a//k, -expansion rather than

within a given order.) The intra-order cancellations will be used to guide us in the
construction of an alternate “mnemonic” (i.e., a compact expression that can be used to
generate the expansion). Since the cancellations are built in, this alternate form should
accurately reflect the true convergence properties of the expansion.

As it turns out, we could almost have guessed the result. It reflects the fact that (locally
at least) we are free to make use of the familiar PE operator A and reference wave
number 120 , where the reference density is temporarily chosen to be the local density (i.e.,
Dy = Proa = P Where P, is the reference density used briefly during the argument

employed to construct equation (L.14) below), and the difference between the reference
and local compressibilities generates the familiar deviation of the index of refraction

squared (i.e., K, = K,). Thus:

~ w
ky :a)\/KOp:g—
0

N 1 K\ _1 K p)_1 c) 1 -
—y==]1-—|==|1——L£ |1 =201 =2 ==(1 ) L.13
e 2{ KOJ 2( Kopj 2{ czj ) 1
~ [? -
A=—L -1
2k, °

Within the half-space (where the density is constant), A and IEO can be used to express the

locally exact PE operator:
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H =k, /1+2]€—A =B+ k2. (L.14)
0

As noted earlier, the latter is equivalent to the mnemonic given in equation (L.10). Using
the relations
A_

07 _~_07 p_ _(@) o, A
GKp " 20K, p " o 4

2% k,
, (L.15)
ky =w\K, p =K, :Q,’pﬁ =koJ1 =2y
(

_/'122

the new compact expression in equation (L.14) can be expressed and then expanded in
the quantities 24/k, and 2. Since for sufficiently small 24/k, and 2y, even the

expansion derived using equation (L.10) clearly converges, the expansions of (L.10) and
of (L.14) must be identical at any given order in 2A/k, and 2y . Thus, we have a

compact expression for the expansion generated by the Foldy-Wouthuysen
transformation that implies good convergence properties as long as 2A/k, and 2y are

both less than 1 (i.e., for all densities provided we choose o, = o,.. ). The heuristic

development in Subsection L.2.3 roughly proceeds in the reverse direction of the
argument in this paragraph. It is useful to consider it in detail because this derivation
clearly illustrates why expression (L.14) more accurately reflects the true expansion
properties of full PE expansion.

L.2.3 Detailed heuristic analysis

Here we consider the PE expansion for the case when the reference density differs from
the local density, and cast it in a form where the natural pairing of A and y into the

combination A — y is manifestly apparent. We begin by grouping the 1* order of the
expansion in the following suggestive manner:
ko =2koy+ A = ky +(A =koy) —kyy +--.

This suggests that we try an ansatz with A =A —k,y. In other words, we anticipate

effective

a result of the form

+2(/1—k0y) i, 1+2(/1 ~koy) o

H=k |1
kO kO

(L.16)

Let us see if the ansatz works to 2™ order. The 2" order expansion of equation (L.16) is
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k{l LAky) (4 —kgy)2] —koy(l NG 'koy)] kY’ (1+-)
A 20 k, 2

A’ k,y? k,y’
k +A—ky-2—+ -2 oy —ypk g 0 4
0 N4 2" A== kY Y oV 5

AZ
ky =2kyy + A —— +---
o TRy oy

0

Thus we have indeed reproduce the 2™ order result. Especially telling is the fact that the
last term on the first line had to be tacked on in order to properly reproduce the expansion
generated by the Foldy-Wouthuysen transformation. This is pretty suggestive. We are
clearly beginning to obtain a series that looks like

sy [ 2O,

kO

Thus, noting that \/1-2y =1-y - V/Z +---, we have

ko\1-2y 1+M.

kO

Now, from equation (L.15) we have
ky =k J1-2y

_A—ky
0 kO

??‘z| N,

, (L.17)

and so we have reproduced result (L.14).

We have shown that the PE expansion when the reference density differs from the local
density is generated by:
= taking the generator of the PE that is commonly used when the density is tacitly
assumed to be everywhere the same (for the moment using the local density as the
reference density),

= using equation (L.17) to express the associated reference wave number IEO
(= wy p..K, ) and the related operator A in terms of our usual reference wave
number k, (=w,/ K, ) as well as in the expansion parameters associated with

the variable density PE (i.e., A,)),

* and then expanding in terms of these new expansion parameters.
This result applies in the half-space (or more generally, any finite-size area) where the
density is (at least locally) constant, and only the reference compressibility changes to

vary the sound speed. Also note that equation (L.14) (H = 150\/1 +2A / lgo ) leads to an

expansion in the nominal expansion parameter 24 / k, , which has decent convergence
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properties provided that the reference compressibility K| is greater than the local
compressibility K, and the grazing angle is reasonably shallow. The nominal expansion
parameter 2A / lgo has embedded within it the key cancellation generated by taking the
difference A —k,). The convergence properties related to this nominal expansion
parameter are therefore much more indicative of the true convergence properties for PE

expansion (generated by the FW transformation for the variable density problem) than are
the convergence properties that apply when the nominal expansion parameter is 2aA/k, ,

(the expansion parameter that emerges most naturally from expression (L.10)).

This leaves us with the obvious question: why should we bother with the generator from
equation (L.8)
H = K 1 +M
a k,

at all? This result is useful because:
= [ts derivation is the most transparent and direct.
= The result is nicely compact and easy to work with.
0 Itis useful as a mnemonic
0 When calculating the endpoint correction, this form very naturally
generates the compact result

\frm [HM] .

For these reasons we will henceforth primarily use this form, being careful to use it
correctly: i.e., to use it to generate an expansion in 2)and A. Both these parameters

contribute equally to the power counting, and we must be careful not to “bust up” orders
of A;y.

M Appendix: The boundary conditions for quasi-1st
order deterministic variable density theory

In this appendix, we derive equation (5.16), the boundary conditions for deterministic
quasi-1st order acoustic theory, where the density and compressibility jump at an

interface. This calculation nicely illustrates many of the ideas developed in Section 5,
and so it will be presented in great detail. We operate in standard 2-dimensional x —z

space. There are two regions labeled / and /I separated by the rough surface z = f (x) .

The density p and compressibility K are constant in the two regions, but both quantities
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jump along the interface separating the two regions. The positive z-axis points from
Region /I into Region /. The starting point is the standard scalar parabolic equation

Sy (M.1)
Ox
where H is given by equation (5.15)
H =k, +A =2ky —iz. (M.2)
8k,

From equation (5.4), we have the definitions

K
=—|1-— . M.3
peyi-) oM3)

(In the 2-dimensional problem, J,=0 § z.) We also have

p=p, —0p©(z-f) P =p; —p
y=y,-0y®(z-f) where oy =y, -y .
M=y, —ou®(z - f) U =y ~H,

(Note that these definitions are a little more general than the ones that are usually
employed. The usual special case will be considered at the end of the calculation.)

We will evaluate equation (M.2), and the J -function-bifurcation rules outlined in Section
5.2 will be used as needed to properly interpret the results. Then, the result will be
substituted into the basic parabolic equation (M.1). To obtain the boundary conditions, a
pair of infinitesimal transverse integrations of the type described in Subsection 3.3.3 will
be applied to this equation.

Thus, begin by differentiating A (as always, a dot means the downrange derivative

0/0x):
1
. _pomr[zpﬁj T
j= P

2k,

kot + k. (M.4)

Now,
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p=-00(~7) (= ~1) =7 BpH=z ~/)

s
+3

Py

and similarly

y=fByz-f) ; wu=f00dz-f).

o) (z -f ) of course bifurcates, but Jo, oy and Ju are just old-fashioned constants, and

in this context f might as well be. Bifurcation only becomes an issue when we multiply

by another distribution, and so at this point the issue only affects the term in (M.4) that is
proportional to Jo . In this term, we have

ﬁﬁfép{
0

S, 0‘}
20, 2P,

and so

F-Y) @pmr{[F (- 7), J(Z—f)}] T}

2k, 2 0 o
-k, @ﬂqd(z—f) +k, Dﬁ/g‘ dz —f)

%/_/ %/_/
Will bifurcate Will bifurcate
later later

(M.5)

Taking one more downrange derivative:

)-l-:—pof@pDT{[5+(z—f)+ J(Z—f)}] }

2k, 20 20,

g [Er 6o, (e, |

2k, 20 20,

+(~k, Bu+k, DY) (=7) 8(z ~f) +{ +*, Bu+k, BYS &z ~f)
Will bifurcate Will bifurcate

later later (M 6)

:—pofﬂﬁpmr{[F(z—fL J(Z—f))] T}

2k, 20 20,
RSB (97 (z=1), I (2-)
2%, L 20 205 '
+(k, Bu—k, @®y) f* 8(z - f) —(k, Dk, BYf &z —f).
NSO S

Will bifurcate Will bifurcate
later later
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Now consider /1)( First note that bifurcation gives ol X= ol X*. Then convert
distributions times functions of the transverse coordinate z to distributions times
“constants” with respect to z that depend only on f (x) using equation (3.54) for £ =0
or k =1 (the related footnote I explicitly evaluates these two expressions):

((T 2 j O x(zF —D Xi (2 —ﬁE X (2

2:01 2 :011 1

_o
_2,02 T)(1(f)|' 2_1011[' T)(H(f)

5’

SO EF 0@ 2 ) 2 )

5 :
EDTX(Z): 2_101215 TXI[(é ZO% TX[I(f) % T)(H(f)-

11

Adding the last two equalities gives us

(JH 5_] Ox(zF —ZDT)(, (A 7)9 X (f

2:01 2 :011 %

3 '
{Zmnty 2o (f)j

Similarly, we have

T =S a0+ )

(O:DTX, (/) %D T)(,,(f))

Now, let us adopt the following shorthand notation:

;;1 T)(;(f)" Z_,OHE TXH(J% 12% T/Yi-(f)

5

2,02 TXI(f)F 71]9 TXII(J% _2_9 T)(+(f).
5

SO (Y 520 (A —zﬁé )

etc.

Using these results to evaluate equation (M.6), we have
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iy = -poé’k?p 0, B i %ED X (f)}
+pof; ;pr TBZ%D X (f )}
pOJ;OWp TBZ%;D . /) (M.7)
+(k, [Du—k, BY) BZ J* )é(f)}

~(ky Bk, usmﬂB; dtDT)é(f)}
~(k, Bk, wﬁf{%; 5 )é(f)}.

In the first three terms to the right of the equals-sign (=), the only functions of the
transverse coordinate z are the 0 and J' -functions, and so we can operate on these by

the transverse derivative ,=0 @ z. This gives us
ofBp_ [1w & ] af 000 1« &
Y o Vi Y 4 - KL A
{Zgjﬂpi X (S )_ w |22 )

2k,
pf Do |15 J* Af b 1< g
2o iz ] ARHEIEE ] o

v

B B 1T RSl S,
2k0 DT|:2§ED T)(i(f)_’ 2k0 2?70? T/Yi(f):|

Result (M.7) as modified by (M.8) will be substituted into the quasi-1* order parabolic
equation for the right-hand traveling (i.e., downrange) field Y. This parabolic equation

comes by combining (M.1) and (M.2) to form

o) A

—i—2 =k X +AX =2koyX —— X. M.9
i5c X TAX =2kx 8k§)( (M.9)

As discussed in Section 3.3.4, we ignore the O -function-like singularity associated with
0x/0x primarily because it is of higher order than concerns us here (it involves three

downrange derivatives of A, and so it is effectively a 4™-order term). Furthermore, this
term is an artifact of our rather artificial quasi-1* order theory.

Since the lead order transverse derivative in A is divided by 2k, we multiply the wave
equation (M.9) through by 2k, leaving us with
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A terms that play no role in
0=2k Ay —x + ) (M.10)
4k, the boundary value problem
From definition (M.3), we have
2k Ax = DTD[%)J X 2 2kyx. (M.11)

These terms are not
players in the boundary
value problem

Next, multiply (M.7) as modified by (M.8) by —1/(4k, ), and substitute the result as well
as (M.11) into (M.10):

0=DTK&}J : } p{k?p[ > T)a(f)}

0
PSS Bp| 1

S {22 o U )}
P/ Dp J*
M [ ZA m(f)}

4}/(%0*% K@) [ X x(s }
ﬁ/(wa ¥ By)f { Zfﬂr)é(f)}
i KK B)i[3T 0 x()

N {terms that play no role in }

the boundary value problem | (M.12)

Now follow the transverse-integration procedure described in general terms throughout
Section 3.3.3. For the case directly analogous to the present situation use both single
integration as described in equation (3.56) and double integration described in the

I+e
equation immediately preceding it. The single infinitesimal integration J. dz--- of

/e
equation (M.12) gives us
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(O U
0=20xm L) p (o 5y)f2( 214, T)("(f)j

1 11 2
Orx|,
(/) (/) ‘ (M.13)
1 X X
+—(5/J— 5” f I 1l
4 2
x|,
f+e z'
Now, let us perform the double integral J‘ dz'j dz---. We do so in slightly different
[ e

form: as a sequence of an indefinite integration followed by a second definite integration
f+e

_[ dz---. First, perform the indefinite integration and then multiply by o/, :

f-e
_ pof Bp| 1 &
0=0 ¢ 2 —F N0
T)(q- 8k2 { zp+ TXi(f):|
_ P/ Dp| 1
8k? 2
pof [dp| 1
8k; 2 X

(5,U N f? { ¥ 25 Rx f)}

*%(5”_5”1}{2;0 EOF R0 X (f)}

(Ju Mf{ Zermé f)}

f+e
and now the infinitesimal integral J dz--- gives us

f-€

dddd

dddd Note the term in A that was proportional to 0" did not contribute to the boundary conditions for

quasi-1* order theory. This is because this O (/] ,/1) theory is a bit of a hybrid. Once we introduce an

O (/] 2) term (let alone going to true 3™ order theory with the A } -term), then the term proportional to O’

will contribute. Historically, contemplating this term was the catalyst that made the author consider the
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ool (0O Az 1 ()|
0=~ Xy +2 f[—TX j +f? F—T* j ~(Gu =) j° ‘f (M.14)
8k, P, P )4 b
Equations (M.13) and (M.14) gives us the boundary conditions on ) :
ool (0O i 2 F2 —
X=X+ oz f( TX] +f? FJJ -4f (=) (ex)|,
0 v P, Py ' (M.15)

1 1 1 S
oy DA G ax g oH A 7]

Now let us make the standard choices for the reference values of the density and
compressibility. This follows Figure 5.1 and the related discussion in Subsection 5.3.2.
Specifically, in order to guarantee that the parabolic equation expansion parameters [/
and ) be less than 1, we choose for the maximum values for the reference
compressibility and density. In our prototypical example where Region / is the ocean
water column and Region /7 is the sediment in the ocean bottom, the compressibility in
Region [ is the largest and the density in Region I/ is the bigger value. Thus, the
reference compressibility is K, = K, and the reference density is g, = p,,. This gives us

_1 _KI — w
’uI_E(l Ej_o kozc_ozw\/IQ)Kozw\/@K[

Ky | 10K sy oy =-1OK
Hy 2(1 Klj 2K, H= My — H 2 K,

1 9
Y, :l(l —&] :lQ o=V, =~} = _E_p
2 P 2 py Pu

L (7 B Ju—ay:—1[5—’< —@j
) Py 20K, py

and so the boundary conditions (M.15) become

e i 7 W

80,\ K, Py 8k, P ) oie
1 1 1 (0K dp); L
Lo don L(% 20 7]
pl[ 7 p] 7 8p][ KI pII T/‘*(f ‘f

issues of migrating boundary conditions (Section 4.2.2) and thus shortly thereafter, the key result of the

whole effort: Bragg-scale vorticity (Section 6).
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This is just equation (5.16), the boundary conditions for deterministic quasi-1st order
acoustic theory, where the density and compressibility jump at an interface.

N Appendix: A closer look at the higher-order range-
dependent terms in the PE

As frequently discussed above, the Foldy-Wouthuysen procedure generates a
Hamiltonian that includes a unique series of terms explicitly associated with the range
dependence. It was noted in Section 4.4 that the members of this series of terms that are

proportional to A correspond to the phenomenon of “vacuum polarization” known from
quantum mechanics (because this type of term involves virtual particle pairs). The

lowest-order member of this class of terms is the 3"-order term —ﬂ/(Skj) . It was just
evaluated in Appendix M (and the results were summarized in Subsection 5.3.2).
Examining equation (J.24) (or equivalently (5.9)), we see that there are also two
nominally 4™_order terms that contain A :
3{1.4}

.
AT and -4
ek e T

In Section N.1, we estimate the magnitude of these terms for typical values of the
environmental parameters, and verify that they are indeed getting smaller. The form of

the boundary conditions that arise from the — (4y) /l/ (8k§ ) term suggests an infinite
series encountered previously. In Section N.2 this infinite series is evaluated in closed
form, and the appropriate limit is taken to examine the Dirichlet ( ¥ =0) and Neumann
(0x/0n =0 for the full wave problem, but this changes a little bit for the parabolic

equation) boundary conditions. The Neumann boundary conditions for the parabolic
equation imply the existence of curvature-induced boundary waves.

N.1 An estimate of the magnitude of the 4th-order terms in the
“vacuum polarization” series

To help us develop a feel for the nature of the convergence of the series of terms newly
predicted by the Foldy-Wouthuysen procedure, this section examines the magnitude of
the 4™ order terms relative to that of the 3™ order term. For the sake of this comparison,
we take out a common factor in the relevant terms (taken from equation (J.24) (or
equivalently (5.9)):

1 (. 3 : .
——| A ———{A A} +4y 4 |. .1
sks( TR yj D
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Now, only the terms in the parenthesis need to be compared. To within a constant, these
terms appear in a Hamiltonian, and so it is of course always understood that they are
operating on the wave function Yy .

N.1.1 An estimate of the magnitude of the {,} -term

Recall that {/1 )l} /k (A/k,) @ +A [ /k,) . Letus evaluate (A/k,) Ax first. We have

A from equation (M.7). All terms contain bifurcated o) functions (n=0). Thus,
A/k, will be evaluated in the half-spaces. From the definition (5.4) and equivalently

(M.3), A/k, in the half-spaces is the sum of the operator

2
12 P DT— // m= L %52 D—ZT (N.2)
2k, Za)/,@(K P 2wpK K, 2K, k

and the operator —/ + ). From equation (M.7), the former operating on Ay generates

o) functions where now 1 =2. Now, 6% = & integrates to zero for quasi-1* order
theory (since A also generates the leading order derivative [17.), so in this context we can

forget about all these terms. This leaves us with —u + ) multiplying Ay :
(A/ko)Ax — (= +y)Ax.

Since A contains only bifurcating ot -functions, the factor (—/,1 + y) operators just like

a constant, so we can commute A and (— U+ y) to obtain:
A - .
0

Now, let us flip things around and consider A (/1 / ko) Uy . Again we pick up two kinds of

terms:
- A LK [
A—0Dy =/ L -+
kOD( {ZKO = H V}X
g . (N.4)
=A(2K k—;xjﬂ(—uw))(
0
Combining results (N.3) and (N.4), we have
1 . (K [O?
— A=A — L x [+2(—u + . N.5
) {[2,(0 = Xj (-u V)X} (N.5)
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Note that the factor of 2 in front of (— MU+ y) X occurs because both halves of the

commutator contribute to this term. Equation (N.5) simply gives us all the terms in
equation (M.7) (as modified by equation (M.8)) with

(K = )ﬁ} 2(ie —ve) Xe

2K, k.

eeee,

replacing X,

. 3
1r, 4. pfDp| 1w d|| K, UrXe,
—{A A = -2 -y = = Ll =2(u, - ,
kb { H } :Zkb 2 :é: /ji 21(5 ki (/11 }/1) []T/Y;_/
. 4
0./ Bp| 1< d* || K, BrXs,
- -y -2(u. -y.) 3
2k0 zgpf 2K k2 (/'I yi) T/Yi 7
)(+
(qu-a0)7°| 5 —L|-2(u- ) A,
. Di)n
~ky (O~ y) f 525 2(u-1)0 X,
O2x
K TA+
‘5 b) o + S -
(ou-o9) f Z YA (4-x) X,
N Terms proportional to o (n=2)which (N.6)

do not contribute to quasi-1st theory
Note that in quasi-1* order theory, we throw out the terms proportional to J" .

Equation (N.1) tells us that to compare the 4™-order é{)l,/'f} -contribution with that from

the 3"-order term A, we will need to multiply equation (N.6) by —% . Now we find that

equation (N.6) contains new 4"-order terms that relate to corresponding ones in the 3™-
order contribution in one of two basic ways:

¢ Note that when differential operators are to the right of J -functions, we must of course first take the

derivatives to obtain, for example, D"T X (Z ) , and only then convert from a function of z to a constant that

is nominally evaluated at z = f .
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= the operator ([—3Ki] / [4K0]) ( [T / kj) has been inserted to operate on the wave
function Y, , or

= there is an extra factor 3 ( M, — yi) (this factor simply multiplies the wave

function Y, or its transverse derivative U} Y, where n =1,2).

Now, let us pick credible parameters for the ocean bottom. We will use values for sand,
or sandy mud. Then
K

water

:KI :KO :3K[I :3Ksand m7)
2Iowater :2p1 :pO :IO[I :psand

If we set ¢, =1500m/s, then the ratios (N.7) correspond to ¢, =1840m/s. The ratios

(N.7) also give us
-3K, _|=% inRegion/
4K, -, 1in Region /I

e (R (AR
2 KO 2 KI 2 3K11 6. (N8)

_ o1 p,j_l( p,}_l( p,J_l
vo=y == 1= =1L =21 L | =
’2( p) 20 py) 20 2p) 4

Ho=p,=0 5y =y, =0

water

Now, consider the first type of term listed above. In typical problem where the parabolic
equation is used, there is long-range propagation down a duct. If we decompose the
wave Y, traveling down the duct into modes, we find that the shallow grazing angle

modes dominate downrange propagation, and the assumptions behind the low-order
parabolic equation are easily satisfied. Modes with a grazing angle on the order of

10deg is typical, and for such modes, (1} / k; brings down the sine of the grazing angle
squared: sin ngazmg = sin’ (10deg) =(.03. Multiplying by the factor given by the first

line of equation (N.8), we find that in both half-spaces, terms of the first sort will provide
a correction on the order of 1%-2%. This is negligible, and we are very safe in ignoring
these terms.

Next, consider terms of the second type listed above. We have

STl F 3 i e ixl]
5o [u-nenal } 67 E sl #[n 14

(Equality (N.6) contains a subset of all possible permutations on n =0,1,2;m =0,1.) We

(N.9)

will throw out terms that have an overall power of )°, 1 (i.e., a power of ), /1 relative
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to the corresponding term in 3"-order (A ) theory). This is completely acceptable,
because these terms also contain two downrange derivatives and so they are 5™ order by
our power counting. Recall that we have already thrown out all terms of this order.

Now, note that if ), f/ - 0, then Y, U, ¥ and Di X are all continuous. Thus,
Xi =Xy +O(v. 1)
O x70 x5 O(y.4). (N.10)
ODix=0 2xt O(r.4)

We also have, p, = p, +O(y). This allows us to make the substitution

U7X, X
T,Oz pz‘f +0(y. 1)
Orx. =0 ok

and pull these factors out of (N.9). Also note that "y — "y, integrates just like
( MU= y+) 0, and so we can make this replacement as well (cf. the discussions a little

below equation (K.18) and surrounding (K.21)). Thus, we can collapse the bifurcation
and pull out the common factors to get

{2 } %[uﬂ SREL ;’S‘f e 1)

Fa o 3o i Je v

3 () .
5(5( ) |:_y+ l:IT)(+

Where before we had [D’; X‘f / 'OZJ or [} ,» Wenow have

07,

3
Sl-v) i

%(,u_ ~V.) :D;XH

In other words, the 4™ order contribution is picking up an extra factor ¥ ( Mo~ y+)

relative to the comparable 3"-order term. Now, from equation (N.8), we have

3 = —_-
Slu-y)= :

or a 12.5% correction. This is not too bad.
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Now, let us perform a similar analysis on the term proportional to 4yD>1 .

N.1.2 An estimate of the magnitude of the yi-term

Next, let us estimate the magnitude of the term proportional to 4yD}1' . Again using

equation equation (M.7) (as modified by equation (M.8)) to substitute for A, we have
(with y~ =y, =0)

syiy=-2d BO[ 13", Tm(f)}

2k, |2 pi
m_{ Tox. (/)
U2 P
_pf |10 - }
2k, {2 ,0+( %)0x 1) (N.11)

(kg @k, D) 72| 5" (4) X (1)
(b Bk, B 8 (4 )5, x(1)]
(g @k, B 7|2 5 (4) (1)

Note that the term proportional to &" will not contribute to quasi-1* order theory, and so
we again throw it out. Also once again throwing out terms that have an overall power of

y’, i (and are hence 5™ order by our power counting since these terms also contain two
downrange derivatives), we can use equation (N 10) (and p, = p, + O( ) ) to get

4yﬁx=—%’(2m){ Pt }M
_pS Bp J°
- (zm&gpﬁ % 2()

+ (ky B -k, () f° 2y{20’“)é }
~(k, Bu~k, [BY) 1 (2 [mer)cf)}
(0 011, D) 72| 33 ¢ x(1)]

=2y, A
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With y, =1/4 (from equation (N.38)), this is a 50% correction. The terms are getting

smaller, but this is a pretty substantial correction. In many practical instances, it may
prove necessary to use higher-order theory to correctly evaluate this term, so in Section
N.2 we will attempt to extrapolate the result to infinite orders, and examine its
implications.

N.2 Extension to infinite orders and the implications for the
Dirichlet and Neumann Boundary Conditions

This section provides a preliminary survey of one of the possibilities of the new
formalism, and so we will allow ourselves to use mathematical reasoning that is a little
bit looser than that generally employed elsewhere in this study.

As in Section N.1.2, we have

1 —
y, == Py =P
V- 2 Py
Vi = (N.12)
H =
H - — l K, -K,
ILI]] 2 K1
Under these circumstances, we have the sequence of terms:
1+2y,)—=, 13
(1+2y.) 0 (N.13)

which contains the very suggestive factor (1 + 2y+) . This looks like the beginning of the

familiar series (e.g., see equation (5.13))

1 1
1+(2y)+(2y)2 +(2”3 +(2 »4 :1—2y _1_1 v _,ll?oo ‘
1)

With y =), ,wehave p, = p, and p= p,. All this suggests that at infinite order, the
series beginning with (N.13) will converge to

A Py
- N.14
8k, P, (N9

In quasi-1* order theory, the lead derivative is generated by A [k, . From equation (N.2),
we can write the term responsible for the lead derivative as
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0,8 .0 B
2k} 20K,

—
WK, Q)

which is independent of g, , and so it is the same as the corresponding o -order in )y

operator. Thus, it is consistent to generate boundary conditions by pairing this
differential operator with the (also o -order in )') boundary-condition-generating term

(N.14). Doing so effectively leads us to take the boundary conditions in equation (M.16),
identify the terms that are associated with A by noting that they are the ones proportional
to f and f?, and multiplying these terms by P,/ P, . This gives us

Xy )(1+f—(5—K Jp](p)()\f +2P f[ : ] f(DTJ
‘ A

8p,\ K, pu 8k; P
1 1 1 JK o)
_DT/YH: —+4 X ( p][ﬁj /V'{ f)(‘ :|

i), (N.15)

1011 IOI 8101 K 1011

where we have used k; @/, =wK, p, B/, =K, g =k;. To get the Neumann and

Dirichlet boundary conditions, we will let both p,, > p, and K, < K, and look at this
problem from the point of view of the two different half-spaces.

To get the Neumann boundary conditions, use the second boundary condition in equation
(N.15) as viewed from the point of view of the field in Region /. Thus, set p, — o and

K, — 0. Taking these limits in equation (N.12) gives us

JKzKu_K/ 1 ; Q: :011_:01:1.
K[ KI p[] p[]
Now the lower boundary condition in (N.15) becomes
1 1
Loy= 1o [ } N.16
Eot ekt s oA, A (N.16)

Since ¢, is finite ( p, — % and K, — 0 roughly cancel), k,, is finite, and so
Ur Xy  k/Hfield amplitude

p[l pII

- 0.

Since p, is not large, L, Y, must be zero to O ( . f 2) . Also, from the first boundary
condition, Y =y, +O ( 7 f 2) . Multiplying through by p,, this leaves us with

0= 0 [/ x5 x] (N.17)
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If we make one more rather sensible approximation, we can further simplify equation
(N.17). Taking the air-water interface as a prototype (Region / is now air and Region
Il is the water), we note that ¢, =300m/s and as usual c_ ., =1500m/s. Conversely,
we could go from water (this time Region /) to a medium where sound speed is much
greater than water’s — for example, rock (Region /7). Generalizing, we note that ¢, is
typically pretty large in the denser medium (though not as much so as p itself).

water

Furthermore, since the wave number is given by k =w/c, ¢, <c¢, also implies that
k, >k, . Now, let us use this insight to examine the term in (N.17) proportional to
U, x, . By Fourier decomposing Y, , we see that [, roughly brings down a

. . 2 _ 12 2 ~_
lk[lz - l\/kll kI Cos (el;grazing) - k] .

We can typically only take the branch that decays, so LI, ), is not at a phase minimum as

is O,x,,and thus f’0.x,=~ f’k,x,= f’kx,. Alsonotethat f ~1/R, where R is the
radius of curvature of the interface. Let us now compare the two terms in (N.17):
f*0,x, and fx,. This amounts to comparing fk, and 1/R , or equivalently f* and

1/ (kIR) T Now, keeping the first order in the radius of curvature O (1/ (k,R)) and
dropping the 2" order in the slope (O ( f 2)) is exactly the kind of approximation that we

make when we choose to model the scattering amplitude using the small slope
approximation rather than the composite model (Reference [73], Section II). This is

often a reasonable thing to do, and we do it here. Thus, the O ( f 2) term in equation

(N.17) may be considered small, and we throw it out.

Making this last substitution, we have for the Neumann boundary condition

DTXI:_ %)(1- (N-18)

Equation (N.18), the result for the Neumann boundary condition, leads to curvature-
induced boundary waves along concave surfaces. Note that since the boundary waves are
confined to concave surfaces, they cannot lead to an energy flux that propagates down a

i Note that the rescaling suggested by equation (N.14): /1/ 8ky = — (/1/ 8k; ) (,0 4P 1) = —(/1/ 8/(12)

takes the reference wave number ko and replaces it with the wave number in Region [ , k ;- Recalling the
virtual-fluctuation interpretation of Appendix C.2.6, this suggests the virtual fluctuations are actually of

magnitude Ox ~ i / 2k, . This in turn suggests that the size cutoff for determining

f = 1/ [radius of Curvature] should be taken as the wave number in Region / , &, .
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rough surface. Thus, the effect associated with the Neumann boundary conditions is
small compared to the analogous effect along a 2-fluid interface. In the latter case, there
is always a concave surface available, and so boundary waves can always be present and
can even propagate downrange. (As discussed in the text (Section 5.3.3), something
similar can occur even for the Neumann boundary conditions along a bossed surface,
where it is possible for the surface to be everywhere concave. However, the bossed
surface lies outside the purview of the parabolic equation.)

Next, let us consider the Dirichlet boundary conditions. Now, we must view the first
boundary condition in equation (N.15) from the point of view of the field in Region /7
and let K, — o while p, - 0. The first boundary condition in (N.15) now becomes

Xo =X, —ﬁ[)(, +&Xuj +L(f O+ /7 (&D x4 O %D
1 P 8k; P,

Now, at least in the higher-order terms, X,,[J>x,~ 0. (To convince yourself of this
statement for the latter quantity, Fourier decompose and look at the plane wave solutions
on a flat interface.) This leaves us with two terms that are proportional to f>. They

contain the quantities ("" p]) X, and (p%,) 07 x,. These are both finite since ), and

03 x, both go to zero as p,/p, . Therefore, (as with the Neuman boundary conditions),
we can once again drop the slope-squared terms to get

f

@ DT/YII .

X[I :XI +

Set the field on the far side to zero (assert that the wave is incoming on side // and that
nothing bleeds through to the far side — i.e., side /). This gives us

Xu :S_kIZDT/Y]]' (N~19)

This time, the O ( f ) -term is insignificant for two reasons. In the first place, a boundary

condition of the form (N.19) represents a small displacement of the surface, and this will
not affect the scattered wave very much. Even more importantly, as discussed above, we
expect the wave number in Region 7, k, to be large on the scales that matter for the field

in Region /7, and so 1/ k; is small. Thus, we drop the O( f ) -term, and assert that the

Dirichlet boundary conditions are not significantly influenced by the curvature-induced
terms introduced by the Foldy-Wouthuysen transformation. The Dirichlet boundary
condition is thus unchanged: )Y, =0. This is no surprise, since the new terms introduced
by the Foldy-Wouthuysen transformation are connected to phenomena that require
renormalization (e.g., vacuum polarization is associated with renormalized Quantum
Electro-Dynamics), and Orris and Dashen have shown that the Dirichlet boundary
conditions only require renormalization at very high orders''*'?*'?' (As discussed, in
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Section 4.4 and in Appendix O, renormalization for the parabolic equation reduces to the
simple introduction of the cutoff %, or as we have just discovered perhaps %, .)

The results of this appendix indicate that the parabolic equation may be a good way to
study the explicit effects of slope and curvature on scattered fields. This is related to the
fact that a good parabolic equation conserves energy, and energy conservation helps to
pacify some of the pathologies that perturbative field theories encounter with multiscale
rough surfaces. Specifically, the failure of perturbation theories to properly incorporate
curvature-induced boundary waves is a cause behind the failure of these theories to
conserve energy. This will be discussed further in Appendix O.

O Appendix: Curvature-induced boundary waves in the
context of the development of modern rough-surface
scattering theory

This Appendix reprises developments in acoustic rough-surface scattering theory since
the late 1980’s, and points to remaining issues that may be addressed using the “vacuum
polarization” series of terms introduced into the parabolic equation by the Foldy-
Wouthuysen transformation.

0.1 The status quo in the late 1980s

In the late 1980’s, there were a number of competing approaches for calculating acoustic
scattering from rough surface.

For some very idealized problems, exact solutions were available. Sometimes, “brute
force” numerical calculations were used. These generally made use of either finite
difference or finite element approaches. These approaches are practical for 1-
dimensional and occasionally even 2-dimensional surfaces with mild roughness (e.g.,
calm sea surface), and occasionally for 1-dimensional “agitated” surfaces (e.g., heavy
seas). For agitated surfaces, the size of the scattering surface had to be limited.
Furthermore, to get stochastic answers, many realizations had to be considered. The
calculations were quite demanding since many scales are simultaneously involved in such
scattering problems. As a consequence, for truly rough surfaces, these brute force
approaches were at best research tools, but they were not particularly useful as general
algorithms.
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There were also perturbative approaches. These typically concerned the scattering
amplitude®®®€, which is in principle related to the scattered field everywhere via a 2-
dimensional Fourier transform. In practice, the scattering amplitude was typically used to
calculate the far field, which is simply proportional to it, or the far field scattering cross-
section, which is proportional to the magnitude squared of the scattering amplitude. For
quasi-planar rough surfaces, the quantity of interest was the stochastic scattering cross-
section per unit area, which measured in decibels, becomes the scattering strength that is
generally substituted into the sonar equation. Once the quasi-planar rough surface is
introduced, one generally drops the specular 9 -function, and only examines the
incoherent wave. (The coherent component has a different spreading center than does the
incoherent wave, and so extreme care is needed if the specular component is retained in
the far-field formalism.)

As of the early 1980’s, there were two widely used approximations to calculate the
scattering amplitude. The Kirchhoff approximation dates from the 19" century, and it
was used in the high frequency limit to calculate the scattering from gently undulating
(i.e., slowly varying on the scale of a wavelength) surfaces. For wavelength scale
scattering (also known as Bragg scattering), perturbation theory developed by
Rayleigh'??, Rice'” and Waterman'** was used. Both approaches remained the subject of
much tinkering and controversy. In fact, it was not until the mid 1980’s that the
relationship between the Kirchhoff and perturbation approximations was established
independently by Berman and Perkins'>, and by Holliday'*°.

A pair of useful new approximations applicable to acoustic scattering from the ocean
surface (i.e., Dirichlet boundary conditions) was developed between the early 1960’s and
the mid 1980’s. Various groups in Russia'?’'** and S. McDaniel (with collaborators) in
the United States'**° developed the composite model (also known as the 2-scale
model), which glued physical and geometrical acoustics together, forcing the spectrum of
the latter regime to terminate at some fixed, empirically chosen maximum wave number
(typically about )4 the Bragg wave number). The mid 1980’s also saw the emergence of

a new approximation that remains extremely useful to this day: the small slope
approximation by Voronovich"*'"'*2. Its properties have since been firmly established by
Thorsos and Broschat'**'**, and it has been extended to a wide variety of fields and
boundary conditions*>'*>'3¢137138 ' The small slope approximation unifies the Kirchhoff
approximation and perturbation theory by reducing to each in the proper limit. The
Kirchhoff approximation and the composite model have largely been replaced by the
small-slope approximation, and this approximation has become the new standard method
for calculating the scattering amplitude and cross-section for a quasi-planar rough
surface. (Perturbation theory remains in widespread use as well, because it does not
contain an integration and is consequently simpler to evaluate than the small slope result.)

€888 An exception would be the perturbative normal mode approach of Kuperman and Schmidt mentioned

in several places in this report, including for example in Table 6.1.

292



0.2 Towards a new scattering theory

The various techniques available by the late-1980’s all had some qualitative or formal
validity criteria, but there was nothing to provide an overall context for the various
approaches. This void helped generate a widespread distrust of the results of rough
surface scattering theory. When in the mid-1980’s it became clear that theory and
experiment were not in agreement (sometimes they differed by a factor of 100), it was
claimed by many that the rough-surface scattering theories were inadequate, and that this
mechanism could still not be ruled out. Since perturbation theory works well in
predicting HH electromagnetic sca‘[‘[eringhhhh when the same air-sea interface is impacted
from the other side"’, it should have been clear all along that scattering theory was not
the problem, and indeed it was eventually established that the true cause of the anomaly
was scattering from near-surface bubble clouds'*’. Nevertheless the controversy of the
late-1980’s sparked new developments in scattering theory.

For example, this state of affairs prompted R. Dashen, et. al. to begin a wide-ranging
examination of the problem of scattering from the rough air-sea interface””. Even before
this effort began, it had already become clear to Dashen that there was a strong need to
relate the existing approaches to one another and to a clear physical intuition (including
an inventory of which physical processes the various approximations included and which
they did not). This need would be addressed by developing an overarching “theory of
theories” that would generate a taxonomy for the various scattering models. This matrix
of theories would then be used to fill in the gaps in our knowledge of the problem. In
particular, we would be able to apply a given approach to a wide variety of fields and
boundary conditions, to develop new approximations, and most importantly to conduct a
systematic search for the missing physics.

The basic technique was proposed by Dashen, and I had the opportunity to participate
with him in its development and application to wide variety of situations. At the core of
the new approach was the realization that for modern 20" century field theories, a clear
hierarchy of possible approximate solutions falls out naturally. To this was added the
insight that the difference between fields that were discovered in the 19" century and
those that were discovered in the 20" century is the approach used to describe them and

hhhh An HH polarized electromagnetic wave scattering from a perfect conductor obeys the same Dirichlet

boundary condition that as that obeyed by an acoustic field incident on the air-sea interface from below.
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not the underlying physics™. During the 19" century, fields were traditionally described
using a “tour de force” of vector calculus and formal mathematical manipulation, while in
the 20" century field theories have often been “bootstrapped” from symmetry arguments.
Thus, the goal of our effort was to rederive classical field theory using modern
techniques.

To be specific, the expression for the scattering amplitude was derived using a symmetry
principle: Noether’s theorem. Roughly speaking, when a symmetry leads to a conserved
current, Noether’s theorem associates a source term for the current with the symmetry
breaking operation. Time reversal invariance was the symmetry invoked, and the
conserved current was defined by Lorentz’s lemma. The symmetry was broken by
stipulating that the reciprocal problem scatters from a perturbed surface. The associated
“source” in the current-conservation equation was the change in the scattering amplitude
associated with the perturbation of the scattering surface. The result was a new 2-scale
theory (i.e., composite model) that was exact with respect to the reference problem and
first order with respect to the perturbation of the scattering surface”. The result was
obtained for acoustic field*>'*', electromagnetic'*' fields, and eventually also for

elastodynamic fields'*®.

The reciprocal 2-scale theory was then used to spawn a family of approximations. An
infinitesimal transformation of this result leads to an exact new manifestly reciprocal
expression for the scattering amplitude’>"*>"**14! " Using this result, it is almost trivial to
obtain the lowest order (manifestly reciprocal) small slope approximation for a wide
variety of fields and boundary conditions*>'"*>'**. It was also possible to derive an
optimal “local” approximation—the “small curvature” approximation®>. The formalism
also led to shortcuts to higher-order perturbation theory, cleared up the relationship
between the various scattering theories mentioned above, and provided a reciprocal
scattering amplitude for collections of scatterers near a rough surface (where the
distribution of scatterers as a function of the depth follows the surface as it is
perturbed)®'.

il Concerning quantum fields versus classical fields, the measurement problem and the associated issues
related to the collapsing wave packet is apparently an exception (although if the proponents of decoherence
generated internally to field theory are correct, then even this distinction blurs), but this issue is not (at
present) addressed within field theory. What is addressed is the gradual development of the quantum field
as a function of time and space, and this is entirely analogous to the development of a classical field.
(Quantum fields also often contain rich algebraic structures that are not typically found in classical fields,
but this distinction is also irrelevant to the discussion here.)

Wi The earlier composite (or 2-scale) model developed in Russia and the United States between 1960’s and

the early-1980’s will henceforth be called the “old” composite model.
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Since it is exact with respect to the reference problem, the new 2-scale theory models
non-local effects associated with the reference surface. If the perturbation is taken to be
the Bragg-scale features and the reference surface is taken to be the “big” waves, then the
non-local effects include diffraction as well as effects that in the geometrical acoustics
limit become shadowing and multiple scattering. This new 2-scale theory was used by a
group at Dynamics Technology'* to model radar scattering. The related report contained
the perceptive observation that the principal advantage of the reciprocal 2-scale result is
that it properly models all the paths involved in a scenario where the field scatters twice
from the surface in the following manner: once with the wavelength scales somewhat
larger than a wavelength (via diffraction or locally-specular scattering) and the other time
via Bragg scattering. In reference [73], where the contribution associated with the
reference surface was obtained to 2™ order, it was recognized that these (non-local)
scattering channels cover the dominant parts of 4™ order perturbation theory (for the
stochastic cross section), and so the 2-scale result was used to get a serviceable
approximation to 4™ order perturbation theory (for the Dirichlet boundary conditions).

The reciprocal scattering theory was used in several additional contexts. Dashen ef al.
used it to create a new theory of scattering from finite objects'*. Small slope
approximations developed using the reciprocal scattering formalism®>'*® are currently
being used to model scattering from elastic ocean bottoms'**'* and from the air-sea
interface'*.

As the reciprocal theory was developed, other approaches were being successfully
implemented elsewhere. Thorsos has worked extensively with 4™ order perturbation
theory'*®!*". M. Milder designed an operator expansion method that is both elegant and
has proven very useful**'**">° " Voronovich has developed a non-local version of the
small slope approximation''. Numerical studies by Thorsos and collaborators have
produced an “empirical taxonomy” of approximations based on their observed range of
validity as a function of parameters characterizing the scattering surface'**!**!*%,

0.3 Shortcomings inherent to perturbative models of rough-
surface scattering

Despite all this progress, the theoretical approach has remained incomplete. The issues
involved have yet to play any direct role in practical applications in underwater acoustics,
and so the topic has remained fairly obscure. However, it is of physical and
mathematical interest, and as such one suspects that it will find its way into applications
once the related phenomena are understood. The physics that is obscured by the various
perturbative approaches in wide use today manifests itself in four ways:
* Energy is not conserved on an order-by-order basis.
* Curvature-induced boundary wave phenomena and the somewhat related effects
that depend explicitly on the tilt are relegated to high orders where they become
very illusive multiple scattering effects.
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* In principle, at some point, the need arises to renormalize these theories. For
standard perturbation theory, this is typically at very high orders'"*'?*-'*! but the
issue can appear already at first order (e.g., the small curvature or arctangent
formulas derived in reference [32]). If uncorrected, the need for renormalization
leads to infinities for fractal surfaces and unphysical sensitivity to scales far below
a wavelength for self-affine (cutoff fractal) surfaces as well as for any other
surfaces whose spectra do not rapidly decay to insignificant levels at scales below
the Bragg scale.

* On the other hand, those orders of perturbative scattering theories that do not raise
renormalization issues fail to properly account for scattering from surface features
that are smaller than the Bragg scale, but could still be physically relevant
according to the uncertainty principle. These features constitute a third scale that
comes in addition to the two scales usually discussed'"”: the Bragg scale and the
“big” scales (> wavelength).

0.3.1 Energy non-conservation and boundary waves

A number of researchers have recognized the connection between the first two
manifestations of the phenomenon: energy non-conservation and curvature-induced
boundary waves. Thorsos has based his argument on the insight that for 1* order
perturbation theory corresponding to the Neumann boundary condition, as the grazing
angle goes to zero, the incoming flux goes to zero, but the scattering cross-section does
not. This violates energy conservation, and Thorsos has identified boundary waves as the
culprits behind this anomaly®*. Soto-Crespo er al.*’ wrote about the same phenomenon in
the context of electromagnetic theory. They attributed the failure of energy conservation
to what they called polaritons, which are the curvature-induced boundary waves. Tang
and Frisk® have also noted the existence of curvature-induced boundary waves. On a
track parallel to, but outside the framework of modern scattering theory, Biot and Tolstoy
have extensively studied curvature-induced boundary waves along bossed surfaces. This
work is briefly examined at the end of Subsection 5.3.3.

0.3.2 The third scattering scale and renormalization

Some time ago, Dashen and Orris made the connection between the third and fourth
manifestations of this phenomenon''*'?*'?'. In this regard, it is worth quoting the
abstract from Dashen’s talk at the 120™ meeting of the Acoustical Society of America in
1990'":

“Theoretical work on scattering from rough surfaces is often plagued by an extreme
range of scales of surface roughness. In particular, a wide range of scales can make
numerical calculations impractical. Roughness on scales longer than a wavelength can be
handled by an improved composite model. Scales smaller than a wavelength can, in
certain circumstances, cause serious trouble. The cross section can depend explicitly on
the cutoff at high wave numbers.”

296



In this talk, Dashen primarily referred to perturbation theory, but the issue of a cutoff also
appears in the implementations of Dashen’s small curvature formula® (also known as the
arctangent formula). This too was an early motivating factor for Dashen’s attention to
the third scattering scale. Among other things, he was looking for a proper way to cutoff
approximations, which, like the small curvature formula, addressed the physics of the
third scattering scale. (It should be noted that formally the cutoff issue for the small

curvature formula was related to the slope / and not the curvature f . This is ultimately
the result of a hidden integration by parts, and the 1* order contribution does indeed
originate from the curvature f (see the discussion in Appendix A of reference [32], and
in particular equation A22 in the reference).)

Before proceeding, it should also be noted that Voronovich and Zavorotny have recently
introduced a small slope approximation that includes the curvature'*®. In this case, the
curvature is cutoff at the upper limit of the “big”-wave scale. The physics involved is
diffraction and similar issues in physical acoustics, but the third-scale physics with its
related renormalization issues does not come up in this work. In this sense, it is a little
like the old composite model'?"'#*1%*1%° \where the cutoff was imposed on the slope at
the upper end of the “big”-wave scale (reference ["°] includes a look at the process of
cutting off the “old” composite model).

The connection between the need for renormalization and the sensitivity to small scales is
an intimate one. As noted in the text (see Section 4.4), it comes from the fact that the

curvature / and the slope f? are “broad-spectrum” parameters that depend on all scales.

They are especially sensitive to the smallest scales. This means that terms proportional to
these parameters will not miss the bona fide physical effects associated with the sub-
wavelength scale, but it also means that these terms will have trouble accounting for the
mechanism that imposes the uncertainty principle on a classical field. The real effects are
not clearly delineated from the artifacts. This is why third-scale scattering phenomena
are invariably tied up with the issue of renormalization.

The renormalization of full-wave perturbative theories is generally a cumbersome process
involving the repeated resummation of the perturbative series. As the orders are remixed,
cancellations that used to occur between orders now occur within a given order. Most
noticeably, any infinities now properly cancel each other out on an order-by-order basis.
Rather than deal with all the complications related to renormalization, one typically
throws out the legitimate physical effects associated with subwavelength scales. To
change this, we will need a method to bring curvature/tilt-induced third-scale physics
(including especially boundary wave phenomena) down to accessibly low orders, and we
will also need a relatively workable solution to the renormalization issue.

0.4 The parabolic equation is a good way to examine the issues
left unresolved by perturbative theories
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The parabolic equation generated by the Foldy-Wouthuysen transformation manifestly
accomplishes the first goal listed in the last paragraph of Subsection 0.3.2 just above.

We have contributions that are 1* order in the curvature (O ( f ) ) and 2™ order in the

slope (O ( f 2) ). These orders are certainly low. As discussed in Section 4.4, there also
exists a rather simple workaround to the issue of renormalization. The surface spectrum
is a function of £, a wavevector in the average plane of the quasi-planar surface (i.e., the
x-y plane). (For a 1-dimensional surface, k£ — k_ .) Fourier decomposing the field into

plane-wave components, a given component of the surface will more or less excite the
component of the field whose wave vector projects to k£ on the x-y plane. This projected

wavevector can have any magnitude between 0 and k,. Thus, we are well justified in
mimicking quantum mechanics and choosing our upper spectral cutoff to be k,. From
the uncertainty principle AkAr,, = %, (r,, is a distance in the x-y plane), this gives us

Nr > L = L = ﬁ i
20k 2k, 4m
The field cannot resolve features smaller than about }{, wavelength, and the third scale

lies roughly between A, and A,/477.

Using the A,/477 cutoff to calculate the renormalized values of f and f * is adequate as

a first guess. Replacing these parameters with their renormalized values is an example of
a reduction formula (see reference [76], p. 438). It is completely analogous to the
“guess” for a cutoff on the energy spectrum that Bethe used in calculating the Lamb shift

(except recall that he already effectively had a problem with < f 2> ; see Section 4.4).
(Bethe’s calculation can be found in reference [76], p. 593.) This issue arose in the
context of a low energy approximation that depends on assumptions that are similar to the
low-grazing-angle small-backscatter approximation implicit in the parabolic equation.
Bethe chose the rest mass m, as his high-energy cutoff. Our cutoff &, plays the same
role in the Helmholtz equation as the rest mass m, plays in the Klein-Gordon equation,
and k, also plays the same role in the parabolic equation as m, does in the Schrodinger
equation. Thus, Bethe’s choice of m, as a cutoff is completely analogous to our choice
of k,. Bethe obtained good results with his technique. However, it is good to keep in
mind that it is ultimately better to use experimental values for the effective curvature

r2
effective 2

Juseave and effective slope squared or better yet, to use the full power of field

theory to include higher-order “radiative” corrections (see reference [76], p. 593-594).
For now, we will be taking the easy way out, and impose the cutoff % .

Note that if we were operating in full-wave theory, we would also have to allow for
backscatter and a given component of the surface could also excite a backward traveling
wave with wave number —k . This leads to some contribution for the —k, to 0 wave

number range, but this contribution has to weighted differently than the positive
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contribution. There is no obvious way to do so, and so getting the needed reduction
formulas is no longer as easy as choosing a single value for the cutoff wave number!
Here we have the second big advantage of the parabolic equation. (Recall that the first
was that these effects are of low order.)

Thus, the parabolic equation takes a subtle group of physical effects associated with
curvature, slope and sub-wavelength scales, and makes them accessible by bringing them
to low orders (essentially by stripping off the local component of these effects and
separating it out from associated multiple scatter effects). It also offers a serviceable
workaround to the renormalization problem.

0.5 Final thoughts

As an interesting side note, we remark that in stochastic scattering theory, the third-scale
physics will involve the coherent component proportional to < f 2>< )(> and the incoherent

component proportional to { # [Dx ). The contribution to the scattering of the incoherent
p prop X g

wave is associated with the curvature. This illustrates why most of the attention in the
rough surface scattering community (which usually considers the stochastic incoherent
field) has focused on curvature-induce boundary waves. Furthermore, as we have seen in

the main body of the paper, the tilt-induced contribution [] < f 2>< )(> disappears entirely

when there is no density jump (Section 4.3), and it is a very modest effect when there is a
density jump (Subsection 5.3.4). The tilt-induced effect is thus insignificant in the
stochastic problem. It is of primary interest in the deterministic problem.

Finally, let us note two interesting phenomena that are not covered by the formalism
discussed here. Enhanced backscatter is obviously not compatible with the forward-
propagating parabolic equation. Whispering gallery waves bear a superficial similarity
with the curvature-induced boundary waves introduced here, primarily because they are
curvature-induced boundary waves associated with concave hard surfaces. However,
they are not a small-scale effect at all. They are usually understood in terms of
geometrical acoustics, where rays will bunch up along a concave surface. Furthermore,
looking at equation (N.18), we see that this type of curvature induced boundary wave has
an e -folding distance of 4 times the radius of curvature, while whispering gallery waves
are confined to a fraction of the radius of curvature of the surface that generates them.

Nevertheless, the parabolic equation complete with the “vacuum polarization” set of
terms introduced by the Foldy-Wouthuysen transformation holds real promise for casting
light on a heretofore poorly understood class of physical effects associated with
curvature, slope and sub-wavelength scales.
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P Appendix: The acoustic Lamb shift when the density
and compressibility both jump

This appendix examines the stochastic boundary conditions for the quasi-first order
theory of a density/sound speed jump. Section P.1 provides the details of the derivation
of the boundary conditions (equation (5.20)), Section P.2 a discussion of the meaning of
this result, and Section P.3 a discussion of adjustments to the stepping procedure peculiar
to this quasi-first order theory.

P.1 The derivation of the boundary conditions for the stochastic
problem

The boundary condition on the field Y is considered in Subsection P.1.1 and the
boundary condition involving the first derivative 0)¥/0z is considered in Subsection

P.1.2. Subsection P.1.3 provides a lemma used in Subsection P.1.2 and Subsection P.1.4
provides a lemma used in the derivation of both boundary conditions.

Let us start with the deterministic boundary conditions (5.16) valid along the surface
z = f . These boundary conditions are written here in slightly different form:

oo (x| [ 1oA]
_ __ 2A _B 1T ox + 2 —_
Xilo=y = Xul.=, / sz:f [f{p 0z l:f 4 {,0 0z :|z=f]
- , (P
Lox| _loxy _, fx _,,+'zal
0, 0z =r Pu 0z z=f a 0 =f
where
1 (dK 9 1 | K,-K - 1
- (___'Oj = I T = (/'111 +y1)
8:011 KI Py 4'0” 2K1 2,011 410”
= T "
_o
8k,

The derivation of equation (5.16) depended on the assumptions described by Figure 5.1,
and these must continue to hold here. Specifically, we are operating in 2-dimensional
x-z space, where space is separated into two regions by a quasi-planar rough surface

z=f (x) The positive z-axis points from Region // into Region 7, and the average

plane of the rough surface is along the line z=0. Now we add one new condition:
assume that 1 defines a random rough surface that obeys Gaussian statistics. As always,
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K is the compressibility is and o is the density. As before, also assume that K, > K,
and p, < p, , and that the reference values are chosen to be the larger value. The

reference wave number is therefore given by k, = w\/ K, p,, , where w is a frequency.

Now, follow the stochastic procedure for the cusp (Subsection 3.2.3) and the sound speed
jump (Section 4.3), and as in these sections, adapt the technique originally developed by
Kuperman®. To this end, we will project the boundary conditions at z = f down to the
line z =0, break the wave function evaluated at z =0 into coherent and incoherent parts:

X.o = {(x)(0) +9x , and average these boundary conditions.

P.1.1 The boundary condition for the field x

Thus, we begin with an updated version of equations (3.27) and (4.11).

0 0
10,002 () x| 2] 20 ]
Zle=p OF =y 3)
+f_2 62X1| _aZXI[| +O(f3)
2| o =y 0z =
Now recast the second boundary condition in equation (P.1):
a/YII —_Pu a/\/l + v r2
e A - +0
aZ Z:f p] aZ - IOH f/Y z=f (f )
to get
a/Y] a/Yu — Pu a)(] v 2
= =5 =1-—=|Z+ +p,4 - +0
aZ - aZ - p] aZ - p]] fXZ:] (f )
U . (P.4)
C)—,O a/\/l + - “s
=-——-Z5 A - +0
p] aZ - IOH fX|z:f (f )

Let us symmetrize this result. This time recast the second boundary condition in equation
(P.1) this way:
0x,

x| _ P OXu
0z

S

+oAf X.., +O(/?)

z=f

and get
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a)(] a)(u _| P aXu v r2
A S ) B At S +0
0z .., 0z . \py 0z |.., P =/ (f)
U (P.5)
— 510 a/Yu + v )
- A 10 .
%&Ffmfm# ()

Add (P.4) and (P.5) and divide by 2 to get

Now,
oy = ,0)("2',011)( PiX: ';,011)(11 +O(f) =px +()(f) (P.6)
and o
i e R

Now, expanding on each side of the interface independently through 1% order in £, we

Lox| _[L1ox| ,AL1OX| .ofr
A 2 2 240 +o(r?).
{p azL {p 0} f[p 0z* |, )

Similarly through 0™ order in f, we also have E{‘ , = E{‘ y +0 ( f ) Substituting

have

these expansions into (P.7) and multiplying by —f* gives us

—f(% - ]fép{“’ﬂ -4 U oA
z=f p 0z =0 =

0z |., Oz
+f25p{%gzi( } +o(f 2 G20)

(P.8)

3 order
Now plugging result (P.8) into (P.3)

1 00) = 0) =, (1)~ (1) +/ D % o,

2 2 2 . . . (P.9)
+f [[I'F/de]a)(]_[l ZJpJa)(H]_l_O(fUQ,fUZ,f})

2 Zp ) o7 Z p,

3 order

The O(fz) term
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Note that the term in (P.8) proportional to f 25,0[Q62 x/ 622) now generates two new
terms each marked by a factor of %, . We picked up the factor of 2 in the numerator to

cancel the overall factor of 'z out in front of the O ( f 2) term, and we also picked up a

factor of 2 in the denominator since we busted apart the average. Also in the O ( f 2)

term, we have dropped the designation identifying the depth coordinate, since the term is
already 2™ order, and we will be taking advantage of this to move freely between z = f

and z=0. To remind ourselves that we are doing this, we will retain the O ( f 3) error

designation.

Let us rework the O ( f 2) term in equation (P.9). The goal is to symmetrize this term:

i.e., get this term into a form involving averages at the interface rather than values on one
side or the other. To begin, note that

1+@:]+_'0”_'01 P : 1_@ =1 _Pu =P :ﬁ
p[ p] p] ,011 ,011 1011

Substitute this result into the O ( f 2) term in equation (P.9):

The O(fz) term| =

2 2 2 2 2 2
£((1422)20 {12\ L 2020 200 ) )
2 p;) 0z Py) 0z 2\ p Oz Py 0z

Now, to get this into a form involving averages on the interface, we have to continue with
the following manipulations:

The O(fz) term :f—2 &62)(1 —&62)(” +f—2 &_62)(1 _&_62)(,, +O(f3)
4\ p, 92 p, 0 4\ p 9z p, 0

L P (| OX X P 0Ky
0> 9z p, 0

+f2 Py O°X, _M+ 1 =P Xy +O(f3).
py) 07

Reorganizing these terms as follows:
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The O(fz) term =f—2 [&—1]m +(1 —&jaz)(u
4

P 0z* py) 0z
> T
L P %711 _
+f_2 02)(1 _&02)(11 +f_2 &az/h _62)(11 +O(f3)
4| 9> p, 07 4| p 0 0 ’

the O ( f 2) term in equation (P.9) becomes:

The O(fz) term| =

s LX), £ ox x|, £ e 9K, ol (P.10)
2 p oz’ 40" p, o 4| p oz 0z’

Use Lemma 2 Use Lemma 2

Now, use Lemma 2 in Section P.1.4 below. Substitute for the last two terms in equation
(P.10) using equations (P.34) and (P.35):

The O(f2) term

=L 0q LOX L (sid o) L (38 p,47) #0( 1 . )

#

on X vrag PP ypo( )
107y ]
o0 —
'0_,0 0z* |

2
-/

2
-/

2

+aki AP +O(f* ).

Now, recall equation (P.6) to replace p L)} with E\/ Then use the definition of B,
equation (P.2), to get:

2 — .
The O(f2) term| = 442 /B 1oy vk P Apx|_ +o(r2 7). @A
p oz | z=0

This is the symmetric form we are looking for. Since we are already at 2™ order, we
have used our freedom to evaluate ¥ downat z =0.

Finally, to finish our evaluation of equation (P.3), we need to obtain y, ( f ) - Xu ( f ) )

Use the first boundary condition in equation (P.1), and the usual Taylor series expansion
to get
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- 1 a)( . 1 az)(
=-f’4 -Bf| —2-| -Bf [f| —
Z:f f IO/YL:O f|: '0 aZ :|z:O f IJ‘|: ’0 622 :|z:0

Xil.=y = Xu

(P.12)
2
—sz[la )2(} +3" order.
p aZ z=0

Thus, take equation (P.9), and substitute results (P.11) and (P.12) to get

X,(0)=x, (0) ==(/ +7 ) amx|_, -5/ [%Z—X}

—B(f' F +f2){laz_ﬂ +8k2 f m[l"_X} (P.13)
p oz |, p oz,

2 D —
""”‘ozle{la )21 +4k; [ 4 ,0)(‘ _ +3" order.
P 0z =0 z=0

Now, again follow Kuperman®, and Sections 3.2.3 and 4.3. In equation (P.13), set
x(0)=(x)|_, +9x

On either side

and take the average. The result is

) ) =4k§<f2>3{102<)(>} _ 412 (12) 4p(x)

=0 <X”> z z=0

p 0z

(P.14)
_B[l<ja(5)()>} +8k. U?{%<fa(5)()>} +4™ order.

P 0z

Diffuse (Bragg) scatter terms

Equation (P.14) indeed provides the first boundary condition of equation (5.20). Note
that this result once again mimics the tilted interface with /2 - —4k2 < f 2> . The error is
4™ order in the stochastic problem, because for Gaussian surfaces, the average of odd
powers is always zero. Also note that as with the interface where the sound speed (or
compressibility) alone jumps, the “vacuum polarization” terms do not survive the

averaging process. This will not be true for the second boundary condition, which we
derive next.

P.1.2 The boundary condition on the derivative dx/dz

Now, as with Sections 3.2.3 and 4.3, let us go on obtain the boundary condition on the
first derivative. Modifying equation (3.30) or equivalently (4.14), we have
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Loy _vox, _tox _ 10
p] aZ z=0 p][ aZ z=0 101 62 z=f p]] aZ z=f
Lo 10X
p, 0z° =r Pu 0z’ a=f
2 3 3
+f_ ia/g[ _La /Y311 +O(f3)
p, 0z |, py 0z | _,

Now use the second boundary condition in (P.1) to replace the first two terms and
rearrange the O ( f ) term to get:

1 aXI _ 1 aX]I fzg
s Py 0z | 0z =f
p,, 02)(, x| | Lo _p ¥, ®.15)
2,0,, =y 0z =) 2P 0z op P 0z -
2 3 3
+f_ La)gl _La_)gﬂ +O(f3).
Py 0z |, py 0z | _,
The first two terms in (P.15) can be Taylor-series expanded to give
o+t X =Af x|, +4(f I;f)a—)( 472X 439 order
0z| _ = 0z - 0z -
= = = (P.16)
= A(fU+f2)a—X +3 order
0z | _,

To evaluate the O ( f ) term in equation (P.15), use equations (P.34) and (P.35) from

Lemma 2:

17

o 0z

The O(/) term]| = —f[z/o[{ Bfﬁu/{l aX}J

wﬁ{%&q }OUUJﬁJﬂ
z=f

‘f[z// Y AvE:

= -8k, f OUY|_, + (fuﬂlax} vo(r g.rd.r).
y

Now, expand in f on each side of the interface:
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The O( /) term| = —8k; f LU ¥| _, —8k; szg—X
Z

— =0 (P.17)
1 0y

+B(f5{'){; 623} +O(f s gsrig.r).

We still need to evaluate the last term in equation (P.15), the O ( f 2) term. We have

TheO(fz) term :f—z[iﬂ ]
z=f
B

2| p 07
+L _63/Y1
=) 25 0z’ |
S [_8k02803)(11| ]+f_28k§ﬁ{A%
2
z=f

_ 1 o,
P 0z’

_P X,
=f 1011 623

:f_zl : £&63X1| 03)(11

2 2p,| p 07 L:f 0z°

Now use Lemma 1 in the form of equations (P.25) and (P.26) to get

The O(fz) term

2p, Py 0z’ |_ 2 2p 0z z=f
2 2 3 2 2
+f_ 1 _8k0B a X31| +f_8k0p11 A% +O(f2f,f2f)
220, P 02| ) 2 2p 0zl
1 &y ox 0, 0x . .
= —4k* {*B| — +4k2 4| AL L AL +o( 727, 12 7).
Of |:IO2 623 :|z:f Of aZ z=f IOI aZ z=f (f f f f)
. | —
aXl/aZ
and so the O ( f 2) in equation (P.15) is
3. 3
The O( /) term| = 4k; sza—X ~4k2 1B iza—)f +3% order.  (P.18)
aZ z=0 p aZ z=0

Since equation (P.18) is already at 2" order, we have used our freedom to slide y down

to z=0.

Now, take equations (P.16), (P.17) and (P.18), and substitute into equation (P.15). This
gives us

307



1oy
p, 0z

_ 1oy,
w0 Py 0z

=Af x|, +

z=0

A7 o)X

z=0

~ABk; f Xl.., ~8k, sz‘;—)Z(

z=0

.\ 1 0° )
+B(f D‘){F az/q +4k§f2A—)Z(

z=0

~4K2 f B{ a—/ﬂ +O(f . f [F) +3 order,
ooz |,

and combining terms

1 6X1 1 a)(u v 2 r 5 7 r2 W
_ o _ L %X — A8k rA(f o+ )X
oy 02 oy s b R TABES X AT TPV
a2 praX) —aer B{ L oy } (P.19)
0z | _, o 0z
19 ey
(fq){ aq +0(f ./ OF) +3 order.

Now, once again as in Sections 3.2.3 and 4.3 and earlier in this calculation (just above
equation (P.14)), follow Kuperman“: let y (0) = < )(>L:0 +Jx and average. This gives us

Lo(n)l |1 0)

P 0z 2=0 Pu 0z A<f5(>z:0 _8k§A<f5(>z:o

Diffuse (Bragg) scatter terms

2 2 W 2 2 1 03 /Y
~4k; (f >A% 4k, (f >B{F a; >L) (P.20)

z=0

=0

< f g>[ qo +4™ order.

Note that we have used

rG)=0 : {rF)=

as discussed in Section P.1.4 just below equation (P.28). We have also once again made
use of the property of Gaussian functions that < o4 p"wer> =0.

We can also rewrite the last term as
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p2 aZS p2 623

{5858

This is the final answer of this section. Result (P.20) indeed provides the second
boundary condition of equation (5.20). This boundary condition is further discussed in
Section P.2.

P.1.3 Lemma 1: An expression needed to evaluated differences of 3™
derivatives

In this subsection, it will be shown that
oOX| x| __8kBdy,
£, oz’ |z=f 9z’ L:f Pu 9z’

+8k2 0,421
- 0z

+O(7.f). (P21

z=f

Note that this result is only good through 0" order in the derivatives of f . Thatis all

that is needed in the context in which it will be used. The results throughout Appendix P
are only good through 2" order in f and its derivatives, and the results of this lemma

will be multiplied by a quantity that is already 2™ order in f and its derivatives.

% is continuous to O ( f ) , which implies that the transverse derivative of this quantity

1
)
1s also continuous:

;@% (LG_XH _rl o] 1o
p 0z - p, 0z, p, 0z

% 9 o(f). (22
f

Since 7 = (fc +f B)/\H + f? , equation (P.22) becomes
(3] 0ol

Now, use the fact p is range-independent in the half-spaces to commute it with 9/0x,
and then also commute 0/0x and d/0z. Next, use the parabolic equation: dx/0x =iH x ,

and this time note that A 1is independent of z in the half-spaces, and so commutes with
0/0z (recall that the density and compressibility are assumed constant in the half-spaces).

This gives us
[H1 5)(1} {HH a)(_l,} =0 +o(j f). (P.23)
,01 aZ =f p]] aZ z=f

Now, recall that with our conventions
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— p]]

H, = — +k
" op 2ko Vi
02 ’
HII = 2_ko ko/JH

and so substituting into (P.23), we have

1 &63X1| +koy1 a)(1| _ 1 L63X11| +k0'uﬂ_% =0 +O(f f)
2kO p12 623 |z:f p] aZ z=f 2kO p][ 623 |z=f [)11 aZ z=f
and pulling out %anl)
Pu X, £, 9 Xy + 6)(1 2, Pr a)(ll = £ f
Lad Rl AVE S S B arS 2k; +2k =0+0(f,f).
p] 623 - p][ aZS , OJ/I a - O/JII ¥ )~ .y (f f)
6)(/62
This gives us the basic equation
63 63 a .
&a_{z L8 X ok () =0+0(F.F). (P24)
Py 0z |, py 0z |_, T 0z |..;

Now, let us get a couple of useful alternate versions of (P.24). First, start with

Py a)(1| 63)(1| 1Y, 03)(11 2 a/\/1 — o
1+~ -———= 8k,p,A=- =0+0(f,
( o ] 0z L:. 0z L:f o, 0z - 0P 0z |-, (f f)
op, ‘
Pr
to get
3 3 3
2l o3l 300 gz 2] o)
0z" | _, Py 0z |, p, 0z’ =y Z |.=f .25)
_ 8k;Bdy, i ax, N '
e 8k, p, A=+ ,f -
o o) TP (7.7)
Now, go back to the basic equation (P.24), and rearrange it to get
Pu 63X1| 63X11| + :01 a)(u 2 6/\/1 — 7 ¢
L4 _ 1 _8k A _0 +O 9 >
p, 02|, 0|, py) 0= |, L™ s 7:7)
‘ :

p,
Pu

and so
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3 3 3
&a)g,| _a)(311| :_@6_)(3,, +8k2 0, ox. (f,f)
IOI aZ |z:f aZ z=f 10[[ aZ z=f z =/ (P 26)
8k2B 3’ x, ) r |
=0 2 AL 48kl p, A2 )
Py 623 z=f o 0z z=f (f f)

The second equality is the form of the result quoted in equation (P.21). Both (P.25) and
(P.26) are used during the calculation pursued in Subsection P.1.1.

P.1.4 Lemma 2: An expression needed to evaluated differences of
second derivatives

In this section, it will be shown that

"X, Pr _az)(u 2 - - 1 o’y e
) =8k P AX|.., ~Bfp| —=—=5| *OU/./.[7). (P27
azz - p]l 022 0p1 X|z:f flol p3 023 - (f f f ) ( )

z=f

Note that this result is valid to 1* order in the even derivatives of £, but only to 0" order

in its odd derivatives. For reasons to be discussed below, the accuracy of (P.27) will
prove sufficient to eventually produce a stochastic theory good through 2" order in f

and its derivatives. The results throughout Appendix P are only good through this order.

We begin with the first boundary condition in (P.1).
7 1 aX <
=5 Bf{;a_l:f +O(f )

Ilz=y ~Xu

This implies that

Xi a=f ~Xu

_ Bf{1 GX} =0 +O(f2)
z=f Z
=/
on the interface. Thus, taking the tangential derivative 7 [F 0 @ x+ /1@  z+ O( i 2) of

this equation valid on the interface and noting that the density o is constant in the half-

spaces, we wind up with
At gy LA gy ——(ai) =0+0(f./?). (®28)
p 0z - p0ox\ 0 -

Ox =f Ox

z=f
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Note that we are already dropping the O ( f ) term (proportional to 0/0z) in anticipation

of the result we now derive. In the context of the calculation presented above in
Appendix P, result (P.28) will eventually be multiplied by a quantity proportional to f

and averaged. The average of f multiplied by odd derivatives such as < f Ejf> or

< f Ef> is zero. To see this, consider the autocorrelation function

<f(x1)f(x2)> = _]idk S (k) )

Since [ is real, S(k) must be symmetric: S(k) = S(—k). Take 0/0x, , and set

x, =x, =x. This gives us

<fo>=_Tdk S(k) & =0 ; () =[de s (k)i =0.

odd -
even ®

Thus, in the context of the calculation presented in Appendix P, an error in equation
(P.28) of 1% order in its odd derivative will still be good enough to eventually yield a
result good to 2" order in f and its derivatives. Since this order is consistent with the

accuracy elsewhere in this appendix, let us drop the remaining O ( i ) term right away.

Note that equation (P.28) good through 1% order in f and its even derivatives is also
sufficient to eventually produce the desired 2™ order accuracy.

Now recall that we are an infinitesimal distance into the half-spaces, and so all quantities
are effectively constant, and 0/0x, 0/0z and the Hamiltonian H freely commute. Use
the parabolic equation to replace all dx/dx with iH x and divide by i. Equation (P.28)
now gives us

|1 oy 1 6)()
H —-|H +Bf | —| H,—ZL +—| H, 24
[ IXI]FJ [ HXH] =/ f|:p1( "oz jz‘f :011( "oz z:/‘]. (P.29)
=0+0(/.1./7)
Next, as in Section P.1.3 use
_ Py
H ==L —L+f
P ETRY
DZ
H, :2_];0_ oM
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and multiply through by 2k, .

Let us concentrate on the O ( f ) term first:

B LN LN 2kV O] e, (LK
21 p 0z =r  Pu 0z o=f P 0z, Py 0z |-
%f—/
L] o(f)
L Pr 0z |=f
, X X .
Bf | Py OX, /g’ s LOX )(3” B 2ke (v, = ;)| — LOX || 42 order.
20, o, 0z |, py 0z | _, | 2 paz

Consider this term first

Now note that

LuOX| e N |_pe| X e X
p 02| py 0| | pp| P 0 0
1.0, 1 o),
+
=PPy|—= :01 97> Z:f ,0,21 9z -~
1 0’y
:2,011011|:F 623 :|

and we have for the O ( 7 ) term in equation (P.29) (times 2k, ):

I ox ox
2k, (B _H[ j +—H( j
’ p] aZ z=f p]] ! aZ z=f

1 0)(}

. 1 ey )
=Bfp,| —=2X| +Bf &
f 0, G 03} f & (, ,U”)[paz

iy

The other term in (P.29) becomes (recall we are multiplying by 2k, ):

2kO (HI/YI IIXH) i))ll |:|2 i jl- 2k§y1/\41- 2k§/'111/Y11 *

1

Substituting (P.30) and (P.31) into (P.29) (times 2k, ) gives us

(P.30)

(P.31)
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0= f)” Oixm O 0xh 2ky X 2kt Xy

1

+pr,,[%aﬂ +Bf B (y, u,,){1 GX} +0(1.7.7?)
z=f

p° 0z p 0z
or
Cr X x| _ .o 2 _3 1 o'y
?111?212:/- ?ZHZ:/' - 2koy1)(12 =2ky g Xy z=f prI ,0 97 -
’ (P.32)
_ ) 1 a)( TSI
Bf &; (v, ”")[paz . +0(1.7.72).
Now, at z = f (the interface), we have from the first boundary condition (P.1)
— v X )( — Bf
X =X+ =X - {paz}m(f)
-v X /Y]] — +Bf +O
Xo =X =4 szaz (/)
and so at z = f (the interface) we have
22 (Vi X+ Xal., ) = 2K (v + 1) R,
Bf[ 19 -
2k v+ )| =] +o(7?)
,Z p 0z -
: (P.33)

= _Zkg (y1 +:uu))_(iz=

(- MI)Bf{laX} +o(/7).
z=f

p 0z

Substituting (P.33) into (P.32), we see that the two terms proportional to d)/0z cancel
and we are left with

P, 62)( | _az)( | — 2 - ey 1 63)( T
7111 0221 , azzﬂ , = 2k, MXL# Bf p, F 37 . +0 (f,f,f )
: : —4p;A z=
or
1011 a2)(1 a2)(11 _ 2 1 6 /Y PITRN
o B =8k ! +0(f, 7, /%). (P34
o o), o, ter /0| s (7.7.7%). @34)
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Multiplying through by p,/p, , we reproduce equation (P.27):

—02)(1 Pr _az)(u 2 - > 1 o’y o
) =8k P AX|.., ~Bfp| —=—=5| O/, f7). (P35
azz . p[[ 022 0p1 X|z:f flol p3 023 - (f f f ) ( )

==/
Both equations (P.34) and (P.35) will be used in the calculations pursued in Sections

P.1.1and P.1.2.

P.2 Discussion of the ox/ox boundary condition

Subsection P.2.1 examines some superficially surprising aspects of the 0/0x boundary

condition (equation (P.20)), and Subsection P.2.2 reinforce the veracity of the result.
Subsection P.2.3 sums up the discussion.

P.2.1 Unaesthetic aspects of the dx/dx boundary condition for quasi-
first order theory

The structure of equation (P.20) seems to suggest that the 0/0z boundary condition in
the deterministic result (5.16) (or equivalently (P.1)) is missing a term of the form

Bf{L ¥ } . (P.36)
=/

pz 623
In the stochastic problem, this term would become
2 1 63 <X>
? <f >|:F 623 z=f ,

and when introduced as an additional term into the stochastic boundary condition for
0 < )() / 0z (equation (P.20)), it would provide the usual cancellation with the term

proportional to < f l:f> . If present, term (P.36) would also maintain the rule that the

transverse (i.e., traditional) Lamb shift (i.e., the part generated by smearing alone) can be
obtained by substituting -4k < f 2> for f? into the “vacuum polarization” terms (i.e.,

downrange Lamb shift) for the deterministic tilted interface and setting f = 0. This rule

is essentially equivalent to the assertion that we can naively take the procedure for
distorted volume given in Subsection 3.2.2, and apply it to an interface z = f, where f
now measures the distortion of a range-independent surface. This procedure involves
expanding the Hamiltonian in a Taylor series to get a stochastic roughness-induced term
(see equation (3.16) and the related discussion):
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(/7)o ()

0z*

(P.37)

However, expression (P.37) will not generate the term

e <f2>B[L"’3<X>L

p2 aZS

that appears in equation (P.20)—for exactly the same reason that term (P.36) is absent.
Up to now expression (P.37) has worked even when singularities are present, but this
time the absence of the term (P.36) has led to an exception for this rule of thumb.

Furthermore, as it stands equation (P.20) suffers from another rather unaesthetic trait. To
demonstrate that the two terms

e f2>3%m and B(f D?>%FO

conserve energy, one would have to engage in formal gymnastics: Basically, we would

need to add extra 0" - and 0,010 , -terms to the Hamiltonian to bring these boundary
conditions into our stochastic Hamiltonian as Hermitian contact potentials.

P.2.2 The “unaesthetic” result is nevertheless correct

These two aesthetic shortcomings cause some concern that there might be some subtle
error in the reasoning that produced equation (P.20).

The latter concern, namely that the argument establishing energy conservation for the two

terms proportional to [1/ youlviN < )(> / 0z’ } ., turns out to be unusually subtle, might

incline us to conclude that these terms were somehow erroneously introduced into
equation (P.20). However, there is simply no solid reason to conclude that these terms
are artifacts. They clearly fall out of the calculation.

Concerning the first issue, namely the surprising absence from the deterministic result of
the term (P.36), it is relatively unlikely that there is some fundamental flaw in our
technique, which caused us to accidentally drop this “missing term”. The only unusual
aspect of the calculation that produced the deterministic result was the use of O -function
bifurcation to evaluate products of distributions (i.e., generalized functions), but this

technique only affects terms that are 2" order in the density jump (O (5,02) ) or of higher
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than 2" order in the slope f, while the missing term f 2B[l/ oD x/ 623] , already

shows up at 1* order in dp and at 2™ order in f .

Thus, we would be well advised to accept equation (P.20) as is, and not allow it to be
trumped by some preconceived notion of what it should be. The soundness of this
decision is further reinforced by the observation that, in a sense, the missing term is
already hidden in our current result. Examining equation (M.12) and the argument

leading up to it, we see that —/.l./ 8k; , the term that generates the “vacuum polarization”

contribution to the deterministic result (5.16) (or equivalently (P.1)), contains a hanging
(or invisible) contribution:

KKk Tt is easy to verify that we are not overlooking other terms that are 1* order in o0, 2" order in f and

its derivatives, might involve O -function bifurcation, and may in some way substitute for the “missing

term”. For example, in principle O -function bifurcation can affect terms that are 2™ order in the curvature

(.e., O ( f 2) ). However, f does not mimic the behavior of f in either the deterministic or the

stochastic problem, so O ( f 2) terms are not proper substitutes for the missing O ( f 2) term. At first

glance, terms of O ( f DfJ,O) are more promising substitutes for the O ( f 25,0) term, since such terms

can mimic the each other’s behavior in the stochastic problem. However, it is hard to see how terms in the

“vacuum polarization” series, where the surface function is pulled out by taking some number of range

derivatives of the step function G)(Z -f (x)) , could possibly lead to something proportional to

0) ( f ch)_p) . Thus, this backdoor channel for generating something in the deterministic problem, which

later functions like the missing term once we get to the stochastic problem, is not available either. Thus,

the problem term is indeed O ( f 25,0) ,and not O ( f 25,0) oreven O ( f Ef5,0) . Of course anything

O (5,02) comes in addition to the already problematic O (5,0) term. At order O ( f 25,0) , O -function
bifurcation has no relevance, and so it also has no relevance to the “surprising” behavior arising from the

absence of the O ( f 25,0) term.
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o p oz, 2k, p 0z,

(note that as always 0, is chosen to be 0, ). This term does not contribute to quasi-1*

order theory, because it will not contribute to a single or double infinitesimal integration
(see Subsection 3.3.3 for the conversion from contact potentials to boundary conditions

using infinitesimal integrations). However, in the O (/12,/'1') theory, it will show up as a

boundary condition on dx/0z thatis O ( a 25,0) , just like the “missing” term we have
been seeking. Indeed, it is easy to show that we now have the cancellation that has been

lacking from our formalism"". The boundary condition that was absent from O (/l,)'l.)

(quasi-1* order) theory has now effectively migrated back into O (/12,/'1') theory. The

effect that was related to its absence in quasi-1% order is still there, but it has shifted up to
the boundary condition on the third derivative. We never get rid of it; it just migrates just
like any of our effects generated by contact potentials. The effect appears to be real, and
it constitutes a “downrange Lamb shift” (i.e., “vacuum polarization™) contribution
associated with a density jump.

P.2.3 The bottom line

Thus, the bottom line is that the contribution to the stochastic boundary condition on the
first derivative (i.e., equation (P.20)) that is proportional to < f Qf> Op is surprising and a

" The related term —[(,Ooj B)/(Zko)] 5'(2 —f)[(l/pz) (a)(/az)] . which contributed to the

discontinuity in Y in O (/] ,/1) theory, now in O (/1 g ,/1) theory directly modifies the boundary
condition on the second derivative 0 X / 0z° . When we use the usual procedure to evaluate the stochastic
boundary condition on 0 < X > / 0z , the usual expansion that we use to project down to the z =0 line

generates a term proportional to f° (62 X, /02" -0°x, /0 ) . The new contribution to the difference

between the second derivatives will in turn generate a new term proportional to f [ 0 , which once

averages are taken provides the long-awaited cancellation with the now-present term proportional to

f2op.
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little suspicious, but for now we have to accept it as is, and keep an open mind as future
research either confirms or refutes this finding.

When performing a numerical calculation of the Lamb shift for a realistic shallow water
environment (Section 5.4), we will employ the following practical strategy: Since it is the
most important contribution, and by far the easiest to evaluate, we will concentrate only
on the component of the acoustic Lamb shift that involves the wave function y and its 1%

derivative, and drop the terms that involve the 2" and 3™ derivatives (this includes the
“vacuum polarization” term) from our initial assessment of the significance of the
acoustic Lamb shift. For future use, Section P.3 discusses the stepping algorithm for the
full quasi-1* order stochastic theory that includes the terms that do involve the 2" and 3™
derivatives (including the “vacuum polarization” effect).

P.3 A downrange stepping procedure of the quasi-1°* order
result

Here, we consider stochastic quasi-1* order (i.e., O (/l ,/l) ) theory as given by boundary

conditions (P.14) and (P.20). We either drop the loss terms associated with Bragg
scattering and just consider the downrange propagation of the coherent field, or we
evaluate these terms by writing the locally generated incoherent field dy as some

constant times the incoherent field (see a brief discussion in Subsection 3.2.2 just below
equation (3.16) and also reference [64] for more on this general approach). The
stochastic theory is good to 2™ order in the surface height and its derivatives, and at this

order, it involves the mean square surface height < f 2> and the mean square slope < 7 2> .

As throughout this paper, the surface is assumed to be Gaussian.

Only the Hamiltonian away from the interface is directly involved in downrange
stepping, and the lead transverse derivative in this Hamiltonian comes from </]> and is
2" order: 0 < )(> / dz° . The O (</1>) contribution contributes a term proportional to < f 2>

in the boundary conditions at the interface. This and some other terms (associated with
downrange smearing) in the stochastic boundary conditions (P.20) are proportional to the

2" and 3"-order transverse derivatives of < )(> . These terms create tricky issues for the

stepping algorithm, and in this section, we will develop a stepping algorithm that
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addresses these issues™ . This procedure will not be used in Section 5.4, since there
the terms that involve the 2" and 3™ derivatives will simply be dropped.

Assume that we have just stepped on side / (above the flat interface), and we have < )(1>
just above the interface (and of course also < )(> at all grid points away from the
interface). Now, use the 0" order (in / and its derivatives)™™ boundary conditions to
evaluate < )(> on both sides (i.e., < X,,> = < X ,) ). Next use finite differences to calculate

MMM The deterministic problem would proceed in a similar fashion. There is some added complexity,

since the interface is tilted and so in general we would need to evaluate / ¥ on both sides of the interface.

On the other hand, we would benefit from some simplification, since the deterministic problem does not

involve 3" derivatives. It is not worth examining the deterministic case in detail, because it is unlikely that

this problem will be solved numerically using quasi-1* order theory. As shown in Section 6.1, O (/1 2)

theory introduces effects that are far more important than the effects introduced by the O (/1 ) term. In the

0] (/]2) theory, the wave function ) is continuous and it remains so when the O (/1) term is added.

Furthermore, in the O (/1 2) theory, the lead order is a 4™ derivative, and the 2™ and 3™ derivatives from

the O (/1) raise no special issues. Thus, O (/1 : ,/]) theory is perfectly well behaved, and there is no
reason to worry about the extra complexities that emerge in O (/] ,/]) theory. On the other hand, in

stochastic theory, the O (/]) component already leads to the problems discussed here in Appendix P.3, and

we cannot avoid these issues.

"™ Since these terms eventually get multiplied by terms that are already 2™ order in f* and its derivatives,
0" order in f and its derivatives is all we need at this stage. In stochastic theory for a Gaussian surface,

terms that are 0" order in f* and its derivatives come with an error term that is 2" order in f* and its

derivatives. The reason is that for a Gaussian surface, the expectation values of odd powers in the surface

function (or its derivatives) are zero.
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0 ( Xu > / 9z and then use the 0" order (in / and its derivatives)™™ boundary condition on

0()(>/Oz to find 6<)(,>/62:

o(x,) _ (&J {M} +2" order.

0z Py 0z

Now use finite differences to obtain ° < X > / dz", and a stochastic version of the implicit

boundary condition (P.34) to get (to O ( f 0) yrmn
(Xu)| __py O (X0)

- 2 nd
aZZ - - p] 622 8k0 IOIIA<X>L=O +2 Order .

z=0

(Recall that at O ( f 0) , < )(,> = < )(,,> = < )(> .) Since we now have second derivatives on
both sides, we can take the average
10%(x)| _ n

We can also use finite differences to get 9’ < Xu > / dz' . We still need to evaluate the

Exah

average

To do so, note that (to O ( f 0) ymn

FM} | :1[:930@ +L03<XH>}

o o7 2| p; 07 o, 0z

L 1 pu &63<X1> +a3<)(”> +2™ order.
AVAVEES 0z’

(P.38)

Now use the stochastic version of the implicit boundary condition (P.26) projected down
to the z =0 line. Again, this is valid to 0™ order in ™. The boundary condition is:

2,8 W) 8B (x| sskip, 421
o 0z’ 0 dz° o Pu z° w0 R o
2 3
= [1 - 8k°B] 9 <)g”>| +8k02/0,,A—a <X1> +2™ order.
'0” aZ z=l aZ z=0

Now, substitute it into (P.38):
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e

o &[1_8k023ja3<)(11>| SNV TRCLY 7] BRI &)
2001 P, o, ) 0z T o oz 0z’

%/_J
o(xu)
1142 =0

z=0

2 3
= 12 1+&[1 —8k°BJ 0 <)g”>| +8k§,0,,1<1—a<)(”> +2" order.
2'10][ 101 IOII aZ z=0 aZ z=0
known known

Next, plug in our values for

. - 5

o 0z o 0z

into boundary condition (P.14) to get < X ,,> to O ( f 2) (we already know < X ,> to this
order). Now get 0< X > / 0z using finite differences, and then use boundary condition

(P.20) to get 6< X, > / 0z . Finally, use finite differences to get 0° < X > / dz" and so

<H ,>< )(,> . Now, we can step and start the procedure all over again!

Q Appendix: The boundary conditions for O(*) theory

In this appendix (as throughout this paper when the focus is on the interface itself), we
only consider 1-dimensional interfaces embedded in 2-dimensional spaces, where x is
the range and z is the depth (as always, the positive z-axis points up into region /).
The (now) scalar transverse derivative [J, and 0/0z are used interchangeably.

Q.1 The boundary conditions

In this section, we derive equation (6.15). The O (/12) equation of motion is given by

equation (6.14) rewritten below:

0y A A°
i =k |12y + 5 -2 | . 1
Fox o[ 4 A 2k§jX (Q.1)
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In this section, we let = =k (y ,u) and so

T
p - AO (Dﬂ U R O I 1 0) R

4k’ 2k, 2k,

A

(Q.2)

The basic strategy for extracting boundary conditions from equation (Q.1) is as follows.
Recalling that for the 2-dimensional problem, 0,=0 @ z, we take 0, 1, 2, and 3 indefinite

integrations J.dz' .- followed by an infinitesimal integration at the interface z = f (x) :

f+e
J' dz--
e

Since the lead order term involves an operator of the form U, (%)D] : (}@ > we will

also need to multiply by o after the first and third indefinite integration. Note that the
lead order term is the most important term as far as this procedure is concerned. The
difference between the order of this term and the total number of integrations (counting
both the indefinite integrations and the definite integrations over infinitesimal intervals
that cross the interface) will determine the lead order of the derivatives involved in the
resultant boundary condition. Also note that this term will never be collapsed by an
explicit internal O -function. In other words, the final definite integration will always
involve the integral of a derivative, and so it will always generate the difference between
some operator involving the wave function evaluated on the two sides of the interface.
Let us proceed and see how all this works in practice.

Performing 3 indefinite integrations followed by 1 definite infinitesimal integration
across the interface, the lead order term [, (%,D] 2 (}Q X gives something

proportional to ), — x,,. To get a contribution from elsewhere in equation (Q.1) that
survives this battery of 4 integrations, we would need a term that is capable (in principle
at least) of generating a 0" (Z -f (x)) . By inspection, there are no other terms in A%y,

Ax or k, (1 - 2y) that will do s0°°®. Thus, in O(A%) as in O(A) theory, we have the

% Folded in here is the hidden assumption that a field can at most step at the interface, but it cannot
contain O -functions at the interface. Such field behavior is itself unphysical, and furthermore, consistency

with the wave equation would force the field to pick up an even more outrageously unrealistic infinite

series of O" -functions, with the 72 standing for derivatives of unbounded order.
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boundary condition Y, = Y, . Similarly, 2 indefinite integrations followed by one
definite integration yields the boundary condition
Lox - 1 oxy

p 0z p, 0z

Now, we need to do 2 (an indefinite and a definite) integrations and 1 (definite)
integration to get boundary conditions involving 8° Y / dz* and 8’y / 0z’ respectively. In
addition to the contribution from the lead order term, non-zero contributions will also
come from other terms if they in principle generate O’ (z -f ) and O (z -f ) functions
respectively. Next, we must examine equations (Q.1) and (Q.2), and look for terms that
might generate such distributions. Given the boundary conditions we have just obtained
for y and ), [%%. , it follows that [J,. (lpD] +X has at most a step as do the parameters =

and ). Thus, we see that only one term in addition to the lead order term is capable of
generating the needed O’ - and J - functions. This means we need only perform our two

integrations J.dz' .- on the reduced equation

A (P (F) X T M) vy
p4k§ + 2k0" (=x) =0. (Q.3)

Including the other terms demanded by equations (Q.1) and (Q.2) would only introduce
terms that immediately fall out upon integration.

S+e

Thus, we begin by performing a single definite integration J- dz--- on equation (Q.3).
/=€

This gives us

2 v
Aoy~ Loy, 2m gz 2o
101 IOII + IOI 1011 —O.

4K2 2k, -

Now, multiply through by 2k, and set p, = p, . Define a, =[p,/p] L =Py P . Also
note that
= = ko(yl_:u[) = koW

- Q4
=i = ko (yu - :uu) = kol
since U, =), =0for our standard conventions. This leaves us with
aOxr-0;
— Zlk TXH +k0aly1 |:I]]TXI-'- kO/'IIID]:| TXI:[ O . (QS)
0

This is indeed the first boundary condition in equation (6.15).

324



Now, we obtain the second boundary condition in equation (6.15). We first perform a
single indefinite integration of equation (Q.3). Once again, it is convenient to multiply
through by 2k, and divide by p,. This leaves us with

1 1
A5

p P } 1
—0 0.
7 * € XF

Ste

Now, multiply through by o and perform the definite integration j dz--- to obtain

f-€
1 -, 1,
po([DTXI} |:4D T/\/II:D
p] p]] +(_

2k, :I_EII)Xzoa

where use has been made of the fact that the field is continuous: Y, = ¥, = . Now, set
P, = P, , and rearrange terms to obtain

(DZT)([—D ?Xl])_(l_%f)DZTXI +
2k, 2k,

_(1 _&] =&[1 _&] -
p[ p] p][

and recall equation (Q.4) to show that =, ==, =k, (y, + ). This leaves us with

(=, -=,)x =0.

Note that

Oxr 0 Xe) 20y @
( T 12k T 11)+ 1};1k rXi +k0(y1 +,u[1))(:O’ (Q.6)
0 0

which is slightly rearranged version of the second boundary condition in equation (6.15).

We have thus succeeded in reproducing all four boundary conditions in equation (6.15).

Q.2 Separating out the terms that build Bragg-scale vorticity

In equation (6.16), the terms in the first two equalities of equation (6.15) (i.e., those
directly related to the O(A*) contribution) are rearranged. In this appendix, we
demonstrate that the boxed terms in equation (6.16) can indeed be identified with the
emergence of Bragg-scale vorticity. Specifically, we demonstrate that contrary to what
might be expected based on the 1* order boundary conditions (see equation (Q.7)
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below)PPPP, the terms in the boxes modify the boundary conditions on 07y (n22) so
that the behavior of the auxiliary field )y does not mimic the behavior of the pressure

field 4. This difference reflects the need to construct Bragg-scale vorticity. The
assertions in this paragraph involve some subtlety; so let us take a minute to examine the
situation more closely before proceeding.

Q.2.1 What we want our theory to include

At 1* order, the auxiliary field x has acquired the boundary conditions that would be
expected for the pressure field A4 :

SUXE B X
XI :XII

Q.7)

For the sake of this discussion, assume that the problem is range independent and that
there is a flat horizontal interface where the density jumps. Note the continuity condition
X; =X, ,andrecall that y is a carrier of the downrange flux and not a pressure field.

Since the problem is range independent, the operator H ~ now commutes with 0/0x and

with the Hamiltonian H (to demonstrate [H Y H } =0, expand Y in eigenvectors:
X= ch X, and note that K X, =X, / \E, by definition, where HY, = E X, ).

Therefore, we can now also use the parabolic equation for Y to propagate u = H K X
instead. Among other things, this means that u and its transverse derivative 0u/dx are
continuous on the interface, as is (1/p)du/dz . Noting that in the half-spaces,

X =+Jajk, (H” 4 with a = p,/p locally constant, we have in the half-spaces

u=.jalk, M =,/p,/(pk,) D1, and so we get
A 1 o4 1o
\/;,\/; ax,p% 0z

A0A S A 04 )
~_—— —Z ~_—_— both continuous

pox p O 0z

all continuous

(Q.8)

X

By contrast, the full wave boundary conditions imply that

PPPP By the way, these generally survive unchanged in the sets of boundary conditions corresponding to 2nd

and higher-order theory. (We just saw this for 2" order theory.)
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04 104

A,a—,—a— all continuous
X P 0z
(Q.9)
A 04 . A 04 .
 ~—— not continuous; S, ~ ——— continuous
p Ox p 0z

The PE conserves energy, but the boundary conditions, and the horizontal and vertical
fluxes have been redistributed relative to the full wave result (at least in 1* order theory;
this particular result will generalize to higher orders since it turns out that equation (Q.7)
remains unchanged in higher-order theory). We could impose continuity on 4 and
consequently on its transverse derivative 04/0x and restore Bragg-scale vorticity

(discontinuity of the transverse velocity (1/ ,0) (aA/ ax)) by hand. To do so, we add to the

1* order Hamiltonian H =k, =2k, + A an extra (energy conserving) term
1 0
-— ﬂp— oz
2%, Vi ( )X

(Q.10)
— Py~ P - Py~ P

20, 2p,

Vi with g, = 9, 0= 1

Note that we are following the conventions and definitions outlined below equation
(6.15). p and now even x turn out to be discontinuous to 1% order in

2y=(m-0/a=-00r=(8 -8) A =P/,

and we should in principle bifurcate J' (z) to interpret this term. However, to 0™ order

the two variables are continuous, and so to 1* order (since we are multiplying by an
additional 2);, ) we can choose either Y, or Y, and p, or p, (or some value in

between).

Furthermore, we have
DT %E T

2k,
&%{D (&ﬂﬁq
T
P 2k, P )| 2k,

The second term on the right hand side of the second line contains a simple J -function
that will not survive an indefinite integration followed by an infinitesimal integration?1,
Thus we drop this term as well as terms that contain no J -functions. Now, we multiply

A

X +terms that have no J-functions

9999 Tmplicitly, we are again either truncating at 1% order, or bifurcating O -functions when we make this

statement.
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through by 2k, [ﬂ o/ ,00) and find that the key terms for the discontinuous part of the

boundary condition on Y are

Orx v (z) x o

and taking the infinitesimal integration across the interface

Xi = Xu = ViX =0

or

o)
)

= Xy (l +25—'0] + higher order

n
o

1]
=
K

or

Jox, =\ouxu (Q.11)

which is indeed the boundary condition we would expect for a quantity that is roughly the
square root of the component of the energy flux that is transverse to the interface.

Note that we want a term such as defined in equation (Q.10) to emerge from our theory,
and not just to be imposed by hand. The reason is that although the energy is conserved
(the term is Hermitian), we have no control over what such a term does to the boundary

condition on 9 x/0z or on the other boundary conditions (i.e., conditions on [} y;/2 2

that are all implicit in 1** order theory). Furthermore, actual jumps in the wavefunction
cause problems because now the x -derivative of x will spawn a d -function, and this in

turn would lead to a very problematic feedback loop in our boundary conditions. Thus,
we also want the jump in Y to naturally migrate up to a condition on the higher-order

derivatives. This will happen if a term proportional to a 8’ -function, such as is given in
expression (Q.10), is embedded in a higher-order theory. Therefore, we now examine
our O(A%) theory and discover how a term of the form (Q.10) is indeed generated by our
theory (along with other similar terms).

Q.2.2 For comparison: The boundary conditions on 4

Once again, consider a flat horizontal interface (i.e., the range-independent problem). As
discussed above equation (Q.8), in this case the WKB amplitude (i.e., the square root of
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the Hamiltonian) associated with the transformation between the pressure field 4 (which
obeys the Helmholtz equation) and the auxiliary field y (which obeys the PE) no longer

plays a significant role in the problem since it cancels at the endpoints. In fact, in this
case the auxiliary field u = A/ \/; , which is y with the WKB amplitude peeled off, also

obeys the parabolic equation (noting that 1/ \/E is expressed as a function of the
expansion parameter 2)/, expanded and truncated appropriately). Also note that this

factor of 1/ \/E is associated with Bragg-scale vorticity. Therefore, we have an instance

where only the presence of Bragg-scale vorticity distinguishes the solution to the
Helmholtz equation and the solution to the PE. Therefore, we will now derive the
boundary conditions on the pressure field 4, and compare them to the boundary
conditions on Y. To facilitate this comparison, the boundary conditions on Y will then

be rewritten as the sum of a part that reproduces the boundary conditions on 4, and a
part that generates Bragg-scale vorticity.

Q.2.2.1 The boundary conditions on 4 and its first derivative are the
same as those on y and its first derivative

We know that A4 obeys the 2-fluid boundary conditions
A] = A]]
104, _ 14

= . 12
p; 0z Py 0z Q12

Since these boundary conditions also apply to Y (see equation (Q.7) and note that it turns

out that these conditions apply to higher-order PE’s as well), Bragg-scale vorticity must
emerge from the higher-order boundary conditions. To observe the emergence of Bragg-
scale vorticity, we therefore need to examine the boundary conditions on higher-order
derivatives of 4 and Y, and then note the differences.

For the solution to the Helmholtz equation (with its lead z-derivative 2™ order), these
higher-order boundary conditions are implicit, and we will have to derive them using the
explicit boundary conditions and the Helmholtz equation itself.

Q.2.2.2 The boundary condition on [} 4

Let us proceed to examine the boundary condition on [1).4 (still considering the range-
independent problem). Take the wave equation in the half-spaces and approach the
interface; then multiply by (1/0)0,
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O, s a[a j
—L x| (0% k2)A=- —|—A4
p} [(T Na=-2 (24,

0 o (0 '
p_zx{(mi"' kIZI)AH: - a(a"{lnj}

Now, subtract the two equations. Since o, and p, are constants, the difference between

(Q.13)

the two expressions on the right hand side of the “=" signs gives:
9|9 { ! 0, A —ID TAH} .
ax ox| P, P

Noting that here J,=0 @ z, equation (Q.12) already tells us that

iDTA]— —lD A0

1 11

everywhere on the interface. Since the interface is horizontal, 0/0x is a tangential
derivative relative to the interface (i.e., (1 - ﬁﬁ) WEX) P x). Thus,

6_ (constant on the interface) = 0
X

2

and also 6_2 (constant on the interface) =
X

|
i

So the right hand side of the difference of equations (Q.13) is zero. This leaves us with
004, K O34, &

T e M. ) (Q.14)
101 101 p][ IOH

or

D3A D A11 k2 k% A1 +% T/A/ (kz _ )D A4, _ki] 1 =0.(Q.15)
P, yor P ; P

Note the cancellation. Recall
2
Rtk =2 and = |

2 5
c G K, p,

and so
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K-k = (n -1)k; ky ki = (ny 1)k

1
(@) |(‘:
~wlo e
|
—_—
N—
o
1
VR
:;Qw|oq.\)
|
f—
N—
Ron
)

— lel _1]]{3 — [:011K11 ‘1]7‘3' (Q_16)
PuK, PuK,
= —(1 —&jkg = —(1 —&jkg
P K,
= 2k = 2k

Thus, we have

3 3
I:|T141 _D TAII _2}/11\% TAI +2/'111|%7§ TAII :0,
p] p][ p[ pII

and multiplying through by p, / (Zko)

3 43
AT - hay DA kA 0. @17)
2k() only this sign

will be different in
the EI‘;)( condition

Note that the sign on the second term is the only difference between this boundary
condition on (1’4 and the corresponding boundary condition on [ ¥ given in (Q.5).

Q.2.2.3 The boundary condition on [} 4

Now, let us repeat this for the boundary condition on (0> 4. Now, consider the
Helmholtz equations

(o )7 35

o(a Y
(D2T+ k121)A11:_ a[aAnj

and subtract the second equation from the first. Furthermore, note that 4, = 4, on the
horizontal interface. This implies that

04, _ 04,

Ox C x
2 (2404 .
Qﬁ Ox Ox

tangential
derivative
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This leaves us with (noting: 4, = 4, = A4)
O 4-0 245 (i k)4 = 0
DA-0 54 (B k)4 (k& K)a= 0

Substituting the results of equation (Q.16) and dividing by 2k, gives us

24-0 24
T Vil _ —
= — 18y - koy, A +ky 14,4 =0. (Q.18)
2k() this sign is the lowest
order part of the difference

between the D%A and] %)(
boundary conditions

Once again, note that the sign on the second term is a difference between this boundary
condition on [1°4 and the corresponding boundary condition on [J° ¥ given in equation

(Q.6). In the equation for [J°  there is also an additional higher-order term
(a,y,Di X ) / k, . This term too is associated with Bragg-scale vorticity.

Q.2.3 How the distinction between y and 4 is reflected in their
boundary conditions

Now, let us collect the boundary conditions involving (1. ¥ and 17  (as given in
equation (6.15); and equivalently in equations (Q.5) and (Q.6)), and the corresponding
(implicit) boundary conditions on 1} 4 and [0>.4 along a flat (i.e., f (x, y) =0) interface
(equations (Q.17) and (Q.18)). Take the two boundary conditions involving Y, and

separate out those parts that reproduce the corresponding boundary conditions on the
pressure field A, and place the leftover parts in boxes. This gives us equation (6.16)
rewritten here as equation (Q.19):

ZLI:G?D; I_D 3T)(II_] koaIJZ'I T%l komll Z:P(II‘ 2k0@1y1 :TX]‘ 0
sl Oxr D oxd k(i v) X 2kyx T

(Q.19)

Reversing the basic argument that led to equation (Q.11), it is not difficult to show that
the &' -function responsible to 1* order for the extra part of the (07 y boundary condition

is (—1/ 2k0) ay,0 (z) This is the same as in equation (Q.10). In obtaining equation

(Q.19) from this O -function, we also picked up an extra factor — (2/{0)2 that comes from

peeling off part of the coefficient in front of the new leading order derivative

-2k, :—(1/2k) (1/2k,) O (py)] (
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It is not difficult to show how (=1/2k,)ay,d (z) emerges from the two cross-terms in
-A*[2k, :

D Po
(—1/2k0)%(k0y) X (Q.20)
and part of
|:| Po
(—1/2k0)%(—k0y))(. (Q.21)

Let us examine the second term. With our conventions that K, = K, and g, = p, (useful
if, for example, medium / is water and medium // is mud), we find

_1 K 1 K
ﬂ == 1__ =— 1 s
2 K,) 2 K,
and so in region /, (=0 and in region /7 ,

IU_K,—KH__JK AK

2K, 2K, 2k, K

1
,U :l{l — KIIij :l(l _ij
1 :
2 K, py 2 Ch
Thus, with the positive z-axis pointing into region / :

k 2
KM = _?Oe(_z) l_c_gj

or

where n,,, is the index of refraction between the media and @(z) is the Heaviside step

. 2 _ . oy .
function. Now n,,, =1-24, .., where u ., 1s the familiar parameter measuring the

sound speed jump between the media, and
&— P = 1 —1_5'0 +... =1 —@ +..

P, Ptdp 1+%2 p 0

to 1% order (recall our conventions p, — 0, =Jp = —0p). Thus
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> Pr

total

n
1

to 1% order. This gives us

= 1 _2/'1101211 T

k
- O/'I = _?0 e( _Z)(l _(l _2/'1total
op
= __0@ =z 2lutota +_]
(=) ( L P

O
= _kO O( _Z) [/’Itotal +_pJ

Note that equation (Q.22) also implies that

o)
/’[11 = /'[total +_p = /'[total +y[

2py

21011
to 1* order.
We also have
Y= l(l —ﬁj :M
2 Po 20,
Thus, y=0in region /I and
y=PLu= P _ p __bp
210” 21011 21011
in region /. Thus
y=y0(z).

Combining (Q.22) and (Q.25), we have

ki +kyy =k, @( _Z) How thoV; [ qz) - G( 7)]

=V

(Q.22)

(Q.23)

(Q.24)

(Q.25)

(Q.26)

at 1* order for our standard example K, = K, and o, = p,,. From equation (Q.23), we

have u, -y, = U,..» and it is straightforward to show that the first term in equation

(Q.26) when substituted into the cross-term (Q.21) reproduces the unboxed part of the
007 x boundary condition in equation (Q.19) (i.e., the part the reproduces the behavior of

the pressure wave A, and so does not remove Bragg-scale vorticity). This leaves us with
the term k), [@(z) - @( —z)] . From equations (Q.20) and (Q.21), we see that this gets

operated on by
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(~1jak) R (p?] -

2

to form

el (629(2)_626(-2)J
0/ 7 2 2 :
2k, p 2k, 0z 0z

Note that [0, operating on 1/ 0 generates a simple J -function, which will not survive a

double integration across an infinitesimal integral, and so this operation has been dropped

from the present calculation. Finally use
62@(2)

22 ()=-3(-) -

_0°0(=2)
0z*

to recover the term (Q.10):

—LG&y,d'(z))(.

2%, p

R Appendix: The electromagnetic field

The appendix supplies the details behind the results presented in Section 7.1. Appendix
R.1 derives equation (7.4), the state space equation for the electromagnetic field.
Appendix R.2 derives equation (7.6) (with definition (7.7)), an approximate

transformation connecting the familiar full-wave magnetic field A » with the

corresponding auxiliary field éT that is associated with downrange propagation by the

parabolic equation. Together, these two results provide enough information to allow the
straightforward mechanical implementation of the formalism.

Appendix R.2 also derives a “minimal version” of equation (7.6) applicable when the
grazing angle and the changes in the electric permittivity and magnetic permeability are
all small.

R.1 The state space equation for the electromagnetic field

Section R.1.1 sets up the needed formalism for electromagnetic fields, and identifies the
conventions used in this calculation. Section R.1.2 identifies the Foldy-Wouthuysen
ansatz appropriate for electromagnetic fields. Two lemmas needed in the calculation are
derived in Subsection R.1.3, and the resulting state space equation is derived in Section
R.1.4
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R.1.1 The basic electromagnetic formalism

To derive the state space equation (7.4), we begin with Maxwell’s equations (in MKS
units):

Py
0
= — jouH

iweEr J,

, (R.1)

l_)_<_|l gl %l El
%1 ?‘11 ?fu Pl

where E is the electric field, A the magnetic field, and P, 1s the free charge. Fora

linear isotropic medium, the electric displacement D is given by D = £E , the magnetic
induction B by B = uH and the free current J ; by jf = 0E . The electric permittivity

€ is related to some reference value &, by & = &, + €, while the magnetic permeability

is related to its reference value £, by (=, +Ju. The conductivity o is set to zero in

the current context™, although a nonzero value would involve only modest modifications
to the current formalism.

Only the last two of Maxwell’s equations (R.1) will be used here in Section R.1. In
addition, the second Maxwell equation will be used below in Section R.2, but the first
Maxwell equation is not used in our treatment. Thus, technically speaking, our treatment
makes no assumption concerning the free charge o, . Furthermore, the treatment here in

Section R.1 does not assume that the medium is necessarily linear and isotropic, but the
treatment in Section R.2 will assume B = (H , a property of a linear isotropic medium.

The energy flux is given by the Poynting vector:
S =E xH = energy flux vector.

Throughout this work, the physical field is actually the real part of a complex field.
Under these circumstances, the time-averaged Poynting vector becomes

—

Spve = <Re (E) XRe (IEI)>aVe :%Re[l? XFI*] = average energy flux vector. (R.2)

As always, we consider duct-like (i.e., waveguide) propagation, where the x -axis defines
the downrange direction. A subscript 7' on a vector indicates that the vector is
embedded in transverse y-z space.

™ When O, = 0 and J = 0, then the medium is a dielectric.
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R.1.2 The Foldy-Wouthuysen ansatz for an electromagnetic field

Next, let the discussion at the beginning of Appendix I guide us in constructing an ansatz
that will lead to a state space equation that is a suitable starting point for the Foldy-
Wouthuysen (FW) transformation. Specifically, start with the basic form

o

and construct & and x from the original field in such a way that ®'n® =|l9|2 —| )(|2 is
proportional to the (time-averaged) downrange flux S, = §ave [X. As noted in Appendix

I, this will guarantee that the total energy flux ®'7® remains conserved at all values of

the range, and this in turn will force the matrix Hamiltonian H to be pseudo-Hermitian.
The Hamiltonian in the state space equation must be either Hermitian or pseudo-
Hermitian for the equation to constitute a suitable starting point for the Foldy-
Wouthuysen transformation (see the second to last paragraph in Subsection C.2.3.2 or
footnote yyy for indications of why this is so).

With these considerations in mind, the suitable ansatz is
@:(%JZL(I:ITi &RXEJ, (R.3)
Xr) 2 \ o

where H, is the projection in (transverse) y-z space of the magnetic field H . The
vector @ is underlined with a tilde to indicate that it now has 4 rather than 2 components.

The factor of /&,/ 44, has been inserted into the ansatz so that the units work out
properly. Below, this factor will sometimes be denoted by a =,/¢,/4, . Itis easy to

verify that ®'7® indeed represents the uprange/downrange flux:

@19 =6, 8 ~X; X =Re[ i} [ )] g
0
:Re|:H* [@)QXE)JD&
Hy (R.4)
:Re[i [@EXH)]D%
0

= 2(5 B) %o - 2[uprange/downrange ﬂux] U] 23
Hy Hy

There is one small new twist: this time it is éT that represents the downrange flux (and so
is of primary interest to us), and Y, that gives us the uprange flux. (This suggests that in

this one case, we should use the ¢ convention rather than the usual e convention.)
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Also note that we made use of the basic identity that the vector triple product can be
rotated (for arbitrary vectors A, B and C):

Z[QBXC’) =det| B | =B [@C XZ) =C [@21 XE). (R.5)

(@Y > TR

Before proceeding, let us note in passing that we could just as easily chosen the ansatz
Xr) 2 V&

and the whole derivation below would work just as well.

Next, we prove two lemmas that will be needed later.

R.1.3 Two lemmas

Lemma A (equation (R.6))

H, = a;"uiﬂ(ér— %) (R.6)

Proof: Start with éT -X; =a ( X X a) and observe that since there is no X component to
6, and ¥,, 00 (ér— X, F (& “T). Thus, we have
5006 KEE (6 AT [ofs 2]

Rotate the
triple product

=—a|xU[X E
[ ——]

Use Maxwell's

third equation

= —a (% [-icopt) H)
= icu pH, QED
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Note that the third Maxwell equation in (R.1) was used. We also made use of the basic
vector identity (R.5), now being careful to note that X is constant™,

Lemma B (equation (R.7))

01- 0120 é .
~ -0 H- —— H 0! H — +H’ o R.7
ox & Y Ox €0x = [;L Hity ®.7)

As always, unless explicitly noted otherwise, repeated indices are summed.

Proof: Begin with the fourth Maxwell equation in (R.1)

x H= iweE or X H iak,
&

take the curl, and use the third Maxwell equation to simplify:
x [33? E% ix £ WuH. (R.8)
£ —
—iwpH
Note that equation (R.8) is the wave equation for the magnetic field H .
Next, use the basic vector identity
ix(BxC)=(A1€) 5 (A B)C =4BC (4 B)C (R9)
with A=0 ; B JéD# - € H to obtain®™®

[x PQ? ﬁ%m Dl—”—HDD(” l”)ﬁ.
£ £ £

Substituting into (R.8), we now have:

nj -Lg*hv [ﬁfﬂl

Taking the transverse projection (1 - )2)%) [ﬂ . ) ,

% In general, we will continue to use standard vector identities like (R.5) and (R.9) even when some of the
vectors are operators, as long as we are sure to keep all vectors being operated on to the right of the
operator. To maintain this convention, it will at times prove necessary to express vector products in terms
of sums involving the components. In this section, and always throughout this paper unless explicitly noted

otherwise, repeated indices are summed.
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af,uﬁT = D”—ID*THL” [ﬁ]ﬁ%#jﬁp

and then explicitly making the replacement C= P x O > we have
afyﬁf_ilm H- — 910 —H+0! é SHOO ;3—

Ox & Ox & Ox

and rearranging terms, we have (R.7). QED

R.1.4 The state space equation

Following Sections C.1.1 and I, recall that the derivation of the state space equation
requires that we develop two separate intermediate equations, one involving

0 (ér - )?T) / Ox and being essentially a rewrite of the wave equation, and the second

involving 0 (ér + )?T) / Ox and being a manipulation of the definitions in the ansatz.

These two equations will be derived below, the former being equation (R.14) and the
latter (R.16). These are derived in Subsections R.1.4.1 and R.1.4.2 respectively. In
Subsection R.1.4.3, these two partial differential equations are combined to form a state
space equation, which is then streamlined in Subsection R.1.4.4.

R.1.4.1 The equation for a(éT X, ) / ox

To obtain the equation involving 0 (éT - )?T) / Ox (equation (R.14)), start with
6, - X, =a i X E

Replace using

the 4™ Maxwell

equation . (R 1 O)
- % ex(ix A)
1we
Again use ZIX(E Xé) = A'BC' —(Zl @)C this time with A=% ; B=0 ; C= H
ix(x AT Za
Ox
0 - 0 0 -
=x A +0 H- x4~ -—H R.11
Ox e 0 ox T ( )
:iTHx_ 0H, ’
0x
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and substitute into (R.10) to get

6. - x, :i[ﬁTHx— aHT] (R.12)

Multiplying through by i and taking 0/0x , we have

0 (= 01- 0 10H,
—(8. -, |=— O0.H- — R.13
lax( ! X) {axé‘ o 6x£ ax} ( )

Now, substitute Lemma B (equation (R.7)) into the right hand side of (R.13) to get

(s oy al= 1o o 1o n
ZE(QT_XT)ZZ{DT}D TH_TD ;32 T-lH]IS a)zl'IHT:|

or

0z oyl Lyl -
la(gT_ T) :Z)[DT;D TI_IJTD E} }"H; wz'uHT]}
=ﬂi;-lga“;5ﬂfm”j31;?; af,u&"}H;f
&
:ffk[—[;‘

Substituting &, + ¥, = H, , we have successfully recast the wave equation into the
desired form:

i2(6,-x,) =" (6, +x,) o i2(6,-x)=E (6 k), R4

Ox Ox
with
gfksf_d[m;-la ;Jflfm*;tjlzf; af,ué”‘}
) (R.15)
- a N ranspose
=—|10 —ID 10’
£ w{ Akt ﬂtﬁ v } }
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Note that these operators are properly Hermitian™. This gives us the first part of the state
space equation. The wave equation for H is embedded in result (R.15). It entered via
equation (R.8) in the proof of Lemma B (equation (R.7)).

R.1.4.2 The equation for a(é; + )?T) / Ox

Next, let us obtain the equation involving 0 (ér + )?T) / Ox (equation (R.16)). This is the

second equation we will need to obtain the state space equation, and it emerges as we

manipulate the definitions in the ansatz (R.3). We start by once again invoking equation

(R.12), this time written in the form

WE(; N\, .= 0H

—(HT —)(T) +i,H= i 3 L.
X

a

Now substitute for A using Lemma A (equation (R.6)) and again substitute
éT +Xr = H T

. L2 (6, +x
“elg, 5 )0, (6 gy 2TR)
or
'6(§T+)”(T)j_ 1 ij_lg,{(g’L ﬁ)'lf a)g(é_ 3 )J
l o T T'u r\o Ar —\9r Ar
(8, +x,) -
Aoek] 1oLy o0)s )
(./k
Thus, the equation involving 0 (@ + )?T) / ox is
~ Y . N
i@:ﬁk(@—)@)k or iW:Z[@@ %), R16)

" In this case, taking the Hermitian conjugate means taking the transpose, and reversing the order of the

differentiations. In principle, we should also perform complex conjugation, but that is not an issue here.
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where

creobTh %ot g bt #5 w)

Once again, these operators are Hermitian™

the state space equation.

. Equation (R.16) gives us the second part of

R.1.4.3 Combining component partial-differential equations to form a
matrix state space equation

Together, equations (R.14) and (R.16) are

0 (=, = .
o6/ - xi)=¢" (6 +x1)
- A ) (R.18)
6(67!4-/?;) ik _.k =k
IT ={’ (er _)(r)
Now, let us add and subtract these equations. Adding the two equations and dividing by
2 gives us:
G ko z K _p7 ik
iaagf :(5 ¢ )9;‘+(£ ¢ );(’;, (R.19)
X 2 2

while subtracting the first equation in (R.18) from the second and dividing by 2 gives us

iy K _ 7k kg7 Jk
ia;;T:—(g ; )é;‘—(‘( 2Z );(’;. (R.20)
Putting these two equations in matrix form gives us
iang ik ik ik jk 5
ox |_| (¢ —Z")[o 1}({-/ +z<')(1 0)(9;‘} ®2)
)e 2 -1 0 2 0 -1){xs) '
Tor — T

Note that as j =1,2, we indeed pick up all 4 components of i 9P /0x , although perhaps
not in the usual order. Also note that we have once again identified the matrices 77 and

3 (as first defined in Section 3.1). Temporarily, there is a tilde on top of & to
distinguish it from the matrix &’ . These two matrices are completely different, but they

only appear together briefly, since &’ will shortly disappear from the scene.
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To get a Hamiltonian in standard form H =0 +& +k/7, we need to pull out a k7 (this

time multiplied by the identity matrix d’* ) from the term in (R.21) that is proportional to
n:

.06)

i E_gik) (E g DS G

ox | (¢ -¢ )5+(5 <7 2P ),7+k0,7 a7 ®2
oy 2 2 Xr

ZE 10) &

Now, let us define new variables so that the answer (R.22) looks more like the result for
the 2-fluid acoustic case. Specifically, define A” such that is the coefficient of the
matrix & and so the primary expansion coefficient. Also define y”* such that
A =2k, y™ is the coefficient of /7 in the even operator €. This gives us
£ Lo
2

and p* .
4 2k, 2

(R.23)

Substituting for &’ and ¢’* using equations (R.15) and (R.17) respectively, we have

Ajkzgjk_zjk
2 (R.24)
a = 1~ Sy =1 1 WE\ i
e B g e Ko
and
Jk Jk o _ ik jk
yjk__Z_+5_:_ I D;l@jk? _“:L i (R.25)
2k, 2 2kowa U a 2k, 2

Now, let us streamline equations (R.24) and (R.25). To do so, we obtain four useful
identities.

R.1.4.4 A streamlined version of the state space equation

Identities 1 and 2 are closely related. First, recall that a = \/€,/4, and
Ge=e-g i MU=pH—th.

Therefore,
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we_ Nt _ [t [y
2 owe |2 e |2+ of - ) [P
a EO ‘% 50 a(J £0

=W\ § U, +WOE 'u° az/ +—a) &MU,

“J/ ¢o=ko 0 W'cy=ky
L=k, (1 5gj ,
a g,
- |5 - &
acu = |=rap = w g, + @ == (4 - )
Hy T H T

awp = k( 5”)
Hy

Identities 1 and 2 follow immediately:

aa),u—%—k (J'U o
a

J Identity #1
Hy &

@ -y, (1 +£‘€j Identity #2
a &

0

and similarly

Identities 3 and 4 are trivial:

4_ & 1l & _& Identity #3

w W w wlgu k

1 _ ﬂo 1 _ ﬂo —_ ﬂo 3 .
_— o - — =0 _Identlt #4
aw & W wgH k ?

Identities 1 through 4 are then substituted into equation (R.24) to get

£ 2k, "€

Used Identity #3

M —ED’JJ R - Ezlz—”%”’; (5” 55)5* (R.26)
0

H &

Used Identity #1

Used Identity #3 Used Identity #4

and into equation (R.25) to get:
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. 1 a‘/ja 55 5jk 5/
Jk = _ [y Eqy L +-c +
ST %(X 80]2% /2

Used Identity #4 Used Identity #2 . (R2 7)
N L T
2k T T 2g,

Keeping in mind definitions (R.23), equation (R.22) becomes

06/
lax ik & ik ik ik érk

= AE +(AF =2ky ) +kpp B (ﬁk]. (R.28)
laXT O %&f—/ XT

0x

This is the state space equation (7.4). Equations (R.26) and (R.27) recover equation (7.3)

R.2 The transformation tying the parabolic equation field 4, to
the transverse magnetic induction H,

Appendix R.2 derives equation (7.6) (with definition (7.7)), an approximate
transformation connecting the familiar full-wave magnetic field H, with the
corresponding auxiliary field éT that is associated with downrange propagation by the

parabolic equation. At the end of this appendix, we also derive a “minimal version” of
equation (7.6) applicable when the grazing angle is very modest.

This relatively crude look at the “endpoint transformation” makes a number of
assumptions. Here in Appendix R.2, propagation must be in the downrange direction
only (i.e., the carrier of uprange flux Y, is zero). The material must be linear and

isotropic so that B = uH , and it must not conduct (i.e., the free current J , must be

zero). As with the endpoint transformation for a variable-density acoustic field, it is
further assumed that the environmental parameters (in this case the electric permittivity
and magnetic permeability) are slowly varying in the immediate vicinity of the

coordinates where the transformation between H, and éT is to be applied.

R.2.1 Deducing the basic form of the carrier of the downrange flux:
6 0,

The derivation of equation (7.6) begins with the basic form of the downrange flux given
by equation (R.4) with the uprange flux set equal to zero (i.e., ¥, =0):
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25 = [Fo
80

From the structure of the Foldy-Wouthuysen procedure, we know that a linear
transformation between H, and é exists, and therefore some dyadic operator which we

write as \/T A must exist such that \/_ D—I O 6? Now we have

Eéx/_ B\/_j =H, Ui[H,. (R.29)

2S /’IO

Note that

d=vi o/i

implies that 4 is Hermitian.

Now, as in equation (R.4) (based on the basic equation for a time-averaged flux (R.2) and
the vector identity (R.5), and noting that X X E is in the transverse direction), we have

25, =Re[#[ExA"|=Re[ H' G xE| =Re[ A; & xE | /'“0 [
Using the fourth Maxwell equation in (R.1) (with the free current J =0), we get

‘éTr:\/;:ZRe[ﬁ;EXE} \/"j0 {H D%X(ﬁﬁ Hﬂ

or using (R.11)

= iR{ﬁ;GI—KETHx— GHTH, (R.30)

Now, we need to recast A in terms of H,. To do so, we use the second Maxwell

equation given in (R.1) along with the assumption that B = yH (i.e., a linear and

isotropic medium). As has been standard, we also neglect the /ocal range dependence of
M at the endpoints. All this gives us:

ﬁl](,uﬁ)= 0

s =0 (ut,) (R.31)
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% Dﬁgy] Hi. (R.32)

Now,

or using dyadic notation

ENLEA _[ b ﬁe} i,

iwE Ox iwel "0 Ox
A’“ (R.33)
1 0 - 1 1 —
=—i—-U, —4] ;% H
a T T
we[ Ox i Ax U
Substituting (R.33) into (R.30), we have
6= |frel o |i%-n L 15 Al (R.34)
m we| Ox ; Ax U

Now note by setting & and 4 locally equal to constants, the operator between H , and

H, becomes Hermitian, and we can drop the “real part” operator to get:
2 ~ - - -
=g ln Lo (R.35)
" we| ox i %x

Or taking the square root — i.e., reading off \/j DEIT by comparing equations (R.29) and
(R.35):

o,

] e LT
— g — — —
.= —|i—-0,—H1_ .0 H,. (R.36)
' (,Uo) (we)él Ox Ti%x T] ’
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Note that if we did not want to make the assumption that £ and y are locally constant,

then we would have to symmetrize result (R.34)"". To keep things reasonably
straightforward, we will not consider this case here.

uuuu

R.2.2 Getting rid of the d/dx operator in Ji

Next, we need to evaluate the operator i%, acting on H,. To do so, we again neglect

(local) range dependence (at the endpoints), and exploit the fact that (as with the variable
density acoustic equation), in the absence of range dependence we can directly take the

square root of the wave equation for . The parabolic equation derived in this way is
different from the one obtained using the Foldy-Wouthuysen transformation. As in the
variable density acoustic case, the parabolic equation for H » does not generalize to the
range-independent case.

Let us begin with Lemma B of Section R.1 (equation (R.7)). This result is a reworked

form of the wave equation for H , and it is the wave equation for H - Itis repeated here
for in slightly modified form:

9190 5 +(D7D—15 j” aé H[ [;.t v %Flr 0.

Ox € Ox

Neglecting (local) range dependence of &, this becomes

16HT+(D,D—ID ]H— é 1 +H. fz-H 0. (R.37)
£ 0Ox*

Now, substitute (R.31) into (R.37) to get

10°H; (D,D—ID jFE;:‘ %a,{g}g

£ 0x’ u

Multiply by & and take the square root of the operators acting on H I

" One would have to write the real part as a sum of the function and its complex conjugate, and then
carefully reverse the order to recover the proper form with /1 ; on the left and /1, on the right. This

procedure would involve integration by parts, and it would essentially run the analysis in Appendix A in

reverse.
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aHk

\/(Dﬂ—lD ]54‘5 "/J — [ a‘]#— k mor HI

(R.38)

Now, to make this result compatible with (R.36), also neglect the (local) dependence of

g and U:
r 7k
iagcr = O+ KOAE.
Thus,
= J0#+ k= —.
3 ké
Now,

k=g =w(g + e (14, +u)

ce T
— & Hy

Substituting (R.40) into (R.39), we have

5 =
ia—k DT+1+5$ d{ E%_ 1+_/]
0x ko & H & H ky

where
2
j=i 2(5_5%+§+%j.

RETAE T

Substituting (R.41) into (R.36), we have

(R.39)

(R.40)

(R41)

(R.42)

% 1 2 1 :
— g — — .
g =& | ———|k 1422 -1 0. |\0a,. R4
' (:uoj 1/50(1+§:)a)[0 ko k i+ T} '

Equations (R.43) and (R.42) recover equation (7.6) and definition (7.7) respectively.

R.2.3 The “minimal” correction

Finally, to get a “minimal” correction, assume the grazing angle is very small. Then,

equation (R.43) becomes
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) New| & Hy &
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NS

2

_[ & I o€ 5ﬂj .
=| =o w 1+=||1+=|| H
u) Jew| “MJ( ej[ uol '

Y

A Y

—| & 1 %“_,u (on”
=\ S| et H, =L (2| A
o m 2,

Dropping irrelevant constants that cancel at the endpoints, the “minimal correction” is
6, =(ufe)" i, +0(0 /&)

S Appendix: The elastodynamic field

This appendix supplies the details behind the results presented in Section 7.2. Appendix
S.1 derives the state space equation for the elastodynamic field, equation (7.13) (with
definitions (7.11) and (7.12)). Appendix S.2 derives an approximate transformation
connecting the familiar full-wave displacement vector # with the corresponding auxiliary
field Y that is associated with downrange propagation by the parabolic equation. The
transformation is given by equation (7.15) (with definitions (7.16) and (7.17)). This
problem is more difficult than the electromagnetic case, and so equation (7.15) is only

good to first order in ET . Together, these two results provide enough information to
allow the straightforward mechanical implementation of the formalism.

S.1 The state space equation for the elastodynamic field

Subsection S.1.1 derives the state space equation (7.13), and Subsection S.1.2 examines
several interesting aspects of this result.

S.1.1 The calculation

To begin the derivation of the state space equation for an elastodynamic field (7.13),
Subsection S.1.1.1 outlines the basic formalism for an elastic solid and states the Foldy-
Wouthuysen ansatz for this problem. Subsection S.1.1.2 evaluates the three constituent
partial differential equations of the matrix state space equation that are relatively easy to
evaluate. Subsection S.1.1.3 evaluates the hard one. While the Hamiltonian in the state
space equation is pseudo-Hermitian, the operators in the constituent partial differential
equations should be Hermitian. This is not manifestly apparent for some of the terms that
appear, but Subsection S.1.1.4 shows that these terms indeed properly contribute to
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Hermiticity for the overall operator. Subsection S.1.1.5 combines the four component
partial differential equations to form a state space operator. The combined operator
should be manifestly pseudo-Hermitian, but once again this is not manifestly apparent.
Subsection S.1.1.6 verifies that the derived Hamiltonian in the state space equation is
indeed pseudo-Hermitian. Subsection S.1.1.7 takes the state space equation and converts
it into a standard form that resembles the state space equations for the acoustic and
electromagnetic fields. Finally, Subsection S.1.1.8 obtains workable expressions for the
associated partial differential operators that appeared in the state space equation derived
in Subsection S.1.1.7.

S.1.1.1 The basic formalism and the ansatz for the elastodynamic field

Once again as in Appendix R.1, let the discussion at the beginning of Appendix I guide
us in constructing an ansatz that will lead to a state space equation that is a suitable
starting point for the Foldy-Wouthuysen (FW) transformation. Specifically, start with

( j
q) ju
X

and construct & and ) from the original field in such a way that ®'7®d =|6?|2 —| )(|2 is

proportional to the downrange flux S . As noted in Appendix I, this is enough to

guarantee that the associated state space equation constitutes a suitable starting point for
the Foldy-Wouthuysen transformation.

The appropriate ansatz is

0] E[?J :%(ﬁ +iax [if) (S.1)

X

where u is the displacement vector, the stress energy tensor 7 is

r'=A(a)o wf wo ), (S.2)
and a is a constant included for dimensional reasons. @ is a 6-dimensional vector.

The elastodynamic wave equation is
M= - pafi (S.3)

and the associated (time-averaged) downrange flux is (e.g., see equation 2.3 on p. 154
from reference [154]):

1. o
S, ZEIm[u T E]. (S.4)
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Note that
Im| i’ 7 & | = ~aS, OS,, (S.5)

and so our ansatz indeed generates carriers of the downrange flux.

Now we proceed to construct the state space equations. Once again, following Sections
C.1.1, I and R.1, recall that the derivation of the state space equation requires that we

develop two separate intermediate equations: one involving 0 (é - )?) / Ox and the second
involving 0 (é + )?) / Ox . Treating the downrange and transverse components of 6+y

and 6 - X separately, this becomes four equations. We develop these four equations
next.

S.1.1.2 The “easy” part: equations for d(6, - x,)/ox, 0(6, + x,)/ox and
3(6, +x,) ox
Equation #1 (equation (S.7))—for 9(6. - x,) /ox

Take the divergence of (9 - ,Y) / (ia) =T [@ and then use the wave equation (S.3):

=M= - pw’ u, =- pw’ (+ x.), (S.6)

and so zfﬂ](é— )?): pafa(@+ Xx) or
00~ X) _ =5 -
riﬁ;—l=-iuﬂ®-xﬁ+mﬁdd+XJ- (S.7)

We will save the equation involving 0 (ér - )?T) / Ox for last.

Equations #2 and #3 (equations (S.10) and (S.11))—for 0 (Bx + )(x) / Ox and
8(8, + 1) fox

Again subtract the two components of (S.1), but this time use definition (S.2) to

substitute for 7 :
- ou -
ia| A| Mu ) x+ —+
,{( i) u( 2" ﬂ

(WY
|
>
I
S.
~
&J
Il
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or

0_)(:?[2:(/1 +2y)auX£+A(D,DﬁT))%+ fagr P (S.8)
ia Ox ’ Ox
First, we will develop the equation for 0 (Hx + X, ) / Ox (Equation #2) by projecting
equation (S.8) into the x -direction:
0 - % _ -
[q‘ X):exXx:(/‘+2ﬂ)%+A(DTDﬁT),
ia ia Ox
and so
(1 +2,u)a = = - (D04, b X,
ia 5.9)
au‘c —_ A ™ 77 ex _/Y‘c ( .
By o s ey
Ox A+2u a(A+2u)
And using u = 6 + X , we have Equation #2
0@ +X)_ [ A Ve(d. v\l G X
L5l = — 00( 6+ X S.10
l o l[/]'*'zﬂj TD( T XT)+ a(/]+2/,1) ( )
Now, let us develop the equation for d (éT + I(T) / Ox (Equation #3) by taking the
transverse projection of equation (S.8) (i.c., (1 - fo%) C.):
gT ._XT = /'Il_jTux+ ,u_T
ia
l% = —iiTux+ r =Xy
2 apl
Next, using i, =8, + ¥, and u, =6, + y, we obtain Equation #3:
0 (ér + )?T) . 1 (5 .
=g =m0 (0 (0 X). (S.11)

S.1.1.3 The “hard” part: the equation for a(éT -Xr ) / Ox

Equation #4 (equation (S.20)) — for 0(8, - X, Jox
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The remaining equation needed to derive the state space equation is the most difficult to
obtain.

Recall that to derive Equation #1 (equation (S.7)), we used the x -component of the wave
equation (S.3). To develop Equation #4 (equation (S.20) below) start with previously
unused transverse components of the wave equation:

Ma(r #xfF - pwi,, (S.12)
and break apart the gradient operator:
ai[)e F [{1-2%) | = -00M(F %) par’i, . (S.13)
X
Now, set this result aside, and note that
6, = X, =ia| % T {1 -%£)]. (S.14)
Operating on (S.14) with id/dx , we get
0 (ér - )?T) 0
———=—a—| x[F 1 —-xx) |. S.15
Ox ax[ [G )] &-15)
Substitute (S.13) into (S.15) to get
_a(gr_/Yr)_ = A .
za——aDTDTD(l— xx)l- 00 dii, . (S.16)
X

We are not quite finished, because we still need to evaluate [ (F £%). Let us begin

with the transverse projection of the definition of the stress-energy tensor, equation (S.2):

rf=A(0a) of + p( 0 jui)

OTO
010
{o 01
ou_ N L o
=4 2= o + A0, ) ot (1 O fuy)
we Rnow

this

Now, substitute for 0u_/0x using equation (S.9) (divided by i ):

f}j=/‘( /1+2y(DID oF mjw A ﬁT)Jg. (S.17)
+,/,1([]’Tu;+ 0 'r”r)

Also note that
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A? A2 +/1(/1 +20) _ 2uA

— +/] - —
A+2u A2 A+2u AU

so that (S.17) becomes

2M (=2 i i Vo /](9 _/\/)
Fe2 (0P ) 3 10D k) a0
_ 20
/1+2,u

=i
I, =

00(6+ X, )or wbi (g xAD (8 xi) —A((i ;(/Jgé”’ (S.18)

M, A P
|:/1+';1#5D /J(] TJTI{ED 0y )}(‘@ XT-l) @(W](‘gx )(x).

Thus,
ODoo(r #EOQ 7,

—D’{ M (& X)}

A+2u
(S.19)
+0.0 050 (& xF0 Gu {8 x)
A A
|:|j 3_
+ T(az(/]+2/,l)]( X /Yx) )
and substituting into (S.16) gives us
,a(ér_/?r) 2/1,U
B oo Mo e 0 a6 x)
) (S.20)
0| ——— (6~ Wa il .
' T[ai()uzy)j( - X i

(ér +A"r)/

Equation (S.20) is Equation #4.

S.1.1.4 A note on Hermiticity

Note the second to the last terms in equation (S.20) and in (S.10). Individually, it looks
like they will violate Hermiticity, but taken together they give a structure of the basic

form
0 0. f
[ifir 0 J (S8.21)

If we take the transpose and the complex conjugate of this matrix, we wind up with
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and then integrating by parts we get back to (S.21). Thus, the matrices of the form (S.21)
are perfectly good Hermitian matrices. It is also worth noting that one finds a similar set

of operators that initially seem to violate Hermiticity in equations 4, 5 and 6 of reference
[155].

S.1.1.5 Combining the component partial differential equations to
form the state space equation

Combining the four equations (S.7), (S.10), (S.l 1) and (S.20), we have

a(ér_)?r)j _ [D’ 2/]/,1
~ T A 2u
A

P» ‘(& x )0 ow wp Ol #}(«9 X))

| o (0 ¥ pala )

c

a(6, - o

i_( zax)(x) =ie,D_7_.D(0T_ XT)+ &C;E(Hﬁ )(x) (S.22)
a6+ x) o
i ™ ——IP (19+ XX)+E(HT —)(T)

i

a(9r+Xv) /1 = — - 1 B

1 Ox - l(/‘+2ﬂjDTD(HT+ T)+ a(/‘ +2/J) X Xx
P T

Note that a vector with a subscript 7 is a 2-dimensional vector in the (transverse) y-z

plane. An ordinary vector without the subscript also adds a third dimension: the

downrange direction x, and so the subscript x denotes a component of the vector in the
downrange direction.

Now, the indices j D{I,Z} denote y and z components, while the indices j =0 and
k =0 denotes an x -component. Then, with the following definitions:
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b =a[D’TﬁF-{}D Gy g;‘iD 04wyl

o=

cjk=—iD-;[—( A )]5"0 ; d'= pwa J

A+ou S
e’ =-id"'; ; ff= 0 pida
the first two equations in (S.22) combine to form
ia(é—)?)f _ (bjk +d +fjk)(9’ +X)k +(cjk +ejk)(é _X)k .
Ox

Note that d”* + /" = parad” .

Similarly, with the definitions
1

gjk — —iD;5k0 : = O—Tjk
W 5 i g
. A : : 1 ;
Jk - DijO : jk: 5]0 J{O ,
P l(/] +2,u] g 1 a(A +2u)
the third and fourth equations in (S.22) combine to form
a6+ yx ! ) N[ =\ 4 N[ =\
O ol o)
With the definitions (suppressing the indices j, k)
A=Eb+d+f ; B=c+e
C=g+p ; D=h+q ,
equations (S.24) and (S.26) become
a(é—)?)" PR ERY:
i o = A’ (6?+)() +B’ (49 —)()
0(5+}()j N Y
i % =’ (6+)() +D’ (0 —)()

(S.23)

(S.24)

(S.25)

(S.26)

(S.27)

(S.28)

Below, it will be understood that 4, 8,C and D are 3 X3 matrices, and that the vectors

6 and X can be understood as 3%1 column matrices. Then, (S.28) becomes
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i—— :A(§+})+B(9 —)?) 520)
16(6;:7() :C(é +7() +D(9 —)?)

To get the state space equation, we will add and subtract the equations in (S.29). Adding
and dividing by 2, we get
L :l(A +B+C +D)6 —l(A -B +C -D)}.
ox 2 2

Subtracting the first from the second and dividing by two, we get

26 _1 5 1
—=—(-A-B+C +D)8 —( -4 +B +C D)}
" ox 2( ) 2( )X
or
06 )
o |_1( A+B+C+D A-B+C-D (8
l =— .
oy | 2\-4-B+C+D -A+B+C -D)| y
0x
Thus,

Standard terms just like in Acoustics and E+M

1 1 0 1 0 1

2(4+D 2(4-D
o 2( ¥ )0 —J+2( )(—1 oj
22 = p o lo =H (S.30)
ox 1, 1 0) | 0 1

(c+B (c-B

2( ¥ )o 1j+2( )(1 OJ

New terms not previously encountered

S.1.1.6 Verifying pseudo-Hermiticity

Note that in the matrix Hamiltonian H we now get new terms of a sort not previously
encountered in the acoustic and electromagnetic problems. Before proceeding, let us take
a closer look at these terms. The matrix operators /7¢ and 1 have not appeared before in
our state space equation, but the most interesting new feature lies in the nature of the
coefficients of these matrices. For example, expressing C + B in terms of the definitions
in (S.27) and rearranging terms a little, we have
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C+B=(c+p)+(e+g)

—| A k0, _ - A k 570
{ zDT(—()HZIu)]é '+ {—A +2/J)]T5 } (8.31)

+(-io"0i- 0 8°)

and let

a:(C+B)[(1) (I’J

| A R k570 : (S.32)
= { ZDT((/HZA/)]& l(/\ +2,,,}] 0 } [1 OJ

0 1
+(-i0"0- @ 1")

Let us verify that the term (S.32) is pseudo-Hermitian. Recall that some operator & is
defined to be pseudo-Hermiticitian if (61'/7)T =an or equivalently 7a® =an . Therefore,

to verify pseudo-Hermiticity, we need to find @ and commute it with 77.

To find a', we need to:

1. Take the Hermitian conjugate of the differential operators. This means integrate
by parts, and take the complex conjugate. This amounts to ir ya a) ; fora
real function f and i — —i.

2. Exchange indices: j — k and k — j. This exchanges rows and columns in the
3 %3 matrices.

3. Take the Hermitian conjugate of the 2 X2 matrix in our outer product: exchange
rows and columns and take the complex conjugate. (The unit matrix in the
example in (S.32) is, of course, its own Hermitian conjugate.)

Then to verify pseudo-Hermiticity, take 7a and a'n, and verify that they are the same.
This constitutes step 4.

Let us do this for example (S.32).
(1) Hermitian conjugation of the operators:

C+B || -2 0.0~ E]’;( A JJJ‘O
(A+2u) A+2u

+(-i0p0- 0 46")

(2) Exchange indices to get
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C+B || -2 0o/~ O/ A g
(A+24) A+2u

+(-i0j0"- B 16")
which from equation (S.31) is equal to C + B.

(3) and (4) Taking the complex conjugate of the unit vector and multiplying it
with itself are trivial.

Thus, this term is indeed pseudo-Hermitian, as it should be given that the construction of
the state space equation guaranteed that it would be so. However, for the first time, the
pseudo-Hermiticity was not obvious by casual examination.
Now, let us do the same for the term

1 0 1

~(C-B)

2 1 0
Again assign it the label a . Demonstrating that this term is pseudo-Hermitian is trickier

than for our previous example.

To begin with, we have (using definitions (S.23), (S.25) and (S.27))

| A p) A (2
= =iy k0 k xj0 . k 0 . 0
(-imyot D oY) { {/sz FEO T(—(A +2ﬂ)]a"]

Then, we again follow the 3-step procedure to take the Hermitian conjugate of a :

(1) Hermitian conjugate these differential operators to get

C_B -
(-imjots o hoY 10 4 A g0 —%1/] 13
A+2u (A +2u
(2) Exchange indices:
C_B —
(<o 028 10 12— s 4?” L5
A+2u (A +2u

=-(C-B)

(3) Taking the Hermitian conjugate of the 2 X2 matrix

361



we just get it back.

Thus,
and

T el 2kl )

and na’ = (a/7 )T =an , and we have explicitly seen that now the second “new” term in

(S.30) is also pseudo-Hermitian.

Thus, the third and fourth terms in (S.30) are properly pseudo-Hermitian. The first and
second terms are completely standard and quite obviously pseudo-Hermitian as well.
Thus, we have indeed explicitly verified that the matrix Hamiltonian H is pseudo-
Hermitian, and consequently that our formalism properly conserves energy. (From our
construction, we knew things should turn out this way, but it is nice to see that it really
worked out.)

S.1.1.7 Standard form of the state space equation

Next, let us put the matrix Hamiltonian H into standard form. We do not yet know what
the constant &, will turn out to be (because we have not yet chosen a in ansatz (S.1)),

but we do know that we will need to pull out a term of the form k,d” 77 (or in matrix
notation k,1,,, [177) from the Hamiltonian A in equation (S.30). Thus, we have (as

above, suppressing the explicit outer product sign [ to keep things from getting too
cluttered)
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A N
J i (S.33)

5:1(A+D—2k 1) 0 +l(c +B)

) ° -1) 2 ’

n

where H =Q +& +ky1,,,17. The tildes underneath serve to remind us that the matrices
are 6X6.

Note that On = -nQ (the fact that {/7, T} =0 is crucial here), £n=n&, n* =1. Also, we

VvV

have closure under multiplication” " (as we must since the four matrices 77,&,7,1 span

the set of 2 x2 matrices). We know from reference [1] (or equivalently Appendix
C.2.3.2) that the conditions outlined in this paragraph, and the basic form in the previous
paragraph is enough to ensure that the Foldy-Wouthuysen procedure will apply.

Before we go on to write out the coefficients in equations (S.33), let us examine one more
important issue. As it stands, the coefficients in equations (S.33), which are in a sense
expansion parameters, contain terms that are not yet “small”. Such terms appear in both
QO and &, but let us examine their appearance in O, where it will most directly affect the

expansion parameter.

In O, the term appears in the coefficient of &/2:

YV The identities {7 =/ = —T& and N =T = —=&1 serve to explicitly remind that us that the

expanded set of four matrices that now appear in the matrix Hamiltonian H are indeed closed.
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A-D=|b+d+f |- (h+q)

,00.)2115/,{2 1
paral A+2u 00
9 1y
a H
0 0 1
U
oWa - ! 0 0
a(/] +2,u)
=b+ 0 powra —— 0
ap
0 0 ,Oalza—L

ap

Since b is already small, this needs to be small too

The components of the matrix above must be made small. The first step is to add zero in
the form —p awa + p,ca to all three terms, 1/(/10 +211,) —1/(/]0 +2f1,) to the top term,

and 1/(ap,) =1/(ay,) to the bottom two terms™™™". This will give us a matrix whose

terms involve only the deviations from the reference values of the parameters p, A +2u
and . This action also generates an additional matrix that we examine next.

Once this first step is done, we are still left with a “problem term” of the form:

1
wa-——r 0 0
Pl a(/]0+2/,10)
0 poafa—L 0
ald,
0 0 ,Ooalza—L
ald,

This term has an interesting property that is a little different from anything encountered
previously in our study of acoustic and electromagnetic fields. To see this unique
property, let us examine the following thought experiment. Consider a 1-dimensional
(plane) wave in a completely homogeneous environment, with the reference parameters
all chosen to be the same as the medium’s parameters, which are all assumed to be

""" Note that [, does not in principle have to be the same as £4, . In fact, 0,, A, + 2/, and L, could
refer to different spots in the medium, or some set of reference values that is not associated with any point

in physical space. However, usually [IO will be chosen to be the same as [ .
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globally constant. Even in this most basic case, there is nothing to make this term
disappear under these circumstances. This is the property that is a little different from
any encountered previously in our study of acoustic and electromagnetic fields. To be
specific, recall that during our study of the electromagnetic and acoustic fields, we never
encountered such a property at all in the odd terms (i.e., off diagonal in the 2 x2 state
space), and when we observed such terms in the even terms (i.e., the terms that are
diagonal in the 2 %2 state space), they eventually disappeared except for the ever-present
ky7 term. Fortunately, we can almost make these terms disappear with a judicious

choice of the free parameter a .

a=—L o gs b s A2 (S.34)
WA A A

so that (with &} = w/c})

Choose

wpe, ¢
1 wpc, w 1 Y
—_ CO —_ S 2 —_1.5 Co
= == ) =k , S.35
a(A +20,) A +24, ¢ (Céj)z( o) o[céjj (8.35)
and similarly
L=kg. (S.36)
ap,
Now our “problem term” reduces to
2
_[
VIR
ky 0 0 0]. (S.37)
0 00

Note that

or with [, = 14,
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Provided A, and 4, are physical values evaluated at the same location, then this

expansion parameter varies from 1 down to Y4 (as A varies from infinity down to

=2 44/3 ; this range of allowed values is determined by the requirement that the bulk
modulus A+ i be positive'>®). Since it is always smaller than 1, this is a legitimate
expansion parameter.

. . . . . . Ky 2 .
So, we are still left with a new intrinsic expansion parameter 1 — (co / cé’) . While

unprecedented, after a little thought, this will not turn out to be too surprising. Let us first
proceed to write out the state space equation and then return to this issue in Appendix
S.1.2.2 (and in Section 7.2 of the main text as well), when we are better prepared to
examine it in detail.

For now, we have a perfectly good state space equation provided that a = 1/ (a),q)cg) (as

given in equation (S.34)):

.09
i—=—=| O+& +kl,,0n| & (S.38)
6x — R et
6X6 matrices or equivalently | 6-component
made up of P vector
outer products 007 P
of (3x3)0(2 2) B
matrices X
with (using (S.33))
A=A* =353 matrix K

= Lia- Lic-
0= 2(A D)£+2(C B)1

S.39
5:%(/1 +D =2k, 1., )17 +%(C +B)1,,, (5.39)
A=2y K=2[3
y=5(ks-D) p=tp

So now, we need to evaluate A,k,) and .

S.1.1.8 Evaluating the operators A,x,y and g3

To begin our calculation of the operators A,«, )y and [, we will evaluate the following
lemma.

Lemma: evaluate “—/ —¢” (which shows up in A and )
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We make the usual choice a = 1/ (a)pocg) (but we will not at this point restrict ourselves

to [, = M4, ), and use definitions (S.25):

RS I WP S )
au al a (/1 + 2/J)
—h -q
Now, using (S.35) and (S.36) respectively, we have:
L A2 (e
= k| =L
a(/\ +2,u) A+2u cl
apg H

and so combining (S.40) and (S.41)

h—g=HFopsr Fogsgn g0 L2 [ G | g0 g0
U H A+2u "\ ¢

= Ho gt 1k -k O
:LI | ——
b jesn g0 g 5 50
U

%/_/
1/ Zero

ZSI‘O/l

f—{% ] cS 2 )
(5] o

Co

\/ZCI‘O
ZC]‘O/

2 B S \2
R c 57050 — A 24, r Cy 5° &°
“Ner A+2u ° cy ’

Co

and so

~h =g = k" +h) 5 (1 —&] ey 5 50(1 —ﬂj
7 7
2 ~
g o] (1At 2
’ cy A+2u

N2
w15
0

P

Now,
n =cylct i n

(S.40)

(S.41)

(S.42)
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and so

Hooplp o po\c

c
~ 2

A 24, :/] +24,/p, @ < @:n
A+2u A+2u/p p

2
uo_uo/p()gg_(c_éj .y
p P

and

~h—q =+k0" +k; (" -0 &0)(1 —n’ %j

k315 (n; )(1 nz’;’;j . (S.43)

+h570 5 (1 ~(ny )2)
(Note that nfp = (cg/cg’ )2 :,LJO/(A +2,[10) is less than 1 for the usual choice t, = [, .)

Equation (S.43) is the lemma. QED
Now, we are ready to evaluate A, ),k and [.

From equations (S.23), (S.25), (S.27), (S.39), (S.43) (the lemma) and recalling the usual
choice a = 1/ (a),oocg ) , we have

ae=Lps d+f —h-q

2 C b
ombine into yse the lemma
petadt =
/kOJ/k

1 = 2/1,u
= A l o¥d O
2wpc, )l+2,u (611: /YT)F G TM jw 4o, (5.44)

+£k—35-’k ~ kg " +k_g(5ik R 50)(1_713&)
2 P

Py 2 —

: o
_(1 _%0 )%Odjk
o)1 8o e (1)

We also have
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— ko —
Vi==| k0" -h-gq
2 —
Still use the lemma

unassigned

kS* -kt k(5 —5/00*0)(1—;13 &j
0

These terms do not automatically get
small. Use our freedom to choose

ko=kg to get the needed cancellation.

Apwrotaros oo ]

and so

e s

P (S.45)

+k 375 (1 —(ngp)z)

In equations (S.43) and (S.45), recall that (using definitions (S.34) (and its
generalizations) and (S.42)):
nf&:& ; n;&:/‘o-'-zljo ; (n(“;p)z :—ﬂo —.
o U P A+2u A +24,

We also need (using (S.23), (S.25) and (S.27))
=1 (C-B)
2

=%((g +p) =(c +e)) :%((g ) {p =))

L1 . 0 1 A . (A ,
jk=_ _ o XkO k x7j0 . k 0 . 0
K 2[ i0j0"% 0 507 : ’(/sz . np T(—()l +2,u)]d‘ } (S.46)

and (using (S.23) and the definition of £ noted in equation (S.39))

B= —%B = —%(c +e)
o P o (S.47)
B —E(ZDTLW]J + i0f TJ .

Recall that equations (S.44)-(S.47) are to be substituted into the state space equation
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O* =& +k’'T
ik = (,1/’6 —zyi")q +(/(-”‘ —Z,B"k)l (5.48)

WA =0" +" 4o

LW yol (1 0 (0 1 . [0 1
k=2 = . — . — . - _
chw\/;,n(o_lj,ft_lo,r—nflo

These results are also presented in equations (7.11)-(7.13) of Section 7.2.

where

S.1.2 A few comments

Subsection S.1.2.1 discusses a change a variable from the Lamé parameters f and A to

their reciprocals. This is to facilitate J -function bifurcation in cases where an interface
is present. Subsection S.1.2.2 discusses the expansion parameter associated with
equations (S.37) and (S.44). This expansion parameter is intrinsic to the parabolic
equation for an elastic solid, since there is no choice of reference parameters that will
make it disappear.

S.1.2.1 The correct variables to use if 0-function bifurcation is needed

When an interface is present, we will need to rework this result as follows. In order to be
able to use O -function bifurcation without imposing Taylor series expansions of the sort
discussed in Appendix K.2.3, we will need to convert the terms sandwiched between [,
in the lead-order derivative (which comes from powers of the leading-order terms in A)
to a form where multiplication by a “clean step” frees up the lead-order derivative for
further integration. To do so, define K, =1/ and K, =1/A. Thus,

A 1 _ 1
A+2 K, +2K,
/’I KIKZ L_i_i 2 1
Kl KZ

It is not really necessary, but we could also define K = K, +2K, = (/] +2,u)/(/1/,1) .

Either way, the leading-order derivatives that appear in A are now

1 1 1
0,-+Hs0 ,—& ,0 0O— ,.
J4 K, +2K, K,

This is a form where O -function bifurcation can be applied without further ado. Also
note that in A,k,y and [ we get terms such as
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A :& ; nf&DK2 ; niﬁﬂ K1—{<2
A+2u K o, P K

These terms never appear in the lead-order derivative, so they are of no concern as far as
the issue of O -function bifurcation is concerned.

S.1.2.2 A new kind of expansion parameter

Now, let us return to examine the “built-in” expansion parameter contained in (S.44) (it
made its first appearance in equation (S.37)):

S2
L P S
2 cy

This term turns out to be very closely related to the term = (1 —nz)/Z = (1 —‘%)/2 ina

constant density (i.e., o =0) fluid (as well as to similar terms that are proportional to
p/p,, O&/ & and du/y,). Boththe u (or kyu) term and the (1 - (cg/cé’ )2)/2 (or

k, (1 - (cé et )2 ) / 2) term are caused by a discrepancy between the “fundamental wave

number” of the parabolic equation (i.e., &, ) and the wavelength of a given physical wave.

What varies in these various cases is the source of the discrepancy, but not the
discrepancy itself.

This deserves a closer look. Recall that we long ago established that the parabolic
equation selects out a preferred axis in space: the downrange axis. To incorporate waves
that have components in the (non-preferred) transverse direction, the expansion has to

“work hard” and produce a power series in the expansion parameter [ / k; (or more
generally i [, / k, ). Itis just a little more obscure, but the parabolic equation also selects
out a preferred wave number k,. Components of the overall field with characteristic
wave numbers that differ from the preferred value &, are once again properly brought
back into the problem via an expansion.

In the constant-density acoustic problem, we have a true physical wave number
k =nk, = (C% ) k,, and in this case, the corresponding expansion parameter is indeed

2u
two characteristic wave numbers: k, and k. No matter which we choose as our

XXXX

(as mentioned above). On the other hand, in an elastic solid we have a field with

reference wave number (or equivalently sound speed), we will have a non-favored wave

% The factor of 2 results because the parabolic equation looks like an expansion of /1 + 2%0 .
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number, and its related expansion parameter (1 - ‘%) will appear in the parabolic

equation. For example, had we chosen a = 1/ (w,q)cé’) , then k; would become the

reference wave number, and now we would pick up the expansion parameter

1- (c(f/cg )2 (LS

Thus, we see that we have encountered a new attribute that must appear in any parabolic
equation (PE) that models a field that has multiple characteristic wavelengths. Such
parabolic equations will pick up intrinsic expansion parameters that are connected to the
need for the PE to adjust for the difference between its reference wave number and one or
more of the actual physical wave numbers.

Finally, let us consider a numerical example. For granite and limestone, ¢, =c, / 1.9

typically, and the expansion parameter 1 - (cg / cl )2 =1 —(1/ 1 .9)2 =0.723. Thus, we have

an intrinsic expansion parameter that is fairly close to 1. Its presence explains why the
parabolic equation for elastic solids will generally require fairly high orders.

S.2 The transformation tying the parabolic equation field y to
the displacement ii

This appendix derives a transformation first order in [J » that connects the familiar full-
wave displacement vector u with the downrange propagating field Y associated with the

parabolic equation. The transformation as recorded in Section 7.2 by equation (7.15)
(with definitions (7.16) and (7.17)) is derived below.

There will be an intermediate result. Consider the Hamiltonian for the propagation of the
displacement vector # when all environmental parameters (A, i, ) are constant. We

discover that even in this elementary example, a fundamental distinction exists between
the parabolic equation for # and that for the auxiliary field Y (which unlike u will

continue to propagate according to a parabolic equation even when range dependence is

¥ Note that since ¢” > ¢ at a given location, we run a very real risk that this expansion parameter could

become greater than 1. Generally, the expansion parameter will be bounded by 1 if we choose the smallest
s-wave speed as the reference wave speed (and so a = 1/ (a),q)cg ) ). Also note that at a fluid-elastic

interface, the smallest s-wave speed will go to zero, and our expansion parameters go to 1. This is much
like the Dirichlet or Neumann limit in acoustics, and it indicates that it will be quite tricky to adapt the

parabolic equation derived here to the fluid-solid interface.
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added). The Hamiltonian corresponding to # is the desired intermediate result, and it
will be derived in Section S.2.1.

This intermediate result will then lead to our final result, an expression for \/ﬁ , where

xu \/1—2] u . The transformation is given by equation (S.65) (with definitions (S.64) and
(S.61)). Itis derived in Section S.2.2.

S.2.1 The Hamiltonian for the displacement vector i

Below in Subsection S.2.1, it is shown that, neglecting range dependence as usual and
now also even the local transverse (e.g., vertical) dependence of the environmental
parameters A, i/ (Lamé parameters) and p (density), we can take the square root of the

wave equation for the displacement vector # , and get a parabolic equation for u (see
equations (S.50), (S.53) and (S.55)). This derivation is carried out in Subsections S.2.1.3,
S.2.1.5, and S.2.1.6. Subsection S.2.1.3 performs the formal square root operation,
Subsection S.2.1.5 evaluates a dyadic that appears in the result. The full Hamiltonian

contains 9/0x operators multiplied by the expansion parameter {1, and so the 9/dx
operators can be eliminated by iteration. Subsection S.2.1.6 performs the first iteration.

The derivation of the Hamiltonian for the displacement # is supplemented three
subsections. Subsection S.2.1.1 previews an important finding that emerges as a
byproduct of the derivation: The displacement vector # and the carrier of downrange
flux Y obey different conservation rules and so their Hamiltonians differ in an important

aspect—the Hermiticity property. Subsection S.2.1.4 analyzes this finding the context in
which it arises. Subsection S.2.1.2 introduces the aspects of the elastic wave formalism
that will be used in the derivation of the Hamiltonian for u .

S.2.1.1 An important difference between the displacement # and the
carrier of flux y

During the derivation of the Hamiltonian for u , it will be noted (in Subsection S.2.1.4)
that we cannot use this Hamiltonian as the Hamiltonian for the Foldy-Wouthuysen field

X . The immediate reason is that the transformation operator from # to Y, \/ﬁ (i.e.,
where Y [ \/ﬁ] i1 ) does not commute with H ; (the standard parabolic equation for ¥ ),
even given all our stringent simplifying assumptions about the local environment (i.e.,
[1—7 ).(,\/i_;l J # 0 even at locations where none of the environmental parameters are
varying). A profound property associated with the fact that the transformation operator

\id does not commute with the Hamiltonian (even in the most trivial of cases) is that the
magnitude of the carrier of downrange flux ¥ Oy must be conserved, while the
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magnitude of the displacement vector i [ is not (ultimately because of beats between
the pressure and the shear waves), and so the Hamiltonian for the former A ; must be

Hermitian, while the Hamiltonian for the latter /7, need not be! Thus, the transformation
from one vector to the other cannot commute with either of the Hamiltonians involved!

= - —-1
(Or more precisely, \/; cannot commute with 4, and Vi4 cannot commute with
H,.)

Recall that making simplifying assumptions about the variability of the environmental
parameters to produce a parabolic equation that is valid for the physical wave function,
but not for the carrier of flux, has a precedent in the acoustic case. At the beginning of
the discussion of the stair step technique in Section 6.2.2, we found that for the range-
independent variable density (Jo # 0 ) scenario,

62
|:§+IODT%:|{I-' k2:|71 0=

—ig—j:\/k§+pDT—‘pD7 KA )4

(As always in this study, the square root operator is understood as an expansion, this time
in o, k—;pD - 61 nz) .) This equation does not generalize to the range-dependent case.
0

To incorporate range dependence, we must consider the carrier of flux Y, which

propagates according to the somewhat different parabolic equation generated by the
Foldy-Wouthuysen transformation. The differences between the propagation equations

reflect differences in the two fields’ conservation properties. |A|2 is conserved relative to

the metric d’R, / £, while | )(|2 is conserved relative to the metric d’R, (see Section

6.2.2). All this forms a prototype for the properties of the elastic field as outlined
immediately above in the first paragraph of this section.

S.2.1.2 The elastic wave equation

Let us therefore proceed to fully develop the corresponding scenario for the elastic wave.
As noted above, the first step is to obtain the parabolic equation for the displacement

vector # . We begin with equation (S.3): (0 7= — pa/ii , substitute the definition of 7
(equation (S.2)), and locally neglect all spatial dependence of A and y to get

A0(0 @) u4a O (=4)  pwa
(/1+,u)i(]]j ﬁl) i pari 0

b

and expanding the gradients
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i 2
(A+y)()e:—x+ﬁT)(£%+D}a 1;1[:—;5 %J ,owzﬂ]}ﬁ 0

B 2
(/l+y)fo2£c—2+(/l o) 5,2 20 (Aw)xaim e,

2
+1,u% FuT+ 1pa

o 0’ =00, .0 -
[(/ +,u)xx+l,u]§+()l +,L1)(Elrax+ 50 Ta (A p)0OE

+Hu+ 1pw’

Now,

is a 3x3 diagonal matrix that is invertible provided f## 0. Also note that A +2u>0
(use A> -2y from reference [156]) and > 0. Note that for this diagonal matrix,

we can take powers and reciprocals simply by taking powers and reciprocals of the
components along the diagonal.

Thus we have the wave equation for the displacement vector  :

2
{Eaa_z+(/]+,u)(ﬁTaiﬁ+ fcaﬂa}a (¢ @0F, O 2 1@)%}@7 0 .(S49)
X X

X

% It is interesting to consider the limit 4/ = 0. We have
[/bb% of A0, %3 2y0 A a0, 1pm2% ii 0 and taking components:
[ Ly, +,1a DTDuT)F pa)u}: 0: AD, Zu+ A ,E(D 1}) P, 0 or
#|&(Day 2u, F 0and | O (0 #) 2547 0, andso (using & =25 we have
[i(]]i ‘) kzﬁz} 0. Now, noting & = [J4/( 0@ ) and multiplying through by the constant 06,

we have [J (]l_j E( QA/-)O) (k 2 / ,0) ?1) 0, which is just the gradient of the (time-independent) acoustic

wave equation.
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S.2.1.3 Formally taking the “square root” of the elastic wave equation

Next, we will “get rid” of £, the operator sitting to the left of 9° / dx” , by multiplying
this equation from the left by £~

However, before doing so, let us address an important issue. In a superficially similar
situation that will come up shortly, we will take pains to do this type of thing in as
symmetric a way as possible. In the present case, the analogous action would be to

multiply (S.49) by E 7 from the right and then also from the left. Let us try to do this,

and see what happens. Multiply the equation above by £ % from the right. For the
diagonal parts of (S.49), it is trivial to see that multiplying from the right is automatically
the same as multiplying from the left. In this case, it turns out that a similar thing

happens when we multiply the non-diagonal part of (S.49) by E % from the right:
S 0 - - ~. 0 .. . . o\ ey Tk
0, 9% s 950 i 07 2w v i |[E
Kde axfmj} [éTax 0 Tj[ ]

X

Thus, the formalism simply kicks £ 7 over to the left. Basically, this is because £ 7 s
diagonal and because the only free index against which to perform matrix multiplication

is on the left. Thus, we are in this case forced to eliminate the coefficient of 9* / dx* in
(S.49) E by multiplying the equation by £~ from the left.

Multiplying (S.49) from the left by £, we have

0’ s = 9 0 - NP . _ 1.
|:ax—2+(/1 +/J)E 1 [éDTa—xxi' )CEXD T‘ﬁ (7{} IJ) U]]Df{. TD/’[ %E 1 pa)2|Ev ]::| i 0’

or formally taking the square root of this equation (with the sign chosen to reflect
downrange propagation)

_ - 0 P
B+ (A4 E‘[éD—)G’rfc—Dj .
_,g_”_ P (A+4) ToxT Tox T)@=A,@.  (S.50)
* +(A+p)E D% @ 2E”
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Formally speaking, this is the parabolic equation for # with the Hamiltonian A, .

S.2.1.4 The Hamiltonian for # is neither Hermitian nor is it the same
as the Hamiltonian for y

Before proceeding, we need to stop and consider a point alluded to earlier. By
multiplying the non-diagonal operator (ﬁ % X o T) from the left by £, we have

created a non-symmetric and more importantly non-Hermitian operator. In other words,
the Hamiltonian for the propagation of # is non-Hermitian—even where A, i, o are all

constants. This implies that the quantity I(ﬁ ' Eiﬁ) d’R, is not conserved during

downrange propagation. To get an intuitive feel for this result, break a basic plane wave

iEpB +ﬁ ei/a@

So

u into components that are pressure and shear waves: u =u, +u, =i, e
(where the time dependence e has been taken out). Now,

ok = I? - 2 ok 1(1; —/;:)B
u Eﬂ?—‘up‘ +|us| +2Re(up0 [ e"” )

or taking jd ’R, , we get something proportional to

Re[é’(lgﬂ —IET)ei(k””_k‘“)xJ +...=5(l€pT —lgsr)cos((kpx —ksx)x) +...

where the ellipses stand for terms that do not vary with the range (they are infinite, but
that does not matter; also note that £, —k  #0 even though the transverse components

are equal because the sound speeds are different). Thus, we pick up beats between the
pressure and shear waves, and # [@ is not a conserved quantity—even for a plane wave
where A, i1, p are all constants! That is the reason why the Hamiltonian A . cannot be
Hermitian.

This allows us to anticipate a very interesting result. At least for constant A, i, 0, there
exists a parabolic equation to propagate u , but it cannot be the same parabolic equation
as that for ¥, because for one-way propagation, ¥ [} is conserved, and so its

corresponding Hamiltonian A , must be Hermitian. As noted above, the fact that ¥

does not obey the parabolic equation for # also implies that as we consider the
transformation jy [l \/zjj u , we will have [ﬁ ﬁ,\/iji J # 0. Finally, note that H X,\/i_lzl will

be Hermitian, although A is not.

S.2.1.5 Evaluating the dyadic £ in the Hamiltonian for i
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Now, let us proceed to evaluate the Hamiltonian A, given in equation (S.50). We have

i — A+ ) -\ A+iu- B}
o _ o gE Ol i $ 0] At A J%? 2 i (851
lax P + pwz ( x+ Ox Ta CJ fl_ 0 roU( )

/1+2 - 1

o Ja T /i

Je )

where the square root is understood as a Taylor series expansion.

Now,
/1,04-&;;1 0 0
£ 0 0
o= 0 PY o |<o0 K o
H 0 0 K
0o o PY
U

and noting that we can take powers of a diagonal matrix by taking powers of its non-zero
components, we have

k, 0 0
NOWGE" =\ 0 k0 |=k =k &% +k (5P +22). (S.52)
0 0 k

Substituting (S.52) into (S.51), we have

dii 1 1})- 0. .0~ 1 1= - 0% .
_la_km\/ (kz —F](Drayﬁ- xa—xD Ta Lk—z— P@D#T sz u . (S.53)

P

This parabolic equation contains an explicit 0/0x in the square root operator (i.e., the
Hamiltonian H . y—even when we remove all spatial dependence on the environmental
parameters A, i and p. This differs from what we found in the acoustic and
electromagnetic cases (0/0x may appear in the transformation between the physical and
Foldy-Wouthuysen fields, but until now not in the Hamiltonian). Fortunately, /0x is
multiplied by the “small” expansion parameter ﬁr, and so we can iterate this equation
and still generate a series that forms a parabolic