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1 Summary of Project Results 
This is the final report for the Aspect-Oriented Programming project funded under 
contract #F30602-97-C-0246 (AO# J138).  This report along with the material on the 
attached CD-ROM concludes our obligations under that contract. 

Over the lifetime of the project we developed a general-purpose aspect-oriented 
programming (AOP) extension to Java, called AspectJ, cultivated a user community for 
AspectJ, and showed that the technology was useful for a wide range of software 
development problems.  AspectJ is now the de facto standard AOP language, not just for 
Java, but in some sense for languages beyond Java. This significant milestone came about 
through major scientific, engineering, and community building accomplishments 
throughout the life of the project. 

Specific accomplishments include: 

• Development of a clear set of core design elements for general purpose AOP.  
This includes the orthogonal notions of join points, means of identifying join 
points (pointcuts) and means of specifying semantics at join points (advice, 
declare error/warning, and inter-type declarations). 

• Development of viable implementation strategies for the above technology, 
including not just pre-processing approaches, but also byte-code compiler, 
incremental compiler and load-time weaving approaches. 

• Design and implementation of 9 major and 51 minor public releases. 
• Development of a vibrant user community, through user mailing lists, 

workshops, BOFs, user site visits etc.  The final users@aspectj.org mailing 
list had 830 subscriptions, and the final announce@aspectj.org mailing list 
had 1706.  

• Development of documentation and training material including: 
• A 91 page programming guide 
• A 121 slide tutorial  
• A 54 slide “one-hour talk”  
• Presentation of the tutorial 18 times since January 2000 to various conference 

and industry audiences. (See appendix for complete list.) The tutorial was also 
presented numerous times prior to January 2000.  

• Presentation of 25 shorter talks since January 2000. This includes one-hour 
invited or keynote talks, demos and short tutorials. (See appendix for 
complete list.) There were also numerous short presentations prior to 2000. 

• Publication of 4 papers: 
• Getting started with Aspect J. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, 

Mik Kersten, Jeffrey Palm, William Griswold, Communications of the ACM 
October 2001, Volume 44 Issue 10   

• Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and 
William G. Griswold. An Overview of AspectJ In Proc. Of ECOOP, Springer-
Verlag (2001).  

• “A Study on Exception Detection and Handling Using Aspect-Oriented 
Programming” Martin Lippert and Cristina Lopes. In Proc. of the 22nd 
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International Conference of Software Engineering (ICSE’2000), Limmerick, 
Ireland. IEEE Computer Society. June 2000. 

• Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., 
Loingtier, J.-M., and Irwin, J. Aspect-Oriented Programming.  In Proc. of 
ECOOP, Springer-Verlag (1997).  

Note that the 1997 and 2001 ECOOP papers are listed by citeseer.org as being the #4 
and #18 citation respectively in their year of publication. 

 In addition, AspectJ users who are not directly members of the project have: 
• Written three books: 
• Aspect-Oriented Programming with AspectJ, by Ivan Kiselev  
• Mastering AspectJ: Aspect-Oriented Programming in Java, by Joseph D. 

Gradecki and Nicholas Lesiecki  
• AspectJ In Action, by Ramnivas Laddad 
• Written numerous papers using or based on AspectJ 
• 9 papers at the 2003 Aspect-Oriented Software Development Conference. 
• 5 papers at the 2002 Aspect-Oriented Software Development Conference. 
• 2 papers at ECOOP 2002 
• 2 papers at OOPSLA 2002 

And at least three groups have developed plans to offer commercial consulting support 
for AspectJ. 
After discussion with DARPA, the project concluded by transferring the AspectJ code 
base to IBM’s Open Source development community at eclipse.org under the Common 
Public License.  This ensures that AspectJ can remain an Open Source development 
project.  PARC retains patent rights that may apply to AOP beyond AspectJ.  PARC also 
retains the copyright on all training material, but has committed to allow AspectJ project 
members no longer at PARC rights to use that material in AspectJ books or courses they 
may prepare or deliver.  The members of the AspectJ team also expect to spend a modest 
amount of time helping Open Source developers become familiar with the AspectJ code 
base so that a viable external community of developers can get going.  This project is 
now hosted at http://eclipse.org/aspectj 

A separate CD-ROM has been delivered that contains the major concrete products of this 
project: 

• Documentation and training material 
• programmingGuide.pdf - programming guide 
• tutorial.ppt - tutorial 
• oneHourTalk.ppt - standard one-hour talk 
• AspectJ-1.0.6 system 
• aspectj-tools-1.0.6.jar - self-installing .jar file 
• aspectj-tools-src-1.0.6.jar – tar/gzipped source code 
• aspectj-docs-1.0.6.tgz – tar/gzipped documentation and examples 
• AspectJ-1.1candidate1 system 
• aspectj-1.1rc1.jar - self-installing .jar file 
• aspectj-src-1.1rc1.tgz – tar/gzipped source code 
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2 An Overview of AspectJ 
 

AspectJ is a simple and practical aspect-oriented extension to Java™. With just a 
few new constructs, AspectJ provides support for modular implementation of a 
range of crosscutting concerns. Join points are principled points in the execution 
of the program; pointcuts are collections of join points; advice is a special 
method-like construct that can be attached to pointcuts; and aspects are modular 
units of crosscutting implementation, comprised of pointcuts, advice, and ordinary 
Java member declarations. AspectJ code is compiled into standard Java bytecode. 
Simple extensions to existing Java development environments make it possible to 
browse the crosscutting structure of aspects in the same kind of way as one 
browses the inheritance structure of classes. Several examples show that AspectJ 
is powerful, and that programs written using it are easy to understand. 

2.1 Introduction 
Aspect-oriented programming (AOP) [21] has been proposed as a technique for 
improving separation of concerns in software.1 AOP builds on previous technologies, 
including procedural programming and object-oriented programming, which have already 
made significant improvements in software modularity. 

The central idea in AOP is that while the hierarchical modularity mechanisms of object-
oriented languages are extremely useful, they are inherently unable to modularize all 
concerns of interest in complex systems. Instead, we believe that in the implementation 
of any complex system, there will be concerns that one would like to modularize, but for 
which the implementation will instead be spread out. This happens because the natural 
modularity of these concerns crosscuts the natural modularity of the rest of the 
implementation. 

AOP does for concerns that are naturally crosscutting what OOP does for concerns that 
are naturally hierarchical—it provides language mechanisms that explicitly capture 
crosscutting structure. This makes it possible to program crosscutting concerns in a 
modular way, and thereby achieve the usual benefits of modularity: simpler code, that is 
easier to develop and maintain, and that has greater potential for reuse. We call such 
well-modularized crosscutting concerns aspects.2 

                                                 
1 When we say “separation of concerns” we mean the idea that it should be possible to work with the 
design or implementation of a system in the natural units of concern – concept, goal, team structure etc. – 
rather than in units imposed on us by the tools we are using. We would like the modularity of a system to 
reflect the way “we want to think about it” rather than the way the language or other tools force us to think 
about it. In software, Parnas is generally credited with this idea [37, 38].  
2 AOP support can be added to languages that are not object-oriented. The key property of an AOP 
language is that it provides crosscutting modularity mechanisms. So when we add AOP to an OO language, 
we add constructs that crosscut the hierarchical modularity of OO programs. If we add AOP to a procedural 
language, we must add constructs that crosscut the block structure of procedural programs [10, 12]. 
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AspectJ is a simple and practical aspect-oriented extension to Java. This paper presents 
an overview of AspectJ, including the core language features, how the compiler works, 
development environment support, and several examples of how it can be used. The 
examples show that using AspectJ we can code, in clear form, crosscutting concerns that 
would otherwise lead to tangled code. 

The main elements of the language design are now fairly stable, but the AspectJ project is 
not nearly finished. We continue fine-tuning parts of the language, building a third-
generation compiler, expanding the IDE support we provide, extending the 
documentation and training material, and building up the user community. We plan to 
work with that user community to empirically study the practical value of AOP.  

The next section describes the basic assumptions behind the AspectJ language design. 
Section 2.3 presents the core language. Section 2.4 outlines the compiler. Section 2.4.4 
describes the AspectJ-aware tools we have developed. Section 2.5 shows that AspectJ can 
capture crosscutting structure in elegant and easy to understand ways. We conclude with 
a discussion of related and future work. By presenting this overview, the paper provides a 
foundation for detailed discussion. Future papers will present detailed formal semantics, 
language design rationale, language and tool implementation issues, and analysis of 
software engineering benefits. 

2.2 Basic Design Assumptions 
AspectJ is intended to be the basis for an empirical assessment of aspect-oriented 
programming. We want to know what happens when a real user community uses an AOP 
language. What kinds of aspects do they write?  Can they understand each other’s code?  
What kinds of idioms and patterns emerge?  What kinds of style guidelines do they 
develop?  How effectively can they work with crosscutting modularity?  And, above all, 
do they develop code that is more modular, more reusable, and easier to develop and 
maintain? 

Because this is our goal, designing and implementing AspectJ is really just part of the 
project. We must also develop and support a substantial user community. To make it 
possible to build a large user community, we have chosen to design AspectJ as a 
compatible extension to Java that will facilitate adoption by current Java programmers. 
By compatible we mean four things: 

• Upward compatibility — all legal Java programs must be legal AspectJ programs.  

• Platform compatibility — all legal AspectJ programs must run on standard Java 
virtual machines. 

• Tool compatibility — it must be possible to work with AspectJ using existing 
tools, including integrated development environments (IDEs), documentation and 
design tools. 

• Programmer compatibility — Programming with AspectJ must feel like a natural 
extension of programming with Java.  

The programmer compatibility goal has been responsible for much of the feel of the 
language. Like Java, AspectJ is a general-purpose rather than domain-specific language; 
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AspectJ has a Java-like balance between declarative and imperative constructs; AspectJ is 
statically typed, and uses Java’s static type system. Like Java, we have been relatively 
conservative about what features to put into AspectJ. AspectJ is a small extension to Java, 
and programming with AspectJ is a small extension to programming with Java. In 
AspectJ programs we use the OO constructs to do what they do well, and then use the 
aspect-oriented constructs to handle the concerns that OO alone cannot effectively 
modularize. 

There are several potentially valuable AOP research goals that AspectJ is not intended to 
meet. It is not intended to be a “clean-room” incarnation of AOP ideas, a formal AOP 
calculus or an aggressive effort to explore the AOP language space. Instead, AspectJ is 
intended to be practical AOP language that provides, in a Java compatible package, a 
solid and well worked-out set of AOP features.  

2.3 The Language 
With just a few new constructs, AspectJ provides support for modular implementation of 
a range of crosscutting concerns. Join points are principled points in the execution of the 
program; pointcuts are a means of referring to collections of join points and certain 
values at those join points; advice is a method-like construct that can be attached to 
pointcuts; and aspects are modular units of crosscutting implementation, comprised of 
pointcuts, advice, and ordinary Java member declarations. 

This section of the paper presents the main elements of the language. In keeping with 
Java terminology, we call this the ‘static’ part of the language, because it does not 
involve aspect instances or the open-class mechanism. The presentation is informal and 
example based. 

2.3.1 Join Point Model 

A critical element in the design of any aspect-oriented language is the join point model. 
The join point model provides the frame of reference that makes it possible for execution 
of a program’s aspect and non-aspect code to be coordinated properly.  

In previous work, we have used several different kinds of join point models, including 
primitive application nodes in a dataflow graph [31] and method bodies [26]. Early 
versions of AspectJ used a model in which the join points were principled places in the 
source code. 

AspectJ is now based on a model in which join points are principled points in the 
dynamic execution of the program. This model gives us important additional expressive 
power, discussed in Section 2.3.9.2. AspectJ’s join points can be considered as nodes in a 
simple runtime object call graph. These nodes include points at which an object receives 
a method call and points at which a field of an object is referenced. The edges are control 
flow relations between the nodes. In this model control passes through each join point 
twice, once on the way in to the sub-computation rooted at the join point, and once on the 
way back out. The join points of AspectJ are shown in Figure 1. 
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Most examples in this paper are based on a simple figure editor, the kernel of which is 
shown in Figure 2. (Code from the paper is at 
http://aspectj.org/home/gregor/ecoop2001.html.)  Based on those classes, executing the 
first three lines of code in Figure 3 builds the objects shown to the right. In this picture 
large circles represent objects, square boxes represent methods and small numbered 
circles represent join points. Executing the last line causes a computation that proceeds 
through the join points labeled at the right: 

1. A method call join point at which the slide method is called on the object ln1.  

2. A method call reception join point at which ln1 receives the slide call. 

3. A method execution join point at which the particular slide method defined in 
the class Line is called. 

4. A field get join point where the _p1 field of ln1 is read. 

5. A method call join point at which the slide method is called on the object pt1. 
... 

8. A method call join point at which the getX method is called on the object pt1. 
... 

11. A field get join point where the _x field of point pt1 is read. 
control returns back through join points 11, 10, 9 and 8. 

kind of join point Points in the program execution at which…  

method calls 
constructor calls* 

a method is called (or a constructor of a class is called). 
Call join points are in the calling object, or from no 
object if the call is from a static method.  

method call receptions 
constructor call receptions 

an object receives a method or constructor call. 
Reception join points are before method or constructor 
dispatch, i.e. they happen inside the called object, at a 
point in the control flow after control has been 
transferred to the called object, but before any 
particular method/constructor has been called. 

method executions* 
constructor executions* 

an individual method or constructor is invoked. 

field gets a field of an object, classs or interface  is read. 

field sets a field of an object or class is set. 

exception handler executions* an exception handler is invoked. 

Figure 1 Join points of AspectJ. 
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12. A method call join point at which the setX method is called on p1. 
… and so on, until control finally returns back through 3, 2 and 1 

2.3.2 Pointcut Designators 

A pointcut is a set of join points that optionally exposes some of the values in the 
execution context of those join points. AspectJ includes several primitive pointcut 
designators, which, based on different kinds of criteria, can identify join points of all 
types. Pointcuts can be composed and new pointcut designators can be defined in terms 
of those combinations. Pointcuts are not higher order, nor are pointcut designators 
parametric. 

A simple way to think of pointcut designators is in terms of ‘matching’ certain join points 
at runtime. For example, the pointcut designator ‘receptions(void 
Point.setX(int))’ matches all method call reception join points at which the receiver is 
of type Point (or a sub-type of Point), and the Java signature of the method call is ‘void 
setX(int)’ Intuitively, this refers to every time a point receives a call to change its x 
coordinate. Similarly  ‘receptions(void FigureElement.slide(int, int))’ 
intuitively refers to every time any kind of figure element (i.e. an instance of Point or 
Line) receives a call to slide a certain distance. 

interface FigureElement { 
 
  public void slide(int dx, int dy); 
  ... 
} 
 
class Point implements FigureElement {
 
  private int _x, _y; 
 
  public Point(int x, int y) { 
    _x = x;  _y = y; 
  } 
 
  public int getX() { return _x; } 
  public int getY() { return _y; } 
 
  public void setX(int x) { _x = x; } 
  public void setY(int y) { _y = y; } 
 
  public void slide(int dx, int dy) { 
    setX(getX() + dx); 
    setY(getY() + dy); 
  } 
 
  ... 
} 

 
 
 
 
 
 
class Line implements FigureElement { 
 
  private Point _p1, _p2; 
 
  public Line(Point p1, Point p2) { 
    _p1 = p1;  _p2 = p2; 
  } 
 
  public Point getP1() { return p1; } 
  public Point getP2() { return p2; } 
 
  public void setP1(Point p1) { _p1 = p1; }
  public void setP2(Point p2) { _p2 = p2; }
 
  public void slide(int dx, int dy) { 
    _p1.slide(dx, dy); 
    _p2.slide(dx, dy); 
  } 
 
  ... 
} 
 

Figure 2  Part of a simple figure editor program. 
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Pointcuts can be combined using special and, or and not operators (‘&&’, ‘||’ and ‘!’). 
The following compound pointcut designator refers to whenever a Point receives a call to 
change its x or y coordinate. 

  receptions(void Point.setX(int)) || 
  receptions(void Point.setY(int)) 

 

2.3.2.1 Primitive Pointcut Designators 
AspectJ includes a variety of primitive pointcut designators. These work in different 
ways to identify join points. Some primitive pointcut designators only identify pointcuts 
of one kind, for example receptions only matches method call reception join points. 
Others match any of the nine kinds of join points at which a certain property holds. For 
example, ‘instanceof(Point)’ matches all join points at which the currently executing 
object (the value of ‘this’) is an instance of Point or a subclass of Point.3 

These two kinds of join point designators can be combined to identify join points in 
crosscutting ways. For example: 

  !instanceof(FigureElement) && 
  calls(void FigureElement.slide(int, int)) 

matches all method calls to slide that do not come from an object that is a figure 
element.4 

The primitive pointcut designators are summarized in Figure 4. They are explained 
further as they are used in the paper. 

                                                 
3 The name instanceof is chosen because of the similarity in semantics to Java’s instanceof 
operator. 
4 This will match calls that come from static methods. Since there is no currently executing object in such 
methods, instanceof(FigureElement) will not match such join points. 

ln1 
pt1 

pt2 

slide 
slide 

getY getX 

setY setX 

getP1Point pt1 = new Point(0, 0); 
Point pt2 = new Point(4, 4); 
Line  ln1 = new Line(pt1, pt2); 
 
ln1.slide(3, 6); 

5 

1 

2 

3 

4 

11 

6 
7 12 

8 

9 

10 

 

Figure 3  Object and joinpoints created by figure code. 
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calls(signature) 
receptions(signature) 
executions(signature) 
Matches call/reception/execution join points at which the method or constructor called 
matches signature. 
The syntax of a method signature is: 
    ResultTypeName ReceiverTypeName.method_id(ParameterTypeName, …) 
The syntax of a constructor signature is: 
    NewObjectTypeName.new(ParameterTypeName, …) 

gets(signature) 
gets(signature)[val] 
sets(signature) 
sets(signature)[oldVal] 
sets(signature)[oldVal][newVal] 
Matches field get/set join points at which the field accessed matches the signature. 
The syntax of a field signature is: 
    FieldTypeName ObjectTypeName.field_id 

handles(ThrowableTypeName) 
Matches exception handler execution join points at which the exception handled is of the 
specified type.  
instanceof(CurrentlyExecutingObjectTypeName) 
within(ClassName) 
withincode(signature) 

Matches join points of any kind at which the currently executing: 
  - object is of type CurrentlyExecutingObjectTypeName 
  - code is contained within ClassName 
  - code is contained within the member defined by the method or constructor signature 
cflow(pointcut_designator) 
Matches join points of any kind that occur within the dynamic extent of any join point 
matched by pointcut_designator. 
callto(pointcut_designator) 
Matches method call join points that in one step lead to any reception or execution join 
points matched by pointcut_designator. 

Figure 4  Primitive pointcut designators and the rules for what join points they match.  

Any …TypeName position does normal sub-type matching. Any …id position does matching by string 
equality. See section 2.3.9.1 for information about more sophisticated wild card matching in these positions. 
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2.3.2.2 User-defined Pointcut Designators 
User-defined pointcut designators are defined with the pointcut declaration. The 
declaration:  

  pointcut moves(): 
    receptions(void FigureElement.slide(int, int)) || 
    receptions(void Line.setP1(Point)) ||  
    receptions(void Line.setP2(Point)) || 
    receptions(void Point.setX(int))   || 
    receptions(void Point.setY(int)); 

defines a new pointcut designator, moves(), that identifies whenever a figure element 
receives a call of a method that can move it. User-defined pointcut designators can be 
used wherever a pointcut designator can appear.  

2.3.3 Advice 

Advice is a method-like mechanism used to declare that certain code should execute at 
each of the join points in a pointcut. AspectJ supports before, after, and  around advice. 
Additionally, there are two special cases of after advice, after returning and after 
throwing, corresponding to the two ways a sub-computation can return through a join 
point. This advice framework is modeled after the declarative method combination 
mechanism in CLOS [6, 7, 20, 42] (which itself was modeled on the demon methods of 
Flavors [8]). 

Advice declarations define advice by associating a code body with a pointcut, and a time, 
relative to each join point in the pointcut, when the code should be executed. The advice 
declaration 

  static after(): moves() { 
    flag = true; 
  } 

defines static after advice on the pointcut moves(). The ‘()’ between ‘after’ and the ‘:’ 
means the advice has no parameters. The effect of this declaration is to ensure that the 
flag variable is set to true whenever a figure element finishes handling a move method 
call. The declaration of the variable is shown in the example in Section 2.3.4.) 

A simple model for the behavior of advice is in terms of runtime dispatch. (Section 2.4 
outlines the techniques the compiler uses to ensure that most if not all of the matching 
overhead happens at compile time.) Upon arrival at a join point, all advice in the system 
are examined to see whether any apply at the join point. Any that does is collected, 
ordered according to specificity (described in Section 2.3.4), and executed as follows: 
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1. First, any around advice are run, most-specific first. Within the body of an around 
advice calling runNext() invokes the next most specific piece of around advice, 
or, if no around advice remain, goes to the next step.5 

2. Then all before advice are run, most-specific first. 
3. Then the computation proceeds forward from the join point. 
4. Execution of after returning and after throwing advice depends on how 

that computation terminates. 
o If the computation terminates normally, all after returning advice are 

run, least specific first.  
o If the computation terminates by throwing an exception, all after 

throwing advice are run, least specific first. 
5. Then all after advice are run, least-specific first. 
6. Once all after advice run, the return value from step 3, if any, is returned to the 

innermost call to runNext from step 1, and that piece of around advice continues 
running. 

7. When the innermost piece of around advice returns, it returns to the surrounding 
around advice. 

8. When the outermost piece of around advice returns, control continues back from 
the join point. 

Advice can be static or non-static. Static advice runs at any join point matched by its 
pointcut designator. (Non-static advice only runs in the context of an associated aspect 
instance.) 

2.3.4 Aspects 

Aspects are modular units of crosscutting implementation. Aspects are defined by aspect 
declarations, which have a form similar to that of class declarations. Aspect declarations 
may include pointcut declarations, advice declarations, as well as all other kinds of 
declarations permitted in class declarations. 

The following declaration defines an aspect that implements the behavior of keeping 
track of whether a figure element has moved recently. This aspect might be used by the 
screen update mechanism to find out whether anything has changed since the last time the 
screen was updated. (More sophisticated versions of this aspect will be presented in later 
sections.) 

                                                 
5 A restriction imposed by the Java virtual machine is that no around or before advice can be defined on 
constructor call reception or constructor execution join points. For most cases where the programmer wants 
this functionality advice defined on constructor call join points has the same effect. 
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aspect MoveTracking { 
 
  static boolean flag = false; 
 
  static boolean testAndClear() { 
    boolean result = flag; 
    flag = false; 
    return result; 
  } 
 
  pointcut moves(): 
    receptions(void FigureElement.slide(int, int)) || 
    receptions(void Line.setP1(Point)) ||  
    receptions(void Line.setP2(Point)) || 
    receptions(void Point.setX(int))   || 
    receptions(void Point.setY(int)); 
 
  static after(): moves() { 
    flag = true; 
  } 
} 

Static advice of an aspect are similar to static methods in that they have access to static 
members of the class. So in the case the static after advice can reference the static 
variable flag. 

2.3.5 Aspect Precedence 

In general, more than one piece of advice may apply at a join point. The different advice 
can come from different aspects or even the same aspect. 

In order for large AspectJ programs to work in predictable ways, the relative precedence 
of such advice must be well defined. The basis for advice precedence in AspectJ is based 
on the fact that aspects are the primary unit of crosscutting functionality. So advice 
precedence is resolved with respect to the relative precedence of the aspects in which 
they are defined. 

For two pieces of advice, a1 and a2, defined in aspects A1 and A2 respectively, the relative 
specificity is determined as follows: 

• If A1 and A2 are the same, whichever piece of advice appears first in that aspect 
declaration’s body is more specific. 
This rule exists because one aspect may need to define multiple advice that apply 
at the same join point. This commonly happens when there are matching before 
and after advice, but it can also happen with two pieces of advice of the same 
kind. 

• If A1 directly or indirectly extends A2, then a1 is more specific than a2. 
This rule is a natural extension of method overriding rules in OO languages. It 
supports the common case where the related advice are defined in aspects that 
naturally exist in an extends relationship. (Section 2.3.8 discusses aspect 
inheritance and overriding in more detail.)   
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• If A1 includes a ‘dominates’ modifier that mentions A2, then a1 is more specific 
than a2. 
In some cases, the programmer needs to control precedence between aspects that 
do not exists in an extends relationship.  

• In all other cases the relative specificity between a1 and a2 is undefined. 
A common case is that two conceptually and semantically independent aspects 
may define advice that apply at the same join point. In such cases the programmer 
does not need to control the relative ordering of advice they contain. 

The following mobility aspect is an example of the use of the ‘dominates’ modifier. This 
simple aspect implements a global flag that freezes all figure elements so that they cannot 
move. The aspect works by checking the flag before any move operation, and simply 
doing a “quiet abort” of the operation if moves are disabled. 

aspect Mobility dominates MoveTracking { 
  private static boolean enableMoves = true; 
 
  static void enableMoves()  { enableMoves = true; } 
  static void disableMoves() { enableMoves = false; } 
 
  static around() returns void: MoveTracking.moves() { 
    if ( enableMoves ) 
      runNext(); 
  } 
} 

It would not make sense for this aspect to extend MoveTracking, because it doesn’t 
define a more specialized version of the move tracking functionality. But it is essential 
that it have precedence over MoveTracking, so that it can abort a move before it gets 
registered. Note that the code for this aspect shows that one aspect can refer to a pointcut 
defined in another aspect in the same way that static fields are referred to in Java.  

2.3.6 Pointcut Parameters 

In many cases it is useful for advice to have access to certain values that are in the 
execution context of the join points. For example, a more sophisticated version of the 
move tracking aspect might record the specific figure elements that have moved recently 
rather than just a single bit saying that some figure element has moved recently. 

AspectJ provides a parameter mechanism that makes it possible for advice to see a 
principled subset of the values in play at join points. This mechanism operates in both 
advice and pointcut declarations. In advice declarations values can be passed from the 
pointcut designator to the advice. In pointcut declarations values can be passed from the 
constituent pointcut designators to the user-defined pointcut designator. In both cases, the 
flow of values is from the right of the ‘:’ to the left.  The net effect is that values made 
available by primitive pointcut designators can be used in the body of advice. 

For example, the following piece of advice has access to both the object receiving the 
method call and the argument to that call. 
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    static before(Point p, int nval): receptions(void p.setX(nval)) { 
      System.out.println( 
          “x value of ” + p + “ will be set to ” + nval + “.”); 
    } 
The parameter mechanism uses a combination of positional and by-name matching. The 
list of parameters to the left of the ‘:’ declares that this piece of advice has two 
parameters, of type Point and int, named p and nval respectively. Then, to the right of 
the colon, those two parameter ids can be used in the same position that a type name 
would normally appear, to say that the parameter should get the corresponding value. So, 
the ‘p’ and ‘nval’ in ‘p.setX(nval)’ mean that the effective signature is 
Point.setX(int); and that p should get the object receiving the call and nval should get 
the value of the first argument to the call. 

Definition and use of parameters works in a similar way in user-defined pointcuts. In this 
code 
    pointcut slides(FigureElement fe): 
        receptions(void fe.slide(int, int)); 
 
    static after(FigureElement figElt): slides(figElt) { 
      <in advice body ‘figElt’ is bound to the figure element> 
    } 

the pointcut declaration says that slides(FigureElement) exposes a single parameter, 
of type FigureElement, and that it is the receiver of the slide method call. The advice 
declaration says that figElt should be bound to the first parameter of slides, which is the 
figure element being slid. Note that the name of the parameter in the pointcut declaration 
does not have to be the same as within the advice declaration. 

Values can be exposed from other primitive pointcut designators as well. A common case 
is to use instanceof with a parameter, to provide access to the object making a call. 
    pointcut gets(Object caller): 
        instanceof(caller) && 
        (calls(int Point.getX())   || 
         calls(int Point.getY())   || 
         calls(Point Line.getP1()) || 
         calls(Point Line.getP2())); 
The primitive pointcut designators expose values as suggested by the naming convention 
in Figure 4. The ReceiverTypeName position in method signatures exposes the object 
receiving the method call and so on. 

2.3.6.1 Static Typing of Receiver 
In a highly polymorphic pointcut designator like moves, there is no common super type 
that accepts all of the method calls in the pointcut (i.e. there is no type that accepts all of 
slide, setP1, setP2, setX and setY). That means it isn’t possible to write moves to 
expose the figure element that is moving by simply plugging a common parameter into 
the receiver position of each receptions. One cannot write something like: 



 

 

 

15

  pointcut moves(FigureElement fe): 
    receptions(void fe.slide(int, int)) ||  
    receptions(void fe.setP1(Point)) ||    
    receptions(void fe.setP2(Point)) || 
    ... 

because setP1 is not defined on FigureElement. Instead, the object receiving the calls 
must be picked up using instanceof as follows: 

  pointcut moves(FigureElement fe): 
    instanceof(fe) &&   
    (receptions(void FigureElement.slide(int, int)) || 
     receptions(void Line.setP1(Point)) ||  
     receptions(void Line.setP2(Point)) || 
     receptions(void Point.setX(int))   || 
     receptions(void Point.setY(int))); 

2.3.6.2 Access to Return Values 
In some cases, after returning advice may want to access the value being returned through 
the join point. This is done with special syntax, to make it clear that the return value is 
only present in after returning advice 

  static after(Point p) returning (int x): receptions(int 
p.getX()) { 
    System.out.println( 
        p + “ returned ” + x + “ from getX().”); 
  } 

2.3.6.3 Parameters and runNext 
Within an around advice that has parameters, runNext accepts parameters with the same 
signature as the around advice itself. Calling runNext with different actual values for 
those parameters will cause all remaining advice and the rest of the computation to see 
the new values. This can be used to implement advice that does pre-processing on the 
values as follows: 

  static around(int nv) returns void: 
        receptions(void Point.setX(nv)) || 
        receptions(void Point.setY(nv)) { 
    runNext(Math.max(0, nv)); 
  } 

The effect of this advice is to ensure that any method call to change the x or y coordinate 
of a point has its parameter clipped to zero before the change proceeds.  

2.3.7 Reflective Access to Join Point 

To make certain kinds of advice easier to write, AspectJ provides simple reflective access 
to information about the current join point. Within the body of an advice declaration, the 
special variable thisJoinPoint is bound to an object representing the current join point. 
The join point object provides information common to all join points, such as what kind 
of join point it is and the signature of the surrounding method. It also provides 
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information specific to each kind of join point, i.e. a field reference join point provides 
access to the field signature. 

2.3.8 Inheritance and Overriding of Advice and Pointcuts 

To support aspect-libraries, AspectJ provides a simple mechanism of pointcut overriding 
and advice inheritance. To use this mechanism a programmer defines an abstract aspect, 
with one or more abstract pointcuts, and with advice on the pointcut(s). This, then, is a 
kind of library aspect that can be parameterized by aspects that extend it. For example, 
the following defines a simple library of tracing functionality. 

abstract aspect SimpleTracing {6 
 
  abstract pointcut tracePoints(); 
 
  static before(): tracePoints() { 
    printMessage(“Entering”, thisJoinPoint);  
  } 
  static after(): tracePoints() { 
    printMessage(“Exiting”, thisJoinPoint); 
  } 
 
  static void printMessage(String when, JoinPoint tjp) { 
    code to print an informative message 
    using information from the join point 
  } 
} 

To use the library aspect in a specific situation just requires extending the aspect and 
supplying a concrete definition for the abstract pointcut. 

aspect SlideTracing extends SimpleTracing { 
 
  pointcut tracePoints(): 
      receptions(void FigureEditor.slide(int, int)); 
 
} 

Concretizing the abstract pointcut in the sub-aspect has the effect of inheriting the aspect 
declaration from the super-aspect into the sub-aspect. If the sub-aspect includes a 
dominates modifier, that modifier affects the precedence of the inherited advice. 

2.3.9 Property-Based Crosscutting 

The pointcuts presented above are all defined in terms of an explicit enumeration of 
method signatures. Although this is appropriate in many cases, we have found that it is 
useful to be able to define a pointcut by means of certain other properties of join points. 
To enable such property-based crosscutting AspectJ includes two kinds of features, 
wildcarding in pointcut designators and control-flow based pointcut designators (it would 

                                                 
6 The syntax of this feature of the language is under revision.  The functionality has been present for over a 
year and will continue to be present in future releases. 
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be nice to name the more general category that cflow, callto, dflow and all such things are 
instances of). 

2.3.9.1 Wildcarding in Pointcut Designators 
AspectJ includes a very simple wildcarding mechanism in pointcut designators. 
Examples of what this mechanism allows the programmer to say are: 

receptions(* Point.*(..)) 
Matches receptions of calls to any method defined on the class Point (i.e. 
slide(int, int), getX(), getY(), setX(int), setY(int)).7 
receptions(Point.new(..)) 
reception of a call to any constructor for  an object of type Point (i.e. the 
Point(int, int) constructor). 
receptions(public * com.xerox.scanner.*.*(..)) 
reception of call to any public method of an object of any type in the 
com.xerox.scanner package. 
receptions(* Point.get*()) 

reception of call to any method defined on Point for which the the id 
starts with ‘get’ and which accepts zero arguments – i.e. the nullary 
getters getX() and getY() 

2.3.9.2 Control-Flow Based Crosscutting 
AspectJ also includes two primitive pointcut designators that permit picking out join 
points based on whether they are in a particular control-flow relationship with other join 
points. In order to do this, these designators differ from others in that they accept pointcut 
designators as parameters. 

The cflow(pcd) pointcut designator matches all join points that are within the control 
flow of the join points matched by pcd. The points matched by pcd itself are not matched 
cflow(pcd). A canonical use of cflow is to distinguish between top-level versus 
recursive calls of a method. So, for example,  

  pointcut moves(FigureElement fe): <as above>;  
 
  pointcut topLevelMoves(FigureElement fe): 
    moves(fe) && !cflow(moves(FigureElement)); 

The definition of topLevelMoves reads as any join point matched by moves, but not 
within the control flow of moves. In other words, if the move operation invokes another 
move operation recursively, that recursive operation will not be matched. 

2.4 Implementation 

                                                 
7 This will also match calls to methods defined in the class Object. If the programmer explicitly wants to 
exclude these they could write: receptions(* Point.*(..)) && !receptions(* Object.*(..)). 
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This section briefly outlines the current language implementation. All language features 
described here have been implemented and released, many for six months or more.  

The main job of any AspectJ implementation is to ensure that aspect and non-aspect code 
run together in a properly coordinated fashion. This coordination process is called aspect 
weaving and involves making sure that applicable advice runs at the appropriate join 
points. As is the case with most other language features, aspect weaving can be done by a 
special pre-processor [19, 26, 31, 35], during compilation, by a post-compile processor 
[35, 36], at load time, as part of the virtual machine, using residual runtime instructions, 
or using some combination of these approaches.  

The AspectJ language design strives to be silent on the issue of when aspect weaving 
should be done. We provide a compiler-based implementation of the language that does 
almost all weaving work at compile-time. This exposes as many programming errors as 
possible at compile time and avoids unnecessary runtime overhead. Certain special cases 
of advice involve residual dispatch overhead at runtime. 

The compiler uses a pay-as-you-go implementation strategy. Any parts of the program 
that are unaffected by advice are compiled just as they would be by a standard Java 
compiler. 

The compiler transforms the source program in three ways: the body of every advice 
declaration is compiled into a standard method, parts of the program where advice applies 
are transformed to insert static points corresponding to the dynamic join points, and code 
to implement any residual dynamic dispatch is inserted at those static points. 

2.4.1 Compilation of Advice Bodies 

Every advice body is compiled into a standard method and the advice is run by a call to 
the method from appropriate points in the code. This potentially means that the use of 
advice will add the overhead of a single method-call. But, for static advice, these methods 
are themselves static so they can be easily in-lined by most JVMs. This means there 
should generally be no observable performance overhead from these additional method 
calls. (For non-static advice, the methods are not static, but may be final or called only 
from monomorphic call sites, and so will still be in-lined by the best virtual machines 
[17].) 

2.4.2 Corresponding Method 

The compiler transforms the source program into a form in which there is an explicit 
corresponding method for each dynamic join point that might have advice at runtime. 
This transformation is only performed for join points that might have advice, not all join 
points. So, for example, in a program that has advice on the pointcut designated by 
gets(int Point.x), the compiler would transform references of the form p.x, where p 
is a Point to Point.$jp$0$(p), and add the following method to the class Point: 
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  private static int Point$jp$0(Point obj) { 
    return obj._x; 
  } 
 

Once this corresponding method has been generated, before and after advice are 
implemented by making the corresponding method call the advice methods as needed. 

There are many cases, including this one, where the compiler will add additional method 
calls in order to create corresponding methods. This happens for method call, method call 
reception and field access join points. Extra method calls are also added as part of the 
implementation strategy for around advice. The overhead of these methods is small in 
any JVM, and again since they are nearly all static, final or monomorphic, they will be 
optimized away by good JVMs. We expect a future version of the AspectJ compiler to 
provide optimizing modes that will eliminate some of these minor overheads. 

2.4.3 Dynamic Dispatch 

The use of certain pointcut designators, like cflow, callsto, and instanceof, can 
require a run-time test to determine whether a particular corresponding method actually 
matches a particular join point designator. In such cases, the corresponding method 
includes residual testing code that guards the execution of the advice. This overhead is 
relatively small close to the efficiency of a hand-coded solution to the same design 
problem. (Dynamic tests of this kind are also involved in dispatching of non-static 
advice.) 
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2.4.4 Tool Support 

In object-oriented programming, development tools typically allow the programmer to 
easily browse the class structure of their programs. Such support enables the programmer 
to see a the inheritance and overriding structure in their program, as well as seeing 
compact representations of the contents of individual classes [14, 16, 39]. 

For AspectJ, we are developing analogous support for browsing aspect structure. This 
enables the programmer to see the crosscutting structure in their programs. It works by 
showing a bi-directional coupling between aspects (and their advice), and the classes (and 
their methods) that they affect. Figure 5 shows one of the extensions we have made to 
JBuilder 3.5. This extension to the structure view tool allows the programmer to easily 
see a summary of the crosscutting into the class Point. If the structure view window is 
focused on an aspect, it will show all the targets of that aspect’s advice. 

 
 
Figure 5  A portion of the screen when using the AJDE extension to JBuilder 3.5.  

The main window on the right shows the code for the class Point. The structure view on the left shows the 
class Point, and shows that slide, setX and setY are all crosscut by advice; setX is further expanded to show 
what advice crosscuts them. The user can click on the advice to jump there. 
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A second kind of environment extension provides a more light-weight reminder of the 
aspect structure. This extension works by annotating the source code, as seen in the 
editor, with an indication of whether aspects crosscut that code. Figure 6 shows how we 
have extended emacs with this functionality. The automatically generated annotations 
name the aspects that crosscut the method. A keystroke command can be used to pop up a 
menu of the advice, choose one, and jump to it. 

We currently support AspectJ-aware extensions to emacs, JBuilder and Forte for Java. 
Additional tool support includes debugger extensions to understand that advice, display it 
correctly on the stack etc., as well as extensions to Javadoc [13] to make it understand 
crosscutting structure and generate appropriate hyper-links etc. 

All of these extensions work by consulting a database that is maintained by the compiler. 
Once the API stabilizes, we intend to make it public so that others can develop tools that 
use it as well.  

2.5 Understanding Crosscutting Structure 
One of the most important questions we must answer is how easy is it to program with 
AspectJ.  In particular, is crosscutting structure, implemented with AspectJ, something 
that appears easy to understand and work with? We do not yet have enough experience to 
say for sure, but our experience to date suggests that the answer is yes.   

 
Figure 6  A portion of the screen when using the AspectJ-aware extension to emacs. 

The text in [Square Brackets] following the method declarations is automatically generated, 
and serves to remind the programmer of the aspects that crosscut the method. 
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2.5.1 Modular, Concise and Explicit 

Consider the following simple aspect, which is not part of the figure editor example.  
This aspect implements a simple error logging functionality, in which every public 
method defined on any type in the com.xerox.printers package logs any errors it 
throws back to its caller. 

aspect SimpleErrorLogging { 
  static Log log = new Log(); 
 
  pointcut publicInterface(Object o): 
      instanceof(o) && 
      receptions(public * com.xerox.printers.*.*(..)); 
 
  static after(Object o) throwing (Error e): publicInterface(o) { 
    log.write(e); 
  } 
} 

This aspect appears to be better than the plain Java version of the functionality in several 
ways: 

• The aspect is more modular than the plain Java version.  In the ordinary Java 
implementation, every public method would have to inline the logging code itself. 

• The aspect is more concise than the plain Java version.  In the plain Java version 
something like six lines of code would be added to each public method to wrap 
the body in a “try… catch…” statement. 

• The aspect is more explicit than the plain Java version.  In this code, the structural 
invariant underlying the crosscutting is clear.  A quick look at the code is all it 
takes to understand that all the public methods defined in the 
com.xerox.printers package should do error logging.   

Consider the experience of reading this program if someone else had written it.  In the 
plain Java version, you would see the logging code one method at a time.  After seeing a 
few methods with logging you might guess the logging was being done by all public 
methods of that class or perhaps even the package.  But you would have to use a tool like 
grep to be sure. 

In the AspectJ version when you look at the first public method you would see an 
annotation, something like that in Figure 6, which would tell you that the method was 
crosscut by the SimpleErrorLogging aspect.  You could quickly go to the aspect, read the 
ten lines of code, and understand “what is going on” – the structural invariant would be 
clear. 

Aspects that define crosscutting in terms of explicit enumeration are also more modular, 
concise and explicit.  Consider the now familiar moves pointcut: 
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  pointcut moves(FigureElement fe): 
    instanceof(fe) &&   
    (receptions(void FigureElement.slide(int, int)) || 
     receptions(void Line.setP1(Point)) ||  
     receptions(void Line.setP2(Point)) || 
     receptions(void Point.setX(int))   || 
     receptions(void Point.setY(int))); 

Even though this pointcut is enumeration based, putting the complete set of method 
signatures in a single place makes the crosscutting structure explicit in a clear way.  
When reading the MoveTracking aspect it is easy to tell what invariant it preserves –  
whenever something moves  it records that fact.  Writing the Mobility aspect in terms of 
MoveTracking.moves, makes it clear that multiple aspects of the implementation crosscut 
all the move operations.  The IDE support ensures that when we happen to be looking at 
the setX method for Point, we see that Mobility and MoveTracking crosscut there.  
Navigating to either aspect will show their structure and the fact that Mobility is defined 
in terms of MoveTracking.  

This clarity is preserved when enumeration-based crosscutting is used together with 
property-based crosscutting.  This is evident in the TopLevelMoves pointcut. 

  pointcut topLevelMoves(FigureElement fe): 
    moves(fe) && !cflow(moves(FigureElement)); 

Our experience is that the cflow pointcut designator takes only a short while for people 
learning AspectJ to learn, and once they do so, they find it quite easy to understand this 
code. It is certainly much easier than to understand what is going on, from the middle of 
the classic tangled implementation of this functionality.  

Clear explicit crosscutting structure can come from the way multiple advice declarations 
interact as well.  In the SimpleTracing aspect of Section 2.3.8, there are two advice 
declarations: 

  static before(): tracePoints() { 
    printMessage(“Entering”, thisJoinPoint);  
  } 
  static after(): tracePoints() { 
    printMessage(“Exiting”, thisJoinPoint); 
  } 

Even without knowing what join points tracePoints will match, we understand something 
important about the structure of this code – the entering and exiting messages happen in 
pairs, on the way into and back out of join points matched by tracePoints.   

2.5.2 The Role of IDE Technology 

IDE technology plays an important role in these scenarios. In the course of preparing the 
paper we encountered a bug in which MoveTracking and Mobility had inconsistent 
moves pointcuts.  The bug was immediately apparent, because the environment showed 
numerous methods with [Mobility, MoveTracking] and one method with just 
[MoveTracking]. 

Because it is now standard practice for OO programmers to use some kind of IDE 
support–at least in navigating an unfamiliar system–and because it is so easy to 
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incorporate our technology into an IDE, a programmer can be expected to have IDE 
support available for such scenarios.  

The ability of the IDE to present the structure of the program depends on the degree to 
which the code declaratively captures that structure. OO IDEs do a good job of 
presenting inheritance structure because code in OO programming languages captures 
inheritance explicitly. The AspectJ IDE support works well because code in AspectJ 
captures crosscutting explicitly.  

2.6 Related Work 
In earlier work we proposed aspect-oriented programming [21] and presented three 
examples of domain-specific [1-3] AOP languages [19, 25, 26, 31] that we had 
developed. AspectJ differs from those three systems in that it is a general-purpose 
language, it is integrated with Java, it has a dynamic join point model, and we are 
developing a full compiler, rather than just a pre-processor. 

2.6.1 Other Work in AOP 

Adaptive Programming [24] provides a special-purpose declarative language for writing 
class structure traversal specifications. Using this language prevents knowledge of the 
complete class structure from becoming tangled throughout the code. Adaptive 
Components [32] build on adaptive programming by using similar graph-language 
techniques to allow flexible linking of aspectual components and classes. This makes 
aspectual components reusable. AspectJ supports reusable aspects using the pointcut-
overriding and advice-inheritance mechanism, neither of which require a special graph 
language. 

Composition Filters [4, 5] wrap objects inside of filters that operate on the messages the 
objects receive. The filters have crosscutting access to the messages received by an 
object. But attachment of filters to objects is done as part of class definitions, so 
composition filters are less well suited than AspectJ for crosscuts that involve more than 
one class. 

De Volder has proposed a logic meta-programming (LMP) approach that can serve as 
kind of an AOP language toolkit [11]. In this approach, the equivalent of our pointcut 
designators use logical queries to specify crosscuts. This approach can take advantage of 
unification to define parametric pointcut designators. It supports higher-order pointcut 
designators as well. We have considered extending AspectJ with this kind of power, but 
have decided not to do so, in order to keep the language simpler and easier for Java 
developers to learn quickly.  We may re-consider this issue in release 2.0 or later; we 
believe the current pointcut designator syntax leaves us room to do so in an upward 
compatible way. 

2.6.2 Multi-Dimensional Separation of Concerns 
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Subject-oriented programming is a means for composing and integrating disparate class 
hierarchies (subjects), each of which might represent different concerns [35]. More recent 
work on multi-dimensional separation of concerns (MDSOC) [44] is intended to separate 
concerns along multiple dimensions at once. Hyper/J [36] is a specific proposal for 
MDSOC. Hyper/J works by having the programmer write two kinds of meta-declarations:  
the first describes how to slice concerns out of a set of classes; the second describes how 
to re-compose those concerns into a new program. Hyper/J has the potential to slice a 
concern out of code without re-factoring the classes. By comparison, in AspectJ the 
separation of crosscutting concerns is done in the original code, by writing it as an aspect. 
We believe re-factoring the code with an aspect will be easier to maintain than slicing 
concerns out, but it is too soon to know.  

2.6.3 Reflection 

Computational reflection [40, 41] enables crosscutting programs. For example, it is 
possible to write a small piece of meta-code that runs for all methods. Smalltalk-76 
included meta-level functionality [15]. CommonLoops and 3-KRS proposed different 
meta-level architectures for OO languages [7, 27] PCL provided the first efficient 
metaobject-protocol [22]. Much of the research in reflection has explored varying the 
meta-level architecture to support different kinds of crosscutting [27-30, 34, 46] and to 
achieve flexibility without sacrificing performance [18]. 

With the exception of reflective access to thisJoinPoint, AspectJ has been designed so 
that the semantics of advice is not a meta-programming nor a reflective semantics. In 
particular, AspectJ the identifiers in pointcut designators do not refer to program 
representation or interpreter state – they do involve reification. 

2.6.4 Object-Oriented Programming 

Flavors [8], New Flavors [33], CommonLoops [7] and CLOS [42] all support multiple-
inheritance, declarative method combination and open classes. C++ supports multiple 
inheritance [43]. AspectJ provides more powerful and modular support for crosscutting 
than can be achieved with these features. 

Ordinary declarative method combination is not sufficient for AOP, because it lacks the 
wildcarding and control-flow based features that enable property-based crosscutting.  

Ordinary multiple-inheritance (MI) is not sufficient for AOP for two reasons. First, a 
single aspect can include advice for all the different participants in a multi-class 
interaction. Using MI, a separate mixin-class must be defined for each participant class. 
Second, aspects work by ‘reverse-inheritance’ – the aspect declares what classes it should 
affect rather than vice-versa. This means that adding or removing aspects from the system 
does not require editing affected class definitions. 

Completely unstructured open classes, as in CLOS and its ancestors, enable crosscutting 
modularity, but they do so in a totally unstructured way. In AspectJ, classes and aspects 
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are modular units, even if an aspect can crosscut classes.8  (AspectJ includes an open 
class mechanism similar to that recently proposed in [9] .) 

2.6.5 Other Work 

Walker and Murphy have proposed a system based on implicit context that is also 
intended to improve separation of concerns [45]. Implicit context is similar to AspectJ in 
that the separation is made explicit in the source code.  But, it differs from AspectJ in that 
it provides reflective access to the entire call history of a system. Thus explicit context 
can reason about a wider dynamic context than is possible with cflow. AspectJ 
programmers could write aspects to manually gather call history information and thereby 
duplicate some explicit context functionality. 

Implicit Parameters provides dynamically scoped variables within a statically typed 
Hinley Milner framework [23]. Implicit parameters are lexically distinct from regular 
identifiers, and are bound by a special with construct whose scope is dynamic, rather than 
static as with let. Implicit parameters have some of the power of using cflow to pass 
dynamic context. Implicit parameters are more powerful, in that the binding they create 
can be set from any reference site. But they do not have explicit crosscutting modularity 
support because references to the parameter are still spread throughout the code. Many 
implementations of Scheme provide the fluid-let construct that dynamically binds 
variables by side-effect, and then re-instates the previous binding is after evaluation of 
the body is completed. 

 

2.7 Summary 
AspectJ is a simple and practical aspect-oriented extension to Java. Programming with 
AspectJ is a small extension to programming with Java. In AspectJ programs we use the 
OO constructs to do what they do well, and then use the aspect-oriented constructs to 
handle the concerns that OO alone cannot effectively modularize. 

AspectJ uses a dynamic join point model, in which join points are principled points in the 
execution of the program. Join points are identified by pointcut designators, and three 
kinds of advice can be attached to pointcut designators.  The simplest pointcut 
designators identify join points by explicit signature.  More powerful pointcut designators 
identify join points using properties such as whether a method is public or whether a call 
happens in a particular dynamic context. 

Crosscutting concerns implemented in AspectJ are more modular and concise than when 
written in plain Java.  AspectJ also captures the structure of crosscutting concerns in 
explicit form.  Together, these properties make the AspectJ implementation of 
crosscutting concerns clear and easy to understand. 

                                                 
8 Flavors, New Flavors and CLOS us the Common Lisp module system, called the package system. It is 
typically used in only very coarse-grained ways, certainly not at the level of single classes as in Java, and 
usually not even at the level of single packages in Java. 
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Because AspectJ makes the structure of crosscutting concerns more explicit, 
programming environment tools can help the programmer navigate and understand that 
structure.  Extensions to several popular development tools show that this is support is 
useful when writing AspectJ code. 

The main elements of the language design are now fairly stable, but the AspectJ project is 
not nearly finished. We continue polishing the language design and improving the 
compiler and tool support. Our goal is to develop and support a large user community.  
We will work with that community to do empirical studies of the software engineering 
benefits of AspectJ and AOP. 
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3 Getting Started with AspectJ 
 
Many software developers are attracted to the idea of AOP, but unsure about how to 
begin using the technology.  They recognize the concept of crosscutting concerns, and 
know that they have had problems with the implementation of such concerns in the past.  
But there are many questions about how to adopt AOP into the development process.  
Common questions include: Can I use aspects in my existing code?  What kinds of 
benefits can I expect to get?  How do I find aspects?  How steep is the learning curve for 
AOP?  What are the risks of using this new technology? 

This paper addresses these questions in the context of AspectJ – a general-purpose 
aspect-oriented extension to Java. A series of abridged examples illustrate the kinds of 
aspects programmers may want to implement using AspectJ and the benefits associated 
with doing so. Readers who would like to understand the examples in more detail, or who 
want to learn how to program examples like these, can find the complete examples and 
supporting material on the AspectJ web site.9 

A significant risk in adopting any new technology is going too far too fast.  Concern 
about this risk causes many organizations to be conservative about adopting new 
technology.  To address this issue, the examples in the paper are grouped into three broad 
categories, with aspects that are easier to adopt into existing development projects 
coming earlier in the paper. Section 3.2 presents development aspects that facilitate tasks 
such as debugging, testing and performance tuning of applications.  Section 3.3 presents 
production aspects that implement crosscutting functionality common in Java 
applications.   

These categories are informal, and this ordering is not the only way to adopt AspectJ.  
Some developers may want to use a production aspect right away.  But our experience 
with current AspectJ users suggests that this is one ordering that allows developers to get 
experience with (and benefit from) AOP technology quickly, while also minimizing risk. 

                                                 
9 The AspectJ system, primer, and a complete implementation of these examples are available at 
http://aspectj.org.  (Note to reviewers:  We will make a special place on the web site to get these examples. 
For a few months after the CACM issue comes out this will be prominently featured.  Later it will be less 
prominently featured, but will remain on the site indefinitely.) 
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3.1 AspectJ semantics 
This section presents a brief 
introduction to the features of AspectJ 
used later in the paper.  These features 
are at the core of the language, but this 
is by no means a complete overview of 
AspectJ. For a more complete or more 
detailed understanding of AspectJ, see 
[2, 3]. 

The semantics are presented using a 
simple figure editor system.  A 
Figure consists of a number of 
FigureElements, which can be either 
Points or Lines. The Figure class 
provides factory services.  There is 
also a Display. Most example 
programs later in the paper are based on this system as well.  

 
AspectJ realizes the modularization of crosscutting concerns using join points and advice.  
Join points are well-defined points in the program flow and advice define code that is 
executed when join points are reached. 

3.1.1 The Join Point Model 

A critical element in the design of any aspect-oriented language is the join point model. 
The join point model provides the common frame of reference that makes it possible to 
define the structure of crosscutting concerns. 

In AspectJ, join points are certain well-defined points in the execution of the program.  
AspectJ provides for many kinds of join points, but this paper discusses only one of them: 
method call join points.  A method call join point encompasses the actions of an object 
receiving a method call.  It includes all the actions that comprise a method call, starting 
after all arguments are evaluated up to and including normal or abrupt return. 

Each method call itself is one join point. The dynamic context of a method call may 
include many other join points: all the join points that occur when executing the called 
method and any methods that it calls. 

3.1.2 Pointcut Designators 

In AspectJ, pointcut designators identify collections of join points in the program flow.  
For example, the pointcut designator: 

        calls(void Point.setX(int)) 
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Figure 7  UML for Figure Editor Example. 
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identifies all calls to the method setX defined on Point objects.  Pointcut designators 
can be composed using a set algebra semantics, so for example: 

        calls(void Point.setX(int)) || 
        calls(void Point.setY(int)) 

identifies all calls to either the setX or setY methods defined by Point. 

Programmers can define their own pointcut designators, and pointcut designators can 
identify join points from many different classes – in other words, they can crosscut 
classes. So, for example, the following named pointcut declaration 

  pointcut moves(): 
        calls(void FigureElement.setXY(int, int)) || 
        calls(void Point.setX(int))               || 
        calls(void Point.setY(int))               || 
        calls(void Line.setP1(Point))             || 
        calls(void Line.setP2(Point)); 

defines a pointcut named moves that designates calls to any of the methods that move 
figure elements. 

3.1.2.1 Property-Based Primitive Pointcut Designators 
The previous pointcut designators are all based on explicit enumeration of a set of 
method signatures.  We call this name-based crosscutting.  AspectJ also provides 
mechanisms that enable specifying a pointcut in terms of properties of methods other 
than their exact name.  We call this property-based crosscutting. The simplest of these 
involve using wildcards in certain fields of the method signature.  For example: 

        calls(void Figure.make*(..)) 

identifies calls to any method defined on Figure, for which the name begins with 
"make", specifically the factory methods makePoint and makeLine; and 

        calls(public * Figure.* (..)) || 

identifies calls to any public method defined on Figure. 

One very powerful primitive pointcut designator, cflow, identifies join points based on 
whether they occur in the dynamic context of another pointcut.  So  

        cflow(moves()) 
designates all join points that occur between receiving method calls for the methods in 
moves and returning from those calls (either normally or by throwing a Throwable). 

3.1.3 Advice 

Pointcuts are used in the definition of advice.  AspectJ has several different kinds of 
advice that define additional code that should run at join points.  Before advice runs when 
a join point is reached and before the computation proceeds, i.e. that runs when 
computation reaches the method call and before the actual method starts running. After 
advice runs after the computation 'under the join point' finishes, i.e. after the method body 
has run, and just before control is returned to the caller. Around advice runs when the join 
point is reached, and has explicit control over whether the computation under the join 
point is allowed to run at all. 



 

 

 

35

  after(): moves() { 
    System.out.println(“A figure element moved.”);  
  } 

3.1.3.1 Exposing Context in Pointcuts 
Pointcut designators can also expose part of the execution context at their join points. 
Values exposed by a pointcut designator can be used in the body of advice declarations. 
In the following code, the pointcut exposes three values from calls to setXY: the 
FigureElement receiving the call, the new value for x and the new value for y. The 
advice then prints the figure element that was moved and its new x and y coordinates 
after each setXY method call. 

  pointcut setXYs(FigureElement fe, int x, int y): 
    calls(void fe.setXY(x, y)); 
 
  after(FigureElement fe, int x, int y): setXYs(fe, x, y) {: 
    System.out.println(fe + " moved to (" + x + ", " + y + ").”); 
  } 

3.1.4 Aspect Declarations 

An aspect is a modular unit of crosscutting implementation.  It is defined very much like 
a class, and can have methods, fields, and initializers.  The crosscutting implementation is 
provided in terms of pointcuts and advice.  Only aspects may include advice, so while 
AspectJ may define crosscutting effects, the declaration of those effects is localized. 

3.2 Development Aspects 
This section presents examples of aspects that can be used during development of Java 
applications.  These aspects facilitate debugging, testing and performance tuning work. 
The aspects define behavior that ranges from simple tracing, to profiling, to testing of 
internal consistency within the application. 

Using AspectJ makes it possible to cleanly modularize this kind of functionality, thereby 
making it possible to easily enable and disable the functionality when desired.  Section 
3.2.4 presents techniques that make it possible to ensure that the functionality is not 
included in production builds of an application. These techniques give developers who 
have reason to be conservative about new technology adoption a strong intermediate 
position from which to start using AspectJ.  They can use AspectJ for debugging and 
some testing, but still compile and ship the production code without aspects. 

3.2.1 Tracing, logging, profiling 

A first example is a simple tracing aspect that just prints a simple message at the 
specified method calls.  Continuing with the figure editor example, one such aspect might 
simply trace whenever points are moved. 
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aspect SimpleTracing {  
  pointcut tracedCalls(): 
    calls(void FigureElement.draw(GraphicsContext)); 
 
  before(): tracedCalls() { 
    System.out.println(“Entering: ” + thisJoinPoint);  
  } 
} 

This code makes use of the thisJoinPoint special variable.  Within all advice bodies 
this variable is bound to an object that describes the current join point.  The effect of this 
code is to print a line like the following every time a figure element receives a draw 
method call: 
  Entering: call(void FigureElement.draw(GraphicsContext)) 
To understand the benefit of coding this with AspectJ consider changing the set of 
method calls that are traced. With AspectJ, this just requires editing the definition of the 
tracedCalls pointcut and recompiling.  The individual methods that are traced do not 
need to be edited. 

When debugging, programmers often invest considerable effort in figuring out a good set 
of trace points to use when looking for a particular kind of problem.  When debugging is 
complete – or appears to be complete – it is frustrating to have to lose that investment by 
deleting trace statements from the code.  The alternative of just commenting them out 
makes the code look bad, and can cause trace statements for one kind of debugging to get 
confused with trace statements for another kind of debugging. 

With AspectJ it is easy to both preserve the work of designing a good set of trace points 
and disable the tracing when it isn’t being used.  This is done by writing an aspect 
specifically for that tracing mode, and removing that aspect from the compilation when it 
is not needed. 

This ability to concisely implement and reuse debugging configurations that have proven 
useful in the past is a direct result of AspectJ modularizing a crosscutting design element 
– the set of methods that are appropriate to trace when looking for a given kind of 
information. 

3.2.1.1 Profiling and Logging 
There are many sophisticated profiling tools available on the market. These can gather a 
variety of information and display the results in useful ways.  But sometimes 
programmers want very specific profiling or logging behavior.  In these cases it is often 
possible to write a simple aspect similar to the ones above to do the job. 

For example, the following aspect will count the number of calls to the rotate method 
on a Line and the number of calls to the set* methods of a Point that happen within 
the control flow of those calls to rotate: 
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aspect SetsInRotateCounting { 
  int rotateCount = 0; 
  int setCount    = 0;  
 
  before(): calls(void Line.rotate(double)) { 
    rotateCount++; 
  } 
  before(): calls(void Point.set*(int)) && 
            cflow(calls(void Line.rotate(double))) { 
    setCount++; 
  } 
} 

3.2.2 Pre/post conditions 

Many programmers use the “Design by Contract” style popularized by Eiffel [1].  In this 
style of programming, explicit pre-conditions test that callers of a method call it properly 
and explicit post-conditions test that methods properly do the work they are supposed to. 

AspectJ makes it possible to implement pre- and post-condition testing in modular form.  
For example, this code 

aspect PointBoundsChecking { 
  pointcut setXs(int x): 
        calls(void FigureElement.setXY(x, int)) || 
        calls(void Point.setX(x)); 
 
  pointcut setYs(int y): ...; 
 
  before(int x): setXs(x) { 
    if ( x < MIN_X || x > MAX_X ) ) 
      throw new IllegalArgumentException (“x is out of bounds.”); 
  } 
 
  before(int y): setYs(y) { 
    ... 
  }    
} 

implements the bounds checking aspect of pre-condition testing for operations that move 
points.  Notice that the setXs pointcut designator refers to all the operations that can set 
a point’s x coordinate; this includes the setX method, as well as “half of” the setXY 
method.  In this sense the setXs pointcut can be seen as involving very fine-grained 
crosscutting – it names the the setX method and half of the setXY method. 

Even though pre- and post-condition testing aspects can often be used only during testing, 
in some cases developers may wish to include them in the production build as well.  
Again, because AspectJ makes it possible to cleanly modularize these crosscutting 
concerns, it gives developers good control over this decision. 

3.2.3 Contract enforcement 
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The property-based crosscutting mechanisms can be very useful in defining more 
sophisticated contract enforcement.  One very powerful use of these mechanisms is to 
identify method calls that, in a correct program, should not exist.  For example, the 
following aspect enforces the constraint that only the well-known factory methods can 
add an element to the registry of figure elements.  Enforcing this constraint ensures that 
no figure element is added to the registry more than once. 

static aspect RegistrationProtection {  
  pointcut registers(): 
    calls(void Registry.register(FigureElement)); 
 
  pointcut canRegister(): 
    withincode(static * FigureElement.make*(..)); 
 
  before(): registers() && !canRegisters() { 
    throw new IllegalAccessException("Illegal call " + 
thisJoinPoint); 
  } 
} 

This aspect uses the withincode primitive pointcut designator to denote all join points 
that occur within the body of the factory methods  on FigureElement (the methods 
with names that begin with "make"). This is a property-based pointcut designator 
because it identifies join points based not on their signature, but rather on the property 
that they occur specifically within the code of another method. The before advice 
declaration effectively says “signal an error for any calls to register that are not within the 
factory methods.”  

3.2.4 Configuration Management 

Configuration management for aspects can be handled using a variety of “make-file like” 
techniques. To work with optional aspects, the programmer can simply define their make 
files to either include the aspect in the call to the AspectJ compiler or not, as desired.   

Developers who want to be certain that no aspects are included in the production build 
can do so by configuring their make files so that they use a traditional Java compiler for 
production builds.  To make it easy to write such make files, the AspectJ compiler has a 
command-line interface that is consistent with ordinary Java compilers. 

3.3 Production Aspects 
This section presents examples of aspects that are inherently intended to be included in 
production builds of an application.  Again, we begin with named-based aspects and 
follow with property-based aspects. Name-based production aspects tend to affect only a 
small number of methods.  For this reason, they are a good next step for projects adopting 
AspectJ.  But even though they tend to be small and simple, they can often have a 
significant effect in terms of making the program easier to understand and maintain.  

3.3.1 Change Monitoring 
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The first example production aspect supports the code that refreshes the display.  The role 
of the aspect is to maintain a dirty bit indicating whether or not an object has moved since 
the last time the display was refreshed. 

Implementing this functionality as an aspect is straightforward.  The testAndClear 
method is called by the display code to find out whether a figure element has moved 
recently.  This method returns the current state of the dirty flag and resets it to false.  
The moves pointcut captures all the method calls that can move a figure element.  The 
after advice on moves sets the dirty flag whenever an object moves. 

aspect MoveTracking { 
  private static boolean dirty = false; 
 
  public static synchronized boolean testAndClear() { 
    boolean result = dirty; 
    dirty = false; 
    return result; 
  } 
 
  pointcut moves(): 
    calls(void FigureElement.setXY(int, int)) || 
    calls(void Line.setP1(Point))             ||  
    calls(void Line.setP2(Point))             || 
    calls(void Point.setX(int))               || 
    calls(void Point.setY(int)); 
 
  after(): moves() { 
    dirty = true; 
  } 
} 

Even this simple example serves to illustrate some of the important benefits of using 
AspectJ in production code. Consider implementing this functionality with ordinary Java: 
there would likely be a helper class that contained the dirty flag, the testAndClear 
method as well as a setFlag method.  Each of the methods that could move a figure 
element would include a call to the setFlag method.  Those calls, or rather the concept 
that those calls should happen at each move operation, are the crosscutting concern in this 
case.   

The AspectJ implementation has several advantages over the standard implementation: 

The structure of the crosscutting concern is captured explicitly.  The moves pointcut 
clearly states all the methods involved, so the programmer reading the code sees not 
just individual calls to setFlag, but instead sees the real structure of the code.  As 
shown in Figure 8 the IDE support included with AspectJ, will automatically remind 
the programmer that this aspect advises each of the methods involved. 

Evolution is easier.  If, for example, the aspect needs to be revised to record not just 
that some figure element moved, but rather to record exactly which figure elements 
moved, the change would be entirely local to the aspect.  The pointcut would be 
updated to expose the object being moved, and the advice would be updated to record 
that object.  ([3] presents a detailed discussion of various ways this aspect could be 
expected evolve.) 
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The functionality is easy to plug in and out. Just as with development aspects, 
production aspects may need to be removed from the system, either because the 
functionality is no longer needed at all, or because it is not needed in certain 
configurations of a system. Because the functionality is modularized in a single 
aspect this is easy to do. 

The implementation is more stable.  If, for example, the programmer adds a subclass 
of Line that overrides the existing methods, this advice in this aspect will still apply.  
In the ordinary Java implementation the programmer would have to remember to add 
the call to setFlag in the new overriding method.  This benefit is often even more 
compelling for property-based aspects (see Section 3.3.4). 

 
Figure 8  A snapshot of screen when using the AspectJ-aware extension to emacs. 

The text in [Square Brackets] following the method declarations is automatically generated, 
and serves to remind the programmer of the aspects that crosscut the method.  The editor also 
provide commands to jump to the advice from the method and vice-versa. 
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3.3.2 Synchronization 

Another good use of name-based production aspects is to implement synchronization 
policies.  These aspects are similar to change monitoring, except that the work done by 
the advice tends to be more complex, and these aspects usually use paired before and 
after advice to handle the synchronization work. 

The following example shows how the readers and writers synchronization pattern 
presented in [4] can be implemented using AspectJ.  This aspect uses the eachobject 
feature of the language to ensure that each object to which this aspect applies will have its 
own instance of the aspect, and therefore its own count of active and waiting readers and 
writers. This means that the synchronization constraints of this aspect will apply on a per-
object basis, which is appropriate for this pattern.  

aspect RegistryReaderWriterSynchronizing 
       of eachobject(instanceof(readers() || writers()) { 
  pointcut readers():  
        calls(Vector Registry.elementsNear(int, int)); 
 
  pointcut writers(): 
        calls(void Registry.add(FigureElement)) || 
        calls(void Registry.remove(FigureElement)); 
 
  protected int activeReaders,  activeWriters, 
                waitingReaders, waitingWriters; 
 
  before(): readers() { beforeRead();  } //these helper  
  after():  readers() { afterRead();   } //methods of the 
  before(): writers() { beforeWrite(); } //aspect are 
  after():  writers() { afterWrite();  } //defined below 
 
  protected synchronized void beforeRead() { 
    ++waitingReaders; 
    while (!(waitingWriters == 0 && activeWriters == 0)) { 
      try { wait(); } catch (InterruptedException ex) {} 
    } 
    --waitingReaders; 
    ++activeReaders; 
  } 
   
  protected synchronized void afterRead()   { ... } 
  protected synchronized void beforeWrite() { ... } 
  protected synchronized void afterWrite()  { ... } 
} 

3.3.3 Context Passing 

The crosscutting structure of context passing can be a significant source of complexity in 
Java programs.  Consider implementing functionality that would allow a client of the 
figure editor (a program client rather than a human) to set the color of any figure 
elements that are created.  Typically this requires passing a color, or a color factory, from 
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the client, down through the calls that lead to the figure element factory.  All 
programmers are familiar with the inconvenience of adding a first argument to a number 
of methods just to pass this kind of context information. 

Using AspectJ, this kind of context passing can be implemented in a modular way.  The 
following code adds after advice that runs only when the factory methods of Figure are 
called in the control flow of a method on a ColorControllingClient.  

aspect ColorControl { 
  pointcut CCClientCflow(ColorControllingClient client): 
    cflow(calls(* client.* (..))); 
 
  pointcut makes(FigureElement fe): 
    calls(fe Figure.make*(..)); 
 
  after (ColorControllingClient c, FigureElement fe): 
      makes(fe) && CCClientCflow(c) { 
    fe.setColor(c.colorFor(e)); 
  } 
} 

This aspect affects only a small number of methods, but note that the non-AOP 
implementation of this functionality might require editing many more methods, 
specifically, all the methods in the control flow from the client to the factory.  This is a 
benefit common to many property-based aspects – while the aspect is short and affects 
only a modest number of benefits, the complexity the aspect saves is potentially much 
larger. 

3.3.4 Consistent Behavior Across a Large Number of Operations 

This example aspect shows how a property-based aspect can be used to provide 
consistent handling of functionality across a large set of operations.  This aspect ensures 
that all public methods of the com.xerox package log any errors they throw to their 
caller.  The publicCalls pointcut captures the public method calls of the package, and 
the after advice runs whenever one of those calls returns throwing an exception.  The 
advice logs the exception and then the throw resumes. 

aspect PublicErrorLogging { 
  Log log = new Log(); 
 
  pointcut publicMethodCalls (): 
    calls(public * com.xerox.*.*(..)); 
 
  after() throwing (Error e): publicMethodCalls() { 
    log.write(e); 
  } 
} 

In some cases this aspect can log an exception twice.  This happens if code inside the 
com.xerox package itself calls a public method of the package.  In that case this code 
will log the error at both the outermost call into the com.xerox package and the re-
entrant call.  The cflow primitive pointcut can be used in a nice way to exclude these re-
entrant calls: 
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  after() throwing (Error e): publicMethodCalls() && 
                             !cflow(publicMethodCalls()) { 
    log.write(e); 
  } 

 

 

 

The following aspect is taken from work on the AspectJ compiler.  The aspect advises 
about 35 methods in the JavaParser class.  The individual methods handle each of the 
different kinds of elements that must be parsed.  They have names like 
parseMethodDec, parseThrows, and parseExpr.  

 
Figure 9  Examining the partially re-factored code with the AJDE extension to JBuilder. 

The method names marked with lightning? Are advised by the aspect.  This view allows us to 
quickly see the structure of this larger aspect.  Being able to see this perspective of the aspect is 
very helpful to designing and debugging property-based aspects like this one. 
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aspect ContextFilling { 
  pointcut parses(JavaParser jp): 
        calls(* jp.parse*(..) && 
       !calls(Stmt parseVarDec(boolean)); // var decs  
                                          // are tricky 
 
  around(JavaParser jp) returns ASTObject: parses(jp) { 
    Token beginToken = jp.peekToken(); 
    ASTObject ret = proceed(jp); 
    if (ret != null) jp.addContext(ret, beginToken); 
    return ret; 
  } 
} 

This example exhibits a property found in many aspects with large property-based 
pointcuts.  In addition to a general property based pattern – calls(* jp.parse*(..)) 
– it includes an exception to the pattern – !calls(Stmt parseVarDec(boolean)).  
The exclusion of parseVarDec happens because the parsing of variable declarations in 
Java is too complex to fit with the clean pattern of the other parse* methods.  Even with 
the explicit exclusion this aspect is a clear expression of a clean crosscutting modularity.  
Namely that all parse* methods that return ASTObjects, except for parseVarDec 
share a common behavior for establishing the parse context of their result.  

The process of writing an aspect with a large property-based pointcut, and of developing 
the appropriate exceptions can clarify the structure of the system.  This is especially true, 
as in this case, when refactoring existing code to use aspects.  When we first looked at the 
code for this aspect, we were able to use the IDE support provided in AJDEforJBuilder to 
see what methods the aspect was advising as compared to where we had manually 
previously manually coded the functionality.  We used the AJDE structure view shown in 
Figure 9 and scrolled through the code.  We quickly discovered that there were a dozen 
places where the aspect advice was in effect but we had not written the manual coding of 
the context functionality.  Two of these were bugs in our prior non-AOP implementation 
of the parser.  The other ten were needless performance optimizations. So in this case 
refactoring the code to express the crosscutting structure of the aspect explicitly made the 
code more concise and eliminated latent bugs. 

3.4 Conclusion 
AspectJ is a simple and practical aspect-oriented extension to Java™. With just a few 
new constructs, AspectJ provides support for modular implementation of a range of 
crosscutting concerns. 

Adoption of AspectJ into an existing Java development project can be a straightforward 
task and incremental task.  One path is to begin by using only development aspects, going 
on to using production aspects after building up experience with AspectJ.  Adoption can 
follow other paths as well.  For example, some developers will benefit from using 
production aspects right away. 

AspectJ enables both name-based and property based crosscutting.  Aspects that use 
name-based crosscutting tend to affect a small number of other classes.  But despite their 
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small scale, they can often eliminate significant complexity compared to an ordinary Java 
implementation.  Aspects that use property-based crosscutting can have small or large 
scale. 

Using AspectJ results in clean well-modularized implementations of crosscutting 
concerns.  When written as an AspectJ aspect the structure of a crosscutting concern is 
explicit and easy to understand.  Aspects are also highly modular, making it possible to 
develop plug-and-play implementations of crosscutting functionality. 

AspectJ provides more functionality than is covered by this short article, but these 
examples should provide a sense of the kinds of aspects it is possible to write using 
AspectJ.  But we recommend that programmers read the on-line AspectJ documentation 
and examples carefully before deciding to adopt AspectJ into a project. 
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4 The AspectJTM Programming Guide  
4.1 Preface 
This programming guide does three things. It  

introduces the AspectJ language 

defines each of AspectJ's constructs and their semantics, and  

provides examples of their use.  

It includes appendices that give a reference to the syntax of AspectJ, a more formal 
description of AspectJ's semantics, and a description of limitations allowed by AspectJ 
implementations.  
The first section, Getting Started with AspectJ, provides a gentle overview of writing 
AspectJ programs. It also shows how one can introduce AspectJ into an existing 
development effort in stages, reducing the associated risk. You should read this section if 
this is your first exposure to AspectJ and you want to get a sense of what AspectJ is all 
about.  

The second section, The AspectJ Language, covers the features of the language in more 
detail, using code snippets as examples. All the basics of the language is covered, and 
after reading this section, you should be able to use the language correctly.  

The next section, Examples, comprises a set of complete programs that not only show the 
features being used, but also try to illustrate recommended practice. You should read this 
section after you are familiar with the elements of AspectJ.  

Finally, there are two short chapters, one on Idioms and one on Pitfalls.  

The back matter contains several appendices that cover a AspectJ Quick Reference to the 
language's syntax, a more in depth coverage of its Semantics, and a description of the 
latitude enjoyed by its Implementation Limitations.  

4.2 Getting Started with AspectJ 
Many software developers are attracted to the idea of aspect-oriented programming 
(AOP) but unsure about how to begin using the technology. They recognize the concept 
of crosscutting concerns, and know that they have had problems with the implementation 
of such concerns in the past. But there are many questions about how to adopt AOP into 
the development process. Common questions include:  

Can I use aspects in my existing code? 

What kinds of benefits can I expect to get from using aspects?  

How do I find aspects in my programs? 

How steep is the learning curve for AOP? 

What are the risks of using this new technology? 
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This chapter addresses these questions in the context of AspectJ: a general-purpose 
aspect-oriented extension to Java. A series of abridged examples illustrate the kinds of 
aspects programmers may want to implement using AspectJ and the benefits associated 
with doing so. Readers who would like to understand the examples in more detail, or who 
want to learn how to program examples like these, can find more complete examples and 
supporting material linked from the AspectJ web site ( http://eclipse.org/aspectj ).  

A significant risk in adopting any new technology is going too far too fast. Concern about 
this risk causes many organizations to be conservative about adopting new technology. 
To address this issue, the examples in this chapter are grouped into three broad 
categories, with aspects that are easier to adopt into existing development projects 
coming earlier in this chapter. The next section, Introduction to AspectJ, we present the 
core of AspectJ's features, and in Development Aspects, we present aspects that facilitate 
tasks such as debugging, testing and performance tuning of applications. And, in the 
section following, Production Aspects, we present aspects that implement crosscutting 
functionality common in Java applications. We will defer discussing a third category of 
aspects, reusable aspects, until The AspectJ Language.  

These categories are informal, and this ordering is not the only way to adopt AspectJ. 
Some developers may want to use a production aspect right away. But our experience 
with current AspectJ users suggests that this is one ordering that allows developers to get 
experience with (and benefit from) AOP technology quickly, while also minimizing risk.  

4.2.1 Introduction to AspectJ 

This section presents a brief introduction to the features of AspectJ used later in this 
chapter. These features are at the core of the language, but this is by no means a complete 
overview of AspectJ.  

The features are presented using a simple figure editor system. A Figure consists of a 
number of FigureElements, which can be either Points or Lines. The Figure class 
provides factory services. There is also a Display. Most example programs later in this 
chapter are based on this system as well.  

 
Figure 10  UML for the FigureEditor example 
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The motivation for AspectJ (and likewise for aspect-oriented programming) is the 
realization that there are issues or concerns that are not well captured by traditional 
programming methodologies. Consider the problem of enforcing a security policy in 
some application. By its nature, security cuts across many of the natural units of 
modularity of the application. Moreover, the security policy must be uniformly applied to 
any additions as the application evolves. And the security policy that is being applied 
might itself evolve. Capturing concerns like a security policy in a disciplined way is 
difficult and error-prone in a traditional programming language.  

Concerns like security cut across the natural units of modularity. For object-oriented 
programming languages, the natural unit of modularity is the class. But in object-oriented 
programming languages, crosscutting concerns are not easily turned into classes precisely 
because they cut across classes, and so these aren't reusable, they can't be refined or 
inherited, they are spread through out the program in an undisciplined way, in short, they 
are difficult to work with.  

Aspect-oriented programming is a way of modularizing crosscutting concerns much like 
object-oriented programming is a way of modularizing common concerns. AspectJ is an 
implementation of aspect-oriented programming for Java.  

AspectJ adds to Java just one new concept, a join point -- and that's really just a name for 
an existing Java concept. It adds to Java only a few new constructs: pointcuts, advice, 
inter-type declarations and aspects. Pointcuts and advice dynamically affect program 
flow, inter-type declarations statically affects a program's class heirarchy, and aspects 
encapsulate these new constructs.  

A join point is a well-defined point in the program flow. A pointcut picks out certain join 
points and values at those points. A piece of advice is code that is executed when a join 
point is reached. These are the dynamic parts of AspectJ.  

AspectJ also has different kinds of inter-type declarations that allow the programmer to 
modify a program's static structure, namely, the members of its classes and the 
relationship between classes.  

AspectJ's aspect are the unit of modularity for crosscutting concerns. They behave 
somewhat like Java classes, but may also include pointcuts, advice and inter-type 
declarations.  

In the sections immediately following, we are first going to look at join points and how 
they compose into pointcuts. Then we will look at advice, the code which is run when a 
pointcut is reached. We will see how to combine pointcuts and advice into aspects, 
AspectJ's reusable, inheritable unit of modularity. Lastly, we will look at how to use 
inter-type declarations to deal with crosscutting concerns of a program's class structure.  

4.2.1.1 The Dynamic Join Point Model 
A critical element in the design of any aspect-oriented language is the join point model. 
The join point model provides the common frame of reference that makes it possible to 
define the dynamic structure of crosscutting concerns. This chapter describes AspectJ's 
dynamic join points, in which join points are certain well-defined points in the execution 
of the program.  
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AspectJ provides for many kinds of join points, but this chapter discusses only one of 
them: method call join points. A method call join point encompasses the actions of an 
object receiving a method call. It includes all the actions that comprise a method call, 
starting after all arguments are evaluated up to and including return (either normally or by 
throwing an exception).  

Each method call at runtime is a different join point, even if it comes from the same call 
expression in the program. Many other join points may run while a method call join point 
is executing -- all the join points that happen while executing the method body, and in 
those methods called from the body. We say that these join points execute in the dynamic 
context of the original call join point.  

4.2.1.2 Pointcuts 
In AspectJ, pointcuts pick out certain join points in the program flow. For example, the 
pointcut  
 
call(void Point.setX(int)) 
picks out each join point that is a call to a method that has the signature void 
Point.setX(int) — that is, Point's void setX method with a single int parameter.  

A pointcut can be built out of other pointcuts with and, or, and not (spelled &&, ||, and !). 
For example:  
 
call(void Point.setX(int)) || 
call(void Point.setY(int)) 
picks out each join point that is either a call to setX or a call to setY.  

Pointcuts can identify join points from many different types — in other words, they can 
crosscut types. For example,  
 
call(void FigureElement.setXY(int,int)) || 
call(void Point.setX(int))              || 
call(void Point.setY(int))              || 
call(void Line.setP1(Point))            || 
call(void Line.setP2(Point)); 
picks out each join point that is a call to one of five methods (the first of which is an 
interface method, by the way).  

In our example system, this pointcut captures all the join points when a FigureElement 
moves. While this is a useful way to specify this crosscutting concern, it is a bit of a 
mouthful. So AspectJ allows programmers to define their own named pointcuts with the 
pointcut form. So the following declares a new, named pointcut:  
 
pointcut move(): 
    call(void FigureElement.setXY(int,int)) || 
    call(void Point.setX(int))              || 
    call(void Point.setY(int))              || 
    call(void Line.setP1(Point))            || 
    call(void Line.setP2(Point)); 
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and whenever this definition is visible, the programmer can simply use move() to capture 
this complicated pointcut.  

The previous pointcuts are all based on explicit enumeration of a set of method 
signatures. We sometimes call this name-based crosscutting. AspectJ also provides 
mechanisms that enable specifying a pointcut in terms of properties of methods other 
than their exact name. We call this property-based crosscutting. The simplest of these 
involve using wildcards in certain fields of the method signature. For example, the 
pointcut  
 
call(void Figure.make*(..)) 
picks out each join point that's a call to a void method defined on Figure whose the name 
begins with "make" regardless of the method's parameters. In our system, this picks out 
calls to the factory methods makePoint and makeLine. The pointcut  
 
call(public * Figure.* (..)) 
picks out each call to Figure's public methods.  

But wildcards aren't the only properties AspectJ supports. Another pointcut, cflow, 
identifies join points based on whether they occur in the dynamic context of other join 
points. So  
 
cflow(move()) 
picks out each join point that occurs in the dynamic context of the join points picked out 
by move(), our named pointcut defined above. So this picks out each join points that 
occurrs between when a move method is called and when it returns (either normally or by 
throwing an exception).  

4.2.1.3 Advice 
So pointcuts pick out join points. But they don't do anything apart from picking out join 
points. To actually implement crosscutting behavior, we use advice. Advice brings 
together a pointcut (to pick out join points) and a body of code (to run at each of those 
join points).  

AspectJ has several different kinds of advice. Before advice runs as a join point is 
reached, before the program proceeds with the join point. For example, before advice on 
a method call join point runs before the actual method starts running, just after the 
arguments to the method call are evaluated.  
 
before(): move() { 
    System.out.println("about to move"); 
} 
After advice on a particular join point runs after the program proceeds with that join 
point. For example, after advice on a method call join point runs after the method body 
has run, just before before control is returned to the caller. Because Java programs can 
leave a join point 'normally' or by throwing an exception, there are three kinds of after 
advice: after returning, after throwing, and plain after (which runs after 
returning or throwing, like Java's finally).  
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after() returning: move() { 
    System.out.println("just successfully moved"); 
} 
Around advice on a join point runs as the join point is reached, and has explicit control 
over whether the program proceeds with the join point. Around advice is not discussed in 
this section.  

4.2.1.3.1 Exposing Context in Pointcuts 
Pointcuts not only pick out join points, they can also expose part of the execution context 
at their join points. Values exposed by a pointcut can be used in the body of advice 
declarations.  

An advice declaration has a parameter list (like a method) that gives names to all the 
pieces of context that it uses. For example, the after advice  
 
after(FigureElement fe, int x, int y) returning: 
        ...SomePointcut... { 
    ...SomeBody... 
} 
uses three pieces of exposed context, a FigureElement named fe, and two ints named x 
and y.  

The body of the advice uses the names just like method parameters, so  
 
after(FigureElement fe, int x, int y) returning: 
        ...SomePointcut... { 
    System.out.println(fe + " moved to (" + x + ", " + y + ")"); 
} 
The advice's pointcut publishes the values for the advice's arguments. The three primitive 
pointcuts this, target and args are used to publish these values. So now we can write 
the complete piece of advice:  
 
after(FigureElement fe, int x, int y) returning: 
        call(void FigureElement.setXY(int, int)) 
        && target(fe) 
        && args(x, y) { 
    System.out.println(fe + " moved to (" + x + ", " + y + ")"); 
} 
The pointcut exposes three values from calls to setXY: the target FigureElement -- 
which it publishes as fe, so it becomes the first argument to the after advice -- and the 
two int arguments -- which it publishes as x and y, so they become the second and third 
argument to the after advice.  

So the advice prints the figure element that was moved and its new x and y coordinates 
after each setXY method call.  

A named pointcut may have parameters like a piece of advice. When the named pointcut 
is used (by advice, or in another named pointcut), it publishes its context by name just 
like the this, target and args pointcut. So another way to write the above advice is  
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pointcut setXY(FigureElement fe, int x, int y): 
    call(void FigureElement.setXY(int, int)) 
    && target(fe) 
    && args(x, y); 
 
after(FigureElement fe, int x, int y) returning: setXY(fe, x, y) { 
    System.out.println(fe + " moved to (" + x + ", " + y + ")."); 
} 

4.2.1.4 Inter-type declarations 
Inter-type declarations in AspectJ are declarations that cut across classes and their 
hierarchies. They may declare members that cut across multiple classes, or change the 
inheritance relationship between classes. Unlike advice, which operates primarily 
dynamically, introduction operates statically, at compile-time.  

Consider the problem of expressing a capability shared by some existing classes that are 
already part of a class heirarchy, i.e. they already extend a class. In Java, one creates an 
interface that captures this new capability, and then adds to each affected class a method 
that implements this interface.  

AspectJ can express the concern in one place, by using inter-type declarations. The aspect 
declares the methods and fields that are necessary to implement the new capability, and 
associates the methods and fields to the existing classes.  

Suppose we want to have Screen objects observe changes to Point objects, where Point 
is an existing class. We can implement this by writing an aspect declaring that the class 
Point Point has an instance field, observers, that keeps track of the Screen objects that 
are observing Points.  
 
aspect PointObserving { 
    private Vector Point.observers = new Vector(); 
    ... 
} 
The observers field is private, so only PointObserving can see it. So observers are 
added or removed with the static methods addObserver and removeObserver on the 
aspect.  
 
aspect PointObserving { 
    private Vector Point.observers = new Vector(); 
 
    public static void addObserver(Point p, Screen s) { 
        p.observers.add(s); 
    } 
    public static void removeObserver(Point p, Screen s) { 
        p.observers.remove(s); 
    } 
    ... 
} 
Along with this, we can define a pointcut changes that defines what we want to observe, 
and the after advice defines what we want to do when we observe a change.  
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aspect PointObserving { 
    private Vector Point.observers = new Vector(); 
 
    public static void addObserver(Point p, Screen s) { 
        p.observers.add(s); 
    } 
    public static void removeObserver(Point p, Screen s) { 
        p.observers.remove(s); 
    } 
 
    pointcut changes(Point p): target(p) && call(void Point.set*(int)); 
 
    after(Point p): changes(p) { 
        Iterator iter = p.observers.iterator(); 
        while ( iter.hasNext() ) { 
            updateObserver(p, (Screen)iter.next()); 
        } 
    } 
 
    static void updateObserver(Point p, Screen s) { 
        s.display(p); 
    } 
} 
Note that neither Screen's nor Point's code has to be modified, and that all the changes 
needed to support this new capability are local to this aspect.  

4.2.1.5 Aspects 
Aspects wrap up pointcuts, advice, and inter-type declarations in a a modular unit of 
crosscutting implementation. It is defined very much like a class, and can have methods, 
fields, and initializers in addition to the crosscutting members. Because only aspects may 
include these crosscutting members, the declaration of these effects is localized.  

Like classes, aspects may be instantiated, but AspectJ controls how that instantiation 
happens -- so you can't use Java's new form to build new aspect instances. By default, 
each aspect is a singleton, so one aspect instance is created. This means that advice may 
use non-static fields of the aspect, if it needs to keep state around:  
 
aspect Logging { 
    OutputStream logStream = System.err; 
 
    before(): move() { 
        logStream.println("about to move"); 
    } 
} 
Aspects may also have more complicated rules for instantiation, but these will be 
described in a later chapter.  

4.2.2 Development Aspects 

The next two sections present the use of aspects in increasingly sophisticated ways. 
Development aspects are easily removed from production builds. Production aspects are 
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intended to be used in both development and in production, but tend to affect only a few 
classes.  

This section presents examples of aspects that can be used during development of Java 
applications. These aspects facilitate debugging, testing and performance tuning work. 
The aspects define behavior that ranges from simple tracing, to profiling, to testing of 
internal consistency within the application. Using AspectJ makes it possible to cleanly 
modularize this kind of functionality, thereby making it possible to easily enable and 
disable the functionality when desired.  

4.2.2.1 Tracing 
This first example shows how to increase the visibility of the internal workings of a 
program. It is a simple tracing aspect that prints a message at specified method calls. In 
our figure editor example, one such aspect might simply trace whenever points are 
drawn.  
 
aspect SimpleTracing { 
    pointcut tracedCall(): 
        call(void FigureElement.draw(GraphicsContext)); 
 
    before(): tracedCall() { 
        System.out.println("Entering: " + thisJoinPoint); 
    } 
} 
This code makes use of the thisJoinPoint special variable. Within all advice bodies 
this variable is bound to an object that describes the current join point. The effect of this 
code is to print a line like the following every time a figure element receives a draw 
method call:  
 
Entering: call(void FigureElement.draw(GraphicsContext)) 
To understand the benefit of coding this with AspectJ consider changing the set of 
method calls that are traced. With AspectJ, this just requires editing the definition of the 
tracedCalls pointcut and recompiling. The individual methods that are traced do not 
need to be edited.  

When debugging, programmers often invest considerable effort in figuring out a good set 
of trace points to use when looking for a particular kind of problem. When debugging is 
complete or appears to be complete it is frustrating to have to lose that investment by 
deleting trace statements from the code. The alternative of just commenting them out 
makes the code look bad, and can cause trace statements for one kind of debugging to get 
confused with trace statements for another kind of debugging.  

With AspectJ it is easy to both preserve the work of designing a good set of trace points 
and disable the tracing when it isn t being used. This is done by writing an aspect 
specifically for that tracing mode, and removing that aspect from the compilation when it 
is not needed.  

This ability to concisely implement and reuse debugging configurations that have proven 
useful in the past is a direct result of AspectJ modularizing a crosscutting design element 
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the set of methods that are appropriate to trace when looking for a given kind of 
information.  

4.2.2.2 Profiling and Logging 
Our second example shows you how to do some very specific profiling. Although many 
sophisticated profiling tools are available, and these can gather a variety of information 
and display the results in useful ways, you may sometimes want to profile or log some 
very specific behavior. In these cases, it is often possible to write a simple aspect similar 
to the ones above to do the job.  

For example, the following aspect counts the number of calls to the rotate method on a 
Line and the number of calls to the set* methods of a Point that happen within the 
control flow of those calls to rotate:  
 
aspect SetsInRotateCounting { 
    int rotateCount = 0; 
    int setCount = 0; 
 
    before(): call(void Line.rotate(double)) { 
        rotateCount++; 
    } 
 
    before(): call(void Point.set*(int)) 
              && cflow(call(void Line.rotate(double))) { 
        setCount++; 
    } 
} 
In effect, this aspect allows the programmer to ask very specific questions like  

How many times is the rotate method defined on Line objects called?  
and  
How many times are methods defined on Point objects whose name begins with "set" 
called in fulfilling those rotate calls?  
questions it may be difficult to express using standard profiling or logging tools.  

4.2.2.3 Pre- and Post-Conditions 
Many programmers use the "Design by Contract" style popularized by Bertand Meyer in 
Object-Oriented Software Construction, 2/e. In this style of programming, explicit pre-
conditions test that callers of a method call it properly and explicit post-conditions test 
that methods properly do the work they are supposed to.  

AspectJ makes it possible to implement pre- and post-condition testing in modular form. 
For example, this code  
 
aspect PointBoundsChecking { 
 
    pointcut setX(int x): 
        (call(void FigureElement.setXY(int, int)) && args(x, *)) 
        || (call(void Point.setX(int)) && args(x)); 
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    pointcut setY(int y): 
        (call(void FigureElement.setXY(int, int)) && args(*, y)) 
        || (call(void Point.setY(int)) && args(y)); 
 
    before(int x): setX(x) { 
        if ( x < MIN_X || x > MAX_X ) 
            throw new IllegalArgumentException("x is out of bounds."); 
    } 
 
    before(int y): setY(y) { 
        if ( y < MIN_Y || y > MAX_Y ) 
            throw new IllegalArgumentException("y is out of bounds."); 
    } 
} 
implements the bounds checking aspect of pre-condition testing for operations that move 
points. Notice that the setX pointcut refers to all the operations that can set a Point's x 
coordinate; this includes the setX method, as well as half of the setXY method. In this 
sense the setX pointcut can be seen as involving very fine-grained crosscutting — it 
names the the setX method and half of the setXY method.  

Even though pre- and post-condition testing aspects can often be used only during testing, 
in some cases developers may wish to include them in the production build as well. 
Again, because AspectJ makes it possible to modularize these crosscutting concerns 
cleanly, it gives developers good control over this decision.  

4.2.2.4 Contract Enforcement 
The property-based crosscutting mechanisms can be very useful in defining more 
sophisticated contract enforcement. One very powerful use of these mechanisms is to 
identify method calls that, in a correct program, should not exist. For example, the 
following aspect enforces the constraint that only the well-known factory methods can 
add an element to the registry of figure elements. Enforcing this constraint ensures that 
no figure element is added to the registry more than once.  
 
static aspect RegistrationProtection { 
 
    pointcut register(): call(void Registry.register(FigureElement)); 
 
    pointcut canRegister(): withincode(static * 
FigureElement.make*(..)); 
 
    before(): register() && !canRegister() { 
        throw new IllegalAccessException("Illegal call " + 
thisJoinPoint); 
    } 
} 
This aspect uses the withincode primitive pointcut to denote all join points that occur 
within the body of the factory methods on FigureElement (the methods with names that 
begin with "make"). This is a property-based pointcut because it identifies join points 
based not on their signature, but rather on the property that they occur specifically within 
the code of another method. The before advice declaration effectively says signal an error 
for any calls to register that are not within the factory methods.  



 

 

 

57

This advice throws a runtime exception at certain join points, but AspectJ can do better. 
Using the declare error form, we can have the compiler signal the error.  
 
static aspect RegistrationProtection { 
 
    pointcut register(): call(void Registry.register(FigureElement)); 
    pointcut canRegister(): withincode(static * 
FigureElement.make*(..)); 
 
    declare error: register() && !canRegister(): "Illegal call" 
} 
When using this aspect, it is impossible for the compiler to compile programs with these 
illegal calls. This early detection is not always possible. In this case, since we depend 
only on static information (the withincode pointcut picks out join points totally based on 
their code, and the call pointcut here picks out join points statically). Other enforcement, 
such as the precondition enforcement, above, does require dynamic information such as 
the runtime value of parameters.  

4.2.2.5 Configuration Management 
Configuration management for aspects can be handled using a variety of make-file like 
techniques. To work with optional aspects, the programmer can simply define their make 
files to either include the aspect in the call to the AspectJ compiler or not, as desired.  

Developers who want to be certain that no aspects are included in the production build 
can do so by configuring their make files so that they use a traditional Java compiler for 
production builds. To make it easy to write such make files, the AspectJ compiler has a 
command-line interface that is consistent with ordinary Java compilers.  

4.2.3 Production Aspects 

This section presents examples of aspects that are inherently intended to be included in 
the production builds of an application. Production aspects tend to add functionality to an 
application rather than merely adding more visibility of the internals of a program. Again, 
we begin with name-based aspects and follow with property-based aspects. Name-based 
production aspects tend to affect only a small number of methods. For this reason, they 
are a good next step for projects adopting AspectJ. But even though they tend to be small 
and simple, they can often have a significant effect in terms of making the program easier 
to understand and maintain.  

4.2.3.1 Change Monitoring 
The first example production aspect shows how one might implement some simple 
functionality where it is problematic to try and do it explicitly. It supports the code that 
refreshes the display. The role of the aspect is to maintain a dirty bit indicating whether 
or not an object has moved since the last time the display was refreshed.  

Implementing this functionality as an aspect is straightforward. The testAndClear 
method is called by the display code to find out whether a figure element has moved 
recently. This method returns the current state of the dirty flag and resets it to false. The 
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pointcut move captures all the method calls that can move a figure element. The after 
advice on move sets the dirty flag whenever an object moves.  
 
aspect MoveTracking { 
    private static boolean dirty = false; 
 
    public static boolean testAndClear() { 
        boolean result = dirty; 
        dirty = false; 
        return result; 
    } 
 
    pointcut move(): 
        call(void FigureElement.setXY(int, int)) || 
        call(void Line.setP1(Point))             || 
        call(void Line.setP2(Point))             || 
        call(void Point.setX(int))               || 
        call(void Point.setY(int)); 
 
    after() returning: move() { 
        dirty = true; 
    } 
} 
Even this simple example serves to illustrate some of the important benefits of using 
AspectJ in production code. Consider implementing this functionality with ordinary Java: 
there would likely be a helper class that contained the dirty flag, the testAndClear 
method, as well as a setFlag method. Each of the methods that could move a figure 
element would include a call to the setFlag method. Those calls, or rather the concept 
that those calls should happen at each move operation, are the crosscutting concern in this 
case.  

The AspectJ implementation has several advantages over the standard implementation:  

The structure of the crosscutting concern is captured explicitly. The moves pointcut 
clearly states all the methods involved, so the programmer reading the code sees not just 
individual calls to setFlag, but instead sees the real structure of the code. The IDE 
support included with AspectJ automatically reminds the programmer that this aspect 
advises each of the methods involved. The IDE support also provides commands to jump 
to the advice from the method and vice-versa.  

Evolution is easier. If, for example, the aspect needs to be revised to record not just that 
some figure element moved, but rather to record exactly which figure elements moved, 
the change would be entirely local to the aspect. The pointcut would be updated to expose 
the object being moved, and the advice would be updated to record that object. The paper 
An Overview of AspectJ (available linked off of the AspectJ web site -- 
http://eclipse.org/aspectj), presented at ECOOP 2001, presents a detailed discussion of 
various ways this aspect could be expected to evolve.  

The functionality is easy to plug in and out. Just as with development aspects, production 
aspects may need to be removed from the system, either because the functionality is no 
longer needed at all, or because it is not needed in certain configurations of a system. 
Because the functionality is modularized in a single aspect this is easy to do.  
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The implementation is more stable. If, for example, the programmer adds a subclass of 
Line that overrides the existing methods, this advice in this aspect will still apply. In the 
ordinary Java implementation the programmer would have to remember to add the call to 
setFlag in the new overriding method. This benefit is often even more compelling for 
property-based aspects (see the section Providing Consistent Behavior).  

4.2.3.2 Context Passing 
The crosscutting structure of context passing can be a significant source of complexity in 
Java programs. Consider implementing functionality that would allow a client of the 
figure editor (a program client rather than a human) to set the color of any figure 
elements that are created. Typically this requires passing a color, or a color factory, from 
the client, down through the calls that lead to the figure element factory. All programmers 
are familiar with the inconvenience of adding a first argument to a number of methods 
just to pass this kind of context information.  

Using AspectJ, this kind of context passing can be implemented in a modular way. The 
following code adds after advice that runs only when the factory methods of Figure are 
called in the control flow of a method on a ColorControllingClient.  
 
aspect ColorControl { 
    pointcut CCClientCflow(ColorControllingClient client): 
        cflow(call(* * (..)) && target(client)); 
 
    pointcut make(): call(FigureElement Figure.make*(..)); 
 
    after (ColorControllingClient c) returning (FigureElement fe): 
            make() && CCClientCflow(c) { 
        fe.setColor(c.colorFor(fe)); 
    } 
} 
This aspect affects only a small number of methods, but note that the non-AOP 
implementation of this functionality might require editing many more methods, 
specifically, all the methods in the control flow from the client to the factory. This is a 
benefit common to many property-based aspects while the aspect is short and affects only 
a modest number of benefits, the complexity the aspect saves is potentially much larger.  

4.2.3.3 Providing Consistent Behavior 
This example shows how a property-based aspect can be used to provide consistent 
handling of functionality across a large set of operations. This aspect ensures that all 
public methods of the com.bigboxco package log any Errors they throw to their caller (in 
Java, an Error is like an Exception, but it indicates that something really bad and usually 
unrecoverable has happened). The publicMethodCall pointcut captures the public 
method calls of the package, and the after advice runs whenever one of those calls throws 
an Error. The advice logs that Error and then the throw resumes.  
 
aspect PublicErrorLogging { 
    Log log = new Log(); 
 
    pointcut publicMethodCall(): 
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        call(public * com.bigboxco.*.*(..)); 
 
    after() throwing (Error e): publicMethodCall() { 
        log.write(e); 
    } 
} 
In some cases this aspect can log an exception twice. This happens if code inside the 
com.bigboxco package itself calls a public method of the package. In that case this code 
will log the error at both the outermost call into the com.bigboxco package and the re-
entrant call. The cflow primitive pointcut can be used in a nice way to exclude these re-
entrant calls: 
 
after() throwing (Error e): 
        publicMethodCall() && !cflow(publicMethodCall()) { 
    log.write(e); 
} 
The following aspect is taken from work on the AspectJ compiler. The aspect advises 
about 35 methods in the JavaParser class. The individual methods handle each of the 
different kinds of elements that must be parsed. They have names like parseMethodDec, 
parseThrows, and parseExpr.  
 
aspect ContextFilling { 
    pointcut parse(JavaParser jp): 
        call(* JavaParser.parse*(..)) 
        && target(jp) 
        && !call(Stmt parseVarDec(boolean)); // var decs 
                                              // are tricky 
 
    around(JavaParser jp) returns ASTObject: parse(jp) { 
        Token beginToken = jp.peekToken(); 
        ASTObject ret = proceed(jp); 
        if (ret != null) jp.addContext(ret, beginToken); 
        return ret; 
     } 
} 
This example exhibits a property found in many aspects with large property-based 
pointcuts. In addition to a general property based pattern call(* 
JavaParser.parse*(..)) it includes an exception to the pattern !call(Stmt 
parseVarDec(boolean)). The exclusion of parseVarDec happens because the parsing 
of variable declarations in Java is too complex to fit with the clean pattern of the other 
parse* methods. Even with the explicit exclusion this aspect is a clear expression of a 
clean crosscutting modularity. Namely that all parse* methods that return ASTObjects, 
except for parseVarDec share a common behavior for establishing the parse context of 
their result.  

The process of writing an aspect with a large property-based pointcut, and of developing 
the appropriate exceptions can clarify the structure of the system. This is especially true, 
as in this case, when refactoring existing code to use aspects. When we first looked at the 
code for this aspect, we were able to use the IDE support provided in AJDE for JBuilder 
to see what methods the aspect was advising compared to our manual coding. We quickly 
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discovered that there were a dozen places where the aspect advice was in effect but we 
had not manually inserted the required functionality. Two of these were bugs in our prior 
non-AOP implementation of the parser. The other ten were needless performance 
optimizations. So, here, refactoring the code to express the crosscutting structure of the 
aspect explicitly made the code more concise and eliminated latent bugs.  

4.2.4 Conclusion 

AspectJ is a simple and practical aspect-oriented extension to Java. With just a few new 
constructs, AspectJ provides support for modular implementation of a range of 
crosscutting concerns.  

Adoption of AspectJ into an existing Java development project can be a straightforward 
and incremental task. One path is to begin by using only development aspects, going on 
to using production aspects and then reusable aspects after building up experience with 
AspectJ. Adoption can follow other paths as well. For example, some developers will 
benefit from using production aspects right away. Others may be able to write clean 
reusable aspects almost right away.  

AspectJ enables both name-based and property based crosscutting. Aspects that use 
name-based crosscutting tend to affect a small number of other classes. But despite their 
small scale, they can often eliminate significant complexity compared to an ordinary Java 
implementation. Aspects that use property-based crosscutting can have small or large 
scale.  

Using AspectJ results in clean well-modularized implementations of crosscutting 
concerns. When written as an AspectJ aspect the structure of a crosscutting concern is 
explicit and easy to understand. Aspects are also highly modular, making it possible to 
develop plug-and-play implementations of crosscutting functionality.  

AspectJ provides more functionality than was covered by this short introduction. The 
next chapter, The AspectJ Language, covers in detail more of the features of the AspectJ 
language. The following chapter, Examples, then presents some carefully chosen 
examples that show you how AspectJ might be used. We recommend that you read the 
next two chapters carefully before deciding to adopt AspectJ into a project.  

4.3 The AspectJ Language 
The previous chapter, Getting Started with AspectJ, was a brief overview of the AspectJ 
language. You should read this chapter to understand AspectJ's syntax and semantics. It 
covers the same material as the previous chapter, but more completely and in much more 
detail.  

We will start out by looking at an example aspect that we'll build out of a pointcut, an 
introduction, and two pieces of advice. This example aspect will gives us something 
concrete to talk about.  

4.3.1 The Anatomy of an Aspect 
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This lesson explains the parts of AspectJ's aspects. By reading this lesson you will have 
an overview of what's in an aspect and you will be exposed to the new terminology 
introduced by AspectJ.  

4.3.1.1 An Example Aspect 
Here's an example of an aspect definition in AspectJ:  
 
 1 aspect FaultHandler { 
 2 
 3   private boolean Server.disabled = false; 
 4 
 5   private void reportFault() { 
 6     System.out.println("Failure! Please fix it."); 
 7   } 
 8 
 9   public static void fixServer(Server s) { 
10     s.disabled = false; 
11   } 
12 
13   pointcut services(Server s): target(s) && call(public * *(..)); 
14 
15   before(Server s): services(s) { 
16     if (s.disabled) throw new DisabledException(); 
17   } 
18 
19   after(Server s) throwing (FaultException e): services(s) { 
20     s.disabled = true; 
21     reportFault(); 
22   } 
23 } 
The FaultHandler consists of one inter-type field on Server (line 03), two methods 
(lines 05-07 and 09-11), one pointcut definition (line 13), and two pieces of advice (lines 
15-17 and 19-22).  

This covers the basics of what aspects can contain. In general, aspects consist of an 
association of other program entities, ordinary variables and methods, pointcut 
definitions, inter-type declarations, and advice, where advice may be before, after or 
around advice. The remainder of this lesson focuses on those crosscut-related constructs.  

4.3.1.2 Pointcuts 
AspectJ's pointcut definitions give names to pointcuts. Pointcuts themselves pick out join 
points, i.e. interesting points in the execution of a program. These join points can be 
method or constructor invocations and executions, the handling of exceptions, field 
assignments and accesses, etc. Take, for example, the pointcut definition in line 13:  
 
pointcut services(Server s): target(s) && call(public * *(..)) 
This pointcut, named services, picks out those points in the execution of the program 
when Server objects have their public methods called. It also allows anyone using the 
services pointcut to access the Server object whose method is being called.  
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The idea behind this pointcut in the FaultHandler aspect is that fault-handling-related 
behavior must be triggered on the calls to public methods. For example, the server may 
be unable to proceed with the request because of some fault. The calls of those methods 
are, therefore, interesting events for this aspect, in the sense that certain fault-related 
things will happen when these events occur.  

Part of the context in which the events occur is exposed by the formal parameters of the 
pointcut. In this case, that consists of objects of type Server. That formal parameter is 
then being used on the right hand side of the declaration in order to identify which events 
the pointcut refers to. In this case, a pointcut picking out join points where a Server is the 
target of some operation (target(s)) is being composed (&&, meaning and) with a pointcut 
picking out call join points (call(...)). The calls are identified by signatures that can 
include wild cards. In this case, there are wild cards in the return type position (first *), in 
the name position (second *) and in the argument list position (..); the only concrete 
information is given by the qualifier public.  

Pointcuts pick out arbitrarily large numbers of join points of a program. But they pick out 
only a small number of kinds of join points. Those kinds of join points correspond to 
some of the most important concepts in Java. Here is an incomplete list: method call, 
method execution, exception handling, instantiation, constructor execution, and field 
access. Each kind of join point can be picked out by its own specialized pointcut that you 
will learn about in other parts of this guide.  

4.3.1.3 Advice 
A piece of advice brings together a pointcut and a body of code to define aspect 
implementation that runs at join points picked out by the pointcut. For example, the 
advice in lines 15-17 specifies that the following piece of code  
 
{ 
  if (s.disabled) throw new DisabledException(); 
} 
is executed when instances of the Server class have their public methods called, as 
specified by the pointcut services. More specifically, it runs when those calls are made, 
just before the corresponding methods are executed.  

The advice in lines 19-22 defines another piece of implementation that is executed on the 
same pointcut:  
 
{ 
  s.disabled = true; 
  reportFault(); 
} 
But this second method executes after those operations throw exception of type 
FaultException.  

There are two other variations of after advice: upon successful return and upon return, 
either successful or with an exception. There is also a third kind of advice called around. 
You will see those in other parts of this guide.  
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4.3.2 Join Points and Pointcuts 

Consider the following Java class:  
 
class Point { 
    private int x, y; 
 
    Point(int x, int y) { this.x = x; this.y = y; } 
 
    void setX(int x) { this.x = x; } 
    void setY(int y) { this.y = y; } 
 
    int getX() { return x; } 
    int getY() { return y; } 
} 
In order to get an intuitive understanding of AspectJ's join points and pointcuts, let's go 
back to some of the basic principles of Java. Consider the following a method declaration 
in class Point:  
 
void setX(int x) { this.x = x; } 
This piece of program says that that when method named setX with an int argument 
called on an object of type Point, then the method body { this.x = x; } is executed. 
Similarly, the constructor of the class states that when an object of type Point is 
instantiated through a constructor with two int arguments, then the constructor body { 
this.x = x; this.y = y; } is executed.  

One pattern that emerges from these descriptions is  

When something happens, then something gets executed.  
In object-oriented programs, there are several kinds of "things that happen" that are 
determined by the language. We call these the join points of Java. Join points consist of 
things like method calls, method executions, object instantiations, constructor executions, 
field references and handler executions. (See the AspectJ Quick Reference for a complete 
listing.)  
Pointcuts pick out these join points. For example, the pointcut  
 
pointcut setter(): target(Point) && 
                   (call(void setX(int)) || 
                    call(void setY(int))); 
picks out each call to setX(int) or setY(int) when called on an instance of Point. 
Here's another example:  
 
pointcut ioHandler(): within(MyClass) && handler(IOException); 
This pointcut picks out each the join point when exceptions of type IOException are 
handled inside the code defined by class MyClass.  

Pointcut definitions consist of a left-hand side and a right-hand side, separated by a colon. 
The left-hand side consists of the pointcut name and the pointcut parameters (i.e. the data 
available when the events happen). The right-hand side consists of the pointcut itself.  
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4.3.2.1 Some Example Pointcuts 
Here are examples of pointcuts picking out  

when a particular method body executes 
execution(void Point.setX(int))  

when a method is called 
call(void Point.setX(int))  

when an exception handler executes 
handler(ArrayOutOfBoundsException)  

when the object currently executing (i.e. this) is of type SomeType  
this(SomeType)  

when the target object is of type SomeType  
target(SomeType)  

when the executing code belongs to class MyClass  
within(MyClass)  

when the join point is in the control flow of a call to a Test's no-argument main method  
cflow(call(void Test.main()))  

Pointcuts compose through the operations or ("||"), and ("&&") and not ("!").  

It is possible to use wildcards. So  
execution(* *(..))  
call(* set(..))  

means (1) the execution of any method regardless of return or parameter types, 
and (2) the call to any method named set regardless of return or parameter types -
- in case of overloading there may be more than one such set method; this 
pointcut picks out calls to all of them.  

You can select elements based on types. For example,  
execution(int *())  
call(* setY(long))  
call(* Point.setY(int))  
call(*.new(int, int))  

means (1) the execution of any method with no parameters that returns an int, (2) 
the call to any setY method that takes a long as an argument, regardless of return 
type or declaring type, (3) the call to any of Point's setY methods that take an 
int as an argument, regardless of return type, and (4) the call to any classes' 
constructor, so long as it takes exactly two ints as arguments.  
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You can compose pointcuts. For example,  
target(Point) && call(int *())  
call(* *(..)) && (within(Line) || within(Point))  
within(*) && execution(*.new(int))  
!this(Point) && call(int *(..))  

means (1) any call to an int method with no arguments on an instance of Point, 
regardless of its name, (2) any call to any method where the call is made from the 
code in Point's or Line's type declaration, (3) the execution of any constructor 
taking exactly one int argument, regardless of where the call is made from, and 
(4) any method call to an int method when the executing object is any type 
except Point.  

You can select methods and constructors based on their modifiers and on negations of 
modifiers. For example, you can say:  
call(public * *(..))  
execution(!static * *(..))  
execution(public !static * *(..))  

which means (1) any call to a public method, (2) any execution of a non-static 
method, and (3) any execution of a public, non-static method.  

Pointcuts can also deal with interfaces. For example, given the interface  
•  
• interface MyInterface { ... } 

the pointcut call(* MyInterface.*(..)) picks out any call to a method in 
MyInterface's signature -- that is, any method defined by MyInterface or inherited by 
one of its a supertypes.  

4.3.2.2 call vs. execution 
When methods and constructors run, there are two interesting times associated with them. 
That is when they are called, and when they actually execute.  

AspectJ exposes these times as call and execution join points, respectively, and allows 
them to be picked out specifically by call and execution pointcuts.  

So what's the difference between these join points? Well, there are a number of 
differences:  

Firstly, the lexical pointcut declarations within and withincode match differently. At a 
call join point, the enclosing code is that of the call site. This means that call(void 
m()) && withincode(void m()) will only capture directly recursive calls, for example. 
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At an execution join point, however, the program is already executing the method, so the 
enclosing code is the method itself: execution(void m()) && withincode(void m()) 
is the same as execution(void m()).  

Secondly, the call join point does not capture super calls to non-static methods. This is 
because such super calls are different in Java, since they don't behave via dynamic 
dispatch like other calls to non-static methods.  

The rule of thumb is that if you want to pick a join point that runs when an actual piece of 
code runs (as is often the case for tracing), use execution, but if you want to pick one 
that runs when a particular signature is called (as is often the case for production 
aspects), use call.  

4.3.2.3 Pointcut composition 
Pointcuts are put together with the operators and (spelled &&), or (spelled ||), and not 
(spelled !). This allows the creation of very powerful pointcuts from the simple building 
blocks of primitive pointcuts. This composition can be somewhat confusing when used 
with primitive pointcuts like cflow and cflowbelow. Here's an example:  

cflow(P) picks out each join point in the control flow of the join points picked out by P. 
So, pictorially:  
 
  P --------------------- 
    \ 
     \  cflow of P 
      \ 
What does cflow(P) && cflow(Q) pick out? Well, it picks out each join point that is in 
both the control flow of P and in the control flow of Q. So...  
 
          P --------------------- 
            \ 
             \  cflow of P 
              \ 
               \ 
                \ 
  Q -------------\------- 
    \             \ 
     \  cflow of Q \ cflow(P) && cflow(Q) 
      \             \ 
Note that P and Q might not have any join points in common... but their control flows 
might have join points in common.  

But what does cflow(P && Q) mean? Well, it means the control flow of those join points 
that are both picked out by P and picked out by Q.  
 
   P && Q ------------------- 
          \ 
           \ cflow of (P && Q) 
            \ 
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and if there are no join points that are both picked by P and picked out by Q, then there's 
no chance that there are any join points in the control flow of (P && Q).  

Here's some code that expresses this.  
 
public class Test { 
    public static void main(String[] args) { 
        foo(); 
    } 
    static void foo() { 
        goo(); 
    } 
    static void goo() { 
        System.out.println("hi"); 
    } 
} 
 
aspect A  { 
    pointcut fooPC(): execution(void Test.foo()); 
    pointcut gooPC(): execution(void Test.goo()); 
    pointcut printPC(): call(void java.io.PrintStream.println(String)); 
 
    before(): cflow(fooPC()) && cflow(gooPC()) && printPC() { 
        System.out.println("should occur"); 
    } 
 
    before(): cflow(fooPC() && gooPC()) && printPC() { 
        System.out.println("should not occur"); 
    } 
} 

4.3.2.4 Pointcut Parameters 
Consider again the first pointcut definition in this chapter:  
 
  pointcut setter(): target(Point) && 
                     (call(void setX(int)) || 
                      call(void setY(int))); 
As we've seen, this pointcut picks out each call to setX(int) or setY(int) methods 
where the target is an instance of Point. The pointcut is given the name setters and no 
parameters on the left-hand side. An empty parameter list means that none of the context 
from the join points is published from this pointcut. But consider another version of 
version of this pointcut definition:  
 
  pointcut setter(Point p): target(p) && 
                            (call(void setX(int)) || 
                             call(void setY(int))); 
This version picks out exactly the same join points. But in this version, the pointcut has 
one parameter of type Point. This means that any advice that uses this pointcut has 
access to a Point from each join point picked out by the pointcut. Inside the pointcut 
definition this Point is named p is available, and according to the right-hand side of the 
definition, that Point p comes from the target of each matched join point.  
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Here's another example that illustrates the flexible mechanism for defining pointcut 
parameters:  
 
  pointcut testEquality(Point p): target(Point) && 
                                  args(p) && 
                                  call(boolean equals(Object)); 
This pointcut also has a parameter of type Point. Similar to the setters pointcut, this 
means that anyone using this pointcut has access to a Point from each join point. But in 
this case, looking at the right-hand side we find that the object named in the parameters is 
not the target Point object that receives the call; it's the argument (also of type Point) 
passed to the equals method when some other Point is the target. If we wanted access to 
both Points, then the pointcut definition that would expose target Point p1 and 
argument Point p2 would be  
 
  pointcut testEquality(Point p1, Point p2): target(p1) && 
                                             args(p2) && 
                                             call(boolean 
equals(Object)); 
Let's look at another variation of the setters pointcut:  
 
pointcut setter(Point p, int newval): target(p) && 
                                      args(newval) && 
                                      (call(void setX(int)) || 
                                       call(void setY(int))); 
In this case, a Point object and an int value are exposed by the named pointcut. Looking 
at the the right-hand side of the definition, we find that the Point object is the target 
object, and the int value is the called method's argument.  

The use of pointcut parameters is relatively flexible. The most important rule is that all 
the pointcut parameters must be bound at every join point picked out by the pointcut. So, 
for example, the following pointcut definition will result in a compilation error:  
 
  pointcut badPointcut(Point p1, Point p2): 
      (target(p1) && call(void setX(int))) || 
      (target(p2) && call(void setY(int))); 
because p1 is only bound when calling setX, and p2 is only bound when calling setY, 
but the pointcut picks out all of these join points and tries to bind both p1 and p2.  

4.3.2.5 Example: HandleLiveness 
The example below consists of two object classes (plus an exception class) and one 
aspect. Handle objects delegate their public, non-static operations to their Partner 
objects. The aspect HandleLiveness ensures that, before the delegations, the partner 
exists and is alive, or else it throws an exception.  
 
  class Handle { 
    Partner partner = new Partner(); 
 
    public void foo() { partner.foo(); } 
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    public void bar(int x) { partner.bar(x); } 
 
    public static void main(String[] args) { 
      Handle h1 = new Handle(); 
      h1.foo(); 
      h1.bar(2); 
    } 
  } 
 
  class Partner { 
    boolean isAlive() { return true; } 
    void foo() { System.out.println("foo"); } 
    void bar(int x) { System.out.println("bar " + x); } 
  } 
 
  aspect HandleLiveness { 
    before(Handle handle): target(handle) && call(public * *(..)) { 
      if ( handle.partner == null  || !handle.partner.isAlive() ) { 
        throw new DeadPartnerException(); 
      } 
    } 
  } 
 
  class DeadPartnerException extends RuntimeException {} 

4.3.3 Advice 

Advice defines pieces of aspect implementation that execute at well-defined points in the 
execution of the program. Those points can be given either by named pointcuts (like the 
ones you've seen above) or by anonymous pointcuts. Here is an example of an advice on 
a named pointcut:  
 
  pointcut setter(Point p1, int newval): target(p1) && args(newval) 
                                         (call(void setX(int) || 
                                          call(void setY(int))); 
 
  before(Point p1, int newval): setter(p1, newval) { 
      System.out.println("About to set something in " + p1 + 
                         " to the new value " + newval); 
  } 
And here is exactly the same example, but using an anonymous pointcut:  
 
  before(Point p1, int newval): target(p1) && args(newval) 
                                (call(void setX(int)) || 
                                 call(void setY(int))) { 
      System.out.println("About to set something in " + p1 + 
                         " to the new value " + newval); 
  } 
Here are examples of the different advice:  

This before advice runs just before the join points picked out by the (anonymous) 
pointcut:  
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  before(Point p, int x): target(p) && args(x) && call(void setX(int)) 
{ 
      if (!p.assertX(x)) return; 
  } 
This after advice runs just after each join point picked out by the (anonymous) pointcut, 
regardless of whether it returns normally or throws an exception:  
 
  after(Point p, int x): target(p) && args(x) && call(void setX(int)) { 
      if (!p.assertX(x)) throw new PostConditionViolation(); 
  } 
This after returning advice runs just after each join point picked out by the (anonymous) 
pointcut, but only if it returns normally. The return value can be accessed, and is named x 
here. After the advice runs, the return value is returned:  
 
  after(Point p) returning(int x): target(p) && call(int getX()) { 
      System.out.println("Returning int value " + x + " for p = " + p); 
  } 
This after throwing advice runs just after each join point picked out by the (anonymous) 
pointcut, but only when it throws an exception of type Exception. Here the exception 
value can be accessed with the name e. The advice re-raises the exception after it's done:  
 
  after() throwing(Exception e): target(Point) && call(void setX(int)) 
{ 
      System.out.println(e); 
  } 
This around advice traps the execution of the join point; it runs instead of the join point. 
The original action associated with the join point can be invoked through the special 
proceed call:  
 
void around(Point p, int x): target(p) 
                          && args(x) 
                          && call(void setX(int)) { 
    if (p.assertX(x)) proceed(p, x); 
    p.releaseResources(); 
} 

4.3.4 Inter-type declarations 

Aspects can declare members (fields, methods, and constructors) that are owned by other 
types. These are called inter-type members. Aspects can also declare that other types 
implement new interfaces or extend a new class. Here are examples of some such inter-
type declarations:  

This declares that each Server has a boolean field named disabled, initialized to 
false:  
 
  private boolean Server.disabled = false; 
It is declared private, which means that it is private to the aspect: only code in the 
aspect can see the field. And even if Server has another private field named disabled 
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(declared in Server or in another aspect) there won't be a name collision, since no 
reference to disabled will be ambiguous.  
This declares that each Point has an int method named getX with no arguments that 
returns whatever this.x is:  
 
  public int Point.getX() { return this.x; } 
Inside the body, this is the Point object currently executing. Because the method is 
publically declared any code can call it, but if there is some other Point.getX() declared 
there will be a compile-time conflict.  
This publically declares a two-argument constructor for Point:  
 
  public Point.new(int x, int y) { this.x = x; this.y = y; } 
This publicly declares that each Point has an int field named x, initialized to zero:  
 
  public int Point.x = 0; 
Because this is publically declared, it is an error if Point already has a field named x 
(defined by Point or by another aspect).  
This declares that the Point class implements the Comparable interface:  
 
  declare parents: Point implements Comparable; 
Of course, this will be an error unless Point defines the methods required by 
Comparable.  
This declares that the Point class extends the GeometricObject class.  
 
  declare parents: Point extends GeometricObject; 
An aspect can have several inter-type declarations. For example, the following 
declarations  
 
  public String Point.name; 
  public void Point.setName(String name) { this.name = name; } 
publicly declare that Point has both a String field name and a void method 
setName(String) (which refers to the name field declared by the aspect).  
An inter-type member can only have one target type, but often you may wish to declare 
the same member on more than one type. This can be done by using an inter-type 
member in combination with a private interface:  
 
  aspect A { 
    private interface HasName {} 
    declare parents: (Point || Line || Square) implements HasName; 
 
    private String HasName.name; 
    public  String HasName.getName()  { return name; } 
  } 
This declares a marker interface HasName, and also declares that any type that is either 
Point, Line, or Square implements that interface. It also privately declares that all 
HasName object have a String field called name, and publically declares that all HasName 
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objects have a String method getName() (which refers to the privately declared name 
field).  
As you can see from the above example, an aspect can declare that interfaces have fields 
and methods, even non-constant fields and methods with bodies.  

4.3.4.1 Inter-type Scope 
AspectJ allows private and package-protected (default) inter-type declarations in addition 
to public inter-type declarations. Private means private in relation to the aspect, not 
necessarily the target type. So, if an aspect makes a private inter-type declaration of a 
field  
 
  private int Foo.x; 
Then code in the aspect can refer to Foo's x field, but nobody else can. Similarly, if an 
aspect makes a package-protected introduction,  
 
  int Foo.x; 
then everything in the aspect's package (which may or may not be Foo's package) can 
access x.  

4.3.4.2 Example: PointAssertions 
The example below consists of one class and one aspect. The aspect privately declares 
the assertion methods of Point, assertX and assertY. It also guards calls to setX and 
setY with calls to these assertion methods. The assertion methods are declared privately 
because other parts of the program (including the code in Point) have no business 
accessing the assert methods. Only the code inside of the aspect can call those methods.  
 
  class Point  { 
      int x, y; 
 
      public void setX(int x) { this.x = x; } 
      public void setY(int y) { this.y = y; } 
 
      public static void main(String[] args) { 
          Point p = new Point(); 
          p.setX(3); p.setY(333); 
      } 
  } 
 
  aspect PointAssertions { 
 
      private boolean Point.assertX(int x) { 
          return (x <= 100 && x >= 0); 
      } 
      private boolean Point.assertY(int y) { 
          return (y <= 100 && y >= 0); 
      } 
 
      before(Point p, int x): target(p) && args(x) && call(void 
setX(int)) { 
          if (!p.assertX(x)) { 
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              System.out.println("Illegal value for x"); return; 
          } 
      } 
      before(Point p, int y): target(p) && args(y) && call(void 
setY(int)) { 
          if (!p.assertY(y)) { 
              System.out.println("Illegal value for y"); return; 
          } 
      } 
  } 

4.3.5 thisJoinPoint 

AspectJ provides a special reference variable, thisJoinPoint, that contains reflective 
information about the current join point for the advice to use. The thisJoinPoint 
variable can only be used in the context of advice, just like this can only be used in the 
context of non-static methods and variable initializers. In advice, thisJoinPoint is an 
object of type org.aspectj.lang.JoinPoint.  

One way to use it is simply to print it out. Like all Java objects, thisJoinPoint has a 
toString() method that makes quick-and-dirty tracing easy:  
 
  class TraceNonStaticMethods { 
      before(Point p): target(p) && call(* *(..)) { 
          System.out.println("Entering " + thisJoinPoint + " in " + p); 
      } 
  } 
The type of thisJoinPoint includes a rich reflective class hierarchy of signatures, and 
can be used to access both static and dynamic information about join points such as the 
arguments of the join point:  
 
  thisJoinPoint.getArgs() 
In addition, it holds an object consisting of all the static information about the join point 
such as corresponding line number and static signature:  
 
  thisJoinPoint.getStaticPart() 
If you only need the static information about the join point, you may access the static part 
of the join point directly with the special variable thisJoinPointStaticPart. Using 
thisJoinPointStaticPart will avoid the run-time creation of the join point object that 
may be necessary when using thisJoinPoint directly.  
It is always the case that  
 
   thisJoinPointStaticPart == thisJoinPoint.getStaticPart() 
 
   thisJoinPoint.getKind() == thisJoinPointStaticPart.getKind() 
   thisJoinPoint.getSignature() == 
thisJoinPointStaticPart.getSignature() 
   thisJoinPoint.getSourceLocation() == 
thisJoinPointStaticPart.getSourceLocation() 
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One more reflective variable is available: thisEnclosingJoinPointStaticPart. This, 
like thisJoinPointStaticPart, only holds the static part of a join point, but it is not the 
current but the enclosing join point. So, for example, it is possible to print out the calling 
source location (if available) with  
 
   before() : execution (* *(..)) { 
     
System.err.println(thisEnclosingJoinPointStaticPart.getSourceLocation()
) 
   } 

4.4 Examples 
This chapter consists entirely of examples of AspectJ use.  

The examples can be grouped into four categories: 

technique Examples which illustrate how to use one or more features of the language. 
development Examples of using AspectJ during the development phase of a project.  
production Examples of using AspectJ to provide functionality in an application.  
reusable Examples of reuse of aspects and pointcuts. 

4.4.1 Obtaining, Compiling and Running the Examples 

The examples source code is part of the AspectJ distribution which may be downloaded 
from the AspectJ project page ( http://eclipse.org/aspectj ).  

Compiling most examples is straightforward. Go the InstallDir/examples directory, 
and look for a .lst file in one of the example subdirectories. Use the -arglist option to 
ajc to compile the example. For instance, to compile the telecom example with billing, 
type  
 
ajc -argfile telecom/billing.lst 
To run the examples, your classpath must include the AspectJ run-time Java archive 
(aspectjrt.jar). You may either set the CLASSPATH environment variable or use the -
classpath command line option to the Java interpreter:  
 
(In Unix use a : in the CLASSPATH) 
java -classpath ".:InstallDir/lib/aspectjrt.jar" 
telecom.billingSimulation 
 
(In Windows use a ; in the CLASSPATH) 
java -classpath ".;InstallDir/lib/aspectjrt.jar" 
telecom.billingSimulation 

4.4.2 Basic Techniques 
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This section presents two basic techniques of using AspectJ, one each from the two 
fundamental ways of capturing crosscutting concerns: with dynamic join points and 
advice, and with static introduction. Advice changes an application's behavior. 
Introduction changes both an application's behavior and its structure.  

The first example, the section called “Join Points and thisJoinPoint”, is about 
gathering and using information about the join point that has triggered some advice. The 
second example, the section called “Roles and Views”, concerns a crosscutting view of 
an existing class hierarchy.  

4.4.2.1 Join Points and thisJoinPoint 
(The code for this example is in InstallDir/examples/tjp.)  

A join point is some point in the execution of a program together with a view into the 
execution context when that point occurs. Join points are picked out by pointcuts. When a 
program reaches a join point, advice on that join point may run in addition to (or instead 
of) the join point itself.  

When using a pointcut that picks out join points of a single kind by name, typicaly the the 
advice will know exactly what kind of join point it is associated with. The pointcut may 
even publish context about the join point. Here, for example, since the only join points 
picked out by the pointcut are calls of a certain method, we can get the target value and 
one of the argument values of the method calls directly.  
 
before(Point p, int x): target(p) 
                     && args(x) 
                     && call(void setX(int)) { 
    if (!p.assertX(x)) { 
        System.out.println("Illegal value for x"); return; 
    } 
} 
But sometimes the shape of the join point is not so clear. For instance, suppose a complex 
application is being debugged, and we want to trace when any method of some class is 
executed. The pointcut  
 
pointcut execsInProblemClass(): within(ProblemClass) 
                             && execution(* *(..)); 
will pick out each execution join point of every method defined within ProblemClass. 
Since advice executes at each join point picked out by the pointcut, we can reasonably 
ask which join point was reached.  

Information about the join point that was matched is available to advice through the 
special variable thisJoinPoint, of type org.aspectj.lang.JoinPoint. Through this 
object we can access information such as 

• the kind of join point that was matched  
• the source location of the code associated with the join point  
• normal, short and long string representations of the current join point  
• the actual argument values of the join point  
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• the signature of the member associated with the join point  
• the currently executing object 
• the target object 
• an object encapsulating the static information about the join point. This is also 

available through the special variable thisJoinPointStaticPart. 

4.4.2.1.1 The Demo class 
The class tjp.Demo in tjp/Demo.java defines two methods foo and bar with different 
parameter lists and return types. Both are called, with suitable arguments, by Demo's go 
method which was invoked from within its main method.  
 
public class Demo { 
    static Demo d; 
 
    public static void main(String[] args){ 
        new Demo().go(); 
    } 
 
    void go(){ 
        d = new Demo(); 
        d.foo(1,d); 
        System.out.println(d.bar(new Integer(3))); 
    } 
 
    void foo(int i, Object o){ 
        System.out.println("Demo.foo(" + i + ", " + o + ")\n"); 
    } 
 
    String bar (Integer j){ 
        System.out.println("Demo.bar(" + j + ")\n"); 
        return "Demo.bar(" + j  + ")"; 
    } 
} 

4.4.2.1.2 The GetInfo aspect 
This aspect uses around advice to intercept the execution of methods foo and bar in 
Demo, and prints out information garnered from thisJoinPoint to the console.  
 
aspect GetInfo { 
 
   static final void println(String s){ System.out.println(s); } 
 
   pointcut goCut(): cflow(this(Demo) && execution(void go())); 
 
   pointcut demoExecs(): within(Demo) && execution(* *(..)); 
 
   Object around(): demoExecs() && !execution(* go()) && goCut() { 
      println("Intercepted message: " + 
          thisJoinPointStaticPart.getSignature().getName()); 
      println("in class: " + 
          
thisJoinPointStaticPart.getSignature().getDeclaringType().getName()); 
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      printParameters(thisJoinPoint); 
      println("Running original method: \n" ); 
      Object result = proceed(); 
      println("  result: " + result ); 
      return result; 
   } 
 
   static private void printParameters(JoinPoint jp) { 
      println("Arguments: " ); 
      Object[] args = jp.getArgs(); 
      String[] names = 
((CodeSignature)jp.getSignature()).getParameterNames(); 
      Class[] types = 
((CodeSignature)jp.getSignature()).getParameterTypes(); 
      for (int i = 0; i < args.length; i++) { 
         println("  "  + i + ". " + names[i] + 
             " : " +            types[i].getName() + 
             " = " +            args[i]); 
      } 
   } 
} 

4.4.2.1.2.1 Defining the scope of a pointcut 
The pointcut goCut is defined as  
 
cflow(this(Demo)) && execution(void go()) 
so that only executions made in the control flow of Demo.go are intercepted. The control 
flow from the method go includes the execution of go itself, so the definition of the 
around advice includes !execution(* go()) to exclude it from the set of executions 
advised.  

4.4.2.1.2.2 Printing the class and method name 
The name of the method and that method's defining class are available as parts of the 
org.aspectj.lang.Signature object returned by calling getSignature() on either 
thisJoinPoint or thisJoinPointStaticPart.  

4.4.2.1.2.3 Printing the parameters 
The static portions of the parameter details, the name and types of the parameters, can be 
accessed through the org.aspectj.lang.reflect.CodeSignature associated with the 
join point. All execution join points have code signatures, so the cast to CodeSignature 
cannot fail.  

The dynamic portions of the parameter details, the actual values of the parameters, are 
accessed directly from the execution join point object.  

4.4.2.2 Roles and Views 
(The code for this example is in InstallDir/examples/introduction.)  

Like advice, inter-type declarations are members of an aspect. They declare members that 
act as if they were defined on another class. Unlike advice, inter-type declarations affect 
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not only the behavior of the application, but also the structural relationship between an 
application's classes.  

This is crucial: Publically affecting the class structure of an application makes these 
modifications available to other components of the application.  

Aspects can declare inter-type  

• fields 
• methods 
• constructors 

and can also declare that target types  

• implement new interfaces 
• extend new classes 

This example provides three illustrations of the use of inter-type declarations to 
encapsulate roles or views of a class. The class our aspect will be dealing with, Point, is 
a simple class with rectangular and polar coordinates. Our inter-type declarations will 
make the class Point, in turn, cloneable, hashable, and comparable. These facilities are 
provided by AspectJ without having to modify the code for the class Point.  

4.4.2.2.1 The Point class 
The Point class defines geometric points whose interface includes polar and rectangular 
coordinates, plus some simple operations to relocate points. Point's implementation has 
attributes for both its polar and rectangular coordinates, plus flags to indicate which 
currently reflect the position of the point. Some operations cause the polar coordinates to 
be updated from the rectangular, and some have the opposite effect. This implementation, 
which is in intended to give the minimum number of conversions between coordinate 
systems, has the property that not all the attributes stored in a Point object are necessary 
to give a canonical representation such as might be used for storing, comparing, cloning 
or making hash codes from points. Thus the aspects, though simple, are not totally trivial.  

The diagram below gives an overview of the aspects and their interaction with the class 
Point. 
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Figure 11  Roles for Point 

4.4.2.2.2 The CloneablePoint aspect 
This first aspect is responsible for Point's implementation of the Cloneable interface. It 
declares that Point implements Cloneable with a declare parents form, and also 
publically declares a specialized Point's clone() method. In Java, all objects inherit the 
method clone from the class Object, but an object is not cloneable unless its class also 
implements the interface Cloneable. In addition, classes frequently have requirements 
over and above the simple bit-for-bit copying that Object.clone does. In our case, we 
want to update a Point's coordinate systems before we actually clone the Point. So our 
aspect makes sure that Point overrides Object.clone with a new method that does what 
we want.  

We also define a test main method in the aspect for convenience.  
 
public aspect CloneablePoint { 
 
   declare parents: Point implements Cloneable; 
 
   public Object Point.clone() throws CloneNotSupportedException { 
      // we choose to bring all fields up to date before cloning. 
      makeRectangular(); 
      makePolar(); 
      return super.clone(); 
   } 
 
   public static void main(String[] args){ 
      Point p1 = new Point(); 
      Point p2 = null; 
 
      p1.setPolar(Math.PI, 1.0); 
      try { 
         p2 = (Point)p1.clone(); 
      } catch (CloneNotSupportedException e) {} 
      System.out.println("p1 =" + p1 ); 
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      System.out.println("p2 =" + p2 ); 
 
      p1.rotate(Math.PI / -2); 
      System.out.println("p1 =" + p1 ); 
      System.out.println("p2 =" + p2 ); 
   } 
} 

4.4.2.2.3 The ComparablePoint aspect 
ComparablePoint is responsible for Point's implementation of the Comparable 
interface.  

The interface Comparable defines the single method compareTo which can be use to 
define a natural ordering relation among the objects of a class that implement it.  

ComparablePoint uses declare parents to declare that Point implements 
Comparable, and also publically declares the appropriate compareTo(Object) method: 
A Point p1 is said to be less than another Point p2 if p1 is closer to the origin.  

We also define a test main method in the aspect for convenience.  
 
public aspect ComparablePoint { 
 
   declare parents: Point implements Comparable; 
 
   public int Point.compareTo(Object o) { 
      return (int) (this.getRho() - ((Point)o).getRho()); 
   } 
 
   public static void main(String[] args){ 
      Point p1 = new Point(); 
      Point p2 = new Point(); 
 
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2)); 
 
      p1.setRectangular(2,5); 
      p2.setRectangular(2,5); 
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2)); 
 
      p2.setRectangular(3,6); 
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2)); 
 
      p1.setPolar(Math.PI, 4); 
      p2.setPolar(Math.PI, 4); 
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2)); 
 
      p1.rotate(Math.PI / 4.0); 
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2)); 
 
      p1.offset(1,1); 
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2)); 
   } 
} 

4.4.2.2.4 The HashablePoint aspect 
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Our third aspect is responsible for Point's overriding of Object's equals and hashCode 
methods in order to make Points hashable.  

The method Object.hashCode returns an unique integer, suitable for use as a hash table 
key. Different implementations are allowed return different integers, but must return 
distinct integers for distinct objects, and the same integer for objects that test equal. But 
since the default implementation of Object.equal returns true only when two objects 
are identical, we need to redefine both equals and hashCode to work correctly with 
objects of type Point. For example, we want two Point objects to test equal when they 
have the same x and y values, or the same rho and theta values, not just when they refer 
to the same object. We do this by overriding the methods equals and hashCode in the 
class Point.  

So HashablePoint declares Point's hashCode and equals methods, using Point's 
rectangular coordinates to generate a hash code and to test for equality. The x and y 
coordinates are obtained using the appropriate get methods, which ensure the rectangular 
coordinates are up-to-date before returning their values.  

And again, we supply a main method in the aspect for testing.  
 
public aspect HashablePoint { 
 
   public int Point.hashCode() { 
      return (int) (getX() + getY() % Integer.MAX_VALUE); 
   } 
 
   public boolean Point.equals(Object o) { 
      if (o == this) { return true; } 
      if (!(o instanceof Point)) { return false; } 
      Point other = (Point)o; 
      return (getX() == other.getX()) && (getY() == other.getY()); 
   } 
 
   public static void main(String[] args) { 
      Hashtable h = new Hashtable(); 
      Point p1 = new Point(); 
 
      p1.setRectangular(10, 10); 
      Point p2 = new Point(); 
 
      p2.setRectangular(10, 10); 
 
      System.out.println("p1 = " + p1); 
      System.out.println("p2 = " + p2); 
      System.out.println("p1.hashCode() = " + p1.hashCode()); 
      System.out.println("p2.hashCode() = " + p2.hashCode()); 
 
      h.put(p1, "P1"); 
      System.out.println("Got: " + h.get(p2)); 
   } 
} 

4.4.3 Development Aspects 
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The following aspects are useful during development. 

4.4.3.1 Tracing using aspects 
(The code for this example is in InstallDir/examples/tracing.)  

Writing a class that provides tracing functionality is easy: a couple of functions, a 
boolean flag for turning tracing on and off, a choice for an output stream, maybe some 
code for formatting the output -- these are all elements that Trace classes have been 
known to have. Trace classes may be highly sophisticated, too, if the task of tracing the 
execution of a program demands it.  

But developing the support for tracing is just one part of the effort of inserting tracing 
into a program, and, most likely, not the biggest part. The other part of the effort is 
calling the tracing functions at appropriate times. In large systems, this interaction with 
the tracing support can be overwhelming. Plus, tracing is one of those things that slows 
the system down, so these calls should often be pulled out of the system before the 
product is shipped. For these reasons, it is not unusual for developers to write ad-hoc 
scripting programs that rewrite the source code by inserting/deleting trace calls before 
and after the method bodies.  

AspectJ can be used for some of these tracing concerns in a less ad-hoc way. Tracing can 
be seen as a concern that crosscuts the entire system and as such is amenable to 
encapsulation in an aspect. In addition, it is fairly independent of what the system is 
doing. Therefore tracing is one of those kind of system aspects that can potentially be 
plugged in and unplugged without any side-effects in the basic functionality of the 
system.  

4.4.3.1.1 An Example Application 
Throughout this example we will use a simple application that contains only four classes. 
The application is about shapes. The TwoDShape class is the root of the shape hierarchy:  
 
public abstract class TwoDShape { 
    protected double x, y; 
    protected TwoDShape(double x, double y) { 
        this.x = x; this.y = y; 
    } 
    public double getX() { return x; } 
    public double getY() { return y; } 
    public double distance(TwoDShape s) { 
        double dx = Math.abs(s.getX() - x); 
        double dy = Math.abs(s.getY() - y); 
        return Math.sqrt(dx*dx + dy*dy); 
    } 
    public abstract double perimeter(); 
    public abstract double area(); 
    public String toString() { 
        return (" @ (" + String.valueOf(x) + ", " + String.valueOf(y) + 
") "); 
    } 
} 
TwoDShape has two subclasses, Circle and Square:  
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public class Circle extends TwoDShape { 
    protected double r; 
    public Circle(double x, double y, double r) { 
        super(x, y); this.r = r; 
    } 
    public Circle(double x, double y) { this(  x,   y, 1.0); } 
    public Circle(double r)           { this(0.0, 0.0,   r); } 
    public Circle()                   { this(0.0, 0.0, 1.0); } 
    public double perimeter() { 
        return 2 * Math.PI * r; 
    } 
    public double area() { 
        return Math.PI * r*r; 
    } 
    public String toString() { 
        return ("Circle radius = " + String.valueOf(r) + 
super.toString()); 
    } 
} 
 
public class Square extends TwoDShape { 
    protected double s;    // side 
    public Square(double x, double y, double s) { 
        super(x, y); this.s = s; 
    } 
    public Square(double x, double y) { this(  x,   y, 1.0); } 
    public Square(double s)           { this(0.0, 0.0,   s); } 
    public Square()                   { this(0.0, 0.0, 1.0); } 
    public double perimeter() { 
        return 4 * s; 
    } 
    public double area() { 
        return s*s; 
    } 
    public String toString() { 
        return ("Square side = " + String.valueOf(s) + 
super.toString()); 
    } 
} 
To run this application, compile the classes. You can do it with or without ajc, the 
AspectJ compiler. If you've installed AspectJ, go to the directory InstallDir/examples 
and type:  
 
ajc -argfile tracing/notrace.lst 
To run the program, type 
 
java tracing.ExampleMain 
(we don't need anything special on the classpath since this is pure Java code). You should 
see the following output: 
 
c1.perimeter() = 12.566370614359172 
c1.area() = 12.566370614359172 
s1.perimeter() = 4.0 
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s1.area() = 1.0 
c2.distance(c1) = 4.242640687119285 
s1.distance(c1) = 2.23606797749979 
s1.toString(): Square side = 1.0 @ (1.0, 2.0) 

4.4.3.1.2 Tracing—Version 1 
In a first attempt to insert tracing in this application, we will start by writing a Trace 
class that is exactly what we would write if we didn't have aspects. The implementation is 
in version1/Trace.java. Its public interface is:  
 
public class Trace { 
    public static int TRACELEVEL = 0; 
    public static void initStream(PrintStream s) {...} 
    public static void traceEntry(String str) {...} 
    public static void traceExit(String str) {...} 
} 
If we didn't have AspectJ, we would have to insert calls to traceEntry and traceExit 
in all methods and constructors we wanted to trace, and to initialize TRACELEVEL and the 
stream. If we wanted to trace all the methods and constructors in our example, that would 
amount to around 40 calls, and we would hope we had not forgotten any method. But we 
can do that more consistently and reliably with the following aspect (found in 
version1/TraceMyClasses.java):  
 
aspect TraceMyClasses { 
    pointcut myClass(): within(TwoDShape) || within(Circle) || 
within(Square); 
    pointcut myConstructor(): myClass() && execution(new(..)); 
    pointcut myMethod(): myClass() && execution(* *(..)); 
 
    before (): myConstructor() { 
        Trace.traceEntry("" + thisJoinPointStaticPart.getSignature()); 
    } 
    after(): myConstructor() { 
        Trace.traceExit("" + thisJoinPointStaticPart.getSignature()); 
    } 
 
    before (): myMethod() { 
        Trace.traceEntry("" + thisJoinPointStaticPart.getSignature()); 
    } 
    after(): myMethod() { 
        Trace.traceExit("" + thisJoinPointStaticPart.getSignature()); 
    } 
} 
This aspect performs the tracing calls at appropriate times. According to this aspect, 
tracing is performed at the entrance and exit of every method and constructor defined 
within the shape hierarchy.  

What is printed at before and after each of the traced join points is the signature of the 
method executing. Since the signature is static information, we can get it through 
thisJoinPointStaticPart.  

To run this version of tracing, go to the directory InstallDir/examples and type:  
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  ajc -argfile tracing/tracev1.lst 
Running the main method of tracing.version1.TraceMyClasses should produce the 
output:  
 
  --> tracing.TwoDShape(double, double) 
  <-- tracing.TwoDShape(double, double) 
  --> tracing.Circle(double, double, double) 
  <-- tracing.Circle(double, double, double) 
  --> tracing.TwoDShape(double, double) 
  <-- tracing.TwoDShape(double, double) 
  --> tracing.Circle(double, double, double) 
  <-- tracing.Circle(double, double, double) 
  --> tracing.Circle(double) 
  <-- tracing.Circle(double) 
  --> tracing.TwoDShape(double, double) 
  <-- tracing.TwoDShape(double, double) 
  --> tracing.Square(double, double, double) 
  <-- tracing.Square(double, double, double) 
  --> tracing.Square(double, double) 
  <-- tracing.Square(double, double) 
  --> double tracing.Circle.perimeter() 
  <-- double tracing.Circle.perimeter() 
c1.perimeter() = 12.566370614359172 
  --> double tracing.Circle.area() 
  <-- double tracing.Circle.area() 
c1.area() = 12.566370614359172 
  --> double tracing.Square.perimeter() 
  <-- double tracing.Square.perimeter() 
s1.perimeter() = 4.0 
  --> double tracing.Square.area() 
  <-- double tracing.Square.area() 
s1.area() = 1.0 
  --> double tracing.TwoDShape.distance(TwoDShape) 
    --> double tracing.TwoDShape.getX() 
    <-- double tracing.TwoDShape.getX() 
    --> double tracing.TwoDShape.getY() 
    <-- double tracing.TwoDShape.getY() 
  <-- double tracing.TwoDShape.distance(TwoDShape) 
c2.distance(c1) = 4.242640687119285 
  --> double tracing.TwoDShape.distance(TwoDShape) 
    --> double tracing.TwoDShape.getX() 
    <-- double tracing.TwoDShape.getX() 
    --> double tracing.TwoDShape.getY() 
    <-- double tracing.TwoDShape.getY() 
  <-- double tracing.TwoDShape.distance(TwoDShape) 
s1.distance(c1) = 2.23606797749979 
  --> String tracing.Square.toString() 
    --> String tracing.TwoDShape.toString() 
    <-- String tracing.TwoDShape.toString() 
  <-- String tracing.Square.toString() 
s1.toString(): Square side = 1.0 @ (1.0, 2.0) 
When TraceMyClasses.java is not provided to ajc, the aspect does not have any affect 
on the system and the tracing is unplugged.  
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4.4.3.1.3 Tracing—Version 2 
Another way to accomplish the same thing would be to write a reusable tracing aspect 
that can be used not only for these application classes, but for any class. One way to do 
this is to merge the tracing functionality of Trace—version1 with the crosscutting 
support of TraceMyClasses—version1. We end up with a Trace aspect (found in 
version2/Trace.java) with the following public interface  
 
abstract aspect Trace { 
 
    public static int TRACELEVEL = 2; 
    public static void initStream(PrintStream s) {...} 
    protected static void traceEntry(String str) {...} 
    protected static void traceExit(String str) {...} 
    abstract pointcut myClass(); 
} 
In order to use it, we need to define our own subclass that knows about our application 
classes, in version2/TraceMyClasses.java:  
 
public aspect TraceMyClasses extends Trace { 
    pointcut myClass(): within(TwoDShape) || within(Circle) || 
within(Square); 
 
    public static void main(String[] args) { 
        Trace.TRACELEVEL = 2; 
        Trace.initStream(System.err); 
        ExampleMain.main(args); 
    } 
} 
Notice that we've simply made the pointcut classes, that was an abstract pointcut in the 
super-aspect, concrete. To run this version of tracing, go to the directory examples and 
type:  
 
  ajc -argfile tracing/tracev2.lst 
The file tracev2.lst lists the application classes as well as this version of the files 
Trace.java and TraceMyClasses.java. Running the main method of 
tracing.version2.TraceMyClasses should output exactly the same trace information 
as that from version 1.  

The entire implementation of the new Trace class is:  
 
abstract aspect Trace { 
 
    // implementation part 
 
    public static int TRACELEVEL = 2; 
    protected static PrintStream stream = System.err; 
    protected static int callDepth = 0; 
 
    public static void initStream(PrintStream s) { 
        stream = s; 
    } 
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    protected static void traceEntry(String str) { 
        if (TRACELEVEL == 0) return; 
        if (TRACELEVEL == 2) callDepth++; 
        printEntering(str); 
    } 
    protected static void traceExit(String str) { 
        if (TRACELEVEL == 0) return; 
        printExiting(str); 
        if (TRACELEVEL == 2) callDepth--; 
    } 
    private static void printEntering(String str) { 
        printIndent(); 
        stream.println("--> " + str); 
    } 
    private static void printExiting(String str) { 
        printIndent(); 
        stream.println("<-- " + str); 
    } 
    private static void printIndent() { 
        for (int i = 0; i < callDepth; i++) 
            stream.print("  "); 
    } 
 
    // protocol part 
 
    abstract pointcut myClass(); 
 
    pointcut myConstructor(): myClass() && execution(new(..)); 
    pointcut myMethod(): myClass() && execution(* *(..)); 
 
    before(): myConstructor() { 
        traceEntry("" + thisJoinPointStaticPart.getSignature()); 
    } 
    after(): myConstructor() { 
        traceExit("" + thisJoinPointStaticPart.getSignature()); 
    } 
 
    before(): myMethod() { 
        traceEntry("" + thisJoinPointStaticPart.getSignature()); 
    } 
    after(): myMethod() { 
        traceExit("" + thisJoinPointStaticPart.getSignature()); 
    } 
} 
This version differs from version 1 in several subtle ways. The first thing to notice is that 
this Trace class merges the functional part of tracing with the crosscutting of the tracing 
calls. That is, in version 1, there was a sharp separation between the tracing support (the 
class Trace) and the crosscutting usage of it (by the class TraceMyClasses). In this 
version those two things are merged. That's why the description of this class explicitly 
says that "Trace messages are printed before and after constructors and methods are," 
which is what we wanted in the first place. That is, the placement of the calls, in this 
version, is established by the aspect class itself, leaving less opportunity for misplacing 
calls. 
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A consequence of this is that there is no need for providing traceEntry and traceExit 
as public operations of this class. You can see that they were classified as protected. They 
are supposed to be internal implementation details of the advice.  

The key piece of this aspect is the abstract pointcut classes that serves as the base for the 
definition of the pointcuts constructors and methods. Even though classes is abstract, 
and therefore no concrete classes are mentioned, we can put advice on it, as well as on 
the pointcuts that are based on it. The idea is "we don't know exactly what the pointcut 
will be, but when we do, here's what we want to do with it." In some ways, abstract 
pointcuts are similar to abstract methods. Abstract methods don't provide the 
implementation, but you know that the concrete subclasses will, so you can invoke those 
methods.  

4.4.4 Production Aspects 

The following aspects are useful in production. 

4.4.4.1 A Bean Aspect 
(The code for this example is in InstallDir/examples/bean.)  

This example examines an aspect that makes Point objects into Java beans with bound 
properties.  

Java beans are reusable software components that can be visually manipulated in a 
builder tool. The requirements for an object to be a bean are few. Beans must define a no-
argument constructor and must be either Serializable or Externalizable. Any 
properties of the object that are to be treated as bean properties should be indicated by the 
presence of appropriate get and set methods whose names are getproperty and set 
property where property is the name of a field in the bean class. Some bean properties, 
known as bound properties, fire events whenever their values change so that any 
registered listeners (such as, other beans) will be informed of those changes. Making a 
bound property involves keeping a list of registered listeners, and creating and 
dispatching event objects in methods that change the property values, such as setproperty 
methods.  

Point is a simple class representing points with rectangular coordinates. Point does not 
know anything about being a bean: there are set methods for x and y but they do not fire 
events, and the class is not serializable. Bound is an aspect that makes Point a 
serializable class and makes its get and set methods support the bound property 
protocol.  

4.4.4.1.1 The Point class 
The Point class is a very simple class with trivial getters and setters, and a simple vector 
offset method.  
 
class Point { 
 
  protected int x = 0; 
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  protected int y = 0; 
 
  public int getX() { 
    return x; 
  } 
 
  public int getY() { 
    return y; 
  } 
 
  public void setRectangular(int newX, int newY) { 
    setX(newX); 
    setY(newY); 
  } 
 
  public void setX(int newX) { 
    x = newX; 
  } 
 
  public void setY(int newY) { 
    y = newY; 
  } 
 
  public void offset(int deltaX, int deltaY) { 
    setRectangular(x + deltaX, y + deltaY); 
  } 
 
  public String toString() { 
    return "(" + getX() + ", " + getY() + ")" ; 
  } 
} 

4.4.4.1.2 The BoundPoint aspect 
The BoundPoint aspect is responsible for Point's "beanness". The first thing it does is 
privately declare that each Point has a support field that holds reference to an instance 
of PropertyChangeSupport.  
 
  private PropertyChangeSupport Point.support = new 
PropertyChangeSupport(this); 
The property change support object must be constructed with a reference to the bean for 
which it is providing support, so it is initialized by passing it this, an instance of Point. 
Since the support field is private declared in the aspect, only the code in the aspect can 
refer to it.  
The aspect also declares Point's methods for registering and managing listeners for 
property change events, which delegate the work to the property change support object:  
 
  public void Point.addPropertyChangeListener(PropertyChangeListener 
listener){ 
    support.addPropertyChangeListener(listener); 
  } 
  public void Point.addPropertyChangeListener(String propertyName, 
                                              PropertyChangeListener 
listener){ 
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    support.addPropertyChangeListener(propertyName, listener); 
  } 
  public void Point.removePropertyChangeListener(String propertyName, 
                                                 PropertyChangeListener 
listener) { 
    support.removePropertyChangeListener(propertyName, listener); 
  } 
  public void Point.removePropertyChangeListener(PropertyChangeListener 
listener) { 
    support.removePropertyChangeListener(listener); 
  } 
  public void Point.hasListeners(String propertyName) { 
    support.hasListeners(propertyName); 
  } 
The aspect is also responsible for making sure Point implements the Serializable 
interface:  
 
  declare parents: Point implements Serializable; 
Implementing this interface in Java does not require any methods to be implemented. 
Serialization for Point objects is provided by the default serialization method.  
The setters pointcut picks out calls to the Point's set methods: any method whose 
name begins with "set" and takes one parameter. The around advice on setters() 
stores the values of the X and Y properties, calls the original set method and then fires the 
appropriate property change event according to which set method was called.  
 
aspect BoundPoint { 
  private PropertyChangeSupport Point.support = new 
PropertyChangeSupport(this); 
 
  public void Point.addPropertyChangeListener(PropertyChangeListener 
listener){ 
    support.addPropertyChangeListener(listener); 
  } 
  public void Point.addPropertyChangeListener(String propertyName, 
                                              PropertyChangeListener 
listener){ 
 
    support.addPropertyChangeListener(propertyName, listener); 
  } 
  public void Point.removePropertyChangeListener(String propertyName, 
                                                 PropertyChangeListener 
listener) { 
    support.removePropertyChangeListener(propertyName, listener); 
  } 
  public void Point.removePropertyChangeListener(PropertyChangeListener 
listener) { 
    support.removePropertyChangeListener(listener); 
  } 
  public void Point.hasListeners(String propertyName) { 
    support.hasListeners(propertyName); 
  } 
 
  declare parents: Point implements Serializable; 
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  pointcut setter(Point p): call(void Point.set*(*)) && target(p); 
 
  void around(Point p): setter(p) { 
        String propertyName = 
      
thisJoinPointStaticPart.getSignature().getName().substring("set".length
()); 
        int oldX = p.getX(); 
        int oldY = p.getY(); 
        proceed(p); 
        if (propertyName.equals("X")){ 
      firePropertyChange(p, propertyName, oldX, p.getX()); 
        } else { 
      firePropertyChange(p, propertyName, oldY, p.getY()); 
        } 
  } 
 
  void firePropertyChange(Point p, 
                          String property, 
                          double oldval, 
                          double newval) { 
        p.support.firePropertyChange(property, 
                                 new Double(oldval), 
                                 new Double(newval)); 
  } 
} 

4.4.4.1.3 The Test Program 
The test program registers itself as a property change listener to a Point object that it 
creates and then performs simple manipulation of that point: calling its set methods and 
the offset method. Then it serializes the point and writes it to a file and then reads it back. 
The result of saving and restoring the point is that a new point is created.  
 
  class Demo implements PropertyChangeListener { 
 
    static final String fileName = "test.tmp"; 
 
    public void propertyChange(PropertyChangeEvent e){ 
      System.out.println("Property " + e.getPropertyName() + " changed 
from " + 
         e.getOldValue() + " to " + e.getNewValue() ); 
    } 
 
    public static void main(String[] args){ 
      Point p1 = new Point(); 
      p1.addPropertyChangeListener(new Demo()); 
      System.out.println("p1 =" + p1); 
      p1.setRectangular(5,2); 
      System.out.println("p1 =" + p1); 
      p1.setX( 6 ); 
      p1.setY( 3 ); 
      System.out.println("p1 =" + p1); 
      p1.offset(6,4); 
      System.out.println("p1 =" + p1); 
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      save(p1, fileName); 
      Point p2 = (Point) restore(fileName); 
      System.out.println("Had: " + p1); 
      System.out.println("Got: " + p2); 
      } 
    ... 
  } 

4.4.4.1.4 Compiling and Running the Example 
To compile and run this example, go to the examples directory and type:  
 
ajc -argfile bean/files.lst 
java bean.Demo 

4.4.4.2 The Subject/Observer Protocol 
(The code for this example is in InstallDir/examples/observer.)  

This demo illustrates how the Subject/Observer design pattern can be coded with aspects.  

The demo consists of the following: A colored label is a renderable object that has a color 
that cycles through a set of colors, and a number that records the number of cycles it has 
been through. A button is an action item that records when it is clicked.  

With these two kinds of objects, we can build up a Subject/Observer relationship in 
which colored labels observe the clicks of buttons; that is, where colored labels are the 
observers and buttons are the subjects.  

The demo is designed and implemented using the Subject/Observer design pattern. The 
remainder of this example explains the classes and aspects of this demo, and tells you 
how to run it.  

4.4.4.2.1 Generic Components 
The generic parts of the protocol are the interfaces Subject and Observer, and the 
abstract aspect SubjectObserverProtocol. The Subject interface is simple, containing 
methods to add, remove, and view Observer objects, and a method for getting data about 
state changes:  
 
    interface Subject { 
      void addObserver(Observer obs); 
      void removeObserver(Observer obs); 
      Vector getObservers(); 
      Object getData(); 
  } 
The Observer interface is just as simple, with methods to set and get Subject objects, 
and a method to call when the subject gets updated.  
 
  interface Observer { 
      void setSubject(Subject s); 
      Subject getSubject(); 
      void update(); 
  } 
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The SubjectObserverProtocol aspect contains within it all of the generic parts of the 
protocol, namely, how to fire the Observer objects' update methods when some state 
changes in a subject.  
 
  abstract aspect SubjectObserverProtocol { 
 
      abstract pointcut stateChanges(Subject s); 
 
      after(Subject s): stateChanges(s) { 
          for (int i = 0; i < s.getObservers().size(); i++) { 
              ((Observer)s.getObservers().elementAt(i)).update(); 
          } 
      } 
 
      private Vector Subject.observers = new Vector(); 
      public void   Subject.addObserver(Observer obs) { 
          observers.addElement(obs); 
          obs.setSubject(this); 
      } 
      public void   Subject.removeObserver(Observer obs) { 
          observers.removeElement(obs); 
          obs.setSubject(null); 
      } 
      public Vector Subject.getObservers() { return observers; } 
 
      private Subject Observer.subject = null; 
      public void     Observer.setSubject(Subject s) { subject = s; } 
      public Subject  Observer.getSubject() { return subject; } 
 
  } 
Note that this aspect does three things. It define an abstract pointcut that extending 
aspects can override. It defines advice that should run after the join points of the pointcut. 
And it declares an inter-tpye field and two inter-type methods so that each Observer can 
hold onto its Subject.  

4.4.4.2.2 Application Classes 
Button objects extend java.awt.Button, and all they do is make sure the void 
click() method is called whenever a button is clicked.  
 
  class Button extends java.awt.Button { 
 
      static final Color  defaultBackgroundColor = Color.gray; 
      static final Color  defaultForegroundColor = Color.black; 
      static final String defaultText = "cycle color"; 
 
      Button(Display display) { 
          super(); 
          setLabel(defaultText); 
          setBackground(defaultBackgroundColor); 
          setForeground(defaultForegroundColor); 
          addActionListener(new ActionListener() { 
                  public void actionPerformed(ActionEvent e) { 
                      Button.this.click(); 
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                  } 
              }); 
          display.addToFrame(this); 
      } 
 
      public void click() {} 
 
  } 
Note that this class knows nothing about being a Subject.  

ColorLabel objects are labels that support the void colorCycle() method. Again, they 
know nothing about being an observer.  
 
  class ColorLabel extends Label { 
 
      ColorLabel(Display display) { 
          super(); 
          display.addToFrame(this); 
      } 
 
      final static Color[] colors = {Color.red, Color.blue, 
                                     Color.green, Color.magenta}; 
      private int colorIndex = 0; 
      private int cycleCount = 0; 
      void colorCycle() { 
          cycleCount++; 
          colorIndex = (colorIndex + 1) % colors.length; 
          setBackground(colors[colorIndex]); 
          setText("" + cycleCount); 
      } 
  } 
Finally, the SubjectObserverProtocolImpl implements the subject/observer protocol, 
with Button objects as subjects and ColorLabel objects as observers:  
 
package observer; 
 
import java.util.Vector; 
 
aspect SubjectObserverProtocolImpl extends SubjectObserverProtocol { 
 
    declare parents: Button implements Subject; 
    public Object Button.getData() { return this; } 
 
    declare parents: ColorLabel implements Observer; 
    public void    ColorLabel.update() { 
        colorCycle(); 
    } 
 
    pointcut stateChanges(Subject s): 
        target(s) && 
        call(void Button.click()); 
 
} 
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It does this by assuring that Button and ColorLabel implement the appropriate 
interfaces, declaring that they implement the methods required by those interfaces, and 
providing a definition for the abstract stateChanges pointcut. Now, every time a Button 
is clicked, all ColorLabel objects observing that button will colorCycle.  

4.4.4.2.3 Compiling and Running 
Demo is the top class that starts this demo. It instantiates a two buttons and three observers 
and links them together as subjects and observers. So to run the demo, go to the 
examples directory and type:  
 
  ajc -argfile observer/files.lst 
  java observer.Demo 

4.4.4.3 A Simple Telecom Simulation 
(The code for this example is in InstallDir/examples/telecom.)  

This example illustrates some ways that dependent concerns can be encoded with aspects. 
It uses an example system comprising a simple model of telephone connections to which 
timing and billing features are added using aspects, where the billing feature depends 
upon the timing feature.  

4.4.4.3.1 The Application 
The example application is a simple simulation of a telephony system in which customers 
make, accept, merge and hang-up both local and long distance calls. The application 
architecture is in three layers.  

The basic objects provide basic functionality to simulate customers, calls and connections 
(regular calls have one connection, conference calls have more than one).  

The timing feature is concerned with timing the connections and keeping the total 
connection time per customer. Aspects are used to add a timer to each connection and to 
manage the total time per customer.  

The billing feature is concerned with charging customers for the calls they make. Aspects 
are used to calculate a charge per connection and, upon termination of a connection, to 
add the charge to the appropriate customer's bill. The billing aspect builds upon the 
timing aspect: it uses a pointcut defined in Timing and it uses the timers that are 
associated with connections.  

The simulation of system has three configurations: basic, timing and billing. Programs for 
the three configurations are in classes BasicSimulation, TimingSimulation and 
BillingSimulation. These share a common superclass AbstractSimulation, which 
defines the method run with the simulation itself and the method wait used to simulate 
elapsed time.  

4.4.4.3.2 The Basic Objects 
The telecom simulation comprises the classes Customer, Call and the abstract class 
Connection with its two concrete subclasses Local and LongDistance. Customers have 
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a name and a numeric area code. They also have methods for managing calls. Simple 
calls are made between one customer (the caller) and another (the receiver), a 
Connection object is used to connect them. Conference calls between more than two 
customers will involve more than one connection. A customer may be involved in many 
calls at one time. 

  
Figure 12  Telecom interactions 

4.4.4.3.3 The Customer class 
Customer has methods call, pickup, hangup and merge for managing calls.  
 
public class Customer { 
 
      private String name; 
      private int areacode; 
      private Vector calls = new Vector(); 
 
      protected void removeCall(Call c){ 
          calls.removeElement(c); 
      } 
 
      protected void addCall(Call c){ 
          calls.addElement(c); 
      } 
 
      public Customer(String name, int areacode) { 
          this.name = name; 
          this.areacode = areacode; 
      } 
 
      public String toString() { 
          return name + "(" + areacode + ")"; 
      } 
 
      public int getAreacode(){ 
          return areacode; 
      } 
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      public boolean localTo(Customer other){ 
          return areacode == other.areacode; 
      } 
 
      public Call call(Customer receiver) { 
          Call call = new Call(this, receiver); 
          addCall(call); 
          return call; 
      } 
 
      public void pickup(Call call) { 
          call.pickup(); 
          addCall(call); 
      } 
 
      public void hangup(Call call) { 
          call.hangup(this); 
          removeCall(call); 
      } 
 
      public void merge(Call call1, Call call2){ 
          call1.merge(call2); 
          removeCall(call2); 
      } 
  } 

4.4.4.3.4 The Call class 
Calls are created with a caller and receiver who are customers. If the caller and receiver 
have the same area code then the call can be established with a Local connection (see 
below), otherwise a LongDistance connection is required. A call comprises a number of 
connections between customers. Initially there is only the connection between the caller 
and receiver but additional connections can be added if calls are merged to form 
conference calls.  

4.4.4.3.5 The Connection class 
The class Connection models the physical details of establishing a connection between 
customers. It does this with a simple state machine (connections are initially PENDING, 
then COMPLETED and finally DROPPED). Messages are printed to the console so that the 
state of connections can be observed. Connection is an abstract class with two concrete 
subclasses: Local and LongDistance.  
 
  abstract class Connection { 
 
      public static final int PENDING = 0; 
      public static final int COMPLETE = 1; 
      public static final int DROPPED = 2; 
 
      Customer caller, receiver; 
      private int state = PENDING; 
 
      Connection(Customer a, Customer b) { 
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          this.caller = a; 
          this.receiver = b; 
      } 
 
      public int getState(){ 
          return state; 
      } 
 
      public Customer getCaller() { return caller; } 
 
      public Customer getReceiver() { return receiver; } 
 
      void complete() { 
          state = COMPLETE; 
          System.out.println("connection completed"); 
      } 
 
      void drop() { 
          state = DROPPED; 
          System.out.println("connection dropped"); 
      } 
 
      public boolean connects(Customer c){ 
          return (caller == c || receiver == c); 
      } 
 
  } 

4.4.4.3.6 The Local and LongDistance classes 
The two kinds of connections supported by our simulation are Local and LongDistance 
connections.  
 
  class Local extends Connection { 
      Local(Customer a, Customer b) { 
          super(a, b); 
          System.out.println("[new local connection from " + 
             a + " to " + b + "]"); 
      } 
  } 
 
  class LongDistance extends Connection { 
      LongDistance(Customer a, Customer b) { 
          super(a, b); 
          System.out.println("[new long distance connection from " + 
              a + " to " + b + "]"); 
      } 
  } 

4.4.4.3.7 Compiling and Running the Basic Simulation 
The source files for the basic system are listed in the file basic.lst. To build and run the 
basic system, in a shell window, type these commands:  
 
ajc -argfile telecom/basic.lst 
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java telecom.BasicSimulation 

4.4.4.3.8 The Timing aspect 
The Timing aspect keeps track of total connection time for each Customer by starting 
and stopping a timer associated with each connection. It uses some helper classes:  

4.4.4.3.8.1 The Timer class 
A Timer object simply records the current time when it is started and stopped, and returns 
their difference when asked for the elapsed time. The aspect TimerLog (below) can be 
used to cause the start and stop times to be printed to standard output.  
 
  class Timer { 
      long startTime, stopTime; 
 
      public void start() { 
          startTime = System.currentTimeMillis(); 
          stopTime = startTime; 
      } 
 
      public void stop() { 
          stopTime = System.currentTimeMillis(); 
      } 
 
      public long getTime() { 
          return stopTime - startTime; 
      } 
  } 

4.4.4.3.9 The TimerLog aspect 
The TimerLog aspect can be included in a build to get the timer to announce when it is 
started and stopped.  
 
public aspect TimerLog { 
 
    after(Timer t): target(t) && call(* Timer.start())  { 
      System.err.println("Timer started: " + t.startTime); 
    } 
 
    after(Timer t): target(t) && call(* Timer.stop()) { 
      System.err.println("Timer stopped: " + t.stopTime); 
    } 
} 

4.4.4.3.10 The Timing aspect 
The Timing aspect is declares an inter-type field totalConnectTime for Customer to 
store the accumulated connection time per Customer. It also declares that each 
Connection object has a timer.  
 
    public long Customer.totalConnectTime = 0; 
    private Timer Connection.timer = new Timer(); 
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Two pieces of after advice ensure that the timer is started when a connection is completed 
and and stopped when it is dropped. The pointcut endTiming is defined so that it can be 
used by the Billing aspect.  
 
public aspect Timing { 
 
    public long Customer.totalConnectTime = 0; 
 
    public long getTotalConnectTime(Customer cust) { 
        return cust.totalConnectTime; 
    } 
    private Timer Connection.timer = new Timer(); 
    public Timer getTimer(Connection conn) { return conn.timer; } 
 
    after (Connection c): target(c) && call(void Connection.complete()) 
{ 
        getTimer(c).start(); 
    } 
 
    pointcut endTiming(Connection c): target(c) && 
        call(void Connection.drop()); 
 
    after(Connection c): endTiming(c) { 
        getTimer(c).stop(); 
        c.getCaller().totalConnectTime += getTimer(c).getTime(); 
        c.getReceiver().totalConnectTime += getTimer(c).getTime(); 
    } 
} 

4.4.4.3.11 The Billing aspect 
The Billing system adds billing functionality to the telecom application on top of timing.  

The Billing aspect declares that each Connection has a payer inter-type field to 
indicate who initiated the call and therefore who is responsible to pay for it. It also 
declares the inter-type method callRate of Connection so that local and long distance 
calls can be charged differently. The call charge must be calculated after the timer is 
stopped; the after advice on pointcut Timing.endTiming does this, and Billing is 
declared to be more precedent than Timing to make sure that this advice runs after 
Timing's advice on the same join point. Finally, it declares inter-type methods and fields 
for Customer to handle the totalCharge.  
 
public aspect Billing { 
    // precedence required to get advice on endtiming in the right 
order 
    declare precedence: Billing, Timing; 
 
    public static final long LOCAL_RATE = 3; 
    public static final long LONG_DISTANCE_RATE = 10; 
 
    public Customer Connection.payer; 
    public Customer getPayer(Connection conn) { return conn.payer; } 
 
    after(Customer cust) returning (Connection conn): 
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        args(cust, ..) && call(Connection+.new(..)) { 
        conn.payer = cust; 
    } 
 
    public abstract long Connection.callRate(); 
 
    public long LongDistance.callRate() { return LONG_DISTANCE_RATE; } 
    public long Local.callRate() { return LOCAL_RATE; } 
 
    after(Connection conn): Timing.endTiming(conn) { 
        long time = Timing.aspectOf().getTimer(conn).getTime(); 
        long rate = conn.callRate(); 
        long cost = rate * time; 
        getPayer(conn).addCharge(cost); 
    } 
 
    public long Customer.totalCharge = 0; 
    public long getTotalCharge(Customer cust) { return 
cust.totalCharge; } 
 
    public void Customer.addCharge(long charge){ 
        totalCharge += charge; 
    } 
} 

4.4.4.3.12 Accessing the inter-type state 
Both the aspects Timing and Billing contain the definition of operations that the rest of 
the system may want to access. For example, when running the simulation with one or 
both aspects, we want to find out how much time each customer spent on the telephone 
and how big their bill is. That information is also stored in the classes, but they are 
accessed through static methods of the aspects, since the state they refer to is private to 
the aspect.  

Take a look at the file TimingSimulation.java. The most important method of this 
class is the method report(Customer), which is used in the method run of the 
superclass AbstractSimulation. This method is intended to print out the status of the 
customer, with respect to the Timing feature.  
 
  protected void report(Customer c){ 
      Timing t = Timing.aspectOf(); 
      System.out.println(c + " spent " + t.getTotalConnectTime(c)); 
  } 

4.4.4.3.13 Compiling and Running 
The files timing.lst and billing.lst contain file lists for the timing and billing 
configurations. To build and run the application with only the timing feature, go to the 
directory examples and type:  
 
  ajc -argfile telecom/timing.lst 
  java telecom.TimingSimulation 
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To build and run the application with the timing and billing features, go to the directory 
examples and type:  
 
  ajc -argfile telecom/billing.lst 
  java telecom.BillingSimulation 

4.4.4.3.14 Discussion 
There are some explicit dependencies between the aspects Billing and Timing:  

Billing is declared more precedent than Timing so that Billing's after advice runs after 
that of Timing when they are on the same join point.  

Billing uses the pointcut Timing.endTiming.  

Billing needs access to the timer associated with a connection.  

4.4.5 Reusable Aspects 

The following aspects are reusable. 

4.4.5.1 Tracing using Aspects, Revisited 
(The code for this example is in InstallDir/examples/tracing.)  

4.4.5.1.1 Tracing—Version 3 
One advantage of not exposing the methods traceEntry and traceExit as public operations 
is that we can easily change their interface without any dramatic consequences in the rest 
of the code.  

Consider, again, the program without AspectJ. Suppose, for example, that at some point 
later the requirements for tracing change, stating that the trace messages should always 
include the string representation of the object whose methods are being traced. This can 
be achieved in at least two ways. One way is keep the interface of the methods 
traceEntry and traceExit as it was before,  
 
  public static void traceEntry(String str); 
  public static void traceExit(String str); 
In this case, the caller is responsible for ensuring that the string representation of the 
object is part of the string given as argument. So, calls must look like:  
 
  Trace.traceEntry("Square.distance in " + toString()); 
Another way is to enforce the requirement with a second argument in the trace 
operations, e.g.  
 
  public static void traceEntry(String str, Object obj); 
  public static void traceExit(String str, Object obj); 
In this case, the caller is still responsible for sending the right object, but at least there is 
some guarantees that some object will be passed. The calls will look like:  
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  Trace.traceEntry("Square.distance", this); 
In either case, this change to the requirements of tracing will have dramatic consequences 
in the rest of the code -- every call to the trace operations traceEntry and traceExit must 
be changed!  

Here's another advantage of doing tracing with an aspect. We've already seen that in 
version 2 traceEntry and traceExit are not publicly exposed. So changing their 
interfaces, or the way they are used, has only a small effect inside the Trace class. Here's 
a partial view at the implementation of Trace, version 3. The differences with respect to 
version 2 are stressed in the comments:  
 
abstract aspect Trace { 
 
    public static int TRACELEVEL = 0; 
    protected static PrintStream stream = null; 
    protected static int callDepth = 0; 
 
    public static void initStream(PrintStream s) { 
        stream = s; 
    } 
 
    protected static void traceEntry(String str, Object o) { 
        if (TRACELEVEL == 0) return; 
        if (TRACELEVEL == 2) callDepth++; 
        printEntering(str + ": " + o.toString()); 
    } 
 
    protected static void traceExit(String str, Object o) { 
        if (TRACELEVEL == 0) return; 
        printExiting(str + ": " + o.toString()); 
        if (TRACELEVEL == 2) callDepth--; 
    } 
 
    private static void printEntering(String str) { 
        printIndent(); 
        stream.println("Entering " + str); 
    } 
 
    private static void printExiting(String str) { 
        printIndent(); 
        stream.println("Exiting " + str); 
    } 
 
    private static void printIndent() { 
        for (int i = 0; i < callDepth; i++) 
            stream.print("  "); 
    } 
 
    abstract pointcut myClass(Object obj); 
 
    pointcut myConstructor(Object obj): myClass(obj) && 
execution(new(..)); 
    pointcut myMethod(Object obj): myClass(obj) && 
        execution(* *(..)) && !execution(String toString()); 
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    before(Object obj): myConstructor(obj) { 
        traceEntry("" + thisJoinPointStaticPart.getSignature(), obj); 
    } 
    after(Object obj): myConstructor(obj) { 
        traceExit("" + thisJoinPointStaticPart.getSignature(), obj); 
    } 
 
    before(Object obj): myMethod(obj) { 
        traceEntry("" + thisJoinPointStaticPart.getSignature(), obj); 
    } 
    after(Object obj): myMethod(obj) { 
        traceExit("" + thisJoinPointStaticPart.getSignature(), obj); 
    } 
} 
As you can see, we decided to apply the first design by preserving the interface of the 
methods traceEntry and traceExit. But it doesn't matter—we could as easily have 
applied the second design (the code in the directory examples/tracing/version3 has 
the second design). The point is that the effects of this change in the tracing requirements 
are limited to the Trace aspect class.  

One implementation change worth noticing is the specification of the pointcuts. They 
now expose the object. To maintain full consistency with the behavior of version 2, we 
should have included tracing for static methods, by defining another pointcut for static 
methods and advising it. We leave that as an exercise.  

Moreover, we had to exclude the execution join point of the method toString from the 
methods pointcut. The problem here is that toString is being called from inside the 
advice. Therefore if we trace it, we will end up in an infinite recursion of calls. This is a 
subtle point, and one that you must be aware when writing advice. If the advice calls back 
to the objects, there is always the possibility of recursion. Keep that in mind!  

In fact, simply excluding the execution join point may not be enough, if there are calls to 
other traced methods within it -- in which case, the restriction should be  
 
&& !cflow(execution(String toString())) 
excluding both the execution of toString methods and all join points under that execution.  

In summary, to implement the change in the tracing requirements we had to make a 
couple of changes in the implementation of the Trace aspect class, including changing 
the specification of the pointcuts. That's only natural. But the implementation changes 
were limited to this aspect. Without aspects, we would have to change the 
implementation of every application class.  

Finally, to run this version of tracing, go to the directory examples and type:  
 
ajc -argfile tracing/tracev3.lst 
The file tracev3.lst lists the application classes as well as this version of the files 
Trace.java and TraceMyClasses.java. To run the program, type  
 
java tracing.version3.TraceMyClasses 
The output should be: 
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  --> tracing.TwoDShape(double, double) 
  <-- tracing.TwoDShape(double, double) 
  --> tracing.Circle(double, double, double) 
  <-- tracing.Circle(double, double, double) 
  --> tracing.TwoDShape(double, double) 
  <-- tracing.TwoDShape(double, double) 
  --> tracing.Circle(double, double, double) 
  <-- tracing.Circle(double, double, double) 
  --> tracing.Circle(double) 
  <-- tracing.Circle(double) 
  --> tracing.TwoDShape(double, double) 
  <-- tracing.TwoDShape(double, double) 
  --> tracing.Square(double, double, double) 
  <-- tracing.Square(double, double, double) 
  --> tracing.Square(double, double) 
  <-- tracing.Square(double, double) 
  --> double tracing.Circle.perimeter() 
  <-- double tracing.Circle.perimeter() 
c1.perimeter() = 12.566370614359172 
  --> double tracing.Circle.area() 
  <-- double tracing.Circle.area() 
c1.area() = 12.566370614359172 
  --> double tracing.Square.perimeter() 
  <-- double tracing.Square.perimeter() 
s1.perimeter() = 4.0 
  --> double tracing.Square.area() 
  <-- double tracing.Square.area() 
s1.area() = 1.0 
  --> double tracing.TwoDShape.distance(TwoDShape) 
    --> double tracing.TwoDShape.getX() 
    <-- double tracing.TwoDShape.getX() 
    --> double tracing.TwoDShape.getY() 
    <-- double tracing.TwoDShape.getY() 
  <-- double tracing.TwoDShape.distance(TwoDShape) 
c2.distance(c1) = 4.242640687119285 
  --> double tracing.TwoDShape.distance(TwoDShape) 
    --> double tracing.TwoDShape.getX() 
    <-- double tracing.TwoDShape.getX() 
    --> double tracing.TwoDShape.getY() 
    <-- double tracing.TwoDShape.getY() 
  <-- double tracing.TwoDShape.distance(TwoDShape) 
s1.distance(c1) = 2.23606797749979 
  --> String tracing.Square.toString() 
    --> String tracing.TwoDShape.toString() 
    <-- String tracing.TwoDShape.toString() 
  <-- String tracing.Square.toString() 
s1.toString(): Square side = 1.0 @ (1.0, 2.0) 

4.5 Idioms 
This chapter consists of very short snippets of AspectJ code, typically pointcuts, that are 
particularly evocative or useful. This section is a work in progress.  
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Here's an example of how to enfore a rule that code in the java.sql package can only be 
used from one particular package in your system. This doesn't require any access to code 
in the java.sql package.  
 
/* Any call to methods or constructors in java.sql */ 
pointcut restrictedCall(): 
    call(* java.sql.*.*(..)) || call(java.sql.*.new(..)); 
 
/* Any code in my system not in the sqlAccess package */ 
pointcut illegalSource(): 
    within(com.foo..*) && !within(com.foo.sqlAccess.*); 
 
declare error: restrictedCall() && illegalSource(): 
    "java.sql package can only be accessed from com.foo.sqlAccess"; 
Any call to an instance of a subtype of AbstractFacade whose class is not exactly equal to 
AbstractFacade: 
 
pointcut nonAbstract(AbstractFacade af): 
    call(* *(..)) 
    && target(af) 
    && !if(af.getClass() == AbstractFacade.class); 
If AbstractFacade is an abstract class or an interface, then every instance must be of a 
subtype and you can replace this with:  
 
pointcut nonAbstract(AbstractFacade af): 
    call(* *(..)) 
    && target(af); 
Any call to a method which is defined by a subtype of AbstractFacade, but which isn't 
defined by the type AbstractFacade itself:  
 
pointcut callToUndefinedMethod(): 
     call(* AbstractFacade+.*(..)) 
     && !call(* AbstractFacade.*(..)); 
The execution of a method that is defined in the source code for a type that is a subtype 
of AbstractFacade but not in AbstractFacade itself:  
 
pointcut executionOfUndefinedMethod(): 
    execution(* *(..)) 
    && within(AbstractFacade+) 
    && !within(AbstractFacade) 

4.6 Pitfalls 
This chapter consists of a few AspectJ programs that may lead to surprising behavior and 
how to understand them.  

4.6.1 Infinite loops 

Here is a Java program with peculiar behavior  



 

 

 

108

 
public class Main { 
    public static void main(String[] args) { 
        foo(); 
        System.out.println("done with call to foo"); 
    } 
 
    static void foo() { 
        try { 
            foo(); 
        } finally { 
            foo(); 
        } 
    } 
} 
This program will never reach the println call, but when it aborts may have no stack trace.  

This silence is caused by multiple StackOverflowExceptions. First the infinite loop in the 
body of the method generates one, which the finally clause tries to handle. But this finally 
clause also generates an infinite loop which the current JVMs can't handle gracefully 
leading to the completely silent abort.  

The following short aspect will also generate this behavior:  
 
aspect A { 
    before(): call(* *(..)) { System.out.println("before"); } 
    after():  call(* *(..)) { System.out.println("after"); } 
} 
Why? Because the call to println is also a call matched by the pointcut call (* *(..)). 
We get no output because we used simple after() advice. If the aspect were changed to  
 
aspect A { 
    before(): call(* *(..)) { System.out.println("before"); } 
    after() returning:  call(* *(..)) { System.out.println("after"); } 
} 
Then at least a StackOverflowException with a stack trace would be seen. In both cases, 
though, the overall problem is advice applying within its own body.  

There's a simple idiom to use if you ever have a worry that your advice might apply in 
this way. Just restrict the advice from occurring in join points caused within the aspect. 
So:  
 
aspect A { 
    before(): call(* *(..)) && !within(A) { 
System.out.println("before"); } 
    after() returning:  call(* *(..)) && !within(A) { 
System.out.println("after"); } 
} 
Other solutions might be to more closely restrict the pointcut in other ways, for example:  
 
aspect A { 
    before(): call(* MyObject.*(..))  { System.out.println("before"); } 
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    after() returning:  call(* MyObject.*(..))  { 
System.out.println("after"); } 
} 
The moral of the story is that unrestricted generic pointcuts can pick out more join points 
than intended.  
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Appendix A   AspectJ Quick Reference 
Table of Contents 

Pointcuts 
Type Patterns 
Advice 
Inter-type member declarations 
Other declarations 
Aspects 

A.1 Pointcuts 

Methods and Constructors 

call(Signature) every call to any method or constructor 
matching Signature at the call site  

execution(Signature) every execution of any method or constructor 
matching Signature 

Fields 

get(Signature) every reference to any field matching 
Signature 

set(Signature) 
every assignment to any field matching 
Signature. The assigned value can be exposed 
with an args pointcut  

Exception Handlers 

handler(TypePattern) 
every exception handler for any Throwable 
type in TypePattern. The exception value can 
be exposed with an args pointcut  

Advice 
adviceexecution() every execution of any piece of advice  
Initialization 

staticinitialization(TypePattern)
every execution of a static initializer for any 
type in TypePattern 

initialization(Signature) 

every initialization of an object when the first 
constructor called in the type matches 
Signature, encompassing the return from the 
super constructor call to the return of the first-
called constructor  

preinitialization(Signature) 

every pre-initialization of an object when the 
first constructor called in the type matches 
Signature, encompassing the entry of the first-
called constructor to the call to the super 
constructor  
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Lexical 

within(TypePattern) every join point from code defined in a type in 
TypePattern 

withincode(Signature) every join point from code defined in a method 
or constructor matching Signature 

Instanceof checks and context exposure 

this(Type or Id) every join point when the currently executing object is an 
instance of Type or Id's type  

target(Type or Id) every join point when the target executing object is an instance 
of Type or Id's type  

args(Type or Id, 
...) 

every join point when the arguments are instances of Types or 
the types of the Ids  

Control Flow 

cflow(Pointcut) every join point in the control flow of each join point P picked 
out by Pointcut, including P itself  

cflowbelow(Pointcut) every join point below the control flow of each join point P 
picked out by Pointcut; does not include P itself  

Conditional 
if(Expression) every join point when the boolean Expression is true 
Combination 
! Pointcut every join point not picked out by Pointcut 
Pointcut0 && 
Pointcut1 

each join point picked out by both Pointcut0 and 
Pointcut1 

Pointcut0 || 
Pointcut1 each join point picked out by either Pointcut0 or Pointcut1

( Pointcut ) each join point picked out by Pointcut 

A.2 Type Patterns 
A type pattern is one of  

TypeNamePattern all types in TypeNamePattern 
SubtypePattern all types in SubtypePattern, a pattern with a +.  

ArrayTypePattern all types in ArrayTypePattern, a pattern with one or 
more []s.  

!TypePattern all types not in TypePattern 
TypePattern0 && 
TypePattern1 all types in both TypePattern0 and TypePattern1 
TypePattern0 || 
TypePattern1 all types in either TypePattern0 or TypePattern1 

( TypePattern ) all types in TypePattern 
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where TypeNamePattern can either be a plain type name, the wildcard * (indicating all 
types), or an identifier with embedded * and .. wildcards.  

An embedded * in an identifier matches any sequence of characters, but does not match 
the package (or inner-type) separator ".".  

An embedded .. in an identifier matches any sequence of characters that starts and ends 
with the package (or inner-type) separator ".".  

A.3 Advice 
Each piece of advice is of the form  

[ strictfp ] AdviceSpec [ throws TypeList ] : Pointcut { 
Body }  

where AdviceSpec is one of  
before( Formals )  

runs before each join point  
after( Formals ) returning [ ( Formal ) ]  

runs after each join point that returns normally. The optional formal gives access 
to the returned value  

after( Formals ) throwing [ ( Formal ) ]  
runs after each join point that throws a Throwable. If the optional formal is 
present, runs only after each join point that throws a Throwable of the type of 
Formal, and Formal gives access to the Throwable exception value  

after( Formals )  
runs after each join point regardless of whether it returns normally or throws a 
Throwable 

Type around( Formals )  
runs in place of each join point. The join point can be executed by calling 
proceed, which takes the same number and types of arguments as the around 
advice.  

Three special variables are available inside of advice bodies:  
thisJoinPoint  

an object of type org.aspectj.lang.JoinPoint representing the join point at 
which the advice is executing.  

thisJoinPointStaticPart  
equivalent to thisJoinPoint.getStaticPart(), but may use fewer runtime 
resources.  

thisEnclosingJoinPointStaticPart  
the static part of the dynamically enclosing join point.  

A.4 Inter-type member declarations 
Each inter-type member is one of  
Modifiers ReturnType OnType . Id ( Formals ) [ throws TypeList ] { Body 
}  

a method on OnType.  
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abstract Modifiers ReturnType OnType . Id ( Formals ) [ throws TypeList 
] ;  

an abstract method on OnType.  
Modifiers OnType . new ( Formals ) [ throws TypeList ] { Body }  

a constructor on OnType.  
Modifiers Type OnType . Id [ = Expression ] ;  

a field on OnType.  

A.5 Other declarations 
declare parents : TypePattern extends Type ;  

the types in TypePattern extend Type.  
declare parents : TypePattern implements TypeList ;  

the types in TypePattern implement the types in TypeList.  
declare warning : Pointcut : String ;  

if any of the join points in Pointcut possibly exist in the program, the compiler 
emits the warning String.  

declare error : Pointcut : String ;  
if any of the join points in Pointcut could possibly exist in the program, the 
compiler emits the error String.  

declare soft : Type : Pointcut ;  
any Type exception that gets thrown at any join point picked out by Pointcut is 
wrapped in org.aspectj.lang.SoftException.  

declare precedence : TypePatternList ;  
at any join point where multiple pieces of advice apply, the advice precedence at 
that join point is in TypePatternList order.  

A.6 Aspects 
Each aspect is of the form  

[ privileged ] Modifiers aspect Id [ extends Type ] [ 
implements TypeList ] [ PerClause ] { Body }  

where PerClause defines how the aspect is instantiated and associated (issingleton by 
default):  
PerClause Description Accessor 

[ issingleton ]  One instance of the aspect is 
made. This is the default.  aspectOf() at all join points 

perthis(Pointcut) 
An instance is associated 
with each object that is the 
currently executing object at 
any join point in Pointcut.  

aspectOf(Object) at all join 
points  

pertarget(Pointcut) 
An instance is associated 
with each object that is the 
target object at any join point 
in Pointcut.  

aspectOf(Object) at all join 
points  
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PerClause Description Accessor 

percflow(Pointcut) 
The aspect is defined for 
each entrance to the control 
flow of the join points 
defined by Pointcut.  

aspectOf() at join points in 
cflow(Pointcut) 

percflowbelow(Pointcut) 
The aspect is defined for 
each entrance to the control 
flow below the join points 
defined by Pointcut.  

aspectOf() at join points in 
cflowbelow(Pointcut) 
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Appendix B Language Semantics 
Table of Contents 

Introduction 
Join Points 
Pointcuts 

Pointcut definition 
Context exposure 
Primitive pointcuts 
Signatures 
Matching 
Type patterns 

Advice 
Advice modifiers 
Advice and checked exceptions 
Advice precedence 
Reflective access to the join point 

Static crosscutting 
Inter-type member declarations 
Access modifiers 
Conflicts 
Extension and Implementation 
Interfaces with members 
Warnings and Errors 
Softened exceptions 
Advice Precedence 
Statically determinable pointcuts 

Aspects 
Aspect Extension 
Aspect instantiation 
Aspect privilege 

B.1 Introduction 
AspectJ extends Java by overlaying a concept of join points onto the existing Java 
semantics and adding a few new program elements to Java:  

A join point is a well-defined point in the execution of a program. These include method 
and constructor calls, field accesses and others described below.  

A pointcut picks out join points, and exposes some of the values in the execution context 
of those join points. There are several primitive pointcut designators, and others can be 
named and defined by the pointcut declaration.  

A piece of advice is code that executes at each join point in a pointcut. Advice has access 
to the values exposed by the pointcut. Advice is defined by before, after, and around 
declarations.  
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Inter-type declarations form AspectJ's static crosscutting features, that is, is code that 
may change the type structure of a program, by adding to or extending interfaces and 
classes with new fields, constructors, or methods. Some inter-type declarations are 
defined through an extension of usual method, field, and constructor declarations, and 
other declarations are made with a new declare keyword.  

An aspect is a crosscutting type that encapsulates pointcuts, advice, and static 
crosscutting features. By type, we mean Java's notion: a modular unit of code, with a 
well-defined interface, about which it is possible to do reasoning at compile time. 
Aspects are defined by the aspect declaration.  

B.2 Join Points 
While aspects define types that crosscut, the AspectJ system does not allow completely 
arbitrary crosscutting. Rather, aspects define types that cut across principled points in a 
program's execution. These principled points are called join points.  

A join point is a well-defined point in the execution of a program. The join points defined 
by AspectJ are:  

Method call 
When a method is called, not including super calls of non-static methods.  

Method execution 
When the body of code for an actual method executes.  

Constructor call 
When an object is built and that object's initial constructor is called (i.e., not for 
"super" or "this" constructor calls). The object being constructed is returned at a 
constructor call join point, so its return type is considered to be the type of the 
object, and the object itself may be accessed with after returning advice.  

Constructor execution 
When the body of code for an actual constructor executes, after its this or super 
constructor call. The object being constructed is the currently executing object, 
and so may be accessed with the this pointcut. The constructor execution join 
point for a constructor that calls a super constructor also includes any non-static 
initializers of enclosing class. No value is returned from a constructor execution 
join point, so its return type is considered to be void.  

Static initializer execution 
When the static initializer for a class executes. No value is returned from a static 
initializer execution join point, so its return type is considered to be void.  

Object pre-initialization 
Before the object initialization code for a particular class runs. This encompasses 
the time between the start of its first called constructor and the start of its parent's 
constructor. Thus, the execution of these join points encompass the join points of 
the evaluation of the arguments of this() and super() constructor calls. No 
value is returned from an object pre-initialization join point, so its return type is 
considered to be void.  

Object initialization 
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When the object initialization code for a particular class runs. This encompasses 
the time between the return of its parent's constructor and the return of its first 
called constructor. It includes all the dynamic initializers and constructors used to 
create the object. The object being constructed is the currently executing object, 
and so may be accessed with the this pointcut. No value is returned from a 
constructor execution join point, so its return type is considered to be void.  

Field reference 
When a non-constant field is referenced. [Note that references to constant fields 
(static final fields bound to a constant string object or primitive value) are not join 
points, since Java requires them to be inlined.]  

Field set 
When a field is assigned to. Field set join points are considered to have one 
argument, the value the field is being set to. No value is returned from a field set 
join point, so its return type is considered to be void. [Note that the initializations 
of constant fields (static final fields where the initializer is a constant string object 
or primitive value) are not join points, since Java requires their references to be 
inlined.]  

Handler execution 
When an exception handler executes. Handler execution join points are 
considered to have one argument, the exception being handled. No value is 
returned from a field set join point, so its return type is considered to be void.  

Advice execution 
When the body of code for a piece of advice executes.  

B.3 Pointcuts 
A pointcut is a program element that picks out join points and exposes data from the 
execution context of those join points. Pointcuts are used primarily by advice. They can 
be composed with boolean operators to build up other pointcuts. The primitive pointcuts 
and combinators provided by the language are:  
call(MethodPattern) 

Picks out each method call join point whose signature matches MethodPattern.  
execution(MethodPattern) 

Picks out each method execution join point whose signature matches 
MethodPattern.  

get(FieldPattern) 
Picks out each field reference join point whose signature matches FieldPattern. 
[Note that references to constant fields (static final fields bound to a constant 
string object or primitive value) are not join points, since Java requires them to be 
inlined.]  

set(FieldPattern) 
Picks out each field set join point whose signature matches FieldPattern. [Note 
that the initializations of constant fields (static final fields where the initializer is a 
constant string object or primitive value) are not join points, since Java requires 
their references to be inlined.]  

call(ConstructorPattern) 
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Picks out each constructor call join point whose signature matches 
ConstructorPattern.  

execution(ConstructorPattern) 
Picks out each constructor execution join point whose signature matches 
ConstructorPattern.  

initialization(ConstructorPattern) 
Picks out each object initialization join point whose signature matches 
ConstructorPattern.  

preinitialization(ConstructorPattern) 
Picks out each object pre-initialization join point whose signature matches 
ConstructorPattern.  

staticinitialization(TypePattern) 
Picks out each static initializer execution join point whose signature matches 
TypePattern.  

handler(TypePattern) 
Picks out each exception handler join point whose signature matches 
TypePattern.  

adviceexecution() 
Picks out all advice execution join points.  

within(TypePattern) 
Picks out each join point where the executing code is defined in a type matched 
by TypePattern.  

withincode(MethodPattern) 
Picks out each join point where the executing code is defined in a method whose 
signature matches MethodPattern.  

withincode(ConstructorPattern) 
Picks out each join point where the executing code is defined in a constructor 
whose signature matches ConstructorPattern.  

cflow(Pointcut) 
Picks out each join point in the control flow of any join point P picked out by 
Pointcut, including P itself.  

cflowbelow(Pointcut) 
Picks out each join point in the control flow of any join point P picked out by 
Pointcut, but not P itself.  

this(Type or Id) 
Picks out each join point where the currently executing object (the object bound 
to this) is an instance of Type, or of the type of Id (which must be bound in the 
enclosing advice or pointcut definition). Will not match any join points from 
static contexts.  

target(Type or Id) 
Picks out each join point where the target object (the object on which a call or 
field operation is applied to) is an instance of Type, or of the type of Id (which 
must be bound in the enclosing advice or pointcut definition). Will not match any 
calls, gets, or sets of static members.  

args(Type or Id, ...) 
Picks out each join point where the arguments are instances of a type of the 
appropriate type pattern or identifier.  

PointcutId(TypePattern or Id, ...) 
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Picks out each join point that is picked out by the user-defined pointcut designator 
named by PointcutId.  

if(BooleanExpression) 
Picks out each join point where the boolean expression evaluates to true. The 
boolean expression used can only access static members, variables exposed by teh 
enclosing pointcut or advice, and thisJoinPoint forms. In particular, it cannot 
call non-static methods on the aspect.  

! Pointcut 
Picks out each join point that is not picked out by Pointcut.  

Pointcut0 && Pointcut1 
Picks out each join points that is picked out by both Pointcut0 and Pointcut1.  

Pointcut0 || Pointcut1 
Picks out each join point that is picked out by either pointcuts. Pointcut0 or 
Pointcut1.  

( Pointcut ) 
Picks out each join points picked out by Pointcut.  

B.3.1 Pointcut definition 

Pointcuts are defined and named by the programmer with the pointcut declaration.  
 
  pointcut publicIntCall(int i): 
      call(public * *(int)) && args(i); 
A named pointcut may be defined in either a class or aspect, and is treated as a member 
of the class or aspect where it is found. As a member, it may have an access modifier 
such as public or private.  
 
  class C { 
      pointcut publicCall(int i): 
   call(public * *(int)) && args(i); 
  } 
 
  class D { 
      pointcut myPublicCall(int i): 
   C.publicCall(i) && within(SomeType); 
  } 
Pointcuts that are not final may be declared abstract, and defined without a body. 
Abstract pointcuts may only be declared within abstract aspects.  
 
  abstract aspect A { 
      abstract pointcut publicCall(int i); 
  } 
In such a case, an extending aspect may override the abstract pointcut.  
 
  aspect B extends A { 
      pointcut publicCall(int i): call(public Foo.m(int)) && args(i); 
  } 
For completeness, a pointcut with a declaration may be declared final.  
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Though named pointcut declarations appear somewhat like method declarations, and can 
be overridden in subaspects, they cannot be overloaded. It is an error for two pointcuts to 
be named with the same name in the same class or aspect declaration.  

The scope of a named pointcut is the enclosing class declaration. This is different than the 
scope of other members; the scope of other members is the enclosing class body. This 
means that the following code is legal:  
 
  aspect B percflow(publicCall()) { 
      pointcut publicCall(): call(public Foo.m(int)); 
  } 

B.3.2 Context exposure 

Pointcuts have an interface; they expose some parts of the execution context of the join 
points they pick out. For example, the PublicIntCall above exposes the first argument 
from the receptions of all public unary integer methods. This context is exposed by 
providing typed formal parameters to named pointcuts and advice, like the formal 
parameters of a Java method. These formal parameters are bound by name matching.  

On the right-hand side of advice or pointcut declarations, in certain pointcut designators, 
a Java identifier is allowed in place of a type or collection of types. The pointcut 
designators that allow this are this, target, and args. In all such cases, using an 
identifier rather than a type does two things. First, it selects join points as based on the 
type of the formal parameter. So the pointcut  
 
  pointcut intArg(int i): args(i); 
picks out join points where an int is being passed as an argument. Second, though, it 
makes the value of that argument available to the enclosing advice or pointcut.  

Values can be exposed from named pointcuts as well, so  
 
  pointcut publicCall(int x): call(public *.*(int)) && intArg(x); 
  pointcut intArg(int i): args(i); 
is a legal way to pick out all calls to public methods accepting an int argument, and 
exposing that argument.  

There is one special case for this kind of exposure. Exposing an argument of type Object 
will also match primitive typed arguments, and expose a "boxed" version of the 
primitive. So,  
 
  pointcut publicCall(): call(public *.*(..)) && args(Object); 
will pick out all unary methods that take, as their only argument, subtypes of Object (i.e., 
not primitive types like int), but  
 
  pointcut publicCall(Object o): call(public *.*(..)) && args(o); 
will pick out all unary methods that take any argument: And if the argument was an int, 
then the value passed to advice will be of type java.lang.Integer.  
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B.3.3 Primitive pointcuts 

B.3.3.1 Method-related pointcuts 
AspectJ provides two primitive pointcut designators designed to capture method call and 
execution join points.  

• call(MethodPattern) 
• execution(MethodPattern) 

B.3.3.2 Field-related pointcuts 
AspectJ provides two primitive pointcut designators designed to capture field reference 
and set join points:  

• get(FieldPattern) 
• set(FieldPattern) 

All set join points are treated as having one argument, the value the field is being set to, 
so at a set join point, that value can be accessed with an args pointcut. So an aspect 
guarding an integer variable x declared in type T might be written as  
 
  aspect GuardedX { 
      static final int MAX_CHANGE = 100; 
      before(int newval): set(int T.x) && args(newval) { 
   if (Math.abs(newval - T.x) > MAX_CHANGE) 
       throw new RuntimeException(); 
      } 
  } 

B.3.3.3 Object creation-related pointcuts 
AspectJ provides primitive pointcut designators designed to capture the initializer 
execution join points of objects.  

• call(ConstructorPattern) 
• execution(ConstructorPattern) 
• initialization(ConstructorPattern) 
• preinitialization(ConstructorPattern) 

B.3.3.4 Class initialization-related pointcuts 
AspectJ provides one primitive pointcut designator to pick out static initializer execution 
join points.  

• staticinitialization(TypePattern) 

B.3.3.5 Exception handler execution-related pointcuts 
AspectJ provides one primitive pointcut designator to capture execution of exception 
handlers:  



 

 

 

122

• handler(TypePattern) 

All handler join points are treated as having one argument, the value of the exception 
being handled. That value can be accessed with an args pointcut. So an aspect used to 
put FooException objects into some normal form before they are handled could be 
written as  
 
  aspect NormalizeFooException { 
      before(FooException e): handler(FooException) && args(e) { 
   e.normalize(); 
      } 
  } 

B.3.3.6 Advice execution-related pointcuts 
AspectJ provides one primitive pointcut designator to capture execution of advice  

• adviceexecution() 

This can be used, for example, to filter out any join point in the control flow of advice 
from a particular aspect.  
 
  aspect TraceStuff { 
      pointcut myAdvice(): adviceexecution() && within(TraceStuff); 
 
      before(): call(* *(..)) && !cflow(myAdvice) { 
   // do something 
      } 
  } 

B.3.3.7 State-based pointcuts 
Many concerns cut across the dynamic times when an object of a particular type is 
executing, being operated on, or being passed around. AspectJ provides primitive 
pointcuts that capture join points at these times. These pointcuts use the dynamic types of 
their objects to pick out join points. They may also be used to expose the objects used for 
discrimination.  

• this(Type or Id) 
• target(Type or Id) 

The this pointcut picks out each join point where the currently executing object (the 
object bound to this) is an instance of a particular type. The target pointcut picks out 
each join point where the target object (the object on which a method is called or a field 
is accessed) is an instance of a particular type. Note that target should be understood to 
be the object the current join point is transfering control to. This means that the target 
object is the same as the current object at a method execution join point, for example, but 
may be different at a method call join point.  

• args(Type or Id or "..", ...) 
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The args pointcut picks out each join point where the arguments are instances of some 
types. Each element in the comma-separated list is one of four things. If it is a type name, 
then the argument in that position must be an instance of that type. If it is an identifier, 
then that identifier must be bound in the enclosing advice or pointcut declaration, and so 
the argument in that position must be an instance of the type of the identifier (or of any 
type if the identifier is typed to Object). If it is the "*" wildcard, then any argument will 
match, and if it is the special wildcard "..", then any number of arguments will match, just 
like in signature patterns. So the pointcut  
 
  args(int, .., String) 
will pick out all join points where the first argument is an int and the last is a String.  

B.3.3.8 Control flow-based pointcuts 
Some concerns cut across the control flow of the program. The cflow and cflowbelow 
primitive pointcut designators capture join points based on control flow.  

• cflow(Pointcut) 
• cflowbelow(Pointcut) 

The cflow pointcut picks out all join points that occur between entry and exit of each join 
point P picked out by Pointcut, including P itself. Hence, it picks out the join points in 
the control flow of the join points picked out by Pointcut.  

The cflowbelow pointcut picks out all join points that occur between entry and exit of 
each join point P picked out by Pointcut, but not including P itself. Hence, it picks out 
the join points below the control flow of the join points picked out by Pointcut.  

B.3.3.9 Program text-based pointcuts 
While many concerns cut across the runtime structure of the program, some must deal 
with the lexical structure. AspectJ allows aspects to pick out join points based on where 
their associated code is defined.  

• within(TypePattern) 
• withincode(MethodPattern) 
• withincode(ConstructorPattern) 

The within pointcut picks out each join point where the code executing is defined in the 
declaration of one of the types in TypePattern. This includes the class initialization, 
object initialization, and method and constructor execution join points for the type, as 
well as any join points associated with the statements and expressions of the type. It also 
includes any join points that are associated with code in a type's nested types, and that 
type's default constructor, if there is one.  

The withincode pointcuts picks out each join point where the code executing is defined 
in the declaration of a particular method or constructor. This includes the method or 
constructor execution join point as well as any join points associated with the statements 
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and expressions of the method or constructor. It also includes any join points that are 
associated with code in a method or constructor's local or anonymous types.  

B.3.3.10 Expression-based pointcuts 

• if(BooleanExpression) 

The if pointcut picks out join points based on a dynamic property. It's syntax takes an 
expression, which must evaluate to a boolean true or false. Within this expression, the 
thisJoinPoint object is available. So one (extremely inefficient) way of picking out all 
call join points would be to use the pointcut  
 
  if(thisJoinPoint.getKind().equals("call")) 

B.3.4 Signatures 

One very important property of a join point is its signature, which is used by many of 
AspectJ's pointcut designators to select particular join points.  

B.3.4.1 Methods 
Join points associated with methods typically have method signatures, consisting of a 
method name, parameter types, return type, the types of the declared (checked) 
exceptions, and some type that the method could be called on (below called the 
"qualifying type").  

At a method call join point, the signature is a method signature whose qualifying type is 
the static type used to access the method. This means that the signature for the join point 
created from the call ((Integer)i).toString() is different than that for the call 
((Object)i).toString(), even if i is the same variable.  

At a method execution join point, the signature a method signature whose qualifying type 
is the declaring type of the method.  

B.3.4.2 Fields 
Join points associated with fields typically have field signatures, consisting of a field 
name and a field type. A field reference join point has such a signature, and no 
parameters. A field set join point has such a signature, but has a has a single parameter 
whose type is the same as the field type.  

B.3.4.3 Constructors 
Join points associated with constructors typically have constructor signatures, consisting 
of a parameter types, the types of the declared (checked) exceptions, and the declaring 
type.  

At a constructor call join point, the signature is the constructor signature of the called 
constructor. At a constructor execution join point, the signature is the constructor 
signature of the currently executing constructor.  
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At object initialization and pre-initialization join points, the signature is the constructor 
signature for the constructor that started this initialization: the first constructor entered 
during this type's initialization of this object.  

B.3.4.4 Others 
At a handler execution join point, the signature is composed of the exception type that the 
handler handles.  

At an advice execution join point, the signature is composed of the aspect type, the 
parameter types of the advice, the return type (void for all but around advice) and the 
types of the declared (checked) exceptions.  

B.3.5 Matching 

The withincode, call, execution, get, and set primitive pointcut designators all use 
signature patterns to determine the join points they describe. A signature pattern is an 
abstract description of one or more join-point signatures. Signature patterns are intended 
to match very closely the same kind of things one would write when defining individual 
methods and constructors.  

Method definitions in Java include method names, method parameters, return types, 
modifiers like static or private, and throws clauses, while constructor definitions omit the 
return type and replace the method name with the class name. The start of a particular 
method definition, in class Test, for example, might be  
 
  class C { 
      public final void foo() throws ArrayOutOfBoundsException { ... } 
  } 
In AspectJ, method signature patterns have all these, but most elements can be replaced 
by wildcards. So  
 
  call(public final void C.foo() throws ArrayOutOfBoundsException) 
picks out call join points to that method, and the pointcut  
 
  call(public final void *.*() throws ArrayOutOfBoundsException) 
picks out all call join points to methods, regardless of their name name or which class 
they are defined on, so long as they take no arguments, return no value, are both public 
and final, and are declared to throw ArrayOutOfBounds exceptions.  

The defining type name, if not present, defaults to *, so another way of writing that 
pointcut would be  
 
  call(public final void *() throws ArrayOutOfBoundsException) 
Formal parameter lists can use the wildcard .. to indicate zero or more arguments, so  
 
  execution(void m(..)) 
picks out execution join points for void methods named m, of any number of arguments, 
while  
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  execution(void m(.., int)) 
picks out execution join points for void methods named m whose last parameter is of type 
int.  

The modifiers also form part of the signature pattern. If an AspectJ signature pattern 
should match methods without a particular modifier, such as all non-public methods, the 
appropriate modifier should be negated with the ! operator. So,  
 
  withincode(!public void foo()) 
picks out all join points associated with code in null non-public void methods named foo, 
while  
 
  withincode(void foo()) 
picks out all join points associated with code in null void methods named foo, regardless 
of access modifier.  

Method names may contain the * wildcard, indicating any number of characters in the 
method name. So  
 
  call(int *()) 
picks out all call join points to int methods regardless of name, but  
 
  call(int get*()) 
picks out all call join points to int methods where the method name starts with the 
characters "get".  

AspectJ uses the new keyword for constructor signature patterns rather than using a 
particular class name. So the execution join points of private null constructor of a class C 
defined to throw an ArithmeticException can be picked out with  
 
  execution(private C.new() throws ArithmeticException) 

B.3.5.1 Matching based on the throws clause 
Type patterns may be used to pick out methods and constructors based on their throws 
clauses. This allows the following two kinds of extremely wildcarded pointcuts:  
 
  pointcut throwsMathlike(): 
      // each call to a method with a throws clause containing at least 
      // one exception exception with "Math" in its name. 
      call(* *(..) throws *..*Math*); 
 
  pointcut doesNotThrowMathlike(): 
      // each call to a method with a throws clause containing no 
      // exceptions with "Math" in its name. 
      call(* *(..) throws !*..*Math*); 
A ThrowsClausePattern is a comma-separated list of ThrowsClausePatternItems, 
where  

ThrowsClausePatternItem : 
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[ ! ] TypeNamePattern 
A ThrowsClausePattern matches the throws clause of any code member signature. To 
match, each ThrowsClausePatternItem must match the throws clause of the member in 
question. If any item doesn't match, then the whole pattern doesn't match.  

If a ThrowsClausePatternItem begins with "!", then it matches a particular throws clause 
if and only if none of the types named in the throws clause is matched by the 
TypeNamePattern.  

If a ThrowsClausePatternItem does not begin with "!", then it matches a throws clause 
if and only if any of the types named in the throws clause is matched by the 
TypeNamePattern.  

The rule for "!" matching has one potentially surprising property, in that these two 
pointcuts  

• call(* *(..) throws !IOException)  
• call(* *(..) throws (!IOException))  

will match differently on calls to  
void m() throws RuntimeException, IOException {}  
[1] will NOT match the method m(), because method m's throws clause declares that it 
throws IOException. [2] WILL match the method m(), because method m's throws clause 
declares the it throws some exception which does not match IOException, i.e. 
RuntimeException.  

B.3.6 Type patterns 

Type patterns are a way to pick out collections of types and use them in places where you 
would otherwise use only one type. The rules for using type patterns are simple.  

B.3.6.1 Type name patterns 
First, all type names are also type patterns. So Object, java.util.HashMap, Map.Entry, 
int are all type patterns.  

There is a special type name, *, which is also a type pattern. * picks out all types, 
including primitive types. So  
 
  call(void foo(*)) 
picks out all call join points to void methods named foo, taking one argument of any type.  

Type names that contain the two wildcards "*" and ".." are also type patterns. The * 
wildcard matches zero or more characters characters except for ".", so it can be used 
when types have a certain naming convention. So  
 
  handler(java.util.*Map) 
picks out the types java.util.Map and java.util.java.util.HashMap, among others, and  
 
  handler(java.util.*) 
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picks out all types that start with "java.util." and don't have any more "."s, that is, the 
types in the java.util package, but not inner types (such as java.util.Map.Entry).  

The ".." wildcard matches any sequence of characters that start and end with a ".", so it 
can be used to pick out all types in any subpackage, or all inner types. So  
 
  within(com.xerox..*) 
picks out all join points where the code is in any type definition of a type whose name 
begins with "com.xerox.".  

B.3.6.2 Subtype patterns 
It is possible to pick out all subtypes of a type (or a collection of types) with the "+" 
wildcard. The "+" wildcard follows immediately a type name pattern. So, while  
 
  call(Foo.new()) 
picks out all constructor call join points where an instance of exactly type Foo is 
constructed,  
 
  call(Foo+.new()) 
picks out all constructor call join points where an instance of any subtype of Foo 
(including Foo itself) is constructed, and the unlikely  
 
  call(*Handler+.new()) 
picks out all constructor call join points where an instance of any subtype of any type 
whose name ends in "Handler" is constructed.  

B.3.6.3 Array type patterns 
A type name pattern or subtype pattern can be followed by one or more sets of square 
brackets to make array type patterns. So Object[] is an array type pattern, and so is 
com.xerox..*[][], and so is Object+[].  

B.3.6.4 Type patterns 
Type patterns are built up out of type name patterns, subtype patterns, and array type 
patterns, and constructed with boolean operators &&, ||, and !. So  
 
  staticinitialization(Foo || Bar) 
picks out the static initializer execution join points of either Foo or Bar, and  
 
  call((Foo+ && ! Foo).new(..)) 
picks out the constructor call join points when a subtype of Foo, but not Foo itself, is 
constructed.  

B.4 Advice 
Each piece of advice is of the form  
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[ strictfp ] AdviceSpec [ throws TypeList ] : Pointcut { 
Body }  

where AdviceSpec is one of  

• before( Formals )  
• after( Formals ) returning [ ( Formal ) ]  
• after( Formals ) throwing [ ( Formal ) ]  
• after( Formals )  
• Type around( Formals ) 

Advice defines crosscutting behavior. It is defined in terms of pointcuts. The code of a 
piece of advice runs at every join point picked out by its pointcut. Exactly how the code 
runs depends on the kind of advice.  

AspectJ supports three kinds of advice. The kind of advice determines how it interacts 
with the join points it is defined over. Thus AspectJ divides advice into that which runs 
before its join points, that which runs after its join points, and that which runs in place of 
(or "around") its join points.  

While before advice is relatively unproblematic, there can be three interpretations of after 
advice: After the execution of a join point completes normally, after it throws an 
exception, or after it does either one. AspectJ allows after advice for any of these 
situations.  
 
  aspect A { 
      pointcut publicCall(): call(public Object *(..)); 
      after() returning (Object o): publicCall() { 
   System.out.println("Returned normally with " + o); 
      } 
      after() throwing (Exception e): publicCall() { 
   System.out.println("Threw an exception: " + e); 
      } 
      after(): publicCall(){ 
   System.out.println("Returned or threw an Exception"); 
      } 
  } 
After returning advice may not care about its returned object, in which case it may be 
written  
 
  after() returning: call(public Object *(..)) { 
      System.out.println("Returned normally"); 
  } 
It is an error to try to put after returning advice on a join point that does not return the 
correct type. For example,  
 
  after() returning (byte b): call(int String.length()) { 
      // this is an error 
  } 
is not allowed. But if no return value is exposed, or the exposed return value is typed to 
Object, then it may be applied to any join point. If the exposed value is typed to Object, 
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then the actual return value is converted to an object type for the body of the advice: int 
values are represented as java.lang.Integer objects, etc, and no value (from void 
methods, for example) is represented as null.  

Around advice runs in place of the join point it operates over, rather than before or after 
it. Because around is allowed to return a value, it must be declared with a return type, like 
a method. A piece of around advice may be declared void, in which case it is not allowed 
to return a value, and instead whatever value the join point returned will be returned by 
the around advice (unless the around advice throws an exception of its own).  

Thus, a simple use of around advice is to make a particular method constant:  
 
  aspect A { 
      int around(): call(int C.foo()) { 
   return 3; 
      } 
  } 
Within the body of around advice, though, the computation of the original join point can 
be executed with the special syntax  
 
  proceed( ... ) 
The proceed form takes as arguments the context exposed by the around's pointcut, and 
returns whatever the around is declared to return. So the following around advice will 
double the second argument to foo whenever it is called, and then halve its result:  
 
  aspect A { 
      int around(int i): call(int C.foo(Object, int)) && args(i) { 
   int newi = proceed(i*2) 
   return newi/2; 
      } 
  } 
If the return value of around advice is typed to Object, then the result of proceed is 
converted to an object representation, even if it is originally a primitive value. And when 
the advice returns an Object value, that value is converted back to whatever 
representation it was originally. So another way to write the doubling and halving advice 
is:  
 
  aspect A { 
      Object around(int i): call(int C.foo(Object, int)) && args(i) { 
   Integer newi = (Integer) proceed(i*2) 
   return new Integer(newi.intValue() / 2); 
      } 
  } 
In all kinds of advice, the parameters of the advice behave exactly like method 
parameters. In particular, assigning to any parameter affects only the value of the 
parameter, not the value that it came from. This means that  
 
  aspect A { 
      after() returning (int i): call(int C.foo()) { 
   i = i * 2; 
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      } 
  } 
will not double the returned value of the advice. Rather, it will double the local 
parameter. Changing the values of parameters or return values of join points can be done 
by using around advice.  

B.4.1 Advice modifiers 

The strictfp modifier is the only modifier allowed on advice, and it has the effect of 
making all floating-point expressions within the advice be FP-strict.  

B.4.2 Advice and checked exceptions 

An advice declaration must include a throws clause listing the checked exceptions the 
body may throw. This list of checked exceptions must be compatible with each target join 
point of the advice, or an error is signalled by the compiler.  

For example, in the following declarations:  
 
  import java.io.FileNotFoundException; 
 
  class C { 
      int i; 
 
      int getI() { return i; } 
  } 
 
  aspect A { 
      before(): get(int C.i) { 
   throw new FileNotFoundException(); 
      } 
      before() throws FileNotFoundException: get(int C.i) { 
   throw new FileNotFoundException(); 
      } 
  } 
both pieces of advice are illegal. The first because the body throws an undeclared 
checked exception, and the second because field get join points cannot throw 
FileNotFoundExceptions.  

The exceptions that each kind of join point in AspectJ may throw are:  

method call and execution 
the checked exceptions declared by the target method's throws clause.  

constructor call and execution 
the checked exceptions declared by the target constructor's throws clause.  

field get and set 
no checked exceptions can be thrown from these join points.  

exception handler execution 
the exceptions that can be thrown by the target exception handler.  

static initializer execution 
no checked exceptions can be thrown from these join points.  



 

 

 

132

pre-initialization and initialization 
any exception that is in the throws clause of all constructors of the initialized 
class.  

advice execution 
any exception that is in the throws clause of the advice.  

B.4.3 Advice precedence 

Multiple pieces of advice may apply to the same join point. In such cases, the resolution 
order of the advice is based on advice precedence.  

B.4.3.1 Determining precedence 
There are a number of rules that determine whether a particular piece of advice has 
precedence over another when they advise the same join point.  

If the two pieces of advice are defined in different aspects, then there are three cases:  

• If aspect A is matched earlier than aspect B in some declare precedence form, 
then all advice in concrete aspect A has precedence over all advice in concrete 
aspect B when they are on the same join point.  

• Otherwise, if aspect A is a subaspect of aspect B, then all advice defined in A has 
precedence over all advice defined in B. So, unless otherwise specified with 
declare precedence, advice in a subaspect has precedence over advice in a 
superaspect.  

• Otherwise, if two pieces of advice are defined in two different aspects, it is 
undefined which one has precedence.  

If the two pieces of advice are defined in the same aspect, then there are two cases:  

• If either are after advice, then the one that appears later in the aspect has 
precedence over the one that appears earlier.  

• Otherwise, then the one that appears earlier in the aspect has precedence over the 
one that appears later.  

These rules can lead to circularity, such as 
 
  aspect A { 
      before(): execution(void main(String[] args)) {} 
      after():  execution(void main(String[] args)) {} 
      before(): execution(void main(String[] args)) {} 
  } 
such circularities will result in errors signalled by the compiler.  

B.4.3.2 Effects of precedence 
At a particular join point, advice is ordered by precedence. 
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A piece of around advice controls whether advice of lower precedence will run by 
calling proceed. The call to proceed will run the advice with next precedence, or the 
computation under the join point if there is no further advice.  

A piece of before advice can prevent advice of lower precedence from running by 
throwing an exception. If it returns normally, however, then the advice of the next 
precedence, or the computation under the join pint if there is no further advice, will run.  

Running after returning advice will run the advice of next precedence, or the 
computation under the join point if there is no further advice. Then, if that computation 
returned normally, the body of the advice will run.  

Running after throwing advice will run the advice of next precedence, or the 
computation under the join point if there is no further advice. Then, if that computation 
threw an exception of an appropriate type, the body of the advice will run.  

Running after advice will run the advice of next precedence, or the computation under 
the join point if there is no further advice. Then the body of the advice will run.  

B.4.4 Reflective access to the join point 

Three special variables are visible within bodies of advice: thisJoinPoint, 
thisJoinPointStaticPart, and thisEnclosingJoinPointStaticPart. Each is bound 
to an object that encapsulates some of the context of the advice's current or enclosing join 
point. These variables exist because some pointcuts may pick out very large collections 
of join points. For example, the pointcut  
 
  pointcut publicCall(): call(public * *(..)); 
picks out calls to many methods. Yet the body of advice over this pointcut may wish to 
have access to the method name or parameters of a particular join point.  

thisJoinPoint is bound to a complete join point object.  

thisJoinPointStaticPart is bound to a part of the join point object that includes less 
information, but for which no memory allocation is required on each execution of the 
advice. It is equivalent to thisJoinPoint.getStaticPart().  

thisEnclosingJoinPointStaticPart is bound to the static part of the join point 
enclosing the current join point. Only the static part of this enclosing join point is 
available through this mechanism.  

Standard Java reflection uses objects from the java.lang.reflect hierarchy to build up 
its reflective objects. Similarly, AspectJ join point objects have types in a type hierarchy. 
The type of objects bound to thisJoinPoint is org.aspectj.lang.JoinPoint, while 
thisStaticJoinPoint is bound to objects of interface type 
org.aspectj.lang.JoinPoint.StaticPart.  

B.5 Static crosscutting 
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Advice declarations change the behavior of classes they crosscut, but do not change their 
static type structure. For crosscutting concerns that do operate over the static structure of 
type hierarchies, AspectJ provides inter-type member declarations and other declare 
forms.  

B.5.1 Inter-type member declarations 

AspectJ allows the declaration of members by aspects that are associated with other 
types.  

An inter-type method declaration looks like  

• [ Modifiers ] Type OnType . Id(Formals) [ ThrowsClause ] { Body } 
• abstract [ Modifiers ] Type OnType . Id(Formals) [ ThrowsClause ] 

;  

The effect of such a declaration is to make OnType support the new method. Even if 
OnType is an interface. Even if the method is neither public nor abstract. So the following 
is legal AspectJ code:  
 
  interface Iface {} 
 
  aspect A { 
      private void Iface.m() { 
   System.err.println("I'm a private method on an interface"); 
      } 
      void worksOnI(Iface iface) { 
   // calling a private method on an interface 
   iface.m(); 
      } 
  } 
An inter-type constructor declaration looks like  

• [ Modifiers ] OnType . new ( Formals ) [ ThrowsClause ] { Body } 

The effect of such a declaration is to make OnType support the new constructor. It is an 
error for OnType to be an interface.  

Note that in the Java language, classes that define no constructors have an implicit no-
argument constructor that just calls super(). This means that attempting to declare a no-
argument inter-type constructor on such a class may result in a conflict, even though it 
looks like no constructor is defined.  

An inter-type field declaration looks like one of  

• [ Modifiers ] Type OnType . Id = Expression; 
• [ Modifiers ] Type OnType . Id; 

The effect of such a declaration is to make OnType support the new field. Even if OnType 
is an interface. Even if the field is neither public, nor static, nor final.  
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The initializer, if any, of an inter-type field definition runs before the class-local 
initializers defined in its target class.  

Any occurrence of the identifier this in the body of an inter-type constructor or method 
declaration, or in the initializer of an inter-type field declaration, refers to the OnType 
object rather than to the aspect type; it is an error to access this in such a position from a 
static inter-type member declaration.  

B.5.2 Access modifiers 

Inter-type member declarations may be public or private, or have default (package-
protected) visibility. AspectJ does not provide protected inter-type members.  

The access modifier applies in relation to the aspect, not in relation to the target type. So 
a private inter-type member is visible only from code that is defined within the declaring 
aspect. A default-visibility inter-type member is visible only from code that is defined 
within the declaring aspect's package.  

Note that a declaring a private inter-type method (which AspectJ supports) is very 
different from inserting a private method declaration into another class. The former 
allows access only from the declaring aspect, while the latter would allow access only 
from the target type. Java serialization, for example, uses the presense of a private 
method void writeObject(ObjectOutputStream) for the implementation of 
java.io.Serializable. A private inter-type declaration of that method would not fulfill 
this requirement, since it would be private to the aspect, not private to the target type.  

B.5.3 Conflicts 

Inter-type declarations raise the possibility of conflicts among locally declared members 
and inter-type members. For example, assuming otherPackage is not the package 
containing the aspect A, the code  
 
  aspect A { 
      private Registry otherPackage.*.r; 
      public void otherPackage.*.register(Registry r) { 
   r.register(this); 
   this.r = r; 
      } 
  } 
declares that every type in otherPackage has a field r. This field, however, is only 
accessible from the code inside of aspect A. The aspect also declares that every type in 
otherPackage has a method "register", but makes this method accessible from 
everywhere.  

If any type in otherPackage already defines a private or package-protected field "r", 
there is no conflict: The aspect cannot see such a field, and no code in otherPackage can 
see the inter-type "r".  

If any type in otherPackage defines a public field "r", there is a conflict: The expression  
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  this.r = r 
is an error, since it is ambiguous whether the private inter-type "r" or the public locally-
defined "r" should be used.  

If any type in otherPackage defines any method "register(Registry)" there is a 
conflict, since it would be ambiguous to any code that could see such a defined method 
which "register(Registry)" method was applicable.  

Conflicts are resolved as much as possible as per Java's conflict resolution rules:  

• A subclass can inherit multiple fields from its superclasses, all with the same 
name and type. However, it is an error to have an ambiguous reference to a field. 

• A subclass can only inherit multiple methods with the same name and argument 
types from its superclasses if only zero or one of them is concrete (i.e., all but one 
is abstract, or all are abstract).  

Given a potential conflict between inter-type member declarations in different aspects, if 
one aspect has precedence over the other its declaration will take effect without any 
conflict notice from compiler. This is true both when the precedence is declared explicitly 
with declare precedence as well as when when sub-aspects implicitly have precedence 
over their super-aspect.  

B.5.4 Extension and Implementation 

An aspect may change the inheritance hierarchy of a system by changing the superclass 
of a type or adding a superinterface onto a type, with the declare parents form.  

• declare parents: TypePattern extends Type; 
• declare parents: TypePattern implements TypeList; 

For example, if an aspect wished to make a particular class runnable, it might define 
appropriate inter-type void run() method, but it should also declare that the class 
fulfills the Runnable interface. In order to implement the methods in the Runnable 
interface, the inter-type run() method must be public:  
 
  aspect A { 
      declare parents: SomeClass implements Runnable; 
      public void SomeClass.run() { ... } 
  } 

B.5.5 Interfaces with members 

Through the use of inter-type members, interfaces may now carry (non-public-static-
final) fields and (non-public-abstract) methods that classes can inherit. Conflicts may 
occur from ambiguously inheriting members from a superclass and multiple 
superinterfaces.  
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Because interfaces may carry non-static initializers, each interface behaves as if it has a 
zero-argument constructor containing its initializers. The order of super-interface 
instantiation is observable. We fix this order with the following properties: A supertype is 
initialized before a subtype, initialized code runs only once, and the initializers for a 
type's superclass are run before the initializers for its superinterfaces. Consider the 
following hierarchy where {Object, C, D, E} are classes, {M, N, O, P, Q} are interfaces.  
 
    Object  M   O 
  \ / \ / 
   C   N   Q 
    \ /   / 
     D   P 
      \ / 
       E 
when a new E is instantiated, the initializers run in this order:  
 
    Object M C O N D Q P E 

B.5.6 Warnings and Errors 

An aspect may specify that a particular join point should never be reached.  

• declare error: Pointcut: String; 
• declare warning: Pointcut: String; 

If the compiler determines that a join point in Pointcut could possibly be reached, then 
it will signal either an error or warning, as declared, using the String for its message.  

B.5.7 Softened exceptions 

An aspect may specify that a particular kind of exception, if thrown at a join point, should 
bypass Java's usual static exception checking system and instead be thrown as a 
org.aspectj.lang.SoftException, which is subtype of RuntimeException and thus 
does not need to be declared.  

• declare soft: Type: Pointcut; 

For example, the aspect 
 
  aspect A { 
      declare soft: Exception: execution(void main(String[] args)); 
  } 
Would, at the execution join point, catch any Exception and rethrow a 
org.aspectj.lang.SoftException containing original exception.  

This is similar to what the following advice would do 
 
  aspect A { 
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      void around() execution(void main(String[] args)) { 
   try { proceed(); } 
   catch (Exception e) { 
       throw new org.aspectj.lang.SoftException(e); 
   } 
      } 
  } 
except, in addition to wrapping the exception, it also affects Java's static exception 
checking mechanism.  

B.5.8 Advice Precedence 

An aspect may declare a precedence relationship between concrete aspects with the 
declare precedence form:  

• declare precedence : TypePatternList ;  

This signifies that if any join point has advice from two concrete aspects matched by 
some pattern in TypePatternList, then the precedence of the advice will be the order of 
in the list.  

In TypePatternList, the wildcard "*" can appear at most once, and it means "any type 
not matched by any other pattern in the list".  

For example, the constraints that (1) aspects that have Security as part of their name 
should have precedence over all other aspects, and (2) the Logging aspect (and any aspect 
that extends it) should have precedence over all non-security aspects, can be expressed 
by: 
 
  declare precedence: *..*Security*, Logging+, *; 
For another example, the CountEntry aspect might want to count the entry to methods in 
the current package accepting a Type object as its first argument. However, it should 
count all entries, even those that the aspect DisallowNulls causes to throw exceptions. 
This can be accomplished by stating that CountEntry has precedence over DisallowNulls. 
This declaration could be in either aspect, or in another, ordering aspect:  
 
  aspect Ordering { 
      declare precedence: CountEntry, DisallowNulls; 
  } 
  aspect DisallowNulls { 
      pointcut allTypeMethods(Type obj): call(* *(..)) && args(obj, 
..); 
      before(Type obj):  allTypeMethods(obj) { 
   if (obj == null) throw new RuntimeException(); 
      } 
  } 
  aspect CountEntry { 
      pointcut allTypeMethods(Type obj): call(* *(..)) && args(obj, 
..); 
      static int count = 0; 
      before():  allTypeMethods(Type) { 
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   count++; 
      } 
  } 

B.5.8.1 Various cycles 
It is an error for any aspect to be matched by more than one TypePattern in a single 
decare precedence, so:  
 
  declare precedence:  A, B, A ;  // error 
However, multiple declare precedence forms may legally have this kind of circularity. 
For example, each of these declare precedence is perfectly legal:  
 
  declare precedence: B, A; 
  declare precedence: A, B; 
And a system in which both constraints are active may also be legal, so long as advice 
from A and B don't share a join point. So this is an idiom that can be used to enforce that 
A and B are strongly independent.  

B.5.8.2 Applies to concrete aspects 
Consider the following library aspects:  
 
  abstract aspect Logging { 
      abstract pointcut logged(); 
 
      before(): logged() { 
          System.err.println("thisJoinPoint: " + thisJoinPoint); 
      } 
  } 
 
  aspect aspect MyProfiling { 
      abstract pointcut profiled(); 
 
      Object around(): profiled() { 
          long beforeTime = System.currentTimeMillis(); 
          try { 
              return proceed(); 
          } finally { 
              long afterTime = System.currentTimeMillis(); 
              addToProfile(thisJoinPointStaticPart, 
                           afterTime - beforeTime); 
          } 
      } 
      abstract void addToProfile( 
          org.aspectj.JoinPoint.StaticPart jp, 
          long elapsed); 
  } 
In order to use either aspect, they must be extended with concrete aspects, say, 
MyLogging and MyProfiling. Because advice only applies from concrete aspects, the 
declare precedence form only matters when declaring precedence with concrete aspects. 
So  
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  declare precedence: Logging, Profiling; 
has no effect, but both  
 
  declare precedence: MyLogging, MyProfiling; 
  declare precedence: Logging+, Profiling+; 
are meaningful.  

B.5.9 Statically determinable pointcuts 

Pointcuts that appear inside of declare forms have certain restrictions. Like other 
pointcuts, these pick out join points, but they do so in a way that is statically 
determinable.  

Consequently, such pointcuts may not include, directly or indirectly (through user-
defined pointcut declarations) pointcuts that discriminate based on dynamic (runtime) 
context. Therefore, such pointcuts may not be defined in terms of 

• cflow 
• cflowbelow 
• this 
• target 
• args 
• if 

all of which can discriminate on runtime information.  

B.6 Aspects 
An aspect is a crosscutting type defined by the aspect declaration. The aspect 
declaration is similar to the class declaration in that it defines a type and an 
implementation for that type. It differs in that the type and implementation can cut across 
other types (including those defined by other aspect declarations), and that it may not be 
directly instantiated with a new expression, with cloning, or with serialization. Aspects 
may have one constructor definition, but if so it must be of a constructor taking no 
arguments and throwing no checked exceptions.  

Aspects may be defined either at the package level, or as a static nested aspect -- that is, a 
static member of a class, interface, or aspect. If it is not at the package level, the aspect 
must be defined with the static keyword. Local and anonymous aspects are not allowed.  

B.6.1 Aspect Extension 

To support abstraction and composition of crosscutting concerns, aspects can be extended 
in much the same way that classes can. Aspect extension adds some new rules, though.  
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B.6.1.1 Aspects may extend classes and implement interfaces 
An aspect, abstract or concrete, may extend a class and may implement a set of 
interfaces. Extending a class does not provide the ability to instantiate the aspect with a 
new expression: The aspect may still only define a null constructor.  

B.6.1.2 Classes may not extend aspects 
It is an error for a class to extend or implement an aspect.  

B.6.1.3 Aspects extending aspects  
Aspects may extend other aspects, in which case not only are fields and methods 
inherited but so are pointcuts. However, aspects may only extend abstract aspects. It is an 
error for a concrete aspect to extend another concrete aspect.  

B.6.2 Aspect instantiation 

Unlike class expressions, aspects are not instantiated with new expressions. Rather, aspect 
instances are automatically created to cut across programs.  

Because advice only runs in the context of an aspect instance, aspect instantiation 
indirectly controls when advice runs.  

The criteria used to determine how an aspect is instantiated is inherited from its parent 
aspect. If the aspect has no parent aspect, then by default the aspect is a singleton aspect.  

B.6.2.1 Singleton Aspects 

• aspect Id { ... } 
• aspect Id issingleton { ... } 

By default (or by using the modifier issingleton) an aspect has exactly one instance 
that cuts across the entire program. That instance is available at any time during program 
execution with the static method aspectOf() defined on the aspect -- so, in the above 
examples, A.aspectOf() will return A's instance. This aspect instance is created as the 
aspect's classfile is loaded.  

Because the an instance of the aspect exists at all join points in the running of a program 
(once its class is loaded), its advice will have a chance to run at all such join points.  

(In actuality, one instance of the aspect A is made for each version of the aspect A, so 
there will be one instantiation for each time A is loaded by a different classloader.)  

B.6.2.2 Per-object aspects 

• aspect Id perthis(Pointcut) { ... } 
• aspect Id pertarget(Pointcut) { ... } 

If an aspect A is defined perthis(Pointcut), then one object of type A is created for 
every object that is the executing object (i.e., "this") at any of the join points picked out 
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by Pointcut. The advice defined in A may then run at any join point where the currently 
executing object has been associated with an instance of A.  

Similarly, if an aspect A is defined pertarget(Pointcut), then one object of type A is 
created for every object that is the target object of the join points picked out by 
Pointcut. The advice defined in A may then run at any join point where the target object 
has been associated with an instance of A.  

In either case, the static method call A.aspectOf(Object) can be used to get the aspect 
instance (of type A) registered with the object. Each aspect instance is created as early as 
possible, but not before reaching a join point picked out by Pointcut where there is no 
associated aspect of type A.  

Both perthis and pertarget aspects may be affected by code the AspectJ compiler 
controls, as discussed in the Implementation Limitations appendix.  

B.6.2.3 Per-control-flow aspects 

• aspect Id percflow(Pointcut) { ... } 
• aspect Id percflowbelow(Pointcut) { ... } 

If an aspect A is defined percflow(Pointcut) or percflowbelow(Pointcut), then one 
object of type A is created for each flow of control of the join points picked out by 
Pointcut, either as the flow of control is entered, or below the flow of control, 
respectively. The advice defined in A may run at any join point in or under that control 
flow. During each such flow of control, the static method A.aspectOf() will return an 
object of type A. An instance of the aspect is created upon entry into each such control 
flow.  

B.6.2.4 Aspect instantiation and advice 
All advice runs in the context of an aspect instance, but it is possible to write a piece of 
advice with a pointcut that picks out a join point that must occur before asopect 
instantiation. For example:  
 
  public class Client 
  { 
      public static void main(String[] args) { 
          Client c = new Client(); 
      } 
  } 
 
  aspect Watchcall { 
      pointcut myConstructor(): execution(new(..)); 
 
      before(): myConstructor() { 
          System.err.println("Entering Constructor"); 
      } 
  } 
The before advice should run before the execution of all constructors in the system. It 
must run in the context of an instance of the Watchcall aspect. The only way to get such 
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an instance is to have Watchcall's default constructor execute. But before that executes, 
we need to run the before advice...  

There is no general way to detect these kinds of circularities at compile time. If advice 
runs before its aspect is instantiated, AspectJ will throw a 
org.aspectj.lang.NoAspectBoundException.  

B.6.3 Aspect privilege 

• privileged aspect Id { ... } 

Code written in aspects is subject to the same access control rules as Java code when 
referring to members of classes or aspects. So, for example, code written in an aspect 
may not refer to members with default (package-protected) visibility unless the aspect is 
defined in the same package.  

While these restrictions are suitable for many aspects, there may be some aspects in 
which advice or inter-type members needs to access private or protected resources of 
other types. To allow this, aspects may be declared privileged. Code in priviliged 
aspects has access to all members, even private ones.  
 
  class C { 
      private int i = 0; 
      void incI(int x) { i = i+x; } 
  } 
  privileged aspect A { 
      static final int MAX = 1000; 
      before(int x, C c): call(void C.incI(int)) && target(c) && 
args(x) { 
   if (c.i+x > MAX) throw new RuntimeException(); 
      } 
  } 
In this case, if A had not been declared privileged, the field reference c.i would have 
resulted in an error signaled by the compiler.  

If a privileged aspect can access multiple versions of a particular member, then those that 
it could see if it were not privileged take precedence. For example, in the code  
 
  class C { 
      private int i = 0; 
      void foo() { } 
  } 
  privileged aspect A { 
      private int C.i = 999; 
      before(C c): call(void C.foo()) target(c) { 
   System.out.println(c.i); 
      } 
  } 
A's private inter-type field C.i, initially bound to 999, will be referenced in the body of 
the advice in preference to C's privately declared field, since the A would have access to 
its own inter-type fields even if it were not privileged.  
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Note that a privileged aspect can access private inter-type declarations made by other 
aspects, since they are simply considered private members of that other aspect.  
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Appendix C Implementation Limitations 
The initial implementations of AspectJ have all been compiler-based implementations. 
Certain elements of AspectJ's semantics are difficult to implement without making 
modifications to the virtual machine, which a compiler-based implementation cannot do. 
One way to deal with this problem would be to specify only the behavior that is easiest to 
implement. We have chosen a somewhat different approach, which is to specify an ideal 
language semantics, as well as a clearly defined way in which implementations are 
allowed to deviate from that semantics. This makes it possible to develop conforming 
AspectJ implementations today, while still making it clear what later, and presumably 
better, implementations should do tomorrow.  

According to the AspectJ language semantics, the declaration  
 
  before(): get(int Point.x) { System.out.println("got x"); } 
should advise all accesses of a field of type int and name x from instances of type (or 
subtype of) Point. It should do this regardless of whether all the source code performing 
the access was available at the time the aspect containing this advice was compiled, 
whether changes were made later, etc.  

But AspectJ implementations are permitted to deviate from this in a well-defined way -- 
they are permitted to advise only accesses in code the implementation controls. Each 
implementation is free within certain bounds to provide its own definition of what it 
means to control code.  

In the current AspectJ compiler, ajc, control of the code means having bytecode for any 
aspects and all the code they should affect available during the compile. This means that 
if some class Client contains code with the expression new Point().x (which results in a 
field get join point at runtime), the current AspectJ compiler will fail to advise that access 
unless Client.java or Client.class is compiled as well. It also means that join points 
associated with code in native methods (including their execution join points) cannot be 
advised.  

Different join points have different requirements. Method and constructor call join points 
can be advised only if ajc controls the bytecode for the caller. Field reference or 
assignment join points can be advised only if ajc controls the bytecode for the "caller", 
the code actually making the reference or assignment. Initialization join points can be 
advised only if ajc controls the bytecode of the type being initialized, and execution join 
points can be advised only if ajc controls the bytecode for the method or constructor body 
in question.  

Aspects that are defined perthis or pertarget also have restrictions based on control of 
the code. In particular, at a join point where the bytecode for the currently executing 
object is not available, an aspect defined perthis of that join point will not be 
associated. So aspects defined perthis(Object) will not create aspect instances for 
every object unless Objectis part of the compile. Similar restrictions apply to pertarget 
aspects.  

Inter-type declarations such as declare parents also have restrictions based on control 
of the code. If the bytecode for the target of an inter-type declaration is not available, then 
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the inter-type declaration is not made on that target. So, declare parents : String 
implements MyInterface will not work for java.lang.String unless 
java.lang.String is part of the compile.  

Other AspectJ implementations, indeed, future versions of ajc, may define code the 
implementation controls more liberally or restrictively.  

The important thing to remember is that core concepts of AspectJ, such as the join point, 
are unchanged, regardless of which implementation is used. During your development, 
you will have to be aware of the limitations of the ajc compiler you're using, but these 
limitations should not drive the design of your aspects.  
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Appendix D Talks Presented 
D.1  Tutorials 
AOSD 2003 
  18 March, 2003, Erik Hilsdale and Wes Isberg, advanced 
AOSD 2003 
  17 March, 2003, Erik Hilsdale and Wes Isberg, intro 
ACM Chapter Meeting Boston, MA 
  November 16, 2002, Gregor Kiczales and Ron Bodkin and Erik Hilsdale, full-day 
OOPSLA Seattle, WA 
  November 6, 2002, Erik Hilsdale and Jim Hugunin, full-day 
IPSJ Japan 
  August 27, 2002, Gregor Kiczales 
AOSD Conference  
  April 23, 2002, Erik Hilsdale and Jim Hugunin, advanced 
AOSD Conference  
  April 23, 2002, Erik Hilsdale and Jim Hugunin, intro 
AspectJ Workshop  
  January 11, 2002, whole team 
OOPSLA  Tampa Bay, Florida 
  October 15, 2001,  Erik Hilsdale and Mik Kersten, full-day 
Reflection  Kyoto, Japan 
  September 24, 2001,  Gregor Kiczales, half-day 
ESEC/FSE  Vienna, Austria 
  September 11, 2001, Gregor Kiczales,  full-day 
TOOLS USA  Santa Barbara, CA 
  August 1, 2001, Erik Hilsdale, half-day 
ECOOP Budapest, Hungary 
  June 20-21, 2001,  Gregor Kiczales and Erik Hilsdale, full-day 
Boeing St. Louis, MO 
  April 2001, Gregor Kiczales  
FSE San Diego, CA 
  November 7, 2000, Gregor Kiczales  
OOPSLA Minneapolis, MN 
  October 27, 2000, Gregor Kiczales and Erik Hilsdale, full-day  
Erfurt, Germany 
  September 10, 2000,  Cristina Lopes, tutorial and workshop  
TOOLS USA Santa Barbara, CA 
  July 30, 2000, Cristina Lopes,  tutorial 

D.2  Talks, Demos, and Keynotes 
SD East  Boston, MA 
  November 20, 2002, Erik Hilsdale and Ron Bodkin 
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SD East Boston, MA 
  November 18, 2002, Gregor Kiczales, keynote.   
Eclipse BoF at OOPSLA Seattle, WA 
  November 5, 2002, Mik Kersten, AJDT report 
OOPSLA Seattle, WA 
  November 7, 2002, Mik Kersten and Erik Hilsdale, demo 
OOPSLA Seattle, WA 
  November 8, 2002, Mik Kersten and Erik Hilsdale, demo 
Net Object Days Erfurt, Germany 
  October 10, 2002, Gregor Kiczales, keynote 
Music City Java Conference Nashville, TN 
  September 27, 2002, Mik Kersten, talk 
IPSJ Japan 
  August 27, 2002, Gregor Kiczales, keynote 
SD Forum Java SIG Palo Alto, CA 
  September 3, 2002, Mik Kersten, talk 
SD West, San Jose, CA  
  April 26, 2002 Ron Bodkin: "Aspect-Oriented Software Development with AspectJ"  
SD West, San Jose, CA 
  April 26, 2002 Ron Bodkin: "Better Javatm Development with AspectJ".  
JavaOne, San Francisco, CA   
  March 25-29, 2002.  Jim Hugunin and Mik Kersten, BOF 
OOPSLA  Tampa Bay, Florida 
  October 18, 2001, Erik Hilsdale and Mik Kersten, demo 
OOPSLA  Tampa Bay, Florida 
  October 17, 2001, Erik Hilsdale and Mik Kersten, demo 
Reflection  Kyoto, Japan 
  September 25, 2001, Gregor Kiczales,  keynote 
JAOO  Aarhus, Denmark 
  September 10, 2001, Gregor Kiczales, talk 
BBN Lecture Series  Cambridge, MA 
  August 14, 2001, Gregor Kiczales, talk 
San Jose Java SIG  San Jose, CA 
  August 8, 2001, Jim Hugunin, talk 
ECOOP Budapest, Hungary 
  June 21, 2001, Erik Hilsdale, demo 
ECOOP Budapest, Hungary 
  June 20, 2001, Erik Hilsdale, demo 
Rockwell Martin  
  June 2001, Gregor Kiczales, talk 
University College Dublin Dublin, Ireland 
  April 6, 2001, Erik Hilsdale, talk 
O'Reilly Conference on Enterprise Java Santa Clara, CA 
  March 29, 2001, Jim Hugunin, talk 
SIGS JavaPlus San Jose, CA 
  October 29, 2000,  Erik Hilsdale and Mik Kersten, talk 
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OOPSLA  Minneapolis, MN 
  October 27, 2000, Jim Hugunin and Mik Kersten, demo 
JAOO Aarhus, Denmark 
  September 25, 2000, Gregor Kiczales, talk 


