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1. Identification and Significance of the Problem

1.1. Significance. Many real-world decisions can be cast as mixed integer
programming (MIP) problems, including resource allocation, blending, and
scheduling. Commonly known special cases of the general MIP problem are
the knapsack problem, the assignment problem, the lockbox problem, the net-
work flow problem, and the set-covering problem. The application areas for
techniques for solving the MIP problem include human resource planning, fi-
nancial planning, manufacturing, distribution, inventory, airline scheduling,
telecommunications network planning, and many others. All of these disci-
plines in both the military and commercial workplace require computer soft-
ware to aid in solving these complex but common business challenges.

The Office of Naval Research (ONR) is developing its core investment pro-
gram, the Capable Manpower FNC IPT, which is focused on identifying and
filling capability gaps, fulfilling commitments to funded acquisition programs,
and designing a strategy that would provide the ability to execute the program.
Each enabling capability has a set of milestones and transition opportunities.
A solution method for the mixed integer problem, proposed here, would have
tremendous value to both the private sector and ONR, specifically to utilizing
capable manpower to the fullest.

Within the larger systems of Navy manpower and personnel supply, MIP
problems are used in recruiting, selection and classification, training, and dis-
tribution and assignment. Recruiting problems involve allocation of resources
such as signing bonuses and other programs to meet goals within resource
constraints. Selection and classification problems involve meeting manpower
needs while maximizing the fit of personnel to area. Training problems in-
volve scheduling and allocating resources to training while minimizing costs.
Distribution and assignment must match sailors to positions and accomplish
the relocation of those sailors.

Providing an analytical tool that allows available personnel to be optimally
assigned to maximize their interest and satisfy fleet requirements within prac-
tical real world time constraints will, if successful, have a significant impact
towards the accomplishment of ONR goals and long-term personnel initiatives.
This tool will improve the understanding of operational environments and give
personnel the ability to operate under diverse, challenging conditions.
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1.2. Problem definition. The general Mixed-Integer Programming (MIP)
problem is stated in standard form as

Maximize z = c · x (1)

subject to Ax = b (2)

where xi ≥ 0 for all i (3)

and xi is integral, for all i in a particular (4)

index set of size d > 0.

In the above, c is a 1 × n vector representing costs, x is an n × 1 vector of
decision variables, A is an m × n matrix, and b is an m × 1 vector. The
matrix A is the constraint matrix. Note that the MIP can also be stated
as a minimization problem, and that the equality in (2) may be created from
inequalities by the addition of slack or surplus variables. Techniques for solving
Linear Programming (LP) problems, defined by only lines (1)–(3), are well
established. However, there is no general method for quickly determining the
solution of a general MIP problem. The addition of (4) complicates matters,
since the feasible solution space is no longer convex, but is broken into many
non-connected spaces that must be searched. The number of spaces that must
be searched is exponentially related to d. Integer variables may be further
constrained to values less than or equal to one, and greater than or equal to
zero. This effectively constrains integer variables to values of zero or one, i.e.,
binary.

1.3. Existing techniques. The traditional technique for solving the MIP
problem is called the Branch-and-Bound (BAB) method. The BAB method
involves solving a series of relaxed versions of the MIP problem, where all
decision variables can take on real values, i.e., the integrality constraints are
relaxed. Each relaxed problem is a standard LP problem, for which very good
solution methods exist. If the relaxed problem’s solution contains decision
variable values that violate the integer-value constraint, then sub-problems
(branches) are formed with additional constraints.

In situations where d is large, there can be many branches, and thus many
sub-problems are generated. In the worst case, more than 2d+1 sub-problems
may need to be solved. Each sub-problem is an LP problem. At each solution
of a relaxed problem two choices must be made: (i) which decision variable
to branch on and ii) which branch to follow. The basis of these decisions to
date has been heuristic in nature, and no single heuristic has been shown to
perform better than others on all problems.

The heuristics for choosing the variable on which to branch fall into two
categories: deterministic and non-deterministic. Deterministic heuristics will
choose the same variable to branch on each time they are run. A simple
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deterministic heuristic would be to choose the “first” variable, i.e., based on
an arbitrary predetermined variable index. A commonly used deterministic
heuristic is to choose the variable that has the greatest impact on the objec-
tive function. This is intuitively appealing, but has not been shown to be
consistently better than other heuristics.

Unlike linear programming problems, MIP problems have a large number
of disjoint feasible regions that must be searched. Because the MIP problem
is effectively a large-scale search that confounds local optimization methods,
global search heuristics have been used to guide the BAB method. These
search heuristics include pure random choice of variable, genetic algorithms
(Goldberg, 1989 and 2002; Knjazew, 2001), and Tabu search (Glover and
Laguna, 1997). These are all non-deterministic methods, since separate runs
of these methods may choose different variables on which to branch.

It should be noted that all of the above are methods for making the necessary
choices in the BAB method. Once the branching variable and the direction are
chosen, each branch still produces a linear programming problem that must
be solved, and may produce further branches.

Several drawbacks of the BAB method should be noted:

(1) Solving sub-problems is computationally expensive. There is
significant computational effort spent in formulating and solving each
sub-problem.

(2) The number of sub-problems is exponential. As stated above,
there are potentially more than 2d+1 sub-problems. The BAB method
is effectively a combinatorial search problem. In combination with (1),
this can confound solution of the problem in a reasonable period of
time.

(3) One risks never getting a useful solution. The initial solution
to the relaxed problem is not necessarily feasible, and those of sub-
problems may not be feasible either. Thus, early stopping of the algo-
rithm may not produce a feasible solution.

2. Phase I Technical Objectives

Beyond the implicit objective of implementing the Neighborhood Covering
Heuristic (NCH) for solving the mixed-integer programming problem, we had
two objectives:

(1) Study different variants of NCH afforded by its tunability.
(2) Complete a series of statistically rigorous comparisons between NCH

and the standard Branch and Bound (BAB) approach.

We achieved these objectives, and several others as well:

(3) Use NCH to solve several real-world problems.
(4) Use NCH to solve many large problems.
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3. Methodology

In order to study variants of NCH and to compare them with BAB, we first
implemented all of these methods in software, and then applied them to a
collection of randomly generated problems.

3.1. Platform. Our prototype system was developed using MATLAB, a well-
established platform for technical computing, which is published by The Math-
works (http://www.mathworks.com). MATLAB was well suited for our pur-
poses, since it features easy desktop development and testing, a high-level
scripting language, and a specialized optimization toolkit. With MATLAB,
our development and simulations could be performed on standard desktop
computers.

To clearly compare the NCH against existing methods such as BAB, the
supporting methods, such as linear program solving and matrix manipulation,
were done using the MATLAB Optimization Toolbox. In this way, we were
able to clearly identify performance characteristics attributable to our method,
rather than to specific code implementations of the supporting methods.

3.2. Generation of Problems. To perform a repeatable, statistically rigor-
ous study, we needed to generate a set of problems. These problems must, of
course, have feasible solutions. Furthermore, we must be able to control the
characteristics of the problems and create multiple, different problems with
the same set of characteristics. To accomplish this, we devised a method
for generating MIP problems using the pseudo-random number generator in
MATLAB. We fully describe our method here.

The basic idea is to create a point, and generate constraints around that
point. In this way, we assure that this point is a feasible solution to the
generated problem, i.e., we guarantee at least one feasible solution.

3.2.1. Inputs.

• seed: the seed for the random number generator
• num vars: the number of variables in the problem
• num constraints: the number of constraints in the problem
• density range lo and density range hi: specify about how many

values in the constraint matrix A are nonzero
• pct integer: specifies about how many variables are to be integer-

valued
• pct binary: specifies about how many variables are to be binary-

valued.

3.2.2. Output.

• prob: a single mixed-integer programming problem.
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A preliminary note is in order on the parameters used for generating random
numbers. The generation of these problems is relatively sensitive to the param-
eters (means, standard deviations, etc.) used. The parameters used generate
reasonable problems. They were determined by initial common sense, and
trial and error.

Here are the basic steps:

3.2.3. Generate the objective function. The problems are to be minimization
problems. We generate a vector of length num vars from a Normal distribution
with mean −200 and variance of 20. In general, this should guarantee that
each variable will have an effect on the objective function, and all will be
negative. Note that the objective function value does not in any way depend
on which variables are real-valued, integer-valued, or binary-valued.

3.2.4. Decide which variables are to be integer and binary. The parameter
pct integer specifies a rough percentage of the num vars variables that will
be integer-valued. We ensure that at least one variable is integer-valued.
To choose a random set of variables, a vector of Uniform(0, 1) values of
length num vars is generated. Variables corresponding to values less than
pct integer are chosen to be integer-valued. If necessary, repeat until at
least one variable is integer-valued.

Binary variables are generated in the same manner, except that we enforce
that if a variable has been set as integer-valued, we do not change it to binary-
valued.

3.2.5. Produce the point around which constraints will be generated. We now
pick the random point p that will be maintained as feasible through the
generation of constraints. We generate a vector of length num vars from a
Normal(1000, 100) distribution. This ensures a point that has all positive
coordinates.

Next, we round every value that has been determined to be integer-valued.
Approximately half will be rounded up, and half will be rounded down.

Next, we make all binary-valued variables equal to either zero or one. This
is done randomly so that approximately half will be zero and half will be one.

The above two operations guarantee that the point will be feasible, in that
it satisfies the binary- and integer-valued constraints.

3.2.6. Generate constraints. num constraints tells us how many constraints
must be generated. density range hi and density range lo specify a range
of what percentage of the values in the matrix A are to be nonzero. We achieve
this by generating each constraint according to the density ranges.

For each constraint, a density is chosen from Uniform(density range lo,
density range hi) distribution. So if the range is (0.01, 0.05), a density is
chosen at random in this range. We now generate a vector of length num vars
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Low-density matrix. High-density matrix.

Figure 1. Illustrations of randomly generated matrices as
shown using the spy function in MATLAB.

from Uniform(0, 1) distribution. We will choose a coordinate of our constraint
to be nonzero if the corresponding coordinate of this vector is less than the
chosen density.

Now that we know which variables will have nonzero values in this con-
straint, we generate the actual values from a Normal(400, 150) distribution.
Thus, all of the non-zero entries in the matrix A are drawn from this distri-
bution.

We continue this process num constraints times, to generate all of the
constraints. Graphical representations of low- and high-density matrices are
shown in Figure 1. These were generated using the spy function of MATLAB,
which creates a plot representation of sparse matrices. The x-axis represents
columns in the matrix; the y-axis, rows. Points in the plot represent non-zero
entries in the constraint matrix.

3.2.7. Generate the right-hand-side (b) for each constraint. We must now
generate b (as in §1.2) such that the constraints are not binding for p, the
point that should remain feasible. To do this, we calculate Ap, which gives
us all the left-hand-side (lhs) values. For a constraint C, we set b(C) =
lhs(C) + Normal(500, 50). So we randomly add space between the constraint
plane and the point that should remain feasible.

Note that the optimal feasible point could be relatively far from p.

3.2.8. Clean up. Several final steps are performed to make sure the problem
is reasonable.

(1) In order to avoid degeneracies in the matrix A, ensure that each vari-
able is involved in at least one constraint.

(2) In order to avoid unbounded problems, ensure that every variable is
bounded above and below. Lower bounds are set to zero. Upper
bounds are set to p + Normal(2000, 100). This choice of mean and
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Dimension Values
Number of Variables 40, 60, 80, 100–1000 by 100
Number of Constraints 20, 25, 30, 35, 50, 75, 100, 125
Percent Integer 5%, 10%, 15%, 20%
Percent Binary 5%, 10%, 15%, 20%
Density 1–5%, 1–10%, 10–20%
Repetitions 10

Table 1. Parameters for generating synthetic problems in Se-
ries One and Two

standard deviation should create situations where the upper bound
constraint is binding for some but not all variables.

(3) Round down the upper bounds for all integer variables. Set the upper
bounds for all binary variables to 1.

(4) As a final check, we ensure that the relaxed problem (no binary- or
integer-valued constraints) is solvable by our linear program solver.

4. Description of the experiment

We generated three different series of problems using the method described
in Section 3.2.

4.1. Series One: Tuning NCH. Our current implementation of NCH has
two parameters that can be specified at run time. (In fact, there are more,
but they play no role in the present study.) To determine the operating char-
acteristics of NCH with regard to these parameters, we created ten variants of
NCH. These ten variants represent two levels of one parameter, and five levels
of the other parameter. The first parameter takes on values of a or b, while
the second takes on levels one through five. We indicate the variants of the
NCH with designators such as “NCHa3”, indicating that the first parameter
is at level a, and the second parameter is at level 3.

We exercised the variants of NCH on Series One, a collection of synthetic
problems. (See Section 6.1 for our results.) In this series, the number of
variables ranged from 100 to 1000, and the number of constraints was 20, 25,
30, or 35. The density ranges for the constraint matrix were [.01–.05], [.01–
.10], and [.10–.20]. The approximate fractions of variables that were binary
and integral were each .05, .10, .15, and .20. (Note that in our study, the
binary variables are considered to be separate from the integer variables, and
do not form a subset.) For each combination of the above parameters, we
generated 10 different problems that share the same parameters. See Table 1.

4.2. Series Two: Comparing NCH against BAB. We generated a second
series of problems using the same parameters as in the first series, except that
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the number of constraints was either 50, 75, 100, or 125. We applied BAB
and selected variants of NCH to all of these problems. The results are in
Section 6.2.

4.3. Series Three: Large problems. Since NCH had performed so well so
far, we generated a series of larger problems. The number of variables now
ranged from 1000 to 2000, and the number of constraints varied from 100 to
250. The other parameters remained the same as in the earlier series. We
applied selected variants of NCH to these problems. Our purpose was not to
compare NCH against BAB (since our experience suggested that BAB would
take an inconveniently long time on many of these problems), but merely to
see if NCH would continue to work as well as it had on earlier series. It did,
as outlined in Section 6.3.

4.4. MIPLIB 3.0. We wanted to apply NCH to several recognized difficult
problems in addition to our generated problems. MIPLIB 3.0 is a library of
mixed integer programming problems assembled by researchers at Rice Uni-
versity to evaluate performance of MIP solvers. The problems were chosen
because they are difficult, but not necessarily because they are representative
of real-world problems. (The problems and their documentation can be found
at http://www.caam.rice.edu/~bixby/miplib. See in particular the tech-
nical report by Bixby, Ceria, McZeal, and Savelsbergh.) While we believed
that some MIPLIB problems (particularly those that are pure-integer or pure-
binary) would not be amenable to our methods, we wanted to show that we
could solve at least some of these difficult problems quickly. See Section 6.4
for details.

5. Metrics

The BAB method is well studied and can, given enough computational
power, find the global optimal solution to a problem. However, the BAB
method has several failings. First, it is designed to find the global optimum,
so it may overlook feasible solutions that it finds early on. Or it may find
an infeasible solution that is very close to a feasible solution, but overlook
it. Furthermore, the time required to find a feasible solution, or the global
optimum, varies a great deal. So the time to first feasible (TTFF) has a very
high variance. As a practical matter, this variance can be problematic. For
instance, if typical problems take anywhere from 1 second to 18 hours of time
to solve, it is difficult to attempt solutions every day.

The problematic characteristics of the traditional BAB mentioned above
motivate the metrics we used to compare NCH and BAB:

• Time to first feasible solution (TTFF). In practical situations, once a
satisfactory feasible solution is found, finding an optimal solution is
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Std.
N Min Max Mean Deviation

No. Constraints 3035 20 35 27.47 5.6
No. Variables 3035 40 500 210.68 161.9

Integral 3035 1 124 26.17 25.3
Binary 3035 1 114 23.04 22.5

Density 3035 .04 .193 .088 .045
TTFF

BAB 3034 .04 620.20 6.9143 30.2
NCHa1 3011 .06 163.40 .5290 3.4
NCHa2 3028 .07 136.01 .4900 3.4
NCHa3 3031 .07 63.23 .2541 1.2
NCHa4 3028 .07 145.84 .3938 2.9
NCHa5 3030 .07 69.13 .2796 1.3
NCHb1 3026 .07 216.51 .5527 4.7
NCHb2 3029 .07 614.50 1.0548 15.7
NCHb3 3029 .07 489.85 .3956 8.9
NCHb4 3029 .07 217.30 .7456 6.7
NCHb5 3030 .07 511.60 .5033 9.3

QFF
BAB 3034 .9795 1.0000 .9999 .0007
NCHa1 3011 .9491 1.0000 .9997 .0023
NCHa2 3028 .9712 1.0000 .9998 .0015
NCHa3 3031 .9712 1.0000 1.0000 .0005
NCHa4 3028 .9577 1.0000 .9998 .0017
NCHa5 3030 .9577 1.0000 .9998 .0014
NCHb1 3026 .8842 1.0000 .9998 .0027
NCHb2 3029 .8842 1.0000 .9999 .0022
NCHb3 3029 .8842 1.0000 .9999 .0021
NCHb4 3029 .8842 1.0000 .9998 .0026
NCHb5 3030 .8842 1.0000 .9998 .0025

Table 2. Series One: TTFF and QFF for BAB and Variants of NCH

often not enough of an improvement to be worth the effort. Indeed,
the difficulty of finding a provable, globally optimal solution can be
astronomical. For this metric, lower values are more desirable.

• Quality of first feasible solution (QFF). This is a ratio between the
objective function values at the first feasible solution and at the re-
laxed optimal solution. For minimization problems where the relaxed
optimal solution has a negative objective function value, QFF thus has
a theoretical maximum of 1. For this metric, larger values are more
desirable.

• Number of calls to our linear program solver. This measure is impor-
tant, since it is independent of any possible difference in the relative
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Figure 2. Series One: 95% Confidence Intervals of TTFF of
NCH Variants

quality of our implementations of NCH and BAB. For this metric,
lower values are more desirable.

6. Phase I Results

We accomplished our stated objectives (as listed in Section 2) and more.

6.1. Results: Different variants of NCH. We first ran ten NCH variants
over the problems in Series One. Table 2 shows the mean time to first feasible
(TTFF) and standard deviations, and the mean quality of the first feasible
solution (QFF) expressed as a fraction of the relaxed optimal. The column
with heading N represents the number of observations used to generate the
statistics. The other columns, Min, Max, Mean, and Std. Deviation, represent
the univariate statistics over the N observations. By inspection, NCH variants
identified here as a3 and a5 consistently have the fastest times and highest
solution quality. One other variant whose properties are nearly as attractive
is b3. Figure 2 graphically represents the TTFF results in Table 2. The figure
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Figure 3. Series One: 95% Confidence Intervals of QFF of
NCH Variants

shows 95% confidence intervals of the TTFF of the ten NCH variants. From
the figure it is clear that NCHa3 and NCHa5 have low means and variances.
These two variants stand out as finding feasible solutions quickly and consis-
tently. Figure 3 shows confidence intervals for the quality of the first feasible
solution (QFF) for all ten variants. As in the table, it can be seen that NCHa3
is the best.

To further explore the differences among the promising variants of the NCH
identified above, we graphed boxplots of NCHa3, NCHa5, NCHb3, and NCHb5
by number of variables, number of constraints, number of binary variables, and
number of integer variables. These graphs are shown in Figure 4.

A one-way ANOVA of these four variants comparing the mean times to first
feasbile shows no significant difference between the four variants. See Table 3
(page 16).

Our main conclusion from these four plots is that the four variants are very
comparable across these dimensions. In some sense, these four dimensions
all represent proxies for the size, or difficulty, of the problem. So another
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by Number of Variables by Number of Constraints

by Number of Binary Variables by Number of Integer Variables

Figure 4. Series One (second half): TTFF for NCH Variants
a3, a5, b3, and b5

conclusion from these graphs is that the relation between the performance of
the NCH and each of these dimensions is, at worst, linear. This can most
clearly be seen with the upper left plot by number of variables.

6.2. Results: NCH vs. BAB. To understand the differences between the
NCH variants and BAB, and the interactions between the dependent variables
and the NCH parameters, we first examined the number of calls to the linear
program solver. The number of calls to linprog is significantly smaller with

*-    1.0 I 

E I ii 
600 700 800 900 1000 

No. of Variables 

25 30 

No. of Constraints 

iiiii 
13-42    43-71    72-96   97-126   127-231       0.0 

No. of Binary Variables 

lNCHb3 

iNCHbS 
14-48 49-81 83-111        112-145       146-227 

No. of Integers 



16

Sum of Mean
Squares df Square F Sig.

NCHa3 Between Groups 6.197 3 2.066 1.523 .206
Within Groups 4105.635 3027 1.356
Total 4111.832 3030
NCHa5 Between Groups 8.631 3 2.877 1.757 .153
Within Groups 4954.990 3026 1.637
Total 4963.621 3029
NCHb3 Between Groups 247.396 3 82.465 1.041 .373
Within Groups 239571.883 3025 79.197
Total 239819.280 3028
NCHb5 Between Groups 263.808 3 87.936 1.013 .386
Within Groups 262766.803 3026 86.836
Total 263030.611 3029

Table 3. One-way ANOVA: Comparison of Mean TTFF for
fastest NCH variants

increases in each of the dependent variables. It can be seen that different
dependent variables have corresponding different impacts on the number of
linear program (LP) calls. Table 4 (page 17) and Figure 5 (page 19) show
the number of LP calls graphed for the ten NCH variants and BAB across the
different dimensions of our study. It is clear that BAB makes the most calls to
the LP solver across all dimensions of the study. Furthermore, for BAB, there
appears to be an exponential relationship between the number of LP calls and
the number of integer variables (see the lower left plot). In contrast, for NCH,
there is, at worst, a linear relationship between the various dimensions of the
problems and the number of LP calls. This is an important result for NCH,
since most of the computational effort comes from LP calls.

Using NCHa3, our fastest and most consistent variant, a systematic com-
parison was completed against BAB. The exponential impact of the number
of variables, constraints, integers, and binaries can be clearly seen in Figure 6
(page 20). In general, NCHa3 is not subject to similar exponential effects. We
examine each graph in turn.

The upper left-hand graph of Figure 6 displays boxplots of the TTFF for
NCHa3 and BAB as the number of variables in the problems increases. This
most clearly exemplifies the exponential relationship between the BAB’s vari-
ance of TTFF and the size of the problem, i.e., the number of variables. In
this plot, the outliers for BAB are not shown. Note the tight boxes for NCHa3.
In general, on the problems in this series, the NCHa3 rarely takes more than
several seconds, while the BAB could take from several seconds to over 1000
seconds to solve the same problems.
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Std.
N Min Max Mean Deviation

BAB 3034 1 6181 81.63 333.86
NCHa1 3011 2 8842 9.61 164.62
NCHa2 3028 2 1746 7.49 55.54
NCHa3 3031 2 122 2.09 2.88
NCHa4 3028 2 710 4.86 30.81
NCHa5 3030 2 134 2.56 3.98
NCHb1 3026 2 2930 8.78 77.83
NCHb2 3029 2 8934 16.87 242.26
NCHb3 3029 2 962 2.38 17.64
NCHb4 3029 2 3568 13.34 140.21
NCHb5 3030 2 998 4.71 23.44

Table 4. Series One: Mean number of calls to MATLAB’s
linear program solver for NCH variants and BAB.

The upper right-hand graph of Figure 6 displays boxplots of the TTFF
for NCHa3 and BAB as the number of constraints in the problems increases.
Althought impact is less dramatic than with the number of variables, the basic
pattern persists: BAB is subject to an exponential increase in processing time
with an increase in the number of constraints, while NCH is impacted only
linearly.

The lower left- and right-hand graphs of Figure 6 display boxplots of the
TTFF for NCHa3 and BAB as the numbers of discrete variables, integer and
binary respectively, in the problems increase. Here we can observe that the
number of integer variables has a stronger impact on BAB than does binary
variables, but neither of these parameters has a significant effect on NCH.

These results are supported by Multivariate Analysis of Variance. The de-
pendent variable for the time to reach the first feasible solution was compared
to the independent factors of the number of variables, constraints, integers,
and binary variables. Note that the integer and binary variables are treated
separately and binary variables are not a subset of integer variables. Results
of the MANOVA are shown in Table 5 (page 18).

First note the corrected model is significant for both methods (BAB: F =
1.70, p = .001, NCH: F = 4.99, p = .001). This indicates the parameters
explain a significant portion of variance for the amount of processing time of
each method. Interestingly, the corrected R2 for NCH is twice as large as that
for BAB (.50 vs .26) further demonstrating that NCH times to a solution can
be successfully and consistently predicted.

Looking at the individual factors, in can be seen that BAB has significant
main effects for the number of constraints (F = 4.20, p = .01) and the number
of integers (F = 14.41, p = .001). Clearly, the number of integers has the
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Dependent Type III Sum Mean
Source Variable of Squares∗ df Square F Sig.
Corrected BAB 3143996 523 6011.465 1.698 .000
Model NCHa3 2607 523 4.984 4.996 .000
Intercept BAB 405127 1 405126.963 114.461 .000

NCHa3 1214 1 1213.964 1217.003 .000
C BAB 44607 3 14869.075 4.201 .006

NCHa3 205 3 68.497 68.668 .000
V BAB 5867 9 651.876 .184 .996

NCHa3 169 9 18.746 18.793 .000
I BAB 204037 4 51009.162 14.412 .000

NCHa3 3 4 .752 .754 .556
B BAB 8315 4 2078.723 .587 .672

NCHa3 1 4 .263 .264 .901
C * V BAB 28567 27 1058.044 .299 1.000

NCHa3 34 27 1.254 1.258 .169
C * I BAB 67184 12 5598.640 1.582 .090

NCHa3 9 12 .769 .771 .682
V * I BAB 73689 25 2947.552 .833 .702

NCHa3 21 25 .827 .829 .708
C * V * I BAB 187266 70 2675.227 .756 .934

NCHa3 61 70 .868 .871 .769
C * B BAB 12681 12 1056.785 .299 .990

NCHa3 26 12 2.163 2.168 .011
V * B BAB 41837 26 1609.114 .455 .992

NCHa3 13 26 .484 .486 .987
C * V * B BAB 169199 71 2383.078 .673 .984

NCHa3 37 71 .525 .526 1.000
I * B BAB 34911 16 2181.915 .616 .873

NCHa3 10 16 .649 .651 .844
C * I * B BAB 144532 42 3441.245 .972 .522

NCHa3 28 42 .672 .674 .947
V * I * B BAB 131847 61 2161.427 .611 .993

NCHa3 37 61 .600 .601 .994
C * V * I * B BAB 220760 137 1611.386 .455 1.000

NCHa3 98 137 .719 .721 .993
Error BAB 9096349 2570 3539.435

NCHa3 2564 2570 .998
Total BAB 14226232 3094

NCHa3 10627 3094
Corrected BAB 12240345 3093
Total NCHa3 5170 3093

∗BAB: R2 = .257 (adjusted R2 = .106).
NCH: R2 = .504 (adjusted R2 = .403).

C = No. of Constraints
V = No. of Variables
I = No. of Integral Variables

B = No. of Binary Variables

Table 5. MANOVAs for comparison of NCH and BAB
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by Number of Variables by Number of Constraints

by Number of Integer Variables by Number of Binary Variables

Figure 5. Series One: Mean number of calls to MATLAB’s
linear program solver for NCH variants vs. BAB

major impact on increasing the amount of time to process problems using
BAB. The parameters having a significant main effect on NCH are the number
of variables (F = 18.79, p = .001) and the number of constraints (F = 68.67,
p = .001). Further, the number of constraints interacts with the number of
binary variables to impact processing time (F = 2.17, p = .05).

The statistics, tables, and graphics provide conclusive evidence that NCH
processing time is not impacted by the number of integers in the problem.
NCH is impacted by the number of variables and the number of constraints.
However, it is predicately impacted and it appears in a linear, rather than
exponential fashion.
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by Number of Variables by Number of Constraints

by Number of Integer Variables by Number of Binary Variables

Figure 6. Series Two: TTFF, NCH vs. BAB

For a tabulated comparison of BAB and selected NCH variants, see Table 6.
To further explore the relationships of problem size and TTFF for NCH and

BAB, we created scatter-plots of NCHa3 and BAB on linear and log scales in
Figures 7 and 8 (pages 22 and 23), respectively. Due to the many outliers for
BAB, it is difficult to compare the NCH and BAB on the linear scale graph.
It is clear, however, that the variance of the TTFF for BAB increases with
the number of integer variables. This is consistent with the previous literature
findings for BAB. On the linear scale graph, note the NCHa3 TTFF points on
the lower right edge of the graph. On the log-scale graph, the NCHa3 seems to
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Std.
N Min Max Mean Deviation

No. Constraints 3101 50 125 83.29 27.5
No. Variables 3101 100 1000 554.31 291.2

Integral 3101 1 231 69.34 51.0
Binary 3101 1 216 60.52 44.9

Density 3101 .0260 .1663 .069502 .047
TTFF

BAB 3100 .09 1048.73 25.2980 62.85
NCHa3 3095 .13 23.68 1.3277 1.29
NCHa5 3096 .13 23.63 1.3267 1.29
NCHb3 3097 .13 50.97 1.3218 1.48
NCHb5 3097 .13 51.05 1.3222 1.48

QFF
BAB 3100 .9900 1.00 1.0000 .0004
NCHa3 3095 .7818 1.0000 .9999 .0039
NCHa5 3096 .7818 1.0000 .9999 .0039
NCHb3 3097 .7818 1.0000 .9999 .0039
NCHb5 3097 .7818 1.0000 .9999 .0039

Table 6. Series Two: BAB and selected NCH variants

level off to some extent as the number of integer variables increases. Clearly,
the BAB is more dispersed and at a steeper angle.

While the mean time to achieve the first feasible solution (TTFF) shows a
clear advantage in favor of NCH, it is important to understand the distribution
of the outliers between the two approaches. Figure 9 (page 24) shows points
outside of the 95% confidence interval for both BAB and NCH at various
variable levels. Inspection of the graph shows that NCH outliers are of the
same order of magnitude as the mean time. BAB outliers are at least an order
of magnitude greater than the mean time. In the case of 1000 variables, the
maximum time for BAB to solve is 1048 seconds (17.47 minutes) when the
average time for NCH is 1.33 seconds and a maximum time of 23.7 seconds.

6.3. Results: NCH on large problems. While our selected NCH variants
reliably performed better than BAB on the Series Two problems, we noticed
that the larger the number of constraints relative to the number of variables,
the more outliers NCH produced. For an example of such an outlier, look near
the lower left of of Figure 7. While these outliers were an order of magnitude
milder than BAB’s outliers (60 vs. 1063), we still wanted to improve the
situation. Thus, we enhanced NCH with a third tunable parameter, whose
possible values were “off” and “on.” When we refer to NCHa3, but with this
parameter turned on, we call the resulting variant NCHa3+.
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Figure 7. Series Two: Scatterplot of TTFF, NCH vs. BAB.
Note that this figure shows a single NCH outlier at coordinates
(10,25). This outlier is discussed in §6.3. The figure is truncated
and BAB outliers have TTFF values greater than 1000 seconds.

To test whether NCH remained practical on larger problems, and to test
the effect of this new parameter, we applied both NCHa3 and NCHa3+ to the
problems in Series Three. The results are tabulated in Table 7. Confidence
intervals for the mean TTFF and QFF appear in Figure 10 (page 24) and
Figure 11 (page 11). Note that, as we hoped, NCHa3+ was as good as NCHa3
in general, but had fewer and milder outliers when the number of constraints
was approximately the same magnitude as the number of variables.

6.4. Results: NCH on some known difficult problems. NCHa3 was
able to solve several MIPLIB problems quickly. The results are presented
in Table 8 (page 8). The problems gesa2 o and gesa3 o come from a real-
world application: optimizing electricity generation in the Balearic Islands of
Spain. The variants gesa2 and gesa3 are the same problems, but slightly
reformulated.
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Figure 8. Series Two: Log Scale Scatterplot of TTFF, NCH
vs. BAB

Std.
N Min Max Mean Deviation

No. Constraints 427 150 250 185.36 39.2
No. Variables 427 500 2000 1318.50 575.7

Integral 427 20 440 171.91 109.5
Binary 427 15 421 141.70 94.2

Density 427 .0275 .1529 .0458 .028
TTFF

NCHa3 426 1.11 55.19 9.6135 7.6
NCHa3+ 426 1.09 53.36 9.5348 7.3

QFF
NCHa3 426 .999928 1.000000 1.0000 .0000
NCHa3+ 426 .999985 1.000000 1.0000 .0000

Table 7. NCH on Large Problems: Mean TTFF, QFF, and
standard deviations for NCHa3 and NCHa3+
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Figure 9. Series Two: Boxplot of Mean TTFF by Number of
Variables with Outliers and Extremes

Figure 10. NCHa3 and NCHa3+ on Large Problems: Error
Bar Plot of Mean TTFF with 95% Confidence Interval
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Figure 11. NCH on Large Problems: Error Bar Plot of Mean
QFF with 95% Confidence Interval

NCH BAB
Name Variables Constraints Integer Binary TTFF (sec) QFF TTFF QFF
gesa2 1392 1224 168 240 12.09 1.007 65.17 1.042
gesa2 o 1248 1224 336 384 16.97 1.007 41.43 1.045
gesa3 1368 1152 168 216 11.02 1.003 29.96 1.024
gesa3 o 1224 1152 336 336 15.27 1.003 20.39 1.023

Table 8. NCHa3+ and BAB on some MIPLIB problems. Note
that for these problems, QFF has a theoretical minimum of 1.

6.5. Summary. The Phase I objectives were met and the success of the
heuristic was demonstrated.

First, when other parameters are fixed, the number of integer and binary
variables in a random MIP problem does not have an exponential impact on
the time required to find a feasible solution using NCH. Second, the perfor-
mance data show that NCH produces feasible solutions significantly faster
than BAB. Moreover the variance in time to produce a feasible solution is
smaller in NCH.

This reduction in variance and the resulting greater predictability of time
to first solution will be extremely attractive to logistic companies and consul-
tants. These properties of NCH are very exciting in terms of optimization in
general.

The heuristic is ready to be lifted from the MATLAB testbed and moved
to a software production platform and integrated into what will become the
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Adaptive Mixed Integer Problem Solver (AMIPS) software. It is this software
package that is the focus of Phase II development.

7. Further Potential Speed Enhancements to NCH

7.1. The adaptive potential of NCH. NCH has attractive features that
are uniquely suited to the requirements of the Navy Comprehensive Opti-
mal Manpower and Personnel Analytic Support System (COMPASS) project.
Within the architecture of the COMPASS program is an optimization module.
First, the COMPASS simulator is seeded with a collection of feasible solutions
from which simulations are derived. NCH is uniquely able to quickly produce
a specified number of feasible solutions that are scattered in the feasible space.
This is a property that is not available directly from any current optimiza-
tion package. Second, the COMPASS simulator produces a set of parameters
that would allow information to produce better solutions to be passed to the
optimizer. In a feedback scenario, where the optimization module is called re-
peatedly on similar problems, and particularly in highly parallel installations,
we can exploit the extra knowledge available to adapt at run time. Of course,
pursuing this advantage will require direct engineering collaboration between
the contractors.

7.2. The Potential of NCH as a parallel algorithm. NCH is embarrass-
ingly parallelizable, meaning that the algorithm is naturally adaptable to a
parallel architechture. In particular, under NCH, one could parcel out pieces
of the problem to many processors, which would have only a limited need to
communicate with each other.

8. Phase II Objectives

In Phase II our major objective is to deliver a software production plat-
form that will host a commercial-quality adaptive mixed-integer program-
ming solver (AMIPS). The AMIPS will be based on the successful heuristic
demonstrated in Phase I. Our business model is to deliver optimization ser-
vices directly to businesses and through consultants who use our services after
problem formulation activities.

Phase II will be carried out in two stages, each focused on a key deliverable.
Stage one will produce the commercial quality AMIPS software. Stage one
activities will include four major tasks: growing and perfecting the algorithm;
rehosting our solution onto our production platform; parallelizing the platform
to support distributed computing; and building the XML and Web interfaces
necessary to pass appropriately formatted data into and out of the solver
platform.

Stage two (the Phase II option) will focus on integrating the AMIPS into
the COMPASS simulator as the optimization module. Stage two will consist
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of three major tasks. The software will be installed within the COMPASS
simulator hardware environment. An application program interface will be
created to pass information between the AMIPS optimization module and the
COMPASS simulation module. An expert system will be created to receive
and utilize information from the simulator and modify and tune the search for
feasible solutions.

8.1. Objective 1: The AMIPS Software Production Platform. At the
end of Phase I, the NCH operates as a routine within the MATLAB program-
ming environment. The programming code must be moved onto a production
software platform. The first task is to grow and perfect the algorithm, to
expand the robustness of NCH and improve its performance on a wide range
of problems. This will require the creation of several new software modules
including several preprocessing modules and a linear programming solver. The
most important is the linear programming module. In order to achieve the
control and transparency required to diagnose and eliminate problems, our
first effort will be to evaluate commercial and existing open-source imple-
mentations of linear programming solvers. At this time it our intention to
customize an open-source linear program solver and incorporate it into our
software package. We estimate this will take 3 months to complete and will
be accomplished under the supervision of Dr. Adler. Standard optimization
techniques used for preparing data for analysis in BAB techniques will benefit
NCH as well. Drs. Adler and Kline will develop the preprocessing, cutting
methods, cycle detection and correction routines, and modules to support
specialized constraint types. This effort will be assisted by Creative Action
Program Director Scott Collins and a senior programmer. This effort will take
approximately 4 months and will be done in parallel with the linear program-
ming module development.

The second task of stage one will be to rehost our solution onto the pro-
duction software platform. The programming team will unify the software
modules into a working application. The application will have the necessary
application programming interfaces to read in and pass out standard matrix
formats. This effort is expected to take approximately 2 months and will be
headed by the Creative Action programming staff.

The third task will be to parallelize the platform and maximize the dis-
tribution capabilities of AMIPS. This effort will take approximately 1 month
and will be headed by the Creative Action programming staff.

The fourth task will integrate the software production platform to provide
the necessary capability to support off-site web services. This will involve the
development of a toolkit to build customer interfaces and the corresponding
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XML and Web interfaces. Training materials and help documentation will be
completed to provide the necessary customer support.

At the end of Year 1, a commercial adaptive mixed integer program solver
will be ready to provide logistics customers with optimization services and to
be integrated for use in COMPASS and other Navy optimization requirements.

8.2. Objective 2: Integration with the COMPASS Platform. As our
Phase II option, Creative Action in conjuction with our Research Institution
partner, The University of Akron, will work in collaboration with the COM-
PASS contractor to integrate AMIPS as the optimization module in COM-
PASS. Stage two will consist of three major tasks. The first task will be
the initial test of our enterprise solution. The AMIPS hardware, a multi-
node clustered computer installation, will be networked with the COMPASS
simulator hardware. Because of the unique, adaptive capabilities of the COM-
PASS simulator, a customized application program interface must be created
to pass information between the AMIPS optimization module and the COM-
PASS simulation module. Once the two systems are successfully exchanging
information, work will turn to enhancing an expert system to receive and
utilize information from the simulator. The intelligence provided by the sim-
ulator will be used to modify and tune searches for feasible solutions. It is
expected that over time, better simulations will be produced by COMPASS,
and those solutions will be produced faster, in part with the aid of the AMIPS
optimization.

9. Transition Plan

Creative Action is currently developing an adaptive solver for optimiza-
tion problems that dramatically reduces the time and variance in solving the
hardest optimization problems. Our solver is based on our proprietary Neigh-
borhood Covering Heuristic. The project is a joint effort with the University
of Akron, Ann Arbor Digital Arts and Dr. Douglas Kline of the University of
North Carolina, Wilmington.

9.1. Customer Need. The problems which the AMIPS system can solve
are faced by every large business, or business that manages large invento-
ries, significant human resources, capital-intensive construction, maintenance,
or investment. AMIPS aids inventory management, airline scheduling, In-
ternet/Intranet management, network routing, telecommunications, and any-
thing that maximizes product profitability through faster and more predictable
processing. The types of models for which our company will provide improved
solution capability are used by most large corporations as well as the mili-
tary. In addition, organizational consultants who specialize in this area may
be potential resellers of our service.
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The data gathering, problem formulation, and matrix generation differ for
each business and problem type. In order to transition from the development
stage to a commercial entity, we will focus on human resource management
optimization, working in partnership with COMPASS contractors in order to
provide the unique feasibile solution and adative qualities required. We will
also support a transportation optimization effort that would support several
logistic consulting companies who have expressed an interest in our software
product and our off-site optimization services.

Each potential problem is large, has unique parameters, and is computa-
tionally expensive using current MIP solutions. Our vision is to create a
customizable interface using an open source web browser development envi-
ronment. The browser window is the control interface by which a customer
can upload and solve a large-scale mixed-integer programming problem from
the source-platform of their choice. Templates will be constructed for particu-
lar business sectors. We will develop the basic architecture and core templates
through Phase II SBIR funding.

9.2. Partnering. Lewis & Clark Ventures LLC (LCV), an investment capi-
tal fund, has agreed to participate to help commercialize AMIPS. The fund
focuses on investments in sectors including life sciences, micro- and nanotech-
nology, advanced material science, fuel cell technology and information tech-
nology. Fund manager Dr. Ron Clark, principal of Lewis and Clark, is the
former president and executive director of the Ohio Polymer Enterprise De-
velopment Corp., a non-profit group created by the University of Akron in
Ohio that provided upward of $25 million in VC funding for 30 Ohio-based
startups. His partner in LCV is Robert Acri, a principal of Kenilworth As-
set Management LLC, a money management firm based in Chicago. LCV
will make investments that range from a $500,000 to $1 million over several
funding rounds in each startup it backs, though in some instances, the total
investment in a startup could be as large as $5 million. The fund expects to
see early profit on many of its investments and aims to offer investors a 28%
annual return.

Dr. Peter Weinstein, the Project Manager for Altarum on the Navy Compre-
hensive Optimal Manpower and Personnel Analytic Support System (COM-
PASS) project, has written a letter of support to Creative Action. Altarum
would welcome the opportunity to work more closely with Creative Action
LLC, Ann Arbor Digital Arts, and the academic members of our team. Based
on the schedules presented by both the projects, there is the opportunity for
joint development to the benefit of both projects.
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10. Phase III Activities

10.1. Funding Strategies. With the support of our commercialization part-
ner, LCV, we have already begun efforts to develop customer interest and have
identified interested investment sources. Our business model provides for three
ways to access our solution engine. A customer can engage our company to
solve the problem directly as a consultant. Access could also be provided
by subscription for a monthly or annual fee for customers who would have
customizable templates they could access securely over the Internet. Finally,
for large customers interested in maintaining absolutely independent data,
particularly government and military customers, we would sell an enterprise
solution that would include a license for the software, set up and maintenance
of equipment, software updates, and technical assistance on-call for their en-
tirely on-site instantiation. We anticipate that at the end of year 1, we will be
able to work with a small set of interested logistics consultants to provide opti-
mization solutions to supplement development costs, build the customized web
interfaces, and tune the optimizer for targeted optimization problems. These
include the Thorndyke Group, Altarum, and Sage Tree, a logistics software
consultant.

In February, the Ohio Department of Development plans to announce the
ODOD Commercialization Grant. Creative Action, as a Tibbet’s Award re-
cipient for excellence in contributions to and from the SBIR program is a
likely candidate for these supporting funds. The funds are intended to aid
in marketing and manufacturing efforts disallowed by STTR funding. These
funds are targeted at companies with on-going Phase II projects.

Should additional development funds be required to expand the capabili-
ties and infrastruction of our planned web-based off-site optimization service,
Lewis and Clark Ventures has agreed to provide or solicit seed funding. It
is anticipated that the Phase II funds will be sufficient to provide a working
AMIPS production platform and to provide optimization services to the Navy
and to other business customers at the completion of Phase II. In order to sup-
port the COMPASS effort, additional specialized developments in conjunction
with the COMPASS primary contractor will be required, as noted above.

10.2. Company Strategy and Intellectual Property. The intellectual
property agreement signed by Creative Action LLC, The University of Akron,
Ann Arbor Digital Arts, and Douglas Kline, Ph.D. stipulates that a holding
company directed by Creative Action will be created. See Figure ??. The
holding company, AMIPS Holding LLC, will hold exclusive license to all the
intellectual property relative to the STTR research effort and future develop-
ment by the holding company partners. With continued project success, Lewis
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Figure 12. Structure of Intellectual Property Agreement In-
cluding the Holding Company and Funds Distribution.

& Clark Ventures is interested in supporting the funding of AMIPS Commer-
cial LLC, to produce and distribute optimization installations, software, and
services to businesses and military customers.

Although this will be the first commercial product Creative Action and its
research partners have developed for the Department of the Navy, Creative
Action has received four Phase II SBIR grants from the National Institute of
Health and has produced five patents, maintains six trademarked products,
and has two commercial projects on the market, with a third almost ready
to go to market. These products include a system for communicating with
foreign-language-speaking long-term care residents, and Medication Reminder
software designed for use by adults and specifically older adults using a per-
sonal digital assistant.
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Figure 13. Financial potential of the AMIPS commercializa-
tion effort. The Figure assumes Phase II funding in 2004 and
2005 with positive revenue through 2008.

At the completion of the Phase II funding, Creative Action will have com-
pleted the development of the production software platform. The Phase II op-
tion will focus on the installation and integration of the software into the Navy
Comprehensive Optimal Manpower and Personnel Analytic Support System
(COMPASS) project. We have already begun a relationship with Altarum
and CSC and anticipate that a joint development effort can be accomplished.
We will supply the necessary technical and engineering support to deliver the
Adaptive Mixed Integer Program Solver (AMIPS) technology either directly,
or through a license with the primary COMPASS contractor.

10.3. Market Potential. We will work with logistics consultants to present
our product to their existing clients. Each service level (consulting, subscrip-
tion, and enterprise) would have a corresponding fee. While we expect to
come up with a more sophisticated pricing structure, we have used the figures
below as the basis for the financial projectsions in Figure 13.

We estimate that in the first 3 years, 15 Fortune 1000 corporations would
use our services. Our consulting fee for each service would be $20,000. We
expect another 20 Fortune 1000 corporations will pay our annual fee of $50,000
to access this unique service that has the potential to save them millions of
dollars through timely data-driven solutions. Our enterprise solution will be
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sold for $200,000 including our certified hardware that will be comprised of
an array of blade processors, specifically configured for parallel computation,
possibly as a Beowulf cluster. Additional revenue, $65,000 per year, will be
generated through a support agreement that includes standard development
training, maintenance, and updates to the software. We anticipate the Navy
to be our first enterprise customer with two additional customers in the first
year. This would provide the basis for the Navy to transition to a web-
based marketplace for matching human resources to jobs. In each of the
cases the customer is provided with a powerful customizable solution engine
with tremendous computational power accessible to the extent the customer
specifies.
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