
Carnegie Mellon
Software Engineering Institute

Requirements Engineering
for Survivable Systems

Nancy R. Mead

September 2003

Networked Systems Survivability

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Unlimited distribution subject to the copyriglit.

Technical Note
CIVIU/SEI-2003-TN-013

20031202 106

Technical Note
CMU/SEI-2003-TN-013

Requirements Engineering
for Survivable Systems

Nancy R. Mead

September 2003

Networked Systems Survivability

Unlimited distribution subject to tlie copyright.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract vii

1 Background 1
1.1 Definition of Requirements Engineering 1
1.2 Typical Requirements Engineering Activities 2
1.3 Tfie Role of Requirements Management 2

2 Requirements for Survivable Systems 5
2.1 Survivable Systems Definition 5
2.2 Survivability Requirements 6

2.2.1 System/Survivability Requirements 7
2.2.2 Usage/Intrusion Requirements 9
2.2.3 Development Requirements 9
2.2.4 Operations Requirements 10
2.2.5 Evolution Requirements 10

2.3 Requirements Definition for Essential Services 10
2.4 Requirements Definition for Survivability Services 11

2.4.1 Resistance Service Requirements 11
2.4.2 Recognition Service Requirements 12
2.4.3 Recovery Service Requirements 12

2.5 Summary 13

3 Methods and Practices that Support Requirements Engineering for
Survivable Systems 14
3.1 Some existing methods and practices 14

3.1.1 Misuse and Abuse Cases 14
3.1.2 Formal Methods 15
3.1.3 Use of Trees for Modeling and Analysis 17
3.1.4 Software Cost Reduction 20
3.1.5 Requirements Reuse 21
3.1.6 Risk Analysis 22
3.1.7 Examples of Security Requirements 24

3.2 Selection of Promising Methods and Practices for Security and
Survivability Requirements Engineering 24

CMU/SEI-2003-TN-013

4 Summary and Plans 25

References 26

CMU/SEI-2003-TN-013

List of Figures

Figure 1: Coarse-Grain Requirements Engineering Process 2

Figure 2: The Requirements Lifecycle Activities 3

Figure 3: Requirements Definition for Survivable Systems 7

Figure 4: Integrating Survivability Requirements witli System Requirements 8

Figure 5: Tlie Relationsfiip Between Legitimate and Intrusion Usage 9

Figure 6: Abuse Case Diagram for an Internet-Based Information Security
Laboratory 14

Figure?: Attacl<Tree Example 18

Figure 8: Relevant Fault Tree Symbols 18

Figure 9: Penetration Fault Tree: Using Buffer Overflow in Network Daemons 19

Figure 10: Relationship Between the SRS, the SDS, and the SoRS...; 20

CMU/SEI-2003-TN-013

iv CMU/SEI-2003-TN-013

List of Tables

Table 1: Contrast between Use and Abuse Cases 15

Table 2: Differences Between Misuse Cases and Security Use Cases 15

Table 3: The Access Control Use Case 16

Table 4: Condition Table Defining the Value of Term tRemLL 21

Table 5: Outcome Attributes 23

CMU/SEI-2003-TN-013

vi CMU/SEI-2003-TN-013

Abstract

This report describes the current state of requirements engineering for survivable systems,
that is, systems that are able to complete their mission in a timely manner, even if significant
portions are compromised by attack or accident. Requirements engineering is defined and
requirements engineering activities are described. Survivability requirements are then
explained, and requirements engineering methods that may be suitable for survivable systems
are introduced. The report concludes with a summary and a plan for future research
opportunities in survivable systems requirements engineering.

CMU/SEI-2003-TN-013 vii

viii CMU/SEI-2003-TN-013

1 Background

In this report we will discuss the current state of requirements engineering for survivable
systems. We start with some general definitions of requirements engineering and a
discussion of requirements engineering activities. Then we introduce some requirements
engineering concepts for survivable systems. We go on to discuss requirements engineering
methods that may be suitable for survivable systems, both in the high assurance disciplines
and in other areas as well. We conclude with a summary and plan for future research
opportunities in survivable systems requirements engineering.

1.1 Definition of Requirements Engineering
Thayer and Dorfman [Thayer 97] define software requirements engineering as the science
and discipline concerned with establishing and documenting software requirements. They
state that it consists of software requirements elicitation, analysis, specification, verification,
and management. They define software requirements management as "the planning and
controlling of the requirements elicitation, specification, analysis, and verification activities."
So, they consider requirements management to be part of requirements engineering.

In the Software Engineering Body of Knowledge (SWEBOK) [Sawyer 01], requkements
engineering is described using a four-step process model, including requirements elicitation,
analysis and negotiation, documentation, and validation. An output of this process is the set
of agreed-upon requirements. Requirements elicitation is described as the first stage in
building an understanding of the problem that the software is required to solve. Requirements
analysis has to do with the process of analyzing requirements to detect and resolve conflicts
among requirements, discover the bounds of the system and how it must interact with its
environment, and elaborate user requirements to software requirements. Requirements
negotiation has to do with resolving conflicts, such as those that might occur between
stakeholders, or between requirements and resources. Validation is concerned with checks for
omission, conflicting requirements, and ambiguities. This process is illustrated in Figure 1.

CMU/SEI-2003-TN-013

Requirements
elicitation

Requirements
analysis and
negotiations

User needs
Domain information

Existing system information
Regulations
Standards

etc.

Requirements
documentation

Requirements
validation

li

^
Requirements

document

System
document

i
Agreed-upon
requirements

Figure 1: Coarse-Grain Requirements Engineering Process

1.2 Typical Requirements Engineering Activities
Davis describes the requirements (life-cycle) phase in terms of its activities [Davis 93]. The
two major activities are problem analysis and product description. A "seed idea" initiates the
problem-analysis activities, which include delineating constraints, refining constraints,
tradeoffs between conflicting constraints, understanding the problem, and expanding
information. This set of activities results in a relatively complete understanding of
requirements, which initiates the product-description activities. During product description,
consistency-checking and congealing take place, resulting in a consistent and complete
software requirements specification. This is illustrated in Figure 2.

1.3 The Role of Requirements Management
Let's take a look at what is meant by requirements management. The Capability Maturity
Model® for Software (SW-CMM®) provides good insight into the meaning of the term. In the
SW-CMM, there are two goals in the requirements management key process area (KPA):

Goal 1: System requirements allocated to software are controlled to establish a baseline for
software engineering and management use.

Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

CMU/SEI-2003-TN-013

Goal 2: Software plans, products, and activities are kept consistent with the system
requirements allocated to software [Paulk 94].

the seed idea

Delineating constraints
Refining constraints
Trade-off between conflicting constraints
Understanding the problem

^ ^—j—r N. Expanding information

A relatively complete understanding of requirements

Consistency checking
Congealing

a consistent and complete SRS

Figure 2: The Requirements Life-Cycle Activities

In the SW-CMM Version 2.0 Draft [SEI97], the Requirements Management KPA was
modified to include three goals:

Goal 1: Repeatable process (RM.GO.Ol). The activities for managing the allocated
requirements are institutionalized to support a repeatable process.

Goal 2: Allocated requirements baseline (RM.GO.02). The software project's baseline of
allocated requirements is established and maintained.

Goal 3: Allocated requirements consistency (RM.GO.03). The software project's plans,
activities, and work products are kept consistent with the allocated requirements.

The more recent work on CMM Integration^*^ (CMMI®) models has expanded the focus on
requirements engineering and requirements management.

It is pretty clear from both sets of goals that requirements management focuses on the life-
cycle activities that must take place once the requirements have been established. The steps
involved in establishing the requirements, on the other hand, fall more properly under the
purview of requirements engineering.

^^ CMM Integration is a service mark of Carnegie Mellon University.
® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2003-TN-013

In the SWEBOK, requirements management is viewed as an activity that spans the whole life
cycle. It involves change management and maintenance of the requirements in a state that
accurately mirrors the software. The knowledge areas associated with requirements
management are change management, requirements attributes, requirements tracing, and
requirements documentation.

CMU/SEI-2003-TN-013

2 Requirements for Survivable Systems

Development of requirements for survivable systems allows us to build on existing
knowledge. The recent series of RHAS [Mead 02, SEI02] and SREIS [SREIS 02]
workshops provides a focus on requirements for secure and survivable systems. In addition,
there is an effort underway to recommend modifications to the Capability Maturity Model
Integration (CMMI) models that are aimed at safety and security. In this section we present
some definitional material on survivable systems in general, and more specifically on classes
of survivable systems requirements. This section is extracted from a conference paper
originally co-authored with Richard Linger and Howard Lipson [Linger 98].

2.1 Survivable Systems Definition
Survivability refers to the capability of a system to complete its mission in a timely manner,
even if significant portions are compromised by attack or accident. In particular,
survivability refers to the capability of a system to provide essential services in the presence
of successful intrusion, and to recover compromised services in a timely manner after
intrusion occurs. For example, a survivable financial network would maintain the integrity
and availability of essential information, such as account and loan data, and services, such as
transaction validation and processing. Integrity would be maintained even if particular nodes
or communication links were incapacitated through intrusion or accident, and would recover
compromised information and services in a timely manner. While survivability focuses on
the preservation of mission capabilities, it includes issues of confidentiality and integrity as
well. Because of the value of the CERT® intrusion knowledge base, this work has focused on
attack and compromise by intelligent adversaries.

Experience with network systems has shown that no amount of hardening can guarantee
invulnerability to attack. Despite best efforts, systems will continue to be breached. Thus it
is vital to expand the current view of information systems security to encompass system
behavior that contributes to survivability in spite of intrusions or accidents. Network systems
must be robust in the presence of attack and able to survive attacks that cannot be completely
repelled. The growing societal dependency on networks and the risks associated with their
failure require that survivability be designed into these systems, beginning with effective
survivability requirements analysis and definition.

In today's network environment, system security is largely dependent on the encryption of
data and isolation through mechanisms such as firewalls. While the firewall approach is
currently practical in a hmited fashion, it will become increasingly inadequate to protect
systems from intrusion in the rapidly expanding world of unbounded network computing.

CMU/SEI-2003-TN-013 5

Current systems are characterized by customer owned and controlled computing resources
communicating over unbounded networks. In future systems, most computing resources will
be resident within unbounded network infrastructures and will be controlled by a multitude of
computing and communications service providers. These envirorraients will be so
unbounded as to render ineffective current security approaches, such as firewalls, that are
based solely on isolation. In such environments, firewalls will be ineffective in detecting
attacks, recovering from attacks, or helping systems survive intrusions and complete their
missions in spite of malicious activity. Future unbounded systems will also embody dynamic
architectures, capable of automated, real-time reconfiguration and adaptation in response to

changing requirements and environments.

In summary, survivable network systems embody two essential characteristics. First, they
preserve essential services under intrusion and recover full services in a timely manner.
Second, they ensure survivability in environments characterized by unbounded networks and
dynamic architectures. It is often the case that insufficient emphasis is placed on these
survivability issues. As a result, the processes and techniques for addressing survivability are
generally inadequate to deal with the threat. Concepts of system survivability provide a
framework for integrating established disciplines of system reliability [Musa 87], safety
[Leveson 95], security [Clark 93], and fault tolerance [Mendiratta 96], as well as emerging
disciplines such as dynamic system adaptation, diversification,' and trust maintenance.

2.2 Survivability Requirements
Figure 3 depicts an iterative model for defining survivable system requirements. We
recognize that survivability must address not only requirements for software functionality,
but also requirements for software usage, development, operation, and evolution. Thus, five
specific types of requirements definition are relevant to survivable systems in the model of

Figure 3, as discussed below.

From "Systematic Generation of Stochastic Diversity in Survivable System Software," by R.C.
Linger, currently submitted for publication.

CMU/SEI-2003-TN-013

Survivablity
Devetopmont
RBqUirenwnts

1
Survivability
Operations

Requirements

System/
SutvivabBity

Requirements

Usage/
Intrusion

Requirements

System
Development/

Evolution

Legacy/Acquired
Software,

Survivability Strategle:

Usage Model
Development/

Evolution

System
Testing/Evaluation

System
Operation/

Administration

Survivability
Evolution

Requbvments

Figure 3: Requirements Definition for Sun/ivabie Systems

2.2.1 System/Survivability Requirements

In this exposition, the term system requirements refers to traditional user functions that a
system must provide. For example, a network management system must provide user
functions for monitoring network operations, adjusting performance parameters, and so forth.
System requirements also include non-functional aspects, such as timing, performance, and
reliability. The term survivability requirements refers to system capabilities for the delivery
of essential services in the presence of attacks and intrusions, and recovery of full services.

Figure 4 depicts the integration of survivability requirements with system requirements at
node and network levels. First, survivability requires that system requirements be organized
into essential services and non-essential services, perhaps organized in terms of user
categories or business criticality. Essential services must be maintained even during
successful intrusions; non-essential services are to be recovered after intrusions have been
dealt with. Essential services may be further stratified into a number of levels, each
embodying fewer and more vital services, as a function of increasing severity and duration of
intrusion. It is also possible that the set of essential services may vary in a more dynamic
manner, depending on a particular attack scenario and the resulting situation. In this dynamic
case, services that are essential under one scenario may not be essential under another,
resulting in different combinations of essential services that are scenario dependent. Thus,
definitions of requirements for essential services must be augmented with appropriate
survivability requirements. As shown in Figure 3, survivable systems may also include
legacy and commercial off-the-shelf (COTS) components not originally developed widi

CMU/SEI-2003-TN-013

survivability as an explicit objective. Such components may provide both essential and non-
essential services and may engender special functional requirements for isolation and control
through wrappers and filters to help permit safe use in a survivable system environment.

Second, Figure 4 shows that survivability itself imposes new types of requirements on
systems for resistance to, recognition of, and in particular, recovery from intrusions and
compromises [Ellison 97]. These survivability requirements are supported by a variety of
existing and emerging survivability strategies, as noted in Figure 1 and discussed in more
detail below. Finally, Figure 2 depicts emergent behavior requirements at the network level.
These requirements are characterized as "emergent" because they result from the collective
behavior of node services communicating across the network, without benefit of centralized
control or information. These requirements deal with the survivability of overall network
capabilities, such as capabilities to route messages between critical sets of nodes regardless of

how intrusions may damage or compromise network topology.

We envision survivable systems as being capable of adapting their behavior, function, and

resource allocation in response to intrusions. When necessary, for example, functions and
resources devoted to non-essential services could be reallocated to the delivery of essential
services and intrusion resistance, recognition, and recovery. Requirements for such systems
must specify the behavior for adaptation and reconfiguration in response to intrusions.

Network Level
Emergent Behavior
Requirements:

Figure 4: Integrating Survivability Requirements with System Requirements

Systems can exhibit large variations in survivability requirements. Small local networks may
have few or even no essential services, with acceptable manual recovery times measured in
hours. Large-scale networks of networks may be required to maintain a core set of essential
services, with automated intrusion detection and recovery times measured in minutes.
Embedded command and control systems may require essential services to be maintained in
real time, with recovery periods measured in milliseconds. The attainment and maintenance

CMU/SEI-2003-TN-013

of survivability consumes resources in system development, operation, and evolution.
Survivability requirements for a system should be based on the costs and risks to an
organization associated with loss of essential services.

2.2.2 Usage/Intrusion Requirements

Survivable system testing must demonstrate the performance of essential and non-essential
system services, as well as the survivability of essential services under intrusion. Because
system performance in testing (and operation) depends totally on the usage to which it is
subjected, an effective approach to survivable system testing is based on usage scenarios
derived from usage models [Mills 92, Trammell 95].

Usage models are developed from usage requirements, which specify legitimate usage
environments and all possible usage scenarios. Usage requirements for essential and non-
essential services must be defined in parallel with system and survivability requirements.
Furthermore, intrusion usage must be treated on a par with legitimate usage, and intrusion
requirements, which specify intrusion usage environments and all possible scenarios of
intrusion use, must be defined as well. In this approach, intrusion usage is modeled in
conjunction with the legitimate use of system services. Figure 5 depicts the relationship
between legitimate and intrusion usage. Intruders may engage in usage scenarios beyond
legitimate scenarios, but may also employ legitimate usage for purposes of intrusion if they
become privileged to do so.

Figure 5: The Relationship Between Legitimate and Intrusion Usage

2.2.3 Development Requirements

Survivability places stringent requirements on system development and testing practices.
Software errors can have a devastating effect on system survivability and provide ready
opportunities for intruder exploitation. Sound engineering practices are required to create
survivable software. We assert the following five principles, four technical and one
organizational, as example requirements for survivable system development and testing
practices:

CMU/SEI-2003-TN-013

• precise specification of required functions in all possible circumstances of use

• correctness verification of implementations with respect to function specifications

• specification of function usage in all possible circumstances of use, including intruder

usage

• testing and certification based on function usage and statistical methods

• establishment of permanent readiness teams for system monitoring, adaptation, and

evolution

Sound engineering practices are required to deal with legacy and COTS software components

as well.

2.2.4 Operations Requirements
Survivability places demands on the requirements for system operation and administration to
define and administer survivability policies, monitor system usage, respond to intrusions, and
evolve system functions as necessary to ensure survivability as usage environments and

intrusion patterns change over time.

2.2.5 Evolution Requirements
System evolution is an inevitable necessity to respond to user requirements for new functions
and increasing intruder knowledge of system behavior and structure. In particular,
survivability requires that system capabilities evolve more rapidly than intruder knowledge to
prevent the accumulation of information about invariant system behavior and structure
needed to achieve successful penetration and exploitation.

2.3 Requirements Definition for Essential Services
The preceding discussion distinguishes between essential and non-essential services. At the
highest level, each system requirement needs to be examined to determine whether it
corresponds to an essential service. The set of essential services must form a viable
subsystem relative to the original system. In the event that levels of essential services are
required, the set of services provided at each level must be examined for completeness and
coherence. As noted above, the set of essential services could vary in a more dynamic way,
depending on particular scenarios or situations. In addition, requirements must be defined for

transitioning to and from essential service modes.

In distinguishing essential and non-essential services, all the usual requirements definition
processes and methods can be applied. Elicitation techniques such as those described in
Software Requirements Engineering [Thayer 97] can help to identify essential services and a
tradeoff and cost/benefit analysis can help to determine appropriate sets of services that

10 CMU/SEI-2003-TN-013

sufficiently address business survivability risks and vulnerabilities. Provisions for the
traceability of survivability requirements through design and code must be established, and
special test cases would be required as well. As noted above, the simulation of intrusion
through intruder usage scenarios would be included in the testing strategy.

2.4 Requirements Definition for Survivability Services
Penetration, exploration, and exploitation create a spiral of increasing intruder authority and
an ever-widening circle of compromise. For example, penetration at the user level is
typically employed as a means to explore for root-level vulnerabilities. User-level
authorization is then employed to exploit those vulnerabilities to achieve root-level
penetration. Furthermore, a compromise of the weakest host in a networked system allows
that host to be used as a stepping-stone to comprise other more protected hosts.

Requirements definitions for resistance, recognition, and recovery services embody selected
survivability strategies to deal with these phases of intrusion. Some strategies, such as
firewalls, are the product of extensive research and development and are used extensively in
current bounded networks. The following new strategies are emerging as necessary
responses to the unique challenges of unbounded networks.

2.4.1 Resistance Service Requirements

Resistance refers to the capability of a system to deter attacks. Thus, resistance is important
in the penetration and exploration phases of an attack, prior to the point where actual
exploitation occurs. Current strategies for resistance include the use of firewalls,
authentication, and encryption. Diversification is an example of a strategy that will likely
become important in future unbounded networks.

Diversification requirements must define a planned variation in survivable system function,
structure, and organization, together with a means for achieving it. Diversification is
intended to create a "moving target" to intruders and to render ineffective the accumulation of
system knowledge as an intrusion strategy. Diversification also eliminates intrusion
opportunities associated with multiple nodes that execute identical software and thus exhibit
identical vulnerabilities. Such systems offer tempting economies of scale to intruders, since
all nodes can be penetrated once one node has. Diversification requirements can include a
variation in programs, retained data, and network routing and communication. For example,
systematic means can be defined to randomize software programs while preserving
functionality.^

^ From "Systematic Generation of Stochastic Diversity in Survivable System Software" by R. C.
Linger, currently submitted for publication.

CMU/SEI-2003-TN-013 11

2.4.2 Recognition Service Requirements
Recognition refers to the capability to recognize attacks or to recognize the probing that may
precede attacks. The ability to react or adapt in the face of intrusion is central to the capacity
of a system to survive an attack that cannot be completely repelled. Reaction or adaptation is
impossible without some form of recognition, and thus recognition is essential in all three
phases of attack.

A substantial body of research and development exists in this area. Current strategies for
attack recognition include not only state-of-the-art work in intrusion detection, but also more
mundane but nevertheless effective techniques of logging and frequent auditing, as well as
follow-up investigations of reports generated by ordinary error-detection mechanisms. There
are two types of advanced intrusion-detection techniques: anomaly detection and pattern
recognition. Anomaly detection is based on models of normal user behavior. These models
are often established through the statistical analysis of usage patterns. Deviations from
normal usage patterns are flagged as suspicious. Pattern recognition is based on models of
intruder behavior. User activity that matches a known pattern of intruder behavior raises an
alarm.

The requirements for future survivable networks will likely employ additional strategies,
such as self-awareness, trust maintenance, and black-box reporting. Self-awareness refers to
the establishment of a high-level semantic model of the computations that a component or
system is executing or has been asked to execute. A system or component that "understands"
what it is being asked to do is in a position to refuse those actions that would be dangerous,
compromise a security policy, or adversely impact the delivery of minimum essential
services. By trust maintenance, we refer to a requirement for periodic queries among the
components of a system (e.g., among the nodes in a network) to continually test and validate
trust relationships. The detection of intrusion signs would trigger an immediate test of trust
relationships. Black-box reporting refers to a dump of system information that could be
retrieved from a crashed system or component for analysis by the rest of the system to
determine the cause of the crash (e.g., design error or specific intrusion type), and thereby
prevent other components from suffering the same fate.

In summary, a survivable system design must include explicit requirements for attack
recognition. These requirements will ensure the use of one or more of the strategies
described above, through the specification of architectural features, automated tools, and
manual processes. Since intruder techniques are constantly advancing, it is essential that
recognition requirements be subject to frequent review and continuous improvement.

2.4.3 Recovery Service Requirements
Recovery refers to a system's ability to restore services after an intrusion has occurred and to
improve its capability to resist or recognize future intrusion attempts. Recovery also
contributes to a system's ability to maintain essential services during intrusion.

12 CMU/SEI-2003-TN-013

The requirements for recoverability are what most clearly distinguish survivable systems
from merely secure systems. Traditional computer security leads to the design of systems
that rely almost entirely on hardening (i.e., resistance) for the protection of system resources
and services. Once security is breached, damage may soon follow with little to stand in the
way. As stated earlier, the ability of a survivable system to react or adapt in the face of an
active intrusion is central to the capacity of a system to survive an attack that cannot be
completely repelled. Thus, recovery is crucial during the exploration and exploitation phases
of intrusion.

Recovery strategies in use today include the replication of critical information and services,
the use of fault-tolerant designs, and a variety of backup systems for hardware and software,
including maintaining master copies of critical software in isolation from the network.
Future recovery strategies will most certainly include dynamic system adaptation, which will
not only help a system recover from a current attack, but also permanently improve a
system's ability to resist, recognize, and recover from future intrusion attempts. For
example, a recoverability requirement for a survivable system may include infrastructure
support for the capacity to inoculate the entire system against newly discovered security
vulnerabilities, through the automated distribution and application of security fixes to all
network elements. Similarly, recoverability requirements may specify that intrusion-
detection rule sets are to be updated in a timely manner, in response to reports of known
intruder activity from an authoritative source of security information, such as the CERT
Coordination Center.

In summary, explicit requirements for recovery are crucial for the design of a survivable
system. Recovery requirements make adaptability an integral part of a system's design. As
was the case for resistance and recognition requirements, the constant evolution of intruder
techniques makes it essential that recovery requirements be subject to frequent review and
continuous improvement.

2.5 Summary
In this section we have discussed some definitional work towards identifying and classifying
survivable systems requirements. We have also identified strategies that can assist in
identifying survivable systems requirements, and which ultimately result in systems that are
more survivable. There have been other general approaches to requirements engineering for
security requirements that are also worth reading about [Firesmith 03b]. In addition, our life-
cycle research emphasizes the importance of survivability requirements engineering [Mead
01].

CMU/SEI-2003-TN-013 13

3 Methods and Practices that Support Requirements

Engineering for Survivable Systems

There has been a significant amount of work on methods to support requirements for
survivable systems. In this section, we sketch out some of these methods. This will allow us
to build on existing work, and to select promising methods for experimentation.

3.1 Some existing methods and practices

3.1.1 Misuse and Abuse Cases
A security "misuse" case [Alexander 03, Sindre 00, Sindre 02] a variation on a use case, is
used to describe a scenario from the point of view of the attacker. Since use cases have
proven useful in documenting normal use scenarios, they can also be used to document
intruder usage scenarios, and ultimately used to identify security requirements or security use
cases [Firesmith 03a]. A similar concept has been described as an "abuse" case [McDermott
01,McDermott99].

One obvious application of a misuse case is in eliciting requirements. Since use cases are
used successfully for eliciting requirements, it follows that misuse cases can be used to
identify potential threats and to elicit security requirements. In this application, the
traditional user interaction with the system is diagrammed simultaneously with the hostile
user's interactions. An example of this is shown in Figure 6 [Alexander 03].

Malicious
Student

Script
Kiddie

Nazgul

Figure 6: Abuse Case Diagram for an Internet-Based Information Security
Laboratory

14 CMU/SEI-2003-TN-013

Alternatively, abuse cases tend to show the "abuse" side of the system, in contrast to
traditional use cases. The contrast between use and abuse cases is shown in Table 1
[McDermott 99].

Table 1: Contrast between Use and Abuse Cases

Use Case Abuse Case

• A complete transaction between one or more
actors and a system

• UML-based use case diagrams
• Typically described using natural language

• A family of complete transactions between one
or more actors and a system that results in harm

• UML-based use case diagrams
• Typically described using natural language. A

tree/DAG diagram may also be used.
• Potentially one family member for each kind of

privilege abuse and for each component that
might be exploited

• Includes a description of the range of security
privileges that may be abused

• Includes a description of the harm that results
from an abuse case

Using these concepts, Firesmith develops tabular examples of security use cases. His own
version of the differences between security use cases and misuse cases is shown in Table 2. A
complete example is shown in Table 3 [Firesmith 03a].

Table 2: Differences Between hAisuse Cases and Security Use Cases

Misuse Cases Security Use Cases
Usage Analyze and specify security threats Analyze and specify security

requirements
Success Criteria Misuser succeeds Application succeeds
Produced By Security team Security team
Used By Security team Requirements team
External Actors Misuser, user User
Driven By Asset vulnerability analysis

Threat analysis
Misuse cases

3.1.2 Formal Methods

Formal methods are typically used in specification and verification of secure and survivable
systems. From a life-cycle viewpoint, the specification typically represents either formal
requirements or a formal step between informal requirements and design.

Some of the methods are applied to security standards, such as the Common Criteria and IP
Security Protocol (IPSec). Organizational objectives are translated into the specification of
all relevant secmity functions in a planned system. The subset of specifications to be
implemented is identified and further assessment or risk analysis takes place [Leiwo 99a].

CMU/SEI-2003-TN-013 15

Table 3: The Access Control Use Case

Use Case: Access Control
Use Case Path: Attempted Spoofing Using Valid User Identity

Security Tlireat:
The system authenticates and authorizes the misuser as if the misuser were a valid user.

Preconditions:
1) The misuser has a valid means of user identification.
2) The misuser has an invalid means of user identification.

Misuser Interactions
System Requirements

System Interactions System Actions

The system shall request the
misuser's means of identification
and authentication.

The misuser provides a valid
means of user identity but an
invalid means of user
authentication.

1) The system shall misidentify
the misuser as a valid user.
2) The system shall not
authenticate and authorize the
misuser.

The system shall reject the
misuser by canceling the
transaction.

Postconditions:
1) The system shall not have allowed the misuser to steal the user's means of authentication.
2) The system shall not have authenticated the misuser as a valid user.
3) The system shall not have authorized the misuser to perform any transaction that requires
authentication.
4) The system shall have recorded the access control failure.

The Common Criteria are used during the second or evaluation phase. The Kruger-Eloff
process, based on the Common Criteria, is used for evaluation of information security.
Another effort [Fu 01] contributes to correctness and conflict resolution of IPSec security
policy. This method allows definition of a high-level security requirement that can be used to
detect conflicts among IPSec policies, and also aids in automation of the policy specification
process for IPSec policies. Another method focuses more generally on information security
policy specification [Ortalo 98]. A formal specification language is described, and in a case
study the method is applied to the description of security requirements for a medium-size
banking organization. This method provides flexibility and expression so as to correspond to

specific organizational needs.

One study focuses on security policies based on known potential secrets [Biskup 01]. In this
study, security requirements are explicitly defined and formally made comparable with
requirements for policies based on secrecy. An evaluation strategy based on lying is adapted
to the framework and formally proven to meet the security requirements. Weak conditions

16 CMU/SE1-2003-TN-013

for the functional equivalence of lying and refusal are identified, with respect to the
information learned from answers to queries, along with the user's assumed initial
knowledge. As an example for the dynamic approach based on lies, the authors study
whether users can determine which query answers are reliable. A variant of the refusal-based
approach is analyzed and compared with the lying approach.

The B formal method is used specifically to support the design and validation of the
transaction mechanism for smart card applications. The mathematical proofs provide
confidence that the design of the transaction mechanism satisfies the security requirements
[Sabatier99].

An interesting contribution is a model that focuses on modeling the organization in which
information security is developed [Leiwo 99b]. The organization is described in layers of
abstraction. In addition, a notation for expressing security requirements is described, under a
fi-amework of harmonization functions and merging of requirements. A case study that
focuses on the security requirements for sharing of patient data among hospitals and medical
practitioners is described.

3.1.3 Use of Trees for Modeling and Analysis
Several approaches depend on the use of trees for modeling survivability requirements.
Attack trees can be used in requirements elicitation [Ellison 03, Moore 01] and fault trees
have been used in requirements analysis [Helmer 02, Kienzle 98].

The notion of attack trees as a method for modeling attacks has been described extensively in
the literature [Schneier 00]. The work by Ellison and Moore [Ellison 03, Moore 01] explores
the use of attack trees in development of intrusion scenarios, which can then be used to
identify requirements. A small attack tree example is shown in Figure 7.

Although aimed initially at architectural analysis, it is easy to see how attack trees can also be
used to help answer the survivability questions:

• How can we detect an attacker during an attempted attack or after a successful attack?

• How can we recover from any compromise?

• How can we adapt the system so that the intrusion cannot happen again?

Fault trees use a set of special symbols to depict intrusions. The symbols used in the paper
by Helmer et al. are illustrated in Figure 8. Fault trees are used for modeling intrusions and
intrusion steps, such as penetration using buffer overflow, illustrated in Figure 9.

CMU/SEI-2003-TN-013 17

Open Safe

Pick Lock Learn Combo Cut Open Safe
P

Install
Improperly

I

Find Written
Combo Get Combo

From Target

Threaten
I

Blackmail
I

Eavesdrop Bribe
P

P = Possible
I = Impossible

Listen to
Conversation

P

Get Target to
State Combo

I

Figure 7: Attack Tree Example

Rectangle indicates an event to be
analyzed further.

■- Circle represents a basic fault event
,' or primary failure of a component. It
"• requires no further development.

House is used for events that
normally occur in the system. It
represents the continued operation
of the component.

AND gate indicates that all input
events are required to cause the
output event.

Diamond is used for non-primal
events that are not developed further
for lack of information or insufficient
consequences.

OR gate indicates that one or more of
the input events is required to
produce the output event.

Oval indicates a condition. It defines
the state of the system that permits a ^
fault sequence to occur. It may be /
normal or result from failures. / -

Triangle (in SAPHIRE) is a link to
another tree.

Figure 8: Relevant Fault Tree Symbols

18 CMU/SEI-2003-TN-013

(D <D £ I-
m CO u.

i||S
•g ^ =5 UJ
§2 pX
o to f^ Hi
E 'So ^ 111

= c
(D m^
(0 to
(O'CLW
3 •^<
2 £1CL

M.SLoSi

Sag II
&1UUJUJO

■Scobcos

<mmmmmmmmooQOOO

o
i

i

O

CO

.8

I
I
o:

CMU/SEI-2003-TN-013 19

Once fault trees have been used to model intrusions, they can also be used to help identify
requirements for intrusion detection systems, as described in the paper. Alternatively, fault
tree analysis can be used to identify other security and survivability requirements, once the
fault trees have been used to model intrusion behavior. Formal use of fault trees suggests the
possibility of formal analysis, which could be a great advantage in developing a set of

consistent and complete requirements.

The Methodically Organized Argument Tree (MOAT) methodology [Kienzle 98] has
integrated existing techniques into a risk-driven process model. An argument tree
incorporates the desked property, formal proofs, informal reasoning, assumptions, axioms,
lemmas, and component proofs, thus providing a framework for analysis. Tree construction
follows a sequence of steps that incorporates the following processes: Initialization,

Justification, Order of Analysis, Decomposition into Subgoals, Decomposition into
Alternatives, Refinement, Backtracking, Termination Criteria, and Assessment.

3.1.4 Software Cost Reduction

Software Cost Reduction (SCR) is a formal method based on a tabular representation of
specifications, and analysis of the requirements for complex systems. It was originally
developed to document the behavior of the A-7E aircraft [Heninger 78, Heninger 80], and has
been augmented with a tool suite and applied to many complex and safety-critical systems
[Bharadwaj 03, Heitmeyer 96, Heitmeyer 00]. Figure 10 shows the relationship between the
System Requirements Specification (SRS), the System Design Specification (SDS), and the

Software Requirements Specification (SoRS).

r;NAT

System Req.
Specification {

: SYSTEM K

/k
fti * ^£^ Ai.

REQ

sensors actuators

System Design f
Specification ^

Software Req. f
Specification \

input
vars.

!
.A:
>*. SOFTWARE

output
vars.

ii; Input Device;
Interf. Module'

M .'; Device-lndepend.
Module

sOutput Device
Interf. Module-

D IN REQ D_OUT

Figure 10: Relationship Between ttie SRS, the SDS, and the SoRS

20 CMU/SEI-2003-TN-013

This decomposition is commonly used in many large DoD and other government systems.
The SCR notation is used for specification. According to Heitmeyer and Bharadwaj,

'To specify the required system behavior in a practical and efficient manner,
the SCR method uses terms and mode classes. A term is an auxiliary
variable that helps keep the specification concise. A mode class is a special
case of a term, whose values are modes. Each mode defines an equivalence
class of system states, useful in specifying the required system behavior. In
SCR specifications, we often use prefixes in variable name. In SCR
specifications, we often use the following prefixes in variable names: "m" to
indicate monitored variables, "t" for terms, "mc" for mode classes, "c" for
controlled variables, "i" for input variables and "o" for output variables.

"Conditions and events are important constructs in SCR specifications. A
condition is a predicate defined on one or more state variables (a state
variable is a monitored or controlled variable, a mode class, or a term). An
event occurs when a state variable changes value."

Table 4 is an example of an SCR table.

Table 4: Condition Table Defining the Value of Term tRemLL

Mode Class = mcStatus Trac.

Mode Condition

unoccupied true false FM3

occupied mIndoorLL > tCurrentLSVal mIndoorLL < tCurrentLSVal FMl

temp_empty mIndoorLL > tCurrentLSVal
OR tOverride

mIndoorLL < tCurrentLSVal
AND NOT tOverride

FMl,
FM6

tRemLL 0 tCurrentLSVal - mIndoorLL FMl

For survivable systems that require a rigorous specification method, SCR would seem to be a
good choice. It is probably not as useful in the early requirements stages, for example during
elicitation, and may have the most utility in the specification activity that tends to occur
between requirements and design activities.

3.1.5 Requirements Reuse

The promise of requirements reuse is attractive in the information security area. Many
organizations don't really know how to get started in identifying and specifying security
requirements, so the idea of a library of reusable security requirements is very appealing. An
initial approach has been described [Toval 02] and follow-on work is in progress. The
approach describes a possible scheme for a reuse repository and case study examples.

CMU/SEI-2003-TN-013 21

3.1.6 Risk Analysis
One of the challenges in survivable systems has been development of quantitative methods of
assessing risk. Since many organizations are unaware of attacks on their systems, how can
they quantify the risk associated with them? When there is awareness of attacks, it is
typically the virus or worm attacks, scanning, denial-of-service, or other attacks that are easy
to measure using tools. Sophisticated attacks are seldom detected, so how can their risk be
quantified? Without quantifiable risk analysis, how can requirements be developed in a

sensible way to address those risks?

A number of risk analysis methods are currently in use or development. The OCTAVE
method [Alberts 03] provides a framework for survivability risk analysis, but is fairly general
when it comes to requirements. Recent work on multi-attribute risk assessment [Butler 02]
and on a risk-centric decision process [Feather 03] provides some promise in addressing the

risk analysis problem.

OCTAVE risk evaluation has three phases and eight processes. The phases are

• Phase 1: Build Asset-Based Threat Profiles

• Phase 2: Identify Infrastructure Vulnerabilities

• Phase 3: Develop Security Strategy and Plans

The eight processes are

• Elicitation workshop for senior managers

• Elicitation workshop for operational managers

• Elicitation workshop for general staff, information technology staff

• Creating threat profiles

• Identifying key components

• Evaluating selected components

• Conducting the risk analysis

• Developing a protection strategy

The OCTAVE process provides a very thorough risk analysis of existing systems. By and
large, the organization provides the resources for this process, with training and assistance
from external facilitators. It is a major investment for the organization and provides for
ongoing risk analysis. Requirements are not a major focus of the method, which is geared

towards large operational systems.

In multi-attribute risk assessment, a security manager's experience is used to estimate and
then prioritize security risks and the associated security requirements. Case studies suggest

22 CMU/SEI-2003-TN-013

that security managers do a credible job of assessing existing risks, based on data associated
with actual and predicted attacks. This data is then used to help to quantify the possible
negative outcomes, such as lost productivity or public reputation, and using a weighting
scheme, priorities are associated to these risks. An example of these outcome attributes
[Butler 02] is shown in Table 5.

Table 5: Outcome Attributes

Outcome Attribute Rank Assessed Preference Weight

Lost Productivity 1 100 .42

Public Reputation 2 80 .33

Regulatory Penalties 3 40 .17

Lost Revenue 4 20 .08

The risks correspond to threats, which in turn drive risk mitigation strategies that are
embodied in security requirements. The method requires a relatively small level of effort on
the part of the assessor, and has been used in case studies with several organizations.
Security managers provide data and participate in interviews as part of the assessment
activity.

In risk-centric decision processes^ [Feather 03], a three-day workshop is conducted to
identify risks and their mitigation strategies and to decide which mitigation strategies to
pursue. On the first day, objectives, risks, and impacts are identified. On the second day,
mitigation strategies and the corresponding reductions in risk are identified. On the third day,
decision-making is made on which mitigations to perform, which objectives to discard, and
the resources needed to support the strategies. Getting the right set of participants to identify
all of these elements is key, and the ability to come to a decision in a relatively short time is a
significant benefit. A tool (DDP) is provided to support the decision process (see
http://ddptool.jpl.nasa.gov).

Another approach suggests developing requirements based on two dimensions: "determining
information security concern percentages" and "the impact of events and the impact on
services, products and processes" [Gerber 01]. The concerns are confidentiality, integrity,
availability, auditability, and authenticity. The impacts resulting from a security incident are
considered in the second dimension. Examples are given. In this approach, it is suggested

Feather, M. S. & Comford, S. L. "Quantitative Risk-Based Requirements Reasoning." To appear in
Requirements Engineering (Springer-Verlag) in 2003.

CMU/SEI-2003-TN-013 23

that risk analysis is no longer adequate to determine the required level of information

security.

3.1.7 Examples of Security Requirements
There are a number of papers in the literature that have provided examples of security
requirements. Some of these have been discussed in the previous sections. However, there
are others that don't quite fit the earlier discussion, but are nevertheless noteworthy. We
include some of these here. These papers tend to provide security requirements examples for
specific domains. These include the domains of ATM network security [Leitold 99],
electronic commerce security [Labuschagne 00], security requirements for e-business
processes [Knorr 01], security requirements for management systems using mobile agents
[Reiser 00], mediation [Biskup 99], and support for multi-level secure and real-time

databases [Son 98].

3.2 Selection of Promising Methods and Practices for Security
and Survivability Requirements Engineering

In our work with acquirers of systems and with practitioners, we find that many organizations
do not have a good awareness of security and survivability requirements. They do not
identify them during requirements development, so the question of analysis, specification,
and verification is a moot point. We therefore feel that elicitation is a good place to start our
quest for survivable requirements engineering. Misuse/abuse cases, security use cases, and
attack trees show some promise for this purpose. In addition, techniques such as structured

interviews, focus groups, and prioritization techniques will play a role.

The earlier work in partitioning survivable requirements mto classes of requirements should
prove useful in breaking down the problem. We also believe that formal specification
methods such as model checking and SCR will play a role, leading to formal design methods
such as flow-service-quality (FSQ) [Linger 02, Linger 03] and the associated function

extraction methodology (FX).

24 CMU/SEI-2003-TN-013

4 Summary and Plans

Although we have discussed many potentially useful techniques, our discussion is not
exhaustive. We hope that future reports will document additional interesting and useful
techniques that are already available. In addition, much research remains to be done in this
area. While many of the methods seem promising for survivable system requirements, an
integrated methodology that covers all survivable system requirements needs (from
elicitation to analysis, specification, and validation, incorporating requirements management)
does not exist at present. Many of the methods that are used in different requirements
activities need to be tested on survivable systems problems as well. Of course, in any
survivable system, there is the question of scale. Large, unbounded systems need
methodological and tool support that goes beyond small research artifacts.

Our plan is to test selected methodologies as a proof-of-concept on survivable systems
projects, and to refine promising methods as a result. An adjunct activity is to use these
building blocks to develop an end-to-end process for survivable system requirements
engineering. Since many operational systems problems are traceable to requirements
problems, we hope to enable development of systems that are more survivable by
successfully using requirements engineering methods in their development.

CMU/SEI-2003-TN-013 25

References

[Alberts 03]

[Alexander 03]

[Bharadwaj 03]

[BIskup 99]

[Biskup 01]

[Butler 02]

[Clark 93]

[Davis 93]

Alberts, C. & Dorofee, A. Managing Information Security Risks: The
OCTAVE Approach. New York: Addison Wesley, 2003.

Alexander, I. "Misuse Cases: Use Cases with Hostile Intent." IEEE

Software 20, 1 (January-February 2003): 58-66.

Bharadwaj, R. "How to Fake a Rational Design Process Using the
SCR Method," 3-4. SEHAS'03 International Workshop on Software

Engineering fi>r High Assurance Systems. Portland, OR, May 9-10,

2003. Pittsburgh, PA: Carnegie Mellon University, Software

Engineering Institute, 2003.
<http://www.sei.cmu.edu/community/sehas-workshop/bharadwaj/>.

Biskup, J.; Flegel, U.; & Karabulut, Y. "Secure Mediations:
Requirements and Design," 127-140. Database Security XII: Status
and Prospects. Edited by S. Jajodia. Twelfth International Working
Conference on Database Security, Chalkidiki, Greece, July 15-17,
1998. Norwell, MA: Kluwer Academic Publishers, 1999 (ISBN

0792384881).

Biskup, J. & Bonatti, P. A. "Lying Versus Refiisal for Known Potential
Secrets." Data and Knowledge Engineering 38 (2001): 199-222.

Butler, S. A. & Fischbeck, P. "Multi-Attribute Risk Assessment."
SREIS 2002, Second Symposium on Requirements Engineering for
Information Security, Raleigh, NC, October 16, 2002, published by
CERIAS, Purdue University, Lafayette, IN.

Clark, R. K.; Greenberg, I. B.; Boucher, P K.; Lund, T. F; Neumann,
P G; Wells, D. M.; & Jenson, E. D. "Effects of Multilevel Security on
Real-time Applications," 120-129. Proceedings of the 9th Annual
Computer Security Applications Conference. Orlando, FL, December
6-10, 1993. Los Alamitos, CA: IEEE Computer Society Press, 1993.

Davis, Alan. Software Requirements: Objects, Functions, & States.
Englewood Cliffs, N.J: Prentice-Hall Inc., 1993.

26 CMU/SEI-2003-TN-013

[Ellison 97] Ellison, R. J.; Fisher, D.; Linger, R. C; Lipson, H. E; Longstaff, T.; &
Mead, N. R. Survivable Network Systems: An Emerging Discipline
(CMU/SEI-97-TR-013, ADA341963). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997.
<http://www.sei.cmu.edu/publications/documents/97.reports/97tr013
/97tr013abstract.html>.

[Ellison 03] Ellison, R. J. & Moore, A. P. Trustworthy Refinement Through
Intrusion-Aware Design (CMU/SEI-2003-TR-(X)2). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tr002.html>.

[Feather 03]

[Firesmith 03a]

Feather, M. S. "A Risk-Centric Decision Process." Software
Engineering for High Assurance Systems (SEHAS) 2003, Portland,
OR, May 9-10, 2003. <http://www.sei.cmu.edu/community
/sehas-workshop/feather/>.

Firesmith, D. G, "Security Use Cases." Journal of Object Technology
2, 3 (May-June 2003): 53-64.
<http://www.jot.fm/issues/issue_2003_05/column6>.

[Firesmith 03b] Firesmith, D. G "Engineering Security Requirements." Journal of
Object Technology 2,1 (January-February 2003): 53-68.
<http://www.jot.fm/issues/issue_2003_01/column6>.

[Fu 01] Fu, Z.; Wu, S. F.; Huang, J.; Loh, K.; Gong, R; Baldine, I.; & Xu, C.
"ffSec/VPN Security Policy: Correctness, Conflict Detection and
Resolution," 39-56. Policies for Distributed Systems and Networks.
Edited by M. Sloman, J. Lobo, and E. C. Lupu. Proceedings of the
International Workshop, POLICY 2001, Bristol, UK, Jan. 29-31, 2001.
Berlin, Germany: Springer-Verlag, 2001 (ISBN 3540416102; Lecture
Notes in Computer Science Vol. 1995).

[Gerber 01] Gerber, M.; von Solms, R.; & Overbeek, P. "Formalizing Information
Security Requirements." Information Management and Computer
Security 9, 1 (2001): 32-37.

[Heitmeyer 00] Heitmeyer, C. & Bharadwaj, R. "Applying the SCR Requirements
Method to the Light Control Case Study." Journal of Universal
Computer Science 6,1 (2000): 650-678.

CMU/SEI-2003-TN-013 27

[Heitmeyer 96]

[Helmer 02]

[Heninger 78]

[Heninger 80]

[Kienzle 98]

[Knorr 01]

[Labuschagne 00]

Heitmeyer, C; Jeffords, R. D.; & Labaw, B.G "Automated
Consistency Checking of Requirements Specifications." ACM
Transactions on Software Engineering and Methodology 5, 3 (April-

June 1996): 231-261.

Helmer, G; Wong, J.; Slagell, M.; Honavar, V.; Miller, L.; & Lutz, R.
"A Software Fault Tree Approach to Requirements Analysis of an
Intrusion Detection System." Requirements Engineering 7,4

(December 2002): 207-220.

Heninger, K.; Pamas, D. L.; Shore, J. E.; & Kallander, J. W. "Software
Requirements for the A-7E Aircraft." Technical Report 3876.

Washington, D.C.: Naval Research Laboratory, 1978.

Heninger, K. L. "Specifying Software Requirements for Complex
Systems: New Techniques and their Application." IEEE Transactions

on Software Engineering SE-6, 1 (January 1980): 2-13.

Kienzle, D. M. & Wulf, W. A. "A Practical Approach to Security
Assessment," 5-16. Proceedings of the 1998 Workshop on New
Security Paradigms. Charlottesville, VA, Sept. 22-26, 1998. New
York, NY: ACM, 1998 (ISBN 0897919866).

Knorr, K. & Rohrig, S. "Security Requirements of E-Business
Processes," 73-86. Towards the E-Society: E-Commerce, E-Business,
and E-Govemment. Edited by B. Schmid, K. Stanoevska-Slabeva, and
V. Tschammer. First IFIP Conference on E-Commerce, E-Business, E-
Govemment, Zurich, Switzeriand, Oct. 4-5, 2001. Norwell, MA:
Kluwer Academic Publishers, 2001 (ISBN 0792375297).

Labuschagne, L. "A Framework for Electronic Commerce, Security,"
441-50. Information Security for Global Information Infrastructures.

Edited by S. Qing and J. H. P. Eloff. Fifteenth Annual Working
Conference on Information Security, Beijing, China, Aug. 22-24,
2000. Norwell, MA: Kluwer Academic Publishers, 2000 (ISBN

0792379144).

[Leitold 99] Leitold, H. & Posch, R. "ATM Network Security: Requirements,
Approaches, Standards, and the SCAN Solution," 191-204.
Intelligence in Networks. SMARTNET '99. Pathumthani, Thailand,
Nov. 22-26,1999. Boston, MA: Kluwer Academic Publishers, 1999.

28 CMU/SEI-2003-TN-013

[Leiwo 99a]

[Leiwo 99b]

[Leveson 95]

[Linger 98]

[Linger 02]

[Linger 03]

Leiwo, J. "A Mechanism for Deriving Specifications of Security
Functions in the CC Framework," 416-425. 70"" International
Workshop on Database and Expert Systems Applications. Florence,
Italy, Sept. 1-3, 1999. Berlin, Germany: Springer-Verlag, 1999.

Leiwo, J.; Gamage, C; & Zheng, Y. "Organizational Modeling for
Efficient Specification of Information Security Requirements," 247-
260. Advances in Databases and Information Systems: Third East
European Conference, ADBIS'99. Maribor, Slovenia, Sept. 13-16,
1999. Beriin, Germany: Springer-Veriag, 1999 (Lecture Notes in

Computer Science Vol. 1691).

Leveson, N. G Safeware: System Safety and Computers. Reading,

MA: Addison-Wesley, 1995.

Linger, R. C; Mead, N. R.; &Lipson, H. F. "Requirements Definition
for Survivable Systems," 14-23. Third International Conference on
Requirements Engineering. Colorado Springs, CO, April 6-10,1998.
Los Alamitos, CA: IEEE Computer Society, 1998.

Linger, R. C; Walton, G; Pleszkoch, M. G; & Hevner, A. R. "Flow-
Service-Quality (FSQ) Requirements Engineering for High Assurance
Systems." <http://www.cert.org/archive/pdf/FSQengineeringRHAS-

02paper.pdf> (2002).

Linger, R. C. Applying Flow-Service-Quality (FSQ) Engineering
Foundations to Automated Calculation of Program Behavior
(CMU/SEI-2003-TN-003, ADA412025). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports

/03m003.html>.

[l\/lcDermott 99] McDermott, J. & Fox, C. "Using Abuse Case Models for Security
Requirements Analysis," 55-64. Proceedings 15"' Annual Computer
Security Applications Conference. Scottsdale, AZ, Dec. 6-10, 1999.
Los Alamitos, CA: IEEE Computer Society Press, 1999.

[l\/lcDermott 01] McDermott, J. "Abuse-Case-Based Assurance Arguments," 366-374.
Proceedings 17"'Annual Computer Security Applications Conference.

New Orieans, LA, Dec. 10-14, 2001. Los Alamitos, CA: IEEE

Computer Society Press, 2001.

CMU/SEI-2003-TN-013 29

[Mead 01]

[Mead 02]

[Mendiratta 96]

[Mills 92]

[Moore 01]

[Musa 87]

[Ortalo 98]

[Paulk 94]

Mead, N. R.; Linger, R. C; McHugh, J.; & Lipson, H. F. "Managing
Software Development for Survivable Systems." Annals of Software

Engineering 11 (2001): 45-78.

Mead, N. R. "Survivability Requirements: How Can We Assess Them
Versus Other Requirements for High Assurance Systems," 65-68.
International Workshop on Requirements for High Assurance Systems,
Essen, Germany, Sept. 9, 2002. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2002.

Mendiratta, V. B. "Assessing the Reliability Impacts of Software
Fault-Tolerance Mechanisms," 99-103. Proceedings of the 7th

International Symposium on Software Reliability Engineering. White

Plains, NY, Oct. 30-Nov. 2, 1996. New York, NY: IEEE Computer

Society Press, 1996.

Mills, H. D. "Certifying the Correctness of Software," 373-381.
Proceedings of the 25th Hawaii International Conference on System
Sciences, Vol. 2. Kauai, Hawaii, Jan. 7-10, 1992. Los Alamitos, CA:
IEEE Computer Society Press, 1992.

Moore, A. P.; Ellison, R. J.; & Linger, R. C. Attack Modeling for
Information Security and Survivability (CMU/SEI-2001-TN-OOl,
ADA388771). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2001. <http://www.sei.cmu.edu
/publications/documents/01.reports/01tn001.html>.

Musa, J. D.; lannino. A.; & Okumoto, K. Software Reliability:
Measurement, Prediction, and Application. New York, NY: McGraw-

Hill, 1987.

Ortalo, R. "A Flexible Methods for Information System Security
Policy Specification," 67-84. 5"" European Symposium on Research in
Computer Security - Proceedings. Louvain-la-Neuve, Belgium, Sept.
16-18. Berlin, Germany: Springer-Verlag, 1998. (Lecture Notes in

Computer Science Vol. 1485.)

Paulk, M. C; Weber, C. V; Curtis, B.; & Chrissis, M. B. The
Capability Maturity Model: Guidelines for Improving the Software

Process. Addison-Wesley, Reading, MA, 1994.

30 CMU/SEI-2003-TN-013

[Reiser 00] Reiser, H. & Vogt, G "Security Requirements for Management
Systems using Mobile Agents," 160-165. Proceedings ISCC2000—
Fifth IEEE Symposium on Computers and Communications. Edited by
S. Tohme and M. Ulema. Antibes, France, July 4-7, 2000. Los
Alamitos, CA: IEEE Computer Society, 2000 (ISBN 0769507220).

[Sabatier 99] Sabatier, D. & Lartigue, R "The Use of the B Formal Method for the
Design and Validation of the Transaction Mechanism for Smart Card
Applications," 348-368. FM '99: World Congress on Formal Methods,
Vol. I. Toulouse, France, Sept. 20-24, 1999. Berlin, Germany:
Springer-Verlag, 1999. (Lecture Notes in Computer Science Vol.
1708.)

[Sawyer 01]

[Schneier 00]

[SEI 97]

[SEI02]

[Sindre 00]

[Sindre 02]

Sawyer, P. & Kotonya, G Ch. 2, "Software Requirements," 9-34.
Guide to the Software Engineering Body of Knowledge, Trial Version
1.00 (SWEBOK). Los Alamitos, CA: IEEE Computer Society, 2001.
<http://www.swebok.org/>.

Schneier, B. Secrets and Lies: Digital Security in a Networked World.

New York, NY: John Wiley & Sons, 2000.

Software Engineering Institute. "Requirements Management -
Software Capability Maturity Model (SW-CMM) V2.0 Draft."
<http://www.sei.cmu.edu/cmm/draft-c/c21rqm.html> (1997).

Software Engineering Institute. International Workshop on

Requirements for High Assurance Systems, Essen, Germany,
September 9,2002. Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002.

Sindre, G & Opdahl, A. "Eliciting Security Requirements by Misuse
Cases," 120-130. Proceedings of TOOLS Pacific 2000. Sydney,
Australia, Nov. 20-23, 2000. Los Alamitos, CA: IEEE Computer
Society Press, 2000.

Sindre, G; Opdahl, S.; & Brevik, G "GeneraUzation/Specialization as
a Structuring Mechanism for Misuse Cases", SREIS 2002, Second

Symposium on Requirements Engineering for Information Security,
Raleigh, NC, Oct. 16, 2002, CERIAS, Purdue University, Lafayette,
IN.

CMU/SEI-2003-TN-013 31

[Son 98] Son, S. H. & Chaney, C. "Supporting the Requirements for Multi-
Level Secure and Real-Time Databases in Distributed Environments,'
73-91. IFIP '98. Vienna, Austria, Aug. 31-Sept. 4, 1998. Chapman &

Hall, 1998.

[SREIS 02]

[Toval 02]

[Thayer 97]

[Trammell 95]

Second Symposium on Requirements Engineering for Information
Security, Raleigh, NC, October 16, 2002, CERIAS, Purdue University,

Lafayette, IN.

Toval, A.; Nicolas, J.; Moros, B.; & Garcia, F. "Requirements Reuse
for Improving Systems Security: A Practitioner's Approach"
Requirements Engineering 6, 4 (January 2002): 205-219.

Thayer, R. & Dorfman, M. Software Requirements Engineering, 2nd

ed. Los Alamitos, CA: IEEE Computer Society Press, 1997 (ISBN 0-

8186-7738-4).

Trammell, C. J. "Quantifying the Reliability of Software: Statistical
Testing Based on a Usage Model," 208-218. Proceedings of the
Second IEEE International Symposium on Software Engineering
Standards. Montreal, Quebec, Canada, August 21-25, 1995. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

32 CMU/SEI-2003-TN-013

REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public reporting burclen for this collection of information is estimated to average lliour per response, inducting ttie time for reviewing instructions, searcfiing
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this Ixjrden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget. Papenivori< Reduction Project (0704-0188). Washington, DC 20503.
1. AGENCY USE ONLY | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

(Leave Blank) September 2003
4. TITLE AND SUBTITLE

Requirements Engineering for Survivable Systems
6. AUTHOR(S)

Nancy R. Mead
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Camegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQESC/XPK
5 Eglin Street
HanscomAFB,MA01731-2116

11. SUPPLEMENTARY NOTES

Final
5. FUNDING NUMBERS

F19628-00-C-0003

PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2003-TN-013

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

128 DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes the current state of requirements engineering for survivable systems, that is, systems
that are able to complete their mission in a timely manner, even if significant portions are compromised by
attack or accident. Requirements engineering is defined and requirements engineering activities are
described. Survivability requirements are then explained, and requirements engineering methods that may be
suitable for survivable systems are introduced. The report concludes with a summary and a plan for future
research opportunities in survivable systems requirements engineering.

14. SUBJECTTERMS

requirements engineering, survivable systems, survivability
requirements, misuse cases, abuse cases, fomial methods, attack
trees, fault trees. Software Cost Reduction, requirements reuse, risk
analysis

15. NUMBER OF PAGES

42

16. PRICE CODE

17. SECURITY CLASSIRCAT10N

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

