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Multilingual Speech and Language Processing
(RTO MP-066 / IST-025)

Executive Summary

Multilingual speech and language technology is becoming recognized as an important issue for
international organizations, both civilian and military. For instance, one might want to use a speech
coder optimized for French in Germany or Turkey. A native speaker of Spanish might want to use a
speech recognizer trained for American English. Additionally with the explosion of multilingual text
material on the web, a British user might want to access Dutch documents using English search terms.
For reasons such as these, a special task group of the NATO Research and Technology Organization
(RTO) started a project on the development and assessment of multilingual speech and language
applications.

To stimulate interaction between civil and military researchers and developers, the NATO Research
Study Group on Speech and Language Technology (IST-011/RTG-001) organized a workshop in
cooperation with the International Speech Communication Association (ISCA) in Aalborg, Denmark
on 8 September 2001. Forty-eight researchers from 16 countries attended the workshop.

The workshop’s focus was on the scientific and engineering aspects of speech and language
processing for and despite multiple languages, dialects, non-native speech, and/or regional accents.  A
significant feature of the workshop was the announcement and discussion of a new database of native
and non-native speech collected by the NATO Research Study Group.  This database is called the
NATO Native and Non-Native (N4) Speech Corpus, and it will be made available to researchers for
further study.

The workshop opened with a keynote speech by Prof. Alex Waibel of Carnegie Mellon University,
USA on multilinguality in speech and language systems.  The keynote speech was followed by four
technical sessions containing a total of 12 presentations and the workshop closed with a directed
discussion session on various topics of interest to the workshop attendees. These proceedings contain
the 12 technical papers presented at the workshop.
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Le traitement multilingue de la parole
et du langage

(RTO MP-066 / IST-025)

Synthèse

L'importance des technologies du traitement multilingue de la parole et du langage est de plus en plus
reconnue par les organisations internationales civiles et militaires. Il se pourrait, par exemple, qu'un
codeur vocal optimisé pour le français soit demandé en Allemagne ou en Turquie. De la même façon,
un hispanophone pourrait avoir besoin d'un système de reconnaissance de la parole conçu pour de
l'anglais américain.  En outre, avec le foisonnement de textes multilingues affichés sur l'Internet, un
utilisateur britannique peut  souhaiter consulter des documents en néerlandais en se servant de termes
de recherche en anglais. Pour de telles raisons, un groupe de travail de l'Organisation pour la
recherche et la technologie de l'OTAN (RTO) a lancé un projet sur le développement et l'évaluation
d'applications multilingues de traitement de la parole et du langage.

Dans le but de promouvoir des interactions entre personnels civils et militaires chargés de la
recherche et du développement,  le groupe d'étude OTAN pour la recherche IST-011/RTG-001 sur les
technologies de la parole et du langage a organisé, en coopération avec l'Association internationale de
la communication verbale (ISCA), un atelier, à Aalborg, au Danemark, le 8 septembre 2001. Quarante
huit chercheurs de 16 pays différents y ont participé.

L'atelier a eu pour objectif d'examiner les aspects scientifiques et techniques du traitement de la
parole et du langage du point de vue du multilinguisme, des dialectes, de l'expression non autochtone
et/ou des accents régionaux. La présentation  d'une nouvelle base de données de la parole autochtone
et non autochtone constituée par le groupe d'étude OTAN pour la recherche et la discussion qui en a
suivi a été l'un des moments forts de la manifestation.  Cette base de données, appelée Corpus OTAN
de la parole autochtone et non autochtone (N4), sera mise à la disposition de chercheurs aux fins
d'études ultérieures.

L'atelier a débuté par un discours d'ouverture du Prof. Alex Waibel de l’université  Carnegie Mellon
(USA), sur le multilinguisme dans les systèmes de traitement de la parole et du langage.  Ce discours
a été suivi de 4 sessions techniques comprenant 12 présentations et l'atelier a été clôturé par une
session de discussions dirigées sur différents sujets d'intérêt pour les participants. Le présent compte
rendu contient les 12 communications techniques présentées lors de l'atelier.
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Foreword

The NATO Workshop on Multilingual Speech and Language Processing was held 8 September 2001 in
Aalborg, Denmark at the Aalborg Kongres & Kultur Center, the site of EuroSpeech 2001.  The workshop was
sponsored by the NATO Research Study Group on Speech and Language Technology (IST-011/RTG-001) and
supported by the International Speech Communication Association (ISCA).  Although NATO sponsored the
workshop, attendance was open to researchers from non-NATO countries.  Of the 48 researchers from 16
countries attending the workshop, one quarter were affiliated with institutions from countries that are not
members of NATO.

The workshop’s focus was on the scientific and engineering aspects of speech and language processing for and
despite multiple languages, dialects, non-native speech, and/or regional accents.  A significant feature of the
workshop was the announcement and discussion of a new database of native and non-native speech collected
by the NATO Research Study Group.  This database is called the NATO Native and Non-Native (N4) Speech
Corpus, and it will be made available to researchers for further study.

The workshop opened with a keynote speech by Prof. Alex Waibel of Carnegie Mellon University, USA on
multilinguality in speech and language systems.  The keynote speech was followed by four technical sessions,
and the workshop closed with a directed discussion session on various topics of interest to the workshop
attendees.

The first session covered the topics of the N4 Speech Corpus and speaker recognition.  In this session, Edouard
Geoffrois (DGA/CTA/GIP, France) described the N4 Speech Corpus, and Marc Zissman (MIT Lincoln
Laboratory, USA) presented results of speaker recognition experiments conducted on the N4 corpus.  Joseph
Campbell (MIT Lincoln Laboratory, USA) discussed the use of phonetic recognizers for multiple languages for
speaker recognition.

The second session was on the topic of non-native speech.  Sander van Wijngaarden (TNO Human Factors, The
Netherlands) presented methods for the quantitative assessment of speech intelligibility in cross-language
communication, and Carlos Teixeira (IST/INESC-ID, Portugal and SRI International, USA) discussed the
evaluation of speakers’ degree of nativeness using text-independent prosodic features.  Laura Mayfield
Tomokiyo (CMU, USA) discussed methods for adaptating speech recognition systems to handle non-native
speech.

The third session covered speech recognition.  Rathi Chengalvarayan (Lucent Technologies Inc., USA)
presented an HMM-based speech recognizer for American, Australian, and British English.  Andrej Žgank
(University of Maribor, Slovenia) discussed crosslingual adaptation of multilingual triphone acoustic models,
and Kåre Jensen (Nokia Mobile Phones, Denmark) discussed multilingual text-to-phoneme mapping for
speaker independent name dialing in mobile terminals.

The fourth session was on language identification and multilingual applications.  John Dines (Queensland
University of Technology, Australia) discussed the fusion of output scores for language identification.
Yasunari Obuchi (Hitachi, Ltd., Japan) discussed multilingual speech interpretation for cellular phones, and
David Palmer (The MITRE Corporation, USA) discussed multilingual technology projects currently being
undertaken in conjunction with the NATO BICES (Battlefield Information Collection and Exploitation)
organization.

We would like to thank the NATO-RTO and ISCA for their support in the organization of the workshop, the
speakers for their time, effort and expertise; the technical committee for their help in reviewing the proposals
and their advice. Finely we would like to thank Prof. Børge Lindberg of the Center for PersonKommunikation
at Aalborg University and Ms. Hanne Kristiansen of the Aalborg Tourist and Convention Bureau for the fine
handling of the local arrangements.

Timothy R. Anderson and Raymond E. Slyh
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Abstract

The NATO Native and Non-Native (N4) corpus has
been developed by the NATO research group on Speech
and Language Technology, in order to provide a military-
oriented database for multilingual and non-native speech
processing studies.

Speech data has been recorded in the Naval transmis-
sion training centers of four countries (Germany, The
Netherlands, UK and Canada). The material mainly con-
sists in NATO English procedure between ships. In addi-
tion, the same speakers read a text ("The north wind and
the sun") both in English and in their mother tongue.

The number of speakers per country ranges from 11 to
51, for a total of 115. The duration of speech ranges from
1.6h to 3.0h, for a total of around 9.5h.

This corpus can be used for various studies, including
the influence of non-nativeness on speech, language and
speaker recognition, and accent recognition.

1. Introduction

Speech technology is covering an increasing number of
languages, and systems are becoming multilingual. They
are also becoming more robust to speech variability such
as speaking style and accents. However, for real applica-
tions, especially in a multilingual and multinational con-
text, further robustness to regional and even non-native
accents is necessary. Among the numerous corpora avail-
able for speech research, few have specifically addressed
this issue. A workshop on multilingual interoperability
of speech technology in 1999 [1] has shown that there is
much interest in such issues, but much work remains to
be done.

In this context, the NATO Speech and Language Tech-
nology group decided to create a corpus geared toward
the study of non-native accents. In order to share a com-

mon, realistic and military-relevent task among the var-
ious member countries involved in the creation of the
database, it was decided that the task would be naval com-
munication, since it naturally includes much non-native
speech, and because there are training facilities where
data can be collected in several countries. The result-
ing corpus was called the NATO Native and Non-Native
(N4) database, and is made available to the speech re-
search community.

The corpus is described in detail in the following sec-
tion. It can be used for various studies, and some pre-
liminary experiments are described in section 3, before
concluding.

2. The database

The database has been collected in four countries
(Canada, Germany, The Netherlands and The United
Kingdom) during naval communication training sessions.
For each country, the main part of the recordings consists
of NATO Naval procedure in English, where the typi-
cal sentence sounds like "This is alpha whiskey, roger. I
make two seven zero six hostile, two seven zero six. Out."
In addition, each speaker read a text ("The north wind and
the sun") both in English and in his mother tongue (when
different).

The audio material was recorded on DAT and down-
sampled to 16kHz-16bit, and all the audio files have been
manually transcribed and annotated with speakers inden-
tities using the tool Transcriber [2]. Navy procedure
recordings and text reading have been stored in different
files, and the first digit in the file name indicates the type
of speech.

The duration of signal per country ranges from 3.2h
to 6.3h for a total of around 20h, and the duration of
speech ranges from 1.6h to 3.0h, for a total of around

Paper presented at the RTO IST Workshop on “Multilingual Speech and Language Processing”,
held in Aalborg, Denmark, 8 September 2001, and published in RTO-MP-066.
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9.5h1. Among speech segments, the durations of Navy
procedures recordings range from 1.3h to 2.3h for a total
of 7.5h, durations of text reading in mother tongue range
from 1.5min to 22.9min, for a total of around 1h and in
non-native English from 16.5min to 22.5min, for a total
of around 1h. Table 1 summarizes these durations.

Table 1: Durations of the database in hours.

CA GE NL UK All
Signal 5.30 3.20 5.00 6.30 19.80


 Silence 3.00 0.56 2.00 4.70 10.26

 Speech 2.30 2.64 3.00 1.60 9.54

Speech 2.30 2.64 3.00 1.60 9.54

 Navy proc. 2.00 1.90 2.30 1.30 7.50

 Read text 0.30 0.74 0.70 0.30 2.04

Read text 0.30 0.74 0.70 0.30 2.04

 Non Native 0.27 0.37 0.32 0.00 0.96

 Native 0.03 0.37 0.38 0.30 1.08

For each speaker much information is stored in the
documentation of the database. Gender, age, weight,
length, possible speaking or hearing disorders, education
level, living area, accent, second language, smoking or
non-smoking, where and when English was learnt (for
non-native speakers).

Table 2: Speakers information.

CA GE NL UK All
# Speakers 22 51 31 11 115
# Women 5 0 9 5 19
Age 22-35 17-23 17-61 19-62 17-62
Age mean 28.3 20.1 21 27.5 22.6

The speakers accents vary a lot among each country,
and the number of speakers goes from 11 to 51, for a
total of 115. The average age is 22.6 and the women rep-
resents 18% of the population. Table 2 summarizes the
informations concerning the speakers.

3. Preliminary experiments

In this section, experiments that have been done on the
N4 database are presented. Speaker recognition results
are available in an other article [3], as LID studies are
detailled below.

3.1. Speaker recognition

Three speaker recognition systems developed at TNO
Human Factors, the US Air Force Research Labora-
tory, Information Directorate and MIT Lincoln Labora-
tory have been tested on segments from the Dutch part of
the N4 database. During these preliminary experiments,

1We counted as speech any transcribed signal segment.

decoder
Acou.-phon.

extraction
Feature

Speech

Scoring

Scoring

Scoring

Arabic

English

French

Decision
Confidence measurement

Language &

Figure 1: General LID system architecture using an
acoustic-phonotactic approach

and among others studies, the authors investigated the im-
pact of cross-language training and testing.

3.2. Language identification

3.2.1. Baseline system

A LID system that has been developed by CTA us-
ing LIMSI software [4] was tested on speech from the
database. Only the native part (reading of "The north
wind and the sun") of the recordings was used.

The baseline system uses a conventional acoustic-
phonotactic approach for three languages, associated
with a rejection strategy. One acoustic-phonetic decoder
is used to perform a phonetic transcription of the speech,
and each of phonotactic models returns a score for this
transcription. The best score identifies the language. A
rejection strategy then allows to give a confidence mea-
surement with this decision (Figure 1).

The decoder uses a 3-state HMM with 32 gaussians per
state with a set of 91 language-independent and context-
independent phonetic units. This HMM has been trained
on a large amount of automatic labeled Broadcast News
recordings in three languages (17h per language). Phono-
tactic modules are trigrams models that have been trained
of 17 hours of transcription from monolingual speech.

Because the original LID system has been developed
for French, English and Arabic, only French and English
phonotactic models were kept for the experiments. The
2-languages LID system was then tested on the French
and English segments of the database.

3.2.2. Experiments

For LID systems segment duration is a key-parameter.
Figure 2 provides results comparing performances of the
system as a function of duration. Because of the number
of segments is less important for French than for English
(from 8.7% to 4.5% of the total number of segments are
in French, depending of the duration), the global error
rate follows more or less the English’s one. French and
English share the same kind of evolution of LID error
rate as a function of duration (more than 88% when go-
ing from 2s segments to 20s segments). For a duration
of 20 seconds, the system identifies the spoken language
almost with no mistake (2.3% of error rate).

Since French from the database has a completely dif-

1-2
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global system.

ferent accent2 than the French used for training the sys-
tem, it seems that the LID system is rather robust toward
accent, at least for French.

4. Conclusion

In this paper, we have presented the NATO Native and
Non-Native corpus (N4). Because the data have been col-
lected in four different countries during realistic commu-
nication training, in English and in mother tongue (for
non-English speakers), the database can be used for vari-
ous experiments. Speaker recognition and language iden-
tification, that have been presented in this article, are
some examples of what can be done with this corpus.

5. References

[1] “Multi-lingual Interoperability in Speech Technol-
ogy”, Leusden, The Netherlands, September 1999.
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nition experiments on the NATO N4 corpus”, Pro-
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2The speakers are from Quebec, where the French accent is very

different than the one from France.
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ABSTRACT 
 

The NATO N4 corpus contains speech collected at naval 
training schools within several NATO countries. The 
speech utterances comprising the corpus are short, tactical 
transmissions typical of NATO naval communications.  In 
this paper, we report the results of some preliminary 
speaker recognition experiments on the N4 corpus. We 
compare the performance of three speaker recognition 
systems developed at TNO Human Factors, the US Air 
Force Research Laboratory, Information Directorate and 
MIT Lincoln Laboratory on the segment of N4 data 
collected in the Netherlands. Performance is reported as a 
function of both training and test data duration. We also 
investigate the impact of cross-language training and 
testing.   

 

1. INTRODUCTION 

From 1999-2001, the NATO Research Study Group on 
Speech and Language Technology (IST-011/TG-001) 
coordinated the collection of the NATO Native and Non-
Native (N4) corpus [1].  This corpus contains speech 
collected at naval training schools within several NATO 
countries. The speech utterances comprising the corpus are 
primarily short, tactical transmissions spoken in English 
and typical of NATO naval communications. 
 
The N4 corpus was intended to support research and 
development of automatic speech processing systems for 
tactical military applications characterized by limited 
vocabulary, short utterance length and non-native speakers. 
It is hoped that the corpus will be of use to developers of 
the following types of speech processing systems: 
 

� Speech recognition – full transcription, 
� Speech recognition – call-sign identification, 

� Language understanding, and 
� Speaker recognition. 

 
Because many of the N4 speakers are non-native speakers 
of English, the corpus should be especially useful for both 
developing speech processing systems capable of 
processing non-native speech effectively and for evaluating 
the quantitative performance of such systems. 
 
This paper reports on some preliminary speaker 
recognition experiments performed on the N4 corpus. The 
primary purpose of these experiments was to compare 
performance of a variety of existing speaker recognition 
systems on short utterances composed of tactical military 
speech. We also wished to show the impact of non-native, 
cross-language training/testing on speaker recognition 
performance. Finally, we hoped that by running and 
reporting the results of some initial speaker recognition 
experiments, we might encourage others to use the corpus 
for their own research purposes. 
 
The rest of this paper is organized as follows. Section 2 
describes in detail the parts of the N4 corpus that were 
used for our preliminary speaker recognition experiments. 
Section 3 describes the three speaker recognition systems 
that were run. Section 4 outlines the experiments and 
reports the results. In Section 5, we discuss the results and 
suggest possible future directions. 
 

2. N4 DATA SELECTED FOR 
EXPERIMENTATION 

Our preliminary experiments have used only a fraction of 
the available N4 data. Although data from four countries, 
Canada, Germany, the Netherlands and the UK are 
available in the corpus, time constraints forced us to limit 
our experiments to the Netherlands (NL) data. We chose to 
process the NL data because several of us (Van Buuren 
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and Steeneken) had been involved in its collection; hence, 
we were more familiar with this segment of the N4 corpus 
than with those segments collected in other countries. 
Additionally, though the German segment of N4 has more 
speakers, we thought the NL segment had an adequate 
number of speakers for these initial experiments. 
 
The following sections describe the characteristics of the 
NL data including a description of the speakers, the types 
of data that were recorded, and how the data were used for 
these preliminary experiments. 
 

2.1 The NL Speakers 

The NL data were collected from 30 speakers over three 
days at the Operational School, Royal Dutch Navy at Den 
Helder, the Netherlands. The 21 males and 9 females were 
all between 17 and 25 years old at the time the data were 
collected. These speakers were all enlisted naval personnel 
receiving training in naval communications. All of the 
speakers were native speakers of Dutch. Of the 30 
speakers, 19 were also fluent in English, and some were 
also fluent in German and Spanish. 
 

2.2 The NL Tactical Speech 

The first type of speech collected was tactical military 
communications. Although the speech was collected from 
personnel in the Royal Dutch Navy, all of the tactical 
speech was spoken exclusively in English. Each speaker 
wore a noise canceling microphone headset typical of the 
type used on Dutch ships. The microphone on the headset 
was connected to a digital audio tape recorder sampling at 
48 kHz with 16-bit resolution. The speech data were later 
digitally low-pass filtered and down-sampled to 16 kHz for 
subsequent processing.  
 
The speech collected from each speaker was recorded in a 
single session lasting between one and two hours. A total 
of three sessions were recorded, with 11 speakers recorded 
in the first session, 16 in the second session and 7 in the 
third session. Each speaker was assigned a ship name, call 
sign and network name. Speakers were given a list of 
actions to perform that required communicating from one 
“ship” to another. Within a session, speakers took turns 
performing these actions. Though speakers composed their 
messages spontaneously from the instructions (i.e. the 
speakers did not merely read from a script), the content of 
each message (i.e. choice of words, word order) was 
constrained by the specific action to be achieved and by 
NATO communication standards. Some example 
transcriptions from these transmissions are: 
papa alfa zulu juliett this is papa alfa 
sierra zulu reporting into net over 

papa alfa sierra zulu this is papa alfa 
mike alfa I authenticate quebec over 

Once the exercises were complete, human labelers 
reviewed the speech collected and produced time-aligned 
speaker and orthographic transcriptions. These 
transcriptions were used to divide the session-long 
recordings into single-speaker speech fragments that have 
an average length of 5.9 seconds. The number of fragments 
produced per speaker ranged from 7 to 45 depending on 
the frequency with which that speaker spoke during the 
exercise. 
 
For the purposes of these preliminary experiments, each 
tactical speech fragment for each speaker was assigned to 
either the training set or the test set. The baseline tactical 
speech training set consisted of the first five and last five 
fragments collected from each speaker. The tactical speech 
test set consisted of the remaining speech fragments. For 
four of the speakers, ten or fewer fragments were available; 
therefore, data for these four speakers were totally 
discarded leaving a total of 26 speakers for our 
experiments. There were a total of 260 fragments in the 
training set (26 speakers, 10 fragments per speaker) and 
383 fragments in the test set (26 speakers, 15 fragments 
per speaker on average, with a minimum of 3 fragments 
and a maximum of 35 fragments). 
 
Because each speaker participated in only a single 
recording session, the direct applicability of our 
experiments to real military applications is limited. The 
fact that the speaker’s physical condition and many other 
recording characteristics were invariant during the single 
recording session results in an acoustic similarity between 
a speaker’s training and testing data that is much closer in 
the NL data than we would expect in many (but not all) 
military applications. 

2.3 The NL Read Speech 

In addition to the tactical speech described above, the NL 
segment of the N4 corpus also contains some read speech 
for each of the 30 speakers. The same recording equipment 
and configuration were used for collecting the read speech 
as were used for collecting the tactical speech. Each 
speaker was asked to read a short parable in both English 
and Dutch. An example sentence from the English version 
of the parable is given below: 
 
The North Wind and the Sun were disputing 
which was the stronger when a traveler came 
along wrapped in a warm cloak. 

The average duration of the read English parable was 36 
seconds. The average duration of the read Dutch parable 
was 34 seconds. 
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For the purposes of these preliminary experiments, the 
read speech was used as an alternative set of training data 
allowing us to compare cross-style training and testing (i.e. 
train on read speech, test on tactical speech) and cross-
language training and testing (i.e. train on English read 
speech and test on English tactical speech; train on Dutch 
read speech and test on English tactical speech). 
 

3. THE SPEAKER RECOGNITION 
SYSTEMS 

Three speaker recognition systems were evaluated. Each of 
these systems operates in two phases. During the training 
phase, training speech from each of the speakers is used to 
create speaker models. The three systems use different 
forms of speaker models and use different algorithms to 
produce these models. During the recognition phase, test 
utterances are compared to the speaker models. This 
comparison process is different for each of the three 
systems, but it generally results in the production of one 
score per model, with higher (or lower) scores indicating a 
closer match. What follows below is a very brief 
description of each of these system. References to detailed 
descriptions of each of the systems are also provided. 

3.1 The TNO System 

The TNO automatic speaker recognition system is based 
on an algorithm by Bimbot et al. [2]. The algorithm takes 
as its inputs the covariance matrices of frame-based 
features (e.g., third-octave spectra), computed over an 
entire utterance: these covariance matrices can be regarded 
as templates. Output of the algorithm is a distance measure 
that is computed between templates in the training set and 
the template of the unknown (test) speaker. The training 
template for which the shortest distance is found 
corresponds to the most likely speaker of the test template. 
 
The TNO system is used primarily for recognition of short 
and mostly low-quality speech (noise, low bandwidth). 
Computational complexity is relatively low, so it can easily 
be implemented on a standard PC and used in the field. It 
has been evaluated in the past on the TIMIT 420-speaker 
training set, on which error rates in a closed-set recognition 
experiment were well below 5% (which is in good 
agreement with the results by Bimbot). Using the system 
on a private radiotelephone database with eight speakers 
and fragment lengths primarily between 2 and 5 seconds, 
the error rate is about 15%. Furthermore, the system has 
proven to be largely language-independent. 
 
In its present form, the algorithm is used in closed-set 
scenarios only. For the current experiments, we used two 
parameter sets (10th order LPC coefficients and third-

octave spectra) computed from the full 8 kHz bandwidth of 
the input speech. We computed a weighted summed 
distance from the individual distance measures for each of 
the parameter sets. To improve reliability, an N nearest-
neighbor selection can be applied when evaluating the 
distance measures. In the current experiments, best results 
were obtained using N=1 (i.e. only the shortest distance is 
used for the selection of the most-likely speaker). 

3.2 The AFRL System 

The AFRL speaker identification system run on the NL 
data is based on the multi-feature classifier fusion 
technique described by Ricart et. al. [3].  During training 
three features were extracted from the speech and input to 
the Linde-Buzo-Gray vector quantization (VQ) training 
algorithm (also known as the Generalized Lloyd’s 
algorithm) [4].  These three features were the cepstrum, 
delta-cepstrum and liftered cepstrum, all derived from 
linear prediction coding coefficients.  The features were 
used to train an independent model for each speaker, with 
three separate VQ codebooks for each speaker.   This 
approach is slightly different from the more conventional 
feature concatenation method in which only one codebook 
per speaker is generated.  During testing the classification 
result is based on the L2 distance metric.  The total 
distance score for each trained speaker’s model is 
calculated from a sum of distances to unknown feature 
vectors.  These codebook distances are normalized by the 
number of test vectors.  The distances resulting from each 
feature classifier are then fused through an adjudication 
process.   This process is a linear fusion technique in which  
the classification distances for each feature are normalized 
with respect to the minimum distance for that feature. The 
speaker with the lowest linearly fused sum is declared the 
winner in the closed-set case. 
 
For the open-set experiments each speaker was trained as 
described above, but cohorts were used for scoring 
normalization.  The entire training dataset was used as a 
pool of cohorts.   
 
Most communication systems have 4kHz of bandwidth, so 
we ran some experiments that had the effect of artificially 
band limiting the data to 4kHz.  Use of the AFRL Usable 
Data Bandwidth (UDB) algorithm [5] revealed the average 
usable speech bandwidth on the training set was 100 Hz to 
7.7 kHz.  This rather wide bandwidth was not unexpected 
because the data set was collected with high quality 
microphones and recording equipment. Therefore, we also 
ran experiments that used features capable of modeling the 
full bandwidth. In all these experiments, channel 
normalization was disabled. 
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3.3 The MITLL System 

The MIT Lincoln Laboratory speaker recognition system 
uses the Gaussian Mixture Model (GMM) and Universal 
Background Model (UBM) approach developed by 
Reynolds [6]. Front-end processing converts sampled 
speech waveforms into mel-weighted cepstra and delta-
cepstra at a 100 Hz frame-rate. In the original version of 
this system, the training speech from each speaker is used 
to produce a single GMM for that speaker using the 
Estimate-Maximize algorithm. The order of the GMM 
varies depending on the amount of training speech 
available. In the UBM version of this system, a single 
universal GMM is trained from a large number of non-
target speakers. Models for individual speakers are created 
by adapting the UBM. During recognition, the likelihood 
of the test speech is computed for each of the GMMs 
produced during training. For closed-set recognition, the 
speaker corresponding to the most likely GMM is 
hypothesized as the speaker of the test utterance. For open-
set speaker detection, likelihood ratios are computed on a 
per-test-message basis. These ratios can then be sorted to 
produce a list of test messages ordered by the likelihood 
that they were spoken by a specific speaker. 
 
We used a 512-mixture GMM UBM system for all 
experiments on the NL data. The speaker training data 
from the baseline experiment was used to train the UBM. 
To allow the use of the same system for both closed-set 
identification and open-set detection, we trained 26 
different UBMs, where each UBM excluded the training 
speech from one of the 26 speakers. For a test message 
from speaker 1, for example, the UBM that excluded 
speaker 1’s training data was used. This was required so as 
not to violate the open-set assumption. In all NL data 
experiments, features were extracted from the entire 8 kHz 
bandwidth of the input speech, and channel normalization 
was disabled. 
 
The MITLL system has been evaluated on unconstrained 
telephone speech in annual NIST evaluations in which it 
has exhibited top performance on a variety of detection 
tasks (e.g. single-speaker detection, two-speaker detection) 
[7]. Closed-set recognition experiments on 630 speakers of 
the TIMIT corpus have yielded error rates of less than 1% 
[8]. The test tokens in the TIMIT experiments were single 
sentences having durations of approximately 3 seconds. 
 

4. EXPERIMENTS AND RESULTS 

Our preliminary experiments were designed to measure the 
performance of the various speaker recognition systems as 
a function of amount of training data (i.e. number of 
training fragments per speaker), type of training data 

(tactical vs. read) and language of training data (English 
vs. Dutch). The sub-sections below describe the baseline 
experiment and several of the contrast experiments. 
 

4.1 The Baseline Experiment 

In the baseline experiment, each speaker model was trained 
on ten fragments of tactical training speech, i.e. the 
baseline experiment used all the speech in the training data 
set. The test set consisted of the 383 tactical test fragments. 
Baseline experiment closed-set results are shown in Table 
1 below. 
 
 
Duration 

Number 
of 
tokens 

TNO AFRL 
4kHz 

AFRL 
8kHz 

MITLL 

All  383 17% 3% 1% 1% 
1-3 sec 132 28% 8% 3% 2% 
3-6 sec 132 13% 2% 0% 0% 
6-27 sec 119 8% 0% 0% 0% 
 

Table 1.  Results of the baseline experiment. 
Recognition results shown in terms of closed-set error 
rate. 

The results shown in columns 3, 4, 5 and 6 of Table 1 
indicate the error rate of each of the three systems on the 
26-alternative, forced-choice speaker recognition 
experiment. The two AFRL results show performance of 
the narrowband and wideband results, respectively. The 
first row of results indicates performance on all 383 test 
fragments. The subsequent rows indicate performance on 
subsets of the test fragments having durations of 1-3 
seconds, 3-6 seconds and 6-27 seconds. For the results on 
all 383 test fragments (the first row of results), the 
difference in performance between the TNO and other 
systems is statistically significant at the 95% confidence 
level. The differences in performance among the two 
AFRL and MITLL systems are not statistically significant 
at the 95% level. We also observe a general decrease in 
error rate as test-utterance duration increases. 
 

4.2 Reducing the Amount of Training Data 

A set of experiments was run to measure the impact of 
reducing the amount of training data available to produce 
the speaker models. Three contrasts were run: 
 

� Train on the first three and last three training 
fragments only. 

� Train on the first three training fragments only. 
� Train on the single longest training fragment of 

the ten available in each speaker’s training set. 
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For each of these contrasts, the test set was identical to that 
used in the baseline experiment. Table 2 shows the results 
of this set of experiments. 
 

 
Training 
fragments 
Per spkr 

Avg 
duration of 

training 
speech/spkr 

 
TNO 

 
AFRL 
4kHz 

 
AFRL 
8kHz 

 
MITLL 

10 
(baseline)  

61.0 sec 17% 3% 1% 1% 

6 36.3 sec 26% 10% 4% 2% 
3 18.4 sec 44% 26% 15% 5% 
1 13.7 sec 34% 36% 22% 9% 
 

Table 2.  Results of the reduced training experiments. 
Recognition results shown in terms of closed-set error 
rate. 

We observe that, in general, error rate increases as the 
amount of training speech decreases.  
 

4.3 Training on Read Speech 

The final set of closed-set experiments examined the 
impact of training on read speech (either English or Dutch) 
while testing on the tactical test speech (English only). 
Table 3 shows the results of these experiments. 
 
 
Training 
Material 

Avg 
duration of 

train 
speech/spkr 

 
TNO 

 
AFRL 
4kHz 

 
AFRL 
8kHz 

 
MITLL 

English 
Tactical 

36.3 sec 26% 10% 4% 2% 

English 
Read 

36.0 sec 33% 21% 8% 8% 

Dutch 
Read 

34.2 sec 33% 18% 12% 9% 

Table 3.  Results of the training on read speech. 
Recognition results shown in terms of closed-set error 
rate. 

 
We observe that performance of the three systems is 
somewhat degraded when training on read speech vs. 
tactical speech. The impact of the training/testing language 
mismatch is system dependent. 
 

4.4 Detection Results 

The results reported above show the ability of the various 
speaker recognition systems to perform closed-set 
identification. These results are relevant to situations 
where the set of possible speakers is known in advance and 

when training speech is available for all of these speakers. 
However, in applications such as speaker authentication, 
the set of speakers that could be encountered during 
recognition is unconstrained. In such cases, it can be more 
meaningful to report results of detection experiments. The 
general approach is to begin by designating a specific 
speaker as the target speaker. Test fragments are then 
sorted according to their score against the target speaker 
model. Generally, this score should not be a raw likelihood 
but should be a likelihood ratio or a posterior probability, 
i.e. it should be normalized against scores obtained for the 
same test fragment against other speaker models. Those 
test fragments with high likelihood ratios are assumed to 
be more likely to have been spoken by the target speaker 
than those with lower likelihood ratios. For any score 
threshold, we can compute the probability of false alarm, 
i.e. the number of test fragments above threshold that were 
not spoken by the target speaker, and the probability of 
miss, i.e. the number of test fragments below threshold that 
were spoken by the target speaker. We can repeat this 
single-speaker detection experiment for all speakers, and 
we can average the results. 
 
The exact details of the normalization process are system 
dependent, but to preserve the open-set nature of the 
experiment, we impose one constraint: 
 

If speaker i is the target speaker, then when 
producing a score for test fragments  spoken by 
speaker j, j � i, systems may not use the score 
from speaker j’s model for normalization 
purposes. 

 
This constraint ensures a true open-set test because we are 
not exploiting any speaker j training data as we score 
speaker j background test fragments. 
 
Both the AFRL and the MITLL system can produce 
normalized, sortable scores. Table 4 shows the equal-error 
rate (the point at which the probability of false alarm and 
probability of miss are equal) for those two systems for a 
few conditions. 
 

 
Duration 

AFRL 
4kHz 

AFRL 
8kHz 

MITLL 

Baseline  5% 3% 1% 
6 fragment 
training 

8% 4% 2% 

English Read 
Speech 

10% 6% 7% 

Table 4. Single-speaker detection results. Results are 
shown in terms of equal-error rate. 
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5. DISCUSSION 

This paper has reported on our experience running speaker 
recognition experiments on the N4 corpus. Our major 
conclusions are: 
 

� Given sufficient training data, high-performance 
speaker recognition can be obtained on the short 
tactical utterances from the NL data set. 

� There were some statistically significant 
differences in performance among the speaker 
recognition algorithms that were evaluated. 

� System performance is largely determined by the 
complexity of the model (e.g. number of 
parameters) employed, with simpler systems (e.g. 
TNO) having somewhat higher error rate than 
more complex systems (e.g. AFRL and MITLL). 

� Reducing the duration of training data and testing 
data generally increased the speaker recognition 
error rate. 

� Cross-style and cross-language training/testing 
had a system-dependent impact on error rate.  

 
Paths for further speaker recognition experimentation on 
the N4 data set could include: 
 

� Expansion of the experiments to include data 
from the three other countries represented in the 
N4 data set. We believe that all such experiments 
should be country-specific, however, to avoid bias 
due to inconsistencies in the collection procedures 
employed in each country, i.e. we would not pool 
the data collected from different countries. 

� Addition of relevant types of additive noise and 
convolutional channel effects to measure the 
impact that more realistic collection conditions 
would impose on the speaker recognition 
algorithms. Incorporating such realistic 
degradations could make subsequent experiments 
more relevant to real military applications. 

 
Finally, we note that the N4 data set is well-suited for 
measuring the performance of speech recognition systems 
on tactical, non-native speech.  
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Abstract 

This paper describes a newly realized high-
performance speaker recognition system and examines 
methods for its improvement. Innovative experiments 
early this year showed that phone strings are 
exceptional features for speaker recognition. The 
original system produced equal error rates less than 
11.5% on Switchboard-I audio files. Subsequent 
research indicates that the equal error rate can be 
nearly halved by improving the feature extraction and 
score fusion methods. Pre-processing the speech files 
to remove cross-talk, improved techniques for 
combining scores, and gender-specific phone models 
each reduce the error rates significantly. 

1 Introduction 

Pronunciation is an elemental factor for human 
recognition of speakers. Converting the process by 
which humans recognize speakers to repeatable 
machine techniques is a challenging task that has not 
been successfully attempted, until now. By capturing 
phone sequences and using them to examine the 
acoustic phonetic details of different speakers, we can 
detect and exploit differences in pronunciation.  

We develop a speaker-recognition system based 
only on phonetic sequences instead of the traditional 
acoustic feature vectors. Although the phones are 
generated based on the acoustic feature vectors, the 
recognition is performed strictly from the phonetic 
sequences created by the phone recognizer(s).  

Our phonetic speaker recognition approach relies 
on phonetic recognizers in several languages to 
capture phone sequences, which are then used for 
modeling and recognizing speakers. By processing the 
speech files with phone recognizers of different 
languages, we produce refracted phonetic sequences 
that provide complementary information. Combining 
phone sequences from several languages not only 
provides improved performance and robustness, but 
also provides a degree of language independence 
similar to that of acoustic approaches. 

2 NIST Extended Data Task 

All the experiments described in this paper use data 
from the NIST 2001 Speaker Recognition Evaluation 
Extended Data Task. NIST’s purpose in creating this 
task was to promote the exploration and development 

of new approaches to the speaker recognition 
challenge, such as the idiolectal characteristics 
reported in [3] that require larger amounts of training 
data than provided in previous evaluations. 

For the 2001 evaluation, the entire Switchboard-I 
corpus was prepared for the Extended Data Task. 
Along with the audio data, NIST provided both 
Dragon System’s automatic speech recognition 
transcriptions, and manual transcripts from the 
Institute for Signal and Information Processing. Both 
sets of transcripts were available for the entire corpus. 
All forms of data were permitted for training speaker 
models either alone or in combination. 

The speaker model training data consisted of one, 
two, four, eight, and sixteen conversations. NIST 
employed a jackknife approach to rotate through the 
training and testing conversations to insure an 
adequate number of tests. Table I provides a 
breakdown, based on the number of training 
conversations, of the NIST Extended Data Task.  

Table I: NIST Extended Data Description 

Number of 
Training 

Conversations 

Number of 
Unique 

Speakers 

Number of 
Test 

Conversations 

1 483 16429 
2 442 15363 
4 385 13777 
8 273 10377 

16 57 2696 
Total 483 58642 

 
For testing, the same options were available as in 

training. The recognition feature could be computed 
from either the acoustic data, the transcriptions or a 
combination of both. The number of test conversations 
for each set of training conversations is provided in 
Table I. The test set contains matched handset and 
mismatched handset conditions as well as a few cross-
gender trials. 

NIST provided data in two-channel sphere-
formatted audio files. Analysis of the individual 
conversation sides revealed a considerable amount of 
cross-talk, which could potentially inhibit successful 
speaker recognition. Unlike other NIST data, the 
Switchboard-I files were not processed to remove 
echo. In [7] we processed the Switchboard-I data 
through NIST’s echo-canceling software prior to 
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speaker recognition. All experiments in this paper use 
the echo-cancelled Switchboard-I files. This paper 
includes experiments for removing cross-talk in the 
phone sequences to potentially improve speaker 
recognition performance. 

3 Algorithm Description 

Phonetic speaker recognition is performed in four 
steps. First, a phone recognizer, in the given language, 
processes the test speech utterance to produce phone 
sequences. Then a test speaker model is generated 
using phone n-gram (n-phone) frequency counts. Next, 
the test speaker model is compared to the hypothesized 
speaker models and the Universal Background Phone 
Model (UBPM). Finally, the scores from the 
hypothesized speaker models and the UBPM are 
combined to form a single recognition score. 

The single-language system is generalized to 
accommodate multiple-languages by incorporating 
phone recognizers trained on several languages 
resulting in a matrix of hypothesized speaker models. 
The system described in this paper used M speakers, P 
phone recognizers and P UBPMs, one UBPM 
corresponding to each phone recognizer. Figure 1 
shows this multi-language phonetic speaker-
recognition system. The following sections provide 
more details for the modeling and recognition process.  

 

Ph on e  R ecog nize rs : 1 ,2 ,..P  

T es t S peech  
U tte ran ce  

H yp oth esized
Sp eaker 

M od e l M atrix 
P xM  

U niv e rsa l 
B ackg ro u nd  

Ph on e  M od e ls : 
1 ,2,..P  

C o m bin e  

T est S peake r M o de l 

lo g-like liho od  ra tio score (s) 
 

Figure 1. Multilanguage Phonetic Speaker-
Recognition system 

3.1 Phone Recognition 

The phone recognition process takes advantage of a 
phone recognition algorithm that Zissman created for 
Parallel Phone Recognition with Language Modeling 
(PPRLM) [4]. We chose this recognizer since it was 
created solely for phone recognition with no language 

model constraints. This algorithm calculates twelve 
cepstral ( )1 12c cL  and thirteen delta-cepstral ( )0 12c c′ ′

L  

features on 20 ms speech frames with 10 ms updates. 
The cepstra and delta-cepstra are sent as two 
independent streams to fully connected, three-state, 
null-grammar HMMs. 

The HMMs were trained on phonetically marked 
speech from the Oregon Graduate Institute (OGI) 
multi-language corpus in six languages: English (EG), 
German (GE), Hindi (HI), Japanese (JA), Mandarin 
(MA), and Spanish (SP). The corpus was hand-marked 
by native speakers in each language using OGI 
symbols for two of the languages and Worldbet 
symbols for the remainder. The number of phonetic 
symbols differs for each language from 27 for 
Japanese to 51 for Hindi, and includes one symbol to 
represent silence. More information on the corpus and 
phone symbols can be found in [8] and [9]. 

The phone recognizer employs a Viterbi HMM 
decoder implemented with a modified version of the 
HMM Toolkit. The output probability densities for 
each observation stream (cepstra and delta-cepstra) in 
each state are modeled as six univariate Gaussian 
densities. The output from the HMM recognizer for 
each language provides four estimates: the symbol for 
the recognized phone, its start time, its stop time, and 
its log-likelihood score. For this paper we only used 
the recognized phone, although future plans include 
exploiting the other estimates. 

3.1.1 Gender-specific Phone Recognition 

Zissman also created gender-specific phone models in 
five languages (EG, GE, JA, MA, SP) using the OGI 
multi-language phone-marked speech corpus. The 
phone models are identical in format to those 
described previously, but the training speech was 
constrained by gender. We conducted some 
preliminary experiments using gender-specific phone 
models to create gender-dependent phone sequences 
for speaker recognition. 

3.2 Cross-talk Removal 

As described previously, the original Switchboard-I 
audio files contained excessive cross-talk. Since this 
interference was potentially deleterious to speaker 
recognition performance, we elected to process the 
audio files with software created by MIT Lincoln 
Laboratory. Their xtalk tool performs energy based 
cross talk and silence detection, producing separate 
files containing speech marks and speech. 

We separated the conversation sides from the raw 
stereo Switchboard-I files prior to xtalk processing. In 
a time-saving effort, we chose not to run the time-
intensive phone-recognition software on the xtalk-
processed speech. Instead, we converted the existing 
phone files (created from echo-cancelled Switchboard-
I files) using the two-channel speech activity detection 
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(SAD) marks to determine whether the phone should 
exist. Figure 2 shows this procedure in more detail. 

 Switchboard-I 
Audio Files 

Stereo→Mono 
Conversion 

Phone  
Sequences 

Echo  
Cancellation 

Phone 
Recognition 

Cross-talk 
Removal 

SAD  
Conversion 

 

Figure 2. Cross-talk Elimination Process 

We experimented with several thresholds to 
determine when a phone should be included. We 
found that the best speaker recognition performance 
was achieved by including all phones occupying any 
portion of a valid speech segment. The converted 
phone files were processed by the back-end for 
speaker recognition as described below. 

3.3 Utterance Delineation 

Previous work [6], [7], showed that processing the 
phone files to include start and stop tags around 
speech phrases improved speaker recognition 
performance. The previous algorithm inserted start and 
stop labels between phrases based on pairs of silence 
phone labels, i.e., all phones between two silence 
phone labels were considered an utterance. For 
example, if the recognized phone sequence was 

… sil S oU m i: D & m Λ n i: sil … 

the utterance-tagged speech became 

…<start> S oU m i: D & m Λ n i: <end> <start>… 

regardless of the length of the silence phones. 
In this paper we analyzed the distribution of 

silence phone durations and experimented with more 
sophisticated methods to determine where to place 
utterance breaks, as described later.  

3.4 Hypothesized Speaker Model 

As noted in section 2, a jackknife scheme determined 
the amount of training and testing data for the 
extended training task. NIST provided a control file 
listing hypothesized and test speakers, along with a 

training and testing conversation list [5]. The list 
provided training information for one, two, four, eight, 
and sixteen conversations. As a result, a particular 
hypothesized speaker will have multiple models for a 
given test set. 

Speaker dependent language models, H, are 
generated using a simple n-phone frequency count for 
each language and consist of all the unique n-phones 
with the corresponding frequency counts for a given 
speaker. Unlike the state-of-the-art GMM-UBM 
systems, the speaker models are not adapted from the 
UBPM. 

3.5 Universal Background Phone Model 

The UBPM, U, is generated using files determined 
from the NIST control file (specified in [5]), which 
provides a list of hypothesized and test speakers for 
exclusion from the UBPM. All of the conversations 
for the remaining speakers were used to build the 
UBPM using n-phone frequency counts. For this 
paper, each of the six phoneme recognizers has a 
corresponding independent UBPM. 

3.6 Test Speaker Model 

A test set is specified in the NIST control file for all 
hypothesized speaker models. The test set contains 
true speaker trials, impostor trials, matched handset, 
mismatched handset, and a few cross-gender trials. 
Once the speech utterance to be tested is processed by 
the phone recognizer(s), a test speaker model, T, is 
generated using n-phone frequency counts. 
Doddington, [3] improved performance by ignoring 
infrequent word n-grams, i.e. ignoring n-grams 
occurring less than minc  times. This is also the case 
with the phonetic approach. 

3.7 Scoring 

Producing a speaker recognition score for a speech file 
requires not only the calculation of a likelihood score 
for each of the P phone recognizers, but also the 
combination of each of the P scores into a single score 
for comparison with other hypothesized speaker model 
scores. The following sections describe how the 
individual model score is calculated and fusion of the 
P model scores. 

3.7.1 Single-language Scoring 

For a single-language phonetic speaker-recognition 
system, the scores from the hypothesized speaker 
models and the UBPM are combined to form the 
recognition score ηi using a conventional log-
likelihood ratio given by 
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where n is an n-phone type corresponding to the test 
speaker model, T, and the sums run over all of the n-
phone types in the test segment, T. Si represents the 
log-likelihood score from the ith hypothesized speaker 
model, Hi, and B is the log-likelihood score from the 
UBPM, U, for the n-phone type, n. The log-likelihood 
scores Si and B are defined by 
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where 
iHN  and uN  represent the total number of 

unique n-phone types in the ith hypothesized speaker 
model and UBPM, respectively. ( )iH n  and ( )U n  

represent the number of occurrences of a particular n-
phone type, n, in the hypothesized speaker model and 
UBPM, respectively. 

The weighting function ( )w n  is based on the n-

phone token count, ( )c n , and the discounting factor, 

d. The n-phone token count, ( )c n , corresponds to the 

number of occurrences of a particular n-phone type n 
in the test speaker model, T. The weighting function, 
which could be made language dependent, is given by 

( ) ( )1 d
w n c n

−= . 

The discounting factor, d, has permissible values 
between 0 and 1. When 1d =  a complete discounting 
occurs, resulting in ( ) 1w n = . This gives all n-phone 

types the same weight regardless of the number of 
occurrences in the test speaker model, T. When 0d = , 
all n-phone types are weighted by their corresponding 
token count in the test speaker model, T. 

3.7.2 Multiple-language Scoring 

In [7], the scores from each of the single-language 
phonetic speaker-recognition systems were fused by a 
simple linear combination. Subsequent experiments 
revealed that more sophisticated techniques for 
combining the individual language scores improved 
phonetic speaker recognition performance. We used 
the LNKnet tool developed by MIT’s Lincoln 
Laboratory to experiment with several different 
classification techniques using vectors of the 
individual language scores as features.  

The Gaussian mixture classifier showed the most 
promising results using either expectation-
maximization binary split or K-means for clustering. 
Both clustering algorithms used eight mixtures, a 

grand/class full covariance matrix, and tied mixture 
components. 

4 Results 

The preceding sections described several experiments 
intended to improve the speaker recognition 
performance described in [7]. The results from these 
experiments are presented below. All detection 
estimation tradeoff (DET) curves shown are for 
systems trained on eight conversations with triphone 
models ( )3n = , complete discounting ( 1d = ), and 

ignoring n-phones that occur less than 1,000 times, 
( min 1000c = ). Unless noted otherwise, individual 
scores from six languages ( 6P = ) were linearly 
combined with equal weights to calculate the final 
phonetic speaker recognition score. 

4.1 Utterance Delineation 

Analysis of the distribution of silence phone lengths 
using duration information calculated from the phone 
recognizer output showed that most of the silences 
were of short duration (less than 200 ms). The existing 
approach, which used silences of any duration to mark 
an utterance, seemed inefficient. Since the goal of 
utterance delineation was to accurately separate speech 
phrases, the best approach seemed to use only long 
silences as utterance separators. 

We experimented with several thresholds for 
minimum silence duration to denote utterances, from 
300 ms to 1.2 s. When we compared the speaker 
recognition performance of the more discriminatory 
techniques with the simple, naïve approach, we found 
that speaker recognition performance did not improve 
with the more complex methods. 

 

4.2 Two-channel Speech Activity Detection 

We performed two speech activity detection 
experiments to determine the optimal method for 
removing cross-talk. In one experiment, the two-
channel SAD processing was performed on the 
original Switchboard-I files. In the other experiment, 
two-channel SAD processing was performed on the 
echo-cancelled Switchboard-I files. For both 
experiments, we converted the existing phone 
sequences created from echo-cancelled Switchboard-I 
files, as shown in Figure 2. 

Figure 3 and Figure 4 show DET curves of speaker 
recognition performance for phones processed with 
two-channel SAD experiments and for phones 
processed only on echo-cancelled files. Figure 3 shows 
performance using only an English phone recognizer, 
and Figure 4 shows performance using six phone 
recognizers. On both figures, the solid line marks 
performance for the experiment in which the original 
Switchboard-I files were used to create two-channel 
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SAD marks. The dotted line shows performance for 
the experiment in which the echo-cancelled 
Switchboard-I files were used to create two-channel 
SAD marks, and the dash-dot line indicates 
performance without two-channel SAD processing. 
The boxes on each plot demarcate the 90% confidence 
interval around the equal error rate (EER) based on the 
number of target and non-target trials. 

 

Figure 3. Comparison of Three Audio Processing 
Techniques, English  

 

 

Figure 4. Comparison of Three Audio Processing 
Techniques, Six Language Fusion 

The data in Figure 3 and Figure 4 demonstrates 
that cross-talk removal improves the EER for speaker 
recognition performance by nearly 2.5% in the 
English-only case and more than 3.5% in the 
combined language case. It also shows that using the 
unprocessed speech files to determine the regions of 
speech is superior to using echo-cancelled speech to 
determine these regions. We plan additional audio 

processing experiments to discover future recognition 
improvements. The following experiments use this 
cross-talk removal process to modify the phone 
sequences.  

4.3 Language Fusion 

NIST provided six splits of the speech data each 
containing unique speakers. We used vectors of the P 
language scores from two of these splits to train the 
classifiers through LNKnet and two splits to test the 
classifiers. Figure 5 shows a comparison of the 
linearly combined phone scores with the Gaussian 
mixture classifiers. The dotted line and solid line show 
performance for K-means clustering and expectation-
maximization clustering of the Gaussian mixture 
models, respectively. The dash-dot line shows 
performance for a linear combination of the P 
language scores, and the dashed line shows 
performance using only an English phone recognizer. 
The boxes on each plot demarcate the 90% confidence 
interval around the equal error rate based on the 
number of target and non-target trials. 

 

 

Figure 5. Comparison of Two Gaussian Mixture 
Models for Fusing Language Scores 

As Figure 5 shows, both Gaussian mixture 
classification techniques are superior to linear fusion, 
but are nearly identical in performance to each other. 
Additional experiments to determine improved 
methods for combining the individual language scores 
are planned for the future. 

4.4 Gender-Specific Phone Modeling 

NIST provided a table with the Switchboard-I files 
containing information about each of the audio files 
including the speaker’s gender. We processed the 
audio files with the five gender-specific phone 
recognizers described previously. Figure 6 contains a 
comparison for speaker recognition performance using 
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only an English phone recognizer with and without 
gender-dependent phone models. The solid line shows 
performance for phone recognition using separate 
phone models for males and females. The dotted line 
shows speaker recognition performance using the 
same phone model regardless of gender. The boxes on 
each plot demarcate the 90% confidence interval 
around the equal error rate based on the number of 
target and non-target trials. 

 

Figure 6. Comparison of Gender-Dependent and 
Gender-Independent Phone Recognition for English 

As shown by the data in Figure 6 speaker 
recognition performance can be improved significantly 
in the one-language case using phone models to match 
the speaker’s gender. Further experimental results 
using phones from five language will be reported in 
future publications. 

5 Conclusions 

This paper described an innovative technique for 
speaker recognition using phonetic sequences to 
capture a speaker’s pronunciation. Four improvements 
to the basic model were described, most of them 
exploiting front-end signal processing.  

Sophisticated methods for separating speech 
phrases did not outperform the simple, original 
method. This was an unexpected result, but its 
simplicity saves computation. 

Elimination of cross-talk provides a significant 
improvement, especially when the unprocessed speech 
files are used to determine the areas containing speech. 
The equal error rate decreased by nearly 4% when the 
phone strings taken from the echo-cancelled data were 
post-processed to remove cross-talk. 

Gaussian mixture classification for fusing 
individual language scores is an improvement over a 
linear combination of the scores. K-means and 
expectation-maximization binary split clustering 

perform essentially identically. They each provide 
over 1.5% improvement in equal error rate. 

Gender-specific phone models are superior to 
using a combined phone model for English phone 
strings. The equal error rate for the phonetic speaker 
recognition system decreases by almost 2% when the 
gender of the speaker is matched to the gender of the 
phone model. 

Additional experiments to improve performance 
are underway. Improved front-end and back-end 
processing as well as investigation of other feature sets 
will be reported as we collect results. 
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Abstract

To deal with the effects of nonnative speech communication
on speech intelligibility, one must know the magnitude of
these effects. To measure this magnitude, suitable test
methods must be available. Many of the methods used in
cross-language speech communication research are not very
suitable for this, since these methods are designed to
investigate specific effects regarding speech perception and
production, rather than quantifying overall intelligibility. In
this paper, a simple model of cross-language speech
intelligibility is shown that helps in selecting experimental
methods to assess speech intelligibility. Based on this model,
and practical observations regarding assessment of cross-
language speech intelligibility, a multi-lingual version of the
Speech Reception Threshold method was implemented as a
suitable method for the quantification of cross-language
speech intelligibility. The performance of this method is
illustrated by means of experimental results.

1. Introduction
Most reported experiments concerning nonnative speech
intelligibility have been designed to obtain a better insight
into the details of the speech perception and production
process. Researchers in the field of second-language speech
production and perception usually aim to test very specific
hypotheses. Which experimental method is the most efficient
depends on the tested hypothesis.
Apart from research on the basics of human speech
communication an increasing need is felt for a more applied
approach, aiming at the overall effect on speech intelligibility.
Cross-language speech communication, in which one or more
parties engaged in a conversation depend on second-language
skills, is an increasingly common phenomenon. The
efficiency of cross-language speech communication is quite
often experienced to be lower than ‘fully native’
communication. For many of those situations, it would be
helpful to be able to assess the magnitude of the effect on
speech intelligibility. Applications that could benefit from
such knowledge would be, for example, the design of public
address and communications systems, and prediction models
in room acoustics.  By knowing the extent to which speech
intelligibility is reduced, better design criteria can be
established.
Wanting to know the extent to which speech intelligibility is
influenced means that quantitative methods for measuring
speech intelligibility are needed. This is different from the
hypothesis-driven methodology preferred for investigating the

principles of nonnative speech communication; instead of
looking for reasons, we are quantifying the consequences.
To illustrate this approach, consider the following situation.
Suppose that an auditorium in a Dutch school is equipped
with an air-conditioning system, which produces a known
level of background noise. In ‘normal’ (native) situations, the
intelligibility of the public address system in the auditorium is
generally acceptable, despite the background noise. What if a
native English talker addresses the Dutch students (in
English), who have an average experience with the English
language of 2 years? What if the average experience of the
students is 5 years, or what if the native language of the talker
is German? What reduction of the background noise level is
necessary to obtain a certain minimum speech intelligibility?
When using suitable methods, it is possible to answer all
these questions, if populations of talkers and listeners are
properly defined. Not all of the reasons behind the differences
in intelligibility have to be known. These reasons may be very
complex, involving better analysis of the speech signal into
phonetic units, larger vocabulary, better understanding of the
grammar, etc. Regardless of the reasons, the effects are
interesting enough in their own right.
In this paper, we will present a simplified model of nonnative
speech communication. The aim of this model is to serve as a
tool, which helps in choosing the proper methods to quantify
the effects on intelligibility. Based on this model, we will
describe a multi-lingual speech intelligibility evaluation
method that is suitable for application to cross-language
speech communication

2. Model of cross-language speech
communication

2.1. Types of cross-language speech communication

Describing a specific cross-language conversation
unambiguously takes a little consideration. As the number of
people engaged in a conversation increases, the complexity of
a proper description of the situation increases accordingly.
All situations can be broken down into variants of
straightforward two-way communication, in which case only
one person is talking, and only one other person is listening.
This involves influences from up to three languages: the
native language of the talker, the native language of the
listener, and the language that is currently being spoken. The
relations between these three languages will partly determine
the speech communication process. Comparative studies of
the involved languages could theoretically shed light on this;
analyses of the existence of phonetic contrasts and inspection
of the (sound-based) lexicon of a specific language could help
understand its relation with other languages, provided this
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same information is also known for these other languages.
Rather than trying to find a general model for language-
related influences on cross-language communication, we will
treat each combination of languages as a unique case.
It has become convention to denote native talkers and
listeners as ‘L1’, and nonnative (second-language) talkers and
listeners as ‘L2’. Based on this notation, one could (for
example) indicate that a native listener is listening to a non-
native talker by writing ‘L2>L1’. This notation works if the
number of languages involved is no more than two. The
situation ‘L2>L2’ could mean that a Dutch listener is
speaking English to a German listener; it could also mean that
a Dutch listener is speaking English to another Dutch listener.
The difference may be important, since the common native
language between talker and listener may influence their use
of the second language (in our example English).
To avoid confusion, we will use the following notation
throughout his paper:

Dutch > (English) > German

meaning that a Dutch talker is talking English to a German
listener. We will generally abbreviate this to D>(E)>G.

2.2. Defining populations of talkers and listeners

Considering nonnative speech intelligibility separately for
each individual that comes our way would become a very
laborious process. By defining meaningful populations of
talkers and listeners, we can collect more generally applicable
quantitative results. First, we decide what populations we
need to have quantitative data on; then we recruit subjects
from these populations, and carry out experiments.
Experiments may involve subjects selected from one single
population, or may use talkers from one population and
listeners from another.
In order to define a population, one should be able to describe
it in terms of the determining factors for nonnative speech
intelligibility.  The description of the population starts with
the native language of the subjects; preferably, details
concerning regional accents (if any) should also be known.
A very important factor is the average experience of subjects
within the population with the target (second) language (eg.
([1,2]). Age of acquisition of the second language is also of
great importance. (eg. [3,4,5]).
Second-language experience and age of acquisition combine
into second language proficiency, a term we will use rather
loosely to indicate the underlying dimension explaining
differences in nonnative speech intelligibility. Despite the fact
that second-language proficiency comprises many different
abilities (related to phonetic discrimination, vocabulary,
grammar, etc.), subjects are able to rate their own proficiency
with a sometimes impressive accuracy [6].
Possible other factors to consider could be more general
descriptors of the population, such as age and gender. It
seems fair to consider the influence of these variables on
cross-language communication higher-order effects, but it is
only prudent to keep variables like these in mind as well when
selecting subjects for experiments.
Even when the populations of talkers and listeners are fully
defined, the resulting speech intelligibility may still vary
according to numerous other variables, most of which also
apply to fully native communication, such as speaking rate
and speaking style. These variables are not really related to

the characteristics of the talkers and listeners, but rather to
their mode of communication. One aspect related to this is
worth mentioning. For nonnative talkers, the distinction
between read speech and spontaneous speech is potentially of
far greater importance than for native talkers. Nonnative
talkers are likely to limit their effective vocabulary to easier
and more familiar words when speaking spontaneously, while
they are more likely to produce pronunciation errors when
asked to read a certain text aloud. In the latter case, they are
not only likely to mispronounce unfamiliar words, but a poor
understanding of context may also lead to an impaired
intonation of sentences.

2.3. Conditions for speech communication

Native as well as nonnative speech can be affected by adverse
conditions, such as background babble, ambient noise,
bandwidth limiting, or reverberation. However, the degrading
influence on cross-language speech communication tends to
be greater [5,7,8,9,10].
Measuring speech intelligibility under clear, undegraded,
conditions is often not very effective. The effects of
nonnativeness on intelligibility may be relatively small,
whereas problems in practice are expected when degrading
circumstances are present. By conducting experiments under
conditions that represent a controlled degree of speech signal
degradation, the effect of this degradation on cross-language
speech communication may be assessed systematically.
Perhaps the easiest way to reduce speech intelligibility in a
controlled manner, is by adding stationary noise with a known
spectrum. For fully native speech communication,
intelligibility in this case is a relatively stable and well-known
function of the speech-to-noise ratio. For nonnative speech
communication similar relations are found [10,11], which
clearly show that noise is capable of affecting cross-language
communication more profoundly than native speech
communication.

2.4. Levels of analysis

Our approach towards the assessment of nonnative speech
intelligibility needs a model that describes cross-language
speech communication in such a way, that the proper
characteristics to quantify intelligibility can be chosen.
In practice, this means that a description is needed of the
determining factors for speech intelligibility (which we will
call intelligibility cues), and an indication of where to find
these. More specifically, we need to find out about
intelligibility cues that are especially important when
considering cross-language speech communication.
Speech intelligibility can be studied at various levels of
analysis; the most basic analysis would involve studying the
speech signal on an allophone-by-allophone basis. Perhaps
the highest thinkable level would be to consider an entire
story, where the amount of relevant information in the story
that was transferred could be studied.
There are reasons to assume that the level of individual words
takes an important position in the process of learning a second
language [12]; it seems likely that one initially learns a
second language mainly by collecting a sound-based
representation of its lexicon. For this reason, and because of
practical considerations, we will distinguish three levels of
analysis: speech units smaller than words (allophones), words,
and speech units larger than words (sentences).
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Besides the level of analysis, intelligibility cues can also be
separated depending on whether they can be found in the
speech signal (‘acoustic’ cues) or somewhere else. As an
example of the difference: the intelligibility of sentences (as
compared to the intelligibility of the individual words of
which they consist) is enhanced by means of intonation.
Intonation (or more generally, prosody) is present in the
speech signal, and can therefore be called an ‘acoustic’
intelligibility-enhancing factor. The semantic and syntactic
redundancy contained in a sentence also increases its
intelligibility relative to the individual words of which it
consists. However, these factors can not be traced back to the
speech signal; they improve intelligibility by aiding the
listener in his cognitive processing of the message.
Table 1 illustrates the distinction between acoustic and non-
acoustic intelligibility cues at the three defined levels of
analysis.

Table I. Levels of analysis in nonnative speech
communication

Examples of affected intelligibility
cues

Level of analysis

Acoustic Non-acoustic
Supra-word level
(sentence level)

Prosody Syntactic constraints
Semantic constraints

Word level Lexical
dissimilarity

Word familiarity

Sub-word level
(allophone level)

            Phoneme inventory

This distinction between acoustic and non-acoustic factors is
not helpful at the sub-word level. For the non-acoustic factors
at this level (such as the individual phoneme space
representation that a listener uses to categorize L2 allophones)
can hardly be tested without involving acoustic allophone
realizations.
Table 1 can be used to decide which characteristic of cross-
language speech intelligibility is the most appropriate in a
specific case, for instance phoneme recognition versus
sentence intelligibility. Only after deciding which is the most
appropriate characteristic can we design a proper experiment.
For example, one may wish to quantify the intelligibility of a
group of (nonnative) German actors, playing before an
audience of native English listeners, in the English language
(G>(E)>E).  The non-acoustic intelligibility cues do not
require special attention in this case, since only the talkers are
nonnative, and their vocabulary and sentence construction are
‘programmed’ by the play they are acting out. Hence, all
deviations from fully native communications can be found in
the speech signal. At the very least, one may expect that the
actors’ allophone realizations will deviate from native English
speech. A phoneme-based intelligibility test will be a suitable
choice to quantify this effect. However, this may not be the
most suitable intelligibility test. Unless the actors are
thoroughly trained by a native English director or language
coach, their intonation will also deviate from the authentic
English patterns. In that case, a (sentence-based) intelligibility
test that is sensitive to differences in prosody is a better
choice.
As another example, consider the reverse situation (the actors
are now English and the audience is German; E>(E)>G). Since
the German audience is now the only nonnative factor, the
speech signal is not at all affected. Still, the resulting speech

intelligibility may be reduced considerably; partly because the
nonnative listeners are not as good at identifying individual
speech sounds, but also for reasons related to vocabulary and
the less effective use of word context [11]. In this case, the
average L2 linguistic development of the German audience is
an important variable. Besides a speech intelligibility test
using sentences (to include the effects of word context), it may
be useful to include a separate test to quantify vocabulary and
context-effects separately.

3. Speech intelligibility assessment methods

3.1. Practical considerations

A pragmatic approach toward measuring nonnative speech
intelligibility is simply to adopt one of many proven
experimental methods designed for native speech. Inevitably,
some modifications to these proven methods will be
necessary, if only for practical reasons.
Several intelligibility test methods are based on one-syllable
nonsense words. These tests are generally quite efficient at
measuring speech intelligibility phoneme level. Subjects
participating in such tests must somehow communicate
perceived nonsense syllables in response to the auditory
stimuli. With L2 listeners, typing these responses should be
ruled out as an option. Differences in orthographic
representations of sounds between L1 and L2 will confuse the
subject. Even highly proficient subjects, who are aware of
differences in orthography between L1 and L2, are likely to
produce errors, especially when working under time pressure.
Collecting multiple-choice responses will partly solve this
problem, especially if no ‘confusing’ alternatives are
presented. In any case, proper subject instruction with regard
to this issue is vital.
Some additional complications surrounding experiments with
non-natives have to do with the recruiting of subjects. The
definition of the population from which to draw subjects is
much narrower than usual in speech intelligibility testing.
Accordingly, subjects will be harder to find. Experimental
methods can be designed or adapted to help cope with this
issue. Methods that require special sound-insulated rooms or
heavy equipment require subjects to travel to a certain
location. By adapting these methods so that they can be
implemented in a portable device (such as a notebook
computer) hard-to-reach subjects (unwilling to travel in order
to take part in a test) can be tested at remote locations.
The available time per subject may also be shortened. When
tests run over longer periods of time, a smaller percentage of
the population of potential subjects will be willing to
participate. By shortening the duration of the experiment (by
making tests more efficient, or by spreading the load over a
slightly larger number of subjects) the number of available
subjects may be increased.

3.2. Types of speech stimuli

Various types of speech stimuli are used in speech
intelligibility tests. Generally, the length of each single
stimulus determines which level of analysis (table I) is
addressed by the test method.
The most fitting speech stimuli corresponding to the different
levels indicated in table I would appear to be sentences,
words and phonemes. However, individual phonemes are hard
to test without the context of a word or syllable; hence the
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frequent use of nonsense syllables that was mentioned in the
previous section. The individual recognition of phonemes is
also difficult to test using meaningful words, since the word
context will be of some influence on the probability of correct
recognition.
Higher-then-word level effects are expected for most
thinkable cross-language conversations. In principle, sentence
intelligibility tests also include effects at lower (word and
phoneme) levels, since all sentences are constructed from
these smaller units of speech. If only one type of speech
stimuli can be chosen, it makes sense to choose sentences. On
the other hand, it should be noted that (nonsense) word tests
will be more sensitive to effects at lower levels of analysis.
When comparing native and nonnative talkers, specific
choices must be made before recording any speech stimuli.
Speaking rate and speaking style are likely to vary between
native and nonnative talkers. Nonnative talkers usually tend to
(consciously or unconsciously) compensate for the effects of
their accent on intelligibility by adjusting their speaking rate
or speaking style [6]. This is a legitimate effect, which can
also be observed in cross-language conversations in practice –
it is in some ways similar to the Lombard-effect, which lets
talkers automatically increase their vocal effort in the
presence of background noise. One may choose to include
this effect in the test, or force native and nonnative talkers
into similar speaking styles (by giving suitable instructions,
monitoring recordings, and pacing their speaking rate).

3.3. Multi-lingual test methods

One step further than nonnative speech intelligibility testing is
multi-lingual intelligibility testing. Multi-lingual tests can
involve either native or nonnative subjects, but must also be
implemented in multiple languages. Obtaining equivalent
implementations of the same test in various languages poses
an additional difficulty. True equivalence across languages is
hard to reach.
Whatever speech stimuli are used, these stimuli must
somehow be matched across languages. When working with
phoneme tests, the tested phonemes could be balanced to
represent the mean frequency of occurrence in the
corresponding language. Despite the fact that different
phoneme sets must be tested for each language, these are
equivalent in the sense that they represent a ‘natural’
distribution of phonemes for each languages.
When the test stimuli are isolated words, then on top of
phonetic balancing the frequency distribution of the test
vocabulary (measured frequencies of occurrence in
representative texts) should be controlled. Where available,
the appropriate information could be taken from (multi-
lingual) lexical databases.
When using sentences, the main things that should be
matched across sentences are the complexity of the sentences,
and the domain from which the sentences are taken. The
source of the sentences largely determines the domain
(newspaper, radio, everyday conversation, etc.), making this
variable relatively easy to control. The complexity can be
controlled by adopting certain constraints for the selection of
sentences; at least the length (number of syllables) of the
sentences, and the length of the individual words in the
sentences, should match pre-defined criteria.
When sentences are properly selected, phonetic balancing
becomes of lesser importance. Each sentence consists of a
certain mix of phonemes; when each condition is tested with

multiple sentences, there is a more or less implicit phonetic
balancing for the domain from which the sentences are taken.
An additional complicating factor when designing multi-
lingual tests is the fact that the relative importance of different
levels of analysis (table I) may vary between languages.
Phoneme identification may be more difficult in some
languages than others, simply because the number of existing
phonemes differs (eg. English vowels versus Spanish vowels).
Contextual information that is available in one language, for
instance by the use of case and word gender, may be absent in
other languages.
A pragmatic approach to the design of multi-lingual test is to
simply try out the implementations in different languages on
native subjects. If the native scores are the same across
languages, then it seems fair to assume that the method
performs equivalently.

3.4. Multi-lingual Speech Reception Threshold method

An example of a multi-lingual implementation of an existing
intelligibility test method is the multi-lingual Speech
Reception Threshold (SRT) method. The SRT method is
widely used as a diagnostic tool in the field of audiology [13],
and has been proven useful to evaluate speech intelligibility
of talkers, listeners, and communication systems.

3.4.1. Test procedure

The SRT test gives a robust measure for sentence
intelligibility in noise, corresponding to the speech-to-noise
ratio that gives 50% correct response of short redundant
sentences.  In the SRT testing procedure, masking noise is
added to test sentences in order to obtain speech at a known
speech-to-noise ratio. The masking noise spectrum is equal to
the long-term average spectrum of the test sentences. After
presentation of each sentence, the subject responds by orally
repeating the sentence to an experimenter. The experimenter
compares the response with the actual sentence. If every word
in the responded sentence is correct, the noise level for the
next sentence is increased by 2 dB; after an incorrect
response, the noise level is decreased by 2 dB. The first
sentence of a list of 13 sentences is repeated until it is
responded correctly, using 4 dB steps. This is done to quickly
converge to the 50% intelligibility threshold. By taking the
average speech-to-noise ratio over the last 10 sentences, the
50% sentence intelligibility threshold (SRT) is obtained.

3.4.2. Interpretation of SRT results

The score resulting from an SRT test (‘the SRT’ for the
corresponding condition) is a speech-to-noise ratio (SNR); at
this SNR, 50% of the sentences are repeated correctly by the
listeners. At better (higher) SNRs, more than 50% will be
intelligible, at more adverse (lower) SNRs, less than 50%. A
lower SRT means better intelligibility: more noise can be
allowed to reach 50% recognition of sentences.
The percentage of correctly recognized sentences is a
(psychometric) function of SNR, often modeled as a
cumulative normal distribution. The SRT is the adaptively
estimated mean of this distribution, which is the best single
parameter to characterize the whole curve. A logical second
parameter to estimate would be the variance of the
distribution, reflected by the slope of the psychometric curve.
To estimate this slope (or even the full psychometric curve),
one could use alternative testing paradigms using the same
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SRT sentences. The description of such methods is beyond the
scope of this paper.

3.4.3. Creating a multi-lingual version

The ‘original’ [13] Dutch SRT sentences describe common,
everyday situations in simple wording. Based on these
original sentences, the following constraints were defined for
‘translation’ of the sentence material:

• Sentence length 7-9 syllables
• No words longer than 3 syllables
• No more than one three-syllable word per sentence.
• Sentence content is of an everyday life nature
• Sentences of approximately equal redundancy (or

predictability, perplexity) as the original sentences

3.4.4. Software implementation

A computer program was developed for maintaining multi-
lingual databases of recorded SRT sentences and using these
in intelligibility tests. This program also features a module for
recording new material. In combination with a notebook
computer and a high-quality sound card, a small, flexible setup
is create which can be used to record and test talkers nonnative
and listeners at any location that is sufficiently silent.

3.4.5. Speech recordings

Traditionally, talkers used in SRT tests for audiological
purposes are trained professionals, speaking very clearly. The
SRT scores obtained with these recordings are hard to reach
for most ordinary talkers, especially under representative
conditions.
Multi-lingual SRT talkers are not selected according to a strict
regime, or following specific criteria. The talkers are simply
verified not to exhibit any speaking disorders, and instructed
to speak with a clear ‘reading voice’.  This makes it easier to
recruit talkers, and quickly build up speech databases.
To prevent large differences in speaking rate, the speaking rate
is paced by means of a ‘progress bar’. Talkers have to
pronounce each sentence within a 2.5-second timeframe,
which is visually indicated on the computer screen.

3.4.6. Applications of the multi-lingual SRT

It should be noted that the application of the SRT method
(and similar methods) to cross-language research is not new
(eg. [5,14]). What is new about our current multi-lingual SRT
implementation, is the effort to construct a coherent test in as
many languages as possible. At the moment this paper was
written, ‘translations’ of the sentences (text) were available in
at least 8 different languages; a multi-speaker test speech
database had been collected for at least 5 of these languages.
Sofar, the English, German and Dutch versions of the test
were succesfully used to quantify cross-language speech
intelligibility [6,11]. Apart from this, the English, French,
German and Dutch version were used with solely native
subjects (talkers and listeners) to measure the language
dependency of voice coding systems [15].

4. Examples of experimental data

4.1. Nonnative listeners

For a population of Dutch university students, cross-language
intelligibility-effects (in terms of SRT) were measured when
listening to English and German [11]. Almost all Dutch
university students have been taught English and German
during secondary education, German at a slightly later age
and for a shorter period than English. Also because of the
more frequent use of English (university classes, textbooks,
television and other media) the L2 proficiency tends to be
much higher in English than in German. Figure 1 shows
native and non-native SRT results related to this population.

Figure 1. Mean SRT scores and standard errors
measured for 9 Dutch university students when
listening to three languages (3 talkers per language,
N=27). (underlying data previously published, [11]).

The difference between the effects of  listening to English and
German is considerable; all differences in figure 1 are
statistically significant.  Despite the fact that the listeners
were selected to be highly proficient in English, the effect of
being nonnative listeners on the resulting intelligibility is
clearly noticeable.

4.2. Nonnative talkers

Similar results as presented in figure 1 can be obtained for
nonnative talkers. In that case, the population of listeners
consists of ‘average natives’, and the talkers are recruited to
match a certain desired profile.
Figure 2 shows results of in experiment aimed at measuring
the effect of perceived foreign accent on intelligibility. For
this experiment, 15 talkers were recruited who could all speak
Dutch, differing in degree of foreign accent. These talkers
were from 5 language backgrounds: Dutch, English, German,
Polish and Chinese.
To measure the ‘degree of perceived accent’, a pairwise
comparison experiment was conducted with native Dutch
listeners. From this experiment, subjective foreign accent
ratings were calculated. The relation between SRT scores and
these ratings are shown in figure 2.
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Figure 2. Relation between subjective accent ratings
(N=39) and SRT scores (10 native listeners for each
data point). R2=0.68. Data previously presented [6].

Following from the correlation in figure 2, 68% of the
variance in SRT scores could be explained by the perceived
accent ratings.

4.3. Multi-lingual comparison

For some goals, multi-lingual speech intelligibility tests are
useful even when no cross-language factors are directly
involved. For example, to measure the language dependency
of vocoders, one needs to test (native) speech intelligibility in
a number of languages. The performance of a multi-lingual
test should be closely matched across languages, otherwise
the language dependency of the tested vocoders will be
confounded with the language dependency of the test method
[15]. The easiest way to verify if the results are sufficiently
closely matched across languages, is by measuring the same
(relatively undistorted) conditions in several languages.
Results of such an experiment are shown in table II.

Table II. Mean native SRT scores and standard errors for
four languages (3 talkers per language, 10 listeners). All
speech was bandwidth limited (50-4000 Hz).

SRT English French German Dutch
mean 0.7 dB 1.0 dB 0.3 dB 0.4 dB
S.E. (N=10) 0.4 dB 0.8 dB 0.4 dB 0.5 dB

The results are closely matched (also note the magnitude of
the effects shown in figures 1 and 2). None of the differences
between languages are statistically significant.

5. Discussion and conclusion
The pragmatic model of cross-language speech
communication presented in this paper was used to select the
multi-lingual SRT method as a suitable tool for measuring
nonnative speech intelligibility. As the examples in section 4
show, the method is effective in collecting quantitative data
for nonnative talkers as well as listeners. The coherent
performance across-languages makes the method suitable for
various multi-lingual applications.
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Abstract
Giving feedback on the degree of nativeness of a student’s
speech is an important aspect of computer-aided language learn-
ing. This task has been addressed by many studies focusing
on the segmental assessment of the speech signal. To better
model human nativeness scores, other aspects of speech should
also be considered, such as prosody. This study examines the
use of prosodic information to evaluate the degree of nativeness
of student pronunciation, independent of the text. Supervised
strategies based on human grades are used in an attempt to se-
lect promising features for this task. Previous results obtained
with non-native speakers showed improvements in the correla-
tion between human and automatic scores. New strategies were
evaluated with tests including native and non-native speakers.
Specific features based on durations, namely for intra-sentence
pauses, revealed potential use for further improvements.

1. Introduction
The aim of this work is to examine the use of prosodic informa-
tion in evaluating the degree of nativeness of pronunciation for
a text-independent task. This task has been addressed by many
studies focusing on the segmental assessment of the speech sig-
nal [1, 2, 3, 4]. Recently, several studies have used supraseg-
mental speech information for computer-assisted foreign lan-
guage learning (e.g. [5]). The present work’s contribution is to
attempt to select promising features, using a supervised selec-
tion strategy based on human scores of nativeness. While we
expect prosody to carry information about the degree of native-
ness of both sentences and individual words, in this study we
concentrate on effects at the word level. Our methodology was
based on three steps:

1. Feature extraction. Durational and melodic information
was obtained from each sentence in the form of

� Time alignments, obtained with SRI’s DECI-
PHER

���
hidden Markov model (HMM) based

speech recognition system [6]� Stylized pitch contours, from a model of dynamic
prosodic information [7]

Potentially useful and meaningful features were derived
from this information and combined with lexical infor-
mation.

2. Prosodic modeling. Decision trees were used to produce
the automatic nativeness scores. These trees were gen-
erated using the same procedures and parameters as in
previous studies [1]

3. Combination with other knowledge sources. The
prosodic features used in this work were combined with
previously computed scores of the degree of nativeness
— based on spectral match and timing information [2] —
in order to achieve higher correlations with scores given
by human listeners.

Preliminary results with non-native speakers have shown
improvements in the correlation between human and automatic
scores [8]. These results are now augmented with test sets that
include native speakers to provide a wider range of scores as
well as a richer database for the calibration of nativeness scores.

2. Speech data and scoring

The corpus contained nearly a hundred adult native Japanese
speakers. The set of speakers was fairly balanced on the ba-
sis of gender and English pronunciation abilities, which ranged
from beginning to advanced. Each speaker read 145 sentences
taken from a pool of 12,000 different English sentences. These
included sentences from news broadcasts, literature, children’s
literature, and simple sentences written expressly for this use. In
addition, a subset of the Wall Street Journal (WSJ) speech cor-
pus was selected. This allowed our system to score the higher
degree of nativeness for native speakers. The training part of
this subset was also used to normalize some of the features from
both native and non-native corpora.

2.1. Human scoring

Each utterance from the non-native speech corpus was graded
by seven native American English speakers. The ratings were
on a scale from 1 to 5, where a rating of 5 indicated very good
pronunciation, and a rating of 1 indicated that the utterance had
a strong foreign accent. The average correlation between the
raters was computed to be 0.8 [1]. The median of the ratings
from all raters was found for each utterance. A score of 6 was
assigned to the utterances selected from the WSJ (native speak-
ers). These values were used as the reference human scores and
served as the inputs for the supervised classification approach
used in this study.

2.2. Output of machine scores

Decision trees provide scores that can be evaluated by differ-
ent measures of performance [3]. When the goal is to find a
discrete score, as was asked of the human listeners, the highest
posterior probability overall possible discrete scores (�
	 ) given

Paper presented at the RTO IST Workshop on “Multilingual Speech and Language Processing”,
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the machine score�� can be used:
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where G is the number of distinct grades.
A continuous score can also be derived. According to the

minimum error criterion the optimal score is given by
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2.3. Evaluation of machine scores

Two measures of performance were used on both discrete and
continuous scores: the correlation and the error between the
human and the automatic scores. This error is the average of the
absolute value of the differences between the two scores. It is
presented here as a percentage of the maximum error (difference
between the highest and the lowest score of the scale used by the
human listeners, i.e., 5).

3. Feature extraction
Many of the features are averages of measurements taken over
the time. The remainder resulted from events that were uniquely
defined in each utterance, such as the maximum or minimum of
a feature. Gender was the only feature assumed to be known
and the only one clearly based on specific speaker character-
istics. Most of the features proposed are based on durations,
normalized by the rate of speech (ROS) [4], which was itself
used as a feature. The phone durations used were further nor-
malized by the average phone durations estimated from a native
English corpus (WSJ).

To define features related to prosody, we estimated a time
instant for the primary stress in each word. These instants were
then used as references for providing text-independent infor-
mation. Three definitions of the time of primary stress were
computed:

� The center of the longest vowel within each word, ac-
cording to segmental forced alignments

� The center of the vowel carrying primary lexical stress
� The instant of time of maximum F0 excursion within

each word, the nearest vowel to this instant was taken
to be the primary stressed vowel

Using each of these definitions we computed three features
that we refer to as theword stressfeatures: duration of the as-
sumed primary stressed vowel, duration between the center of
this vowel and the center of the next vowel within the word, and
duration between the center of the assumed primary stressed
vowel and the center of the previous vowel within the same
word.

3.1. Features derived from forced alignments

The following features are average durations, computed only
with the information provided by the Viterbi forced alignments.
We used averages of the duration of intra-sentence pauses, time
between these pauses, and duration of words, vowels, and time
between the centers of vowels. A subset of the WSJ corpus was
used to compute the average native duration for each vowel in
the phone inventory. The duration of each vowel in the utterance
was normalized by the corresponding native average and used

as a feature. Within each word the longest vowel was found and
the word stress features were computed.

The lexical primary stressed vowel of each word was lo-
cated in the forced alignments. Using this vowel, the word stress
features and the duration to the next lexically stressed vowel (in
a following word) were computed. This last feature represents
an approach to estimating rhythm. The average time difference
between the maximum F0 excursion and the longest vowel in
the word completed this set of lexical features. These features
were averaged over all words containing lexical primary stress
in the utterance.

3.2. Features based on the pitch signal

The maximum F0 excursion within the utterance was taken as a
feature [8]. The maximum and the minimum values for the pitch
slope were found within each utterance and used as features.
Based on pitch slope, each frame was also categorized as un-
voiced, rising, or falling. Using these categories as a stream of
symbols, a bigram was estimated for each utterance. The corre-
sponding relative frequencies of transitions between categories
were used as features. The number of rising frames before the
maximum F0 excursion, and the number of falling frames after
this instant, were both used as features. The number of changes
in slope per frame was considered another feature attempting to
capture the pitch variation.

We also computed the average duration of rising regions
and the fraction of time these occupied within the utterance.
The maximum duration of consecutive rises was computed as
well as the increase in pitch inside this rising region. Similar
features were computed for the falling frames. The ratio of the
number of pitch rises to the number of pitch falls was also com-
puted.

3.3. Features based on alignments and pitch information

Combining the information contained in the forced aligned tran-
scriptions with the pitch information enables us to find the in-
stant of maximum F0 excursion within each word and to mea-
sure time between this instant and other speech events found in
the alignments. These measurements were then averaged for
all the words in the utterance. This set of features included
the value of the maximum F0 excursion, the time between the
maximum F0 excursion and the center of the nearest vowel, the
time between the maximum F0 excursion and the center of the
longest vowel in the word, and the word stress features con-
sidering the maximum F0 excursion as the location of primary
stress.

3.4. Features from unique events

Most of the features previously described are averages of events
that can occur several times in the utterance. These kinds of fea-
tures are more reliable for a text-independent approach; how-
ever, some unique events can convey important information
about the degree of nativeness of an utterance. Three types
of events were considered: two longest within-sentence pauses,
two longest words, and two longest vowels within the utterance.
The durations of each of these were taken to be features. For the
two longest words we also measured the word stress features as-
sociated with the three different methods for defining the instant
of primary stress.
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4. Results and discussion
Previous experiments [8] performed with non-native speakers
were repeated, including the subset of the native WSJ corpus.
A few of the results from these experiments are represented in
Table 1. These experiments aim to distinguish the performance
of features based on segmental information (o2) from perfor-
mance obtained just with the pitch signal (q2). We considered
as segmental information (o2) the three base features (posterior,
duration, and ROS scores, as proposed and evaluated in [1]) to-
gether with all the new features that do not use pitch or lexical
stress information. In (p2) lexical-stress-based features were
combined with segmental features (o2). The last experiment
includes all the features described in this paper (r2).

discrete scores continuous scor.
Features corr. error corr. error

(n2) 3 base features 0.732 14.3 0.763 14.6
(o2) segmental 0.743 13.5 0.767 14.3
(p2) + lexical 0.733 13.7 0.762 14.4
(q2) suprasegmental 0.272 23.6 0.321 22.3
(r2) all the above 0.728 14.0 0.763 14.5

Table 1: Correlation and error (%) between human and ma-
chine scores obtained with a corpus including both native and
non-native speakers.

The use of the segmental features (o2) provided the best
result. The improvements found in correlation, relative to the
features used in previous studies (n2), are 1.5% for the dis-
crete scores (3.4% with the non-native corpus) and only 0.5%
for continuous scores (1.4% for only non-natives). As before,
combining lexical primary stress information did not improve
performance (p2). The use of all our suprasegmental features
(q2) provides little information about the degree of nativeness.
Finally, combining these features with segmental features (r2)
did not lead to an improvement over using only the segmental
features (o2). The results presented in Table 1 confirm previous
conclusions [8]. In the following experiments we decided to
follow a data-driven method for selecting a good set of features,
instead of comparing results from categorical sets of features
(e.g., segmental versus suprasegmental).

A first approach was based on the selection of the most suc-
cessful single features in terms of continuous correlation. ROS
(g2), duration (j2) and posterior (k2) scores, and average dura-
tion between intra-sentence pauses (t) have presented a contin-
uous correlation higher than> = ? . These results are in Table 2.
As in previous studies the posterior scores (k2) proved to be the
more effective for the present task.

discrete scores continuous scor.
Features corr. error corr. error

(g2) ROS 0.371 23.3 0.440 21.3
(j2) duration 0.445 21.0 0.511 20.2
(k2) posterior 0.700 15.8 0.730 15.6
(t) between pauses 0.407 20.7 0.427 22.2
(u) all the above 0.731 14.3 0.763 14.7

Table 2:First feature selection approach. Correlation and error
(%) between human and machine scores obtained with a corpus
including both native and non-native speakers.

The average duration between intra-sentence pauses (t)
alone produces results comparable to previously derived fea-

tures ROS and duration. The histograms for each of the given
scores, of the values measured for this feature, are represented
in Figure 1. It is clear from this figure that natives seldom speak
continuously during a period as short as 50 to 100 ms, while
non-natives do it more often as their degree of nativeness de-
creases. On the other hand, natives seems to be more confi-
dent about talking without any recognized pause during periods
longer than 300 ms, while non-natives hardly do it for more than
250 ms.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Average duration between intra−sentence pauses

Figure 1: Histograms of the average duration between intra-
sentence pauses. Each histogram represents a single score
value: @A�CBEDGFH�JIKDMLN�POQD/RS� ? D0TU�JVQD0WX�ZY (na-
tive). The horizontal axis is in number of frames.

Combining the single features, presenting continuous cor-
relation higher than> = ? (u), provides a result comparable to the
use of all the features available (r2). However, this result does
not show an improvement over previous studies (n2) and is not
as good as the one obtained by using all the derived features
based on segmentals (o2).

Table 3 represents some results obtained while following
our second approach for achieving better scores while identify-
ing additional relevant features. This approach makes use of the
three base features in association with each one of the new fea-
tures proposed in [8]. The results presented were selected from
the experiments that have shown a continuous correlation of at
least > = [ Y\V . The additional features used in these experiments
were the average duration between lexically primary stressed
vowels (v), average duration between the center of the longest
vowel within the word and the center of the lexically primary
stressed vowel (w), maximum pitch slope within the utterance
(x), duration of the longest intra-sentence pause (y), duration
of the second-longest intra-sentence pause (yy), longest word
duration within the sentence (z), and relative frequency of the
rising pitch frame followed by a falling pitch frame (zz).

The use of the longest intra-sentence pause (y) gives us an
increase in the discrete and continuous correlation score of 2.5%
and 0.7%, respectively, when compared with the use of the base
features (n2). When compared with our previous best result
(o2), these scores are only 0.9% and 0.1% better. However, the
discrete correlation score of> = [ V is still the best ever found in
this study. It is interesting to notice the small improvements
found in experiments (x) and (zz), since the added features are
based exclusively in the pitch information.
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discrete scores continuous scor.
Features corr. error corr. error

(n2) base features + 0.732 14.3 0.763 14.6
(v) btw lex stress& 0.740 13.7 0.766 14.2
(w) & max vow 0.730 14.3 0.767 14.4
(x) max F0 slope 0.730 14.2 0.765 14.5
(y) 1st max pause 0.750 13.6 0.768 14.3
(yy) 2nd max pause 0.739 14.1 0.766 14.5
(z) 1stmax word 0.736 14.2 0.767 14.4
(zz) F0 rise+fall 0.735 14.2 0.766 14.5

Table 3: Second feature selection approach. Correlation and
error (%) between human and machine scores obtained with a
corpus including both native and non-native speakers.

Extending the principle of the first approach, allowing more
than four features to be used together, we selected all features
that, when used alone, provided a continuous correlation value
higher than> = B�> (aa),> = IE> (ab), and> = IEV (ac) values. The more
relevant results obtained for this third approach are in Table 4.

With this approach, the best continuous correlation was
achieved in experiment (ab) where the selected features were:
posterior and duration scores, ROS, average duration between
intra-sentence pauses, duration of longest intra-sentence pause,
duration of second-longest intra-sentence pause, second-longest
word duration within the sentence, average duration between
the center of the longest vowel within the word and the cen-
ter of the lexically primary stressed vowel, maximum duration
speech segment within which all frames had falling pitch, and
relative frequency of a rising pitch frame followed by an un-
voiced frame.

Features discrete scores continuous scor.
cont. corr. ] corr. error corr. error

(aa) 0.10 0.747 13.6 0.765 14.4
(ab) 0.20 0.740 13.7 0.769 14.3
(ac) 0.25 0.726 14.2 0.763 14.5

Table 4:Third feature selection approach. Correlation and er-
ror (%) between human and machine scores obtained with a
corpus including both native and non-native speakers.

In the fourth approach, extending the principles of the sec-
ond and third approaches, we selected all features that, as a re-
sult from the second approach, provided a continuous correla-
tion value higher than> = [ Y\O (ad) and> = [ YGV (ae) values. The
higher correlation scores obtained are in Table 5. The sec-
ond approach gave us good results, using only four features
in each experiment. In the fourth approach we combined the
features that provided the best results obtained with the second
approach. However, this approach did not lead to a better per-
formance than the second approach. On the contrary, the results
are even slightly worse.

Features discrete scores continuous scor.
cont. corr. ] corr. error corr. error

(ad) 0.763 0.736 13.7 0.765 14.2
(ae) 0.765 0.735 13.6 0.764 14.3

Table 5: Fourth feature selection approach. Correlation and
error (%) between human and machine scores obtained with a
corpus including both native and non-native speakers.

In an earlier study [8], experiments made exclusively with
non-native speakers did not lead to any improvement when pitch
information was used in addition to the remaining proposed
segmental features. This was also basically found in the ex-
periments described in this paper, which also included a set of
native speakers, apart from results (x) and (zz) in Table 3. On
the other hand, improvements may be obtained from adding fur-
ther specific features derived from the forced alignments. Some
features based on durations — namely intra-sentence pauses —
revealed potential use for improvements. We expect to continue
this work in different directions. Future steps will include ex-
periments investigating the performance of these features in dis-
criminating between native and non-native speakers and further
feature analysis and alternative supervised classification tech-
niques.
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Abstract
In this study, we focus on the problem of making a tran-
sition from the accent-dependent to accent-independent
speech recognition technology in telephone communica-
tion devices. Previous studies showed that the multi-
transitional model architecture is one of the solutions for
robust speech recognition. In this paper, we investigate
many universal hybrid systems that are trained with data
recorded through Australian, American, and British ac-
cented speech for English language. This new universal
system uses less than double the number of parameters as
in individual system (American or Australian or British
acoustic models) and significantly reduces the model pa-
rameters without affecting the performance when com-
pared with multiple classifiers or multi-transitional mod-
els. We compare the performance of universal hybrid
system on several independent connected-digit telephone
test databases and demonstrate the effectiveness of hy-
brid architectures with data taken from all three regional
accented speech.

1. Introduction
In recent years there has been an increased interest in ap-
proaches to speech and pattern processing that go beyond
the conventional hidden Markov model (HMM) frame-
work [4]. This has been motivated by limitations of cur-
rent systems both in their error performance and by the
fact that current statistical modling assumptions are in-
consistent with that of natural speech signals [7]. It has
been observed that current models are fragile in noise and
are limited in their ability to handle pronunciation varia-
tions [14]. Speech recognition under accent variations
is a challenging problem for which there are no com-
pletely satisfactory solutions [1]. This problem is cru-
cial for the development of successful real-time multilin-
gual applications in promising domains such as accent-
independent speech recognition [17]. The speech for a
particular language is rapidly changing depending on the
regional accents [12]. Speech recognition suffers from
significant performance deterioration when they are op-
erated in mismatched accent conditions [2]. Collecting
data in an accent-dependent environment is a key factor
to understanding and solving accent problems [6].

Dialect also plays an important part in the overall
degradation, resulting in different pronunciations for the
same word [9, 20]. There are many ways to reduce the ac-
cent and dialect variations within a given language [21].
A typical approach is to integrate an accent classifier
followed by a corresponding accent-specific recognizer
[13]. Many systems can get 100% correct accent classi-
fication when tested on training data, but can get an av-
erage of 81% on the 10 sec test utterance [1, 10, 21]. It
has been demonstrated in previous research efforts, that
the multi-HMMs and multi-transitional architectures are
many of the proposed solutions for robust recognition
[16]. The idea is to provide more variability to the sys-
tem to be trained, and to support this variability with the
greatest number of parameters. The main drawback of
utilizing the currently available systems is that the model
size, and the computational complexity increases linearly
related to different accents [5].

In this work, we propose several hybrid architectures
that are trained with pooled data from American, Aus-
tralian, and British accented speech. Experimental re-
sults on connected-digit recognition task show an aver-
age string error rate reduction of about 62% and 8% when
compared to our best monolingual and multi-transitional
systems respectively. The result indicates that the univer-
sal model is about three times faster and half time smaller
than the multi-transitional or multilingual models and this
makes it an ideal choice for practical accent-independent
speech recognition applications.

2. Speech Database

This section describes the database, LL US, used in this
study [19]. This database is a good challenge for speech
recognizers because of its diversity. It is a compilation
of databases collected during several independent data
collection efforts, field trials, and live service deploy-
ments. The LL US database contains the English dig-
its one through nine, zero and oh. It ranges in scope
from one where talkers read prepared lists of digit strings
to one where the customers actually use an recognition
system to access information about their credit card ac-
counts. The data were collected over network channels
using a variety of telephone handsets. Digit string lengths
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Data Training Testing
Strings Speakers Strings Speakers

LL AU 5298 800 848 200
LL UK 2561 700 505 300
LL US 7461 5234 2023 2512
Total 15320 6734 3376 3012

Table 1: Regional distributions of spoken digit strings
and the speaker population among the training and testing
sets of LL AU, LL UK, and LL US databases.

range from 1 to 16 digits. The LL US database is di-
vided into two sets: training and testing. The training
set includes both read and spontaneous digit input from
a variety of network channels, microphones and dialect
regions. The testing set is designed to have data strings
from both matched and mismatched environmental con-
ditions. All recordings in the training and testing set
are valid digit strings, totaling 7461 and 2023 strings for
training and testing, respectively. Only the 10, 14 and 16
digit strings were selected for testing.

The LL UK consists of SpeechDat (M) database
available through the European Language Resource As-
sociation [22]. This database was collected over the U.K.
landline telephone network. Recordings were done us-
ing an ISDN telephone interface, yielding 8 KHz, 8-bit
samples A-law coded signals. Each corpus contains the
speech of 1000 speakers (about 500 male and 500 fe-
male). Most items are read, some are spontaneously spo-
ken. Speech material is conveniently split into two dis-
joint sets, a training one and a testing one. The LL UK
database contains the third pronounciation for zero as
nought, and multiple related word such as double. The
training database consists of digit string lengths range
from 1 to 16 digits that were spoken by 700 speakers (350
male and 350 female) for a total of 2561 valid strings.
The testing database has 300 speakers (107 male and 193
female) and only the valid digit strings were selected for
a total of 505 strings. Only the digit strings with length
of 4, 10, 11 and 16 were chosen for testing.

The LL AU consists of SpeechDat (II) database that
was collected over the Australian landline telephone net-
work [23]. This corpus contains the speech of 1000
speakers from all over the world. The training database
consists of digit string lengths range from 1 to 16 dig-
its that were spoken by 800 speakers for a total of 5298
valid strings. The testing database has 200 speakers and
only the digit strings of length 5, 6, 10 and 16 were se-
lected for a total of 848 strings. The LL AU database
contains the compact word triple in addition to LL UK
vocabulary. None of the speakers in the testing database
appeared in the training databases. The data distribution
of the training and testing set is shown in Table 1 for all
three databases.

3. Robust HMM Architectures

When the accent of a particular language is unknown, the
important mismatch between training data and signal en-
countered in recognition phase decreases drastically the
performances of the recognition systems [17]. In this
section, the HMM architecture of many different system
configuration is discussed with great detail to reduce the
accent and dialect variations within English language.

The recognizer feature set consists of 39 features that
includes the 12 liftered linear predictive cepstral coeffi-
cients, log-energies, their first and second order deriva-
tives. The energy feature is batch normalized during
training and testing. Each feature vector is passed to
the recognizer which models each word in the vocabu-
lary by a set of left-to-right continuous mixture density
HMM using context-dependent head-body-tail models.
In this study, we model all possible inter-word coartic-
ulation and each model is represented with 3 or 4 states,
each having multiples of 4 mixture components. Silence
is modeled with a single state model having 32 mixture
components [19].

Training included updating all the parameters of the
model, namely, means, variances and mixture gains us-
ing one iteration of K-means based maximum likelihood
training procedure followed by six epochs of MSE train-
ing to further refine the estimate of the parameters [15].
Each training utterance is signal conditioned by applying
batch-mode cepstral mean subtraction prior to being used
in MSE training [5]. The number of competing string
models was set to four, the step length was set to one
and the length of the input digit strings is assumed to be
unknown during the model training and a known-length
grammar is used during testing. Penalties based on dura-
tion distributions are also applied to the likelihood score.

3.1. Baseline Acoustic Models

Three monolingual context-dependent head-body-tail
digit models for American (US), Australian (AU) and
British (UK) English accents were trained using data
from the corresponding accent. Notice that the US model
has 276 HMMs, the UK model has 304 HMMs and the
AU model has 307 HMMs. The UK model has additional
28 context-dependent HMMs for the words double and
nought. The AU model has three more HMMs for the
word triple with silence contexts.

3.2. Multiple Acoustic Models

One of the multiple classifiers approach is employing
three accent-dependent speech recognizers to decode the
given input speech as shown in Fig. 1. The best candi-
date with a top likelihood score is chosen from the out-
put of three parallel recognizers. We indicate this model
as MULTI LGL and is effective but rather expensive be-
cause the computation requirement is tripled [5]. Instead
of picking the candidate with the best score, one can
also pick the best hypothesis based on lower average-arc-
count. We represent this model as MULTI ARC. Notice
that the MULTI LGL and MULTI ARC use the baseline
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Figure 1: A block diagram of a MULTI LGL parallel
speech recognition system.

models for their decoding process.
For the purpose of comparison, multi-transitional

(MULTI PRN) and multi-grammar (MULTI GRM)
models were also created separately. Note that the
multi-transition models were constructed by combining
all the three monolingual models such that the decoder
picks up the best model for a given utterence from an
unknown accent source. The MULTI PRN can use
mix-and-match of digit models during recognition of
a given digit string. For example, in a three-digit long
string, the first digit can be derived from AU model, the
second digit can be evolved from UK model, and the
third digit can be generated from US model as shown in
Fig. 2. We call this model as multiple pronunciation,
since each digit has three different pronunciation or
accent variability [3]. The multi-grammar model can
follow only one optimized path out of the three possible
combinations during recognition as illustrated in Fig.
3. The main difference between MULTI GRM and
MULTI LGL is that the MULTI LGL takes the matched
silence model during the complete decoding path where
as the MULTI GRM sprinkles three different silence
models whenever necessary in order to get an optimal
decoding path. The MULTI GRM model configuration
seems to be more attractive than the other types of
multiple classifiers due to its inherent flexibility.

3.3. Universal Acoustic Models

The multiple classifier approach can be cumbersome and
will be difficult to handle more accent-specific utterances
due to increased model complexity. This motivates the
need for simple accent-independent universal hybrid sys-
tem. This system uses a single decoder for British, Aus-
tralian and American English digits, and is capable of
recognizing digits with words from all accents as exem-
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Figure 2: State diagram for the three-digit known-length
grammar for MULTI PRN.
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Figure 3: State diagram for the three-digit known-length
grammar for MULTI GRM.
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Figure 4: Block diagram of the HMM-based speech rec-
ognizer using universal modeling approach.

plified in Fig. 4. The acoustic models are trained us-
ing a pooled data recorded through Australian, Ameri-
can, British accented speech for English language and
we name this model as UNIV 1. This training method is
very similar to multi-conditional training, the whole sys-
tem is trained using all available data, as reported in [11].
A negative side effect of this shared data is the increased
possibility of confusion among words from three accents.
This is overcome by doubling the Gaussian densities per
state for the head and tails of a context-dependent head-
body-tail topology. This newly expanded UNIV 2 topol-
ogy is able to more adequately model the accent varia-
tions with increased set of HMM parameters [18].

4. Experimental Results

We have conducted experiments to compare the perfor-
mance of universal hybrid system on several independent
test databases and to demonstrate the effectiveness of a
hybrid built with data taken from all three regional ac-
cented speech. The Table 2 through 4 presents the string
accuracy and average-arc counts for three different mono-
lingual models using all the three test datasets. When
the LL AU data is tested on a US system, the arc-count
increases tremendously to a point where the recognizer
is overloaded with unnecessary log-likelihood computa-
tions and arc-expansions, which result in a longer de-
lay in reporting the recognized string. This is true to
some extent that the US models look more fuzzier when
tested on mismatched LL AU data and hence the average-
arc-count gets incremented and slow down the decoding
speed. Similarly when the LL US data is tested using AU

Data LL AU
Model String Accuracy Arc Count
AU 90.2% 16791
UK 75.4% 20453
US 46.2% 21701
MULTI PRN 90.3% 81750
MULTI LGL 89.9% 58945
MULTI ARC 87.2% 58945
MULTI GRM 89.6% 34957
UNIV 1 88.3% 19127
UNIV 2 90.1% 20717

Table 2: String accuracy and arc-count for a known-
length connected-digit recognition task using landline
Australian English (LL AU) data as a function of various
model type.

Data LL UK
Model String Accuracy Arc Count
AU 81.2% 17160
UK 90.5% 16107
US 62.4% 18230
MULTI PRN 89.5% 67885
MULTI LGL 90.3% 51497
MULTI ARC 86.2% 51497
MULTI GRM 90.1% 30226
UNIV 1 89.3% 17634
UNIV 2 90.3% 18257

Table 3: String accuracy and arc-count for a known-
length connected-digit recognition task using landline
British English (LL UK) data as a function of various
model type.
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Data LL US
Model String Accuracy Arc Count
AU 53.6% 30079
UK 64.5% 31094
US 93.6% 19675
MULTI PRN 91.5% 88257
MULTI LGL 90.3% 80848
MULTI ARC 90.7% 80848
MULTI GRM 93.1% 35683
UNIV 1 92.5% 23458
UNIV 2 93.1% 23818

Table 4: String accuracy and arc-count for a known-
length connected-digit recognition task using landline
American English (LL US) data as a function of various
model type.

model the arc count increases due to mismatched test-
ing data. The same observation can also be made for
British accented data and the correponding UK model.
The monolingual model runs faster and gives the best
string accuracy when tested on the matched data. No-
tice that the less number of arcs relates to less compu-
tational complexity. The mismatch between AU model
and LL UK data is minimal when compared to AU model
tested on US data. This shows that the Australian and
UK English accents are more correlated than that of US
accented speech. We can clearly see the mismatch in
performance between the three different regional accents.
Further test results using multiple classifiers and univer-
sal hybrid models are tabulated in Table 2 through 4 for
LL UK, LL AU and LL US databases.

Table 5 shows the average string accuracy, model size
and average arc counts for nine different models. The
US system yields the worst and gets about 67.4% and the
AU system yields about 75.0% of string accuracy. The
UK model is the best among the monolingual system and
provides about 76.8% of string accuracy with little more
average arc counts than those of US and AU models.
MULTI system is better than the AU, UK and US models
but inferior to the UNIV system. MULTI ARC is bet-
ter than that of individual models, yielding about 88.3%
string accuracy, but the arc-count and model size are al-
most tripled. MULTI PRN and MULTI LGL are pretty
much providing the same performance and string accu-
racy of 2% better than that of MULTI ARC model archi-
tecture. This result confirms that by intelligently incor-
porating the measure between maximum likelihood score
and minimum arc-count, one can achieve a a reasonably
good accent-independent classifier with improved real-
time processing. The MULTI GRM gives 90.9% string
accuracy with less number of arc-counts than those of
other multiple classifiers. The MULTI GRM decoding
arc-count is almost halved by restricting a constraint in
the grammar during recognition as shown in Fig. 3.
Among the four different multiple HMM architectures,
the MULTI GRM configuration yielded the best with less
number of arc counts and high string accuracy. We finally

Model Model String Average
Type Size Accuracy Arc Count
AU 1.54MB 75.0% 21343
UK 1.50MB 76.8% 22551
US 1.36MB 67.4% 19869
MULTI PRN 4.40MB 90.4% 79297
MULTI LGL 4.40MB 90.2% 63763
MULTI ARC 4.40MB 88.3% 63763
MULTI GRM 4.40MB 90.9% 33622
UNIV 1 2.60MB 90.1% 20073
UNIV 2 2.60MB 91.2% 20931

Table 5: Model size, average string accuracy and arc-
counts across LL AU, LL UK and LL US databases as
a function of model type.

observed that the multiple pronunciation for individual
words in the lexicon may not be the right choice in accel-
erating the system robustness due to accent variations.

Overall UNIV 2 outperforms all the other models
and yields about 73%, 65%, 62% and 8% in string er-
ror rate reductions when compared to the US, AU, UK
and MULTI PRN systems respectively. UNIV 2 exhibits
consistent improvements on every LL AU, LL UK and
LL US databases. Furthermore, the string accuracies are
in the low 90% in all three databases and this suggests
that the universal acoustic models can be used for real
telephony applications. The average arc count is three
times less than the multiple system and comparable with
those of the best monolingual systems. Also the model
size is twice that of the AU, UK and US models but half
the size of multiple system. From the table, it is clear that
the UNIV 2 model significantly outperforms the other
systems in most cases, as expected. To conclude, the
UNIV 2 system provides an efficient way of modeling
accent variations from the three languages by using a sin-
gle Viterbi decoder. It is encouraging that our goal of
designing a single global system for all three languages
(Australian, American and British English) is achieved
by using the universal hybrid system, and the test re-
sults have demonstrated the efficacy of enhanced hybrid
system. For the sake of comparison, we also built the
UNIV 1 model with the same size as that of an individial
system. The test results are shown in the eighth column
of Tables 2-5. We further observe that the UNIV 1 is still
better than that of the individual systems, and comparable
in performance with multiple classifiers. If the engineer-
ing and economics of power, and size constrained speech
processing system in adverse accent environments is the
ultimate embedded system, then the UNIV 1 or UNIV 2
universal model methodology is the best choice for suc-
cessful speech-enabled applications.

5. Conclusions

In this paper, we proposed a framework to address the
problem of speech recognition through regional accents
for English language. We described several acoustic
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modeling techniques to improving the recognizer per-
formance for applications that require mixed-mode ac-
cents, and the performance of every system is compared
based on various aspects of real-time measures. Univer-
sal hybrid modeling system has been proposed and inves-
tigated in this paper by intelligently combining data from
many different accented speech. The experimental results
showed that the universal model in conjunction with suit-
able model topology to represent the extraneous speech
accents not only provide good recognition accuracy but
also yield faster response with reduced model size. The
major benefit of using an universal hybrid system for a
particular language is that there is no need to know about
the prior knowledge concerning the nature of the speaker
accent that exist in the modern telephone network. In
the future experiments, we will apply this universal tech-
nique for other languages such as Mandarin (Mainland,
Taiwan, HongKong and Singapore chinese accents) [8].
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Abstract

The paper presents the results of experiments where the influ-
ence of adaptation of multilingual triphone speech recogniser
in a crosslingual speech recognition was investigated for two
different types of multilingual triphone acoustic models. The
first type of multilingual triphone acoustic models represents
the triphone models generated with the agglomerative cluster-
ing technique and the second one represents the triphone mod-
els generated with use of the tree-based clustering algorithm.
The agglomerative clustering algorithm is based on a definition
of distance measure for triphones defined as a weighted sum
of explicit estimates of the context similarity on a monophone
level. The monophone similarity estimation method is based on
the algorithm of Houtgast. The second set of acoustic models
was generated using the phonetic decision tree procedure with
common set of broad phonetic classes. The crosslingual speech
recognition experiments were performed using the multilingual
recogniser trained on the Slovenian, Spanish and German 1000
FDB SpeechDat(II) databases for the recognition of the utter-
ances from the Norwegian 1000 FDB SpeechDat(II) database.
The mapping of Norwegian phonemes was done with the IPA
scheme where five different Norwegian recognition vocabular-
ies were generated. Adaptation of multilingual triphone models
was performed on 400 Norwegian utterances. The adaptation
significantly improved the recognition results. The best adapted
system achieved the recognition accuracy very close to the orig-
inal – Norwegian – recogniser.

1. Introduction
The speech technology is becoming more and more present in
everyday live and is often referred to as one of the key aspects
in future development of the technology in various areas. Al-
though the English language is nowadays Lingua Franca, mul-
tilingual speech recognition systems are often essential when
bringing the speech technology into practice for a wide range
of users; for example, when an information retrieval systems
are deployed in a multilingual environment. Such systems are
expected to support many different languages and it often oc-
curs that for some of the languages there is little or no speech
technology resources at all. Since creating the complete speech
database for particular language is usually very time consum-
ing and expensive procedure, the crosslingual transfer of speech
technology presents the attractive alternative.

This paper describes the experiments that were carried out
to investigate the problem of crosslingual transfer of speech
technology. It presents the progress of our work in the area

of multilingual speech recognition [1, 2, 3]. The goal of the re-
search was to evaluate the advantages of the multilingual speech
recognisers based on triphones when porting the recogniser to
a new language. The term multilingual speech recogniser de-
notes the recogniser that was trained using a multilingual speech
databases. Previous experiments have indicated [1, 2] that mul-
tilingual triphone based recognisers can be efficient when deal-
ing with the unknown languages – languages with little or no
speech technology resources.

It is possible to port the existing speech recogniser to a new
language without any previous knowledge of the new language.
However, some information of the new language is welcome in
order to provide the satisfactory recognition accuracy - at least
the phonetic dictionary and small amount of additional training
sentences [4].

The phonetic dictionary can be generated with grapheme
to phoneme rules. There are different ways how to map the
phonemes from new language to existing phonemes of multi-
lingual speech recogniser. The mapping can be done follow-
ing the IPA scheme [5], using a data-driven approach or with
a combination of both approaches. Different mapping methods
were used in experiments reported by other authors: in [6, 7]
the mapping was created with the use of IPA scheme, while the
data-driven approach was used in [8]. In our experiments the
IPA scheme was applied, due to the specifics of the clustering
procedure used.

Previous reports [4, 7] have shown that the performance of
the multilingual speech recognition system recognizing a new
language significantly improves after the adaptation. This is
true even if adaptation of the multilingual speech recognition
system was based on a very small amount of speech material of
new language. Adaptation of the multilingual speech recogni-
tion system to the new language can be performed with the use
of many different methods. The simplest ones are with the use
of the Baum - Welch parameters estimation [9] or with the Max-
imum Likelihood Linear Regression [9]. We decided to choose
the Baum -Welch algorithm, due to the specifics of the baseline
recogniser training procedure.

All our crosslingual experiments are based on the Speech-
Dat(II) telephone databases [10]. During the experiments two
multilingual recognisers based on two different multilingual tri-
phone sets were created. The first multilingual recogniser was
based on an agglomerative triphone clustering technique [1]
and the second one on a tree-based triphone clustering [11].
For the crosslingual experiments the phonemes from recogni-
tion vocabulary of the new language were mapped to existing
phonemes of the multilingual models and then the adaptation

Paper presented at the RTO IST Workshop on “Multilingual Speech and Language Processing”,
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to the new language was carried out. The crosslingual tests of
both unadapted and adapted configurations with mapped recog-
nition vocabulary were performed on both agglomerative and
tree-based multilingual speech recognition systems.

The paper is organized as follows. Both clustering proce-
dures and distance measures are presented in Section 2. The
databases used are described in Section 3. The experimental
systems are presented in Section 4. The crosslingual phoneme
mapping and the adaptation technique are described in Section 5
and the results for unadapted and adapted system are presented
in Section 6. The conclusion is made in Section 7.

2. Triphone Clustering procedures and
distance measures

Two different sets of context dependent multilingual models
were used during the crosslingual speech recognition experi-
ments. The first multilingual system is built using the agglom-
erative (bottom-up) clustering approach [1] and the second one
with the phonetic tree-based clustering (top-down) approach
[2, 11].

2.1. Agglomerative clustering

The basic idea behind the generation of agglomerative multilin-
gual triphone models proposed in [1] is that the similarity be-
tween two different triphones ��� -��+�

�
� and ��� -��+�

�
� can

be estimated by measuring the similarity of the left phoneme
��, central phoneme � and right phoneme ��:

������
�
� -��+�

�
� � �

�
� -��+�

�
� � �

��� ���
�
� � �

�
� � ��� ����� ����

��� ���
�
� � �

�
� �� (1)

where � denotes the similarity between two phonemes, ��,
�� and �� are the weights for setting the influence of each
phoneme-level similarity estimates, and ������

�
� -��+�

�
� �

��� -��+�
�
� � is the resulting similarity estimation of both tri-

phones.
The similarity of two triphones in (1) can be based on

any phoneme distance measure. We have decided to apply the
phoneme distance measure suggested in [12], which is based on
a monophone confusion matrix:

����� ��� �
�

�

��

	��

� ����� �	� � ���� � �	�

������� �	�� ���� � �	�� �

���� ��� � � � � � �� � � � � � �� �� (2)

where ����� ��� denotes the similarity of two phonemes ��
and �� , N is the number of phonemes, ����� �	� is the num-
ber of confusions between phoneme �� and phoneme �	. The
phoneme �� should not be the same as �� .

When porting the multilingual speech recogniser to new
language many unseen triphones may be expected (an example
is given in Table 3) as a result of differences in the phonotactics
of different languages. During the adaptation to new language
the number of unseen triphones can additionally increase since
the adaptation dictionary is mapped into phonemes from exist-
ing languages. The characteristic of the distance measure de-
fined in equation (2) is, that it can also handle unseen triphones.

Each new unseen triphone is compared to all existing triphones
using the described distance measure. When the most similar
existing triphone with the highest similarity is found, the un-
seen triphone is tied to this one.

To improve the convergence of the clustering algorithm, a
list of polyphones [13] is defined (in our case a list of 14 poly-
phones was created). These polyphones are used in the clus-
tering procedure. If an average distance among all triphones
from the group is less than a predefined threshold 	 , the group
is equated. The average distance between 
 triphones is calcu-
lated as:

�
� 	
� �

��

���

��

���
�
�
��
��

����

���
�

(3)

�
��
�� � 	
 � � � �� � � � � � �� ��

where 
� denotes the triphone ��� -��+�
�
� and 
� denotes the

triphone ��� -��+�
�
� , 	
 is the group of triphones and �
� 	
�

is the average distance among all triphones from the group 	
.
The result of the clustering algorithm is a list of triphones

from all languages that can be tied together. Some triphones
that are not similar enough in the sense of equation (3) remain
untied.

2.2. Tree-based clustering

The second set of multilingual triphone models that was used in
the adaptation experiments is based on a top - down clustering
technique. The phonetic decision tree algorithm, as suggested
by [11], was used. Each phoneme from all languages used for
multilingual speech recognition belongs to different phonetic
category (broad class). Similar or equal broad classes from dif-
ferent languages are merged together in one common multilin-
gual broad class. Due to their language specifics, some broad
classes are not merged into common category and remain inde-
pendent. To successfully differentiate between equal phonemes
in different languages, each phoneme is tagged with specific
language mark. The additional questions [6] about language
were not added to the decision tree in our case.

The questions needed for tree building are generated from
broad classes. One binary tree is built for each state of the
phoneme. The questions are placed in nodes of the tree. At
the beginning, all states are placed in the root node of the tree
in one cluster. The node is then split into two, by finding the
question, which gives the maximum increase of log likelihood
for the particular training data set. When the increase is smaller
than the threshold, the splitting is stopped.

3. Databases
At the moment, one of the most convenient databases for multi-
lingual speech recognition experiments is the series of Speech-
Dat [10] databases. These databases provide a realistic mul-
tilingual environment for development of voice driven teleser-
vices. Characteristics and recording conditions of all databases
were equal, which is crucial in case of crosslingual and mul-
tilingual speech recognition experiments. At the moment 25
different SpeechDat(II) databases are available. In our multilin-
gual speech recognition system, the following databases were
employed:

� Slovenian (SL) 1000 FDB SpeechDat(II),

� German (DE) 1000 FDB SpeechDat(II),

8-2



� Spanish (ES) 1000 FDB SpeechDat(II),

� Norwegian (NO) 1000 FDB SpeechDat(II).

Each database consists of recordings of 1000 speakers over
fixed telephone network. Each speaker is represented with ap-
proximately 10 minutes of speech. The training part of each
database consists of 800 speakers and the remaining 200 speak-
ers were used for test.

Table 1: The number of training and test utterances, phonemes
and size of recognition vocabulary for all used SpeechDat(II)
databases.

Lang. Train.ut. Test.ut. Phon. Rec.voc.

SL 20658 748 49 605
DE 21463 674 48 674
ES 19164 681 31 681
NO 20346 784 45 792

Due to unsuitableness for training, the following recordings
were excluded from the training set of multilingual triphones:

� mispronunciations,

� incomplete utterances,

� unintelligible speech,

� truncated speech.

As seen in Table 1 more than 20.000 sentences from each
database were used in training part of experiments described in
this paper. In all experiments the W1-W4 corpuses [10], con-
taining phonetically balanced isolated words, were applied dur-
ing the test. With use of this test corpus, the representation of
all phonemes was assured, which is crucial for clustering pro-
cedure. Moreover, such tests corpuses do not require use of lan-
guage models. Test data for each language are also presented in
Table 1.

4. Experimental systems
The recognisers applied for crosslingual speech recognition
were generated with the use of the script refrec0.9 developed
in the framework of the ”SpeechDat task force” within COST
2491 project [14, 15]. During the COST 249 project, differ-
ent scripts for evaluation of SpeechDat(II) databases in mono-
lingual speech recognition environment were developed. The
COST 249 project is continued in the new COST 278 project.
The perl script refrec0.9 is created on the base of the HTK
toolkit [9] and is an extended version of the tutorial example
in the HTK Book.

To achieve more robust performance of the system with
telephone speech, a different feature extraction frontend mod-
ule than in the refrec09 script was applied. The acoustic feature
vector consisted of 24 mel-scaled cepstral, 12 � - cepstral, 12
�� - cepstral, high pass filtered energy, � - energy and ��
- energy coefficients. The procedure of maximum likelihood
channel adaptation [16] was carried out on feature vectors. The
number of elements in the feature vector was reduced to 24 with
the use of linear discriminant analysis [16]. With the use of this
feature extraction module, the recognition rate was significantly
increased.

1COST 249 - Continuous Speech Recognition over the Telephone,
http://www.elis.rug.ac.be:80/ELISgroups/speech/cost249/

First the monolingual speech recognisers were developed.
The 3 state left-right hidden Markov model (HMM) topology
was employed for acoustic modeling. The triphone models were
built and the number of Gaussian mixtures per state was sequen-
tially increased to 32.

Table 2: Monolingual recognition results for Slovenian (SL),
German (DE), Spanish (ES) and Norwegian (NO) language
with monolingual triphone models.

Language Recognition rate (%)

SL 88.25
DE 92.51
ES 93.91
NO 78.32

The results of monolingual speech recognition with mono-
lingual systems for all 4 languages are presented in Table 2.
The Norwegian monolingual speech recognition system serves
as a reference system in our crosslingual adaptation test. The
Norwegian monolingual reference system achieved a recogni-
tion rate of 78.32%. The COST249 Norwegian system [14]
with standard HTK mel cepstral frontend and a bigger vocab-
ulary achieved a recognition rate of 65.27% on the same test
set. The Norwegian monolingual reference recognition rate is
smaller than monolingual recognition rate for other three lan-
guages, as was already noticed in [15, 14]. The probable cause
is the length and the number of words in the recognition vocab-
ulary. The size of recognition vocabularies is presented in Table
1.

With the Slovenian, German and Spanish database two
multilingual set of triphone models were designed - one for
each clustering procedure described in Section 2. The optimal
threshold values [2] for both clustering procedures of multilin-
gual triphone models were derived experimentally. With regard
to different mapping procedures of Norwegian phonemes to ex-
isting phonemes in all three languages (see Section 5.1), the
crosslingual speech recognition of Norwegian language with-
out adaptation was first performed. These results, presented in
Section 6, served as a reference results for the adaptation exper-
iment. In the next step, the adaptation of multilingual triphone
models to Norwegian language on small amount of training ma-
terial was performed. The test of these adapted models under
the same conditions as the unadapted ones was performed.

5. Crosslingual transfer
5.1. Phoneme mapping

For the crosslingual speech recognition the same test set was
applied as for the Norwegian reference system. All Norwegian
phonemes were mapped to other languages with the use of the
IPA scheme. Each Norwegian phoneme was mapped to the IPA
symbol of equivalent phoneme in other languages. If the equiv-
alent phoneme did not exist in the target language, the most
similar one was chosen (according to IPA notation). The most
problematic was the conversion of Norwegian diphthongs. Also
problematic was the mapping of Norwegian vowels to Span-
ish vowels, because the Norwegian language has 18 vowels and
Spanish only 5. The mapping resulted in 5 different recognition
vocabularies:

� Norwegian to German (ND),

� Norwegian to Spanish (NE),
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� Norwegian to Slovenian (NS),

� Norwegian to Multilingual (NM),

� Norwegian to Parallel (NP).

In the case of NM vocabulary Norwegian phonemes were
mapped to the optimal phoneme in any of the three target lan-
guages. With this procedure the rules of phonotactic were tres-
passed. In the Norwegian to Parallel (NP) mapping each word
in vocabulary has three pronunciation variants: in Slovenian, in
German and in Spanish. This way, the vocabulary size was 3
time larger and the data choose the optimal mapping.

As was already found in [3] the crosslingual recognition
with Norwegian to Slovenian (NS) mapping without the new
reestimation of triphone parameters on Norwegian language,
performed worse. Several other mapping possibilities of Nor-
wegian to Slovenian language were tested afterwards, but there
was no improvement of the results for NS mapping.

As can be seen in Table 3 for the German language in the
case of test, from 2214 triphones 30.67% are missing. As seen
in Table 3, the worst case for adaptation and test is the NM
vocabulary, where 63.95% and 63.58% of triphones are miss-
ing. In the agglomerative system unseen triphones were tied
to existing ones with the use of a distance measure and in the
tree-based system with the use of a phonetic decision tree. We
can see from Table 3, that the German language, which belongs
to the same Germanic language group as Norwegian, ought to
be the most similar language. The Slovenian, which belongs to
Slavic group and the Spanish, which belongs to Romanic group
are less similar to Norwegian.

5.2. Adaptation of multilingual triphone models

The adaptation of multilingual triphone models to Norwegian
language was performed with few iterations of Baum - Welch
algorithm. Only the mean values and the mixture weights of
Gaussian distributions in multilingual triphone models were
reestimated. There were 400 Norwegian randomly selected sen-
tences from W1-W4 training set used in the adaptation proce-
dure. Collecting such amount of training data does not repre-
sent much effort and can be carried out in a minimum time.
Only 8.00% of words from the adaptation set overlapped with
the same words spoken by different speaker in the test set.

6. Speech recognition results
The first set of tests with Norwegian speech recognition was
done on both versions of unadapted multilingual triphone mod-
els in crosslingual mode. The test results for all five differ-
ent configurations of recognition vocabulary mapping with un-
adapted multilingual triphone models are presented in Table
4. The unadapted tree-based clustering multilingual triphone
models outperform the unadapted agglomerative multilingual
triphone models. The difference in recognition rate between
both versions of unadapted multilingual triphone models is ap-
proximately 10%. From all single language mapping vocabu-
laries (ND, NE, NS) that were used for Norwegian crosslingual
speech recognition, the German mapping vocabulary performed
best in both unadapted systems. With unadapted tree-based tri-
phone models it achieved 43.62% recognition rate and 34.06%
with unadapted agglomerative triphone models. This result was
anticipated due to experience from mapping.

The mapping of the Norwegian recognition vocabulary to
Spanish achieved a recognition rate of 34.57% with unadapted

Table 4: Recognition rate for crosslingual speech recognition
with both unadapted multilingual triphone systems and five vo-
cabulary mapping configurations.

Map.config Un. Agglomer. (%) Un. Tree-based (%)

ND 34.06 43.62
NE 19.13 34.57
NS 1.91 1.28
NM 25.65 32.53
NP 33.42 45.03

tree-based multilingual models and 19.13% with unadapted ag-
glomerative multilingual models. The lower result for the Span-
ish mapping was also expected because of the low number of
Spanish phonemes, especially the vowels. It is known that vow-
els are very important for speech recognition. As was already
mentioned, several different versions of IPA mapping from Nor-
wegian to Slovenian (NS) were tested in crosslingual recogni-
tion without adaptation. No improvement in comparison to re-
sults in [3] was achieved. There are two possibilities, which
could explain this result. The first and the more probable expla-
nation would be, that Norwegian and Slovenian belongs to too
different language groups, to be suitable for crosslingual trans-
fer without adaptation. The second possible explanation is, that
IPA charts are not very suitable for such mapping and that some
data-driven method of mapping would be more successful.

In the case of the multilingual vocabulary NM, each tri-
phone can consists of phonemes from different languages. The
distance of such unseen agglomerative triphones to existing
ones is in average smaller than for other cases of mapping,
which shows that similarity between unseen and existing ag-
glomerative multilingual triphones is also smaller. The un-
adapted NM models achieves recognition rates similar to the
unadapted NE system. This is probably due to the trespass-
ing of phonotactic rules. The best mapping configuration in the
unadapted tree-based case was when all three mapping possi-
bilities for each word were in the vocabulary (NP). In this case
the data choose the best pronunciation variant. The unadapted
system achieved a recognition rate of 45.03% with unadapted
tree-based multilingual triphone models.

The second set of tests was done on adapted multilingual
triphone models, with the same versions of mapped recognition
vocabularies as in the case of unadapted models. The results
of these tests are presented in Table 5. The performance of all
adapted systems was significantly improved.

Table 5: Recognition rate for adapted crosslingual speech
recognition with both multilingual triphone systems and five vo-
cabulary mapping configurations.

Map.config Ad. Agglomer. (%) Ad. Tree-based (%)

ND 48.34 63.52
NE 37.88 55.23
NS 22.96 43.37
NM 27.68 64.80
NPa –.– –.–

aAt the time of writing this paper, the tests with adapted multilingual
triphone models and NP mapping were not completed yet. However,
according to the previous (unadapted) results, very good performance
is anticipated.
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Table 3: Number of all mapped triphones and the percentage of missing triphones in tree-based multilingual triphone models for all
five adaptation and testing mapping configurations.

Language Adapt. Map. Tri. Adapt. Miss. Tri. Test Map. Tri. Test Miss. Tri. (%)

ND 1417 28.93 2214 30.67
NE 1130 29.82 1606 32.50
NS 1349 29.50 2085 44.41
NM 1473 63.95 2331 63.58
NP 3896 29.39 5905 36.02

As can be seen from Tables 4 and 5, the performance of all
systems after the adaptation has significantly improved. With
and without the adaptation, the tree-based triphone models out-
perform the agglomerative triphone models. In the case of
adapted agglomerative triphone models, the best mapping con-
figuration is still the ND. The recognition rate increased from
34.06% to 48.34%. When NE mapping was used with adapted
agglomerative models, the results improved from 19.13% to
37.88%. The improvement for NS adapted agglomerative mod-
els is from 1.91% to 22.96%. The smallest improvement
achieved was in the case of NM mapping, from 25.65% to
27.68%. Additional experiments will be performed in the fu-
ture to clarify the small improvement of the NM mapping.

It is worth of noting that after the adaptation, the adapted
tree-based triphone models with NM mapping (increase from
32.53% to 64.80%) outperformed the ND mapping (increase
from 43.62% to 63.52%), despite the trespassing of phonotactic
rules in NM mapping. Also a large increase in recognition rate
from 1.28% to 43.37 % for NS mapping was achieved. The
result probably confirms the hypothesis, that Norwegian and
Slovenian language are too dissimilar, to be used in crosslin-
gual speech recognition transfer without the adaptation. The
best adapted system (Table 5) with tree based multilingual tri-
phone models and NM mapping vocabulary achieved the recog-
nition rate of 64.80%2, which is very close to the performance
of the reference Norwegian system (Table 2).

The Table 6 contains the analysis of results for Norwegian
to Parallel mapping for unadapted version of multilingual tri-
phone models. The percentage of selected language pronun-
ciation variants from the parallel recognition vocabulary was
calculated. Then the percentage was calculated, how many of
these selected variants per language were correct. The percent-
age of selected variants for agglomerative and tree-based mul-
tilingual triphone models are almost identical, but the percent-
age of correct variants is lower in the case of the agglomerative
multilingual triphone models. As can be seen, the highest part
of the selected variants, with the highest correct rate, belongs
to German pronunciation variant for both cases of multilingual
triphone models. The recognition rate of unadapted tree based
multilingual models with NS mapping was only 1.28%, but in
the case of NP mapping with the same models, 27,27% of se-
lected Slovenian pronunciation variants were correct for tree-
based multilingual triphone models. But it must be also taken
into account, that the number of selected Slovenian variants is
very small, which supports the hypothesis that Norwegian and
Slovenian language are very dissimilar.

2Completion of the tests with adapted multilingual triphone models
and NP mapping is expected to yield even higher recognition rates.

Table 6: Analysis of NP recognition results for both versions of
multilingual triphone models.

Agg. (%) TB (%)
Lang. select correct select correct

DE 71.81 36.94 71.68 48.75
ES 26.91 25.12 26.91 36.02
SL 1.28 10.00 1.41 27.27

7. Conclusion
In the paper the crosslingual adaptation of agglomerative and
tree based triphone models to Norwegian language was investi-
gated. The best adapted system with tree based multilingual tri-
phone models and NM recognition vocabulary came very close
to the original Norwegian reference system. This indicates that
crosslingual transfer of speech technology based on multilin-
gual triphone modeling might be a promising approach when
dealing with unknown languages.

However, the best type of multilingual triphone modeling
still needs to be determined. So far the tree-based multilingual
triphone models were found to be the most efficient for porting a
recogniser to a new languages. The agglomerative multilingual
models that performed best in the case of multilingual speech
recognition experiments [2] did not prove that well in the case
of crosslingual experiments – exact reasons for this still needs
to be determined.

All crosslingual experiments were based on the phoneme
mapping with IPA charts. Such mapping did not perform
well in the case of monophone multilingual models, but has
performed very good in the case of the multilingual triphone
models. Perhaps this is the result of the NP mapping, where
unlike the previous experiments with the monophone models,
various mapping hypotheses were suggested and the data
was left to choose the optimal mapping. The experiments
have yielded promising results but is to early to draw any
general conclusions. Only four languages were used during the
described tests therefore the scale of experiments (the number
of languages) needs to be augmented. Next, other mapping
techniques for unadapted crosslingual transfer should be
investigated. As indicated during the experiments, the results
are likely to depend on the language groups that the languages
involved in the experiment belongs to. In future, experiments
should be also carried out for the languages within the same
language group and than extended across all language groups
to eventually build the ”global” set of triphone models.
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Abstract

This paper presents recent experiments on multilingual Text-
To-Phoneme (ML-TTP) mapping for speaker independent name
dialing using the low complexity ML-TTP method first intro-
duced at EuroSpeech 2001. The ML-TTP method avoids the
use of a Language IDentification (LID) module and produces
phoneme transcriptions for different languages using the same
model. Through an extensive comparison on an 11 language
name dialing task it is illustrated that the ML-TTP method yields
a similar performance to that of a baseline LID/TTP method,
but at a significant saving in model size and real-time decoding
complexity.

1. Introduction
Speaker independent speech recognition systems based on mul-
tilingual phoneme models have recently attracted significant in-
terest [6, 7, 10]. These systems are designed to handle sev-
eral different languages simultaneously and are based on the
observation that many phonemes are shared among different
languages [6, 7, 10]. The basic idea in multilingual acoustic
modeling is to estimate the parameters of a particular phoneme
model using speech data from a number of different languages
that include this phoneme. Sharing of phoneme models across
languages can significantly reduce the number of free parame-
ters in the system and thereby the memory requirements com-
pared to using separate phoneme models for each language. It
has been observed that for many languages sharing a common
phoneme set, good performance can be obtained using a mul-
tilingual recognizer designed from a only few representative
languages. This alleviates the need for large acoustic speech
databases for all languages to be supported. Such multilin-
gual recognizers are very attractive for e.g. name dialing and
command word recognition applications on world wide portable
products with limited computational resources.

In speaker independent name dialing applications for mo-
bile terminals the user is allowed to change the active vocabu-
lary online. That is, the user can add, delete, or modify names
in the phonebook located on the device, thereby changing the
active vocabulary. For such applications, a method for tran-
scribing the written words into phonetic transcriptions on-the-
fly is needed. For a monolingual system this is fairly straightfor-
ward, by using a language dependent Text-To-Phoneme (TTP)
model for mapping grapheme (letter) sequences into phoneme
sequences. Typical approaches for TTP mapping include dictio-
nary lookup tables, rules, and statistical mapping methods like
decision trees [4] and neural networks [5, 9]. For multi-lingual
speech recognition applications, the task of transcribing a vo-
cabulary word using a language dependent TTP model is com-
plicated by the fact that the language of the vocabulary words

may not be known a priori. Thus, explicit information about
the language of the word must be available. If this informa-
tion is not available, a statistical method for Language IDen-
tification from text (LID) can be applied. Viable approaches
for language identification are decision trees, N-grams [3] and
neural networks. These methods are all very accurate if a suffi-
cient amount of text is available. However, for applications like
name dialing, it may be very difficult to assign a language tag to
a particular name as the amount of text is very limited. In fact,
a unique language tag may not always exist as a name may have
the same orthographic form in several languages even though it
is pronounced quite differently.

In [7], a novel low complexity approach denoted multi-
lingual TTP (ML-TTP) mapping for generating pronunciations
from written text on-the-fly was introduced for a system com-
prising four different languages. The main advantage of the
ML-TTP approach is that no LID module is needed as a single
TTP model handles the phoneme mappings for all languages.
As similar mappings in different languages are only represented
once in the ML-TTP module it will typically also be somewhat
less memory consuming than the approach based on a LID mod-
ule and multiple language dependent TTP models. For portable
devices with limited computational and memory resources, a
reduced memory requirement is particularly attractive.

In this paper we report the results of an extensive compari-
son between the ML-TTP method and the method based on LID
and language dependent TTP. The comparison is conducted on
a speaker independent name dialing task using a multilingual
recognizer supporting 11 different European languages.

2. Language Dependent TTP Models
As mentioned above, the TTP mappings in a multilingual sys-
tem can be handled by a combination of a LID module and a set
of language dependent TTP models. This section describes the
LID and TTP modules used in this work.

2.1. Language Identification

The LID module is a statistical model based on a neural net-
work classifier. In a set of initial experiments the neural net-
work classifier was found to yield a superior LID classification
performance compared to both decision trees and N-grams. Fur-
thermore, the neural network LID model makes a good compro-
mise between complexity and performance. The network archi-
tecture is a standard multi-layer perceptron (MLP) with softmax
normalized outputs [1]. Each output unit (class) corresponds to
a language and with the softmax normalization the outputs will
approximate class posterior probabilities.

The language of a given word or word sequence is esti-
mated by processing one letter at a time and then combining

Paper presented at the RTO IST Workshop on “Multilingual Speech and Language Processing”,
held in Aalborg, Denmark, 8 September 2001, and published in RTO-MP-066.
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the results, producing a list of the most probable languages. In
order to include letter context within the word, the input to the
network is a window of letters with the focus letter placed in
the center. This window is then slid across the word, placing
each letter of the word in the center of the window. Each let-
ter of the input window is encoded using an orthogonal binary
vector in order to avoid false correlations between letters, see
[5, 9] for details. The LID classifier gives an estimate of the
posterior probability that the focus letter belongs to each of the
languages supported by the model. However, for LID classifi-
cation we need a score indicating to which language the entire
word belongs. One method, the voting method, is to simply find
the most probable language at each window position and then
select the language that wins for most letters. Another method
is based on a confidence score, which for a word � with ortho-
graphic form

���������	����
�
�
��
�	� � is defined by:

����� ����� � ��� ��������� � �
� � ���

�
� ��� �����

��
� � �! 

�"� � � � (1)

In Equation 1,
� �

is the confidence score for language # , $
is the number of languages modeled by the LID network, and

 �
� � � � is the #�%	& output of the neural network when letter
� � is

placed in the center of the input window. The winning language
is then simply selected as the one which gives the largest con-
fidence score. The confidence score can be used to create an
N-best list by ranking the languages according to their confi-
dence scores. In a set of initial experiments this method was
found to provide better classification accuracy than the voting
method described above.

When a LID N-best list is used together with language de-
pendent TTP models, one transcription is simply included for
each language in the N-best list. This increases the vocabu-
lary size and thereby the real-time decoding complexity, but it
also improves the recognition performance. The increase in de-
coding complexity can be reduced somewhat by organizing the
phoneme transcriptions in a tree structure where similar initial
phoneme transcriptions are only decoded once. Furthermore,
the confidence score in Equation 1 can be used to reduce the
N-best list by only including transcriptions for those languages
in the N-best list that has a confidence score larger than some
predefined threshold.

2.2. Pronunciation Rules

For many languages the TTP mapping can be performed with
high accuracy using a set of pronunciation rules. For such lan-
guages, the pronunciation rules used in this paper define simple
textual substitutions between grapheme and phoneme segments.
If more than one rule is applicable the mapping corresponding
to the rule with the longest grapheme segment is used. The rule
sets were found to be very compact and accurate for many lan-
guages including e.g. Finnish and Italian.

For some languages like e.g. Spanish, the rule sets grow
quite large so even though they are accurate, a neural network
TTP model was found to be more compact while still providing
a similar mapping accuracy.

2.3. Neural Network Based TTP Models

For non-rule based languages like e.g. English and German a
standard MLP was used. The neural network TTP model has
been found to provide a good compromise between complexity
and mapping accuracy [5].
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Figure 1: Pronunciation of name “Peter” in German (p-e:-
t-6), English (p-i:-t-@) and Spanish (p-i-t-e-r) arranged as a
branched grammar. The values on the arcs between phonemes
indicate probabilities of the phonemes as provided by e.g. the
TTP module. SAMPA notation is used for phonemes.

Like the LID module, the language dependent neural net-
work TTP model is a standard MLP with softmax normalized
outputs. For the TTP model, each output unit (class) corre-
sponds to a phoneme. The input data for the model is similar to
that of the LID model: a letter window is slid across the word
producing an output vector for each letter in the word. That is,
for each letter we get a probability estimate that this letter (and
context) corresponds to each of the phonemes defined in the
model. The phonetic transcription of the word is obtained by
selecting the phoneme having the highest probability for each
letter.

A neural network model produces exactly one output (vec-
tor) for each input (vector). Thus, for neural network TTP mod-
els the number of phonemes must equal the number of letters in
the corresponding word. However, in many cases the phonetic
transcription is shorter than the word. This problem is solved by
introducing an “empty” phoneme denoted a null phoneme. The
null phonemes are inserted into the training data by an align-
ment algorithm as described in [2]. When language dependent
transcriptions are generated by the neural network model all
null phonemes are simply removed.

In a few cases the phoneme transcriptions are longer than
the corresponding words. In these cases the alignment is done
by the use of pseudo phonemes. A pseudo phoneme is a con-
catenation of two phonemes which is then regarded as an indi-
vidual phoneme and added to the phoneme set. When language
dependent transcriptions are generated the pseudo phonemes
are expanded to their corresponding regular phonemes.

3. Multilingual TTP Mapping
The concept of a branched grammar in combination with TTP
mapping was first introduced in [7] as a way of avoiding the
LID module and instead generating a single multilingual pho-
netic transcription. The idea of the branched grammar method
is to allow the transcription of a word to contain more than
one possible phoneme at any given position. Figure 1 shows
a branched grammar transcription for the name Peter for the
three languages English, German, and Spanish. The two let-
ters ‘p’ and ‘t’ transcribe into the ‘p’ and ‘t’ phonemes for all
three languages. The vowels, on the contrary, have three dif-
ferent possibilities and therefore three branches. This way we
have three different pronunciations incorporated into one single
transcription. If the ML-TTP model provides phoneme proba-
bility estimates, a score can be assigned to each of the different
branches. This score can be used as a transition weight during
decoding.

When the branched transcription is decoded for a given ut-
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Figure 2: Recognition time model for the word “Laura” show-
ing how the acoustic phoneme models are connected in the case
of a branched grammar with null phonemes in the branches.
SAMPA notation is used for the phonemes.

terance, a branch with the best match to the utterance will give
the highest contribution to the decoding score. If the name “Pe-
ter” is pronounced in German for the example in Figure 1, the
upper branch for phoneme position two and the lower branch
for phoneme position four will make the major contribution to
the final decoding score.

Probability estimates produced by the ML-TTP model can
also be used to select the number of phonemes for a branch.
This is done by introducing a probability threshold so that only
phonemes with a probability larger than the threshold will be
included in a branch. If no phonemes have a probability higher
than the threshold only the most probable one is included.

In this work the ML-TTP modeling is handled by a standard
MLP neural network similar to the language dependent TTP
networks. The only differences are that a multilingual phoneme
set is used as output classes, and that the network is trained
using transcriptions from several languages.

For the non-branched case, like e.g. the language specific
TTP, null phonemes in the output transcription are deleted. How-
ever, in the branched case the null phonemes are a bit more com-
plicated to handle. If we have a null phoneme in a branch, the
recognition time model will have paths going into the branch
but also paths completely skipping the branch. If there are sev-
eral successive branches with null phonemes, this potentially
means that a large number of phonemes in the transcription can
be skipped. This may increase confusion between entries in the
vocabulary causing the recognition rate to drop significantly. In
other words, the temporal constraints which are needed to dis-
criminate the entries of the vocabulary may become too relaxed.

Several approaches to alleviate the null phoneme problem
in the branches have been attempted with limited success: e.g.
to simply delete the null phonemes, to delete the null phonemes
and phonemes having a lower probability, to skip the whole
branch if the null phoneme has the highest probability, etc. The
best performance was achieved by including all null phonemes
in the branches and forcing the paths in the recognition time
model to skip no more than one phoneme position. This is il-
lustrated in Figure 2 where the recognition time model for the
word “Laura” is shown. The arrows represent all different paths
through the model and the small circles are non-emitting glue
states. The two glue states, a and b, represent null phonemes in
the two branches. From the initial phoneme ‘l’ three paths go to
phoneme ‘O:’, ‘A’, and glue state a. From glue state a, two paths
go to phoneme ‘U’ and ‘aU’ but no path to the null phoneme
in the next branch represented by glue state b. By excluding
the path from glue state a to b we force the path through glue
state a to only skip the first branch. That is, no paths through
the model can skip both the first branch [A, O:] and the second
branch [U, aU].

Language ������� Language �������
Czech 3 950 Italian 5 754
Dutch 5 034 Polish 4 614
English 5 038 Spanish 5 283
Finnish 3 600 Swedish 7 440
German 7 979 Turkish 2 922
Hungarian 7 470 All 59 084

Table 1: Name dialing datasets for 11 European languages used
for evaluating multilingual recognizer system performance for
various TTP methods. The test set for each language is based on
a 120 word vocabulary of names (90 full names, 10 given names
and 20 foreign names). � ����� is the number of test utterances

4. Experimental Setup
In this work the ML-TTP method was compared to a method
employing a LID module in combination with language de-
pendent TTP modules. The comparison was conducted on a
speaker independent name dialing task on the 11 different Euro-
pean languages listed in Table 1. A multilingual mono-phoneme
based recognizer supporting all 11 languages simultaneously
was used for all experiments.

For testing the overall system recognition rate a Nokia in-
house test set for each of the 11 languages listed in Table 1 was
used. The test set for each language is based on a 120 word
vocabulary of names (90 full names, 10 given names and 20
foreign names).

Details about architecture and training of the multilingual
recognizer, the TTP and the LID models are given below.

4.1. Multilingual acoustic module

The acoustic models in the multilingual recognizer were de-
signed using speech data from four languages only: Finnish,
German, English (US and UK), and Spanish. For these four
languages the total number of mono-phonemes is 133 corre-
sponding to 39 phonemes for English, 28 for Spanish, 43 for
German and 23 for Finnish. By defining a common multilin-
gual phoneme set sharing similar phonemes, the total number of
mono-phonemes can be reduced to 67 without affecting overall
system performance, see [10] for details.

Even though the acoustic models have been trained using
data from the above mentioned four languages only, they have
been observed to give good performance when used for other
languages based on phonemes contained in the 67 multilingual
phoneme set. Thus, as shown in Section 5 below, good perfor-
mance is obtained on all 11 European languages using this set
of 67 multilingual acoustic models.

The acoustic phoneme models in this work were based on
a low complexity hybrid known as Hidden Neural Networks
(HNN) [7, 8]. The multilingual HNN acoustic models take up a
total of 17 kb of memory. However, the TTP methods discussed
in this paper apply equally well to an HMM based multilingual
phoneme based recognizer. Please refer to [7] for further de-
tails concerning preprocessing, architecture and training of the
hybrid multilingual recognizer.

During decoding of the HNN, an all-path, tree-structured
forward decoder was applied as this has been observed to yield
a better performance than Viterbi decoding for HNN acous-
tic models [8]. By using a forward decoder all paths in the
branched grammars produced by the ML-TTP module can con-
tribute to the overall score of a particular vocabulary entry. On
the other hand, when a Viterbi decoder is used, only a single
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path through the branched grammar will contribute to the over-
all score of the vocabulary entry.

4.2. TTP mapping module

The number of inputs to the different TTP networks used for
non-rule based languages and the ML-TTP approach were de-
termined by the input context size and the number of different
letters in the language. All neural network TTP models, except
the one for Spanish, used a context of four letters on both sides
of the central letter in the input window. For the Spanish neural
network TTP model, a context of only one letter on both sides of
the central letter was found to provide very accurate TTP map-
pings. The model sizes (using 8 bit/parameter precision) of the
various neural network TTP models are listed in Table 2.

The neural network TTP models were trained by stochas-
tic online back-propagation using lexicons of phonetically tran-
scribed words. All training material for the language depen-
dent neural network TTP models was taken from the CMU-
Dic (English), LDC-CallHome-German and LDC-CallHome-
Spanish pronunciation lexicons. The number of words extracted
from these lexicons for training is shown in Table 2.

To obtain a training set for the ML-TTP module it was nec-
essary to do phonetic transcription of a set of words for all the
rule-based languages. For this purpose, a word list was gen-
erated from various Internet textual resources for each of the
rule-based languages. These word lists were then processed us-
ing the TTP rules to produce training data of phonetically tran-
scribed words. Table 2 lists the number of different words avail-
able for each of the rule-based languages for ML-TTP train-
ing. As seen from the table, the number of words for some of
the languages is very limited compared to e.g. the English or
German databases. To ensure that the ML-TTP training is not
dominated by the English and German examples, a balanced
training set was created by using roughly 50 000 examples for
each of the languages. For English and German, 50 000 ex-
amples where chosen at random from the large databases also
used for training the language dependent neural network TTP
models. For all other languages, the available datasets where
repeated as many times as needed in order to generate roughly
50 000 examples for each language. Naturally, the low number
of different words for e.g. Czech and Polish may pose a prob-
lem, as the distribution of phonemes in the generated training
data may differ significantly from the distribution of phoneme
“normally observed” in these languages. Similarly, the limited
number of words implies that the grapheme segments defining
the mapping rules only occur in a very limited number of ortho-
graphic contexts. This may hamper learning of the mappings
in the rule-based languages by the ML-TTP network. A larger
and more representative set of different words can alleviate such
effects.

For the rule-based languages Table 2 lists the sizes of the
rule set files.

4.3. LID module

If the recognition system is required to simultaneously support
a fairly small number of languages, like e.g. 2-4, a pronunci-
ation for each supported language could be generated for each
word instead of using a LID module. However, if the system is
required to support a large number of languages as considered
in this work, this approach may be computationally prohibitive
for embedded devices, as the size of the active vocabulary is
“artificially” increased. Therefore, a standard MLP was used
for language identification in this work. The LID network had

Language Model Model Words
size available

English Network 30 kb 87 215
German Network 10 kb 255 327
Spanish Network 0.7 kb 36 494
Czech Rules 0.6 kb 855
Dutch Rules 0.7 kb 7 346
Finnish Rules 0.2 kb 15 132
Hungarian Rules 1.1 kb 3 640
Italian Rules 1.3 kb 11 502
Polish Rules 1.6 kb 915
Swedish Rules 0.9 kb 5 437
Turkish Rules 0.3 kb 2 056
ML-TTP Network 32 kb 583 413

Table 2: TTP methods for the different languages. The column
denoted “Words” shows the number of different transcribed
words available for each language (except for the ML-TTP case,
see text).

2 4 6 8 10

20

30

40

50

60

70

80

90

100

SIZE  OF  N−BEST  LIST

%
  W

O
R

D
S

  C
O

N
T

A
IN

E
D

  I
N

  N
−

B
E

S
T

  L
IS

T

DE

ES

FI

US

Figure 3: LID language classification performance on the test
vocabulary for the 11 languages as a function of the N-best list
size.

one output for each of the 11 languages and a context of 4 let-
ters on each side of the central letter in the input window. With
8 bit/parameter precision the size of the LID network was 22 kb.
Thus, the overall memory consumption of the LID and language
dependent TTP models was about 70 kb or more than 2 times
the size of the ML-TTP network.

As the ML-TTP network, the LID network was trained us-
ing stochastic online back-propagation on a balanced training
set containing roughly 50 000 examples for each language. The
dataset used for training the LID network was obtained by sim-
ply replacing all phoneme transcriptions by language tags in the
ML-TTP training set.

5. Results
This section describes the results that were obtained on the test
sets for the 11 languages. First, the results using a LID mod-
ule in combination with language dependent TTP modules are
described. Then follows the results using an ML-TTP module,
and, finally, the two approaches are compared.

When using a LID module in combination with language
dependent TTP modules one has to decide how many languages
to include in the LID module N-best list, i.e. how many tran-
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Figure 4: Recognition performance using LID and language
specific TTP models as a function of the N-best list size.

scriptions to include of a particular word in the vocabulary. Nat-
urally, the performance of a recognizer when using this method
depends on whether or not the correct language for the word is
included in the N-best list; the larger the N-best list, the more
likely it is included. Figure 3 displays the success rate of the
LID module in this respect, as measured on the test set vocab-
ulary for each of the 11 languages. The thick, solid line shows
the average percentage over the 11 languages of the test words
where the correct language ID was contained in the N-best list.
The rest of the lines show the percentage for each language in-
dividually. The results for the languages on which the acoustic
models were trained (Finnish, German, Spanish, and English)
are shown with dashed lines. From Figure 3, a large difference
in the LID classification rate is observed for the different lan-
guages. Part of the difference can be attributed to the character
sets of the different languages. As the letters ‘a’ to ‘z’ are used
in all 11 languages, those words that contain special language
specific characters are easier to classify correctly than words
only containing characters ‘a’ to ‘z’. The poor classification
rate for German and English for small N-best lists is due to the
fact, that the test set vocabularies for these two languages con-
tain words mainly using letters from ‘a’ to ‘z’. The low average
LID classification rate for small N-best lists indicates the diffi-
culty of language identification from very short text segments.

Figure 4 displays the performance of the recognizer as the
size of the LID N-best list is increased. The thick, solid line
shows the average recognition accuracy as measured across all
11 languages, and the rest of the lines show the recognition ac-
curacy for each language individually. Note how the accuracy
increases significantly up until an N-best list of size 3, after
which there is only a modest gain in performance by increas-
ing the size of the N-best list. Despite the large increase in the
LID module success rate beyond an N-best list of size 3, as seen
in Figure 3, limitations of the language dependent TTP models
and of the acoustic models apparently limit the increase of the
recognizer performance. Hence, in this case an N-best list of
size 3 provides a good trade-off between performance and com-
plexity.

We now investigate the use of the ML-TTP module. When
using an ML-TTP module one needs to determine how many
alternative phonemes to include at each phoneme ‘position’,
i.e. how many branches to allow at each position. Figure 5
displays the performance of the recognizer as the number of
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Figure 5: Recognition performance using a 32 k ML-TTP
model as a function of the number of branches.
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Figure 6: Recognition performance using a 32 k ML-TTP
model with a maximum of 3 branches as a function of the
threshold.

phoneme branches is increased when using an ML-TTP model
with 32 k parameters. It is seen that the performance increases
significantly by introducing the branching. However, beyond a
branching factor of � ��� there is hardly any improvement
in the performance. This is explained by the fact that the addi-
tional phoneme alternatives beyond � ��� have a very small
probability and do not contribute to the modeling of the acoustic
signals.

In order to reduce the complexity of the decoder when us-
ing a branched grammar, one may introduce a phoneme prob-
ability threshold, as described in Section 3. Phonemes with a
probability below the threshold are excluded from the transcrip-
tion. Figure 6 displays the performance of the recognizer as the
threshold for the ML-TTP module output is increased. It is seen
that the recognizer performance remains largely unchanged up
to a threshold of about �


 �
, after which it starts to deteriorate,

as important phonemes are now being excluded from the tran-
scriptions.

Figure 7 compares the relative decoding complexity in terms
of number of states when using lexicons generated by different
TTP methods. The complexity is measured in terms of the num-
ber of states in the recognition time model constructed from a
specific lexicon. The relative complexity is obtained by normal-
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Figure 8: Performance versus decoding complexity for LID and
ML-TTP. An N-best list of size 3 was used in the LID mod-
ule and a maximum of 3 branches was allowed in the ML-TTP
model. The decoding complexity was controlled by varying the
LID and ML-TTP thresholds.

izing with the number of states resulting from a lexicon gener-
ated using language dependent TTP models and know language
ID. From the figure, it is seen that by increasing the size of the
LID N-best list the decoding complexity is increased signifi-
cantly. On the other hand, by using an ML-TTP model with
a maximum of 3 branches and a threshold of �


 �
the decoding

complexity is only increased by 10 %, while maintaining a good
recognition performance as seen in Figure 6.

When creating transcriptions based on a LID module N-
best list, one may omit transcriptions for languages having a
score below some threshold, and thus considered less likely.
This will naturally decrease the decoding complexity of the re-
sulting recognizer, however, at the price of a reduced recogni-
tion performance. Figure 8 displays the relative complexity and
the performance of the LID based method, using an N-best list
of size 3, as the score threshold is varied. For the LID based
method, it is seen that the recognition performance decreases
rapidly with decreasing complexity. Figure 8 also displays a

similar curve for the ML-TTP based method. Contrary to the
LID based method, the performance of the ML-TTP method is
basically not affected by decreasing the complexity until a cer-
tain point at which performance falls of rapidly. It is seen that
the LID based recognizer reaches the best overall performance,
however at the cost of a large decoding complexity. In devices
where computational complexity and memory consumption are
important issues, the ML-TTP based recognizer provides an at-
tractive solution with competitive performance.

6. Conclusion
A novel approach denoted ML-TTP for generating multilingual
text-to-phoneme mappings have been evaluated on a large name
dialing task for 11 European languages.

Compared to a system employing a language identification
module and language specific TTP models, the ML-TTP ap-
proach was found to provide competitive performance, but at a
significant saving in decoding complexity and memory usage.

If the LID module provides an N-best list of alternative lan-
guages, it is possible to generate several transcriptions for each
vocabulary entry. For sufficiently large N-best lists it was found
that the method based on a LID module and language depen-
dent TTP models can give slightly better performance than the
ML-TTP method. However, in this case the decoding complex-
ity of the LID based method is at least doubled compared to the
ML-TTP system.
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Abstract

This paper describes the development and
field trial tests of the multilingual speech
interpretation system. The system is based on
the fixed sentence interpretation, in order to
achieve a high recognition rate and to
guarantee the translation accuracy. More than
1,700 sentences are registered, and a simple
network grammar enables the system to deal
with various expression forms for the same
meaning. The first field trial was carried out
with the Japanese-to-Korean interpretation
system. We received 6,753 calls during two
months, and the data showed that the biggest
problem was the out-of-vocabulary (OOV)
inputs, which resulted in 39% task completion
rate.  The second prototype system, that has
the output of ten languages, was improved in
view of the result of the first field trial. We
added various expression forms found in the
first trial data, and we also introduced the
OOV detecting module using garbage models.
The second field trial results showed that those
improvements reduced misrecognitions due to
the OOV inputs. The paper also describes the
prototype of the bi-directional interpretation
system between Japanese and Korean. We
adapted the Hidden Markov Models (HMMs)
made by the Japanese speech data to the
Korean speech recognition system. The
experimental results showed that the system
works well for the fixed sentence recognition,
even though its robustness in other tasks and
different conditions remains to be discussed.

1. Introduction

Automatic speech interpretation has been  a
great challenge of the speech and language
researchers, but they have not yet realized the
system whose performance is good enough for

consumers. The difficulties are due to the
structure of the speech interpretation system.
The typical system consists of the modules of
speech recognition, machine translation, and
speech synthesis, and the multiplication of the
performance of each module makes the
unsatisfying result. Many prototypes have
been developed and worked well in the
demonstration, but none of them became
popular in the market. However, it seems that
there is urgent necessity of an automatic
interpretation system, even if it is not perfect.
We thought that there is another way in
developing the speech interpretation system. It
would be acceptable to reduce the functions of
the system, if the very high performance is
guaranteed for the field data. As the minimum
and realistic requirements, we accepted the
following three limitations of the functions.

(1) Only the fixed sentences can be accepted.
(2) The interpretation is one-way.
(3) The target is focused on travelers.

The largest difficulty of the interpretation
system originates in the recognition of the free
input of the spontaneous speech. The first
limitation raises the recognition accuracy
easily.  The second limitation is drawn
naturally because the first utterance can be
controlled by the initiating person of the
dialogue, but the answer is difficult to control.
The third limitation is to make a useful system
within the above two limitations. There are
many typical sentences for travelers, and even
the one-way communication is helpful because
they are guests.

The first prototype of our project was a
portable interpreter[1], which was originally
designed and manufactured. We applied the
speech recognition middleware technologies
for RISC microprocessors[2] to realize a

Paper presented at the RTO IST Workshop on “Multilingual Speech and Language Processing”,
held in Aalborg, Denmark, 8 September 2001, and published in RTO-MP-066.
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compact body of the instrument. However, we
realized that most people would not like to buy
and carry even the smallest machine. After all,
we decided to use the cellular phones as the
terminal of the speech interpretation system.
Most people are always carrying their cellular
phones, and then they do not need any initial
cost to use our system.

The system is simple, but even the simplest
system can be still difficult to use for the
inexperienced people. To realize the truly
user-friendly system, we have carried out the
field trial of our system. Investigation of the
users' attitude and the system performance
would be necessary to improve the system.
This paper focuses on the field trial tests and
their results, and clarifies the feasibility and
the points of improvement of our system.

The rest of the paper is organized as follows.
Section 2 describes the overview of our
previous work, that is about the development
of the portable interpreter. Section 3 describes
the detail of the developed system. In section 4
and 5, the condition and the results of the field
trials are given. We also introduce the bi-
directional interpretation system between
Japanese and Korean in the section 6. Finally,
conclusions and discussions are given in the
last section.

2. Portable Interpreter

We had developed a prototype of a portable
interpreter. Figure 1 shows the appearance of
the portable interpreter. The prototype was
equipped with  a RISC microprocessor (60
MIPS), 8Mbyte SDRAM, and 16Mbyte flash
memory. As the user interface, an LCD and
six buttons were used. The size was 15cm
(width), 6cm (height), and 3cm (thickness),
and the weight was 180g including batteries.

This interpreter was based on keyword speech
recognition and related sentence extraction.
The dictionary was made of 30,000 words, and
the error correction by Japanese syllable
recognition assured the input of any of 30,000
words. Since it had an LCD, the speech
recognition unit and the sentence extraction
unit could display the N-best results. Even if
the recognition rate for a large vocabulary was
not so high, the N-best accuracy was enough
to find the desired sentence.

Fig.1 : Prototype of portable interpreter

3. Interpretation System Using
Cellular Phones

The prototype of the portable interpreter was
small and convenient, but there was still a
problem that most people did not want to buy
and carry a task-specified machine. The
simplest answer to this problem is to use their
cellular phones, although it produces some
new problems.

Since the voice streaming technology for
cellular phones has not yet become popular,
the only way to realize the system based on
the speech interface is to use the circuit
switching service.  When using the circuit
switching service, the user can not use the
LCD for confirmation or selection. Therefore,
simple sequence from the input to the output is
necessary, and then the recognition rate for
single answer must be high enough to avoid
the annoying error correction procedure.

To keep the recognition rate high, we have
chosen the fixed sentence speech recognition,
and we confines the size of the lexicon to 200
or smaller. We prepared 1,735 sentences in
total, and divided them into 21 scenes, though
some sentences appear in two or more scenes.
The user interface is very simple. The user
speaks one of registered sentences, and the
server recognizes it, repeat the recognition
result, and outputs the corresponding foreign
sentence. The system architecture is shown in
fig. 2.
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According to the specifications described
above, we have developed the interpretation
server system. The HMMs are made using the
training data of the telephone voice, that
matches the sampling condition of telephone.
The environmental adaptation by the cepstrum
mean normalization (CMN) is also applied to
avoid the degradation of the recognition
performance due to the various frequency
characteristics. Moreover, the dictionary and
the grammar are tuned to cope with the
spontaneous input. The filler dictionary can
handle some meaningless phrases before the
sentence, and the grammar is written to accept
some variations of the expression style that
have almost same meaning. The dictionary
also includes some command sentences to
change the scene, to change the output
language, to hear the guidance, or to quit the
service.

Since the system is using fixed sentences, it is
easy to expand the output language. We
started with the Japanese-to-Korean system,
and then added English, Chinese, German,
French, Spanish, Portuguese, Italian, Russian,
and Hindi as the output language. The
expansion of the input language is rather
difficult and remained as a future challenge,
together with the problem of handling the
wider variety of the answering utterances.

4. Results of the First Field Trial

It was easily predicted that our system would
show  high recognition rate for the laboratory
data. Preliminary experiments have shown
95% to 98% accuracy for clean speech.
However, our target is the users who are not
experienced with the speech recognition
system, and we could not estimate what would
happen for such people. In order to collect the
field data and evaluate our system, we have
carried out field trial tests of our speech
interpretation system.

Table 1 shows the detail of the first field trial
test. Four lines were open to provide the
service. The service itself was free of charge,
but the user had to pay the calling charge. The
phone number was announced by newspapers
and other media. The detailed guidance was
provided on the website, but the number of
accesses to the website was much smaller than
the number of accesses to the service itself.
Therefore, it is reasonable to assume that
many people used our system without detailed
knowledge about the function of the system.

Figure 3 shows the classification of the input
and corresponding action of the system. More
details are shown in Table 2. The class 1, 2,
and 3 correspond to the utterances that should
be recognized correctly. The variation inputs,
classified as 2,  are only a little different from
the registered sentences. There are some
utterances not recorded completely, that are
classified as 4. The class 5 includes out-of-
vocabulary (OOV) utterances. Since it is
theoretically impossible to recognize the
utterances of (4) and (5), we defined "pure
recognition rate" as ( N(1) + N(2) ) / ( N(1) +
N(2) + N(3) ), where N(x) means the number
of utterances in the class x. This value shows
the performance of the recognition engine
itself. We also defined "task completion rate"
as ( N(1) + N(2) ) / ( N(1) + N(2) + N(3) +
N(4) + N(5) ). This value implies the total
performance of the user interface and the
recognition engine.

The pure recognition rate for the all data is
83.9%. It is acceptable rate but lower than the
preliminary experiment result. The error
analysis showed that the various speaking
style (lower power and faster speed) may
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Table 1 : Details of field trial

Location

Language
Date
Time
Lines
Charge

Contents

Total access

Tokyo (accessable from 
anywhere by telephone)
from Japanese to Korean
2000/11/14 - 2001/1/13
24 hours
4
No service charge
(calling charge only)
1682 sentences about 
travel (21 scenes)
6753

    

(1)
36.5%

(2) 2.7%
(3) 7.2%(4) 9.2%

(5)
44.4%

Fig. 3 : Classification of input and action
(1) Correct recognition for correct input
(2) Correct recognition for variation input
(3) Incorrect recognition for correct input
(4) Recording error of input speech
(5) Out of vocabulary

Table 2 : Details of recognition results
(%)

Correct
Variation
Correct
Rec. Error
OOV

37.1
2.4
7.6
9.3

43.6
83.9
39.5

28.4
6.0
2.2
8.1

55.1
93.9
34.5

36.5
2.7
7.2
9.2

44.4
84.5
39.1

Basic
(default)

Other Total
scene

input

Pure recog. rate
Task comp. rate

1
2
3
4
5

recog.
result

cause the performance reduction. However,
the largest problem is the 43.6% OOV input.
Since the announcement of the service by the
newspaper could not describe the detail of the
system, some people may have used the
service without knowing that only the
registered sentences can be translated. Because
of this problem, the task completion rate is
less than 40%. Even though it is impossible to
recognize and translate these OOV sentences,
at least the rejection of such sentences is
strongly needed.

We analyzed the data by dividing them into
the scene named "basic", and other scenes.
Since the "basic" is the default scene, all the
users first access to this dictionary. The user
has to say "Change the scene" to move to
another scene. Therefore, it is reasonable to
expect that those who accessed to other scenes
know well about the service. As shown in
Table 2, the pure recognition rate for other
scenes was 93.9%, which is almost same as
the recognition rate for the laboratory data.
The recognition rate for the experienced
people is enough, and we concluded that the
robustness for the inexperienced users is the
point of the next improvement.

5. Results of the Second Field Trial

After the first field trial, we improved the
system in view of the field data. We added
some typical expression variations on the
dictionary, to reduce the number of OOV
inputs. We also introduced the OOV detecting
module using garbage models. The OOV input
is supposed to be matched with the sequence
of five types of garbages, each of which is
made of three random Japanese syllables.

Table 2 shows the details of the second field
trial test. The second system has the output of
ten languages such as English, Chinese,
Korean, French, German, Spanish, Portuguese,
Italian, Russian, and Hindi. The number of
registered sentences had increased a little, but
all the other condition is same.

Figure 4 shows the classification of the input
and corresponding action of the system. Since
the second system has the OOV reject module,
two categories are added. One is the rejection
for OOV inputs (class 7), and the other is the
(wrong) rejection for correct inputs (class 3).
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Table 3 : Details of field trial

Language

Date
Contents

Total access

from Japanese to 10 lang.
(ENG, FRE, CHN, etc)
2001/04/26 - 2001/7/31
1735 sentences about 
travel (21 scenes)
4963

    

(1)
37.3%

(2) 2.7%
(3) 3.1%

(4) 5.6%(5) 7.2%

(6)
33.9%

(7) 10.3%

Fig. 4 : Classification of input and action
(1) Correct recognition for correct input
(2) Correct recognition for variation input
(3) Rejection for correct input
(4) Incorrect recognition for correct input
(5) Recording error of input speech
(6) Misrecognition of OOV input
(7) Rejection of OOV input

Table 4 : Details of recognition results
(%)

Correct
Variation
Correct
Correct
Rec. Error
OOV
OOV

38.7
2.7
3.2
5.8
6.6

34.0
9.0

82.1
87.7
41.4
47.2

30.2
2.5
2.5
4.8
9.8

33.6
16.6
81.8
87.2
32.7
40.0

37.3
2.7
3.1
5.6
7.2

33.9
10.3
82.1
87.6
39.9
45.7

Basic
(default)

Other Total
scene

input

Pure recog. rate
Pure recog. accuracy
Task comp. rate
Task comp. accuracy

1
2
3
4
5
6
7

recog.
result

Rej.

Rej.

The definition of the pure recognition rate was
changed to  ( N(1) + N(2) ) / ( N(1) + N(2) +
N(3) + N(4)), and the task completion rate was
changed to ( N(1) + N(2) ) / ( N(1) + N(2) +
N(3) + N(4) + N(5) + N(6) + N(7) ).

It is shown that the pure recognition rate was
not improved from the first trial to the second.
It is because there are some false rejections
(class 3). It is noticeable that the recognition
rates for the "other" scenes are lower than that
for the "basic". It seems that there is a
difference in users' attitude between the first
and second trials, but the reason is not clear.

In order to show the efficiency of the OOV
detecting module, we added the evaluation
items by the recognition and task completion
accuracies. The accuracy is calculated as the
ratio of the correct results over the accepted
utterances. The recognition accuracy and the
task completion accuracy are higher than the
recognition rate and the task completion rate
in the first field trial, that shows the efficiency
of the OOV detecting module. The current
OOV detecting module might not be enough,
therefore the improvement of this module
would be quite important in the future system.

6. Japanese/Korean Bi-directional
Interpretation System

The systems in the first and second field trial
tests were one-way interpretation system from
Japanese to other languages. However, it is
necessary to understand the answer by the
foreigner. We need many speech recognizers
for many languages, but as the first step, we
started with Japanese/Korean bi-directional
system, because both languages seem to have
similar pronunciation systems.

We have made a prototype of Japanese/Korean
bi-directional interpretation system, by using
only Japanese Hidden Markov Models. We
expected that Japanese HMMs would basically
work well, even though it can not distinguish
some phrases including pronunciations that do
not exist in Japanese. However, if the baseline
performance is high enough, we can make
Korean HMMs by the adaptation scheme. In
such a case, the burden of the collection of the
Korean training data would become smaller.
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We have made the Korean-to-Japanese
interpretation system, that has only 'basic'
sentences of the field trial system. We made
preliminary evaluation by only one speaker,
and the recognition rate was about 90%.
Moreover, the error analysis showed that the
recognition errors were repeated in limited
sentences, so if we can adapt some
pronunciation in those sentences, the
recognition rate would be improved easily.

7. Conclusions

We have developed the multilingual speech
interpretation system using cellular phones.
The system is based on the fixed sentence
speech recognition scheme, therefore the
recognition rate can be kept high. It should be
noted that the addition of the output language
is very easy, and we prepared the database of
ten languages. In order to keep the robustness
for the spontaneous input, the system is
equipped with the grammar and the filler
dictionary, that can handle the meaningless
phrases and the various expression style of the
same meaning. We have carried out the field
trial test to evaluate the system performance
and to collect the field data. The results
showed that there were some recognition
errors, especially for the unexperienced users,
and the more important issue is the out-of-
vocabulary (OOV) utterances. In the second
field trial test, where the OOV detecting
module was added, the recognition rate was
not improved enough, but  a lot of OOV inputs
were rejected successfully. It means that the
user interface could be improved by
introducing the OOV detecting module. We
also discussed about the bi-directional
interpretation system, and developed the
prototype of Japanese/Korean interpretation
system. It showed the similarity of those two
languages, and suggested that the same
framework can be applied to the bilingual
speech recognition system.
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Abstract

This paper investigates the fusion of multiple output scores
generated using different parameterisation methods by the
language identification system. A number of different fusion
techniques including simple addition, simple multiplication,
max rule and linear score weighting have been investigated.
We have used a Gaussian mixture model based system to
calculate the output scores. The universal background model
adaptation technique has been incorporated to reduce the
computation time on both training and testing phases. Five
different parameterisation methods were generated by the
system. They included mel-frequency cepstrum coefficients,
linear prediction cepstrum coefficients, line spectrum pair
frequencies, mel-cepstral coefficients and perceptual linear
predictive coefficients. Results have shown that the fusion of
mel-cepstral coefficients with perceptual linear predictive
coefficients using the linear score weighting method improved
the system accuracy from 75% to 79% on the 45 seconds test
segment and from 66% to 71% on the 10 seconds test
segment compared to the best independent scores without
fusion. An error reduction of 5% and 7% respectively were
achieved.

1. Introduction

Fusing data from different data sources has been shown to be
capable of increasing a systems performance in many different
tasks. Within speech technology, it has been successfully
applied to gender identification [1], speaker identification and
speaker verification system [2] and speech recognition
systems [3]. Data fusion can be generally divided into input
fusion and output fusion methods. Input fusion is simply the
concatenation of different feature vectors for use by a
classifier, while output fusion is the utilisation of the output
from several classifiers to form the final scores. Language
Identification (LID) typically process large amount of data in
order to model a language’s characteristics.  Due to this, input
fusion makes the input vector size becomes larger and thus
reduce the efficiency of the system. Moreover, preliminary
results show that output fusion performs better than the input
counterpart.  Therefore this paper focus the study on the
output fusion method. The rest of the paper is organised as
follows: Section 2 gives a review of the output score fusion
techniques. Section 3 describes the LID test system and is
followed by experimental results in Section 4. The conclusion
is given in Section 5.

2. Data Fusion

The basic idea of data fusion is to combine different views or
decisions generated by different experts (a classifier in this

case) in an attempt to improve the discriminability of the
overall system. Data fusion can be generally divided into
input fusion and output fusion methods.

2.1. Input Fusion

Input fusion is simply the concatenation of different feature
vectors into a single vector prior to processing by a classifier.
A block diagram of an input fusion system is shown in Figure
1. The appending of energy, delta energy, delta and
acceleration coefficients to the feature vector can be treated as
a special case of input fusion.

2.2. Output Fusion

Output fusion is the utilisation of the outputs from several
classifiers to give a final score. Figure 2 shows a block
diagram of such a system. Depending on the type of output
the classifier generates, different styles of fusion can be
performed. When continuous outputs such as likelihood
scores are obtained from the classifier, both linear or non-
linear combination methods can be applied. Although non-
linear combinations like neural networks were shown to
perform better than the linear methods [4,5], it has the
disadvantage of a larger computational expense and the score
modelling is more complex. Therefore only the linear
combination and other simple related methods were
investigated in this paper.

2.3. Output Fusion Strategies

As shown in Figure 2, the input feature vectors of each
classifier was generated by different speech front-ends. This
implies that different parameterisation methods were
employed and therefore the output likelihood scores will have
different dynamic range across the classifiers. Thus as a
means of normalisation, we calculated the a posteriori
probabilities instead of the likelihood scores as the output of
each classifier. The a posteriori probability of model λi given
a sequence of feature vectors X={x 1,x2,…,xT} is defined as
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Figure 1: Input Fusion System. f i, i = 1…N, is the
feature vector that generated by speech front-end i.
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where L is the number of  models for each classifier or the
number of languages in this experiment and P(λi) is the a
priori  probability of model λi. Also p(X|λi) is the joint
likelihood of observations x1,x2,…,xT given the model λi. In
our experiment we use the exponent of the expected frame-
based natural-logarithm of the likelihood scores (see equation
8).

Four different linear output combination methods are
investigated in this paper. They are defined as follows:

• Simple Addition (SA)

∑
=

=
N

i
i

1
SA YZ (2)

• Simple Multiplication (SM)

∏
=

=
N

i
i

1
SM YZ (3)

• Max Rule (MAX)

i

N

i
YmaxZ

1
MAX

=
= (4)

• Linear Score Weighting (LSW)

∑
=

=
N

i
ii

1
LSW YZ α (5)

where Z is the final output score, Yi is the output score
generated by classifier i, N is the number of classifiers and αi

is the score weighting for classifier output i such that

 1
1

=∑
=

N

i
iα . (6)

3. Test System

3.1. Speech Parameterisation

The complete LID system includes five different
parameterisation methods. They included:

• Mel-Frequency Cepstrum Coefficients (MFCCs) [6],
MFCCs are one of the more popular filterbank based
parameterisation methods used by researchers in the
speech technology field. The advantage of applying the
mel-scale is that it approximates the nonlinear frequency
resolution of the human ear.

• Linear Prediction Cepstrum Coefficients (LPCCs) [7],
LPCCs are Linear Prediction Coefficients (LPCs)
represented in the cepstral domain. It have been widely
used for a few decades and proven to be more robust and
reliable than LPCs.

• Line Spectrum Pair frequencies (LSPs) [8], LSP
frequencies were first introduced by Itakura as an
alternative LPC spectral representation. They have been
widely used in the speech coding domain.

• Mel-Cepstral coefficients (MCCs) [9], MCCs have been
applied successfully to both speech coding and speech
recognition. They do not have the disadvantage of
LPCCs, which approximate speech linearly at all
frequencies. Instead, the cepstrum is mapped to the mel-
scale to model the auditory nonlinear frequency
response.

• Perceptual Linear Predictive coefficients (PLPs) [10],
PLPs have been widely used in speech recognition and
have been shown to give good accuracy in different
applications. Instead of modeling the spectrum of the
speech as with LPCs, PLPs apply the LPCs’ inverse
filter to model the auditory spectrum.

3.2. Language Classifier

The testing system [11] uses Gaussian Mixture Models
(GMMs) to model the characteristics of each target language.
The GMM approach attempts to model the probability density
function of a feature vector, x, by the weighted combination
of multi-variate Gaussian densities:

∑
=

=
M

i
ii bpp

1

)()|( xx λ (7)

where λ is the model of a target language, M is the
number of mixtures within the GMM, pi is the weight applied
to mixture i and bi(x) is the Gaussian density of mixture i.

During testing, a maximum likelihood classification is
used to identify the language of the testing speech file. The
average log-likelihood score of a model given a test speech
file is calculated as:
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where T is the number of feature vectors contained in the
test speech file. The exponent of the expected score is used
for an indicator of the a posterior probability.

Figure 2: Output Fusion System. f i, i = 1…N, is the
feature vector that generated by speech front-end i.

Final
Score

Feature
Vector

f1 Classifier 1

f2 Classifier 2

fN Classifier N

.

.

.

Fusion

11-2



3.3. Universal Background Model

In order to reduce the training and testing time, the Universal
Background Model (UBM) technique [12] is adapted in this
system.   An UBM in the LID case is a GMM representing the
characteristics of all different languages.  Instead of
performing a full Expectation-Maximisation (EM) algorithm
for training, the models of each langauge can be created by
employing Bayesian adaptation [13] from the UBM.
Therefore significant amounts of time are saved in the training
of each language model.

Reynolds [12] has found that only a few of the mixtures
of a GMM contribute significantly to the likelihood score.
The adapted model of each language will share a certain
correspondence with the UBM, since each model is adapted
from it.  Therefore the average log-likelihood score of each
language model can be calculated by only taking into account
the most significant mixtures. According to the second
property mentioned above, these significant mixtures can be
obtained by selecting the mixtures from the UBM that have
the highest score. In this way, the computation required for
testing can also be reduced significantly.

A block diagram of the system is shown in Figure 3. The
main advantage of this sytem is that the complexity is low
compared to other LID systems such as the Phoneme
Recognition followed by Language Modelling performed in
Parallel (PRLM-R) system [14] and the large vocabulary
continuous speech recognition based system [15]. Thus this
system is suitable to operate in real time even with the
inclusion of the output score fusion technique. Another
advantage provided by this system is that no transcriptions of
training data are required. This makes the implementation and
adaptation to new languages relatively easy.

4. Experiments and Results

The experiment was performed using the Oregon Graduate
Institute Telephone Speech (OGI-TS) Corpus [16] which
included the following 11 languages: English, Farsi, French,
German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil
and Vietnamese.  The 1994 National Institute of Standards
and Technology (NIST) LID evaluation specification was
used as a guideline for extracting the training and testing data
to perform the experiment.  Both the training and extended
data from the corpus were used for creating the UBM and
adapting language models.  The 45 second (187 test

segments) and 10 second (625 test segments) test data
available for testing.

Each feature vector was extracted at 10ms intervals using
a 32ms window, with each frame of speech being pre-
emphasised by the first order difference equation

197.0 −−=′ nnn sss  except for PLP coefficients. A Hamming

window was then applied to the speech frame. The GMMs
used 512 mixtures to model each language. The specifications
for each parameterisation are: MFCC (26 filters, 12 cepstral
coefficients), LPCC (14th order LPC, 12 cepstral
coefficients), LSP (12 coefficients), MCC (14th order LPC,
256th order LPCC, 12 cepstral coefficients) and PLP (17
filters, 5 cepstral coefficients). Delta energy, delta and
acceleration coefficients were appended to the feature vectors
with mean and variance normalisation applied. The accuracy
of these baseline systems is shown in Table 1. The MCC and
PLP performed slightly better than other methods. The LSP
features tend not to perform as well as the cepstral based
features..

Table 1: LID Results comparing baseline systems.
Results are in percentage accuracy.

Method 45s 10s
MFCC 66.8 62.4
LPCC 69.5 63.0
LSP 62.0 58.1
MCC 74.3 65.8
PLP 74.9 66.2

4.1. Compare Data Fusion methods

In this evaluation, we focused on the linear fusion methods.
The methods studied are SA, SM, MAX and LSW. The
results of the comparison are shown in Table 2. The number
of classifiers, N, used for this experiment is limited to two and
the a priori probability, P(λ), of model λ, is set to equal
probabilities P(λ) = (1 / 11).

All the results shown in Table 2 are consistent with the
accuracy of Table 1. The best result is the fusion of PLP (α =
0.8) with MCC  (α = 0.2) using LSW with an accuracy of
79% for the 45 second test and 71% for the 10 second test.
The LSW method has the highest improvement amongst the
tested fusion methods. The performance of SA and SM are
approximately the same. Both methods have a slight
improvement in accuracy after fusion. The MAX method does
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not show any improvement in accuracy. This may indicate
that normalising the output score by the a posteriori
probability may not be appropriate. This may also attributed
to one type of parameterisation expert dominating the others.

The results shown in the LSW column of Table 2 are the
best accuracies obtained by exhaustively searching through all
the score weighting combinations. The search is done by
stepping through the α value (of equation 5) from 0.0 to 1.0
with each step incremented by 0.01. This searching approach
is only possible when the correct results are available.
Unfortunately, these results do not indicate the robustness of
the fusion approach. However it is employed in this
experiment to show that a proper choice of score weighting is
important to the LSW method with different speech
parameterisation front-ends. In other applications, the
optimised score weighting can be obtained by performing the
aforementioned searching approach on the output scores
generated from a set of development test data.

4.2. Varied Number of Classifiers

In the last experiment we found that LSW yielded the best
improvement for all different parameterisation combinations
when the number of classifier was set to two. In this
experiment the fusion method is fixed at LSW and the number
of classifiers, N, are varying. Table 3 shows the results of this
experiment. Again the a priori probability, P(λ), of model λ,
is set to equal probable and the optimised score weighting
searching approach was applied to the LSW results.

The result shows that as the number of classifiers
increase, the accuracy remains the same or increase. This is
consistent with information theory. However, from the PLP-
MCC row and PLP-MCC-MFCC row, the amount of
improvement is not significant. But comparing the PLP-
MFCC row with the PLP-MCC-MFCC row, a more
significant improvement was obtained. It should be noted that
the information provided by different parameterisation
methods is not entirely independent.  From Table 1, PLP and
MCC have the highest accuracy, which means that they can
provide more discriminative information than other methods.
Fusion of PLP with MCC thus covered most of the
information that other feature types were capable of
providing. Further increasing the number of classifiers in the
fusion stage using similar features will only add a small
amount of information to the final decision. Therefore by

choosing the correct parameterisation methods for the output
score fusion LID system, the number of classifiers required to
achieve the optimal performance can be reduced.

5. Conclusions

This paper investigated several techniques of output score
fusion using different parameterisation methods for a

Table 2: LID Results comparing linear fusion methods.  Results are in percentage correct. α is the score
weighting applied to the first parameterisation method under Fusion column.

SA SM MAX LSW
45s 10s 45s 10s 45s 10s 45s       α 10s        α

PLP-MCC 75.9 70.6 75.9 70.6 74.3 66.2 79.1 0.80 71.4 0.77
PLP-LPCC 74.9 69.0 74.9 68.6 69.5 63.4 78.6 0.75 70.1 0.71
PLP-MFCC 70.1 65.0 70.1 64.8 67.9 62.2 76.5 0.93 67.7 0.86
PLP-LSP 69.0 63.2 69.5 63.5 63.1 58.9 75.4 0.92 67.5 0.91

MCC-LPCC 72.2 67.4 72.2 67.2 74.3 67.4 74.9 0.84 67.8 0.69
MCC-MFCC 72.7 65.8 72.7 65.6 73.8 64.8 75.4 0.89 67.2 0.67
MCC-LSP 72.7 65.4 73.3 65.4 70.1 64.5 75.4 0.8 67.5 0.77

LPCC-MFCC 70.1 64.0 70.1 64.3 67.9 63.8 71.1 0.68 65.1 0.71
LPCC-LSP 69.0 63.0 69.0 63.0 65.2 61.4 70.1 0.78 64.0 0.69
MFCC-LSP 66.8 62.1 67.4 61.8 62.6 61.0 67.9 0.58 63.2 0.83

Table 3: LID Results comparing varies number of
classifier.  Results are in percentage correct.

LSW
Fusion

45s 10s
N = 2

PLP-MCC 79.1 71.4
PLP-LPCC 78.6 70.1
PLP-MFCC 76.5 67.7
PLP-LSP 75.4 67.5

MCC-LPCC 74.9 67.8
MCC-MFCC 75.4 67.2
MCC-LSP 75.4 67.5

LPCC-MFCC 71.1 65.1
LPCC-LSP 70.1 64.0
MFCC-LSP 67.9 63.2

N = 3
PLP-MCC-LPCC 79.7 71.8
PLP-MCC-MFCC 79.1 71.5
PLP-MCC-LSP 79.1 71.4

PLP-LPCC-MFCC 78.6 70.4
PLP-LPCC-LSP 78.6 70.1
PLP-MFCC-LSP 76.5 68.0

MCC-LPCC-MFCC 75.4 68.3
MCC-LPCC-LSP 75.9 68.5
MCC-MFCC-LSP 75.4 68.5
LPCC-MFCC-LSP 71.7 65.8

N = 4
PLP-MCC-LPCC-MFCC 79.7 71.8
PLP-MCC-LPCC-LSP 79.7 71.8

MCC-LPCC-MFCC-LSP 75.9 69.0
N = 5
PLP-MCC-LPCC-MFCC-LSP 79.7 71.8

Fusion
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language identification system. Experiments are conducted on
the 1994 NIST Langauge Identification Evaluation which is
based on the OGI-TS Corpus. The fusion of mel-cepstral
coefficients with perceptual linear predictive coefficients
using the linear score weighting method improved the system
accuracy from 75% to 79% on the 45 seconds test segment
and from 66% to 71% on the 10 seconds test segment
compared to the scores without fusion. An error reduction of
5% and 7% respectively were achieved. These result show
that with the help of output fusion, the GMM-UBM LID
system can perform comparably well against other more
complex systems. It also has the advantage of a real time
operating capability and no requirement of transcribed
training data.
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Abstract
This paper describes multilingual technology projects
currently being undertaken in conjunction with the NATO
BICES (Battlefield Information Collection and Exploitation)
organization.  First, we describe the basis of the multilingual
processing for these projects, the CyberTrans machine
translation environment, an operational system that enables
the use of machine translation (MT) by intelligence analysts
[1].  We will briefly describe the impetus behind the
development of CyberTrans as well as the system design and
implementation.  Next, we will discuss the operational pilot
installation of CyberTrans on the BICES network.  Finally,
we will present some potential multilingual technology pilot
experiments for BICES.  These future technologies will
enable NATO to meet the challenges of its inherently
multilingual user community and will pave the way for
interoperability across language barriers in the future.

1. Introduction
The challenge of automatic processing of language data from
multiple languages is increasingly diverse and problematic.  In
addition to the wealth of work that has been done on the
English language, “foreign language” processing needs are
increasing, in part because of the changing conditions and
needs in the world.  Traditionally, users could focus on just a
few foreign languages and a limited number of sources of
foreign language materials.  As we begin the 21st century,
users of online materials are faced with having to process,
utilize and exploit documents that may be in one of many
languages or a combination of languages.  It is not feasible to
expect a given user to know all of the languages related to
their topic of research.  It is equally unrealistic to expect to
have on-demand translators available in every language
whenever they are needed.  Because of the expanding need,
tools are being developed to automate the use of foreign
language materials.

A key component of many multilingual applications is
machine translation (MT).  A common vision for machine
translation is as a small part of a larger process that is partly or
completely automated.  For many users, this does not mean
having to work with yet another tool and yet another interface,
but a nearly invisible companion that incorporates translation
and necessary support technologies.  One such system, the
United States Army Research Lab (ARL) FALCon system
[1,2], combines scanning, optical character recognition
(OCR), translation and filtering into a single process.  Another
view of this is the DARPA Translingual Information
Detection, Extraction and Summarization effort (TIDES) [3].
TIDES represents the pinnacle of information access and is a
significant challenge for MT.  MT supports the translingual

aspects of the effort and here can be viewed as an embedded
tool that facilitates other technologies.  Finally, the integration
of MT into the process for intelligence analysis serves as the
basis for the CyberTrans project [4].

2. CyberTrans
The first incarnation of CyberTrans grew out of a
demonstration that machine translation could be useful in the
intelligence analysis process.  As a result of a survey of MT
technology (Benoit et al, 1991), it was believed that MT was
ready for incorporation into an operational environment.
Questions remained, however, about which commercial off the
shelf (COTS) or  US government off the shelf (GOTS) MT
engines to use, and how to make them accessible in a user-
friendly manner.  Thus, CyberTrans itself is not machine
translation per se, but it is a way to make machine translation
(both COTS and GOTS) tools available to a wide range of
linguists and analysts.  It incorporates the Systran family of
MT systems, which provides several language pairs (German,
French, Spanish, Portuguese, Italian, Russian, Serbo-Croatian,
Ukrainian, Chinese, Japanese and Korean to English) free to
for US government use.  In addition, CyberTrans incorporates
the Globallink (Lernout and Hauspie) tools, which provide
German, French, Spanish, Russian to English translation, as
well as the GOTS product Gister.  Initially, CyberTrans was
designed as a wrapper around MT systems in Unix
environments.  Based on a client-server architecture, it
provides a common user interface to its multiple translation
engines.  The server software interacts with the translation
engines, controlling the flow of the translations, and the client
software handles the user end of the transaction.  Historically,
four clients were provided:  e-mail, web, FrameMaker, and
command line.  By providing translation through these media,
users could translate documents in a familiar interface without
having to be concerned with differences between translation
products.

Shortly after the fielding of the initial prototype, the need
for additional language services to accompany translation
became apparent.  The “real world” data sent to the
translation engines pointed out the differences between
translation in an interactive environment and translation in an
embedded, automated environment.  Interactive translation is
much more forgiving of low quality input data while
automated processing must handle issues arising from data
quality on the fly.  Given the assumption that the user has no
control over the production of the source document, and
hence no control over the quality of that document, a series of
pre- and post-processing tools were incorporated into
CyberTrans, thus transforming it from a user-interface
wrapper to a value-added machine translation environment.

Paper presented at the RTO IST Workshop on “Multilingual Speech and Language Processing”,
held in Aalborg, Denmark, 8 September 2001, and published in RTO-MP-066.
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Initially, these pre- and post-processors were included in the
functional architecture as depicted in Figure 1.

The server portion of the shell incorporates a) language
and code set identification; b) language and code set
conversion; c) limited spell checking (particularly diacritic
reinsertion); d) format preservation.  The data flow follows
the following steps. Upon being submitted to CyberTrans, a
document proceeds through steps a-d and is then passed on to
the appropriate translation engine.  The results are re-
packaged, and the results are sent to the client for presentation
to the user.  As mentioned above, a number of clients are
available: an e-mail client (send an e-mail to a specific
address, get a translation back); a web-client (cut and paste or
provide a URL); a command-line client and an API.  The API
allows integration of CyberTrans into a number of processes
including word processing packages (FrameMaker;
LotusNotes) and other applications, such as the TrIM,
MITAP, and Open Sesame applications, discussed in Section
5.

The increased complexity caused by the addition of these
language tools caused a necessary re-design of the
architecture from a client-server model to an enterprise
service model.  This model is characterized by an open
architecture of loosely coupled modules performing services
for multiple applications.   In this architecture, daemon

processes broker translations.  A request for translation is
passed to the system by a client program, and a translation
plan consisting of a series of translation-related services is
created.  Each service is requested from the responsible
system object, and the resulting translation is passed back to
the client programs.  Implemented in a combination of C++
and Java, the new version represents a service-oriented
architecture.   Figure 2 shows this updated view of the
architecture.

Language processing services include language/code set
identification; code set conversion; data normalization,
including diacritic reinsertion and generalized spell checking;
format preservation for Hyper-Text Mark-up Language
(HTML) documents; not-translated word preservation and
logging, and others.  The available clients remain e-mail, Web
and FrameMaker.  Platforms include both Unix and PC for
clients, with the capability to incorporate PC-based
translation tools as part of the service.
Many of the modifications and improvements in the system
came as a direct result of the deployed of CyberTrans in an
operational environment with a steadily-increasing user base.
As can be seen in figure 3, between April 1998 and May 2000,
CyberTrans experienced over 600% growth in monthly usage.
In Section 3, we turn to lessons learned as a result of having

E-mail
Client

Frame
Client

Web
Client

Identify
Language /
Code Set

Normalize
Spelling /
Format
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Translated
Words

Reassemble
Format

Server Modules

RPC Communication

Figure 1:  Original CyberTrans Architecture

Figure 2:  Updated CyberTrans Architecture
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an operational MT capability, running 24 hours a day, 7 days a
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•  Provide a standing MT capability on BICES that can be
used by BICES users via the BICES Backbone Network
(BBN) and can be improved over time.

•  Provide feedback from BICES users to MITRE’s
DARPA TIDES team throughout this process.

This installation was realized with the support of the DARPA
TIDES program.

Because of the quality of the output produced by state-of-
the-art MT systems, there must be a balance between “selling
the technology” and managing (potential) users’ expectations
in operational environments.  In short, MT is a useful
technology if it is not oversold, but also not undersold.  For
the BICES installation in particular, the following questions
were focused on:

•  Who is the user or customer?

•  What are the user’s requirements?

•  How does MT fit into the overall user’s process?

•  What is the price/risk of miscommunication?

•  What are the user’s expectations?
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Figure 3 CyberTrans Usage Statistics
icing over 4500 translation requests per month

Operational Machine Translation on
BICES with CyberTrans

initial installation, CyberTrans has been running
e clock at a US government site.  It is currently
on a secure internal network and processes between
6000 MT requests per month in up to 30 different
.  While not approaching the “Star Trek” vision of
T quality, it does provide useful translations for the
f scanning and filtering by intelligence analysts.
nitial deployment as an operational system, we have
uch in the realm of real world translation.  One
esson is that the better the quality of machine
 is, the more invisible translation is to the user.
 users range from those who cannot identify the
of the document they wish to process to linguists
speed up their work, we are familiar with a wide
issues pertaining to users with respect to MT
rocessing.
uccess led to interest in CyberTrans from other

ons in which the US government is involved.  In
o the initial system deployment, we have recently
a version of CyberTrans on the NATO BICES
d Information Collection and Exploitation)
The BICES network facilitates the coordination of
 intelligence gathering among the NATO nations.
an ideal candidate for a pilot CyberTrans for two
First, although French and English remain the
perational languages, NATO has 19 member

representing upwards of 15 languages and has much
rom an operational installation of usable MT.
ccess to native speakers of so many languages is a
e of feedback for continued improvement of the
s environment and its component technologies.
ing from these characteristics, the following goals

forth for the pilot installation of CyberTrans on

For BICES, the initial users are volunteer native speakers
of the various languages supported by the MT pilot.  These
users provide valuable feedback as to the utility of
CyberTrans and on opportunities for improvement.  After this
initial phase, CyberTrans is made available to a wider
community of users, who primarily use CyberTrans for
purposes of information assimilation, such as understanding
documents published in a language other than their native
language.  It is hypothesized that a small number of users will
also use CyberTrans to assist them in producing certain
documents for which there is an English-language reporting
requirement.  In both cases, users access machine translation
on an as-needed basis, from their desktops, to translate
documents that they already have in electronic form.  Given
the users’ understanding that this is a pilot application, the
output of the translation is not expected to be perfect.
Furthermore, with the same limitation in mind, it is expected
that users be highly skeptical regarding any seemingly
suspicious translation output, which will hopefully mitigate
the risk of any miscommunication.  Finally, the BICES
support team and initial users are briefed on the prospects and
limitations of MT technology in general, in an effort to
manage users’ expectations of the technology.  This
information is to be passed on to the end users of the
CyberTrans application.  Additionally, messages about the
realistic use of machine translation are prominently displayed
in CyberTrans’ web page interface.

With these answers to the guiding questions in mind,
CyberTrans was installed on the BICES application test
facility in May 2001 and was given a limited release on the
operational network (the BBN) in late June.  In July, the
application was fully released and could be accessed by all
BICES users.  This initial implementation includes translation
from Russian, German, French, Spanish, Italian, and
Portuguese into English.  Users have enthusiastically been
providing feedback bearing on the translation quality, the pre-
and post-processing facilities, and on the user interface, all of
which will be used to enhance future versions of the system.
In addition, users of the Portuguese to English translation



facility have been particularly positive in their response and
have requested the addition of translation in the reverse
direction.

4. The Value of User Feedback: Tailoring
CyberTrans

The ultimate success of automated language processing
applications depends on the breadth, depth, and overall
quality of the lexical information being used in the systems.
Accordingly, the highest portion of the cost of providing an
MT capability reflects the amount of lexicography – or
domain specialization – that must be done.  It can total up to
70% of the cost of an MT engine and represents the greatest
source of user dissatisfaction.  In addition, many applications
require specialized lexical repositories that reflect unique
domains such as military, legal, scientific and medical
terminology.  We must find ways to update lexicons
intelligently, using sources such as dictionaries, working aids,
specialized word lists and other information reservoirs to
provide broad vocabulary coverage.  Our principal current
approach is to record the list of words that do not translate
and automate the handling of these.

Now that CyberTrans is in the operational phase of its
pilot installation, a process will be put in place whereby logs
of not-translated words are transferred back to the
development team for use in updating the MT lexicons.  Since
CyberTrans can incorporate various MT engines, it is an
interesting problem that different translation engines encode
lexical entries in different ways, such that sharing lexicon
entries between translation capabilities is problematic.  We
are working on lexicon service bureau (LSB) research
designed to facilitate the sharing of lexical materials.  One
part of this is the automatic extraction of lexical entries from
on-line, machine-readable dictionaries.  Another part is the
analysis of not-translated words.  Each advance in this realm
increases the overall quality of the output produced by
machine translation systems.

In addition to domain-specific jargon and acronyms,
proper names (“named entities”) represent a complication for
translation.  Users of the pilot installation of CyberTrans on
BICES have remarked that this is a particular problem for the
Spanish to English translation output.  In a recent test
conducted on 100 news articles translated from Spanish to
English, 2600 named entities were found.  Two translations
produced by human translators agreed on the “proper”
translation of names only about 90% of the time.  This, along
with the user feedback, is a further indication that this
phenomenon needs to be studied more in order to determine
how to best handle these proper names in MT.

5. What the Future May Hold

5.1. TIDES Tools

In addition to being used to produce translated documents as
an end product, CyberTrans is also being utilized in the
DARPA Translingual Information Detection, Extraction, and
Summarization (TIDES) program.  Its role in TIDES is to
support the goal of information access from a variety of
sources in multiple languages.  DARPA’s TIDES program is
working with NATO partners to integrate language processing
and translation technology into future intelligence networks.

This effort is supported in part by an Integrated Feasibility
Experiment led by The MITRE Corporation, with a focus on
automatically filtering, extracting and summarizing
information about the outbreak and spread of natural and
man-made disease. This technology integration and
application effort called the MITAP (MITRE Text and Audio
Processing) System uses the CyberTrans embedded machine
translation capability to translate information from languages
such as Portuguese, Chinese, Russian, or Spanish into
English.  MT is a key component within TIDES research and
has been a top requirement of the NATO member nations’
priority requirements.   In addition to the MT technology
itself, the BICES technology team has expressed some interest
in the other component technologies contained in the TIDES
effort.  It has been suggested that due to its multinational
nature, the BICES network would be a rich operational
testbed for some of the technologies that make up the “IDES”
portion of TIDES.

5.2. TrIM

In coalition operations such as those supported by NATO,
participants with a wide range of native languages must be
able to coordinate their efforts. Collaboration between
coalition partners currently relies on the ability to settle on a
single common language for all participants. This
arrangement creates communication bottlenecks, and is likely
to work less well at lower echelons and in the field than it
does at higher echelons or in command centers.  Additionally,
the information that must be communicated (including source
documents in native languages) can be in multiple languages
and specialized domains.

From a linguistic point of view, translingual collaborative
environments represent a new and exciting area of research.
From an operational standpoint, emerging technologies in
translingual collaboration enable us to envision environments
in which nations are able to collaborate across language
barriers in ways never before thought possible.  Translingual
collaboration produces challenges that have heretofore not
been addressed.  Linguistic analysis for purposes of natural
language processing applications has typically fallen into one
of two camps: spoken interaction between two or more active
participants and written interaction for information
dissemination or assimilation.  Each of these has unique
characteristics, and there is often little overlap between the
two.  Collaborative environments, however, yield a new form
of interaction, one which has some characteristics of spoken
interaction and some characteristics of written interaction.
This mix presents unique challenges for MT-mediated
collaborative computing.
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Plans are currently in the works for implementation of a
Translingual Instant Messenger (TrIM) prototype on the
BICES network.  As part of this pilot effort, we will be able to
collect data highlighting the multilingual challenges faced by
collaborative environments, including the unique interaction
style, the specialized needs of the interactions, the difficulty
of analyzing actual language use, and the inherent difficulties
of MT use in an interactive environment.  These studies will
enable the improvement and tailoring of MT technology for
this specialized use; it is anticipated that such improvements
will take place along several dimensions and will include data
normalization, lexical improvements, and syntactic
enhancements both in the analysis and generation phases of
translation.

We have demonstrated the appeal of a Translingual
Collaborative tool with Translingual Instant Messenger
(TrIM) but this gives us only a view to the future, not the
pieces necessary to make that future a useful reality.  To make
the translingual sharing of a reality, we need to develop tools
for capturing, analyzing and enabling translingual information
sharing.  For instance, in TIDES we need a way to rapidly
acquire domain-specific terminology and make it usable to the
automated processing tools.  In TrIM, the translation
capability must be more reflective of the language style and
terminology that is actually required for collaborative,
coalition work.

5.3. Open SESAME

Open SESAME is the BICES intelligence production and
discovery system.  Key to sharing information between the
nations is a “library card” representing product information in
the form of metadata.   This system is the  bedrock for
information exchange between the seventeen BICES nations.
The BICES nations produce all their intelligence in their
native language, which is far too much to reasonably translate
manually.  The library card concept allows nations to publish
products in their native language, capturing the document
metadata in English.  Discovered documents deemed
important may be passed on for translation.

The planned incorporation of CyberTrans with Open
SESAME will carry this concept and process to a higher
level.  During the submission process, it will be possible to
pass metadata fields, such as title and summary, through
CyberTrans, automatically generating an English equivalent
for the library card.  Similarly, intelligence researchers may
then submit native language title and summary searches,
which will then be passed through CyberTrans, to query the
Index Server’s English metadata tags for relevant intelligence
products.  Finally, free texts documents, may subsequently be
passed to CyberTrans for full machine translation.

6. Conclusion
Due to its multinational character, the NATO BICES agency
is a natural proving ground for multilingual technologies.  It
is also one of the organizations that stands to gain the most
from the successful implementation of such technologies and
from improvements that result from live pilot installations
such as the one described in this paper.  Working in
conjunction with the BICES agency, we can make valuable
multilingual technologies available to those who need them
the most, while at the same time gathering crucial data that

will enable researchers and developers to push those
technologies to the next level of performance.
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CANADA SDFA - Centro de Documenta¸cão
DRDKIM2 HUNGARY Alfragide
Knowledge Resources Librarian Department for Scientific P-2720 Amadora
Defence R&D Canada Analysis

SPAINDepartment of National Defence Institute of Military Technology
INTA (RTO/AGARD Publications)305 Rideau Street, 9th Floor Ministry of Defence
Carretera de Torrej´on a Ajalvir, Pk.4Ottawa, Ontario K1A 0K2 H-1525 Budapest P O Box 26
28850 Torrej´on de Ardoz - Madrid

CZECH REPUBLIC ICELAND
TURKEYDirector of AviationDIC Czech Republic-NATO RTO

Mill ı̂ Savunma Bas,kanli i (MSB)c/o FlugradVTÚL a PVO Praha
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