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1 Program Summary and Results 

1.1 Problem Description 
 
Heterogeneous computing architectures provide the ability to match unique hardware capabilities with specific 
system application requirements.  For example a Field Programmable Gate Array (FPGA) processor can be used as 
a Fast Fourier Transform (FFT) accelerator while a general purpose processor such as a PowerPC can be used to 
implement a complex decision tree.  The overall system performance is optimized in terms of throughput and cost 
by utilizing the strengths of a variety of compute element types.  Typically, heterogeneous computing architectures 
are required to meet the demanding needs of sensor applications such as Space-Time Adaptive Processing (STAP), 
Automatic Target Recognition (ATR), and Synthetic Aperture Radar (SAR).   A primary drawback to utilizing a 
mixed hardware environment is the level of effort required to develop optimum requirements/hardware mappings 
and generation of the overall system control software.  Often the time required to implement the first iteration of the 
requirements/hardware mapping exceeds the budgeted project timeline and the application designer has little or no 
feedback on the quality of decisions made.  The system control software includes not only the message/data 
interface among the system components but also start up and initialization of each of the individual hardware assets.  
The application designer is required to research the specifications of each of the hardware types utilized and develop 
unique I/O interfaces for each. 
 
During this research and development investigation, which spanned six years, H-RTExpress added inclusion of 
Mercury Raceway PowerPCs to the earlier RTExpress work and operation on i860 processors with Hughes message 
passing interface (MPI) software. Support was added for the CSPI two-level multicomputer (PowerPC) with 
Myrinet and the network of Sun Workstations on Ethernet running Solaris. As the i860 architecture was becoming 
obsolete, a switch was made to support SHARC boards, loaned from AFRL, and a demonstration of that hardware 
mix was accomplished. The MPI/Pro implementation of MPI from MPI Software Technology, Inc. was utilized, and 
an effort to produce a real-time version of MPI, or MPI/RT, was started by Mississippi State University and later 
terminated.  
 
H-RTExpress began with support for the MathWorks MATLAB software, which was at version 4.2, and followed 
the MATLAB software through two updates to versions 5.2 and 5.3.   
 
The user interface was improved from the text based Target Balancing Tool (tbt) in RTExpress, to the graphic user 
interfaces (GUI) in the tools, mapit, splitm, editm, and bedit. Additional graphic performance monitoring tools were 
also added to the system. 
 
The GUI tools in the H-RTExpress environment provide the ability to map MATLAB code segments onto 
heterogeneous processing nodes.  A user is able to define and view a graphical representation of their target 
hardware architecture and software application, and then using point and click techniques, graphically map the 
software to hardware elements. The graphical representation of the hardware architecture is a coarse level 
representation.  It provides multiple levels to view the hardware architecture.  It includes processor nodes, switches, 
buses, I/O, and host information.  A user can click on any of the architecture components to get more detailed 
information about the component.  
 
Techniques and methods have been developed for launching the MATLAB application components on the 
heterogeneous hardware architecture.  Part of this launching process is generating the executable code for the target 
architecture.  For the embedded processors, parallel C code is generated and then compiled.  For the adaptive 
computing nodes, preprogrammed library cores are utilized, and a graphic data-flow tool to create core library 
elements has been integrated into the environment.   
 
The final stages of this program concentrated on field programmable gate arrays (FPGA). Support for the System 
Level Applications of Adaptive Computing (SLAAC) FPGA board from USC/ISI was added and demonstrated 
along with demonstrated support for the Annapolis WILDSTAR FPGA VME board. 
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The initial concept for RTExpress™ was funded under an Air Force Research Laboratory contract. The development 
of the RTExpress™ environment was funded under DARPA/ITO BAA 95-19.  H-RTExpress was used to support 
other DARPA programs, such as the Preprocessor For UHF/VHF SAR program, contract DAAH01-99-C-R026, 
Power Aware Computing and Communication program, DARPA/ITO BAA 99-37, contract F30602-00-C-0150, and 
the Symbiotic Communications, SYCO, subcontract #370020SC. 
 
The remainder of this report concentrates on the present state of the H-RTExpress software as demonstrated at ISI 
and installed at AFRL, Rome Research Site. Acknowledgement is given to past Principle Investigators, Rich Besler, 
Milissa Benincasa, and Diane Brassaw, and to past and present team contributors, Ron Adair, James Graham, John 
Ivory, Gary Kapps, and Adriana Kane. 
 
Under this contract ISI let and administered subcontracts with Lockheed Martin Corporation (LMCO) and Northrop 
Grumman. LMCO developed WILDSTAR™ VHDL FFT Cores and Northrop Grumman Electronic Systems 
(NGES) developed an enhanced Micro-Accelerator FPGA Daughter Card.   These developments are described 
separately in Appendix I and Appendix II, respectively. 
 

1.2 Program Objectives 
 
The objective of this effort is to provide enabling technology and domain specific tools to quickly and effectively 
move systems targeted for heterogeneous architectures from concept to implementation.  An important part of such a 
tool suite is optimizing the selection of the “best” hardware to meet specific algorithm requirements.  The tool suite 
must also address rapid changes in hardware capabilities, which tend to quickly obsolete systems that do not include 
portable software, and thus lead to large software reinvestment. 
 
Objectives for the integrated software development environment include the following features: 
  

• An integrated graphical user interface (GUI) environment for end-to-end application development on 
heterogeneous processor architectures in the system engineering domain.  The GUI environment must 
provide both hardware and software graphical visualization. 

 
• Techniques and notation for specifying variable data precision in conjunction with MATLAB® algorithm 

description. 
 

• Methods for mapping MATLAB® code segments onto heterogeneous processing compute elements 
consisting of both embedded and adaptive computing hardware. 

 
• Methods for launching applications across heterogeneous processor architectures. 

1.3 Processing Overview 
 
This effort produced an integrated development tool suite and run-time environment that provides the capability to 
quickly and efficiently move from system concept to deployable system utilizing various hardware architectures 
including heterogeneous architectures.  The development environment supports a variety of hardware types and also 
provides the capability to be expanded to support new products, as they become available.  The run-time 
environment provides the ability to launch the applications across a heterogeneous set of processing elements and 
provide the required system initialization and synchronization.  The run-time environment also supports inter 
processor communication which allows efficient data distribution across components of the overall hardware 
architecture. 
 
The tools developed to satisfy the development and runtime environment requirements are collectively call H-
RTExpress™ since they are based on RTExpress™, which is a commercial product produced by Integrated Sensors 
Inc.  RTExpress™ currently meets many of the desired program objectives for homogeneous architectures and it was 
used as a springboard to meet the needs of heterogeneous systems. 
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1.3.1 Development Environment 
 
The H-RTExpress™ development environment is used to map system requirements to individual compute elements 
and then generate the required executables and run scripts.  The user must supply the system level requirements in 
the form of MATLAB® scripts.  Using the development environment the user then performs the following three 
step to produce a executable software system: 
 

1) Subdivide the processing requirements into processing groups.  There are several possible reasons for 
doing this.  Processing groups may be defined so that multiple groups can operate in parallel, or a 
processing group may be defined to contain a section of the requirements which is applicable to a 
unique type of compute element, or a processing group may be defined to encapsulate a system 
interface.  The H-RTExpress™ environment supports either no subdivision or any combination of the 
possibilities listed.  The subdivision of requirements at this point is independent of the actual hardware 
the system will be implemented with. 

 
2) Build a description of the target system hardware architecture.  This step requires the user to identify 

compute element types and quantities.  The H-RTExpress™ environment supports the concept of a 
hardware resource library so that a system administrator can build the actual low level description of 
node types and the general user can then select from a predefined list of resources.  The general user 
also has the ability to create and/or modify a compute element descriptor as required.  This step is 
independent of the specification of processing requirements described in step 1.  In fact, this step can 
be used to create several hardware configurations which can be used to implement the same system 
requirements. 

 
3) Map the processing groups specified in Step 1 to the hardware compute elements described in Step 2.  

This step allows the user to specify the number and type of compute elements assigned to each 
processing group.  Within a processing group the compute element type must be homogeneous.  This 
step also allows the user to specify the type(s) of parallelization to be used.  The supported forms of 
parallelization are data parallelization, task parallelization, and round robin.   A processing group can 
only support one type of parallelization at a time but the collective system can support any 
combination of parallelization methods. 

 
Once these steps have been completed the development environment is then used to generate the correct load images 
for each of the compute elements and the required scripts to launch the application. 
 
There are two H-RTExpress™ features which need to be introduced here.  These are FPGA processor and variable 
data precision support.   
 
1.3.1.1 FPGA Support 
 
For this program, a heterogeneous architecture consisting of general-purpose processors and FPGA compute 
elements was selected.  Within this architecture definition four different FPGA compute elements were considered.  
Within the H-RTExpress™ environment an FPGA compute element actually consists of a pair of processors, a 
general purpose processor which provides the MPI interface to the “compute element” and an FPGA accelerator.   
This matches the model used by each of the FPGA vendors, Annapolis Micro Systems (WILDSTAR™ and 
FIREBIRD™), University of Southern California/Information Sciences Institute (USC/ISI) East (SLAAC-2), and 
Northrop Grumman (Mercury FPGA Accelerator).  The H-RTExpress™ tool set does not provide the capability to 
convert MATLAB® script into images that can be loaded into the FPGA devices.  While there are several programs 
in progress which are looking into MATLAB® to VHSIC (Very High Speed Integrated Circuits) Hardware Design 
Language (VHDL) or C to VHDL translations, there are no mature tools available for use in the H-RTExpress™ 
development environment.  The H-RTExpress™ tool set does provide a growth path to easily couple this type of tool 
into the code generation section when they become available.  The development environment instead supports a 
library of predefined FPGA cores defined for each FPGA type.  The user is able to develop and add cores to the 
library.  The library of cores represents a predefined list of functions, which can be executed on the FPGA node.  
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This list also defines the required inputs and output formats for the supplied function.  Using the H-RTExpress™ 
environment the user will be able to implement functions (i.e. FFT, FIR filter, etc.) on the FPGA once a core for 
those functions is available.  For the WILDSTAR™ and FIREBIRD™ FPGAs the COREFIRE™ tool from AMS was 
used to generate a number of cores.  Standard VHDL tools were used to generate cores for the SLAAC-2 and 
Northrop Grumman accelerator cards. 
 
1.3.1.2 Variable Data Precision Support 
 
 One of the key advantages of using FPGA accelerators is the ability to perform reduced precision operations where 
possible to reap the resulting performance benefits.  General-purpose processors provide some flexibility in 
precision selection but the underlying hardware often cannot take full advantage of a fixed-point data size or support 
mixed precision modes.  Support in H-RTExpress™ for variable data precision was limited to the selection of single 
or double precision floating point on a general-purpose processor.  Data precision for the FPGA devices, on the 
other hand, is limited by the core design for the FPGA devices.  An FPGA library of cores may be used to provide a 
selection of data precision or support mixed data precision.  For the general purpose processor, the user is able to 
specify the floating-point selection on a line-by-line basis in the MATLAB® script.  For the FPGA compute element 
the precision is defined within the core specification where a core or set of cores represents a function callable from 
a MATLAB® script.  

1.3.2 Runtime Environment 
 
The runtime environment is used to load each compute element in the hardware architecture and control startup, 
system initialization, and termination of the application processing.  Application startup consists of bringing each 
compute element to a known state, loading any required runtime kernels, and loading each compute element with its 
required executable.  System initialization requires synchronization of all of the compute elements, distribution of 
required interfacing and/or application initial data, and initiation of the application.  Termination requires 
synchronization of the compute elements, logging of system information as required, release of acquired system 
assets, and termination of the application on each compute element.  The H-RTExpress™ runtime environment 
automatically provides each of these functions based on the type of hardware compute element selected.  For FPGA 
compute elements this functionality is encapsulated in a library generated for each board. The H-RTExpress™ 
development tool set automatically links in the appropriate library as directed by a user’s selection of an FPGA 
hardware type. 
 

1.4 Summary of Program Accomplishments 
 
H-RTExpress™ incorporated the strengths of RTExpress™, which was developed under a rapid prototyping DARPA 
initiative.  These strengths allow the system designer to quickly and efficiently move from a MATLAB® based 
development environment to an embedded platform hardware implementation.  H-RTExpress™ also provides a 
complete run time environment that allows the user to load and execute the software design on the heterogeneous 
environment.  In addition H-RTExpress™ offers a variety of performance monitoring tools so the designer can 
evaluate and fine tune process and hardware mapping decisions. 
 
H-RTExpress™ significantly improved the capability of the system designer GUI interface (mapit).  Hardware 
systems can now be defined in terms of vendor supplied units (VME boards, PC boxes) instead of individual 
compute elements.  This reduces the end user burden when required to build hardware platform description since 
vendor specifications can be used to build a library of hardware options.  The end-to-end application development 
can be visualized and controlled from the GUI interface.  
 
H-RTExpress™ provides a very modular approach for the incorporation of unique hardware processors such as 
FPGA boards.  The FPGA interface is layered so that addition and deletion of supported platforms is performed 
when the application code is linked.  This means that the same version of the H-RTExpress™ can support a variety 
of hardware configurations.  For H-RTExpress™ to support a particular FPGA processor a software interface layer 
must be written which interfaces the H-RTExpress™ calls to the correct sequence of vendor API calls as shown in 
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Figure 1.  Using a layered interface approach H-RTExpress™ is able to easily adapt to the individual interface 
requirements of hardware incorporated into platform and provide a consistent interface to the user program. 

FPGA Hardware

Vendor Supplied API

Interface Layer
(Translation layer)

H-RTExpress FPGA Standard Interface
(Same calls for all FPGA processors)

 
Figure 1 Layered FPGA Interface Design 

 
H-RTExpress™ also demonstrated techniques and methods for specifying data precision from the MATLAB® 
specification level.  H-RTExpress™ demonstrated the capability to operate in a mixed data precision mode both in 
terms of floating point and fixed point computations.  This initial work limited the variety of data precision that 
could be specified but a software structure was created that could be expanded to increase the depth of coverage.     

2 Concept Evaluation and Technical Results 

2.1 Overview 
 
This section provides detailed descriptions of the unique features of H-RTExpress™ and the results of 
demonstrations used to evaluate the use and performance of those features. 

2.2 H-RTExpress™ Development Environment 
 
The H-RTExpress™ software development environment is illustrated in Figure 2. 
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   Figure 2 H-RTExpress™ Environment 
 
All of the existing features of RTExpress™ are maintained in H-RTExpress™, and support for both the Annapolis 
Micro Systems WILDSTAR™ and USC/ISI SLAAC-2 Adaptive Computing Systems boards have been added.  
Support for the Annapolis Microsystems FIREBIRD™ PCI board (BAA-99-37) and  for a Northrop Grumman 
Mercury RACE++ FPGA Daughter Card  (BAA 97-06 ECP) has also been added. 
 
The H-RTExpress™ Environment utilizes four main user tools: splitm (MATLAB® editor and splitting); editm 
(MATLAB® editor); Mapit (resource mapper); and bedit (hardware specification).  A visualization of the tool 
windows is shown in Figure 3.  In addition to other third party products, such as the MathWorks MATLAB® 
Translator, MSTI's MPI Pro, and a standard compiler and linker, H-RTExpress™ includes the ISI Real-Time 
Toolbox functions and parallel function library that brings MATLAB® functions to a parallel implementation. 
Where available, vendor supplied libraries are used, as is the case with the Mercury Computer Scientific Application 
Library (SAL). 
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The The H- RTExpres

H- RTE
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in parallelizing  MATLABin parallelizing  MATLAB®®

code.code.
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MATLAB® software
tasks to physical
hardware nodes.

splitm: Provides the user
with the ability to define how
the MATLAB® algorithm can
be parallelized.

editm:  Enhanced text
editor for editing a user's
MATLAB® code.

 xpress™ 
Tool Windows

bedit:  Board editor graphical
configuration tool to depict
compute elements.

 
 

Figure 3 H-RTExpress™ Tool Windows 
 
Real time data visualization and user defined buttons and input and output data boxes are available in the H-
RTExpress™ Real-Time Toolbox graphic user interface.  Some of the features are shown in Figure 4. 
 
 

Emulates MATLAB® plot with enhancements
 for real-time operation
   Data Pause/Save to disk for User Analysis 
   Variable scaling
  Time Decimation to control I/O Loading

Emulates MATLAB® “image” with enhancements
 for real-time operation
Data Pause/Save to disk for User Analysis
Variable scaling
Time/Space Decimation to control I/O Loading

Plan Position Indication 
(PPI)

 
 
 

Figure 4 H-RTExpress™ Data Visualization 
 
 
The H-RTExpress™ environment provides real-time performance monitoring, shown in Figure 5, as the application 
is executing on the target architecture, plus post-mortem instrumentation (for debugging and analyzing the parallel 
application after it has been executed).  Graphic visualization, not shown in Figure 5, is also supplied for real-time 
program memory utilization, and real-time program event monitoring. 
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Real-Time Performance Monitoring

Post-Mortem
Instrumentation  

 
 

Figure 5 H-RTExpress™ Performance Monitoring 
 

2.2.1 H-RTExpress™ FPGA Model 
 
The FPGA is viewed as an adjunct processor to a general-purpose processor (GPP) by H-RTExpress™, as shown in 
Figure 6.  The GPP associated with an FPGA communicates to other processors via the Message Passing Interface 
(MPI) standard, and is responsible for all data conversion and control to and from the FPGA.  H-RTExpress™ 
allows the programmer to select a function from the FPGA library to be called from the MATLAB® language.  An 
FPGA library element consists of the FPGA Wrapper (C program) and FPGA core, or set of cores.  The FPGA cores 
are built and tested for specific devices on the appropriate board.  The C wrapper executes on the GPP and uses the 
vendor supplied API to interface to the FPGA accelerator.  This process is illustrated in Figure 7. 
 
 

FPGA
Wrapper
(C-file)

FPGA Core
set

GPP FPGA

MPI  
 

Figure 6 H-RTExpress™ FPGA Model 
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M-File
group0

group1

group2

C Wrapper
function abc() Core

function foo_bar()

User M-File

X = foo_bar();

GPP FPGA

abc foo_bar IEEE-32

Core Function Precision

Filling in information
for FPGA Mapping replaces all
instances of calls to foo_bar in
group1 with call to function abc.

ACS “core” Library

 
Figure 7 Splitting M-File and Mapping to FPGA 

2.2.2 H-RTExpress™ Tools 
 
The H-RTExpress™ user may start with a top-level MATLAB® m-file, and using "splitm" take the m-file and split 
it into logical processing groups.  Splitm as shown in Figure 8, allows the programmer to define various groups, and 
graphically select lines from the m-file and associate them with the defined groups.  The splitm tool creates separate 
m-files for each processing group.  The "editm" tool, seen in Figure 9, is very much like splitm, however, it is only 
concerned with editing m-files, and like splitm, has color-coded presentation to highlight aspects of the MATLAB® 
language.  Built-in help for MATLAB® and H-RTExpress™ Real-Time Toolbox functions is included. 
 
An additional feature of H-RTExpress™ is that individual lines may be selected, using either tool, and through the 
menu pull-down, or a keyboard shortcut and tagged as an exception to the default precision.  The project precision is 
selected from the settings window of the mapit GUI.  This is the default precision for all lines in the MATLAB® 
script unless an exception is noted.  H-RTExpress™ denotes precision exceptions for subsequent processing by the 
addition of a token (%_p%) at the end of the line(s) selected.  The token denotes a line will be executed with the 
opposite (single vs. double) precision selected as the project default.  Through this mechanism, as seen in Figure 10, 
H-RTExpress™ users may use the performance enhancement of single precision while still utilizing double 
precision for those portions of their programs that require the additional word size. 
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• The H-RTExpress™ splitm tool
provides the capability to specify the
functional groupings of a top level
MATLB® m-file
• splitm currently supports the
following parallel models

•Data parallel
•Task parallel
•Pipeline
•Round Robin
•Mixed Mode

• Once a m-file has been
functionally decomposed using
splitm, it will be graphically
represented in the H-RTExpress ™
Resource Mapper tool

 
Figure 8 H-RTExpress™ Splitm  

• The H-RTExpress™
editm tool provides an
enhanced text editor for a
user’s MATLAB m-file

 
Figure 9 H-RTExpress™ Editm  
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Project Precision - Single

Line Precision - Double
Generated C code

 
 

Figure 10 Variable Data Precision Control 
 
Using the H-RTExpress™ Mapit Resource Mapping tool shown in Figure 11, the programmer makes a relationship 
between processing groups previously defined using splitm and processing resources, such as a general-purpose 
processor or an FPGA board.   A mapping configuration file holds information on the application configuration and 
processor configuration files and the mapping relations between them.  The application configuration also contains 
information about the top-level m-file, any m-files called, or any C-program files called.  If the processing group is 
assigned to an FPGA enhanced compute element, the application configuration also contains information about the 
FPGA core to load and initialize.   The tool produces the standard "make" files and a startup script to launch the 
parallel program.  

 

This side defines what hardware will
participate in the implementation

(the processor setup)

This side defines how the
algorithm is to be broken up

for  mapping
(the application configuration)

This window manages how
the application is mapped to
the processors, and how the

end product is made and
launched.

 
 

Figure 11 H-RTExpress™ Resource Mapping 
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If the process group is assigned to an FPGA enhanced compute element, double clicking the group icon (see Figure 
12) brings up the FPGA library pop-up menu for specification of an existing FPGA function.  The FPGA library is 
extensible, and for this project, several cores were added. 
 

 

Double clicking
an application
group in mapit
brings up this

dialog

The assignment of FPGA core
functions to individual devices is
managed through this interface,
based on the descriptions provided
through the matching FPGA library
file for the CE/Board the group was
mapped to.

DEVNAME Dev_0
DEVNAME Dev_1
DEVNAME Dev_2

FUNC  SARProc   Fixed-16  Dev_0 Dev_1 Dev_2
FUNC  QR        IEEE-32   Dev_0
FUNC  FFT       IEEE-16         Dev_1 Dev_2
FUNC  VecMul16  Fixed-16              Dev_2
FUNC  VecMulFlt IEEE-64   Dev_0       Dev_2

FPGA Library
Description File (sample)

 
 
 

Figure 12 H-RTExpress™ Library Selection 
 
The processor configurations (left window of mapit GUI) are built using the H_RTExpress™ board editor (bedit).   
bedit allows the user to build hardware architectures from graphical components or load predefined hardware 
architectures.  This tool can be used to create a library of hardware architecture boards.  The diagram in Figure 13 
shows a four-node cluster, which has a single element that contains a FIREBIRD™ FPGA accelerator.  The popup 
shown in Figure 13 is obtained by double clicking the upper right compute element. 
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Figure 13 H-RTExpress™ Board Editor 

2.2.3 H-RTExpress™ Extendibility 
 
There are several features in the overall H-RTExpress™ design which allow the user to extend the environment to 
cover a wider range of applications.  The user is able to include additional MATLAB® scripts as well as files 
written in C.  In the same manner the FPGA core library is user extensible. Each library element consists of a C-
wrapper file and one or more FPGA cores that are associated with it.   The cores are built and tested for a specific 
function and FPGA hardware.  One of the tools available to aid the user in development of a library of FPGA cores 
is COREFIRE™ built by Annapolis MicroSystems which is described in the next section.  This tool was used to 
develop the FIREBIRD™ FPGA cores for the Coherent Sidelobe Cancellor demonstration described in Section 
2.4.4 
  
2.2.3.1 AMS COREFIRE™ 
 
The COREFIRE™ Design Suite provides a large collection of cores and an application builder that enable users to 
describe and build FPGA designs without using hardware design languages such as VHDL or Verilog. The 
COREFIRE™ Design Suite also includes an application debugger that enables users to load and interact with their 
designs in the target environment without writing application programs. As the central component of the 
COREFIRE™ Design Suite, the COREFIRE™ Application Builder features a unique drag-and-drop capability for 
combining core components into ready-to-run programs. See  
Figure 14 for an overview of the COREFIRE environment.   An extensive array of these core components are 
available in the COREFIRE™ Module Libraries, along with Annapolis Micro Systems, Inc. board-specific support 
packages. 
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In summary, some of the benefits of COREFIRE™ include: 
 

a) Works from High Level, Data Flow Concept of the Design 
b) Combines GUI Design Entry and Debug Tools with Tested, Optimized COREFIRE™ IP 

Cores 
c) Drag and Drop High and Low Level Modules 
d) COREFIRE™ Modules Incorporate Years of Application Development Experience - Highly 

Optimized and Tested 
e) COREFIRE™ Tools and Modules are Intelligent 
f) Modules Automatically Handle Synchronization 
g) Manage Clocks and Other Low Level Hardware Signals 
h) Guarantee Correct Control by Design 
i) Modules "Know How" to Interact With Each Other 
j) Board Support Packages Incorporate Hardware Details of the Boards - Invisible to Users 
k) Supports Conversion Between Data Types - Bit, Signed and Unsigned Integers, Single 

Precision Floating Point, and Integer and Floating Point Complex Data Types 
l) Provides Java Files & Host Code to Run & Debug the FPGAs 
m) Works with all WILD™ Virtex™, Virtex™ E and Virtex™ II FPGA processor and I/O boards 

 
 

Insert Auto generated C
host files and X86 image
file into H- RTRTExpressExpress™™

FPGA library

 
Figure 14 AMS COREFIRE™ Development Environment 

 
An ISI generated utility reads the XML map file from COREFIRE™ and creates a series of files to facilitate 
insertion of the newly generated FPGA core into the H-RTExpress™ core library.  The basic operation of 
COREFIRE™ to C (cf2c) is to read the XML file which contains the host interface definitions, picking up the user’s 
name and address for each item and the COREFIRE™ name for the item.  Based on the COREFIRE™ name, the 
appropriate template is selected.  That template is appended to the *.c file (lower-case name) and its associated *.h 
file (lower-case-name).  The template contains various key words that are replaced with the user’s interface item 
name and local address.  The mlf*.c file becomes the C-wrapper that is a callable function from the H-RTExpress™ 
MATLAB®, and it uses the interface functions that were created by this process.  The user must edit the main 
portion of the mlf file to produce the desired behavior, however, all of the procedures to support each interface item 
have been created to expedite the process of creating the wrapper file. The new FPGA function is then entered into 
the FPGA Library Description File for use by H-RTExpress™. 
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2.3 Run-time Environment 
 
To execute a user application on a heterogeneous target hardware a run time environment is required to facilitate 
launching the application, supporting communication across the environment, and allowing an orderly termination 
when the application ends.  When an application is launched each compute element must be initialized, an 
executable loaded, and the start of program execution synchronized with all other compute elements. Similarly when 
an application terminates system resources allocated during program execution must be released and hardware 
devices should be placed in a known state. During execution all compute elements, including the FPGA devices, 
may be required to transmit and/or receive data and/or command information.  In a heterogeneous environment each 
of these requirements may involve a unique set of procedures for each node type utilized.  The H-RTExpress™ run-
time environment provides mechanisms to support each of these requirements. 
 

2.3.1 Startup 
 
H-RTExpress™ uses the Message Passing Interface (MPI) communications library as the underlying mechanism to 
communicate between processing nodes.  As described before an FPGA device is viewed as an adjunct to a general-
purpose processor (GPP).  A GPP node fully supports MPI.  Within MPI the utility MPI_Init is utilized to 
synchronize all processing nodes used in the application at startup.  An FPGA enhanced processing node 
(combination of GPP and FPGA device) is responsible for initializing its associated FPGA device prior to calling 
MPI_Init.  When launch scripts are built for an application by the H-RTExpress™ Development Environment tools, 
a configuration file, node.cfg, is built which contains user selectable run time parameters for the H-RTExpress™ 
environment.  Among these parameters is an indicator that a group consists of FPGA enhanced nodes and that the 
user has mapped an FPGA based function to the group.  A second configuration file was also created for the group 
which contains information required to initialize the FPGA device.  This information includes but is not limited to: 
number of cores, identity of devices to be loaded, names and paths to cores, minimum, maximum, and nominal 
clock frequency settings.  This file is parsed by the run-time environment and the associated FPGA device is 
initialized using a board specific initialization module that is part of the H-RTExpress™ run-time library.  Once the 
FPGA device is initialized the processing node synchronizes with the remaining processing nodes using MPI_Init.  
The startup procedure is summarized in Figure 15. 
 

m piru n  -  la unch es
ap p lica tions  on  G P P

G rou p
F P G A

e nh a nc ed?

H -R T E x p ress in itia lize s its  ru n tim e
en v iro n m en t.  R e ad s p ro jec t co n fig u ratio n
file  .n o d e.c fg  w h ich  sp e cif ies  g ro up  p a ra m ete rs

R e ad s g ro up  c o n fig u ratio n
f ile  < g ro u p _ n am e > _ F P G A .cfg .
E x ecu tes  b o ard  sp ec ific  startu p
an d  lo a d s an d  starts  a ll  c o re s 

req u ire d  fo r th e  m a pp e d  
fun c tio n . 

C om p letes  in itia lizatio n  an d  ex ecu tes  u ser  ap p lica tion

N o

Y es

 
 

Figure 15 FPGA Group Start-Up 
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2.3.2 FPGA Wrappers 
 
Figure 16 is a generalized form of the C wrapper required for each function performed in an FPGA device.  A C 
wrapper that executes on the GPP is required to interface the specific FPGA device to the MPI based environment 
and provide the API required by the function design (control and/or data sequence, control parameters, data format).   
Depending on the FPGA device and/or function design all of the following steps may not be required. 
 

a) Format input data:   
 

Parameters and/or data are passed to the C wrapper within mxArray structures.  These structures contain the 
data itself if the parameter is a scalar, otherwise a pointer to the data is passed within the structure.  The data 
can be real or complex and either single or double precision floating point.  The FPGA device and function 
design will determine the required data format translation. 

 
b) Perform required control/setup: 

 
As a function of the FPGA design any required setup and/or control must occur.  The FPGA device design 
will also specify the required sequencing of control and/or data. This processing in addition to being design 
specific will also be device specific in its implementation. 

 
c) Transfer data to FPGA: 

 
The device design will specify the required input control and/or data format.  The device will specify how the 
data is to be transferred, FIFO, DMA, registers, etc. 

 
d) Synchronize data completion: 

 
Device design will specify how and if any synchronization is required to determine the availability of results 
from the FPGA device.  The FPGA device itself will determine how that notification occurs (polling, DMA 
transfer, interrupt, etc).  The H-RTExpress™ run-time environment does not currently support a mechanism 
to post for data completion. 

 
e) Transfer data from FPGA: 
The device design will specify the required output data and its format.  The device will specify how the data 
is transferred (FIFO, DMA, registers, etc). 

 
f) Format return parameters: 

 
All data and status is returned to the MATLAB® processing environment within mxArray structures.  As on 
input the output data must match the expected precision of the MATLAB® processing. 
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Format input data 

Transfer data to/from FPGA

Perform required control

Synchronize data completion.

Format return parameters.

Compiled
MATLABTM

 
Figure 16 “C” Wrapper Functional Flow 

 
 

2.3.3 Shutdown 
 
As with Startup, the MPI communications library module MPI_Finalize is utilized to synchronize shutdown of all 
processing nodes used in the application.  An FPGA enhanced processing node is responsible for terminating its 
associated FPGA device prior to calling MPI_Finalize.  A processing node has already determined during 
initialization that its associated FPGA device is being utilized.  A board specific termination module that is part of 
the H-RTExpress™ run-time library is called to perform the required device shutdown.  Once the FPGA device is 
shutdown the processing node synchronized with the remaining processing nodes using MPI_Finalize.  The system 
shutdown processing is summarized in  
Figure 17. 
 

User application terminates

H-RTExpress run-time environment performs termination functions

Perform required board 
specific shutdown.

Terminate application

FPGA?

No

Yes

 
 

Figure 17 FPGA Group Shutdown 
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2.3.4 Supported Platforms 
 
2.3.4.1 SLAAC-2 
 
The SLAAC-2 VME daughter card shown in Figure 18 was designed and manufactured by the University of 
Southern California/Information Sciences Institute (USC/ISI) East.  This card was developed under the Systems 
Level Applications of Adaptive Computing (SLAAC) project sponsored by DARPA TTO Adaptive Computing 
Systems. 
 
The SLAAC-2 processor is actually two “independent” SLAAC-1 bit-file compatible accelerators on a single 6U 
PMC mezzanine card.  This mezzanine plugs into a modified CSPI 2641 PowerPC baseboard, the M2641S.  Each of 
the FPGA accelerators features one user-programmable Xilinx 4085 devices, two user-programmable Xilinx 40150 
devices, and ten 256Kx18 100MHz ZBT synchronous SRAMs.  A block diagram of the SLACC-1 node is shown in 
Figure 19 
 

 
Figure 18 SLAAC-2 VME Daughtercard 
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XC4085XLA - 3,136 CLBs (Configurable Logic Blocks)
XC40150XV - 5,184 CLBs
XCV1000E (Virtex I) - 6,144 CLBs (comparison)

10 256Kx18 100 MHz 
ZBT synchronous SRAMs

Xilinx 4085

Xilinx 40150 parts

 
 

Figure 19 SLAAC -1 FPGA Accelerator 
 
 
The 6U VME CSPI M2641S baseboard contains two 300 MHz Motorola PowerPC 603e processing elements each 
with 256 Mbytes of SDRAM.  The M2641S uses Myrinet as its external interface. 
 
Each PowerPC interfaces with its associated FPGA accelerator through a pair of FIFOs (one for input and one for 
output) as shown in Figure 20.  For this project CSPI software version 1.4 which incorporates VxWorks version 
5.3.2 and Tornado 1.0.1 was used with SLAAC-2 API version 1.2. 
 

CSPI 
PowerPC

Xilinx
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Figure 20 SLAAC-1 Element Interfaces 
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2.3.4.2 AMS WILDSTAR™ – VME 
  
The WILDSTAR™ FPGA board, see Figure 21, is produced by Annapolis Micro Systems, Inc (AMS).  It is a 6U 
VME card which contains up to three Virtex™ or Virtex™ E FPGA Processing Element (XCV400 to XCV2000E).  
The board used for this project contained three Virtex™ XCV1000E speed grade 4 parts.  The board can also support 
2 to 40 MBytes of Synchronous ZBT SRAM.  The board used for this project contained 20 Mbytes of SRAM.  The 
board can also accept up to two PMC daughtercards.  Available daughtercards support Race™, Race++™, Front 
Panel Data Port (FPDP), WILDSTAR™ Data Port (WSDP™) and Myrinet interfaces.  Additional daughtercards are 
available which support an i960 processor and a high speed A/D interface.  A block diagram of the WILDSTAR 
FPGA processor is shown in Figure 22. 

 
 

Figure 21 WILDSTAR™ FPGA Processor 
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Figure 22 WIDSTAR™ Block Diagram 

 
The AMS WILDSTAR™ API Version 3.0.0 and PCI Version 3.0.0 were used for this project. 
 
 
 
 
2.3.4.3 AMS FIREBIRD™ 
 
The FIREBIRD™ PCI card, shown in Figure 23, is also produced by AMS.  It is a PCI card which contains a single 
Virtex™ E FPGA Processing Element ranging from XCV1000E to XCV2000E .  The board used for this project 
contains a Virtex™ XCV2000E speed grade 8 part.  The board can also support 9 to 36 MBytes of Synchronous 
ZBT SRAM in 5 Memory Banks. The board used for this project contained 36 Mbytes of SRAM.  The board is PCI 
Bus - Rev 2.2 Compliant and can support the following interface options: 
 
                          5V Board - 32/64 Bit, 33 MHz, 5V or 3.3V Slot  
                          3.3V Board - 32/64 Bit, 33/66 MHz, 3.3V Slot  
                          Automatic 32/64 Bit PCI Bus Recognition 
 
The board used for this project was the 3.3V board, which was configured for a PCI interface, using 64 bits and a 66 
MHz data clock.  The board can accept a single PMC daughter card and will support the same daughter cards 
available for the WILDSTAR™.  The board used for this project had an FPDP-E daughter card installed which 
contained a single Virtex XCV2000E speed grade 6 part. 
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Figure 23 AMS FIREBIRD™ For PCI 

 
The AMS WILDSTAR™ API Version 5.0.0, Driver Version 1.2.5, and PCI Version 2.8.0 were used for this project. 
 
2.3.4.4 Northrop Grumman Micro Accelerator 
 
The Northrop Grumman Micro Accelerator is a Type B Race++™ Mercury daughtercard.  A detailed description of 
the accelerator is contained in  
 
 
Appendix II - Description of Northrop Grumman Micro Accelerator. 

2.3.5 Variable Data Precision 
 
2.3.5.1 Definition 
 
This project examined techniques and notation for specifying variable data precision in conjunction with 
MATLAB® algorithm description.  The problem was first addressed by dividing the data precision definition into 
two categories, fixed point and floating point.  Fixed point representation was then limited to FPGA devices.  
Floating point representation was limited to IEEE 32 bit (single precision floating point) and 64 bit (double precision 
floating point).  RTExpress™ supports application execution entirely as either single or double precision floating 
point.  This project expanded that capability to allow the user to specify the precision for an individual line of 
MATLAB®.  Using this definition the precision of a function and/or variable can be controlled.  As described 
before the precision select is accomplished via annotations, which can be added by the user in either the splitm or 
editm tools.  A summary of the Data Precision Control model is shown in Figure 24. 
 

Fixed Point

-- Applies to FPGA 
devices only

-- Controlled via FPGA 
core library

-- Resolution control to 
a function

       
-- Limited to IEEE single
    and double precision
-- Controlled overall for
    project and per line 
    in top level m file
-- Resolution control to 
    a MATLAB® source
    line

 Floating Point

 
Figure 24 Data Precision Control Summary 
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2.3.5.2 Implementation 
 
2.3.5.2.1 User M files 
 
Once a user MATLAB® script (m file) has been annotated it is passed through a set of utilities to transition from 
MATLAB® to compilable C code.  There are two utilities that process the precision annotations.  These are 
postpass2 and parse.  Postpass2 processes the MATLAB® script to append the desired precision selected to each 
invoked functions.  There are some functions where the selected precision does not effect its processing so these are 
left unchanged.  For those modules where the precision select does matter the precision is appended to the name to 
create a unique identifier.  If function foo is to be preformed using single precision postpass2 will create an m script 
with the call to foo_single.  If foo is to perform using double precision then postpass2 will create an m script with a 
call to foo_double.  Since the precision is controlled to a MATLAB® line there could be calls to foo_single and 
foo_double within the same module. 
 
If foo is a user MATLAB® file then it must be compiled in both single and double precision format, see Figure 25.  
The general format of the resultant C function is shown in Figure 26 and Figure 27.  The function is compiled in two 
formats, single precision when PRECISION_SINGLE is defined and double precision when 
PRECISION_DOUBLE is defined.  The top code section, Figure 26, defines prototypes for functions defined at the 
end of this module which will implement the actual requirements of the function.  The second code section defines 
the interface routines for the function.  These defined the module prototypes required for other functions to interface 
to this function.  These interfacing routines also handle all the required input data format conversion as well as any 
memory allocation/deallocation required because of data formatting.  Data is only reformatted on input since it 
cannot be determined what the required data format for functions that will use these outputs.  When input data is 
reformatted the original inputs may be released depending whether they are temporary or permanent.  The last code 
section, Figure 27, is the actual implementation of the function.  All calls to other functions from this section must 
preserve the required data precision.  The output objects are then linked with the completed project. 

Single
Precision
Library

Double
Precision
Library

Make utilities postpass2 and 
parse utilize project and line 
precision selects to generate 
C code which supports both 
single and double precision.

Linker combines Single 
and Double H-RTExpress 
Libraries with user functions 
to produce executable with
 selected precision.

 
Figure 25 Floating Point Implementation 
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/*
 * function comp_res( matrix1 , matrix2 ,title_string )
 */

/*#####################################################################
########*/

#ifdef PRECISION_SINGLE
void mlfComp_res_Single_Lib(mxArray* matrix1, mxArray* matrix2, mxArray
title_string);
#else  /*PRECISION_DOUBLE*/
void mlfComp_res_Double_Lib(mxArray* matrix1, mxArray* matrix2, mxArray
title_string);
#endif

/*#####################################################################
########*/

#ifdef PRECISION_SINGLE
void mlfComp_res_Single(mxArray* matrix1, mxArray* matrix2, mxArray*
title_string)
{

int Action_matrix1 = 0;
int Action_matrix2 = 0;
int Action_title_string = 0;
mxArray* matrix1_in = CvtMx2Sgl(matrix1,&Action_matrix1);
mxArray* matrix2_in = CvtMx2Sgl(matrix2,&Action_matrix2);
mxArray* title_string_in =

CvtMx2Sgl(title_string,&Action_title_string);
mlfComp_res_Single_Lib(matrix1_in, matrix2_in, title_string_in);
DetMxDisp(matrix1,Action_matrix1);
DetMxDisp(matrix2,Action_matrix2);
DetMxDisp(title_string,Action_title_string);
return;

};
#else  /*PRECISION_DOUBLE*/
void mlfComp_res_Double(mxArray* matrix1, mxArray* matrix2, mxArray*
title_string)
{

int Action_matrix1 = 0;
int Action_matrix2 = 0;
int Action_title_string = 0;
mxArray* matrix1_in = CvtMx2Dbl(matrix1,&Action_matrix1);
mxArray* matrix2_in = CvtMx2Dbl(matrix2,&Action_matrix2);
mxArray* title_string_in =

CvtMx2Dbl(title_string,&Action_title_string);
mlfComp_res_Double_Lib(matrix1_in, matrix2_in, title_string_in);
DetMxDisp(matrix1,Action_matrix1);
DetMxDisp(matrix2,Action_matrix2);
DetMxDisp(title_string,Action_title_string);
return;

};
#endif

Declaration of base module 
of this function for each 
precision

Base
Module
Wrapper

Perform data
conversion as
required
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Figure 26 C Wrapper Format - Part 1 

 

#ifdef PRECISION_SINGLE

void mlfComp_res_Single_Lib(mxArray* matrix1, mxArray* matrix2, mxArray
title_string)
{
    int mflagsave[ 3];
    mxArray * IDifference = mclGetUninitializedArray();
    mxArray * RDifference = mclGetUninitializedArray();
    mxArray * m = mclGetUninitializedArray();
    mxArray * n = mclGetUninitializedArray();
    mxArray * tolerance = mclGetUninitializedArray();
    mlfEnterNewContext(0, 3, mflagsave,  matrix1,  matrix2,
title_string);
    /*
     *
     * % If input is a scalar then just print both values and
difference.
     *
     * %tolerance = 1e-11;
     * tolerance = 1e-3;
     */
    mlfAssign(&tolerance, mlfScalar_Single(1e-3));
    /*
     * [ m n] = size(matrix1 );
     */
    mlfSize_Single(mlfVarargout(&m, &n, NULL), matrix1, NULL);
    /*
     *

#else  /*PRECISION_DOUBLE*/

void mlfComp_res_Double_Lib(mxArray* matrix1, mxArray* matrix2, mxArray
title_string)
{
    int mflagsave[ 3];
    mxArray * IDifference = mclGetUninitializedArray();
    mxArray * RDifference = mclGetUninitializedArray();
    mxArray * m = mclGetUninitializedArray();
    mxArray * n = mclGetUninitializedArray();
    mxArray * tolerance = mclGetUninitializedArray();
    mlfEnterNewContext(0, 3, mflagsave,  matrix1,  matrix2,
title_string);
    /*
     *
     * % If input is a scalar then just print both values and
difference.
     *
     * %tolerance = 1e-11;
     * tolerance = 1e-3;
     */
    mlfAssign(&tolerance, mlfScalar_Double(1e-3));
    /*
     * [ m n] = size(matrix1 );
     */
    mlfSize_Double(mlfVarargout(&m, &n, NULL), matrix1, NULL);
    /*
     *
#endif

Single Precision 
Implementation

Double Precision
Implementation

Base Module

 
Figure 27 C Wrapper Format - Part 2 
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2.3.5.2.2 Libraries 
 
The H-RTExpress™ libraries must be built in much the same manner as the user m files.  In this case the C routine is 
modified directly.  For the current H-RTExpress™ library, 271 out of the 401 functions were modified.  For some 
functions there is no difference in the processing required for single and double precision.  In this case the function 
is only compiled once and added to the run time library.  Objects for each function must be created with the single 
and double precision defines set.  Each of these outputs is added to the H-RTExpress™ library. 

2.4 Demonstration of Technical Results 
 

2.4.1 SLAAC-2 Interface 
 
2.4.1.1 Purpose 
 
This demonstration showcases the capabilities of H-RTExpress™ that provide the ability to map, load, and execute 
user applications to a heterogeneous environment consisting of PowerPC and SLAAC-2 FPGA enhanced compute 
elements. 
 
 
2.4.1.2 Hardware Description 
 
This demonstration requires the following hardware: 
 

a) SLAAC-2 daughter card mounted on a CSPI 2164S 6U VME base card. 
b) CSPI 2164 6U VME PowerPC card 
c) 6U VME rack 
d) SPARC Workstation with Myrinet Interface 
e) Myrinet switch and cables 

 
The SLAAC-2 node (a) and CSPI PowerPC board (b) are mounted in the VME rack (c) and connected to the 
SPARC host (d) via the Myrinet switch (e). 
 
2.4.1.3 Test Description  
 
A MATLAB® script is written which calls the function FifoTest, see Figure 28.  The function FifoTest is 
implemented in an FPGA core and performs a loopback test utilizing the input and output fifos of the SLAAC-2 
compute node, see Figure 20.  The FPGA core was generated by USC/ISI East as part of their debugger/verification 
software supplied with the SLAAC-2 processor.  For this test data written to the input FIFO is echoed to the output 
FIFO by the program loaded into X0.  The top level m file was divided into two groups as shown in Figure 28.  The 
first group was assigned to one of the CSPI PowerPC nodes to invoke the FIFO test and display the results while the 
second group which performed the loop back test was assigned to one or two of the SLACC-2 compute nodes.  The 
mapit GUI for the test shown in Figure 29 depicts the assignment of processing groups to hardware compute 
elements.  The group information menu for group 2, which contains the SLACC-2 FPGA enhanced compute 
elements, is shown in Figure 30.  This figure shows the assignment of the fifo test core to the group.  The test was 
then executed.  A pass/fail flag is sent back from each of the SLAAC-2 nodes so that the size of the results matrix at 
the end of the test indicates the number of FPAG nodes tested.  In addition a xterm window can be used to log into 
the individual processors under test to verify operation of the test on the node itself. 
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Figure 28  SLAAC-2- FIFO Test Top Level MATLAB® Script 
 

 
 

Figure 29 SLAAC-2 FIFO Test mapit setup 
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Figure 30 SLAAC-2 FIFO Demo Group Information Menu 
 
 
2.4.1.4 Results 
 
We successfully demonstrated the capability to assign portions of the overall function design to one or more 
SLAAC-2 processing nodes.   The test was successfully initialized, completed, and terminated in an orderly fashion.  
The extensibility of the FPGA functional library was also successfully demonstrated since additional FPGA node 
tests were added to the SLAAC-2 FPGA core library.  These functions included the following: 
 

a) A memory verification test in which a checksum is computed for each of the ten memories on the 
SLAAC-2 daughter card after they have been initialized.  The checksum is passed to the host node 
where it is verified. 

b) Interface verification test that verified data integrity over each of the crossbar connections. 
 
Figure 31 shows the ASCII descriptor file of the SLAAC-2 Core library.  All three functions described above are 
included.  The top portion of the file indicates there are three individual FPGA devices, which can be utilized on the 
node and their names.  The lower table contains an entry for each library core.  The fields for each entry are the 
following: 
 

1) Func : This is the MATLAB® function name used to invoke the C wrapper file “mlf<Func>.c” which 
will provide the core interface. 

2) Prec : Data precision implemented in the core. 
3) Fname : Base name of the FPGA image file to be loaded.  If the function requires more than one core 

to be loaded the files loaded are Fname_<dev>.extension. 
4) Clock : These three fields represent the default clock speed selection and the minimum and maximum 

clock setting respectively. 
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5) PartSize : Identifies the FPGA type.  In the case of the SLAAC-2 processor there is mode than one 
type of FPGA device on the daughter card so only the X0 part is listed. 

6) SpeedGrade : Identifies the FPGA device speed grade.  As with PartSize in the case of multiple speed 
grade parts on the board only the speed grade of the first device is listed. 

7) Library : Identifies additional libraries which must be linked with the application to support the FPGA 
board API.  Each FPGA processor has its own library which encapsulates the vendor supplied API.  
Additional libraries may be required to support the vendor API. 

8) LEDs : Provides support for debugging LEDs supported by the FPGA processor. 
9) Devs : Lists the FPGA devices utilized for the function.  For the SLAAC-2 library the fifo test requires 

only the first device while the remaining two tests, memory checksum and x-bar test, requires cores to 
be loaded in all three FPGA devices. 

10) Notes : Provides space for additional information supplied by the core developer. 
 
 

 
Figure 31 SLAAC-2 Core Library 

2.4.2 Variable Data Precision 
 
2.4.2.1 Purpose 
 
This demonstration showcases the capabilities of H-RTExpress™ which provide the ability to define the precision 
used to compute an individual line of MATLAB® in the top level m-file.  The precision select is limited to single or 
double precision IEEE floating point. 
 
2.4.2.2 Hardware Description 
 
The demonstration required a SPARC Workstation running Solaris 2.6 
 
2.4.2.3 Test Description 
 
The test was preformed using a portion of a test suite developed for RTExpress™.  The top level m file called three 
different test suites, suite_01, suite_mlm,and suite_02.  Suite_01 tests basic assignment statements, suite_mlm tests 
transcendental functions, and suite_02 tests basic math functions.  Within the suite_mlm test there is a section, 
which test the exp function.  The test suites perform a number of tests, collect the results, and then compare the 
results to results generated by executing the same scrip in MATALB® on a SPARC host.  If the computed results 
are not within a tolerance of the truth values than an error is indicated to the user.  For this demonstration the 
tolerance for the exp test results was set such that the test would fail if it was executed in single precision and pass if 
it was executed in double precision.  All other tests pass in both single and double precision.  
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2.4.2.4 Results 
 
 The following cases were executed and the test results for the exp test recorded in the following table.  The results 
of the test for the correct precision are indicated in the last column.  The criterion used was the exp test should pass 
if it was executed in double precision and fail if it was executed in single precision. 
 

System Precision Precision of line calling suite_mlm Exp test results Test Results 
single single fail PASS 
single double pass PASS 
double single fail PASS 
double double pass PASS 

 
The test results along with examination of the C source files indicated that the tool was processing each line with the 
desired precision. 

2.4.3 Challenge Problem – AMS WILDSTAR™ 
 
2.4.3.1 Purpose 
 
This demonstration showcases the application of H-RTExpress™ to a real world problem.  Lockheed Martin 
Government Electronic Systems was tasked with providing a real world problem for evaluation of the H-
RTExpress™ environment.  Two candidates were proposed.  The first candidate was an electronic countermeasures 
analysis (ECMA) system and the second was a coherent sidelobe cancellation (CSLC) system.  The second 
candidate was chosen since the ECMA system posed implementation and data sharing problems since many of the 
techniques and data used for analysis were either classified or proprietary. 
 
A top-level block diagram of the Coherent Sidelobe Canceller Algorithm is shown in Figure 32.  The algorithm 
processes N channels of complex data and is divided into two main sections, Weight Calculation and Weight 
Application.  Weight Calculation subsamples the input data stream to generate a complex set of weights which are 
applied to the full bandwidth input data to suppress sidelobes.  Weight Application is just as the names describes the 
application of the complex weights generated by Weight Calculation to the input data stream.  For the H-
RTExpress™ demonstration only the Weight Application processing was implemented since the Weight Calculation 
was considered company proprietary by LMCO. 
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Figure 32 Coherent Sidelobe Canceller Algorithm System Block Diagram 

 
The Weight Application algorithm processes four channels of input data and two sets of frequency domain weights 
to perform coherent sidelobe cancellation.  The algorithm shown in Figure 33 produces two channels of output data.  
The cancellation algorithm uses subband processing, small FFTS on overlapping segments of range.  The input data 
subbanding and FFT processing is shown in Figure 34.  The subbanding process generates 128 point vectors from 
the input vector, overlaping each vector by 16 samples.  For the 8192 point input vector this will create 73 128 point 
vectors as input to the FFT processing.  The weights were adaptively derived form the same data set prior to 
cancellation by the Weight Calculation processing.  The output data inverse FFT and subband processing is shown 
in Figure 35.  After the inverse FFT the center 112 (128 – 16) data samples are taken from each inverse FFT output.  
The resulting vector contains 8176 points (Vector length (8192) – Overlap (16 )).    
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Figure 33 CSLC Algorithm Processing Block Diagram 
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Figure 34 Input data subbanding and forward FFT 
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Figure 35 Inverse FFT and Regeneration of Output Vector 
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The CSLC algorithm was originally to be implemented using a heterogeneous environment, which consisted of 
PowerPCs on a Myrinet 2167 VME board and a WILDSTAR™ VME FPGA processor.  The algorithm was 
partitioned such that the FPGA processor performed the forward and inverse FFTs and the PowerPCs performed the 
remaining parts of the Weight Application processing.  Data transfer between the FPGA and PowerPC compute 
elements was via a Myrinet interface.  The WILDSTAR™ VME processor was purchased with a Myrinet I/O 
daughtercard.  The proposed Myrinet based processing flow is shown in Figure 36.  However the discovery of the 
following two interfacing issues caused the final implementation to be changed. 
 

PPC(s)

WILDSTAR
FPGA

Input
Data

MPI Interface over Myrinet
API Commands and Data

File I/O via VME Bus

GUI

GUI Interface provided 
by H-RTExpress™
TCP/IP Socket Connection

 
Figure 36 Proposed CSLC Demonstration Interfaces 

 
2.4.3.1.1 Myrinet Interface 
 
 CSPI provides an MPI (Message Passing Interface) Application Program Interface (API) that is based on MPI 
Software Technology Inc.’s (MSTI) BDM/Pro™.  BDM/Pro™ provides a low level interface to the Myrinet fabric.  
BDM/Pro™ consists of two parts.  The first is a host library, which is linked with applications running on the host 
processor, and the second is the Myrinet Control Program (MCP) which executes on the LANai network processor.  
Each compute element on the Myrinet network contains a LANai network processor.  The network processors 
monitor the Myrinet bus for messages for its associated host processor, send message from the host processor, and 
respond to configuration message requests from the network-controlling node. 
 
The MCP for the WILDSTAR™ Myrinet Interface card is from Myricom which does not support the message 
extensions of BDM/Pro.  CSPI maintains BDM/Pro™ independent of Myricom.  A LANai Software Development 
package was downloaded from Myricom and an attempt was made to modify the AMS MCP.  Progress was made in 
modifications of the MCP to receive BDM/Pro™ messages but a complete solution would have required changes to 
AMS cores resident on the myrinet interface daughter card.  This effort was terminated since these cores are 
considered AMS proprietary and changes to the cores would have required reallocation of project resources and 
funds. 
 
2.4.3.1.2 PowerPC API 
 
Originally the WILDSTAR™ API was to be ported to the PowerPC.  This would enable the CSPI PowerPC 
Compute element paired with the WILDSTAR™ node to communicate directly with the FPGA processors via the 
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VME bus.  It was discovered however that the CSPI 2167 design does not extend the VME bus onto the board other 
than for power and ground connections.  This means that the PowerPC compute elements on the CSPI 2167 board 
have no means to access the VME bus.  The PowerPC port was terminated since the PowerPC compute element has 
no access to the FPGA. 
 
2.4.3.1.3 Final Demonstration Hardware Environment and Interfaces 
 
Since the Myrinet FPGA interface was not an option a decision was made to use Mercury compute elements and 
dedicate the CSPI system to the SLAAC-2 processors.  Since a PowerPC based API was not available the 
WILDSTAR™ API was executed on the SPARC host and a communication protocol was defined such that the 
PowerPC could send and receive interface commands and results via an interface process executing on the host.  The 
data flow for the API interface is shown in Figure 37.  Normally H-RTExpress™ would interface to an FPGA 
processor by linking in an API support package specific to the processor that translates the generic application 
program requests to the required vendor supplied API call(s).  Since there is no direct path to the WILDSTAR™ 
control registers from the controlling PowerPC an intermediate level of communication was added.  In this case 
WILDSTAR™ API requests from the PowerPC originating program were relayed via file I/O to a host based task 
which invoked the correct API call.  All data required for the API call and /or results from the API call was also 
relayed via the interfacing file.  Handshaking was used for all command and data transfers to ensure synchronization 
between the asynchronous tasks.   Because of the API design a command from the PowerPC to the WILDSTAR™ 
must be completed (i.e. receipt of the API response or a verification message) before processing continued. 
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Figure 37 WILDSTAR™ Enhanced API 
 
 
2.4.3.2 Hardware Description 
 
This demonstration requires the following hardware: 

a) Mercury 6U/9U VME chassis with SPARC 20 VT host. 
b) Mercury MCH9 (9U) baseboard with 8 P2A16B daughter cards.  Each daughter card contains 2  

PowerPC 603e (200 MHz) processors and 16 MB of RAM, 
c) AMS WILDSTAR™ VME card 
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2.4.3.3 Test Description 
 
The weight application processing was divided such that a PowerPC compute element performed all operations 
except the forward and inverse FFTs. Lockheed Martin provided a WILDSTAR™ core that performed a fixed point 
(16 bit) 128-point FFT.  The core could be controlled to perform either a forward or inverse FFT.  A description of 
the core interface and control is included in Appendix I – Lockheed Martin FFT Core Description.  An earlier 
version of H-RTExpress™ was used to build this demonstration, which included all the features of the final version 
of H-RTExpress™ except the new mapit interface.  The mapit GUI used is shown in Figure 38.  Only two of the 
PowerPC compute elements are assigned, one to the GUI interface node (tgtgui) and the other to the top-level m file.  
The top level M file calls functions that are implemented as user C files.  These user C files provide the interface to 
the FFT cores implemented on the WILDSTAR™ compute element. Once the process starts the PowerPC 
continually processes the same input vector until the operator terminates. 
 
  

 
Figure 38 CSLC Process Mapping 

 
2.4.3.4 Results 
 
Figure 39 shows an amplitude plot of one of the forward FFTs performed on a subbanded input vector.   
Figure 40 is a plot of the two channel output baseline data generated by MATLAB®.  These results were obtained 
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by executing the algorithm in MATLAB® (double precision) on a SPARC workstation.   
Figure 41 is a plot of the same variables plotted in  
Figure 40 except the data was processed on a PowerPC in single precision IEEE floating point with the FFT being 
preformed on the WILDSTAR™ processor using a fixed 128 point (16 bit) FFT.   
Figure 42 is a plot of the error between the MATLAB® baseline and the PowerPC/WILDSTAR™ processed data.  
Statistics of the error signal were computed and are summarized in the following table. 
 
 
SIGNAL/PARAMETER MINIMUM 

DIFFERENCE 
(DB) 

MAXIMUM 
DIFFERENCE 

(DB) 

AVERAGE 
DIFFERENCE 

(DB) 
Channel 1 0.124 -44.490 -11.213 
Channel 2 -1.243 -56.697 -15.091 

 
Table 1 Summary of Fixed Point FFT Output Signal parameters 

 
 

 
 

Figure 39 Forward FFT (Fixed Point FFT) of Subbanded Data 
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Figure 40 MATLAB® Processed Pre and Post Adapted Data 
 

 
 

Figure 41 WILDSTAR™ Processed Pre and Post Adapted Data (Fixed Point FFT) 
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Figure 42 Differences between MATLAB® and WILDSTAR™ (Fixed Point FFT) Processed Data 
 

2.4.4 Challenge problem – FIREBIRD™ 
 
2.4.4.1 Purpose 
 
The same demonstration described in Section 2.4.3 was repeated with the following exceptions: 

a) The test was targeted to a Linux environment with used an AMS PCI FIREBIRD™ as the FPGA 
target device. 

b) The FIRBIRD™ performed the same function (FFT) except that a DMA interface was used to pass 
data to/from the FPGA board. 

c) The FFT core performed all computations in single precision floating point. 
d) The WILDSTAR™ Enhanced API was not required since the host processor was also a compute 

element. 
 

2.4.4.2 Hardware Description 
 
The demonstration requires the following hardware: 

a) AMS FIREBIRDTM  PCI FPGA card with a FPDP (VirtexTM 2000E) daughter card. 
b) PC workstation running Linux 6.2 

 
The FIREBIRDTM PCI card is mounted in the PC Workstation. 
 
2.4.4.3 Test Description 
 
The same procedure was followed for the FIREBIRDTM version of the test as for the WILDSTARTM version.  The 
mapit interface used to define the application setup is shown in Figure 43. 
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Figure 43 FIREBIRD™ Based Challenge Application 

 
2.4.4.4 Results 
 
Figure 44 is a plot of the same variables plotted in  
Figure 40 except the data was processed on a PowerPC in single precision IEEE floating point with the FFT being 
preformed on the FIREBIRD™ processor using a floating point 128 point FFT.  Figure 45 is plot of the error 
between the MATLAB® baseline and the PowerPC/FIREBIRD™ processed data.  The same statistics as computed 
for the fixed point FFT are listed in the following table along with the fixed point results.  The advantage of the 
floating point processing over the fixed point processing is approximately 68 db. 
 

 

SIGNAL/PARAMETER MINIMUM 
DIFFERENCE 

(DB) 

MAXIMUM 
DIFFERENCE 

(DB) 

AVERAGE 
DIFFERENCE 

(DB) 
 Fixed Pt. 

FFT 
Floating 
Pt. FFT 

Fixed Pt. 
FFT 

Floating 
Pt. FFT 

Fixed 
Pt. FFT 

Floating Pt. 
FFT 

Channel 1 0.124 -64.609 -44.490 -120.479 -11.213 -79.065 
Channel 2 -1.243 -71.604 -56.697 -121.484 -15.091 -83.154 

 
Table 2 Summary of Fixed and Floating Point FFT Output Signal Parameters 
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Figure 44 FIREBIRD™ Processed Pre and Post Adapted Data (Floating Point FFT) 
 

 
 

 

 
 

Figure 45 Differences between MATLAB® and FIREBIRD™ (Floating Point FFT) Processed Data 
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2.4.5 Northrop Grumman Micro Accelerator 
 
A description of the demonstration using the Northrop Grumman Micro Accelerator is included in Appendix II-
Northrop Grumman Micro Accelerator Summary. 

3 Summary 

3.1 Accomplishments 
 
Extended the supported architectures in H-RTExpress to include support for the Mercury Raceway PowerPC nodes 

• Prior to this H-RTExpress only supported the Mercury i860 nodes.  This was the first step under this 
program to support multiple node types within a single box 

 
Integrated MATLAB® 5.1 into H-RTExpress. 

• Initially, H-RTExpress supported MATLAB® 4.2, but needed to be modified to support the changes 
that were made in 5.1 and its associated MATHWORKS C Translator 

• Integration of MATLAB® 5.2 followed later, and on ISI funding, supported integration of MATLAB 6 
 
Extended the supported architectures in H-RTExpress to include support for the CSPI Two-Level Multicomputer  
 
splitm and editm tools 

• Replaced the Target Balancing Tool (tbt) with a graphical editor 
• Provided the programmer capability to functionally decompose the  top level MATLAB source 
• Supported the same parallel paradigms from tbt 
• Point and Click selection of source code lines and assignment to processing groups 
• Added help information for highlighted functions during edit 

 
Board Editor (Bedit) 

• New TCL/Tk tool added to development environment 
• Allowed user to build library of hardware boards based on vendor specifications 
• Supported definition and use of board templates 

  
mapit tool 

• Incorporated board level descriptions of hardware platform 
• Greatly enhanced ability to transition the same application to different hardware platforms 
• Supported heterogeneous hardware architectures (specifically FPGA devices)  
 

Variable Data Precision 
• Defined techniques and methods to use mixed data precision types within an application 
• Defined and implemented a method for specification of floating point precision from MATLAB® 

level specification on a line by line basis. 
• Modified and tested existing H-RTExpress™ libraries to support mixed floating point precision 
• Defined and implemented C wrapper format for functions executed on an FPGA compute element 

 
FPGA support 

• Defined and implemented a layered software approach for inclusion of FPGA interfaces 
• Implemented and tested procedures which initiate and load FPGA applications 
• Implemented and tested procedures which close and terminate an FPGA application 
• Added interface libraries for four different FPGA elements 
• Added support for the USC/ISI SLAAC and Annapolis VME Wildstar 
• Through other programs, added support for the Annapolis PCI Firebird and PCI Wildstar 
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The value of the H-RTExpress™ environment has been proved by its utilization on other ongoing DARPA programs 
such as Power Aware Signal Processing Environment (PASPE) for PAC/C (Contract #F30602-00-C-0150) and the 
Symbiotic Communications (SYCO) program (Subcontract #370020SC).  Both programs used this environment to 
develop and implement applications on a variety of heterogeneous target systems. 

3.2 Recommendations for Continuing Efforts 

3.2.1 Parallel FPGA Mapping 
 
The current model supported in H-RTExpress™ for the FPGA is that of an adjunct processor to a general-purpose 
processor.  This means that there is a one-to-one mapping of general-purpose processor and FPGA compute 
element.  The data transfer rate of this interface is often limited by the bus speed of the host processor.  FPGA board 
vendors also provide very high-speed interfaces between their own products.  One example of this is the 
WILDSTAR™ Data Port (WSDP™) interface supplied by AMS, which is capable of transfer rates up to 800 
MB/sec.   The ability to map a set of MATLAB® requirements to a network of FPGA processors interconnected 
with a very high-speed data interface such as the WSDP™ interface would be very advantageous.  Support for this 
type of mapping would require changes to the current FPGA model supported in H-RTExpress™ and the addition of 
a model for the inter-FPGA communications.  This task could be accomplished in a staged approach by first 
defining a limited model and then expanding that model as each stage is completed. 

3.2.2 FPGA based message router 
  
Several of the current FPGA board designs include multiple FPGA parts (i.e. SLAAC-2, WILDSTAR™).  The 
current H-RTExpress™ programming model only allows a single function to be assigned to an FPGA board.  A 
function may require multiple FPGA devices but together they only support a single function.  FPGA boards are 
generally designed such that one of the FPGA devices handles all of the I/O for the board.  In order to map more 
than one function to a board a message router is required which would be resident in the I/O FPGA.  A routing table 
would be required for the FPGA so that incoming and outgoing message could be sent to the correct destination.  
This router while having a generic design would also be board specific since each FPGA board generally has unique 
I/O characteristics. 

3.2.3 Multiple Data Precision 
 
Support for more types of data precision could be added.  However a more fruitful effort would be an analysis of the 
benefits of the MATLAB® version 6 upgrade in terms of supporting additional data precision.  The front-end 
techniques developed under this program are still valid but the underlying software structure may make use of the 
variable mxArray description to simplify and streamline the required data representation and conversion processing. 

3.2.4 FPGA core development tools 
A significant number of FPGA designs generated using COREFIRE™ from AMS have been created and transitioned 
into H-RTExpress™.  Some development has been done to modify the COREFIRE outputs for inclusion into the H-
RTExpress™ environment.  This work could be enhanced to further automate the generation of a C wrapper 
template for a generated function.  Other FPGA development tools such as AccelFPGA™ from AccelChip and the 
Xilinx System Generator for SIMULINK™ could be studied to determine how and if they could be integrated into 
the H-RTExpress™ environment. 

3.2.5 Additional FPGA Hardware support 
 
The current effort addresses four different FPGA boards.  Additional boards such as Catalina Research Inc.’s 
Cheetah accelerator card could be addressed. 
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3.2.6 Reconfiguration 
 
An area that has not been addressed is reconfiguration of FPGA devices.  The current H-RTExpress™ model 
assumes that once an application is loaded that it will remain resident until the system application is terminated.  
One of the potential strengths of the FPGA is to dynamically reload all or a portion of the FPGA device to time-
multiplex tasks it performs.  The rate tasks are swapped in and out would vary based on the application.  Cases 
where reconfiguration would be helpful would be to redefine the task of the FPGA based on mode, or swap FPGA 
functions when one task becomes idle, or to vary the FPGA task executed based on a defined quality of service.  
There are several subtasks that could be addressed.  These include the logistics of swapping FPGA functions, 
specification of the transition control (when, why), and identifications of measures of performance (i.e. when does 
the time to transition the FPGA cause loss of system performance). 

4 Commercialization 
 
ISI is currently integrating several H-RTExpress™ features into its commercial product RTExpress™.  These 
features include: 
 
a) The new mapit and bedit tools which support board level hardware architecture description. 
b) The enhanced mapit features, which allow seamless transitions from one architecture type to another. 
c) mapit support for FPGA enhanced compute nodes.  This includes the generation of launch scripts to include the 

FPGA based nodes, support of core libraries and an interface to allow the user to map FPGA based functions to 
specific devices within the FPGA board. 

d) Run-time environment changes that support launching an application and its orderly termination on a 
heterogeneous hardware environment. 

  
In the future ISI plans to implement support for multiple data precision.  Currently the RTExpress™ product is being 
ported to support MATLAB® 6.0 and compiler version 2.2.  This upgrade will provide enhanced capability and a 
much more efficient compiler.  The multiple data precision implementation needs to be researched in light of the 
upgrade. 
 
ISI also plans to provide the ability to incorporate a MATLAB® to executable FPGA core tool so that users will be 
able to directly map MATLAB® source lines to an FPGA device.  The structure of the H-RTExpress™ environment 
should allow an easy transition to such an FPGA develop tool once they reach maturity. 
 
 
 

5 Appendix I – Lockheed Martin FFT Core Description 
<SEE ATTACHED>
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Included in this appendix is Rev. A (7/25/01) of the H-RTExpress™ AMS WILDSTAR VHDL FFT Cores memo 
written by Lockheed Martin. 

 
H-RTExpress Annapolis Micro Systems WildStar VHDL FFT Cores 

 
  

SUBJECT:  H-RTExpress Wildstar VHDL Core Description 
 
 
ABSTRACT: This memorandum describes the functional characteristics and interface requirements of the 
VHDL FFT Cores for the Annapolis Micro Systems (AMS)  Wildstar VME Reconfigurable Computing Engine.    
 
If the cores described in this memorandum are improved or  modified as dictated by changing functional 
requirements, corrections, funding, and schedule, the changes may be reflected in revisions of this document. 

 
 

 

Initiated:______________________  Initiated:_______________________ 

W. J. Branham, Firmware RI           D. Koch, CM Engineer 

SPY-1F TIP Firmware           Software Configuration 

Development                                                          Management 

 

              

1.0 OVERVIEW  

1.1 Purpose  

The purpose of  these VHDL FFT Cores is to support the controlled demonstration and evaluation of  the H-
RTExpress utility’s  capability to generate a real time executable image from a Matlab application.   These cores 
implement a fixed point  FFT and IFFT on the AMS Wildstar VME Reconfigurable Computing Engine (RCE).   

1.2 Introduction  

The VHDL cores implement a complex 16 bit fixed point FFT and IFFT function on the AMS Wildstar VME    
RCE.  These cores were built for execution on the Xilinx XCV-1000 FPGA parts.  The Wildstar VME RCE has 3 
Processing Elements (PE)  designated as PE0, PE1, and PE2.   Core image ‘pe0_1000.m68’ should only be 
downloaded and executed on the PE0.  Core image ‘pex_1000.m68’ can be downloaded and executed on PE1 and 
PE2 of the card.   
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2.0 FUNCTIONAL DESCRIPTION  

2.1 FFT  
Each VHDL FFT core has two modes of operation: 1) FFT, and 2) IFFT.  Data loaded into the core in FFT mode 
should be in a 32 bit format as shown in Figure 46.  Internally the each 16 bit integer is sign extended to 23 bits.  
Not more than 128 points will be processed at a time by the FFT engine. 
 
 

31               16 15                         00 

REAL IMAGINARY 

 
Figure 46  Data format for FFT core input 

 

2.2   IFFT 

All input data must be divided by 128 prior to downloading into the IFFT core.  Internally the core multiplies the 
data by 128 before processing it.  All resultant/output data will be returned in a 32 bit integer format as specified in 
figure 1 above.  No more than 128 points will be processed by the IFFT. 

3.0 AMS WILDSTAR C API  

AMS has defined and implemented a C API and driver to interface the application to the VHDL core running on the 
Wildstar RCE.  Reference the AMS Wildstar Reconfigurable Conputing Engine User’s  Manual, section 6. 

4.0 TEST DRIVER 

4.1  Test Driver Interface 

The ‘wsdbg.exe’ is a quick and dirty test driver written in C for the UNIX environment, that employs  the AMS 
Wildstar C API and Driver to communicate and control the target system.  It provides capability to perform PE 
programming, data download and upload, and block( ie. internal to FPGA ) memory reads and writes.  The test 
driver is invoked by entering ‘wsdbg< CR >’. 

4.2  Test Driver Commands  

The test driver is a command line oriented, case insensitive utility suitable for limited debugging within a  Unix C 
Shell.  Table 1 below defines the currently supported test driver commands. 
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Table 3 Test Driver Command Definition 
  

help Prints a list of the supported test driver commands 

exit Ends session and exits the test driver 

dbg Prints test driver internal test point information 

Jou Opens a journal/logging file to record the test 
session transactions 

open Open a Wildstar VME board in slot [ 1 - ?] 

close Close a Wildstar VME board in slot[ 1 - ? ] 

dcnfg Display the hardware configuration of the Wildstar 
board 

cnfg Configure the M Clock of board in slot[ 1 - ? ] to N 
Mz.   At present only the ‘-f’ switch is supported.  
Clock frequency is in floating for format 

reset Resets the board in slot[ 1 - ? ] 

pgmpe Program the PE[ 0 – 2 ] of board in slot[ 1 - ? ] with 
the image specified by file spec 

dnld Download a complex vector specified by file spec 
onto board at slot[ 1 - ? ] and PE[ 0 – 2 ] starting at 
address[ 80(H) – FF(H) ].  The file must be ASCII 
format and the vectors must be fixed point decimal 
integer format starting at the specified address. 

upld Upload a specified number of complex points to file 
spec, starting at [ 80(H) – FF(H) ] from the board in 
slot[ 1 - ? ], PE[ 0 – 1 ]. 

rper Read 1 memory location at address[ 80(H) – FF(H) ] 
from slot[ 1 - ? ], PE[ 0 – 2 ]. 

Wper Write 1 memory location at address[ 80(H) – FF(H) 
] of slot[ 1 - ? ], PE[ 0 – 2 ].  The location will be 
loaded with the specified 32 bit word 

 
 
 

6 Appendix II - Description of Northrop Grumman Micro Accelerator 
<SEE ATTACHED> 
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1  Introduction and Background 
Northrop Grumman Electronic Systems (NGES) is under contract to develop and demonstrate an enhanced Micro-
Accelerator FPGA Daughter Card.  The daughter card can be configured by the user as an algorithm accelerator or 
preprocessor within a Raceway-based COTS processing system, and is used to perform multi-GFLOPS/GOPS 
processing functions for SAR, STAP, GMTI, EO, and other military sensor processing applications.  The daughter 
card will provide 10X to 50X improvements in processing size and weight for stressing preprocessing functions 
such as FFT, QR decomposition, and radar and EO filtering.  NGES has accomplished this task by upgrading its 
existing micro-accelerator daughter card design. 
 
This paper is the Final Report for the Enhanced Micro Accelerator Daughtercard program and project.   

2  Applicable Documents 
The following documents of the issue shown, form part of this report to the extent specified herein. 

2.1 Acronyms Used 
The following is a definition of acronyms used in this report.   
ACS  Adaptive Computing Systems 

BIT  Built In Test 

CPLD  Complex Programmable Logic Device 

DARPA Defense Advanced Research Projects Agency 

DCI  Digital Controlled Impedance 

DMA  Direct Memory Access 

DRAM  Dynamic Random Access Memory 

FPGA  Field Programmable Gate Array 

ISE  Integrated Software Environment  

ISI  Integrated Sensors, Incorporated 

MCOS  Mercury Computer Operating System 

MCS  Mercury Computer Systems 

NGES  Northrop Grumman Electronic Systems 

NGNS  Northrop Grumman Norden Systems 

OS  Operating System 

PQFP  Plastic Quad Flat Pack 

SSRAM Synchronous Static Random Access Memory 

TQFP  Thin Quad Flat Pack 

VHDL  VHSIC Hardware Description Language 

VHSIC  Very High-Speed Integrated Circuits 

2.2 Contract Number 
The program contract numbers for this project are listed as follows: 
Northrop Grumman Electronic Systems Contract Number: ISI01-105 
Prime Contract Number:     F30602-97-C-0259   

2.3 Specifications 
Component Specifications and Manufacturers Data Sheets, Various, Dated Sept 2001 or later 
Printed Wiring Board, Board Specific Design Requirements, Dated September 13, 2001 
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2.4 Drawings 
 
Drawing Title Drawing Number
Schematic Diagram, Micro Accelerator Daughter Card 819R612 
Printed Wiring Board, Micro Accelerator Daughter Card 819R613 
Circuit Card Assembly, Micro Accelerator Daughter Card 819R614 
Mercury Computer Systems Type “B” Daughter Card DWGNO 

2.5 Standards 
American National Standard for Raceway Interlink, Document ANSI/VITA 5.1-1999 

2.6 Application Notes 
Mercury Computer Systems: 
 Raceway I/O Products Guide TC-RW-IOP-311, Dated November 01, 2000 
 Race++ Racetrack Overview PowerPoint Presentation, Dated May 14, 2001 
 
Xilinx, Inc.: 
 Xilinx Virtex-II Platform FPGA Handbook, Document UG003 V1.3, Dated December 3, 2001 
 
Sanmina Corporation 
 Buried Capacitance Design Guide, Document Number 95-06-001 

2.7 Design Reviews 
Northrop Grumman Electronic Systems: 
 Concept Review, Dated April 25, 2001 
 Tradeoff Studies Review, Dated May 22, 2001 
 Preliminary Design Review, Dated June 29, 2001 
 Electrical Design Review, Dated October 2, 2001 
 Produceability Review, Dated October 24, 2001 
 Final Design Review, Dated October 25, 2001 
 Design Verification Review, Dated November 26, 2001 
 Design Demonstration Review, Dated February 12, 2002 
 
Mercury Computer Systems 
 NGNS Racetrack Review I.doc Dated August 30, 2001 
 NGNS Racetrack Review II.doc Dated October 11, 2001 

2.8 List Of Test Equipment Required 
The following is a list of Test Equipment and Revision needed to support the Micro Accelerator development and 
operational environment.   

• Personal Computer (description of machine used during Micro Accel development): 
Hardware:   

1.5 GHz Pentium Based Processor,  
30 Byte Hard Drive 
2 Byte RAM (needed for Xilinx FPGA development only)  
CDROM drive (software installation support) 

Software:  
Windows NT OS 
Xilinx ISE Version 5.1 with Service Pack 1 (Needed for FPGA Image download support) 
Xilinx Chipscope Version 5.1 (Needed for Design Development and Verification Support) 
Visual Elite V_HDL Development Tool, Version  2.0.2 (Needed for Design Development Only) 
Synplicity Synplify Version 7.1 (Needed for Design Development Only) 
Model Technologies ModelSim PE Version 5.6A (Needed for Design Development Only) 
Cypress Warp Version  5.2 (Needed for CPLD Design Development Only) 
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• Test Set 
Tracewell Systems 8 slot VME64X chassis, P/N 580-6021-F00-00 (Contains Integrated Power Supply)  
DY4 SVME179 Single Board Computer (or Equivalent) running MCS VxWorks driver package 
MCS MCJ6 Motherboard with Firmware Revision 2D 

With MCS Power PC 750 Dual Processor Node in slot A/B 
 

• Test Software 
Mercury Computer Operating System (MCOS) Version  5.6  

MCS  C compiler (for compiling Test Driver Program Only) 
MCS VxWorks Runtime Package driver related to MCOS 5.6 
Tornado 2 Latest Version used to build VxWorks Boot image for DY4 processor.   
Test Driver Program:    Nacc.c 
Test Driver Program Test Files:  TBD 
 

• Test Equipment  
Northrop Grumman Norden Systems designed Micro Accel Interface Cable, P/N Engineering Design.  
(Design information attached) 
Volt/Ohm Meter (Typical, For Design Debug Only) 
Xilinx Parallel II Serial Interface Cable  Model DLC5 and JTAG Header with Flying Leads  
Cypress UltraISR Programming Cable P/N 37KISR.03 
Hewlett Packard Logic State Analyzer Model 1660ES (Typical, For Design Debug Only) 
350 MHz Bandwidth Oscilloscope (Typical, For Design Debug & Support Only) 
 

 

3 Design and Development  
This section discusses the design and development aspects for the Enhanced Micro Accelerator FPGA Daughter 
card.   

3.1 Concept Definition And Requirements 

3.1.1 Concept Definition 
As stated in the introduction, the concept of this project centered around the development of a Raceway based 
hardware architecture and design, such that various Radar, EO, and/or IR compute intensive algorithms could be 
remapped into this hardware, and their respective processing “accelerated”, providing benefit to the overall system.   

3.1.2 Requirements 
The requirements for this design were established fairly early within the project cycle, and are listed below for 
reference.  
 
• Hi Performance FPGA based Accelerator Daughter Card Design 

• Compatible with Mercury Type B daughtercard slots 
• Design upgrade from current Micro Accelerator card 
• Convective cooled design 

• Reconfigurable per computation algorithm required 
• Upgrade the design to the latest FPGA technology 
• Design to best commercial practices 
• Upgrade pathway for all components to industrial temp grade and technology expansion where possible 
• Interface upgrade from one Raceway 1.0 port to two Race++ ports 
• Capability to download FPGA programming data via Race++ port 
• Increase in FPGA to local memory bandwidth and size 

o Provides higher efficiency in data-rate intensive computations 
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3.1.2.1 Requirements Impact 
Note that several of these requirements imposed design constraints, as discussed below.   
The requirement to fit the design into an MCS Type B daughtercard imposed the most severe restrictions, dictating 
component height and location constraints on the overall design.   
For example, a review of the Type B daughter card design “rules” indicates: 

• all components located on the “B” (secondary) side are restricted to a height of .050”;  
• all components located on the “A” (primary) side are restricted to a height of .170”; 
• the Printed Wiring Board thickness is limited to a “maximum” of .062”, to fit within adjacent module pitch 

requirements in the intended MCS chassis environment; 
• Total power dissipation in a standard MCS chassis environment (with standard air flow and standard 

module pitch) is limited to approximately 17 Watts per daughter card board.   
When considering an increase in FPGA to local memory bandwidth and size, it was decided to provide as much 
local memory as could practically fit on the PC board, in addition to components that could provide a very high 
data communications bandwidth.  Since there was no “application” design intended for this project, NGNS felt that 
a reasonable target for memory usage and bandwidth would be to be able to fit the NGNS 1 BOPS FFT ASIC onto 
the design, at least in terms of memory requirements for the FFT engine.  The FFT ASIC required 12 RAMS, and 
so set the goal for this design.  
A consideration of having to provide a latest technology reconfigurable compute node precluded the use of one 
time programmable (ROM based)  FPGAs, and indicated the use of reprogrammable (RAM based) FPGA 
technology.  At the time of initial design, Xilinx Inc. and Altera were offering competing products in terms of large 
RAM based FPGAs.  Xilinx, however, came out ahead, offering a new family of FPGAs in the Virtex II family.  
The Xilinx Virtex-II XC2V6000 was chosen based on availability, an upgrade pathway to larger devices, built-in 
“hard” multipliers, and NGNS previous experience with Xilinx toolsets and devices.     

3.2 Architecture 
During concept phase, several architectural approaches were evaluated to fulfill the design requirements.  The one 
that was chosen was driven by several factors: 
o Previous Micro Accelerator programming experience indicated that a design that “separated” memory 

addressing and data movement into more than one FPGA was difficult to design, operate, and program for 
operation at high clock speeds.  A design that was able to incorporate these two areas (local memory addressing 
and data) into one FPGA would make design implementations easier.     

o The architecture provides a good fit in the sense that it provides a relatively easy VHDL design environment:  
all processing areas are contained within one programmable part.  Competing accelerators in the industry 
typically have more than one smaller FPGA with crossbars to connect memories to FPGAs and/or FPGAs to 
FPGAs.   

o The architecture provides a more flexible and adaptable processing node, in that either a coprocessor 
architecture (two processing nodes, bi directional data on each I/O port, which is typical of MCS computation 
nodes) or a data flow architecture (one processing node, data input on one I/O port, data output on the other) can 
be implemented, depending on the application requirements.     

o The FPGA compute node can be split into two unique and different applications, again providing application 
flexibility.   

o A balancing of power dissipation versus logic density/performance is obtained by the use of a programmable 
clock  circuit.  Raceway interface areas operate at the maximum Raceway bandwidth as provided by the 
incoming Raceway clock.  Very dense logic designs within the FPGA can be clocked at a “slower” rate, and 
less dense designs can be clocked at a higher rate, in order to balance power dissipation and the operational 
environment.   

o In order to maintain a high module I/O bandwidth, both Race++ I/O ports are implemented in MCS supplied 
FPGA devices, capable of providing sustained maximum I/O bandwidth with minimal overhead, as well as off 
the shelf performance.   

o To provide low latency and high bandwidth to the local memory, the use of Synchronous Static RAM (SSRAM) 
was chosen.  The Micro Accelerator design is intended to provide hardware acceleration functions for digital 
signal processing applications (FFT, Q-R factorization, matrix operations, etc).  Most DSP functions require 
non sequential memory accesses; Static RAMs in general provide higher performance for this DSP type of 
switching among random address locations as compared to dynamic RAMs (DRAMs), in that SSRAMs do not 
require delayed access times due to pipeline delays, and can maintain bandwidth throughput while providing 
true random access memory location data. 



 

3.2.1 Block Diagram 
The functional block diagram for the Enhanced Micro Accelerator FPGA Daughtercard is shown in Figure AII-1.  
Key points of this diagram are: 

o One Xilinx FPGA, a Virtex-II XC2V6000 as a compute node 
o 12 banks of independently accessible 512K x 32 SSRAMs 
o Race 1 Clock Recovery/Reprogrammable regeneration 
o Single Chip Bi-directional FIFO on each Race++ path. 
o Local Boot PROM for multiple versions of Xilinx FPGA image storage 
o Configuration manager for download of Xilinx image over Raceway, and storage of image on Micro 

Accelerator.   
o Local 2 phase switching power supply for FPGA VCORE voltage of 1.5Volts.  This is required because of 

the large amounts of core current needed when the FPGA is programmed for hi logic density or hi speed 
applications.   
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Figure AII-47  Enhanced Micro Accelerator FPGA Daughtercard Functional Block Diagram 

3.2.2 Component Selection 
Component selection was done with the following guidelines.   
o All device packaging had to “fit” within the allocated height limitations dictated by the MCS Type B 

daughtercard limitations.   
o Each component had to provide an upgrade pathway to industrial temp components, and to the “next 

generation” devices that would eventually come on to the market place.  
o All major components required at least one alternate or backup vendor to supply parts.  In all cases except for 

the programmable devices (Xilinx FPGA, Cypress CPLD, MCS Race++ interface FPGA), this is true.   
With this in mind, Figure AII- 48 lists the major components selected for use in the Enhanced Micro Accelerator 
FPGA Daughter card.  Figure AII-1 provides a detailed block diagram for the Micro Accelerator.   
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October 23, 2001

DARPA Micro Accelerator CDR
P/L; Power; SPL Status; 1 of 2

Assumptions:
1) SSRAM:  6 Memories accessed at 25% duty cycle (R or W) per process at Fmax; 6 Memories in ZZ mode
2) EEPROM duty cycle = 5% . 4) CPLD: estimated power
3) Actel FPGA estimated typical power 5) Xilinx FPGA: estimated power

P / N D E S C R IP T IO N Q T Y .

E S T  
P O W E R  

W a t t s N G  P / L
0 5 0 8 3 C 1 0 4 M A T C A P A C I T O R ,  0 . 1 0  U F 1 4 5 N o N o
0 6 0 3 5 C 4 7 1 K A T C A P A C I T O R ,  4 7 0  P F 1 Y e s N o
0 6 1 2 Y C 1 0 5 K A T C A P A C I T O R ,  1 . 0  U F 1 2 Y e s N o
0 7 0 3 2 I N D U C T O R ,  1 U H 2 0 . 4 8 N o N o
7 4 L V T 2 4 4 W M 7 4 L V T 2 4 4 2 0 . 0 3 6 3 Y e s Y e s
8 9 0 3 0 8 0 1 7 7 M S D A C O N N _ J A C K 2 N o N o
A 5 4 S X 3 2 T Q 1 7 6 I R I C - E R W O _ T Q 1 7 6 2 3 . 4 0 0 6 5 N o N o
A M 2 9 L V 0 6 5 D U 1 2 0 R E I 2 9 L V 0 6 5 - 1 2 0 1 0 . 0 0 5 N o N o
B A T 5 4 A D I O D E 1 Y e s Y e s
C 0 8 0 5 C 1 0 5 K 8 R A C C A P A C I T O R ,  1 . 0  U F 5 Y e s Y e s
C R C W 0 6 0 3 1 0 0 1 F R E S I S T O R ,  1 K ,  1 / 1 6 W 2 Y e s Y e s
C R C W 0 6 0 3 3 3 2 0 F R E S I S T O R ,  3 3 2 ,  1 / 1 6 W 1 Y e s Y e s
C R C W 0 6 0 3 4 7 5 1 F R E S I S T O R ,  4 . 7 5 K ,  1 / 1 2 8 Y e s N o
C Y 2 3 0 9 S I - 1 H C Y 2 3 0 9 1 0 . 1 1 5 N o N o
C Y 3 7 5 1 2 V P 2 0 8 - 6 6 N I M I C R O _ A C C E L _ P Q 2 0 8 1 0 . 4 N o N o
C Y 7 B 9 9 4 V - 5 A I C Y 7 B 9 9 4 V - 5 1 0 . 8 2 5 N o N o
C Y 7 C 4 3 6 8 4 A V - 7 A C C Y 7 C 4 3 6 8 4 A V - 7 2 0 . 3 9 6 N o N o
S i 4 4 4 2 D Y T R A N S I S T O R 4 0 . 6 4 N o N o
J L 0 0 1 7 8 - 0 0 3 C A P A C I T O R ,  3 3 0  P F 1 Y e s Y e s
J L 0 0 1 7 8 - 0 0 9 C A P A C I T O R ,  1 0 0 0  P F 3 Y e s Y e s
J L 0 0 1 7 8 - 0 1 5 C A P A C I T O R ,  3 3 0 0  P F 1 Y e s Y e s
J L 0 0 1 7 9 - 0 0 5 C A P A C I T O R ,  0 . 0 1  U F 1 Y e s Y e s
J L 0 0 1 8 0 - 0 0 4 C A P A C I T O R ,  0 . 0 3 3  U F 1 Y e s Y e s
J L 0 0 1 8 0 - 0 1 0 C A P A C I T O R ,  0 . 1  U F 1 Y e s Y e s
J L 0 0 1 9 5 - 0 1 1 C A P A C I T O R ,  4 . 7 U F 1 Y e s Y e s
J L 0 0 1 9 6 - 0 1 1 C A P A C I T O R ,  1 5 U F 1 Y e s Y e s
J L 0 0 2 1 9 - 0 0 1 R E S I S T O R ,  1 0 ,  1 / 1 6 W 5 Y e s Y e s
J L 0 0 2 1 9 - 0 3 4 R E S I S T O R ,  2 2 . 1 ,  1 / 1 6 9 1 Y e s Y e s

S P L

October 23, 2001

DARPA Micro Accelerator CDR

J L 0 0 2 1 9 - 0 6 9 R E S IS T O R ,  5 1 .1 ,  1 /1 6 1 6 Y e s Y e s
J L 0 0 2 1 9 - 1 3 0 R E S IS T O R ,  2 2 1 ,  1 /1 6 W 3 Y e s Y e s
J L 0 0 2 1 9 - 1 4 7 R E S IS T O R ,  3 3 2 ,  1 /1 6 W 3 Y e s Y e s
J L 0 0 2 1 9 - 1 9 3 R E S IS T O R ,  1 K ,  1 /1 6 W 2 6 0 .2 6 Y e s Y e s
J L 0 0 2 1 9 - 2 2 6 R E S IS T O R ,  2 .2 1 K ,  1 /1 3 Y e s Y e s
J L 0 0 2 1 9 - 2 5 8 R E S IS T O R ,  4 .7 5 K ,  1 /1 2 Y e s Y e s
J L 0 0 2 1 9 - 3 1 8 R E S IS T O R ,  2 0 K ,  1 /1 6 W 1 Y e s Y e s
J L 0 0 2 1 9 - 3 3 9 R E S IS T O R ,  3 3 .2 K ,  1 /1 1 Y e s Y e s
J L 0 0 2 1 9 - 3 7 3 R E S IS T O R ,  7 5 K ,  1 /1 6 W 1 Y e s Y e s
L R C - L R F 3 W - 0 1 - R 0 0 6 - F R E S IS T O R ,  .0 0 6 ,  3 W 2 0 .4 4 N o N o
L T C 1 6 2 9 IG - P G L T C 1 6 2 9 1 0 .2 9 N o N o
M B R S 3 2 0 D IO D E 2 0 .4 6 N o N o
M M S -1 1 2 - 0 2 - L -D H C O N N _ J A C K 2 N o N o
M T 5 5 L 5 1 2 Y 3 6 P T - 6 M T 5 5 L 5 1 2 Y 3 6 - 7 .5 1 2 3 .0 2 4 4 5 N o N o
T 5 1 0 E 1 0 8 M 0 0 4 A S 4 1 1 5 C A P A C IT O R ,  1 0 0 0  U F 2 0 .0 0 0 6 N o N o
T 5 1 0 X 3 3 7 K 0 1 0 A S C A P A C IT O R ,  3 3 0 U F 2 0 .0 6 6 2 N o N o
T N P W 0 6 0 3 7 1 5 1 B T - 9 R E S IS T O R ,  7 .1 5 K ,  1 /1 1 N o N o
T N P W 0 6 0 3 8 0 6 1 B T - 9 R E S IS T O R ,  8 .0 6 K ,  1 /1 1 N o N o
V T S R 1 6 0 1 2 2 2 G R E S IS T O R _ N E T W O R K ,  2 . 3 0 Y e s Y e s

X C 2 V 6 0 0 0 - F F 1 1 5 2 C M IC R O _ A C C E L _ F F 1 1 5 2 1 8 N o N o
( S W _ P S  C L A D ) 0 .1 7

T o ta ls 1 9 .0 0 9 2 * *

P/L; Power; SPL Status; 2 of 2

** Power consumption is application controlled

Figure AII- 48  Micro Accelerator Parts List 
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3.2.3 PC Board Design And Development 
Another challenging area of the Enhanced Micro Accelerator FPGA Daughtercard design was in the area of the PC 
Board: component layout, PC board layering stackup, and signal routing.   
Referencing Figure AII-49, to properly design a daughtercard that will fit in a given MCS chassis among other 
“standard” modules, the MCS Type B daughtercard imposes height and thickness restrictions on the PC board and 
components.  The suggested nominal thickness for a Type B daughtercard should be .062”, along with “side A” 
component height restrictions of .170”, and “side B” restrictions of .050”.   
In order to accomplish all of the architectural goals previously discussed, it was decided that the largest Xilinx 
Virtex II device should be used in the design, in order to provide the most application flexibility.  The largest Xilinx 
device that could provide all the necessary memory and Race interfaces, and provide a future upgrade pathway, was 
the XC2V6000 in an 1152 fine pitch Ball Grid Array package.  In order to provide PC board connections for this 
package, the PC board layering definition shown in Figure AII- 50 was established.  This layering definition 
provided the following:  a “symmetrical stackup such that, from a center point reference, both “sides” were identical 
in manufacture; a thickness of .075 inches; 3 power planes and 3 ground planes, of which 2 were structured to 
provide “buried capacitance”; 8 routing layers; one “buried resistor” layer.  Note that the planned thickness of .075 
required a further restriction of component heights on the “A” side of {.170 – (.075 - .062) =}   .157”   
The buried capacitance layers were needed because the PC board area left after component placement, did not leave 
sufficient room for an adequate number of standard IC decoupling capacitors, along with the desired placement of 
these capacitors.  The buried capacitor layers provide high frequency (> 500 MHz) signal decoupling, in addition to 
power and ground planes for proper signal referencing.  It is expected that these buried capacitance layers will 
provide the “desired” additional decoupling for high signal quality.    
A buried resistor layer was used for a similar reason as buried capacitors: component layout so restricted the 
remaining area of the PC board, certain signal series termination resistors were placed on an internal PC board layer, 
so as to not occupy board space.   
Also, in order to not increase number of layers used for signal routing, which would have increased the PC board 
thickness, a technique of routing 2 signals between FPGA balls spaced at 1 mm was developed.  In effect, this 
provided a method of routing all signals onto 8 layers, as compared to a normal routing of approximately 10 layers if 
this technique were not used.   
Also, since both sides of the PC board contained SSRAM devices, another technique was developed such that for 
SSRAM devices that occupied the same space but on opposite sides of the PC board, their power and ground 
connection vias were “shared” in the connection method to the respective power or ground layer.  This reduced the 
number of board vias required, thus providing more room for signal routing.   
All signal layers were designed to have a characteristic impedance of 50 ohms.  This impedance is what the Virtex II 
FPGA is designed to “impedance match” to, such that the FPGA I/O drivers were programmed to use Digitally 
Controlled Impedance (DCI) drivers that would match to this impedance, and thereby maintain signal transmission 
quality.  DCI is a new Xilinx technology that was exploited in this design.   



  

 
Figure AII-49  Mercury Computer Systems Type B Daughtercard Mechanical Definition 

 
 

55 



  

 

 
Figure AII- 50  Micro Accelerator Daughtercard PC Board Layering Definition & Stackup 
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Figure AII-51  Enhanced Micro Accelerator Daughtercard Detailed Block Diagram 

 
 
 

3.2.4 Daughtercard Assembly 
Figure AII-52 shows the results of all the development aspects discussed so far.  As indicated, there are components 
on both sides of the PC board.  The Virtex II FPGA is physically located on the top side, but the interconnections 
extend to the bottom side, allowing signal access to all 8 routing layers.  The FPGA is surrounded by the 12 local 
SSRAM components, and when viewed “through the board”, will occupy the same “footprint” when placed on top 
of each other.  The local 1.5V switching power supply occupies both top and bottom surfaces.  The Race++ interface  
FPGAs occupy both top and bottom surfaces.  
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Figure AII-52  Micro Accelerator Daughtercard Completed Assembly 
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3.2.5 Test Program Development 
This section provides a description of the test program that was developed for the Micro Accelerator, which allows 
each Race++ port to perform Master Write and Master Read transactions.   
3.2.5.1 Test Chassis Setup 
Figure AII-53 is a picture of the test chassis used during development and debug of the Micro Accelerator.  As 
indicated, the chassis is a Tracewell 8 slot VME64 backplane, with integrated power supply.  The VME processor 
module used is a DY-4 SVME179 single board computer.  The MCJ6 motherboard consists of a dual compute 
element PowerPC 750 daughtercard, and the Micro Accelerator daughtercard.   
The figure also shows the position of the daughtercard when mounted on the MCJ6 motherboard: left hand side, 
MCJ6 (or MCH6) slot C, D position.   
3.2.5.2 Test Design Block Diagram 
In order to successfully prove that each Race++ port could respond to Master Reads into the Micro Accelerator, and 
execute Master Writes from the Micro Accelerator into the Raceway network, it was decided that each port would 
need the capability of bi-directional data transfer (coprocessor configuration).  AII-6 represents a block diagram of 
the high level test environment developed for debug of the Micro Accelerator daughtercard.  It indicates that the 
Virtex II FPGA is split into two processing nodes; each one is capable of interfacing to the Race++ port in the 
coprocessor configuration.  Each node contains an interface to 6 of 12 SSRAM memories, and supplies an internal 
Xilinx 256 point FFT processor, based on the Xilinx Core Gen component.  A memory map for this design is shown 
in  Table 4.  Each “function” is mapped to a Raceway address, and logic is designed to interpret this address and 
corresponding data and react appropriately.     
 
A more detailed block diagram of the Raceway interface function developed for use within the FPGA is shown in 
Figure AII- 55.   Note that this figure depicts only ½ of the FPGA interface; the entire design is repeated for the 
second Race++ port.  Both ports are configured for bi-directional data transfer.  This design is written in VHDL, and 
uses Xilinx CoreGen components.  
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Table 4 Race Translated Micro Accelerator Memory Map 
 
 
Note: address map changed to accommodate CPLD synthesis constraints.   

Race++ Slave 
Address Region 
(Word 0 bits 31 

– 29 of RIC-
ERWO Slave 
Write Cycle 

Protocol) 
bits 

Race++ Slave 
Address Region 
(Word 1 bits 27 

– 3) of RIC-
ERWO Slave 
Write Cycle 

Protocol) hex 

Width/Alignm
ent Nibble  

Word 1 Slave 
Address bits 

31 – 28 
(Race 

provided) 

Micro 
Accelerator 

Region 

Local 
Mapping 

“Regional” 
Translated 

Address hex 
(Addr 24:0) 

Comments 

000 0000000 → 
3FFFFE8 
Accessible in 
increments of 4 
bytes only. 

1101 = 4 byte 
accessing  

Flash PROM 000000 → 
7FFFFC 

EEPROM is 8 bits wide.  
Race++ is 32 bits wide.  
Race 32 bits are mapped 
into EEPROM 8 bits  

000 4000000 → 
40000F8 

1101 = 4 byte 
accessing 

CPLD 
Registers 

800000 → 
80001F 

32 registers addressable in 
32 bit words only 

000 4000100 → 
40FFFF8 

1101 = 4 byte 
accessing 

Blank Space 800020 → 
81FFFF 

Spare Memory Space.  Not 
Mapped to components 

000 4100000 → 
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FPGA 
Register Space 

820000 → 
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917503 32 bit registers 

000 4800000 → 
4BFFFF8 

1101 = 4 byte 
accessing 

SRAM 1 900000 → 
97FFFF 

Addressable as 32 or 64 bit 
words.  Accommodates 
(512K x 32) SRAM bytes.   

000 4C00000 → 
4FFFFF8 

 SRAM 2 980000 → 
9FFFFF 

 

000 5000000 → 
53FFFF8 

 SRAM 3 A00000→ 
A7FFFF 

 

000 5400000 → 
57FFFF8 

 SRAM 4 A80000 → 
AFFFFF 

 

000 5800000 → 
5BFFFF8 

 SRAM 5 B00000 → 
B7FFFF 

 

000 5C00000 → 
5FFFFF8 

 SRAM6 B80000 → 
BFFFFF 

 

000 6000000→ 
63FFFF8 

 FFT RAM C00000 → 
C7FFFF 

 

000 6400000 → 
FFFFFFF 

 No memory 
functions.   

 Not mapped to 
components.   

 



  

 
 
 

 
Figure AII-53  Micro Accelerator Test Chassis and Module Test Setup 
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Figure AII-54  Test & Design Verification Block Diagram
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Figure AII- 55  Test Design Detailed Block Diagram 
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3.2.5.3 VHDL Hardware Design And Development  
The intent of the test design is to provide a Master Write and Master Read capability for the individual Race++ ports 
on the Micro Accelerator Daughtercard.  The test design provides a memory-mapped interface wherein each register 
or SRAM memory on the Micro Accel is mapped into a section of Raceway space, and is located and defined by an 
offset from the base address for each Race++ port on the Micro Accelerator.  Referring to AII-55: 32 bit Raceway 
data is presented to the FPGA interface via bi-directional I/O registers that are default set as input drivers.  Logic 
detects and decodes the input stream, and if the data is mapped to an FPGA designated location that is correctly 
memory mapped, the FPGA will respond appropriately to this Master Read input data by writing a register, writing a 
block of memory  etc., or by initiating a Master Write cycle.  State Machines provide internal strobe control and 
generation, data flow control, and data formatting.  All “external” interfaces are driven in synchronization with the 
Raceway derived clock, and all “internal” FPGA processes are driven in synchronization with the higher speed 
FPGA clock; FIFOs provide the clock domain decoupling.   
Tools used for this development include: 

• Visual Elite Version 2.0.2 for VHDL Source Development  
• Synplicity Synplify Version 7.1 for logic synthesis 
• Xilinx ISE Version 5.1 Service Pack 1 for logic place and route and device programming via JTAG 
• Xilinx Chipscope Version 5 for internal FPGA debugging. 
• Xilinx CoreGen for development of FPGA Intellectual Property  

o FIFOs, FFT Processors, SSRAM Memory Interfaces 
• Model Technologies ModelSim PE Version 5.6 for simulation and logic debug.   

3.2.5.4 Test Software DESIGN AND Development 
The software used to test the accelerator daughter-card was developed in the C programming language for 
Mercury’s MCOS release 5.6.  The development environment consisted of a SUN Microsystems Ultra 80 
workstation, hosting Mercury’s development environment and a Tornado II development environment from 
WindRiver Systems.   The test VME chassis consisted of an SVME-179 single board computer from DY-4 Systems 
Inc., and a(n) MCJ6 Race++ motherboard fitted with a PPC-750 daughtercard (dual 375MHz PowerPC node, with 
32MB per node) and the accelerator daughter-card. 
 
The DY-4 single board computer (SBC) was booted via the network (Ethernet) using the Ultra-80 workstation as the 
boot host.  Once booted, the SBC automatically executes a boot script, which is used to configure the Mercury 
Compute environment and start the remote server process.   It is via the remote server process that users logged into 
the Ultra-80 workstation can load/execute programs on the Mercury compute nodes.  As shown in Figure AII-56  
Software Development Environment the DY-4 SBC serial port is directly connected to the serial port of the Ultra-80 
workstation.  This allows a program such as SUN’s “tip” or Kermit (available open-source code) to be used as the 
DY-4 SBC console.  
 

Figure AII-56  Software Development Environment 
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The test software design approach was based on using Mercury’s dx-transfer facility.  Two shared memory buffers 
(SMB) were created locally on one compute node serving as the master node.  Under program control, the first SMB 
is populated with commands and associated data intended for the accelerator daughter-card.  This SMB is used as 
the source endpoint for dx_start.  The second SMB is used as the results buffer, which is used by the accelerator as 
the destination endpoint for output data.  For added flexibility, the test software was designed to obtain 
command/data intended for the accelerator daughter-card form ASCII formatted text files.  This approach allows for 
rapid “what-if” scenarios without modifying the test application software, but simply editing the text file(s). 
 
Since the accelerator daughter-card is a race++ capable device, each raceway port (RP1 and RP2) is treated as a 
separate device. Control of each device is under application program control.  The test application performs a device 
attach, specifying the named ports in the configuration file for the mercury system, NG_ACC_1 for raceway port 1 
and NG_ACC_2 for raceway port 2.  The test software also allows the accelerator daughter-card to signal the 
controlling compute node, after results are DMA’ed to the results SMB.  This feature is implemented using 
mercury’s mailbox facility. 

4 Program Results 
The following section describes the results of the Micro Accelerator program, including debug, demonstration, and 
performance observations and results.   

4.1 Hardware Performance 

4.1.1 Power Consumption 
Initial power consumption measurements were taken as a function of an MCJ6 without, and then with, a Micro 
Accelerator Daughtercard, and are derived from the +5Volt supply current, and based on the following assumptions.   
 
 
 
Each MCJ6 motherboard receives +5V, and generates +3.3V for distribution to daughtercards etc via a DC/DC 
converter.  Assuming an efficiency ratio EFF of 0.9, IOUTPUT of a given supply is obtained by  
IOUTPUT 3.3V = (EFF x 5V)/3V  x  IINPUT = 1.36 x  IINPUT 5V
IOUTPUT 1.5V = (EFF x 5V)/1.5V  x  IINPUT   = 3 x  IINPUT 5V 
 
Conditions to determine Power Consumption with results are given below: 

 
 

Table 5 Micro Accelerator Daughter Card Power Dissipation 
 

Condition 5V Current Measured 
(Amps) 

3.3V Current 
Derived (Amps) 

3.3V Power Watts, 
Calculated 

1.5V Current 
Amps, (Derived 

1.5V  Power 
Watts, Calculated 

“Bare” MCJ6 
(without daughtercards) 2.97     
MCJ6 with  
One Micro Accel 3.8 1.08 3.56   

MCJ w/ 
Micro Accel w/ 
FPGA Programmed 4.4 1.08 3.56 1.8 2.7 
  
 
 
Conclusions:  The Micro Accelerator daughtercard dissipates approximately 3.5 Watts without any FPGA program 
loaded.   The FPGA dissipates approximately 2.7 Watts with the Design Verification test program (described in 
3.2.5.2 ) loaded, which occupies approximately 17% of the FPGA.  These values appear to be within estimated 
power dissipation expectations.   
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4.1.2 Hardware Known Issues And Resolution 

4.1.2.1 CPLD 
During design debug, it was determined that several CPLD related functions did not operate as intended, namely the 
Roboclock adjustment feature, and Flash PROM read & write interface.  Design errors were uncovered, requiring 
various corrections for both that ultimately resulted in a compiled design that would no longer “fit” into the pinout 
assignment of the CPLD.  Although these features have been successfully redesigned and debugged via simulation, 
the complete fitting and programming of the entire device is not completed because of an overuse of available logic 
resources within the CPLD.   
Resolution of this problem will require some or all of the following:   

• Insertion of a new and larger CPLD into the same footprint that exists on the Micro Accel PC board, if 
available from the manufacturer.   

• Redesign of existing functions to simplify operations, and/or elimination of functions or reduction in their 
complexity to obtain a proper CPLD fit. 

• Re-pinout of the CPLD to accommodate these redesigned functions.  Note that this will require redesign of 
the PC board.   

Currently, the use of the CPLD is to provide daughtercard setup defaults for the Roboclock and reset circuitry.  The 
Roboclock frequency control can be “partially” adjusted by way of commanding a Master Read function, with the 
Roboclock frequency adjustment control register address as the destination.   Presently, a  completely new setting 
will require the reprogramming of the CPLD, such that new Roboclock setup parameters are provided upon 
powerup.   
The CPLD  is also used to provide a Switching Power Supply Sync function, should future performance testing 
determine that the Switching Power Supply needs this. 
4.1.2.2 FPGA 
The Race++ interface within the FPGA has been debugged and will accommodate Master Read block data transfers 
to any location within any of the 6 SRAMs attached to the specified Race++ port.  The design currently supports a 
Race clock speed of 66 MHz, and an FPGA clock speed of 66 MHz, and is designed to support FPGA clock speeds 
up to 133 MHz.   
However, performance testing of this interface is required, specifically exercising the various FIFO Empty and Full 
conditions that will arise, depending on Race and FPGA clock speeds.   
Also, as a result of the CPLD problems mentioned above, the FPGA Slave Parallel Reconfiguration mode has not 
been tested, since this involves correct Write and Read control of the Flash PROM via the CPLD.  The 
reconfiguration mode currently used is via the JTAG interface, which requires the NGNS designed Test Cable .   
4.1.2.3 SSRAM 
During daughtercard debug, it was discovered that all SSRAM VIO pins were connected via the PC board to 0 Volts 
(Ground).  In order to properly interface to the FPGA, these power pins must be connected to +3.3V.   
 
Further observation indicates that, at least for daughtercard S/N 001, because of the amount of time the board was 
powered on in this (incorrect) state, and due to logic level defaults set within the FPGA (data contention), it is 
suspected that several (if not all) of the SRAMs have become damaged, and will require replacement and ECN 
installation to correct this problem. 
 
Consequently, only ½ of 1 SRAM (16 of 32 bits) has been verified to be fully operational.    
4.1.2.4 FFT Processor 
Regarding performance in this area, an examination (via Chipscope) of the internal FPGA RAM data needed for 
proper operation of the FFP processor, indicated that the RAMs themselves are not getting loaded with the proper 
input data (RAM writing is incorrect).   
No further examination of this area was conducted, as the program was out of time and money.   

4.2 Software Performance 
The test application software has been successfully demonstrated with the accelerator daughter-card.  Executing on a 
user specified compute node, the test application software, successfully transmits commands and data to the 
accelerator via raceway ports 1 or 2.  Similarly, the test application software successfully received and displayed 
data DMA’ed from the accelerator. 
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4.2.1 Software Known Issues And Resolution 
Perhaps the only major issue with the test applications software is the mailbox signaling has not been successfully 
integrated with the accelerator daughter-card.  Additional time is needed to complete this integration.   
At the moment, the test application software interacts only with raceway port 1 or 2, which is determined at compile 
time.  A few modifications to the code should be put in place to attach to both ports and allow the user to specify 
which port the commands/data are intended. 

4.3 Demonstration 

4.3.1 Setup And Testing Performed 
Referring to AII-9 this setup was used to demonstrate the work accomplished to date.  The demonstration conducted 
showed the system ability to read and write ½ of one SRAM component from Race++ port 1.   

5 Conclusions 
The design and development of the Micro Accelerator Daughtercard described herein  fulfills the requirements of 
the Northrop Grumman Contract in terms of design features, and requirements, flexibility, local memory quantity 
and projected bandwidth, upgradeability, form, fit, function, and power dissipation.    
Further evaluation of the daughtercard in terms of high speed clock performance, full memory interface testing, dual 
port Raceway I/O bandwidth, and software performance should be conducted to confirm design issues.  As 
mentioned previously, these design issues include: 

• a high performance PC board layering structure designed to provide high frequency decoupling; 
• Raceway I/O FPGAs designed to supply full Race++ bandwidth with minimal overhead,  
• A VHDL designed section of hardware designed to handle the full clock extremes that the board is capable 

of producing; 
• A flexible clock controller designed to provide minimum and maximum speed clocks to compute 

elements,  
• A capability of storing and programming the FPGA through an on board program data store.   

The demonstration of the daughtercard was also successful.  A Logic State Analyzer was used to show that a 
Master Read and Master Write could be executed by both Race ++ ports.     
 
 



 

 
Figure AII-57  Micro Accel Daughtercard Test Plug Adapter Cable Wiring Definition 
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