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We began research on developing quantum lattice algorithms in the Spring of 2001. 
During the period of this AFOSR grant we have tested the accuracy of our quantum 
algorithms on exact soliton solutions to the Nonlinear Schrodinger equation (NLS) as 
well as to ID MHD turbulence. The following papers have been published and/or 
submitted for publication under the AFOSR grant: 

Lattice Boltzmann and Quantum Lattice Gas Representations of One-Dimensional 
Magnetohydrodynamic Turbulence 

L. Vahala, G. Vahala and J. Yepez 
Phys. Lett. A306, 227-234 (2003) 

Quantum Lattice Gas Representation of Some Classical Solitons 
G. Vahala, J. Yepez and L. Vahala 
Phys. Lett. A310,187-196 (2003) 

Quantum lattice gas representation for vector solitons 
G. Vahala, L. Vahala, and J. Yepez 
SPIE Conf. Proc. 5105, 273 - 281 (2003) 

Inelastic Vector Soliton CoUisions: A Quantum Lattice Gas Representation 
G. Vahala, L. Vahala and J. Yepez 
Phil. Trans.. Roy Soc. London (accepted for publication, 2004) 

Quantum lattice representation of dark solitons 
G. Vahala, L. Vahala, and J. Yepez 
SPIE Conf. Proc. 5436, (to be published, 2004) 

As insights into fluid turbulence has been gained by examining simplified nonlinear one- 
dimensional (ID) models as Burgers equation. Since MHD turbulence involves more 
complex structures, Yanase (1997) and others have developed a ID magnetized 
generalization of the Burgers equation. In its simplest form, this self-consistent model is 

(B^]        d^u dB       d ,  _x d^B ... 
—   + (i—^    ,    — + —[uB) = T]—Y (1) 
^2) dx^ dt       dx^     ' dx^ 

where the fluid velocity u = M(JC,?)JC and the magnetic field    B=B{x,t) z.   /u is the 
viscosity and t] is the resistivity. This ID MHD model reduces to the regular Burgers 
equation in the limit of zero magnetic field :   5^0. However, for non-zero magnetic 
fields one notes that there is a self-consistent magnetic pressure that mitigates to reduce 
the Burger shock formations in the fluid velocity.   Moreover this ID model exhibits 
rugged invariants as the full MHD equations : i.e., in the inviscid limit ij.->0,r} -*0 the 
invariants are the energy and cross helicity : 

Ei^ + E^f   = -Jdx[u^ + B'^) ,    EcH=JdxuB (2) 

du      du   _      d 
dt       dx dx 



In turbulence, it is critical to accurately compute energy transfer rates. For ID MHD, the 
energy transfer from the magnetic to velocity field is given by 

" "    I-'      dx 
with the kinetic and magnetic energy transfer equations 

^ = 2i_„-2MQ, ,    ^=-T,^^-2nQ^ (3) 
dt 01 

To develop a quantum lattice representation for this ID MHD model v^^e first discretize 
the spatial dimension and introduce 2 qubits/scalar field at each node. To prepare the 
initial state one considers each qubit to have the form 

where p^ is the probability that the excited state is occupied. From the given initial 
velocity and magnetic field profiles, one initializes the excited state probabilities 

One now applies a local unitary collision interaction U to entangle the on-site qubits 
\^l,'{x)) = l}\n>{x)) , 

where the pre-coUision on-site ket|i/^(x)) = \qx[x)) 0 |^2(^)) ® \'i^{^)) ® 1^4 W)- 
On these post-collision probabilities one performs a nonunitary measurement that 
destroys the quantum entanglement introduced by the collision operator: 

P'a{x)   =   {^'(^)|«>'(^)) 
Finally, one streams these probabilities p'^ to nearest neighbor nodes. 
Thus the final kinetic equation for the post-collision probabilities 

Pa{x-^e,,t^l) = p,{x,t) + {^{xp^hjj - K W)) 

To recover the ID MHD equations, one first entangles qubits '3' and '4' with the square- 
root-of-swap collision operator 

/l    0     0    0\ 

^ \— ■Jswap 

0   If   If   0 

0   M   Jf   0 

W    0     0     1; 
and then streams these post-collision qubit states '3' and '4' to nearby sites 

One now reinitializes the occupation probabilities 

and then entangles qubits 'l'-'2' and qubits '3'-'4' followed by appropriate streammg to 
nearby spatial nodes. Thus 



with streaming e^ = (l,-1,1,-1) and the 7t/4 - unitary rotation matrix 
A    0      0     0\ 

U jt/4 
0 i -* « 
0   -^     -^ 

[0    0 

0 

0      1 

One identifies the velocity and magnetic fields from the final occupation probabilities 
2u{x,t) = p^^\x,t) + p(')(x,f) + p(')(x,r) + p'^^\x,t) 

2B{x,t) = pp)(jc,0 + p^^\x,t) - p^?{x,t) - p^^\x,t) (4) 
and the unconditionally stable explicit finite difference scheme that emerges from this 
quantum lattice algorithm (in lattice units Ax = 1 = Ar) 

u{x,t-i-\) = -[u{x-\,t) + u{x + l,t)\+ ■Au\x-\,t)-u\x-^l,t)^ + 

—[B{X-2,t)-B{x + 2,t)] [B{X-U) + 2B{x,t) + B{x + l,t)] 

B{x,t + l) = -[B{x-2,t) + 2B{x,t) + B{x + 2,t)] + 

-[u{x-l,t)B{x-2,t)+{u{x-l,t)- u{x + l,t)}B{x,t) -u{x + l,t)B{x + 2,t)] 
(5) 

In the continuum limit, Eq. (5) reduces to the desired ID MHD equations (1) with 

transport coefficients jU = 
2At 

,  r] = 2(x. This finite difference scheme can be 

immediately extended from a scalar to vector magnetic field B^>^-\f),By,B^. 

A typical simulation is shown below. The initial oscillatory velocity field (dashed 
curves) steepen following a Burgers-like shock development, but energy is transferred to 
the magnetic field so that these field are amplified in the regions of the shocks and the 
velocity shocks. The kinetic energy spectrum exhibits the k~ spectrum. 
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