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1. Summary 
 
Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles. This 
paper contains a description of our approach to develop control algorithms for the Novel 
Unmanned Ground Vehicle (NUGV) to address this problem.  The NUGV is a six-
degree-of-freedom, sensor-rich small mobile robot designed to demonstrate auto-learning 
capabilities for the improvement of mobility through variegated terrain. The learning 
processes we plan to implement are composed of classical and operant conditionings of 
novel responses built upon pre-defined fixed action patterns. The fixed action patterns 
will be in turn modulated by pre-defined low-level reactive behaviors that, as 
unconditioned responses, should continuously serve to maintain the viability of the robot 
during the activations of the fixed action patterns and of the higher-order (conditioned) 
behaviors. The sensors of the internal environment that govern the low-level reactive 
behaviors also serve as the criteria for operant conditioning. Using this adaptive 
controller, the NUGV should learn to negotiate difficult obstacles, and to protect itself 
from collisions and falls. 

                                                 
1 At the time of this writing, the NUGV is in the final stages of detail design and prototyping by Automated 
Controlled Environments, Inc., 25133 Avenue Tibbitts, Unit A, Valencia, CA 91355, (661) 775-7754 Fax: 
(661) 775-7770, under contract N66001-02-M-X105, with support from the Office of the Secretary of 
Defense Joint Robotics Program (JRP). The author gratefully appreciates the support of the JRP 
Coordinator, and the assistance of ACEi in the preparation of this manuscript. 
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2. Objectives 

 
2.1. To What Should We Aspire? 

 
The standard to which we should aspire in the control processes of our robots is not an 
indolent, ineffectual, and operator’s attention consuming automaton, but rather a mobile, 
self-sufficient, loyal, cooperative and obedient agent, somewhat like a hundred-pound 
Golden Retriever. 
 

2.2. Why Should We Aspire to This? 
 
We conceive of our robot as an aid to the operator, not the other way around. Thus our 
robot should be there when the operator needs it, ready to assist. Otherwise, the robot 
should stay out of the way, and take care of itself.  
 

2.3. Is This Not Science Fiction? 
 
This will not be science fiction if we define carefully the needs of the robot and install 
low-level control process on the robot to provide for these needs. Second, if we couple 
one or more of the solutions to the critical needs of the robot with some activity of its 
operators, the probability that the robot will track, trail, and learn to cooperate with its 
human operators should be increased.  
 

2.4. Resolving the Conflict  
 
The reader may sense a contradiction here. I suggest above that the robot must have low-
level control processes that permit it to take care of itself, while at the same time state 
that these must be coupled to activities of the human operator so that the robot is in some 
way dependent upon that operator. Can we have both independence and dependence, or 
self-interest coincident with social-interest? Can the robot exercise independence by 
virtue of its low-level control processes, and then become dependent upon a human 
operator through the acquisition of higher order robot behaviors that also provide service 
to the operator? In the following, I will attempt to explain how we can. Resolving this 
conflict between self-interest and social-interest should provide for the usefulness of the 
robot2. 
 

                                                 
2 Many of the terms that I will use in this discussion come from biology and psychology. They are thus 
loaded with anthropomorphic connotations. I hope that the reader does not become too suspicious at this 
point, but looks for my later description of algorithms that will implement these concepts in the artificial 
system of robot hardware and software. 
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3. Control with Independent Agents 

 
To achieve our objectives, we will implement a control architecture that differs 
significantly from the principal approach taken today in mobile robotics. First, we view 
our robot as an independent agent, and will attempt to endow it with all of the necessary 
capabilities to promote its own welfare. Second, we view our own role in the process 
more as director and collaborator, than as user and operator, and, as such, will employ 
methods of control that involve more the leash than the lever. 
 

3.1. Control by Negation 
 
To the degree that the robot will be self-controlled it will also be self-motivated. Then, as 
it is self-motivated, the operator3 may be excluded from giving explicit instructions on 
the direction and intensity of any robot action. Rather, the director (or human 
collaborator) should be able to provide information on the intended objective, to which 
the robot would then be socially motivated to pursue. The director may then observe the 
progress of the robot toward that objective, and intervene only as necessary to veto or 
negate a particular action that the robot is attempting to execute. Once an action is 
negated, the robot would, on its own initiative, select a different approach to the 
objective4. 
 

3.2. The Purpose of Local Control is Preservation 
 
An agent is useful only while it is viable. An agent’s viability is preserved when it 
remains physically intact, its sensors and effectors function as designed, and its energy 
reserves are adequate for any exigencies. Factors that jeopardize these conditions are 
variously extremes of temperature, shock and other collisions, and un-replenished power 
consumption.  
 

3.3. Homeostasis is an Optimal State for Preservation 
 
Homeostasis is the state of the agent that optimally predisposes it to perform some 
additional activities within its present environment5. Thus an agent preserves itself by 
performing activities that maintain its homeostasis and by avoiding actions that seriously 
disturb its homeostasis. Various internal sensors measure the state of the agent, defining 
its homeostasis. At a very low level of control, these sensors are coupled with subsystems 
that enable the activity of the agent. When a subsystem is failing, the agent’s activity is 
threatened, and some change in activity should occur to restore the subsystem 
functionality, in other words, to restore homeostasis. 

                                                 
3 The term operator is inconsistent with the control of an independent agent. We operate machines, and 
political operatives are defined by their ability to operate politicians, but we direct actors and employees. 
4 Negation will be effective only to the degree that the operator can both tempt and threaten the robot, and 
to the degree that the robot can generate alternative actions to achieve the intended objective. We will 
discuss these possibilities later in this paper. 
5 The permission of additional behavior is also known as survival. 
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4. A Control Architecture for Independence and Survival 

 
The control processes (algorithms) for our robot must execute within the constraints 
imposed upon it by our mechanical design, sensors, electronics, and a few (very few) 
behavioral preferences. All of these things we provide to the robot in assembly, and are 
analogous to the ontological implementation of a genetic code.  
 

4.1. The Physical Constraints 
 
Developing a local control capability through the use of artificial intelligence (AI) 
algorithms should prove feasible in an embodied system such as our Novel UGV. The 
physical system of the Novel UGV provides not only constraints, but also a means to 
complete feedback loops with the environment that is essential for stability.  
 
The physical equipment of our robot, that will enable and constrain our AI algorithms, is 
shown in Figures 1, 2 and 3. The Novel UGV is composed of three principal segments, a 
central core, and two pods. All three segments contain electrical power, power 
transmission mechanisms, sensors for both the internal and external environments, radios 
for inter-pod communication, and electronics for local processing. The core contains 
radios for communication with the operator control unit (OCU). 
 
The two pods are tracked for conventional tank-type motion across planar surfaces. The 
pods are each connected to the central core by a single axle, about which the pods can 
rotate. These two axles are mounted at either end of the core, and laterally near the end of 
each pod. The axles, with pods attached, can rotate about the ends of the core.  
 

 
 

Figure 1. Outer appearance of the Novel UGV 
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The NUGV is symmetrical on all major axes, so that if the image in Figure 1 was rotated 
180 degrees in any direction, it would appear the same. Sensors for the external 
environment (video cameras, SONAR, and IR proximity detectors) are located on both 
ends of the core faceplates, and (sans video cameras) on the outboard sides of the two 
pods. 
 

17.64 

 
 

Figure 2. Exterior dimensions of the Novel UGV in inches. 
 
The total weight of the first prototype Novel UGV should be approximately 30 pounds. 
The use of lighter materials in its construction should reduce this weight by about 30%. 
The vehicle may scale upwards to increase payload and energy storage capacities. 
Downward scalability will be limited by the availability of suitably scaled electronics, 
energy transmissions, sensors, and energy density storage or recovery devices. Recent 
developments in micro-electromechanical systems (MEMS) promise to significantly push 
back limitations to the first three, but micro energy storage or recovery issues are yet to 
be addressed.  
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Figure 3. Cutaway of the Novel UGV showing components.   
The layout of some of the internal components of the NUGV can be seen in Figure 3. 
Batteries are represented by gray cylinders, circuit board  are shown in light green, and 
power transmission devices are shown as black cylinders and belts. Many wires, cables, 
and other obscuring components are not shown for clarity. 
 

4.2. Multiple Degrees of Motion Freedom Allow Multiple Conformations 
 
The physical architecture of our robot permits it to assume several different 
conformations. Our physical architecture enables six mobility degrees of freedom6. For 
comparison, the Foster-Miller Talon tracked robot has two, the iRobot PackBot tracked 
robot with flipper assist has three, and the Sony SDR-4X humanoid robot has twenty-
eight, more or less. A sample of the different conformations that are possible with the 
Novel UGV’s six degrees of freedom is given in Figure 4. The variable conformation of 
the vehicle permits a large diversity of behavioral responses to environmental conditions. 
In general the degree of behavioral complexity possible in a mobile agent is a non-linear 
function of the mobility degrees of freedom. 
 
Each of the conformations depicted in Figure 4 can be achieved or passed through by a 
variety of combinations of pod motions. 
 
 

                                                 
6 The simultaneous remote control of six mobility degrees of freedom would pose a significant challenge 
for a human operator. For this and other reasons we intend to automate much of the local control processes. 
As we expand the number of mobility degrees of freedom in order to increase the opportunity for increased 
behavioral complexity in our development of even more capable robots, this local automation will take on 
even greater importance. 
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Figure 4. Various possible robot conformations. 

 
Of the robot’s six degrees of freedom of movement, the two degrees of freedom 
associated with the camber axes are limited in transit, while the other four degrees of 
freedom are rotationally continuous.  
 
Each conformation shown in Figure 4 will have a different utility for one of the different 
topologies of the surfaces over which the robot will attempt to move. Because the robot is 
symmetrical along its lateral (X, side to side), coronal (Y, top to bottom), and sagittal (Z, 
end to end) axes, there will always be two absolute conformations with respect to gravity 
that will accomplish the same task in the same way.  
 
Given a planar surface with small physical texture relative to the vehicle, the most 
efficient conformation of the robot is expected to be that of Figure 4.a. The vehicle is 
most stable in this conformation as the maximum amount of track contact with the planar 
surface is possible and the vehicle has the lowest center of gravity. From this 
conformation the vehicle could execute turns by skid steering wherein the track velocities 
are varied between the pods to rotate the vehicle while in place or while progressing.   
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The conformation shown in Figure 4.b, the open position, could be most useful when a 
high barrier must be scaled, or when a narrow chasm or gulf (negative obstacle) with a 
width not in excess of the length of one pod must be crossed. 
 
The conformation in Figure 4.c could be useful for elevating the cameras for improved 
perspective, and for passing over occasional obstacle clumps.  
 
The conformations of Figures 4.d and 4.f could permit the vehicle to maintain stable 
traction on irregular surfaces such as beams, tree branches, gabled rooftops, and pipes 
(inside or out). This conformation would also permit the vehicle to avoid high centering 
on boulders and other irregularities in the plane of traversal. 
  
The conformation in Figure 4.e represents the pose the robot might take in approaching a 
step change on a planar surface. 
 
The choice of conformations for any set of environmental conditions would have to 
depend upon the robot’s ability to assess those conditions, and recall previous 
conformations that accomplished a task objective and met the optimization criteria.  
 
A second problem is the morphing from one conformation to the more optimal 
conformation without losing friction or balance. I will address these problems 
progressively through the paper. 
  

4.3. Information Flow During Control 
 
The different components of the physical architecture fall within the following classes: 
 
� Sensors of the internal environment 
� Sensors of the external environment 
� Effectors composed of motors and transmission elements 
� Energy storage composed of batteries 
� Computational resources 

 
The computational resources provide the substrate for connectivity matrices between 
sensors and effectors. Theses matrices are composed of fixed and plastic elements 
 
These components are graphically shown in Figure 5. The arrows of Figure 5 indicate the 
direction of information flow. The control laws are embedded in the two boxes labeled 
“fixed connections” and “plastic connections”. The fixed connections are established 
primarily by design, while the plastic connections are established primarily through the 
vehicle’s experience in operation, though based upon pre-defined mechanisms. Feedback 
is indicated in the horizontal arrows between the boxes of connections, and in the line 
through the environment that provides information on the physical consequences of the 
robot’s behavior. 
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Figure 5. Schematic Architecture of the Novel UGV Control System 

 
 

4.4. Representation of the Control Output 
 
Since our Novel UGV is symmetrical on all axes, we can define top vs. bottom, left vs. 
right, and front vs. back only with respect to gravity and to the direction in which the 
vehicle is moving. The six motors therefore can have an absolute identification and a 
relative identification. For most of our discussion I will use the relative identification, 
recognizing that the core sensors for gravity and direction of motion will have to route 
the motor commands (M) to the appropriate motors in the appropriate way to execute the 
desired action. 
 
Each of our six motors can turn in either direction. We represent this by 12 output 
elements. The torque on the motors will be proportional to applied voltage. We represent 
the applied voltage by the numerical value on the output element. Thus we have the 
following elements in our motor vector (M)7: 
 

CL, for camber left pod, 
CLx, for camber left pod counter clockwise, 
CR, for camber right pod, 
CRx, for camber right pod counter clockwise, 
RL, for rotation of left pod, 
RLx, for rotation of left pod counter clockwise, 
RR, for rotation of right pod, 

                                                 
7 Throughout this paper, I will indicate vector variables by bold type, and scalar variables in regular type. 
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RRx, for rotation of right pod counter clockwise, 
TL, for track rotation of left pod, 
TLx, for track rotation of left pod counter clockwise, 
TR, track rotation of right pod, and 
TRx, track rotation of right pod counter clockwise.  

 
Where x is always a counter clockwise rotation from the perspective of the vehicle. In 
general, to get the track pods coordinated in the direction of travel of the vehicle, one pod 
must move clockwise while the other pod moves counter clockwise. 
 
As it is impossible for any one of the motors to turn in both directions at the same time, 
we should provide for contradictory commands to the same motor to cancel at the output 
element. For example: 
 

MCL = CL – CLx 
 

4.5. Sensors of the Internal Environment 
 
We have a sensor field composed of numerous sensors of the internal environment. These 
include nine accelerometers (three for each of two pods, and three for the core), three 
core magnetometers, four track rotation sensors (two per pod), sixteen touch sensitive 
whiskers (four on the ends of each of the pods), two core faceplate pressure sensors (one 
at each end of the core), eighty plate pressure sensors, three battery voltage sensors (one 
in each compartment), and three battery current sensors. 
 
The pod plate pressure sensors, the touch-sensitive whiskers, and the core faceplate 
pressure sensors would not ordinarily be considered sensors for the internal environment, 
but we include them here because they basically require physical contact with an external 
object to produce an output. Thus they are neither predictive of contact, nor descriptive of 
the typology of the immediate environment. 
 
A vector of features, derived from the nine accelerometers, defines the conformation of 
the vehicle (C). By measuring the acceleration vector in each trio of accelerometers and 
comparing the measurements to each other, the relationship (tilt and camber) of the pods 
to the core can be determined. When the motors are all quiescent, gravity is the only 
influence on the accelerometers, and the accelerometer input is sufficient for an 
unambiguous determination of conformation. Some examples of this vector are shown in 
Figure 6.  
 
When the pods are in motion with respect to the core, the pod accelerometers will sense 
both the pod motion acceleration and gravity. The two effects will be confounded. The 
conformation will be changing during these motion-imposed accelerations. The effects of 
motion acceleration could be extracted from the effects of gravity as there is a very 
predictable effect on the accelerometers with the different changes in axle position due to 
activations of the motors. However, we yet do not have sensors for axle rotation. Thus 
there will remain some conformation uncertainty until the pod and camber rotations stop. 

13 
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Figure 6. Accelerometer indicators of conformation. 
 
The robot would compare information from its internal sensors to determine its present 
conformation, and to assess the success of any attempts to change its conformation, but 
the control algorithms have available information from all sensors at all times, some of 
which may be irrelevant to the particular control decision, in this case – conformation, 
but which later may become a disambiguifying factor. For example, during changes in 
conformation, the pod plate pressure sensors and the whiskers will cooperate with the 
accelerometers to determine whether the robot’s contacts are due either to the ground 
plane, to an obstacle, or to an appropriate leverage point.  
 

4.6. Fixed Action Patterns (FAP) 
 
To control the six degrees of freedom during translation, and during the transition from 
one conformation to the next, the robot will likely need several different behaviors 
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composed of sets of coordinated motor commands. Similar organized behaviors, specific 
to the physical makeup of an animal, and stereotypical in nature, are called Fixed Action 
Patterns (FAP) in the Neuroethology community. I will use that term here as well. The 
robot’s Fixed Action Patterns exhibit a predictable set of events characterized by 
coordinated motor torques and timing. The Fixed Action Patterns do not necessarily 
depend upon any particular environmental conditions, but may be invoked by triggers 
related to the above sensors of the internal environment.  
 
A network of delay elements that can be invoked as a unit will define each of the six 
FAP. The connectivity of the elements in those units will define the sequence and 
strength of commands to the 12 output elements. The sub-networks that manage the 
different FAP are located in the box labeled fixed connections in Figure 5. The FAP 
progress by the strength of the recent history of current pattern to evoke the next element 
of the pattern. Thus, baring any changes in the external and internal environments, a 
pattern, once initiated, may continue in an infinite loop. The impossibility of an infinite 
behavioral loop, however, is obvious, as behavior itself will produce changes in both 
environments, disrupting the behavior. 
 

4.6.1. Fixed Action Pattern P. Porpoising  
 
FAP-P may be attempted when the robot is fully immersed in a liquid medium and is 
neutrally buoyant. Immersion would be sensed with the present sensor suite by the 
absence of contact information from any of the whiskers or plate pressure sensors. Under 
these conditions, the rearward track pod would assume a position 180 degrees to the rear 
and oscillate, while the forward track pod would maintain its normal position with respect 
to the core and then oscillate in counter phase with the rearward track pod. The net result 
of the oscillations of the two pods should be a porpoising of the robot through the liquid 
medium. Diving and surfacing could be accomplished by varying the angles of the 
forward and rearward pods around which the oscillations are made. 
 

4.6.2. Fixed Action Pattern R.  Resting to Running 
 
FAP-R permits the robot to run consistently and rapidly in a particular direction on a 
smooth planar surface. This FAP prefers the conformation shown in Figure 4.a. Sensor 
conditions that would favor this FAP are significant pod plate pressure, and the absence 
of whisker contact. To achieve this conformation, the robot assesses its core 
accelerometer values. If the Y-axis (see Figure 7) is at +/- 1, the core is horizontal on 
whatever surface the robot is resting. The robot then attempts to match the Y-axes of the 
two pods with the core Y-axis value by rotating the pods away from their contact points 
without upsetting the Y-axis value. A stable surface would permit this maneuver and the 
robot could then close to its normal preferred conformation.  
 
To execute a run command from the normal closed position, the simplest mechanism 
would be to have the two track motors run essentially at the same speed. Speed control 
may be modulated by accelerometers on the X and Z-axes.  
 

15 
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Changes in direction of travel could reactively occur in response to the asymmetric 
detection of obstacles along the trajectory. The sensor detecting the obstacle, activation of 
pod whiskers for example, could trigger a turn away from the obstacle by biasing the X-
axis accelerometer output to the motor controllers. The robot could turn most efficiently 
by lifting the ends of one or both pods off of the surface during the turn. Which end is 
lifted could depend upon the desired direction of the turn.  
 
 
 
If the robot was positively or negatively (but not neutrally buoyant) the robot could use 
FAP-R to swim on the surface of a liquid medium or crawl on the bottom of its container 
respectively.  
 

+Z 

-X 

+X 

-Z 

+Y 

-Y 
 

 

Figure 7. Vehicle Motion Axes 
 

4.6.3. Fixed Action Pattern S. Scaling 
 
FAP-S permits the robot to scale a large non-vertical obstacle by a combination of 
walking and running. The robot would normally initiate the FAP-S by encountering an 
obstacle with its whisker sensors. To accomplish scaling, the robot could rotate its two 
pods outward from the normal closed conformation until contact is reestablished on the 
pressure plates. If the forward pod is on the right of the vehicle, the rotation of both pods 
would be counter-clockwise, while the reverse direction of rotation would be performed 
if the vehicle was inverted at the time of first contact. During rotation, the forward 
tracked pod would normally make contact with the obstacle before the rearward pod 
again made contact with the ground plane, and the robot would pull itself up on the 
obstacle using a combination of its track tread rotations and forward track pod rotation. If 
the obstacle was short, the rotation could continue and the robot would pull itself over the 
obstacle. Any unevenness of the obstacle, such as a staircase, could cause the forward 
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pod to continue in its rotation (as it is yet leading and yet in the open conformation so that 
the same direction of rotation would be maintained, causing the pod to complete a full 
rotation), and the rearward pod to oscillate or porpoise as the pod attempts to improve its 
traction with the obstacle.  
 
The robot could perform a descent down a slope by maintaining the same pattern as was 
used in the ascent.  
 
A similar combination of walking and porpoising could also be used to propel the robot 
across the surface of a liquid in which it was positively buoyant.  
 

4.6.4. Fixed Action Pattern T. Tumbling 
 
FAP-T permits the robot to tumble by alternately rotating the pods around the core in a 
consistent direction. One use for tumbling could be to dismount from a straddle position 
on a beam. A conceivable trigger for this FAP could be the absence of forward and 
rearward motions by any other FAP. The tumbling could be performed most efficiently 
from the normal closed position (Figure 4.a). To initiate tumbling, one pod on the side to 
which tumbling would progress would begin a rotation under the core. After a lag, the 
second pod would begin its rotation under the core. This would tend to bring the core 
over the pod with the first rotation. Next, after completing its range of rotation, the 
direction of rotation would change on the first pod, while the second pod would continue 
with its rotation progress under the core while the core was being lifted away from the 
first pod. Upon completion of its rotation transit, the second pod would also reverse its 
direction of rotation and move to complete the inversion of the platform. As either pod 
reached the limits of rotation in either direction it would change direction and repeat the 
process. In this way, the tumbling could be completed. Alternatively, the rates of rotation 
could differ, with the pod moving faster initially in the direction of the tumble. The rate 
as well as the direction of rotation could alternate at each range limit. The pods could also 
rotate on their connecting arms to facilitate tumbling by moving the center of gravity 
further away from the core. 
 

4.6.5. Fixed Action Pattern U. Undulating. 
 
FAP-U permits the robot to elevate its core above the terrain without moving forward. A 
conceivable trigger for this behavioral pattern could be the detection of low battery 
capacity. An elevated core might make the robot easier to find. Other triggers could 
include loss of RF signal, and SONAR indication of a blocked visual field. Thus 
elevating the core could also improve radio communications, and it could give the robot’s 
video cameras a better perspective above ground rubble. Accelerometers would provide 
the primary sensor input during the execution of this FAP.  Undulation could begin from 
the normal closed position by rotating both pods outward. Undulation could proceed by 
continuing the rotation until the core ascends to its apogee and begins again to descend. 
The undulation could be halted at this point whereupon the core would be at its most 
elevated position with respect to the ground plane. Because of the wide tracks, the robot 
should be stable in this position, but during movement, stability could be achieved either 
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by adjusting the rotation of either pod or by adjusting the direction and rate of the pod 
track rotations, or both. Continuing the undulation would involve a reversal of the pod 
rotations at this point. At the point of co-pod rotation where core elevation no longer 
changes, the direction of pod rotation would again change lifting the core again to its 
apogee.  
 
From the core perigee, continuing the pod rotations in the same direction would restore 
the robot conformation to the normal closed position.  
 
To achieve an extended position, useful on steep slopes, the rotation could be interrupted 
as the core begins to lift from the surface during pod rotation. 
 

4.6.6. Fixed Action Pattern W. Walking 
 
FAP-W permits the robot to walk consistently in a particular direction on a variegated8 
planar surface. In this pattern, the track treads could remain still or continue in rotation, 
while the pods rotate on the core connection arm in alternating and parallel motions in the 
direction of travel. FAP-W could evolve as both pods encounter obstacles9. The pod 
whose core connection arm is located at the forward end of the core, as defined by the 
direction of travel, begins to rotate first. This could be detected by the contact sensors on 
the pods or on the core faceplate, or by the accelerometer data. The forward pod would 
rotate forward as in the FAP-S. However, when the first pod was rotated fully forward, 
the second pod rotation would begin also in the forward direction. This would tend to 
elevate the core. Afterwards, the two pods could continue with their rotations at 
equivalent rates, remaining about 180 degrees out of phase, undulating the core up and 
down over the variegated surface. Turning on such a surface could be accomplished by 
activating the tracks in addition to the pod rotations, by differentially rotating the pods, 
and by changing the camber angle of the pods.  
 

4.6.7. Fixed Action Pattern Y. Yawing 
 
FAP-Y may permit the robot to squeeze through a narrow passageway. The trigger for 
this maneuver could be activation only of the forward outboard pod whiskers while the 
robot was in the normal closed position.  That pattern of activation could indicate a gap 
through which the robot could attempt to squeeze10. The minimum gap width that the 
present NGV could negotiate is approximately eight inches. This pattern begins by the 
NUGV backing up and extending the pods outward as in FAP-U, however, at the point 
where the pods are horizontal with the core, a camber command is triggered that draws 
both pods in (down with respect to gravity). This maneuver will force the pods to rest on 
                                                 
8 An example of a variegated planar surface over which it would be appropriate for this NUGV to walk 
would be an extended egg-carton with compartments in sufficient quantity and size to hold 144 basket 
balls. 
9 The difference between FAP-W and FAP-S could be in the accelerometer indications of core and pod 
position when the obstacles are encountered. A consistently inclined core indicates the predominance of the 
obstacle in the forward direction, while an oscillating core indicates a variegated surface that may be better 
managed by the FAP-W. 
10 Normally FAP-Y would not be attempted when alternative action patterns were available. 
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the outboard edges of their track treads. Then, alternately rotating further the ends of the 
pods while moving forward should cause the vehicle to Yaw back and forth. If the rate of 
Yaw is correct, the vehicle should pass through an orifice of dimension down to the 
minimum. The principle here is that the pods are alternately rotated while the pod camber 
angle directs the angle of attack of the treads to turn the vehicle. But a similar pattern 
may be accomplished by simple skid steering of the vehicle while in the open position. 
 

4.7. Summary of the Fixed Action Patterns 
 
The various Fixed Action Patterns are summarized in Table 1. 
 

Fixed Action Pattern Trigger Expected Conditions 
P Porpoise Absence of any contact Immersion 
R Run Movement commanded by 

the activity monitor in the 
absence of whisker output 

Obstacle free 

S Scale Obstacle is detected in the 
forward direction of travel 
by whiskers. Core 
accelerometer indicates 
consistent ascending or 
descending pattern. 

Obstacles 

T Tumble Both forward and reverse 
motion are blocked 

Entrapment 

U Undulate Low battery voltage; 
obstacle detection; loss of 
RF input 

Poor visibility, poor RF 
communications, low power 
reserves. 

W Walk Velocity < expected, 
obstacles. Core 
accelerometer indicates 
inconsistent ascending or 
descending pattern.  

Variegated surface  
Mud and other impediments 

Y Yaw Outboard whisker activation Presence of a traversable 
gap 

 

Table 1. Fixed Action Patterns 
 
The Fixed Action Patterns are low-level behavioral repertoires by which the robot 
coordinates its movements. The set of Fixed Action Patterns pretty much is inclusive of 
all of the maneuvers possible with the six degrees of motion freedom that are available to 
the robot. A greater diversity of overt behavior could be observed when the internal 
conditions evolve during behavior and trigger transitions among the patterns. These 
transitions could occur at any time during a behavior, and do not require the completion 
of one pattern before the initiation of another. The Fixed Action Patterns are behaviors to 
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which the robot would default under certain circumstances that required some behavior 
but for which requirements for no other task-specific actions were evident. 
 

4.8. Direction and Extent of Pod Rotations Define the Patterns 
 
Five of the seven Fixed Action Patterns (less FAP-T and FAP-Y) differ primarily on the 
directions and extents of the pod rotation with respect to the core. These differences are 
shown in Figure 8. 
 

delta phase = 180 

W 
U 

R 

delta phase = 180 P S 

  

Figure 8. Pod Rotation Differences between five of the seven Fixed Action Patterns 
 

4.9. The Behavioral Constraints 
 
The behavioral constraints are simple reactive behaviors that constrain other behaviors to 
prevent serious disturbances to homeostasis. Thus I will call these reactive behaviors 
Basic Reactive Patterns (BRP). The robot will come from the factory equipped with a 
few pre-planned11 BRP that respond to critical events in ways that would restore the 
sensors of those events to their states before the events occurred. The sensors involved 
are those that monitor the key homeostatic conditions. The BRP occur when certain pre-
established sensor threshold values are breached. The sub-networks that manage the 

                                                 
11 Pre-planned in the sense that the rules that govern the definition of the transfer functions between input 
and output are pre-determined in the design of the controller, and yet are subject to rapid as well as slow 
adaptations to improve performance and compensate for hardware drift.  
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different BRP are located among the boxes labeled fixed connections and plastic 
connections in Figure 5. 
 
For our robot, these critical events should be: loss of mobility or inactivity, loss of core 
balance, loss of track contact, collision with the core face plates, and loss of energy. We 
selected these critical events for their relevance to the viability of the robot under the 
conditions with which we expect it to normally operate. Other critical events could be 
considered, and appropriate sensors supplied, such as for temperature, water infiltration, 
and tampering, either physically or electronically. 
 
The Basic Reactive Patterns do not necessarily take the robot to any specific location or 
in any specific direction, but do continually act to correct or shape any ongoing random, 
pre-programmed (such as the fixed action patterns), and/or acquired behaviors of the 
robot.   
 
Previously I described seven Fixed Action Patterns that can be assumed by the robot in 
response to various internal sensor conditions. All of these behaviors are stereotypical in 
the sense that they are completely predictable given the constellation of sensor conditions 
in the internal environment. The five Basic Reactive Patterns that I will now describe will 
constantly modulate the seven Fixed Action Patterns. 
 

4.9.1. Basic Reactive Pattern A. Activity 
 
The objective of BRP-A is to prevent the robot from either moving too slowly or moving 
too rapidly. Movement may be assessed by the integration of the accelerometers and 
sensors monitoring the rotations of the track drive wheels. There will be a range of 
activity that is optimal for the performance of the robot and director. No activity is, by 
definition, undesirable for a mobile robot. High levels of activity, while potentially useful 
under extreme circumstances, will more quickly deplete the energy reserves of the 
vehicle, subject it to destructive collisions, and reduce the usefulness of sensor 
information that is returned to the human observer during monitoring. Thus the extremes 
of inactivity and activity should be avoided. To accomplish this, the very low or very 
high activity readings should contribute to increases or decreases in activity as 
appropriate to maintain activity within the preferred range.  
 
The Gaussian curve in Figure 9 shows the expected relationship of activity levels and 
system performance. To optimize performance, the system attempts to keep activity in 
the preferred mid range by modulating the activity of the 12 output elements. An 
alternative approach is to use the activity gain to modify the general inhibitory or 
excitatory influences within the controllers. Specific inhibitory or excitatory control 
commands needed to execute any particular behavior could be adjusted by these gains. 
Should we take this approach to modulation, then a slow stealthy movement of the robot 
could be performed while the accelerometer input was attempting to move the system to 
the right in Figure 9. Under that circumstance, a sudden decision to execute an evasive 
maneuver would be facilitated by the elevated excitatory gains and depressed inhibitory 
gains.   
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Figure 9. Relationship between preferred activity levels and performance. 
 
In an artificial system, to achieve some independence from the fickle motivations of its 
operator, the robot must provide an internal provocation that is linked to activity itself. 
This internal provocation should contribute to an apparent spontaneity that permits trial 
and error learning and the exercise of learned behavioral patterns. 
 
To move without an explicit or external provocation the robot could have in its control 
algorithm a parameter that assesses the total dynamics of its actuators. The dynamics of 
the system are characterized by the accelerometer (A) activity. Let this quantity be D. 
 
Then  
 

Din = Σ A.  
 
D should persist over time (t) with some factor (p) to damp out rapid fluctuations. 
 

Dt = p*Dt-1 + Din 
 

The robot should operate usually in the midrange of its capability as shown in Figure 8. 
Thus an optimal D should be MaxD/2.  
 
If D is less than MaxD/2, then motor activation commands should be amplified by the 
difference. If D is greater than MaxD/2, motor inhibition commands could be amplified 
by the difference. 
 

Dout = (1.0 – 2*D/MaxD) 
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Dout will range from +1.0 to –1.0. 
 
Dout should affect all output elements equally. Although in the alternative implementation 
the influence may be indirect via the intervening excitatory (E) and inhibitory (I) 
elements (see Figure 8). For example: 
 

If Dout > 0, then  
CL = Dout*Σ ECL – Σ ICL 
Else CL = Σ ECL + Dout*Σ ICL 

 
As these output elements are coupled to mechanical process with inertia, the principal 
effect of changing D will be to change the overall rate at which the activity proceeds12. 
 
Various non-linear functions may be applied to smooth and limit this process. (see 
Blackburn, 1987). 
 

4.9.2. Basic Reactive Pattern B. Balance 
 
The objective of the BRP-B is to prevent falls and consequent damage to the vehicle. As 
the orientation and motion of the core will be the primary determinants of balance, 
balance may be assessed by the core accelerometers. The core will be taken along in 
many different ways, however, with the motions of the two track pods, but when these 
motions are expected, or predicted by the motor commands, they are at least purposeful, 
if not as dangerous as those occurring by accident. Balance or losing balance thus should 
depend upon whether the event was expected or not. To establish an expectation, the 
automatic control algorithms must make some predictions about how the core 
accelerometer data are going to change with a particular maneuver. If those predictions 
occur, then balance is maintained, however if events contradict those predicted changes, 
then balance would be upset. This prediction should be on-going and depend upon the 
integration of data from three vectors: 1) the pattern of activations of the different motors, 
2) the pod leverage points, and the current conformation of the vehicle.  
 
Balance would be calibrated continuously. This is most easily seen when the robot is 
planning to remain stationary on a stationary surface. Under that condition, its planning 
may involve nothing more than the absence of a decision to move. At this time the robot 
would be predicting no changes in its core accelerometers. Therefore, any change in the 
accelerometers indicates an unexpected change in balance, and should be met with a 
reactive and corrective response from its motors. Should part of the surface on which the 
robot is resting give way suddenly, the robot’s accelerometer data would change as its 
core moves under the influence of gravity. This acceleration can be countered by 
activation of the track pod axes that would normally produce an acceleration in the 
direction opposite to the that of the fall, given its current configuration. The calculation 
needed is essentially an inverse of that used to predict a core acceleration in the particular 
                                                 
12 The control processes should be less rate sensitive, and more position sensitive, so that an action will 
continue until completion before the next action is initiated. 
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direction of the error. For this calculation, we can use artificial neural networks that have 
a design rich in feedback. We will shortly describe a candidate neural network for this 
purpose. 
 
While the expected pod accelerations for any activation of its motors is easily determined 
given fixed positions of the core, this will not ordinarily be the case with our NUGV. Nor 
will it ordinarily be our concern, as we need to predict the core accelerometer activity 
with activations of the pod motors. The core will be subject to disturbances caused by 
activation of any of the motors, and in all possible combinations while the pods 
themselves are at a great number of different positions with respect to the core and to 
their leverage points. Predicting the core accelerations is a complex multivariate problem. 
 
The expected accelerations of the core will be functions of the motor commands of the 
vehicle (M), the present conformation of the vehicle (C), and the leverage points (L).  
 

Ae = f(M, C, L) 
 
I have already defined the elements of the motor vector (M) and of the conformation 
vector (C).  
 
The leverage point vector (L) is simply a feature set from the collection of data points 
from the sensors that detect and locate pod contact. The sensors that participate in this 
collection are the pod whiskers and the pod plate pressure sensors. For illustration 
purposes, let us assume that the contact profile for each pod was assessed by only four 
discrete sensors, each sensor either being on or off. One sensor would be located at each 
end of the pod, and one located on each pod plate. Then the pod contact could be 
determined to the resolution of those four locations by one of sixteen different features as 
shown in Figure 10. All conditions for each of the integrating elements a-p must be 
present before an output can occur. In the Figure, an input line terminating in arrow 
indicates the requirement for an active input, while the input line terminating in a dot 
indicates the requirement for an inactive input. 
 
At this point, I should note that the sensor vectors undergo significant organization in 
most training algorithms for multi-layer perceptrons. An interim result of this 
organization is a vector of feature detectors similar to what I have shown in Figure 10. 
The network designer can greatly simplify the process of self-organization in a multi-
layer perceptron by prescribing the connectivity that defines inclusively all of the 
potentially relevant features that are available from the sensor vector, even if some of 
those features are never used by the network in calculating the required (trained) output 
vectors.  
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Figure 10. Firing conditions of sixteen hypothetical feature detectors.    

 
The actual calculation of Ae can be performed rather quickly as long as the influences of 
the different motor commands given the different conformations and leverage points are 
known. We can discover these influences by observing what happens to the core 
acceleration under a variety of these conditions, and construct the gains of the function 
that calculates Ae. This process is graphically demonstrated in Figure 11. The dotted 
circles in the Figure represent the conditioning signal. Facilitation is represented by line 
terminating in an arrowhead. Inhibition is represented by a line terminating in a dot. 
 
Errors (E) in balance are detected by unexpected changes in the core accelerometers (A). 
The unexpected measure is a function of the difference between the expected (e) and the 
actual (a) reading. 
 

E = f(Ae, Aa) 
 

In the process of defining the function that predicts core accelerations, the observed core 
acceleration with a particular controlled activation of the pod motors is compared with 
the current output of the integrator that develops the expected core acceleration. Initially 
there will be completely nonsensical prediction, and the error vector (E) will either look 
pretty much like Aa or like parts of it. This error is passed back over to the expectation 
integrator to modify the gains that determine the influence of its inputs. I give the 
modification rule in the section on Activity Dependent Facilitation later in this paper. 
Under controlled conditions, the network learns to predict what actually happens to the 
core accelerometers. 
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Figure 11. Method for the acquisition and execution of balance.  
 
We are not finished with the balance calculations however, for the objective of the 
balance response is to restore the undisturbed position or orientation of the agent under 
uncontrolled conditions.  
 
What the robot does to correct errors in balance should depend also upon its current state 
at the time the error occurred. Another way to look at the relationships in Figure 11 is to 
replace the data in the expectation vector with the data in the error vector and then ask for 
the motor commands that would contribute to that specific output vector. In other words, 
the detected error in acceleration could otherwise be a predicted core acceleration given a 
specific conformation of the robot, its current leverage points, and a pattern of motor 
commands. We need to solve a set of simultaneous equations to come up with the 
missing motor vector that would correct the balance error. We already have the necessary 
information to calculate the required motor correction to any error as we have calculated 
previously C, L, and E. But as we do not wish to aggravate the error by using the exact 
motor commands that would otherwise generate it, we simply need only invert the motor 
commands to activate an opposing response. This is easily done as our motor vector is 
composed of matched pairs of elements. We invert the vector by crossing the inputs of 
these matched pairs. 
 
The factors involved in the calculation of the motor correction vector are also shown in 
Figure 11. Initially the error will be quite large and approximates the core accelerometer 
activity. Initially also the output of the motor correction integrator will be quite small as 
its input gains are undeveloped. Very quickly the system learns to predict core 
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accelerations and to predict the motor commands that generate them. The system will 
thus learn to predict itself.  
 
As the motor corrections are inverted, and the conformation and leverage inputs are 
continuous, this process in the absence of a core acceleration error, if left as described, 
could significantly interfere with on-going motor commands.  The C and L vectors are 
necessary but insufficient conditions for a motor correction. There are various ways to 
inhibit the output of the motor correction vector until an error is present. The objective in 
all cases though would be to prevent the motor correction until the output of the error 
integrator represents primarily errors of prediction, and the output of the motor correction 
integrator represents primarily error specific responses.  
 
In summary, the changes in motor commands necessary to correct for any disturbance in 
balance are a function of the delta in the balance vector that describes the nature of the 
disturbance and the current state of the robot that will determine how it can best respond 
to the disturbance. Both the prediction of the core acceleration with any given conditions, 
and the motor commands that would generate core accelerations with any given 
conditions can be acquired from experience under controlled circumstances. Balance 
errors would be corrected then by sending inverted motor commands to the twelve output 
elements. In early development of our control algorithms we can use the observed core 
accelerations under stable conditions to define (condition by experience) the transfer 
functions between the C, L, and M vectors and the Ae vector. As the network learns to 
accurately predict the core accelerations, the error between predicted and observed 
decreases and the output of the error integrator drops to zero, until an unexpected event 
occurs. Simultaneous with the self-organizing process of core accelerometer prediction, 
the motor corrections required to restore balance given any particular balance error (E) 
are conditioned by the current motor commands. As each motor is always subject to 
opposing commands, the inputs to the opposing motor integrators are conditioned by the 
current motor activity. Motor correction commands would normally appear after 
conditioning only when a balance error occurs. The inhibition of the balance error 
integrator by the expected core acceleration is very important to allow the execution of 
proper motor commands. I describe conditioning in greater detail later in the section on 
Activity Dependent Facilitation. 
 
Quite often we should expect that the robot will lose balance when the unexpected event 
is caused by a state change in the external environment. Any attempt by the robot to 
restore its balance subsequent to this external environmental state change should fail. 
Fortunately, the robot has additional Basic Reactive Patterns that would be invoked in 
this circumstance, such as the BRP-D, and that could cooperate with the BRP-B to stay 
the unexpected accelerations. 
 
The Japanese humanoid robot projects have developed algorithms to maintain balance in 
a multi degree of freedom robot. These methods should be studied for application here.  
 

4.9.3. Basic Reactive Pattern C. Core Collision Avoidance 
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BRP-C prevents collisions of the core faceplates with objects in the external 
environment. The core faceplates contain video cameras, IR proximity sensors, whiskers, 
and SONAR. These sensors are open to the environment and, excepting the whiskers, 
must be protected. Activity from any of those four sensor types could be used to trigger 
the BRP-C, but initially the reaction will occur only in response to activations of the core 
faceplate pressure sensors. That is, the basic reaction will be a response to actual 
collisions, rather than a collision avoidance mechanism. We will introduce a method later 
in this paper that will progressively associate activity of the IR proximity sensors, of the 
SONAR, and of the digital video motion vectors with the more proximate detectors down 
to the whiskers or touch sensors. Only after the system has learned to associate events 
detected by the distance sensors with events occurring in response to activity in the 
sensors for the internal environment, true collision avoidance will be possible. The BRP-
C backs the vehicle away from an actual (and later – impending) collision. The backing 
reaction can be a transient inversion of the preceding motor commands. To prevent the 
robot from getting stuck in an infinite loop, a random noise can be imposed on the 
subsequent forward command. 
 
The BRP-C should help to reduce entanglements as the vehicle will avoid moving into 
objects that may get within the core-pod domain.  
 
The Basic Reactive Pattern C is probably the simplest BRP to explain and to implement. 
Only the core face-plate sensors will trigger this BRP, and the response pattern will 
usually depend upon the on-going motor commands13. For example: 
 

If Wf, then reverse current motor commands. 
 

Where Wf is the core faceplate whisker(s), pressure, or touch sensors in the forward 
direction of travel. In lieu of whiskers, any strain sensitive device attached to the 
faceplate/core juncture could serve as the detector for collision.  
 
The faceplate protection response offers an opportunity for the director to easily inhibit 
any ongoing activity of the robot. Lightly tapping on the faceplate should reverse the 
activity of the robot14.  
 

4.9.4. Basic Reactive Pattern D. Track Contact 
 
The objective of the BRP-D is to optimize track contact with leveragable surfaces. From 
our earlier discussion of the Fixed Action Patterns, we should conclude that the robot 
prefers a conformation in relation to its leverageable surface in which the plate pressure 

                                                 
13 The response is complicated a little bit when distance sensors predict a collision and where the robot 
may not be in motion, or may be moving too slowly to escape the collision. In this case, the distance 
sensors must be mapped to the motor commands that are associated with receding objects in that sensor 
field. This mapping can self-organize with the robot’s experience. We will take up the possible mechanism 
later in this paper. 
14 During training (to be discussed in the section on Learning and Adaptation), tapping on the robot’s core 
faceplate could punish a behavior as effectively as a collision. 
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sensors are maximally active. The BRP would press the track upon a surface that is 
perceived by the contact sensors (pressure plates and whiskers) to lie within reach. The 
infrared proximity sensors and SONAR may be conditioned to participate in this BRP 
based upon the response patterns controlled by the pod pressure plate and whisker 
sensors. Preferred surfaces would lie either below the pod track (in the direction of 
gravity) or in front of the track (in the direction of travel). Pod rotation and camber, and 
track tread rotation may be employed to achieve track contact. If no contact is made, the 
BRP-D should cause the pod to randomly explore its immediate environment in search of 
a contact point. If the whiskers indicate contact, then the BRP-D should move the pods in 
such a way that the whisker contact is replaced by a contact with the center of the tracks. 
When track contact is made, the BRP-D should attempt to enlarge it.  
 
Thus, the BRP-D has three components. The first component addresses the means to 
make track contact, any contact. The second component addresses the means to shift the 
contact point from the location of the whiskers to the location of the center of the track. 
And the third component addresses the need to increase track contact. 
 
Exercise of the first component should cause the robot to find and press upon the arms of 
a person who was unlucky enough to be suspending the robot by its core15. 
 
Exercise of the second component should facilitate the climbing of the robot upon any 
obstacle that it encountered or that was placed in contact with its whiskers16. 
 
Exercise of the third component should prevent the robot from rolling into an abyss, and 
should complete the effects of the first two components.  
 
Similar to the determination of an appropriate motor command vector to restore balance, 
the BRP-D will use the leverage vector (L) to assess pod contact and the conformation 
vector (C) to assess the robot’s conformation. However, it will assess L for each pod 
separately. Thus there will be a LL and a LR for leverage of the left pod and leverage of 
the right pod respectively. Recall that the L vector will be composed of features that 
individually describe the conditions that will determine which of the three components of 
the BRP-D should execute. It will further assess the activity of the individual elements in 
the LL and LR vectors. The three running questions for the BRP-D controller will be the 
following:   
 

1. What modifications to the present motor commands will be necessary to 
randomly search the physical space for contacts? 

2. What modifications to the present motor commands will be necessary to replace 
whisker contact points with track contact points? 

3. What modifications to the present motor commands will be necessary to increase 
the magnitudes of the pod pressure elements of both LL and LR?  

 

                                                 
15 The grasping reflex of primates is a biological example of this BRP-D component. 
16 A similar response will be observed when one strokes the breast of a perching bird. 
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The answers to these questions will involve first the assessment of the current L vector. 
We can do this by way of example using the data from Figure 10.  Let us assume that the 
four pressure sensors come from a pod that is connected to the forward end of the core, 
and is situated in the closed position on the left side of the core. Let us also assume that 
the input pattern from left to right on each element of Figure 10 represents the four pod 
pressure sensors distributed clockwise on the pod starting from the top, then fore, bottom, 
and aft positions from the perspective of the core.  Then the element c in Figure 10 
represents the pod making contact only with the surface upon which the pod is resting. 
Element o represents a complete suspension of the pod with no contact points except for 
its connecting axle with the core. Element f indicates that the pod is wedged between 
contacts points on its top and bottom surfaces.   
 
BRP-D Rule #1: If the active feature in the L vector for that pod is feature o, then the 
BRP-D would initiate a search of local physical space by activating the pod rotation and 
camber motors. The sequence and durations of the activation would be randomized17 and 
could persist until a contact was made (a feature other than o occurred in L), or until a 
time-out was reached, or until balance was significantly disturbed. 
 
BRP-D Rule #2: If a contact was made that resulted in the features b or d, the BRP-D 
could activate a pod rotation command and suspend any camber motion until features a 
or c appeared. 
 
BRP-D Rule #3: If a contact was made that resulted in the features a or c, the BRP-D 
could continue the pod motor activation as long as the strength of the input was 
increasing. If the strength of the input began to decrease the pattern of pod motor 
activation could be reversed, and the test repeated. Both camber and rotation degrees of 
freedom would have to be tested separately. During running (FAP-R) the track rotation 
motors should also be subject to this rule. 
 
The above rules will account for most of the conditions occurring during performance of 
the seven Fixed Action Patterns. Occasionally, the L vector will contain the features e, g, 
h, and j. These will represent encounters with obstacles while moving. Obstacles can be 
handled in two basic ways: 1) scale them, and 2) go around them.  
 
The FAP-S and FAP-W will tend to favor the first option. 
 
There remain several other conditions in which features i, k l, m, n, and p could occur. 
These conditions would involve, in general, an entrapment of the pods. To escape from 
such conditions, the robot may best run through all three rules randomly and vigorously, 
until freedom is achieved. To incorporate this strategy into our rules, we need only add 

                                                 
17 Adding random noise to a control process in the absence of sensor input may not be necessary for, in 
general, sensor noise exists in all sensor systems, and is ordinarily suppressed by the presence of valid 
sensor input. Local adaptation mechanisms that adjust the sensitivity of the sensors are the usual means of 
this suppression. As the valid input decreases, the sensitivity goes up and the probability that noise reaches 
a stimulus threshold becomes one. 
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the conditions to the initiation list of Rule #1. If the motions of the vehicle generated 
sufficient wiggle room, then the execution of Rules #2 and #3 would be possible. 
 
The activities of each pod are governed by these rules based on the local pod contact 
sensor information. However, some effects of any activity of any portion of the robot will 
be transmitted to other portions of the robot, affecting their dynamics, their leverage, and 
their sensor feedback. In a sense the two pods will compete for optimal contact with 
leverage points, transmitting their intentions through their physical connections with the 
core. The BRP-B will serve to mediate any conflicts. 

 
The robot will usually have some physical reference (contact or leverage point) during 
translation. Therefore, if it encounters an abyss the BRP-D should prevent the robot from 
dropping into it. Instead of moving into an abyss, the BRP-D should reorient the robot to 
continue along the surface on which it has established leverage for its motion. This 
should happen because the BRP-D attempts to increase track contact. Movement that 
decreases track contact would be quickly interrupted. 
 
Running along a beam or branch is a simple modification of FAP-R by the Basic 
Reactive Pattern D for Track Contact. 
 

4.9.5. Basic Reactive Pattern E. Energy Level and Use 
 
The objective of BRP-E is to acquire and conserve energy. The sensors for BRP-E 
measure energy reserve, and energy consumption or utilization. The homeostatic 
tolerance for energy level is quite broad, and describes a Sigmoid similar to that for 
Inhibition in Figure 9. Energy acquisition behaviors need be triggered only when energy 
reserves are quite low. In general, the detection of low battery charge should interrupt 
most on-going behavior, and trigger a recharge-specific behavior18. In the natural 
environment, with a limited or non-existent repertoire of navigation behaviors, the 
energy-limited robot may best stop all random motor activity and broadcast a call for 
help.  
 

4.10. Motivation 
 
The sensor inputs that govern each of the five basic reactive patterns above are analogous 
to biological motivators. So, for lack of a good engineering term, I call them motivators. 
Once again the five basic motivators are activity, balance, core collision avoidance, track 
contact, and energy level.  
 
Table 2 reviews the relationship between the short list of behavioral constraints, which 
serve as the intrinsic motivators that drive and determine the most appropriate robot 
behavior, and the sensors that monitor the robot’s internal state space (interoceptors).  

                                                 
18 In many interior robotic systems, an example of a recharge-specific behavior is for the robot to home on 
its charger and plug itself in. This would be a little more difficult to accomplish for an exterior robot 
operating in a complex natural environment. 

31 



3/22/2003  Learning Mobility 

 
The Activity motivator is biphasic as it may either increase or decrease activity; the 
Balance motivator is monotonic and quickly affects activity to restore balance; the Core 
Collision Avoidance motivator is also monotonic and quickly affects activity to withdraw 
from collisions; the Track Contact motivator is biphasic as either the absence of contact 
or the extremes of contact generate a quick search for a preferred contact profile, while 
the occurrence of a preferred contact profile generates a slower attempt to optimize it; the 
Energy motivator is currently monotonic as low levels of energy reserve trigger only 
energy conserving activities. We may be able to show later that as the energy reserve 
moves closer to that trigger point, other energy acquisition behaviors might be invoked. 
 
 

Motivator Influence Supporting 
Interoceptors 

Utility to Robot 

Activity (A) biphasic Core and Pod 
accelerometers and 
Pod track rotation 
sensors 

Assesses the result 
of movement 
commands. Keeps 
the robot working. 

Balance (B) monotonic Core accelerometers 
 

Maintains 
orientation with 
respect to gravity. 
Assesses the result 
of movement 
commands. 

Core Collision 
Avoidance (C) 

monotonic Core faceplate contact 
sensors 

Protects distance 
sensors. 
Reduces friction 
Prevents 
entrapments. 

Track Contact (D) biphasic Pod whiskers, 
Pod plate pressure 
sensors, 

Localizes leverage 
points. 

Energy Level and 
Use (E) 

monotonic Battery charge and 
current 

Maintains 
adequate energy 

 

Table 2. Basic Motivators 
 

4.10.1. Homeostasis Is Represented by Certain Values of the Motivators 
 
When the motivators are in the ranges proper for optimal performance, homeostasis is 
achieved. We may define a scalar variable for homeostasis (H). Then, the magnitude of H 
may represent the totality of the motivator states.  
 
 H = f (A, B, C, D, E) 
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We may arbitrarily specify at what magnitude of H is desired, then, in psychological 
terms, achieving that magnitude would indicate a comfort zone, and diverging from that 
magnitude would indicate disphoria. We will use this measure of homeostasis later in our 
discussion of learning and adaptation. 
 

4.10.2. Motivation is always referenced to a particular process  
 
A sensor value that is out of the “comfort” range for the particular process monitored by 
the sensor, will contribute to an increase in motivation to restore that particular process. 
Prior to the acquisition of significant experiences, we can reference any change in the 
behavior of the agent back to a particular interoceptor value that is out of its comfort 
range. The “out of comfort” sensor may also contribute to the more general disphoria 
measure H, depending upon the overall level of H achieved. 
 

4.10.3. Deprivation and Excess Determine the Strength of a Motivation 
 
The magnitude of the deviation determines the degree and direction of the motivation. 
Following are some examples. 
 

If track contact was absent, the drive for track contact would rise and contribute to 
increasingly greater motions to establish a contact and restore leverage (and 
simultaneously a stronger inhibition of the track rotation until adequate leverage 
was re-established).  

 
If the robot was restrained, the drive for movement mediated by BRP-A would 
increase and the motor responses with all other BRP would be amplified.  
 
If the surface on which the robot was resting pitched to and fro like the deck of a 
ship in rough seas, balance would be repeatedly challenged and the motivation to 
stabilize itself would increase. The response to repeated loss of balance should 
include, in addition to an attempt to increase track contact with leverageable 
surfaces, an attempt to close upon any available leverageable surface. This should 
occur as a consequence of the cooperation between BRP-B and BRP-D. 
 
If the core faceplate sensors were repeatedly activated, the ongoing motor 
behavior could be more vigorously reversed. This should occur as a consequence 
of the cooperation between BRP-C and BRP-A.  
 
4.10.4. Governing Sensors Cooperate to Invoke Appropriate Behaviors 

 
The examples above also illustrate how motivators cooperate to invoke and control the 
most appropriate behaviors. Here are a few more examples specific to this point. 
 

If the tracks reported contact and were spinning with no apparent accelerometer 
indications of forward motion of the robot core, the activity motivation would 
increase. This would trigger an action pattern transition from FAP-R to FAP-W.  
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If the robot was tumbling down an embankment, the drive for activity would 
decrease, yet balance would be disturbed and the robot would likely invert its 
motor commands in an attempt to counter the motion.  
 
Depending upon the axis on which the robot was tumbling, and the concomitant 
sensor activity, the robot could transition to different conformations. If the 
rotation of tumble was on the X-axis (see Figure 6), the robot could initiate a 
FAP-S due to its obstacle scaling response. This would open the pods from the 
core and oppose the tumble.  
 
If the robot was tumbling on the Z-axis, the robot could initiate a turn response to 
avoid obstacles detected in its pod proximity sensors. This response should also 
oppose the energy of the tumble. 
 
4.10.5. Self Awareness 

 
The robot will be self aware to the degree that it can optimize its homeostasis. 
Awareness, like perception, requires not only sensor processing but also an effective 
motor response. On the sensor side, the sum of the information from the interoceptors of 
Table 2 constitute the input for self-awareness of the robot. We have shown how the 
robot must assess and integrate information from all accelerometers to make a 
determination of its current conformation and of how its conformation is changing. In 
addition, the robot uses the accelerometer data plus the track velocity sensors to assess its 
motion with respect to its leverage points. The robot will use the H measure above as a 
general index of comfort or of its inverse – disphoria, while the specific sensors 
monitoring the critical state variables will provide information on what must be addressed 
at any moment in time. On the effector side, the robot will use its six degrees of motion 
freedom to avoid disruptions to homeostasis and to restore the critical state variables.  
 

4.11. Beyond the Fixed Action Patterns 
 
We should ask at this point in our discussion of just of what is the robot capable? Given 
only the five Basic Reactive Patterns and the seven Fixed Action Patterns we expect that 
the robot could self-initiate activity as its motivation for activity would initially be quite 
strong. We should also expect from Table 1 that the first FAP to be assumed would be the 
Run. Other FAPs may follow as conditions warrant. But Run to where? An agent with 
very poor external sensor capabilities may best move randomly through the environment, 
and depend on its Basic Reactive Patterns to keep it out of trouble. Eventually though, 
our robot would run out of energy. The high probability for this catastrophic event is due 
to our design omission that does not provide the robot an opportunity to acquire energy 
during any FAP. 
 

4.11.1. Motivation is Necessary but Insufficient for Reliable Survival 
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By responding appropriately to the five basic motivators, the agent may survive transient 
challenges to its homeostasis brought on by the execution of any of its seven Fixed 
Action Patterns, but it would yet tend to be subject entirely to the fluctuations in its 
external environment. One mechanism that nature has successfully employed to reduce 
this environmental subjugation, is to employ distance sensors and associate subtle 
changes in the external environment with significant consequential changes in the 
internal environment. Upon detection of those subtle changes in environmental cues the 
agent can invoke a reactive process that either avoids or approaches the environmental 
cue. Those cues that are associated with events that restore or maintain homeostasis are 
fortunate for the agent. Those cues associated with events that do not must be avoided, 
otherwise those events will tend to terminate or exterminate the agent. Therefore, we 
must provide sensors of the external environment that will detect with sufficient 
sensitivity the subtle changes (the cues) that will predict significant change to the robot’s 
internal environment, and we must provide a mechanism by which the robot can 
determine the  most appropriate way to respond to those external events. 
 

4.11.2. Sensors of the External Environment 
 
Certain sensors that monitor conditions in external environments are installed on the 
vehicle. These are four IR short-range proximity sensors, four mid-range SONAR, four 
color video cameras, four acoustic microphones, and two RF transceivers19. Table 3 lists 
the external sensors and possible low-level uses of the available information. 
 
 

Sensor quantity locations Range/sensitivity Applications 
SONAR 4 Core face 

plates/pods
12 < r < 48 inches Distance to obstacles/leverage 

points 
IR 4 Core face 

plates/pods
< 12 inches Distance to obstacles/leverage 

points; presence of warm 
objects 

Video 4 Core face 
plates 

 Color of objects; object 
distances from optic flows 

Stereo 
Audio 

4 Core side 
plates 

> X dB Relative location of activity 

RF 2 Core top 
plates 

1000 feet Direction to OCU; 
communication with the 
director 

 

Table 3. Sensors of the External Environment 
 
The basic purpose of these external sensors is prediction. To improve upon its 
homeostatic mechanisms, the robot may use its external sensors to predict the different 
conditions that it will encounter during its movements. We have noted that the robot’s 
                                                 
19 The sensor side of the RF transceiver is the receiver that accepts (senses) communications from the 
operator control unit. 
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movement through the external environment engenders certain risks. Such risks are 
primarily related to collisions and to loss of contact with leverageable surfaces (e.g. falls). 
The external sensor information then should presage those hazards. Also, the movement 
of the robot may increase its likelihood of being recharged. The external sensors should 
detect the critical environment features that are associated with an energy source20. 
Similarly, movement itself is a homeostatic motivator, thus the external sensors should 
provide information that will indicate a traversable pathway (that is, one that does not 
impede movement). 
 
The robot has little control over its external environment, yet its movement within that 
environment can change the impact that the environment might have upon it. For 
example, the external sensors might detect a looming object and the robot could predict a 
possible collision. The robot could move out of the way using similar behavioral 
strategies to those that it would employ had the collision been a result of its own motion 
through a static environment. Its avoidance of the looming object might preserve its own 
physical integrity, but have no effect upon the trajectory of the looming object.  
 
Earlier in our discussion of the Fixed Action Patterns I indicated how the different 
patterns could be invoked by activity in the interoceptors. Ideally, the exteroceptors will 
provide predictive information that can be used to invoke the transformations among the 
Fixed Action Patterns in advance of the interoceptor triggers. In both cases, the changes 
in behavioral patterns should be appropriate for the conditions in the external 
environment, but in the second case, the robot could anticipate changes in the external 
environment and prepare for them. This could reduce errors and increase the speed of 
activity.  
 
In a competent local control process, the Fixed Action Patterns should vary with 
environmental conditions, detected by the external sensors, and modified both by 
additional external sensor information and by the internal sensor information that 
continually attempts to optimize homeostasis. For example, the robot may detect an 
approaching object through its stereo audio and video sensors. The robot could move 
away from the object provided that it had adequate energy reserves and a navigable path 
to follow. If the range sensors indicated that the path ahead of the movement was clear, 
the robot may initiate and continue in a FAP-R. If the SONAR indicated an obstacle 
ahead, the robot could turn in the direction of the clearest path as indicated by its side 
looking SONAR and the optic flow from the peripheral fields of its forward-looking 
video. If the rearward sensors indicated a progressive pursuit, and the forward sensors 
indicated a proximate obstacle, the robot could shift to FAP-W, and attempt to walk over 
the obstacle. If the obstacle caused a total tilt greater than approximately 30 degrees, the 
robot could initiate a FAP-S, but if the total tilt angle was greater than approximately 45 
degrees the robot could suspend pod rotation in the extended position and then continue 
to ascend or descend in the frozen FAP-U pattern. However, if the obstacle turned out to 
be steep but short, the robot could suspend FAP-U when the core was maximally 

                                                 
20 For example, as the human operator is most likely to be associated with energy recovery, the robot could 
associate the features indicative of the presence and location of a human operator with its energy 
motivation, and orient to those features when energy reserves were low.  
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elevated, and then shift to FAP-R to move without further undulations but with a higher 
perspective over the terrain. Tilt of the video cameras could be accomplished by 
differentially rotating the pods in FAP-U. 
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5. Learning and Adaptation 

 
5.1. Motivators Protect, Prioritize, and Reinforce Behavior 

 
The motivators of the five Basic Reactive Patterns can serve many functions in the 
control of behavior. Not only do motivators trigger and govern reactive behaviors that 
provide immediate protection for the agent, they can also serve as mediators to determine 
which of many competing behaviors are selected for expression, and they can serve as the 
criteria for the acquisition of new behaviors. We have already seen examples of the first 
two roles, I will next address the mechanisms of learning and of decision-making, and 
explain the third role for our motivators in the control of behavior.  
 

5.2. Learning Enables Prediction 
 
It is axiomatic that the measure of success for learning (long-term adaptation) is the 
restoration or maintenance of homeostasis. Learned behaviors are appropriate when they 
promote the welfare or survival of the agent, which are possible only under homeostasis. 
For our agent, the Novel UGV, survival may be determined by the availability of energy, 
by the continued operation of its hardware and software, and by its utility to the human 
operators. When utility disappears, the agent is subject to the trash heap. When energy 
dissipates, or when functionalities of hardware or of software cease, the same trash heap 
awaits. The learning objectives then, from the perspective of the agent, should be to 
maintain its energy reserves, keep itself together and functional, and meet the needs of its 
user. The reader may note that this last objective is something new compared to the five 
basic motivators discussed earlier. What will make this new objective possible is learning 
and long-term memory.  
 
The external sensors provide information on the environment that can be used both to 
predict a homeostatic catastrophe and to predict behavioral alternatives that, if taken, will 
avoid catastrophe. Learning is the device used by adaptive natural agents to predict the 
conditions in the external environment that will have an impact on the internal 
environment and change homeostasis. By reacting to the predictions of these 
environmental conditions, in advance of their impact on the internal environment, an 
agent is more likely to maintain its homeostasis. We will emulate this device in our 
artificial agent, the Novel UGV, to provide it with a similar advantage. 
 
We now describe the learning mechanism that will associate the information available 
from sensors of both the external and internal environments, predicting their homeostatic 
consequences, and directing future behavior to avoid or approach those external factors 
given the current internal state. 
 

5.3. Classical Conditioning 
 
During performance of a Fixed Action Pattern, the Basic Reactive Patterns will modulate 
the motor commands according to rules implemented in the Fixed Connection Matrix. 
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These rules are analogous to the unconditioned stimulus-unconditioned response pairings 
of classical or Pavlovian conditioning. When the robot is able to perceive features of the 
external environment through its distance sensors, this information becomes available for 
association with the unconditioned response. During movement, the core accelerometers, 
pod pressure sensors, and faceplate pressure sensors provide the major unconditioned 
stimuli to support (facilitate) a conditioned response of features from the distance 
sensors. After conditioning (the repeated co-occurrence of the internal and external 
events), the features from the distance sensors invoke a response similar to the 
unconditioned response but in absence of the event that originally produced it. The 
classical conditioning paradigm is diagrammed in Figure 12. In the sequence of events 
during conditioning, the external event usually precedes the internal event (a likely 
happening because the external sensor is a distance sensor), but the record of the 
occurrence of the external event persists if not the event itself. When the internal event 
occurs it evokes a predictable response to restore homeostasis. The persistent trace of the 
external event becomes associated with the response evoked by the internal event 
according to the mechanism of activity dependent facilitation. 

feature from interoceptor response 

UCS 

 

 
 

5.4. Activity
 
A general learn
1992), approxim
of a particular i
preceding an ou
 

∆ w = G
 

where w is its c
question, e is th
CS
 

feature from exterosensor 

Figure 12. Simplified Classical Conditioning Paradigm 

 Dependent Facilitation  

ing law, known as activity dependent facilitation (Kandel and Hawkins, 
ates classical conditioning and is useful in determining the contributions 

nput through its modifiable connection to an integrating element 
tput decision. The law is as follows: 

 * ((z/ e) * w) * (a *(S - m) *(C - w) - m *(w - c)) 

urrent connection strength, z is the activity on the input element in 
e sum of inputs from all cooperating elements to the integrating element 
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(prior to their filter by the w vector), a is the total activation of the integrating element 
(equivalent to the product of the e vector and the w vector), S is a constant representing 
the maximum permissible sum of weights connecting to any one element,  m is the 
current sum of weights making contact with the integrating element, C is a constant 
representing the maximum permissible weight, c is a lower limit on the weight to prevent 
it from disappearing completely if rarely used, G is a constant = 1 / (S*C).  When both z 
and a are present, w is increased, but when z appears alone, w is decreased.  
 
The influence of the unconditioned stimulus in the above learning law is incorporated 
into the sum of inputs on the integrating element. The connection weights for the UCS 
are strong, not modifiable over the short term, and reliably invoke an output decision in 
the absence of any other cooperating inputs. 
 
The use of this law permits associations among previously ineffectual feature vectors, so 
that several layers of conditioning can occur. A general method of classical conditioning 
using the above learning law and that provides for the evolution of behavioral sequences 
is schematized in Figure 13. The method includes an input field of the observed sensor 
patterns, short-term storage of the history of those patterns (analogous to short-term 
memory), an output field of the predicted pattern that should accompany the result from 
the associated motor command, a comparator of the expected and observed patterns, a 
field to temporarily store the resulting errors, and an association matrix of the input 
history with the current input, the current error and the next motor command. Feedback is 
completed through the external environment. In Figure 13, only two processing elements 
with all of their connection are shown in each field for clarity. The actual numbers of 
processing elements in the different fields depends upon the resolution of the sensory 
field, the complexity of the effector (motor) system, and the resolution and complexity of 
the feature detectors. During conditioning, the UCS for matrix A is a collateral from the 
Base Reactive Pattern that is currently in effect. The UCS for matrix B is the current 
sensory input, and the UCS for matrix C is the current error. In each case, the UCS is the 
event to be predicted. Using an algorithm similar to the model in Figure 13, a predicted 
motor response will execute in advance of the original BRP.  
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Figure 13. General Model for Classical Conditioning of Perceptual Motor Sequences 
 
In classical conditioning, novel information from the external environment acquires the 
strength to evoke responses that already exist in the agent’s repertoire and are appropriate 
for the general conditions that the novel information predicts. Additional information on 
the application of this learning model is available in Blackburn and Nguyen (1994). 
 

5.5. Operant Conditioning 
 
The post-hoc appropriateness of any particular behavior is determined by factors that 
change the sensor values, and, in effect, indicate the change in probability of catastrophe. 
Our second axiom is that the Basic Reactive Patterns of behavior operate to reduce the 
probability of catastrophe. Thus, the Basic Reactive Patterns show the Adaptive 
Behavioral Controller how to operate in order to restore homeostasis. That is, when a 
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behavioral action initiated by some command from the Adaptive Behavioral Controller 
results in an internal sensor reading that indicates that a) activity is restored to its 
midrange, b) balance is restored, c) collisions are avoided, d) track contact is improved, 
and/or e) energy reserves and/or energy conservation are improved, we can be assured 
that the probability of a catastrophe has been reduced. These successful behaviors under 
the given environmental conditions, should be remembered so that they can be repeated 
whenever the appropriate conditions reappear. Similarly, when a behavioral action results 
in too much or too little activity, loss of balance, collisions, loss of track contact, and 
depleted energy, that behavior should also be remembered and inhibited whenever those 
prevailing environmental conditions reappear21. 
 
When a specific motivator is out of homeostatic bounds, the previously associated 
behaviors should be primed for action. An efficient way to accomplish this priming is 
through the association of the interceptor features with features from the exteroceptors. 
The biasing of the exteroceptor features would in turn bias specific behaviors when the 
environment contained stimuli characterized by those features.  
 
Our third axiom is that all acquired behavior for our robot will be expressed through the 
modulation of the seven Fixed Action Patterns using pathways in parallel with the five 
Basic Response Patterns that also modulate the FAP. 
 
Recall that the FAP are generally modifications of the FAP-R that is executed while the 
robot is in its normal closed conformation. The robot expands from this conformation to 
adapt primarily to information from its immediate neighborhood sensed by the IR and 
Whisker sensors. Recall also that the BRP generally motivate and modify the FAP based 
upon information from the sensors that are monitoring the internal environment. Thus, 
through our external influences on the stimuli that control the BRP, we can intervene and 
modulate any motor command associated with any FAP during performance.  
 
Evidence that learning has occurred will be a modification of a FAP that is not 
immediately predicted by a complete knowledge of the internal and external 
environment, for learning will have permitted the robot to predict and precede an 
environmental event with a unique behavior. 
 
For those readers familiar with the biological Learning Literature, we will implement 
here analogues of instrumental (or operant) conditioning, also known as reinforcement 
learning. Like classical conditioning, reinforcement learning requires the agent’s 
perception of environmental information. In addition, operant learning requires an action 
on the part of the agent separate from the unconditioned response, and it requires some 
perceivable  consequences of that action. The agent can use any of the available sensor 
information for the assessment of the environment and for the assessment of its 
behavioral consequences.  
 

                                                 
21 The exclusive-or problem that is solvable by a three-layer perceptron is an example of a two choice 
paradigm where one choice must be inhibited in favor of the alternative under the co-occurrence of two 
otherwise permissible stimuli.  
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The process and rules of reinforcement learning that we can implement are as follows: 
 
� Assess the internal environment (I) 
� Assess the external environment (E) 
� Perform an action (A) 
� Reassess the internal environment, and determine if homeostasis (H) is improved. 
� If H is improved, then associate factors I, E, and A, such that if I and E, then 

facilitate A. 
� If H is worsened, then associate factors I, E, and A, such that if I and E, then 

inhibit A. 
 
The above rule suggests that our controller have a special circuit that can inhibit or veto a 
particular action. This circuit may participate in the association rule above whenever 
homeostasis is disturbed by a behavior. The rules for operant conditioning are graphically 
represented in Figure 14. In Figure 14, arrowheads indicate direction of information flow. 
The line terminating in a dot represents inhibition. The dotted circles represent locations 
of activity dependent facilitation or inhibition. 
 

homeostasis 
disrupted 

homeostasis 
restored 

exteroceptor 

FAP element  

interoceptor 

 
 

Figure 14. Simplified Operant Conditioning Paradigm.  
 
 
The director, serving in this case as the supervisor of learning, need not go to great 
lengths to manipulate the environment in order that specific changes in homeostasis 
accompany particular actions under those conditions. This is because the learning 
algorithm above guarantees that the probability of occurrence of a particular action in the 
future will depend upon the prevalence of those specific internal as well as external 
environmental conditions. In the future, when the director may wish to see that particular 
action in response to particular external conditions, the internal conditions may not be 
present with sufficient intensity to drive the action above behavioral thresholds or above 
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competing behaviors. Thus the director should generally not mess with the internal 
conditions of the robot. 
 
The locus of learning in our control architecture of Figure 5 is the box labeled plastic 
connections. The reader will notice that this box receives input from the internal sensors, 
the external sensors, and the box containing fixed connections. The internal architecture 
and processes of the two boxes containing fixed and plastic connections respectively are 
not yet fully explained. We will define the connectivity within these boxes based upon 
the principles contained herein and report on these details in subsequent documents. 
 
In operant conditioning, novel information from the external environment acquires the 
strength to evoke responses that already exist in the agent’s repertoire, but that were 
previously unrelated to any intrinsic motivators. 
 

5.6. Fixed Action Patterns Provide the Basis for New Behaviors 
 
The reinforcement learning algorithm above requires that an action take place before the 
test of homeostasis. Before learning, the only behaviors of which the robot is capable are 
the fixed action patterns. Thus the robot will be performing a fixed action pattern when 
learning initially takes place. Learning will modify the particular FAP and invoke that 
modified FAP pattern in the future whenever the associated internal and external 
environmental conditions are present. When the environment is novel, the agent will 
default to previously learned behaviors or to the original FAP, depending upon the degree 
of novelty and motivation.  
 
After some modifications of the seven FAP, the repertoire may be expanded with newly 
acquired behaviors by building upon the previous action patterns that are invoked by the 
prevailing environmental conditions. This process is known as behavioral shaping and 
permits learning to progress without destroying previously learned patterns. In this way 
the repertoire could become quite complex, depending upon the agent’s ability to 
discriminate the necessary behavior specific features from the external environment, and 
upon its ability to respond differentially to those features. 
 
The seven FAP exercise all of the mobility degrees of freedom of the robot in 
coordinated patterns that accomplish mobility under a variety of external conditions. The 
BRP provide transitory modifications to the coordinated FAP to meet certain exigencies 
and promote homeostasis. The external sensors can extend through classical conditioning 
the range of events through which the BRP are active. With any given external 
environment, and sufficient range of sensitivity in the external sensors, the modifications 
to the FAP, and even the switching among them, can create the impression of the 
invention of novel behavioral patterns, when in fact, only old patterns are being 
rearranged.  
 
Classical and operant conditioning provide for one additional element that increases the 
potential for behavioral complexity and unpredictability give the immediate or current 
environmental conditions. That element is memory. Memory, however, is nothing more 
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than the persistence of the associations between the features of the external environment 
and the features of the internal environment established through classical conditioning of 
the BRP, and through operant conditioning of the FAP. 
 

5.7. The Selection of One Behavior from a Repertoire of Acquired Behaviors 
 
Following learning, the occurrence of any desired behavior will depend upon not only 
sensor readings in both the internal and external environments, but also upon the 
configuration of the plastic connections, their current states, and their transition 
probabilities. The configurations and transition probabilities will depend upon the 
learning experiences, and the current states will depend upon the short-term history of 
activity.  
 
Learning will release the agent from a strict adherence to environmental conditions. The 
motivators will continue to modulate behavior, and provide the fundamental drive, but 
the direction of the behavior will depend also upon previous experience. The confluence 
of the state of motivation and previous experience will add a degree of unpredictability to 
the controller relative to the information available to an external observer with knowledge 
of only the recent history.  
 
Therefore, the agent will be able to select from a variety of potentially useful behaviors; 
the degree of utility will depend upon experience and the present conditions. The 
propensity to select from that repertoire will also depend upon experience and the present 
conditions. The rules that govern the selection and maintenance of a fixed action pattern 
are in fact the same rules that participate in the selection of a behavior from the available 
repertoire. Ideally, the robot would make no particular selection unless the conditions 
warranted it, but errors acquired in experience due to inappropriate reinforcement would 
surely result in errors in later performance.  
 
When external conditions are insufficient to contribute to goal-directed behavior, a 
default behavior would likely emerge, for example, random search22.  
 

5.8. Energy as a Motivator and Shaper of Behavior 
 
The presence of several cooperating behavioral criteria (see the list in Table 2) permit one 
or more criteria to emerge as the dominant driver of behavior and determinant of learning 
depending upon the conditions in both the internal and external environments. When 
energy reserves are high, for example, the detectors for movement may emerge as the 
dominant driver and not only select drive-specific behavior but also determine which 
novel behavioral patterns are facilitated and which are inhibited. When energy reserves 
are low, the change in energy reserve could be used to reinforce behaviors that contribute 
to energy acquisition, even if those might violate the criteria for movement. 
 

                                                 
22 Random search could be appropriate when the agent is still acquiring a useful repertoire of behaviors. 
Afterwards, the agent may best meet the absence of requirements (i.e. operator commands, or energy 
disparities) with quiescence (but also with action readiness). 
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The robot monitors its energy reserves and attempts to maintain the reserves at an 
adequate level for continuous operation.  
 
The robot can use energy reserves and energy consumption to control behavior and the 
acquisition of new behaviors. The replenishment of energy should be a strong facilitator 
of behaviors that led up to the event of replenishment. On the other side of learning, a 
high usage of energy during certain behaviors provides a cost measure for those 
behaviors that can be used to learn the avoidance of those behaviors in the future. 
 
With respect to energy acquisition behaviors, a full battery capacity provides no 
particular stimulus or motivation for the robot, so the robot could be released from its 
focus on energy to do other things. A low battery charge, however, should trigger and 
maintain a set of behaviors that have proven through experience to increase the battery 
charge. Short of plugging itself into a power source, which may be quite distant and 
unpredictable, the robot must first acquire other environmental features that are most 
often associated with the acquisition of energy. In the biological learning literature, these 
other environmental features are known as secondary reinforcers. In our operational 
environment, the robot’s director will most likely re-supply the robot with energy. 
Therefore, from the perspective of the robot, its director could take on the properties of 
secondary reinforcement. The director is like a mother to the robot, and we may look 
upon that relationship in very similar ways. Rather than seeking out new batteries 
directly, or wall sockets to plug into, or even a charging station, the robot may seek out 
its director with the expectation (implied) that the director will do whatever is necessary 
to recharge the robot’s batteries. 
 
An energy-depleted robot is probably useless for most of our applications. Thus we 
should arrange for the robot to seek out the human director whenever its energy reserves 
dip below some threshold. The threshold should be high enough to ensure that the robot 
can get back to the director, or at least to assist the director in recovering the robot23. 
 

5.8.1. The Robot Must Attend to Its Director 
 
Next, we must address the question of how the robot will sense the presence or identity of 
its human director. This can be done in several ways, but each comes with some 
computational cost. Humans are unique, but the distinguishing features can be subtle. 
Face recognition and voice recognition may be useful, and technologically feasible. But 
at first we may be satisfied with only the robot’s ability to detect where any human is 
located and to move in the appropriate direction to make physical contact.  
 

5.8.2. The OCU as a Homing Beacon 
 
All humans emit IR radiation, and usually have predictable body orientations and 
proportions. To use these features as cues, the robot must yet have some image capture 

                                                 
23 One mechanism of adaptation is to vary the threshold for some decision. The threshold may be varied by 
the addition or subtraction of a quantity that is temporally and spatially consistent with the threshold in the 
decision process. 
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and analysis capability.  But this too is beyond the current resources of the Novel UGV. 
Instead we might use the strength (and direction) of the radio transmission between the 
OCU and the robot as the director-defining and locating information for the robot. In 
other words, the active radio communication between OCU and robot can tell the robot 
that a director is accessible. To get direction from the OCU radio signal, the robot may 
need a directional antenna. The robot may change its orientation with respect to the RF 
signal until a maximum is found, then take that identified heading. For positive identity, 
the OCU might send an encrypted password that uniquely identifies the director.  
 

5.8.3. A Process to Promote the Director as a Secondary Reinforcer 
 
Initially the robot is indifferent to its director. However, because of the basic reactive 
pattern E, the robot is not indifferent to its energy reserve. When the energy supply is 
low, homeostasis is disturbed and the director has an opportunity to cause the 
reinforcement learning algorithm to associate that low energy reserve with environmental 
information that is unique to the presence and location of the director, and to an action 
that would bring the robot around on future occurrences of low energy reserves. The 
following learning paradigm might be employed: 
 
� Begin training with depleted energy reserves 
� Use the OCU on low broadcast power 
� Approach the robot 
� Apply external current to recharge the robot’s batteries. 
� Turn off the OCU radio. 
� Turn off the external charging current. 
� Repeat the process. 

 
Following the above learning protocol that should install the director as a powerful 
secondary reinforcer for the energy motivator, the robot should have a propensity to seek 
out the director whenever its energy reserves are low. In this scenario, the director is 
synonymous with the communications signal. As processing power on the robot is 
improved, video and audio information can also be used to identify and localize the 
director. 
 
The director can use his/her position as a secondary reinforcer to control additional 
learning. First the director would start the robot in a reduced energy state. This would 
trigger the director seeking behavior. Next the director could place obstacles in the path 
of the robot, over which the robot must learn to traverse. The increases in signal strength 
(from the communications signal, the audio signal, or the IR) could be used to 
intrinsically reinforce the behaviors employed by the robot in its traversal24.  
 

5.9. Behavior is Multiply Determined 
 
                                                 
24 Simultaneously, the co-activation of the BRP will condition the acquisition of obstacle negotiation 
behaviors motivated by the reinforcement from the communication signal strength (see the section on 
Learning Mobility). 
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Because energy and communication are critical to the utility of the robot, the propensity 
of the robot to roam, explore, return to the director, or perform some other routine to 
improve communications may be dependent upon the operational conditions of 
communication and energy25. Some of the possibilities are given in Table 4 below. 
 
From the Table of Conditional Robot Behaviors, we should conclude that the robot will 
not likely return to the director until it has run quite low on energy. If it roams until it has 
expended approximately 1/3 of it energy reserves, then we should expect that it would 
take another 1/3 to get back. If we could induce the robot to explore or perform some 
other task objective before it has expended 1/3 of its energy reserves, then the energy 
threshold for the switch between exploration and return could be temporarily reset 
accordingly, permitting a longer task duration. 
 
 

Communications Signal  
strong moderate weak 

Strong  
(3/3- 2/3) 

Deploy, roam, 
or perform task 

Explore, or 
perform task 

Climb to restore 
communications

Moderate 
(2/3-1/3) 

Explore, or 
perform task 

Explore, or 
perform task 

Climb to restore 
comms 

 
 

Energy 
Reserves 

Weak 
(1/3-0) 

Return on 
comms gradient

Return on 
comms gradient 

Return on 
comms gradient 

 

Table 4. Example of Conditional Robot Behavior 
 
As noted above, the director can become an attractor for the robot. Thus the robot should 
have a strong propensity to seek out its director when its energy reserves are low. The 
communications gradient tells the robot where its director is located in general. Once 
back into the environment of the director, the directional information from the 
communications signal strength may then be supplemented with video or IR information 
to localize the director. Director voice signals detected from the robot’s stereophonic 
microphones may also be used to localize the director. 
 

5.10. Learning Mobility 
 
Using the organic sensors for acceleration and orientation with respect to gravity, touch, 
track pressure, and magnetometry, the robot should be able to detect its movement, its 
conformation, and its orientation with respect to the earth’s magnetic field, and with 
respect to objects against which it is leveraged.  
 
The robot is then presented with an objective. I have described how one such objective 
can arise. That is the orientation and directed movement toward the robot’s human 
                                                 
25 Climbing could be appropriate when communications were lost, and when an elevation was detected to 
climb. 
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director when energy reserves are low. The methods of movement across an undefined 
terrain are left to the robot to determine. We should expect that a number of fixed action 
patterns can be selected in response to simple events encountered during transit. These 
alone could execute some routes if a path was not too difficult and sufficient time was 
allotted. Our intent in providing opportunities for learning and adaptation utilizing 
distance sensors is to increase the probability that the robot will negotiate more difficult 
paths and select more appropriate routes to traverse the intervening distances in shorter 
times than would be possible by a more random method. 
 

5.11. Learning Decision Making 
 
As the purpose of the robot is to move in a controlled manner through its environment, it 
must maintain a friction-supported contact with some leverage points. The pod plate 
pressure sensors provide the contact information, but the presence of friction must be 
assessed by other means.  One method is to compare track velocity with accelerometer 
input under the conditions of applied force from the track motors. Table 5 gives some of 
the possible outcomes. 
 

Applied Force on 
Track 

high low 

Track Velocity high low high low 
 

high 
adequate 
track friction 

unlikely 
condition 

inadequate 
track friction 
for  pod 
momentum 

inadequate 
track friction 

 
Pod 
Accelerometer 
Output 

 
low 

inadequate 
track friction 
for pod 
momentum 

adequate 
track friction 
for pod 
momentum 

inadequate 
track friction 
for pod 
momentum 

adequate 
track friction 

 

Table 5. Possible Interpretations of Applied Force vs. Observed Motion 
 
The robot should endeavor to keep friction adequate for the current combination of the 
load and the applied force. Depending upon the present conformation of the vehicle, the 
robot could modify its conformation to improve friction. A change in friction would 
trigger a learning algorithm associating the previous behavior (conformation) with the 
perceived environmental conditions and the behavior that resulted in the new 
conformation (based upon the law of effect). The reader may recall some of the possible 
conformations from Figure 4. 
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6. Operational Implications 

 
6.1. The robot must always be “on”.  

 
The first requirement for an independent agent is that it must remain always in the "on" 
state. If an on/off switch is provided, it should be left in the "on" position, and only 
switched to the "off" position when major electrical modifications are required. 
Techniques for "hot swapping" of batteries, motors, and electronic components, that 
selectively turn off only portions of the robot during repairs and maintenance, may make 
it possible to keep the total robot system always in the "on" state. 
 
It may seem counter-productive to have a robot that is always “on”. However, this does 
not mean that the robot must always be “on the move”. Rather, the robot must be always 
ready to move, and may even move often if the conditions are appropriate – for example 
the robot might be located in a high traffic area and simply be “in the way”. 
 
Let us consider some of the other advantages, even the necessity, of a robot that is 
perpetually “on”.  One advantage the owner of the robot would gain by permitting the 
robot to remain “on” is that the robot could be continuously prepared for work. Another 
advantage is that an “on” robot could spontaneously become active and exercise its skills. 
This exercise could improve its adaptation to its work environment without the need for 
operator supervision26. An adapted robot may then be able to work independently of 
human control.  
 
Operationally, we expect that the robots will be often in the company of humans. Humans 
move about frequently. They do not like to lug their equipment with them when they 
move. That is why the Army is asking for a very lightweight mobile robot. But regardless 
of weight, it would reduce human workload considerably if the robots could orient to 
their human operators and keep up with them when they did move. To accomplish this, 
the robot must be able to operate to the limits of the human operator’s mobility envelope. 
This mobility envelope includes some of the following27: 
 
� Rapid waking and activation 
� Traversals on a planar surface at rates less than four minutes per statute mile. 
� Traversals for one hundred feet across a horizontal four-inch beam. 
� Vertical jumps over a seven-foot bar. 

                                                 
26 Two disadvantages of a periodically active robot could be that the robot might wear out its mechanical 
apparatus, and consume more energy than one that remained mostly in the "off" condition. 
27 Perhaps the best way to get a good impression of the limits of the human mobility envelope is to watch 
the series of events at world-class track & field and gymnastics competitions. As an alternative, and one 
with unequivocal military significance, is to examine the mobility required by a basic training confidence 
or obstacle course. These courses stress the strength and agility of young recruits without the benefit of 
levers or cushions. The course requirements are established not only to test the physical fitness of the 
recruits, but also to assess the readiness of the recruits to meet actual operational conditions. If we intend 
for our robots to accompany the operators in the field, the robots too should meet those strength and agility 
standards. 
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� Vertical climbs of a thirty-foot rope 
� Vertical climbs of a fifty-foot ladder or wall with foot and hand holds. 
� Horizontal jumps over a twenty-eight-foot span. 
� Crawls beneath or slips between a ten-inch space. 
� Swims in sea-state-one for one mile. 

 
Of course, few humans can perform to any of the above limits. A more practical standard 
for robotic support vehicles might be the modal performance standards of the human 
population. But some developers may question the wisdom of applying such mediocre 
and languorous standards to a species with fewer constraints and greater promise. 
 

6.2. The Control of Activity and Movement 
 
Historically, our concept of operation of machines involves machine quiescence until a 
specific instruction is given by the operator to the machine to commence some pre-
defined algorithm. The instruction is the initiating action that I will call here a 
provocation. Biological agents also respond to provocations with pre-planned algorithms, 
but the variety of sources of the provocation can be quite large. In addition, the 
relationship between any specific provocation and a particular algorithm often is acquired 
through experience. Prior to the acquisition of significant experience, a naive agent may 
respond to provocation in a generalized way that could involve simply bolting from its 
position. This bolting might facilitate an escape from the provocation. In this case, an 
observer might notice that the provocation was external to the agent, a loud sound for 
example. On other occasions, observers notice that agents appear to spontaneously move 
about with no obvious provocation. What the observers cannot notice in most of these 
cases, however, is the provocation from within the agent. Hunger, defined by a drop in 
energy reserves, is a common provocation that motivates agents. At other times, the 
random firing of neurons due to an accumulation of intrinsic and extrinsic sub-threshold 
noise is sufficient to initiate overt behavior. 
 

7. Recapitulation 
 
Combat operators of unmanned ground vehicles report that mobility is a serious limiting 
factor in their usefulness. Because of their low stature, small unmanned ground vehicles 
rarely can scale obstacles of heights greater than 10 inches, regularly stall on underbrush, 
and frequently fail to penetrate dense growths of trees, all of which admit human 
operators due to the human’s flexibility and multiple degrees of motion freedom. It is 
possible to add motion degrees of freedom to a small unmanned ground vehicle, but this 
creates a more difficult to solve problem of control and coordination.  
 
Most existing unmanned vehicles are controlled by teleoperation. The human operator, 
usually through a joystick and radio link, directs a robot’s single degree of freedom, or 
multiple degrees of freedom sequentially, to execute some maneuver. Humans require 
intensive training, often taking years, to manage the coordination of more than one 
degree of freedom (for example – in playing the piano). Because of this human 
cognitive/performance limitation, the use of small unmanned ground vehicles with 
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sufficient degrees of motion freedom for operation in tactical situations involving 
obstacle dense natural terrain will likely not be possible without competent and adaptive 
control processes resident on the vehicle28. It is to this requirement that the present effort 
is dedicated. 
 
The present approach builds upon an idea that is at least several hundred millions of years 
old. This idea is that agent intelligence must develop from processes that promote the 
survival of the agent. We took this idea and first built a robot agent (Figure 1), adhering 
closely to existing military requirements for the Future Combat Systems (FCS) Soldier 
Unmanned Ground Vehicle (SUGV), but added to those requirements elements necessary 
(but yet insufficient) to develop an intelligent adaptive controller. The elements are 
multiple degrees of motion freedom, and sensors of critical events in the internal and 
external environments. Needed to complete the elements, and of which the present effort 
intends to supply, are hard-wired fixed action patterns, semi-modifiable basic reactive 
patterns, and the mechanisms by which our robot agent will be able to acquire mobility 
and survival skills. The control architecture will contain these elements and permit the 
acquisition of novel behavioral patterns by the robot to improve its adaptation to its 
environment. 
 
Nearly all practical unmanned vehicle systems to date depend upon human decision 
making during mission execution. The degree of dependence is proportional to the 
complexities of the mission and of the operational environment. Developers have hoped 
to reduce human involvement by automating the required decision making processes and 
embedding them in the vehicles, but this makes the systems fragile under uncertainties. 
We intend to take the process beyond automation to permit our robotic agent to make 
operational decisions and learn novel behaviors using criteria related to internal state 
variables associated with the agent’s health. We expect that this approach will retain the 
advantages of both independent activity and human involvement by providing the means 
by which the vehicle can evaluate responses to novel circumstances, and by which a 
human operator may become associated with certain favorable state changes of the agent, 
and then control the agent through biasing certain of the robot’s intrinsic goals, and by 
aperiodic negation of the robot’s selected means to those goals, rather than through an 
operator’s constant exertion to drive the robot to the operator’s objectives. This approach 
will result in a very different kind of an artificial agent. Because our aim with this work is 
to lay the essential foundation for all higher-level intelligent processes that emulate the 
biological, when successful we will be well-prepared to explore methods for decision 
making and tactical behaviors in the agent that are required for collaboration with other 
unmanned systems, and with humans. 
 

                                                 
28 In addition, radio-frequency communication limitations will have negative consequences for remote 
control of unmanned vehicles in complex scenarios. 
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