
REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-04- 

data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other 
this burden to IDepartment of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-( 
4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failii 
valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  ■ _^ 

Oi?-^ 
the 
ing 

sntly 

1. REPORT DATE (DD-MM-YYYY) 
04/22/2004  

2. REPORT TYPE 
Final 

4. TITLE AND SUBTITLE 
PBG Cavity in NV-Diamond for Large Scale Type II Quantum 

Computing (QC THEMES) 

6.AUTH0R(S) 
Dr. Selim Shahriar 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Research Laboratory of Electronics 
Massachusetts Institute Of Technology 
77 Massachusetts Avenue 
Cambridge, MA 0213 9 

9. SPONSORING /MONITORING AGENCYNAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research 
4015 Wilson Boulevard 
Arlington, VA 22203-1954 

3. DATES COVERED (From - To) 
09/01/2001   -   02/14/2003 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 
F49620-01-1-0520 
5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

20040423 044 
12. DISTRIBUTION / AVAILABILITY STATEMENT 

^^^hte 
13. SUPPLEMENTARY NOTES 

The objective of this project was to investigating the feasibiUty of realizing a type II quantum computer (QC) on a large scale, using 
nitrogen-vacancy color centers in diamond (NV-Diamond). To see the basic mechanism behind this scheme, consider a small volume of 
this medium. A laser beam incident on this volume can interact with all the centers in this volume. However, each center has a transition 
frequency that is sHghtly different from that of the others, a feature known as inhomogeneous broadening. This implies that individual 
centers can be addressed distinctively by tuning the laser.. In order to perform two qubit operations, such as the controlled-NOT (CNOT), 
it is necessary to couple two centers that are spectrally adjacent. One mechanism for such a coupling is the dipole-dipole interaction. 
However, since the spectral neighbors are not necessarily close to each other spatially, it is necessary to enhance this interaction artificially. 
This can be achieved by embedding the centers in a high-Q optical cavity. A key challenge in realizing tiiis scheme is the cavity. If one 
were to embed the NV-diamond crystal inside a bulk-mirror based cavity, tiie residual reflection from the crystal surfaces would degrade 
the Q to an unacceptable level. A photonic band gap (PBG) cavity holds the best promise to overcome this consti-aint. The small mode 
volume of the PBG cavities (on the order of Xa) implies that the coupling of cavity photons to atoms in the cavity will be enhanced by 
three or more orders of magnitude over conventional bulk-mirror based cavity couplings. Another key feature of this approach is that the 
whole substi-ate will contain many QC's that can be operated simultaneously. Such a structure is ideally suited for type II  
15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 

a. REPORT b. ABSTRACT C. THIS PAGE 

17. LIMITATION 
OF ABSTRACT 

Best Availab 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (include area 
code) 

e Copy standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



PBG Cavity in NV-Diamond for Large Scale Type II Quantum Computing 

Grant#: F49620-01-1-0520 
OSP#: 6892565 

FINAL REPORT 

Principal Investigator: 
Dr. Selim Shahriar, Principal Research Scientist, 
Research Laboratory of Electronics, MIT 

ABSTRACT 
The objective of this project was to investigating the feasibility of realizing a type II quantum computer 
(QC) on a large scale, using nitrogen-vacancy color centers in diamond (NV-Diamond). To see the basic 
mechanism behind this scheme, consider a small volume of this mediimi. A laser beam incident on this 
volume can interact with all the centers in this volume. However, each center has a transition frequency 
that is slightly different from that of the others, a feature known as inhomogeneous broadening. This 
implies that individual centers can be addressed distinctively by tuning the laser. . In order to perform 
two qubit operations, such as the controUed-NOT (CNOT), it is necessary to couple two centers that are 
spectrally adjacent. One mechanism for such a coupling is the dipole-dipole interaction. However, since 
the spectral neighbors are not necessarily close to each other spatially, it is necessary to enhance this 
interaction artificially. This can be achieved by embedding the centers in a high-Q optical cavity. A key 
challenge in realizing this scheme is the cavity. If one were to embed the NV-diamond crystal inside a 
bulk-mirror based cavity, the residual reflection from the crystal surfaces would degrade the Q to an 
unacceptable level. A photonic band gap (PBG) cavity holds the best promise to overcome this constraint. 
The small mode volume of the PBG cavities (on the order of X^ ) implies that the coupling of cavity 
photons to atoms in the cavity will be enhanced by three or more orders of magnitude over conventional 
bulk-mirror based cavity couplings. Another key feature of this approach is that the whole substrate will 
contain many QC's that can be operated simultaneously. Such a structure is ideally suited for type II 
quantum computing on a large scale. Such a QC may enable efficient computation of complex fluid 
dynamics, for example. In order to attain this objective, we proposed to use a variation of the method 
demonstrated by Masuda et al. to realize the PBG structure necessary for quantum computing. First, a 
custom-mask would be made using lithographic techniques. The pattern on the mask would then be 
transferred to an NV-diamond crystal surface using chemical etching. The resulting structure would consist 
of a two dimensional periodic array of holes, with periodicity of the order of the wavelength (X~637 nm) 
of interest. The symmetry would be broken by replacing a 3X3 grid of these holes with a hole of a larger 
diameter. The area around this anomalous hole will constitute the cavity, with a mode volume of the order 
of a few X^. Many such cavities would be formed on the same substrate. Immediately upon the start of this 
project, the PI accepted a faculty position at the Northwestern University, Evanston, IL. As such, the 
duration of the effort was reduced to one year, with a no cost extension for one semester. Given the 
disruption in the personnel availability, as well as the move of the experimental facilities, the effort was 
limited in its scope, emphasizing (a) modeling of cavity parameters, (b) identification of lithographic steps, 
and (c) development of algorithms that could benefit from the specific QC model described above. 
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2.   REPORT OF INVENTIONS 

Demonstrated technique for near-perfect spin alignment in NV-diamondfor 
applications to quantum computing 
Developed photonic band-gap cavity design in NV-Diamondfor coupling quantum 
bits 
Developed a method for creating entanglement between two qubits using transfer of 
quantum coherence via non-degenerate sub-levels, a process essential for realizing a 
quantum computer in NV-diamond 
Developed a method for realizing controlled-NOT gates in NV-diamond via direct 
dipole-dipole coupling between qubits that are spatially adjacent, andean be tuned to 
become spectrally adjacent using time-dependent magnetic fields. 
Developed a method for coupling quantum bits robustly using cavity dark states 
Developed a detailed model for quantum computing using NV-diamond 



3.   SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS 

The objective of this project was to investigating the feasibility of realizing a type II 
quantum computer (QC) on a large scale, using nitrogen-vacancy color centers in 
diamond (NV-Diamond). To see the basic mechanism behind this scheme, consider a 
small volume of this medium. A laser beam incident on this volume can interact with all 
the centers in this volume. However, each center has a transition frequency that is 
slightly different from that of the others, a feature known as inhomogeneous broadening. 
This implies that individual centers can be addressed distinctively by tuning the laser. . 
In order to perform two qubit operations, such as the controUed-NOT (CNOT), it is 
necessary to couple two centers that are spectrally adjacent. One mechanism for such a 
coupling is the dipole-dipole interaction. However, since the specfral neighbors are not 
necessarily close to each other spatially, it is necessary to enhance this interaction 
artificially. This can be achieved by embedding the centers in a high-Q optical cavity. A 
key challenge in realizing this scheme is the cavity. If one were to embed the NV- 
diamond crystal inside a bulk-mirror based cavity, the residual reflection from the crystal 
surfaces would degrade the Q to an unacceptable level. A photonic band gap (PBG) 
cavity holds the best promise to overcome this constraint. The small mode volume of the 
PBG cavities (on the order of A,^) implies that the coupling of cavity photons to atoms in 
the cavity will be enhanced by three or more orders of magnitude over conventional bulk- 
mirror based cavity couphngs. Another key feature of this approach is that the whole 
substrate will contain many QC's that can be operated simultaneously. Such a structure 
is ideally suited for type II quantum computing on a large scale. Such a QC may enable 
efficient computation of complex fluid dynamics, for example. In order to attain this 
objective, we proposed to use a variation of the method demonstrated by Masuda et al. to 
realize the PBG structure necessary for quantum computing. First, a custom-mask would 
be made using lithographic techniques. The pattern on the mask would then be 
transferred to an NV-diamond crystal surface using chemical etching. The resulting 
structure would consist of a two dimensional periodic array of holes, with periodicity of 
the order of the wavelength (A,~637 nm) of interest. The symmetry would be broken by 
replacing a 3X3 grid of these holes with a hole of a larger diameter. The area around this 
anomalous hole will constitute the cavity, with a mode volume of the order of a few X . 
Many such cavities would be formed on the same substrate. Immediately upon the start of 
this project, the PI accepted a faculty position at the Northwestern University, Evanston, 
IL. As such, the duration of the effort was reduced to one year, with a no cost extension 
for one semester. Given the disruption in the personnel availability, as well as the move 
of the experimental facilities, the effort was limited in its scope, emphasizing (a) 
modehng of cavity parameters, (b) identification of lithographic steps, and (c) 
development of algorithms that could benefit from the specific QC model described 
above. 

3.1     Cavity Dark States For Robust Coupling Of Quantum Bits 

In recent years, there have been a wide range of activities aimed at quantum 
computing. A quantum computer with a large number of bits may help solve certain 



problems much more efficiently than its classical coimterpart''^. While the theoretical 
work"*''^ has progressed rapidly, the experimental reaUzation '"*''' of a many bit quantum 
computer remains to be a daunting challenge''*''^. It is not clear, for example, whether 
NMR or trapped-ion based quantum computing can be scaled to a large number of 
qubits. As such, novel approaches are being proposed and pursued by many groups. 
Some of these proposals involve a collection of distinct quantum systems (such as atoms, 
molecules, or quantum dots) that are not directly coupled to one another. Instead, an 
effective coupling is induced via interaction of these quantum systems to an optical 
cavity. 

Pellizari et al. proposed a scheme where each atom has a pair of identical A- 
system transitions'. To summarize this scheme briefly, consider the case where two 
spatially separated but spectrally identical atoms are coupled using a cavity. This is 
illustrated in Figure 1, where we have shown only one of the two A transitions in each 
atom. Here, one leg of the A transition in each atom is simultaneously excited by the 
photons of the cavity mode, while the remaining legs are excited by classical laser beams, 
applied externally, as shown in fig. la. In the limit where the cavity mode has only zero 
or one photon, the atoms-field coupled states are shown in fig. lb. This system has a 
non-trivial dark state, which can be written as a superposition of the three states that do 
not contain any component of the atomic excited state, as well as a trivial dark state 
(shown uncoupled at the bottom of the figure). Such a system can be used to transfer 
quantum information between the two atoms, using adiabatic following, and also to 

•  •718 20 
perform quantum logic when each atom has a pair of identical A transitions ' '  . 

During the transfer, the system evolves adiabatically, while in a superposition of 
these dark states. As such, this process is impervious to any decoherence caused by 
spontaneous emission firom atomic excited states. However, the non-trivial dark state 
contains a component corresponding to one photon in the cavity. As such, any cavity 
decay causes the system to decohere. Since the cavity lifetime is often at least as short as 
the atomic excited state Ufetime, the potential benefit of using the dark state is mitigated 
substantially. Furthermore, there are situations where the cavity decay rate is orders of 
magnitude bigger than the linewidth of the atomic system, so that the benefit of using the 
dark state is minimal. For example, we have recently proposed a scheme where this 
approach can be used to couple spectrally distinct atoms in a spectral hole burning crystal 
for quantum computing^''^^. One candidate system for implementing such a scheme is a 
cryogenically cooled, thin layer of Pr:YSO, embedded in a cavity. In this case, the atomic 
excited state is very longed lived (160 ^isec), compared to typical cavity Ufetimes (lO's 
of nano seconds). '^^ As such, avoiding the atomic excited state at the cost of populating 
the photon mode is counter productive. 

We have developed a solution to this problem, by using a scheme where the 
information exchange takes place through a dark state of the cavity, which contains no 
cavity photons, while a finite population of the atomic excited state is allowed for a short 
time. To see how such a state might be formed, consider the level diagram of figure 2. 
The objective here is to find a dark state that does not contain the middle state (with 1 
photon in the cavity), and contains as small a firaction as possible of the states with 
components of the atomic excited state. By detuning the classical fields, while keeping 
the cavity resonant, we find that we can produce a state which has no photons in the 
cavity mode: a cavity dark state.  This state does not contain any significant component 



of |bib2l>, and has a small component (proportional to |Q/5p«l) of states containing the 
atomic excited states. This state is produced by combining the strong-field seeking 
dressed states corresponding to the two-level transition in each atom, in the limit where 
|Q/6p«l. Explicitly, the cavity-dark-state is given by: 

|Z)C)=^Q/|«,6,0> + ^|c,63 0>l-^f|V2 0> + ^|*iC,0) 

Since this state does not contain any photons, it is impervious to the cavity decay, in the 
same manner that a conventional dark state is unaffected by atomic decay. Of course, 
this state is not completely dark with respect to the atomic decay. However, the effect of 
atomic decay is reduced by a factor of |Q/5p, which can be made small by increasing the 
detuning. Moreover, since the atomic decay rate in Pr:YSO is much smaller than the 
decay rate of the cavity, this state is particularly suited for our scheme. 

The potential success of this model depends strongly on the details of the 
adiabatic following. It is necessary to determine the conditions under which the system 
can be made to evolve in this state during the counter intuitive pulse sequence used for 
the transfer. We have looked at this issue in detail, and have identified conditions under 
which the transfer takes place in a state that is very close to this cavity dark state. 

In general, during the adiabatic passage, the system is susceptible to decoherence 
from several sources. To minimize decoherence effects, it is desirable to complete the 
adiabatic passage as quickly as possible. But, as the passage time becomes shorter, 
nonadiabatic effects are introduced. While nonadiabaticity is not a decoherence effect, it 
can of course cause the coherent transfer to fail, and it can cause the system to become 
more susceptible to decay as a result of populating unstable states. To use adiabatic 
passage for coherent transfer, the actual passage time must be carefully optimized: fast 
enough to be adiabatic, but slow enough to avoid significant decay. 

The defining parameters of the system are the vacuum Rabi frequency g, the cavity 
decay rate K, and the spontaneous emission rate y. The vacuum Rabi frequency ^is 
determined by the cavity geometry and the strength of the atomic dipole moment; 
K depends on the cavity geometry, the reflectivity of the cavity mirrors, and the presence of 
scattering centers within the cavity; y is determined from the atomic dipole moment (we 
will assume that the decay rate inside the cavity does not differ significantly from the free 
space rate). Here, we assume that these parameters are fixed, and determine how a variation 
of the control parameters can be used to improve the quality of adiabatic passage. 

For notational simplicity, we rename the five basis states of figure 3 as follows: 
|l>=|abO>, |2>=|cb0>, |3>=|bbl>, |4>=|bc0>, |5>=|baO>, as shown. Consider a situation 
where the system is in the state |1> at t=0. The counter-intuitive pulse sequence is 
applied as follows: Qi is kept zero and fill is turned on for a duration Ti. At t=Ti, Q\ is 
also turned on over a duration T while Qi is turned off. At t=Ti+T, Cli is also turned off 
over a duration T2, and the operation is complete at t=Ti+T+T2. . Obviously, the transfer 
has to take place during the time when both fields are non-z;ero, i.e., during the interval T. 
Figure 3a shows the energies of the five eigenstates of the system during this interval. 
Here, the unit of energy is chosen to be i^g=l, the peak value of Qi and Qiis Qo=10g, 



and the detuning is 6=-100g. Note that the states |2>, |3> and |4> are degenerate (in the 
rotating wave frame) in the absence of interactions. We have chosen this to be the zero 
of energy in this plot. As the laser beams are turned on, these three states evolve into a 
band of three dressed states, which are shown on an expanded scale in figure 3b. 
Similarly, the states |1> and |5> are degenerate in the absence of interactions, with a 
energy equaling 6. As the laser beams are turned on, these two states evolve into another 
band of two dressed states, which are shown on an expanded scale in figure 3c. 

It is difficuh to express the eigenvectors corresponding to these levels in exact 
analytic form. However, one can easily derive the approximate form of these states by 
using well-known expressions for two-level dressed states.^^ Furthermore, this approach 
allows us to derive approximate analytic expressions for the energy levels as well. In the 
case considered here, the system starts out in the state denoted by |a> (the solid line in fig 
3c). What we need to determine are the conditions under which the system will stay in 
this state. The state that it can couple to via non-adibaticity is the one denoted by |P> (the 
dotted line in fig 3c), since it appears to become degenerate with the desired state at the 
middle of the interaction time. 

To interpret the eigenstates and the eigenenergies, consider first the state |5> 
interacting with state |4>. Assuming that the detuning is much greater than the Rabi 
frequency, we get the light shifted state: 

where the normalization is omitted since it is approximately unity. At t<Ti, we thus have 
I a) = 11) and] /?) = 15') with an energy difference given by: 

e^a\H\a)-{p\H\p) = -'^. 

As Qi is turned on, the state |1> is also light shifted, via its interaction with state 
|2>, producing the state: 

I /    I /    2^1 / 
However, the states \V> and |5'> are not fiilly decoupled from each other. We proceed in 
steps to determine the eigenstates la> and |p> when both laser fields are nonzero. 

Consider the coupling of the light shifted state |r> to the intermediate state |3>, 
mediated by the vacuum Rabi frequency, g. The coupling rate is: 

g,=2(r|//|3) = ^-2-(2|if|3> = ^ 
51      \ I     I  /    2^      \  '     '  /     2^ 

with a detuning (i.e., the energy difference between \V> and |3>, under the rotating wave 
transformation) given approximately by 5.   Since this detuning is much larger than the 
coupling strength gi the state |r> is fiirther light-shifted by this interaction, producing the 
state: 

Ml 
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Similarly, the state |5'> interacts with state |3> to produce the light-shifted state: 

|1") = |1') +—13). I   /    I /    2^1 / 



|5") = |5') +—13) 

where g2=2<5'|H|3>=Q2g/25.   The energy difference between |1"> and |5"> is now 
given by: 

A = (Q^-Qf)-[^^ + ^j«(Q^Qf)/4^. 

The states |1"> and |5"> couple to each other as well, since each contains a 
component of state |3>. The coupling rate is: 

.2 

\   '     ^    '    15    15    8^' 
Diagonalizing this interaction G in the presence of the detuning A yields the eigenstates: 
|a) = cos^-|r'>-sin^-|5") 

|y?) = sin^-|r'> + cos^-|5") 

where tan2^ = G/A, and the energy separation is given by £• = vA^ + G^ . 
Before proceeding further, it instructive to consider this result in the limits. Just 

at the onset of the active period T, we have Qi=0, so that G=0 and A=j;i2^/46, yielding 
s=Q2^/45, as determined before. Since 6=0, the eigenstates are given by 
|(x>=|r'>=|r>=|l> and |P>=|5">=|5'>, again as determined before. At the end of the 
period T, we have have Q2=0, so that G=0 and A=Qi^/46, yielding z=Q.\l^h, as expected. 
Now 6=7t/2 and the eigenstates are given by -|a> =|5">=|5'>=|5> and 
|P>=|l">=|i'>=|l>, as wanted. Finally, at the cross-over point, Q.\=Q.2^Q.jAl, so that 
A=0 and G=g^f^o^/85^ yielding s= g^Qo^/86^ in close agreement with the energy 
separation shown in figure 4, which is an expanded view of the anti-crossing region of 
figure 3c. Here 6=7r/4 and the eigenstates are: 

k) = ;^<r>-|5"))-iir>-|5'» 

l^)=;^(|'">+|5"»=;^(|iM5') ,+«"• 
2 V 15      j 

Thus, the state |a> is exactly dark with respect to the cavity mode at this point. 
During adiabatic following, the system parameters must change slowly compared 

to the energy separation between these two eigenstates. More quantitatively, we can say 
that the rate of mixing between these two states, Qm< must be constrained by: 

where t, is the adiabaticity parameter. Typically, a value of ^=10 or greater ensures that 
the system will stay primarily in the state |a> during the evolution. For example, in the 
case where s is kept constant during the evolution, the adiabaticity constraint can be 
interpreted simply as the transit time broadening of the energy levels due to the finite 
time of interaction. The inverse of the transit time (which is characteristic of the rate of 
mixing between the dressed states) then must be less than the energy separation s by the 



factor of ^ in order to assure that the levels do not get too close to each other. In the case 
at hand, however, s varies with time. In order to minimize the time necessary for the 
adiabatic transfer, we adopt the method where the rate of change of the two Rabi 
frequencies are varied dynamically as the value of s changes. 

In order to constrain time variations of the two Rabi frequencies (for 
computational simplicity), we consider an equivalent model where the two laser beam 
profiles are fixed in time, and vary in space sinusoidally (or cosinusoidally), extending 
over a distance L: Qi(x)=noSin(x7!/2L), n2(x)=QoCos(x7i/2L). The atom plus cavity is 
then assumed to travel through the field profile, at a speed v(t) that varies with time. 
Once the exact functional form of this time varying speed is determined, the total travel 
time T is foimd by inverting the relation: 

T 

I=Jj/-v(0. 

In order to determine v(t), we estimate first the non-adiabatic coupling rate, QNA, 

using the explicit expressions for the eigenstates determined above. The resulting 
expression is quite cumbersome. In order to simplify further, we note first that: 

G    „_._.,.^.       „_ g 
2 

tan(2^) = —= 77tan(;zx/Z);       TJ =        . 

Given that TJ is very small, we can identify two distinct zones during the adiabatic 
transfer. For a very small zone L/2-d/lO<x<L/2+d/lO (where d=r]L/7i) around the center 
(x=L/2), we have G»A«0, so that 9«7i/4 and s«G. Once we get away from the center by 
a distance of more than ±lOd we have A»G, so that s«A, Cos(9)«l, and 
Sin(0)«0«G/2A. The velocity in the intermediate zone can be estimated via 
interpolation. The resulting total time for adiabatic transfer is given by T» ^9smm, where 
Emin is the minimum separation between the energies of the eigenstates, given by 
^Q^/4^, as determined before. For 4=10, we have verified via numerical methods that 
this value of T results in nearly perfect adiabatic transfer. 

As an explicit example, consider the case where Qo=g=5/3, so that all our 
approximations remain valid. We then have s„,i„^10'^g, and the time for adiabtic transfer 
is T^12^''. This is about an order of magnitude slower than the time needed for the 
Pellizari scheme. However, the effect of cavity decay, integrated over the transfer time, 
is now much smaller. Explicitly, the maximum population of the state |3> is about 
0.4X10"^, as compared to 1/3 for die Pellizari case. The effective rate of decoherence due 
to cavity photon decay is thus reduced by nearly three orders of magnitude. Thus, the 
cavity dark state described here achieves the desired transfer of quantum information 
without being affected significantly by the cavity decay, and yet does not take much 
longer than the original Pellizari scheme. 

To summarize, we have shown that two multilevel atoms can perform quantum 
communication with each other via interaction with an enclosing cavity containing 
virtually no photons at all times. The physical mechanism is analogous to the way 
populations can be exchanged between the extremal states in a three level system via 
adiabatic following, without populating the intermediate states. The combined system of 
the two atoms, the cavity, and two laser beams contains a dark state corresponding to the 



cavity in its ground state. Using a counter-intuitive pulse sequence, quantum information 
can be transferred adiabatically from one atom to the other via this cavity dark state. This 
process can be used to circumvent the effect of cavity decay in a quantum computer 
formed by interconnected qubits. Finally, it should be possible to generalize this model 
to other situations where a damped channel is used to couple stable systems. 
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Figure 1. a) Illustration of the coupling of two atoms using the dark resonance 
inside a cavity Here, g is the vacuum Rabi frequency of the cavity, Qi(Q2) is the 
Rabifrequency ofthefirst(second) laser beam, b) The atom cavity composite 
states (rotating wave frame) corresponding to two of the closed transition 
manifolds having a maximum ofl or 0 cavity photons. The ket notation for the 
composite states is indexed by the internal states of the first and second atoms 
followed by the photon number in the cavity mode. 
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Figure 2. Illustration of the excitation scheme needed to implement a cavity dark state. As 
shown in the top diagram, the classical laser beams are detuned, while the cavity is kept 
on resonance. The bottom diagram shows the same situation in the rotating wave frame. 
The state \bib20> (not shown) is still the trivial dark state. 
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Figure 3. Illustration of the dressed states corresponding to the system of two atoms 
coupled to the cavity, as functions of the interaction interval during which both laser 
pulses are present, (a) All five dressed states on the same scale (b) Expanded view of the 
dressed states that evolve adiabatically from/to the states \2>, \3> and \4> (c) Expanded 
view of the dressed states that evolve adiabatically from/to the states \1> and \5>. 
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Figure 4. Expanded view of the anti-crossing of the dressed states at the center. The 
separation at the center is about 1.2xl0'\ in close agreement with the analytical result of 
1.25x10'^, both expressed in units of ^. 



3.2 Controlled-NOT using Direct Dipole-Dipole coupling in NV-Diamond: 

If the effective density of color centers is high, then one can make use of the dkect 
dipole-dipole coupling between color centers. The basic dipole-dipole coupling scheme 
has been developed by affiliate members of our project. Briefly, two atoms (or color 
centers) must be identified that are spatially separated by a distance of less than X/IO 
where X is the optical wavelength of a convenient Raman transition. The optical 
transitions of the two atoms must also be close enough that components of the Raman 
transitions on neighboring atoms can be tuned to the same wavelength on demand using 
for example magnetic fields. 

For illustrative purposes, consider an existing sample of diamond with N-V color 
centers with dipole allowed zero-phonon optical transition at 637 nm. The N-V center 
concentration of this diamond (on loan to us) is -30 ppm, which corresponds to 
5 X lO'* centers/cc. To achieve a high-fidelity CNOT using dipole interactions, a spatial 
separation of less than X/12 between centers is assumed, since this gives an optical line 
splitting of 10 times its homogeneous linewidth (of 50 MHz). In a volume of (k/12) 
there are about 900 centers. Based on the 750 GHz inhomogeneous width, this gives an 
average spectral separation of 1.2 GHz (Fig. 1). Using Zeeman shifts, this frequency 
offset can be spanned with a variable magnetic field, tuned over a 0.6 kG range. In this 
example, operations would be performed on the time scale of nanoseconds. Given the 
spin lifetime of 0.1 msec in N-V diamond, this translates to 1000s of operations per spin 
lifetime. 

The experiments can proceed in several stages of increasing difficulty, using 
previously demonstrated techniques wherever possible. In the first stage, individual N-V 
color centers can be observed at room temperature in a lightly doped sample, as 
previously demonstrated elsewhere. This can be accomplished two ways. First, the 
sample can be flood-illuminated with an argon laser beam at 514 nm. After passing 
through a holographic notch filter, the fluorescence can be imaged onto a single-photon 
grade image intensifier. The output of the intensifier can in turn be imaged onto an 
integrating CCD camera (ICCD)(see Fig. 2a.) To detect images at the single photon level, 
the output of the camera can be input to a real-time frame accumulator and image 
processor card. This imaging system can be used to identify interesting regions of the 
sample and for day-to-day repeatability by insuring that the same sample location is 
probed each time. 
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Figure 1. Illustration of spectral density of N-V color centers in diamond in a volume of 
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Figure 2. (a) Diagram of experimental setup for probing individual color centers in a 
diamond sample of moderate doping concentration. Initially the scanning laser beam 
will be replaced by flood-illumination. The integrating video camera (ICCD) will be 
followed by a frame accumulator, (b) Experimental setup of near-field excitation of 
coupled dipoles. To perform logic operations better, the video camera will eventually be 
replaced by a higher quantum efficiency avalanche photodetector (APD). 

Next, the flood-illumination can be replaced by a focused argon laser spot that is 
steered using a 2-D acousto-optic angle scanner (AOM), where the angle is converted 
into position by a microscope objective lens. This scanner is capable of slow raster scans 
to verify the local spatial distribution of color centers, but can primarily be configured to 
steer to a particular angle, so as to illuminate a single color center. Fluorescent light from 
this color center can then be collected and imaged onto the photon-counting camera 
system. Once this system has been tested at room temperature, the experiment can be 
repeated at liquid helium temperature by inserting the sample, with objective lenses, into 
acryostat. 

After the first low temperature test is complete, the diamond sample can be 
replaced by one with a higher N-V concentration such that there will be 100-1000 color 
centers within a focused laser spot. In this case the color centers can only be resolved by 
using both spatial and spectral techniques and the argon laser illumination will be 



replaced by a dye laser tuned within the zero phonon line. As before, a holographic notch 
filter can be used to reject scattered laser light and detection will be accomplished using 
phonon sideband fluorescence. Alternatively, backscattered fluorescence can be used for 
detection, wherein the laser-focusing objective also collects the florescence, which is then 
diverted by a beamspUtter onto the photon-counting camera system using auxiliary 
imaging optics. 

Within a laser beam focal volume on the order of X^, most atoms with similar 
spectral response will be too far apart to experience large dipole-dipole interactions. 
However, one in 100 should have interactions large enough to split an optical absorption 
line by more than its width. This ratio can be improved by fmdmg atoms whose 
fluorescence intensity falls off at the same rate when the focused laser spot is moved 
slightly in the x or y directions. The image subtraction capability available in the image 
accumulator/processing system can facihtate this. Once a suitable pair of color centers 
has been identified, a CNOT experiment can then be performed, noting that diamond N- 
V color centers are exceptionally stable and are expected to remain unchanged in 
properties, even with repeated laser excitation. Initially, a quasi cw experiment can be 
performed wherein it is verified that the splitting of an absorption line can be turned on or 
off by changing only the ground state which the control atom occupies. This will 
demonstrate that a CNOT is possible. Next a pulsed version of a CNOT can be 
implemented. It is anticipated that this pulsed experiment will require higher 
fluorescence detection efficiency. At this point, the single-photon imaging system can be 
replaced by a single-photon counter, based on an avalanche photodiode (APD). The 
APD has more than an order of magnitude greater photon efficiency at wavelengths 
above 630 nm. (see Fig. 2b). 

To couple more than one pair of color centers, a higher N-V center concentration 
is needed. In this case, there will be more color centers within a focused laser spot than it 
will be possible to resolve spectrally. The laser focusing lens will have to be replaced by 
a near field imaging system consisting of a tapered fiber optic tip with a tip diameter on 
the order of X,/10. Typically these tips are made by pulling a length of silica fiber on a 
modified commercial pipette puller. As shown in Fig. 2b, the x-y-z position of this tip 
can be controlled by a piezoelectric transducer (PZT), having a cylindrical shape and a 4- 
segment electrode. In this case fluorescence detection must be accomplished with an 
objective lens on the opposite side of the sample. 

The goal of these experiments is to use previously demonstrated techniques to 
perform single color center spectroscopy of N-V diamond in the near dipole-dipole 
coupling regime. Once this has been achieved, the feasibility of a CNOT can be 
demonstrated spectroscopically by adjusting initial ground state populations and applying 
the appropriate pulses. 

3.3      FDTD Based Design of a Photonic Band Gap Cavity in an NV-Diamond 
Substrate 

One of the most important criteria in making a quantum computer is that one must 
be able to realize a CNOT operation between two nearest-neighbor qubits.   We have 



identified in explicit detail two different methods for achieving this objective in NV- 
diamond. The first method, applicable to high-density of color centers, uses the direct 
optical dipole-dipole coupling between two qubits that are very close to each other 
spatially, and can be turned into spectral neighbors via applying a magnetic field. This 
method is somewhat limited in the number of bits that can be coupled. The second 
method, applicable to low-density of color centers, uses a high-finesse optical cavity, 
resonant with a transition common to both bits, to enhance the optical dipole-dipole 
coupling. The number of qubits that can be reaUzed this way can in principle be as high 
as 10^ While such a high number would be difficuh to realize in practice, it should be 
possible to reahze a more modest number (-300) qubits without much trouble. 

For efficient cavity-induced coupling, a high value of Q (2X10^) is achievable 
using the so-called super-mirrors, manufactured by the Research Electro Optics, Inc., of 
Boulder, CO. However, this number is virtually impossible to achieve in the presence of 
NV-diamond between the cavity mirrors. Even a small amount of loss resulting, for 
example, from Fresnel reflections will reduce the Q by orders of magnitude. As such, the 
idea of using bulk super mirrors of this type is essentially impracticable. 

In principle, one could overcome this problem by making the cavity volume small 
enough so that the ratio of the vacuum rabi-frequency to the cavity decay rate becomes 
favorable. However, in order to allow unimpeded access of the control-lasers, the 
separation between the mirror surfaces has to be at least 5 to 10 times the wavelength of 
interest (X~637 nm). Furthermore, the machining process used to taper the tips of the 
mirrors constraints the lateral dimensions to at least a 100 jam. Under these constraints, it 
is virtually impossible to make the vacuum rabi fi-equency stronger than the anticipated 
poor cavity decay rate in the presence of reflection losses firom the surfaces of the 
embedded crystal. A photonic band gap (PBG) cavity holds the best promise to 
overcome this constraint. The small mode volume of the PBG cavities (on the order ofk^ 
) implies that the coupling of cavity photons to atoms in the cavity will be enhanced by 
three or more orders of magnitude over conventional bulk-mirror based cavity couplings. 
As a result, the number of operations that can be performed before decoherence will be 
higher by nearly the same ratio. 

Another key feature of this approach is that a large number of PBG cavities can 
be realized on the same substrate. Intercoupled qubits inside each cavity will constitute a 
single QC. As such, the whole substrate will contain many QC's that can be operated 
simultaneously. As mentioned above, such a structure is ideally suited for type II 
quantum computing on a large scale. 

We have developed a concrete design to realize a PBG cavity in NV-Diamond in 
order to demonstrate the feasibility of a QC array where (i) each QC will have a large 
number of coupled qubits, (ii) the total number of QC's can be very high, as suited for 
type II quantum computing, and (iii) many operations can be performed before 
decoherence. We will use a variation of the method demonstrated recently by Masuda et 
al. to realize the PBG structure necessary for quantum computing. First, a custom-mask 
will be made using lithographic techniques. The pattern on the mask will then be 
transferred to an NV-diamond crystal surface using chemical etching. The resulting 
structure will consist of a two dimensional periodic array of holes, with periodicity of the 
order of the wavelength (X~637 nm) of interest. The symmetry will be broken by 
replacing a 3X3 grid of these holes with a hole of a larger diameter. The area around this 



3 
anomalous hole will constitute the cavity, with a mode volume of the order of a few X 
Many such cavities will be formed on the same substrate. An important element of our 
quantum computing protocol requires that the cavity resonance frequency be tunable 
rapidly, in order to move the coupling process from one set of spectral neighbors to a 
different one. In order to achieve this capability, the anomalous hole in the center of the 
cavity will be filled with a non-linear glass. The cavity frequency then can be tuned 
simply by applying a suitably intense laser beam, which can be done very rapidly. 

In order to determine the proper parameters suitable for our model of quantum 
computing, it is necessary first to simulate this cavity design. There are two established 
ways of performing these simulations: the Electromagnetic Variational Principle (EVP) 
method and the Finite Difference Time Domain (FDTD) method. We have developed 
codes for both methods, and studied the merits and demerits of both methods as 
pertaining to our specific task here, keeping in mind that we will need to incorporate the 
Jaynes-Cummings model of quantized fields at some point, in order to consider the 
coupling between a single photon and a single color center. 

The Electromagnetic Variational Principle method: 

The starting point for this method is the Maxwell's Equations in the absence of any 
excess charge or current source: 
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Assuming the fields to be harmonic: 

H(r,0 = H(ry' 

we get the following pair of equations: 

1(0, 
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These equations can be recast in the form: 
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Where the operator E operating on any vector A is defined as: 
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The corresponding electric field is determined by: 
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^ -ic ^ 

COS{Y) 
VxH(r) 

(5) 
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Equation (5) can be shown to be formally equivalent to the time-independent 
Schroedinger Equation (SE) for the wavefunction of a particle in the presence of a 
potential. As is well-known, the lowest energy eigenstate corresponding to the SE can be 
determined by using the variational method. Recalling briefly, in this method, one starts 
with a best-guess wavefunction, and computes the corresponding energy. The parameters 
of the wavefunction are then varied in the direction that reduces the energy, thus 
eventually reaching a global minimum as a function of these parameters. The 
corresponding wavefunction is the lowest energy eigenstate (LEE). This method then 
can be repeated to find the second lowest energy eigenstate (SLEE), by insisting that the 
state is orthogonal to the LEE. The process can continue indefinitely to find all the 
eigenstates of the system. The normal modes of H(r) as constrained by eqn. 5 can be 
fovmd by applying the same variational method. The corresponding E(r) is then given by 
equation 6. 

This method is particularly suited for solving stationery problems, having some 
degree of symmetry. Specifically, we have investigated a reduced version of our 
proposed PBG-cavity design using this method, as illustrated in figure 1. Here, the top 
figure (la) shows a two dimensional arrangement of dielectric cylinders, with a defect 
site at the center, represented by a cylinder with a reduced diameter and/or a smaller 



index. We assume that the cylinders are of infinite length in the z-direction. A typical 
field pattern corresponding to this cavity is shown in figure lb. As can be seen, the mode 
pattern around the defect site is similar to what was anticipated in the design proposed. 
However, non-vanishing components of the field elsewhere is also seen to be present. In 
practice, these non-vanishing components are not likely to affect the basic manner in 
which the cavity is supposed to be used for coupling qubits. 

The next step of the simulation will be to find the field pattern when the cylinders 
are capped in the z-direction by a pair of confining layers, as outlined in our model. 
Furthermore, we need to determine the dynamical behavior (such as the lifetime of the 
mode, which in turn determines the Q). The EVP method is not well suited for this 
purpose. As such, we have also been exploring the more powerful — albeit less efficient 
— method of FDTD, as described below. 

Figure 1: Illustration of the mode pattern in a two-dimensional PBG structure with an embedded defect. 
Here, the top figure (A) shows a two dimensional arrangement of dielectric cylinders, with a defect site at 
the center, represented by a cylinder with a reduced diameter and/or a smaller index, or completely absent. 
We assume that the cylinders are of infinite length in the z-direction. A typical field pattern corresponding 
to this cavity is shown in the bottom figure (B). As can be seen, the mode pattern around the defect site is 
similar to what was anticipated in the design proposed in figure 8. However, non-vanishing components of 
the field elsewhere is also seen to be present. In practice, these non-vanishing components are not likely to 
affect the basic manner in which the cavity is supposed to be used for coupling qubits. 



The Finite Division Time Domain metliod: 

Consider a general, one dimensional scalar wave equation of the form: 

1 d^u      2 d^u 
= c 

The function u(x,t) can be expanded about (x+Ax) in a Taylor series of the form: 

Ax^  d^u Ax*  d^u , 

where 
x^ = /Ax,   t„ = nAt 

(9) 

It can also be expanded about (x-Ax) in the form: 

X    A    ^1 Ax^   d^u. 
u(Xi-Ax,t„) = u(Xi,t„)-Ax-—l^,^ "^~2~'ac^'"'■'" 

Ax'   d^u Ax"*  d'^u . 

(10) 

By combining equations 8 and 10, and rearranging terms, one gets: 
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By analogy, one can then also write: 
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Substituting (11) and (12) into the starting equation, 7, one finds: 

(13) 
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(Ax) 

The so-called magic time step (At=Ax/c), which equates the temporal and spatial scales, 
one can find the spatio-temporal grid recursive relation: 

(15) 

For   a plane wave traveling in the z-direction, the electric and magnetic field 
components follow scalar equation of the form eqn. 7: 

(lo) 

As such, both equations in (16) can be solved recursively by setting up a set of temporal 
and spatial grids. Of course, this approach can be generalized to four dimensions (three 
spatial and one temporal) in order to solve an arbitrary problem. Note also that any 
boundary conditions can also be accommodated in this method. 

Generally speaking, the FDTD method is the more powerful one, since it has 
virtually no constraints. The drawback of this "brute-force" method is that the 
computational power necessary can become prohibitive. Nonetheless, we have to resort 
to this approach in order to determine the dynamical behavior, such as the lifetimes of the 
modes, which in turn determine the Q, for the three-dimensional confinement. Briefly, 
the EVP method would be first used to determine the mode structure. This mode will 
represent the initial condition in the FDTD code. The FDTD evolution will then run 
indefinitely, while keeping track of the field amplitude as a fiinction of time. The 
resulting data will then be analyzed to determine (a) whether there is more than one time- 



constant involved in the decay process, and (b) the dominant rate of decay. Of course, 
our goal would be to find the optimal parameters corresponding to the largest ratio of the 
vacuum Rabi frequency (proportional to the mean amplitude of the E field) and the cavity 
decay rate. 

It is also obvious at this point that the FDTD method has to be used also for 
simulating the interaction between the quantized mode (i.e., photons) and the color 
centers, via the Jaynes-Cummings model, augmented by the Wigner-Weisskopf theory of 
spontaneous emission. 

3.4      Adiabatic Evolution for Solving NP-Hard Optimization Problems 

Fundamentally, a Quantum Computer is considered to be very powerful, with its 
computational ability growing exponentially with the number of coupled qubits. 
However, to this date, the type of problems that can be solved by a QC in a manner that is 
provably more efficient than classical computers has remained very limited. The most 
important example, of course, is the factoring algorithm, which can be performed by a 
QC (using Shore's algorithm) at a rate exponentially faster than conventional computers. 
The next important case is the Grover's algorithm, which enables a quadratic speed-up 
over classical methods. In parallel to these cases is the Type II quantum computing, 
which is expected to expedite the task of simulating complex processes such as turbulent 
flows to a rate far beyond the best classical super computers. Nonetheless, there is a class 
of problems for which it is yet to be shown that the QC computer can help. These are the 
so-called NP-Hard problems (NP: Non-determmistically Polynomial). Simply put, these 
are problems which are considered (but not proven; hence non-deterministic) to grow 
faster than any polynomial as a function of the size of the parameters. A classic example 
is the so-called traveling sales-man problem, where the sales-man would like to minimize 
the distance he has to travel in order to cover N-cities, where N is very large. It is 
generally observed that the difficulty of this minimization problem grows exponentially 
with N. This problem is also critical, for example, to the optimal scheduling of flights for 
commercial airlines. In general, there are a lot of optimization problems that fall under 
this category. As such, solving these class of problems efficiently is of great interest to 
the civilian sector as well as the DOD as a whole. In fact, this is considered the "holy- 
grail" of algorithm developments in computer science. 

Given that QC and the NP-Hard problems both scale exponentially, it has long 
been expected that a QC would be solve this problem very efficiently (i.e., in a number of 
steps that is at most polynomial in the size of the problem, thus providing exponential 
speed-up over conventional methods). However, efforts by many groups have failed to 
find a QC algorithm for achieving this goal. Very recently, the group led by Farhi, in 
conjunction with several other groups, have developed a robust algorithm which appears 
to offer the solution. While it has not been proven rigorously, all evidence so far 
indicates that this approach — termed Adiabatic Quantum Computation (AQC) — is 
able to solve an NP-Hard problem in a number of steps that grows only polynomially 
with the size of the problem. We have developed a scheme for realizing AQC in the 
spin-based NV-Diamond quantum computing model that we are proposing to pursue 



here. Before we describe our process, it is instructive to summarize briefly the notion of 
AQC. 

The underlying notion is that an NP-Hard problem (or other problems, e.g., the 
Grover's search) can be modeled as the ground state of a number of interacting quantum 
bits. A specific example is the famous problem of the Maximum Independent Set: Given 
a graph with V number of vertices and E number of edges, find the largest subset SofV 
such that no two vertices in S are joined by any edge E. This problem is isomorphic to 
the two-dimensional Ising model, as illustrated in figure 1. Here, N spins are located at 
each of N vertices. The Hamiltonian for the Ising model is given by: 

vertices]        edges (ij) 

(17) 
where, for all I, the spin operator S has the eigenvalues of 1 or -1, and the parameter J 
corresponds to the Zeeman splitting (i), which happens to be equal also to the 
antiferromagnetic coupling strength (iJ). Finding the solution to the problem of the 
maximum independent set is akin to finding the lowest energy eigenstate (LEE) of this 
Hamiltonian. 

The process for finding the LEE can be formulated by writing the Hamiltonian in 
the following way: 

Hity\=[i-fit)] X^^'^+/(0[ I^f + S^f^y^] 
vertices j vertices i edges (i,j) 

(18) 

where f(t) monotonically increases from 0 (no coupling) to 1 (desired set of couplings), 
and CT represents the Pauli spinors. The f(t)=0 situation can be realized by cooUng all the 
spins to their groimd states, while the coupling is kept turned off The coupling is then 
gradually turned on, reaching the f(t) =1. According to the adiabatic theorem of quantum 
mechanics, in order to ensure that the system evolves to the LEE, it is necessary that the 
inverse of the rate at which f(t) evolves from 0 to 1 is much less than the energy 
separation of the LEE of the couples system from the ground state of the uncoupled 
system. In all the cases studied so far^^" , it has been found that this energy separation is 
typically large, allowing for a rapid switching-on of f(t), which in turn impUes a QC 
based solution of the BP-Hard problem at a time scale that does not grow exponentially 
with the number of vertices. This approach of AQC has several key advantages over 
conventional quantum computing: (i) it does not require local qubit manipulation (e.g., no 
CNOT gates), and (ii) it is robust against noise, since there is no place to decay to from 
the ground state. 

The NV-Diamond based Type-II QC we are proposing to build is ideally suited 
for this task. Briefly, the process will start by cooling all the spins to their uncoupled 
ground states. The coupling lasers will then be turned on slowly, and with the aid of the 
cavities, the system will evolve to the LLE of the interacting system. The coupling 
mechanism is exactly the same as what is described earlier in this proposal. Of course. 



the scaling of the process will still limited by the total number of inter-coupled bits. 
Nonetheless, proving the feasibility of the AQC on a quantum computer, even with only 
lO's of qubits, will represent an important milestone in quantum information processing. 

Figure 1: Schematic illustration of the two-dimensional Ising model, which is isomorphic to the problem of 
the Maximum Independent Set. See text for details. 

3.5      Implementations of the Public Goods Game using Small-Scale Quantum 
Computers 

In developing a Type-II QC, one is expected to build many small scale quantum 
computers (SSQC). One application of a set of SSQC we have identified is in the area of 
optimization of the Public Goods Game, which is an economic model representing a 
wide variety of social choice problems. For example, suppose that a group wishes to 
decide whether or not to provide a common good, such as a park, in the face of potential 



free riders (i.e., those who will withhold payment but will nevertheless benefit from the 
common good). The free rider problem[l] cannot be solved in classical economics 
without either a third party to enforce agreements or a repeated game scenario in which 
participants can police themselves. Although government is one solution to this problem, 
it is an inefficient provider of public goods for smaller groups (such as a neighborhood 
watch). Invariably, contributions towards public goods at arbitrary scales are not made at 
efficient levels, and we seek a solution that (a) is efficient, (b) discourages free riders, and 
(c) avoids the need for a trusted third party. It has recently been shown that two-particle 
quantum entanglement can be used to solve this problem. [2] 

The social dilemma is easy to understand using the following specific example of 
" the economics of a public goods game that illustrates the core issues. Consider a game 
with N players, where player k starts the game with the private good Xk (e.g., his/her 
money). Each player then decides to contribute an amount Ck, so that the corresponding 
private good becomes jc^ = x^ - c^^. In the linear form of public good game, the resulting 

public good is MC, where C' = ^^Cjis the total contribution, and Mis the production 

multiplier. This public good is then redistributed among the iV players, so that player k's 
net gain (or "utility") is u^ =MCIN-c^. Therefore, in the trivial cases where M < 1 and 
M > A^, the efficient outcomes are clear: do not contribute, and contribute, respectively. 
However, in the more economically common case where \<M<N, for any individual 
player du^/dc^=M/N-l<0, and it is rational for each player to choose not to 
contribute, or to "free ride." In an economic context, this failure to encourage 
contribution to the public good is an inefficient outcome. 

The quantum version of the public goods game (PGG) has three stages. In the first 
stage, an initial superposition state of a set of iV identical quantum bits (qubits) is created 
and then entangled, with the resulting state made commonly known to all individuals. In 
the second stage, each player is allowed to choose an arbitrary quantum operator that acts 
on his or her individual qubit. In the last stage, the final superposition of the joint state is 
disentangled and then measured to produce a definite choice for each player. 

The strategic space of the game is extended from the set of possible classical 
choices to the outer product of the set of all possible single-qubit unitary quantum 
operations on the state space. This approach is a direct quantum generalization of the 
original game, in that each player's operations should include actions that correspond to 
the classical choices: for each action in the classical game, there exists a quantum 
operation in the new game such that the outcome of the quantum game is the same as that 
of the original game, provided that all players are restricted to play the quantum 
operations that correspond to the classical choices. In other words, the quantum version 
of the game extends the strategic space from the set of possible classical actions to 
quantum operations acting on the set of possible classical actions. 

Mathematically, the game proceeds as shown schematically in Fig. 1: 
1. Starting with a particular initial superposition state\y/) ofNidentical qubits, the 

entangled state j\y/) is provided as a resource for the players, where Jis an 

entanglement operator that commutes with the classical single-player operators. 
2. Player k selects an operator Uk to apply to his or her entangled qubit, giving 

y) = iU,<S>-<E>U„)j\i/^). 
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Fig. 1: The general protocol for the «-player public goods game. The operator J entangles n 

identical qubits | q), and the general unitary operator U^^ represents the "move" of player k. 

3. The qubits are "disentangled," giving | y/") = J"' | y/). For a given game, (i.e., 

choices for \y/) and J), the final superposition is a function of the players' choices 

pfthe particular operators t/i,..., L4. 
4. The final state \Y") is measured, generating a specific value representing each 

player's choice. The probability of obtaining choice s (i.e., a particular 

assignment, 0 or 1, to each bit) is [(^l?^")] • 

The choice of/determines the type and degree of entanglement amongst the individual 
qubits of the players. The commutation condition on J ensures that if each player selects 
the operator corresponding to one of the choices in the classical game, the final result of 
the quantum game will, with probability 1, reproduce those choices. 

Ideally, one would like the scheme to rely on the distribution of entangled states 
between distant players, implying that the qubits are encoded in the polarization states of 
photons transmitted throughout a fiber-optic network. Given a bright source of 
polarization-entangled photon pairs,[3] these qubits can be delivered by propagation 
through optical fibers, and purified using high-quality linear optical elements.[4] In 
principle, maximally entangled «-photon states can be constructed from entangled two- 
photon states,[5,6] and these states can be fiirther manipulated using linear optical 
elements to perform universal gate operations. [7] In the context of Fig. 1, the initial state 
l^)®!^)®---®!^) and the entangling gate J can be constructed in one location, the 

players (who implement their strategies through the operators U^^) can be geographically 
distributed over a wide area, and the disentangling gate and final measurement system 
can be placed in a third location. 

However, scaling a fiiUy entangled game from 2 to « players can be nontrivial 
even when linear optics is used. Suppose a frial between any two players succeeds with 



probability P (incorporating the net efficiency with which entanglement can be created, 
distributed, purified, manipulated, and detected), so the mean number of trials needed to 
successfully register a mutual choice between two players is \ip. Because an accidental 
(or deliberately disruptive) measurement of a single qubit in the «-particle maximally 
entangled state destroys the entire state, we expect the number of trials needed to 
complete a maximally-entangled game for n players will scale no better than p'". 
Suppose instead we implement the game by distributing entangled two-particle states 
between either all enumerated pairs of players or nearest neighbors, as described 
previously. In these cases, we expect that the mean number of trials needed to complete 
the game will scale as either «(«-l)/2/? or nl fi, and are therefore relatively easier to 
implement for games with a large number of players. 

For example, in the simplest near-term implementation, a single game system can 
be constructed at a central location, and players can travel to the game and individually 
specify the operators to be appUed to their qubits. As the technology evolves, the 
necessary hardware for specification of qubit operations can be distributed to distant 
players, who then can apply their operators to photonic qubits transported to them over an 
optical network. In either case, entangled pairs can be generated and distributed 
consecutively until all players have successfully registered a choice for each pair in 
which they are a member. Therefore, given some single-trial success probabihty fi, the 
number of trials is limited by the rate at which two-particle entangled qubits can be 
provided. Although great strides continue to be made in multi-particle experiments,[5,6] 
it is clear that — until y5 -> 1 — two-particle games are far more feasible, and could 
allow tests of quantum game theory to be performed in the near future. 

It has been shown that the «-player public goods problem can indeed be solved by 
exchanging entangled pairs of particles between n players using either of the topologies 
suggested above. The solutions are efficient, discourage free riders, and avoid the need 
for a trusted third party. However, because the game can be solved in this way by 
sequential exchanges of pairs, it is clear that it can be simulated classically and does not 
provide an exponential speed-up over classical mixed strategies. Instead, the significance 
of the quantum solution is similar to that of quantum key distribution: by using quantum 
mechanics, we replace an unverifiable trust mechanism (i.e., a third party) with a trust 
model based on the laws of quantum mechanics. 

Let us examine the details of a two-player implementation of the public goods 
game, which is essentially equivalent to the Prisoner's Dilemma. We begin by choosing 
the Bell (EPR) basis |^,^.), {i,j] e {0,1}, for our entangling and disentangling operators 

J and J"', so that they can be constructed using Hadamard and CNOT gates as shown 
in Fig. 2. (In practice, the entangling gate J may be incorporated in the qubit source; as 
long as the entangled qubits are EPR pairs, the schematic of J'' shown in Fig. 2 may be 
used.) The two players, Alice and Bob, play by specifying the unitary operators U^ and 

Ug, respectively, each of which can be represented by the arbitrary unitary matrix 

^*Ka-r)n sin(^ / 2)     g+'(«+r)/2 (.os(^ / 2) _ U{a,p,y)^e - a-X'^an   -i<yyPn   -iajn _ 
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where ay and oj are two of the Pauli 
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spin matrices. If we assume that the 
payoff for player k corresponding to 
the final state \ij) is pfj, then the 

expectation value of the aggregate 
payoff        for        that        player 

Eisert et al.[8] have 
analyzed the quantum version of the 
Prisoner's dilemma, and have 
shown that the strategies given by 
U(P,J3,0) are        completely 
equivalent to classical mixtures of 
the identity and bit-flip operations, 
and offer no advantage over those 
classical strategies. Similarly, if 
"cooperation" is represented by the 
|o) state and defection by the |l) 

state, then the classical strategies 
"always cooperate" and "always 
defect"   are   represented   by   the 
operators U(0,0,0) and f/(0,;r,0), 
respectively. However, Eisert et al. also show that 

• if one player chooses the classical mixed strategy U{0,p,0), then the second 

player always wins using the strategy U{7t,7tl2,0); and 
• there are a variety of quantum strategies available to each player that allow each 

to simultaneously achieve the optimum outcome. 
In the context of the Prisoner's Dilemma, the optimum outcome — a new Nash 
equilibrium that is not available classically — allows the prisoners to rationally choose to 
cooperate and receive a relatively light sentence. 

Fig. 2: A particular choice for the entangling and 
disentangling gates shown in Fig. 1. In this case, J 

creates the Bell basis states, and J~   is the 

corresponding Bell state analyzer. Note that J~  is the 
appropriate choice when the initial qubits are in fact 
created ab initio as entangled Bell states. 
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