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I. Project Goals 
 

The rapidly increasing performance of low-cost computing systems has produced a rich 

environment for desktop, distributed, and wide-area computing.    In addition, the 

accelerating progress of communication technology is enabling distributed systems to be 

designed with a  different view – one in which physical location matters little and 

applications move freely throughout a resource pool.   In particular, inexpensive, high 

speed networks are becoming increasingly pervasive dramatically reducing the time for 

data shipping and coordination of distributed elements.  Commodity commercial 

networks achieve 120-1200MByte/s  or more (e.g.  gigabit Ethernet and 10gig Ethernet) 

and are increasingly common in local-area networks and distributed computational 

infrastructures.  They are also a good model for high performance network installations 

of today and tomorrow such as a embedded local-area networks on an AEGIS cruiser or 

within an aircraft.   

The idea of dynamic applications roaming cyberspace begins with small programs such 

as “agents” and eventually encompass applications which provide useful complex 

network services (traditionally “server” applications).  This technological vision of open 

resource pools have now been popularized as computational “grids”.  It is this vision that 

Agile Objects pursues – the notion that applications can be modularized at the component 

level and then made mobile across the network.  Innovations in networking, 

communication, scheduling, and resource management, all embodied in Agile Objects 

middleware enable this vision for useful applications. We describe the goals and progress 

toward that vision in the Agile Objects project in the following text. 

 

The Agile Objects project set out to and has demonstrated middleware technologies 

which can increase the flexibility and survivability of high performance distributed 

systems. The Agile Objects project has developed a range of technologies which enhance 

the capabilities of applications based on distributed or component object models. 

Specifically, Agile Objects will allow component-based applications to be location 

elusive (distributed without concern for performance, dynamicly redistributed in response 

to environmental changes, and achieve that redistribution while providing hard real-time 

performance guarantees), and interface elusive (change their interfaces dynamically in 

response to reconfiguration, attack, or change in system environment to increase their 

survivability in the face of physical or electronic attack).  Both of these capabilities can 

be deployed dynamically in response to changes in the computational, network, or 

physical environment, providing a capability of dynamic elusiveness.  These capabilities 

enable the construction of inherently survivable applications based on components.  The 

component middleware enables applications to exploit location elusiveness, interface 

elusiveness, and dynamic elusiveness and respond flexibly to noisy information about  

attacks and to survive.   

 

Technical Approach  We employ component object frameworks for insertion of Agile 

object capabilities.  Increasing large-scale use of component object frameworks presents 

an opportunity for middleware infrastructures which can automatically provide 

dramatically greater software system flexibility and thereby survivability. We have
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developed a framework called Agile Objects which leverages component object models 

and enables the construction of survivable systems that support increased application 

survivability through elusive technologies: location elusiveness, interface elusiveness, 

and dynamic elusiveness.  The project efforts have demonstrated location elusiveness, 

interface elusiveness, and dynamic elusiveness which enable the construction of 

component-based inherently survivable systems.  These technologies were embedded in a 

component middleware which allows applications, based on component technologies, to 

exploit survivability capabilities.    

Location Elusiveness is the capability of application components to be reconfigured 

across distributed resources -- while the application is running and preserving the 

performance and real-time properties of the application both across and during the 

migration.  In short, an application can flee systems that are likely (or already) 

compromised, dynamically reconfiguring to continue its mission.  Such capability 

leverages recent dramatic advances in user-level networking and open real-time systems, 

but also requires significant advances in component runtime systems, system resource 

virtualization, component migration, and dynamic management of application 

performance thru migration.  We design, implement, and develop a component 

middleware system which enables online application reconfiguration to enhance 

application survivability.  

Interface Elusiveness  (later called High Performance Invocation Protection or HIPIP) 

enables a component middleware system to manage automatic change and configuration 

of application components and distributed object interfaces to maintain application 

security. Such automatic management is critical in an environment where the application 

is reconfigured in ways and into resource environments that the application designer 

never considered. For example, components presumed local may now be remoted, 

exposing formerly intra-process communication to a variety of network security attacks.  

The interface manipulation and binding technologies used pervasively in distributed 

object and component systems provide the core capability for interface elusiveness 

approaches, but at present there is little understanding of how to specify security 

properties, manage them for Agile Object systems, and use Interface Elusiveness 

techniques to provide application security.  We have developed intellectual, analytical, 

and empirical frameworks to explore this technology.  Prototypes which embody 

interface elusiveness approaches have been built and used to do empirical studies.  

Dynamic Elusiveness is the capability to dynamically manage the dimensions of 

elusiveness in response to a complex and evolving security / intrusion environment.  Both  

location and interface elusiveness are supported by Agile Objects in dynamic form. 
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II. Key Research Results 
The Agile Objects project has accomplished a basic proof of concept of the key project 

ideas showing working systems that embody location independence and online migration, 

open real-time structures and pre-allocation of resources to enable rapid migration, online 

interface mutation for elusive interfaces, and most recently detailed analytical modeling 

which demonstrates that applications can be made robust under denial-of-service attacks 

using Agile Objects techniques.  We summarize each of these research results in the 

following section. 

 

I. Location Independent Application Configuration with Uniform Performance 

 

Location Elusiveness enables applications to have no fixed location, providing no fixed 

target for electronic attack.  Software and information assets (component objects) flow 

seamlessly on a fabric of information resources, dynamically reconfigured to meet the needs 

of the application, available physical resources, security, survivability, and resource loss.  

Open real-time system technology allows these capabilities to be achieved in real-time 

applications without loss of performance guarantees.  Within the application, the 

movement of components is tracked through a highly decentralized information location 

service. 

 

The key technologies for location elusiveness are: high performance distributed objects 

(efficient coupling, microsecond interaction), rapid object migration, and open systems  

with hard real-time guarantees.  Current object brokers require 1 millisecond for an 

RPC; our efforts have improved this dramatically, enabling configuration flexibility for 

distributed applications.  In addition, our Agile Object systems enable online migration of 

component object programs. These systems exploit a framework for object naming and 

migration based on highly decentralized services. 

 

Building on our previous work in high performance user-level communication, we 

designed two transports for the Microsoft RPC system.  These transports demonstrate the 

potential problems and the achievable performance for remote distributed object (or 

component) access in user-level networked environments.  Our conclusions are that 

remote access can be achieved with overhead and latency not significantly higher than 

local.  Consequently, that the basic premise of Agile Objects is feasible, that distributed 

applications can be implemented in a fashion to be both high performance and 

independent of configuration.  Achieved performance levels are: 

 

MSRPC (transport) Null RPC time (round trip) 

UDP/IP over 100Mbit Ethernet 360 microseconds 

Datagram Transport over Fast Messages 

(user-level) 

114 microseconds 

Connection Oriented Transport over Fast 

Messages (user-level) 

51 microseconds 
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Local RPC using LRPC 27 microseconds 

 

These results indicate RPC overheads for our Fast Messages based implementations 

which are comparable to local overheads for LRPC.  This means that comparable RPC 

rates can be achieved in both situations.  In addition, the latency of the remote RPC is 

only 24 microseconds larger, nearly all of which can be accounted for by the physical 

latency of the network.  Thus for decomposable distributed systems which are not tightly-

coupled (most of them), remote RPC-based on user-level communication can deliver 

comparable performance to local RPC. 

 

II. Multi-DCOM prototype Provides Location-Independent Performance 

Transparently 

 

We completed the design, implementation and evaluation of a multi-DCOM prototype.  

We briefly describe the implementation and performance of our multi-DCOM prototype 

here.  In order to provide support for seamless migration and redundancy to component 

applications designed to standard component interfaces, we are designing a multi-DCOM 

layer which provides transparent replication.  This layer allows standard COM 

applications without change to do basic object replication, providing a platform for the

integration of Agile Object component attributes such as migration and some types of 

fault-resilience.  Significant technical design challenges include transparent integration 

and dealing with multiple return values. 

 

Transparent Integration  Achieving transparent integration requires faithful 

implementation of COM interface semantics and DCOM call semantics.  Since there is 

only one reference implementation of these semantics (that in Microsoft’s Windows OS 

products), we are exploring an approach based on dynamically-linked library (dll) 

substitution and interposition of a multi-DCOM management layer.  We have designed 

such an interception scheme which uses registry modifications and application 

initialization calls to specify which COM interfaces employ replication and have been 

exploring the internal architecture of the Windows source code to understand how we can 

best support the replicated invocations.  Because DCOM is based on COM which in turn 

evolved from OLE, the software implementation structure is rather complex and non-

modular.  We have designed a simple scheme which provides a general enough 

interception capability for our needs. 

 

Multiple Return Values  One challenge in integrating replicated distributed object 

invocations is the handling of multiple return values.  First, multiple return values must 

be handled correctly.  Second, depending on the use of the replication, the multiple return 

values may be handled or combined in a different fashion.  Our scheme must provide a 

flexible framework for doing this.   Finally, it is desirable to support these capabilities 

with little or no disruption to the program source code.  We have met these challenges by 

designing an “iterator” based interface.  The default instantiation of the multi-DCOM 

system uses standard single caller and callee interfaces, and combines the results.   

However, replication aware interfaces can activate and iterate over responses, allowing 

arbitrary operations over the multiple values (such as detection of replica failure).  This 
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can require modest application change, or can be hidden in yet another layered 

component, allowing some replication awareness to be integrated into an application 

while using unmodified binary components. 

 

The system was implemented and tested on a legacy DCOM application which shows 

employee data from a shared database.    The following graphs demonstrate fast that the 

multi-DCOM system works, and it capabilities and performance.  First the following 

graphs characterize the cost of using multiple replicas with a BSTR (byte array) 

argument: 
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Note that all of the y-axes are in microseconds!  As can be seen from the graphs, the cost 

of using replicas is quite low in these systems (a fraction of a millisecond), until very 

large arguments are used, and the limited network bandwidth (these test were taken on a 

100Mbit ethernet) becomes a constraint.  The following graphs show the cost of replicas 

for a more complex marshalling case – a DCOM interface pointer – where the operation 

involves multiple network round trips, reference counting, and complex data structure 

traversal.   

Interface Pointer as Parameter
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This data shows the cost of first, a remote DCOM invocation, then a replicated remote 

invocation, and then replication over multiple remote machines.  As can be seen from the 

magnitude of values on the y-axis (again microseconds), the main point is that the 

cleaned up buffer management and pointer handling required to support replication 

significantly increases the cost of this case.  After the first cost is paid, however, the 

incremental cost of adding additional replicas is small.   

 

III. Elusive Interfaces Provides Low-overhead Invocation Protection 
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Elusive interfaces posits the use of changing the encoding of RPC invocations which 

transit the network to hide the application state.  By using high level transformations on 

the data (rather than bit-level cryptography), reasonable protection can be provided 

without high computational overheads.  That is, in a fashion compatible with high speed 

networks. 

 

Interface Elusiveness (a.k.a. HIPIP) allows applications to have no fixed external or 

internal interfaces, giving electronic attackers no fixed target.  The basic idea behind 

interface elusiveness is logical extension of ``wrappers'', but mutating interfaces provide 

a dynamic wrapping capability.  Components not designed for interface elusiveness can 

be automatically wrapped and enhanced.  The component object  middleware (Agile 

Objects) provides increased robustness independent of the design and implementation of 

the component software -- no effort on the part of application implementers is required.  

The component object middleware manages the online interface mutation and changes.  

A full exposition of this approach can be found in “HIPIP: High Performance Invocation 

Protection”, PhD thesis of Kay Connelly at the University of Illinois Department of 

Computer Science. 

 

HIPIP Approach:  While it would be ideal to strongly encrypt each remote method 

invocation, we have already discussed that this is not always possible for performance 

reasons.    Instead, our approach is to make all of the method invocation messages going 

to a particular component look the same.  If any given message could possibly invoke any 

of the methods on the component, it will become more difficult for an intruder to 

determine which method is actually being invoked.   

 

Our results show that to transform the method invocation messages in such a fashion, it is 

possible to embed byte-level operations within the RPC layer of the network stack.  

Large overheads (which translate to prohibitive latencies for applications) are avoided in 

a variety of ways: 

 

¶ Byte-level operations are used, which avoids expensive bit twiddling. 

¶ Unnecessary buffer copies, which have been shown to be detrimental in high-

performance messaging layers, are eliminated.  

¶ The existing marshalling infrastructure within the RPC layer is utilized. 

¶ Algorithms are pre-computed wherever possible, lowering the latency 

experienced by the message. 

¶ Key-exchanges are performed in the background and in advance, making it less 

likely that a message will have to wait on a key exchange. 

 

Since it is anticipated that an attacker can eventually decode the messages, HiPIP 

reconfigures itself with a new key before the attacker could possibly gain enough 

plaintext/ciphertext pairs to determine HiPIP’s internal state.  An analysis of the number 

of plaintext/ciphertext pairs, along with an analysis of the covertime is provided in 

Connelly’s Ph.D. thesis. 
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HIPIP Design:  For HiPIP, we design a security mechanism that is inserted between the 

components and the network, as shown in Figure 1.  In essence, HiPIP acts as an 

interceptor.  In order to initialize the security mechanisms on either side of a 

communication channel, HiPIP must perform some type of secure key exchange. 

Figure 1: Placement of our HiPIP security mechanism. 

Figure 2 gives the conceptual design of HiPIP.  On the sending side, the plaintext of the 

remote method invocation is sent into HiPIP.  First, the method identifier is transformed 

using the offset translator.  Then, data pads are added to the message using the padder.  

Finally, the bytes in the message are moved around using the byte transposer.  The 

output from the HiPIP security mechanism is sent over the network.  

 

On the receive side, the inverse operations are performed to retrieve the plaintext. In 

addition to undoing the operations, the padder and the offset translator have a probe 

detection mechanism which allows them to determine when a message is likely to have 

originated from an intruder who does not have full knowledge of the internal state of the 

HiPIP security mechanism. 

 

 

Figure 2: HiPIP design. 
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HIPIP Implementations and Performance:  We describe the capabilities of the Elusive 

interfaces implementations, including the key challenges it exposed in the Elusive 

Interfaces security technique.  We designed and implemented an Elusive Interfaces 

prototype based on the Manta High Performance Java RMI system.  The Manta high 

performance RPC system achieves RMI invocations as fast as runtime, exposing the 

critical differences in security schemes. 

 

While Manta does not come with DES built in, we added 64 bit-key, single DES within 

the Manta framework so that we could make a fair performance comparison between 

DES and HiPIP.  Similar to the HiPIP implementation, our DES modifications change the 

RMI data flow so that once the message is marshaled into the message buffer, the DES 

library is invoked to encrypt the message buffer.  On the receive side, a special DES 

handler is invoked by the Panda subsystem.  The DES handler decrypts the message 

buffer using the DES library and then passes the buffer onto the server-side stub for 

normal processing.   

 

Figure 3 shows the DES latency along with the unmodified Manta and our HiPIP 

implementation.  Unlike the other performance graphs in this chapter, the y-axis is a 

logarithmic scale.  For a null RMI, Manta and HiPIP latencies are 150 and 156 

microseconds, respectively.  The average DES latency for a null RMI is 29,682 

microseconds.  In general, the average DES latency is 2-3 orders of magnitude greater 

than HiPIP.  Regression analysis determines that DES’s per byte overhead is 1733 

microseconds
1
.  In contrast for HiPIP, the per byte overhead is 0.38 microseconds, 

approximately 4500 times smaller. 

                                                 
1 The per message overhead is insignificant as compared to the per byte overhead, thus the regression 

analysis forced the per message overhead to zero, with a resulting r-square value of 0.999. 
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Figure 3: DES latency comparison (logarithmic scale). 

This prototype demonstrated the principle behind interface elusiveness, and is a 

realization of a primitive Elusive interfaces capability.  The implementation has been 

empirically characterized, and despite the typical limitations attendant on a first 

generation prototype, demonstrates good performance compared to typical encryption 

techniques.  In particular, the graphs below illustrate the performance scaling properties 

of Elusive interfaces versus message parameter size and number of parameters when 

compared to traditional encryption techniques. 

 

These results show that Elusive interfaces can be competitive with ordinary marshalling 

code, and therefore can be used on the fastest networks available.  In addition, the relative 

speed of Elusive interfaces to traditional encryption is dramatically faster, demonstrating 

that there is a significant potential performance benefit to Elusive interfaces in some 

performance regimes.  Future reports will include deeper studies and more sophisticated 

Elusive interface studies. 

 

Application Performance:  To assess the performance of HiPIP on larger applications 

programs, we ran three applications with different interface complexities and 

communication patterns using HiPIP, DES and plaintext.  ASP is an all-pairs shortest 

path algorithm which uses Floyd-Warshall.  FFT is computed using the transpose 

algorithm, and SOR is a red-black alternation approach.  Full descriptions of these 

application kernels can be found in Connelly’s Ph.D. thesis.  ASP uses totally-ordered 

broadcast, FFT has all-to-all communication, and SOR has neighbor-only 

communication.  All three applications were obtained from the Manta developers. While 

we recompiled the applications with our HiPIP compiler options, we did not modify the 

source code. 
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Figure 4: ASP performance. 

Figure 5 gives the FFT application latency running on 2 nodes with a matrix size of 8, 10 

and 12.  The HiPIP performance is within 2% of Manta; whereas DES is over 9 - 250 

times slower than Manta. 
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Figure 5:  FFT performance
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Figure 6 gives the performance of the SOR application running on 2 and 4 nodes for 2 

different problem sizes (10x10 and 20x20 matrices).  HiPIP incurs and average overhead 

of 11% of the base Manta latency.  DES, on the other hand, is 400 - 800 times slower 

than Manta and HiPIP. 
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Figure 6: SOR performance. 
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The three parallel applications each used  different communication patterns.    With all 

three applications, HiPIP performance is the same order of magnitude as Manta; DES, 

however, is consistently a 2-4 orders of magnitude slower than Manta and HiPIP. 

 

IV. Open Real-time systems for Agile Objects – REALTOR 

 

The objective here is to develop, implement, and demonstrate a real-time capable Agile 

Object System (this work was done primarily by the team at Texas A&M). By real-time 

capable it is understood that requests to agile objects continue to satisfy timing 

guarantees despite overhead due to migration and reconfiguration: Timing requirements 

are satisfied before, during, and after migration and reconfiguration. We have 

accomplished (a) the selection, evaluation, and appropriate adaptation of a real-time 

capable infrastructure for agile objects (Java-RTSJ with extensions for real-time RMI), 

(b) support for real-time component migration, and (c) a framework for distributed light-

weight admission control.   

 

In summary, we achieved most of the laid out goals: (a) the real-time infrastructure 

(Real-time Java, with real-time schedulers and real-time extensions to RMI) was put in 

place; (b) the support for real-time migration was implemented and successfully 

demonstrated; (c) scalable and light-weight admission control was designed, 

implemented, and successfully demonstrated. In the following, we describe in detail the 

specific accomplishments. 

 

Distributed Real-Time Architecture: We have developed and refined a distributed real-

time architecture that provides a framework for resource protection and light-weight 

admission control.  This infrastructure is based on real-time Java, with real-time 

schedulers and real-time extensions to RMI.  Our architecture consists of a global 

resource manager (realized in form of the REALTOR resource manager), local resource 

manager (realized in form of Access Control modules), and guaranteed-rate scheduling 

at the nodes.  Guaranteed-rate schedulers (in our case we use a Total Bandwidth 

scheduler) are more expensive than simpler (e.g. static-priority) schedulers. They have 

the benefit, however, that portions of the CPU capacity can be safely allocated to 

individual workload streams, thus allowing for “Virtual CPUs” to be defined and 

assigned to workloads. This in turn significantly simplifies both resource discovery and 

allocation and admission control and component migration. 

 

Light-Weight Distributed Admission Control:  We have developed a light-weight 

admission control framework and implementation within the Agile Objects distributed 

real-time architecture.  This system which provides light-weight distributed admission 

control was successfully developed, integrated into the AO system, and tested and 

evaluated.  

The light-weight distributed admission control consists of two portions: (a) admission 

control mechanism, and (b) scalable resource discovery. 

(a) Light-Weight Admission Control Mechanism: The admission controller (Figure 7) 

is invoked either during resource discovery, or during component creation or migration. 
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The admission control protocol (interaction with peer controllers, with the resource 

managers, and with the underlying creation and migration modules) is defined in the 

Admission Control module. The admission control logic is defined by an extensible set of 

modules that control the local resource allocation and job placement. Examples are the 

Job Scheduler module (guarantees real-time constraints), and the Security module 

(implements job placement policies). The decision to use guaranteed-rate schedulers in 

the AO nodes greatly simplifies both the admission control protocol and the admission 

control logic, since admission decisions rely on utilization levels only. 

(b) Scalable Resource Discovery: We developed a new resource discovery protocol, 

REALTOR, which is based on a combination of pull-based and push-based resource 

information dissemination. REALTOR has been designed for real-time component-based 

distributed applications in very dynamic or adverse environments. REALTOR is 

characterized by low-overhead communication, soft-state operation (i.e. no hard state 

about resource availability in the network has to be maintained), completely idempotent 

operation (communication failures or inaccurate data have either only minor and 

temporary effects, or no effects at all). Simulation studies show that under normal and 

heavy load conditions REALTOR remains very effective in finding available resources 

with a reasonably low communication overhead. Our evaluation shows that REALTOR 

(a) effectively locates resources under highly dynamic conditions, (b) has an overhead 

that is system-size independent, and (c) works well in highly adverse environments. 

REALTOR is described in detail in a paper presented at WPDRTS-2003 in April 2003. 

 

Real-Time Component Migration: We have develop a low-disruption component 

migration mechanism within the AO distributed real-time framework which allows for 

continuous real-time guarantees during component migration.  This mechanism was 

successfully realized and demonstrated as part of the AO File Server Demonstrator. Real-

Time migration is achieved through a combination of two mechanisms: (a) migration-

aware admission control, and (b) pro-active resource discovery in REALTOR. 

(a) Migration-aware Admission Control: The bandwidth preserving schedulers in AO 

nodes allow for appropriate resource slices to be reserved for future migration of AO 

components. This is integrated into the admission control of every newly created or 

migrated AO component. This works under the assumption that resources available for 

migration have been identified before the migration has to take place. Otherwise, the 

location of appropriate resources in the network may cause excessive delays and missed 

deadlines. We address this through appropriate resource discovery. 

(b) Pro-active Resource Discovery: Successful real-time migration depends on low-

latency location of available resources. In a number of (simulation) experiments, we have 

demonstrated that REALTOR provides a scalable and effective means to direct the 

migration mechanism to available resources in the network, and so to achieve real-time 

migration even for high utilization levels of resources in the network. Naturally, 

REALTOR’s effectiveness decreases (rates of migrations missing their deadlines 

increase) when utilization levels are exceedingly high. Separate mechanisms must be 

used during system deployment and admission control of new components to ensure that 

sufficient unclaimed resources remain in the network for REALTOR to be effective. 

(This gives raise to a trade-off between overhead in resource discovery schemes like 
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REALTOR and the overall utilization level of resources, which we are planning to further 

investigate.) 

 

Prototype Implementation of Admission Control Framework and Integration into AO 

System: We successfully built a prototype implementation of this framework within Java-

RTSJ/RMI to empirically demonstrate the viability of our approach.  This prototype 

integrates the admission control and migration mechanisms to achieve location 

elusiveness.  The major contributions here include: (a) Real-time extensions to Java, (b) 

Real-Time Migration, (c) Resource Discovery and Allocation (REALTOR). These 

contributions will be described in detail: 

(a) Real-time Extensions to Java: As the underlying platform, we selected the Real- 

Time Specification for Java (Java RTSJ). RTSJ had to be extended in three ways to  

make it applicable within the AO project: 

(a.1) RTSJ compliant veneer for Windows-NT: The only RTSJ reference 

implementation was available from TimeSys to run over their Linux-RT kernel. In order 

to support UCSD’s efforts, we developed a RTSJ-like environment to run over Windows-

NT. This version is largely RTSJ compliant, except for memory management and 

asynchronous event handling.  

(a.2) Extensions to Real-Time Scheduler: In its basic form, RTSJ provides a simple 

static priority scheduler. We developed an earliest-deadline-first (EDF) scheduler for 

RTSJ. Based on this EDF scheduler, we developed a Total Bandwidth (TB) scheduler. 

TB is a guaranteed-rate scheduler, and provides a “virtual CPU” to each of the threads in 

the system. This greatly simplifies both the admission control in real-time AO and the 

realization of the real-time extensions to RMI. 

(a.3) Real-Time RMI: RTSJ in its current form has no support for distributed real-time 

computation. In particular, there is no support for real-time RMI. We integrated the Java 

RMI classes with RTSJ by allowing the RMI runtime threads to be executed under 

control of the AO real-time scheduler. These modified Java RMI classes create real-time 

worker threads for the RMI invocations, and so guaranteed-rate scheduling can be 

applied. Given the server-centric approach used in real-time AO, very little overhead 

information (such as timeliness or priority-inheritance parameters) needs to be carried 

with the remote invocation messages. Particular attention is given in the admission 

control module for blocking due to self-suspension during remote invocations. This form 

of blocking is inherent to remote invocation systems, must be taken into account during 

worst-case delay analysis, and thus leads to reduced resource utilization. In order to 

reduce the worst-case effects of this form of blocking, this led us to investigate the use of 

asynchronous RMI in Java. This study, however, is not complete. 

(b) Real-Time Migration: We support real-time migration for AO components based on 

the Admission Control and Resource Allocation modules. The architecture supporting 

real-time migration is illustrated in Figure 7. 



16 

 

Figure 7: Support for Real-Time Migration in Real-Time Agile Objects 

 

(c) Resource Allocator (REALTOR): REALTOR has been implemented and tested. 

REALTOR nodes interact with peer nodes to discover resources and manage an 

approximate picture of resource availability in the AO system. They interact with the 

Admission Control modules on the local AO node to allocate and manage resources. The 

interaction between REALTOR and the Admission Control module is depicted in Figure 

7.  

 

V. Denial of Service Resistance Using Agile Objects 

 

We began exploration of how to tolerate, and to what degree it is possible to tolerate Denial 

of Service attacks in Agile Objects systems which implement “location elusiveness”.  

Denial-of-service (DoS) attacks have been a major security threat to Internet applications.  

Since 1998, there have been several cases of large-scale distributed DoS attacks, during 

which popular sites such as Yahoo! and Amazon were shut down, and an important 

government website was forced to move to a different location. These attacks have 

serious economic and political impact, and may even threaten critical infrastructures and 

national security.   
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Figure 8.  Denial-of-Service Attack             Figure 9. Example of Internet Application

As shown in Figure 8, a typical DoS attack has two stages.  In the first stage, attackers 

compromise many hosts in the Internet and install “zombie” programs.  In the second 

stage, the attackers control these zombie programs to attack the victim.  According to the 

method of attack used in the second stage, DoS attacks can be categorized as 

infrastructure level or application level attacks.   Figure 9 shows a typical Internet 

application deployment.  The application service runs on a resource pool of 

interconnected hosts; users access it via the Internet.  Infrastructure level attacks attack 

the resource pool directly, for example, by sending packet floods to saturate the victim's 

network.  Application level attacks cause denial-of-service by requesting significant 

amount of workload or by exploiting weaknesses on the application. 

The fact that most Internet applications are publicly accessible makes them easy targets 

for infrastructure level DoS attacks.   

Researchers are studying the use of overlay networks to tolerate DoS attacks on Internet 

applications.  We consider an overlay proxy network approach to tolerate infrastructure 

level attacks on publicly accessible applications.  The key idea is to hide the application 

behind a proxy network, which itself is embedded in a network of a huge number of 

Internet hosts.  The proxy network and applications use the Internet hosts as a resource 

pool; users access the applications via some edge proxies with known IP addresses.  The 

proxy network can dynamically reconfigure so that attackers cannot easily locate the 

application, preventing the launch of infrastructure level DoS attacks.  In addition, the 

applications are able to be moved amongst the hosts, separating them from dependence 

on a particular infrastructure, allowing them to tolerate infrastructure attacks.  However, 

we focus on proxy network reconfiguration here as a primary way of system 

reconfiguration. 

In this paper, we build a formal model and use it to study the effectiveness of overlay 

networks to tolerate DoS attacks.  More specifically, subject to the formal model, we 

characterize how quickly resources can be compromised and the effectiveness of policies 

such as intrusion detection triggered recovery or a simple periodic system reset.  We also 

characterize the difficulty for attackers to discover the location of the application.  

Applications of these models to several system scenarios yield the following novel 

conclusions: 

¶ Intrusion detection-triggered recovery strategy is insufficient to avoid resource 

depletion. 

¶ True-positive rates of intrusion detectors have more impact on resource availability 
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than detection speed. 

¶ System reconfiguration techniques such as random proxy migration can effectively 

prevent attackers from discovering applications’ locations. 

¶ Overlay network topology is critical; richly connected topology may reduce a proxy 

network’s effectiveness in resisting attacks. 

 

A more complete exposition of these results can be found in the relevant papers by Wang, 

Liu, and Chien listed below. 
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III. Students and Staff 
The following students were supported on this contract: 

UIUC Students 

¶ Oolan Zimmer, UIUC 

¶ Geetanjali Sampemane, M.S. 2000, continuing PhD Student 

¶ Sudha Krishnamurthy, PhD 2002 

¶ Kay Hane Connelly, PhD 2003, now Assistant Professor, Indiana University 

¶ Luis Rivera, M.S. 2000, continuing PhD student 

UCSD Students 

¶ Kiran Tati (continuing PhD student) 

¶ Xin (Paff) Liu (continuing PhD student) 

¶ Huaxia Xia (continuing PhD student) 

¶ Ju (Tony) Wang, M.S. 2000 (continuing PhD student) 

TAMU Students 

¶ Byung Choi, PhD 2002, now Assistant Professor, Michigan Tech University 

¶ Sangig Rho, continuing PhD student 

 

The following staff were supported on this contract: 

¶ Philip Papadopoulous (now Director of Cluster and Grid activities at SDSC) 

¶ Mason Katz (now SDSC cluster team leader) 

¶ Alex Olugbile 

 

A number of the students and staff have gone on to outstanding industrial and academic 

opportunities.    A number of the students continue at UCSD, and will finish their PhD’s 

within the year.  Alex Olugbile continues with the Concurrent Systems Architecture 

Group at UCSD and is a leading technical contributor for a wide range of  research 

projects. 
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IV. Software and Technology Transfer 
The Agile Objects project has successfully pursued a multi-channel approach to 

technology transfer involving publication, demonstrations, and software availability. 

 

Publish Papers:  As documented elsewhere in this report, we have published numerous 

papers in leading conferences which document the advanced capabilities and key 

technologies developed by the Agile Objects project. 

 

Demonstrate Software: As documented elsewhere in this report, we have demonstrated 

a series of working prototypes.  These projects constitute an embodiment of the technical 

advances developed by the Agile Objects project. 

 

The Agile Objects project has produced several major demonstrations and software 

releases involving demonstrating each of the capabilities of the Agile Objects middleware 

in a range of application scenarios. The major software demonstrations, functionality, and 

release dates are summarized below. 

 

DCOM Transparent Interception System (UCSD Site Visit, May 2000) 
 

This system provided transparent interception of DCOM invocations thru modification of 

a custom transport provider in the Microsoft Windows NT operating system software.  

The demonstration took an unmodified DCOM application, a corporate information 

program, and interfaced it to two distinct data base server systems.  Upon external 

command, the client was diverted by the intercepting Agile Objects middleware to the 

second database server system.  No interruption in service or loss of session occurred at 

the client.  Thus, an unmodified binary application was transparently intercepted and 

diverted, showing the potential for Agile Objects properties to be provided to legacy 

distributed and component applications without requiring application redesign or even 

recompilation.  Details of this system and demonstration can be found in Ju (Tony) 

Wang’s MS thesis. 

 

Agile Objects Streaming Video Demo (PI Meeting, August 2002) 
 

This system provided a tangible demonstration of a mobile file server application built 

from Agile Objects.  This file server was used to provide video files to a streaming media 

server and web server.  The mobility of the file server demonstrated the feasibility of the 

Agile Objects paradigm for back-end server applications, and the demo showed that 

continuous service can be achieved for clients of mobile server applications using Agile 

Objects name services and rapid updates. 

 

The real-time extensions to the Agile Object framework were also demonstrated as part 

of the AO File Server Demonstrator. This demonstration successfully illustrated the 

functionality of the real-time scheduling support and the real-time RMI capabilities on 
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top of a standard Java platform in WindowsNT (using the partially RTSJ compliant 

veneer). 

 

Image Processing Pipeline Demo (December 2002) 
 

Supporting complex networks of Agile Objects is an important goal of the AO project as 

it enables larger, more complex applications to benefit from agility of many types.  We 

built a second demonstration system which allows arbitrary networks of Image 

Processing operators to be configured (a complex network of distributed objects or 

components), and each of these components can then be migrated around the resource 

pool.  The Agile Objects middleware maintains the connections between the objects, 

despite rapid migration, allowing the applications to perform with a seamless capability.  

The applications can thus roam across the resource environment, making them 

independent from any resource failures or compromises.  Integration of real-time AO 

support into the AO Image Processor is on-going. We are experiencing delays with the 

integration of real-time AO with Linux and with the porting of a real-time capable Linux 

platform onto the experimentation hardware. 

 

HIPIP system (August 2003) 

 

The High Performance Invocation Protection System (a.k.a. Elusive Interfaces), 

integrates into a high performance Java RMI system (Manta) the capability to 

transparently change distributed object interfaces to improve application data security at 

little or no cost to performance.  The system supports any applications written in Java 

using RMI to communicate which respect a “closed world” assumption (a Manta 

restriction, not one added by AO).  This system has been used to run large applications, 

and to demonstrate that HIPIP can be as much as 500 times faster than traditional 

cryptographic approaches such as 64-bit DES.  Despite this speed advantage, HIPIP can 

provide some important data confidentiality; though not the strength of DES.  As a result, 

HIPIP is useful and represents a significant new capability for high speed cluster 

computing environments. 
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V. Papers 
¶ Tony Wang and Andrew Chien, Using Overlay Networks to Resist Denial-of-

Service Attacks (Submitted to ICDCS’04), July 2003. 

¶ Tony Wang, Linyuan Lu, and Andrew A. Chien, “Tolerating Denial-of-Service 

Attacks Using Overlay Networks – Impact of Overlay Network Topology” 

(pdf), to appear in 2003 ACM Workshop on Survivable and Self-Regenerative 

Systems, October 2003.  

¶ Kay Hane Connelly, “HIPIP: High Performance Invocation Protection”, Ph.D. 

Thesis, University of Illinois Department of Computer Science, August 2003. 

¶ B.-K. Choi, S. Rho, and R. Bettati “Dynamic Resource Discovery for 

Applications Survivability in Distributed Real-Time Systems”, 11th 

International Workshop on Parallel and Distributed Real-Time Systems, Nice, 

France, Apr. 22-23, 2003. 

¶ Tony Wang and Andrew Chien, An Analysis of Using Overlay Networks to 

Resist Distributed Denial-of-Service Attacks (TechReport), December 2002. 

¶ B. Choi, S. Rho, and R. Bettati, Dynamic Resource Discovery for Applications 

Survivability in Distributed Real-Time Systems, submitted to the International 

Workshop on Parallel Distributed Real-time Systems 2002. 

¶ Kay Connelly and Andrew Chien, Breaking the Barriers: High Performance 

Security for High Performance Computing, in New Security Paradigms 

Workshop, Virginia Beach, September 2002. 

¶ B.-K. Choi: “Resource Management for Scalable Quality of Service.” (PhD 

Thesis, Texas A&M University, August 2002) 

¶ K. Connellly, L. Rivera, G. Sampemane, K. Tati, T. Wang, and A. ChienAgile 
Objects: Survivable Middleware for Distributed Systems Tech. Report, April 

2001. 

¶ Tony Wang, Transparent Replication for Component-based Applications 

(Master Thesis) Fall 2000. 

¶ K. Connelly and A. Chien, Elusive Interfaces: A Low-Cost Mechanism for 
Protecting Distributed Object Interfaces (PDF) Submitted for publication, May 

2000.  

¶ O. Zimmer and A. Chien, The Impact of Inexpensive Communication on a 
Commercial RPC System UIUC Department of Computer Science Technical 

Report, August 1998 (Zimmer, Chien)  

¶ Performance of OmniBroker, an Implementation of CORBA 2.0 Tech. Report, 

February, 1998. 
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VI. Key Published Papers 
A collection of the key published papers are included as examples of project research 

contributions. 

¶ Kay Connelly and Andrew Chien, Breaking the Barriers: High Performance 

Security for High Performance Computing, in New Security Paradigms 

Workshop, Virginia Beach, September 2002. 

¶ B. Choi, S. Rho, and R. Bettati, Dynamic Resource Discovery for Applications 

Survivability in Distributed Real-Time Systems, submitted to the International 

Workshop on Parallel Distributed Real-time Systems 2002. 

¶ Tony Wang and Andrew Chien, Using Overlay Networks to Resist Denial-of-

Service Attacks (Submitted to ICDCS’04), July 2003. 
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ABSTRACT 
This paper attempts to reconcile the high performance 
community’s requirement of high performance with the need for 
security, and reconcile some accepted security approaches with 
the performance constraints of high-performance networks.  We 
propose a new paradigm and challenge existing practice.  The new 
paradigm is that not all domains need long-term forward data 
confidentiality.  In particular, we take a fresh look at security for 
the high-performance domain, focusing particularly on 
component-based applications.  We discuss the security and 
performance requirements of this domain in order to elucidate 
both the constraints and opportunities.  We challenge the existing 
practice of high-performance networks sending communication in 
plaintext.  We propose a security mechanism and provide metrics 
for analyzing both the security and performance costs.  

General Terms 
Distributed Computing, High Performance, Security. 

1. INTRODUCTION 
Over the past decade, high performance networks of workstations 
have replaced supercomputers for scientific parallel computations.  
As these clusters have become easier to manage and use, 
distributed applications outside of parallel scientific codes have 
targeted this platform as well.  Search engines, airline reservation 
systems and command-and-control systems are just a few such 
applications.  The combination of low-cost and high-performance 
execution has made such systems desirable to a wide variety of 
industries.  In particular, developments in user-level 
communication layers have enabled applications to access the raw 
performance of such networks.  Applications achieve peak 
bandwidths over 1Gbps, and latencies on the order of 10 to 20 
microseconds. 

 

With the focus centered on performance, there has been little 
research into security for high performance systems.  Much of the 
security-related work in the high performance computing (HPC) 
community addresses how to securely communicate to high-
performance applications from the wide-area (i.e.: how to retrieve 
remote data sets or how to securely start a remote high-
performance application) [1, 6].   

 

But, beyond simple logins and access rights associated with those 
logins, there are few security mechanisms being regularly 
employed within the high-performance clusters, themselves.  In 
terms of the communication going over the high performance 
network, the standard practice is to have no security.  All data is 
sent in plaintext.  The main goal is to keep the communication 
overhead to a minimum.  Grafting an existing encryption 
mechanism onto the communication path is not seriously 
considered due to the relatively high overheads.  A typical 
symmetric key encryption algorithm incurs an overhead of 
milliseconds, which is two to three orders of magnitude greater 
than the network latency in high-performance networks.  Using 
such a mechanism would take the “high performance” out of 
HPC.  Now that industry and the military are seriously pursuing 
high performance clusters as an environment to run their 
distributed applications, the HPC community must revisit the 
issue of security. 

 

Distributed components are quickly becoming the programming 
model of choice for distributed high performance applications 
[16].  In this type of model, the functionality of the application is 
encapsulated in multiple components and spread over the 
network.  In order for the application to make any forward 
progress, components must interact with other components via 
remote procedure calls (RPC).  Thus, the state of the execution of 
the application can be pieced together with these RPCs.  

 

One noticeable affect of low-latency communication is that the 
ideal balance of computation and communication changes 
dramatically from traditional TCP/IP over Ethernet.  On the 
slower networks, a component must compute a lot and 
communicate rarely in order to achieve its peak performance.  If it 
doesn’t have enough computation to keep it busy while waiting on 
the results from an RPC, then it becomes idle waiting on the 
network. In the high performance domain, communication is 
many orders of magnitude faster.  Thus, components can have 
much less computation, and still not block on the network.  This 
results in applications that have many fine-grained components 
(as opposed to fewer, larger components).  Finer-grained 
applications have more RPCs, making a more detailed state-
reconstruction possible.  
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There are two important security attack scenarios for high 
performance component applications.  The first is for an attacker 
to send RPC messages to various components in order to change 
the execution of the application.  The attacker may not need to 
reconstruct the current state of the application in order for such an 
attack to succeed.  Since RPCs are currently sent in plaintext with 
no authentication mechanisms, this attack is feasible as long as the 
locations of the components are accessible.  The second scenario 
consists of an attacker eavesdropping on the communication and 
determining when the application is in a vulnerable state.  The 
attacker can then attack the application, another application, or 
use the information to gain an advantage in the real world . 

 

The contributions of this paper include: 

• A discussion of specific security and performance needs 
of high performance applications. 

• An approach for protecting tightly-coupled, high-
performance, component communication. 

• Definition of security and complexity metrics to analyze 
this approach. 

• A characterization of the security achieved by this 
approach.  For a modest sized component, this approach 
provides a brute-force search space of 1028.  A known-
plaintext attack requires at least 20 plaintext/ciphertext 
pairs. 

• A proof-of-concept prototype that adds less than 10% to 
the message latency. 

 

Section 2 describes the shift in the way we must think about 
security for high-performance systems.  Section 3 gives one 
possible approach to satisfying the security and performance 
requirements of this domain and introduces the metrics we use to 
analyze the approach. We apply these metrics to three particular 
security techniques in Section 4.  Section 5 describes an initial 
prototype with performance numbers which demonstrate that this 
approach is promising in terms of performance.  Finally, we 
describe some related work in Section 6, and conclude in Section 
7. 

2. PARADIGM SHIFT 
When looking at security for specialized domains such as high-
performance component applications, we cannot naively  apply 
existing security solutions without potentially sacrificing the 
benefits of that domain.  Instead, we must evaluate the needs of 
the system.   There are security needs, but there are other needs, 
such as performance, reliability and usability.  

 

In the case of HPC, the driving force is performance.  Existing 
security mechanisms simply incur too much overhead for them to 
be adopted by the HPC community.  Thus, we have an additional 
restriction on security mechanisms, in that they must have a low 
overhead.  “Low overhead”, of course, is a fuzzy term.  For now, 
let it be sufficient that the overhead incurred by the security 
mechanism must be the same order of magnitude as the latency of 

the message sent in plain text.  In the case of 100 Mb switched 
Ethernet sending small messages, this means that the security 
mechanism may incur an overhead up to 100 microseconds in 
order to satisfy the performance constraint. 

 

Now, let us turn to the security needs of high-performance 
component applications.  The bulk of the communication in this 
type of application is temporary data or information related to the 
control flow of the application.  For example, in the case of 
scientific, parallel applications, the data traversing the network 
might be intermediate values in a computation.  In the case of a 
command-and-control application, the data may consist of sensor-
values or simple Booleans to enable and disable various 
resources.  The risk of the communication being exposed is not 
that the data is valuable, but that the data may indicate that the 
application is in a weakened state, making it vulnerable to a 
specific attack.  It does not matter if an attacker is able to 
determine the current state of the application in a few hours, 
minutes or seconds, as the application will have moved on to 
another state.   This is an important change in perspective: long-
term forward security is not the ultimate goal.  The goal is to 
protect the data long enough for the application to change state, 
and to do so with low overhead. 

 

While any sensitive data which needs long-term forward security 
must use a traditional encryption mechanism, the bulk of the 
communication in our target applications consists of these 
intermediate, or short-term, values; and thus, they have a shorter 
cover time than traditional data.  This gives us a new opportunity 
when designing a security mechanism.  In order for an application 
programmer to be able to determine if the cover time is long 
enough for their particular application, it will be necessary to 
precisely quantify the cover time provided by any proposed 
mechanism.  In the most naïve attack, the cover time is roughly 
proportional to the size of the brute-force search space.  In a more 
sophisticated attack on the state of the security module, we must 
determine the frequency with which the module must be 
reconfigured with a new secret key.  This frequency must be low 
enough that the overhead of transmitting the keys does not 
dominate.  

 

A key question for a given application is: how long does the cover 
time need to be?  The security requirements depend on the 
frequency of the state changes.  For a loosely-coupled application, 
communication (and thus state changes) are infrequent, 
necessitating a longer cover time.  For tightly-coupled 
applications, communication and state changes are frequent, 
requiring a much smaller cover time.  In essence, there is a range 
of communication patterns and security requirements.   

 

Previous work [7] provides a high-performance communication 
library which allows the application programmer to turn 
communication security (DES) on and off.  We believe, however, 
that more than two modes are needed in order to get the HPC 
community to actually use the provided security.   For example, 
triple DES, which incurs one-way overheads on the order of a few 
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milliseconds for 4k messages, could be used for loosely coupled 
applications.  Single DES, which incurs overheads on the order of 
500 microseconds could be used for applications which are 
somewhere in the middle of the tightly-to-loosely coupled 
continuum.  And finally, instead of the plaintext option, another 
mechanism should be available which incurs virtually no 
overhead and provides very short term security for tightly coupled 
applications. 

 

There already exist security mechanisms for the medium to loosly-
coupled applications.  The rest of this paper explores one possible 
approach for a security mechanism specifically designed for 
tightly-coupled components. 

3. APPROACH 
Existing encryption mechanisms apply operations such as 
substitution and transposition in an iterative fashion on the data.  
For every iteration, data is read from a buffer, transformed in 
some way, and copied to another buffer.  Analysis of messaging 
layers shows that buffer copies are one of the major sources of 
overhead to avoid [3, 9].  Indeed, zero-copy messaging layers 
have become the accepted norm in the HPC community.   

 
Thus, when developing a security mechanism for tightly-coupled, 
high-performance applications, it is necessary to avoid buffer 
copies whenever possible; making an “iterative” approach 
undesirable.   
 
Instead, our approach applies traditional security techniques such 
as transposition, substitution and data padding while the message 
is being marshaled onto the wire.  We apply these operations on 
the primitive data types (i.e, bytes and words) in the RPC 
marshalling layer.  This allows us to avoid all buffer copies, and 
to capitalize on the marshaling infrastructure that already exists, 
adding what we anticipate to be a modest amount of overhead.   
 
In addition, much of the computation in the techniques we 
propose can be done before the message becomes available from 
the application.  This allows our system to pre-compute the more 
time-consuming algorithms during any CPU idle time, 
significantly reducing the communication latency experienced by 
the application. 
 

3.1 Metrics 
In order to determine the success of this approach, we must 
analyze the level of security as well as the implementation 
complexity for any possible algorithms that combine 
transpositions, substitutions and data padding.   

We define two metrics for security: 

1. S is the size of the brute-force search space.  Given S, an 
application developer may determine if it is sufficiently 
large enough for their particular application.   

2. M is the number of plaintext/ciphertext pairs necessary in 
order to determine the internal state of the security 

module.  The security module sends a new key before M 
messages is sent.  Of course, key transmission overhead 
must not dominate.  M must be large enough that a 
sufficient amount of communication may occur before a 
new key must be securely transmitted. 

 

In addition, we define one metric for implementation complexity: 

1. C is the complexity of the algorithm, normalized to some 
base operations: basic compute, memory load and store 
operations, as well as a basic random number generation 
operation.  The symbols used to represent each of these 
operations in equations will be: op, ld, st and rand, 
respectively. 

 
We expect all possible algorithms to have a tradeoff between 
security and complexity. The more secure, the more complex; and 
thus, the slower the performance.  The key is to provide a  precise 
analytical model of security and complexity so that an application 
developer may determine if the approach is suitable for their 
application and deployment environment. 
 

4. DESIGN 
In this section, we describe how three basic security techniques 
(substitution, transposition and data padding) may be applied in 
the RPC marshalling layer.  These operations are used to make all 
of the RPC messages look the same in terms of their structure, so 
that any particular RPC message could be invoking any of the 
methods on the destination server. 
 

4.1 Substitution 
Substitution replaces each character in the plaintext with a 
different character in the ciphertext.  Conceptually, substitution is 
implemented with substitution tables, which enables the 
individuals with access to the tables to encode/decode messages 
one character at a time.  The substitution table is the “secret” 
which must be kept from adversaries.  Historically, static 
substitution tables are used to determine the mapping, which 
means that the table does not change for some period of time.  A 
major drawback of static substitution tables is that if an adversary 
obtains the plaintext and ciphertext of a message, he can easily 
reconstruct the table, making it possible to immediately decode all 
future messages.  Another drawback is that they are susceptible to 
frequency analysis attacks, where the frequency of characters in 
the plaintext and ciphertext can be used to determine the 
substitution table. 

 
Since we anticipate an adversary being able to eventually decode 
RPC messages, it is inadvisable to use static substitution tables, as 
an adversary would be able to reconstruct the table over time.  
Instead, we use dynamic substitution tables [12]. Figure 1 shows 
how the table entries are altered every time they are used.  
Dynamic substitution tables not only prevent table reconstruction, 
but they also avoid frequency analysis attacks. 
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Table 1: Security and performance metrics for sample algorithms, assuming reasonable use of registers to reduce memory load/store 
operations [4].  n is the number of items in the message, k is the number of bits used to hold the method offset , b is the number of 

random bits per random number used in SHUFFLE algorithm and p is the number of padding arguments 

 S M C 
Method offset 
substitution 

2k 2k+1 Send: 4 op + 2 ld + 4 st + 1 rand  
Recv: 7 op+ 3 ld + 7 st + 1 rand  

SHUFFLE n! bnlogn!2 11n op + 2n ld + 2n st + n rand 
Padding (n+p)!/p! b(n+p)log(n+p)!2 11p op + 2p ld + 2p st + 2p rand 

 
Dynamic substitution requires output from a pseudo random 
number generator (PRNG) every time the table is used.  
Depending on the performance of the PRNG, this could make 
applying substitutions to every piece of data in the message quite 
expensive.  One piece of data that must be substituted, however, is 
the method identifier.  For this discussion, let us assume that the 
method identifier is an offset into an array, as is the case in Java’s 
RMI (Remote Method Invocation) layer.  If the method identifier 
is not substituted, but simply placed into a different location in the 
message using transposition, then it will be fairly trivial for an 
attacker to determine the remote method being invoked1.  Thus, 
while we may want to examine applying substitutions on all data 
in the message, it is absolutely necessary to apply a substitution 
on the method identifier. 
  

Figure 1: Dynamic Substitution 

 

An additional benefit to substituting the method identifier is that 
probes of the network can be detected.  Specifically, the range of 
numbers to which the method offsets are mapped should be 
significantly larger than the actual number of methods in the 
interface.   Thus, if an adversary attempts to probe the network 
with some random values just to see what happens, it is likely that 
the probe message will contain a method offset value which does 
not map to an actual method.  For the sample component 

                                                                 
1 There are two reasons that permutation-only of the method 

identifier results in a trivial attack.  First, many of the data 
values won’t fit into the range of method identifiers, allowing an 
intruder to immediately eliminate them as possible method 
identifiers.  Second, the number of data values that could 
possibly represent method identifiers will be dramatically less 
than all possible method identifiers, substantially reducing the 
search space (and thus search time). 

described later in this section, almost 84% of all possible method 
offsets do not point to a real method.  Once a probe is detected, 
the security system may notify an intrusion detection system and 
take evasive actions. 

 
 
 

Table 1 gives the values of the security and performance metrics.  
The search space, S, equals 2k, where k is the number of bits used 
to encode the method offset. Assuming the PRNG is good (i.e. it 
does not get into a short cycle), the minimum number of messages 
to determine the random numbers used, M, is 2k+1.  The 
implementation complexity, C, equals 4 op + 2 ld + 4 st + 1 rand 
on the send side, and 7 op + 3 ld + 7 st + 1 rand on the receive 
side.   As an optimization, the random number may be generated 
in advance. 
 
Table 2 gives the values of the metrics for a sample component 
which has 41 methods but uses 8 bits to encode the method offset 
using dynamic substitution.  This results in S = 256 and M = 257.  
While the search space is not large for this particular technique, 
the number of messages before an intruder may predict the 
internal state is more than sufficient.  For example, our 
implementation’s secure key-exchange takes on order of 108 
milliseconds, but provides enough bits of entropy to reseed the 
PRNG 16 times. Thus, a key must be exchanged every 4096 
messages, resulting in a 15% overhead if the component is 
communication bound. 
 

4.2 Transposition 
Transposition does not change the values of the data being sent, 
but changes the order in which they appear in the message.  A 
particular order is called a permutation. 

 
Transposition can be applied in the RPC layer simply by changing 
the order in which data is marshaled onto the wire.  In order to 
disperse complex data structures throughout the message, the 
order should be changed on the primitive data  (i.e. bytes, or 
words).  Once an order is decided, it costs very little to alter the 
marshaling calls to adhere to that order.  Indeed, the most time 
consuming aspect of transpositions at this level is determining the 
desired permutation of the message. 
 
There are a variety of algorithms in the literature which could be 
used to determine a permutation based on random numbers [5, 8, 
10, 11, 13, 14].  It is necessary to analyze any possible algorithm 
in terms of the security and complexity metrics introduced in 
Section 3.1.  To give an example of what is feasible, we briefly 
describe an algorithm based on the SHUFFLE algorithm [5, 8].  
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In the SHUFFLE algorithm, an array of data is manipulated, resulting in a permutation of the original array.  In our modified 
Table 2: .  This table lists the values of the security and performance metrics for a sample component which has 41 methods, with n 

= 20 , k = 8, b = 64 and p = 10 . 

 S M C 

Method offset 
substitution 

256 257 Send: 4 op + 2 ld + 4 st + 1 rand  
Recv: 7 op+ 3 ld + 7 st + 1 rand 

SHUFFLE 2.43 x 1018 21 220 op + 40 ld + 40 st + 20 rand 

Padding 7.30 x 1025 18 110 op + 20 ld + 20 st + 20 rand 

 
algorithm, we shuffle an array of positions (1 through n, where n 
is the number of data items), and use the position permutation to 
drive the data marshaling order.  This allows us to determine the 
permutation before the data is available.  Thus, if we incorporate 
data padding as described in the next subsection to make all of the 
messages the same length, the permutation algorithm may be 
computed in advance during CPU idle time, reducing the message 
latency experienced by the application. 
 
 
//param n: number of items to permute  
 
int [] SHUFFLE(int n){ 
   float u; 
   int k, current, tmp; 
 
   int *items = malloc(n * sizeof(int)); 
 
   //initialize array of positions 
   for(k=0; k < n; k++) 
      items[k] = k; 
 
   for(current=n-1; current > 1; current--){  
      //generate random number between 0 & 1 
      u = random(0,1); 

 
      // make into int between 1 & current 
      k = floor(current*u) + 1; 
 
      // swap items[current] and items[k] 
      tmp = items[k]; 
      items[k] = items[current]; 
      items[current] = tmp; 
   } 
   return items; 
} 

Figure 2: modified SHUFFLE algorithm 

As the pseudocode shows in Figure 2, our modified SHUFFLE 
algorithm starts with an array the size of the number of items to be 
permuted, with each entry in the array initialized to its index in 
the array.  Then, we set the current position to be at the end of the 
array.  We randomly choose an index in the array between the 
beginning and the current position.  Swap the value at the 
randomly chosen index with the value in the current position, then 
decrement the current position.  Repeat until the current position 
is at the beginning of the array.  Now, the value at index x in the 
array is the position in the message for the data normally sent in 
position x. 

 
 

 

Table 1 shows the equations for the security and complexity 
metrics of our modified SHUFFLE algorithm.  There are n! 

possible permutations of the message, where n is the number of 
items to be permuted in the message.    Table 2 shows that for our 
sample component with the number of bits per random number, b 
= 64 and the number of data items, n = 20, S = 2.43 x 1018 (or 
approximately 262).  On average, an adversary would have to be 
able to analyze 261 states to find the actual state.  If an attacker 
had a cluster of 1 GHz machines available to her and if each 
machine could analyze a state in 20 cycles, she would require over 
45 billion nodes to decode the message in 1 second, or 
approximately 12.5 million nodes to determine the message in 1 
hour. 
 
To compute M, we determine how many sequences of random 
numbers could have resulted in a particular permutation.  Then we 
can determine how many messages are needed to eliminate all but 
one sequence.  When b random bits are used in each iteration of 
the loop, M is equal to bnlogn!2.  In Table 2, we see that M is 21 
messages for the sample component.   Using the key exchange and 
message latencies that we used in Subsection 4.1, this would 
result in a key exchange every 320 messages with an overhead of 
69%.  While this may appear large at first, we believe the 
overhead can be reduced by performing parts of the key exchange 
in the background before the key is needed. 
 
Finally, we compute the complexity of the algorithm, assuming 
that the compiler can make judicial use of registers, avoiding 
memory load/store operations for temporary data like temporary 
variables and loop iterators.  The complexity then becomes 11n 
op + 2n ld + 2n st + n rand. 
 

4.3 Data Padding 
Data padding consists of adding data to a message.  It is often 
used to ensure messages are a particular length, making the 
implementation of certain algorithms on the message easier.  In 
addition, data padding has been used to avoid traffic analysis 
attacks, which are able to infer important information simply by 
knowing how much data is being sent [15]. 

 
For RPC communication, data padding can be used to avoid 
traffic analysis attacks which can determine the identity of the 
remote method simply by analyzing the length of the message and 
the values of the arguments being passed to the method.  Adding 
padding data makes all of the messages look identical in terms of 
their length and the type of data that is being sent.  Thus, to an 
eavesdropper, any message may be used to invoke any of the 
methods on the server. 

 
Data padding can be applied to the message in the marshaling 
layer.  For each piece of padding data, two things must be 
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decided: its location in the message and its value.  There are 
multiple approaches to determine both.  To identify the most 
suitable, the security and performance metrics must be applied.  
Here, we have space to describe one possible approach.   

 
To determine the location of the padding data, we first append it 
to the original message.  It then undergoes transposition along 
with the real data as described in the previous section.  To 
determine the value, we could simply send a random number from 
the PRNG.  More intelligent value choices can be made 
depending on the types of the real data in the message, making the 
values of the data statistically meaningless to an eavesdropper.  
For example, if a Boolean is sent, it would be wise to send the 
negation of that Boolean value as well.  Then, an eavesdropper 
cannot easily determine the value of the Boolean.   
 

 

 

Table 1 provides equations for our metrics based on sending 
random numbers as our padding data.  It does not make sense to 
insert padding data without also permuting the message data, so 
the security metrics, S and M, contain equations which include 
the transposition algorithm.  Thus, S is (n+p)!/p!, where p is the 
number of pieces of padding data in the message.  Similarly, M is 
b(n+p)log(n+p)!2.  The equation for M assumes that the values of 
the padding data are checked on the receiver side to ensure that 
they are accurate.  This check aids in detecting probes of the 
network in a way similar to the one described in Subsection 4.1.  
The complexity of this algorithm is the complexity of the 
transposition algorithm (replacing n with p) plus one random 
number for each piece of padding, for determining the value of the 
pad: 11p op + 2p ld + 2p st + 2p rand.  Of course, the complexity 
metric does not include the time it takes to send the padding data 
(p times the data rate), but that should be considered as a cost. 
 
As an optimization, all of the overheads associated with the 
permutation algorithm may be pre-computed.  The data padding 
values, however, can only be determined once the identity of the 
remote method being invoked is known, as the number and type 
of pads is dependant on the remote method. 
 

5. INITIAL EVALUATION 
We have implemented a proof-of-concept prototype to 
demonstrate the feasibility of this approach.  The prototype 
performs a diffie-hellman key exchange at connection setup time.  
Based on the key, it performs a simple method offset substitution, 
message permutation and data padding algorithm in the RPC 
layer.  The purpose of the prototype is to prove the concept of 
implementing this scheme in the RPC layer, and therefore, it does 
not explore the many possible algorithms that could be used to 
apply the operations to a given method invocation. 

 
Our prototype builds upon a high-performance Java 
implementation called Manta [17].  Our executing environment is 
an 8-node network of 1.5 GHz Pentium 4 boxes with 256 MB of 
RAM, running RedHat Linux 7.1.  The cluster is connected with 
100 Mb switched Ethernet. 
 

Adding simple substitutions and transpositions to the RPC layer 
incurs an overhead of less than 10% of the original message 
latency, showing that this is a promising approach in terms of the 
necessary performance.  For example, for an RPC with 64 data 
bytes, our mechanism adds 12 microseconds to the base plain-text 
latency of 152 microseconds.  
 
In addition, since many of the algorithms that we are exploring 
require one or more random numbers, we have measured the time 
it takes to retrieve a random number from an implementation of 
Yarrow.  One call to Yarrow took approximately 0.241 
microseconds to retrieve 64 random bits.  Thus, for our sample 
component used in Table 2, the time it would take to obtain all of 
the necessary random bits is less than 10 microseconds, which is 
substantially less than the maximum overhead requirement of 100 
microseconds.  It may be possible to further reduce that overhead 
by eliminating function calls and retrieving all of the random bits 
in one call. 
 
We believe that further optimizations can be performed to 
effectively reduce the latency experienced by the application.  
Because much of the work in the algorithms we have presented 
does not depend on the actual data being sent, several key pieces 
may be computed in advance during CPU idle time.  Possibilities 
include: 
 

• random number generation 
• computation of the  message permutation 
• diffie-hellman key exchange 

 

6. RELATED WORK 
Globus [7] is one of the only high-performance projects which has 
added an encryption option (DES) to their standard 
communication library.  Because of the cost, it is not clear if this 
capability has been adopted by their users for communication 
within a high-performance cluster.  

 

The Globus [7] and Legion [6] architectures contain mechanisms 
for users to specify the level of security required by each 
communication channel.  While neither project provides a low-
overhead/short-cover-time mechanism as we have described in 
this paper, both could include such a mechanism in the future.  
With the variety of communication patterns in high-performance 
environments, we believe the flexibility provided by these two 
architectures is essential for satisfying the necessary security and 
performance requirements.   

 

A seminal work on Lightweight Remote Procedure Calls 
optimizes RPCs between processes on the same machine [2].  
This concept could be incorporated in any high-performance 
messaging layer, disabling all security/encryption of the data 
when being sent to another processes on the same machine.  The 
focus of our paper, however, is on RPCs that traverse the network. 

7. CONCLUSIONS 
Because of the performance requirements in high-performance 
distributed systems, it is not possible to simply retrofit existing 
security mechanisms and expect the HPC community to use them.  
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This paper is a first attempt to construct a security solution based 
on the specific needs of high-performance component 
communication.  We classified the data security needs and 
determined that much of the data transmitted over the network has 
a short cover-time requirement.  We then presented an approach 
which capitalizes on the marshaling infrastructure in order to 
maintain a low overhead.  We specified metrics for evaluating the 
approach, and analyzed three security techniques with these 
metrics.  Finally, we described an initial prototype and its 
performance which indicates that this approach is promising for 
meeting the performance requirements of the high-performance 
domain. 
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Abstract

In this paper we propose a new resource discovery pro-
tocol, REALTOR, which is based on a combination of pull-
based and push-based resource information dissemination.
REALTOR has been designed for real-time component-
based distributed applications in very dynamic or adverse
environments. REALTOR supports survivability and infor-
mation assurance by allowing the migration of components
to safe locations under emergencies like external attack,
malfunction, or lack of resources. Simulation studies show
that under normal and heavy load conditions REALTOR
remains very effective in finding available resources with
a reasonably low communication overhead. REALTOR 1)
effectively locates resources under highly dynamic condi-
tions, 2) has an overhead that is system-size independent,
and 3) works well in highly adverse environments. We eval-
uate the effectiveness of a REALTOR implementation as
part of Agile Objects, an infrastructure for real-time capa-
ble, highly mobile Java components.1

1 Introduction

Traditionally, the main purposes of distributed systems
has been the sharing of expensive computing resources or
the clustering of large numbers of cheap resources so that
overall performance of computing-oriented large-scale ap-
plications can be significantly improved. As security is-
sues have become relevant, application survivability and
information assurance must be addressed in high perfor-
mance distributed computing as well [7, 8].Application

1This work was partially sponsored by DARPA under contract number
F30602-99-1-0534 and by the Texas Higher Education Coordinating Board
under its Advanced Technology Program.

survivability requires that applications are dynamically re-
configurable during run-time, especially when the system
is under external attack. For component-based systems this
means that components may want to migrate to locations
that are not being attacked or to locations that run at higher
security levels. Similarly, component migration increases
the level of information assurance, as critical data in the sys-
tem can be kept safe from localized external attacks. In the
type of applications described above, both resource avail-
ability and resource requirements can fluctuate widely: As
nodes in the system come under attack, resources on these
systems become unavailable. At the same time, components
on these nodes migrate, and so change the resource avail-
ability across the system.

We recognize thatresource discoveryis of prime con-
cern because the rest of the migration procedure depends
of the performance of resource discovery and allocation. In
general, it is a matter of resource information dissemina-
tion with two key parameters. One iswhen to advertise
resource information, and the other is towhomthe infor-
mation should be sent. In other words, this dissemination
is controlled by advertisementinterval and thescopeof
neighbors that are intended to receive new advertisement.

In order to effectively support migration, the resource
discovery should meet the following requirements:scala-
bility, effectiveness, andattack-survivability. By scalabil-
ity we mean that the overhead of resource discovery should
be independent of the network size or the system size in
terms of numbers of nodes, resources of application compo-
nents. By effectiveness we mean that the resource discovery
should be able to find a host which is able to accommodate
the migration request when such a host exists in the system.
By attack-survivability we mean that the resource discovery
should not be affected by external attacks.

In this paper, we propose REALTOR (REsource ALlo-
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caTOR) as a solution for resource discovery for highly dy-
namic environments and applications with timing guaran-
tees. REALTOR satisfies the requirements described above
by having: 1) a very light communication protocol that is
scalable independently of the network size, 2) a dynamic
neighborhood concept that is independent of the physical
distance (for example, hop count), and 3) a stateless proto-
col which makes the system idempotent and so inherently
fault tolerant.

The rest of this paper is organized as follows. In Section
2, we briefly discuss the related work. We describe RE-
ALTOR in detail in Section 3. In Section 4, we describe
the Agile Objects project, on which we base REALTOR.
A comparison study of REALTOR is provided in Section 5
with simulation results. Real measurements using the Agile
Objects infrastructure on a 20 node Unix workstation clus-
ter is provided in Section 6. Finally conclusions and future
work are in Section 7.

2 Related Work

In this section, we survey representative research on re-
source management for distributed computing systems, for
example, Globus [10] and Legion [12, 17] for multi domain
scale, and Condor [15] for dedicated or clustered environ-
ments. The authors in [16] presents a taxonomy that pro-
vides a good insight into the overhead of information dis-
semination for resource discovery. According to this, re-
source discovery can be described as follows: 1) centralized
vs. decentralized organization 2) push vs. pull information
dissemination, 3) aperiodic vs. periodic dissemination in-
terval. We use this taxonomy in this paper as it appropri-
ately classifies resource discovery methodologies.

Globus encompasses many research issues under the
name of “virtual organization”, which is primarily a co-
ordinated large-scale dynamic resource sharing and prob-
lem solving system over multi-institutions. Globus has de-
veloped its own resource management architecture, GARA
(Globus Architecture for Reservation and Allocation) [9].
Unlike per-session on-demand resource reservation (RSVP
[20], for example) GARA focuses on advance reservations
and co-allocation with which it can easily enhance end-to-
end QoS [11]. In this project, a resource discovery based on
the peer-to-peer model has been proposed [14], which con-
sists of a few request-forwarding algorithms in a fully de-
centralized architecture accommodating heterogeneity and
dynamism in resource.

Legion provides another distributed computing infras-
tructure in very large-scale systems. In its resource man-
agement [6], however, the prime interest was in supporting
and matching user task requirements and the autonomy of
local domain. Interestingly, it provides both push-based and
pull-based resource discovery.

Condor [15] provides resource management services that
harness the capacity of very large collections of distribu-
tively owned UNIX workstations. The need for maximum
computation throughput has been the driving force for the
efficient utilization of distributed computational resources
[3], and a metric, “Goodput” has been proposed for co-
scheduling CPU and network capacity [2]. For resource
discovery, a framework “Matchingmaking” has been pro-
posed [18], which separates matching and claiming phases
of resource allocation.

Although our survey is not exhaustive, we still observe
the followings. Work on resource discovery in large-scale
distributed systems has initially focused on the functionality
of the resource discovery protocol and on appropriate visu-
alization [19], with emphasis on protocol specifications and
resource representations. This has been followed by some
performance issues, including scalability and adaptability
[5] as response to highly dynamic system conditions. For
example, scalability has been studied in terms of message
overhead for information dissemination approach for reduc-
ing the overhead of information dissemination is described
in [16].

None of this work has addressed theeffectivenessof re-
source discovery and allocation, a measure that is of par-
ticular importance in distributed real-time systems. By ef-
fectiveness we mean the ability of the resource discovery
system to find and allocate available resources in overload
situations. We note that overload situations are particularly
problematic for QoS sensitive applications, which do not
degrade gracefully with decreasing amount of available re-
sources. Interestingly however, many papers addressing re-
source discovery do not consider effectiveness when evalu-
ating their proposals. In this paper, we propose a scalable
and effective dynamic resource discovery based on a com-
bination ofpull-based andpush-based methods. We then
evaluate our proposal by simulation experiments and mea-
sure its performance in an implementation.

3 Agile Object Systems

We realized REALTOR as part of the UCSD/Texas
A&M Agile Objects project [1]. Agile Objects provides an
infrastructure for dynamically re-configurable distributed
component-based applications. Components in such appli-
cations are capable of migrating frequently, which provides
them with location elusiveness. The latter is greatly ben-
eficial for both survivability, as the application is able to
quickly reconfigure during attacks, and for information as-
surance, as the location and tracking of critical components
become significantly more difficult for an attacker. Figure
1 shows a high-level diagram of the Agile Object System.
The main objective ofREALTORis to provide pro-active re-
source management for fast migration. This is achieved by
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keeping track of resource availability in neighbor hosts so
that migration can be processed immediately when needed,
without need for expensive signaling during migration.Ad-
mission Controlis in charge of the admission decision, com-
ponent instantiation, and migration. REALTOR’s objective
is to maintain a list of hosts with their resource status, so
the admission control can be very light-weight and happens
concurrently to the migration properly. In those rare oc-
currences where REALTOR directs a migration to an over-
loaded node, migration is aborted and the next node in RE-
ALTOR’s list is tried. The management of CPU resource
is greatly simplified by the use of guaranteed-rate schedul-
ing in the nodes. This greatly reduces the admission con-
trol overhead, which becomes a simple utilization test, and
available CPU resource can be directly measured in terms
of unallocated utilization. The current implementation uses
a Constant Utilization Server [4]. The mechanics of com-
ponent migration is handled by the migration subsystem.

During migration, the component state is moved, if nec-
essary code and libraries at the destination are updated and
service access points are transferred. In addition, the nam-
ing service is updated to reflect the new location of the com-
ponent. The correct realization of Agile Objects is based on
an extension of Java RMI. The agile software components
are realized as migratable objects in Java RTSJ, with the
Constant Utilization Servers realized as extensions of RTSJ
schedulers. The guaranteed-rate scheduling at the nodes
allows for an accurate definition of resource requirements
during design and deployment time, and thus eliminating
the need for cumbersome resource reallocation mechanisms
during run-time and for priority inheritance extensions to
RMI.

Migrations can be eitherapplication triggeredor re-
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Figure 1. Software Components of Agile Ob-
ject System

source triggered. In the former case, either the application
itself, or third-party applications (security enforcers, for ex-
ample) triggers the migration. In the latter case, migration
can be triggered by schedulers and resource monitors as re-
sponse to overload. When a migration is triggered in either

way, the request is forwarded to the REALTOR component
at the node (REALTOR A in Figure 1). REALTOR A then
returns a list of hosts to Admission Control A, where the
necessary resources are currently available for newly mi-
grating objects (3). The list is updated by the REALTORs
according to the unavailability of local resources (2). The
detailed updating procedure is described in the next sec-
tion. Receiving the list, Admission Control A begins ne-
gotiation with the admission controls in the list (6). If one
of the host admits the migration request, then Admission
Control A asks Migration Module A to actually move the
object (7). At the same time Admission Control A informs
Job Scheduler A of this migration (5). Migration Module
A now moves the object to Host B (9). Upon receiving the
object, Migration Module B registers the object with Job
Scheduler B (8). The migration of the component can hap-
pen concurrently to the negotiation among the Admission
Controls (speculative migration), thus enabling very low-
latency migration.

4 REALTOR: REsource ALlocaTOR

Given the scale and the volatile nature of the agile
systems considered in this work, the resource discovery and
allocation system must satisfy a number of requirements:
First, the resource availability information must be readily
available at any time so that any host under attack or
malfunction is able to locate a host and move the software
components immediately. Any resource allocation scheme
must bepro-active, as nodes are in need for migration.
Second, any resource discovery scheme for this type of
systems considered here must be largelystate-less. Nodes
leave and join the system at any time, due to attacks and
failures, or after recovery. In REALTOR we rely heavily
on soft state, which is be re-freshed at low cost in order
to retain an accurate view of resource availability in the
system. Third, the protocols must be largelyidempotent,
so that node failures do not give raise to errors. Finally,
given the large amount of dynamics in the system and the
need to support scalability without loss of information
accuracy, the resource discovery mechanisms at any node
should interact only with asmall subset of other nodes. We
use the concept ofcommunityin REALTOR, which links
a potential resource user with a community of potential
resource providers. Communities are ephemeral in nature:
they spontaneously appear, change over time, based on
resource requirements, resource availability at the nodes in
the community, and the status of nodes in the community.
REALTOR: Each host establishes its own community

for future software component migration, which is a set of
nodes able to receive a migrating component. Each host is
free to join as many communities as it is able to without
over-allocating its spare resources. Therefore, each host
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usually owns one community and is a member of several
other communities. The membership in a community is
not static, and must be refreshed. The membership of a
node in a community is valid only for the interval between
two consecutive refresh messages. So, in order to maintain
the membership to a community, a host needs to keep
responding to all refresh messages from the organizer.
When a member stops responding to refresh messages from
the organizer, it de facto leaves the community. Similarly,
when a community organizer stops sending refresh mes-
sages, the community will naturally disband. Communities
are established and managed with the community protocol
described below.

Community protocol: The community protocol was
designed with three immediate goals, 1) the protocol
should beeffectivein finding available resources within
its own community, 2) the protocol overhead should be
independent of network size, and 3) the protocol should
bestateless. Therefore, Community protocol has only two
types of messages.

HELP: When a host joins the system, it begins to build
its own community for software component migration
in the future. The invitation to the new community is
done by broadcasting a HELP message to the network2.
The interval between two consecutive HELP messages is
determined byAlgorithm H, which we describe below.

PLEDGE: When a host receives a HELP message, it
determines whether to join or not the community. Once
it determined to do so, it sends a PLEDGE message to
the community organizer (i.e., the originator of the HELP
message) whenever its resource usage status changes across
a threshold level. The threshold level is determined by
Algorithm Pat each local host.

The message formats are defined as follows:
HELP: Hostid (community organizer identifier),
Type(help), The number of current members (number
of members), The urgency of the resource request (degree
of demand).
PLEDGE: Hostid (identifier of the pledger), Type(pledge),
Resource availability (degree), Number of communities
of which it is a member (number of communities), Prob-
abilities of resource grant when requested (distribution).

Algorithm H: As can be seen in Figure 2, a host keeps
sending HELP messages at the rate of one message ev-
ery HELP interval time units as long as a task arrives and
its resource usage is above a threshold. The length of
HELP interval changes over time depending on the success
of finding available resource. If it succeeds, HELPinterval
is decreased by the proportional amount ofbeta as a re-
ward, while it increases the interval by the proportional

2Networks in this context are typically application-level overlay net-
works.

Whenever a task arrives

 

do {

If resource usage would exceed a threshold level  {
             If ((T_current − T_sent) > HELP_interval) {
                          send HELP ;
                          set_timer;
             }
}

}

Timeout do {

Algorithm  H

Input: Time_current, Time_sent

Output: HELP message

Whenever a PLEDGE message arrives do {
            If the corresponding timer is not expired 

reset_timer;

Update corresponding PLEDGE list;

}
                         HELP_interval +=  HELP_interval * alpha;

If ((HELP_interval + HELP_interval * alpha) < Upper_limit)

                       HELP_interval −= HELP_interval * beta;
             If ((HELP_interval − HELP_interval * beta) > 0)

If a node is found for migration {

}
}

Figure 2. Algorithm H in REALTOR

amount ofalpha as a penalty. By using both reward and
penalty, the interval shrinks if there are resources available
and expands if there are not. The idea is to avoid unneces-
sary discovery activity of resource when the whole system
is heavily loaded. Upperlimit prevents an unbounded in-
crease of HELPinterval after a series of failure in finding
available resources. The speed of expansion or shrinkage
is controlled by appropriately setting alpha and beta values.
Algorithm P: As can be seen in Figure 3, the host replies

Algorithm P
Input: HELP messahe
Output: PLEDGE message

Whenever a HELP message arrives do {

}

Whenever the resource availability changes across the threshold level do {
             Reply PLEDGE;
}

                          Reply PLEDGE;
            If the host has used its resource less than a threshold level

Figure 3. Algorithm P in REALTOR
with a PLEDGE as long as 1) a HELP message arrives and
2) its resource usage is below the threshold level. Also, once
a host determines to be a member of a community, it replies
with PLEDGE messages whenever its resource usage status
changes across the threshold level. This helps the organizer
keep the most current information. The value of alpha and
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beta (in Figure 2) are subject to the local resource manager.
Pure PUSH: Each host disseminates its own resource

availability information to its neighbors unconditionally at
every preset interval. In comparison to REALTOR, there is
only periodic PLEDGE message without HELP.

Pure PULL: Each host solicits PLEDGE from its com-
munity members whenever 1) a task arrives and 2) the re-
source usage level is beyond a threshold level. In compar-
ison to REALTOR, this scheme generates HELP messages
unlimitedly (without Upperlimit in Algorithm H) as long
as resource usage is above the threshold level.

Adaptive PUSH: Each host disseminates its own re-
source availability information to its neighbors whenever
the resource usage changes across a threshold level. In com-
parison to REALTOR, PLEDGE is automatically generated
at each major status change without solicitation (HELP).

Adaptive PULL: Each host solicits PLEDGE from its
community members whenever 1) a task arrives, 2) the re-
source usage level is beyonds a threshold level, and 3) a time
window has passed since the previous HELP. In comparison
to REALTOR, this scheme generates HELP messages in the
same fashion as in REALTOR. It is different from REAL-
TOR, however, in that it generates PLEDGE exactly once
in response to each HELP.

5 Experimental Performance Evaluation

Here, we compare the performance of REALTOR with
those of the alternative resource discovery protocols intro-
duced previously in this paper, using a set of simulation ex-
periments. Unlike REALTOR, which advertises resource
status when solicited using HELP and PLEDGE (PUSH
and PULL-based), other protocols disseminate resource sta-
tus information to the neighbors periodically, with or with-
out solicitation from other nodes, using either PUSH-based
or PULL-based schemes only. We, therefore, measure the
performance in terms ofmessage overheadand effective-
nessin finding available resources. Since the communi-
cation pattern in the purely PUSH-based approach is inde-
pendent of the available resources and their location, this
approach tends to either waste communication bandwidth
or fails to appropriately locate resources. A purely PULL-
based approach may suffer from high volume of HELP mes-
sages under overloaded conditions because most hosts can-
not pledge.

For the experiments, we simulate the mesh topology dis-
played in Figure 4, with 25 nodes and 40 links. Each in-
tersection represents a node. For fair comparison purposes,
we assume that the topology represents the limited scope
of neighbors for REALTOR and all other four resource dis-
covery schemes. In reality, there should be a mechanism in
place limiting the scope of neighbors for REALTOR, for ex-
ample, as an IP multicast group. We compare the communi-

cation overhead and the effectiveness of the five approaches
by simulating their behavior under increasing load in the
nodes. For this, we randomly generate task at increasing
rates, and assign them randomly to a node. The resource
discovery and allocation algorithms then must migrate the
tasks, when needed, to nodes with available CPU capacity.
3

We generate tasks with exponentially distributed lengths
of a mean value�. The generated task is given to a node
randomly selected from Node 0 through Node 24. The task
arrival forms a Poisson process with a rate of�. Each node

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 4. The network topology for the simu-
lation

is assumed to have a single queue of 100 seconds to process
tasks. Task lengths are defined in seconds with a mean value
of 5. So, a task with value 2 holds the CPU on the node for
2 seconds. Tasks arriving at a node whose queue is already
full are supposed to migrate to another node whose queue
can still accommodate the task. In these experiments, in
order to satisfy the requirement ofpro-activenessfor imme-
diate migration, we measure the performances of the five
approaches with only a one-time migration try to the best
candidate destination node provided by each approach. So,
if the candidate destination node cannot accommodate the
migrating task, then the task is rejected.

For this simulation, we use a simple threshold strategy
for both Algorithm H and P in PULL, Adaptive-PULL,
Adaptive-PUSH, and and REALTOR cases.Algorithm H
sends out HELP messages when the queue length exceeds
a certain level. The queue level is checked whenever a new
task arrives. So, the HELP messages are sent out when-
ever the three conditions are met: 1) a new task arrives, 2)
the queue including the new task exceeds a certain level,
and 3) the time window has passed. Likewise,Algorithm P
replies HELP with PLEDGE whenever the two conditions
are met: 1) a HELP message arrives once, and 2) the queue
is occupied below a certain preset level. Also for simplicity,

3In this simulation, we assume a single resource - CPU. More general
resource scenarios such as network bandwidth, current security level, etc.,
would give similar results.
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the number of messages for resource information advertise-
ment to the network is counted as the number of links for
all approaches. This assumption does not affect the perfor-
mance comparison. So, in REALTOR case, HELP message
requires the number of links for flooding, while PLEDGE
message takes the average number of shortest paths, which
is 4 in this particular network topology. So the total num-
ber of messages is counted as the sum of 1) message flood-
ing, and 2) communication for migration between admis-
sion controls. In the following figures in this section, the
curve names stand for the followings. We compare the fol-
lowing five algorithms:
“Pull-.9”: a pure PULL approach which uses 0.9 for both
Algorithm H and P. “Push-1”: a pure PUSH which uses
1 second periodic interval for information dissemination.
“Push-.9”: an adaptive PUSH which disseminates informa-
tion only when the resource usage changes across a thresh-
old level. “Pull-100”: an adaptive PULL which limits
HELP interval from increasing infinitely, in this case the
limiting value is 100 time units (Upperlimit in Figure 2).
“REALTOR”: combination of “Push-.9” and “Pull-100”.
Algorithm H 0.9: every new task arriving a queue whose
length reaches more than 90% including the new task trig-
gers a set of HELP messages. Algorithm P 0.9: means that
every HELP message arriving a node whose queue is occu-
pied less than 90% triggers a PLEDGE message.

Figure 5 compares the task admission probability of the
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Figure 5. Admission probability

five approaches. The x-axis represents the task arrival rate,
and y-axis shows the admission probability. This set of
curves are obtained this way. First, we run this simulation
for Push-1. After obtaining the curve “Push-1”, we repeat-
edly run the simulation for other approaches with different
set of simulation parameters until finally we have a set of
curves close enough to “Push-1”. So, as seen in the figure,
“Push-1” lies in the middle of the curves. “REALTOR” and
“Push-.9” show the best performance. However, there is no
big difference between the performances for all load condi-

tions. We believe that these curves are close enough to as-
sume that they are more or less than equals, which provides
the ground on which we can compare the communication
overhead for the same performance.

Figure 6 shows the communication overhead of the five
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Figure 6. Number of messages exchanged

approaches. The x-axis represents the task arrival rate, and
y-axis shows the total number of message exchanges. As
we expected, “Push-1” shows the highest overhead, espe-
cially under lightly loaded conditions where it wastes too
much communication bandwidth unnecessarily. “Pull-.9”
(pure PULL) keeps increasing its overhead as the system
gets overloaded. As it increases almost linearly, it will even-
tually cross “Push-1” for very high arrival rates of�. How-
ever, “Pull-.9” is still below “Push-1” until the admission
probability drops to below 0.75, after which the system will
be completely overload. It is apparent that the pure PULL
approach also wastes much communication bandwidth. On
the other hand, “Pull-100” shows the least amount of com-
munication overhead independently from the load. How-
ever, this causes poor performance in admission probabil-
ity in Figure 5. “Push-.9” (adaptive PUSH) shows a mod-
erate overhead and a very close performance to “Push-1”
(pure PUSH). Finally REALTOR shows the best perfor-
mance with still a moderate overhead slightly higher than
“Push-.9”. In fact, we think that this result is quite ex-
pectable because REALTOR combines the two approaches:
an adaptive PUSH and an adaptive PULL, so it naturally
takes advantages of both while adding a slight amount of
communication overhead. The point so far is that REAL-
TOR performs better in terms of effectiveness with a mod-
est communication overhead which is around one third of
that of PUSH.

Figure 7 compares the resource discovery protocol over-
head per admitted task. For example, “Push-1” costs 200
message exchanges for a single admitted task at� = 5, while
all other approaches take about less than 50. The amount of
overhead in REALTOR and “Push-.9” decreases as the sys-

36



0

50

100

150

200

250

4 5 6 7 8 9 10 11

m
es

sa
ge

-c
os

t-
pe

r-
ta

sk

task-arrival-rate

task-size = 5, q-size = 100

pledge threshold = 0.9

push interval = 1

adaptive-pull time window = 100

Pull-.9
Push-1

Pull-100
Push-.9

REALTOR-100

Figure 7. Communication cost per admitted
task

tem becomes overloaded. This is because 1) HELPinterval
is kept at maximum due to the repeated failure of finding
available resources, and 2) since the resource usage level at
each host is kept above the threshold level. The reason for
the peak around� = 6 in REALTOR is that the resource
usage level changes across the threshold most frequently
around that point. The admission probability at that point
is about 0.95, which means there are a lot of fluctuations
in usage levels, causing PLEDGE messages to be gener-
ated. This figure clearly illustrates the cost of disseminating
resource information periodically regardless of load condi-
tions. Also, it is very clear that either a pure-PUSH or a
pure-PULL do not scale well.

Another way to evaluate theeffectivenessof resource
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discovery is to look at the task migration as it is the critical
factor in admission probability. Figure 8 shows the migra-
tion rate per admitted task for the five approaches. As the
previous curves imply, REALTOR has the highest migra-
tion rate close to 30% at top around� = 8, where admis-
sion probability is about 0.85. After that the rate slowly

decreases due to the suppressed HELP messages by Up-
per limit in Algorithm H. In “Push-1” case, the rate keeps
increasing rapidly until� = 7, and very slowly after that as
the task arrival rate increases. This is because the periodic
dissemination becomes less effective at higher task arrival
rates. Both pull-based approaches show the lowest rates,
as they show the lowest curves in the admission probabil-
ity. This is because theuntimelinessof the pull-based ap-
proach. Since, in pull-based approach, information is col-
lected before migration request rises, the information can
be out-of-dated rather easily. On the other hand, in adap-
tive push-based approach, the information is more timely
because each host disseminates information only when it
changes the status.

We interpret the results as follows.REALTORoutper-
forms eitherpush-basedor pull-basedin terms of over-
head and effectivenessregardless of the load conditions.
The lessons we learned with this set of experiments are:
1) pure push-based approaches waists resources too much
during light-load conditions, 2) pure pull-based also waists
resources much in overload conditions, 3) REALTOR per-
forms best by combining both adaptive push-based and
adaptive pull-based approaches for any load conditions.

6 Implementation Experience

Here, we describe the measurement results for an imple-
mentation of REALTOR within the Agile Object system de-
scribed in Section 4. Here, the performance is measured in
terms ofadmission probability. For the performance mea-
surement, we used a workstation cluster of Linux machines
at the Concurrent Systems Architecture Group Laboratory
in the University of California San Diego, where Agile Ob-
ject Project is being integrated. The cluster for this mea-
surement consists of 20 homogeneous hosts running Red-
hat Linux Version 7.2 Operating System on Pentium II at
450 MHz. Each host is a single server that processes ar-
riving tasks sequentially. REALTOR uses IP multicasting
for HELP messages and UDP for PLEDGE messages. Ad-
mission Control uses TCP connections for admission nego-
tiation. Job Scheduler provides a simple form of real-time
task scheduler with static priority and EDF (Earliest Dead-
line First) in the same priority. To reduce Java overhead as
much as possible, all the components on the same host are
implemented in a single JVM (Java Virtual Machine).

The experiment scenario remains the same as in the sim-
ulation in the previous section. So, we implement each task
as a timer waiting to expire. This considerably simplifies
migration, as the only state of the task is the current value
of un-expired time. In real situations, the migration time
will be longer than that of this experiment depending on the
actual size of the software component.

Although we are behind from completing the implemen-
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tation, Figure 9 shows an earlier measurement of admis-
sion probability with 20 hosts. Other parameters remain the
same as in the simulation. The curve shows the same type
of shape as in the simulation. We are currently measuring
the performance of REALTOR in various scenarios.
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Figure 9. Admission probability measured.

7 Conclusions and Future Work

In this paper we proposed a new resource discovery pro-
tocol, REALTOR, based on combination of pull-based and
push-based resource information dissemination. REAL-
TOR has been designed for QoS sensitive software appli-
cation, consists of software components, which support ap-
plication’s survivability and information assurance by mi-
grating to safer places under emergencies like external at-
tack, malfunction, or lack of resources. Simulation studies
show that under normal and heavy load conditions REAL-
TOR remains very effective in finding available resources
with a reasonably low communication overhead compared
to pure push-based approach. According to the simula-
tion results REALTOR 1) effectively finds resources under
highly dynamic conditions, 2) has a low overhead that is
system-size independent, and 3) works well in highly ad-
verse environments due to its statelessness. Also the per-
formance of effectiveness in a REALTOR implementation
is provided with measurements in terms of admission prob-
ability in the Agile Objects system. In the future, we will
extend this work to inter-neighbor-groupresource discovery
and allocation for very large distributed dynamic real-time
systems.
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Abstract 

Proxy-network based overlays have been proposed to protect Internet 

applications against Denial-of-Service (DoS) attacks by hiding an 

application’s location.  We develop a formal framework which 

models attacks, defensive mechanisms, and proxy networks.  We use 

the framework to analyze the general effectiveness of proxy network 

schemes to protect applications.  Using our  formal model, we 

analytically characterize how attacks, defensive schemes, and proxy 

network topology affect the secrecy of application location and 

general resource availability.  Our results provide guidelines for the 

design of proxy networks; the formal framework provides a tool to 

study problems in this area. 

 

Our analysis shows that proxy networks are a feasible approach to 

prevent infrastructure-level DoS attacks.  Proxy network depth and 

system reconfiguration are the keys to achieving location hiding.  

Proxy network topology also has an important impact -- rich 

connectivity in the proxy network, a virtue in other circumstances,  

reduces  effectiveness in location hiding.  Finally, to avoid resource 

depletion, reactive resource recoveries are insufficient; proactive 

schemes are needed. 

 
Keywords 

security, availability, Denial-of-Service, overlay network 

1 INTRODUCTION 

Denial-of-service (DoS) attacks are a major security threat to 

Internet applications.  Since 1998, there have been a series of 

large-scale distributed DoS attacks which effectively shut 

down popular sites such as Yahoo! and Amazon and the White 

House website was forced to move to a different location [1-5].  

These attacks have serious economic impact and political 

repercussions, and may even threaten critical infrastructures 

and national security [6-8].   

 

Figure 1 Example of Internet Application 

In a Denial-of-Service attack, attackers can make the victim 

application unavailable to legitimate users by overloading the 

application with floods of network traffic or large amount of 

workload.  DoS attacks can be categorized as infrastructure 
level or application level attacks.   shows a typical Internet 

application deployment.  The application service runs on a set 

of interconnected hosts, which is the service infrastructure; 

users access it via the Internet.  Infrastructure-level attacks 

overload the service infrastructure, for example, by sending 

packet floods to saturate the victim network.  In this case, 

attackers can effectively DoS an application without any 

knowledge of it except for its IP address.  Application-level 
attacks cause denial-of-service by requesting large amounts of 

work at the application level or by exploiting weaknesses in 

the application. 

 

Many Internet applications are publicly accessible, so they are 

easy targets for infrastructure-level DoS attacks.  We are 

exploring the use of overlay proxy networks to tolerate 

infrastructure-level attacks.  The key idea is to hide the 

Internet applications behind a proxy network, which is an 

overlay network (Figure 2).  All accesses to the applications 

are mediated through the proxy network.  Since only 

application level traffic can pass through the proxy network, 

infrastructure level attacks are no longer possible as long as 

the IP address of the application can be securely hidden.  

Furthermore, the proxy network needs to run on a large 

resource pool and be highly distributed and fault tolerant, so it 

can by itself tolerate DoS attacks and shield applications.  The 

essence of this approach is the following.  It is hard to make 

general applications highly distributed and DoS resistant.  

Therefore we build proxy networks with such capabilities, 

which are easier to build and can be shared among 

applications.  We use them to shield the applications.  

Mechanisms such as Network Address Translation (NAT) can 

also hide the application’s location. However, NAT boxes are 

vulnerable to DoS attacks, so they cannot shield applications; 

we will need networks of NATs to resist attacks.  Current 

NAT technology does not scale up to support this.  Our proxy 

networks provide a possible form of distributed NAT network.  

 

A key capability of proxy networks is location-hiding, which 

is a component of a complete solution to DoS attacks.  It 

provides a “safety period”, during which an application’s 

location is kept secret, and infrastructure-level attacks are 

prevented.  It can be combined with other mechanisms such as 

application reconfiguration, redeployment, or even mobility to 

effectively protect applications against infrastructure-level 

attacks.  If applications can change their location within a 

safety period, they can avoid DoS attacks indefinitely. 

However, there is a high cost to reconfigure applications; 

therefore there is a strong benefit to have effective location-

hiding schemes that can provide long safety periods, reducing 

overhead and frequency of application reconfigurations.  This 

paper studies the capability of proxy networks to provide 

effective location-hiding. 
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We are not the only researchers exploring the use of proxy 

networks for enhancing application security.  Others, such as 

Secure Overlay Services (SOS) [9] and Internet Indirection 

Infrastructure (i3) [10], use existing overlay networks such as 

Chord [16] to hide the IP addresses of important nodes.  To 

date, we know of no modeling or effectiveness analysis of 

these approaches.  Our analysis considers a general class of 

proxy networks for location-hiding (SOS [9] and i3 [10] are 

instances of the class), and provides an understanding of what 

capabilities are feasible, and the importance of different 

elements of proxy network design.  We believe such analysis 

of proxy network capabilities can lead to better understanding 

and design guidelines for the whole class of location-hiding 

approaches. 

 

In this paper, we build a formal model to characterize proxy 

networks, attacks, and defensive mechanisms including proxy 

network reconfiguration and resource recovery schemes.  We 

use this model to study the effectiveness of the proxy network 

approach.  Using the model, we characterize the difficulty for 

attackers to penetrate the proxy network and discover 

application location.  We also characterize how quickly 

resources can be compromised and the effectiveness of 

resource recovery policies such as intrusion detection-based 

reactive schemes and proactive schemes that do not rely on 

detection.  Our study leads to the following qualitative 

conclusions: 

1. Proxy networks with random proxy migration can 

effectively hide applications’ IP addresses; thereby preventing 

infrastructure-level DoS attacks. 

2. Proxy network depth and internal reconfiguration are 

critical to preventing attackers’ penetration. 

3. The topology of proxy networks is important.  

Surprisingly, rich connectivity, a virtue in other circumstances, 

can reduce a proxy network’s ability to hide application 

location. 

4. Reactive techniques for resource recovery are insufficient 

by themselves to avoid resource depletion.  However, 

proactive schemes can successfully prevent resource depletion. 

 

The model and qualitative results provide insights into how 

proxy networks should be designed to effectively protect 

applications from DoS attacks – either by hiding their location 

or protecting against resource depletion.  Our study intends to 

build a better understanding of overlay networks’ capability of 

location-hiding for DoS attack resistance, provide intuitions of 

how proxy networks should be designed, and build step stones 

for future studies based on more complex and realistic models 

in this area, rather than immediately and completely solve the 

DoS problem. 

 

The remainder of the paper is structured as follows.  Section 2 

formulates the DoS problem and introduces our analytical 

models.  Analytical results, insights and discussions are 

presented in Section 3.  Section 4 discusses the implications of 

our analysis.  Section 5 relates our work to the other studies, 

and then we conclude in Section 6 with a summary and a 

description of directions for future work. 

2 ANALYTICAL MODEL 

In this section, we develop an analytical model for the system.  

First, we give an overview of the proxy network scheme.  

Second, we describe the key components, including the 

resource pool, the proxy network, the attacks and the related 

defensive mechanisms.  Third, we propose an analytical model 

to characterize these components.  This model is used in 

Section 3 to study the DoS problem.   

2.1 Proxy network scheme 

Infrastructure-level DoS attacks target at the IP addresses of 

the victim applications.  Today’s Internet applications publish 

their IP addresses (for example via DNS) for convenient user 

access via the Internet, but their published IP addresses 

become obvious targets in DoS attacks.  We use a proxy 

network approach to address this problem.  In our approach, 

applications do not publish their IP addresses, instead, they 

hide behind a proxy network, an overlay network that runs on 

a resource pool of Internet hosts.  The proxy network hides the 

IP addresses of all the nodes inside (including internal proxies 

and applications); only proxies at the edge publish their IP 

addresses (see Figure 2).  All accesses to the applications are 

mediated by the proxy network via edge proxies.  No one can 

easily discover the applications’ location, thereby preventing 

infrastructure-level attacks. 

 

Figure 2 Proxy Network Scheme 

There are two key challenges in the proxy network scheme. 

First, the proxy network should hide applications’ IP addresses 

securely.  Second, the proxy network itself should be resilient 

to DoS attacks, so it can  shield the applications.  The second 

challenge is more straightforward; proxies can be built as 

simple elements without persistent state.  Without a need for 

strong consistency, replication schemes can be used to tolerate 

DoS attacks.  In this paper, we focus on the first problem – 

location-hiding.   

2.2 Resource Pool and Proxy Network 

Before discussing the attacks and the defensive mechanisms, 

we formally describe the resource pool and the proxy network, 

and introduce a rigorous terminology.  For simplicity, we 
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study the case where there is only one application.  We believe 

that our analysis can be extended to multiple applications 

sharing the same proxy network, but work is beyond the scope 

of this paper.   

 

The resource pool consists of hosts in the Internet.  We 

assume that the hosts can communicate directly if they have 

each other’s IP address, and each host is identified by a unique 

IP address.  A node in the overlay network is either a proxy or 

the application.  When a node runs on a host, that host (or its 

IP address) is called the location of the node.  We assume each 

node has a unique location at any moment (an injective 

mapping from nodes to hosts).  Two nodes are adjacent if and 

only if they know each other’s location.  Obviously, adjacent 

nodes can communicate directly through the underlying hosts 

at the IP level.  We use a topology graph to represent the 

overlay network.  Vertices in the graph correspond to nodes in 

the overlay; edges correspond to the adjacency relationship.  

The minimum distance from edge proxies to the application in 

the topology graph is the depth of the proxy network.  A 

conceptual view of a proxy network with depth 3 is shown in 

Figure 2.  The topology graph describes the connectivity of the 

overlay network; two nodes can communicate at the overlay 

level if there is a path between them in the topology graph.  

More importantly, the topology graph also describes how the 

location information is shared among the overlay nodes, a 

critical aspect of how securely the proxy network can hide the 

application’s location, because when attackers compromise a 

proxy node, they can locate all adjacent nodes. 

 
Figure 3 Proxy Network Penetration 

2.3 Attacks 

We focus on the use of proxy networks for location hiding.  

Therefore, the most important issue is host compromise 
attacks, which can penetrate the proxy network and reveal an 

application’s location. Other attacks are considered in Section 

4.  In a successful host compromise attack, attackers can 

temporarily control the victim host and steal information from 

it.  A host under such impact is considered compromised; 

otherwise it is intact.  We overload the term compromised – a 

proxy is compromised if it runs on a compromised host. 

 

At the overlay network level, host compromise attacks can 

reveal the location of overlay nodes.  For example, in Figure 3, 

when proxy A is compromised, attackers expose the location 

of proxy B.  Repeating this process, attackers penetrate the 

proxy network and may eventually cause application exposure, 

where the application is exposed to attackers. 

At the resource pool level, host compromise attacks can cause 

resource loss.  Unless those compromised hosts are recovered, 

they can no longer be used as intact resources.  Host 

compromise attacks can eventually lead to resource depletion, 

where intact hosts in the resource pool are insufficient for 

proxy networks to operate correctly. 

 

Attackers can either act autonomously (uncoordinated attacks) 

or cooperate  (coordinated attacks).  

2.4 Defensive mechanisms 

We have two defensive mechanisms, each of which 

corresponds to the key risks, application exposure and 

resource depletion.  At the overlay network level, proxy 

network reconfiguration mechanisms disrupt attacker 

penetration, thereby helping to prevent application exposure; 

at the resource pool level, resource recovery/reset mechanisms 

convert compromised hosts to intact state, helping to avoid 

resource depletion. 

 

Proxy Network Reconfiguration 
Proxy network reconfiguration mechanisms dynamically 

change proxies’ location or structure of proxy networks, 

disrupting attacker penetration by invalidating location 

information exposed by attacks.  

 

In this paper, we study random proxy migration, a simple form 

of proxy network reconfiguration.  Proxies randomly change 

their location inside the resource pool, but do not change the 

topology of the proxy network.  For example, in Figure 3, 

when proxy B migrates from h2 to another host, it will notify 

its neighbors A and C of its new location.  With random proxy 

migration, proxies can move to new locations unknown to 

attackers, therefore disrupting attackers’ penetration.  For 

example, suppose attackers exposed proxy B when B is on 

host h2.  When B migrates to another host, attackers’ 

information about B becomes invalid (if both A and C are 

intact)1.  Attackers cannot proceed unless they can discover 

B’s current location.  In addition, proxy migration can move 

proxies from compromised hosts to intact hosts.  We study the 

effectiveness of such schemes to prevent application exposure. 

 

Resource Recovery/Reset 
Resource recovery/reset mechanisms at the resource pool level 

convert compromised hosts to the intact state.  There are two 

triggering policies, reactive recoveries and proactive resets2.  

In reactive recoveries, compromised hosts are only recovered 

after compromise is suspected or detected.  Proactive resets do 

not depend on detection, and reset hosts into the intact state 

regardless of their current state.  Examples of proactive resets 

include timer-triggered reloading of hosts with clean and up-

to-date system images, updating and creating new credentials, 

                                                 
1 Migration of B is only effective when Proxy A and C are not compromised 

at the moment. Both resource recovery/reset and proxy reconfiguration can 

get proxies out of compromised state by either recovering the compromised 

host or moving the proxy to an intact host.  It is considered in our analysis.  
2 “Reset” and “Recovery” here do not imply going back to a previous state.  

They set the hosts into a known clean state with all the known security holes 

fixed.  Therefore, future attackers cannot easily compromise them through the 

known security holes. 
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and so on.  We study the effectiveness of both schemes to 

prevent resource depletion. 

2.5 Stochastic Models 

Model of host compromise attack 
We model occurrences of successful host compromises by one 

attacker as a Poisson process with rate l; l is the compromise 

speed and l
1  is the average time to compromise a host.  To 

keep the model concise and simple, we assume hosts in the 

resource pool are widely distributed and do not have highly 

correlated vulnerabilities, so that one host compromise does 

not increase the speed of other compromises, even though the 

attackers are coordinated.  Therefore we use the same 

compromise speed l for all attacks.  The probability of 

compromising a host within time t is given by . )0)(1( ²- - te tl

 
Model of proxy network reconfiguration 
Proxies randomly migrate in the resource pool.  Occurrences 

of migration events on any specific proxy are modeled as a 

Poisson process with rate mr.  All proxies migrate 

independently at the same rate.  Mathematically, the 

probability of a proxy migrating within time interval t is 

. )0(1 ²- - te trm

 

Model of reactive recovery 
Key attributes of reactive recoveries are true positive ratio and 

recovery delay.  True positive ratio is the ratio of compromises 

that are eventually detected.  Recovery delay is measured from 

the moment of compromise to the moment of recovery (if the 

compromise is eventually detected).  In our model, the true 

positive ratio is r, and the expected recovery delay is .   
dm

1

Our model does not impose any specific distribution on the 

behavior of recovery.  Any distribution capturing these two 

attributes (r and 
dm

1

)0)(1( ²- - te tdmr

) will converge to our result.  In this paper, 

for the mathematical convenience, a scaled exponential 

distribution is used.  The probability of a reactive recovery 

within time t is given by . 

 

Model of proactive reset 
We model proactive reset events on a host as a Poisson 

process at rate ms.  In other words, the average interval 

between two resets on a host is 
sm

1

)0)(1( ²- - te tsm

, and the probability of a 

proactive reset within time t is given by . 

Table 1 Notations of Analytical Model 

Our notations are summarized in Table 1. 

 

Discussion 
We use Poisson process to describe host compromises because 

it can concisely characterize the system with one parameter 

“speed of compromise (l)”.  The Poisson model is suitable for 

stochastic processes which are statistically independent of the 

past.  When the hosts in our system are carefully maintained 

with all the known security holes fixed, Poisson model is a 

reasonable approximation.  Earlier studies [11, 12] also 

showed that Poisson model can correctly characterize the 

behavior of software system with a small number of bugs.  

This further justifies of our model. 

 

Because little is understood analytically about the behavior of 

systems under host compromise attacks, we have chosen to 

use simple models that enable analysis and can concisely 

characterize the key attributes of the system as well as build 

intuition.  At present, complex models quickly become 

intractable and their results can be hard to interpret.  As an 

initial step, we ignore many details of the system (for example 

correlated vulnerabilities among hosts) to make the analysis 

tractable.  Even though this may be very different to reality, 

we believe our analysis still provides a fundamental 

understanding of the problem, which is essential to future 

study based on more complex and realistic models.  Our study 

intends to build a step stone for better understanding of this 

problem, rather than completely solve the DoS problem. 

3 ANALYTICAL RESULTS 

Using the models defined in Section 2, we study the 

effectiveness of the proxy network scheme.  We focus on the 

two forms of successful attacks described in Section 2.3: 

 

- Application Exposure: How much time will it take 

attackers to penetrate the proxy network and expose the 

application?  How do different parameters, such as speed of 

host compromise, speed of resource recovery, rate of proxy 

migration and topology of proxy networks, affect the 

effectiveness of the scheme? 

- Resource Depletion: Under what circumstances it is 

possible to keep the majority of the hosts intact, so that the 

proxy migration scheme makes sense?  How effective are the 

resource recovery schemes against host compromise attacks? 

3.1 Application Exposure 

In this section, we prove that without proxy network 

reconfiguration, proxy networks cannot securely hide the 

location of the application.  Then we prove that with random 

proxy migration, there exists a class of proxy networks that 

can provide effective location-hiding.  Then we study how 

different parameters affect the effectiveness of our scheme 

(with a specific proxy network topology) and provide design 

guidelines.  Finally, we discuss the impact of proxy network 

topology.  In this section, we assume that there are sufficient 

intact hosts in the resource pool.  The validity of this 

assumption is studied in Section 3.2. 

 

Notation Meaning 

l Speed of host compromise  

mr Rate of proxy migration 

1/md Expected delay of reactive recovery 

r True positive ratio of reactive recovery 

ms Rate of proactive reset 

We define a proxy network to be effective if the expected time 

for attackers to expose the application grows exponentially 

with the depth of the proxy network.  In other words, for 
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effective schemes, adding resources can significantly improve 

security. 

3.1.1 Location hiding 

Result I: Without reconfiguration, proxy networks cannot 
effectively hide the application’s location. 
 

Proof of Result I: 
Consider a path from an edge proxy to the application as 

shown in Figure 4.  Let Tl be the expected time of host 

compromises.  Without reconfiguration, the location of 

proxies does not change, and the topology of the proxy 

network does not change.  Attackers only need to compromise 

all the proxies on a path to the application.  It is trivial that the 

expected time to penetrate a proxy network with depth d is 

dTl; the expected time to application exposure grows linearly 

with d.  Result I follows directly.ư 

 

Figure 4 Path from edge proxy to application 

Result II: If the majority of the hosts in the resource pool are 
intact, with random proxy migration, there exists a class of 
proxy networks that can effectively hide the location of the 
application. 
 

Here is an intuitive explanation.  Figure 4 shows a path from 

an edge proxy to the application; d is the length of that path.  

Initially only the edge proxy is exposed, and location of all the 

other proxies and the application is unknown to attackers.  As 

described in Section 2.3, attackers can penetrate the proxy 

network starting from the edge proxy.  If all the non-edge 

proxies (2 to d in the figure) can change their location 

periodically, then it can disrupt the penetration.  For example, 

in Figure 4 if attackers managed to compromise proxy 2, then 

proxy 3 was exposed at that time.  But this location 

information is only valid until proxy 3 migrates 3 , and if 

attackers cannot compromise proxy 3 before that time, they 

cannot go any further.  Intuitively, if the rate of proxy 

migration is higher than the speed of host compromise, it is 

hard for attackers to penetrate the proxy network, because 

proxies can almost always run away before they get 

compromised. 

 

To prove Result II, we need Lemma3.1.1 and Proposition3.1.2.  

Lemma 3.1.1: d is the depth of a proxy network with an 
arbitrary topology.  l is the speed of host compromise, Tl=l-1 
is the expected time of a host compromise. mr is the rate of 
proxy migration (mr>2l).  When the majority of the hosts in 
the resource pool are intact, the expected time for any 

                                                 
3 More precisely, if proxy 3 migrates after proxy 2 gets out of the 

compromised state (proxy 2 migrated to an intact host or proxy 2’s host is 

recovered), attackers will lose track of proxy 3’s location. 

uncoordinated attacker to expose the application is between 

ll
m Tdr ))(( 2

2

-Q ll
m Tdr ))(( 1-Q and . 

Proof of Lemma 3.1.1 is in Appendix I. 

 

Figure 5 N independent proxy chains 

Proposition 3.1.2: Consider a proxy network with a topology 
graph shown in , where there are N paths from edge proxies to 
the applications, and all the N paths are independent (vertex-
disjoint). When the majority of the hosts in the resource pool 
are intact, the expected time for coordinated attackers to 

expose the application is between ll
m Td

N
r ))(( 2

2
1 -W  and 

ll
m Td

N
r ))(( 11 -W

                                                

 (the meaning of mr, l, d and Tl is the same as 

in Lemma 3.1.1). 
Proof of Proposition 3.1.2 is in Appendix II. 

 
Proof of Result II: 
Lemma 3.1.1 shows that the expected time for uncoordinated 

attackers to expose the application grows exponentially with 

the depth of a proxy network.  Therefore, with random proxy 

migration, proxy networks can effectively resist uncoordinated 

attacks to hide the application’s location. 

Proposition 3.1.2 shows that for a class of proxy networks 

shown in Figure 5, the expected time for coordinated attackers 

to expose the application grows exponentially with the depth 

of the proxy network.  Therefore, there exist some proxy 

networks that can effectively resist coordinated attacks to hide 

the application’s location.  Result II follows directly. ư 

 

To illustrate the effectiveness of the proxy network scheme, 

let us assume Tl to be on the order of days4; namely, it may 

take attackers a few days to compromise a host.  We consider 

a proxy network with depth 6.  Without proxy network 

reconfiguration, we know from Result I that it will take about 

a few weeks to expose the application.  With random proxy 

migration, if proxies migrate about once a few hours, then it 

will take attackers hundreds of years to expose the application. 

 
4 We assume hosts in the resource pool are well maintained and they do not 

have known bugs.  Attackers will need significant amount of time to discover 

and study new vulnerabilities, rather than using existing automated attack 

tools or worms.  In reality, it may take hackers more than a few days 

(sometimes even weeks or months) to break into remote systems.  

Application 
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3.1.2 Parametric Analysis 

In this section, we study how different parameters affect the 

effectiveness of the proxy network scheme.  First Result III 

qualitatively describes the impact of different parameters.  

Then an extensive parametric study illustrates the impact of 

each parameter. 

 

Result III: Proxy migration rate and depth of proxy networks 
are the key factors to stop attackers’ penetration; linear 
increase in the depth of the proxy network exponentially 
increases the time to application exposure. 
 
Proof of Result III: 
Result III follows directly from Lemma 3.1.1 and Proposition 

3.1.2. ư 
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Figure 6 Impact of Proxy Migration Rate 

To illustrate the impact of different parameters, such as proxy 

migration rate, proxy network depth, speed of resource 

recovery and number of coordinated attackers, we consider a 

proxy network with a linear chain topology, and plot the 

expected time to application exposure as a function of these 

parameters.  To understand the impact of resource recovery 

schemes, we plot two boundary cases: no recovery and perfect 

recoveries, which immediately recover a host after its 

compromise.  To understand the impact of coordinated 

attackers, we plot the two boundary cases “¤ attackers” and 

“one attacker”.  “¤ attackers” corresponds to the highest 

penetration speed attackers can achieve on a linear chain with 

sufficiently many coordinated attackers.  “One attacker” 

corresponds to the case of a single attacker.  Therefore the 

plots provide a set of envelopes for general cases (different 

resource recovery schemes and any coordinated attacks).   

 

Figure 6 shows how the proxy migration rate affects the 

expected time to application exposure (d=5 and d=10 

respectively as shown in the two graphs; d is the depth of the 

proxy network).  From Figure 6 we can clearly see the trend 

that the expected time to application exposure significantly 

increases as migration rate increases (note that Y-axis is log 

scale).  In fact, it increases at a polynomial rate with d as the 

exponent.  For example, when d = 10, by doubling the 

migration rate, the time to exposure becomes three orders of 

magnitude longer. 

 

Figure 7 shows the impact of proxy network depth.  Similar to 

Figure 6, the plots are the boundary cases.  The expected time 

to application exposure increases exponentially as the depth 

increases.  For attackers, it means that each step further into 

the proxy network becomes exponentially harder than all the 

work they did before; and will quickly become intractable 

when depth gets fairly large.  To illustrate the speed of growth, 

suppose attackers can compromise a host in a day, and proxies 

migrate 10 times a day.  To penetrate a proxy network with a 

depth of 4 may take a few years; a depth of 6 may take a few 

hundred years; a depth of 10 may take a few million years, 

which practically means it will never happen.  Therefore, 

depth of the proxy network is an effective barrier to stop 

attackers’ penetration. 
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Figure 7 Impact of Proxy Chain Depth 

From Figure 6 and Figure 7, we can see that both the proxy 

network depth and the proxy migration rate have significant 

impact on the effectiveness of the proxy network scheme.  The 

depth of the proxy chain is the most dominant factor.  

 

Resource recovery schemes and the number of coordinated 

attackers have limited impact on the overall security.  By 

adjusting the proxy migration rate or the proxy chain depth, 

we can amortize the negative impact coming from those 

sources, as long as the majority of hosts are intact in the 

resource pool.  However, this result does not imply good 

resource recovery schemes are unnecessary.  Good recovery 

schemes are certainly favorable as shown in Figure 6 and 
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Figure 7. With better resource recoveries, we can use a smaller 

proxy network depth or a lower migration rate to achieve same 

level of security more efficiently.  More importantly, as 

discussed in Section 3.2, the resource recovery schemes have 

unique impact at the resource pool level. 

3.1.3 Impact of Proxy Network Topology 

The topology of proxy networks is important.  As discussed 

above, the depth of proxy networks is a dominant parameter.  

Besides that, the connectivity of proxy networks also has 

significant impacts on how much parallelism attackers can 

exploit to speed up application exposure.  Previous discussion 

is based on a specific class of proxy network topology (Figure 

5), where all paths from the edge proxies to the application are 

independent (Claim 3.1.3).  For general topology, we have the 

following result. 

 

Result IV: Rich connectivity increases the penetration 
probability for attackers and shortens time to application 
exposure.  If the connectivity is sufficiently high, the proxy 
network can no longer effectively hide the location of the 
application. 
 

Intuitively, in a richly connected topology, there are more 

paths leading to the application.  Therefore, there is more 

parallelism attackers can exploit.  Furthermore, vertex degree 

(number of edges that touch the vertex) is typically high in a 

richly connected topology.  That favors attackers, because 

compromising one proxy can expose a large number of 

proxies.   

 

Figure 8 A proxy network topology (R=3) 

A complete formal proof involves deep mathematic theory.  It 

is beyond the scope of this paper, and will be addressed in our 

future work.  Here we give an informal proof for a special case.  

Consider a regular graph (Figure 8), where all vertices (except 

the edge proxy and the proxies adjacent to the application) 

have degree R.  Attackers’ penetration can be considered as a 

series of retrials, with the edge proxy as the starting point.  A 

trial succeeds if attackers reach depth d.  The penetration 

probability depends on the probability of success in each trial.  

We study one such trial and show how vertex degree R affects 

this probability.  For simplicity, we only consider the case 

with perfect resource recoveries.   

 

Mathematically, this problem is a branching process [13].  

Consider any pair of adjacent proxies, for example A and B in 

Figure 8.  Let q be the conditional probability of B being 

eventually compromised if A is compromised.  Without 

retrials, it is straightforward to prove that 
rml

l
+=q .  Applying 

results in [13], we can compute the penetration probability.   

 

Figure 9 plots how vertex degree affects the penetration 

probability.  It shows that proxy networks with higher vertex 

degrees are easier to be penetrated. 
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Figure 9 Impact of Vertex Degree 

Furthermore, from the properties of branching processes [13], 

we know that q(R-1) is a criticality metric.  It is qualitatively 

different on each side of the critical points.  In the sub-critical 

case (q(R-1)<1), the depth of the proxy network is a 

theoretical barrier to stop penetration; the probability to 

penetrate a large depth can be arbitrarily small.  On the other 

hand, in the super-critical case (q(R-1)>1), the depth of the 

proxy network is no longer an effective barrier to stop 

attackers’ penetration; attackers can reach any depth with a 

non-trivial probability if given enough time.  The topologies 

discussed in previous sections are in fact in the sub-critical 

case.  When choosing a proxy network topology, the sub-

critical case is more favorable. 

 

To summarize Section 3.1, we first proved it necessary to have 

some form of reconfiguration mechanisms in the proxy 

network scheme.  Then we proved that our proxy network 

scheme with random proxy migration can effectively prevent 

attackers’ penetration and securely hide the application’s 

location.  With appropriate proxy network topologies, the 

depth of the proxy network is a dominant factor to the overall 

security, and the proxy migration rate have a significant 

impact.  Choosing these parameters appropriately can 

effectively stop attackers’ penetration.  Topology of the proxy 

network is also important.  Rich connectivity can increase the 

penetration probability and can qualitatively reduce the 

effectiveness of the proxy network scheme. 

3.2 Resource Depletion 

All the previous discussions are based on the assumption that 

we can somehow keep the majority of the hosts intact.  This 

section studies the validity of this assumption.   

Application 

 

Proxy network

depth d 

edge proxy 

A 

B 
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Result V: Reactive recoveries alone are insufficient to avoid 
resource depletion.   
Result VI: When proactive resets, which do not rely on 
detection, are used, it is possible to keep the majority of hosts 
intact in the resource pool. 
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Figure 10 Resource depletion w/o proactive reset 

Lemma 3.2.1: Assume initially all hosts are intact.  Let m be 
the percentage of hosts attackers can concurrently attack, and 
f(t) be the expected percentage of intact hosts in the resource 
pool.  We know 
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Proof of Lemma 3.2.1 is in Appendix III. 

Proof of Result V: 
From Lemma 3.2.1, we can see that when there are only 

reactive recoveries (ms=0), lim
t

 if r<1.  In 

practice, r is always less than 1; therefore all hosts will 

eventually be compromised in this case.  Result V is proved.ư 

 

Intuitively, because not all intrusions are detected (r<1), 

reactive recoveries cannot recover all the compromised hosts; 

the residues accumulate over time and eventually cause 

resource depletion.   Figure 10 shows that even if we have 

almost perfect detectors, which can detect almost all 

compromises (>99%) and instantaneously recover all the 

detected compromises, the percentage of intact hosts still 

drops fairly fast and eventually goes zero.  It is worse when 

attackers can attack more hosts concurrently or the resource 

pool is smaller.   

 
Proof of Result VI: 
When the resource pool is sufficiently large such that m¢C1, 

from Lemma 3.2.1, we know that the percentage of intact 

hosts is always higher than C2.  By appropriately choosing ms, 

md, r and the size of the resource pool, C2 can be arbitrarily 

close to 1.  Namely, the majority of the hosts are intact in the 

resource pool.  Therefore Result VI is proved.ư 
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Figure 11 Resource availability with proactive reset 

Figure 11 shows the impact of proactive reset.  A proactive 

reset at a low rate (10 times slower than speed of compromise) 

is added to the cases in Figure 10.  This small input 

fundamentally changed the system behavior.  Now the 

percentage of intact hosts stabilizes at a number close to 1.  

Namely, the resource pool can keep almost all of the hosts 

intact over infinite time.  This proves the need for proactive 

schemes that do not rely on detection.   

 

 shows that it is possible to avoid resource depletion with 

proactive resets.  The Y-axis is the percentage of intact hosts 

in a stabilized system.  It plots the worst case where attackers 

can concurrently attack all the hosts in the resource pool 

(m=1).  It shows that even if no reactive recoveries are used 
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(md=0, r=0), proactive resets can still keep a significant 

percentage of hosts intact.  With reactive recoveries, proactive 

resets at fairly low rates can keep most hosts intact.  The 

reactive recoveries shown in  are realistic.  Results from [14, 

15] show that state of art intrusion-detection systems can 

achieve better than this.   
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Figure 12 Proactive reset rate vs. intact host percentage 

3.3 Summary 

In this section, we studied the effectiveness of the proxy 

network scheme, and focused on two threats in particular: 

application exposure and resource depletion.  We proved it 

necessary to have reconfiguration in the proxy network to hide 

application’s location.  Then we proved that with random 

proxy migration, our proxy network scheme can securely and 

effectively hide the application’s location; we also proved that 

it is possible to keep most hosts in the resource pool intact.  

Combining these results, we have shown that our proxy 

network scheme is a feasible approach to securely hide 

application’s location, thereby preventing infrastructure-level 

DoS attacks. 

 

In our study, we also derived following design guidelines.   

1. Proxy network depth is a dominant factor to location-

hiding; proxy migration rate also has significant impact.  With 

appropriate proxy network topology, these two factors can 

effectively stop attackers’ penetration. 

2. The topology of proxy networks is important.  

Surprisingly, rich connectivity, a virtue in other circumstances, 

may reduce the effectiveness of proxy networks. 

3. Reactive resource recoveries are insufficient by 

themselves to avoid resource depletion.  Proactive schemes 

that do not rely on detection are necessary. 

4 DISCUSSION 

We have proved that the proxy network scheme is a feasible 

approach to location-hiding.  Our results have several 

implications to similar approaches that use overlay networks 

to hide the location of important nodes (secret nodes). 

 

First, such overlay networks need to have some form of 

reconfiguration to prevent attackers’ penetration.  Without it, 

the approach is fundamentally vulnerable to host compromise 

attacks.  Current approaches, such as SOS [9] and i3 [10], 

which do not have any active reconfiguration mechanisms in 

the overlay network, have this weakness. 

 

Second, the secret nodes should be placed at the core of the 

overlay network, far away from the edge nodes in the topology 

graph.  Caching the IP address of overlay nodes to shorten the 

route between overlay nodes, as suggested in i3 [10], can 

decrease the depth of the overlay network, therefore severely 

undermine the effectiveness of the scheme. 

 

Third, the overlay network should have the least connectivity 

necessary to maintain good connection between the edge 

nodes and the secret nodes.  General purpose overlays, such as 

Chord [16], that have high vertex degrees, may not be suitable. 

 

We have shown that rich connectivity is not favorable for 

security.  But good connectivity is necessary to tolerate 

failures, keeping applications reachable from users.  So there 

is a balance between security and failure tolerance.  How to 

choose an optimal topology is part of our future work.  This 

paper only brings up the point that more connectivity in the 

proxy network is not always good, and warns against careless 

use of existing overlays, such as Chord, that are designed for 

completely different purposes. 

 

Last, to maintain a resource pool of hosts, intrusion detection-

based reactive recoveries alone are insufficient.  Routine 

maintenance and occasional resets are critical over a long 

period of time.  Furthermore, all the hosts in the resource pool 

need to be carefully and independently administrated, and 

regularly updated with security patches, so that they are less 

likely to share vulnerabilities.  Otherwise, when hosts have 

correlated vulnerabilities, attackers can easily compromise a 

large number of hosts in a short while; it can greatly 

undermine the effectiveness of the scheme.  For this reason, 

collecting home PCs scattered in the Internet to construct a 

resource pool may not be appropriate. 

 

We only studied host compromise attacks in this paper.  Other 

attacks can also discover application’s location.  But they are 

not major threats to the system.  We briefly describe them 

below. 

- Traffic analysis on the proxy network at Internet scale 

helps attackers to locate the application.  But we do not 

consider it as a realistic threat, because it requires a prohibitive 

amount of resource and cooperation from major ISPs.   

- Espionage on secret configuration and deployment 

information of the proxy network also helps attackers to locate 

the application.  We resort to appropriate administrative 

policies and legislative means to prevent this type of attacks 

and punish the perpetrators. 

5 RELATED WORK 

Effectively resisting denial-of-service attacks is an important 

open problem. There are many ongoing studies, which can be 

categorized into two approaches:  preventive and tolerant 

approaches.  Preventive approaches try to stop or deter attacks 

from the source, which include Intrusion detection systems 
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[17-22], network ingress filtering [23] and IP trace-back 

schemes [24-27].  Tolerant approaches focus on mitigating the 

attack impact on the victim by means of system 

reconfiguration [28], resource isolation [28, 29] or load 

balance [30-33].   

 

Many researchers are exploring the use of overlay networks to 

tolerate or avoid DoS attacks.  The Secure Overlay Services 

(SOS) project [9] in Columbia University is one of them.  

They use Chord [16] in the overlay network to provide some 

amount of anonymity to hide the location of secret “servlets”.  

There are primitive analytical results about the system security 

under simple attack models such as DoS attack on individual 

hosts.  However, the analysis is tied to their Chord-based SOS 

design and they did not consider host compromise attacks, 

which are the main threat to their scheme.  Internet Indirection 

Infrastructure (i3) [10] also suggested the use of Chord 

overlay network to hide the location of the application.  They 

did not consider host compromise attacks and they did not 

fully analyze the effectiveness of their scheme.  To our 

knowledge, our work is the first attempt of a thorough analysis 

in this area. 

 

Here we have studied how to hide application location. 

Interestingly a complementary problem, hiding user identity, 

has been well studied since the early eighties.  The solutions 

range from the early mix email server [34], to distributed 

Onion Routing schemes [35], and to the more recent Peer-to-

Peer schemes such as Tarzan [36] and Pasta [37].  A key 

difference between the two problems is that there are many 

users in the system while there are only a handful of 

applications.  Most of the schemes are based on the idea of 

mixing all input from all users so that an outsider cannot 

associate a particular message to a particular user.  Another 

key difference is that user initiates the communication.  In 

some schemes, such as Onion Routing [35], senders need to 

construct a route to the receiver before hand.  These key 

differences make the two problems incomparable, and 

solutions in that area do not apply directly. 

6 SUMMARY AND FUTURE WORK 

We built a formal framework to rigorously study the 

properties of the system.  Based on our analytical models, we 

have the following results.  

1. Proxy networks with random proxy migration can 

effectively hide applications’ IP addresses; thereby preventing 

infrastructure-level DoS attacks. 

2. Proxy network depth and internal reconfiguration are 

critical to preventing attackers’ penetration. 

3. The topology of proxy networks is important.  

Surprisingly, rich connectivity, a virtue in other circumstances, 

can reduce a proxy network’s ability to hide application 

location. 

4. Reactive techniques for resource recovery are insufficient 

by themselves to avoid resource depletion.  However, 

proactive schemes can successfully prevent resource depletion. 

 

Future work includes the following. 

1. More extensive study on the relationship between proxy 

network topology and security (hiding application’s location) 

and failure resilience (maintaining connectivity) with the 

objective of guiding the design of an optimal proxy network 

topology. 

2. Study of other forms of proxy network reconfigurations 

which achieve comparable levels of security at lower 

performance overheads.  

3. Study of how (DoS or host compromise) attacks on one 

host affect other hosts in the resource pool, when hosts do 

share vulnerabilities (a new compromise model). 
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APPENDIX I.  PROOF OF LEMMA 3.1.1 
In this case, we consider a single attacker who attacks one host at a time.  

Since no proxies run on same hosts at the same time, at most one proxy can be 

under attack at any moment in this scenario.  We consider a path from an edge 

proxy to the application as shown in Figure 4.  The Markov state transition 

graph is shown in Figure 13. 

 

Figure 13 Markov State Transition (One Attacker) 

pl is the probability of compromising one host within unit time Dt (pl
-1 is the 

expected time of compromising a host); pmr is the probability of a proxy 

migration within unit time.  In state 0, only the edge proxy is exposed.  In 

state k (1¢k¢d), the kth proxy is compromised.  In state k’ (1¢k<d), the kth 

proxy is not compromised, but the (k+1)th proxy is exposed.  We study the 

expected time from state 0 to reach state n in two boundary scenarios: no 

recovery and perfect recovery.  When there is no recovery, a proxy will stay 

compromised until it migrates.  With perfect recovery, hosts are 

instantaneously recovered (in the state transition graph, state k goes to state k’ 

with probability 1). 

 

(A) No Recovery 
Tk denotes the expected time to reach state n from state k (k¢d).  Obviously, 

Td = 0 and we want T0.  It is straightforward to get a set of linear equations: 
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(B) Perfect Recovery 
Similar analysis can lead us to a set of linear equations in the same form as 

(II), but in this case 
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Results from (A) and (B) holds for any unit time Dt.  Therefore, we have 
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-Q=T  for 

no recovery.  Lemma 3.1.1 is provedư 

 

 

APPENDIX II. PROOF OF PROPOSITION 3.1.2 
First we prove the following Lemma. 

Lemma II.1: Consider a proxy network with a linear chain topology as shown 
in Figure 4.  Let d be the length of the chain.  l is the speed of host 
compromise, and Tl=l-1 is the expected time of a host compromise.  mr is the 
rate of proxy migration (mr>2l).  When the majority of the hosts in the 
resource pool are intact, the expected time for coordinated attackers to expose 

the application is between ll
m Tdr ))(( 2

2

-Q  and ll
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Proof of Lemma II.1: 

In this case, we assume attackers can concurrently attack all the exposed 

proxies and the proxy network is a linear chain of proxies as shown in Figure 

4.  Markov state transition graph is shown in Figure 14.  We use the same set 

of notation as in Appendix I. 

 

Figure 14 Markov State Transition (Multiple Attackers) 

(A) No Recovery 
From the state transition graph, we can get  
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(B) Perfect Recovery 
With similar analysis, we get 
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. With the same method used in Appendix I, we can get 
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Figure 15 Impact of Independent Paths 

Now we study a proxy network with topology shown in .  A general proof is 

beyond this paper.  Here we present a set of numerical results in Figure 15 to 

validate Proposition 3.1.2.  From the Markov state transition graphs in Figure 

14, we can obtain the transition matrix.  Using this matrix, we numerically 

compute the expected time of application exposure.  T0 and T are respectively 

the expected time to application exposure when attackers penetrate from one 

path and when attackers penetrate from N independent paths.  In Figure 15, 

the X-axis is number of paths N, and the Y-axis is N*T.  From the figure we 

know that N*T²T0 for both boundary cases.  We claim (without proof) that 

N*T²T0 is true for any general case within the boundary.  Using Lemma II.1, 

we know that T0 is between ll
m Tdr ))(( 2

2

-Q  and ll
m Tdr ))(( 1-Q .  

Therefore, Proposition 3.1.2 follows. ư 

 

APPENDIX III. PROOF OF LEMMA 3.2.1 
 
Figure 16 shows the state transition graph of hosts in the resource pool.  f(t) 

denotes the expected percentage of intact hosts in the resource pool; g(t) 

denotes the expected percentage of the compromised hosts that can eventually 

be detected; and h(t) denotes the expected percentage of compromised hosts 
that can never be detected.  m is the percentage of hosts concurrently attacked. 

 

There are two cases: m>f(t), denoted as world F1 and f(t) in this case is 

denoted by fF1(t); m¢f(t), denoted as world F2 and f(t) in this case is denoted 

by fF2(t).  In world F1, attackers can concurrently attack all intact hosts; in 

world F2, m bounds attackers’ capability. 
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Figure 16 State Transition Graph 

We first prove lemma III.1 and lemma III.2. 

 
Lemma III.1:  

1)(lim
1

Ctf
t

=F
¤­

 when f(0)+g(0)+h(0)=1, 

where
1

1 1( -

+
+=

ssd

C
mmm

lr
)

)1( -
+

rl
. 

 

Proof: From Figure 16, we can get the following differential equations: 

î
î
í

îî
ì

ë

--=
+-=

+++-=

)()(1)(

)()()(

)()()()(
)(

)(

tgtfth

tgtf

thtgtf

sddt
tdg

ssddt
tdf

mmrl
mmml

111
21

1
)( CeBeAtf tt ++=F

jj

 

Solve them, and we can get the following result: 
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.  This result holds when 

f(0)+g(0)+h(0)=1.  C1, j1, j2, A1, B1 are all constants, then Lemma III.1 

follows.ư 

 

Lemma III.2:  
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Proof: From Figure 16, we can get the following equations: 
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Solve them, we have  
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If g(0)=h(0)=0, then A2>0 and B2>0; therefore, for any t>0, fF2(t)>C2. ư 

 

Proof of Lemma 3.2.1:  
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1) When 0¢m¢C1, with some algebra we can get C2²C1.  Because m<1 and 

f(0)=1, f(t) starts in world 2 and stays there as long as f(t)²m.  From Lemma 

III.2, "t>0 f(t)²C2²C1²m, therefore it stays in F2.  The first part of Lemma 

3.2.1 is proved. 

 

2) When m>C1, similarly we can get m>C1>C2.  From Lemma III.1 and III.2 

we know that $t* such that "t>t* f(t)=fF1(t).  Therefore 
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.  The second part of Lemma 3.2.1 is 

proved.ư 
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