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ABSTRACT 
 
 
 

 The surprise attacks of September 11, 2001, generated a need for more 

sophisticated models for the detection of potential threats. A prerequisite of such models 

is the ability to simulate reduced human performance realistically. Realistic human 

performance should include the very human traits of imperfect perception, imperfect 

cognitive processing, and imperfect behavior. Imperfect or lowered performance caused 

by lack of information, lack of perception, or lack of cognitive resources, is termed 

“reduced human performance” and takes a variety of forms, which simulated entities 

must portray, if they are to be realistic.  

An unexpected event is called a surprise, and surprises are more likely to occur 

when performance is reduced. Thus surprises may be seen as a by-product of reduced 

human performance. A sophisticated cognitive model should generate surprises and 

unexpected outcomes as part of its portrayal of complex problem domains. 

Current cognitive models not only lack flexibility and realism, they fail to model 

individual behavior and reduced performance. This research analyzes current cognitive 

theories (namely, symbolism, connectionism, and dynamicism). We then hypothesize that 

reduced human performance can be best modeled as a complex adaptive system. The 

resulting multi-agent model Reduced Human Performance Model (RHPM) implements 

reactive agents (following a notion of Dr. Chris Wicken’s Multiple Resource Model) 

competing for cognitive resources. Lack of resources is used to trigger the simulation of 

imperfect perception and imperfect cognition.  

The developed multi-agent system generates adaptive and emergent behavior. The 

simulation system is calibrated with human experimental data in scenarios involving 

vigilance decrement, wherein vigilance is decreased during the first 30 minutes of a 

screening task. RHPM is validated against previous unknown vigilance task scenarios.  

RHPM generates realistic reduced human performance with a new cognitive 

modeling hypothesis. Its use for computer generated forces (i.e. radar screen operator) 

improves the realism of simulation systems by adding human like reduced performance.  
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This research’s main contribution is the development of a well suited tool to 

mediate between vigilance theories such as signal detection theory and experimental data. 

It generates insights creating likely hypotheses to improve the theories.  
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I. INTRODUCTION  
 
 
 

A. THESIS STATEMENT 

Reduced human performance resulting from a sustained attention task can be 

modeled as a complex adaptive system (CAS) and the resulting computational model can 

be shown to approximate empirical human performance data under similar conditions. 

B. MOTIVATION 

The ruling to kill the Americans and their allies—civilians and military—
is an individual duty for every Muslim who can do it in any country in 
which it is possible to do it, in order to liberate the al-Aqsa Mosque and 
the holy mosque from their grip, and in order for their armies to move out 
of all the lands of Islam, defeated and unable to threaten any Muslim. This 
is in accordance with the words of Almighty God, "and fight the pagans 
all together as they fight you all together," and "fight them until there is no 
more tumult or oppression, and there prevail justice and faith in God.”  
(Osama Bin Laden, Text of Fatwah Urging Jihad Against Americans. 
Published in Al-Quds al-'Arabi on February 23, 1998) 

The motivation for this work is steered by the attacks of September 11, 2001. Our 

research focus is aimed to support the war against terrorism. We hope to simulate 

potential outcomes and identify blind spots, thereby helping to prevent terrorist acts. 

Previous simulation systems have not been able to predict unlikely, but very dangerous, 

terrorist actions. Because the September 11 attacks came as a surprise, we focus our 

research on the unexpected, with questions such as: 

• How can we model surprises?  

• How can we categorize surprises? 

• What factors and kinds of performance reductions lead to blind spots?  

We claim that by employing composite-agent technology with a new cognitive 

model based on complex adaptive systems theory, we can achieve greater, unbiased 

insights into problems of human performance. Another expected improvement is implicit 

in the reality that complex adaptive systems produce emergent behavior that is often 

synonymous with surprise. 
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John Holland, a founder of CAS theory, said: 

I just love these things where the situation unfolds and I say,’ Gee whiz! 
Did that really come from these assumptions!?’ Because if I do it right, if 
the underlying rules of evolution of the themes are in control and not me, 
then I’ll be surprised. And if I’m not surprised, then I am not very happy, 
because I know I’ve built everything in from the start. (Waldrop 1992, 
p.152). 
 

The next section explains the background and shows a possible path towards 

developing a new cognitive model. 

C. PROBLEM STATEMENT 

Surprise, when it happens to a government, is likely to be a complicated, 
diffuse, bureaucratic thing. It includes neglect of responsibility so poorly 
defined or so ambiguously delegated that action gets lost. It includes gaps 
in intelligence, but also intelligence that, like a string of pearls too 
precious to wear, is too sensitive to give to those who need it. It includes 
the alarm that fails to work, but also the alarm that has gone so often that it 
has been disconnected. It includes the unalert watchman, but also the one 
who knows he'll be chewed out by his superior if he gets higher authority 
out of bed. It includes the contingencies that occur to no one, but also 
those that everybody assumes somebody else is taking care of. It includes 
straightforward procrastination, but also decisions protracted by internal 
disagreement. It includes, in addition, the inability of individual human 
beings to rise to the occasion until they are sure it is the occasion - which 
is usually too late. (Unlike movies, real life provides no musical 
background to tip us off to the climax). Finally at Pearl Harbor, surprise 
may include some measure of genuine novelty introduced by the enemy, 
and possibly some sheer bad luck. 
The results, at Pearl Harbor, were sudden, concentrated, and dramatic. The 
failure, however, was cumulative, widespread, and rather drearily familiar. 
This is why surprise, when it happens to a government, cannot be 
described just in terms of startled people. Whether at Pearl Harbor or at 
the Berlin Wall, surprise is everything in a government's (or in an 
alliance's) failure to anticipate effectively. 
(Schelling 1962, p. I) 

The attacks of September 11, 2001, showed not for the first time in Western 

history, a need for threat-analysis simulation models that, unlike current models, are 

capable of generating or revealing surprises, unintended consequences, and blind spots 

(Smith 2002).   
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Israel had suffered a surprise attack in 1973. Egypt and Syrian forces attacked a 

somewhat ill-prepared Israeli defense force. Intense retrospection led to the conclusion 

that there was no single cause for the victim’s surprise. Chorev concluded that  

Israel deceived itself: the adherence to the “conception”, the faith in its 
military deterrence power, the unwillingness to believe that the Arabs 
would take so great risks and the “wishful thinking” all of these, rather 
than deception, contributed to its crucial surprise. 
 

Chorev mentioned three safeguards to ward off surprise attacks: 

1. Increase awareness of limitations- to the nature of judgmental biases and 
the limitations of the intelligence process; 

2. Improving the formation of hypotheses – in order to increase the perceived 
likelihood of alternative interpretations and scenarios that may sensitize 
analysts and decision makers to discrepant information; 

3. Improving information processing – especially by using quantitative and 
empirical methods to facilitate the information process.(Chorev 1996, 
p.23) 

 

Different types of simulation models, taking these safeguards into account, are 

needed to support analysts evaluating potential threats to individuals, organizations and 

even societies. One common technique in intelligence analysis use is “backward 

thinking”, in which the analyst envisions an outcome and traces how this outcome might 

have become possible (Heuer 1999). A model that generates potential outcomes or 

hypotheses and provides an event trace would be an invaluable tool. To provide a benefit, 

this model has to generate outcomes that surprise the analyst and further his critical 

thinking. To find surprise in a specific context, two kinds of conditions must be modeled: 

• Logical conditions that determine whether the surprising action or 

outcome is physically possible, and therefore credible. 

• Subjective conditions: 

o The target must have a weakness he/she was ignorant of. 

o The opportunist must be motivated in such a way as to cause him 

to discover the weakness and exploit it. 
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Currently there are no cognitive models that accommodate subjective conditions. 

The National Research Council report on modeling human and organizational behavior 

states: 

Even the best of them [cognitive models] assume ideal human behavior 
according to doctrine that will be carried out literally, and rarely take 
account of the vagaries of human performance capacities (Pew and Mavor 
1998, p.34).  

 

Current cognitive models have several identified weaknesses. The council’s report 

and other sources describe those in detail (Pew and Mavor 1998; Ritter, Shadbolt et al. 

1999). A major criticism to rule-based approaches, for example, is that these systems are 

mechanistic, brittle, and unable to cope with unforeseen events.  

Another major weakness is stated in a psychological bulletin: 

Cognitive Psychology has developed as a domain in which basic rules of 
human information processing are investigated. This kind of approach 
often neglects the existence and importance of individual differences. At 
best, such differences are regarded as troublesome though not much 
interesting source of variation of results observed in various cognitive 
tasks. The psychology of individual differences, on the other hand, has 
developed as a domain in which differentiation of human traits as well as 
intercorrelation between them, are of basic interest. This approach usually 
neglects cognitive processes underlying human traits, although one can 
argue that traits are just behavioral expressions of elementary cognitive 
and physiological processes. It seems that combination of the processual 
approach, typical of experimental cognitive psychology, with the 
correlational approach, typical of the psychology of individual differences, 
is of utmost necessity. Only through such combination is it likely to obtain 
valid theoretical models, which would be able to link variables from the 
domain of temperament, personality, and cognition. (Nêcka and Szymura 
2001, p.159). 

From our perspective there are two main weaknesses to overcome to meet the 

requirements for threat-analysis simulation models: 

1) Current cognitive models generate neither adaptation1 nor emergent 

behavior2, which are essential features of individual human behavior 

modeling. 
                                                 

1 Adaptation is defined as a process whereby an organism fits itself to its environment( after : Holland, 
Holland, 1995). 
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2) Current cognitive models do not model individual human-performance 

reduction, which leads to homogenous, predictable, and unrealistic model 

behavior. 

We hypothesize that we can overcome these weaknesses by using complex 

adaptive systems theory as the foundation for a new cognitive architecture. The expected 

advantages are the simulation of autonomous, emergent, flexible, self-explaining, 

adaptive, dynamic and robust behaviors.  

Modeling surprises and blind spots requires an indirect approach3 that helps us 

explore a wider problem domain. Classical direct approaches4 often have a biased 

confined area (box) of analyst expectations. The boundaries of direct approaches are 

predetermined by the modeler and represent the degrees of freedom of the model. This 

type of approach has been used very successfully for linear problem domains. Non-linear 

problem domains often require heuristics in order to define the needed constraints. A 

basic property of CAS is its non-linearity (Holland 1995). Indirect modeling approaches, 

like multi agent system (MAS) modeling, search the entire domain, constrained by 

physical boundaries only. 

D. THE COMPLEX ADAPTIVE SYSTEM HYPOTHESIS (CASH) 

Now we come to the core hypothesis of this research:  

Reduced human performance can be modeled as a complex adaptive system.  

Murray Gell-Mann claimed in 1994 that “Each of us humans functions in many 

different ways as a complex adaptive system” (Gell-Mann 1994). There have been a 

number of researchers (e.g., Melanie Mitchell of Santa Fe Institute, NM, and John 

Sokolowski of Old Dominion University, VA) working implicitly under this assumption. 

                                                 
2 Emergent behavior is a behavior on a higher level that is generated by interactions and behaviors on a 

lower level. Often it is referred to as micro decisions lead to macro behavior. (Schelling, T. C. 1978). 
3 An indirect approach is an approach where there is no pre-programmed path to a solution. 

Autonomous software agents determine their path within physical boundaries. 
4 A direct approach is an approach where the modeler conceives an algorithmic solution to a problem 

and implements that solution into software. 
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Manifestly the hypothesis is not a new insight, but the formulation of what has hitherto 

been implied. However, the hypothesis has not yet been established in cognitive sciences.  

Holland defined a CAS as a nonlinear dynamical system, composed of many 

interacting, hierarchically organized agents, continuously adapting to a changing 

environment. He described a variety of complex adaptive systems, all of which display 

the central enigma of coherence under change. Holland claims that CAS behavior is 

determined by general principles and that CAS typically have lever points.5 He describes 

key properties (aggregation, non-linearity, flows, diversity) and mechanisms (tags, 

internal models, building blocks) central to understanding CAS (Holland 1995; Holland 

1998). We will describe details on complex adaptive systems theory later on.  

The ultimate goal for a cognitive model is an “integrative architecture that 

subsumes all or most of the contributors to human performance capacities and 

limitations” (Pew and Mavor 1998). It appears to be widely accepted that human 

behavior can be modeled with a stage model of information processing. Broadbent 

generated the first ideas with his single resource theory. Kahnemann6 was a major 

proponent of the single-resource model and showed that the cognitive capacity varies 

depending on arousal level and other variables (Wickens 1992). However, research in 

multitasking showed convincing evidence against a single-source theory. Wickens 

expanded the model to include then-current insights of psychology and social sciences. 

He also suggested a widely acknowledged model for the human information process. 

                                                 
5 Lever points are points wherein a small change in the input amount can lead to a large directed 

change. The immune system is a good example of this type of behavior. Upon introduction of a small 
amount of vaccine, the immune system adapts rapidly to develop immunity. 

6 In 2002, Kahnemann was awarded the Nobel Prize for his work in economics. 
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Figure 1.   Stage Model of Human Information Processing (From :Wickens,1992) 
 
Figure 1 shows the different stages for the human information processing. A 

stimulus is stored in the short-term sensory store (STSS) for a few seconds (visual 

stimulus about 1 second, auditory stimulus about 5 sec; echoic memory). If it is not 

perceived within this timeframe, it is not a perception. Perceptions are sometimes 

matched with patterns, likely stored in long-term memory7. This is the encoding stage.  

Next, during the central processing stage, the perception is forwarded to the 

decision- and response-selection system, which uses the working memory to determine 

whether an action should be initiated. The last stage is the response-execution stage, 

which leads either to a vocal or manual response to the perceived stimuli (Wickens 

1992).  

(Pew and Mavor 1998) modified this model slightly to show the elements that 

should be included in an integrative architecture. They left out the STSS and connected 

the perception to long-term memory via working memory. However, a major alteration to 

                                                 
7 One example for a pattern is the recognition of the letter “a”. Long term memory provides different 

types of a’s (A, a,A…)  
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the original stage model is the fact that Pew did not show the attentive resources that are 

central to modeling reduced performance (Pew and Mavor 1998). 

Thus, we will use the original stage model in order to show that all the elements 

of the stage model can be modeled with CAS. The nonlinear interactions between the 

attentive resources have different effects on the information processing stages, which 

eventually result in interesting human-like emergent behavior. 

We define reduced human performance as performance degradation over time. 

The reduction is sometimes quantifiable in measures for speed and/or accuracy. Vigilance 

decrement is an excellent example of performance degradation; our inability to sustain 

attention for a long time is well known to all. Attention depends very much on available 

cognitive resources, and sustained attention is a high-workload task (Wickens 2002). 

Other factors besides time can degrade performance. Stress, heat, sleep 

deprivation, injury, and loss of motivation are among the many factors that may be 

involved. These factors may not have the same effect on a person at all times; some 

effects may even cancel each other out (e.g. fatigue vs. noise) (Davies and Tune 1970; 

Davies and Parasuraman 1982; Warm 1984; Parasuraman 1998). Obviously degradation 

is a dynamic and highly non-linear process, and as a feature of a CAS, well established. 

The next question to answer is whether the structure of the underlying process is to some 

degree hierarchical.   

Wickens’ multiple resource model assumes that cognitive resources can be 

divided into modalities and codes in different stages of the information process. 
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Figure 2.   Multiple Resource Model (After: Wickens, 2002) 

 

Figure 2 is an adaptation of the better known cube that can be seen in many 

textbooks (Wickens 1992; Matthews, Davies et al. 2000; Wickens 2002). It assumes we 

have two main resource pools: one for the perceptual and central-processing phase, and 

one for the response-selection and execution phase. These resources can be divided into 

verbal and spatial, or, respectively, vocal and manual. The structure indicates a 

hierarchical system. The system is also adaptive since we can focus our attention 

(selective attention), thus filtering information to a certain extent. Thus, we adapt our 

cognitive resource consciously or subconsciously (or both) to a changing environment. 

This research claims that Wickens’ multiple resource theory fits into Holland’s definition 

of a complex adaptive system.  

E. APPROACH 

Our research is based on the hypothesis that reduced human performance can be 

modeled as a complex adaptive system. Our hypothesis synthesizes strengths of other 

cognitive theories like connectionism, symbolism, and dynamicism.  
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Instead of using connected neurons in a neural network, we will model agents that 

establish timely restricted connections. Thus we use a loosely coupled8 network of MAS, 

which are an ideal implementation tool for CAS (Axelrod 1997). We inherit the strength 

of the symbolic approach9 by using symbolic representation within our agents. Our 

connected agents will work in parallel, exploiting the main strength of the connectionism 

approach. Connections are established via communication routers, allowing us to cancel 

or add new connections during runtime. This addresses the time dimension utilizing the 

strength of the dynamic approach. 

1.  Reduced Human Performance Model (RHPM) 

Our reduced human performance model first try to capture the effects of vigilance 

decrement, such as that which plagues security screeners at airports. Many studies 

involving reduced visual and auditory vigilance provide real-world data as a reference 

(Matthews, Davies et al. 1990; Koelega 1992; Matthews and Holley 1993; Sawin and 

Scerbo 1995; See, Howe et al. 1995; Gill 1996; Bahri 1994; See, Warm et al. 1997; 

Balakrishnan 1998; Lane and Kasian 1998; Methot and Huitema 1998; Fenner, Leahy et 

al. 1999; Temple, Warm et al. 2000; Zoccolotti, Matano et al. 2000). We conduct our 

own experiment and utilize substantial research data to validate our model. Our approach 

can be visualized as follows: 

 

 

 

 
                                                 

8 Loosely coupled is a software engineering term. It indicates that our architecture is composed of 
modules that can operate independently from each other. Interaction between modules is based on 
communication, thus modules can be exchanged and/or  replaced at any time Bradley, G., A. Buss, et al. 
(1998). "An Architecture for Dynamic Planning and Execution using Loosely Coupled Components." 
Naval Postgraduate School Research Newsletter 8: 1-7. Chapter 4 describes the concept more closely. 

9 Symbolic representations are understandable for the users, whereas the interpretation of weights on 
nodes and connection (as in neural networks) is not intuitive at all. 
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Figure 3.   Conceptual Framework for Reduced Human Performance Model 
 

Figure 3 shows the RHPM framework. Symbolic constructor agents (SCA) 

perceive information (impressions) and relay them to the cognitive module, which holds 

a symbolic interpretation of the outer environment. The symbolic representation depends 

on the inner state of the system. For example, a highly aroused person may perceive 

background noise as a threat, whereas somebody used to the noise might not even register 

this information. The cognitive module is a multi-agent system itself and contains several 

diverse composite agents. This module coordinates intentions with actions and creates 

behavior. The Capacity Manager is a multi-agent system, based on Wickens’ Multiple 

Resource Model, which determines the current arousal level and introduces noise into the 

system. It can also interrupt transitions and access the cognitive module to suppress 

processes. The impression stream is analyzed and, if appropriate, a capacity decrease is 

initiated. It also evaluates capacity demands of planned activities, determining whether 

these activities will be executed.  

The Individual States and Traits (IST) module represents the personality, 

emotions and goals. The GoalAgent deals with conflicting goals and actions. It uses a 

weighting scheme based on personality traits to determine how to act in the face of 

opposing goals. An example for a goal conflict might occur when an airport security 
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screener sees a long line of travelers waiting. He wants to decrease the queue, but also 

wants to find any potential weapons. At some point he detects an item he cannot identify 

but which does not look like a weapon. What will he do? The answer may lie in his 

personality.  

Personality plays a major role in human performance but does not account for 

much of the variance. To go back to our example, there is evidence that introverts 

outperform extraverts when it comes to screening (Methot and Huitema 1998; Gusev and 

Schapkin 2001; Schapkin and Gusev 2001). The Stress Agent will capture the sensitivity 

of human performance to increasing arousal. Evidence suggests that under conditions of 

high arousal, an extrovert will outperform an introvert (Matthews, Davies et al. 1990) and 

probably examine the unidentifiable item. A realistic cognitive model should capture this 

interplay between conditions and personality. 

We strive to create a cognitive model that can identify weaknesses in 

organizations by modeling the effects of reduced human performance. Decisions and 

policies of not-so-rational actors can be exploited to further some malevolent goal, so 

agents must be forced to operate and decide with imperfect knowledge and restricted 

cognitive resources. 

F. CONTRIBUTIONS 

This research strives to suggest a new cognitive model that simulates individual 

reduced human performance. Our reduced human performance model is one of the 

milestones to build a new kind of threat analysis simulation system. 

1.  Contribution Goals  

Our research has four main goals: 

•  To inaugurate a paradigm shift in human behavior modeling that takes 

vagary into account based on convincing evidence from many sources. 

• To propose a framework for the next-generation cognitive architecture 

(reduced human performance model RHPM) and to explain the 

advantages of the proposed framework. 

• To implement parts of the framework to show its contribution by 

modeling the challenging problem of individual vigilance decrement. 
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• To validate the implemented RHPM with quantitative and qualitative 

analysis. 

2.  Scope 

It is beyond the scope of this research to design, implement and validate a new 

cognitive architecture. However, even a partial implementation should be embedded in a 

framework using proper design techniques so that the model can be enlarged at any time. 

The theoretical underpinnings of our hypothesis need to be established by comparing and 

contrasting new findings in different sciences. This research focuses on three main 

points: 

1. Reduced Human Performance can be modeled as a complex adaptive 

system. 

2. The developed model allows the provisional working criteria for a 

complex adaptive system to develop. 

3. The RHP Model is strongly connected to the observations of human 

experiments. 

Our implementation focuses on cognitive resource modeling with respect to 

vigilance tasks. This is meant as a proof-of-concept implementation and should add 

validity to our hypothesis. Considerable future work is required in order to implement the 

full framework. 

G. DISSERTATION OVERVIEW 

The remainder of this dissertation is organized as follows:  

• Chapter II, Related Work, describes current research on complex 

adaptive systems in different fields. It uses a taxonomy to recognize CAS. 

We will show the motivation behind applying CAS theory to this 

particular field and also show the benefits. This chapter also describes 

current state-of-the-art cognitive modeling, pointing out strengths and 

weaknesses of cognitive models in terms of human-performance 

reduction.  
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• Chapter III, Reduced Human Performance, introduces basics of human 

performa nce and relevant studies in vigilance performance. It describes 

the connection between attention, arousal, and vigilance in depth. It then 

shows and explains the main findings of conducted personality type and 

vigilance experiments.  

• Chapter IV, Reduced Human Performance Model (RHPM), details 

how the reduced human performance model and our composite agent map 

onto each other. It states model assumptions and relates the design to 

psychological models. 

• Chapter V, Experiments and Results, describes the design of 

experiments and provides results. It also compares the achievements of 

RHPM’s implementation with current cognitive models.   

• Chapter VI, Conclusion and Follow-on Work, summarizes our 

contributions and addresses future expansions of this work. 
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II.  RELATED WORK 
 

Our research expands into two research areas: complex adaptive systems theory 

and cognitive modeling. In this chapter, we describe applications of CAS theory to 

different sciences and cognitive modeling and its current state of development. We 

include strengths and weaknesses of some cognitive theories and resulting architectures 

in terms of human-performance reduction.  

A.  COMPLEX ADAPTIVE SYSTEMS 

CAS theory has been successfully applied to various sciences like sociology and 

medicine. Historically, many sciences were founded based on Newton’s mechanistic 

explanation of physics. Newton hypothesized that the universe is mechanistic. He 

envisioned the universe as a gigantic mechanic clock, where simple rules govern the 

relationship of the single parts of this clock (Newton 1729). Since his rules were very 

well suited to explain many phenomena (e.g. movement of stars in relation to each other), 

his approach became the overwhelming approach for almost 250 years. Einstein’s 

relativity theory showed where Newtonian physics fell short. Thus physics was probably 

the first science that found complementary theories expanding the mechanistic worldview 

incorporating dynamics of space and time relationships. Dynamic systems constantly 

change into different equilibria and never maintain a particular equilibrium (Gell-Mann 

1994). Meanwhile many other sciences are beginning to use CAS theory looking at their 

domain from a different perspective. Economy is a prime example on how CAS theory 

has changed the perception of a former static theory, called the neoclassical approach. 

The initial research at the Santa Fe Institute (Arthur 1994; Cowan, Pines et al. 1994; 

Arthur 1999) specifically used economics as one application area. We will describe some 

of the applications later. 

1. Definitions for Complex Adaptive System (CAS) 

a. Santa Fe Institute’s Definitions 

In 1995 researchers at the Santa Fe Institute in New Mexico formulated a 

new way of using computer programs for research. John Holland, often called the father 

of genetic systems, explained his ideas on complex adaptive systems during the Ulam 
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series at the institute. Michel Waldrop outlined the ten most important points of 

Holland’s lecture: 

1) First each of these systems is a network of many agents acting in 
parallel. 

2) Furthermore, the control of a complex adaptive system is highly 
dispersed. There is no master neurone in the brain, for example, 
nor is there any master cell within a developing embryo. If there is 
to be any coherent behaviour in the system it has to arise from 
competition and cooperation among the agents themselves. 

3) Second, a complex adaptive system has many levels of 
organisation, with agents at any one level serving as building 
blocks for agents at a higher level. A group of proteins, lipids, and 
nucleic acids will form a cell, a group of cells will form a tissue, a 
collection of tissues will form an organ, etcetera. 

4) Furthermore, said Holland - and this is something he considered 
very important - complex adaptive systems are constantly revising 
and rearranging their building blocks as they gain experience. 
Succeeding generations of organisms will modify and rearrange 
their tissues through the process of evolution. The brain will 
continually strengthen and weaken myriad connections between its 
neurons as an individual learns from his or her encounters with the 
world. 

5) At some deep, fundamental level, all these processes of learning, 
evolution and adaptation are the same. And one of the fundamental 
mechanisms of adaptation in any given system is this revision and 
recombination of the building blocks. 

6) Third, he said, all complex adaptive systems anticipate the future. 

7) More generally, every complex adaptive system is constantly 
making predictions based on its various internal models of the 
world - its implicit or explicit assumptions about the way things 
are out there. Furthermore, these models are much more than 
passive blueprints. They are active. Like subroutines in a computer 
program, they can come to life in a given situation and ‘execute,’ 
producing behaviour in the system. In fact, you can think of 
internal models as the building blocks of behaviour. And like any 
other building blocks, they can be tested, refined, and rearranged 
as the system gets experience. 

8) Finally, said Holland, complex adaptive systems typically have 
many niches, each one of which can be exploited by an agent 
adapted to fill that niche. 



 17 

9) And that, in turn, means that it is essentially meaningless to talk 
about a complex adaptive system as in a state of equilibrium: the 
system can never get there. It is always unfolding, always in 
transition. In fact if the system ever does reach equilibrium, it isn’t 
just stable. It’s dead! 

10) And by the same token, there’s no point imagining the agents in 
the system can optimize their fitness, or their utility, or whatever. 
The space of possibilities is too vast; they have no practical way of 
finding the optimum. The most they can ever do is change to 
improve themselves relative to what the other agents are doing. In 
short, complex adaptive systems are characterized by continuous 
novelty (Waldrop 1992, p.42).  

Murray Gell-Mann10 explains CAS:  

A complex adaptive system acquires information about its environment 
and its own interaction with that environment, identifying regularities in 
that information, condensing those regularities into a kind of “schema” or 
model, and acting in the real world on the basis of that schema. In each 
case, there are various competing schemata, and the results of the action in 
the real world feed back to the influence the competition among those 
schemata (Gell-Mann 1994, p.165). 

These statements indicate that there is no standard definition for complex adaptive 

systems. Some researchers call the CAS approach the third way of doing science (Arthur 

1994; Axelrod 1997). CAS provide insights into a problem domain, but these insights do 

not necessarily forecast certain behaviors or behavioral ranges. Thus CAS do not function 

as “weather forecasting tools” rather, they show possible interaction producing emergent 

behavior that could potentially occur at some point. Next we will describe our own 

provisional definition and define working criterias to discern whether or not a system is a 

complex adaptive system. 

 b. Provisional Working Definition 

 A complex adaptive system consists of many autonomous agents that act 

in parallel with decentralized control. The non-linear interaction between these agents 

leads to adaptive and emergent behavior. The agents are organized in dynamically re-

arranging structures that change into different equilibria and never maintain a particular 

equilibrium. In many systems, the CAS builds an internal (implicit or explicit) model of 

the future. There is a strong sense of path dependency in CAS. This property is built upon 
                                                 

10 Murray Gell-Mann won the Nobel Price in 1969 for his contributions to the discovery of the quark. 
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the interaction of autonomous active entities and the non-linearity of their impact upon 

each other. As the system’s structure evolves it incorporates information that can serve as 

the foundation for new interaction and new behavior. 

 The following taxonomy can be derived from this definition: 

• Does the system consist of autonomous agents that act in parallel? 

• Is the control of the system highly dispersed? 

• Do the agents engage in non-linear interactions? 

• Does the system adapt and does it produce emergent behavior? 

• Is the system changing its structure dynamically?  

• Does the system permanently change into different equilibria? 

• Does the system anticipate the future? 

• Does the system have a strong sense of path dependency? 

Next we will describe some applications of CAS in more detail. We focus on the 

classical examples showing what additional insights they generated. 

2. Ecological Science 

Ecological science is the study of relationships between living things and their 

environments. Complex adaptive systems theory has been used to describe the 

interactions between elements in an ecological system. Examples for the applications 

include salmon habitats as CAS with the SWARM software (Minar, Burkhart et al. 

1996), and livestock breeding industries as CAS (Charteris, Golden et al. 2001).  The 

classic example in ecological science, however, is Sugarscape. 

a. Sugarscape  

Sugarscape models artificial societies in an environment that consists of 

resources (sugar and spices). Simple rules govern the behavior of autonomous agents and 

produce rich emergent behavior. Sugarscape starts with a very simple artificial world 

consisting of a landscape with sugar resources and agents gathering sugar.  

Epstein and Axtell describe their research goal: 

The broad aim of this research is to begin the development of a more 
unified social science, one that embeds evolutionary processes in a 
computational environment that simulates demographics, the transmission 
of culture, conflict, economics, disease, the emergence of groups, and 
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agent co adaptation with an environment, all from the bottom up. Artificial 
society–type models may change the way we think about explanation in 
the social sciences. What constitutes an explanation of an observed social 
phenomenon? Perhaps one day people will interpret the question, “Can 
you explain it?” as asking “Can you grow it?” Artificial society modeling 
allows us to “grow” social structures in silico demonstrating that certain 
sets of micro specifications are sufficient to generate the macro 
phenomena of interest. And that, after all, is a central aim. As social 
scientists, we are presented with “already emerged” collective phenomena, 
and we seek micro rules that can generate them. We can, of course, use 
statistics to test the match between the true, observed, structures and the 
ones we grow. But the ability to grow them—greatly facilitated by modern 
object-oriented programming—is what is new. Indeed, it holds out the 
prospect of a new, generative kind of social science (Epstein and Axtell 
1996, p.5) 

 
 

 
Figure 4.   Sugarscape and Sugarscape with Agents ( From: Epstein and Axtell 1996, 

p.21) 
 

Figure 4 shows the basic setup of Sugarscape, with and without an agent 

population. Sugar-dense areas are yellow; white spaces contain no resources at all. 

Epstein and Axtell embellish this simple scenario by creating more and more behavioral 

rules for their agents. They show emergent phenomena like wealth distribution, social 

networks of neighbors, migration, combat, proto-history, economic networks, and 

disease-transmission networks.  

One example of generated emergent behavior is migration, which shows 

an aggregated behavior that single agents cannot achieve. Agents can move in only four 
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directions (north, south, west, and east). However, the population migrates diagonally in 

waves, from the lower-left corner to the upper right (north east) on their quest for sugar.  

The authors conclude: 

A wide range of important social, or collective, phenomena can be made 
to emerge from the spatio-temporal interaction of autonomous agents 
operating on landscapes under simple local rules (Epstein and Axtell 1996, 
p.172). 

 
The authors provide a CD containing movies of the dynamic changes in 

certain situations. The visual impact is impressively dynamic. This is certainly a gain in 

understanding how certain phenomena in societies arise. It is up to social scientists to 

compare how the model’s rules and assumptions relate to real-world cause and effect. 

Even if real-world factors are more complicated, CAS provides ways and means to 

simulate these phenomena in ecology.  

3. Organizational Science 

Mitleton-Kelly11 provided an overview on how complexity theory changes the 

perspective on organizational science. She criticizes the assumption that individuals 

exhibit average behaviors which becomes predictable. In her opinion, this assumption 

leads to a mechanistic linear model that is counterproductive in providing insights into 

the different emergent phenomena in an organization. The interaction between 

individuals with non-average behavior generates unpredictable, non-linear, and multiple 

outcomes. These traditional models also do not take the system’s sensitivity to initial 

conditions into consideration. Thus important factors for the system’s behavior are 

simply left out of the analysis. The behavior of a dynamic system might be unpredictable, 

but the range of possibilities is limited. She calls the limited range of behaviors “bounded 

instability” (Mitleton-Kelly 1997).  

In the state of bounded instability, strategy and planning acquires a new 
meaning and the emphasis changes from established methodologies to 
new ways of thinking. Some planning tools, such as scenario planning, 
may still be used, but they will need to be applied in a different way and 
seen from a fresh perspective. If uncertainty increases to the point of 
instability, with the associated high turbulence, then all conventional 
planning approaches become totally ineffective. The difference between 

                                                 
11 This paper was awarded Best Paper in Process Management by the British Academy of 

Management  in recognition of its ‘excellence and influence’ in 1997. 
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the states of bounded instability and instability, is that in the transition 
phase, analogous to the edge of chaos, the behaviour may be new but it 
does have pattern and structure. It will be the ability to recognize new 
patterns as they emerge which will provide organisations with a real 
competitive advantage in the future. Thinking in complexity terms helps in 
‘seeing’ the new patterns (Mitleton-Kelly 1997, p.15). 

 
 Marion and Bacon (Marion and Bacon 2000) describe how complexity theory can 

help to gain insights into the phenomenon of extinction. Thus they try to answer the 

question how robust, complex systems can become extinct. Classical reductionist theories 

assume single causes for extinction, like the failure of new organizations (liability of 

newness), improper organizational structure, and organizational inertia among other 

theories. The authors claim that these theories overly simplify the underlying processes 

and that the extinction of a complex systems results from multiple interactive events and 

involved multiple chains of interaction. A system builds meta-aggregates by integrating 

agents that provide raw material to an organization (i.e. suppliers). Other agents that 

potentially have long-range impact on environment, supplies, and  the like build the 

meta-meta-aggregate of an organization. Marion and Bacon hypothesize: 

Extinction or decline (defined as failure to achieve stated or assumed 
goals) can occur when meta- and meta-meta-aggregates are poorly 
developed, they can occur because complex systems are, by definition, 
poised on the brink of disaster, and they occur when networks deteriorate 
(Marion and Bacon, 2000, p.92). 
 
They concluded that poorly developed meta- and meta-meta-aggregates and 

deteriorating networks caused the failure of two businesses. The fit organization did show 

evidence that a robust complex adaptive system could resist extinction due to its ability to 

change, compromise, and adapt. The authors are convinced that a reductionist view on 

the problem of extinction does not provide a holistic view. Success and failure of an 

organization are a function of the dynamics of complex, interactive wholes. 

 The value of a new science certainly depends on its applicability to a specific 

field. Complexity theory already has provided many useful metaphors for organizational 

science. (Lissack 2000). However, its real value has not fully being realized. McKelvey 

challenged complexity theorists to incorporate a systematic agenda linking complexity 

theory development with mathematical or computational model development. 
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Furthermore there needs to be a systematic agenda linking model structures with real 

world structures in order to have an effective way to apply complexity science to 

organizational science (McKelvey 2000). 

4. Economy 

The Santa Fe Institute immediately challenged classical economic theory with 

complexity theory. John Holland and Brian Arthur spent many hours discussing how 

complexity theory could be facilitated in economy (Waldrop 1992). Brian Arthur used 

the El Farol bar problem to show a model of an expectational economy: 

One hundred people must decide independently each week whether to 
show up at their favorite bar (El Farol in Santa Fe). The rule is that if a 
person predicts that more that 60 (say) will attend, he will avoid the 
crowds and stay home; if he predicts fewer than 60 he will go. Of interest 
are how the bar-goers each week might predict the numbers showing up, 
and the resulting dynamics of the numbers attending. Notice two features 
of this problem. Our agents will quickly realize that predictions of how 
many will attend depend on others’ predictions of how many attend 
(because that determines their attendance). But others’ predictions in turn 
depend on their predictions of others’ predictions. Deductively there is an 
infinite regress. No “correct” expectational model can be assumed to be 
common knowledge, and from the agents’ viewpoint, the problem is ill-
defined. (This is true for most expectational problems, not just for this 
example.) Second, and diabolically, any commonalty of expectations gets 
broken up:  If all use an expectational model that predicts few will go, all 
will go, invalidating that model. Similarly, if all believe most will go, 
nobody will go, invalidating that belief. Expectations will be forced to 
differ.  In 1993 I modeled this situation by assuming that as the agents 
visit the bar, they act inductively—they act as statisticians, each starting 
with a variety of subjectively chosen expectational models or forecasting 
hypotheses.  Each week they act on their currently most accurate model 
(call this their active predictor). Thus agents’ beliefs or hypotheses 
compete for use in an ecology these beliefs create. Computer simulation 
showed that the mean attendance quickly converges to 60. In fact, the 
predictors self-organize into an equilibrium  “ecology” in which of the 
active predictors 40% on average are forecasting above 60, 60% below 60. 
This emergent ecology is organic in nature. For, while the population of 
active predictors splits into this 60/40 average ratio, it keeps changing in 
membership forever.  Why do the predictors self-organize so that 60 
emerges as average attendance and forecasts split into a 60/40 ratio? Well, 
suppose 70% of predictors forecasted above 60 for a longish time, then on 
average only 30 people would show up. But this would validate predictors 
that forecasted close to 30, restoring the “ecological” balance among 
predictions. The 40%–60% “natural” combination becomes an emergent 
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structure. The Bar Problem is a miniature expectational economy, with 
complex dynamics (Arthur 1994, p.3). 
 

Arthur claimed that the dynamics of an expectational economy could not have 

been predicted with the traditional forecasting models. These traditional forecasting 

models for the financial market work only well on first order, assuming rational 

expectations. However, second order events like bubbles and crashes cannot be 

accounted for by those theories. Classical expectational theories are useful if the rate of 

change (i.e. updating the forecasting hypotheses) is slow. However, once the rate of 

change is increased, complexity economics is better able to explain the dynamics of an 

economy (Arthur, 1999). 

5. Medical Science 

Medical science provides two good examples of how complexity theory 

provided more inside into the functioning of organ system. We will next describe 

research on the heart and the immune system as complex adaptive systems. 

The view that the heart is merely a muscular pump reactive to external stimuli is 

changing, as this mechanistic view couldn’t explain certain phenomena like myocardial 

ischemia12, a dynamic process associated with both destructive and protective cellular-

response mechanisms. The heart appears to be a complex organ able to self-regulate and 

adapt. Cardiac self-regulation is crucial in coping with myocardial ischemia. Doctors now 

see the heart as a highly interconnected network of cardiac neurons signaling intracellular 

reactions. This network adapts on the cellular level to certain input patterns and executes 

specific output patterns. Transplanted hearts provide an excellent example of the 

emergent property of heart-rate dynamics. Within a hundred days after transplantation, 

the donated organ dynamically reorganizes its rhythm-generating system back to full 

functionality, demonstrating that the transplanted heart is not passive in the assimilation 

process. Even the decentralized heart shows self-regulatory patterns. 

                                                 
12 Myocardial ischemia is a condition in which oxygen deprivation to the heart muscle is accompanied 

by inadequate removal of metabolites because of reduced blood flow or perfusion. 
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This phenomenon has been used as an impetus for reassessing the prevailing 

paradigm of cardiac regulation and adaptation (Kresh, Izrailtyan et al. 2002). Kresh 

concludes: 

The heart is goal-seeking and purposeful organ that can adapt/select a 
course of action out of many possible strategies so as to optimize its 
functional integrity in response to imposed "environmental" stresses. With 
respect to cardiac function this implies homodynamic selection process. 
Indeed, there may be a parallel between the brain acting as a self-
organizing system and the intrinsic cardiac nervous system of the heart 
(Kresh, Izrailtyan et al. 2002, p.5) 
 

The immune system is often used as a prime example for describing a complex 

adaptive system. Holland described the immune system: 

The human immune system is made up of large numbers of highly mobile 
units called antibodies that continually repel or destroy an ever-changing 
cast of invaders called antigens. The invaders – primarily biochemicals, 
bacteria, and viruses – come in endless varieties, as different from one 
another as snowflakes. Because of this variety, and because new invaders 
are always appearing, the immune system cannot simply list all possible 
invaders. It must change or adapt (Latin “ to fit”) its antibodies to new 
invaders that appear, never settling to a fixed configuration. Despite its 
protean nature, the immune system maintains an impressive coherence 
(Holland 1995.p.2). 
 

The theories on the immune system are mostly mechanistic and reductionist 

theories. The prevailing mainstream theory is the clonal selection theory. It states that 

during the prenatal development the self-recognizing capability of the immune system’s 

receptors is removed, and that therefore anything they identify is treated as hostile. This 

view has been challenged because there is evidence that the invading pathogens relate to 

humans on the molecular level (Hershberg and Efroni 2001). 

It is becoming clear that the field of immunology is approaching a 
paradigm shift. It is agreed by most researchers that the immune system is 
a complex system both in its composition and its behavior. However, the 
most popular ideas of immune function treat the immune system in a 
mechanistic and reductionist manner.(Hershberg and Efroni 2001) 
 

The immune system should be viewed as complex adaptive system that sees 

patterns and understands context in order to survive. Grilo implemented an artificial 
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immune system (AIS) based on complex adaptive systems theory. Since it wasn’t 

possible to model all the details of an immune system (e.g. an immune system can have 

more than 107 receptors expressed at any given time) he focused on interactions. He 

explained that a model like his cannot be used for precise quantitative outcomes but for 

studying patterns of behavior. Therefore the occurring interactions have to be realistically 

modeled. His simulation system shows strong resemblance between model and real 

immune system and has been used and validated in various experiments (Grilo, Caetano 

et al. 2000). 

Artificial immune system simulators aim the domain of hypothesis 
generation and experiment prototyping. This class of systems can help to 
design rational therapeutic intervention as well as understanding the 
process of disease. Moreover, the system’s large parameter set can be 
constructed upon what-if hypothesis, otherwise difficult to attain in 
laboratory. The resulting data, obtained from in silico simulations, can 
support clinical trials and diagnosis and further bound in vivo laboratory 
tests to a set of experiments which will probably lead to attractive 
outcomes (Grilo, Caetano et al. 2000,p.18). 
 

These examples show that the application of complexity theory in medical science 

challenges prevailing mechanistic paradigms. However, it better explains phenomena 

previously ignored by theories. More importantly it furthers the understanding and in the 

long run will improve treatments. 

6. Combat Modeling 

For the last century, conventional wisdom regarding the basic processes of war 

and most current models of land combat has been rooted in the idea of Lanchester 

Equations (LE). In 1914, F.W. Lanchester used differential equations to express attrition 

rates on the battlefield. These equations have been modified over the years, but the main 

assumption is that combat is always driven by a force-on-force attrition rate. This theory 

ignores spatial relationships and the human factor in combat. It certainly was not 

adequate to support analysis of the United States Marine Corps’ vision of small, highly 

trained, well-armed autonomous teams working in concert, continually adapting to 

changing conditions and environments. Thus, Prof. Ilachinski challenged the almost 

century-old theory by arguing that land combat can (and should) be modeled as a 
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complex adaptive system. He transferred complexity theory into the military domain and 

showed that land combat properties resemble the properties of CAS (Ilachinski 1997). 

His work has generated a lot of interest in combat modeling especially because tactical 

behaviors such as flank maneuvers, containment, encirclement and “Guerilla-like” 

assaults emerged out of his implementation, called ‘Irreducible Semi-Autonomous 

Adaptive Combat ‘(ISAAC). 

In ISAAC, the "final outcome" of a battle -- as defined, say, by measuring 
the surviving force strengths -- takes second stage to exploring how two 
forces might “co-evolve” during combat. A few examples of the 
profoundly non-equilibrium dynamics that characterizes much of real 
combat include: the sudden “flash of insight” of a clever commander that 
changes the course of a battle; the swift flanking maneuver that surprises 
the enemy; and the serendipitous confluence of several far-separated (and 
unorchestrated) events that lead to victory. These are the kinds of behavior 
that Lanchesterian-based models are in principle incapable of even 
addressing. ISAAC represents a first step toward being able to explore 
such questions (Ilachinski 1997,p.226). 

 

Ilachinski’s work has not died out. Many research projects continue to explore his 

ideas. Project Albert is an international military research effort with many participating 

countries (i.e., United States, Australia, New Zealand, and Germany) (Horne and Lauren 

2000). The MOVES Institute especially has produced many follow-on projects. Hiles, 

VanPutte et al. (2001) provide a good summary of this work. 

The paradigm for combat modeling has fundamentally changed and improved 

insights into the processes. These types of simulation systems will enhance the 

capabilities exploring policy and concept development as well as force structure 

development. 

7. Complexity Theory as Worldview Challenge 

So far we have defined complex adaptive system, explaining the main features of 

the underlying theory. We also showed that the predominant mechanistic wordview has 

successfully been challenged in several areas. Complexity theory has in fact improved the 

realism of simulation systems, like the artificial immune system (AIS) or Ilachinski’s 

ISAAC. It also has furthered the understanding of previously ignored (or taken for 
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granted) phenomenona (e.g. succesfull heart transplantations). In the social sciences, the 

average behavior assumption combined with the rationality assumption of human 

behavior has led to a linear mechanistic worldview (Tosey 2002). By refusing these 

assumptions, economics and organizational sciences have advanced to a better 

understanding of the relationships between individual elements (firms, groups, and 

individuals). A natural extension to this view is to research how individuals are modeled 

and whether complexity theory could improve the understanding of individual based 

behavior. Next we will describe current state of the art in cognitive modeling and show 

how much current models got stuck in a mechanistic rut.  

B. COGNITIVE MODELING 

The next paragraphs roughly describe the past and ongoing research in cognitive 

modeling. After a short history of cognitive modeling, we briefly describe the three main 

approaches (symbolism, connectionism, and dynamicism) and show recent developments 

for some cognitive architectures. This can by no means be a complete description of the 

entire field, but should provide the reader with sufficient background and resource 

information. 

1. Developments in Cognitive Modeling 

In the 1950s, William Dember announced the cognitive revolution. Up to then, 

psychology was mostly influenced by behaviorists. However, many explanations for 

human behavior proved inadequate and the interdisciplinary collaboration among 

different sciences (engineering and, especially, computer science) did much to advance 

cognitive psychology. In 1956 Chomsky, Newell and others defined the application of the 

computer metaphor for cognitive behavior and thereby initiated the rise of cognitive 

psychology (Matthews, Davies et al. 2000). 

Matthews also describes the correlation between cognitive psychology and 

cognitive modeling. He formulates a synthesis of different approaches to cognitive 

modeling and the famous knowledge level, a level introduced by one of the leading 

artificial intelligence researchers, Alan Newell. We will describe Newell’s concept, then 

explain the different approaches, and finally put it back together to show the interfaces 

between the three main levels.  
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In 1972 Newell formulated the computational approach in the famous physical 

symbol system hypothesis (PSSH). Ten years later he introduced a new computer system 

level, namely the knowledge level, to the then-known computer levels. Newell argued 

that there exists a distinct computer system level, lying immediately above the symbolic 

level13, which is characterized by knowledge as the medium and the principle of 

rationality as the law of behavior (Newell 1982, p.99). The principle of rationality states 

that humans behave rationally, always choosing behaviors that contribute to goal 

achievements. This argument seems strange, considering how irrational people can be. 

However, Newell also made clear that the assumption of rationality is weak and that the 

knowledge level is fairly extensible, e.g. with emotions, uncertainty and the like. 

Psychologists used the different levels as an analogue to human behavior. Newell’s 

knowledge model has been used to characterize the depth of explanation that different 

cognitive approaches use (Matthews, Davies et al. 2000) 

Cognitive science was born in the 1970s. It combined psychology, philosophy, 

linguistics, neuroscience, and artificial intelligence. Traditionally, cognitive science is the 

study of knowledge-based processes. Much advancement since then indicates that 

knowledge is only a part of the equation. Other factors like intelligence, emotion, and 

personality play a major role.  

2.  Symbolism Approach to Cognitive Modeling 

In 1975 Putnam, following Turing’s train of thought on Turing machines and 

Newell’s PSSH, was probably the first scientist explaining the computational theory of 

mind.  

The computational theory of mind (CTM) holds that the mind is a digital 
computer: a discrete-state device that stores symbolic representations and 
manipulates them according to syntactic rules; that thoughts are mental 
representations- more specifically, symbolic representations in a language 
of thought; and that mental processes are causal sequences driven by the 
syntactic, but not the semantic properties of the symbol (Wilson and Frank 
2001, p.1341).  
 

                                                 
13 The symbolic level is the interaction level with humans. This level encompasses variables allows 

human beings to “talk” to the computer. 



 29 

This approach to cognitive modeling is best described as symbolic cognitive 

modeling. One of the most criticized features of this theory is its sequential nature. 

Melanie Mitchell described the weaknesses of computational theories in cognitive 

sciences as theories of structure, making claims about the information processing and 

functional structure of mental states.  

Most of these theories assume that information processing consists of 
manipulation of explicit, static symbols rather than the autonomous 
interaction of emergent, active ones. Such theories typically cannot easily 
explain what driving forces and constraints there are on how the mental 
questions can change, what trajectories they can take, their coupling with 
the body and environment, and how high-level symbols can emerge from a 
lower level substrate (Mitchell 2000, p.7). 
 
Later we will describe strengths and weaknesses of a classical symbolic cognitive 

architecture (SOAR).  

3.  Connectionist Approaches to Cognitive Modeling 

Cognitive modeling progressed by including the connectionists’ approaches that 

contrasted symbolic models with huge parallelism.  

Connectionist cognitive modeling is an approach to understanding the 
mechanism of human cognition through the use of simulated networks of 
simple, neuron-like processing units (Wilson and Frank 2001).  
 
These types of models are often used for natural cognitive tasks. A major 

criticism for this theory is that it cannot explain behavior on a level that is understandable 

for humans. So far, applications of the theory cover subconscious functions, thus the 

approach is not yet scalable towards an entire cognitive architecture with current 

technologies.  

Researchers have tried to use the strength of both approaches and build hybrid 

systems. ACT-R is a very prominent hybrid cognitive architecture and we will discuss its 

strengths and weaknesses shortly. 

4.  Dynamical Hypothesis 

One of the latest developments in cognitive modeling is the dynamical hypothesis 

(DH) for cognition. Inspired by connectionists’ models, it contrasts the symbolic 

cognitive modeling hypothesis in several ways. The most noticeable difference is the 
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assumption that cognitive agents are dynamical systems and not digital computers. The 

dynamical hypothesis applies differential equations to understanding cognitive functions. 

The approach considers the innate interaction between the embodiment of the mind and 

the situatedness of human cognition. Port states that:  

The dynamical approach to cognition is also closely related to ideas about 
the embodiment of mind and the environmental situatedness of human 
cognition, since it emphasizes commonalities between behavior in neural 
and cognitive processes on one hand with physiological and 
environmental events on the other. The most important commonality is the 
dimension of time shared by all of these domains. This permits real-time 
coupling between domains, where the dynamic of one system influences 
the timing of another, (Port, 2001, p.1). 
 
There is an overlap between the connectionist and dynamical hypothesis 

approach. However, van Gelder, a former DH advocate,14 explains the differences:  

Connectionist networks are generally dynamical systems, and much of the 
best dynamical research is connectionist in form. However, the way many 
connectionists structure and interpret their systems is dominated by 
broadly computational preconceptions. Conversely, many dynamic models 
of cognition are not connectionist networks. Connectionism is best seen as 
straddling a more fundamental opposition between dynamical and 
classical cognitive science (Wilson and Frank 2001, p.245). 
 
It is evident that certain reduced human performance could be modeled with 

differential equations. It is also obvious that situational awareness (environmental 

situatedness) has to influence the simulated human performance (Endsley 2000). 

However, it appears to be very difficult to scale a model implementing DH to a holistic 

model of human performance. It also appears very doubtful that individual behavior can 

be modeled realistically. This approach would certainly lead into the difficulties combat 

modelers discovered using Lanchester equations. The coefficients used in these equations 

are very critical and it appears impossible to validate them. Expressing individual 

differences as coefficients in an equation15 appears to be impossible to validate too. 

However, the notion of time, which DH uses, is certainly important when modeling 

human performance. Humans tend to have decreased performances over time on task, 
                                                 

14 Email correspondence with Prof. Van Gelder 
15 RHPM certainly has to parameterize individual differences. Additionally different goals and 

behaviors can be used to express individualistic personalities. 
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especially if circumstances (e.g. sleep deprivation) require a lot of compensatory 

resources (Styles 1997).  

5.  Cognitive Theories and Their Levels  
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Figure 5.   Levels of Explanation in Cognitive Science 
 
Figure 5 shows a translation of Newell’s knowledge level model. The biology 

level contains a physical, neuronal representation of cognitive processing. The symbol 

processing level is divided into two layers: 

1) Algorithm, for the formal specification of programs for symbol 

manipulation.  

2) Functional architecture, allowing real time processing operations 

supporting symbol manipulation. 

The knowledge level contains goals, intentions and personal meaning, supporting 

adaptation to external environments. Using this picture, one can explain the different 

modeling approaches based on the level they try to explain. The connectionist approach 

(e.g. PDP ++), as well as the dynamical approach, interface the biology level with the 

symbol processing level (O'Reilly and Munakata 2000). The classical symbolic model 
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approach remains on the symbol processing level (e.g. SOAR). If cognitive models 

include a strategy concept, they also use the interface towards the knowledge level.  

Our approach potentially links the biology level to the knowledge level. In 

psychology this approach is studied in the field of evolutionary psychology (EP). It 

basically claims that there are genetically evolved brain circuits dealing with certain 

problems by creating adaptive behavior. Thus it contrasts the assumptions of the 

symbolicism approach. Buss claims that : 

First, mainstream cognitive psychologists tend to assume that cognitive 
architecture is general purpose and content free. This means that the 
information processing devices that are responsible for food selection are 
assumed to be the same as those for mate and habitat 
selection….Evolutionary psychologists make precisely the opposite 
assumption – that the mind is likely to consist of a large number of 
specialized mechanisms, each tailored to solving a different adaptive 
problem (Buss 1999, p.375). 
 

EP emphasizes human cognitive architecture as a product of evolution, drawing 

on two theories in its attempt to understand the mind: Darwin’s theory of evolution by 

natural selection and Turing’s theory of computation. Darwin’s theory asserts that 

psychological mechanisms are adaptations. Turing’s theory of computation stresses the 

treatment of psychological mechanisms as information processors, and minds as 

computers. EP proponents claim that the physical symbol system hypothesis is an 

incorrect depiction of the human mind because it encapsulates the mind as a universal 

machine. EP works under the assumption that the human mind represents only the Turing 

machine’s finite-state control system. This suggests that the human mind is not like an 

entire personal computer, but rather, similar to a computer’s processor. This processor 

has a small set of instructions and a fixed set of hard-wired operations (suggesting an 

interesting approach to modeling reactive behavior). A processor also possesses memory 

storage, enabling it to perform operations according to an instruction set. A comparison 

of long-term human memory to a hard-wired set of operations, and working memory to a 

registry set, is obvious and engaging. Our research explores EP findings that support the 

proposition that specialized cognitive functions are the result of evolution (Cosmides and 
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Tooby 1998; Crawford and Krebs 1998; Buss 1999; Evans and Zarate 1999; Badcock 

2000; Cartwright 2000). 

If we take this theory for granted, we should be able to identify cognitive 

functions that can be modeled as evolvable systems. These systems adapt to their 

environment and could be characterized as complex adaptive systems. Our approach to 

cognitive modeling tries to synthesize parts of the three described cognitive theories 

(symbolism, connectionism, dynamicism), using all three levels of Newell’s knowledge 

level, leveraging findings of EP, within a complex adaptive system. 

6. State-of-the-Art Cognitive Modeling 

This section briefly describes the current state of the art in cognitive modeling by 

looking at modeling human and organizational behavior. After a summary of the National 

Research Council (NRC) findings in 1998, we will show the development of cognitive 

architectures from 1998. The report provides a far more detailed description (Pew and 

Mavor 1998). The NRC authors used the following taxonomy to characterize the best-

known cognitive architectures:  

• What was the original Purpose? 
• Which sub-models have been implemented? 

§ Sensing and Perception 
§ Working/Short Term Memory 
§ Long-term Memory 
§ Motor 

• What type of knowledge representation is used? 
§ Declarative 
§ Procedural 

• Which higher-level cognitive functions are modeled? 
§ Learning 
§ Situation assessment (overt and inferred) 
§ Planning 
§ Decision making 

• What type of output does it provide? 
• Is it multitasking capable? 

§ Serial/Parallel 
§ Resource representation 
§ Goal/Task Management 

• Can it model multiple humans? 
• How and where does the implementation work? 
• Platform 
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• Language 
• What type of support environment is needed? 
• Have there been validation efforts? 

 
This taxonomy left out some important questions like: 

• Can the cognitive architecture model individual behavior based on a 

personality-trait model (e.g. five factor model)? 

• Does it model individual reduced performance caused by internal or 

external stressors/moderators? 

• How does the model behave when it encounters previously unknown 

situations? 

None of the architectures Pew evaluated has achieved a state where the answer to 

these questions would be positive. The panel addressed general weaknesses and 

shortcomings of these models/architectures, and then recommended short, intermediate 

and long-term research goals. The following statement shows an overall evaluation of 

models currently used in military applications: Thus it is fair to say that, in terms of 

models in active use, the introduction of human behavior is in its infancy(Pew and Mavor 

1998, p.4).  

Many models cannot adapt to mild deviations from the conditions under which 

they were created. Often they produce unrealistic behavior and simplistic responses  to 

these conditions. As pointed out earlier, even the best models assume ideal human 

behavior, strictly following doctrine and not taking human limitations and variation 

performance into account. Hence current models lack the scope of realism that is required 

for modeling human behavior. Human behavior modeling should include the realistic 

modeling of observable individual behaviors. Realism should be increased by adding 

noise (moderator variables such as emotion or workload) to the simulation. This leads to 

the issue of reduced human performance, a major modeling problem that the described 

architectures have not yet addressed successfully. 

Human behavior representation (HBR) should be doctrinal (where applicable), 

realistic, creative and/or adaptive. This implies that non-rigid or non-brittle behavior 

needs to be introduced with a new cognitive architecture. One of the SOAR developers 
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stated that unanticipated situations were the most difficult feature to put into the 

computer program. The panel came to the following conclusion: 

The development of a truly adaptive model that would solve the general 
problem has not been actively pursued (Pew and Mavor 1998, p.44). 
  
Analyzing the general shortcomings of current cognitive models, the connection 

between theory and actual implementation becomes obvious. A mechanistic view 

(theory) on human behavior can only produce mechanistic behavior. We claim that a 

multi-agent system with robust behavior can handle unanticipated situations and hence 

would contribute to solving the general problem. New models of human behavior should 

include judgmental errors, individual differences, time pressure effects, degradation of 

cognitive function such as fatigue effects and (in our case) vigilance decrement, and 

adaptive planning based on learning. The simulated entities should have local situational 

awareness in the sense that they can interpret the state of the surrounding environment 

and compare it to their own goals and desires. However trivial or complex the model 

might be, the purpose is to make explicit:  

• The information provided to the human behavior representation from the 

external world model.  

• The processing (if any) that goes on inside the reduced human 

performance model;16 and  

• the output generated by the model. 

7. Recent Advances in Human Behavior Modeling 

This section describes the development in human behavior modeling since the 

panel’s report. 

a. The Agent-based Modeling and Behavior Representation 
(AMBR) Project 

 U.S. Air Force Research Laboratory (AFRL) took the panel’s 

recommendations and funded a new research program: AMBR Model Comparison 

Project. The goals for this project follow the roadmap, provided by the NRC report: 

• To advance the state of the art in cognitive modeling  
                                                 

16 This clearly requires symbols that we can interpret.  
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• To develop mission-relevant human behavior representation  

• To publish tasks, models and available data to support developers 

• To compare performances of different cognitive architectures 

Four different teams (Air Force Research Laboratory (AFRL) with 

Distributed Cognition (DCOG), Carnegie Mellon University (CMU) with ACT-R, CHI 

Systems with Cognitive Networks (COGNET/iGEN), and Soar Technology with EPIC-

Soar) developed or improved their architectures to fit an air-traffic-controller scenario. 

The scenario was simplistic, but required multi-tasking capability (Gluck and Pew 2001). 

A simulated air traffic controller had to manage the transition of several aircraft from one 

traffic sector to another. A fifth participant (BBN technology) mediated between AFRL 

and the teams. BBN generated different scenarios, collected human data and provided the 

statistical analysis for the model comparisons. The results showed some similarities 

between human data and the models’ behavior (Gluck and Pew 2001). However, 

considering that only eight ACT-R, two Epic-Soar, two COGNET/IGEN and two DCOG 

controllers were simulated, it is doubtful that the results account for the true variability. It 

appears that the significance of the experiment suffered from these low numbers of 

experimental runs.  

Interestingly enough, AFRL stated that the participating modeling 

architectures were challenged and improved as a direct result of their participation in this 

project, which we consider to be an indication of success in advancing the state-of-the-

art. (Gluck and Pew 2001) This clearly supports the NRC report’s assumption (“HBR in 

its infancy”) since even the simple air traffic controller scenario helped improve the 

architectures.  

(1) Distributed Cognition (D-COG) : Next we will describe the 

new cognitive architecture D-COG and other participating cognitive architectures’ 

improvements. D-COG is a new architecture introduced by AFRL. It is a hybrid approach 

between symbolic and connectionist approach. Their approach uses ideas of cognitive 

systems engineering and computational neuroscience. The resulting architecture is 

expected to provide more robust behavior. The architecture is AMBR domain-specific 

and consists of four modules: 
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• A cognitive module that sets goals and prioritizes tasks 
• A procedural memory module that contains aircraft status information and 

knowledge on how to accomplish specific tasks such as transferring an 
aircraft or accepting an aircraft 

• A visual sampling module that controls eye movements and provides for 
perceptual recognition, and 

• A motor module through which the model operates the workstation 
module (Eggleston, Young et al. 2001, p.7). 

 

D-COG compared well against the other architectures, although 

the authors indicated a problem with repeatability of results. In any case, it is evident that 

new cognitive architectures stand a chance against “legacy” cognitive architectures 

indicating that their exploration is a worthwhile research topic.  

(2) States, Operators and Rules (SOAR) : The panel’s short-term 

research goals suggest that hybrid cognitive architectures could improve and advance the 

state of the art. Participating in the AMBR project, SOAR Technology improved SOAR’s 

perception module by combining it with Executive Process-Interactive Control (EPIC). 

The hybrid architecture is now called EPIC-SOAR. Another improvement resulted in an 

architectural change of SOAR’s memory system. The changed architecture incorporates 

Adaptive Control of Thought (ACT-R)’s base-level activation and base-level learning 

concepts.  

The general idea is that when an element in working memory is created, it 
is assigned an initial level of activation; a base-level of activation. The 
activation of a newly created memory immediately begins to decay 
logarithmically with time. When the activation falls below a threshold, the 
memory element is forgotten. Forgetting is implemented by removing a 
decayed memory element from working memory. When an element is 
used, its activation receives a small boost, but the activation immediately 
begins to decay, albeit from the newly boosted level (Chong 2001, p.36). 

 

Thus, the EPIC-SOAR memory system now more closely matches 

the human memory system. Another very interesting approach to improving SOAR is an 

ongoing research effort to use its architecture in single-shooter games. It has been used as 

a  computer-generated  opponent  in  the  game  of Quake (Laird 2000). This has certainly 
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been a very important step forward by combining advances in computer gaming and 

artificial intelligence. SOAR appears to be the most often used cognitive architecture in 

military application. 

SOAR needs many rules to simulate human behavior: e.g. a fixed-

wing aircraft FWA-SOAR uses more than 7000 rules and still needs operator invention to 

realistically model human behavior (Pew and Mavor 1998). This is certainly a 

disadvantage of the system. Although it has a learning mechanism incorporated 

(chunking) it does not claim to generate evolving behavior. Thus, it cannot learn 

completely new rules without supervision. One of our goals is using evolutionary 

algorithms to create emergent behavior that has not been thought of by analysts but is still 

feasible.  

(3) Cognition as a Network of Tasks (COGNET) : CHI Systems 

participated with the Computer Generated Forces CGF-COGNET variant of COGNET. 

CGF-COGNET incorporates several human behavior modeling improvements. A major 

improvement is CGF-COGNET’s capability to model effects of workload on human 

behaviors. During the conducted experiments, CGF-COGNET realistically showed better 

performance than COGNET when the simulated air traffic controller had more support 

during a scenario. CGF-COGNET differs from COGNET by extending the information 

processing mechanism and better capturing the time and accuracy of a process. It also 

incorporated a meta-cognitive component introducing cognitive proprioception 

(situational awareness) and metacognitive controls (manage interruptions and resource 

conflicts). (Zachary 2001)  COGNET has already been used for simulating adversaries in 

submarine war fighting. It can be characterized as a classical symbolic cognitive 

architecture with all the pitfalls described earlier. 

 

(4) Adaptive Control of Thought (ACT-R) : Carnegie Mellon 

University also participated with the ACT-R architecture. Some improvements of the 

architectures were introduced during the AMBR experiment. Since ACT-R’s fidelity was 

clearly below those of significant tasks such as air traffic control, it added effects of time 

pressure and high information demands to its architecture. It now has the capability to 
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model task interruptions and workload effects (Lebiere, Anderson et al. 2001). One of the 

strengths of the model is its goal-oriented structure. This type of structure lends itself to 

modeling individual differences by prioritizing goals differently. However, it has not yet 

incorporated a personality model to capture personal differences. 

(5) AMBR Achievements : AMBR’s fourth goal (comparing 

cognitive architectures) proved to be very difficult. The experimental design was lacking 

clear measures of performance and a sound design strategy. It did not address adaptability 

or flexibility, which we believe is a very important feature of cognitive architectures. It 

also did not address modeling individual performances needed to show the variety of 

human behavior. Obviously the developers had problems getting the experimental data on 

time and the calibration process was short. However, it was certainly worthwhile to see 

how these architectures improved and how their strength and weaknesses were 

discovered. This offered the opportunity to characterize cognitive architectures in relation 

to an application. Ultimately, designers could decide which model makes most sense for 

an application given its particular goals. One can easily imagine that we could use a 

cognitive toolbox that provides the best tools for every application. However, this would 

not only require interoperability but also interchangeability between architectures. With 

respect to the propriety issues it is doubtful that current architectures really “want” or are 

able to achieve this goal.  

AMBR was finished in May 2003. Round 3 and 4 have brought 

improvement to participating architectures. However, Pew concluded that: 

And indeed, one of the features most often missing in the models that have 
been procured to date is a reasonable range of responses to a given 
situation. Attention to individual differences has the potential to contribute 
to improvements in the range of behaviors that models can provide. 
Procurements can require individual differences as a means to obtain a 
range of behaviors (Pew et al, 2003, p.8). 
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b.  Use of Complexity Theory in Cognitive Science 

We now describe research already utilizing complexity theory on the scale 

of cognitive functions. Before we start our discussion we need to define cognitive 

functions. The NRC Report on Modeling Organizational and Human Behavior identified 

five high level cognitive functions (Pew and Mavor 1998): 

• Learning 

• Decision Making 

• Situation Awareness 

• Planning 

• Multitasking 

Guy Boy gave a very concise definition for cognitive functions: 

A cognitive function is simply a human cognitive process that has a role in 
a limited context using a set of resources. By definition, a cognitive 
function enables its user to transform a (prescribed) task into an activity 
(effective task). For instance, identifying situations, coordinating actions, 
making decisions and planning are high-level cognitive functions. (Dr. 
Guy Boy Director of EURISCO, the European Institute of Cognitive 
Sciences and Engineering, 1997) 

He identifies different levels for cognitive functions. Higher level 

cognitive functions include decision-making. Current insights into decision-making led to 

a new focus of research towards naturalistic decision making (NDM). One of the 

important lessons NDM generated was the fact that experts use most of their energy in 

assessing a situation, not in deciding what to do (Klein 1999). It has become obvious that 

most experts use intuitive decisions that the rationality principle cannot explain. Clearly, 

the rationality assumption is a cornerstone in Newell’s PSSH (Newell 1982). Instinctive 

or intuitive decision making shows that sometimes it pays to have hard-wired or reflexive 

behavior. One example is that of a fireman squad leader who went into a burning building 

with his men. He felt that something was wrong and retreated from the building. Seconds 
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later, the building collapsed. Intense investigation helped to explain what happened: The 

squad leader was very experienced with fires of this type. However, he couldn’t explain 

the extreme heat in the building given the distance from the fire. In other words, his 

expectations were not met. The heat was the result of a fire in the basement that hadn’t 

been detected at that point (Klein 1999). We hypothesize that his experience led to the 

development of a specialized cognitive function: a fire-threat detection mechanism. This 

would explain why he didn’t have to think – but just react. 

John Sokolowski conducted research on how to implement the 

Recognition Primed Decision Model by Gary Klein. He compares different approaches 

and concludes: 

A composite agent uses multi-agent system simulation technology to 
implement various cognitive processes of a single entity or agent. It is this 
author’s contention that a composite agent’s decision-making method 
closely matches that described by the RPD model. This close match is 
expected to produce a better implementation of the RPD model 
(Sokolowski 2002). 

 

Sokolowski’s hypothesis directly supports CASH. The composite agent 

technology has been developed utilizing CAS theory. 

Another example for the modeling of a low level cognitive function comes 

from the Santa Fe Institute: Melanie Mitchell, Douglas Hofstadter and James Marshall 

have been working on modeling the subconscious cognitive function of drawing 

analogies. Melanie Mitchell claims that a complex adaptive system is capable of making 

analogies which is a key feature to human intelligence and creativity (Mitchell 2000). 

The original computer program “Copycat” was expanded by James Marshall and it is 

now called “Metacat”. “Metacat” operates in a micro domain, drawing analogies from 

sequences of letters. One example might be 

abc  ⇒  abd 

jkl ⇒   ? 
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“Metacat” then tries to find a creative answer to the question mark. The 

sequences jkm or jkd would certainly be possible answers. The “Metacat” approach is 

sometimes belittled because it appears to be domain restricted. However, the researchers 

claim that they have discovered concepts that will help them to evolve software that can 

act creatively (Marshall 1999).  

This clearly supports our hypothesis. Analogy-making, modeled as a CAS, 

is certainly a part of decision-making; decision making is a high level cognitive function 

that is integral to any cognitive architecture. We claim that a combination of CAS still 

represents a CAS. Thus, the complex adaptive system hypothesis (CASH) seems to be 

the natural conclusion of the claims shown so far. 

C.  SUMMARY 

In this chapter, we explained the general shortcomings of cognitive models. It is 

only recently that researchers have tried to capture more realistic human performance by 

considering workload for air-traffic controllers. The strength of the three approaches 

(symbolicism, connectionism and dynamicism) should be exploited in a synergistic 

effort. We have described cognitive architectures and their current developments to show 

that, despite their ongoing improvements, they are not able to model individual reduced 

performance. We also argued by showing D-COG’s success that new architectures 

performances can compare favourably to legacy cognitive architectures.  

Melanie Mitchell of the Santa Fe Institute, pointed out that cognitive phenomena 

would be understood by rapprochement between “computational talk” and “dynamics 

talk”. She is convinced that the use of complex adaptive systems will create a better 

understanding of human behavior (Mitchell 1998).   

We want to enhance her assumptions by modeling a known human phenomenon 

called vigilance decrement. The next chapter explains this phenomenon and discusses 

current research in this area. 
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III.  REDUCED HUMAN PERFORMANCE 
 

A. INTRODUCTION 

This chapter discusses human performance and its complexity. Although the 

research focuses on reduced human performance, enhanced performance is an integral 

part of performance. Thus, our framework and the cognitive model have to take 

performance variability into consideration.  

There are numerous definitions for human performance. This research uses a 

definition that stems from performance psychology: 

Human beings are born to perform. In a broader sense, we perform every 
time we engage in a goal-directed activity (Matthews, Davies et al. 2000, 
p.1). 

Earlier this research pointed out that most cognitive models assumed ideal 

behavior. Real human performance, however, suffers from breakdowns and failures. 

Human errors play a major role in accidents such as car or airplane crashes. Performance 

effectiveness depends on several factors which are described in the next section. 

B. PERFORMANCE FACTORS AND MEASURES 

1. Human Performance Formula 

Human performance is influenced by external factors (i.e. stress factors like heat 

or noise), by internal factors (i.e., motivation, skills) and certainly by task variables (i.e., 

task difficulty and task time). 
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Figure 6.   Human Performance Formula (Matthews, Davies et al. 2000) 

 
Figure 6 shows a formula used in performance psychology identifying the 

contributing factors for performance variability. Matthews used the work of Blumberg on 

the theory of factors influencing work performance.  

The first is capacity (C), which refers here to all the basic characteristics 
that promote good performance, such as intelligence, learned skills and 
physical fitness. …The second is willingness (W) referring to motivational 
and attitudinal factors, which may allow the person to use their capacities 
to full advantage, or alternatively hinder them in fulfilling their potential. 
The third factor, opportunity (O), refers to the physical and social 
environment provided by the organization: workers need the right tools 
and social support to give their best. Performance reflects the interaction 
of these three factors, so the determinants of work performance can be 
expressed as follows: Performance = f(OxCxW) (Matthews, Davies et al. 
2000, p.14). 
 

In the context of this research the definition of capacity is enhanced by including 

attentional resources and its variability over time. This formula will be transferred to 

demonstrate the non-linearity of vigilance performance and the impact of behavior 

moderators or stressors.  

One of the major challenges to validate human behavior modeling is that there are 

numerous measures of performance and that this is a widely unexplored field of human 

factors. Some of the measures are quantitative and measurable (overt). However, 
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probably the more “interesting” ones are the qualitative measures of human performance 

(covert). The next sections describe both types and gives examples. 

2. Quantitative Measures 

Quantitative measures are overt measures of human performance. Some of these 

are easily measured like reaction time,17 error rate, throughput, accuracy, short term 

memory capacity, long term memory recall. More advanced measures include mental 

arithmetic and physiological measures such as alertness, heart rate, pupil diameter width, 

or measures established with an electroencephalogram (EEG). Parasuraman reports 

different vigilance experiments that used event-related potential (ERP) activity and EEG 

beta waves to determine the state of arousal during vigilance tasks (Parasuraman 1998). 

These measures are normally taken before and after an experiment to establish a baseline.  

However, there are also some normative data used for computerized 

neuropsychological assessment (i.e. closed head injury evaluation) in the medical 

community. One example is metric data taken from U.S. Navy divers: 

The Automated Neuropsychological Assessment Metrics (ANAM) was 
identified as a potentially useful screening instrument for assessing the 
cognitive abilities of divers. Normative data from 113 United States Navy 
divers were collected and are presented. The instrument is computer based 
and provides millisecond timing while automatically scoring and 
summarizing. It is purported to afford the level of sensitivity necessary for 
detecting cognitive problems that can result from diving, as well as central 
nervous system decompression sickness and oxygen toxicity. The 
instrument provides a good screening tool for suspected cognitive 
problems, and using it along with the other medical assessment tools is 
encouraged (Lowe and Reeves 2002, p.1). 
 

Unfortunately it is not easy (sometimes for obvious reasons) to extract these data 

and utilize it for research in cognitive modeling. In the optimal case, a cognitive model 

could be configured with this screening instrument. The cognitive model could then be 

tested with a scenario that it hasn’t been exposed to.  

 

 

                                                 
17 Reaction time is not an “undisputable” measure of performance because there is evidence that 

humans voluntarily influence reaction times as part of a performance strategy called Accuracy-Speed-
Tradeoff. 
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3. Qualitative Measures 

Qualitative measures encompass performance strategies like speed-accuracy 

tradeoff in serial tasks or attentional selectivity in dual task situations or “beta shift” in 

signal detection theory. More complex measures try to measure the cognitive reasoning 

ability, personnel workload assessment and alike. These measure are not easily extracted 

from humans, which is one reason why performance psychology is called the science of 

the unobservable (Matthews, Davies et al. 2000). However, advancement in cognitive 

modeling will also require the validation of covert behavior. 

C. AROUSAL, STRESS AND PERFORMANCE 

This section describes the correlation between arousal, stress and resulting 

performance. We define the arousal level as a physiological level that correlates with the 

stress imposed on (external stressors) or within (internal stressors) a person.  

Examples for external stressors, sometimes called external behavior moderators18 

include: sleep deprivation, sleep disturbances, physical exercise, heat, cold, 

decompression, compression, acceleration and deceleration, weightlessness, vibration, 

noise, poor visibility, radiation, drugs and poisons (Poulton 1970). Examples for internal 

stressors are : task stress, emotions (i.e., fear or anxiety), obsessiveness.  

                                                 
18 Pew et al. describe stressors as behavior moderators. However, research shows that not every 

stressor or level of stressor leads to a changed behavior. 
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Figure 7.   A Representation of Stress (From: Wickens 1992, Fig. 10.1 p.414) 

Figure 7 illustrates the different effects of external stressors in terms of human 

performance. Some stressors have a direct influence on the process. Noise, for example, 

influences the quality of the perceived information, especially in auditory tasks. Vibration 

can impact the quality of the response. The perceived level of stress is often expressed as 

a phenomenological experience. Stressors don’t always degrade performance (Wickens 

1992), instead they can lead to enhanced performance which is well explained with 

arousal theory, covered in the next section.  
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1. Arousal Theories 

a. Yerkes-Dobson Law 

PERFORMANCE

LEVEL OF AROUSAL

low

Poor

high

Good

Optimal level of arousal

Simple task

Complex task

 
Figure 8.   Yerkes Dobson Law (From: Wickens 1992, Fig. 10.2) 

 

Figure 8 illustrates the Yerkes-Dobson law, which is also described as an 

inverted U-function. It basically states that there is an individual level of arousal which is 

optimal for task performance. The optimal level is different for different people and for 

some persons it also differs over time. Arousal that is below or above that threshold leads 

to degraded (respectively non-optimal) performance. It can easily be seen that causes for 

the change in performance can not be easily deduced from these (non-linear) curves, 

since the directions19 of arousal change needs to considered.  

b. Dynamic Stress Model 

There is still no unified theory that could enable prediction of the 

stressors’ effects on performance. A different approach to Yerkes and Dobson is the 

dynamic stress model by Hancock. This section briefly describes his theory on how 

humans adapt to stress.  

                                                 
19 Performance changes around the optimal point can be changed with increasing or decreasing stress 

levels 
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Figure 9.   Human Adaptability to Stress (From: Hancock and Warm 1989) 

 
Figure 9 is strongly supports the underlying hypothesis of this research. It 

shows the different zones of resource capacity for psychological and physiological 

adaptability as a function of stress.  

Hypostress (underload) and hyperstress (overload) comprise areas of 

dynamic instability. Starting in the middle, one can explore the effects of stress and a 

change of performance according to the zones. The normative zone describes a region 

(for most healthy human beings) where the stress input does not cause a compensatory 

action to maintain the performance level. The comfort zone is unique for every 

individual. It is a region where first compensatory actions potentially take place. Once the 

stress reaches into the psychological zone of maximal adaptability it certainly impacts the 

capacity as well as the willingness factor (i.e., cold has a strong influence on motivation 

(Palinkas 2000)). Beyond the psychological zone is the physiological zone of 

adaptability, which is regulated by body functions such as increase of body temperature. 

Being in this zone does not only impact performance but also potentially impacts one’s 

health.20 This model thus describes the change from a stable state to failure modes and to 

                                                 
20 A rather infamous example for this zone is the heat stroke. Especially in connection with medication 

heat stroke can be a cause for death for athletes during spring training for baseball. 
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a breakdown. Unfortunately, this cannot be used as predictive model, because similar to 

the inverted U shape of the Yerkes-Dobson law, it can only be established after the fact 

(Hancock and Warm 1989).  

A cognitive model should generate these areas accordingly to show the 

shifts in performance. This research assumes that reduced human performance is like a 

complex adaptive system, which seems to be an ideal fit to the theory of adaptability 

zones. 

D. VIGILANCE PERFORMANCE  

1. Background to Studies of Vigilance Performance 

Vigilance research started in the early 1930s and was established by Mackworth’s 

work on naval recruits. Mackworth was tasked to research the question why so many 

enemy submarines that were on the radar screen of radar operators still remained 

undetected. He studied the phenomenon of the vigilance decrement in laboratory settings.  
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Figure 10.   Mackworth’s Clock Experiment and Results 

 

Figure 10 (from Mackworth 1950) shows the results of the Mackworth clock test. 

It was used to establish the increase in misses and the increase in reaction time. Subjects 

watched a clock’s watch hand for two hours. Whenever the watch hand jumped two 

instead of one second the subjects had to report it. Within the first 30 minutes the 

decrement in hit rate was most pronounced. After that the decrement leveled of and 



 51 

stayed at an almost constant level (Mackworth 1950).Closely related to the phenomenon 

of vigilance is the theory of signal detection:  

Signal detection theory has had a large impact on experimental 
psychology, and its concepts are highly applicable to many problems of 
human factors as well. Its benefits can be divided into two general 
categories: (1) It provides the ability to compare sensitivity and therefore 
the quality of performance between conditions or between operators that 
may differ in response bias. (2) By partitioning performance and therefore 
performance change into bias and sensitivity components, it provides a 
diagnostic tool that recommends different corrective actions depending on 
whether a deterioration of performance results from a loss of sensitivity or 
a shift in response bias. (Wickens 1992, p.38) 
 

This research utilizes the ease of implementation of the signal detection theory to 

generate signals and noise and to measure the resulting performance parameters. Hence it 

is necessary to briefly explain the main points of the theory. 
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Figure 11.   Signal Detection Theory; (From: Davies and Parasuraman 1982) 

 
Figure 11 shows two hypothetical probability density distributions. The left one is 

the noise distribution. The right one is the cumulative noise+signal distribution. Incoming 

information can stem from both distributions, however, only the noise+signal distribution 
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contains a signal (like a blips on a radar screen opposed to the white noise on the screen). 

The decision criterion (beta) is a decision making threshold. If a piece of an information 

is perceived to the left of the line, it is perceived as noise, to the other side as a signal. 

The detectability (sensitivity) of a piece of information is measured between the 

amplitudes of both distributions. A decrease in sensitivity closes the gap between the 

distributions and the probability of errors increase. The errors can be differentiated into 

commission and omission errors. 

 Signal Noise 

Yes response Hit False Alarm (commission error) 

No response Miss (omission error) Correct rejection 

Table 1.   The Four Outcomes of Signal Detection Theory (Wickens 1992) 
 
Table 1 shows the four different outcomes between the information presented and 

the response. Some experimenters, like Mackworth, only reported the hit rate or the miss 

rate. However neither the false alarm rate nor the decision criterion can be deduced from 

that. Both rates (hit, false alarm) are important measures in the psychological 

understanding of a person’s response. These rates are also used to determi ne the decision 

criterion (criterion (beta) and sensitivity (d’)).  

There are different strategies for signal detection: I.e. a person’s decision criterion 

could be to the right, thus this person would only report a signal if it’s beyond their 

doubt. The false alarm rate would basically become non existent. However, this also 

increases the number of misses. If the opposite strategy is used, basically every piece of 

information is called a signal. This will create an almost perfect hit rate, but it will also 

create a high false alarm rate21. It is obvious that different personalities have a major 

impact on the decision criterion, which is subject to changes over time (Warm 1984; 

Methot and Huitema 1998). 

2.  Vigilance Performance Factors 

Vigilance is a subset of human performance. Thus, we expect that the formula for 

human performance holds true for vigilance performance. Research in this field clearly 

established factors that impact vigilance performance. After we explain some of the 
                                                 

21 False alarms are not a good way to get superior’s attention. 
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factors, we will relate them back to the formula and show their non-linear interaction. We 

will then expand the human performance formula for vigilance. 

Vigilance Factors

Vigilance Performance

ENVIRONMENT
•Noise
•Stimulation level
•Fatigue and sleep deprivation
•Heat and cold
•Time of day

SUBJECT
•Personality (extravert vs. introvert)
•Sensitivity
•Response bias
•Motivation
•Smoking

TASK
•Task duration
•Rest pauses
•Multiple monitors
•Time sharing, bimodal
•Incentives
•Knowledge of results
•Practice
•Pacing

Measures of
Performance:
•Correct detection 
•Omission errors
•Detection rate
•Commission errors
•Reaction time

 
Figure 12.   Vigilance Factors 

 

Figure 12 summarizes the findings of several researchers (Davies and Tune 1970; 

Davies and Parasuraman 1982; Warm 1984; Matthews, Davies et al. 2000). It shows the 

main factors that influence vigilance performance. It also shows a sample of the different 

measures of performance (MOP). There are three main factors that impact vigilance 

performance: Task factor, environmental factor and subjective factor. These factors are 

determined by their identified variables (i.e. the environmental factor is determined by 

the stress level). The next sections explain the variables, indicating their impact on 

vigilance performance 

a.  Task Factor 

Experimental vigilance tasks are often performed in laboratories. Thus this 

factor can be easily controlled by the experimenter. Task duration, for example, can vary 

between only a few minutes to many hours. Parasuraman and Davies suggested a 

taxonomy that discriminates vigilance tasks into successive or simultaneous tasks 22.  

                                                 
22 Successive tasks are absolute judgment tasks in which observers must maintain a standard in 

working memory to compare incoming information against it. Simultaneous tasks are comparative 
judgment task, in which the information contains all the features needed to discriminate it. 
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Successive tasks are more demanding since they use the working memory intensely (See, 

Howe et al. 1995).  

Vigilance decrement can be minimized either by sufficient rest pauses or 

feedback (called knowledge of results (KR)). Research showed that even false KR can 

have a positive effect on vigilance performance (Matthews, Davies et al. 2000).  

Signal salience and probability impact vigilance performance (Sawin and 

Scerbo 1995). Signal salience (intensity, duration) impacts sensitivity (detectability). 

Signal probability has an effect on the decision (response) criterion.  

…low overall levels of detection efficiency are attributable to observers 
adopting extremely conservative response criteria that are appropriate to 
the low signal probabilities they experience in the majority of sustained 
attention tasks. (Matthews, Davies et al. 2000, p.114). 
 

Capacity

OpportunitiesWillingness

Vigilance Performance

METHOD

TASK Variables

Practice
Rest pauses
Task duration
Task type

Incentives
Knowledge 
of results

Signal probability
Signal salience

 
Figure 13.   Relationship between Task Variables and Human Performance Factors 

 
Figure 13 graphically relates vigilance research findings to the factors that 

influence human performance in general. KR or incentives (like receiving money for the 

experiment) have an impact on a person’s willingness to perform well. KR is also an 

environmental setting. The opportunity factor describes the environment in general. In 

vigilance research, this environment can be equated to the method of a vigilance 

experiment. I.e., signal salience has an impact on the opportunity factor as well as the 

capacity factor. Task duration and the use of rest pauses impact the capacity factor. 
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b. Environmental Factor 

The environmental factor in vigilance research is not equivalent to the 

opportunity factor of the human performance formula. It captures the level of stress 

caused by the environment onto the subjects. Some of these variables are again controlled 

by the researcher. Sleep deprivation impacts human performance in general. It has a 

degrading effect (Belenky 1994) that can, in certain circumstances, be counteracted with 

noise (Loeb 1986) or caffeine (Temple, Warm et al. 2000).  

Capacity

OpportunitiesWillingness

Vigilance Performance

ENVIRONMENT Variables

Noise 
Stimulation level
Fatigue
sleep deprivation
Heat and cold
Time of day

 
Figure 14.   Relationship between Environmental Variables and Human Performance 

Factors 
 

Figure 14 shows that the environmental factors impact all three 

performance factors. For example, heat has been used as an external stressor for vigilance 

tasks. Mackworth showed in one of his experiments, that signal detection increased as 

temperature was increased from 70 to 79 degrees Fahrenheit. At temperatures above 88 

degrees Fahrenheit vigilance performance degraded (Mackworth 1950). Matthews 

concluded from several studies that there is a curvilinear relationship, very similar to the 

Yerkes-Dobson law, between heat and vigilance (Matthews, Davies et al. 2000).  

Palinkas showed that cold had an impact on motivation before the body 

temperature decreased (Palinkas 2000). Looking back to Figure 9, we claim that once the 

stress level has exceeded the maximum zone of psychological adaptability, the 
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motivation is going to be impacted. Experiments with vibration showed that the capacity 

factor is impacted by this stress type (see Figure 7).  

Another example for the influence on capacity is loss of sensory acuity. A 

loss of visual acuity occurs when temperature exceeds 122 degrees Fahrenheit 

(Matthews, Davies et al. 2000). 

c. Subjective Factor 

The subjective factor includes personality, response biases and motivation. 

Different researchers showed the variance of human performance between individuals. 

Examples for this type of research can be found in (Eysenck and Eysenck 1985; 

Matthews, Davies et al. 1990; Koelega 1992; Matthews and Holley 1993; Sawin and 

Scerbo 1995; Methot and Huitema 1998; Matthews, Davies et al. 2000; Gusev and 

Schapkin 2001).  

There are many personality theories23 that try to categorize the difference 

in individuals. It is beyond the scope of this research to go into detail of personality 

research. However, there seems to be an agreement in personality theory that the 

dimension extroversion and introversion is one of the dimensions characterizing 

individuals (Matthews 1997; Gusev and Schapkin 2001; Nêcka and Szymura 2001; 

Schapkin and Gusev 2001).  

                                                 
23 (Boeree, G. (1999) describes about 30 different personality theories. 
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Tasks / Performance Extroverts Introverts 

Dual-task performance ++ -- 

Memory task involving high response competition ++ -- 

Short-term memory tasks ++ -- 

Retrieval from memory ++ -- 

Processing resources ++ -- 

Sensory reactivity ++ -- 

Resistance to distraction ++ -- 

Detection rate in vigilance tasks -- ++ 

Perceptual sensitivity -- ++ 

Difficult problem solving -- ++ 

Long term memory  -- ++ 

Table 2.   Differences (sample) in Performance Based on Personality Trait 
Extroversion 

 
Table 2 describes some of the main differences between extroverts and 

introverts adapted from (Matthews, Davies et al. 2000, p.267ff.). “++” indicates that the 

trait is superior. For example extroverts outperform introverts in dual task performance 

(Eysenck and Eysenck 1985). (Matthews, Davies et al. 1990 ) documented individual 

difference in resource availability, which is going to have an impact on our simulation 

system. Research in vigilance also established the superiority of introverts in terms of 

detection rate and perceptual sensitivity (Koelega 1992). (Gusev and Schapkin 2001; 

Schapkin and Gusev 2001) conducted the latest research in terms of individual 

differences in auditory vigilance tasks.  
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Figure 15.   Relationship between Subjective Variables and Human Performance 

Factors 
 

Figure 15 shows that personality influences both the capacity factor and 

the willingness factor. As documented in Table 2, extroverts tend to have more 

processing resources. (Sawin and Scerbo 1995) showed that boredom-prone subjects 

have a more distinct vigilance decrement. This correlates with the fact that extraverts do 

not perform as well as introverts. Extroverts presumably are more prone to boredom than 

introverts (Eysenck and Eysenck 1985).  

d. Vigilance Performance Formula 

We have described how the different factor variables (task, environment, 

subject) impact performance factors (opportunity, capacity, willingness). From that we 

can deduce that a formula for vigilance should include these factor variables. 
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This equation shows that opportunity is a function of the task (specifically 

the method of the task experiment). Capacity and willingness depend on subject, task, 

and environment. Since these different factors represent dimensions, a different way of 

representing the formula follows: 
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This equation shows that vigilance performance is a non-linear function of 

the mentioned factors. From prior description of the impact of these factors, it is evident 

that vigilance performance is dynamic and adaptive. Hence we found support for the 

hypothesis that vigilance is a complex adaptive system. The next section describes some 

of the main theories explaining vigilance performance or more specifically in some cases 

the vigilance decrement. 

3. Vigilance Theories 

Several theories of vigilance tried to explain either the low overall level of 

vigilance or the vigilance decrement or both. Our research could potentially be utilized 

not only to approxima te empirical human vigilance performance data but also to create 

feedback to the developed theories. This is what McKelvey called the “model-centric 

view of science” (McKelvey 2000).  

Axiomatic
base

VigilanceModel

Theories
Inhibition & Habituation
Filter
Expectancy
Resource
Arousal

1. The theories, model, and phenomena 
are viewed as independent entities.

2. Science is bifurcated into two 
independent but not unrelated truth-
testing activities:
(a) experimental adequacy 
(b) ontological adequacy

 
Figure 16.   Semantic Conception Model Centric View on Vigilance Adapted from 

(McKelvey 2000) 
 
Figure 16 shows the feedback between model to the different theories as well as 

the feedback from the real phenomenon (Vigilance) back to the model. One of the 
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assumptions of our research is that the model centric view accomplished with a model 

composed of a multi-agent system is the “third way of doing science” as expressed by 

researchers like (Axelrod 1997; McKelvey 2000). Thus we will explain these theories 

with respect to their impacts on the modeling approach. Therefore, it is imperative that 

RHPM has an open flexible architecture, that potentially allows us to include these 

theories even in hybrid forms (i.e. expectancy theory + arousal theory+ resource theory). 

a. Inhibition and Habituation 

Mackworth regarded the vigilance decrement as analogous to the 
extinction of a conditioned response when that response is no longer 
reinforced. The decline in detection rate was therefore attributed to the 
accumulation of inhibition, a fatigue like construct, which eventually 
results in a failure to produce the detection response, usually a key-press, 
when a signal is present (Matthews, Davies et al. 2000, p.117). 
 

A conclusion from his theory is that increased signal probability would 

lead to a decreased detection rate, because the inhibition process would lead to a faster 

accumulation of fatigue. Experiments showed that this conclusion doesn’t hold.  

Detection decrements were found to be inversely related to signal 
probability levels across groups. High signal probabilities generated 
consistent within-group and within-subject performance, whereas low 
probabilities generated both lower performance and larger within-subject 
variance (Methot and Huitema 1998, p.1).  
 

Habituation theory proposed that due to the habituation of neural 

responses to non-target events, the observer becomes progressively less able to 

discriminate targets from non-targets, resulting in a sensitivity (d’) decrement (Matthews, 

Davies et al. 2000). This neural response can be measured with the help of an EEG 

recording the cortical evoked potential like the N100. Parasuraman showed that the rate 

of habituation in the N100 response was not effected by signal probability (Parasuraman 

1998).   

Inhibition or habituation theory is mainly concerned with the vigilance 

decrement. There is evidence, that these theories do not explain the entire phenomenon. 

McKelvey’s view on theories explains why one should not discount the entire theory: 

A theory is intended to provide a generalized description of a 
phenomenon, say, a firm’s behavior. But no theory ever includes so many 
terms and statements that it could effectively accomplish this. A theory: 
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1. does not attempt to describe all aspects of the phenomena in its 
intended scope; rather it abstracts certain parameters from the phenomena 
and attempts to describe the phenomena in terms of just these abstracted 
parameters”; 

2. assumes that the phenomena behave according to the selected 
parameters included in the theory; and 

3. is typically specified in terms of its several parameters with the 
full knowledge that no empirical study or experiment could successfully 
and completely control all the complexities that might affect the 
designated parameters—theories are not specified in terms of what might 
be experimentally successful (McKelvey 2000,p.15). 

 

The conclusion from these theories for our model are: 

• The model should provide an opportunity to manipulate the parameters of 

the response selection and execution like the response bias beta 

• The model should provide an opportunity to impact the sensitivity 

parameter (d’). 

b. Filter Theory 

Filter theory states that sustained attention to the same information source 

is liable to intermittent interruption, because the hypothetical filter is biased towards new 

information.  

Filter Theory thus attributes the vigilance decrement to periodic failures to 
select task relevant information which become more frequent with time at 
work. Filter theory predicts that vigilance tasks in which signals are 
present only for a brief period will yield a more pronounced decrement 
than tasks in which signals are present for longer periods … Filter theory 
also predicts that the decrement in self-paced vigilance tasks, where 
observers work at their own pace, should be less marked than in tasks 
where observers work at a rate that is externally exposed (Matthews, 
Davies et al. 2000, p.119).  
 

Some experiments support the theory and its conclusions. However, there 

is also evidence against the latter conclusion. Observers tend to increase their own 

response rate paralleled with a decrease in detection rate. This implies that observers use 

the speed-accuracy tradeoff as their performance strategy (Matthews, Davies et al. 2000). 
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The conclusion from filter theory for our model is that the model needs a 

component with a filter function. This component should progressively attend more to 

new information sources than to the relevant source seeking novel stimuli  

c. Expectancy Theory 

Expectancy theory claims that observers keep track of past signal 

occurrences in order to predict future ones. This leads to the expectancy of signal 

occurrence. (Matthews, Davies et al. 2000).(Davies and Tune 1970; Davies and 

Parasuraman 1982) show many experiments that support this theory. However, they also 

point out some objections to the theory: 

• The knowledge of the temporal structure of a vigilance task gained during 
one session does not transfer to later sessions. Expectancy theory explains 
this by claiming that observers completely forget the temporal structure 
between experiments. 

• Expectancy theory emphasizes the importance of an early accurate 
detection level. However, a vigilance decrement occurs even if the early 
detection level was almost perfect. This doesn’t relate to the fact that the 
initial prediction of signal occurrence was accurate. (Davies and Tune 
1970, p.205) 

•  
They conclude that:  

The expectancy hypothesis has provided an ingenious way of integrating 
data from many vigilance experiments. However, in view of the many 
difficulties which it faces, certain modifications of the hypothesis, which 
would have the effect of minimizing the role of expectancy as a 
determinant of detection rate, would appear to be necessary (Davies and 
Tune 1970, p.206). 
 

Expectancy theory suggests that a model should include components that 

conduct statistical analysis of signal probability to create a signal expectancy. Clearly this 

component should account for the inaccuracy of human estimation. 

d. Resource Theory 

Figure 2 showed an adaptation of Wicken’s general multiple resource 

model. This theory claims, that there exist different resource pools in four dimensions 

(modality, code, stage, channel of visual information) (Wickens 2002). There is evidence 

that  
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..prolonged performance on detection tasks depletes the pool of resources 
as the person becomes fatigued. Vigilance tasks look undemanding, however they 
impose a high workload as measured by a workload measure called NASA-TLX. 
Fatigue studies indicate, that vigilance performance effects often relate to strategy 
rather than to loss of resource availability (Matthews, Davies et al. 2000, p.122).  

 
Matthews also concludes that there needs to be further investigation to 

research the interrelationship of motivational and workload effects on the vigilance 

decrements. 

Our simulation system is already utilizing Wicken’s resource theory. The 

derived vigilance performance formula show that willingness and capacity are main 

factors for the vigilance performance. Thus we need to model a component that takes the 

motivational status into account. 

e. Arousal Theory 

Since previous sections explained two dominating arousal theories 

(Yerkes-Dobson law, dynamic stress model), there is no further need to describe those in 

detail. Arousal theory for vigilance performance claims that the prolonged task 

performance leads to a lowering of arousal or activation. This leads to degraded vigilance 

performance (Matthews, Davies et al. 1990). Mackworth demonstrated that the use of a 

stimulant (Benzedrine) counteracts the vigilance decrement. He also showed that KR 

prevented a decline in vigilance performance (Mackworth 1950). However, there is 

experimental evidence that only the perceptual sensitivity correlates with the arousal 

level. The arousal level has no apparent impact on the response criterion (beta). 

A conclusion for the model from arousal theory is certainly that there 

needs to be an opportunity to parameterize the arousal level to manipulate the perceptual 

sensitivity.   

The next section shows that reduced human performance matches the 

typical properties of a complex adaptive system. 
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E. REDUCED HUMAN PERFORMANCE AS A COMPLEX ADAPTIVE 
SYSTEM 

This section summarizes findings on reduced human performance with respect to 

the provisional working criteria of a CAS. 

1. Comparison with Provisional Working Criteria 

This section uses the provisional working criterias to discern a CAS to establish 

the main hypothesis. 

a. Autonomous Agents Acting in Parallel 

The human body consists of a network of organs that act independendly 

and parallel from each other on a physiological level. We find inspiration in the 

massively complex systems of the human body. Researchers in the field of autonomic 

computing acknowledge how complex and autonomous some of the human systems: 

Think for a moment about one such system at work in our bodies, one so 
seamlessly embedded we barely notice it: the autonomic nervous system. 
It tells your heart how fast to beat,checks your blood sugar and oxygen 
levels, and controls your pupils so the right amount of light reaches your 
eyes as you read these words. It monitors your temperature and adjusts 
your blood flow and skin functions to keep it at 98.6 F. It controls the 
digestion of your food and your reaction to stress – it can even make your 
hair stand on end if you’re sufficiently frightened….But most 
significantly, it does all this without conscious recognition or effort on 
your part.  (Horn 2001, p.6).  
 

Clearly Horn acknowledges the complexity of the autonomic nervous 

system. He shows that there are several functions often working to adjust blood sugar, 

oxygen level, pupil width, and many more. It is obvious that these functions work in 

parallel with each other steered by different mechanism (or in our Lingo: autonomous 

agents) 

Chris Wickens Multiple Resource Model is another analog that we can use 

to proof our point. There are several cognitive resource pools that seem to be independent 

at a high degree from each other. It appears that every resource pool is an autonomous 

agent providing resources to certain tasks. Research in multi tasking (simultaneous tasks 

which people work in parallel) shows that the level of performance in two different tasks 

(modality and code) can be as high as if one would only perform the tasks individually. 
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There are more examples already mentioned in this research (e.g. heart as 

a complex adaptive system, immune system as a complex adaptive system) which 

established that they consist of autonomous agents working in parallel. This leads to the 

next point. If a system consists of autonomous agents acting in parallel the control of the 

system must be highly dispersed. 

b. Highly Dispersed Control 

Again we could use the autonomic nervous system or the immune system 

as legitimate examples of decentralized controls in the human physiological system. For 

example the salivary is checking for blood sugar levels and injects insulin automatically 

when food is taken in. (Kaarlela 1997). 

Human performance is a function of willingness (volitional control), 

capacity, and opportunities. Vigilance research shows that vigilance decrement is a 

phenomenon that human can not sustain attention for long periods of time. There is 

evidence that this negative degradation can be counteracted with exterior help for a 

certain amount of time (e.g., feedback of result or treatment with benzedryne (Mackworth 

1950)). However, a performance degradation over time is inevitable even with the most 

motivated operators.  

The information stage processing model assumes that there are different 

stages of information processing. In every single stage there are distinct errors that can 

occur and even different resource pools for the stages and modalities. Stimuli in the STSS 

can be lost because we don’t attend to them in time and the “storage time” expired. Even 

after correctly processing and classifying an information, the response execution still can 

generate errors know as slips.  

c. Non-linear Interactions 

Hancock’ stress model and the Yerkes-Dobson law clearly indicate 

individual non-linear performance. Many experiments including ours clearly showed that 

external stressors like workload or time on task cause non-linear effects. Some of the 

interactions have an inversed U-shape as the outcome function. 

The human performance formula and the derived vigilance performance 

formula show the complexity and non-linearity within and between the main performance 
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factors. Two of the factors are interior factors (capacity and willingness) and there is 

evidence for the non-linear interaction between them.  

d. Adaptive System with Emergent Behavior 

Humans adapt to stress (internal or external stressors) on an individual 

basis. Hancock’s stress model combines perceived stress with available attentional 

resources. This is the link between stress and performance. He suggests that there are 

different level of adaptation or zones of adaptivity (physiological and psychological) 

which effect the available cognitive capacity (see Figure 9). By humans adapting to 

stress, human performance adapts indirectly via available attentional resources. Emergent 

behavior , like increasing error rates, occur when stress level or workload level surpass a 

certain threshold.  

Marianne Frankenhaeuser gives a good overview on degraded human 

performance in crisis situations: 

1. Attention narrowing: When our stress level rises, we develop 
tunnel vision. Important dimensions of the situation may be 
completely blocked out from conscious awareness. 

2. Perceptual Distortion: Messages tend to become distorted in the 
direction of our expectations. Such distortions occur, in particular, 
when stimuli are ambiguous, when past experiences influence 
interpretations, and when wishful fantasies color what is perceived. 

3. Mental rigidity: A related psychological phenomenon is loss of 
mental flexibility. Coping with the unexpected becomes even more 
difficult in a crisis. When people are under strong emotional 
pressure, their cognitive processes become rigid. Their ability to 
take in new information is reduced, particularly information which 
is not consistent with established beliefs. The ability to weigh 
alternative courses of action is impaired, as is the capacity to 
reevaluate conclusions. We know from the accident at Three Mile 
Islands that the operators adhered rigidly to a picture that did not 
tally with the facts. 

4. Vigilance fluctuation: It is also significant that the accident at 
Three Mile Island took place at about 4:00 a.m. It is well known 
that mental alertness is associated with the diurnal rhythm which 
characterizes most physiological processes. This rhythm adapts 
slowly to shifts in the pattern of sleeping and waking hours. 
(Frankenhaeuser 1997, p.5) 
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 Human performance seems to rely on an adaptive system delivering 

cognitive resources. Emergent behavior then becomes the level of performance. 

Vigilance decrement is an emergent behavior characterized by increases in error rates 

(omission and commission). 

e. Dynamically Changing Structure 

The brain continually strengthens and weakens myriad of connections 

between neurons as individuals learn from their encounter with the environment.  

Different organs of the autonomic nervous system change their structure or features (for 

example: pupil width, heart rate, brain blood flow).  

Posner and Steven Peterson showed how the attention system of the 

human brain functions on a neuronal activity level (Posner, 1990). Dynamically changing 

connections and changes in blood flows occur in the same areas at different stages of the 

detection process. The supporting brain regions for sustained attention dynamically 

change their structure to support this cognitive function.  

f. Changing Different Equilibria 

Human performance is all but constant over long periods of time. Athlets 

try to time and manage their work outs such as to achieve peak performance for 

important competitions. Vigilance experiments show that the initial decrement is most 

pronounced within the first 30 minutes. Nevertheless the degradation continues over 

time. Knowledge of feedback results causes non-linear jumps in performance basically 

going back to a previous alertness state. However this state doesn’t last and the 

degradation starts again with the first stimulus.  

g. Implicit or Explicit Model for the Future 

It is very obvious that planning and decision making of humans are based 

on explicit models of the future. Expectancy theory for vigilance performance claims that 

humans build a statistical expectation of signal occurrence. This is certainly supportive 

evidence for our hypothesis. 
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h. Strong Sense of Path Dependency 

Interviews after the conducted experiments showed that there was a broad 

variety of strategies to cope with the workload. Many mentioned that once they found the 

rhythm it was easier to conduct all the required tasks. Thus it appears to be evident that 

by evolving structures in our case even strategies and incorporating the incoming 

information a strong sense of path dependency has been established. 

The next section describes conducted experiments showing individual 

differences in personality traits, cross-cultural differences and individual vigilance task 

performances. 

F. PERSONALITY AND VIGILANCE EXPERIMENTS 

This research claims that human performance is a function of internal factors, 

external factors and task variables. Internal factors like personality have been shown to 

impact vigilance performance (Methot and Huitema 1998; Schapkin and Gusev 2001). In 

order to enhance the understanding of the theories of vigilance and it’s relation to 

personality theories and to gather complete data a series of own experiments were 

conducted. The following sections describe four different conducted experiments 

(personality test, low workload vigilance experiment, high workload vigilance 

experiment) and discusses their results. 

1. Personality Test Experiment 

There are many personality tests that one could potentially use to asses the 

differences in personality. (Boeree 1999) discusses some 30 different personality 

theories. Every theory has a battery of different tests associated with it. One of the most 

acknowledged one is the the five factor model of personality. This model is often called 

an evolution of the well-known Myers-Briggs Type Indicator and suggests a paradigm 

shift from personality types to personality traits. The model establishes five different 

dimensions of personality: 

• Openness (O) refers to the number of interests to which one is attracted 

and the depth to which those interests are pursued. High openness refers to 

a person with relatively more interests and, consequently, relatively less 
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depth within each interest, while low openness refers to a person with 

relatively few interests and relatively more depth in each of those interests. 

• Conscientiousness (C) refers to the number of goals on which one is 

focused. High C refers to a person who focuses on fewer goals and 

exhibits the self-discipline associated with such focus.  Low C refers to 

one who pursues a larger number of goals and exhibits the distractibility 

and spontaneity associated with diffuse focus. 

• Agreeableness (A) refers to the number of sources from which one takes 

one's norms for right behavior.  High A describes a person who defers to a 

great many norm sources, such as spouse, religious leader, friend, boss, or 

pop culture idol.  Low A describes one who, in the extreme, only follows 

one's inner voice.  High A persons will march to the drumbeat of many 

different drummers, while low A persons march only to their own 

drumbeat. 

• Extraversion (E) refers to the level of sensory stimulation with which one 

is comfortable.  High extraversion is characterized by a larger number of 

relationships, a larger proportion of one's time spent in enjoying them, and 

in general a comfort with loud, bustling social scenes.  Low extraversion is 

characterized by quieter social scenes, a smaller number of relationships 

and a smaller proportion of one's time spent in pursuing those 

relationships. 

• Negative Emotionality or Neuroticism (N) refers to the number and 

strength of stimuli required to elicit negative emotions in a person. More 

resilient persons are bothered by fewer stimuli in their environment, and 

the stimuli must be strong in order to bother them. More reactive persons 

are bothered by a greater variety of stimuli, and the stimuli do not have to 

be as strong in order to bother them.  (Howard and Howard 1995, p. 4ff)      

After a brief discussion with research psychologists (Shilling 2003) the NEO FFI 

test was chosen. The electronic version with the short form (60 questions) was installed 

on a standard personal computer. The test computes the raw scores and standardizes them 
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under the assumption that scores are normally distributed with a mean t-score of 50 

(Costa and McCrae 2000). The NEO FFI not only provides the t-scores of individuals in 

the five dimensions it also correlates their traits describing certain styles of behavior 

based on the trait assessment (see Appendix C for a detailed discussion and definitions)  

a. Method  

Participants: Fifty Naval Postgraduate students (mostly military officers) 

participated in the study (38 US students (5 female) and 12 foreign students from four 

different countries (Germany, Greece, Singapore, Turkey). Mean age was 34. Participants 

volunteered and received a personality report printout after conducting all experiments. 

Subjective Measures: Participants completed the NEO FFI electronic 

version before they started the vigilance experiments. 

b.  Results  

The results indicate that the tested population is in fact not a normal 

population. There is biases that might be typical for the military community: 

One Sample T-test P-O P-C P-E P-A P-N 
Mean 53.36 52.92 53.82 46.86 45.60 
stddev 9.81 10.68 8.53 11.24 9.51 
t 2.42 1.93 3.17 -1.98 -3.27 
df  49.00 49.00 49.00 49.00 49.00 
alpha 0.025 2.01 2.01 2.01 2.01 2.01 

Ho mean=50 Reject Fail to 
reject Reject Fail to 

reject Reject 

CI Lower 50.57 49.88 51.40 43.67 42.90 
CI Upper 56.15 55.96 56.24 50.05 48.30 

Table 3.   One Sample T-test for Personality Scores 
 

Table 3 summarizes the result of conducted two-tailed t-tests. Every 

dimension was tested against the following hypothesis at the alpha level of 0.05: 
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50;    :  
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There are three traits (openness (O), extroversion (E), and neuroticism 

(N)) where the null hypothesis was rejected, indicating that the means of these traits 

differ from a normal population. Thus, the sample is more prone to score high in O, high 

in E, and low in N. The latter one is certainly a desired trait in the military community 

since a low score in negative emotionality indicates a more relaxed reaction to negative 
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experiences. There was not enough evidence to reject the null hypothesis for 

conscientiousness (C) and agreeableness (A). The 95% confidence intervals consequently 

(albeit barely) cover a mean of 50.  

The result indicates that simulation systems certainly have to take the 

shown bias instead of an average assumption into account. 

Although the sample of foreign students was small (12) the opportunity to 

investigate cross-cultural differences was taken. The results show statistical significance 

for the trait of conscientiousness (p-value = 0.03). 
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Figure 17.   Cross-Cultural Differences between US and Foreign Students 

 
Figure 17 indicates that there are differences in two traits: Openness (O) 

and concscientiousness (C). While C could be established with statistical significance (p-

value 0.03) the difference in O is not as pronounced. The interaction between traits now 

leads to some interesting differences in personality styles which are detailed in Appendix 

D.  
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c. Summary 

The purpose of this research was not to evaluate cross-cultural differences. 

Drawing conclusions from the results is possible but they should be carefully evaluated 

considering the small sample and the diversity of the participating countries and 

definitely backed up with follow on research24.  

A general result is that the US sample shows a higher level in 

conscientiousness and a lower level in openness. Thus the behavior is more goal-driven, 

rule conform and group oriented. Foreign students are more critical and innovative. 

However, they do not tend to rule-conform behavior and not always towards goal 

oriented behavior. This population also seems to focus more on their own needs than on 

group needs. 

Another important conclusion can be drawn from this experiment. The 

experiment showed that the military community has strong biases if compared with a 

normal population. There is also evidence cross-cultural differences exist and that they 

might impact the behavior or behavioral patterns. This research will explore whether or 

not cross-cultural difference actually impacts vigilance performance. Overall the 

experimental result of a biased military population should be taken into consideration for 

cognitive models especially in military simulation systems.  

2. Low Workload Vigilance Experiment 

One of the driving ideas of the vigilance experiments was to establish the 

vigilance decrement while evaluating the correlation of this decrement with personality 

traits. Most of the collected data was used to calibrate the RHPM. Some set was used for 

validation purposes. There were four different treatments: 

• Low workload treatment 

• High workload treatment 

• Going from high to low back to high workload 

• Going from low to high back to low workload. 

Participants conducted the first two treatments and than either one of the last two 

treatments. Every experiment lasted 30 minutes which should be sufficient to establish 
                                                 

24 The Naval Postgraduate School certainly has a prime opportunity with over 250 foreign student 
officers and also officers from all US services. 
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the vigilance decrement. Participants conducted each of their experiments at the same day 

time to confine or block any time-related effects. The experiments were conducted with 

the SynWin-Simulator from Activity Research Inc. This simulator is very flexible and 

collects the raw data for further evaluation.  

a.  Method 

Participants: 44 participants conducted the low workload conditions. All 

participants were students (42 officers, 2 civilians) of the Naval Postgraduate School 

Monterey, California from different countries (US 33, Germany 4, Greece 3, Turkey 2, 

Singapore 2) and different branches of the respective Armed Forces. They ranged in age 

from 26 to 47 years with a mean of 34.0 years. All participants had normal or corrected 

to-normal-vision and normal hearing. 

The next figure shows the setup of this experiment: 

 
Figure 18.   Low Workload Set Up 

 

Procedure: Participants had two mutual-exclusive monitoring tasks. No 

feedback of result was provided during the experiment. Participants were asked not to 

wear their wrist watches. The visual monitoring task is on the lower left side. Participants 

gftfll «Q0 ' UM^*.f   l.flPH 
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watched the fuel gauge and mouse-clicked on it when the needle went into the red zone. 

Lapses were defined as either clicking too early or letting the needle touch the bottom. 25 

The alert button belonged to the auditory vigilance task. A sound was 

played periodically every 3 seconds (Miller)26. The noise sound was 1000 hz and 0.15 

sec in duration. The signal sound was 1025 hz and 0.15 sec in duration.  The participant’s 

task was to click the ALERT button following the signal sound, before the next sound 

occured. The probability of the signal sound was 0.1. Measured results (a snapshot was 

taken every 10 minutes) contain number of hits and misses, number of false alarms and 

correct rejections, reaction times for hits and false alarms.   

b.  Results 
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Figure 19.   Reaction Time in Low Workload Condition 

 

The mean reaction time changed with time periods. After an initial 

improvement which could be subject to being used to the task the reaction times 

increased. This result supports the assumption that a vigilance task is a high workload 

task. More interestingly it’s variation increased over time (sigma first 10 min = 0.199, 

                                                 
25 For details on parameter setting (i.e. movement rate) please see Appendix D 
26 Pre- experiments showed that signal salience could be a potential problem. The difference between 

a 1000hz and 2000hz signal was clearly to salient and different sounds were generated for the experiment. 
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sigma last 10 min = 0.271). This shows that some subjects were reacting slower at the 

end of the experiment.  

False Alarms: False Alarms didn’t show statistical significance in terms of 

increase or decrease. There is no evidence that the means of the different time phases are 

different. 
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The number of misses remains steady for the first 20 minutes (assuming 

unequal means yields a p-value = 0.667) In the last period there is a significant increase 

in misses (p-value 0.03 periods 1 and 2 compared to 3). Hence a performance degradation 

in terms of misses is pronounced. 

c.  Cross Cultural Differences  

Results don’t show statistical significant differences between US and FS 

students. However, there is a difference for the development of false alarms. The foreign 

student sample actually decreased the false alarm rate significantly (comparison between 

false alarm rate (0-10 min versus 20 to 30 minutes) with a p value 0.04. 
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Figure 20.   Cross Cultural Difference Low Workload 

 
Figure 20 shows that foreign students improved their performance over 

time whereas the US students performance remained constant. 

d. Influence of Personality Traits 

There exist statistically significant correlations between agreeableness (A) 

and the number of misses in the first two time phases. The significance is also 

pronounced in a linear regression using A as a predictor. However, it only accounts for 

10-15% of the variance in the data. Extraversion and openness each had one significant 

correlation with reaction time phase 3 / false alarm phase 1 . Their impact is measurable 

but not significant enough to establish them as driving forces. 

e. Summary 

This experiment clearly established a vigilance decrement in terms of miss 

rate and reaction time. The false alarm rate did not change significantly. An analysis of 

variance showed  some evidence for the influence of the personality traits agreeableness, 

extroversion, and openness. However, their impact only accounts for a small portion of 

the variance. An evaluation of the different interactions between the personality traits is 

beyond the scope of this research. However, initial results showed that the small sample 
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sizes (subjects are categorized in four splitter groups) don’t usually allow conclusions 

with statistical significance. 

3. High Workload Experiment 

a. Method 

Participants: 43 participants conducted the high workload conditions. All 

participants were students (41 officers, 2 civilians) of the Naval Postgraduate School 

Monterey, California from different countries (US 32, Germany 4, Greece 3, Turkey 2, 

Singapore 2) and different branches of the respective Armed Forces. They ranged in age 

from 26 to 47 years with a mean of 34.0 years. All participants had normal or corrected 

to-normal-vision and normal hearing. The next figure shows the set up of this 

experiment: 

 
Figure 21.   High Workload Condition 

 
Procedure: The visual and auditory monitoring tasks remained the same. 

The high workload condition included two more displays. The upper left window is a 

Sternberg memory task. At the beginning of the experiment four letters were displayed. 

During the experiment probe letters were randomly displayed (trial duration 8 seconds) 

fcmnl  itSQ '.ahtm-P*.. it10BaTaJi--l6Vi«nlniP-.  iBaWfciaw.- 
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and participants had to decide whether or not the letter was in the test sample.  Feedback 

for correct, false or missing answers was given with the help of a point display in the 

middle of the screen and an auditory signal for mistakes.. The upper right corner shows a 

simple cognitive task, computing digits. Participants could use the = or – buttons to 

display the sum of the math task. Feedback for correct and mistaken answers were given 

via the point display and an auditory signal. Participants were encouraged to score high 

without ignoring (compromising) the monitoring tasks. 

b. Results 

The effect of additional task complexity and imposing higher workload 

showed clear effects on all three MOEs. The reaction time was slightly higher in every 

single time phase, the differences between the means was statistically significant (highest 

p-value 0.003). The development over the course of the experiment mirrors the low 

workload condition.  
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Figure 22.   Comparison Reaction Times Low vs. High Workload 

 

The false alarm rate started at a rate of 3.81 false alarms / 10 minutes and 

remained almost constant for the experiment. The miss rate showed an interesting 

phenomenon. It started higher than in the low workload condition but then it basically 

followed the same development. 
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Figure 23.   Comparison Misses Low vs. High 

 

This result helped to gain insight into applying arousal theory to the 

vigilance decrement. If one would expect a steady decrease this result would be 

counterintuitive. Just by looking at the experimental results it appears to be obvious that 

initially subjects had problem with the workload and therefore missed critical signal. 

After that they adapted to the new condition and improved their performance drastically. 

There seems to be a phase transition from a transient period to an adapted phase. 

However, at the end the performance level decreased again. Table 4 shows that it is very 

unlikely that these differences are coincidental. 

Ttest Misses P-Value
Miss 1 to 2 0.000002
Miss 2 to 3 0.034810
Miss 1 to 3 0.006108
Miss 1 high to 1 low 0.000002
Miss 2 high to 2 low 0.778712
Miss 3 high to 3 low 0.783757  

Table 4.   P Values for Comparison of Misses 
 

The first four p-values show that the differences between the means are 

significant. For example the comparison of means between high workload miss rate in the 

first 10 minutes to the second 10 minutes is almost 0 (0.000002). The same result holds 
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true for comparing the low and high workload condition’s results in the first 10 minutes. 

It also shows that the miss rate between high and low workload in the last 20 minutes can 

not be distinguished. Arousal theory can deliver one possible explanation for this 

behavior: Subjects started the high workload condition highly aroused and adapted their 

strategy over time. This decreased their arousal level to an almost optimal performance 

comparable to the low workload condition. However, time on task increased the arousal 

level again such that an increase in miss rate occurred.  

c. Cross Cultural Differences 

There are no statistically distinct differences comparing US to FS students. 

However, it appears that again there is a difference in false alarm rate development. 
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Figure 24.   Comparison False Alarms US versus FS 

 
It seems obvious that the performance of foreign students in terms of false 

alarm rate improved whereas the US sample showed a more or less constant rate over 30 

minutes. There is no statistically significant evidence to support this statement. However, 

it appears that the false alarm rate and its change over time could potentially be a cross-

cultural difference in vigilance performance. 
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d. Influence of Personality Traits 

The generated correlation matrix did not indicate significant correlations 

between the MOEs and the personality traits.  

e. Summary 

The results clearly show the impact of a higher workload on the overall 

performance. The higher workload especially impacted the reaction time and initially the 

miss rate. Cross cultural differences are not significant but together with the low 

workload condition there is an indication that there are differences in terms of false alarm 

rate changes. The next chapter describes the results of varying conditions during the 

experiment.  

4. Changing Condition Experiment 

a. Method 

Participants: 24 participants (low-high-low) and 20 participants (high–

low-high) conducted the mixed treatment.  

Procedure: These experiments changed conditions every 9 minutes within 

the experiment. Everybody had conducted the two previous experiments and were not 

give any special instructions. 
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b. Results 
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Figure 25.   Comparison Lapses in mixed conditions 

 
Figure 25 shows how sharply conditions influenced the amount of lapses 

(fuel gauge errors). The graph displays two curves. The high-low-high curve has a v-

shape indicating that the error rate corresponds negatively (decreased) to the low 

workload conditions. The reverse is true for the low-high-low workload treatment. Here it 

is obvious that the shift to the high workload conditions had a positive effect on the error 

rate (increasing).  

LHL 
p-val 1vs 2 pval 1 vs 3 p val 2 vs 3 
0.022 0.165 0.037 

Table 5.   P Values for Low High Low Workload 
 

Table 5 lists p-values for the comparison of means between the first 10 

minutes and the second 10 minutes, the first with the third, and the second with the third 

session. The difference in means is significant between workload conditions (p-values 

0.02 and 0.037). 

A comparison for the reaction times also indicates the pronounced “V”-

shape. 
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Reaction Times Mixed Conditions
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Figure 26.   Reaction Time Comparison HLH to LHL 

 

Figure 26 shows that the change of working condition did have an impact 

on the reaction time. Especially in the HLH condition the differences between low and 

high are significant. Some of the results are also surprising and it is not easy to explain 

them with the given theories. 
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Figure 27.   False Alarm Mixed Conditions 
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The result for the HLH treatment is unexpected. The difference between 

the first high phase and the second high phase is significant. The false alarm rate 

improves significantly over time which is a surprise by itself. Even more surprising is 

that it improved despite increasing the workload. Looking at a performance comparison 

with the low and high condition shows that the false alarm rate improved within the 

sequence of experiments. There seems to be a perceptual learning effect impacting the 

results and a better adaptation to the high workload condition. This result certainly 

emphasizes the hypothesis that reduced human performance is a complex adaptive 

system.  

c. Influence of Personality Traits 

The results of the mixed runs are similar to the pure condition runs in 

terms of correlation with personality traits. In the LHL treatment there is again evidence 

that agreeableness (A) correlates with the number of misses in the first 20 minutes. A 

possible explanation for this correlation could be that subjects with a high score in A are 

more motivated in a boring vigilance task. Thus they attend better to signals and don’t 

miss them as often as subjects who score lower in A. This could be an potentially 

interesting result and further investigation is suggested. 

d. Summary 

The mixed treatments’ results show the impact of differing working 

conditions on vigilance performance. For example there are distinct differences in 

reaction times. The error rates were generally lower which indicates that subject learned 

to better distinguish signal from noises. Even subjects that could not clearly hear 

differences in the first two experiments improved their performance. This learning effect 

needs to be taken into consideration when harmonizing the model.  

One surprising result was the outcome of the false alarm rate in the high 

low high condition. Despite an increase in workload subjects further decreased their false 

alarm rate.This result was counterintuitive and further research is needed to explore 

reasons. 
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5. Conclusions 

This experiment helped to understand the complexity of human performance. 

Some of the benefits of the experiment is seeing the theories in practice and also 

experiencing limitations of the theories. For example, there is no clear explanation why 

the false alarm rate improved over time despite increasing workload. If the theories do 

not explain the entire phenomenon maybe the model can be used to reproduce the results 

to help in understanding the phenomenon. The data for the low and high workload 

conditions will be used to calibrate the model.  

G. FINDINGS 

This research intended as one main point to show convincing evidence that 

reduced human performance is a complex adaptive system. After defining and explaining 

CAS in Chapter II, this chapter started by defining human performance. Then it defined 

vigilance performance, explained the main theories and showed examples of vigilance 

performance. The comparison between the features of reduced human performance and 

working criteria of a CAS showed overwhelming evidence, that human performance is a 

CAS.  

The main measure of effectiveness (MOE) that this research will be using are: 

• Mean reaction time (time it takes for a generated stimulus to lead to a 

reaction) 

• False alarm rate (number of commission errors in 10 minutes intervals) 

• Miss rate (number of omission errors in 10 minutes intervals). 
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REACTION 

TIME 

MISSES FALSE ALARMS  

Low High Low High Low High 

10 min 0.81 1.05 1.69 5.77 3.81 3.63 

20 min 0.78 0.96 1.45 1.53 3.21 3.67 

30 min 0.83 0.98 3.62 3.05 2.43 3.40 

Table 6.   Measure of Performance Human Experiment 
 
Table 6 shows a summary of the results achieved via the vigilance experiments. 

These results will be used to calibrate the model.  

The next chapter describes the design of the Reduced Human Performance Model 

(RHPM) and will apply the same working criteria to investigate whether or not RHPM is 

a CAS by itself. 
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IV. DESIGN OF THE REDUCED HUMAN PERFORMANCE 
MODEL 

This chapter looks at early design consideration and software engineering and 

moves on to model design and validation strategy, describing a holistic view of cognitive 

frameworks and modules used in computational models of vigilance. By using the 

hypothesis that reduced human performance can be modeled as a complex adaptive 

system this model is a unique approach to capture human performance. Currently there 

no known computational models of vigilance (Parasuraman, 2003). Although this 

research focuses on building a computational model of vigilance, the bigger picture of 

embedding this model into a cognitive framework is essential. This research suggests that 

a future cognitive architecture should consist of interoperable sub-components.  

A. SOFTWARE ENGINEERING ASPECTS 

Major design decisions such as the use of a discrete event-driven simulation 

system and the formal description method for RHPM are explained below.  

1. Discrete Event Simulation 

Discrete event simulation27 proposes an event-driven method:  

Discrete event simulation concerns the modeling of a system as it evolves 
over time by a representation in which the state variables change 
instantaneously at separate points in time. (In more mathematical terms, 
we might say that the system can change at only a countable number of 
points in time.) These points are the ones at which an event occurs, where 
an event is defined as an instantaneous occurrence that may change the 
state of the system (Law and Kelton 1991, p.7). 
 
Appendix A contains a primer on discrete event simulation methodology and their 

formal description event graphs. Many simulation systems are time-step driven: with 

every step, the entities of the simulation update their state variables and act accordingly. 

This method uses computating resources rather inefficiently, since the update rate of 

entities often depends on the rate of animation. There is also evidence that the length of a 

time step influences a simulation’s outcome (Warhola 1997).  

A less formal argument for the use of discrete event simulation versus the use of 

time step simulation would be that people do not usually interrupt an action in a periodic 
                                                 

27 This method also allows mimicking a time-step simulation by inducing events at fixed intervals. 
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fixed interval. Rather, it appears to be natural that they react continually to changes in 

their environment, which favors an event-driven approach. 

Discrete event simulation has been used intensely in queuing and manufacturing 

problems. We assume that the information-stage processing model is a kind of queuing 

system (i.e. the STSS stores stimuli before the model processes them).  

Based on the comparative efficiency of discrete event simulation and our 

assumption that information processing is a kind of queuing system, the primary major 

design decision for RHPM is the use of an event-driven method. This decision guides the 

entire design.  

 

2. Loosely Coupled Components  

Investigation of loosely coupled components (LCC) is a research project of the 

operations research department of the Naval Postgraduate School.  

Gordon Bradley described the reasoning behind the project in 1995: 

The problems faced by planners will be less predictable than in the past, so 
the systems must be more flexible to address situations the designers 
cannot anticipate. The systems must have an open architecture that allows 
additional capabilities to be added without disruption. Legacy systems for 
planning and execution are too static, monolithic, and inflexible to meet 
these requirements. Current efforts to integrate legacy planning tools are 
an improvement, but, even when these efforts are brought to fruition, the 
results will not be sufficiently interoperable, platform independent, or 
extensible to meet the challenges of military decision making. As 
demanding as the individual requirements are, advanced systems for 
planning and execution must incorporate all these capabilities in an 
integrated system (Bradley, 1998, p.30). 
 

LCC is a project that should assist modelers in rapidly prototyping and utilizing 

components as building blocks; fittingly, the latest research paper describes these types of 

components as LEGOs (listener event graph objects). “The name is also a metaphor for 

how complex models can be built by rapidly linking simpler component sub-models” 

(Buss and Sanchez 2002, p.732). Since 1995, many projects have successfully used this 

design strategy in the domain of military simulation. See (Arntzen 1998; Bohmann 1999; 

Le 1999; Schrepf 1999). 
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LCC’s design philosophy is based on the “observer” design pattern of the “gang 

of four” (Gamma, Helm et al. 1995). The pattern is applicable: 

• when changing one object requires changing others, and you don’t 
know how many objects need to be changed; 

• when an object should be able to notify other objects without 
making assumptions about who these objects are. In other words, 
you don’t want these objects tightly coupled. 

 
LCC uses even weaker criteria on the coupling mechanism and therefore calls it 

the “listener pattern.” For example, the observer pattern uses interfaces for attaching and 

detaching observer objects. LCC uses no coupling between the components, though 

initially it used mediators. This research employs software routers embedded in the 

listener pattern, in a manner analogous to networking 

The next figure explains the notification process of the listener pattern as used by 

this research. 

 

RouterRouter

Agent A

Agent B
Message (A)
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Message (A)

Message (A-)
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Figure 28.   Message Routing between Agents 

 
Figure 28 illustrates why the structure is called loosely coupled. Agent A could be 

any agent in a simulation system that provides a message (A) as output. The agent sends 

this message out and even if nobody listened to it, Agent A would still continue its work. 

It is independent of acknowledgement of its message, which is a feature for the observer 

pattern. In this example, the Router “listens” to Agent A’s messages. It can use several 

information modes (unicast is a one-to-one connection; multicast is a one-to-many 

connection; broadcast is a one-to-all connection). The router can also filter the content of 



 90 

the information and transport the entire message (A) to Agent B and a reduced message 

(A-) to Agent C. Unidirectional arrows indicate the listener pattern. The arrow tip points 

to the listener; the end of it is connected to the sender of information. The message object 

can be formatted using typical agent-communication protocols (i.e. using Knowledge 

Queering Modeling language (KQML) (Flores-Mendez 1999)). Bidirectional arrows 

show that the entities communicate two ways, acting either as receivers or senders. 

The listener pattern seems to be very apt as a design choice for a next-generation 

cognitive architecture. Some advantages include: 

• An architecture based on the listener pattern is dynamically extendable. Its 

structure can be changed during run-time, which is essential for CAS 

modeling. 

• Components can be exchanged at any time (event run-time) without 

creating a new system. 

• It facilitates re-use of software. 

• This pattern lends itself to a plug-and-play approach, similar to 

exchanging hardware components via USB. 

Considering these important advantages, a major design decision for this research 

is the use of the listener pattern for most components of the simulation system. After 

discussing the background for two major design decisions, the next aspect for designing a 

cognitive architecture is a validation strategy, which should be developed before the first 

line of code is written.  

B. DESIGN AND VALIDATION STRATEGY 

It is essential to start the creation of a cognitive framework by focusing on 

validation. The NRC panel (Pew et al, 1998, p.3) recommended that future research 

efforts on modeling human behavior should focus on the following areas: 

1. Collecting and disseminating human performance data 

2. Developing accreditation procedures for models of human behavior 

3. Supporting sustained model development in focused areas 

4. Supporting theory development and basic research in relevant areas 
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This research uses a validation strategy called harmonization and focuses on 

vigilance performance. The next sections show how this relates to complex adaptive 

systems theory and cognitive modeling.  
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Figure 29.   Fitting a Model to a Real System (adapted from) (McKelvey, 2000) 

 
Figure 29 shows how to fit a computational model to a social system; this 

research fits the reduced-human-performance model (RHPM) to human vigilance 

performance. The analysis and comparison of the model’s and the system’s output can 

lead either to a good fit (unlikely in the early stages) or to a change in structures, rules 

and parameters.28 Thus this research harnesses complexity29 by fitting a complex 

adaptive system to a range of experime nts.  

Once model and system output are sufficiently similar, the model can potentially 

be used as a surrogate of the system (recall the artificial immune system for in silico 

experiments), generate predictions, or explain previously unexplained phenomena.  

                                                 
28 Parameter fitting is only one level of adjusting the model. Thus this research doesn’t attempt curve 

fitting. After evaluating the literature on vigilance, it is highly unlikely that one can fit any combination of 
different vigilance tasks’ outcomes with a curve-fitting model of all important measures of performance 
(i.e. hit rate, false-alarm rate, and reaction time). Curve fitting would work for a very simple experiment 
like Mackworth’s clock. 

29 (Axelrod, R., Cohen, M., 1999) explained how one can influence CAS and 

avoid common mistakes. 
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This kind of procedure, harmonization of computational models, is an acceptable 

validation procedure. (Carley, 1996) suggested a multi-step validation process for 

computational models. 
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Figure 30.   Harmonization of a Computational Model adapted (From: Carley 1996,  

Fig 3. p.20) 
 

Kathleen Carley30 explains that a multi-step process should guide the validation 

of a computational model. Figure 30 shows the concept of this multi-step process. The 

calibration part is used to fit parameters of the model such that its outcome matches real 

data. The next step is to predict data and compare the prediction with real data. The 

verification process would currently be called validation.31 She claims that a model can 

achieve four levels of validation: 

• Pattern validation (predicted pattern matches real patterns) 

• Point validation (predicted points match real points) 

                                                 
30 Carley was a co-author on the National Research Council for modeling human and organizational 

behavior (Pew et al., 1998) 
31 Verification checks whether a model does the right thing. Validation checks whether it is the right 

model. 
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• Distributional validation (predicted distributions match real distributions) 

• Value validation (predicted values match real values) 

Value validation is the aim of this research; a major difficulty stems, however, 

from the linear assumptions of Carley’s harmonization. We have discussed why vigilance 

performance is non-linear, and of course a linear model cannot capture this phenomenon. 

Nevertheless, the process is useful in calibrating our model with data and conducting test 

runs against previously unknown data.  

C. DESCRIPTION OF THE COGNITIVE FRAMEWORK 

This section describes the functionality of the main modules and components for a 

next-generation cognitive framework. Subtitles reflect (Pew and Mavor 1998)’s 

suggested list of items for inclusion into architectural descriptions.  

1. Original Purpose 

This research intends to create a new cognitive framework with the potential to 

allow the use of different modules and sub-modules to model specific cognitive 

functions. The information-stage processing model is a rough blueprint for this 

framework. A proof-of-concept implementation is used to demonstrate the usefulness of 

complex adaptive systems for modeling robust and adaptive human behavior. Vigilance 

modeling is the focus of a first design phase.  

I have long thought that computational methods should be applied to 
vigilance but there have been none. Neural networks or other 
computational models have not been developed, so if you succeed that will 
be a great accomplishment (Parasuraman 2003). 
 
2. Submodels 

A functional description of the modules needed to calibrate the model follows. 
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a. Calibration Modules 
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Figure 31.   Calibrating the Reduced Human Performance Model 

 
 Figure 31 depicts the modules used to calibrate the model. A human-

experiment database feeds the Generator32 module. The Generator recreates scenarios 

for several experiments (e.g., the Mackworth clock test). The scenario represents the input 

for RHPM. The human-experimental results represent the input for the Calibrator 

module. The scenario’s ground truth (e.g. a generated observation is a signal or a noise) 

represents one input for the Comparator module. The other input comes from RHPM 

behavior (e.g. identifying an observation or dropping an observation). The comparator 

then provides input for the calibrator, which can adjust models’ parameters, rules, and 

structure-fitting RHPM to human vigilance performance. 

b. RHPM Modules 

Figure 3 shows the main modules of RHPM (for convenience, this figure 

is shown again below). The modules are numbered the sub-sections that describe their 

functionality. The major components, which also show this research’s main contributions 

in terms of modeling, are blue. 

                                                 
32 We use cursive lettering for software constructs such as agents or objects. Underlined cursive 

indicate that this element does not belong to the described module, but describes the relationship between 
modules. 
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Figure 32.   Numbered RHPM Modules 

 
(1) Symbolic Constructor Agents: Symbolic constructor agents 

(SCAs) encode impressions (input into the system). SCAs represent the perception aspect 

of this framework. They have been used in a number of projects at the MOVES Institute: 

see (Hiles et al, 2002) for more details. This model uses two different input modalities, 

auditory and visual. For every modality, there exists a specialized agent whose 

performance decreases with time on task to mimic the loss of sensitivity often seen in 

vigilance tasks. The agent relays the observation to the short-term sensory store.  

(2) Short-Term Sensory Store: Chris Wickens describes the 

functionality of the ShortTermSensoryStore (STSS) in context with the information-stage 

model: 

Each sensory system, or modality, appears to be equipped with a central 
mechanism that prolongs a representation of the physical stimulus for a 
short period of time after the stimulus has physically terminated. When 
attention is diverted elsewhere the STSS permits environmental 
information to be preserved temporarily and dealt with later. Three general 
properties are characteristic of STSS: (1) It is preattentive; that is no 
conscious attention is required to prolong the image during the natural 
“time constant” of the store. (2) It is relatively veridical, preserving most 
of the physical details of the stimulus. (3) It is rapidly decaying (Wickens, 
1992, p.18). 
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This research uses Wickens’ description as the functional 

requirements for the STSS. Next we describe the transformation of his multiple-resource 

model (MRM) into a mathematical model. 

(3) CapacityManager: The CapacityManager is a model for 

attentional resources, using the MRM to simulate attentional resources. This model part is 

a contribution to the field since multi-agent models for the MRM33 do not exist. 
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Figure 33.   Transformation of Multiple Resource Model (MRM) 

 

Figure 33 shows a transformation of the MRM. The highest-level 

agent for providing attentional resources is the MetaResourceAgent. The next level 

(MetaProcessingAgent and MetaSelectionAgent) represents the distinct pools of 

information processing and response selection and execution. On the processing side, an 

intermediate level represents the processing code, differentiating between verbal and 

spatial resource pools (SpatialAgent, VerbalAgent). The next level depicts the interface 

between elementary action and resource models. On the processing side, the modality 

dimension (auditory, visual) is introduced. There are four resource agents: PSV 

(ProcessingSpatialVisualAgent), PSA (ProcessingSpatialAuditoryAgent), PVV 

(ProcessingVerbalVisualAgen), and PVA (ProcessingVerbalAuditoryAgent.) These 

                                                 
33 According to a personal email, Dr.  Wickens doesn’t know of a computational model of the MRM 
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provide attentional resources, characterized by code and modality, to elementary 

actions.34 On the selection side are two agents (ManualAgent for manual responses, 

VerbalAgent for verbal. Figure 33 shows the analog, indicating the activation level in the 

brain, that this research attempts to capture.  

This research faced a major design problem by deciding on how to 

implement the multiple resource model. Obviously it must allow for parallel actions and 

the resulting resource computation should influence the human performance non linearly. 

There should be an inherent capability to start with an easy model and then enhace it’s 

degree of complexity. Computation should be “easy and fast” to allow good performance 

characteristic. Time on task should influence the resource depletion increasing the 

demand the longer a task takes. Another important consideration is how well the 

implementation can be adjusted to fit into vigilance theories. 
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Figure 34.   Main Analog for RHPM 

 
Figure 34.visualizes the main analog used for the design and 

implementation of RHPM. The decrease in performance looks very similar to the power 

decrease in an electrical circuit with a thermal resistor. When the resistance increase over 

time, the power decreases. This research develops this analog towards cognitive 

resources distributed via electrical circuits.  Potentiometers and thermal resistances in 

                                                 
34 WorkingAgents conduct elementary actions such as storing, retrieving, or evaluating stimuli.  
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parallel and seriell circuts mimic the distribution of resources. The electrical analog has 

advantages in terms of computational ease and clearly using parallel circuits introduces 

non-linear effects. For example electrical power decreases with the inverse of a resistor’s 

squared value. The potential introduction of new elements like capacitors and coils fulfill 

one of the design requirements to start with an easier model with the potential to increase 

complexity.  

The electrical analog can also address some vigilance theories 

easily. Habituation, for example, is a process that occurs when neurons grow acclimated 

to arousal and simply don’t react anymore. The analog to this process in electrical terms  

would be a thermal resistance increasing over time. The flow needs to increase in order to 

achieve the initial performance level. Similarly, the idea that over time a task demands 

more resources to maintain acceptable performance can be modeled by using thermal 

resistors for tasks that increase their temperature (or resistance) over time. The next 

figure shows how the MRM was converted into an electrical circuit: 
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Figure 35.   Multiple Resource Model as Electrical Circuit 

 
Figure 35 shows the relationship and functionality between the 

different resource levels. The MetaResourceAgent provides energy for all resource 

agents. Whenever this agent is influenced (e.g., by stressors) the performance of the 
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model degrades. ResourceAgents are reactive, and modeled as potentiometers, allowing 

them to vary their resistance to achieve a desired goal flow. The resource levels are 

shown as serial elements. Agents on the same level are modeled as parallel elements. 

This structure allows for a clear separation of resources (e.g. between the 

ProcessingSpatialAgent PSA and ProcessingVerbalAgent PVA) and also supports agents 

using the same resource pool (e.g., ProcessingSpatialAuditoryAgent PSAA and 

ProcessingSpatialVisualAgent PSVA both use PSA as supplier). The relationship can be 

described in a rigid mathematical model (shown later). Appendix A provides a formal 

description for all agents of the CapacityManager. 

(4) Cognitive Module: The cognitive module captures the 

functionality of the perception and memory parts of the information-stage processing 

model. This module is a multi-agent system consisting of heterogeneous, composite 

reactive agents. 
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Figure 36.   Cognitive Module 

 
The cognitive module comprises seven composite agents. Each 

agent has a distinct task (or elementary action) to fulfill, granted the resources to do so. 

These agents compete for resources and their performance depends on their state. Three 

mechanisms can degrade their performance: 

• Stimuli can be dropped because the agent’s buffer is full 

• Stimuli can fade, because they were not attended to in time 
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• Task time depends on resource flow; changes in flow also change the time 

the task is finished. 

Every agent is composed of a WorkingAgent (WA) and a 

FlowRegulatorAgent (FRA). The FRA is a reactive agent (much like resource agents) 

that checks the flow periodically, trying to maintain or return to a desired goal flow. It 

can change its resistance and thereby influence the entire resource-distribution system. 

The WorkingMemoryStore is a rudimentary implementation: 

Vigilance tasks require at most a comparison between a standard and a stimulus in 

working memory; thus this research doesn’t try to use a sophisticated model of working 

memory. (Miyake and Shah 1999) show an excellent summary on how different 

architectures implement working memory. One of the main features is an executive 

control module best described as the homunculus for the working memory. Since our 

hypothesis claims that there is decentralized control, this would not be a likely 

implementation idea for a possible expansion. Figure 35 also shows how the cognitive 

module is embedded in the model. The UpdateAgent checks the STSS for new stimuli and 

relays these stimuli to the PerceptAgent. PerceptAgent determines code and modality of 

the stimuli, transforms the stimulus into a percept, and informs TaskAllocatorAgent and 

ComparisonAgent. TaskAllocatorAgent informs the CapacityManager module regarding 

the code and modality of the task at hand. All resource agents that support either the code 

or modality start regulating their flow. ComparisonAgent compares the stimulus either to 

a standard in working memory (if the vigilance task uses a standard to compare the 

stimulus with [simultaneous discrimination]) or forwards the percept to TransmitAgent or 

SearchAgent (if percept is known). SearchAgent is a hook-up for further expansion of the 

model. This agent normally would try to find the percept and what to do with it from long 

term memory. In this model, it randomly classifies whether the percept is known and 

informs TransmitAgent and StorageAgent. StorageAgent stores the percept into 

WorkingMemoryStore, and TransmitAgent relays the classified (i.e. known) percept to the 

ResponseSelectionAgent. The next figure shows the described relationships as an 

information-flow diagram among the working agents of the cognitive module. 



 101 

StorageAgentStorageAgent

TaskAllocator
Agent

TaskAllocator
Agent

UpdateAgentUpdateAgent PerceptAgentPerceptAgent

ComparisonAgentComparisonAgent

SearchAgentSearchAgent

TransmitAgentTransmitAgent

RouterRouter
RouterRouter

RouterRouter

RouterRouter

RouterRouter

RouterRouter

Perception
known

Perception
unknown

WorkingMemoryStoreWorkingMemoryStore

RouterRouter

RouterRouter

input

output

. 

Figure 37.   Data Flow in the Cognitive Module 
 

The cognitive module is also embedded with the electrical-circuit 

analog. TaskAllocatorAgent represents the connection between this circuit level and the 

next higher level. The other working agents work in parallel, indicating that they have to 

compete for resources. 
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Figure 38.   Cognitive Module as Electrical Circuit 

 
Figure 38 shows how agents are modeled in an electrical circuit. 

The composite agent shown in the figure is the UpdateAgent. When this agent is idle, its 

resistance is not in the circuit, and its switch is open. As soon as the agent starts a task, 

the switch closes and resistance becomes active. The resistor is thermal, indicating 

increasing resistance over time. This figure shows how multi-tasking is actually modeled: 
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The UpdateAgent (UA), SearchAgent (SA), ComparisonAgent (CA), StorageAgent 

(StA), and the TaskAllocatorAgent (TAA) are busy, indicated by their closed switch. 

Again, the mathematical model behind the scenes is rigid and can easily be implemented. 

The computation is actually implemented in the next module—the Ampere module. 

(5) Ampere Module: Ampere is like an instrument for every agent 

to read their flow and to write changes in the resistance values of resource agents and 

flow regulator agents. Ampere is a passive object and produces no behavior by itselfSince 

agents can only have local knowledge, every WorkingAgent, ResourceAgent and 

FlowRegulatorAgent receives only local information from Ampere (i.e., your current flow 

is 6.123 amp).  

It is used to compute flows when the following events occur: 

• Initial flow event : Computes initial flows for all agents 

• A working agent starts or ends a task and thereby changes its resistance. 

• A FlowRegulatorAgent asks for it’s current flow (periodically, with a 

parameterized update rate) 

• A FlowRegulatorAgent changes its potentiometer value to achieve it’s 

desired flow. 

• After a change in the system it informs every working agent about their 

specific flow changes, thereby extending or shortening tasks.  

Every resource level is the voltage source for the next lower level. 

To compute the different flows in different parts of all electrical circuits, the computation 

starts with the total resistance in every lower-level circuit. The rules for totaling 

resistance across several resistors are straightforward. The next figure explains the 

computational rules graphically. 
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Figure 39.   Computational Rules for Electrical Circuits 

 
Figure 39 illustrates the ease of computation in electrical circuits 

that have resistors as the only elements. The upper part shows that resistors that work 

serially are simply added together and treated like a single resistor. In the parallel case 

(lower picture), computation is slightly more difficult, but the rule is similar. The inverse 

of the total resistance is equal to the sum of inverse resistances. 

;
21

111
RRRTotal

+=  

Equation: Computation for Parallel Resistors 

Transforming this equation leads to the formula inside the 

resistance on the right side of Figure 30. Computing the current (flow) goes back to 

Ohm’s law: 

;* IRV =  

Equation : Ohm’s Law 

 

Voltage is the product of current and resistance. In a serial circuit, 

current is constant but voltage at each element adds up to the total voltage. In a parallel 

circuit, voltage is constant and its current is the sum of the individual currents at the 

elements. 
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Equation: Computational Formulas for Parallel and Serial Circuits 

 

Applying these formulas to the cognitive module circuit leads to 

the following computations: 
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Equation : Total Resistance Computation for the Cognitive Module 

The total resistance for the cognitive module is the sum of the 

parallel circuit’s resistance and TaskAllocatorAgent’s two resistors, where one is 

controlled by its FlowRegulatorAgent. The parallel resistance is computed by summing 

up the inverse totals of each composite agent’s resistance. A working agent’s resistance is 

0 when idle. After starting work, its resistance increases over time by adding resistance 

increments (constant c). Again, the composite agent’s potentiometer’s value is controlled 

by its FlowRegulatorAgent.  

Having established the lower-level circuit’s resistance, we can treat 

it as a single resistance for the next level. The computation bubbles up to the 

MainResourceAgent, which provides the main voltage. The flow (current) computation 

then goes top down, computing the current for every resource and working agent using 

described equations. The MainResourceAgent has a connection (loosely coupled) to the 

EgoModule, which we describe next. 
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(6) Individual States and Traits (IST) Module: This module is a 

pre-planned component where emotions and external and internal stressors can effect 

RHPM performance. Since these areas are still terra incognita, RHPM uses a few 

rudimentary agents to impact its performance, as shown in the next figure. 
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Figure 40.   Individual States and Traits (IST) Module 

 

Figure 40 shows all agents that can potentially be used in this 

module. DistractionAgent and FocusAgent determine how much of MetaAgent’s energy 

really goes into the system for vigilance tasks.  

As mentioned, most people have an bias for new information. Thus 

in our model, the influence of DistractionAgent compared to that of FocusAgent 

increases over time, taking resources from MetaAgent.  

MetaAgent also offers an opportunity for modeling feedback of 

result. Since this feedback almost cancels the vigilance decrement, DistractAgent’s 

influence goes back to its initial influence value and the time process starts again. This 

agent also provides interesting enhancements of the model by introducing non-constant 

energy levels (i.e. varying with the time of day). 

StressAgent can be used to model individual sensitivity to arousal. 

It uses an update rate and an perceived stress increment. By changing the StressAgent 

parameters it is possible to simulate a faster impact of stress on the model’s performance. 
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ExpectancyAgent sets up expectations by computing statistics such 

as perceived signal probability and rate, and influences the update rate of the 

UpdateAgent and the decision criterion of ResponseSelectionAgent. 

(7) Response Selection: This agent uses a simple mechanism to 

determine whether it detected a signal, comparing the nominal value of the percept to a 

criterion. If the value is below threshold, the percept is classified as noise; if above 

threshold, as a signal. The criterion can be influenced by the EgoModule, which accounts 

for one major assumption of signal detection theory.35 This component can easily be 

expanded to include more complex responses and should be subject to future work. 

(8) Response Execution: The Response Execution produces 

RHPM’s output. It has an inbuilt mechanism for producing slips. A slip is an omission 

error—in our case knowing the right thing to say (yes or no), but saying either the 

opposite or nothing. 

3. Knowledge Representation 

This model uses a limited type of data that can be classified as signals or noise. 

This type of knowledge can easily be represented as objects with different values on 

attributes. However, there are substantially new ways of representing knowledge 

(available at our research institute [tickets and connectors] (Hiles, J. et al, 2002)) that 

could potentially be utilized by expanding the model. 

4. Higher-level Cognitive Function 

This cognitive architecture models vigilance as a higher-level cognitive function; 

thus it is part of signal detection and decision-making. The architecture can easily be 

extended to include different cognitive functions. This actually captures the gist of what 

evolutionary psychologists claim. If we have several circuits (different cognitive 

functions), we can conceive of modeling each one as a complex adaptive system and then 

adding them onto a framework. We expand on this visionary statement in the future work 

section. 

                                                 
35 Decision criterion beta increases over time with low signal probability. 
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5. Output 

RHPM’s current output differs between vigilance tasks. Sometimes it is a vocal 

statement of identifying an observation (“yes” or “no”). Sometimes it is a manual 

response, like pushing a button.  

6. Multitasking 

RHPM is multi-tasking capable, allowing for parallel and serial working. It uses 

cognitive buffers (queues) at various places to enable prioritization and interruption with 

rescheduling of tasks. CapacityManager manages the attentional resources; thus the 

model is limited by available resource.  

7. Multiple Human Modeling 

RHPM models an individual involved in a vigilance task. Its lightweight 

architectures permits use in a scenario involving multiple persons. This research could 

potentially interface to an air-defense simulation system (Calffee, 2003) modeling all or 

some individuals of the air defense crew. 

8. Implementation 

The model, formally described in Appendix A, is an event-driven simulation. 

Professor Arnie Buss has developed a useful library (SIMKIT) that supports modeling 

and programming discrete-event simulations. Since SIMKIT is written in Java, we 

choose to implement the model in that language; however, any implementation language 

that can handle discrete event simulation (DES) could implement the underlying 

mathematical model. 

9. Support Environment 

RHPM runs on PCs and workstations that have a Java Virtual machine. In order 

to run it, the Simkit.jar file is needed.36 Java Version SDK 1.4 or higher is recommended. 

10. Validation 

RHPM was designed with a validation strategy called harmonizing, which has 

been described earlier. The results chapter of this dissertation describes details of the 

validation process. 

                                                 
36 Simkit can be downloaded at http://diana.gl.nps.navy.mil/Simkit/ 
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This section explained major design decisions and features. RHPM uses discrete 

event simulation, documents its design with event graphs and uses the Listener pattern for 

most simulation components. Appendix A, B, and C provide a more detailed view on 

design specifics by describing the underlying mathematical model. RHPM’s architecture 

is very transparent. It enables exchange of components, intense re-use of software, easy 

extensibility. The next section describes RHPM in terms of a multi agent system without 

going into design details that have just been described. 

D.  RHPM AND FERBER’S FORMULA 

Jacques Ferber describes the major elements of a multi agent system. He 

explained the design of MAS as a set of factors, now called the Ferber Formula for MAS: 

MAS = (E,O,A,R,Op,L) (Ferber 1999) 

This section briefly described the elements of his formula in the context of 

RHPM’s design. 

1. Environment E 

Environments can be multidimensional (e.g. 2D or 3D). RHPM uses a one 

dimensional environment meaning that agents and objects don’t move. The agents and 

objects are situated in an electrical circuit that represents cognitive resource flows. 

Details follow in the next section.  

2. Objects O 

There are several objects like a ScenarioGenerator or Comparator that are 

wrapped around the model. Inside the model there is the Ampere object which we 

described earlier. Other objects include resistors and potentiometer which are operated on 

(values change) by agents. Objects in MAS can be typically used by the agents.  

3. Agents A 

There are three different kinds of reactive agents in the model: 

• ResourceAgents 

• FlowRegulatorAgents 

• WorkingAgents 

ResourceAgents regulate their potentiometer if there is a task in the system that 

fits their profile. FlowRegulatorAgents try to maintain a desired flow for a specific 
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working agent. WorkingAgents process tasks. The time to finish a task is determined by 

the flow it receives. Changes in flow lead to changes in the task end time. 

The IST module contains several kinds of agents such as a: 

• Distraction Agent, FocusAgent 

• ExpectancyAgent  

• MetaResourceAgent 

The DistractionAgent competes for resources with the FocusAgent. Over time the 

influence of the DistractionAgent increases. The Expectancy Agent is a cognitive agent 

in the sense that it keeps a history of perceived signals and noise and builds its own 

statistical model. The MetaResourceAgent provides the energy to RHPM. It divides its 

resources to the competing Distraction and FocusAgent. 

4. Relations R 

Some agents cooperate explicitly (Expectancy Agent informs UpdateAgent) or 

implicitly (WorkingAgent FlowRegulatorAgent, ResourceAgent). Every action of an 

agent influences the local perspective of every other agent. 

5. Operations Op 

Typical operations of agents is reading from or writing to Ampere. (i.e. 

FlowRegulatorAgents and ResourceAgents change values of their potentiometers. 

Working Agents start or end a task causing resistors and switches to change state. 

6. Laws L 

Potentiometer can only be changed to a certain min (or max) value. Their value 

can never be negative. Potentially the value could go to infinity simulating a burn-out in 

the sense of the word. 

RHPM fulfills the characteristics that Ferber described as typical for a MAS. The 

next section addresses the question whether or not RHPM is a CAS by itself. 
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E. REDUCED HUMAN PERFORMANCE MODEL AS A COMPLEX 
ADAPTIVE SYSTEM 

This section compares the design of RHPM to the provisional working criteria of 

a CAS and investigates whether the model features potentially allow the model to be a 

CAS. 

1. Comparison with Provisional Working Criteria 

a. Autonomous Agents Acting in Parallel 

The underlying electrical circuit model for the capacity manager shows 

that agents work in parallel to each other. RHPM uses several different autonomous 

reactive agents that base their next action on their goal and their local perspective. 

Working agents use buffers do establish independence from each other. However, if one 

agent runs dry, agents that follow in a sequential order will also run dry.  A better 

example for autonomous agnets are the flow regulator agents that decide based on a 

comparison between desired flow and current flow whether or not to change their 

resistance. These agents clearly act in parallel to other flow regulator agents, working 

agents, and resource agents.  

b. Highly Dispersed Control 

Every agent bases its decision on a local perspective. There are agents that 

provide information to other agents (e.g. the Expectancy Agent informs the UpdateAgent 

on a perceived signal occurrence probability.)  

Even the Ampere module has no central control in terms of behavior. It is 

used as a read repository for specific individual flows, thereby assuring that agents only 

have a local perspective. It is also used as a write repository for changes in resistance that 

change every single flow. 

c. Non-linear Interactions 

There are several design features that allow non-linear interaction. Agents 

working in an electrical circuit with parallel elements is a non-linear model feature. The 

computational formulas for the flows in the system are non-linear functions of resistor 

values. Switching in a network also causes non-linearity in the system.  
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d. Adaptive System with Emergent Behavior 

There is two levels of adaptions intended to be used within the model. The 

lower level adapts to the current workload by providing resource flow to specific working 

agents. Changes in workload or the resource drainage over time lead to changes in the 

system. The design allows for emergent behavior such as errors or even a total 

breakdown by blocking incoming stimuli or dropping conscious percepts. 

The higher level is the use of a genetic algorithm to fit the model to 

different human performance measures. 

e. Dynamically Changing Structure 

Agents frequently change their connections depending on their state. For 

example if an agent has just ended a task, it uses a recovery time before it becomes a part 

of the circuit again (closes the switch). Resource agent provide for task that match their 

perception code and modality. As soon as there is no demand for them they don’t 

compete for resources and don’t take measures to change their flow. 

A limitation for every computational model of a CAS is the lack of 

capability to generate entirely new interactions and new behavior. This is still an open 

research question which the MOVES Institute is addressing in a project called IAGO 

(Principal Investigator Research Professor John Hiles).  

The design decision to use listener pattern for the connections between 

components could potentially limit this feature. RHPM allows to dynamically connect 

and disconnect entities during run time with specified method calls. It does not allow 

connectivity between unspecified methods. Further research would be needed to address 

this problem. However the decision to use the listener pattern is feasible considering that 

this remains an open research problem.  

f. Changing Different Equilibria 

RHPM state variables change permanently during run time. They never 

truly settle down which shows that this feature can be established. However, since RHPM 

is a computational model there are phases where the model is in an equilibrium. For 

example in the pre-instantiation phase the model doesn’t do anything. If no stimulus were 

generated, the system would go into a state of equilibria permanently. Thus RHPM 

fulfills this feature only during runtime with stimulus generation. 
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g. Implicit or Explicit Model for the Future 

Expectancy theory claims that humans build their own statistical models 

for signal probability and occurrence. RHPM uses an ExpectancyAgent that listens to 

decisions and builds an internal statistical model. This statistical model is a perceived 

depiction of reality because it doesn’t account for errors (omission or commission errors) 

as long as there is no knowledge of result feedback in the model.  

h. Strong Sense of Path Dependency 

Thus feature is certainly related to the question of dynamically changing 

structures with new behavior and interactions. RHPM supports this feature only with 

previous specified structures. Thus the number of evolving structures is finite and 

depends on the number of methods and connections that can be established. Further 

research is needed to improve RHPMs capability to allow the strong sense of path 

dependency.  

F. CONCLUSION 

This chapter explained major design decisions and showed a blueprint of RHPM. 

It described modules in detail and then evaluated the question whether or not RHPM 

itself is a CAS and not a machine. The model’s main features follow the provisional 

working criteria for CAS. There is limitations to the model in terms of generating entirely 

new structures and behavior that is not based on the combination of pre-existing 

behaviors and structures. However, as pointed out, this is still an open research question. 

After a breakthrough certain design decision (like the use of listener pattern) should be 

reconsidered.  

The model’s validation is the benchmark for success. The next chapter describes 

RHPM’s configuration, experimental design and the results. This chapter adresses the 

remaining main point of this research showing whether or not RHPM is strongly 

connected to experimental results and whether it can generate surprises. 
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V. COMPUTATIONAL EXPERIMENTS AND RESULTS 
 

This next chapter describes the setup for calibrating RHPM. As described earlier 

this research followed the validation strategy for computational models suggested by M. 

Carley, called harmonization. It then describes the test runs for previously unknown 

scenarios after the model’s structure and parameters were calibrated. The following 

section describes how RHPM can be utilized to test theory of vigilance thus establishing 

the system as a surrogate for testing purposes. The summary points out the main 

experimental results and shows limits of the analysis.  

A. HARMONIZING RHPM 

RHPM uses many parameters such as signal probability, signal salience that need 

to be fixed before experiments actually start37. Other parameters distinctly influence the 

outcome of experimental runs. Initially this research focussed on parameters that clearly 

influence the measures of effectivness (MOEs). In the initial calibration step, the 

uncalibrated computational model was run with the high workload condition from the 

conducted human experiment. The first calibration process we applied to achieve 

reasonable (that is close to the mean of measured reaction times) reaction times included 

the parameter Main_Voltage and Conversion_Factor. Main_Voltage determines the 

initial energy level of the system, whereas the Conversion_factor determines how much 

time a task takes given a fixed amount of energy. The initial approach to calibrate these 

parameters was a “brute force” approach, randomly generating different parameter 

combinations and measuring a score. 

The scoring algorithm is well known in statistics as the sum of squared error. The 

differences between computational scores and human experimental scores were squared 

(also called Euclidian distances) and added up. 

                                                 
37 These parameters were used as constants for the harmonizing runs. However, they can and should 

be used as parameters to work with the model. 
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This equation shows how to compute the resulting score. After every 10 minutes 

within the experiment statistics are collected and compared to the human data (see Table 

6). Thus the dimension of time is enforced on the performance of RHPM. This approach 

generated a very close approximation for the reaction times (error less than 0.0001) 

within a hundred runs.  

The next step within the calibration process added the low workload condition. 

The result was again produced by randomly mixing parameter set ups. However, this 

time the scores of both conditions were combined to calibrate the reaction times not to a 

specific experimental condition. This time the approach was not as successful and the 

closest score was not satisfying (meaning that the sum of squared error was too high). 

Clearly the calibration process now needed to address the structure of the model to better 

fit the computational outcomes. Obviously a change in experimental conditions from a 

high to a workload should have an impact on the model. Clearly the stress level for the 

high workload condition is higher, consequently we adjusted the StressAgent such that it 

reacted to a difference in workload conditions. The perceived stress level reduced in the 

low workload condition. Another important difference between low and high workload is 

the arousal level. RHPM captures the arousal level as an energy level provided by the 

Meta_Resource_Agent. With this structural changes we were able to produce human like 

reaction times in two different conditions with the same parameter set up. 

Calibrating the next MOEs was more challenging since they were to be influenced 

by the same parameters. The most important parameters include the decision criterion, 

the criterion shift based on expectancy and the sensitivity decrement over time.  

This research used a simple genetic algorithm (Goldberg 1989) to optimize the 

parameter set up. The algorithm used to adapt RHPM will also be used for the application 

runs to assure comparative measurements.  



 115 

A population of 200 different parameter set ups was generated. Each set up was 

run with the high and low workload condition. The resulting score was computed with 

the fitness function (sum of squared errors). After identifying the best score, this score 

was used as a benchmark for the creation of a new population. While the population size 

did not equal 200, set up’s were drawn from the original population. The drawing 

followed Goldberg’s idea of a wheel. However, we used the min score as nominator and 

the current score as denominator. If a uniform random number was below that ratio the 

parameter set up progressed into the mating pool. Thus the higher its score the less likely 

it was going to be in the mating pool. Then we applied the crossover and mutation to the 

new population and started the process all over. The goal was to calibrate the model such 

that it would have a resulting score lower than 50.0. This score is the sum of squares error 

computed from 18 different measure points (every MOE was collected at 10,20 and 30 

minutes in two different conditions.) Thus the goal was not to have a perfect fit of 

individual performance curves but to have a sufficiently close result for all 18 

measurement points. After 78 generations the fitness value was below the selected 

threshold. The resulting parameters were then fixed for the validation runs which are 

described next.  

B. VALIDATION RUNS 

This section shows the result of runs made with previously unseen situations and 

fixed parameters. The computational results were used as predictions and compared to 

the true human results.  

After utilizing the first two experimental conditions to calibrate the model the 

next major step was to run the model without changing it’s structure from the outside and 

using the achieved parameter. However, in order to adjust for the learning effect the 

variance for the signals and noise were slightly decreased depicting the ability of subject 

to better distinguish signals. The data collected in the high low high and low high low 

conditions were used for validation purposes. This section will visualize the results 

showing how close the model actually comes to true human performance. 



 116 

1. Validation Run Low High Low  

The model was run with 24 repetitions (comparable to 24 subjects during the 

experiment). Every single run result was treated like a subject’s result. The MOEs were 

computed and statistical analysis were conducted. The individual results were used for 

paired T-tests to see whether there are significant differences in means and variances. 
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Figure 41.   Comparison Reaction Times Human vs. RHPM LHL 

 
Figure 41 shows how closely the mean of reaction times and the behavior of 

RHPM and subjects were correlated. This correlation could also be seen comparing the 

false alarm rates.  
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Auditory Monitoring Task LHL: False Alarm Comparison
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Figure 42.   False Alarm Comparison RHPM Human LHL 

 

Figure 42 shows the resemblance of the data produced by RHPM and human 

subjects. The difference in means was not significant between and within treatment. 

However, there is a down ward trend that can be shown with linear and non linear 

regression on both curves with similar results. 

The last MOE to validate was the miss rate. 
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Auditory Monitoring Task LHL: Comparison Misses
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Figure 43.   Comparison Misses RHPm Human LHL 

 

Figure 43 shows almost identical behavior in the first 20 minutes. Then the 

experimental data suggests a decrease in miss rate (statistically significant) whereas 

RHPM increased its miss rate. This is possibly a perceptual learning effect that is even 

more pronounced in the other mixed treatment condition. There seems to be an 

improvement of performance in humans probably due to perceptual learning which the 

known theories do not cover and consequently RHPM does not fully capture this 

phenomenon. This question needs to be addressed by future research. The next section 

shows the results for the high low high workload condition. 

2. Validation Run High Low High 

RHPM produced data with 20 repetitions in order to compare it with the results of 

the human experiment. 

Again RHPM results in reaction times were very similar to the experimental data. 
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Auditory Monitoring Task HLH: Comparison Reaction Time
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Figure 44.   Comparison RHPM to Human HLH 

 
Both curves show a very similar reaction to the decrease of workload in the 

second phase of the experiment. Reaction times increase slightly and then go back to the 

high workload level. Again there are no significant differences between the means at 

different times. 
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Figure 45.   Comparison Misses RHPM Human HLH 
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The behavior of the miss rate is very similar. However, there is a difference in 

means in the first 10 minutes (p-value 0.03). After that the two performance curves are 

indistinguishable. The difference between human subjects and RHPM is a slightly lower 

initial failure rate that then approaches human error rates. This result is very interesting as 

it shows a possible effect caused by the way the experiment was conducted. Subjects 

didn’t have a warm up period as it is done in other experiments. Hence there seems to be 

a cold start effect that could presumably occur with every skilled function. Even in the 

high workload condition this “initial bias” could be established. The effect occurs for 

misses which really require an active act of saying yes or clicking the Alert button. Hence 

the subjects seemed to be pre-occupied with the other task such that they didn’t attend to 

the auditory task sufficiently. The reviewed literature did not cover this type of effect.  

One possible explanation is that there exists a phase transition. Vigilance theory does not 

cover a transient phase; consequently RHPM is not covering this phase either.  

The next result indicates that RHPM doesn’t improve as fast as human subjects in 

terms of misses. 

Auditory Monitoring Task HLH: False Alarm Comparison
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Figure 46.   Comparison False Alarm RHPM Human HLH 

 

The experimental result of an improving false alarm rate despite an increase in 

workload was reproduced by the model. Although it showed an improvement there is a 
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statistical difference between the means at the end of the run (p-value 0.003). The 

difference could be explained with an perceptual learning effect which correlates to a 

sensitivity increment. One possible explanation for the effect is that there is an order 

effect caused by the sequence of experiments. Every subject had conducted two previous 

experiments (low and high or high and low). It looks like the perceptual learning 

generated an automation effect for the distinction of signal and noise and thus even the 

high workload had no impact on a close to optimal performa nce. 

3.  Application Runs 

This section shows the model’s graphical user interface and then describes 

additional application runs showing that RHPM is neither brittle nor mechanistic. It also 

generated an interesting phenomenon that seems to be comparable to degraded human 

performance. 

 

 
Figure 47.   Start View for RHPM 

 
Figure 47 shows the start view for RHPM. There are numerous parameters that 

can be set before a simulation runs starts (Setup Simulation).  

Reduced Human Performance Model 

|Set up Simulation' Run Simulation 
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Figure 48.   Setup View of RHPM 

 

Figure 48 shows the setup view. For example the top parameter “ Time to check 

for stress level” determines how often the Stress Agent updates it’s perceived stress. 

a. Variability of RHPM 

This section shows some experimental results indicating that RHPM could 

potentially be used as a surprise generating simulation entity. The main goal of the 

calibration and validation process is to match the mean of the MOEs. However, the 

standard deviation as a measure of how wide data is dispersed is another important factor 

for every model. If the model stays close to its mean, then it’s actions become 

predictable. In a simulation system where RHPM would “replace” human operators it 

would be important to produce unpredictable and human like results. The user should not 

be able to see a difference between a computer operator or a human.38 

                                                 
38 In the ideal case a reduced Turing test (only for a specific cognitive operation here vigilance) could 

show the value of having a close approximation to human performance in a simulation system. 
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Figure 49.   False Alarms in the High Workload Condition Generated by RHPM 

 

Figure 49 shows that RHPM is a stochastic model. The curves are 

individual (random) outcomes that would converge to the mean MOEs. RHPM produces 

outcomes with almost no false alarms (yellow triangle) or with an unusually high number 

in the last 10 minutes (red diamond).  

 The next table provides a more analytical approach comparing the 

standard deviation of the MOEs of the human experiment and RHPM to each other. 

FalseAlarm 
RHPM

FalseAlarm 
Human

10 1.21 2.04
20 1.29 2.76
30 1.32 2.72

Misses  RHPM Misses Human
10 1.38 2.30
20 1.33 1.75
30 1.88 1.92

Standard Deviation LHL

 
Table 7.   Comparison of the Standard Deviation in the LHL Condition 

 

Table 7 shows a comparison of the MOEs’ standard deviations of RHPM 

and human subjects in the LHL condition. Human data is more dispersed, however the 
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differences especially in misses are small. Together with the good approximation to the 

mean MOEs RHPM is certainly neither mechanistic nor brittle. The random number 

generation allows repeatability of runs but it also allows pseudo-randomness making it 

very difficult to precisely predict the next outcome. The model’s variability can easily be 

increased e.g. by changing deterministic task times to stochastic task times. 

b. Individual States and Traits (IST) Module 

The IST Module contains several agents (StressAgent, DistractionAgent, 

and MetaResourceAgent) that influence the distribution of RHPM.s resources.  

The StressAgent updates the perceived stress level periodically with a 

parameter called STRESS_UPDATE. The perceived stress increases over time with a 

parameter called STRESS_DELTA. In a normal run the StressAgent’s influence 

increases over time reducing available resources for the MetaResourceAgent. The loss of 

resources is a function of the described parameters. The outcome with the default values 

typically39 looks like the next print out result: 

>>>>>>>>>>>>>>>>>>>>>>>> 
Stats Collecting @ 600.0 
Number of Fades 4 
Number of false Alarms 3 
Number of hits  14 
Number of Misses  2 
Number of correct rejection  181 
reaction time =   0.98562 
>>>>>>>>>>>>>>>>>>>>>>>>> 
Stats Collecting @ 1199.9 
Number of Fades 0 
Number of false Alarms  5 
Number of hits  16 
Number of Misses  2 
Number of correct rejection  177 
reaction time =   0.94344 
>>>>>>>>>>>>>>>>>>>>>>>>>> 
Stats Collecting @ 1799.8 
Number of Fades 0 
Number of false Alarms  1 
Number of hits  14 
Number of Misses  0 

                                                 
39 The model is stochastic. In this context “Typically” means that the MOEs in multiple runs would 

converge to a mean value.  



 125 

Number of correct rejection  185 
reaction time =   1.00219 
>>>>>>>>>>>>>>>>>>>>>>>>>> 
 

This print out shows the main MOEs (False Alarm, Misses, Reaction 

Time) and their compliments (hits, correct rejections) at different time intervals (namely 

after 600 seconds, 1200 seconds and 1800 seconds). Fades are stimuli that were not 

processed within their expiration time (for auditory signals 2-8 seconds).  

The StressAgent offers two ways to induce stress to RHPM. Increasing the 

update rate of the stress agent is an analog to humans that reach their stress threshold 

faster than a more relaxed subject. Increasing the stress increment indicates a higher 

impact of stress on individuals. Changing theses parameters leads to interesting 

outcomes. When STRESS_DELTA is set to 0.08 (instead of 0.002) the outcome shows a 

very interesting phenomenon:  

>>>>>>>>>>>>>>>>>>>>>>>> 
Stats Collecting @ 600.0 
Number of Fades 5 
Number of false Alarms  3 
Number of hits  14 
Number of Misses  2 
Number of correct rejection  181 
reaction time =   1.19086 
>>>>>>>>>>>>>>>>>>>>>>>>> 
Stats Collecting @ 1199.9 
Number of Fades 83 
Number of false Alarms  2 
Number of hits  11 
Number of Misses  8 
Number of correct rejection  197 
reaction time =   6.46071 
>>>>>>>>>>>>>>>>>>>>>>>>>> 
Stats Collecting @ 1799.8 
Number of Fades 200 
Number of false Alarms  0 
Number of hits  0 
Number of Misses  14 
Number of correct rejection  186 
reaction time =   0.00000 
>>>>>>>>>>>>>>>>>>>>>>>>>>> 
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Initially RHPM reacts by slowing down the information process from just 

below one second to several seconds. In the first time interval RHPM started out slower 

than normal but still within “normal” range in terms of false alarms, misses and reaction 

time. However, in the second time interval with the stress level increasing, the reaction 

times increased steeply and RHPM had a significant number of unprocessed information 

(83 fades). The last time period shows a complete breakdown. RHPM did not process any 

information (all stimuli faded in the STSS).  

This looks very much like an interesting analog to the human phenomenon 

of tunnel vision. Increased stress level can lead to narrowing down attention to a point 

where important dimensions of the situations are completely blocked out of the conscious 

awareness. RHPM produces a similar outcome with an increased stress update rate and a 

default value for the stress increment.  

4. Summary 

RHPM showed its contribution by closely matching human performance 

degradation within four different experiments.  

Reaction Time Misses False Alarms MOE vs. 
treatment 10 20 30 10 20 30 10 20 30 
Low X X X X X X X X X 
High X X X ///// X X X X X 
Low-High-Low X X X X X ////// X X X 
High-Low-High X X X ////// X X X X ////// 

Table 8.   Comparison of MOE Fitness 
 
Table 8 shows where during the validation runs between human and 

computational results there was not enough evidence to reject the hypothesis that the 

compared data had an equal mean indicated by (X). Statistically significant differences 

occurring are indicated by (/////). Two of these differences occur at the initial time phase 

for a high workload. As pointed out earlier, this indicates that there is a transient phase 

that neither the theory nor the model captures.  

The differences between RHPM and experimental data are minor considering that 

there were 36 measurements (4 experiments * 9 MOEs) and only four differed from each 

other. There seems to be a perceptual learning effect for human subjects which enables 

them to distinguish noise and signals more easily after a certain number of experiments or 
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exposure to number of signals. This could be modeled by changing the values of signal 

and noise parameters (mean and variance) over time. Thus the sensitivity (or the ability to 

distinguish signals) would increase with gaining perceptual experience over time. The 

sensitivity decrement would still occur however it would start at a different point. This is 

certainly a topic for further research and ongoing discussion with vigilance researchers. 

Another interesting finding is the start up effect in the high workload condition. It 

took subjects a while to re-adjust to four different tasks. Normally subjects get a warm up 

period before the experiment, however, in this case there was no warm up phase at all. 

This very closely resonates with operational monitoring tasks, a radar screen operator 

starts immediately working and might be prone to more errors initially before adapting to 

the task again. RHPM can be used to show that by adjusting parameters the differences in 

performance are minimized and thus help gaining insights into the explanation of the 

phenomenon. The difference could be modeled by giving less resources to the 

Focus_Agent initially or by introducing a task difficulty factor that would require more 

resources to process the task at hand. However, it would be questionable to just change 

some parameters without backing it up with the theoretical implications. Hence a change 

to the structure of model would only make sense if human experiments validate the 

hypothesis. RHPM generated three notable hypotheses in terms of vigilance theory 

improvement: 

• Humans need initial time to adjust to a vigilance task. This influence 

seems to correlate with the difficulty of a task or the overall workload, 

since this effect was very pronounced with high workload.  

• There are two forces influencing the sensitivity: One is the known 

decrementing force over time. However, there could be an incrementing 

force correlating with the number of perceived signals. The influence of 

the latter one indicates a perceptual learning effect that gains more 

importance (compared to the decrement factor) over time. 

• The sensitivity decrement as well as the shift of response bias have limits. 

It appears likely that the rate of change towards these limits decreases 

which would be a possible explanation for the leveling off effect. 
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C. VALIDATION ISSUES 

This section describes the assessment activities to validate RHPM as a 

computational model of vigilance. Validation is always a best effort process when there is 

no mathematical way to proof the correctness of a model. However, as described earlier 

there are ongoing efforts especially in the domain of cognitive modeling to improve the 

validation process. However, there are also some resources that describe how to validate 

simulations (Law and Kelton 1991; Knepell and Arangno 1993). The major assessment 

activities applied to RHPM are: 

• Conceptual model validation 

• Software verification 

• Operational validation 

• Data validation 

The next sections describe how these activities were applied to RHPM. 

1. Conceptual Model Validation 

Conceptual validation attempts to establish the reliability of the model 
design and the integrity of its development, facilitated by completeness of 
documentation and augmented by expertise and training of the CA 
analysts. Consideration is given to development history, level of detail, 
level of fidelity, inputs, outputs/measure of effectiveness (MOEs), 
ranges/specification, and premises of design”(Knepell and Arangno 1993, 
p. 3-I) 

Knepell also points out that a “new generation of simulation languages present a 

breakthrough in the field. These languages support graphical model development using 

iconic displays. These includes Schruben’s SIGMA” (Knepell and Arangno 1993, p.3-I) 

This research uses Schruben’s work on event graphs for a thorough 

documentation of RHPM’s design. The psychological models human information stage 

processing model and the multiple resource model) have been transformed in an event 

graph based model. Thus, RHPM has a transparent design. A validation strategy was in 

place before the first line of code was written. The intended use of the model was very 
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clear from the beginning: Design a computational model of vigilance that is embedded in 

a new cognitive framework composed of multi-agent systems.  

The main design ideas were discussed with leading researchers in the field 

(Wickens 2002; Parasuraman 2003) and their input influenced the design choices. Even 

implementation details like “Should the Short Term Sensory Store be modeled as a first 

in first out (FIFO) queue or a (last in last out) LIFO queue?” were discussed with experts 

to assure closeness between theories and implementation. 

The next section explains how the conceptual model was translated into software 

and how this software was verified. 

2. Software Verification 

Software verification includes completeness and compatibility of 
functions and concepts within the model, development integrity and 
thoroughness of documentation, as well as maintainability, level of 
fidelity, ease of use , overall runtime, implementation of design elements 
and system components (Knepell and Arangno 1993, p.3-I). 
 
RHPM has several main components and sub-components that are implemented 

in JAVA. Every component can be tested independently from each other by running its 

main method. Thus we tested every component against its design objective. The 

algorithm were tested with print out statements to assure correctness of computation. A 

graphical user interface enables animation of scenarios and change of input parameter. 

This eases the use of the model and gives visual information about the processes.  

Run times for the calibration process can be very long (48 hrs for 1000 runs with 

30 repetitions), obviously depending on the number of runs and repetitions. A single run 

without repetition takes less than five seconds. This is quite acceptable considering that 

30 minutes of real time are simulated.  

We also conducted trace analysis to evaluate when objects were passed between 

objects to assure that the processes worked properly. The additional JAVA package, 

designed by Prof. Buss, called Simkit, allows single step processing with a print to the 

screen event list. The properties of all statistical objects can also be “dumped” to the 

screen. Thus we have been able to verify every single step through the model.  
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The next section shows an exerpt of the event list generated by the model during 

instantiation (setting their attributes to predetermined values and scheduling first actions 

of the objects and agents 

Time: 0.000     Current Event: Run      [31] 

 ** Event List --  ** 

0.000   GenerateSound   Signal or Noise are generated 

0.000   StartFull                 Fuel gauge starts 

0.000   CheckFuel            Initially subject checks the fuel gauge 

0.000   StartLetterDisplay  Sternberg memory task gets displayed 

0.000   TimeStress             Time ticker for the performance starts. 

0.050   DisplayMathTask  Math task is displayed 

0.226   Update  {flow regulator agent 2}  This flow regulator agent will check  

      its flow 

1.108   Update  { ResourceAgent code spatial modality meta  stage   

 processing providing false} This resource agent will check its flow 

…… 

 ** End  of Event List --  ** 

Together with the property changes of the objects and the event list it is possible 

to verify even simultaneously occuring simulation steps. Thus it was fairly 

straightforward to verify the correct implementation of the designed event graphs. 

3. Operational Validation 

Operational validation is based on a rigorously-defined operational test 
plan, and provides documentation for all procedures and results; the plan 
incorporates excursions as deemed necessary, and in general is designed to 
1) baseline the model, 2) stress the model, and 3) establish parametric 
comparisons with previous testing efforts as well as with known or 
accepted results (Knepell and Arangno 1993, p.3-2). 
 
This type of validation includes inspection tests, demonstration tests and 

analytical tests. RHPM application runs showed known pitfalls of different theories. One 

example is that an increase in signal probability leads to a decrease of failure rates. Signal 

detection theory does not depict that. However, there are ways to improve the fit of the 
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computational model, for example by allowing signal and noise distribution to change 

over time. These changes might possible generate insights with vigilance researchers. 

The calibration process was in itself a test because it changes structure and 

parameter of the model until the model fitted the different MOEs reasonably well. If the 

model could not have been configured to fit the experimental outcome, then questions 

about it’s functional validity would arise immediately. 

4. Data Validation 

Data validation includes an analysis of data derivation, trustworthiness of 
data origin, consistency throughout the model and code, and output, as 
well as analysis of the representation of the constants and variable 
definitions, units of measure and ranges (Knepell and Arangno 1993, p. 3-
2). 
 
Data validation is certainly an overt validation strategy because one only tries to 

match human data. Again Carley’s harmonization process has supported this type of 

validation by assuring a configured model that could then be used in experiments. The 

calibrated model produced results that we compared to human data in a thorough data 

analysis. Since we had all experimental results the data is trustworthy.  

Units of measure and ranges for our capacity manager are certainly questionable 

as we have not tried to tie our parameters to research data on the electrical flow inside the 

brain. This is also true for some of the constants that we used to represent the resistors or 

potentiometers. However, this research has not claimed that our brain looks like an 

electrical circuit but that cognitive resources modeled as electrical circuits can help to 

simulate performance degradation more realistically. 
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D. SUMMARY 

The validation run results of RHPM match our expectations. The model showed 

reliable behavior during “normal” simulation runs. It closely approximates individual 

human data and shows a reasonable range of behaviors. It also generated insights into 

applying theories to the phenomenon (e.g. the importance of the detectability of a signal). 

RHPM could be validated against two previously unseen scenarios. RHPM can also 

demonstrate the pitfalls of certain theories. For example: it is well known, that an 

increase in signal probability leads to an improvement of the miss and false alarm rate. 

Signal detection theory does not address this phenomenon. Consequently, RHPM 

increases the miss rate instead of decreasing it. However, by looking at the design of the 

model and how different modules work with each other, there are possible solutions on 

how to improve the model performance. These improvements could potentially reflect 

improvements in the theories.  

The multiple resource model’s implementation influences the reaction time in a 

normal case. As soon as the main energy level decreases, the error rates increase to a 

point where the model does not process any signals. This should be facilitated for 

example, by introducing more stressors to the model than time on task or change of 

workload. 

Some experimental results also indicated the need to introduce perceptual learning 

(better distinguishing signals) into the model. These mechanisms are not well 

documented in vigilance research and it requires further research to introduce perceptual 

learning to a computational model of vigilance. 

One possible limitation of the proof of concept implementation is the question of 

how well it would fit scenarios from a different experimental set up. The time effort to 

program new scenarios is low and due to the open architecture it can be connected very 

fast. However, some task characteristics (i.e., signal salience) should be adjusted before 

RHPM should be used. 
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RHPM can certainly generate surprises by simply missing signals or giving false 

alarms too often. The surprise factor can be increased by changing certain parameters. 

One example is the probability of a slip. The response selection agent passes the decision 

(e.g. SayYes) to the ResponseExecution agent. The response execution than depends on 

how busy this agent is. It can conduct a omission error by having the information fade 

away or simply by a slip saying “No” instead of a “Yes” with a given probability. This 

probability can be linked to the stress level to indicate an increase in error rates with 

increasing stress. 
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VI. CONCLUSIONS AND FUTURE WORK 
 

This chapter summarizes the main findings and conclusions. It then describes 

further research questions that stem out of this research. 

A. CONTRIBUTION 

This research suggested a new cognitive model that simulates individual reduced 

human performance. The human experiment shows evidence that personality traits 

(especially extroversion, conscientiousness, and agreeableness) do in fact influence 

vigilance performance. However, personality traits’ multiple regression models only 

accounted for approximately a third of the variance in the data.  

This research also shows evidence for distinct cross-cultural differences in 

personality and vigilance performance. Further research is needed to integrate this cross- 

cultural differences into cognitive modeling. It is very obvious that the average 

assumption for behavior of performance degradation is neither true for a single 

population nor for cross-cultural populations. The pitfalls of mirror imaging (thinking and 

here even modeling that others should think and act like ourselves) loom behind 

simulation systems that do not take these differences into consideration. 

Using a discrete event simulation together with the event graph design opens a 

cognitive architecture to design discussions with the domain experts (in our case human 

factor specialists and psychologists).40  

Further contributions contain evidence that a paradigm shift in human behavior 

modeling taking vagary into account is suggestive. The proposed framework for the next-

generation cognitive architecture has shown advantages in terms of robustness and 

adaptivity. The open and flexible architecture shows a possible path of cooperation 

between modelers. The implemented parts of the cognitive framework show their 

contribution by modeling the challenging problem of vigilance decrement.  

                                                 
40 This claim is very similar to what the meta language Unified Modeling Language (UML) tries to 

achieve. However, it appears that UML is not necessarily the right description tool for discrete event 
simulations. 
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RHPM has been validated with quantitative and qualitative analysis. It closely 

approximates individual human performance and shows a reasonable range for it’s 

behaviors. The model has limitations and potential improvements were mentioned. These 

improvements should occur in cooperation with vigilance researchers.  

This research suggests a research direction to improve signal detection theory. 

The model’s behavior and the theories predicted behavior are coherent. However, a 

difference in outcomes between human experiments and RHPM lead to the assumption, 

that there are perceptual learning effects in signal detection affecting the sensitivity. 

RHPM can fit the data better with a sensitivity increase based on the number of signals. If 

the number of signals reaches a certain threshold signal detection seems to become easier. 

The next step should be human vigilance experiments that try to find out whether or not 

there is a relation between number of signals and a sensitivity increment.  

Two further achievements deserve mentioning: 

1)  RHPM seems to be the first computational vigilance model composed of 

multi agent systems.  

2) The implementation of Wickens multiple resource model also seems to be 

a first try for a computational model on multiple cognitive resources. 

Thus this research contributes to the modeling of human behavior as well as to 

cognitive psychology especially to vigilance research. It is difficult to compare it’s 

behavior with current cognitive architecture since it has not the same level of 

sophistication. However, it has shown its potential by modeling an important 

phenomenon that hasn’t been modeled by others. It also showed that a multi agent system 

based on complex adaptive system’s theory can be used to produce desired results that 

are within human range of performance.  

B. SCALABILITY 

The question how a model scales is certainly an important question. Our 

architecture is lightweight in terms of storage space (less than 200 Kb) and it performs 

rather fast. However, this question could only be answered if the architecture were 

integrated into a simulation system that allows for vigilance decrement. One potential 

example is Calfee’s simulation system that takes reduced performance of air defense 
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operators into account.(Calfee 2003) The source code is available yet uncommented at 

the current time. A close cooperation with Calfee would certainly enhance the validity of 

both models and could show evidence for the scalability. 

However a big advantage of the loosely coupled approach is the possibility to 

taylor-make task oriented computer generated forces. If one only needed the function of 

either detecting or missing a radar signal there is no need for an architecture that can do 

more than that. Thus the sufficiency criterion for modeled functions is a big advantage of 

this open model. 

Another legitimate criticism is the unanswered question whether the entire 

approach would scale to a complete cognitive architecture. However, there is no current 

cognitive architecture that claims that it can model all human behavior with a single 

architecture. The new approach with complex adaptive systems is certainly promising 

and will be described next. 

C. COGNITIVE MODELLING WITH COMPLEX ADAPTIVE SYSTEMS 

This research started with the hypothesis that human performance can be modeled 

with a complex adaptive system (complex adaptive system hypothesis CASH). Cognitive 

modeling with complex adaptive system is a new approach that has yet to show its value. 

This research contributes to its valid claim of being a new promising avenue by 

successfully modeling the phenomenon of vigilance decrement. It is possible to harness a 

complex adaptive system in a way that it can produce desired emergent behavior in our 

case the realistic occurence of a vigilance decrement. The inherent capability of CAS to 

learn and to adapt to an ever changing environment seems to be an ideal fit to human 

performance modeling. However, the implementation of these ideas is not easy and some 

of the mechanism can only be modeled rudimentarily.  

Findings in evolutionary psychology indicate that certain cognitive functions are 

“hard-wired” functions that have evolved. In order to be a truly successful approach, a 

close cooperation with researchers of both fields (evolutionary psychology, modeling and 

simulation) is needed.  



 138 

D. FUTURE RESEARCH DIRECTIONS 

A perceived weakness of cognitive models is their tendency to rely on a stimulus-

response sequence. In reality humans are constantly processing information within the 

context of current plans and intentions (McCauley 2003). RHPM provides a capability to 

include this higher dimension into the model. However since this research focused on 

vigilance performance there is a need for further research to include this dimension fully 

into the model. There are research efforts at NPS (for example IAGO - MOVES Institute) 

that should integrate this research to enhance cognitive modeling into this higher 

dimension. 

Several improvements of RHPM have been mentioned. It is obvious that RHPM 

is not the solution to all questions a vigilance researchers might have. However the model 

shows that a combination of signal detection theory, resource theory and expectancy 

theory delivers promising avenues for the computational modeling of vigilance. 

Distinct cross-cultural differences imply a need for research on how to integrate 

different personalities and culture into cognitive modeling. RHPM can be adjusted (i.e. 

with the help of a genetic algorithm) to mimic a given performance. There is also 

evidence that the combination of certain personality traits influence vigilance 

performance (for example: extroversion and conscientiousness). Combined with cross 

cultural differences this is certainly an interesting research direction for vigilance 

researchers. 

There are many potential applications for a model that reliably simulates reduced 

human performance. Some examples for applications are: 

• Airport security screener 

• Radar screen operator 

• Sonar screen operator 

• Intelligence analysts listening to interrogation tapes (often more than 200 

hours overall). 
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• Simulation of hostage situations where the vigilance decrement of 

terrorists is an intended goal for the negotiator 

More generally applications where auditory, visual or cognitive monitoring is 

essential lend themselves to be using a simulation system that can capture the attentional 

limitation of human capacities. 

RHPM can also help to gain more insights into the phenomenon of vigilance 

decrement and more generally into human performa nce degradation. It appears to be a 

step in the right direction. 
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APPENDIX A: PRIMER ON DISCRETE EVENT SIMULATION 
 
This primer gives the interested reader a brief background into the basics of 

discrete event simulation, their formal description, and an interesting way to implement 

modules as loosely coupled components.  

This method uses resources only when events occur; it does not waste the time 

between events. Figure 49 depicts the approach and its main components. 

1. Set simulation clock =0.0
2. Initialize system state and 

statistical counters
3. Initialize event list

Initialization
0. Invoke initialization

1. Invoke timing routine
2. Invoke event routine i (repeat 1)

Executive 
Class

1. Determine next event I

2. Advance simulation clock

Timing routine

1. Update system state
2. Update statistical counters
3. Generate future events and add to event list

1. Compute estimates of interest
2. Write report

Start

Stop

Simulation
Over?

Report 
generator

Event routine i

0

1

2

i

no

yes

 
Figure 50.   Control Flow for Next-Event, Time -Advance Approach; (After: Law and 

Kelton 1991, p.12 Fig. 1.3) 
 

Figure 50 shows the flow of control during a discrete event simulation. The 

executive class starts the simulation by initializing the system state, event list, and 

simulation clock, and invokes the timing routine that tracks the event list and simulation 

clock. When an event routine is invoked (i.e., StartTask is an event where working agents 

process a percept conducting a specified task.) it immediately updates the system state 

and statistical counters, and generates future events (i.e., a StartTask event always 

schedules an EndTask event). The decision node checks whether the simulation should be 

terminated (e.g., because it should only run for a specified or number of events). If not, it 

goes back to the executive class, asking for the next event. The timing routine determines 

the next event I and relays it to the executive class, and the process starts all over.  



 142 

Discrete-event-simulation design can best be visualized by means of event graphs, 

which are described in the next section. 

A.  EVENT GRAPHS 

There are several ways of visualizing discrete event simulation: process networks, 

stochastic Petri nets, stochastic state machines, and event graphs (Schruben 1992). This 

research makes intensive use of event graphs. An example provided by Lee Schruben is 

shown in the figure below.  

A B(j)

{S = fA(S)} {S = fB(S)}

k ~
(i)t

p

 
Figure 51.   Event Graph of an Object (Schruben 1995, p.472) 

 
Schruben describes the graph as follows: 

 
1.  Edges: After each occurrence of event A, if condition (i) is then 

true, event B will be scheduled to occur after a delay oft. Potential 
time ties are broken with event B receiving an execution priority, 
p. 

 
2. Vertices: Whenever event B occurs, the state variable(s) in the set 

of event parameter(s) j will be assigned the values of the 
expression(s) k computed when B was scheduled. The state of the 
system will then change from S to fB(S). The edge conditions for 
all edges exiting B will then be tested and those found true will 
have their destination events scheduled. Also, to make certain 
modeling tasks easier, events are allowed to cancel one another an 
event cancellation edge is represented in an event graph as with a 
dashed arrow. Vertices can schedule or cancel further instances of 
themselves. 

All of the elements of the event graph can be statements or expressions; 
for instance, event execution priorities, p, can be real-valued expressions 
allowing for dynamic state-dependent event sequencing” (Schruben 1995, 
p.472). 
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Schruben41 favored event graphs as a means of developing an alternative event-

oriented representation of a discrete simulation system. He defined them thus: 

The event graph presented here can be used to develop alternative event 
oriented representations of a system. Several candidate model structures 
can be considered for possible implementation as discrete-event 
simulations using an event scheduling approach. Event graph analysis can 
aid in identifying state variables, in determining what events must be 
initially scheduled, anticipating possible logic errors due to simultaneous 
events, and in eliminating unnecessary event routines prior to coding a 
simulation (Schruben 1983, p.957).  
 
Research projects at Naval Postgraduate School have used event graphs 

extensively. The NPS’s expert on discrete event simulation system, Arnie Buss, describes 

event graphs and their advantages in two ways: 

Event graphs are a way of graphically representing discrete-event 
simulation models. Also known as “simulation graphs,” they have a 
minimalist design, with a single type of node and two types of edges with 
up to three options. Despite this simplicity, event graphs are extremely 
powerful. The event graph is the only graphical paradigm that directly 
models the event list logic. There are no limitations to the ability of event 
graphs to create a simulation model for any circumstance. Their 
simplicity, together with their extensibility, make them an ideal tool for 
rapid construction and prototyping of simulation models (Buss 1996,p.1).  
 
An event graph is a graph (in the formal mathematical sense of being a set 
of vertices and edges) that captures the event logic of a given model. In an 
event graph, the vertices represent the state transition function, while the 
edges capture the scheduling relationships between events (Buss and 
Sanchez 2002, p.1).  
 

These definitions identify several important features: 

1. Event graphs visually describe the logic of a model. 

2. They are simple and extensible. 

3. They are ideal for rapid prototyping. 

4. They help identify important state variables 

5. Event graphs help anticipate problems with distributed (simultaneous) 

events. 
                                                 

41 Lee Schruben conducted parts of his work while he held a National Research Council Naval 
Postgraduate School research associateship in 1992 (Yucesan, E, 1992). 
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6. They help streamline a model by eliminating unnecessary event routines. 

There is evidence that event graphs are equivalent to stochastic Petri nets 

(Schruben and Yucesan 1994). Petri nets have a reachability problem42 which is 

decidable. This can be expensive. “In the worst case, the time and memory 

(computational complexity) needed to analyze a Petri net grows exponentially with the 

size of a net” (Ralston, Reilly et al. 2000). However, since a Petri net can be analyzed, by 

induction so also can an event graph. The following references explain the features of 

Petri nets and event graphs in more detail: (Schruben 1992; Schruben and Yucesan 1994; 

Balbo, Desel et al. 2000).  

In cognitive modeling, event graphs have other interesting advantages:  

• Event graphs are easy to read and there is no need to go into 

implementation details to explain how the model works. They provide a 

transparent look into the model, avoiding black boxes.  

• Since event graphs are extensible, it is easy to create new relationships or 

simulation entities (e.g. introducing emotions into a cognitive 

architecture), thus allowing flexibility in the mathematical model.  

 

Example: Short Term Sensory Store 

At first the parameters of an entity (object, agent) are defined; these parameters 

can be changed or varied. They represent the buttons used to calibrate a model.  

1. Parameters: 

capacity; storage  where 

buffer  specifica for  fadetime  , where,

Bj

Bjt

j

F j

∈ℑ∈

∈ℜ∈
+

+

κ
 

The important parameters for STSS are: 

• the time when a stimulus fades away (a positive real number),  

• and its storage capacity (positive integer).  

The index j belongs to a set B (which is the set of all agents or objects that use a 

capacitated queue). Next the system’s state variables in this entity are defined: 

 

                                                 
42 Reachability can be analyzed by asking whether a Petri net that starts with an initial marking (or set-

up) can reach  desired final makeup (or final state). 
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2. State Variables 
queue  FIFOin elements of num.    where BjQ j ∈ℑ∈  

 
STSS only contains a state variable for its queue. Q has a positive integer value. 

Next the statistical variables are declared. 

 
3. Statistic Variables 

nsobservatio (picked) erased ofnumber  
nsobservatio dropped ofnumber   

nsobservatio faded ofnumber  

ℑ∈
ℑ∈

ℑ∈

Erases
Drops

Fades

 

 
“Fades” are observations in which the time for storage expired. “Drops” describes 

observations that couldn’t enter the system due to limited capacity. “Erases” counts the 

number of stimuli that made it into the system as percepts. Finally, the event graph shows 

the logic of STSS inner workings.  

 

4. Event Graph 

ShortTermSensoryStore

Perception
(Task)

If Qj>maxSize{
Drops++;

}
Else 
Qj++;

Fade
(Task)

Erase
(Task)

Pick

tFj

Qj.remove(Task)
Erases++

Qj.remove(Task)
Fades++

If Qj>0

If Qj>0

~

~

If Qj>0

~

Task
Task

*1
*2

*2

*1 = SCA
*2 = UA

 
Figure 52.   Event Graph for Short Term Sensory Store 

 
 

5. Event Graph Description: 
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STSS receives a Task object from the SymbolicConstructorAgent (perception 

event) and checks whether the capacity of its store is sufficient. If so, it stores the 

observation; if not, it drops it. A time ticker is instantiated on this specific task. If it 

expires, the observation fades away (fade event). The Pick event interrupts (dashed line) 

the Fade event, given a Task in the queue. It then erases this task from the queue and 

relays it to the UpdateAgent (UA). 

This brief example shows how a system’s components can be described in a rigid 

way. Its design is transparent and facilitates discussion. For the interested reader, 

Appendix A describes all entities of the simulation system as event graphs that can be 

taken as a surrogate of the simulation system.  
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APPENDIX B: EVENT GRAPH FORMULATIONS 
 

This appendix shows the blueprint for RHPM’s main entities: 

 

SYMBOLIC CONSTRUCTOR AGENT (SCA). 

SymbolicConstructorAgent SCA 
 
 
Parameters: 
None 
 
State Variables 
Task which is an object containing state variables like taskTime 
 
Statistic Variables 

nsobservatio generated ofnumber  ℑ∈Obs  
 
Event Graph 

Symbolic ConstructorAgent

Observation
(x)

new Task(x);
Obs++;

SCA could be used to
describe different 
input channels

x,y Task

*1 *2

*1 = Mackworth Generator
*2 = STSS

 
 
The SymbolicConstructorAgent serves as input channel to the model. It creates an 

unconscious observation (new Task()) and relays the observation to the 

ShortTermSensoryStore 

 
Parameters: 
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capacity; storage  where 

buffer  specifica for  fadetime  , where,

Bj

Bjt

j

F j

∈ℑ∈

∈ℜ∈
+

+

κ
 

Literature review shows that visual information can be stored for approx. 1 
second, auditory information time ranges from 2 to 8 seconds. It is unclear how much 
unconscious information can be stored into the STSS. We assume it has a limited 
capacity similar to working memory (7±2) 

 
State Variables 

queue  FIFOin elements of num.    where BjQ j ∈ℑ∈  
Statistic Variables 

nsobservatio (picked) erased ofnumber  
nsobservatio dropped ofnumber   

nsobservatio faded ofnumber  

ℑ∈
ℑ∈

ℑ∈

Erases
Drops

Fades

 

Fades are observations where the time for storage expired. Drops describes 
observations that couldn’t enter the system due to limited capacity 

 
Event Graph 

ShortTermSensoryStore

Perception
(Task)

If Qj>maxSize{
Drops++;

}
Else 
Qj++;

Fade
(Task)

Erase
(Task)

Pick

tFj

Qj.remove(Task)
Erases++

Qj.remove(Task)
Fades++

If Qj>0

If Qj>0

~

~

If Qj>0

~

Task
Task

*1
*2

*2

*1 = SCA
*2 = UA

 
 
STSS receives a Task object from the SCA (Perception event) and checks whether 

or not the capacity of its store is sufficient. If there is enough capacity it stores the 

observation. If not it drops the observation. A time ticker is instantiated on this specific 

task. If it expires the observation fades away (Fade event) The Pick event interrupts the 

Fade event, given there is a Task in the queue. It then erases this task from the queue and 

relays it to the UpdateAgent (UA). 
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WORKINGAGENT 

 
Every agent in the cognitive module is a kind of working agent with slight 

differences. Thus we describe the common events first and then only describe events that 

are changed or entirely specific to this type of agent 

 
Parameters: 

capacity; storage  where 

ime;recovery t   where 

 time;fade   where 

Bj

Wkt

Bjt

j

R

F

k

j

∈ℑ∈

∈ℜ∈

∈ℜ∈

+

+

+

κ

 

 
State Variables 

flow of function as ask timeleftover t   where 

flowcurrent    where  F

)recoveringnot ,1recovering(0agent  of statusrecovery     where R

busy)idle,1(0agent  of status    where  S

queue  FIFOin elements of num.    where

a

k

k

WkT

Aa

WkBOOLEAN

WkBOOLEAN

BjQ

ktask

j

∈ℜ∈

∈ℜ∈

==∈∈

==∈∈

∈ℑ∈

+

+

 
Statistic Variables 

agent  workingof task finished ofnumber    W;k   where
percepts dropped ofnumber ;

percepts and nobservatio faded ofnumber   ; 

∈ℑ∈
ℑ∈

ℑ∈

kJobs
Drops
Fade

 

Fades are observations where the time for storage expired. Drop describes 

percepts that couldn’t enter the system due to limited capacity. Jobs keeps track of the 

finished tasks of a specific working agent 

 
Event Graph 
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WorkingAgent

Task
Arrival
(Task)

Start
Task

End
Task

~

Change
Flow
(flow)Run

1
2

~

Init
Flow
(flow)

Sk=true;
Rk=false;

if Sk

Recover

If Qj>0

If Q j=0If Qj>0

Rk=true;
Jobk++;

Rk=false;
If Qj=0 Sk=true

Fade

tFj

Ttaskk

Fa=flow;

if ¬Skn ¬Rk

tRk

tRk

~ ~

Ttaskk

Fa=flow;
Ttaskk= f(Fa)

Q j.remove(task);
Sk=false;

Q j.remove(task);
Fades++;

~ ~

Task
Task

myID myID

flow flow

If Qj>maxSize{
Drops++;

}
Else 
Qj++;

*1 *1

*1*1

*0

*0 = main class
*1 = Ampere

 
 
• Run event (coming from the main class) initializes agent status into idle 

and not recovering. 

• InitFlow: Agent receives its initial flow from AMPERE and uses it as goal 

flow. 

• TaskArrival: Agent receives information (percept) 

• StartTask: Agent begins to works with the information and signals a 

“ChangeRes” event to AMPERE. 

• EndTask: Agent has finished task, processes it to router, and signals a 

“ChangeRes” event to AMPERE. It then schedules a Recover event or a 

StartTask event, depending whether or not there are further percepts in its 

queue.  

• Recover: After the appropriate time the agent has recovered and can start a 

new task, given there is a task in queue. 

• ChangeFlow comes from AMPERE: Agent’s flow has changed, if agent is 

not idle and not recovering, it reschedules the EndTask event. 

• Fade removes information from queue since it wasn’t processed in time. 
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UPDATEAGENT UA 

 
 
Parameters: 
Like WorkingAgent 
 
State Variables 
Like WorkingAgent additionally: 

expectancy of functiona  as te  UpdateRa;+ℜ∈UAT  
 
Statistic Variables 
Like WorkingAgent 
 
Event Graph 

UpdateAgent

Task
Arrival
(Task)

Start
Task

End
Task

~

Change
Flow
(flow)

Run

1 2

~

Sk=true;
Rk=false;

If Qj<?i
Qj.put(task)

if Sk

Recover

If Qj>0

If Qj=0If Qj>0

Rk=true;

Rk=false;
If Qj=0 Sk=true

Fade

tFj

Ttaskk

Init
Flow
(flow)

Fa=flow;

if ¬Skn ¬Rk

TUA

TUA

~ ~
Ttaskk

Fa=flow;
Ttaskk= f(Fa)

Qj.remove(task);
Sk=false;

Qj.remove(task);
Fades++;

~ ~

Change
Recover

Time

TUA=TUA+delta; flowflow

Task
Task

myID myID

*1 *1

*1*1

*0

*2
*3

*0 = main class
*1 = Ampere
*2 = STSS
*3 = PA
*4 = EA

If Qj>maxSize{
Drops++;

}
Else 
Qj++;

*4

Rk=true;
Jobk++;

 
 
The TaskArrival event comes from the PerceptAgent (PA). Another event that 

adds on to the WorkingAgent events is the ChangeRecover time. This event enables the 

agent to have different recover times TUA depending on the perceived signal probability 

(from ExpectancyAgent EA). 
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PERCEPTAGENT PA 

 
Parameters: 
Like WorkingAgent 
 
State Variables 
Like WorkingAgent  
 
Statistic Variables 
Like WorkingAgent 
 
Event Graph 

PerceptAgent

Task
Arrival
(Task)

Start
Task

End
Task

~
Change

Flow
(flow)Run

1
2

~

Init
Flow
(flow)

Sk=true;
Rk=false;

If Qj<?i
Qj.add(task)

if Sk

Recover

If Qj>0

If Qj=0If Qj>0

Rk=false;
If Qj=0 Sk=true

Fade

tFj

Ttaskk

Fa=flow;

if ¬Skn ¬Rk

tRk

tRk
~ ~

Ttaskk

Fa=flow;
Ttaskk= f(Fa)

Qj.remove(task);
Sk=false;
Task.setCode()

Qj.remove(task);
Fades++;

~ ~

Task
Task

myID myID

flow flow

*1 *1

*3,*4

*0

*2

*1*1

*0 = main class
*1 = Ampere
*2 = UA
*3 = CA
*4 = TAA

If Qj>maxSize{
Drops++;

}
Else 
Qj++;

Rk=true;
Jobk++;

 
 
The PerceptAgent receives information from the update agent and recognizes and 

stamps the task modality and code. It relays this information to the ComparisonAgent and 

the TaskAllocatorAgent. 
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COMPARISONAGENT PA 

 
Parameters: 
Like WorkingAgent 
 
State Variables 
Like WorkingAgent, additionally  
Flag Boolean (true known percept, false unknown percept)  
 
Statistic Variables 
Like WorkingAgent 
 
Event Graph 

ComparisonAgent

Task
Arrival
(Task)

Start
Task

End
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ComparisonAgent receives its tasks from the PerceptAgent. It has two additional 

events compared to WorkingAgent: Found and NotFound set the value for the Boolean 

variable flag. The StartTask event also schedules a Search event within the 

WorkingMemoryStore. We assume that the search time is included into the 

ComparisonAgent. If the task resides in the WorkingMemoryStore the TransmitAgent 

will be informed, if not the SearchAgent receives the task. 
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TASKALLOCATORAGENT 

 
Parameters: 
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TaskAllocatorAgent gets a task from the PerceptAgent. When it finishes its task it 

informs all ProcessingResourceAgents on the resource demand type (i.e. visual spatial) 
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TRANSMITAGENT 

 
Parameters: 
Like WorkingAgent 
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The TransmitAgent can get its input either from the ComparisonAgent or the 

SearchAgent. It then relays the task to the ResponseSelectionAgent. 
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SEARCHAGENT 

 
Parameters: 
Like WorkingAgent 
 
State Variables 
Like WorkingAgent,  
 
Statistic Variables 
Like WorkingAgent 
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SearchAgent is the agent looking into long term memory whether or not an object 

is a known object. Right now it is called by the ComparisonAgent. However it would be 

an obvious extension to have the SCA relay information towards long term memory via 

the SearchAgent immediately. Since we have not implemented long term memory it just 

stores the searched information into WorkingMemoryStore and relays the information to 

the TransmitAgent. 
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STORAGEAGENT 

 
Parameters: 
Like WorkingAgent 
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Like WorkingAgent,  
 
Statistic Variables 
Like WorkingAgent 
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StorageAgent receives a task from the SearchAgent. It then stores this new 

information into WorkingMemoryStore. 
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WORKINGMEMORYSTORE 

 
Parameters: 
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WorkingMemoryStore gets input either from the SearchAgent (storing 

information), from the ComparisonAgent (looking for information), or from the 

StressAgent reducing its storage capacity. The SearchInformation event returns 

information (found/not found) to the ComparisonAgent. It also stores the current task at 

the top of the FIFO queue. 
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RESPONSESELECTION 

 
Parameters: 
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ResponseSelection is a kind of WorkingAgent. The difference is an additional 

event ChangeCriterion. This event comes from the ExpectancyAgent. It changes the 

decision bias according to a perceived signal probability. It informs the ExpectancyAgent 

and the ResponseExecution about a made decision (SayYes or SayNo). 
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RESPONSEEXECUTION 

 
Parameters: 
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ResponseExecution is an object that takes the input from ResponseSelection. It 

lends itself to introduce slips into the model. A slip is defined as saying the opposite from 

what has been decided. The probability of a slip is a parameter that can either be set 

constant or which can increase over time. 
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REGULATORFLOWAGENT 

 
Parameters: 
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RegulatorFlowAgents are instantiated by the main class. They update their 

knowledge of flow periodically. The UpdateEvent asks Ampere for the current flow. 

Ampere creates a ChangeFlow event for the demanding agent (identified by myID). If the 

current flow is above or below a threshold the agent changes it resistance value 

accordingly.  
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RESOURCEAGENT 

 
Parameters: 
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ResourceAgent is informed either by the TaskAllocatorAgent or the 

TransmitAgent. ResourceAgent only controls its flow, if there are tasks that fit its code or 

modality. As soon as all of this tasks are finished the ResourceAgent does not update 

(UnDemand event cancels the Update event). 
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AMPERE 
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Ampere schedules a priority event (indicated by the thick arrow) to initialize the 

flow of all agents. WorkingAgents (WA) change their resistance when a task starts or 

ends. Once a resistance is invoked it increases over time. FlowRegulatorAgents (FRA) 

change their resistance based on a decision. Whenever a ChangeRes event occurs all 

WorkingAgents are informed about the change. If a specific FlowRegulatorAgent asks for 

its flow, Ampere answers this request for information. 
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APPENDIX C: DETAILED RESULTS OF NEO FFI PERSONALITY 
TEST 

 

This appendix shows in detail all the results of the personality experiment. The 

interested reader is advised to be aware of: 

• The sample of foreign students (12) is small and from four very different 

countries (Germany, Greece, Turkey, Singapore) compared to the sample 

of US students (38).  

• The distinction between high and low is based on the assumption that a 

score of >= 50 is high and <50 is low. A more thorough investigation with 

more subjects should certainly distinguish between average (from 45 to 

55), high >65, 35 > low< 45, very high >65, very low <35) 

• This is only a quick analysis not utilizing sophisticated data mining 

technologies. It should serve as a starting point for follow-on research. 

 

This research has not intended to show cross cultural differences. However, the 

interaction of certain personality traits indicates evidence for some major differences 

between the two populations and could potentially generated initial research questions. 

All definitions are taken from the NEO FFI manual. 

A. STYLE OF DEFENSE 

The style of defense is defined by the interaction between the factors neuroticism 

(N) and openness (O). The different categories are defined as: 

1. Maladaptive 

Individuals qualify for this category if they score high in neuroticism and low in 

openness (N+, O-). 
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Maladaptive individuals tend to use primitive and ineffective defenses such as 

repression, denial, and reaction formation. They prefer not to think about disturbing 

ideas, and they may refuse to acknowledge possible dangers (such as serious illnesses). 

They lack insight into the distressing affects they experience, and because they cannot 

verbalize their feelings they may be considered as alexithymic. 

 

2. Hypersensitive 

Individuals qualify for this category if they score high in neuroticism and high in 

openness (N+, O+). 

Hypersensitive individuals seem undefended. They are alert to danger and vividly 

imagine possible misfortunes. They may be prone to nightmares. Because they think in 

unusual and creative ways, they may sometimes be troubled by odd and eccentric ideas. 

 

3. Hyposensitive 

Individuals qualify for this category if they score low in neuroticism and low in 

openness (N-, O-). 

Hyposensitive individuals rarely experience strong negative affect, and when they 

do, they downplay its importance. They do not dwell on threats or losses, turning instead 

to concrete action to solve the problem or simply to distract themselves. They put their 

faith in higher powers 

4. Adaptive 

Individuals qualify for this category if they score low in neuroticism and high in 

openness (N-, O+). 

Adaptive individuals are keenly aware of conflict, stress, and threat, but use these 

situations to stimulate creative adaptations. They grapple intellectually with their own 

intrapsychic problems, and they may react to life stress as a source of humor or artistic 

inspiration. 
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5. Analysis: 

The data indicates that the sample of foreign students is significantly more prone 

to being hypersensitive than hyposensitive. US students are more prone to being 

hyposensitive. Both populations include a good proportion of adaptive individuals. There 

is no significant proportion of maladaptive individuals in both samples. In terms of 

conducting warfare it is certainly desirable to have a population that is biased toward 

being adaptive or hyposensitive. 

 

B. STYLE OF ANGER CONTROL 

The style of defense is defined by the interaction between the factors neuroticism 

(N) and agreeableness (A). The different categories are defined as: 

1. Temperamental 

Individuals qualify for this category if they score high in neuroticism and low in 

agreeableness (N+, A-). 

Temperamental people are easily angered and tend to express anger directly. They 

may fly into a rage over a minor irritant, and they can seethe with anger for long periods 

of time. They are deeply involved in themselves and take offense readily, and they often 
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overlook the affects of anger on others. They may be prone to physical aggression or 

verbal abuse  

2. Timid 

Individuals qualify for this category if they score high in neuroticism and high in 

agreeableness (N+, A+). 

Timid people are heavily conflicted over anger. On the one hand, their feelings 

are readily hurt and they often feel victimized. On the other, they are reluctant to express 

anger because they do not want to offend others. Their anger may be directed inward 

against themselves. 

 

3. Easy-Going 

Individuals qualify for this category if they score low in neuroticism and high in 

agreeableness (N-, A+). 

Easy-going people are slow to anger and reluctant to express it when it arises. 

They know when they have been insulted and may raise objections, but they would prefer 

to forget and forgive. They understand that there are two sides to every issue and try to 

work a common ground in resolving disputes 

4. Cold-Blooded 

Individuals qualify for this category if they score low in neuroticism and low in 

agreeableness (N-, A-). 

Cold-blooded people “don’t get mad, they get even.” These people often take 

offense, but they are not overpowered by feelings of anger. Instead they keep accounts 

and express their animosity at a time and in a way that suits them. They may seek 

revenge in criminal assaults, or more commonly manipulative office politics or 

exploitative interpersonal relationships. 
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Anger US FS NPS 

Students 

US% FS% NPS 

Students% 

Cold-Blooded 14 4 18 36.84 33.33 36.00 

Easy-Going 14 2 16 36.84 16.67 32.00 

Temperamental 5 5 10 13.16 41.67 20.00 

Timid 5 1 6 13.16 8.33 12.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis 

Most US students are either easy-going or cold-blooded. Easy-going is certainly 

the desirable style of anger control in any organization. The sample of foreign student has 

a tendency of either being cold-blooded or temperamental. The latter is certainly 

undesirable in any organization. Timid individuals are a strong minority with about 12% 

in both samples. Their overall performance is certainly impacted by the amount of anger 

they have to deal with. 
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C. STYLE OF WELL-BEING 

The style of well-being is defined by the interaction between the factors 

neuroticism (N) and extraversion (E). The different categories are defined as: 

 

1. Gloomy Pessimist 

Individuals qualify for this category if they score high in neuroticism and low in 

extraversion (N+, E-). 

These people face a dark and dreary life. There is little that cheers them and much 

that causes anguish and distress. Especially under stressful circumstances they may 

succumb to periods of clinical depression and even when they function normally, they 

often find life hard and joyless. 

2. Overly Emotional 

Individuals qualify for this category if they score high in neuroticism and high in 

extraversion (N+, E+). 

These people experience both positive and negative emotions fully and may 

swing rapidly from one mood to another. Their interpersonal interactions may be 

tumultuous because they are so easily carried away by their feelings. They may show 

features of the Histrionic Personality Disorder, but they may also feel that their lives are 

full of excitement. 

3. Upbeat Optimist 

Individuals qualify for this category if they score low in neuroticism and high in 

extraversion (N-, E+). 

These people are usually cheerful because they are not unduly troubled by 

problems, and they have a keen appreciation for life’s pleasures. When faced with 

frustration or disappointment, they may become angry or sad, but they quickly put their 

feelings behind them. They prefer to concentrate on the future, which they view with 

eager anticipation. They enjoy life. 

4. Low-keyed 

Individuals qualify for this category if they score low in neuroticism and low in 

extraversion (N-, E-). 
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Neither good news or bad news has much effect of these people; they maintain a 

stoic indifference to events that would frighten or delight others. Their interpersonal 

relationship may suffer because other people might find them to be “cold fish”. Their 

emotional experience of life is bland. 

 

WellBeing US FS NPS 

Students 

US% FS% NPS 

Students% 

Gloomy 

Pessimist 

3 2 5 7.89 16.67 10.00 

Low-

keyed 

7 0 7 18.42 0.00 14.00 

Overly 

Emotional 

7 4 11 18.42 33.33 22.00 

Upbeat 

Optimist 

21 6 27 55.26 50.00 54.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis: 

The majority of both populations tend to be upbeat optimists. The sample of 

foreign student tends to score high in neuroticism which causes the significant proportion 



 172 

of gloomy pessimists and overly emotional people. The trend of US students towards 

extraversion can be seen by the proportion of optimists and overly emotional people. 

However, there are also low-keyed people that are quit the opposite scoring low in E and 

in N. Low-keyed people have some characteristics that could be facilitated in a variety of 

specialty assignments (i.e. analysts).  

D. STYLE OF IMPULSE CONTROL 

The style of impulse control is defined by the interaction between the factors 

neuroticism (N) and conscientiousness (C). The different categories are defined as: 

1. Undercontrolled 

Individuals qualify for this category if they score high in neuroticism and low in 

conscientiousness (N+, C-). 

These individuals are often at the mercy of their own impulses. They find it 

difficult and distressing to resist any urge or desire, and they lack the self control to hold 

their urges in check. As a result they may act in ways that they know are not in their long-

term best interests. They maybe particularly susceptible to substance abuse and other 

health risk behavior 

2. Overcontrolled 

Individuals qualify for this category if they score high in neuroticism and high in 

conscientiousness (N+, C+). 

These individuals combine distress-proneness with a strong need to control their 

behavior. They have perfectionists’ strivings and will not allow themselves to fail even in 

the smallest detail. Because their goals are often unrealistic and unattainable, they are 

prone to guilt and self-recrimination. They maybe susceptible to obsessive and 

compulsive behavior. 

3. Directed 

Individuals qualify for this category if they score low in neuroticism and high in 

conscientiousness (N-, C+). 

These individuals have a clear sense of their goals and the ability to work toward 

them even under unfavorable conditions. They take setbacks and frustrations in stride, 

and they are able to tolerate unsatisfied needs without abandoning their plan of action. 
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4. Relaxed 

Individuals qualify for this category if they score low in neuroticism and low in 

conscientiousness (N-, C-). 

These individuals see little need to exert rigorous control over their behavior. 

They tend to take the easy way, and they are philosophical about disappointments. They 

may need extra assistance in motivating themselves to follow appropriate medical advice 

or to undertake any effortful endeavor. 

 

Impulse US FS NPS 

Students 

US% FS% NPS 

Students% 

Directed 23 3 26 60.53 25.00 52.00 

Overcontrolled 8 2 10 21.05 16.67 20.00 

Relaxed 5 3 8 13.16 25.00 16.00 

Undercontrolled 2 4 6 5.26 33.33 12.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis: 

The foreign student sample represents an almost normal population distributed 

evenly over the four categories. However, there is a very distinct difference towards the 

US student sample. Clearly their behavior is governed by a generally high score in 
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conscientiousness. They certainly tend to be directed or over controlled. In terms of 

desirable style the directed person has certainly many advantages especially in military 

organizations. 

E. STYLE OF INTERESTS 

The style interest is defined by the interaction between the factors extraversion 

(E) and openness (O). The different categories are defined as: 

1. Mainstream Consumers 

Individuals qualify for this category if they score high in extraversion and low in 

openness (E+, O-). 

Their interests reflect the popular favorites: Parties, sports, shopping, blockbuster 

movies – events where they can enjoy themselves with others. They are attracted to 

businesses and jobs that let them work with others on simple projects. 

2. Creative Interactors 

Individuals qualify for this category if they score low in extraversion and high in 

openness (E+, O+). 

Their interests revolve around the new and different and they like to share their 

discoveries with others. They enjoy public speaking and teaching and fit well into 

discussion groups. They enjoy meeting people from different backgrounds. 

3. Introspectors 

Individuals qualify for this category if they score low in extraversion and low in 

openness (E+, O+). 

Their interests are focused on ideas and activities they can pursue alone. Reading, 

writing, or creative hobbies like painting and music appeal to them. They prefer 

occupations that provide both challenge and privacy. 

4. Homebodies 

Individuals qualify for this category if they score low in extraversion and low in 

openness (E+, O+). 

Their interests are focused activities they can pursue alone or in a small group. 

They are unadventurous and may collect stamps or coins, watch television, or garden. 

Their vocational interests may include mechanical or domestic work. 
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Interest US FS NPS 

Students 

US% FS% NPS 

Students% 

Creative 

Interactor 

19 9 28 50.00 75.00 56.00 

Homebodies 5 0 5 13.16 0.00 10.00 

Introspector 5 2 7 13.16 16.67 14.00 

Mainstream 

Consumers 

9 1 10 23.68 8.33 20.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis 

The overwhelming majority of the foreign student sample tends to be creative 

interactors. Although this is also very pronounced within the US student’s sample, there 

are also a significant number of mainstream consumers in the sample. Presumably 

homebodies and introspectors perform better in vigilance tasks as they prefer solitary 

pursuits. 

 

 



 176 

F. STYLE OF INTERACTIONS 

The style of interactions is defined by the interaction between the factors 

extraversion (E) and agreeableness (A). The different categories are defined as: 

1. Leaders 

Individuals qualify for this category if they score high in extraversion and low in 

agreeableness (E+, A-). 

These people enjoy social situations as an arena in which they can shine. They 

prefer giving orders to taking them and believe they are particularly well suited to making 

decisions. They may be boastful and vain, but they also know how to get people to work 

together. 

2. Welcomers 

Individuals qualify for this category if they score high in extraversion and high in 

agreeableness (E+, A+). 

These people sincerely enjoy the company of others. They are deeply attached to 

their old friends and reach out freely to new ones. They are good-natured and 

sympathetic, willing to lend an ear and happy to chat about their own ideas. They are 

easy to get along with and popular. 

3. The Unassuming 

Individuals qualify for this category if they score low in extraversion and high in 

agreeableness (E-, A+). 

These people are modest and self-effacing. They often prefer to be alone, but they 

are also sympathetic and respond to others’ needs. Because they are trusting, others may 

sometimes take advantage of them. Their friends should watch out for their interests but 

still respect their privacy  

4. Competitors 

Individuals qualify for this category if they score low in extraversion and low in 

agreeableness (E-, A-). 

These people tend to view others as potential enemies. They are wary and distant 

and keep to themselves. They prefer respect to friendship and guard their privacy 

jealously. When interacting with them, it is wise to allow them the space they feel they 

need. 
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Interaction US FS NPS 

Students 

US% FS% NPS 

Students% 

Competitors 6 1 7 15.79 8.33 14.00 

Leaders 13 8 21 34.21 66.67 42.00 

Unassuming 4 1 5 10.53 8.33 10.00 

Welcomers 15 2 17 39.47 16.67 34.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis 

Clearly the sample of foreign students has a strong tendency to leadership. The 

US student sample tends towards welcomers or leaders. There exist also a significant 

proportion of competitors, which is obviously not a style of interactions that any 

organization would prefer. 

 

G. STYLE OF ACTIVITY 

The style of interactions is defined by the interaction between the factors 

extraversion (E) and conscientiousness (C). The different categories are defined as: 
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1. Fun Lovers 

Individuals qualify for this category if they score high in extraversion and low in 

conscientiousness (E+, C-). 

They are full of energy and vitality, but they find it hard to channel their energy in 

constructive directions. Instead they prefer to enjoy life with thrills, adventures, and 

raucous parties. They are spontaneous and impulsive, ready to drop work for the chance 

of a good time 

2. Go Getters 

Individuals qualify for this category if they score high in extraversion and high in 

conscientiousness (E+, C+). 

They are productive and work with a rapid tempo. They know exactly what needs 

to be done and are eager to pitch in. They might design their own self-improvement 

program and follow it with zeal. They might seem pushy if they try to impose their style 

on others. 

3. Plodders 

Individuals qualify for this category if they score low in extraversion and high in 

conscientiousness (E+, C-). 

They are methodical workers who concentrate on the task at hand and work 

slowly and steadily until it’s completed. In leisure as in work, they have a measured pace. 

They cannot be hurried, but they can be counted upon to finish whatever tasks they are 

assigned. 

4. The Lethargic 

Individuals qualify for this category if they score low in extraversion and low in 

conscientiousness (E-, C-). 

They are unenthusiastic and have few plans or goals to motivate them. They tend 

to be passive and respond only to the most pressing demands. They rarely initiate 

activities, and in group activities they often find themselves left behind. 
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Activity US FS NPS Students US% FS% NPS Students% 

Funlovers 6 6 12 15.79 50.00 24.00 

Go-Getters 22 4 26 57.89 33.33 52.00 

Lethargic 3 1 4 7.89 8.33 8.00 

Plodders 7 1 8 18.42 8.33 16.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis 

The majority of the US student sample is go-getters. The international students 

tend to be fun-lovers or go-getters. This indicates that the US students exhibit a more 

focused and goal directed behavior compared to the sample of foreign students and, of 

course, to a normal population. 

 

H. STYLE OF ATTITUDES 

The style of attitudes is defined by the interaction between the factors openness 

(O) and agreeableness (A). The different categories are defined as: 
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1. Free Thinkers 

Individuals qualify for this category if they score high in openness and low in 

agreeableness (O+-, A-). 

They are critical thinkers who are swayed neither by tradition nor by 

sentimentality. They consider all views but then make their judgments about right and 

wrong, and they are willing to disregard others’ feelings in pursuing their own idea of the 

truth. 

2. Progressives 

Individuals qualify for this category if they score high in openness and high in 

agreeableness (O+-, A+). 

They take a thoughtful approach to social problems and are willing to try new 

solutions. They have faith in human nature and are confident that society can be 

improved through education, innovation, and cooperation. They believe in reason and 

being reasonable. 

3. Traditionalists 

Individuals qualify for this category if they score low in openness and high in 

agreeableness (O-, A+). 

These individuals rely on the values and beliefs of their family and heritage in 

seeking the best way for people to live. They feel that following the established rules 

without questions is the best way to ensure peace and prosperity for everyone. 

4. Resolute Believers 

Individuals qualify for this category if they score low in openness and low in 

agreeableness (O-, A-). 

These individuals have strong and unchanging beliefs about social policies and 

personal morality. Because they view human nature with considerable skepticism, they 

support strict discipline and a get-tough approach to social problems. They expect 

everyone to follow the rules. 
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Attitudes US FS NPS Students US% FS% NPS Students% 

Free Thinkers 10 9 19 26.32 75.00 38.00 

Progressives 14 2 16 36.84 16.67 32.00 

Resolute Believers 9 0 9 23.68 0.00 18.00 

Tradionalists 5 1 6 13.16 8.33 12.00 

Total 38 12 50 100.00 100.00 100.00 
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5. Analysis 

The attitude of free and critical thinking is very pronounced with the foreign 

student sample. The US student sample tends slightly to the progressive side followed by 

free thinkers and resolute believers. There appears to be a significant cultural difference 

between US and foreign students.  

 

I. STYLE OF LEARNING  

The style of learning is defined by the interaction between the factors openness 

(O) and conscientiousness (O). The different categories are defined as: 
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1. Dreamers 

Individuals qualify for this category if they score high in openness and low in 

conscientiousness (O+, C-). 

They are attracted to new ideas and can develop them with imaginative 

elaborations, but they may get lost in flights of fancy. They are good in starting 

innovative projects, but they are less successful in completing them and may need help in 

staying focused. They are able to tolerate uncertainty and ambiguity 

2. Good Students 

Individuals qualify for this category if they score high in openness and low in 

conscientiousness (O+, C-). 

Although they are not necessarily more intelligent than others, they combine a 

real love of learning with the diligence and organization to excel. They have a high 

aspiration level and are often creative in their approach to solving problems. They are 

likely to go as far academically as their gifts allow. 

3. By-The-Bookers 

Individuals qualify for this category if they score low in openness and high in 

conscientiousness (O-, C+). 

These individuals are diligent, methodical, and organize, and they abide by all the 

rules. But they lack imagination and prefer step-by-step instructions. They excel at rote 

learning but have difficulties with questions that have no one right answer. They have a 

need for structure and closure. 

4. Reluctant Scholars 

Individuals qualify for this category if they score low in openness and low in 

conscientiousness (O-, C-). 

Academic and intellectual pursuits are not their strength or preference. They need 

special incentives to start learning and to stick with it. They may need help in organizing 

their work and reminders to keep them on schedule. They may have problems 

maintaining attention. 
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Learning US FS NPS Students US% FS% NPS Students% 

By-The-Bookers 12 1 13.00 31.58 8.33 26.00 

Dreamers 7 7 14.00 18.42 58.33 28.00 

Good Students 17 4 21.00 44.74 33.33 42.00 

Reluctant Scholar 2 0 2.00 5.26 0.00 4.00 

Total 38 12 50.00 100.00 100.00 100.00 
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5. Analysis 

US students are mainly good students or by-the-bookers. A minority can be 

categorized as dreamers. This is clearly different with the foreign student sample. Here 

the main category is dreamers followed by good students. They seem to be more curious 

and imaginative than their American counterparts. 

J. STYLE OF CHARACTER 

The style of character is defined by the interaction between the factors 

agreeableness (A) and conscientiousness (C). The different categories are defined as: 

1. Well-Intentioned 

Individuals qualify for this category if they score high in agreeableness and low in 

conscientiousness (A+, C-). 
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They are giving, sympathetic, and genuinely concerned about others. However, 

their lack of organization and persistence means that they sometimes fail to follow 

through on their good intentions. They may be best at inspiring kindness and generosity 

in others. 

2. Effective Altruists 

Individuals qualify for this category if they score high in agreeableness and high 

in conscientiousness (A+, C+). 

They are individuals who work diligently for the benefit of the group. They are 

high in self-discipline and endurance, and they channel their efforts to the service of 

others. As volunteers, they are willing to take on difficult or thankless tasks and will stick 

to them until they get the job done. 

3. Self-Promoters 

Individuals qualify for this category if they score high in agreeableness and low in 

conscientiousness (A+, C-). 

They are concerned first and foremost with their own needs and interests, and 

they are effective in pursuing their own ends. They may be highly successful in business 

or politics because of their single-minded pursuit of their own interests. 

4. Undistinguished 

Individuals qualify for this category if they score low in agreeableness and low in 

conscientiousness (A-, C-). 

They are more concerned with their own comfort and pleasure than with the well 

being of others. They tend to be weak-willed and are likely to have some undesirable 

habits they find difficult to correct. 
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5. Analysis 

The US student sample shows that the majority are either effective altruists or self 

promoters. The data indicates that the majority foreign student sample tend to be 

undistinguished which is certainly an undesirable feature for any organization. Clearly 

the tendency of foreign students to score low in conscientiousness effects this interaction. 
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