

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
 18-March-2004

3. REPORT TYPE AND DATES COVERED
Final Report March 2000 – November 2003

4. TITLE AND SUBTITLE

 Language-Based Security for Extensible Systems

5. FUNDING NUMBERS

 F49620-00-1-0198

6. AUTHOR(S)

 Professor Fred B. Schneider and
 Professor J. Gregory Morrisett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 Cornell University
 4130 Upson Hall
 Ithaca, NY 14853

 36641

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

 AFOSR/NM
 4105 Wilson Blvd.
 Room 713
 Arlington, VA 22203-1954

 N/A

11. SUPPLEMENTARY NOTES

 N/A

12a. DISTRIBUTION / AVAILABILITY STATEMENT

 Approved for Public Release; distribution is Unlimited

12b. DISTRIBUTION CODE

 N/A

13. ABSTRACT (Maximum 200 Words)

Successful attacks on computing infrastructures often involve failures of type safety. A major contribution of
this grant has been the creation of type systems and type-checking algorithms for low-level languages in use
today. In addition, "certifying compilation" was developed to eliminate the need to trust correctness of high-
level language implementations.
 However, ensuring type safety is not sufficient for ruling-out misbehavior in code. A second contribution of
this grant was to design and build program-rewriting tools employed for security policy enforcement and also to
derive a theoretical characterization for what kinds of policies can be enforced by program rewriting. The
theoretical work compares the expressive power of rewriting against traditional security enforcement
mechanisms; rewriting is proved to be strictly more powerful. The in-lined reference monitor toolkits handle
x86 machine code, the Java virtual machine, and Microsoft's .NET framework.

15. NUMBER OF PAGES
18

14. SUBJECT TERMS Language-based security, in-lined reference monitors, typed assembly
language, program rewriting, type systems, proof-carrying code, certifying compilation

16. PRICE CODE
N/A

17. SECURITY CLASSIFICATION
 OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 Unclassified

20. LIMITATION OF ABSTRACT
 UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Language-Based Security for
Extensible Systems

AFOSR Grant F49620-00-1-0198

Final Report

Fred B. Schneider and Greg Morrisett
Computer Science Department

Cornell University
Ithaca, New York 14853

Objectives

To better support flexibility, evolution, and performance, a new class of sys-
tem architectures is emerging. Integral to these newer architectures is sup-
port for clients to extend service interfaces dynamically. Specifically, clients
can send code extensions—perhaps over a network—to services, and these
services execute this foreign code on behalf of the client.

Unfortunately, the flexibility provided by extensible architectures is also
a source of vulnerability, as misbehaved extensions can cause considerable
damage. Extensible systems therefore must have security mechanisms to
protect against malicious actions by foreign code.

We need mechanisms that support enforcement of a rich class of security
policies for extensible systems. The mechanisms should have modest run-
time overhead or else a primary attraction of extensible architectures will be
lost. And the tension between flexibility and performance is what makes this
security problem a particularly difficult one to tackle.

This project studied how programming language technology could be
leveraged to support enforcement of rich classes of security policies. We
identified and exploited ideas from programming language design, type and

1

proof systems, semantics, and implementation that provide a basis for meet-
ing the twin goals of flexibility and performance.

Status of Effort

The research supported by this grant developed two major areas of language-
based security: (1) Type systems for verifying the memory safety of sys-
tems code, and (2) Flexible enforcement of security policies through program
rewriting.

Many of the successful attacks on our computing infrastructure involve
a failure of type safety. To date, most type-safety analyzers have depended
upon the code being written in a high-level, structured language (e.g., Java).
But the vast majority of our computing infrastructure is coded in low-level
languages such as C. One of our major contribution was the development of
type systems and type-checking algorithms for such low-level languages. In
addition, we developed a technique called certifying compilation that elimi-
nates the need to trust that a high-level language’s implementation is correct.

Ensuring type safety is necessary but insufficient to rule out misbehavior
in code. We therefore explored a new approach to enforcing desirable be-
havior based on rewriting executable code. The essence of the approach is
that one can express a high-level policy in a declarative language and our
rewriting tool in-lines a reference monitor into the binary which enforces that
policy. Our research in this area included fundamental theoretical results as
well as practical tools. In particular, we developed theoretical models that let
us compare the expressive power of rewriting when compared to traditional
security enforcement mechanisms and showed that rewriting is strictly more
powerful. We also developed in-lined reference monitor toolkits for machine
code, the Java virtual machine, and Microsoft’s .NET framework.

Accomplishments/New Findings

Our research concentrated on the following areas of language-based security:

• Type systems for verifying the safety of low-level code.

• Inlined reference monitors for enforcing security policies.

2

Type Systems for Low-Level Code

Today, our computing and communications infrastructure is built using un-
safe, error-prone languages such as C or C++ where buffer overruns, format
string errors, and space leaks are not only possible, but frighteningly com-
mon. In contrast, type-safe languages, such as Java, Scheme, and ML, ensure
that such errors either cannot happen (through static type-checking and au-
tomatic memory management) or at least are caught at the point of failure
(through dynamic type and bound checks). This fail-stop guarantee is not
a total solution, but it does isolate the effects of failures, facilitates testing
and determination of the true source of failures, and it enables tools and
methodologies for achieving greater levels of assurance.

The obvious question is: “Why don’t we re-code our infrastructure using
type-safe languages?” Though such a technical solution looks good on paper,
the cost is simply too large. For instance, today’s operating systems consist
of tens of millions of lines of code. Throwing away all of that C code and
reimplementing it in, say Java, is simply too expensive.

Under the auspices of this grant, we have explored how to adapt type sys-
tems to low-level languages, such as C/C++ and even assembly language.
The goal has been to (a) provide effective tools that allow current systems
to be statically or dynamically checked to ensure type safety, and (b) to
eliminate the need to trust those tools through the process of certifying com-
pilation.

Cyclone Compiler

As a part of this research, we developed Cyclone, a type-safe extension to
the C programming language. The type system of Cyclone accepts many C
functions without change and uses the same data representations and calling
conventions as C. The Cyclone type system also rejects many C programs
to ensure safety. For instance, it rejects programs that perform (potentially)
unsafe casts, that use unions of incompatible types, that (might) fail to ini-
tialize a location before using it, that use certain forms of pointer arithmetic,
or that attempt to do certain forms of memory management.

All of the analyses used by Cyclone are local (i.e., intra-procedural)
so that we can ensure scalability and separate compilation. The analyses
have also been carefully constructed to avoid unsoundness in the presence of
threads. The price paid is that programmers must sometimes change type

3

definitions or prototypes of functions, and occasionally they must rewrite
code.

We find that programmers must touch about 10% of the code when port-
ing from C to Cyclone. Most of the changes involve choosing pointer repre-
sentations and only a very few involve region annotations (around 0.6 % of
the total changes). So, we developed a semi-automatic tool that can be used
to automate most of these changes.

The performance overhead of the dynamic checks depends upon the ap-
plication. For systems applications, such as a simple web server, we see no
overhead at all. This is not surprising, as these applications tend to be I/O-
bound. For scientific applications, we were seeing a much larger overhead
(around 5x for a naive port, and 3x with an experienced programmer), due
to array bounds and null pointer checks. To avoid these, we incorporated a
sophisticated intra-procedural analysis that eliminates most of those checks.
For instance, a simple matrix-multiply now runs as fast as C code, where
before, it was taking over 5x as long.

We also introduced new typing mechanisms that support a wide range of
safe memory management options. Initially, we had to restrict programmers
to using only garbage collection, stack allocation, or limited forms of region
allocation, all of which could adversely affect time and space requirements.
But we have since added support for dynamic region allocation, unique point-
ers, and reference-counted objects. These mechanisms let programmers con-
trol memory management overheads without sacrificing safety. For instance,
we were able to improve the throughput of the MediaNet streaming media
server by up to 42% and decrease the memory requirements from 8MB to a
few kilobytes using these new features.

Cyclone is actively used by the research community to ensure safety for
real systems code. For instance, AT&T researchers are using Cyclone to
develop a number of high-confidence systems; researchers at Washington and
Utah are using Cyclone to develop extensible protocols; and researchers at
the Leiden Institute have used Cyclone to develop secure kernel extensions
for Linux. They have found Cyclone attractive because the programming
model is close to C but provides the strong safety gurantees need for secure
systems.

4

Typed Assembly Language

Type safe languages such as Cyclone can, in principle, provide strong security
guarantees. However, the Cyclone compiler and the associated tools are well
over 200,000 lines of code. It is likely that there are bugs in these tools which
could be exploited by an attacker. Cyclone is not alone in this regard—the
type safety of any language (e.g., Java) depends upon the correctness of
the implementation of that language, including the compiler or interpreter,
the libraries, and the run-time system. These software systems are large and
experience has shown that we cannot depend upon them being 100% correct.

The goal of the Typed Assembly Language (TAL) research was to elim-
inate the need to trust language implementation tools. In particular, the
TAL project developed a type system for Intel x86 machine code and a
type-checker which consisted of roughly 20,000 lines of code. With the TAL
type-checker, it becomes possible to check that a compiler for a high-level
language, such as Cyclone or Java, is producing code that actually is type-
safe. Once again, we must trust the TAL type-checker, but it is an order
of magnitude smaller than the Cyclone compiler (and two orders of magni-
tude smaller than Sun’s Java implementation) which no longer needs to be
trusted.

The primary challenge in developing TAL was finding a set of type con-
structors that supported compilation of a wide variety of source programming
languages. To keep the type system small but flexible, we adapted a suite of
higher-order type constructors which could be combined to build higher-level
typing abstractions. For instance, TAL had no built-in notion of procedure
call and return. Rather, it had simple type constructors for describing ma-
chine states at each program point and these type constructors could be
composed to specify typing pre- and post-conditions for procedures. This
degree of flexibility was crucial for supporting a wide variety of languages.

Inlined Reference Monitors

Inlined reference monitors (IRM) are a new approach to implementing tradi-
tional reference monitors. A desired end-to-end security policy is formulated
using a high-level declarative policy language, and then a rewriting tool is
used to automatically rewrite untrusted code into code that respects the pol-
icy. The rewriting tool works by inserting extra state and dynamic checks
into the untrusted code so that the code becomes self-monitoring.

5

Under the period of this funding, our two PSLang/PoET implementations
of Java 2 stack inspection were completed and analyzed. We reproduced Wal-
lach’s “security passing style” implementation of the stack inspection policy
and obtained comparable performance, and we devised a new implementa-
tion of the policy and obtained superior performance. The new implemen-
tation works by carefully allocating work so that frequently executed JVM
instructions bear relatively less of the burden associated with enforcement.
The implementation exhibits performance that is competitive with the JVM-
resident stack inspection implementation included in the commercial Java
distribution.

We also implemented a prototype deployment of an IRM for a production
operating system. Specifically, a set of kernel modifications was developed
to support a prototype IRM rewriter in Microsoft’s Windows. This work
suggests the need for mechanism to identify which policy is applied to any
given executable and for mechanism to manage multiple executables (each
enforcing a different policy). For example, .NET caches dll’s (executables),
and the architecture for how that cache is managed needs to work differently
when the same dll could have been rewritten in multiple ways (to enforce
one or another different policies).

In addition, a prototype MSIL (Microsoft Intermediate language) in-
lined reference monitor realization was completed. It implements an aspect-
oriented programming metaphor for MSIL assembly language (rather than
for a high-level language). An aspect-oriented program comprises aspects,
each of which consists of a point-cut and some advice. The point-cut is a
predicate that specifies where to do rewriting in target code, and the ad-
vice specifies how to do the rewriting. Designing a point-cut language that
provides complete visibility at a high-level into an assembly language is an
interesting challenge. We subsequently extended this prototype so that we
could perform arbitrary rewriting on the CIL code by building on a bytecode-
rewriting toolkit developed by Microsoft Researchers.

Working with Ph.D. student Kevin Hamlen, we developed a more refined
characterization of what policies can be enforced using reference monitors.
This new work extends earlier work by Schneider, now taking into account
the limits of computability. Specifically, we developed a model based on
standard Turing machines, adapted Schneider’s criteria for enforceable secu-
rity policies, and introduced computability requirements. We also integrated
static analysis and program rewriting into the model.

By providing this unifying model, and by basing it on Turing machines,

6

we were able to compare the relative power of the various enforcement mech-
anisms, and to relate them to standard computability results. For instance,
it was relatively easy to show that the class of policies precisely supported
by static analysis could also be supported by both reference monitors and by
program rewriting. In addition, we found that introducing a computability
requirement on reference monitors was necessary, but not sufficient, for pre-
cise characterization of the class of policies actually realizable by reference
monitors. And we identified a new property, which we call “benevolence”
that provides a more accurate upper bound on the power of reference moni-
tors.

Our most surprising and important results involve program rewriting.
We can show that the class of policies originally characterized by Schneider
does not include all policies enforceable through rewriting (and vice versa).
Indeed, we were able to show that the class of policies enforceable through
rewriting does not correspond to any class of the Kleene hierarchy. This is a
surprising and important result, as it shows that rewriting truly is a powerful
security enforcement technique.

Personnel Supported

Faculty: Greg Morrisett and Fred B. Schneider.

Postdoctoral Researchers: Amal Ahmed, Mike Hicks, Yaron Minsky,
Mike Marsh.

Graduate Students: James Cheney, Ulfar Erlingsson, Neal Glew, Daniel
Grossman, Kevin Hamlen, Yaron Minsky, Frederick Smith, David Walker,
Stephanie Weirich, Steve Zdancewic, and Lidong Zhou.

Publications

1. S. Bellovin, F.B. Schneider, and A. Inouye. Building trustworthy sys-
tems: Lessons from the PTN and Internet. IEEE Internet Computing,
3, 5 (November-December 1999), 64–72.

7

2. James Cheney and Christian Urban. System description: Alpha-Prolog,
a fresh approach to logic programming modulo alpha-equivalence. Work-
shop on Unification (Valencia, Spain, May, 2003).

3. Karl Crary and Stephanie Weirich. Resource bound certification. ACM
Symposium on Principles of Programming Languages (Boston, Mas-
sachusetts, January 2000), 184–198.

4. Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. Journal of Functional Program-
ming, 12(6):567-600, November 2002.

5. Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security
polices: A retrospective. DARPA Information and Survivability Con-
ference and Exposition (DISCEX’00) (Hilton Head, South Carolina,
January 2000), IEEE Computer Society, Los Alamitos, California, 287–
295.

6. Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java
stack inspection. Proceedings 2000 IEEE Symposium on Security and
Privacy (Oakland, California, May 2000), IEEE Computer Society, Los
Alamitos, California, 246–255.

7. David Gries and Fred B. Schneider. Formalizations of substitutions of
equals for equals. Millennial Perspectives in Computer Science, Pro-
ceedings of the 1999 Oxford-Microsoft Symposium in honour of Pro-
fessor Sir Anthony Hoare, (Davies, Roscoe, and Woodcock, editors)
Palgrave Publishers, Hampshire, England. November 2000, 119–132.

8. Dan Grossman. Existential Types for Imperative Languages. Type
checking systems code. Eleventh European Symposium on Program-
ming (Grenoble, France, April 2002), Lecture Notes in Computer Sci-
ence Volume 2305, 21–35.

9. Daniel J. Grossman. Safe Programming at the C Level of Abstraction.
Ph.D. Thesis, Cornell University, August 2003.

10. Daniel J. Grossman. Type-Safe Multithreading in Cyclone. ACM
Workshop on Types in Language Design and Implementation (New Or-
leans, LA, January 2003).

8

11. Dan Grossman and Greg Morrisett. Scalable Certification for Typed
Assembly Language. 2000 ACM SIGPLAN Workshop on Types in
Compilation. Lecture Notes in Computer Science, Vol. 2071 (Robert
Harper, editor), Springer Verlag, Montreal, 2000, pp. 117-146.

12. D. Grossman, G. Morrisett, T. Jim, M. Hicks, J. Cheney, and Y. Wang.
Region-based memory management in Cyclone. ACM Conference on
Programming Language Design and Implementation (Berlin, Germany,
June 2002), 282–293.

13. Dan Grossman, Steve Zdancewic, and Greg Morrisett. Syntactic Type
Abstraction. ACM Transactions on Programming Languages and Sys-
tems. 22(6), November 2000, pp. 1037-1080.

14. Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible
dynamic linking of native code. Proceedings of the ACM Workshop on
Types in Compilation (Montreal, Canada, September 2000), Published
as Carnegie Mellon Technical Report CMU-CS-00-161.

15. T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. Usenix Annual Technical Conference
(Monterey, CA, June 2002), 275–288.

16. Dag Johansen, Robbert van Renesse, and Fred B. Schneider. WAIF:
Web of Asynchronous Information Filters. Future Directions in Dis-
tributed Computing, Lecture Notes in Computer Science, Volume 2585
(Schiper, Shvartsman, Weatherspoon, and Zhao, eds.) Springer-Verlag,
2003, 81–86.

17. Gary McGraw and Greg Morrisett. Attacking malicious code: A re-
port to the Infosec Research Council. IEEE Software 15, 5 (Septem-
ber/October 2000).

18. G. Morrisett. Type checking systems code. Eleventh European Sympo-
sium on Programming (Grenoble, France, April 2002), Lecture Notes
in Computer Science Volume 2305, 1–5.

19. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly language. Journal of Functional Programming 12, No. 1
(January 2002), University Press, Cambridge, England, 43–88.

9

20. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
System-F to typed assembly language. ACM Transactions on Pro-
gramming Languages and Systems, 21(3):528–569, May, 2000.

21. Y. Minsky. Spreading Rumors Cheaply, Quickly, and Reliably. Ph.D.
Thesis, Cornell University, May 2002.

22. Yaron Minsky and Fred B. Schneider. Tolerating malicious gossip.
Distributed Computing 16, 1 (Feb 2003), 49–68.

23. Fred B. Schneider. Enforceable security policies. ACM Transactions
on Information and System Security 3, 1 (February 2000), 30–50.

24. Fred B. Schneider. Editorial: Time for Change. Distributed Computing
Vol. 13, No. 4 (November 2000), 187.

25. Fred B. Schneider. Open source in security: Visiting the bizarre. Pro-
ceedings 2000 IEEE Symposium on Security and Privacy (Oakland,
California, May 2000), IEEE Computer Society, Los Alamitos, Califor-
nia, 126–127.

26. Fred B. Schneider. Least privilege and more. Computer Systems: Pa-
pers for Roger Needham, Andrew Herbert and Karen Sparck Jones, eds.
Microsoft Research, 2003, 209–213.

27. Interview with Fred B. Schneider. Distributed Systems Online.
http://www.computer.org/channels/ds.

28. Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-
based approach to security. Informatics: 10 Years Back, 10 Years
Ahead. Lecture Notes in Computer Science, Vol. 2000 (Reinhard Wil-
helm, editor), Springer Verlag, Heidelberg, 2000, pp. 86-101.

29. Frederick Smith. Certified Run-Time Code Generation. Ph.D. Thesis,
Cornell University, January 2002.

30. Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and
Trevor Jim. Compiling for template-based run-time code generation.
Journal of Functional Programming, 13(3):677-708, May 2003.

31. Frederick Smith, David Walker, and Greg Morrisett. Alias types. Eu-
ropean Symposium on Programming (Berlin, Germany, March 2000).

10

32. David Walker. A type system for expressive security properties. ACM
Symposium on Principles of Programming Languages (Boston, Mas-
sachusetts, January 2000), 254–267.

33. David Walker and Greg Morrisett. Alias types for recursive data struc-
tures. Proceedings of the ACM Workshop on Types in Compilation
(Montreal, Canada, September 2000), Published as Carnegie Mellon
Technical Report CMU-CS-00-161.

34. David Walker and Greg Morrisett. Alias Types for Recursive Data
Structures. In 2000 ACM SIGPLAN Workshop on Types in Compila-
tion. Lecture Notes in Computer Science, Vol. 2071 (Robert Harper,
editor), Springer Verlag, Montreal, 2000, pp. 177-206.

35. Stephanie Weirich. Type-Safe Cast: Functional Perl. In Proceedings of
the Fifth ACM International Conference on Functional Programming.
Montreal, September 2000, pp. 58-67.

36. David Patrick Walker. Typed Memory Management. Ph.D. Thesis,
Cornell University, January 2001.

37. Stephanie Weirich. Encoding Intensional Type Analysis. In European
Symposium on Programming. Lecture Notes in Computer Science, Vol.
2027, Springer Verlag, Genova, Italy, April 2001.

38. Stephanie Weirich. Higher-order intensional type analysis. Eleventh
European Symposium on Programming (Grenoble, France, April 2002),
Lecture Notes in Computer Science Volume 2305, 98–114.

39. Stephanie Weirich. Programming With Types. Ph.D. Thesis, Cornell
University, July 2002.

Interactions/Transitions

Presentations at Meetings, Conferences, Seminars, etc

Invited Lectures: F.B. Schneider

1. Mobile Agent Miracles And Graveyards. Panalist, ASA/MA 99, Palm
Springs, California, October 1999.

11

2. Fault-tolerance Issues For Mobile Agents. Dartmouth Workshop on
Transportable Agents, Palm Springs, California, October 1999.

3. Enforceable Security Policies. Qualcom Distinguished Lecture Series,
Department of Computer Science, Universtiy of California at San Diego,
October 1999.

4. Trust in Cyberspace. Federal Communications Commission, Washing-
ton, D.C., October 1999.

5. Reinventing Security for Trust in Cyberspace. Banquet speaker. Be-
yond Moore’s Law: Opportunities and Threats from Future, Ubiqui-
tous, High-Performance Computing, Center for Global Security Re-
search, Lawrence Livermore National Laboratory, December 1999.

6. Radio interview, “All Things Considered”, National Public Radio, De-
cember 17, 1999.

7. Defense Against Malicious Content and Code. ISAT Meeting on Mo-
bility and Security, Software Engineering Institute, Pittsburgh, PA,
January 2000.

8. It Depends on What You Pay. Malicious Code Infosec Science and
Technology Study Group, San Antonio, Texas, January 2000.

9. SASI Enforcement Of Security Polices: A Retrospective. Informa-
tion and Survivability Conference and Exposition (DISCEX’00), Hilton
Head, South Carolina, January 2000.

10. Containment and Integrity of Mobile Code. Intrusion tolerant systems
investigator’s meeting, Aspen, Colorado, February 2000.

11. The Non-technical Take on Computing System Trustworthiness. Holy
Cross University, Worcester, Mass. March 2000.

12. Secret Sharing Tutorial. University of Tromso, Tromso, Norway. March
2000.

13. AFRL/Cornell Information Assurance Institute. Air Force Rome Lab-
oratories, Rome, New York. April 2000.

12

14. Overview of Mobile Code Security. Air Force Rome Laboratories,
Rome, New York. April 2000.

15. Network Information System Trustworthiness. Short Course on Com-
petitive Strategies for E-Commerce, Johnson Graduate School of Man-
agement, Ithaca, New York. April 2000.

16. The Non-technical Take on Computing System Trustworthiness. Jones
Seminars on Science, Technology and Society. Dartmouth College,
Hanover, N.H. April 1999.

17. Radio interview, “All Things Considered Weekend Edition”, National
Public Radio, May 6, 2000.

18. Are There Systems Principles or Only Systems Principals? Invited
speaker. In Pursuit of Simplicity. A Symposium Honoring Professor
E.W. Dijkstra. Austin, Texas. May 2000.

19. Open Source in Security: Visiting the Bizarre. Panelist. IEEE Sym-
posium on Security and Privacy. Oakland, California. May 2000.

20. In-lined Reference Monitors. InCert Software. Cambridge, Mass. May
2000.

21. The case for language based security. Invited Lecture. Informatics—
10 Years Back, 10 Years Ahead. Saarland University, Saarbrucken,
Germany. August 2000.

22. In-lined reference monitors. Microsoft Research. Redmond, Washing-
ton. October 2000.

23. Radio interview, “All Things Considered”. October 27, 2000.

24. The case for language based security. IFIP wg2.3. Santa Cruz, Cali-
fornia. January 2001.

25. The design and deployment of COCA. Distinguished lecture series.
SUNY Stony Brook. Stony Brook, New York. February 2001.

26. Fast P2P possibilities. Tysil, Norway. February 2001.

13

27. The design and deployment of COCA. Department of Computer Sci-
ence. University of Tromso. Tromso, Norway. February 2001.

28. The case for language based security. Keynote Address, ACM South-
east Conference 2001, Athens, Georgia. March 2001.

29. The design and deployment of COCA. Department of Computer Sci-
ence. University of Texas, Austin, Texas. March 2001.

30. The case for language based security. IBM Corporation Hawthorne,
New York. April 2001.

31. The design and deployment of COCA. AFOSR Principal Investigators
Meeting. Ithaca, New York. May 2001.

32. The design and deployment of COCA. Information Assurance Institute
Seminar Series. AFRL/IF Rome Research Site, Rome, New York. June
2001.

33. The case for language based security. AFCEA Conference. Hamilton,
New York. June 2001.

34. Escaping the ivy tower: Transitioning technology from a university.
AFCEA Conference. Hamilton, New York. June 2001.

35. Language-based Security: What’s needed and why. Keynote Speaker.
Static Analysis Symposium (SAS’01) Paris, France. July 2001.

36. Research overview. Invited panelist, Intel Corporation Microprocessor
Research Lab. Santa Clara, California, October 2001.

37. AFRL/Cornell Information Assurance Institute. AFRL Rome Labora-
tories, Science Advisory Board Review, Rome, New York, November
2001.

38. Mobile code research: Looking back and peering ahead. Keynote Lec-
ture, Fifth IEEE International Conference on Mobile Agents, Atlanta,
Georgia, November 2001.

39. Presentation of the International Panel’s Review of UK Research in
Computer Science. International Review of UK Research in Computer
Science—Presentation of the Report and Discussions on the Way For-
ward, London, England, December 2001.

14

40. The Case for Language-Based Security. Invited lecture, Intel Research
Professor Forum, Santa Clara, California, January 2002.

41. The Case for Language-Based Security. Keynote lecture, Symposium
on Cyber Security and Trustworthy Software, Stevens Institute of Tech-
nology, Hoboken, New Jersey, March 2002.

42. The Case for Language-Based Security. Department of Computer Sci-
ence, University of Tromso, Tromso, Norway, March 2002.

43. Research to Support Robust Cyber Defense. High Assurance Systems
Workshop, MITRE Corp., Reston, Virginia, May 2002.

44. Asynchronous Proactive Secret Sharing. AFOSR PI Meeting, Syracuse,
New York, June 2002.

45. System evaluations. Invited lecture, Intrusion Tolerant Systems Work-
shop. Washington, D.C. June 2002.

46. Design and Deployment of COCA. Workshop on Dependability and
Survivability. IFIP Working Group 10.4 on Dependable Computing
and Fault Tolerance. Hilton Head, South Carolina, June 2002.

Invited Lectures: G. Morrisett

1. Language and Compiler Support for Security in Mobile Code. Invited
speaker. INFOSEC Working Group on Mobile Code, Washington D.C.,
October 1999.

2. Type Systems for Low Level Languages. Invited speaker. OpenSIG’99,
Pittsburgh, PA, October 1999.

3. Mobile Code Security. Invited speaker. Scientific Advisory Board, Air
Force Research Laboratory, Rome, NY, December 1999.

4. The Role of Type Systems in Mobile Code Security. DARPA ISAT
Workshop on Mobile Code, Pittsburgh, PA, January 2000.

5. Typed Intermediate Languages. Panelist. Workshop on Foundations
of Object Oriented Languages (FOOL), Boston, Mass. January, 2000.

15

6. Mobile Code Security: An Overview. Invited speaker. TARA Review.
Air Force Research Laboratory, Rome, NY, March 2000.

7. Open Issues in Certifying Compilers. Workshop on Proof Carrying
Code. Invited Speaker. Santa Barabara, California, June 2000.

8. Open Issues in Proof Carrying Code. InCert Software. Cambridge,
Mass. May 2000.

9. Next Generation Low-Level Languages. Workshop on Semantics, Pro-
gram Analysis, and Computing Environments for Memory Manage-
ment (SPACE 2001), London, England. January 2001.

10. Towards Next Generation Low-Level Languages. Harvard University,
Cambridge, Massachusetts. February 2001.

11. Towards Next Generation Low-Level Languages. Cornell University,
Ithaca, New York. February 2001.

12. Next Generation Low-Level Languages. University of Minnesota, Min-
neapolis, Minnesota. April 2001.

13. Language-Based Security. Danish Technical Institute (ITU), Copen-
hagen, Denmark, June 2001.

14. Cyclone: A Next-Generation Systems Language. Information Assur-
ance Institute Seminar Series. AFRL/IF Rome Research Site, Rome,
New York. August 2001.

15. Next Generation Type Systems. University of Washington and Mi-
crosoft Research Summer Institute. Seattle, Washington. August 2001.

16. Explicit Regions in Cyclone. Invited lecture, New England Program-
ming Languages Seminar. Boston, Massachusetts, October 2001.

17. Typed Assembly Language Background. Invited lecture, Intel Research
Professor Forum, Santa Clara, California, January 2002.

18. Type Checking Systems Code. Invited lecture, Yale University, New
Haven, Connecticut, February 2002.

16

19. Runtime Code Generation. IFIP Working Group 2.8 on Functional
Programming, Las Vegas, Nevada, March 2002.

20. Type Checking Systems Code. Invited lecture, European Symposium
on Programming, Grenoble, France, April 2002.

21. Type Checking Systems Code. Invited lecture, Cigital, Inc. Washing-
ton, D.C. April 2002.

Consultative and Advisory Functions

• Schneider chaired a study for DARPA IPTO Program Manager Jay
Lala on promising research directions for Self-Healing Networked In-
formation Systems.

• As a consultant to DARPA/IPTO, Schneider chaired the indepen-
dent evaluation team for the OASIS Dem/Val prototype project. This
project funded two consortia to design a battlespace information sys-
tem intended to tolerate a class A Red Team attack for 12 hours.

• Microsoft researchers collaborated with Morrisett on the design and
implementation of a low-level, type-safe language for building device
drivers.

• Greg Morrisett spent nine months visiting Microsoft’s Cambridge Re-
search Laboratory, where he worked with researchers on programming
language and security technology. In particular, Morrisett worked on
the development of Microsoft’s tools for automatically finding secu-
rity flaws in production code, based on his experience with Cyclone.
He also worked with student Kevin Hamlen and Microsoft researchers
on the implementation of the .NET rewriting tool for inline reference
monitors.

Transitions

• Researchers at Carnegie-Mellon University, Princeton University, Uni-
versity of California (Riverside), University of Newcastle-Upon-Tyne,
and Intel Research are all now building on PoET/PSLang IRM tools
developed by Schneider and collaborators.

17

• AT&T research collaborated with us to develop the Cyclone language,
compiler, and tools. In addition, researchers at the University of Mary-
land, the University of Utah, Princeton, and the University of Pennsyl-
vania, and Cornell are all using Cyclone to develop research prototypes.

• Researchers at Leiden Institute of Advanced Computer Science in the
Netherlands have developed an extension of the Linux operating sys-
tem, whereby untrusted modules, written in Cyclone, can be dynami-
cally loaded and executed in the context of the kernel.

New discoveries, inventions, or patent disclosures

None.

Honors and Awards

F.B. Schneider:

• Fellow, American Association for Advancement of Science (1992).

• Fellow, Association for Computing Machinery (1994).

• Professor-at-Large, University of Tromso, Tromso, Norway (1996–2004).

• Daniel M. Lazar Excellence in Teaching Award (2000).

• Doctor of Science (honoris causa), University of NewCastle-upon-Tyne
(2003).

G. Morrisett:

• Sloan Fellow (1998).

• NSF Faculty Early Career Development (1999).

• Presidential Early Career Award for Scientists and Engineers (2000).

• Allen Newell Medal for Research Excellence, Carnegie Mellon Univer-
sity (2001).

• Ralph Watts Excellence in Teaching Award, Cornell University (2001).

• Allen B. Cutting Chair of Computer Science, Harvard University (2004).

18

