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ABSTRACT 
 

Land-based waypoint navigation usually requires accurate position information to 

effectively function in either natural or man-made terrain.  Most systems solve this 

problem by using differential GPS and/or high-quality, expensive inertial navigation 

systems.  In an effort to make waypoint navigation available to smaller tactical platforms, 

a tightly packaged, portable and inexpensive waypoint navigation system was developed.  

This system was implemented on the Man Portable Robotic System (MPRS) Urban 

Robot (URBOT)1.  The package uses inexpensive sensors and a combination of standard 

Kalman Filter and waypoint following techniques along with some novel approaches to 

compensate for the deficiencies of the GPS and gyroscope sensors.  The algorithms run 

on a low-cost embedded processor.  A control unit was also developed that allows the 

operator to specify path waypoints on ortho-rectified aerial photographs. 

 
1. Background 
 

The goal of this project was to develop a robust waypoint navigation capability 

for a small mobile robot that did not rely on the availability of differential GPS.  Here 

waypoint navigation is defined as the process of automatically following a predetermined 

path defined by a set of geodetic coordinates.  The requirement for using non-differential 
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GPS stemmed from the idea that in a tactical situation, the operator is not going to have 

the time or resources to set up a local differential base station at each new location.  

Unlike large vehicles, the limited space and power on a small robot precludes the 

traditional practice of using a highly accurate inertial navigation system (INS).   

All of the subsequent discussions are a direct result of testing performed on the 

MPRS URBOT outfitted with a NovAtel OEM4 dual-frequency GPS receiver, a Systron 

Donner QRS11 quartz gyro, a Microstrain 3DM electromagnetic compass, and Hall-

effect sensors for the odometry. 

 

2. GPS Deficiencies 

The errors in an uncorrected GPS signal come in many forms and arise from a 

variety of different sources.  In this paper these errors have been divided into two broad 

categories: 1) high frequency noise and 2) long-term drift.  The first category pertains to 

the errors that manifest themselves as high frequency noise or spikes.  These errors are 

easily identifiable on a 2-D plot of the GPS track recorded from a moving platform 

(Figure 1).  Although, no attempt has been made to formulate an explicit definition of 

what constitutes noise, a general example would be single-epoch jumps in the GPS 

position.  An epoch is one GPS cycle (milliseconds).  The difficulty arises from the fact 

that in some instances the position can jump several meters and then either jump back on 

the next epoch or maintain that new position for a few seconds or indefinitely.  If the new 

position is maintained for more than approximately 30 seconds, then it is no longer 

considered noise but lies in the gray area between the two categories.  



  

Figure 1.  Non-differential GPS track of the URBOT 

Experience has shown that the two main causes of GPS noise are satellites coming in and 

out of the view of the GPS receiver and multi-path effects.  The magnitude of these errors 

varies from a few feet to hundreds of feet. 

The second category of GPS error is classified as drift.  These errors are much 

more difficult to see on a track plot, since they change over a period of hours rather than 

seconds like the noise errors.  It is difficult to determine the exact cause of these types of 

errors, but they are typically attributed to atmospheric effects in the ionosphere and 
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troposphere and satellite geometry.  The magnitude of these errors can vary from no error 

at all to thirty feet or more. 

 

3. GPS noise remedy 

In order to perform reasonable waypoint navigation, a robot needs to have a 

relatively noise-free estimate of its current state.  Obviously, a non-differential GPS 

solution alone is not capable of providing that estimate.  

The most common solution for solving the problem of GPS noise (and the 

solution used here) is to augment the GPS with other sensors and employ a Kalman Filter 

to optimally combine all of those sensor inputs.  An inertial sensor is an ideal companion 

for the GPS in a navigation package, as the two sensors have complementary errors (i.e., 

inertial sensors generally have very little noise but drift without limit, whereas, GPS is 

quite noisy but has finite drift).  The benefits of the Kalman Filter are depicted in Figure 

2, which is the same GPS plot shown in Figure 1 but with the Kalman Filter state 

estimate overlaid on it.  Note that almost all the spikes in the GPS noise have been 

smoothed out.  The Kalman Filter does an excellent job of compensating for the noise in 

the GPS position, but is of no help with the long-term drift error in the GPS position. 

 

3.1. Kalman Filter 

This paper is not intended to be a comprehensive guide to Kalman Filtering.  

Readers unfamiliar with the Kalman Filter and it’s applications in mobile robots are 

encouraged to read “A 3D State Space Formulation of a Navigation Kalman Filter for 

Autonomous Vehicles 2.” 



 
Figure 2.  Kalman Filter vs. GPS track 

 

We used an Extended Kalman Filter with nine inputs (sensor measurements) and seven 

outputs (the vehicle states) as shown in Tables 1 and 2.  The Kalman Filter is formulated 

using the body frame system2, which makes the following assumptions: 

1. the vehicle translates only along the body y axis (see Figure 3) 

2. the vehicle rotates only around the body z axis 

A low-dynamics assumption has also been made so that no acceleration states are 

required. 
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Figure3.  Coordinate system assigned to the URBOT 

 
 
 

Measurement Sensor 
X position GPS 
Y position GPS 
Heading GPS 
Velocity GPS 
Heading Compass 

Pitch Compass 
Roll Compass 

Velocity Encoders 
Turn rate Gyro 

Table 1. Kalman Filter measurements and associated sensors 

 

 
Table 2. Kalman Filter states 

 

Vehicle Slale Variables Variable Name 

X position X 

Y position Y 

Velocity V 

Heading e 
Pitch 9 

RoU V 

Turn rate p 



  Using this system the state transition matrix, F, is given as 

    

 

(1) 

 

 

where the vehicle state, xk+1, at time tk+1 is given by 

      (2) 

Equation 2 is essentially the dead reckoning equations written in matrix form.  For 

example the X position at the next time interval will be the current X position plus the 

velocity, V, multiplied by (                        ), where dt is the time interval.  Equation 2 is 

one of the five equations that make up the basic Extended Kalman Filter used here (see 

pseudo code in the appendix). 

With equation 2 the Kalman Filter predicts the next vehicle state based on the 

current state.  It then uses the sensor measurements and their associated variances to 

correct the prediction.  In addition, if GPS measurements are not available, the Kalman 

Filter will automatically degrade to using just the gyro, compass, and odometry in a dead 

reckoning mode to continue to provide a full state estimate.   

To address the gray area between GPS noise and drift errors mentioned above, a 

preprocessing technique has been employed that dynamically adjusts the measurement 

covariance matrix, R, in the Kalman Filter.  In layman’s terms, the R matrix defines the 

believability of each sensor measurement.  A preprocessing step increases the position 

variance in the R matrix when the GPS location jumps over two meters.  If the GPS stays 

F = 

1 0 -sin \if cos 6dt 0 0 0 0 

0 1 cos ^cos mt 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 sinW/ 

0 0 0 0 1 0 - tan 0 cos tjdt 

0 0 0 0 0 1 (cos ^t cos 0) 

0 0 0 0 0 0 1 
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in the new location, the position variance elements in the R matrix are gradually decayed 

to their original value.  In this way the Kalman Filter slowly gains confidence in the 

position measured by the GPS after it experiences a large jump.  During this period of 

low confidence, the Kalman Filter is relying heavily on the gyro and odometry sensors.  

Because the gyro is subject to drift and the odometry sensors suffer from track slip the 

Kalman Filter cannot provide accurate position estimates for long distances without a 

GPS fix.   

The track slip errors can have a very large adverse effect on the accuracy of the 

Kalman Filter when operating without GPS.  For instance, if the odometry sensors have 

been tuned to provide accurate speeds on pavement, they will most likely have large 

errors when operating on gravel or sandy terrain.  For that reason, a technique known as 

state vector augmentation3 has been employed to mitigate those errors.  State vector 

augmentation is essentially the process of adding artificial states to the Kalman Filter to 

estimate those values.  In this case the additional state is the track slip error.  With this 

technique the Kalman Filter continuously calculates the track slip error (actually the 

odometry velocity error) by using the Kalman Filter velocity estimate (which in turn is 

heavily influenced by the GPS velocity measurement).  In this way, when GPS is lost the 

odometry sensors should provide a relatively accurate estimate of the vehicle’s speed as 

long as the terrain surface doesn’t change significantly after loss of the GPS signal.   

Figure 4 shows a track plot where the GPS was artificially turned off part way 

through the run.  Notice that after almost 120 meters of travel without the aid of GPS the 

Kalman Filter position estimate is still within approximately 5 meters of the GPS 

position.  The errors that do occur are mostly due to inaccuracies in the vehicle heading 



estimate which is measured indirectly with a quartz gyro.  In this example it proved to be 

advantageous to also turn off the electronic compass when the GPS is lost.  That is in part 

due to the fact that the loop at the bottom of the figure is actually encircling a metal shed.  

Because of this and general inaccuracies of the compass it has become standard practice 

to only use the compass when the GPS heading is also available or when the gyro 

measurement is not available.   

 
Figure 4. Example of Kalman Filter operating without GPS 

 
The accuracy of the Kalman Filter position estimate would almost certainly be improved 

if a more accurate gyro were used such as a fiber optic gyro (FOG).  Figure 5 shows the 

same track plot but without the track slip compensation.  This demonstrates how useful 

the concept of state vector augmentation can be.  To further improve the accuracy work is 
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in progress to add information on the vehicle pitch to the track slip compensation 

calculation.  It is reasonable to assume that the track slip will be a function of the slope 

the vehicle is negotiating.  However, more data needs to be collected to determine what 

that function is.  Additional state vectors could be included to compensate for other 

sensor errors such as gyro bias and drift. 

 
Figure 5. Same plot as Figure 3 but without track slip compensation 

 

3.2. Position Update Message 

 To address the second category of GPS errors (drift) a position correction or 

update message was developed.  The basic concept is to use landmarks in the terrain that 

can be correlated to a known position.  In this case, the terrain recognition was done via 

the human supervisor using the real-time video image from the robot and an aerial photo 
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of the area of interest.  For example, the operator locates a unique object on the photo that 

is in the general area of the robot.  Then the operator drives the robot to that location and, 

using the OCU (see section 5), selects the location on the photo that is now known to be 

the correct location.  That geodetic coordinate is then sent to the robot which uses that 

coordinate to calculate a correction for the GPS position measurement.  That correction is 

then applied to all subsequent measurements much like a differential correction.  This 

method has proven to be very practical and useful. 

 

4. Path Following 

 The Kalman Filter process described above provides only an estimate of the 

robot’s current state (position, heading, velocity, etc.).  A separate process is needed to 

perform the waypoint following task.  That process includes receiving and parsing the 

path message sent from the OCU, determining the robot’s current position on the path, 

calculating the current desired heading and velocity, and executing the PID controller to 

obtain that heading and velocity. 

 There are many different path-following techniques described in the literature.  

The one employed here is most commonly known as follow-the-carrot/goal4.  Generally 

this technique uses a proportional controller fed by the heading error, whereas we have 

implemented a full PID controller.  The heading error is the difference between the 

heading to the goal point and the robot’s current heading.  The goal point is defined as a 

point on the path that is some fixed distance (the look-ahead distance) ahead of the robot.  

Figure 6 shows a simulation of the path following algorithm developed in Matlab.  Part of 

the path message sent from the OCU to the robot is a point-tolerance value that defines 



the distance from the waypoint that the robot must obtain before it considers that point to 

have been reached.  This causes the robot to cut corners.  If the look-ahead distance is 

such that the trajectory of the robot will miss a waypoint then the goal point is pulled 

back along the path until the trajectory runs through the point tolerance circle.  In fact, the 

goal point calculation becomes quite tedious after one takes into consideration all of the 

possible path types, look-ahead distances and point tolerance distances. 

 
Figure 6. Simulation of path following algorithm 

 

5. Operator Control Unit 

 The original wearable OCU5 for the URBOT only supported pure teleoperation 

and was fairly limited in its capabilities. To support waypoint navigation, a new OCU 

was needed that would meet the following minimum requirements: (1) Display an aerial 
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photograph of the area of interest, (2) enable the user to define and download waypoints 

to the robot, (3) allow the user to correct the location of the robot, (4) display video from 

the robot, (5) allow the robot to be teleoperated with a joystick, and (6) allow the operator 

to control multiple robots from a single control unit.  The resulting control software was 

dubbed the Multi-robot Operator Control Unit, or MOCU (see Figure 7).  

 
Figure 7. Screen shot of a path created with MOCU. 

 

 The aerial photograph is displayed in the large pane on the right.  This image can 

actually consist of several separate images – MOCU automatically tiles the images 

together using information from the associated GEOTIFF files. The waypoints (or paths) 

are drawn directly on this ortho-rectified image, which allows the user to specify the path 

with a precision up to the resolution of the image data. The text window in the upper left 

pane displays the current robot status. The real-time video from the robot is displayed in 

the lower left corner.  If desired, the video and map windows can be swapped if a larger 
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video image is desired (for example, when the vehicle is being teleoperated). The current 

geodetic coordinate of the mouse cursor on the map can be read in a variety of formats in 

the status bar at the bottom of the screen. 

6. Summary 

 This project has demonstrated the ability to provide an effective waypoint 

navigation capability to small low-cost systems such as the MPRS URBOT.  The entire 

navigation package easily fits into a small shoebox-size enclosure and could easily be 

ported to other robotic vehicles. 

 It was also demonstrated that by separating the GPS error sources into two 

categories it is possible to attain accurate navigation results without the aid of differential 

GPS corrections.  The test results show that this system is able to navigate almost as 

accurately as a vehicle using a real-time kinematic (RTK) GPS solution as long as there 

are an adequate number of landmarks available for referencing.  The ability to use a non-

differential GPS receiver extends the possible application of waypoint navigation into the 

tactical realm.   

 It has also been shown that these navigation techniques do not require a great deal 

of computational power.  The Kalman Filter and path following algorithms run on an 

embedded 66MHz PowerPC running a non-real-time operating system (POSIX based 

pKernel).   

 This project was funded by the Unmanned Ground Vehicle/Systems Joint 

Program Office (UGV/S JPO). 



Appendix A 

Kalman Filter equations: 

Xhatminus = PHI*Xhatplus;  % next predicted state by dead reckoning 
    
Pminus = PHI*Pplus*PHI' + Q; % predicted covariance 
    
K = Pminus*H'/(H*Pminus*H'+R);       % Kalman gain 
 
Pplus = Pminus - K*H*Pminus;           % corrected covariance 
  
Xhatplus = Xhatminus + K*(Z- H*Xhatminus);   % corrected state  
                                               vector 
    
X = Xhatplus;     % set X to the new corrected state estimate 
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