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Abstract

Wing flutter, or more accurately limit cycle oscillation (LCO), has been an
issue for the F-16 since its operational deployment. Different store configurations
and the permutations of those configurations after weapons are released will cause
LCO to either disappear or appear. Unfortunately, the current method used by engi-
neers for predicting LCO onset is based on linear, subsonic aerodynamic theory with
no corrections for transonic effects. Predictions using this method are often good
in frequency, but can be far off in predicting onset speed, forcing flutter engineers
to rely more on experience and interpolation from similar configurations to design
flight test parameters. During flight tests, very specific and stringent guidelines are
adopted to ensure the aircraft does not encounter classical flutter or excessive LCO;
consequently, these tests require a large investment in resources and time to validate
any particular store configuration. A new approach, incorporating inherent non-
linearities that drive LCO is investigated in the following research. This approach
(called ZTAIC - ZONA’s Transonic Aerodynamic Influence Coefficient method) uses
steady C, data in conjunction with the Transonic Equivalent Strip (TES) method
to generate a transonic modal aerodynamic influence coefficient (AIC) matrix which
accounts for wing thickness effects and shock structure. This AIC is then used in
the g-method flutter solution methodology (incorporating a damping perturbation
technique) to extend the classical linear p-k flutter solution methodology to include
first-order aerodynamic damping effects. Two F-16 store configurations are exam-
ined using the g-method to correlate predicted flutter onset speeds, frequencies and
character (classical flutter, typical LCO, or non-typical LCO) with those found in
flight test. Additionally, an investigation of the aerodynamic effects of modeling

underwing stores on the flutter solution is accomplished.

Xiv



Results show that predicting the flutter boundary is particularly dependent
upon a highly accurate structural model. Small changes in the tuning of the struc-
tural model resulted in large changes in the flutter boundary. Flutter frequency,
however, was predicted quite well. Also, the aerodynamic model could not be ne-
glected, as the aerodynamic influence of underwing stores proved significant, partic-
ularly for the two most outboard wing stations. Most importantly, the character of
the instability was predicted by the new method. This new method gives the flutter
engineer valuable insight and allows for more focused, quicker, cheaper and safer

flight-testing.
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Nonlinear, Transonic Flutter Prediction for F-16 Stores

Configuration Clearance

1. Introduction

The aeroelastic response of aircraft with either thin wings or large aspect ratios has
long been a topic of discussion and research, and the F-16, with its relatively thin
wing, has often been the focus of such studies. Originally designed as a lightweight,
day only fighter, the F-16 evolved into a robust multi-role aircraft. This evolution
was driven primarily by the retirement of aircraft such as the A-7, F-4E, and F-4G,
and the need for a currently available fighter to assume their roles. As the F-16’s
versatility grew, so too did the types of stores that it needed to carry. Since the be-
ginning of its operational life, however, the F-16 was known to exhibit flutter of the
wing; the severity of which depended on the type and number of underwing stores
carried. Necessarily, all store configurations had to be flight-tested to determine if
any instability would occur, and, if so, how severe it would be. Flight-testing, how-
ever, is expensive, and a method was needed to enable engineers to predict flutter
onset speeds so the tests could be narrowed to a specific flight regime. Initially,
prediction methods were based on linearizing this inherently nonlinear phenomenon,
and ignoring the aerodynamics of the underwing stores to reduce the complexity of
the problem and facilitate numerical solutions. These methods, however, while often
quite good at predicting flutter frequencies, were typically not very accurate at pre-
dicting flutter onset velocities [13]. Rapid advances in computing power over the last
10 years are now beginning to allow flutter solutions that include the aerodynamic

effects of underwing stores and structural /aerodynamic nonlinearities.

The Air Force Seek Eagle Office (AFSEQ) is responsible for certification of

new store configurations for the F-16. Many times the requested configuration is
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very similar to an existing cleared configuration, and, in these cases, AFSEO usually
relies on previous experience to clear the new configuration across the same enve-
lope. As the F-16’s roles continue to expand however, more configuration requests
are unique and require simulation and flight-testing before the flight envelope can
be cleared. This process involves conducting exhaustive simulations of every pos-
sible ”download”! of the requested configuration to determine which combinations
are flutter sensitive, followed by flight-tests of the flutter sensitive combinations to
validate the simulations across the flight envelope. The current methodology used
by AFSEO to accomplish the simulations is called the Universal Flutter Analysis
Program (UFAP). UFAP is a linear, subsonic acrodynamic solution routine tied to a
linear structural solver. With this method only the wing is modeled aerodynamically;
UFAP has no capability to aerodynamically model the underwing stores. The stores
are accounted for by adjusting the mass and flexibility properties of the structure.
Due to the inaccuracies involved with UFAP, AFSEQO advertises a 12 to 24-month

period from initial submission of a new configuration to final clearance.

1.1  Problem

The research problem described in this thesis is to determine whether nonlinear
aerodynamic methods can more accurately predict flutter onset speeds and frequen-
cies, the sensitivity of the solution to aerodynamic modelling of underwing stores,
and the sensitivity of the solution to various levels of structural damping. This
thesis presents a technique for more accurately predicting flutter onset speeds and
frequencies for F-16 stores configurations. This method will be more computation-
ally expensive than the current UFAP code, but greater accuracy in the predictions
should shrink the flight test envelope, resulting in cost and time savings for flight-test

validation, as well as enhanced flight test safety.

LA download is a permutation of the original configuration. For example, if the requested
configuration is 2 AMRAAMSs by 2 JDAMs, then every possible combination of these stores must
be examined; i.e 1 AMRAAM x 2 JDAM, 0 AMRAAM x 2 JDAM, 2 AMRAAM x 1 JDAM, etc.
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1.2 Scope

The research presented in this thesis is an investigation of an analysis tech-
nique which produces less error in predicting flutter than UFAP. A parametric com-
plex eigenvalue (PCE) method combining a nonlinear capable aerodynamic solver,
ZAERO 5.2, splined to a linear finite element structural solver, MSC/NASTRAN; is
used to generate aeroelastic solutions for two F-16 standard combat loads (SCL) over
a range of airspeeds and altitudes. Sensitivity analyses to transonic nonlinearities,
aerodynamic modeling of underwing stores, and structural damping are included.
Finally, predicted flutter onset speeds and frequencies are compared to flight-test

results.

Figure 1.1  F-16 Standard Combat Load (SCL) 007

1.3 Approach/Methodology

The initial phase focuses on validating a new F-16 structural model, for the
standard combat load shown in Figure 1.1, with previous research, using linear tech-
niques without the effect of store aerodynamics or structural damping. Once the
model is validated, a convergence study of the aerodynamic panel model of the air-
craft wing is conducted. Next, nonlinear aerodynamic effects are investigated by
supplying, to the transonic module of the aerodynamic solver, steady AC, data

generated from CFD modeling, where AC, is the difference in pressure coefficients
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between the upper and lower surfaces of the wing. This will test the sensitivity of
the flutter onset speed to nonlinear shock effects in the transonic regime. Structural
damping at various levels is then included in the aerodynamic module to gauge its
effect on flutter onset speed and whether it can be considered an additive effect to
the aerodynamic damping of the system, and then sensitivity to underwing stores is
investigated to determine if the aerodynamic influence of these stores warrant their
inclusion in the panel model. Finally, the results of the simulations are matched to

flight test results of the SCL007 flown at Eglin AFB in 1991 [5].
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1I. Literature Review

2.1 Introduction

The following review supports research into quick and accurate prediction of
the flutter onset speed of an F-16 Block 40/50 configured with external stores in the
transonic flight regime. The terms, “flutter” and “limit cycle oscillation” (LCO),
while often used interchangeably, mean something quite different. Classically, flut-
ter is defined as oscillations that grow unbounded, after being excited by an initial
disturbance, until the structure fails. The mechanism behind flutter is a coupling
between aerodynamic, elastic, and inertial forces. LCO differs from classical flutter
primarily in that highly nonlinear coupling between the aerodynamic and structural
forces causes the oscillations to grow from an initial disturbance up to limited ampli-
tude [4]. Unfortunately, current analytical methods do not allow us to tell whether
an aircraft will experience classical flutter or LCO at any given airspeed and con-
figuration; therefore, flight tests are used to try to determine flutter onset speeds.
During flight tests, very specific and stringent guidelines are adopted to ensure the
aircraft does not encounter classical flutter or excessive LCO; consequently, these
tests require a large investment in resources and time to validate any particular

store configuration.

The following sections of this review investigate current research into:

1. The mechanisms that drive LCO.

2. Methods for predicting, rather than simply correlating, the onset speeds and

frequencies.

3. The methodology used by the Air Force Seek Eagle Office (AFSEO) to predict

LCO for the F-16 under various store configurations.

This review was undertaken to determine whether an integrated software package

for predicting LCO onset speeds and frequencies exists. The software should require
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only modest computing effort and cost and allow AFSEO to run multiple test cases

in a reasonable time period.

2.2  Mechanisms for LCO

Understanding the mechanisms that drive LCO is particularly important in
the design and certification of the flight envelope of any military aircraft. The ef-
fects of LCO on a pilot’s ability to work effectively within the cockpit, as well as
fatigue effects on the aircraft structure, and vibration effects on aircraft stores while
under an LCO condition drive this need [4]. Considerable research in the last 10
to 15 years into the mechanisms that drive flutter and LCO has led to great strides
in understanding the phenomenon, but no consensus as to the predominant driving
factor that causes LCO has yet been achieved. Flight-test results and some com-
putational fluid dynamics/computational structural dynamics (CFD/CSD) research
agree, however, that, in the case of the F-16 at least, flutter/LCO appears primarily
as an antisymmetric phenomenon [4, 28]. Denegri notes that inboard and outboard
wing motion contribute to both symmetric and antisymmetric LCO; however, rolling
moments caused by wing motion in the antisymmetric case are lightly damped by
structural and aerodynamic mechanisms, allowing more energy to transfer through

the fuselage to the opposite wing [13].

While there seems to be little debate about how LCO is exhibited on the F-16,
there are still questions about whether the driving factor is aerodynamic, structural,
or some combination of both. Meijer and Cunningham describe the leading case for
an aerodynamic mechanism in the transonic regime as shock-induced trailing edge
separation (SITES) [25]. During transonic flight, while under LCO conditions (LCO
seems to occur most frequently during transonic flight), the aircraft experiences a
mixture of both attached and separated flow [25]. SITES is presumed to be one of
the causes of this mixed flow, as well as the disturbance that can lead to LCO. Meijer

also reports in a later paper that local shock induced separation (LSIS) couples with
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SITES to induce LCO, especially as the angle of attack of the wing is increased
above approximately five degrees [24]. While the onset and growth of LCO appear
to be driven aerodynamically by SITES and LSIS, airflow disturbances at the leading
edge of the wing appear to limit that growth. On a CFD model of a cropped delta
wing, leading edge vortices seemed to act as “aerodynamic springs” that limited the
amplitude of the structural oscillations [15]. Aerodynamic lags also appear to play
a role in determining the amplitude of LCO. In their investigation of SITES, Meijer
and Cunningham showed the time lag associated with the transition to SITES led
to increasing amplitudes [25]; while phase lags between the structural modes, that

combine to form the flutter mode, determine the final amplitude [15].

It is readily apparent that nonlinear aerodynamics play a role in the develop-
ment of LCO; however, most of the studies linking these nonlinearities to LCO were
conducted at angles of attack of four or more degrees. At transonic speeds, this range
of angle of attack is typical of increased G loadings during maneuvering, but LCO is
also known to occur during straight and level flight where angle of attack is normally
less than two degrees. Also, most of the studies investigating the aerodynamic effects
of LCO use a linear structural model with an assumed structural damping of zero
percent; or, if a wind tunnel model is used, it is usually a rigid model which has
less damping (due to its unitized construction and lack of mechanical joints between
the stores and the wing) than an actual wing [8]. Tang and Dowell attempted to
account for structural nonlinearities using linear aerodynamic theory coupled with
a nonlinear structural solver on a delta wing model, and verified LCO onset and
amplitude sensitivity to angle of attack, suggesting the effect is not necessarily due

to aerodynamic nonlinearities [34].

Three observations about LCO also point to causes other than aerodynamic:

1. LCO occurs over airspeed ranges from subsonic to supersonic and once LCO

starts, it continues through the transonic regime.
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2. During wind tunnel testing flutter is encountered; but, during flight test, LCO
is encountered. This can be linked to the use of stiff models in the wind tunnel
and the variation of Reynolds number between wind tunnel tests and flight

test.

3. Different aircraft carrying the same store configuration show a variation in

LCO onset speeds, or no LCO at all. [29]

According to Chen, et al. [8], the above observations can be explained by nonlinear
structural damping (NSD), unlike the aerodynamic theories previously discussed.
NSD describes the frictional interaction that occurs between the wing/pylon and
pylon/store. When aerodynamic forces become strong enough to overcome the static
friction in these interfaces, the resulting dynamic friction acts to provide damping to
the system. This provides an explanation for observations two and three, since the
way in which the pylon is mounted on the aircraft, or how tightly the sway braces
secure a store can change the coefficients of friction for each of those interfaces [8, 29].
This “stick/slip” friction effect, known as “stiction,” is independent of Mach number,

verifying observation one for NSD [29].

The conclusion drawn from the research of Chen, et. al. [8] and Mignolet,
et. al. [29] above is that both the aerodynamic and structural nonlinearities should
be accounted for, if possible, to ensure the most accurate prediction of LCO onset
speed, frequency, and amplitude. Sheta, et al., showed the efficacy of this method
during a CFD study on a NACA-0015 airfoil incorporating both fluid and structural

nonlinearities and concluded:

The mechanism of the instability (LCO) could be due to flow nonlin-
earities such as flow-separation and the presence of separation bubbles,
the presence of an oscillating shock, the state of the boundary-layer, and
shock/boundary-layer interaction. Other sources of the instability are
structure nonlinearities which may be associated with kinematics, struc-
tural stiffness and damping properties, and pathologies such as internal
resonances arising from design. [33]
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2.8  Computational Methods

The aerodynamic and structural nonlinearities discussed above are accounted
for in simulation using one of three broad classes of computing approaches: fully
implicit aerodynamic/structural methods, conventional serial staggered (CSS) meth-

ods, and parametric complex eigenvalue (PCE) methods.

Fully implicit methods are typically more complex since they attempt to com-
bine both the structural and fluid equations into one package that can be marched
forward in time to yield complete solutions. The staggered method uses two separate
codes, one for the structure and one for the fluid, and each medium is solved inde-
pendently. The solutions are then transferred across the boundary interface between
the fluid and structure using a splining technique [22]. Parametric complex eigen-
value methods are similar to CSS methods; they are not, however, concerned with
the motion of the system over time, and hence cannot predict amplitudes. Instead,
a structural solver is used to generate the structural natural modes, which are then
used by an aerodynamic routine to generate flutter modes. This approach iterates
over a parameter, generally velocity, to determine when the system will cross from

stability to instability.

While computational fluid dynamics (CFD) and computational structural dy-
namics (CSD) packages have been around for quite a while, combining the two into a
single implicit method for solving complex aeroelastic problems is a relatively recent
development. Rapid advances in computing power throughout the 1990’s made the
integration possible; now, high-end desktop systems can solve problems that previ-
ously required a supercomputer. Simplifications are still made, however, to reduce
the overall complexity of the system being modeled. For instance, Gordnier and
Melville [15, 16] and Melville’s [27, 28] research throughout the late 90’s always cou-
pled the nonlinear Navier-Stokes/Euler equations with linear structural equations.
Similarly, most of their work did not include the effects of underwing stores on the

aeroelastic response of the system. Flight test data from the F-5 and F-17 shows,
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however, that nearly 40% of all configurations tested showed a sensitivity to un-
derwing stores, which modified the flutter onset speed through changes in modal
coupling [35]. And only recently have high order CFD studies included the effect of
structural damping on the system. Ground vibration testing (GVT) typically places
structural damping in the 1-2% range [8], and when 1% damping was included in
an F-16 model, Melville [28] found it made the system very stable and concluded
that neglecting the effects of structural damping leads to uncertainty in the flutter
prediction. The CFD/CSD approach has yielded many insights into the mechanisms
that drive and sustain LCO; however, they still have not been able to capture the
entire range of LCO phenomenon. Most of the analyses predicted the onset speed
fairly well in the subsonic range, but overpredicted the supersonic cases [16, 28|.
Other limitations of these methods are software integration and computational cost.
Because the fully implicit methods couple the structural and fluid equations into
one package, updating the software as new structural or fluid solvers become avail-
able is a time consuming process. And, even though computing power continues to
increase rapidly, the time required to generate a solution for a single configuration
using these methods is not conducive to evaluation of hundreds of permutations on

a given configuration.

Staggered methods, on the other hand, overcome the limitation of having to in-
tegrate newer computational routines into a unitary solver. Instead, as new software
packages for structures or fluids are created or updated, they are inserted into the
computing environment that couples the two solvers. The environment commonly
used now is the Multi-Disciplinary Computing Environment (MDICE). Kolonay,
et al., demonstrated the “plug and play” nature of this architecture on a generic
fighter wing, coupling a Navier-Stokes/Euler fluid solver with two separate struc-
tural solvers, MSC/NASTRAN and ANSYS [22]. Since the CSS method is similar
to fully implicit methods (the same equations can be used in both methods), similar

results are expected. Greco, et al. [17], combined the Transonic Small Disturbance
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equations with linear structural equations, producing results for the AGARD I-Wing
445.6 that were similar to fully implicit results reported by Gordnier and Melville
[16], i.e., predicted subsonic flutter speeds showed good agreement with experiment
while supersonic results were overestimated. The primary drawback related to CSS
methods is that exact time synchronization between fluid and structure cannot be
accomplished, introducing errors in transient analyses and time stability problems
[22]. Pipeno, et al., addressed these issues with a novel approach to time discretiza-
tion based on equating the work done by the structure to that done by the fluid
pressure at the interface [31]. Generally, the order of time accuracy in a staggered
method is one order less than the time accuracy of the structural and fluid solvers
being used; however, they were able to achieve higher order time accuracy with this

energy approach without significantly adding computational cost [29, 31].

Although CSS methods have some advantages in terms of adaptability, their
results have not consistently proven any more accurate than fully implicit meth-
ods, and the computational cost is still prohibitive for generating results for many

permutations on a given store configuration.

Accurately predicting the onset speed, frequency and amplitude of LCO is im-
portant to the Air Force Seek Eagle Office (AFSEQO); doing it quickly for multiple
configurations is equally important however. This requirement led AFSEO to use
the parametric complex eigenvalue method (PCE) for predicting LCO onset. Since
uncertainties persist in computational methods, flight-testing is still required to ver-
ify prediction, making flutter onset speed and frequency more critical factors than
amplitude. The PCE method is quite robust and, like the staggered methods de-
scribed above, is easily adaptable to new software. Until recently, most PCE solution
methods used linear theory for both structural and aerodynamic solutions, however,
the method is easily adaptable to account for nonlinearities by introducing struc-
tural damping effects and modifying the Aerodynamic Influence Coefficient (AIC)
matrices. Brink-Spalink and Bruns [3], and Jadic, et al. [20], describe methods for
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including nonlinearities in the flow, and reducing the computing cost of generating
corrections to the AIC matrices. Using the method outlined by Jadic, et al., for linear
analysis, one Enhanced Correction Factor Technique (ECFT) matrix is generated for
each Mach number; but, to include nonlinear effects, additional ECFT matrices for
the same Mach number are generated to account for additional aerodynamic data
[20]. The necessity to generate multiple ECEF'T matrices to account for nonlinearities
makes this method somewhat cumbersome. A more automated approach to cor-
recting the AIC matrices for transonic solutions, developed by ZONA Technology,
is available that solves the unsteady Transonic Small Disturbance (TSD) equation
[36]. To generate the corrected AIC matrices, steady pressure data is required for
the Mach number and angle of attack of the aircraft (steady pressure data is required
by all of the AIC correction techniques); this data can be obtained from CFD calcu-
lations or experiment /flight test. Using the steady pressure data allows the software
to determine the location and strength of the shock waves attached to the wing, as
well as the associated equivalent airfoil shape [36]. From this information, a modal-
based Transonic Aerodynamic Influence Coefficient (TAIC) matrix is built, based
on the nonlinear, unsteady TSD equation [36]. Implementing the ZTAIC module is
transparent, and performing a transonic calculation simply requires the additional

input of steady pressure data.

2.4 AFSEO Methodology

Currently, AFSEO uses an analysis tool called the Universal Flutter Analysis
Program (UFAP) to calculate flutter onset for all the permutations of a given store
configuration [11]. In order to do this, engineers at AFSEO input the mass, geometry,
and flexibility properties of the both the aircraft and stores to UFAP which then
solves an eigenvalue problem to determine the natural frequencies, mode shapes,
generalized masses, and generalized stiffnesses of the system. This part of the UFAP

code is not finite-element based, however. In order to make changes to the structure
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or stores, the engineers must manipulate the actual mass and flexibility matrices of
the system. The aerodynamic influence coefficient (AIC) matrices (discussed in detail
in chapter 3) are created by an external program using the Doublet-Lattice method
(DLM) [1], which is a purely linear, subsonic method. With the structural modes
and the AIC’s known, UFAP then interpolates the natural modes to the aerodynamic
panels of the DLM via a spline matrix and solves the complex eigenvalue problem
using a version of the k-method (see chapter 3). Velocity vs. damping (V-g) and
velocity vs. frequency (V-w) curves for each vibration mode are output and critical
flutter modes are identified as those modes whose flutter speeds fall within 15% of
the desired carriage airspeed limit [12]. These critical cases are then submitted for

flight testing.

The obvious limitation of UFAP is that it is a purely linear, subsonic flutter
prediction method, whereas the phenomenon itself is known to be nonlinear with
onset speed typically in the transonic and supersonic flight regimes. Work done by
Johnson [21] has extended AFSEQ’s capability to include supersonic analysis using
MSC/NASTRAN to generate the structural and aerodynamic solutions, however, no

transonic capability exists.

2.5 Software Selection

The software used in this thesis was chosen to both expand AFSEQ’s prediction
capability (throughout the entire flight regime) and to merge multiple linear solution

methods into one with both linear and nonlinear capabilities.

ZONA Technology’s ZAERO Version 5.2 software [37] uses a higher order linear
method (based on constant pressure across each aerodynamic box) than DLM for
subsonic analysis and adds a supersonic capability, both of which account for the
effects of external stores and wing-store interference. In addition, ZAERO integrates
a transonic method using the same general input requirements as the sub/supersonic

methods with the additional requirement of steady C, data. ZAERO still requires
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that the natural modes of the system be generated by an external finite-element
routine; however, now all the aerodynamics throughout the flight regime are bundled

into one software package.

Linear subsonic and supersonic analysis methods have been available for quite
some time and generally produce acceptable results. When these methods are used
in the transonic regime, however, their results break down due to the highly non-
linear nature of the flow. Of course, this is the region where LCO appears to occur
most frequently, so a method for predicting the onset of LCO was needed. Research
conducted in the 80’s and 90’s (refs [9], [14], [23], [30]) revealed a method for lineariz-
ing and separating the Transonic Small Disturbance (TSD) equation into sectional
and spanwise components which then made solutions possible. ZONA made use of
the principles outlined in the above references to create a transonic method known
as ZTAIC (ZONA'’s Transonic Aerodynamic Influence Coefficient method) for their
ZAERO software. Chen, et. al. [9] compared results from the ZTAIC method, their
linear subsonic (ZONAG6) method, and a CFD method known as CAP/TSD [2] for

six wing planforms with wind tunnel results. These results showed:

1. ZTAIC was able to more accurately reproduce steady and unsteady pressure
distributions than ZONA6 or XTRAN3 (a transonic equivalent strip (TES)
method) .

2. ZTAIC results compared favorably with those generated by CAP-TSD (a higher
order CFD code) using steady C,’s generated by both Euler and Navier-Stokes

calculations.

3. ZTAIC flutter results also compared favorably with CAP-TSD, predicting a
transonic dip that ZONAG6 fails to find.

While these results were encouraging and led to the use of ZAERO in this the-
sis, some important comparisons and sensitivities were left out or neglected. Specifi-

cally, the research from Chen, et. al. was conducted only on wing planforms without
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external stores attached, the steady C, data used was based on a rigid wing (i.e. the
pressure distributions are based on an undeflected wing at the measured flight con-

dition), and no flutter predictions were made for an F-16 model.

This thesis will extend the investigation of ZTAIC flutter analysis capability to
include the effects of modeling the entire aircraft with and without external stores
(the stores will always be modeled structurally), the effect of using rigid versus
flexible C,, (the pressure distribution on the deflected wing) data, and the effect of
adding structural damping to the system. This thesis also marks the first application

of the ZTAIC method to an F-16 model for flutter prediction.
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III. Theoretical Background

This chapter presents the theoretical underpinnings of the solution techniques re-
quired for the flutter analysis presented in this thesis. First, section 3.1 presents
the method for computing a system’s natural modes. These modes are required in
the calculations of section 3.2 for finding the unsteady flow conditions and the aero-
dynamic influence coefficient matrix (AIC). The AIC is then included in the modal
equations of motion to generate the flutter solution by any of the three methods
described in section 3.3. Finally, section 3.4 describes how nonlinearities such as
shock structure and wing thickness effects are incorporated into the linear solution

through the use of the transonic linear strip method.

3.1 Natural Modes Analysis

In order to effectively calculate the flutter boundary for an aircraft, the natural
modes of the system must first be identified. These modes are used as generalized
degrees of freedom (DOF) for calculating the unsteady flow conditions and AIC
matrix. The multiple degree-of-freedom system of equations of motion are first lin-
earized about some equilibrium position, and the natural modes are the eigensolution
for the free vibration of the linearized equations of motion:

[k —w!m]g; =0,i=1,2,....n (3.1)

(2

where k is the stiffness matrix and m is the mass matrix. The eigenvalues of Eq
(3.1) represent the square of the natural frequencies of each mode, w;, and the
corresponding eigenvectors, ¢;, are the mode shapes (displacements of each degree
of freedom in the model for a specific mode). The natural modes are then used in a

modal transformation to generalized coordinates, ¢, such that:

z(t) = Pq(t) (3.2)
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The free vibration solution is decoupled due to the orthogonality of the natural modes
[26]. The complete system of equations describing an aeroelastic vehicle in flight are
formed by including the aerodynamic forces being applied to the structure. Typically
these forces are broken into external forces (gust, turbulence, store ejection, etc.) and
aerodynamic forces due to structural deformation. Excluding external forces (flutter
analysis is interested in finding the self-excited response of the structure), the system

of equations becomes (in the Laplace domain)[26]:
[sM + sC + K|q =F, (3.3)

where:
M = &7 m & is the generalized mass matrix
K = ®" k® is the generalized stiffness matrix

C=®T ¢ ® is the generalized viscous damping matrix

q are the generalized coordinates
) is the modal transformation matrix
F, are the aerodynamic forces produced by structural deformation

3.2 ZAERO Theoretical Formulation

ZONA Technology’s ZAERO aeroelastic analysis software [37] is used in this
thesis to generate the flutter solution for two F-16 configurations under various
conditions. ZAERO uses a panel method that solves a parametric complex eigenvalue
problem to generate the flutter boundary. The aerodynamic panel model is built by
creating body-type and flat-panel type elements. These elements are then divided
into a grid of boxes, and a control point is located in each box where the solution
is defined (Fig 3.1). A technique for ensuring a converged solution to a given grid,
based on the minimum box width in the flow direction, is described in detail in

ref [36]. In order to understand how the flutter solution is calculated, this section
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will provide a brief overview of the theory, outlined in ref [36], used to generate the

unsteady pressure coefficients (C,) and modal AICs.

Figure 3.1 F-16 Wing Panel Discretization

3.2.1 ZONAG6/7 Linear Formulation. — The linear modules of ZAERO solve
the linearized small disturbance equation for subsonic flow (ZONAG6) and supersonic

flow (ZONAT):

(1—M2)®,, + Py + P, — é% - %% =0 (3.4)

by assuming a solution of the form:
P = ¢o+ ¢ (3.5)
¢1 = e’ (3.6)

where:
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P1 < o

P is the total velocity potential
oo is the steady potential
01 is the unsteady potential

is the reduced-frequency domain potential

w is the oscillation frequency

First, the steady and unsteady components of Eq (3.4) are separated by sub-
stituting Eq (3.5) into Eq (3.4) and collecting like order terms, yielding:

(1 - M§O)¢O$x + ¢0yy + ¢Ozz =0 (37)

2M

Prer = 0 (3.8)

(1 — M2)b10x + Oryy + D122 — a%ﬁbltt - N
where Eq (3.7) is the steady linearized small disturbance equation and Eq (3.8) is the
unsteady linearized small disturbance equation. By applying the linearized tangency
condition to Eq (3.7), the steady velocity components, ug, v, and wy, are found, but
are only required in the formulation of the AIC matrices to account for interference
effects between the body elements and flat-plate elements. Solving Eq (3.8) for ¢,
the reduced-frequency domain potential, requires the structural mode shapes and the
application of Green’s Theorem and the linearized tangency condition for the source
and doublet integrals. Green’s Theorem is used to convert the partial differential

equation, Eq (3.8), into elementary kernel integrals for the unsteady source and

doublet singularity distributions at each aerodynamic box. These integrals are of

the form:
1 .
bp = _E//bd o(z,y,z)e?M=¢KdS (3.9)
ody
dw = i// Ap(x,y z)ei’\M‘X’SEKdS (3.10)
V" Er wing e on '
where:
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o is the unsteady source singularity distribution

A is the unsteady doublet singularity distribution
A= ’“MT‘X’ is the compressible reduced frequency

8= T= 3

OB is the potential due to body-like components
ow is the potential due to wing-like components
E=4 for M, < 1

E=2 for M, > 1

o _ .Y dient in th d I directi

o = - gradlent in the outward normal direction,

where 7 is the out-normal vector

—iAR

K= for M, < 1

K = Q8 for Mo, > 1
R = /€ + i + p¢?

(52)

(=z*)

()

SR o
I

The boundary conditions are then applied to the control point in each aerodynamic
box of the panel model to yield the solutions to each kernel equation. These solu-
tions are then combined into the unsteady perturbation potential influence coefficient
matrix (PIC) and the influence coefficient matrices (UIC, VIC, WIC) for the three
components of velocity, u, v, and w. Combining the influence coefficient matrices

and downwash functions yields the matrix equation:

o FB
[NIC] - (3.11)
AC, Fw
where:
[NIC] = [n|[UIC] + [ny|[VIC] + [n.][WIC] (3.12)
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[UIC], [VIC], [WIC] are the unsteady perturbation velocity influence
coefficient matrices
[nz], [ny], 0] are the wing section surface normal component

matrices

(NIC) is the normal velocity influence coeflicient matrix and F 5 and Fy, are body and
wing downwash functions respectively. Eq (3.11) is solved for the source strength,
o, and the change in pressure coefficient over each box, AC,, which are then used
to find vectors of unsteady perturbation potential, ¢, and unsteady perturbation
velocity (u, v, w) values. Finally, the set of unsteady C,’s is generated using the
steady mean flow conditions, unsteady perturbation quantities, reduced frequency,
and the mode shapes and their derivatives. The unsteady C, equation is the basis

for the AIC matrix relating deformations to lift forces, described next.

3.2.2  Aerodynamic Influence Coefficient (AIC) Matriz Formulation. In
order to generate the eigensolution for flutter, a modal AIC that relates the structural
mode shapes to the unsteady aerodynamic forces must be calculated. By multiplying
the area of each box of a wing-like component by the unsteady pressure on that box,
the normal force may be computed. For body-like components, however, the normal
forces are more complicated to calculate since they involve a coupling of the steady
mean flow conditions, the perturbation potential and velocity influence matrices, and
the structural mode shapes. These quantities are all available from the ZONAG/7
linear calculations. After expanding the normal force vector to include the force and
moment components, a square matrix relating the structural mode shapes to the

aerodynamic forces can be constructed:

{Ln} = ¢oo[AIC{h} (3.13)
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where:

[AIC] = [[B][NIC] '[F] + [D]] (3.14)
{h} = [T|{z} (3.15)
{Ln} = [T][®{F.} (3.16)

{h} is the structural deformation at each aerodynamic box
{L,} is the resultant aerodynamic force vector at each
aerodynamic box due to h
[T] is the spline matrix relating aerodynamic dof’s to structural dof’s

(D] is the modal transformation matrix

and [B], [F], and [D] are all complex matrices containing the steady mean flow con-
ditions and normal vector components, and are a function of reduced frequency. Eq
(3.14) is defined for the degrees-of-freedom at the aerodynamic grid points and must
be interpolated to the structural grid points through a spline matrix, then trans-
formed to modal coordinates before it can be included in the g-method eigenvalue

equation. For a more rigorous derivation of the AIC matrix, refer to Ref [36] chapter

3.7.

3.8  Flutter Solution Methods

There are three basic methods for calculating the flutter boundary from the
aeroelastic equations of motion: the k, p-k, and ¢g-methods. The common thread
among these methods is the assumption that, at the flutter boundary, one of the
natural modes of the system will become neutrally stable, producing simple harmonic
motion, while the other modes remain stable. By assuming this type of solution to
the generalized equations of motion, one need only look for the flight conditions that

produce such a solution [19].
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The flutter matrix equation in the Laplace domain is constructed by combining
Egs (3.2) and (3.13-3.15) and substituting for F, in Eq (3.3), corresponding to the
aerodynamic forcing function, (the viscous damping term is left out for simplicity):

M + K — ¢..Q (%)} q=0 (3.17)

where:

Q(%) is the generalized aerodynamic force matrix in the Laplace domain

By applying the simple harmonic motion assumption, Eq (3.17) is transformed to
the frequency domain where the aerodynamic force matrix becomes the AIC matrix,
Q(ik), a function of reduced frequency, k = “’Vb, where b is half the wing root chord
length [36]:

[~w*M + K — ¢..Q(ik)]q = 0 (3.18)

Eq (3.18) is the basic form of the flutter equation that will be solved for the flutter
roots. This equation is a nonlinear, parametric complex eigenvalue (PCE) equation.
That is, it depends parametrically on velocity directly through ¢, and indirectly
through My, and k. The eigenvalues are in general complex, because Q is complex,
however the desired flutter root has no real part and the PCE problem is nonlinear

because Q depends on w through £.

3.3.1 The k-Method. The assumptions that produce the flutter matrix
equation in the frequency domain imply the solution is only valid when the damping
of the system is zero. In order to allow for complex roots to Eq (3.18), an artificial

structural damping term multiplying the stiffness matrix is added:

[~w*M + (1 +ig,)K — ¢5cQ(ik)]q = 0 (3.19)
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Substituting )
1 5, 1 (wL
Goo = 5PV 2/)( ’ ) (3.20)

and dividing Eq (3.19) through by -w? yields the k-method flutter equation:

M + g (%) Q(ik) — )\K] q=0 (3.21)

which is solved for the complex eigenvalue:

1+ 4gs)

Ao (3.22)

w2

The eigenvalue, A, consists of pairings of w and g which can be plotted versus V,
Joos %, Mach number, etc. These plots of damping versus airspeed are often used to
indicate the margin of instability near the flutter boundary (i.e. the steepness of the
slope at the zero crossing) [19]. For the k-method, however, the artificial structural
damping term merely indicates, for a particular value of w, the level of damping
required to produce harmonic motion, and hence has no physical significance. For

this reason, a modification to the k-method was developed.

3.83.2 The p-k Method. Since the k-method predicts only the onset of
instability, the modal coupling predictions at points other than g, = 0 are not
representative of the system’s true behavior [19]. Modal coupling information near
the flutter point is very important in the design process because it can lead to
methods for delaying flutter onset. In response to this need, the p-k method for
flutter analysis was developed, and in 1971, Hassig [18] clearly showed that the p-k
method more accurately predicted the modes involved in flutter for lightly damped
modes (which are typically the modes of greatest interest in flight vehicles). In the

p-k method, Eq (3.17) is recast in terms of a nondimensional Laplace parameter, p,
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defined as:

L
p= 57 = (vk + ik) (3.23)

where 7 is the transient decay rate coefficient [36]. The flutter matrix equation in
terms of p now becomes:

K‘;—j) Mp® + K — ¢.Q(ik) | q = 0 (3.24)

There is, however, an inconsistency with the p-k method described above. The
parameter, p, describes damped harmonic motion, whereas the AIC matrix, Q(ik)
was developed based on undamped harmonic motion. To overcome this problem,
Rodden [32] introduced an aerodynamic damping matrix into Eq (3.24) by splitting
Q(ik) into real and imaginary parts, yielding:

2

1% I

The solutions to Eq (3.25) are found by iterating on k until Eq (3.23) satisfies Eq
(3.25). That is, for a given k, Q(ik) is calculated and used to solve Eq (3.25) for
the complex root, p. If the imaginary part of p does not match the given k, then
k is updated, and the process repeated until convergence. The p with the largest
real part is the critical root. The velocity is varied parametrically to determine the
speed at which the critical root’s real part becomes zero. At this flutter speed and
for this critical root, the flutter mode, q, can be determined from Eq (3.25). This
modification of the p-k method produces more realistic results than the k-method, but
still has some shortcomings. Notably, the additional term introduced in Eq (3.25)
has been shown to be valid only for small values of k or linear Q(ik), otherwise

unrealistic results may still be reported [36].

3.83.3 The g-Method.  The g-method is essentially a generalization of Rod-
den’s modification of the p-k method. Chen [7] shows that by examining a damping
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perturbation of Q(ik) for small values of g,

Q(p) = Q(ik) +g (0%;]9)) . (3.26)

and

(8Q(p)> _ QK)o (3.27)

dg
Through the use of this damping perturbation technique, the flutter equation be-

comes:

KZ—) My + K — g Q (k)9 — 4 QUik)| a = 0 (3.28)

and by substituting p = g + ik into Eq (3.28), the g-method equation is formed:
[¢*’A + gB + C]q =0 (3.29)

where:

2
B = 2ik (%) M — ¢, Q'(ik)

2
C = —# (%) M + K — ¢ Q(ik)

By equating Eq (3.25) to Eq (3.28), and expanding Q(ik) in a Taylor series about
tk = 0, the additional aerodynamic damping matrix introduced by Rodden in the
p-k method is shown to correspond to Q'(ik) only when Q(ik) is a linearly varying
function of reduced frequency, k. Thus, the g-method extends the validity of the
flutter equation to the first order of g and for all values of & [7]. Solution of Eq (3.29)
involves iterating on values of k, searching for the condition Im(g) = 0. This is done
by searching for a sign change in the imaginary part of each eigenvalue between k&

and |k + Ak|. When the sign change is found, Im(g) = 0 is calculated by linearly
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interpolating between k values. A predictor-corrector scheme is used for eigenvalue

tracking to ensure the correct mode is followed across the flutter boundary [7].

3.4  ZTAIC Nonlinear Formulation

The analysis discussed in sections 3.1, 3.2, and 3.3 described the methodology
used to predict flutter in a linear formulation. In the transonic regime, however,
nonlinearities introduced by shock waves and wing thickness effects become much
more important and linear theory breaks down. To account for these nonlinearities,
the potential, @, in the TSD equation can once again be separated into steady and
unsteady potentials, ¢y and ¢1, as was done in Eq (3.5). In the transonic formulation,

however, the nonlinear terms are included in Eqgs (3.7) and (3.8) as follows:

[(1 - Mgo) - (’7 + 1)M30¢0$]¢0xx + QbOyy + ¢0zz =0 (330)
(1 - Mgo)¢1xx - (7 + 1)M§o<¢0$¢1$)$ + gblyy + ¢lzz - a%gbltt - 2CL%¢IM =0 (331)

Based on work done by Liu, Kao and Fung [23] and Oyibo [30], Egs (3.30) and
(3.31) can be solved by separating the flow into sectional and spanwise components.
This method, termed the transonic equivalent strip (TES) method, employs two
corrections to the linear pressure distributions generated by ZONAG/7. First, the
sectional mean flow characteristics are adjusted to account for wing thickness effects
and shock structure, then a spanwise phase correction is added to account for the
spanwise pressure phase lag. This is accomplished by separating the potential, ¢1,
into a 2-D (sectional) component, which is corrected by a spanwise decaying function
[36]:

o1(@,y,2,t) = Y1(x, 2, 0) F(yi, A) (3.32)

where:
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1y is the 2-D unsteady solution at spanwise section y = y;
F is Oyibo’s spanwise decaying function

A; is the decay parameter

The 2-D steady solution, ¢q is calculated via an inverse airfoil design scheme [36].
Steady C, data, generated by CFD solution or experiment, is supplied to the software
and an Inverse Approximate Factorization scheme (IAF2) [14] is used to generate
the slope of the airfoil thickness. This solves for the steady flowfield corresponding to
the steady C, data for each spanwise strip. This mean steady flow solution satisfies
the 2-D version of Eq (3.30) and is coupled to the unsteady potential through Eq
(3.31) to calculate 9.

Using the separability principle, the corrections yield the following relation [9]:

where:
AC’;}C is the 3-D nonlinear unsteady pressure
AC]y is the 3-D linear unsteady pressure
0 = 0(AC),, AC,) is the sectional correction function
1= pu(ACL;, ACY,) is the spanwise phase-correction function
AC’T% is the nonlinear 2-D sectional transonic pressure

AC;?Q is the linear 2-D sectional unsteady pressure

The steady mean flow solution is then used in an internal 2-D TES solver named
ZTRAN to generate AC’I%. The correction functions, ¢ and u, are then calculated
and used to generate f,, which is then added to the linear 3-D unsteady pressures
(generated by ZONAG6/7) to generate the nonlinear, transonic 3-D unsteady pressure,
AC), via Eq (3.33). With AC)} known, a modal transonic AIC is constructed as
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described next for use in the g-method flutter equation, Eq (3.29), to find the flutter

boundary.

3.4.1 ZTAIC Modal AIC.  Section 3.2.2 discussed the generation of an AIC
matrix, containing purely aerodynamic information, relating the aerodynamic forces
to the structural deformation of the wing. Creating an AIC matrix containing purely
aerodynamic information following the formulation described above is a much more
daunting task, however. An expedient method for deriving a transonic AIC matrix is
discussed by Chen, et. al., in reference [9]. This approach defines a 2-D AIC matrix
that relates the structural deformations, h, to the aerodynamic forces, F; at each

section:

{Fr} = goo[AIC]{h} (3.34)

This transonic AIC is based upon five baseline modal vectors (not to be confused
with the structural modes of the wing). These five baseline modes describe the local
structural deformations at each section based on the aspect ratio of the wing and
whether there are any leading or trailing edge devices [36]. Using these modes and
applying the amplitude linearization principle ( “the linearization of the aerodynamics
for an aeroelastic system in any flow regime can be assured if the modal amplitude

is kept sufficiently small.”), a sectional incremental pressure matrix,

[P] =[{Cptr, - {Cp}s] (3.35)

can be considered the result of a linear operator acting on the baseline modes. Each
column of [P] is a vector of pressure coefficients acting on each box in the current
spanwise section due to the structural deformation corresponding to each baseline
mode. The structural deformation, h, of each section can also be given as a combi-

nation of the baseline modes with a set of coefficients found through a least-squares

fit:
{h} = [¢]{a} (3.36)
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where:

{a} = [[@"®] "2 ]{h} (3.37)

and ® now represents the baseline modal matrix, not the structural modal matrix
of Eq (3.2) or velocity potential of Eq (3.4). Using Eq (3.37) to eliminate the
least-squares coefficients and combining Eqs (3.35) and (3.36), the linear pressure

coefficient operator is defined as the modal AIC:
{C,} = [MAIC]{h} (3.38)

where:

[MAIC] = P[®T®] 'oT (3.39)

Finally, the AIC relating the aerodynamic forces to the structural displacement in

Eq (3.34) is identified as:
[AIC] = [RW]|[AREA][M AIC] (3.40)

where [ARE A] is the diagonal matrix containing the area of each aerodynamic box.
Figure 3.2 diagrams the entire solution procedure for both the linear and nonlinear

formulations.
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IV. Methodology

Flutter prediction for the F-16 has always relied on linear analysis without regard to
the aerodynamic effects of stores or structural damping. Also, the UFAP methodol-
ogy is a “non-matched point” analysis. In other words, the freestream mach number
is set at .95 Mach and the density is set at sea level. Then, when solving the eigen-
value problem (using the k-method), Eq (3.21), the velocity is varied until the flutter
point is found. This may result in an airspeed that, when converted to Mach, does
not match the input freestream condition. In order to conduct a matched point
analysis, the initial freestream conditions would be varied until both the input con-
dition and the flutter speed matched. Unfortunately, with UFAP, this would be a
time consuming process; however, non-matched point analyses have little physical
significance. Fortunately, ZAERO automates the match pointing process, and pro-
vides the opportunity to include nonlinearities, the aerodynamic effects of stores,
and structural damping. This section discusses the process used to validate the
structural and aerodynamic models, as well as test the flutter solution’s sensitivity

to the aforementioned effects.

4.1 Test Cases

Two test cases were selected for this study due to their unique LCO charac-
teristics. Both cases were previously flight tested and analyzed using both UFAP
[12] and MSC/NASTRAN [21]. The Lockheed-Fort Worth Company (LEWC) also
independently analyzed both configurations. Both cases exhibited LCO from the
transonic through supersonic regimes, with one case reaching an LCO flight test
limit, while the second case exhibited an LCO “hump” mode (the aircraft was able

to fly through the LCO condition).

The two cases, designated SCL0O07 and SCLO008, were configured as shown in

Figs 4.1 and 4.2 with the corresponding station/store combinations listed in Table
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4.1.

wingtip station to the right wingtip station. The LAU-129 is the launch rail used
for the AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) and the
three letter identifiers after each fuel tank indicate the fuel status of each of the three

bladders within the fuel tank (i.e. FEF means Full/Empty/Full or a tank that is

half full).

Stations are numbered sequentially from one to nine starting from the left

Station #

Figure 4.1

SCL007 Configuration

Station #

Figure 4.2  SCL008 Configuration
Configuration
Station SCLO007 SCL008
1,9 LAU-129 LAU-129
2,8 LAU-129 + AMRAAM | LAU-129 + AMRAAM
3,7 Empty LAU-129 + AMRAAM
4,6 370 Gal Tank (FEF) Empty
5 300 Gal Tank (EEE) 300 Gal Tank (EEE)
Wing Fuel | Full Empty
Table 4.1  Summary of Store Configurations




4.2 Simulation Models

In order to carry out a flutter prediction using ZAERQO, two separate models
of the aircraft are required. First, a finite-element structural model is required for
calculating the normal modes of the aircraft. These modes are then passed to the
aerodynamic panel model via a spline matrix, both of which are contained in the

ZAERO software.

4.2.1 Structural Models. ~ Many structural finite-element models of the F-16
are being used in various forms of research, however the Lockheed-Fort Worth model
is considered to be the most accurate [21]. The models used in this research, one for
each of the two configurations investigated (SCL007/008), were the latest updated
models available for the F-16 C/D Block 40 aircraft from LEFWC (Figs 4.3 and 4.4). A
half aircraft model was used due to the symmetry of the store configuration. AFSEO
also uses the same models for supersonic flutter analysis in conjunction with UFAP,

however UFAP itself uses a different structural model.

This research compares results from three different sources for the linear, sub-
sonic flutter analysis, so it is important to understand the background of each model.
While the latest LEWC model is used here, an earlier form of the F-16 model from
LFWC, circa 1994, was used as a baseline in tests conducted at AFSEO [12] and by
Johnson [21]. The 1994 LEWC model was not available to Johnson, however, so he
tuned his own NASTRAN model to match the LFWC test results. Lastly, UFAP
does not use a finite-element model (FEM); the input to UFAP consists of modified

mass and flexibility matrices generated by the LEWC model.

4.2.2  Aerodynamic Models. A flutter analysis requires compatibility be-
tween the aerodynamic panel model and the structural model. In the previous re-
search by LFWC, AFSEQO, and Johnson, the same aerodynamic panel model was

used. This model consisted simply of the wing planform with tip missile launcher
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SCLO007 Finite Element Model

Figure 4.3
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Figure 4.4  SCL008 Finite Element Model
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and a portion of the fuselage equal to the length of the wing root, all modeled as
flat plate elements for use with the Doublet-Lattice Method (DLM) [1]. The aero-
dynamic effects of underwing stores was considered to be negligible, and the DLM
had no provision for including body-type elements in the flutter analysis. For this
thesis, however, determining the aerodynamic effects of underwing stores was one of
the goals, therefore the aerodynamic panel model had to include body-type elements
and the solution method had to be able to deal with interference effects. ZONA
Technologies had already conducted some aeroelastic analyses on the F-16 and had
a panel model available for a different store configuration than SCL007/008. This
model was modified for the two configurations of interest as shown in Figs 4.5 and
4.6, and once again a half aircraft model was used due to symmetry. The bulk data

for the ZAERO code is contained in Appendix C.

4.2.8 Spline Methods.  The aerodynamic loads generated by an aircraft in
flight cause the structure to deform. The two models, however, are discretized dif-
ferently, one via the finite-element method (FEM) and the other via an aerodynamic
panel method, leading to different degrees-of-freedom for each model. Transferring
the aerodynamic loads and forces to the structure and vice versa, requires a method
for interpolating between degrees-of-freedom (dof). The method used for this in-
terpolation is called splining. Five splining methods are available in ZAERO for
flexibility [37]: a zero displacement spline, infinite plate spline, beam spline, thin
plate spline, and rigid attachment. The zero displacement spline imposes a zero dis-
placement condition on an aerodynamic panel and is primarily available for modeling
wind tunnel walls. The infinite plate spline is used to interpolate between wing-like
elements of the panel model and plate-type elements of the FEM using only the
translational dof’s. The beam spline is used to interpolate between body-like ele-
ments in the panel model and beam-type elements in the FEM, and includes both
translational and rotational dof’s. The thin plate spline is a 3-D splining method that
can relate FEM grid points in 3-D space to either body-like or wing-like elements of
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SCL008 001 Nov 2001 DAERO MODEL WITH 1396 AERO GRIDS & 734 FEM GRIDS. AERO BOXES= 1000

Figure 4.6  SCLO08 Aerodynamic Panel Model
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the panel model. Lastly, the rigid attachment enables a series of aerodynamic boxes
(either wing-like or body-like) to be attached to, and move with, a single structural

grid point.

Since splining takes place for each grid point in both models, a matrix is
generated which relates the two grid systems. To ensure the overall spline between
models is correct, ZAERO provides a means for visualizing the spline by creating
a model with both aero and FEM grid points that can be viewed on a number of

post-processing packages such as TECPLOT, FEMAP, ANSYS, etc.

4.8  Model Validation

4.3.1 FEM Validation.  Before any flutter analysis was run, the structural
model needed to be validated against previous research. Although the structural
model used in this thesis was deemed to be the most accurate available, the results
of a normal modes analysis were compared to the modes found in refs [12] and [21]. In
this analysis, both the Modified-Givens and Lanczos eigenvalue extraction methods
incorporated into MSC/NASTRAN were used to calculate the natural frequencies of
each mode under both symmetric and antisymmetric boundary conditions. A cutoff
of 25 Hz was used to limit the number of modes generated (modes above 25 Hz were

assumed to contribute little to the flutter mode, as evidenced in ref [5]).

4.3.2  Panel Model Validation.  Similar to the FEM, the panel model needed
to be validated for convergence of the mesh. This study was conducted on the
SCLO07 configuration without the stores modeled aerodynamically (Fig 4.7). For
simplicity, only the wing panel and horizontal tail panel meshes were adjusted in
the study, since the wing is typically the main contributor to aircraft flutter. The
horizontal tail was also adjusted because the spanwise divisions of the horizontal
tail must match those of the wing. The mesh was refined by a factor of two in

first the spanwise, then chordwise direction and solved using the ZONAG6/7 linear
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method by holding altitude constant at sea level and match pointing across Mach
numbers. A tolerance level of two percent in flutter speed and one percent in flutter
frequency was set to define convergence of the solution. As an additional check of
the mesh, the procedure outlined in chapter 5.4.1 of the ZAERO User’s Manual [37]
was accomplished to determine the Mach and reduced frequency range over which

the mesh was valid.

4.4 ZONAG/7T Analysis

With the validation of both the structural and aerodynamic models complete,
the next step was to begin the linear analysis to correlate ZAERO with previous
research ([12], [21]). First, a matched point analysis of SCL007, under antisymmet-
ric boundary conditions, was accomplished for three cases with the external stores
modeled aerodynamically: sea level, 5000 feet, and 15000 feet, between 0.5 and
1.1 Mach. Antisymmetric boundary conditions were imposed on all flutter analyses
conducted in this thesis, since flutter appears as a predominantly antisymmetric con-
dition [4, 28]. Sensitivity to aerodynamic modeling of the stores was accomplished
at sea level by first removing the store panel models (Fig 4.7) and accomplishing a
matched point analysis between the same Mach numbers as used for the fully mod-
eled cases. Stores were then added sequentially to determine effects due to individual
stores as well as store locations (the stores were still accounted for in the aerody-
namic model via the structural modes, generalized mass and stiffness matrices from
the structural model). Once the matched point solution was found, a non-matched
point run was conducted at the match point to generate the V-g and V-w plots, as
well as an animation of the flutter mode on the aerodynamic panel model. The same

procedure was followed for SCLO08 without conducting a store sensitivity analysis.
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Figure 4.7  Clean Wing Aerodynamic Panel Model
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4.5 ZTAIC Analysis

Following the linear analysis, nonlinear effects were studied through the use
of ZAERO’s ZTAIC module. Steady C, data is required as a function of Mach
number in the case of rigid C,’s; when flexible C,, data is used, it must be generated
at specific Mach number/density pairs. This C, data is required for each wing-like
element, however, to reduce the complexity of the model and the amount of C,
data required, only pressure data for main wing was used; the elements that did
not have pressure data input reverted to linear analysis. Again, since the wing is
the primary lifting surface involved in flutter, the effects of a linear analysis on the
remaining portion of the model were considered to be negligible. For these cases,
what amounted to an altitude match point analysis was conducted. By fixing the
Mach number and varying the altitude, only one set of steady C, data was required.
The objective was to find where the nonlinear analysis predicted flutter to occur at
sea level, 5000 feet, and 15000 feet in the case of SCLO07, and at sea level, 5000 feet,
and 10000 feet in the case of SCL008. Again, once the matched point solution was
found, a non-matched point run was conducted at the match point to generate the
V-g and V-w plots, as well as an animation of the flutter mode on the aerodynamic
panel model. The same procedure was used for SCL00S, however, only rigid C, data

was investigated.

4.5.1 Sensitivity to C, Type.  The C, data used in this thesis was provided
by Dr. Reid Melville, AFRL/VAAC, from an inviscid, fully-implicit CFD code.
Dr. Melville provided both rigid and flexible C,, data at each Mach number or Mach
number /density pair. The data generated by Dr. Melville comes from an F-16 model
configured with an empty tip missile launcher and no underwing stores. To generate
flexible data, the symmetric eigenvectors calculated in the normal modes analysis
must be input to the system (this accounts for any underwing stores inertially and
structurally). Then, for a given freestream Mach number/density pair, the model

is allowed to deform under air loads until a converged, deflected position is found.
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The C, data is then extracted for this condition. In the case of rigid C,’s, no modal
information is required, and the solution is independent of density. Before this data
could be used however, it had to be interpolated from the fine mesh used in the CFD
solution to the coarse mesh used in the ZTAIC module. ZTAIC requires data at the
center of each spanwise strip in the aerodynamic model. For example, the models
used in this research had nine spanwise divisions on the wing, resulting in eight
strips. The CFD mesh, on the other hand, used 61 divisions in the flow direction
(not purely x-direction flow, the CFD mesh allowed for spanwise components to the
flow). A MATLAB code was written to interpolate the CFD data to data that could
be used by ZAERO and is included in Appendix D. Figures 4.8 and 4.9 depict CFD
and interpolated pressure distributions for both rigid and flexible C, data (larger C,

plots are included in Appendix B for reference).
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Figure 4.8 CFD Upper Surface Pressure Distributions
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Figure 4.9 Interpolated Upper Surface Pressure Distributions
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In order to investigate the sensitivity of the solution to C, type, altitude
matched point runs were conducted at sea level, 5000 feet, and 15000 feet for SCL007,
and sea level, 5000 feet, and 10000 feet for SCL0O08 using both rigid and flexible data.

4.5.2  Sensitivity to Structural Damping.  The last analysis undertaken was
to determine the sensitivity of the flutter solution to structural damping. Z