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PREFACE 

The subject of "Bounds on Turbulent Transport" was introduced in a series of 
ten lectures. The six lecturers constitute almost all of the contributors to this subject. 
The subject was introduced and foundations were laid by five lectures by F. H. Busse. In 
the middle of the first week, L Howard reviewed his historical first approach to this 
subject and described more recent advances. Additional lectures by P Constantine, R. 
Kerswell, C. Caulfield and C. Doering provided modem advances. We trust that the 
lecture notes will constitute a timely review of this promising subject. 

The following weeks had many highlights with approximately 40 additional 
lectures. The mini symposium on rotating convection in early July included presentations 
of experimental, ocean, atmospheric, and planetary observations. During the rest of the 
program, participants and visitors who have studied turbulence, convection, and 
instability in numerous geophysical situations with application to the ocean, the earth's 
atmosphere and planetary circulation made numerous contributions. 

I want to thank a number of participants. This year's fellows presented ten 
excellent lectures on their research projects. They clearly enjoyed—^and contributed to~ 
a fine and stimulating summer. George Veronis must be thanked for his enthusiastic 
coaching and to other contributions to this GFD program. Ed. Speigel worked the porch 
in his usual pedagogic fashion. Eric Chassignet and Glenn Flierl spent many selfless 
hours with the computers. Jean-Luc Thiffeault, Claudia Pasquero and Jeanne Fleming 
made important contributions to creating this year's volume. And above all, Janet Fields 
provided her usual fine hospitality to the visitors and staff, and assisted with many 
aspects of running a smooth program both during the summer and throughout the year. 

Finally, I want to especially thank W.V.R. Malkus, who unselfishly urged 
boundless bovmding efforts throughout the decades. Though seated during his address, he 
prodded us to raise our sights still higher. 

Thank you all. 

Jack Whitehead, Director '02 
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Lecture 1 

Hydrodyneunic Stability 
F. H. Busse 

Notes by A. Alexakis k E. Evstatiev 

1 Introduction 

In many cases in nature, like in the Earth's atmosphere, in the interior of stars and planets, 
one sees the appearance of patterns that seem to be stable and persistent. Those patterns 
usually correspond to broken symmetries. The purpose of the following lectures is to ex- 
plain the formation of these patterns and their persistence even under 'strong' turbulent 
conditions. This first lecture is dealing with onset of turbulence by determining the critical 
value of the control parameters that the laminar solution becomes unstable. 

2 Linear theory 

2.1    States of Minimum Energy 

Continuous material systems are subject to .conservation laws like mass, energy, momentmn 
and angular momentum. The laws of thermodynamics also tell us that the mechanical 
energy has a tendency to be converted to thermal energy leading a system to a state of 
minimum mechanical energy, subject to other conservation laws. Systems that have reached 
this state are called equilibrium systems. As an example consider a rotational flow in a 
cylinder. To simplify the problem we consider that the flow has only a radial dependence 
e.g. w = u}{r). We can then ask the following question: Given an initial condition with 
angular momentum A, what is the state of minimum mechanical energy our system can have 
keeping the angular momentum fixed? The kinetic energy JC and the angular momentum 
can be expressed as functionals of the angular frequency as: 

/To /TO 

K,[u)] = TT /    {u;{r)ryrdr,        A[u}] = 2ir j    u{r)r\dr = AQ       (fixed) 
Jo Jo 

(1) 

To minimize the energy keeping the angular momentum fixed we have to minimize the 
functional: 

:F[a;, A] = K\u] + A {A[u\ - AQ) (2) 

Where A is a Lagrange multiplier and AQ the angular momentum of the flow. Evaluating 
the variation of T with respect to a; and A we obtain 

6J' = SK + 5{XA) = 5 |27r /" ° ^u'^{rydr + A (27r / ° u;{rydr - ^ U = 0     (3) 



S:F = 2TTIJ    {(j{rydr + Xr^) Sudr + 5\ hir H u{rydr -AX[ = Q.        (4) 

In order for the variation to be equal to zero for every Su and every 5X we must have 

u{rY + \r^ = 0       and /    u{r)r^dr = Ao. (5) 

which leads to 

2AQ u}{r) = -A = constant = UQ       with       UQ = —^ (Q) 
Trrg 

which is a rigid body rotation. 

A similar example is if we consider a flow in a cylinder with the velocity being given by 
u = v(r)k where k is the unit vector parallel to the axis of symmetry. The kinetic energy 
and the momentum are given by 

(7) 

6{XM) = * ITT y    v^{r)rdr + x(2ir j    v{r)rdr - Mo\ | = 0 (9) 

f^o fro 
lC[v] = TT /    v^{r)rdr,       M[v] = 27r /    v{r)rdr = MQ       (fixed) 

Jo JQ 

To minimize the energy, keeping the momentum fixed, we define the functional 

TM = tC{v] + X{M[v]-Mo). (8) 

Varying it we get 

which leads to 

v{r)rdr = MQ (10) 

Which again leads to the motion of a rigid body with velocity given by u = Mo/Trr^k. 
The fact that the above states are of minimum energy indicates that they are stable. 

Any other state with more energy will not be stationery or stable and will decay to the 
solutions of minimum energy. 

As a further example we will examine the flow of a fluid between two infinite parallel 
plates separated by a distance d. A uniform pressure gradient along one of the paraUel 
directions is assumed to keep the flow fi-om being non-zero. The only control parameter 
of the problem is given by the Reynolds number Re = Ud/u where u is the kinematic 
viscosity and U is the averaged velocity The above system has a steady solution given by 
u = (i?e(l/4 - z^),0,0) (Poiseuille flow.). We want to examine for which values of the 
control parameter Re the Poiseuille flow is stable. It is typical that in stability problems 
Uke the one described above four regimes of the flow parameter Re can be distinguished, 
see Fig. 1. 
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Figure 1:  The behavior of perturbations on the laminar solution for different Reynolds 
numbers. 

A) From 0 to RBE all disturbances decay exponentially. 

B) From RBE to Rec some infinitesimal or finite disturbances might grow for finite time 
but all disturbances decay exponentially for i -^ oo 

C) From Rec to Rcc infinitesimal disturbances decay exponentially but finite distur- 
bances converge to a new solution. 

D) From Rcc to oo infinitesimal disturbances grow exponentially. 
The following paper is dedicated to estimating the values of Res, Rec- 

2.2    The Energy Method 

We restrict ourselves to an incompressible fluid on a domain V. The equations of motion 
are given by 

atv + V • Vv   =   - Vp + f + ivV^v 

V-v   =   0 

with boundary conditions on dV 

v = 0 

(11) 
(12) 

(13) 

or 

V • n = 0 and n x (V x (n x v)) = 0 (14) 

where n is the normal unit vector to &D. 
Denoting the stationary solution of maximum symmetry by v^ and writing the general 

solution as the stationary solution plus a perturbation u 

V = Vs + u, 

The Navier Stokes equation for the velocity u becomes 

atu + Vs • Vu + u • Vvs   =   -VTT + i/V^u 

V-u   =   0 

(15) 

(16) 

(17) 



with the same boundary conditions as (13) or (14). Multiplying the above equation by u 
and taking the volume average we obtain 

--(u ■ u) = -dVup) - Re{n • (u • V)v,) (18) 

where we have used the boundary conditions to eliminate the surface terms. From the 
above equation it is obvious that if Re{u(u • V)vs) > 0 then i|(u • u) < 0 and therefor all 
perturbations decrease in amplitude with time. On the other hand, if Re(u • (u • V)vs) < 0 
we can define the functional 

^__{|Vup)-2(7rV.u) 
^-    -(u.(u.V)v,) (19) 

and look for its minimum. 
Let 

/i = (iVu|2), 72 = -(u • (u. V)v,) and I3 = -2(7rVu). (20) 

Then 

Sn^^'J^-Hli^^Hl^.Mf^O, (21) 

where M = min{7e£;(u)}. Expressing the variations 5Ii,5h,Sh as we did in the previous 
paragraph, we obtain 

-M[ujdjVs i + UjdiVsj] = -di-K + djdju (22) 

and 

diUi = 0. (23) 

Now, since M is the minimum of the functional KE we have that for an arbitrary solution 
of (17) that 

^^(|VuP)-2(.Vu) 
-   -(u.(u.V)v,) (24) 

using the energy equation (18) we have that 

--(u . u) < -{M - Re){u . (u . V)v,) (25) 

and since (u • (u • V)vs) < 0 we have that the perturbation can grow only if Re > M. 



2.3    Linear Stability of Plane Couette Flow 

As a special case illustrating the above general theory we take a flow between two parallel 
plates moving in opposite directions with relative velocity VD- The distance d between 
the plates can be used to define Reynolds number Re = |UD|d/i/ and the solution can be 
written in dimensionless form 

Vs = —Rezi, (26) 

where we have introduced Cartesian coordinates and the unit vectors in the directions of 
{x,y,z) are (i,j,k), respectively. The velocity UD is in the direction of i. For the solution 
of Eqs. (22), (23) we introduce the general representation 

u = V X (Vyj X k) + VV' X k (27) 

for a solenoidal vector field u, where (p and xp are some scalar functions. The z-components 
of curl and (curl)^ of Eq. (22) give 

V^A2'p = lMi2d:cdzA2'p + aj,A2^). (28) 

V^As^ = ^MdyA^^, (29) 

where A2 = 0"^^ + 5^. The boundary conditions for this problem are 

^ = a^V? = V = 0. (30) 

If we only consider solutions independent of x, the function "4) can be eliminated from 
Eqs. (28), (29) to give 

{y^--Mldly)A'2.^ = Q   with   9j = a^9? = VV = 0   at   -z = ±2- (^^^ 

Since this eigenvalue problem is similar to the problem of determining the critical 
Reynolds number in a fluid layer heated from below with rigid boundaries, we can use 
the latter fact to write 

-Mf. = 1708   corresponding to    y? = cos(Q:y) /(z)    with    QC = 3.116, (32) 
4    ^ 

where cxc is the lowest eigenvalue. It can be prooveii that more general solutions ip and V' 
that depend on x and y do not yield values of M lower than My [1]. Therefore finally we 
have ReE = 2\/1708 « 82.6 for the plane Couette flow. The values for various non-rotating 
systems have been determined experimentally and theoretically, and comparison with the 
linear theory is given ^ in Table 1. 

^The maximxim velocity and the channel width d (radius d in the case of pipe flow) have been used in 
the definition of Re. 



Res Rec (from exp.) Rer 
Plane Couette Flow 
Poiseuille Flow (Channel Flow) 
Hagen-Poiseuille Flow (Pipe Flow) 

82.6 
99.2 
81.5 

«1300 
«2000 
«2100 

oo 
5772 

oo 

Table 1: Reynolds Numbers for Shear Flows in Non-Rotating Systems. 

2.4    Linear Stability of Circular Couette Flow 

Consider the flow between coaxial cylinders with radii n and ra (> ri) that rotate with 
angular velocity f2i and ^2, respectively. The basic solution of Eq. (12) for the azimuthal 
velocity v^ is 

v^ — _ rfHa - r\Ui 
rl-rl 

rfr|(n2 - »i) 
(r| - rl)r (33) 

and is called the circular Couette flow. For simplicity we restrict our analysis to the case 
ri -ra < ri and 0 < fii - ^2 < f^i- In this Hmiting case the solution (33) assumes the form 
of a plane Couette flow studied in the previous section, with angular velocity UD = 5(^1 + 
fia). The corresponding coordinate system is oriented so that the x-coordinate points in 
the azimuthal direction, the y-coordinate points in the axial direction, and the ^-coordinate 
is pointed radially outward. The Reynolds number is defined by Re = (Qin - Q2r2)d/u. 

Next we study infinitesimal disturbances therefore neglecting the nonUnear term u • Vu 
that enters Eq. (17), and add a Coriolis term 

dt u + Vs • Vu + u • Vvs + 2f} X u = -VTT + V^u, (34) 

V • u = 0, (35) 

where Q = QDC^/U. Assuming time dependence of the form exp(cri), boundary conditions 
u = 0 at 2 = ±1 and a representation for u in the form 

u = V X (V X k<^) + V X kt/i, 

we obtain the following eigenvalue problem 

(36) 

V'^A2<p - 2fi • VA2i> = vs • VV2A2<^ + aV^A2'p - v^' • VA2<^ (37) 

V^AaV' + 2n • VA2c^ = Vs ■ W^A2'il> + CTA2V' + k • (VA2^ x v^). (38) 



Again, we are going to focus on disturbances which are x-independent and for which the 
imaginary part of a vanishes. In this case the critical disturbances correspond to cr = 0 and 
Eqs. (37), (38) reduce to 

V^dly(p-2mydl,^ = ^, (39) 

V^aJ^t^ - {Re - 2^)dydly(p = 0. (40) 

In the last formula we have used the expression (26) for Vj. Then we observe that the 
above equations are identical with the ones without x-dependence, up to a numerical factor 
in the second term in Eq. (40). So, we can use the solution (32) to write 

1708 
2Q 

A calculation of the minimum of the above expression gives 

Rey = 2n + ^. (41) 

Rec = 2 \/l708   corresponding to   2fi = V1708. (42) 

It can be shown that the energy stabihty limit coincides with the result just obtained. 
Therefore, at this point the stability problem is solved completely because of the relation 
ReE < Rec < R^c which in this problem attains strict equalities. We see that for large 
values of fi Eq. (41) that yields 

Re < 2n (43) 

as a condition for stability. 
This also can be shown to follow from the Rayleigh stability criterion, ^ ^^jl ' > 

0, which describes the condition for stability of rotating inviscid fluid to axisymmetric 
disturbances. In our case assumes the form 

\nirl\ < |Q2ri|. (44) 

Using the notation in Fig. 2 we can write (44) as 

(„,,£^) (.._!)% (^.-ik^)(..f)^ («) 
After expanding and regrouping we obtain 

(46) 



Figure 2: The asymptotic limit for large values of fi leads to the inequality Re < 2n as 
condition for stability. 

Remembering the relation between QD and Q we finally obtain 

a a (47) 

from which our assertion follows. 
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Lecture 2 

Phsise Turbulence in Convection 
F. H. Busse 

Notes by by L. Lu and F. Petrelis 

1    Description of the Rayleigh Benard instability 

1.1    Mechanism 

When a fluid layer is heated from below, a fluid particle at the bottom of the layer is hotter 
than the one above her. Consequently it is lighter and has a tendency to go up which is 
slowed down by the viscous force. This is the mechanism of the Rayleigh Benard instability 
which can generate convection movements in a fluid heated from below. By comparing the 
power of the two forces involved in this mechanism, we can get an idea of a parameter which 
controls the instability development. 

We first have to specify how the density p of the fluid depends on its temperature. The 
simplest hypothesis is to use a first order approximation and to assume a linear dependency 
that yields 

p = po(i-7(r-ro)), (1) 

where po is the density at temperature To and 7 is the expansion coefiicient 

IdV   ^_iap 
'     VdTp        pdTp ^ ' 

This is part of the Boussinesq approximation, pertinent for almost all common cases of 
Rayleigh Benard instabihty. 

We can estimate the buoyancy force Fb per unit volume between the bottom of the 
layer at temperature T2 and the top at temperature Ti (with Ti <T2). Using the height d 
between the two surfaces of the layer (see fig 1), we get F^ = po'y {T2 — Ti) g^. The last 
coefficient — where V is the velocity of the fluid and K the thermal diffusivity takes into 
accoimt the effect of the thermal diffusion on the distortion of constant density planes. We 
compute the power of this buoyancy force per unit volume Lp by multiplying it with the 
velocity and we obtain 

Lp = cipo^{T2-Ti)gd—, (3) 

where ci is a numerical coefficient. 
The power of the viscous force per unit volume is the product of the force per unit 

volume PQVV'^V c:i Po^^ ''^ith the velocity 

V 
Ld = C2poi^ -^V, (4) 



% 

Figure 1: Sketch of layer heated from below at temperature T2 greater than the top surface 
temperature Ti. 

C2 is also a numerical coefficient. When the ratio between these two powers exceeds a critical 
value convection occurs. We define the Rayleigh number by 

R 
LpC2 _^{T2-Ti)g(f 
LdCi UK (5) 

and its value at onset is the critical Rayleigh number Rc = ^. 

1.2 Interesting aspects 

The study of convection phenomena concerns a very wide range of systems. Varying the 
Prandtl number (ratio between the kinetic viscosity and the thermal diflFusivity) and other 
parameters (related to other effects such as magnetic field or rotation...) lots of situations 
can arise. Some of them are presented in figure 2. 

A particularity of the usual convective instability is that the unstable mode is degenerate 
at onset. We will show in the following paragraph that the horizontal isotropy of the forcing 
exists and that the manifold of the unstable modes is characterized by wave vectors of fixed 
norm but free direction in the xy plane. As we can see in figure 3, this is reaUy different 
from an instability generating a unique unstable mode and leads to some new behaviour on 
which we will now focus on. 

1.3 Onset of Instability 

The full set of equations describing the motion of a fluid is as follows: 
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Convection in the presence of (nearly) two-dimensional isotropy 
under steady external condition 

Turbulent 

Sequences of 

lowP 

Vertical asymmetry 
hexagons, asymmetric squares 

Benard Marangoni Convection 

Binary fluid convection 
oscillatory onset, localized convection 

EHC in homeotropic nematics 

Double layer convection 
phase change interface 

R 

convection 

bifurcations 

highP 

Side walls, cylindrical 
rectangular 

Vertical magnetic field 
oscillatory onset 

Vertical axis of rotation 
Kupper Lortz chaos 

Centrifugally driven convection 
for P»l 

Temperature dependent 
dielectric susceptibility 

Figure 2: Some effects that occur in Rayleigh-Benard convection. 

11 



GIturcaf ons torn homogeneous slales 
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Figure 3: Critical Rayleigh number R at onset of instability for a horizontal wave vector 
{kx, ky) in a non-isotropic case and in an isotropic one. 

d 
■^p + djpuj^O (6a) 

^ds dT     T fdp\   dp 
(6c) 

where # is mechanical dissipation and the density p has a temperature dependence given 
by 

P = Po{l- i{T - To)),       To = ^i±Ik. 

A static solution exists for equation (6): 

u = 0 

is = io ; Z 

PS 

Using d as the length scale, ^ as time scale and T2 - Ti temperature scale, we introduce 
dimensionless variables 

(z',y',/)=r-(x,y,2), 

t'=-t 

,     d 

T' = 
T2-T1 
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Assuming the mechanical dissipation $ « 0, and taking into account the temperature 
dependence of density only in the gravity term (Boussinesq approximation), we obtain from 
equations (6) 

V-u = 0, (7a) 

+ U-V) =-V7r + i?ek + v2u, (7b) 
dt 
(5t + u • V) e = k • u + V^e, (7c) 

where primes have been dropped from the dimensionless variables and 6 = T' — Tg, TT = 
p' — p'g. Although there are seven dimensional parameters (po, 9,1, AT, u, K) that can be 
measured with four dimensions (namely m, s, kg, K), the mean density po does not appear 
in the equations in the Boussinesq approximation so that only two dimensionless parameters 
are relevant for this problem. A first one is the Rayleigh number R = '^^^ ^~^ ^' . A second 
dimensionless number P = - is the Prandtl number. For small amplitude steady convection, 
we have 

V-u = 0, (8a) 

V^u + i?^k - VTT = 0, (8b) 

V^e + u • k = 0. (8c) 

Operation with -k • V x Vx on  (8b) yields 

VV + -RA2e = 0, (9) 

where 

Take A2 on equation 8c, and eliminate 0 from equation 9, we get a single equation of Uz'- 

(V^-i2A2)u^ = 0. (11) 

With the separation ansatz 

a2 , a2\ 2 

equation (11) becomes 

(V^ + i?a2)u^ = 0. (13) 

For stress-free boundaries, we have 

13 



Use the continuity equation dxUx + dyiiy + d^u^ = 0, we have 

dxdzUx + dydzUy + dl^Uz = d^^u^ = 0 

at two boundaries. Also, from equation (9) 

{V'uz + iJAzG) U^i = dtzzzUz = 0 

In summary, the stress-free boundary conditions are: 

Uz = 0, (14) 

C«z = 0, (15) 
dzzzzUz = 0, (16) 

at 2 = ±i. With these boundary conditions, equation (11) has solutions: 

«2 = cosaxsmn7r(2r + -),        n = 1,2,3,..., (17) 

and 

R=- ^2-^.        n = l,2,3,.... (18) 

a is the wavenumber of the unstable mode. The critical Rayleigh number R^ is the minimum 
of R, and is given when n = 1 and a = ;^. Hence Re = ^TT". Note that R^ is independent 
of the Prandtl number. 

A single mode describes a roll of convection as sketched in figure 4. Because of the 
degeneracy of the unstable modes, complex behaviour can occur even close to the onset of 
instability and we will study it through a weakly non-linear analysis. 

2    Weakly Non-linear Analysis 

2.1    Perturbative Expansion 

To iUustrate the ideas of weakly nonlinear analysis, consider the following one dimensional 
example: 

u'\z) + Ru{z) + u'{z)u{z) = 0   with   u = 0&t z = ±-. (19) 

We make the ansatz 

R = Ro + €Ri + e^R2 + ... , 

and the normaUzation condition 

e=<ui,u>=€< ui,ui > -fe^ < ■ui,tt2 > +... , 
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which is equivalent to 

<Ui,Un>= Sin        n= 1,2,3,.... 

Insert these ansatz into the original equations and collect terms according to the powers of 
€. To the lowest order 0(e) we have 

u" + Roui = 0, 

The solutions are 

ui = v^sinnTT I -^ + ^ ) >    with RQ = ■n^iP', n = 1,2,3,... 

To continue the process, and for simplicity, we choose n = 1 here. Thus 

u\ = \/2sin7r I -^^ + ^ I - 

To the order ©(e^), 

tl2 + ■Rott2 = —■UiWl — R\U\ 

Multiply both sides with ui , integrate over the interval — 5 < ^; < ^, we have on the left 
hand side: 

< tli(«2 + ■Ro«2) > = < ^2^1 + RQU{) >- 0 

where integration by parts has been utilized. This condition yields 

< -ui(«iiti + R^ux) >= 0 =4> J?i = ^—^ = 0 
o 

which is the solvability condition. Now the equation of «2 becomes 

-)cos7r(2; + - ti2 + R0U2 = -27rsin7r(z + -) cos7r(2; + -)    with   «2L=±i = 0 

The solution is 

7rsin27r(z +^)      sin27r(z + 5) 
«2 = 47r2 -Ro 37r 

To the third order of e, 

U3 + RQUZ = —«'i«2 — '"2^1 — R2U1    with   usl^^^i = 0 
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Apply the solvability condition, we have 

R2 = - < Ui{u[u2 + U2U1) > 

= -<2«2(«i)' + u'2(«?)> 

=< 2"2(«i)' > 

_ 1 / TT^ sin 27r(z + |) sin 2ir{z + |) \ 
~ 4 \ 37r2 I 

~ 24 

In this simple example we are able to calculate the amplitude of the mode at saturation as 
a function of the departure from onset. At order e^ we get e^R2 = R-Rc, so that 

ufii€Ui = 4V3y/R-Rcsimr(z+-\ (20) 

In the case of convection close to onset of instability, the degeneracy of the unstable mode 
may lead to non trivial behaviour because many modes can interact. We will use a general 
formalism based on a weakly non-Hnear analysis similar to the simple one before. We write 
the Navier-Stokes equations and the temperature equations in the form 

(W + i? U) X = ^VX + Q(X, X), (21) 

where X = K^ j is a vector, W, U and V are hnear operators, R is the control parameter 

and Q the non linear term. 
We expand X and R in the form 

X = eXi+e2X2 + ..., 

R = Ro + €Ri + e^R2 + ..., (22) 

where c is a small parameter and the other terms are of order one. We will now describe 
two aspects of the instability slightly above onset. We first focus on the steady pattern and 
then we study the dynamic interaction between the different modes that can lead to a kind 
of turbulence named phase turbulence. 

2.2    Pattern selection 

We write equation (21) at order e and we recover the linear problem of steady convection. 
The solution is a Hnear combination of modes described by equation (17) with wave vectors 
of norm a. Thus, we write 

n=N 

Xi = f(^)   Yl cne'*""" (23) 
n=-N 
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where kn lies in the xy plane and is of modulus a. In order to have real solutions, we impose 
the two other relations k-n = —kn and c-n = c^- 

At order e^ we get 

(W+i?oU)X2 = Q(Xi,Xi)-iloUXi. (24) 

Then we apply the solvability condition (X*| right hand side) = 0 where X* is part of 
the kernel of the adjoint homogeneous Unear operator. If the properties of the layer are 
symmetric with respect to the z = 0 plane, we obtain Ri = 0 because Q is antisymmetric 
in z while i{z) and f*(z) are symmetric. The solution of equation 24 can be written in the 
form 

X2=^J2^{ki + kk,z)ci Ck e' (^*+^'=)-^'. (25) 
i,k 

We write the equation (21) at order e^ and use the solvability condition. In the most 
general case, we get an expression of the form 

{eRi+ e'^ R2 + ...)U cl = - PeY^CnCmS{ki+ fc„ + km) 
TijTn 

N 

+ e2( J2 cn cl A{ki.kn) + AQ \ci\^) ^ + ... for i=l, 2,3....   (26) 
n=l 

Here /3 is an asymmetry coefficient which appears for instance if we consider non Boussinesq 
effects and write the temperature dependence of the density as 
p = po(l-a(T-ro)+/3(T-ro)2). 
If /5 = 0, we get Hi = 0 and we recover the symmetric case result. 

Looking for regular solutions for which the angle between the N neighbouring q vectors 
is given by TT/N and |cip = 1, we obtain rolls solutions if JV = 1, squares if iV = 2. If iV = 3 
many solutions exists depending of the relative phases of the three coefficients Cj. In figure 
4, these patterns of convection are sketched. 

If iV > 4 there are no regular periodic patterns but quasi patterns of higher order can 
be observed. Depending on the value of /3 and i?, rolls or hexagons are stable. Without 
asymmetry or at high Rayleigh number, the rolls are stable whereas hexagons are stable if 
the asymmetry parameter /3 is high. Note that in some domain of the space parameters, 
both solution are stable, as can be seen in figure 5 [?, ?, ?]. 

2.3    Phase turbulence 

We will now focus on the case where dynamic effects are present and try to describe how 
the different modes can interact. Using Ci{t) = ecj, we write 

N 

±{x,y,z,t) = i{z)   J2   Cn{t)e''-'' (27) 
n=-N 
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N=1 : Rolls 

N=2: Square Pattern 

hexagons 

N=3 
1/ 

\g - hexagons 

Figure 4: Sketch of patterns of convections: rolls, squares, 1 and g-hexagons. 

1-hexagons g-hexagons 

Figure 5: Stability diagram of rolls and hexagons patterns in the {13, R) plane. 
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Close to onset, one expects that the time dependence of the modes will be slow and of order 
e^. As before, we write the solvability condition at order three and this yields to dynamical 
equations for the coefficients 

V^Ct ={R-Ro)UC: +13 y CnCmS{ki + fe„ + km) (28) 
n,Tn 

N 

+ {J2 CnC*A{ki.kn) + E{ki.kn, XM X fc„) + AQ \Ci\'^) C*i   + ...with i=l,2,3.... 
n=l 

(29) 

If there is no rotation {E = 0), and if there is no mean flow, we can write the evolution 
equations at this order as 

where 

i=l i,n,m 

+ i (E \Cn\''A{ki.kn) + Ao \CiA |a|2 (32) 

Thus these are evolution equations of Lyapunov type and the steady stable solutions 
will correspond to the local minima of F. The asymptotic approach is guaranteed and there 
can not be chaotic behaviour. This is not the case if either E is not equal to zero, or if we 
consider solutions with non-zero mean flow (stress free boundary) or if we consider terms 
of higher order. Then, chaotic behaviour can occur. 

Indeed, when we consider a horizontal layer heated from below that is rotating about a 
vertical axis, E is not zero and the evolution equations are not of Lyapunov type. Above 
a critical value of the rotating parameter, all steady solutions become unstable. The local 
orientation of the convection rolls changes in time and this phenomenon is called phase 
turbulence. Experimental evidence have been seen in a rotating convection layer. A typical 
time evolution of the pattern of convection is shown in figure (6)[?, ?]. 

Another case in which phase turbulence is present is the convection in the presence 
of stress-free boundaries. Because no stress is exerted by the boundaries on horizontal 
motion of the fluid, large scale flow can be generated by a small Reynolds stress. The 
advection of the pattern by the large scale mean flow must be taken into account in the 
evolution equations which are ho longer of Lyapunov type. Phase turbulence can also occur 
as presented in figure 7 where the time evolution of the heat flux in convection is calculated 
numerically for different values of the Rayleigh number [?, ?]. 

Phase turbulence shares some properties with the asymptotic turbulence of Navier- 
Stokes equations in the limit of infinite Reynolds number. A brief characterization of 
different types of turbulence is given in figure 8. 
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Figure 6: Time evolution of patterns of convection with phase turbulence [?, ?] 
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Figure 7: Time evolution of the heat flux for diff'erent values of the Rayleigh number and 
stress-free boundaries. Pm = 0.15. At high Rayleigh numbers the evolution is chaotic. 
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Properties of Turbulence 

Chaotic time dependence Chaotic spatial 
dependence 

Dynamical systems 
(few degrees of freedom, 
eg convection in a box, R>R ^) 

Riase Turbulence 

(many degrees of fteedom. isolropy degeneracy; R close to Re 
examples: convection in a large aspect ratio layers, 
rotating or non-rotating) 

Classical turbulence 
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(shear-flow luAulence in channek. pipes and boundary layers; high Rayleigh number convection in large 
aspect ration layers) 

Inertial range 
Fractal structure 

Asymptotic Turbulence 

(Turbulence in flie limit of asymptotically high Reynolds numbers) 

Figure 8: Characteristic properties of different kinds of turbulence. 
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Lecture 3 

The Sequence-of-Bifurcation Approach 
for the Transition to Turbulence 

F. H. Busse 

Notes by U. Riemenschneider and S. Plasting 

1    Introduction 

In this lecture we will discuss fluid systems in which there is a gradual evolution from the 
basic laminar state toward a turbulent state with increasing Reynolds number. Transition 
is seen to occur through a sequence of bifurcations. We consider fluid systems with a 
high degree of symmetries which in the laboratory are observed to undergo transition to 
complex flow states through supercritical bifurcations that are characterized by the breaking 
of flow symmetries. We will not consider systems such as pipe flow or plane Couette flow 
which exhibit strongly subcritical bifurcations from the basic laminar state to a turbulent 
state. Figure 1 shows some fluid systems with maximum symmetry which undergo gradual 
transtion from the basic state to ever more complex solutions. For each of these systems 
the external conditions are homogeneous in two spatial dimensions and in time and since we 
are dealing with systems far from thermodynamic equilibrium we must have inhomogeneity 
in the third spatial dimension along which a constant energy flux is applied, thus these 
systems exhibit maximum symmetry. Although these systems do not represent all important 
processes in fluid mechanics a large number of system can be ideaUzed or reduced to their 
physically essential properties such that they conform to this high degree of symmetries. 

The sequence-of-bifurcations approach discussed in this lecture has the following advan- 
tages 

1. In most cases the reduction of inhomogeneity to a single dimension reduces a physical 
mechanism to its simplest form. 

2. The homogeneity in two spatial dimensions and in time provides a maximum of sym- 
metries, the breaking of which identifies the bifurcations in the manifold of solutions 
for the fluid flow. 

3. The relative simplicity of the physical properties is reflected in the simplifications of 
the numerical analysis. Symmetries can be employed to reduce the numerical effort. 

4. Although physically realized systems can only approximate homogeneity in two spa- 
tial dimensions, the bifurcations of the ideal system become only slightly imperfect 
bifurcations in the real system as long as the typical wavelengths introduced by bi- 
fiircating solutions are small in comparison to the length scales associated with the 
deviations from homogeneity. 

5. The spatially and time periodic solutions that are obtained in the sequence-of-bifurcation 
approach represent only a minute manifold of the realizable solutions of the basic 
equations. Even if they are stable their basins of attraction decrease with increasing 
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Figure 1: Examples of fluid systems with maximal symmetries and the typical sequence of 
bifurcations observed, starting with the basic roll solution. 

control parameter and solutions describing more irregular spatio-temporal flow struc- 
tures are typically observed in experimental realizations. Nevertheless, the regular, 
spatially periodic solutions usually exhibit most clearly the dynamical properties and 
transport mechanisms of the fluid system as a function of the control parameter. 

2    Secondary Solutions 

We now consider bifurcations which occur far from the critical point at which the laminar 
flow state becomes hnearly unstable to roll patterns. We have seen in the previous lecture 
that the minimizing wave-vector of the most critical disturbance is infinitely degenerate 
when there is isotropy in the xy-plane. Here a weakly non-linear analysis is not suitable 
to detect bifurcations from secondary roll solutions because the non-linear terms in the 
Navier-Stokes equations play an equal role far from the linear stabiUty point. Often isotropy 
manifests itself as phase turbulence for near critical parameter values, we therefore disregard 
isotropy so that we can analyze bifurcations from a roll solution with only one preferred 
direction. The basic equation can be written in the following canonical form 
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A translation in time d^p/dt = 0 
B translation along roll axis dtf/dx = 0 
C transverse periodicity (p{y + 2Tr/a, z) = (p{y, z) 
D transverse reflection v(""y> ^) = v(y> 2) or a-mn = Omn 
E inversion about roll axis i^{-K/a - y, -z) = -(p{y, z) or 0,7171 = 0 for m + n = odd 

Table 1: Symmetry properties of two-dimensional rolls 

L^-RBip-V-<p = N<p^ (1) 

where L, B and V are linear functional and N represents the non-linear terms of the 
governing equations. The control parameter is now called R and homogeneity in two spatial 
dimensions and in time is assumed, therefore the functionals above may only depend on z. 

The stability of the basic state with respect to infinitesimal disturbances <pQ is governed 
by equation (1) with vanishing right hand side. Without loss of generality a disturbance of 
the form 

(fo oc exp{iq • x + at} (2) 

can be assumed, where x is the position vector and where the wave-vector q hes in the 
x,y-plane. The critical point Re is defined to be the point at which the real part ar of 
the growth rate of the most unstable solution vanishes. In the case of no isotropy typically 
the minimizing solution is unique and the imaginary part ai of the growth rate vanishes. 
Taking the y direction to be parallel to the minimizing wave-vector qc and a =| qc | we can 
write the two dimensional solution bifurcating from the basic state as a Galerkin expansion 

<P=  ^ o-mn exp {imay}fn{z) (3) 
m,n>0 

where fn{z) = (—l)"~'^/n(—^) for symmetry about midplane. 
In table 1 we list the symmetry properties of rolls. They can be divided into the first 

three which are obeyed by all solutions of the form (3) and the remaining fourth and fifth 
which are satisfied in special cases. The fifth symmetry can occur only in problems such as 
Boussinesq Rayleigh-Benard convection which have midplane symmetry. 

The stabihty of secondary solutions can be studied through the superposition of infini- 
tesimal disturbances of the form 

if) = e-xp {ibx + idy + at}  ^ a^nexp {zmQ:y}/„(2:). (4) 
m,ra>0 

When equation (1) is linearized in the disturbance (p an homogeneous Unear equation for 
the unknowns amn is obtained with the growth rate a as eigenvalue. This Unear eigenvalue 
problem for a is just 

liip- R B(p - Ya(p = Ntpif + Nipcp (5) 
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Properties <Ti7^0 67^0 dy^O O'mn 7^ O—mn Omn ¥" 0 for 
of disturbances m + n = odd 
Symmetries translation longitudinal transverse transverse inversion 
Broken in time translation periodicity reflection about axis 
Eckhaus X X 
Crossroll CR X X 
Knot KN X X 
Even Blob EB X X 
Odd Blob OB X X X 
Oscillatory OS X X X 
Zig-Zag ZZ X X 
Skewed Varicose SV X X X 
Osc. Skewed Var. X X X X 

Table 2: Symmetries Broken by Bifurcations from Steady Rolls 

Of primary interest here are the growth rates <r with largest real part ar as a function of 
the horizontal wavenumbers b and d. The growing disturbances correspond to a transition 
of the roll solution to tertiary solutions which exhibit more shapes and styles and which 
reflect the specific physical conditions to a higher degree. Table 2 characterizes each type 
of instability that can occur from steady rolls. The skewed varicose instability leads most 
quickly to turbulent convection. Each of these instabilities can be observed for some values 
of Pr - a. Figure 2 shows the enclosed domain oi Ra - a - Pr space where roll solutions 
are stable. The Eckhaus instability usually causes rolls in an unstable region to be replaced 
by rolls in the stable region. Therefore the Eckhaus instability corresponds to a limitation 
of the available wavenumber for rolls and does not lead to a new type of solution. 

3    Tertiary Solutions 

Tertiary solution are twice spatially periodic solutions bifurcating from roll patterns. They 
can be described by expressions of the form 

V = 2J "'"^'i ^^ {iloxx + imayy}fn{z) (6) 
l,m,n 

where we must have a-i.mn = O/tin for a real solution, where ( )+ denotes complex con- 
jugation. We have assumed that the instability of interest has cr, = 0. When an instability 
with a finite value of CTJ = 0 occurs, it typically leads to traveling waves propagating in the x 
direction which can be described by the representation above if x is replaced hyx = x-ct. 
A partial list of tertiary solutions is given in Table 3. 

The stability of these steady three-dimensional solutions can then be studied through 
the superposition of infinitesimal disturbances of the form 

<p = exp {ibx + idy + crf} ^ dimn exp {ila^x + imayy}fn{z), (7) 
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Figure 2: Region of stable convection rolls in the Ra — a — Pr parameter space. The region 
of stable rolls is bounded by surfaces corresponding to the onset of instabilities hsted in 
Table 2. Note that Pr corresponds to P in the figure and increases toward the right and R 
corresponds to Ra. 

Tertiary Solution Reflection Symmetries Inversion Symmetry 
knot-/bimodal convection (i—lmn == 0,lmn =^ O'l—mn aimn = 0 

for / + m + n = odd 
undulating rolls O'—lmn ^^ 0,lmni 

O-l-mn = (—l)'a/mn 
aimn = 0 
for m + n = odd 

Symmetric traveling wave 
convection or wavy rolls 
with Poiseuille flow 

ai-mn — (-l)'aZmn 
aimn = 0 
for m + n = odd 

Wavy rolls with Couette 
flow or wavy Taylor vortices 
in small gap Hmit 

O-l-mn = (-l)'a/mn aimn = {-ir+''a-imn 

Traveling blob convection (^—Imn ^^ (^Imn aimn = 0 
for Z + m + n = odd 

Table 3: Examples of tertiary solutions and their symmetries Usted in terms of the complex 
coefficients 
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where the coefficients aimn can be found by substituting (p into equation (1), projecting onto 
the expansion functions, and solving the resulting non-linear equations using a Newton type 
method for some suitable spatial truncation size. The transition from tertiary to quartemary 
solutions is associated with the solution becoming time dependent. A much richer class of 
dynamical mechanisms for heat transport then become possible. 

4 Quarternary Solutions 

After the onset of three-dimensional tertiary solutions the continuous spatial symmetries 
such as the invariance with respect to the translation along the roU axis have been broken 
and have been replaced by reflection symmetries and inversion symmetries such as those 
shown in Table 3. The stability of the steady or traveling tertiary solutions can be investi- 
gated through the superposition of arbitrary infinitesimal disturbances. Using the general 
Floquet ansatz 

<p = exp {ibx + idy + (Tt}J2 ^imn exp {ilaa^x + imayy}fn{z) (8) 
l,m,n 

we arrive at a linear homogeneous system of equations for the unknown coefficients aimn 
with the growth rate a as eigenvalue. When the maximum real part of <T as a function of d 
and b is less or equal to zero the tertiary solution is stable. Otherwise it is unstable. 

The most strongly growing disturbances of tertiary stationary solutions are often those 
with non-vanishing imaginary part of aj. Since traveling wave type solutions are no longer 
possible after the translational invariance along the axis of the rolls has been broken, the 
time dependence must be taken into account expUcitly. Time dependent three-dimensional 
solutions can be obtained through forward integration in time of the differential equations for 
the time dependent coefficients aimnit) in the representation for the quartemary solutions. 

V = X] ^irnnit)exp{ilaa:X + imayy}fn{z) (9) 
l,m,n 

The system of differential equations is obtained, just as in the case of the algebraic 
equations of tertiary solutions through projections of the equations of motion onto the 
space of the expansion functions. Examples of quartemary solutions, that is solutions in 
three-dimensions and the fourth dimension time, mclude oscillatory bimodal convection, 
oscillatory knot convection and pulsating traveling blob convection. 

5 Bimodal Convection 

5.1    Steady Bimodal Convection: An example of a tertiary solution 

Steady bimodal convection is an example of a tertiary solution in Rayleigh-Benard convec- 
tion (see Figure 1). It corresponds to the superposition of a secondary roU pattern with 
smaller wavelength onto the given roll pattern as shown in the sketch in Figure 3. Through 
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Figure 3: Schematic sketch of bimodal convection in a fluid heated from below. Note the 
superposition of a secondary roll pattern on the already existing roll pattern. 

the onset of bimodal convection the convective heat transport becomes more efficient and 
the two roll patterns quickly reach comparable amphtudes as the Rayleigh number is in- 
creased beyond onset. 

5.2    Transition to Bimodal Convection: An heuristic argument 

5d 

T2 

Figure 4: The approximate form of the temperature profile for steady roll patterns 

In Rayleigh-Benard convection the mean temperature field for steady roll solutions has 
vanishing gradient in the interior of the flow and strong gradients near to the boundary. We 
can think of this thermal boundary layer as a subconvection layer with rescaled Rayleigh 
number ^5^, where 5 is the non-dimensional thickness of the boundary layer. This situation 
is illustrated in Figure 4. The condition for convective instability in this layer is the Rayleigh 
condition for instability ^5^ > Re- If we assume that the gradient of temperature in the 
subconvection layer is approximately constant then the heat transport is iJ « ^ and we 
can write the condition for instability of the boundary layer as 
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Figure 5: Isotherms at the y, 2;-planes x = 0,x = n/ax (from top to bottom) at the times 
t = mr/Su for n = 0,1,2. y increases toward the right and z increases upward. The 
parameter values Pr = 30, Ra = 10^ a^ = 4.5, aj, = 2.5 have been used. 

The most efficient configuration for heat transport to result from this type of instability is 
for tight boundary layer convection rolls to align perpendicular to the primary convection 
rolls as exemplified in the bimodal solution. 

5.3 Oscillatory Bimodal Convection: An example of a quartemary solu- 
tion 

An example of these types of convection patterns in nature could be the formation of 
bimodal convection patterns in clouds, which exhibit a very distinct rectangular pattern 
in the sky. They are typically high in Prandtl number and have a scale of the order of 
IDOm across. If the Prandtl number is in the range 10 < Pr < 10^ the bifurcation from 
rolls to bimodal cells is followed by a further bifurcation to oscillatory bimodal convection. 
The thermal boundary layers periodically thicken and blobs of fluid hotter or cooler than 
average circulate through the convection cells. These oscillations are characterized to some 
extent by a resonance between the circulation time of the bimodal cell and the period of 
thickening and thinning of the thermal boundary layers. 

There are two types of oscillatory bimodal convection, the symmetric one that does not 
change the spatial symmetry of steady bimodal convection and the other, called wavy oscil- 
latory bimodal convection, which is characterized by the property that the set of coefficients 
aimnit) with 

-a-imn = aimn = ai-mn ioT I + m + n = odd and aimn = 0 otherwise (10) 

are participating in the description of the solution in addition to those listed in Table 3 
for bimodal convection. Figure 5 provides an impression of the time dependent structure 
of wavy oscillatory bimodal convection taken from numerical computations of [1] and in 
Figure 6 an experimental visualization is depicted. In the first we see a blob of cold fluid 
descending and impinging on the bottom of the layer while in the second figure we distinctly 
see the walls of the bimodal cells flexing back and forward. 
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Figure 6: Shadowgraph observation of wavy oscillatory bimodal convection in a layer of 
silicon oil heated from below. The dark regions indicate hot rising fluid. The Prandtl and 
Rayleigh numbers are Pr = 63, Ra = 1.5 x 10^ and the wave numbers in the x-direction 
(toward the right) and y-direction are given by ax = 4.08, ay = 2.04. The right photograph 
was taken 25 seconds after the left one which corresponds to nearly half a period. Along 
the darker vertical Hnes small arches may be observed, pointing to the right or left, these 
are due to the oscillatory behaviour of the system. 

It should be kept in mind that the realization of convection flows that are periodic in 
space and in time requires controlled initial conditions such that an approximately perfect 
roll pattern is realized after the onset of convection. The transition to bimodal attractors 
is sufficiently strong such that pattern imperfections can be eUminated in time except close 
to the sidewalls. The transition to oscillations usually occurs in a less homogeneous way 
and their phases tend to exhibit large scale variations. Without controlled initial conditions 
the convection flows at onset occur already in the form of patches of rolls with different 
horizontal orientations which tend to evolve in such a way that they ultimately reflect the 
geometrical configuration at the sidewalls of the layer, see the right column of shadowgraphs 
in Figure 8. As the Rayleigh number increases, the density of dislocations in the pattern 
increases rapidly and a chaotic structure of a kind of bimodal convection is realized when 
the Prandtl number is sufficiently high {Pr > 10). The onset of oscillations in the form 
of hot and cold blobs emerging from the thermal boundary layer occurs initially at a few 
spots where the convection pattern deviates most strongly from the ideal periodic form. 
Laboratory experiments thus exhibit in general a more turbulent situation in qualitatively 
the same manner as in the case of the spatially and temporarily periodic solutions produced 
by the sequence of bifurcation approach. The latter method thus provides a sensible way 
toward an understanding of the processes occurring in turbulent convection as well as in 
other cases of fluid turbulence. 
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Figure 7: Numerical results for simulations of steady knot convection.The views are planar. 
The top two graphs show an average of the heat flux over the entire depth, z of the convective 
layer, the two graphs in the middle show a section through the centre of the layer, 2 = 0 
and the bottom two graphs show a flux of the heat through the bottom boundar^. Left 
hand column: i2 = 2.5 • 10^, right hand column i2 = 8 • 10^. 
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Figure 8: Digitally enhanced shadowgraph images of the convection patterns (taken from 
[2]). The distance from the critical point for onset of convection is measured as e = (ii — 
Re) I Re- (a) and (b) e = 0.920; (c) e = 2.986, (d) e = 3.000, (e) and (f) e = 5.082. The left 
column shows the effect of increasing the Rayleigh number on a jBeld of rolls with uniform 
orientation, while the initial state in the right column contains patches of rolls oriented in 
arbitrary directions. As the Rayleigh number is increased the rolls undergo transition to 
wavy rolls. 
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Lecture 4 

Simple Approaches to Some Bounding 
Louis Howard 

1 On Some Properties of Good Chalk cind 
People Working on Bounding Theory 

2 Extremizing Functions and Functionals. 
Definitions and Simple Examples. 

We all know that if ^(xi) is a differentiable function, then the critical points Xi that 
extremize the function can be determined from the conditions 

dxi 
0. 

But these simple conditions do not determine whether the critical values correspond to 
minima, maxima, or even guarantee an extremum. For example, consider the case shown 
in figure 1 of a horizontal inflection point and a monotonic function in a closed interval. 

fW f(x) 

Figure 1: A horizontal inflection point and a monotonic function. 

However, if the matrix of the second derivatives is positive definite at the critical point 
then there is indeed a (local) minimum, and if it is negative definite then we have a local 
maximum. But if this matrix is indefinite, it does not necessarily help us decide the character 
of the critical point. This is illustrated by the examples fi = x^, f2 = —x^, fs = x^, all of 
which have /'(O) = /"(O) = 0, though /i has a minimum, /2 a maximum and /s neither 
at X = 0. (In the case of several variables, if the matrix of second derivatives has at least 
one positive and one negative eigenvalue, we can assert that the critical point is neither a 
minimum nor a maximum). 

Another case where the above equations are not sufficient to determine the extrema of a 
function is when there is an imposed constraint. As an example consider the unit circle and 
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Figure 2: Points on a circle. 

ask which two points A = {xi,yi),B = {x2,y2) lying on it are furthest apart. The distance 
between them is given by 

D^ = {xi-X2)^ + {yi-y2)\ 

and the constraint takes the form 

x? + yf = 1, for i= 1,2. 

The constraint can be automatically satisfied by letting Xi = cos^,, yi = smOi and 
substituting into the expression for the distance. In this way there is no need to take into 
account the constraint exphcitly. Then 

D^ = (cos^i - cos 02)^ + (sin^i - sin ^2)^ = 2 - 2cos(ei - ^2), 

and maximum distance is obtained for 61 —$2 = -K. 

But when the constraint cannot be simply ehminated the method of Lagrange multi- 
pUers must be used. To find the extremum of /(xi,... ,x„), subject to the constraints 
gi{xi,..., i„) = 0 for i = 1,2,..., m, one forms the function 

m 

t=i 

and solves 

dxi      - °' dXi       =3'^^- 

This seems to be a simple method but let us consider why it works. Suppose that the 
extremum of / subject to the given constraints is at some point Xi. If gj{xi) is to remain 
zero then for small changes in the Xj one must have, 

V^j(xi)-dxi = 0, 

in addition to 

df = V/(xi). dxi = 0. 
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Figure 3: Shape of the Earth. 

We may state this as "V/ should be orthogonal to any vector dx which is orthogonal to all 
the V^i". In the language of linear algebra, V/ should be in the orthogonal complement of 
the space G-^, which is itself the orthogonal complement of the space G generated by the 
Vgi. Since taking the orthogonal complement twice gets you back where you started ( i.e. 
(G-'-)-'- = G), V/ must be in the space generated by the Vgi, or V/ = YT ^i^9i ^^ some 
constants Aj. This is the Lagrange multipUers rule. 

More simply, if we maximize a function f{x, y, z) subject to the constraint g{x, y, z) = 0, 
then the admissible dx's satisfy dx-V5 = 0. That means dx can be any vector in the tangent 
plane to the surface 5 = 0 at the critical point and V/ must be orthogonal to this tangent 
plane. Thus V/ must be parallel to Vp, i.e. V/ = XVg, yielding the Lagrange multipliers 
rule. 

As an example let us consider the following problem. We ask to what shape one should 
transform the Earth in order to maximize his own weight, given that he cannot change his 
mass. Let us assume the Earth is incompressible, with an uniform density and search for 
an axisymmetric solution. Since it is incompressible, the Earth must have volume 

_ 47ra^ 

We introduce spherical polar coordinates with an origin at the position of the person, as 
shown in figure 3. In this coordinate system the volume is given by 

V 

and the person's weight is 

r/('-) /Gmp 
W = 2-n: 

Jo   Jo ') 
COS 9 ] r^ sin OdrdO = 2'KGmp /   fsm9 cos 9 d9. 1: 

Thus the relevant functional is 

$ 
Jo 

sin9cos9 + Xfsm9)d9. 
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Setting its variation to zero gives 

s^= I {df cos e + z\f6f) sin ede = o, 
Jo 

and so the minimum is obtained with 

.2 1 /^ = -33^cos^, 

which is not too different from a sphere (which has / = 2a cos e) and increases the weight 
of the person by (||)3 « 1.02 . 

If we extend our considerations to functionals we arrive at the Euler-Lagrange equations. 
For the simpler case when 

Fif) = jLif,e)de, 

the Euler-Lagrange equations following from JF = 0 are Li5f = 0, (where the subscript 
denotes differentiation with respect to the corresponding argument), but if the functional 
is of the type, 

nf) = JL{f,f',e)de, 

then one has, 

j {Li5f + LiSf) dO = 0. 

After integrating the second term by parts, 

J[Li-^yfd9+[L2Sf]ts = 0, 

and assuming that L25f vanishes on the bounding surface, one obtains the Euler-Lagrange 
equation, 

In particular, if the functional is of the type 

nf)= I L{f,f',e)de, 
Ja 

we get 

^^ = 1 ^^^f + -^2^/' = ] {Li- §QL2)5f de + [L25f] 

This should be zero for all <5/'s that are admissible.   In some cases the boundary term 
vanishes automaticaUy, for example if / is given at x = a and a; = 6.   If there are no 
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such conditions we may first of all take dfs that are in fact zero at ^ = a and 6 = b, but 
are otherwise arbitrary. Then, assuming that (Li - ^1.2) is continuous, we may conclude 
that Li - ^L2 = 0 at all interior points of (a, 6). Then, by taking Sf that is zero at, 
say b but not zero at a, we conclude that L2{f{a),f'{a),a) = 0. Similarly we may show 
that L2{f{b),f'{b),b) = 0. In such cases the variational problem itself provides boundary 
conditions, so-called "natural boundary conditions", to supplement the Euler equation. 

As an example, we minimize JQ /'^(X) dx subject to the two constraints /Q /^(a;) dx = 

1, JQ f{x) dx = 0 (with no boundary conditions specified). To do this we consider the 

functional $ = /^ (/'^ - Ai/2 - A2/). Then, 

5$ =  /" {2f'Sf' - 2XifSf - X25f)dx = 2 [f'5f]l -2 j [/" + Ax/ + ^Asl-S/ dx, 

so the necessary conditions for a minimum are : 

• Euler-Lagrange equation /" + Ai/ -f ^A2 = 0, 

• the natural boundary conditions /'(O) = /'(I) = 0, 

• the constraints /Q pdx = l,/o fdx = 0. 

One could write down the general solution of the differential equation and use the two 
boundary conditions and the two constraints to determine the two A's and the two arbitrary 
constants in the general solution. It is a little neater to note that integrating the Euler- 
Lagrange equation from 0 to 1 and using the natural boundary condition and the second 
constraint gives 5A2 = 0, hence A2 = 0. We then see that / = -s/2cos(n7rx) and Ai = (nTr)^, 
for some integer n that cannot be zero because of the second constraint, n = 1 gives the 
least-value of the integral - indeed if we integrate /'(/" -f- Ai/) = 0 from 0 to 1, using the 
first constraint and the natural boundary conditions, we see that Ai = /Q f^dx, i.e. Ai itself 
is the required minimmn value TT^. (Note that without the second constraint the minimum 
value would be zero, ax;hieved by / = 1.) 

As a simple illustration the shortest path between two parabolas such as those shown in 
figure 4, is a straight line perpendicular to both curves. In this example the Euler-Lagrange 
equation shows that the path must be straight, while the natural boundary conditions show 
that it should be orthogonal to each of the two parabolas at its endpoints, which is pretty 
obvious geometrically. 

3    Minimization of / p given / f 

As an example, we consider the following problem: 

Minimize J^ f'^{x)dx subject to J^ f{x)dx = 1 and /(O) = f{L) = 0. 

The technique of Lagrange multipUers gives * = /Q {f^ - Xp)dx, which has 

5$ = -2 / (/" + Xf)6fda 
Jo 
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Figure 4: Distance between parabolas. 

so the minimizing function satisfies /" + A/ = 0, meaning that / is proportional to 
sm{mrx/L) for some integer n. n = 1 gives the minimal value. This yields the relation 

rL ^2     rL 
/   f dx>j^       f{x)dx for all functions / with /(O) = f{L) = 0. 

This derivation was not very rigorous, although it does give the correct answer. 
The problem can also be tackled using Fourier series. Under rather mild restrictions, 

f{x) has a Fourier sine series, f{x) ~ Er^nSin(n7rx/L), and with a Httle more assumed 
about /, this series actually converges to / in the interior of (0,L) - for mstance if / is 
continuous and continuously differentiable there. Of course the sine series converges to 0 
at X = 0 and I,, which need not be the values of / at those points. For simplicity, however, 
we assume that / vanishes at these endpoints, and that /, /' and /" are all continuou^ 
on [0,1,]. Then not only does the sine series of / converge to / on [0,L], but the cosine 
series of /' converges to /' on this interval, and this cosine series is in fact the same as 
the formal term-by-term derivative of the sine series of /. (This would not be true unles 
/(O) = f{L) = 0, however smooth / might be on [0,L].) Thus 

/(^) = 5Z ^n sin(n7ra:/L),    f'{x) = ^ nirbn cos{mrx/L)/L, 

and 

f/^(xMx=|f;.L frw^=|f;(^)%i 
r^ f^/ Thus /o /'2(x)dx > (7r/L)2 /^ f{x)dx, with equality only when all the 6„ beyond h are 

zero. 
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Another approach to this inequality that also avoids consideration of the Euler-Lagrange 
equation is the method of multiplicative variation: we set f{x) = sm{7rx/L)g{x). Then we 
compute 

I    f^dx = I    (sin ^p'(2:) + j cos ^9{x)j  dx, 

= /   sivf—g^dx+       2-cos —sin—g{x)g{x)dx+ j    y-j  cos —gdx, 

f^   .   oTTX   /o , /"^/TTN^/       2^^ •   2'^^\    2j 

+ 70 fe) ^^^ T^^"' 
= 1^ sin2 ^ 5'2(x)dx + ^£ f{x)dx, 

^2     ri 

with equality only when g' = 0 everywhere on (0, L) assuming it is continuous there. 
A variation on this theme is the following little calculation: 

0< /   (/'(a;)-^cot^/(x))  dx 

= y^ f'^dx + (j)'£cot2 ^fix)dx - £2f{x)f'{x)^cot ^dx 

.y   f"dx+{iyi   coe^f\x)dx-[lf{x)cot' 

— — /    J {x)— cosec —ax 
L Jo L L 

TTXl 

LJo 

In this argument we must assume that / -^ 0 faster that x^/"^ as x ^ 0 or than (L - x)^/^ 
as X —>^ L. Some such hypothesis is needed to assume the existence of /Q /' (x)dx. 
Claim: Assume that / is continuous and differentiable on the interval [—1,1], /(—I) = 
/(I) = 0, /(x) = /f 1 f'{t)dt and that j\ f'^dx exists. Then 

/2(x)<(l-x2)(A 

where (g) denotes /^^ g{x)dx/2 for any function g. 
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Proof: 

/'(^)=(£/w<)', 

=il + x)jy'^{t)dt. 

Similairly 

fix) < {I - X) J'f^dt, 

and combining the two gives 

leading to the required result. 

Integrating both sides leads to 

D 

if) < lif). 
However, we akeady know that the stronger relationship 

holds from the previous calculations, so the above method does not give the optimal esti- 
mate. Still, the pointwise estimate given by this result cannot be improved; it is only the 
integrated result that is less than optimal. 

In two dimensions, if we wish to minimize f^ \^f\^dA subject to f. \f\'^dA = 1, where 
A is a region in R^, then the Lagrange method yields the relation VV + A/ = 0 for the 
minimizing function /. If yl is a circle centred on the origin with radius 1 then this has 
solutions Jm{jmnr)e'"^, where Jm is the mth order Bessel function of the first kind and 
jmn is the nth positive root of J^. Then 1 = J^\ffdA = 2nJ^rJl{jmnr)dr and so 

SA |V/pdA = 2T:jmnfo rJ^{jmnr)dr = j^^. So the minimum value of f, IV/pdA is riven 
byi^i«5.78. ■'^' 

4    The Dual Lagrange Problem 

We have 

m 

L(x,A) = F(x) + J^AiPi. 
1=1 
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Figure 5: An example showing values of L(x, A) for a case where sup;^ infx L = 2 and 
infxSup^L = 3. 

Suppose that F has minimum value F*, subject to the constraints gi = Oioi i = 1,2,...,m, 
which is attained when x = x*. 

Now let 

/i(A) = infL(x,A)<F. VA. 

The dual problem is given by maximizing h{X). Say this has value h*. Then /i* < F*, 
sometimes with equality, though not always. An example of a case where there is not 
equality is shown in figure 5. 

4.1    Further examples 

F{x, y) = x^ + 2y^, with p = 1 - x^ - y^. 

Then L{x, y. A) = a;^ + 2y^ + A(l — x^ — y^). Thus the Euler-Lagrange equations for seeking 
a minimum of F with gi = 0 are 2x — 2x\ = 0, 4y — 2yA = 0.  Therefore either A = 1, 
X = ±1 and y = 0 giving F* = 1, or A = 2, x = 0 and y = ±1 giving F* = 2. Thus the 
minimum is F* = 1, attained at a; = ±1, y = 0. 

Now consider 

{-oo   if A > 1 
1        if A = 1 (at y = 0) 
1        if A < 1 (at X = y = 0) 

Thus inax.\h{X) = 1 so that /i* = 1 = F». So for this example, maxxh = minx,pi(x,y)=oF. 
On the other hand consider again 

F = x^ + 2y2, but with fl- = 1 - x^ - y"^. 

For this case, L{x,y,X) = x'^ + 2y'^ + A(l — x"^ — y"^). Thus using the Lagrange multiplier 
rule to seek a minimum of F given p = 0 we get 

2x - 4Ax3 = 0,    4y - 4Ay^ = 0,    1 - x^ - y'^ = 0. 
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Therefore either 

• X # 0. Then A = 1/2x2 and y = 0 or y = ±s/2x. If y = 0 then x = ±1 and F» = 1 
Otherwise, x = ±5-^4, y = ±5-1/^^ and F. = 5-^2 + 4 . 5-1/2 ^ ^^ ^j. 

• X = 0.  Then the constraint requires y = dbl, (and hence A = 1) and then F = 2, 
which is greater than 1. 

Thus the least value of F is 1, obtained at x ± 5"^/"*, y = ±5~^/^ V5. 
However, Lagrange multipliers are not really needed for this problem: considering only 

X and y > 0 we could eliminate the constraint by setting x = Vcos 6, y = \^iri^ and then 
F = cos 0 + 2 sin e, F' = 2 cos e - sin 9. At the minimum, tan ^ = 2 and hence F = Vs. But 
at ^ = 0, F = 1 and at e = n/2, F = 2. Thus the minimum F is 1, attained at x = ±1 
y = 0. 

But what is /i(A) = infa;,j,(x2 + 2y2 + A(l - x-* - y^))7 

h{X) 

Therefore max^ h{X) = 0, so 

-00       if A > 0 
0 if A = 0 
A if A < 0 

max/i(A) <      min      F 
A x,y,oc*+y*=l 

There is a "duality gap". 
Remark: If our original problem had been to maximize F(x) subject to the constraints 

5i = 52 = • • • = pm = 0 we would still have 

III, 

L(x,A)=F(x) + 5];AfcPfc(x), 

and the same Lagrange multiplier rule: look for x, where 

dF    ^-v     dgk 

If we have an x» that maximises F subject to the constraint and consider 

H{X) = sup ( F(x) + ^ A;kgfc(x) j , 

then we have min;^i^(A) > F(x,), since whatever A might be, there is an x (namely x*) 
that makes L(x,A) = F(x,), so supxL(x,A) > F(x,), and so min;^ Jf(A) > F(x,). 

These maximum minimum dual problems are reminiscent of "Courant's majcimum prin- 
ciple", a rather striking result about eigenvalues of symmetric or Hermitian matrices, 
Sturm-Liouville problems, etc. It will be recalled that the lowest eigenvalue Ai of a real 
symmetric matrix A may be characterized as the minimum of x'^Ax/xTx for all non-zero 
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vectors x, this minimum being achieved for x = e, the first eigenvector. Similarly the sec- 
ond eigenvalue A2 is the minimum of x^Ax/x^x for all vectors x that are orthogonal to e, 
and the fcth eigenvalue is the same minimum over all vectors orthogonal to ei, 62, - ■ -, e^-i. 
Courant pointed out that the fcth eigenvalue can be described directly without explicit ref- 
erence to the previous ones as follows: take an arbitrary set of fc — 1 vectors vi,..., Vk-i, 
and form H{vi,.. - ,Ufe_i) = rmn{x'^Ax/x'^x) for all non-zero vectors x that are orthogonal 
to vi, t;2,.. -, Vk-i- Then Afc = max„i,...,„;._i H. (See for instance Courant and Hilbert [1]). 
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Lecture 5 

Upper Bounds for Turbulent Transport 
F. H. Busse 

Notes by Tomoki Tozuka and Huiquin Wang 

1 Introduction 

Malkus [1] observed kinks in Nu (Nusselt number) - Ra (Rayleigh number) relationship of 
turbulent Rayleigh-Benard convection and formulated a mean field theory for superposition 
of convective modes using hypothesis of maximum transport in 1954. In 1963, Howard [2] 
derived rigorous upper bound for Nusselt number, Nu<c Ra2. Then, Busse [3, 4] improved 
bounds through incorporation of the continuity equation constraint, introduced multi-alpha 
solutions of variational problem, and derived upper bound MKcRe^ {Re: Reynolds number) 
for an momentum transports in shear layers in 1969. On the other hand, Doering and 
Constantin [5] extended the method of Hopf to derive bounds on dissipation by turbulent 
flows in 1994 (see Lecture 6 for the detail). Nicodemus et al. [6] optimized Doering- 
Constantin approach in 1997 and Kerswell [7] proved the equivalence of Doering-Constantin 
and Howard-Busse methods in 1998 (see Lecture 10 for the proof) . This lecture is focused 
on the Howard-Busse method. 

The theory of upper bounds for functionals of turbulent flows provides rigorous bounds 
for transport properties. It also indicates characteristic properties of extremalizing vector 
fields, which are reflected in observations of turbulent flows and thus can provide some 
insights into properties of turbulence. 

2 Upper Bounds on Momentum Transport Between Two 
Moving Parallel Plates 

In this section, we consider a flow between two moving parallel plates as shown in Fig. 1. 
Using the distance d between two plates as length scale, and cP/fx as time scale, we write 
the Navier-Stokes equation for the incompressible fluid in the form 

_v -I- V Vv + 2Qxyr = -Vp + V^v (i) 

V-v = 0. 

We separate the velocity field v into a mean and a fluctuating part: 

(2) 

v = U + vwithv = 0, v = U(2,<) (3) 

where 
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— = lim -^ /    f   •••dx. (4) 

We also separate the fluctuating part of the velocity field v into components perpendic- 
ular and parallel to the plates as 

v = u + kt};withu-k = 0. (5) 

[■width=]figl.eps 

Figure 1: Schematic sketch of a flow between two moving parallel plates. 

For fi • k = 0 (e.g. Taylor-Couette case), since U does not have a z-component because 
of the continuity equation, the average over planes z=constant of (1) yields 

|u + F^=^U (6) 

v-Vw = -^p-2ClxU. (7) 
oz 

Subtracting (6) and (7) from the corresponding components of (1), we obtain the 
following equation for the fluctuating velocity field v: 

^^ + ^ . Vv - V • Vv + U • Vv + V • VU + 2fixv = -Vp +V2v. (8) 
dt 

After multiplying the above equation with v, taking the average over the entire fluid 
layer, and using the boundary conditions that v vanishes at z = ±|, we have the energy- 
relationship 

~(|v|^) + (IVv|2) + (ii. («;£)U) = 0 (9) 

where 

{••■)= f\—dz. (10) 

The above energy relationship  (9) can be further simpUfied if we restrict our attention to 
the fluid flow under stationary conditions: 

|u = 0;|(|v|2) = 0. (11) 
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The equation  (6) under above condition yields 

d          
—V = wu-{\wu\)-Re-i. (12) 

Hence, using the above equation, we obtain the final form of the energy balance 

(|Vvp) + (iiti;. (fi^ - (Hu,))) - Re{u^ii) = 0. (13) 

Here, the identity 

(0) - (u«;)2 = {|fi^- (iiu;)|2) (14) 

has been used. 

The momentum transport between two moving plates is obtained from its value at the 
boundary 

dUx 
M = —Q^l=i = (tDux) + Re. (15) 

Since {wux) > 0, the momentum transport is bounded from below by the value of the 
laminar solution and increases by {ivux) for turbulent flow. Thus, the goal here is to derive 
an upper bound for {uxw) at a given value of Re and this leads us to the formulation of the 
foUowing variational problem. For a given /x, find the minimum R{n) of the functional 

D/      ^     (|Vv|2)  ,     {\UW-{MW)9) 

among all vector fields with v = 0at2 = ±i where 

v = u + k«;,u-k = 0. (17) 

Thus, the Euler-Lagrange equations for a stationary value of i?(v, /x) are 

V^v - VTT = w4-U* + ku • —U* f 18^ 
az dz ^    ' 

where 

|u-=^-(-)-(H-|ga)i (,g) 

Since the functional is homogeneous, the normalization {uxw) = /x can be assumed. 

The proof for ^ = (l^^(^^^)P) is as follows:' 

, ,       ,, <|t]?u*-(u;*u*)P) 
^^  " ^) (u;>4)^ = -R(^*' ^*) - ^(v*, M') 

</2(/z*)-i?(/z') 

</2(v',//*)-i?(v',/xO 

<(,>-,o<'^:y)i^) 
where v* and V are the extremalizing vector fields for ^l* and n', respectively. For /x* -^ fi', 
the above result follows. 
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[width=] fig2.eps 

Figure 2: Schematic schetch of a thermal convection in a porous medium. 

3    Upper Bounds on the Heat Transport in a Porous Layer 

In this section, we consider a thermal convection in a porous medium as shown in Fig. 
2.   Using the distance d between two plates as length scale, CP/K as time scale, K/d as 
velocity scale, and {T^-Tij/R as temperature scale, we write dimensionless equations based 
on Darcy-Law as 

-u + kr - Vp = -B(—u + u • Vu) w 0 
ot 

(20) 

V-u = 0 (21) 

v2r=(—+ u-v)r (22) 

where 

^- d?u 
(23)   ■ 

(24) 

and K is the Darcy permeability coefficient. 
We separate the temperature field T into a mean and a fluctuating part 

T = T + e , with^ = 0 (25) 

By subtracting the horizontal average of (22) from  (22), we obtain 

fl                         92 
(26) a<^+"-^'' = a.^^ 

(«+„.w)+„^-;^.. = v^. (27) 

Assuming the statistically stationary turbulence, we integrate  (26) and obtain 
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—T = ^-{we)-R (28) 

By multiplying  (20) by u and  (27) by e, taking the average over the whole porous layer, 
and using  (28), we obtain two dissipation integral relationships: 

(lu|2) = (we) (29) 

iivef) + {\we - {w9)\'') = R{we). (30) 

The dimensionless heat transport across the porous layer can be obtained from its value 
at the boudary: 

^" "ar'^=±5 = i? + (z/;^) >R. (31) 

Since {we) is always positive from (29), the heat transport for the turbulent flow is always 
greater than that for the laminar flow, and it is bounded from below by the value of the 
laminar solution. 

The goal here is to find an upper bound on the heat transport or {w9) at a given value 
of R. We are thus led to the formulation of the following variational problem. For given 
/i > 0, find the minimum P{n) of the functional 

P(u,0,M) - <N^)(W)+A^(I^-(^^)I^) .... 

for aU fields u and 6, which satisfy the constraint V • u = 0 and the boundary condition 
w = e = Oa.tz = ±^. First, from the general form of the dissipation integral 

(|u|2) = (V^t^Aat;) + (ik x Wp) (33) 

and the property 

"" = "te + d^^"" = -^2t; (34) 

it is clear that the minimum of the functional is obtained for V x k^ = 0. Hence, the 
variational problem now depends only on the scalar variables v and 6. 

The Euler-Lagrange equations for a stationary value can be thus written as 

{\ve\'^)v^w - [P{w6) + ix{{we) - ^)\^2e = o (35) 

{v\^2v)v'^e + [p{we) + ii{{we) - ^)]w = 0 (36) 
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Now, the nonlinearity is only through z-dependence and the equations are Unear with 
respect to the x, y dependence. This property allows us to write solutions in the form of 
superposition of waves. Because of the homogenity with respect to x and y in w and 6, we 
can impose the following normaHzation conditions: 

(|Ve|2) = 1 (37) 

(V^uAsu) = (|k X VVup) = 1 (38) 

Then, we introduce the following general solutions for w and 6 

(39) 

fc=i 

(40) 

where $„ satisfies the equation: 

A2$n = -al^n (41) 

and the orthonormaUzation condition 

^n^m = Smn ■ (42) 

Then, the Euler-Lagrangian equations can be reduced to 

fl2 
(43) 

Q2 
(44) 

where 

N                           N 

(45) 
n=l                          n=l 

The above equations have the following properties  [8]: 
(1) By considering the equations for Wn + On and Wn — 0n, we can obtain 

Wn = 9n- (46) 
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Thus, the problem can be reduced to 

te - "n)^« + "n*^n = 0 (47) 

(2) The functions Oniz) are either symmetric or antisymmetric in z. 
(3) Since 6^ = 9m follows from «„ = Om, it can be assumed that all a„ are different. 
(4) For m 7^ n, by subtracting the n-th equation of (47) multiplied by a-^Om from the m-th 
equation multipUed by Q-i0„, and averaging it using the partial integration, we obtain an 
important property 

(Kn^n) - CUmaniBmOn) = 0 (48) 

where ^ denotes the z-derivative of 6m- 
(5) Minimization oi P{en,an,fJ,) with respect to a„ yields 

irj^"" (49) 

"       (Onem) • (^^) 
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Lecture 6 

Bounds on Turbulent Transport 
C. Doering 

Notes by A. Alexakis & E. Evstatiev 

1 Introduction to the Background Method 

The background method is a mathematical technique for deriving rigorous bounds on the 
energy dissipation rate in Navier-Stokes and similar problems. 

2 Momentum Transport Across a Shear Flow 

To introduce the general idea of the background method we are going to consider the 
example of momentum transport across a shear layer. Consider a flow between two two 
finite plates. The bottom plate is at rest while the top plate is moving with speed [/„ see 
Fig. 1. We introduce Cartesian coordinates with unit vectors i,j and k so that the upper 
plate is moving in the x direction, the lower plate is in the j/ = 0 plane, the upper plate 
is in the y = /i plane. The boundary conditions for this problem are periodic in x and z. 
The area of the plates is A; eventually we will take >1 ^ oo to describe the problem in an 
infinite domain. 

Figure 1: The Plane Couette flow. 

The incompressible Navier-Stokes equations are 

dtu + u • Vu + - Vp = i/Au 
P 

V.u = 0. (1) 

We start by asking the question: What is the vertical flux of horizontal momentum 
across the layer? 

Dimensional analysis shows 
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„ horizontal momentum 
Momentum flux   =    :  

time X area 
horizontal force _ F ,^> 

area A 
=   wall shear stress = r. 

The dimensions of the quantities are 

r = 

The system parameters' dimensions are [U*] = L/T, [h] = L, [A] = L?, [v] = L'^/T, and 
[p] = M/L^i where M denotes the dimension of mass. With these we can express the 
space-time averaged momentum flux as 

r = phA (^y Q) X /3(^, A^ = pul X /?(i?e,a), (4) 

where Re = ^^ and « = ■^- We are interested in the function P{Re,a), the dimesionless 
function of two dimensionless variables that fully describe the system. 

An alternative version of the question could be posed in the following way. Define the 
time averaged dissipation rate per unit mass e, which is also equal to the time averaged 
power input required to maintain the flow. Quantitatively 

FU.      rU^ ,_. 
^ = "TT = —T- ^^^ pAh      p h 

Remembering the expression for r in (4), we can write 

e = ^xPiRe,a). (6) 

Therefore a bound on the energy dissipation rate gives also a bound on the momentum 
transport. 

In what follows we derive bounds on e. First let us guess what we might find. For 
laminar flow we can expect the following dependence 

r^pu^=^0^1-. (7) 

For turbulent flow we do not expect dependence on the viscosity as we take u -^ 0 (due to 
the cascade picture of energy transport across length scales), so we can write 
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Further we consider the exact stationary solution of the Navier-Stokes equations for 
plane Couette flow, see Fig. 1: 

.U* U. 1 
Ust = iyy,    pst = const,    Tst = pu—   ^^j = —. (9) 

Now we set up a minimization problem. Let us multiply the Navier-Stokes equations (1) 
by pu and integrate over the volume. We have 

j f\p\n\U^x = - fpu\Vn\'<^x + U. f pu^dxdz. (10) 
^^J  ^ J Aop plate      dy ^   ^ 

The only surface integral that survives after we integrate by parts is over the top plate 
of the volume. The term on the left-hand side of (10) is the kinetic energy of the fluid. 
The first term on the right-hand side is the instantaneous bulk dissipation rate, and the 
second term on the right-hand side is the input power (equal to U^F{t), where F{t) is the 
instantaneous force applied to sustain the motion of the upper plate.) Suppose the kinetic 
energy behaves as o(<) for large times, then its long time average vanishes, and we arrive at 
the following definition of the space-time averaged dissipation energy 

Therefore it is obvious that 

€ = <t/|Vu|2) . (11) 

^-    v°i^=o   ^'''^"'^)- (12) 
U|y=0 = 0 

u|j,=h = U, 

To put this in a variational frame, we consider the functional 

:F[U] = J (i/|Vu|2 - 2q{x)V • u) cPx, (13) 

where q{x) is a Lagrange multiplier, enforcing the divergence-free constraint, which plays 
the role of a pressure. Variation of the above functional with respect to u and 9 and equating 
the results to zero yields 

^   =   -2l^ = ^-"- (14) 
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Thus we obtain the stationary Stokes equations as the Euler-Lagrange equations.   The 
solution is given by (9) where pst is substituted by Qst- We would like to know next if this 
solution really gives a minimum. The answer is affirmative and the proof follows from the 
sequence of realtions below. 

Define 

u = Ust + V, (15) 

where v is the fluctuating deviation of u from plane Couette flow, satisfying 

V • V = 0,    v|j,==o = v|j,=;, = 0. (16) 

The gradient of u is given by 

Vu = ij% + Vv, (17) 
n 

from which follows 

If we find e from formula (11), we obtain, after space-time averaging (noting that the cross 
term vanishes), 

^ = ^§ + HVv|2>>6,t, (19) 

which shows that indeed the solution (9) gives a minimum of e. Note that plane Couette 
flow is a solution for all Re and a so this lower bound is sharp. And sometimes this lower 
bound is also an upper bound. 

We ask the question of when this solution is absolutely stable. Let us consider the 
equations for v. They follow from the Navier-Stokes equations after the substitution of (15) 

dtv + V • Vust + Ust • Vv + -Vp = uAv, 
P 

V • V = 0. (20) 

We will prove the following statement: Plane Couette flow is absolutely stable-and 
hence the unique time asymptotic flow-for sufficiently low Re. To see that, multiply the 
first of Eqs. (20) by v and integrate over the volume 

|i J |vp d'x = -j (z/1 Vv|2 + V . iVust\^ . v) d'x (21) 
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and C i^Osym = 1/2 ((Vu,t) + (VustY^). On the left-hand side of this equation is time 
derivauve of the perturbation energy S{t) = f \v\^(fix. On the right-hand side we have a 
quadratic in the perturbation v form. 

We note the inequality (sometimes referred to as Poincare 's inequality) 

/|Vv|^>^/l 

Then we calculate 

(22) 

So for the perturbation energy we have 

< 

(23) 

dt    -    ^y'h^    2h)^^^^- 

=   ~i27r^-Re) S{t), 

and finally using Gronwall's lemma we have 

(24) 

S{t)<e{0)e-M^^'-^y-,0   if   i2e<27r2«20, (25) 

which proves the assertion. 
A more precise calculation shows that the critical value of the Reynolds number for this 

kind of energy stability is RBE « 82.6. To see how we can get a more precise value consider 

d£{t) 
dt 

= -2 
/(HVvP + v(Vu34y^.v)d3, 

/|v|2d3^ £{t) < -2Xo£it), 

where 

(26) 

Ao = 

Define the functional 

mm 
V-v = 0 

/|vpd3x=l 
v|v=o = v|y=h = 0 

J{u\V^rf + x^{Vust)■^r),^x. 

'M = y [i/|Vv|2 + V • (Vu,t). V - 2p{x)V • V - A Civp - ±.\\ ^x. 

(27) 

(28) 
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Upon variation with respect to v we obtain the eigenvalue problem 

Av = -z/Av + Vp + (Vust) • V. (29) 

The region in the Re-a phase plane where the lowes eigenvalue is positive defines the 
parameter region of energy stability of plane Couette flow. In appUcations to bound other 
solutions we need to generaUze the method described in this section and this is done next. 

3    "Background" Method 

In the previous section we saw that the stationary solution (9) only exists as an absolutely 
stable solution for sufficiently low Reynolds numbers. For high Reynolds numbers we can 
not use it to put an upper bound on the energy dissipation rate. However, we are going to 
present a more general technique that mimics to some extent what we did in the previous 
section. 

Decompose a general solution of the Navier-Stokes equation as 

u = iC/(y)+v(x,t). (30) 

We call the vector field iU{y) a "background" field. The other part of the decomposition 
is a "fluctuating" field. The purpose of the background ^ field is to "absorb" the boundary 
conditions, whereas the fluctuating part satisfies homogeneous boundary conditions: 

C/(0) = 0,    U{h) = U^,    v|3,=o = v|j,=;, = 0. (31) 

Next, from (1) and (30) we derive 

atv + V Vv + U{y)dj;-v + i V2U'{y) + Vp = i/Av + i uU"iy) (32) 

and for the fluctuation energy evolution 

|i y" |v|2 d'x = -uJ I Vv|2 d'x - j U'{y)v,V2 d\-vj U'{y)^ d'x.       (33) 

As before, note that Vu = Vv +yiU'{y) and derive 

^uj I Vu|2 d^x=^ul 1 Vvp d'x + |i/ £ u'{yf dy + vj U'{y)^ d^x. (34) 

Adding (33) and (34) we get 

■^Prom now on we drop the quotes on the words background and fluctuating but we should keep m mind 
that the background field is not (necessarily) a mean flow. 
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- j |v|2 dh + uj IVup d^x = -J («/|Vvp + 2U'{y)viV2) d\ + Av t U\yf dy. (35) 

The terms in the formula above can be identified as follows. The second term on the left- 
hand side is the total instantaneous dissipation rate, the second term on the right-hand side 
is the dissipation rate in the background flow, and the first term on the right-hand side is 
a quadratic form which we denote by Qu{v}. 

The key point is: If we can find a background profile U{y) so that Qu{v} > 0, i.e., so 
that Qu{v} >cj|vpd^x with c> 0, then 

a) We are convinced that the kinetic energy is uniformly bounded in time (even as 
t -> oo) because then 

I / |vp d\ <-cJ |v|2 d^x + Av p U'{yf dy, (36) 

from where after integrating, we deduce 

j\^?d\<e-^j\v{xM''d^x + \{l-e-^)Avfu'{yfdy, (37) 

b) The background flow produces an upper bound on c, for then the time averaged 
equation (35) gives 

e={u\Vvi\^)<lj\'{yfdy. (38) 

3.1    Trial background Method 

Lets take the background profile to be the piecewise-Unear velocity profile given by the one 
shown in the Fig. 2. We can make the following estimate: using the fundamental theorem 
of calculus and the Cauchy-Schwarz inequality: 

This implies 

2     \ 1/2 

2       \ V2 

r.'.,...i .§/../„ (f (i.)^,)''^ (f^ (-)^,)'^,. 

^^i^-^L-AfM-) [CM^^T-- '^»' 
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UM 

0   5 h-5   h 

Figure 2: Trial function for the background profile. 

Including all the other terms in |Vvp we obtain 

^dx^ I U'{y)v,v,dx' < l^i f |Vvpdx3 = ^j |Vv| 

This implies for Q : 

Qu{-v} =  f (z^lVv|2 + 2U'viV2) dx^ >  f u\Vvfdx^ - 21 f U'viV2dx' 

(41) 

(42) 

So Qu{v} > 0 if we choose S < Av/U* = Ah/Re. This is the maximum value of 5 that our 
estimates allow us to use, and gives a bound on the maximum possible energy dissipation 
rate for the set of background functions U that we have chosen. Using this value of 5 we 
obtain 

<-ijy^^f^^-n =» /?< 
1 

(43) 

4    Variational Problem for Optimal Background 

We can pose the following question: What is the optimal background velocity profile that 
gives the smallest possible bound 

€ <   min 
U 

{\[^nyfdy] (44) 
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under the constraints Qu{v} > 0, U{0) = 0 and U{h) = U„ where 

QuM = J [:/|Vv|2 + 2viV2U'{y)]dx\ (45) 

The constrain Qu{v} > 0 is equivalent to the spectral constraint Xu>0 where 

under the constraints V • v = 0 and v = 0 at y = 0, /i. A is equal to the lowest eigenvalue of 

Av   =   -uAv + Vp + iU'{y)v2+jU'{y)vi (47) 
V-v   =   0. (48) 

We can then substitute the Qt/(v) > 0 in (44) constraint with Xu>0 

4.1    The Geometry of the Spectral Constraint 

Let U'iy) = U^/h + (j>{y) so that JQ <p{y)dy = 0. Then equation (38) can be written as 

e<   mm   [.^ + ^ ^%(y)2rfyj (^^^ 

with the constraints J^ <f>dy = 0 and A^ > 0 where we replace the label U with <l> in the 
spectral constraint. There is one remark we want to make for the above minimization 
problem: 

The set of functions 4>{y) with A^ > 0 is convex 
Proof: 
Concider two mean-zero functions (^i(y) and 4>2{y). Then 

and 

For every ii,    J (^|Vup + (^ + Mv)) U1U2) dx^ > 0 (50) 

X^>0<^ For every u,    J f ||Vu|2 + (j-+ Mv)) ^'i«2) dx^ > 0. (51) 

Now let 0 < a < 1. Using linearity in <l> and the hypothesis that A^^ > 0 and A^, > 0 we 
see that 

/ (ll^"l' + (T + °^^^^^ + (^ - °)*^2) uiU2^ dx3 > 0 <^ A^,+(i_„)^ > 0.       (52) 

This proves that the set $ = {<p\X^ > 0} is convex. A sketch of the set $ is shown in figure 
3, where the curve indicates the functions (^(t/) that have A^ = 0. 
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4.2    Euler-Lagrange Equations for Optimal 0 

It is clear from Fig. 3 that the condition for the unique minimizing (j) (the (j) closest in norm 
to (^ = 0) is 

</'(j/) = 7^{^} (53) 

where V stands for projection onto mean zero function space. (The vector <p that is the 
minimum must be parallel to the gradient of A,^ at A,^ = 0.) The proportionahty factor 7 is 
a Lagrange multiplier. To evaluate dX/dcj) we begin from (48): 

Av = -z/Av + Vp + i{U^ + 4>)v2+i{U^ + 4>)vz ■ (54) 

A change in ^ to 0+50 impUes a change in A to A+5A and a change in the eigenfunction 
V to V + (5v. To first order 

SXv + \5w = -uASv + VSp + i(f/» + <t>)Sv2 + JiU* + (p)Sv3 + 6<p{iv2 + jvz). (55) 

Take the dot product with the original eigenfunction v and note that (using / [vl^dx^ = 

1, 

SX=     5(i)2viV2dx^ ~ ^ I   ^4>WiJ2dy (56) 

so that 

—iy) = 2AWJ2iy) (57) 

where we introduced the overbar for the horizontal average over x and z. The projection 
then in (53) then gives 

0(y) = nf{vriJ2{y) - {nv2)) (58) 

where the 2A factor has been absorbed into the Lagrange multipher. 
The nonlinear equations we are therefore called to solve for the optimal bound are 

U* U* 
0   =   -uAv + Vp + i{-r- + <f>)v2+Ji-x-+<f>)vi (59) 

n n 
0   =   V-u (60) 

(p   =   7(tJrtJ2-(vit;2)) (61) 

where 7 is determined by the normalization condition / |vpdx^ = 1. 
We also have to note that 7 is a scalar only if the isospectral surface A^ = 0 is 

smooth. 

63 



Figure 3: The space $. The curve denotes where A^ = 0. 

4.3    Structure of the Optimal Bound 

Here we describe a general formulation of the Euler-Lagrange equations (61). The transla- 
tion invariance in the {x - z) plane allows us to write v as 

V = V^ v('*)(y)e'('*^^"'"'*^^) (62) 

where a = iai -f-ja2 and the incompressibility condition now gives dyh + ZQ • v = 0. We 
can write Q^f, as 

Q0{v}=5:^!r^{v^'*^(y)} 

where 

Jo 

\dv 
\dy 

+ |ap|vp + yY + ^^^)) (^1^2 + vih) dy 

Since we want Q^ to be positive we must demand 

Qi"^>0   Va 

(63) 

(64) 

(65) 

Note that if we drop the incompressibility condition |ai| < [aal would imply Q(*I) < g("2) 
which does not generally hold for the incompressible case. The set of zero mean functions 
with positive A can now be written as 

*={^|A^>0} = n4<?i|A(r^>0}. (66) 

4.3.1    Single Wavenumber Case (Smooth) 

First we examine the simplest possible case where the minimum bound comes from a single 
mode with wave number a. (See Fig. 4) The optimal <j) is given by 

m = 1^ [t\y)t\y) * -\ £ v["'\y')t\yrdy'^ (67) 
and the equations that v must satisfy are: 
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Figure 4: The space $ in the case that the minimum <j) is given by a single mode. 

h 
0   =   -i/Av(") + Vp + i(^ + 0)t)f^+j(^ + <^)T){"^ 

h 

0 =   V-v^"*) 

1 =       /"|v(°)|2d3x 

4.3.2    Two Wavenumber Case 

(68) 

(69) 

(70) 

The next case we examine is when the minimum is obtained at the intersection of the curves 
AJ"^) = 0 and X'^^^^ = 0. (See figure 5.) 

The optimal ^ in this case is given as a linear combination oiV{5>?-/5<f)) and V{5}?j5(j>) 

4>{y) = 71^ [t'\y)vtHy) * -I jJ%S"^\y')4"^^(y')*rfy'} 

+723? {t)^)(y)i)^)(y) * -^ £ v'r'\y')vt\yrdy'] (71) 

where 71 and 72 axe to be determined from the normaUzation conditions and each v^**') 
must obey (70). 

4.3.3    General Situation 

For the more general case the solution will be given by 

Hy) = j:7n^[4°"'\y)v^^"\y) * -{ £ v['"'\y')vt\yrdy'] (72) 
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Figure 5: The space $ in the case that the minimum <j) is given by two modes. 

where each t)(°") satisfies 

,U* .U* 

0   =   Vv^"") 

(73) 

(74) 

(75) 1   =     /"|t)(-")|2d3x 

and all the 7n are given by the normalization condition. 

4.4    Results and Reality 

Fig. (6) summarizes the results that have been obtained by solving the Euler Lagrange 
equations. The straight line ~ Re-^ gives the results of the laminar flow which is an absolute 
minimum. For higher Re the energy dissipation rate in the flow is bounded from above by 
the curve shown in the figure. The crosses represent experimental measurements on a 
turbulant shear layer. The experimental results still show a weak (logarithmic) dependence 
on the Reynolds number which is not captured by the bounding method. Perhaps further 
physical information given to the analysis would improve the bound. (We note that the 
graph is just a sketch.) 
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Figure 6: A sketch of the bound and the experimental data. 
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Lecture 7 

Multi-a-Solutions 
F. H. Busse 

Notes by L. Lu and F. Petrelis 

1 Introduction 

In the previous lecture, the Rayleigh-Benard convection in a porous media is discussed 
and the problem of finding the upper bound of convective heat transport is formulated 
as a variational problem. In this lecture, we will try to solve this variational problem 
using the multi-a-solution technique. An explicit bound of the Nusselt number will be 
obtained by the multi-boundary-layer approximation method. Then the extremaUzing fields 
of the variational problem will be compared to those observed in turbulent flows. Finally, 
the convection in a rotating layer is studied in a similar way The extremalizing fields of 
the corresponding variational problem are found by solving the Euler-Lagrange equations 
numerically. 

2 Multi-a-Solutions 

From previous lecture, the variational problem is: 
Given /x > 0 find the minimum of the functional 

V{n, e, /x) = < l"P X m' > +M < R- <w0> p > 

among the u, 6 fields with 

V.u = 0,        H.=±i = eU±i=0, (2) 

where 
w = u-k. 

With the general representation for a solenoidal vector field, 

u = V X (V X k<?!>) -I- V X icV', (3) 

and the ansatz 

^     1 

= «;(^) = Y^ Q^wn{z)^n{x, y) (4a) w 
n=l 
N 

e = e^''^ = f^aJen{z)Mx,y) (4b) 
n=l 

where the functions <f>n{x,y) satisfy the equation 

A2<^„ = -al<f)n, (4c) 
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the functional to be minimized becomes 

P(^)(..;.„,.).^^''<g;%^;,<''->)'>       „=1.2.3....,«       (5) 

where 

See previous lecture notes for more details of the derivation of the functional and its physical 
meaning. 

2.1    Asymptotic Analysis of Minimum of V^^\6n, O-n, A*) 

It is difficult to find an analytic solution of the Euler-Lagrange equations correponding to 
the variational problem (1) in closed form. Thus we attempt to seek its asymptotic solution 
as /i ->^ oo. To start, it is convenient now to change the normaUzation condition to 

Y.<el>=i (7) 

And also we assume that the wave numbers an are ordered: a^ > ajv-i > • • • > ai. In 
the asymptotic case of large n it is obvious that in order to minimize the functional V, 
the minimizing solution Ylv ^u naust approach unity as closely as possible throughout the 
interval — ^ < z < |. Only near the boundaries z = ±\ the boundary conditions (2) 
prevent a close approach. However a rapid increase from 0 to 1 near the boundary makes 
^ large, and consequently P increases. But this growth can be moderated by assigning 
the sharpest growth rate to 9N, which is divided by the largest wave number ajsr- In the 
expression of P, ON is multiplied by ajv- Thus ON has to decrease rapidly to 0. Otherwise 
the large waveniunber would make P grow even though the 0'^ term is small. To satisfy the 
condition O'j^ + 0%_^ « 1, the increasing part of ON-X must match the decreasing region of 
ON- In summary. ON increases in a layer of thickness of order 0(/i~''^), and decreases to 0 in 
the region of order 0(/x~'"^-i), which is the increasing part of ^AT-I. This hierarchy (shown 
shematically in Fig (1)) continues until ^i = 1 fills the region outside all the boundary layers 
of the rest On- 

Thus we introduce two variables 0 and 6 corresponding to the rising and falling regions 
respectively, 

„,^      f^(Cn)       for|z±i|«0(/x-'-"), 

"^ ''     \e~(Cn-i)    for \z±\\^ O(^-'-"-0, 

where 

Cn = \z±\\,/- (9) 
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Figure 1:  Qualitative sketch of the boundary layer structure of the extremalizing N- 
solution, in the case of convection in a porous layer, w = 6. 

a- 

near z = ±\ and where 

K + K+i « 1       for z « 0(Ai-''"), and n = 1,2,... ,iV - 1, 
52 

(10) 
e'i^l       for z « 0(1) = 0(At-^<>). (11) 

The matching condition is: 

4(Cn)|^^^^(™) = <9„(Cn-l)|c„_i^0 = 1, (12) 

where the supcript (m) means matching point. The boundary conditions for 4 and On are: 

^n(O) = 0,        ^„(oo) = 0. (13) 

The relations 

< C^n >= OLmOtn < OmOn > (14) 

yield 

"      <^2>      /^            /(l-^2)d^„_i -^           ^^'       tor n-2,3,...,N, (15a) 

"? = /^''2jr^ e''dCi = tf^bl (15b) 

Thus the boundary-layer approximation of the functional T>^'^\e;fi) becomes 

P(^)(^;/X) = /2 + 2M^-'-- JT   (1 - elfdC^, (16a) 
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where 

N _ / .      .^^'") -.00 \ 

J = ;,^6l + 5] iT^^^ ( i- y 4''rfCn + fen jj^    (1 " ^^-l)*dC„-l j , (16b) 

and where the term labelled with (*) vanishes when n = 1. The minimum of the functional 
7?(^) as a function of ri,r2,... ,rjv is reached when the partial derivatives with respect to 
each r vanish. This jdelds: 

Then 

r„ = ^A^       forn = l,2,...,iV. (17) 
"~iV + l 

Accordingly, 

where 

V(^\e;fi) = /i^ IP + ^ri'^ - 0^?dCN\ (18) 

N 

/ = 6l + 2 f; 1^ y"4''dCn + fen y"(l - ^2_,)*dCn-l| • (19) 

The Euler-Lagrange equations corresponding to a stationary value of the functional above 
can be written as 

^;; + 6„6„_i^„ = 0       forn = l,2,...,iV-l, (20a) 

ie'l^ + bN{l - OJ^Wn = 0. (20b) 

The solutions of these equations satisfying the boundary conditions (13) and matching 
condition (12) are 

On = ±sin(6„6„+i)2Cn       for 1 < Cn < •2(fenfen+i)2, (21a) 

eN = ±ta,Tih{H)^CN- (21b) 

where the matching point has been chosen to be Cn    = f (fenfen+i)^. Now the constants bn 
can be computed by using their definitions (15): 

I        On   dC,n = -ryhnhn+i, 
Jo 4 

y (l-^2)^Cn = |(fenfen+l)" 
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And we obtain: 

bl = bnibn+lbn-l)"^ forn = 2,3,...,i\r-l 

bl = lVkb~2 

2          8     /bN-i 

Thus 

.    2n-l 
TT/     8     V-.i 

forn=l,2,...,JV, "     2 W^) 
I = 2Nbi. 

(22a) 

(22b) 

And finally 

PW(/X) = min^W(^;/x) = txT!^N{N + l)4bl = iV(iV + l)7r2 (g^)"^ (23) 

A comparison of the numerical computation of the extremalizing functions of the exact 
Euler-Lagrange equations and the asymptotic results is shown in Fig (2). They agree very 
well. The upper bound of Nu in Rayleigh-Benard convection by multi-a-solution approach 

Figure 2: The two-a-solution at i2 = SOTT^. Numerical computations (solid lines) are com- 
pared with the results (21) and for Oi, 02 from the boundary layer theory. 

is shown in Fig (1) in [1] and compared with experimental results. The result (23) shows 
that the minimum oiVin) among the class of functions {V^^\n)} is assumed sequentially 
by TV = 1,2,... as // increases. The results of Busse and Joseph (1972) [2] indicate that 
the transition occurs in the form of a bifurcation in which the {N + l)th component of the 
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solution first appears as a small perturbation in the iV*'* boundary layer of the JV-a-solution. 
As a result the bound P{fi) appears as a smooth curve without kinks. This structure of 
the upper bounds is shown in Fig (3) where the upper bound of heat transfer is computed 
numerically for Rayleigh-Benard convection with stress-free boundary conditions [3]. Also 

10 

lO'* 

10 

10* r 

10'    : 

-I—I I 1111| 11III 

Figure 3: The upper bound ^ as a function of R in the case of 1-a- (filled circles), 2-a- 
(open squares) and 3-o;-solutions (crosses). For comparison the upper bound obtained by 
Howard (1963) [4] without the constraint of continuity equation (dotted line) and numerical 
values obtained by Moore and Weiss (1973) [5] for 2-dimensional convection rolls with the 
Prandtl number P = 6.8 (dashed line) are shown. The inset enlarges the part 2 x 10^ < 
J? < 2.6 X 10^, 1.5 X 10* < /i < 2.2 x 10* of the graph in order to indicate the small diflterence 
between results for AT = 2 and AT = 3. (From [3]) 

noticed is the boundary layer structure in this firee-stress boundaries system as shown in 
Fig (4). The function w6/ < w6 > for the 2 — a solution is close to unity over most of the 
interval, and only decreases sharply toward the z = ±^ boundaries. The narrower boundary 
layer corresponds to larger wavenumber as can be seen from the curves for W202/ <w6> 
For this same system, Fig (5) shows the extremalizing wi,W2,wz functions corresponding 
to the 3-a-solution. 

2.2    Similarities Between Extremalizing Vector Fields and Observed Tur- 
bulence 

The extremalizing vector fields of the upper bound problems have in common with the 
observed turbulence that the wavenumber spectrum broadens as the N-a-solution is replaced 
by (AT + l)-Q;-solution. But the spectrum of the extremahzing field is discrete whUe that 
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0.25 0.00 

Figure 4: The functions wB/ <w0> (solid lines),u;iei/ <w9> (dotted lines) and w^J < 
wd > (dashed Unes) in the case of the 2 - a-solution for i? = 5 x 10^ (labelled by 1) and 
5 X 10^ (labelled by 2). The sHght wiggles exhibited by the function wS near the boundary 
for i? = 5 X 10^ are caused by the limited numerical resolution. (From [3]) 

400.0 

200.0 

0.50 025 0.00 

Figure 5: The function wi{z) (solid line), W2{z) (dashed line) and wziz) (dotted line) of 
the 3 - Q-solutions for the Rayleigh numbers R = 10®, 1.25 x 10®, 1.5 x 10®, 2 x 10® (from 
bottom to top). (From [3]) 
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of the actual turbulence field is continuous. Since the N-a solution for the extremahzing 
vector field provides the upper bound only in a finite interval of the control parameters, the 
assumption of an infinite ratio between thicknesses of successesive boundary layers is not 
well satisfied. It turns out that this value assums e^ in the case of solutions (23) for large 
n, N and the value 4 for other cases of upper bound problems that have been studied. The 
profile of the extremahzing fields of turbulent shear flows thus have the form sketched in 
Fig (6). 

Figure 6: QuaUtative sketch of the nested boundary layers which characterize the vector 
field of maximum transport. The profile of the mean shear fiow is shown on the right side. 

Generally, with increasing control parameter (e.g. Ra in Rayleigh-Benard convection) 
the number of wavenumbers needed for the extremalizing multi-a-solutions increases cor- 
respondingly. The transition of AT-a-solutions to {N + l)-Q:-solutions exhibits a structure 
similar to bifurcation. In Rayleigh-Benard convection at high Prandtl number, the tran- 
sition from convection rolls to bimodal convection occurs at the Rayleigh number of the 
order 2 x lO"^, the same as from the 1-a-solution to the 2-a-solution. This bifurcation struc- 
ture is also illustrated in Fig (7), which shows the transitions from the 1-a-solution to the 
2-a-solution, and from 2 to 3 in a fluid layer heated from bellow with stress-free boundary 
conditions. This bifurcation structure of the extremahzing vector fields is a consequence 
of the property that eddies with an increasing number of length scales are needed to ac- 
comphsh an optimal transport as the control parameter (Rayleigh number in convection) 
increases. 

The profiles of averaged temperature and velocity fields are relatively easier to be mea- 
sured experimentally in a turbulent flow. Thus it is of interest to compare the measuered 
profiles with the profiles corresponding to the extremahzing vector fields. The mean velocity 
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Figure 7: The wavenumbers af\ j = 1,..., z, i = 1,2,3 of the extremaJizmg solutions 
function of R. (From [3]) 

as a 

profile in plane Couette flow is compared with the extremalizing field in Fig (8). The as- 
ymptotic profile of the extremaUzing solution matches the velocity profile at high Reynolds 
number {R = 68000) very well in the middle of the interval except near the boundary. In 
fact the boimdary layer thickness tends to zero only when i? ->• oo. A finite R = 68000 
exhibits a finite boundary layer thickness as shown in the figure. Because of the turbulent 
mixing one tends to expect that the mean shear or mean temperature gradient is zero ex- 
cept around the boundaries where the velocity or temperature gradient is large. Indeed, 
experiments on turbulent convection in fluid layers heated from bellow as well as in the case 
of the vector field extremalizing the heat transport an isothermal interior is fotmd when the 
averages over plane z =constant are taken. Surprisingly this property does not hold true 
in the case of a shear layer as shown in Fig (8). The extremalizing field does not need the 
drop of half of the velocity difference between the plates across the boundary layers in order 
to accompHsh an optimal transport. Only 3/8 are required. Another example, the angular 
momentum transport by turbulent flow between differentially rotating coaxial cylinders, is 
shown in Fig (9). The extremalizing solution fits the experimental data even better than 
the logarithmic layer model [7]. 

The set of discrete wavenumbers characterizing the extremalizing vector field appears to 
be the most artificial feature when compared to the broad continuous wavenumber spectrum 
observed in turbulent flows. However, patterns of coherent structures in fully developed tur- 
bulences are very difficult to measure in laboratories. The fluctuations measured at a single 
point as a function of time which are interpreted as fluctuations in space via the Taylor hy- 
pothesis will usually generate a continuous spectrum even if, for instance, a perfect pattern 
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Figure 8: The mean velocity profile in plane Couette flow measured by Reichardt (1959) 
at Re = 2400(o),ile = 5800(x),i?e = 11800(+),andiie = 68000(A). The straight line de- 
scribes the asymptotic profile corresponding to the extremalizing solution of the vaxiational 
problem [From [6]]. 
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0.5 
(r-ri)/{ro-ri) 

Figure 9: Measurements(+) by Smith and Townsend (1982) [8] of the angular momentum 
density, rU{r), normaHzed by the angular momentum of the inner cylinder, fifr?, in com- 
parison with the profile of a logarithmic layer model (solid line) (Lathrop et al,* 1992 [7]) 
and with the profile of the extremalizing vector field in the limit of high Reynolds numbers 
(dashed Une). A stationary outer cyfinder with a radius ratio 77 = 0.667 has been used 
(After Busse, 1996 [9]). 
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of hexagons is advected by a mean flow. Few experiments can provide an instantaneous 
view of the two-dimensional structure of turbulence. Through the shadowgraph visuaUza- 
tion technique [10], such a view can be obtained in the case of turbulent convection in a 
fluid layer heated from bellow. It is thus not surprising that a nearly stationary network of 
convection cells can be discerned in turbulent convection at a Rayleigh number of several 
10^. Measurements of spectral peaks that can be compared with the discrete scales of the 
extremalizing fields have been obtained as shown in Fig (10). More detailed comparisons 
appear to be possible when numerical simulations of convection with sufiiciently large hori- 
zontal periodicity intervals are carried out. Another property shared by extremalizing fields 
for different turbulent flows is shown in Fig 11, where the structures of shear flow boundary 
layers and of thermal boundary layers in convection are identical when scaled properly. 

Finally, additional constraints will restrict the manifold of admissible vector fields in the 
variational problems and will lead to improved bounds. 

3    Convection in a Rotating System 

The geometry of this problem is shown in Fig (12). Th( 
temperature ^'^^^ ■ The dimensionless governing equations are: 
The geometry of this problem is shown in Fig (12). The length scale is d, time scale ^ and 

■'(I- 

dt 

where 

R = 

n-- 

7(22 -T^)9d^ 

P = 

7K 
1/ 

K 

V j u = -VTT + fee + V^U - 2f^ X U (24) 

V • u = 0 (25) 

e + u • ve = iju • k + v^e (26) 

(27) 

(28) 

(29) 

Assume the turbulence is stationary, and thus 

e = 0 + e,    with ^ = 0. (30) 

As usual, the over bar denotes a horizontal average over the plane z = constant. By taking 
the horizontal average of the temperature equation (26), we have 

-^e = u^- < u^e > (31) 
dz 

Using the general representation of a solenoidal field, 

u = V X (V$ X k) + V* X k = (5$ + e*, (32) 
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Figure 10: Three graphs of the normaUzed cospectra of w and 6, observed by Deardorff 
and WilHs (1967) [11] at Rayleigh numbers 6 x 105,2.5 x 10^, 1.0 x 10^ respectively, are 
plotted on top of a figure showing l[^^ = 2i:/a'f^ as a function of the Rayleigh number for 
iV = 2,3,4. The three graphs have been arranged in such a way that the Rayleigh numbers 
of both plots coincide approximately at the level where the secondary maxima appear in 
the cospectra. 
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r,-f U, 

Figure 11: Root mean squre (r.m.s) values of the fluctuating components of the velocities 
in the streamwise direction, UX/UT, and normal to the wall, W/UT, measured by Laufer 
(1954) [12] at Re = 2.5 x 10^(x) are compared with the r.m.s. values of the temperature 
fiucuations 6 and of the vertical velocity w measuered in turbulent thermal convection by 
Deardorff and WiUis(1967) [11]. The latter values have been obtained for Ra = 2.5 x 
lO^(o) and Ra = 2.5 x lO^(n) are plotted in units resulting from the correspondence of the 
variational problems (after Busse, 1970) 
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Figure 12: Geometry of convection in a rotating fluid layer. 
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we obtain: 

V'Aa^ + 2QVA2'5' - AjO = P'^ (^V^Aj* + S-{u- Vu)\ , (33) 

V^As* - 2Q • VA2$ = P-i (^A2* + € • (u • Vu)] , (34) 

v^e - RA2^ + A2$^e = u • ve - u • ve + ^e. (35) 

Then we are able to derive the following power integrals for stationary turbulent convection: 

< |k X VV2$|2 > +2fi < A2$—* > + < eA2# > = P-^<S^- [((5$ + 6*). V]e^ >, 

(36) 

< |k X VV^^rp > -2J1 < A2$^* > = p-1 < e*[((5$ + e*) • V]J$ >, 

          (37) 

< |vep > + < |A2$e- < A2$e >\'^> = R< -A^^O >. (ss) 

With these power integrals, the variational problem is formulated as follows: 
For given values of the parameters P, T and fi > 0 find the minimum R{H,P,T) of the 
variational functional 

n{^\^*,e*;ti,p,r) = n, + x(n2 + ^n^ (39) 

among oilfields $*, **, 0* satisfying the conditions 

^»     dH*      d^*     ^, 1 

In the above expression 

^^ _ (< |k X vv^*\-^ > + < |k X vv2$*|2 >) < |ve*p >+tjL< {WA^- < e*A2^* >)^ > 
< e*A2** >2 " ' 

(41a) 
n -    < |k X VV^*P >-r < A2^*^ > 

^       < |k X VVf'* |2 > + < |k X VV2$* |2 > ' (^^^) 

^ " [< |k X VV**|2 > + < |k X VV2$*|2 >]3/2 •    . (41c) 

The functional is homogeneous in 0 and in ($,'5'). Hence the normalization 

Ai = - < eA2$ >=< |k X VV*|2 > + < |k X VV^^p > (42) 
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can be imposed. To solve this variational problem, the following ansatz is introduced: 

N 

^ = '^M^^y)M^)^ (43a) 
p=l 

N 

9 = '^M^,y)Bp{z), (43b) 
p=i 

N 

e = J2M^,y)Tp{z), (43c) 
p=i 

where the boundary conditions for $, '^ and 6 can be satisfied by the choice 

Ap = ^apgSmqTriz + -], (44a) 

Bp = J^ftpqCOsgTr f ^ + 2) '    ^P = ^ipgSin^vr f ^ + 2) ' (44b) 

for the z-dependence. 
Then the time independent Euler-Lagrange equations are solved numerically to find 

the stationary state of the functional R{H,P,T). TWO types of solutions are tried. One 
of them is two-dimensional rolls, in which case a single wavenumber (AT = 1 in (43)) is 
assumed [13]. Since the P dependence disappears in the Euler-Lagrange equations in the 
two dimensional case, to investigate the role of P in determining the upper bounds, three- 
dimensional hexagonal solutions are considered {N < 5) [13]. The Euler-Lagrange equations 
used here are time independent, which provide the upper bound of the heat transport by 
turbulent convection. Thus we don't observe the onset of convection in the form of coherent 
oscillation bellow the critical Rayleigh number when the Prandtl number P is low enough. 

The extremalizing fields of the two-dimensional roll and three-dimensional hexagon axe 
shown in Fig (14) and Fig (13). The boundary layer can be seen to form in the roll 
solution (Fig (14) with increasing Rayleigh number with fixed T^. In order to maximize the 
convective heat transport the function E = 6^2<t>/ < 0A2(f> > must approach a constant 
value in the interior of the layer while keeping its rise from zero at the boundaries sufficiently 
smooth such that the dissipation of the flucuating variables does not contribute too much 
in the functional (3). This tendency is clearly seen in Fig (15) as the boundary layer forms. 
The three-dimensional hexagon solution has asymmetric components as is clearly evident in 
the ^-dependences of ^i(z) and Ti{z) in Fig (13). The asymmetry increases with decreasing 
Prandtl number P and with increasing R. 

Finally, the upper bound on the heat transport is shown in Fig (16). The figure shows 
that the upper bound of convective heat transport by hexagon solutions extends to bellow 
the critical Rayleigh number Ruc, which is indicated by the vanishing of the maximum 
convective heat transport by the roll solutions. This point is particularly evident in for 
the T^ = 10^ and P = 0.0247 case. But at Ra not far beyond the critical value, the heat 
transport by roll solution ahready exceeds the hexagon solution. This subcritical extent of 
the hexagon upper bound is not quite so dramatic for lower r^ values. 
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Figure 13: The z-dependences Ti{z) (solid line, left ordinate) and Ai{z) (dashed lines, 
right ordinate) for the etremalizing hexagon solution in the case R = 3000 P = 1 for 
T2 = 500,750,1000,1250,1500,2000 (from top to bottom) 

References 

[1] F. Busse, "On Howard's upper bound for heat transport by turbulent convection " J 
Fluid Mech. 37, 457 (1969). 

[2] F. Busse and D. Joseph, "Bounds for heat transport in a porous layer," J. Fluid Mech 
54, 521 (1972). 

[3] N. Vitanov and F. Busse, "Bounds on the heat transport in a horizontal fluid layer 
with stress-free boundaries," J. Applied Math. Phys. (ZAMP) 48, 310 (1997). 

[4] L. Howard, "Heat transport by turbulent convecton," J. Fluid Mech. 17, 405 (1963). 

[5] D. Moore and N. Weiss, "Two-dimensional Rayleigh-Benard convection" J   Fluid 
Mech. 58, 289 (1973). 

[6] F. Busse, "Bounds for turbulent shear flow," J. Fluid Mech. 41, 219 (1970). 

[7] F. J. Lathrop, D.P. and H. Swinney, "Transition to shear-driven turbulence in Couette- 
Taylor flow," Phys. Rev. A 46, 6390 (1992). 

[8] G. Smith and A. Townsend, "Turbulent Couette flow between concentric cylinders at 
large Taylor numbers," J. Fluid Mech. 123, 187 (1982). 

84 



[9] F. Busse, in Nonlinear Physics of Complex Systems, Lecture Notes in Physics, edited 
by W. J.Parisi, S.C.MuUer (Springer Verlag, New York, 1996). 

[10] F. Busse and J. Whitehead, "Instabilities of convection rolls in a high Prandtl number 
convection," J. Fluid Mech. 66, 305 (1971). 

[11] J. Deardroff and G. Willis, "Investigation of turbulent thermal convection between 
horizontal plates," J. Fluid Mech. 28, 675 (1967). 

[12] J. Laufer, "The structure of turbulence in fully developed pipe flow," NACA Rep. 1174 
(1954). 

[13] N. Vitanov and F. Busse, "Bounds on the convective heat transport in a rotating layer," 
Phys. Rev. E 63, 16303 (2001). 

85 



4000 

2000 

(a) 
1                      ' 

1/''//' 

^><^  

^ 

,--- 

■ * 

-0,4 -0.2 0.0 

Figure 14: The ^-dependence of the extremalizing fields 6 (solid line, left ordinate) and V 
(dashed lines, right ordinate) of the roll solution for r^ = 500 in the cases i? = 2 x 10^ 3 x 
10^, 4 X 103,5 X 103,7.5 X 10^, 10^ 1.25 x IQ-* (from top to bottom) 
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T = 500,1500, lO'' are indicated by the thin dotted Une, the thick dotted line and the thick 
solid Une, respectively 

88 



Lecture 8 

Bounds for Rotating Fluids 

P. Constantin 

Notes by U. Riemenschneider and S. Plasting 

1 Introduction 

Bounding problems in fluid turbulence have classically been concerned with finding bounds 
on one point quantities such as the time and space averaged dissipation rate T{Re) = 
i/(||Vu|p). Another class of problem is to find bounds on two point quantities which 
depend both on the system control parameter and on a space- or time-hke parameter. An 
example of such a quantity is the energy spectrum E{k\ Re) = \ JQ |u(fc)|^dt, where k is the 
magnitude of the wave number, which is the density of the contributions to the kinetic energy 
on the wave-number magnitude axis. The total kinetic energy is ^ /Q ||u||^dt = /Q°° E{k)dk 

This lecture deals with deriving rigorous upper bounds on transport quantities and 
energy spectra for rotating fluid systems. We present results for bounds on one and two point 
quantities which are derived by following the Constantin-Doering-Hopf bounding approach. 

2 Bounds for Rayleigh-Benard Convection 

The effect of rotation on convective heat transport is an important issue in astrophysical and 
geophysical appUcations. Here we shall consider the heat transport through a fluid layer 
confined between two parallel plates heated firom below with fixed temperature on both 
top and bottom plates, which is rotating with a constant rate around an axis of rotation 
perpendicular to the plates. No-shp boundary conditions will be assumed throughout. The 
non-dimensional equations for Boussinesq convection with rotation are 

-^ (-^ -I- u • Vu I + £;-^k X u -I- Vp = Au -I- RakT 
Pr \dt ) (1) 

Vu 

dT ^ + u • vr = AT 

where the Prandtl number is defined as Pr = I//K, the Ekman number is inversely propor- 
tional to the rotation rate, and the Rayleigh number is the standard non-dimensionahsed 
temperature difference across the fluid layer. 

In the Umit of infinite Prandtl number one can neglect the inertial terms of the left 
hand side of Equation (1). In the remaining system of equations T is the active scalar 
and the velocity vector u is linearly dependent on T. In the bounding analysis of this 
problem the full momentum equation can be utilised as a pointwise constraint due to its 
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linearity. Following the derivation in [1] we are able to show that the following equations 
in the vertical component of velocity lo = k • u and the vertical component of vorticity 
^ = k • (V X u) fully determine the dynamics of the convective state 

A2 w - E-'^^ =-RaA„T (2) 

oz (3) 

subject to the boundary conditions 

ty = -^ = 0 = ^    atz = 0, 1. 

Multiplymg Equation (2) by w, Equation (3) by C, adding and integrating we deuce that 
the following JS-independent bound holds pointwise in time 

||Ati;||^ + 2||A^f<i?a2 (4) 

where we use a normalised L^ norm 

Equation (3) can be rearranged to 

dw 
= -EA^ (5) 

The previous two expressions together imply that for strong rotation rates {E -^ 0) horizon- 
tal variations in w are restricted and a stratification is set up such that a purely conductive 
state is realised. 

The total non-dimensional heat transport is quantified by the Nusselt number which is 
defined as the long-time average of the vertical heat flux 

where 

N = l + 

rL   fL 

Q^ b{z,t)dz\ 

b{z,t):=j^J   j  w{x,y,z,t)T{x,y,z,t)dxdy. 

and (•) is used to denote the long-time average 

1   /■* 
</) = limsup- /  f{s)ds 

t=-*oo   t JQ 
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Figure 1: A plethora of upper bounds on the heat transport, N, in Rayleigh-Benard con- 
vection for infinite Prandtl number. 

Figure (1) shows the results of several upper bounding studies for the infinite Prandtl 
number problem. Upper bounds on iV — 1 are plotted against the Ekman number. The top 
most upper bound is a uniform bound in E [2]. Intersecting this bound are two other upper 
bounds. The bound to the left has the proper qualitative dependence on rotation in that 
convection is suppressed in the limit of strong rotation {E ->• 0) which is suggested by the 
relations in (4) and (5) [3]. In the absence of rotation (E = oo) a logarithmic bound has 
been obtained [4], which is illustrated by the dotted line in the figure. Allowing for finite 
E they find in [1] that there is a region in which the optimal bound is lowered from ii^/^ 
and connects to the logarithmic bound at some higher Ekman number. 

3    Bounds on the Energy Spectrum 

We now turn our attention to a problem for which an upper bound on the scaling of the 
energy spectrum in rotating turbulence has been caculated. 

3.1    Motivating Experiment of H. L. Swinney 

The motivation is a recent experiment by Baroud, Plapp, She and Swinney [5] for which 
Kolmogorov's theory for two-dimensional turbulence does not justify the scaling of the 
energy spectrum in the inverse cascade region. In the Experiment quasi-two-dimensional 
flow is studied in a rapidly rotating cylindrical annulus. The resulting velocity measurements 
yield a self-similar probability distribution function for longitudinal velocity differences, 
which are strongly non-Gaussian. The resulting energy spectrum is described by E{k) ~ k~^ 
rather than the expected E{k) ~ fc~^/^ from Kolmogorov's theory. We shall outline a brief 
background to Kolmogorov's statistical study of turbulence, followed by a description of 
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R 

Figure 2: Typical correlation curves. R is the correlation coefficient and I the separation of 
sample points. For large separation R tends to zero and for no separation R=l. 

the experiment which. A rigorous upper bound for the energy spectrum is then presented 
under the assumption of quasi-geostophy. 

3.2    Background on Turbulence (See also [6]) 

The most successful statistical theory of turbulence is that of Kolmogorov, which involves 
scaling laws for the structure function Sp{l) = {SV{1)P) ~ fp of velocity increments 5v{l) = 
v{x + 0 - v{x), where / denotes the separation between two points. An often studied and 
very important question regarding turbulence is whether the statistics are self-similar across 
a wide range of spatial scales, or equivalently whether the probability distribution functions 
(PDFs) of the velocity increments have a functional form independent of the separation I. 

Correlation curves such as in Figure 2 provide a method to study the scale and structure 
of turbulent motion. Supposing ui and U2 are deviations from the mean flow at different 
positions but at the same instance, ulua is known as a space correlation. Usually most 
attention is given to longitudinal or lateral correlations, i.e. to points separated parallel 
or perpendicular to the velocity components respectively. Correlations depend on both the 
direction and magnitude of I and different behaviors in different directions may provide 
information about the structure of turbulence. When I = 0, ui = U2 (provided they 
are in the same direction) and the correlation coefficient R is by definition equal to 1, 
where R = u^/{uful)y^. As I increases the velocity fluctuations become more and more 
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independent of one another and R asymptotes to 0. A negative region in the correlation 
curve (figure 2 B) impHes that ui and U2 are on average in opposite directions. 

A correlation curve therefore gives an idea of the distances over which motions at differ- 
ent points significantly affect one another. This statistical analysis gives rise to the structure 
functions describing the spatial structure of the turbulent motion. 

Using Fourier transforms an equation in terms of spectral functions may be obtained 
alternatively to the correlation functions. In the inertial range these depend only on the 
wave number k and the energy dissipation e, E = E{k, e). 

E{k) = l ['\u{k)\''dt (6) 
t Jo 

and dimensional analysis then gives 

Eik) = Ae'^/^k-^/^ (7) 

where A is a numerical constant. This is the famous 'Kolmogorov -5/3 law' which applies 
for flows of a high Reynold number under two hypothesis: 1) local isotropy and homogene- 
ity, and 2) the existence of a wave number range independent of viscosity and large-scale 
properties at sufficiently large Reynolds numbers. 

3.3    The Experiment 

Kolmogorov's theory was developed without considering rotation, for planetary flows how- 
ever, such as the Earth's atmosphere and ocean, this assumption may not apply since the 
Rossby number which measures the relative importance of the inertial and Coriolis forces 
in the Navier-Stokes equation is small, 

The experiment carried out by Swinney using a rotating annular tank was the first 
to determine the statistical properties of turbulence in a low Rossby number flow. The 
experimental setup was as follows. An annular tank was filled with water and covered by a 
soUd lid; the inner radius of the tank was 10.8 cm and the outer radius 43.2 cm. The depth 
of the tank increased firom 17.1 cm at the inner radius to 20.3 cm at the outer radius to 
simulate the /?-effect of the earths' surface, for more details see [7]. A counter rotating jet 
was induced in the flow, by continuous pumping of water in to and out of the tank through 
two concentric rings at the bottom of the tank. A sketch of the setup is shown in Figure 3 
and a more detailed description of it may be found in [5]. 

The purpose of the pumping at the bottom of the cyhnder is to create a shear between 
the Ekman layer and the fluid in the tank and thus induce turbulence. The rapid rotation 
of the tank (11.0 rad/s) produces essentially 2D flow, except in the thin Ekman boundary 
layer at the top and bottom surfaces. 

Time series measurements of the azimuthal velocity midway between the inner and 
outer wall of the tank were taken using hot film probes. In order to find a correlation of 
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20.3 cm 

10.8 cm 

43.2 cm 

Figure 3: Experimental apparatus. The dimensions of the tank are shown. Note that the 
tank is covered by a rigid lid. The dotted Unes show the approximate positions of the 
two concentric rings pumping fluid in to and out of the tank, via the inner and outer ring 
respectively. 

the velocity increments an autocorrelation is used, that is, the same velocity components 
at a single point (the hot film probes) at different instances are correlated. This depends 
on the time separation s only, however, when the turbulent motion is occurring in a flow 
with a large mean velocity, as is the case in this experiment {Umax ^ 22cm/s), it is possible 
for the turbulence to be advected past the point of observation more rapidly than the 
pattern of fluctuations is changing. An autocorrelation wiU then be directly related to 
the corresponding space correlation with separation in the mean flow direction, by just 
transforming the variables, s = r/U. This is referred to as Taylor's frozen in turbulence 
hypothesis. 

The energy power spectrum is computed from the time series data obtained in the 
experiment and they find that E{k) ~ fc"^ for the inverse energy cascade. 

3.4    Inverse Energy Cascade 

In two-dimensional turbulence there are two conserved quantities, energy and enstrophy, 
which are candidates for cascades of the Kolmogorov type (see Figure 4(a)). However, to 
satisfy both conservation laws there must also be a reverse flow of kinetic energy, from 
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Direct 
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Figure 4: The energy cascade picture of fluid turbulence in (a) 3-dimensions and in (b) 
2-dimensions. The input scale is the characteristic wave-number at which the fluid system 
is forced. In 3-dimensional turbulence energy is transfered inviscidly from the large scales 
(small k), associated with the energy input scale, to smaller scales where it is dissipated by 
viscous means at the Kolmogorov lengthscale. In 2-dimensional turbulence kinetic energy 
can transfer from the input scale up to larger scales. This phenomenon is known as the 
inverse energy cascade. For a review article on 2D turbulence see [8]. 

small scales to large scales, called the inverse energy cascade (Figure 4(b)). For strictly 
two-dimensional Navier-Stokes equations under homogeneous and isotropic conditions the 
Kolmogorov-Kraichnan theorem predicts a /c"^/^ inverse energy cascade spectrum at wave- 
numbers smaller than the forcing scale (for a review of two-dimensional turbulence [8]). In 
the Experiment which we assume is quasi-2D an inverse cascade is observed as small vortices, 
an array of vortex filaments are constantly injected at the boimdaries of the outlets and 
inlets, merge to form larger vortices with maximum size limited only by the size of the 
experimental apparatus. 

3.5    Rotating Navier-Stokes Equations 

The equations of motion governing a body of fluid rotating at a constant rate about the 
2;-axis are 

du 
dt 

-f u • Vu -I- VTT 4- 2fik X u = i/Au (9) 

V-u = 0 

P     2 
n{k X r) 
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where u is the relative velocity. The Coriolis force -2nk x u is always perpendicular to 
the velocity and hence does no work but tends to deflect moving fluid elements to the right 
(see [9] for a derivation of these equations). In the Experiment the pumping at the tank 
bottom produces a counter-rotating jet in the Ekman layer which generates the turbulence 
observed there. 

3.6    Is the Energy Dissipation Bounded in the Experiment? 

The Constantin-Doering variational approach can be used to prove the boundedness of the 
energy dissipation rate for the fluid system studied in the Experiment. The one technical 
issue IS to develop a background field which is continuous, solenoidal and satisfies the 
necessary boundary conditions. 

Natural boundary conditions for the Experiment are no-slip everywhere except at the 
bottom of the cylinder where fluid is injected through a ring of holes at a rate W and sucked 
out at the same rate from a concentric ring of holes. The distance between the forcing rings 
I, IS defined as the integral length scale.  We can thus define the boundary conditions a^ 
follows 

u = W<p{j,^)k   at 2 = 0 

u = 0   otherwise. 

where ,p takes the values 1 at the input holes, -1 at the output holes and 0 everywhere else 
on the bottom boundary. 

One can generate a smooth continuation of these boundary conditions in to an incom- 
pressible ba<;kground field UB as follows: define x{z) a smooth function satisfying x(0) = 1 
X'(O) = 0 and x{H) = 0, x'{H) = 0, where H is the height of the cyhnder, which de-' 
creases rapidly over a small distance 5 jfrom ^ = 0 (Figure 5). Now define ^(x,y) as the 
two-dimensional solution of 

Anip + (p = 0 (10) 

where ^H = -^ +-^ is the horizontal Laplacian. Then it is easy to check that the 
following velocity profile is both incompressible and satisfies the boundary conditions of the 
experiment 

V    xizMf,^)    I 

Theorem 1: If ^ < c for some c> 0 then V initial conditions uo 

"j^sup-^ (IVup) < EB   where   ^B<C^ (12) 

Proof idea: This bound on the energy dissipation rate can be calculated using the 
Constantin-Doering background flow method [10] with background field UB- 
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Lecture 9 

Bounds on Mixing in Stratified Shear Flows 
Colm-cille P. Caulfield 

Notes by Jennifer Siggers 

1    Introduction and Motivation 

Mixing is a very common feature in the environmentally prevalent flows with both vertical 
velocity and density variation. Examples include the thermocline, the lutocline, planetary 
boundary layers, river mouths, etc. Such flows exhibit a characteristic life-cycle, where some 
external forcing intensifies the velocity shear, triggering a sequence of instabilities. These 
instabilities typically lead to a period of small-scale disordered turbulent motion, that is 
characterized by substantially enhanced mixing of fluid elements, and also dissipation. This 
dissipation inevitably extracts energy from the mean shear, which decreases in magnitude, 
leading ultimately to relaminarization of the underlying flow. Subsequent external forcing 
starts the cycle once again. 

The problem is that crucial aspects of the Ufe cycle are associated with motions that are 
inherently small scale, (of the order of millimetres) over time scales that are also short (of 
the order of seconds), but we wish to know what happens on much larger length and time 
scales, for example synoptic (i.e. of the order of hundreds to thousands of kilometres) and 
seasonal scales. For example we may want to know about the total global or atmospheric 
heat budget or poUutant transport within the entire system. Thus we might want to ask 
the deceptively simple question: 

For a given kinetic energy input from the shear forcing, how much energy is lost 
to viscous dissipation and how much energy leads to mixing? 

The objective of a significant amount of recent research has been to answer this question by 
identifying the mixing mechanisms. This has been done by finding the dependence of mfadng 
events on bulk flow characteristics, their spatial localizations and their time dependence. 
Then it is possible to quantify the mbdng appropriately, for example by distinguishing 
between reversible and irreversible processes and, more recently, by developing rigorous 
bounds. The ultimate aim that should always be remembered is the desire to generate 
robust parameterizations, useful to models of larger scale geophysical flows, that capture 
the essential characteristics of mixing within stratified sheared flow. 

2    Energetics of Stratified Shear Flows 

To identify some of the important aspects of the energetics of stratified shear flows, consider 
a simple flow that is infinite or periodic in the horizontal directions and has finite extent 
in the vertical direction. We use stress firee boundary conditions with no normal flow 
through the boundary and assume an insulating temperature boundary condition. The 
velocity is assumed to vary from -UQ to +Uo over the length scale do, and the density 
varies fi-om Pa - Po to pa + po over the length scale 60, where po < Pa-   Alternatively, 
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N'^{Z) = -g/padp/dz where the variation in p is "small" over the scale do- We therefore 
assume that the Boussinesq approximation is vaUd. 

Richardson numbers are a useful tool for parameterizing mixing processes. There is a 
broad class of such numbers. Here, we define two of these; the bulk Richardson number: 

gppdo 

PaU^ 

and the gradient Richardson number: 

-gdp/dz   _      N^ 

Pa {du/dzf ~ [du/dz) 

J='-^, (1) 

-gap uz ly , . 

where the bar denotes averaging over the horizontal layer. Both the global (J) and local 
(Ri) Richardson numbers are a measure of the relative importance of buoyancy force to 
inertia or alternatively the potential energy variations to kinetic energy variations. 

In the Boussinesq approximation, the kinetic energy density of the flow is given by 

}C{t) = •^, (3) 

where the angle brackets denote the average over the whole layer. We non-dimensionahze 
the equations with the scales do, UQ and po. Dotting the Navier-Stokes equation with u 
and averaging over the domain yields the evolution equation for K 

f   =   -/W-^{(Vurt (4) 
=   H-e = -B-£, (5) 

where Ti is the heat flux, B = —V. is the buoyancy flux and £ is the rate of dissipation. 
The potential energy density is defined to be 

T = J{pz) = J{pz),, (6) 

where the subscript z indicates averaging over the z-component only. The evolution equation 
for V is 

f = e+i.p. (7) 

where 

aReLz' 

and V-p is the inevtiable diffusion of the mean profile, which would occur in the absence of 
macroscopic fluid motion. 

If the flow is statically stable V-p > 0, denoting a continual conversion of internal energy 
into potential energy within the Boussinesq approximation. Energy is exchanged between 
K and V via B, see figure 2. Clearly, the buoyancy flux is intimately related to the process 
of mixing, but it is necessary to have a very clear view of what exactly we mean by mixing 
before quantitative advances can be made. 
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3    Concepts of Stirring and Mixing 

We coiiFider mixing to be an irreversible change of the fluid properties that is inherently 
small scale. We wish to distinguish mixing from stirring, which we consider to be a large 
scale reversible motion of the fluid. Mixing, in our view, corresponds to an irreversible 
change of V caused by the motion of the fluid. However, the buoyancy flux B includes 
both mixing and stirring, so in order to quantify the amount of mixing taking place, we 
split the potential energy into two parts, the background potential energy, that is increased 
irreversibly by the mixing process and the available potential energy that may be reconverted 
back to kinetic energy, following the original conception of Lorenz. A particular algorithmic 
formulation, well-suited to numerical simulation was invented in [1], where the background 
potential energy is defined as 

'PB = J{PB{Z)Z)„ (9) 

where ps is the background density profile. The background density profile is the sorted 
statically stable profile of the fluid that has no horizontal variation, and is generated by 
adiabatic (within our Boussinesq incompressible framework this corresponds to volume- 
preserving) rearrangement or sorting of the fluid parcels into a state corresponding to the 
minimum possible potential energy that can be achieved by the flow. An example of the 
way this sorting is done is shown in figure 1. The remainder of T' is the available potential 
energy VA (i.e. available for reconversion into other forms of energy). We have, 

VA   =   V-VB, (10) 

^^VA   =   B-M = S, (11) 

d 
-VB   =   M + V-P, (12) 

-/C(t)   =   -S-M + V, (13) 

where S and M are energy transfer rates defined by the above equations. A schematic 
view of the processes of energy transfer represented by these equations is shown in figure 2. 
Figure 3 shows a schematic graph of possible values of B, M and dPA/dt for a typical 
fluid. The left hand half shows a situation where the fluid is moving upwards on average 
(B > 0). The mixing rate M can actually be small during this stage, for example during 
the initial preturbulence roll-up of a Kelvin-Helmholtz biUow. In the right hand half, the 
fluid is moving downwards on average (B < 0), and this can correspond to a higher mixing 
rate. However, the averages of B and M for sufliciently long times are always equal, so that 

lim / Bdt = hm  / Mdt,    i.e.   Hm  / Sdt = 0. ^14) 

4    Mixing Efficiency 

Essentially the fundamental question posed in the introduction considers the eflaciency 
of the mixing, i.e.   the proportion of the kinetic energy Isot by the flow (or the driving 
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Figure 1: Diagrams showing an example of the actual state of the fluid (top left). The 
horizontally averaged density p is shown underneath, which is uniform in z in this case. 
The sorted stable profile of the fluid for calculating the background density is shown (top 
right), with the heaviest fluid at the bottom, and the graph of background density is shown 
underneath. 
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Figure 2: Diagram showing the mechanisms by which energy may be transferred in the 
fluid. K is the kinetic energy, V is the potential energy and I is the internal energy of the 
fluid (e.g. due to its temperature). 

mechanism) that leads to mixing, or, equivalently, irreversible increases in potential energy. 
More formally, the mixing efficiency is usually (e.g. for grid-stirred experunents) defined as 

APE 
WORK (15) 

(see [2, 3] etc.). This is the natural measure of the proportion of the kinetic energy input to 
the fluid that has led to irreversible mixing. Experimentally this is typically only determined 
at the very end of an experiment, once all reversible processes can be assumed to have died 
out. However, provided the backgroimd density profile can be determined explicitly, (as can 
be done straightforwardly in a numerical simulation) it is possible to define an instantaneous 
mixing efficiency: 

ei = 
M 

M + S' 

Naturally, it is also possible to define a long-time cumulative version 

Sc  = 
/(jAl(u)du 

r^M{u)du + Jle{u)Au 

(16) 

(17) 

that more closely approximates the experimental quantity. 
The beautiful work of Winters [4] has shown that the diapycnal flux $d is 

(18) 
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Figure 3: Diagram showing possible values of B (solid), M. (dotted) and dVA/dt (dashed) 
for a typical fluid as over a period of time. 
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where z^ is the coordinate associated with the rearanged fluid parcels that make up the 
background density profile pB. A large $d means that there is an enhanced irreversible 
transport of density, and hence an irreversible increase in potential energy. From the for- 
mula, it is apparent that this may occur if there is an enhanced density gradient and/or 
enhanced surface area of contact between fluids of different densities. $d can also be related 
to the Cox number, or equivalently to the flux Richardson number. 

The flux Richardson number is defined in sheared stratified turbulent flow as 

/? g 
^     -{u'w')du/dz' (1^) 

where u' = u - u. The long time average of Rf always tends to the mixing efficiency 
€c. However, the denominator (essentially the shear production of turbulent kinetic energy, 
which corresponds to the kinetic energy lost by the mean, forcing flow) of the expression for 
Rf is always positive in a steady state and so if S < 0, which often happens in the periods 
of most intense mixing then Rf is negative! Hence it does not necessarily provide a good 
instantaneous estimate of the mixing efficiency. 

5    Previous Psirameterizations 

Previous parametrizations of mixing within shear driven turbulence have focussed on ap- 
propriate descriptions of the flux Richardson number, since it is apparent that in a shear 
flow 

Rf     kh 
m = kZ' (20) 

where 

,        B -{u'w') 
kn = j^    and   A:. =-^, (21) 

are the eddy diffusivities of density and momentum respectively. Larger scale models of- 
ten rely on sub-grid scale parameterizations based on eddy diffusivities. Although such 
models have many problems, they are commonly used, and so the determination of the 
flux Richardson number in terms of bulk properties of the flow has been the focus of much 
research. 

For example, the Osborn-Cox Model [5] is a common oceanographic model that assumes 
that the flow is stationary and homogeneous. Also, both boundary effects and the effects 
of advection into and out of the domain are assumed to be unimportant. With these 
assumptions, 

^"^ - T^W = ^JV^' (22) 

where F is known as the flux coefficient. Historically, often Rf « 0.15 has been assumed, 
corresponding to F « 0.2 (based on oceanographic observations), although 0.05 <Rf< 0.3 
have been observed [6, 7].   Rod-stirring experiments suggest Rf < 0.8 [3] and collated 
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Figure 4: Four graphs showing values of the flux Richardson number i?/ as a function 
of gradient Richardson number Ri obtained by different sources, (a) Some experimentaUy 
measured values. The squares represent thermally stratified wind-tunnel data from [11], and 
the circles and triangles represent decaying and growing (shear-driven) stratified turbulence 
data in salinity-stratified fluids, as compiled in [12]. (&) Observed mixing efficiencies. The 
dashed curve is from [13], the thin solid curve is from [14], the bold solid curve is from [15], 
the triangles are from an experiment based in Salt Lake City and the crosses are from 
an experiment based at Los Alamos [16], the diamonds are from [17] and the circles are 
from a modified version of [13]. The graph is taken from [16]. (c) Experimental values 
from [17]. (d) Values obtained by direct numerical simulation compared with experimental 
values (solid symbols). 
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experiments suggest Rf < 0.2 [8]. The dependence of the mixing efficiency on Ri and J 
was found in [9, 10] where is was also found that there is a tendency for the flows to form 
layers. A graph showing the relationship between Ri and Rj is shown in figure 4(a). 

However, some numerical calculations suggest the possibifity of larger £c, and hence Rf, 
for example in pre-turbulent billows [18, 19, 20]. Also recent direct numerical simulations 
of homogeneous decaying turbulence suggest Rf « 0.4, which is consistent with rapid 
distortion theory calculations at high J [21]. Stratified shear experiments have Rf « 0.45 
and obesrvations have found values of Rf between 0.4 and 0.45 [22, 17, 16]. The graphs in 
figure 4(&), (c) and (d) show some results that have obtained higher values oi Rf. 

Some models have also produced high mixing efficiencies. For example, Pearson, Put- 
tock & Hunt [23] found that the mixing was related to local density perturbations and its 
efficiency was constant (and independent of stratification). There was also an apparent 
equipartition of V and ic. Weinstock [24] assumed that the dominant mixing processes 
occur at scales within the inertial subrange (i.e. those scales where there is homogeneous 
isotropic turbulence, that are much smaller than any characteristic forcing lengthscales and 
yet longer than the viscous Kolmogorov dissipation lengthscale). He showed, by manipu- 
lation of the Lagrangian velocity correlation function that kh is predicted to take a value 
consistent with Rf = 4/9. 

6     Townsend's Model 

Townsend [25] developed an empirical model for the heat and momentum transport in 
turbulent stratified flow. His fundamental assumption was that the turbulence is little 
affected by the stratification of the fluid. This is obviously not the case in flows where 
the turbulence is driven on sufficiently large vertical length scales, for which the turbulent 
motions in the vertical direction are likely to be hindered by the stratiflcation. However, if 
the dominant turbulent scales have sufficiently small scales, the turbulence can be assumed 
to be relatively independent of the stratification. 

Townsend's empirical assumption is that all flow quantities can be described by char- 
acteristic scales of u and the density fluctuations p. We deflne the r.m.s. turbulent kinetic 
energy intensity q 

q=y/\n-u\^, (23) 

and the r.m.s. density fluctuations r. 

= \/|p-p|2- (24) 

The equations for the flow v and the density fluctuations p in the Boussinesq approxi- 
mation are 

5^-fu-Vu + Vp=-pi + ivVV (25) 
ot p 

^ + U.VP = KV^P, (26) 

V • u = 0. (27) 
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Assuming that the dominant flow is horizontal, the flow field can be written as 

u = U{z):x. + v(r) where U{z):x. = u and v = 0. (28) 

Let V = {u,v,w); assuming a steady state and taking the dot product of v with equation 
(25) and integrating over the horizontal plane yields 

-—-dU      g-—^ 
~^^'^)-^-—iP^)-'^ = ^- (29) 

Similarly, multiplying (26) by p and using the same procedure we get 

'(^£ + ^=0, (30) 

where ? is the horizontally averaged momentum dissipation rate and e^ is the horizontally 
averaged thermal dissipation rate. 

The following parameterizations were proposed by Townsend and follow from a simple 
dimensional analysis: 

3 2 
\uw\ = aiq^,    \pw\ = a2rq,    e = |-,    e^=^ (31) 

where oi, aa are positive nondimensional constants and L^, Lp are the (constant) integral 
length scales of velocity and density fluctuations. Substituting equation (30) into (26) to 
eHminate r yields a quadratic form for q only. 

Townsend [25] then proceeded to use these equations to derive a relation between the 
local fluxes and the local Richardson number, defined in equation (2). However, we shall 
assume that the vertical variation of the fiow and fluid structure is small, so that through a 
vertical integration of equations (29) and (25) we can obtain a relation between the global 
Richardson number J and the flux Richardson number Rf. The integration yields 

<^^'-l-2d-j<«>^ + ^-^^ = 0, (32) 

where (g)^ results from the vertical integration of q, AU and Ap are positive definite, and 
d is the half-thickness of the layer. This quadratic form can be solved for (g)^, and thereby 
provide also an expression for (r)^. These can then be substituted into the expression for 
the flux Richardson number, defined in (19) to give 

Rf = Sc = 

It appears that if J exceeds the critical value 

{\uw\%{ep), 
4{\pw\%{e) ' (34) 
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Figure 5: Schematic picture of set-up of numerical scheme 

then there is no solution with physical meaning. As J tends to this critical value from 
below, £c -> 1/2. Townsend interprets the critical value as the point above which "the 
energy supply is no longer sufficient and the motion collapses to almost laminar flow". 

Heuristically, this theory appears to suggest an upper bound on mixing efficiency of 1/2, 
consistently with the recent experimental and observational data. 

We shall now try to apply the methods developed by Doering & Constantin [26] to a 
model flow in order to derive rigorous upper bounds for the irreversible mixing rate M 
or equivalently the long-time average of the buoyancy flux, motivated by these suggestions 
that Rf can be higher than is commonly assumed. 

7    Bounding Techniques for Stratified Shear Flows 

More specifically, for the problem of a stratified shear flow, the questions that we will ask 
are the following: 

• Is it possible to generate a bound on mixing of heat? 

• For a given forcing, how much energy is transferred into V the potential energy? 

• Can we bound the long-time averaged buoyancy flux, i.e. can we bound the mixing rate 
Ml Does it depend on flow parameters? What is the associated mixing efficiency? 

7.1    Model Problem by C. P. Caulfield and R. R. Kerswell [27]: Stratified 
Couette Flow 

A simple model set-up that can be used for to investigate these issues is that of the stratified 
Couette Flow: two infinite bounding plates, placed at z± = ±1/2, and moving with veloci- 
ties —A?7/2 and A[//2 respectively within our non-dimensional scheme. The temperature 
imposed on these plates is constant and fixed in such a way as to ensure p = PAT Ap/2 on 
the upper and lower plates respectively. The set-up is illustrated in figure 5. It is impor- 
tant to stress that this flow is statically stable, as distinct from more commonly considered 
convectively unstable flows. 
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Using the following scales 

• length: d, 

• time: <P/K, 

• density: Ap, 

as well as the Boussinesq approximation, the governing equations (25)-(27) become 

^"      - -72„   ,   _2r,.2 -jr-+Vp-aV^u + a^Re'^Jz   =   0,    (AfS) 

dp 
dt ̂

 + u.vp-v2p = 0,   (n) 

Vu   =   0, 

where the relevant parameters are 

1/ 

and the boundary conditions are 

p{z±)   =   Tl/2. 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

7.2    Problem of Interest 

We will be particularly interested in long-time averages of the flow in order to define bounds 
on the states reached by the system under forcing. 

We perform the standard manipulation of dotting MS with u; the long time average of 
the result yields the energy balance equation 

lim \fm?) + aRe^J{u3p) + %^ 
du 
dz 

du 
dt' = 0, (41) 

where here a bar denotes the horizontal average of a quantity and angle brackets denote 
the average over all three space dimensions. Similar manipulations of the mass continuity 
equation give an entropy equation 

lim - f (|Vp|2) + i dp 
dz 

2+ dz 
dt' = 0, (42) 

in the Boussinesq approximation, and finally multiplying the mass equation n hy z and 
averaging yields the potential energy equation 

lim 
t-yoo -f 1 + {U3P) + 

dp 
dz 

+ dp 
dz 

dt' = 0. 
2+- 

(43) 
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Eliminating the boundary terms between these two equations provides a relation between 
the long-term averaged buoyancy flux B and diffusion terms, and shows that maximizing 

is equivalent to maximizing 

1   /■* 
B= lim-      aRe^J{uzp)dt', 

t-^oo t JQ 

lim - / (aile^J(|Vp|2) - l)dt'. 
;^oo t JQ 

(44) 

(45) 

Note that the quadratic form in Vp is more convenient to maximize, which is why it was 
chosen. To consider this problem, we use the Constantin-Doering-Hopf Method [26], also 
called the "background method". 

7.3     Constantin-Doering-Hopf Method 

We decompose u and p in the following manner: 

u(x,i)   =   (?!)(z)x + v(x,t), 

p(x,t)   =   T{z) + e{yi,t). 

(46) 

(47) 

Note that the background fields ^(z) and 6{z) are not the horizontal averages of the flow; 
this decomposition is certainly not unique, and allows us to chose the "background" fields 
4>{z) and 6{z) arbitrarily under the sole conditions that they satisfy the inhomogeneous 
boundary conditions with the fluctuations v and 0 satisifying the homogeneous boundary 
conditions, i.e. ^ = TcrRe, r = q=l/2, v = 0, and 6 = 0 &t z±. 

The corresponding variational problem consists in maximizing the functional 

C{^,T,a,b,v,e) lim 
t->oo U[ aRe^J I 

dr 
dz 

z + ve - a(v . (XS)) - b{e{Tl)) dt',   (48) 

and where, formally av is the Lagrange multiplier used to impose the condition that the 
flow should satisfy the Navier Stokes equation, and W is the Lagrange Multiplier used to 
impose (72.). This is actually equivalent to the statement that —a^ is the multiplier used 
to impose the mean momentum balance, a is the multiplier used to impose the total power 
balance, b the entropy flux balance and finally —br the mean heat balance, which can be 
shown from (48). 

7.4      Spectral Constrzdnt 

Substituting the ansatz (47) into the expressions for {J^S) and (Tt) of the functional C 
yields 

1   /"* 
C^aRe^Jir'^)- lim - /  g{T,<t>,v,e)dt', 

t-^OO t JQ 
(49) 
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where the prime denotes derivative with respect to z. Provided the infimum of Q exists, 
then 

C<aRe'^J{r'^)-m{g, (50) 

where 

+(6r' + acr^Re^J)v3e - (6 - 2aRe'^J)er" - a(T<f>"vi). (51) 

Convexity arguments show that the infimum exists only if: 

{aa\Vvf + {b- aRe'^J)\Ve\'^    + aviv^c^' + (6r' + aa^Re'^J)v39) > 0, {SC}        (52) 

which represents the so-called spectral constraint. This implies straightforwardly that a 
and b must necessarily satisfy aa > 0 and b > aRe^J. 

The Euler-Lagrange equations which must be satisfied to minimize Q are given by 

sg 
j^ = -2aV^v + a<p' + {bT' + aa^Re'^J)ez + Vp-aa<f>"yi   =   0, 

-^ = -2{b-<TRe'^J)V^e+{bT' + aa^Re^J)v3-{b-2aRe^J)T"   =   0. (53) 

From these, the horizontally averaged part of these equations can be solved straightfor- 
wardly to provide the extremal mean parts: 

ir*   =   --{<f) + aRez)x, (54) 

^ {2aRe^J-b), 

where the background fields ?!> and r are subject to the spectral constraint SC. For these 
extremalising fields, the functional J" has a conservative upper bound of 

^-^^^ = Aib-aRe^J)^^'"'"" ^^'^ + ^-^^'"^ + I^^^' + '^^«)')- (56) 

7.5    Distilled Variational Problem 

The remainder of the problem now consists in chosing the background fields r and <f> that 
satisfy the boundary conditions as well as the spectral constraints in order to make Cr^^ 
as small as possible. However, instead of optimizing the problem by spanning through aJl 
r and ^ possible, we will limit the study to a specific family of functions (with a boundary 
layer structure suggested by physical intuition) and minimize £niax within that family. This 
restricted class of functions will undoubtedly lead us to an upper bound, but at this stage 
there is no way of knowing how conservative this bound will prove to be. 
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Figure 6: Form of the extremalizing solutions: (a) shows (f> (soUd) and r (dashed) and (6) 
shows the u and p for the same case with the Richardson number also shown. 

The functions 4>' and r' are chosen to have a piece-wise linear structure with: 

4>'{z) = { 
( - w  "PP«^ <^- 

0        interior, 
g-Re I -if    lo^er<5,, 

-( 26^: ^j     upper (Jp, 

-S2!|sii interior, 

"263; - ('-"^iif-'"^')    lower V 

The graphs of the extremahzing solution are shown in figure 6. 
Substituting the extremaUsing fields into equation (47), and combining these with 

the ansatz for r and 0 into the energy, entropy and potential energy conservation equa- 
tions (41,42,43) yields a unique relation between the Lagrange multipliers a and b as well 
as conditions on the thicknesses of the boundary layers 6p and 5,,: 

6   =    (2 - aa)<7Re^J, 

2Sv 
4J 
a 

2S„ 

25, p   J 

with 0 < a<7 < 1. Therefore 

irnax — 
25„ 4 

1-26^     4J 

25v    ^ o- 

(57) 

(58) 

(59) 

still subject to the spectral constraints SC. 

7.6    Simplified Spectral Constraint 

We shall again simplify the spectral constraints by using a conservative estimate, effectively 
separating the effects of velocity and density variation and requiring each to be satisfied 
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independently. Using functional analysis together with the Cauchy-Schwartz inequality, it 
can be proven that the spectral constraints are satisfied provided that 

aaReS^     (rRe'^J^S^il - acr) 
°"-17r-(.-2M;-4J])^^"- (60) 

In order to find a rigorous upper bound we must therefore minimize ^max subject to the 
conditions (60) and 0 < aa < 1. Additional manipulations show that £inax is minimized 
when 6v is maximized and for Re > 16-v/2 = 22.6 it attains the minimal value when 

r*     8^2 
S. = K = -^. (61) 

It follows that 

^; 

a*a 

32^/2J  
(7(i?e-16v/2) + 64v/2j' ^^^^ 

1, (63) 
6*   =   aRe^J, (64) 

a'^Re^ /       16v^\        „ , 
'- = -E^y--Rr)^''''''^ (65) 
„   ^   _ a^Re^ /,     16v^\ 

8    Implications 

Certain characteristics of the bounding flow are worthy of note. The total dissipation rate 
is given by 

which is, perhaps surprisingly, independent of the bulk Richardson number J. However, 
we shall see that this result is consistent with the initial assumptions on the flow. The 
dimensional dissipation rate e is given by 

€ = 
U^ 

64v/2d' (6^) 

which has exactly the same scaling as that in the homogeneous Couette case. Again this 
result suggests that the flow stratification seems to have little influence on the global features 
of mixing in this problem, consistently with the underlying assumptions of Weinstock and 
Townsend. Similarly, it is found that both the long-time averaged buoyancy flux Bj^ax & 
and the long-time averaged flux Richardson number (or equivalently the cumulative mixing 
eflSciency Sc) are independent of J, where 

c _ g ^^ 1 - (T^Rey{\Vu\^) 
"     B-f-<|Vti|2)      2-cr2j?e2/(|Vu|2)- (^^i 
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When the Reynolds number Re tends to infinity, £c tends to the limit 1/2 which suggests an 
equipartition of the total energy intput into the fluid between the viscous dissipation and the 
buoyancy flux (i.e. the irreversible changes to the potential energy) consistently with both 
recent observatons of Fernando and co-workers and the heuristic theoretical considerations 
of Weinstock and Townsend. The velocity boundary layer thickness is independant of the 
stratification and scales like 1/Re as Re increases. 

However, the overall stratification still has an important role in the determination of the 
thickness of the density boundary, for example, or in the local gradient Richardson number 
Ri; near the walls, it is indeed defined as 

.        ,,      16v^ [<T (i2e - I6V2) + 4Jl 
Ri^ {±12) = \^ ^ i, 70) 

^     '  ^ (i2e + 16v^)2 

:. 1^^. (71) 
Re ^    ' 

However, we see here again that Ri -^ lQ\/2a/Re as Re -> 00, suggesting that as the 
forcing is increased, the stratification is irrelevant to the flow in the boundary layers near 
the wall. 

The interpretation of the results is that in the long-term averaged bounding flow, the 
middle layer is well-mixed and the mixing occurs principally in the boundary layers. In 
these thin layers the stratification does not dominate and the turbulence is driven through 
the shear on the walls; its characteristics depend principally on Re and not on Ri. We also 
note that the optimal shear in the bulk of the flow doesn't vanish completely, and is reduced 
by 50% from the laminar solution. This result is compatible with numerical experiments 
and observations, althoung not with the observed behaviour of usntratifled Couette flows. 

9    Conclusions and Future Directions 

We have seen that mixing in stratified shear flows is an important problem. However, there 
is a wide variabiUty in the estimates of mixing foimd so far, although the evidence suggests 
that the eflSciency of mixing is a good way to describe the process. 

Initial work with Bounding methods suggest that they can contribute greatly to our 
understanding of the problem, but there are still many open problems. For example, we 
would like to achieve a bound on mixing and to compare the conservative estimates of the 
flow with the actual flows obtained. Also we need to relate £c to instantaneous values of Rf 
and in particular develop rigorous bounds of both Sc and Rf. We also at the moment have 
no way of knowing how widely the results of bounding studies on highly simplified model 
problems can be appUed to typical geophysical fiows or indeed, whether our results can be 
embedded in an improved parameterization. There is clearly much more work to be done 
on this important problem. 
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Lecture 10 

Unification of Variational Principles for Turbulent 
Shear Flows: the Mean-fluctuation Formulation of 

Howard-Busse and the Background Method of 
Doering-Constantin 

Richard R. Kerswell 

Notes by Huiqun Wang 

1 Introduction 

An upper bound on the energy dissipation rate in turbulent shear flows can be found either us- 
ing Howard-Busse's mean-fluctuation method [1] or Doering-Constantin's background method[2] 
Howard-Busse's method grew out of ideas put forward by Malkus [3], whereas the Doering-Constantin 
approach is based upon a mathematical device invented by Hopf [4]. Although the methods have 
very different origins and look unrelated, we show in this lecture that they are in fact intimately 
connected. They both seek to make stationary the same functional. However, the Howard-Busse 
method seeks to estimate this stationary (saddle) point from below as a maximization problem 
whereas the Doering-Ck)nstantin method estimates this part from above as part of a minhnization 
problem. We show this explicitly for the canonical problem of plane Couette flow. 

2 Couette Sheair Flow 

We consider a homogeneous incompressible fluid with viscosity x between two parallel, infinite plates 
at z = ±^d, which are sliding across each other with relative velocity Vo in the i direction, i is the 
unit vector. The non-dimensionailized governing equations are: 

dV 
-^ + V-VV + Vp = V^V (1) 

v-i:=o 

with the boundary condition V = T^Rel at z = ±1, where Reynolds number Re = iS»^. We will 

seek upper bounds on the momentum transport which equals the viscous dissipation rate (\VVf\ 
Where \ /' 

(IVKI') := limx^<» j^ S!:^ dxj!:^ dyj^^ dz \VV\\ 

2.1    Howard-Busse Method 

The Howard-Busse variational formulation is based on a mean-fluctuation decomposition of the 
velocity field Vix,t) = U{z)i + v (x, t), and consists of solving the variational problem: 

mm{Re) = ^ f + —^ . L 
i'^lVz) <UlU3) 
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under the constraints V-v = 0, v{x, y, ±|) = 0, {viVs) = 1. where (•) := limL->oo 4j^ f_L ^^ I-L ^V (•)• 
This problem can be eqivalently formulated as the following. Substitute V,{x,t) into equation (1) 
and subtract the horizontal average, we obtain the power balance: 

D-Re'^ = (\Vvf) + (^{Wv5 - (^^i^^3»^) = Re (vivs) (2) 

where D is the statistically averaged viscous dissipation.  We maximize Re (vivz) under the con- 
straints of (2), the continuity equation, and the boimdary conditions by considering the Lagrangian 

L = Re {vivs) + A {(|Vz;i'') + ((tJIW - ^it's))^) - Re (vivs)} - <2p {x)V-v} 

where A and p (x) are Lagrange multipliers. The Euler-Lagrange equation for the velocity field is 

(t;ii;3 - (vivs)) + Re {-^j 
vz 
0 

Vi 

+ Vp = V^v (3) 

Eliminating A by using {v- (3)) and the constraint of equation (2), gives the optimization problem: 

V3 
0 + Vp = V^t; /  / \\ 1  D 1  U^l'"3-<.VlV3))'' 

{VIV3 - (uiUs)) - 2^e - 5-i j^;;^:^^  

V-v = 0,v{x,y,±^)=6 

from which the upper bound D = Re {viv^) + Re^ follows. 

2.2    Doering-Constantin Method 

The Doering-Constantin method decomposes the velocity into "background" and "fluctuation" 
fields V{x,t) = 4>{z)l + u{x,t). The background flow <f){z) satisfies the boundary condition 
(f> (±i) = ^^^Re so that the fluctuation field satisfies homogeneous boundary conditions. 

Putting V(x,t) = (f>{z)l+v(x, t) into dVydt + V ■ VV. + Vjp = V^V, we obtain 

dv I   -       dv o "- 

ot ax 

where ^ :— d(j>/dz and <j>' := dF(l>/dz^. Performing (i/• (4)), we obtain 

|(i4 = (*V)-(|vd')-{/.^=) (4) 

We also have the identity 

(|VZ0 = (.^'2)-2 (</.".,)+ (lV.l^) 

Performing a • (5) -I- (6) where a is some scalar gives 

(5) 
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where G (</>,£; a) = /(a - 1) |Vi/|^ + a(l>'uiU3 - (a - 2)<f>"i'i). 
Taking long time averages leads to 

If 4> and a are such that inf^G {(f>,u; a) > -oo then there exists the bound 

■D<(<^'^)-infG(<^,i/;a). 

The Doering-Constantin problem is to minimize the background dissipation /(f>'2\ subject to the 
spectral constraint inf G > -oo over all possible fluctuation fields i/(x). Solving the Euler-Lagrange 
equation gives the stationary value of 

This will be an infimum if and only if the dominant quadratic terms are positive definite, i.e. 

H{(j>,v,a) := (a - 1) (iW^f'S + a/<?!>'i/ii/gN > 0 

for all allowable v. This is called the spectral constraint. 
The optimization problem is then to minimize the bound 

subject to the spectral constraint. 

3    Unification 

The Howard-Busse and Doering-Constantin methods can be unified by defining the following func- 
tional 

where V = <t>iz)i+v{x,t) = [4> {z) + VI[z)] i -|- v{x,t). Substitute V = <i>{z)l + v{x,t) into D, we 
obtain 
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D{V,4>,a)   =Umr-.oo^/o'(|VV:|')-(a(Z-0(z)l)-(#+Z-W + Vp-V2y))dt 

4-ffl U (z) i-(^ + v-vv + Vv- v^y)) dt 

This makes it clear that a is acting as a Lagrange multiplier which imposes the total power balance 
and that a<^ (z) is the Lagrange multiplier which imposes the mean momentum balance. Also 

D {v,4>,a) = ^^^""^ - ^lirn^ ^ /"   ((a - 1) |V£|^ + auiU3<j>' - (a - 2) (/."i/j^ dt 

and finally 

D{v,ui,<l>,a) = ^(A") - ^lirn^ ^J   ((a - 1) |V2;|^ + aviV3<l>' + {a- l)pi' - (a - 2)(/."FI^ dt. 

The full variational problem is to solve the Euler-Lagrange equations ^ = 0; ^ = 0; ^ = 0; ^ = 
0. The Howard-Busse and Doering-Constantin methods consider complementary subsets of these 
equations. 

3.1    Howard-Busse Problem 

The Howard-Busse method solves ^ = 0 , |^ = 0 and ^ = 0 leaving a maximization problem in 

i| = 0 => -2<?i." + av^' + (a - 2) Pi = 0 

=> 4>' +Re = ^a {vTvS - (vivz)) + |(a - 2) v[ 

^ = 0 =» 2(a- 1)F'I +{a-2)4>" =Q=^Vi = -J°~^j- (<A + i?ez) 
oui Z(a — 1) 

Substituting these results into D {v, i>i,<f>, a), we obtain 

D {v,a) = Re^ + Re (vivs) + (a - 1) {iJe {viVz) - (\Vvf) - ((Ip^- (^^it's))^)} 

This is equivalent to the problem of finding the maximum of [Re^ + Re (t;it;3)) subject to the power 

constraint Re (uw) = (\Vvf\ + ({vrvs — (t'lfs))^) with (a - 1) being the Lagrange multiplier and 

V • u = 0. 

3.2    Doering-Constsintin problem 

The Doering-Constantin method solves f^ = 0 and |^ = 0 leaving a minimization problem for 
<j>, a. 

j^ = O^Vi = -^^E^ {<t> + Rez) as before. Now 
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6D 
— = 0 => 2(a - 1)V\ - a<j)' 

V3 
0 

Vi 
+ Vp = 0 

to 

Taking (v • ()) of this expression gwes 

^2i ■ -^^ = 0 = ((a - 1) \Wvf + a4''viV3) 

So, D {v, 4>, a) = ;j^ ^(,^' + i?e)^^ + iJe^ - ^(a - 1) |V^l' + a<j^viV3) is equivalent 

provided <^ and a satisfy the spectral constraint which ensures overestimation of the highest saddle 
point of D. This highest saddle point bounds the energy dissipation (see [5] for details). 

4    Discussion 

In this lecture, we have made a direct link between the Howard-Busse and Doering-Constantin 
variational methods for upper bounding turbulent transport in plane Couette shear flow. Similar 
arguments can be applied to turbulent heat transport for convection as well [6]. Both methods 
revolve around the same underlying functional. The Howard-Busse method seeks to find the highest 
saddle point of this functional by maximizing from below, while the Doering-Constantin method 
seeks to minimize from above. The consequence is that the ideal upper bounds derived from each 
method should coincide at the highest saddle point. Historically, this is seen in the results obtained 
in each approach. The original bound produced by Doering and Constantin [6] in 1992 was -i.«-i- 

as opposed to Busse's estimate [1] of ~ gf^. Nicodemus et al. [8] improved the Doering-C^nltantin 
result down to ~ 5J- in 1998. Recently Plasting & Kerswell [9] have solved the frill problem to find 

the asymptotic result that D < 0.008553 in units of ^ as iie 
a 00. 
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Horizontal Convection 

Jennifer H. Siggers 
University of Cambridge, U.K. 

1    Introduction 

The surfax;e temperature of the ocean is different at different points. Can this differential 
heating drive a large scale flow? If so how large can that flow be? In this report we analyze 
a simple model of the ocean and construct rigorous upper bounds on the heat transport that 
can be induced by a horizontal temperature gradient that is imposed on the top surface. We 
consider the model shown in figure 1, where the top surface has an imposed temperature 
distribution with a cosine profile ATcoskx + Tav, and make a linear transformation of the 
true temperature to give the new non-dimensional temperature variable T, which is equal 
to coskx on the top boundary This set up is known as horizontal convection [1]. Notice 

T=cos(kx), u=0 

x=0 u=0 
z=0 

x=L 
Figure 1: Set up of the horizontal convection problem 

that the problem is in contrast to the usual Rayleigh-Benard problem, where the motion 
is driven by vertical temperature gradients. In horizontal convection, it is the horizontal 
temperature gradient that drives the flow. 

We use non-slip boundary conditions top and bottom and periodic side wall conditions, 
and we also need to specify a bottom boundary condition on the temperature. The box 
has dimensional width W and depth H and we non-dimensionalize these to give the new 
width L = W/H and height 1. For horizontal periodicity, we also require that k = 27m/L 
for some n € N. 

We aim to construct rigorous bounds on the total heat transfer rate through the layer, 
which we measure using a horizontal Nusselt number. We do this for variety of different 
temperature boundary conditions on the bottom of the layer to investigate the dependence 
of the scaUng of the horizontal Nusselt number on the conditions there. This is because 
since horizontal convection is driven by temperatures at the top surface only we want to 
find a bound that is independent of what is happening at the lower boundary. Also we 
don't have a good idea of what is the true oceanographic boundary condition there. 

We use the Boussinesq approximation to reduce the equations to the standard non- 
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QuEintity Approximate value 
V 1.52 X 10-''m^s-^ 
K 1.4 X lO-'^m^s-i 
gaAT 10-2ms-2 
W 2.0 X Iffm 
H 4 X lO^m 
k 1.25 X 10-3 

RH 3 X 10^1 
a 10.9 
L 5.0 X 10^ 

Figure 2: Approximate oceanographic values of some parameters, from [2] 

dimensional form: 

li + u • Vu + Vp = (TRHTZ + crV^u, 

f + vi-VT 

V • u = 0, 

v^r, 
{US) 

m 
{C) 

where u is the non-dimensional velocity field, T is the non-dimensional temperature and p 
is the non-dimensional pressure, c = V/K is the Prandtl number and RH = H^gax^T/KU 
is the horizontal Rayleigh number, u is the kinematic viscosity, K is the thermal diffusivity 
and g is the acceleration due to gravity. The table in figure 2 shows the approximate 
oceanographic values of some of these quantities. Note also that the governing equations 
do not possess a static solution, unlike the Rayleigh-Benard problem, since from {AfS), we 
would need to satisfy Vp = aRffTz. Since T must have some x-dependence in order to 
satisfy the boundary conditions, Tz cannot be gradient. 

Thermal energy transport was considered by Sandstrom in the early 20th Century. He 
proposed the following theorem, (quoted from [3]): 

Sandstrom's theorem:  "A closed steady circulation can only be maintained in 
the ocean if the heat source is situated at a lower level than the cold source." 

This impUes that horizontal convection cannot induce a large-scale flow and is therefore 
unimportant in the oceanic context. However, the theorem as it stands is not strictly true. 
For example, Jeffreys [4] constructed a counter example to Sandstrom's theorem, the "hula 
hoop" model, shown in figure 3. The fluid is contained in an annulus and heat is apphed 
on the right hand side and the fluid is cooled on the left. Jeffreys argued that this heating 
and cooling will set the fluid in motion, no matter at what height the heating and cooUng 
are applied, and thus we can heat near the top and cool near the bottom, as shown, and 
still induce a flow in the fluid. In some ways, this counter example is a bit contrived, but it 
is certainly a rigorous case where Sandstrom's theorem breaks down. 

A second counter example is provided by Rossby [5], who performed some experiments 
on horizontal convection, using a set up similar to that in figure 1 except that he imposed 
the differential heating on the bottom surface and had insulating temperature boundary 
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Cool here 

Heat here 

Figure 3: Schematic diagram of Jeffreys' hula hoop model 

Hot Cold Hot 

Figure 4: Schematic diagram showing the fluid motion. Note the strong downward motion 
in the central plume and large horizontal flows in the top boundary layer. There is also a 
slow recirculation in the rest of the layer. 

conditions on the side and top walls. He found that there was a plume of hot rising water, 
over the hottest point on the bottom boundary. This rising motion induces a flow along the 
bottom of the box from the cold part to the hot part, and there is also a slow recirculation 
returning the fluid from the top of the box back down to the bottom. 

However, even though Sandstrom's theorem is not completely true, in fact the main 
idea is correct: that thermal forcing at a single level as in the Rossby experiment is a 
relatively inefficient way to drive a flow when compared with Rayleigh-Benard convection, 
for example, as we shall show in this report. 

In the oceanic context the differential heating is at the top of the layer, which is why 
we consider this scenario rather than Rossby's though the two scenarios are linked via a 
reflection in the horizontal mid-plane, coupled with reversing the sign of the temperature 
field T. A schematic picture of the flow observed in numerical experiments (such as those 
in [6, 7, 8, 9]) is shown in flgure 4, which is also the reverse of the flow that Rossby observed 
in his experiments. However, numerical simulations have only been performed for horizontal 
Rayleigh numbers RH up to about 10^, and it is not clear whether or not the flow structure 
in figure 4 persists into the oceanographic regime, in which RH ~ 10^^. 

Rossby [5] provided a consistent scaling argument for the width of the boundary layer 
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in the flow. He assumed that there is a top boundary layer of width 5 in which the vertical 
derivatives are of order 5~^ whilst the horizontal ones are of order unity. Then from (H), 
balancing the advection term with the diffusion term, assuming temperature variations are 
of order 1 gives ip ^ S~^ and balancing the buoyancy term with the dissipation term in (XS) 

yields S ~ Rjj ' . 
Sandstrom [10] also proposed the following: 

Sandstrom's conjecture: "If a viscous and diffusive fluid is non-uniformly heated 
from above then in the limit K -> 0 with a = U/K fixed, the motion in the fluid 
disappears." 

To make this rigorous quantitatively, we need a measure of the "motion in the fluid". Such 
a measure is the maximum value of the streamfunction. However, the conjecture as stated 
has not been proven. Instead we can prove a weaker result for horizontal convection in 
the form of an anti-turbulence theorem. We need to define a notion of turbulence, used by 
Frisch [11]: 

The law of finite energy dissipation: "If in an experiment on turbulent flow, all 
the control parameters are kept the same, except for the the viscosity, v, which 
is lowered as much as possible, the energy dissipation per unit mass behaves in 
a way consistent with a finite positive limit." 

This law is also known as the zeroth law of turbulence. In fact, this definition does not 
exclude non-laminar flows in a boundary layer, but it does give a precise definition to work 
with. Then we may propose 

The anti-turbulence theorem: If the only forcing is non-uniform heating applied 
at the surface of a Boussinesq fluid and if the viscosity, u, amd thermal diffusivity, 
K are lowered to zero, with a = U/K fixed, then in the limit the energy dissipation 
€ also vanishes. 

This is finally a result that can be proved rigorously, which was done by Paparella and 
Yoimg [9], who assumed a zero fiux condition (Tz = 0) on the bottom boundary (where 
the subscript denotes differentiation with respect to z). It relies crucially on the following 
principle: 

Boundedness principle for the temperature: For the set up shown in figure 1, 
with an imposed temperature distribution on the top surface and a no flux 
bottom temperature boundary condition, then at any time the temperature field 
is bounded by the maximum and minimum values imposed on the top surface 
or the maximum and minimum values of the initial temperature distribution. 

This can be proved from (H). The derivation for a similar (but slightly more complicated) 
case is given in section 4.1. If the system is allowed to relax for a sufficiently long time, 
then we expect that the temperature is everywhere bounded by the maximum and minimum 
values at the top surface, that is, it lies in the range [—1, -1-1]. 

We shall use an overbar to denote the horizontal and time average and angle brackets 
to denote the space and time average: 

1      yto   ryo   rL /•!_ 
lim  ill    -dxdydt,     (•) = /    ■ dz. 
j/o-s-oo 2toyo Jo    J-yo Jo JQ to,J/o->-oo 2toyo ^0    J-yo 
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Now the energy dissipation per unit mass c is given by i/(|VdUdP) where V^ and Ud 
are the dimensional versions of V and u. In non-dimensional units, this becomes e = 
i/K2(|Vup)/if4^ ajid rearranging (u • (AfS)) we have 

Taking ((1 - z). {%)) gives {wT) = -T\Q and so 

e - —jjT- [-^\o) < -jjT- = —jj ^^   as K -> 0, 

where the inequality makes use of the lower bound on the temperature field, thus proving 
anti-turbulence. 

In this report, we try to construct bounds on the strength of the convection for horizontal 
convection. Often the Nusselt number is used as a measure of the strength, but this measures 
the heat flux in the vertical direction, whereas for horizontal convection it is the horizontal 
heat flux that is of interest. Thus we need to deflne a horizontal Nusselt number NUH- 

Ideally this would measure the total heat flux into (or equivalently out of) the top boundary, 
i.e. 

X{x,y,t)T,{x,y,l,t), 

where x{x,y,t) equals 1 if T^{x,y,l,t) > 0 (corresponding to places where there is flux in) 
and 0 otherwise (corresponding to flux out). With a zero flux bottom boundary condition 
this equals \T^\\i/2. However, we don't know which parts of the top boundary have heat 
fluxes into the layer and which have fluxes out and thus we don't know x- We might assume 
a symmetric arrangement, in which if T > 0 at the top of the layer then there is a heat flux 
out of the layer (i.e. T^ < 0), and if T < 0 then the heat flux is into the layer (i.e. T^>0). 
However, the solutions found in the numerics (see figure 4) are far firom symmetric due to the 
cold plume, and so we might expect the area of the top surface where x is 1 to be confined 
to a small areas around the points where T takes its maximum value. Thus, this definition 
of the horizontal Nusselt number would be extremely hard to estimate mathematicaUy, and 
instead we propose an alternative formulation. 

In [9], which considered a zero flux bottom boundary condition, the form 

"   (ivre|2)' (1) 

was used, where, since there is no static solution of the equations, we define the "conduction" 
solution Tc to be the steady solution of the horizontal convection problem where the fluid is 
replaced by a solid (and thus we can neglect (AfS) and just solve (n) with u = 0), so Tc is 
the solution of V^Tc = 0 together with the boundary conditions on T. The justification for 
the formula (1) can be seen if we take the time average of (H), integrate over the vertical 
coordinate and take the average over the y-coordinate: 

1       rto   ryo 
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Integrating with respect to x gives 

1        fto   ryo    rl 
JH{X) :=       lim       -— /     / {uT - T^) dzdydt 

to-^oo,yo-^oo Ztoyo Jo    J-y^ JQ 
1       fJo   ryo   fx 

=       lim  /     /      /   iT,\i-T,\o)dx'dydt. 
to-^oo,yo-^oo Ztoyo Jo    J-yo J 

JH is the average heat flux through a plane of constant x, which, in general, is not constant 
as X varies, so to obtain a formula for the horizontal Nusselt number, we must take a 
weighted average over x of the form f{x)JH{x). Looking at the form of the flow in figure 4, 
we want / to be positive in the left half (where the heat transport is expected to be in the 
+x direction) and negative in the right half. A simple weighting function / satisfying these 
requirements is -dT(x,y, l,t)/dx = ksinkx. Taking the average and integrating by parts 
gives 

k sin kxJff = cos kxTz \ i — cos kxTz |o, (2) 

which equals cosfcx5T|i with the zero flux bottom boundary condition. The horizontal 
Nusselt number is this quantity normalized by the corresponding value for the "conduction" 
state. Rearranging (T • {H)) gives 

(|vr|2) = cosfcxr,|i-Tr,|o, (3) 

and for a zero flux bottom temperature boundary condition, TTz\o vanishes, meaning that 
we obtain the form (1). 

If instead we have a different bottom boundary condition for which the second equaUty 
in (2) does not hold identically (such as fixed temperature there) then the term coskxTz\o 
is too difiicult to estimate mathematically and so since we expect the fluxes through the 
top boundary to be much larger than those through the bottom, we neglect this term and 
in general we define the horizontal Nusselt number to be 

cos kxTcz 11 cos kxTcz \ i 

where the second equality is derived firom (3). 
In this report, rigorous bounds on the horizontal Nusselt number, as defined by (4), will 

be sought for the problem of horizontal convection with the set up shown in figure 1, using a 
variety of different bottom boundary conditions for the temperature. In section 2 we impose 
a fixed fiux condition, and in section 3 a fixed temperature boundary condition. We obtain 
different scahngs for the two cases and since the ocean, fioor is neither a perfect conductor 
nor a perfect insulator, in section 4 we use a boundary condition that can smoothly move 
between fixed flux and fixed temperature, and investigate how the scalings change as we 
move away from these two limits. 

2    Fixed Flux Bottom Boundary Condition 

We consider the horizontal convection set up shown in figure 1 with fixed positive heat flux 
Tz = —F at the bottom of the layer. With this set up, the "conduction" solution Tc is given 
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by 
-,     coshfc^       ,        „, 
Jc = r-r- cos kx + F(l - z). 

Then the denominator of the horizontal Nusselt number (4) is 

coskxTcz\i = -tanhA;. 

If F > 0, corresponding to a heat flux into the layer, then the temperature field is bounded 
from below for all time by the minimum of -1 and inf(r|t=o). Assuming that we have left 
the system to relax for long enough, then T > -1 everywhere. However, with this particular 
boundary condition, there is no analogous upper bound on the temperature field. 

2.1    Bound on the Horizontal Nusselt Number Using the Lower Boimd 
on the Temperature 

We try to find the maximum value of the horizontal Nusselt number by using the Doering- 
Constantin background method [12]. We let r(x, t) = r{x, z)+^(x, t), where the background 
field T satisfies the boundary conditions on T and therefore 9 satisfies the homogeneous 
boundary conditions {9 = 0 &t z = 1 and 9;, = 0 Et z = 0). Note that in contrast to [12], in 
which r is a function of z only, here r must depend on the horizontal coordinate in order 
to satisfy the boundary conditions. We consider the variational formulation to bound the 
numerator of (4): 

£ = cosfciT^li - a(u • (US)) - b{9 ■ [U)), 

where a and fc are constant Lagrange multipliers. The first term in this expression is 
the term we are trying to bound and from this we subtract the constraints we wish to 
satisfy, multiplied by the Lagrange multipliers a and h. IdeaUy we would require the frill 
equations {MS^Ufi) to be satisfied at every point in the domain for all times, but this is 
too complicated to do analytically. Rearranging gives 

£ = (|Vr|2 - aa|Vu|2 - (6 _ l)\V9\^ + (fe _ 2)9V\ - Wxi ■ Vr) 

+ oaRHiwT) - FT\o + 2Fe\o,    (5) 

and by taJdng ((1 -z) ■ (n)), we get {wT) = F-T\o. Using the fact that, as long as F > 0, 
the temperature field is bounded from below by -1, and assuming that oaRjf - F > 0 (to 
be checked a posteriori), we can bound the final three terms: 

aaRH{wT)-FT\o + 2F9\o = aaRHF-{aaR„-F)T\o-2FT\o < acTR„iF+l)-F-2FT\o. 

AU the terms in this expression are either independent of ^ and u, or depend linearly on these 
quantities or are quadratic negative semi-definite terms, except for the term {-Wu ■ Vr). 
If this term is removed the whole expression is bounded above, and straightforward to 
maximize. Thus we first bound this this term by quadratic semi-definite quantities and 
then find and solve the Euler-Lagrange equations for the resulting functional to obtain a 
bound. 

Our choice of background field r is designed to minimize the worst case estimate of 
{-Wu ■ Vr). We should ideally like to set Vr = 0 everywhere, but then we cannot satisfy 
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the boundary conditions.  Instead we choose Vr = 0 everywhere except for a boundary 
layer top and bottom. We set r = TO(Z) + ri(z) cos kx where 

/ F{5o - z),       for 0 < z < 5o, , . 
^° = 1  0, for5o<z<l, ^^^ 

.  „, for 0 < z < 1 - (5i, , . 

■|i ̂ ,       for 1 - 5i < z < 1, 

Now we can estimate {—Wu ■ Vr). This only has contributions from the top and bottom 
boundary layers, and using the estimates (27), (28) and (30) in appendix A, we obtain 

{-Wu • Vr) < a(|Vu|2) + ^(|Ve|2), 

where 

So 

£<(|Vr|2-(aa-a)|Vu|2-(6-l-^)|V^|2 + (6-2)evV)+aai?/f(l + F)-F(l + 2F5o). 

The Euler-Lagrange equations for an extremal value of the functional are 

Vp - 2{aa - a)V^u = 0, (8) 

-2(6 - 1 - /?)V^^ = {b- 2)VV, (9) 

where the term Vp has been added to ensure incompressibiUty, yielding the solution 

which maximizes the functional as long as the spectral constraints aa > a and b— 1 > P 
axe satisfied. Substituting in the expressions for the extremalizing fields u* and 6*, we get 
a bound on C Dotting (9) by 6* and averaging, we obtain an equation that allows us to 
simplify the bound, giving 

C < (l^^l') + 4(f_~/r^) ((^^ • ^(^ - To)) - FjT^^lo) +aaRH{l+F)-F{l+2F5o). 

For our choice of r, 

(|Vr|2)=i^%+2^ + ^, 

A; 
(Vr • VTc) =F^6o + - tanh k, 

133 



meaning that 

^^2^ + —+ 4(6-1-/3) (2^ + ^-2^^"^^ + ^ (^-'^°)J 
+ a(7i?/f(l + F)-F-<5oi^2    (10) 

To obtain the tightest bound we need to minimize (10) subject to the spectral con- 
straints. These are of the form 

aa>bmax{Pco,Qci),    b-l>b(— + —], 
\CQ     CiJ 

where P, Q, R and S are independent of a, b, CQ and a. Thus they are satisfied if and only 

A suitable value of co/ci can be chosen if and only if 

aa{b - 1) /acr(6 - 1) 
62 

/acr(6 - 1) \ [    \^    ^-PR-QSJ>0, 

and since aa{b-l)/b'^ > 0, the spectral constraints are equivalent to aa > {PR+QS)b'^/{b- 

Since both b'^/{b -1) and (6 - 2)2/4(6 -1-p) are minimized at 6 = 2 (and the quantity 
in the bracket multiplying (6 - 2)2/4(6 - 1 - /?) in (10) is positive) this means that 6 = 2 
is optimal in that it minimizes the right hand side of (10). We should also minimize aa, so 
we set 

aa = (^.^(1.2M0^) 

For sufficiently large Rayleigh numbers, the value of SQ is insignificant at leading order but 
we want *i to be as large as possible and so we set 5o = 0 and acr = 45f{l + 2kSi)^/Tr'^, 
leaving us with 

/: < 2^ + ^ + ^(1 + 2k5,fR^il + F)-F. 

For sufficiently large RH, the leading order terms will be l/25i+45lRH{l + F)/Tr^. These 
are minimized with the choice Si = {T:/2Y'^{RH{1 + F))-V3 yielding the leading order 
bound C < Z{RH{1 + F))V3/22/3^4/3 ^nd so 

„      ^3-2V3(i + ir)i/3 

7rV3fctanhfc (11) 

to leeiding order. 

Note that we assumed oaRu - F > 0, which is always true for the given scalings as 
RH^ 00 with F fixed. However, if F is very large (i.e. if ^3(1^.^)2 > (l + 2kSi)^RH/4Tr*) 
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we cannot use the lower bound on T. We could choose aaRn - F = 0 yielding the leading 
order bound 

NUH< l^^ + pA/^kt^nhk, (12) 

iiR]i^<F<RH&nd 

2F^ 

ii F > RH- However, this is probably not optimal since we have been forced to choose 
OCTRH - F > 0 in order to use the fact that T > -1 everywhere. For F » 0, we might 
expect that T is well above —1 at the bottom boundary. Instead in the next section we 
bound the horizontal Nusselt number without using the bound on the temperature to see 
if we can get a better bound for NUH when F is large. 

2.2    Boxind on the Horizontal Nusselt Number Without Using the Lower 
Boiuid on the Temperature 

As F becomes larger, since there are steep negative temperature gradients at the bottom 
boundary, we expect that the lower bound on the temperature there gives a poor estimate 
of the actual temperature. To attempt to find a better scaling, we do not use this lower 
bound and instead we must find an alternative way to bound the final three terms in (5). 
We have 

aaRniivT) - FT\o + 2Fe\o = {aaRH - F){W{T + 9)) + F^ - 2Fr|o, 

and now the sign-indeterminate quadratic terms contributing to £ are 

{{ac7RH - F)we - bOu ■ Vr), 

which we bound by a(|Vup) + /S(|V0p) for suitable a and f3. We choose the background 
field r so that the integrand is zero over as much of the layer as possible. To do this we use 
r = To{z) + Ti{z) coskx where ri is again given by (7) and 

_ r Fi5o -z)- l£2^p^(i - 5Q),       for 0 < Z < <5o, 
"■""l-^^^^F^a-z), for5o<^<l, 

which means that the integrand is zero everywhere except in the boundary layers, and 
estimate a and (3 using the bounds in appendix A. 

Proceeding in the same way as for the small F case, we obtain the Euler-Lagrange 
equations 

Vp - 2(o(7 - a)V^u = {OGRH - F)TZ, 

-2(6 - 1 - 0)V^9 ={b- 2)VV, 
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which have the same solution for d, but now the solution for u is non-zero. Substituting in 
the extremal values u* and 6* gives 

+ F2-2F(F<Jo-^^^f-^(l-*o)). 

{t«*T) is estimated in equation (34) in appendix B, and we proceed in the same way as 
for small F.   The best choice at leading order for RH -^ oo is 5Q = Q  aa = 4^?/7r^ 

Nuu < s  
^~33/57r8/5A;tanhfc' (14) 

and so this bound is not as good as (11). However, when F > i?J/^ we can show that 
NuH < (363 _ 862 + ft + 8)F2/2fe(6 - l)fctanhfc at leading order. This bound is minimized 
when b « 1.87, giving 

,-       . 0.46F2 

^~ fctanhfc' 
thus improving the prefactor of the corresponding results (12) and (13) in the previous 
section, but not the order of magnitude of the bound. 

2.3 Application to the Real Ocean! 

The total heat flux from the Earth's interior is Fg = 3 x lO^^W. For a large ocean, such as 
the Pacific or Atlantic, this means that the non-dimensional flux on the ocean floor is 

where H ~ 4000m, c = AlSAJkg-'^K-'^ is the specific heat of the water, p = lOOOfc^m-^ 
is the density, A = 47r(6.4 x 10^)2/722 is the area of the surface of the Earth. Thus the 

Rjj scaling is appropriate here and with fc ~ 1.25 x 10"^ we obtain NUH < W^. The 
dimensionalized heat flux in an ocean covering the whole Earth would be approximately 

———smkxJn = -^-rj^—coskxTz\i ~ lO^^W, 

and thus for a large ocean, such as the Pacific or Atlantic, the heat flux due to horizontal 
convection is bounded by 10^271^ where 7 is the proportion of the Earth's surface covered 
by the ocean. 

2.4 How does this Differ from the Rossby Scaling? 

Recall that Rossby [5] proposed a scaling for the boundary layer, in which d/dz ~ J-\ 

d/dx ~ 1 and u ~ ((J-2,0,(J-i). With this scaling NUH ~ (|VT|2) ~ R]1\ whereas our 
rigorous bound only gives NUH < COR]1^ for a constant CQ. 
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It turns out that the difference in the scalings comes in the bound for {-bOu • Vr), 
specifically when we come to estimate Jl_g^ \w6\dz. Our estimate (28) bounds this quantity 

met ^idz^'-t iiA- 
The problem comes in the next step when we estimate 

/      wldz <\l      |Vu|2dz. 

In fact Rossby's scaUngs would have 

(^    wldz ~ S\ f     \Vu\'^dz, 
Jl-Si Jl-Si 

since the term on the right hand side is dominated by J^_g^ u^dz. If we could show that 

Jl_g wl < K5i fl_g IVupdz (for some order 1 constant K), then we too would obtain a 

R]i^ scaling of the horizontal Nusselt number. However, there is no obvious way to improve 
1/3 

the estimate, and so the bound of order Rj^   stands. 

3    Fixed Temperature on the Bottom Boundary 

We now consider the problem as shown in figure 1 with a fixed temperature T = To at the 
bottom boundary. We try to bound the horizontal Nusselt number (4). The "conduction" 
solution Tc is 

„      „ ,        .      sinh A;z cos fcx 

meaning that 

cos kxTcz 11 = Tj coth k. (15) 

We proceed in the same way as for the fixed flux case, letting T = r(x, z) + 6{x., t) and 
constructing the functional 

C = cos kxTzli - (au • (AfS)) - {W • (n)). 

We have (wT) = —TQ—Tz|o, but in this case, unlike the fixed flux, we cannot use a bounding 
principle on T to bound this term, as in section 2.1, because we need to know Tz\o. So we 
must proceed in a similar way to section 2.2 and choose the background field to minimize 
the worst case estimate of 

{{acrRH - To)we - bOu ■ Vr), 

which we bound by adVup) + /3(|V6'p). Again, we let T = r + 0 and choose r = TO{Z) + 
Ti(z) cos kx that make the integrand zero over the bulk of the layer, and again TI is given 
by (7). However, in this case it is not clear whether or not it is best to have just a single 

137 



boundary layer at the bottom for TQ or to have boundary layers top and bottom, since 
with both options we can force the integrand to be zero over the bulk of the layer whilst 
satisfying the boundary conditions. However, we obtain the same scaling in each case, it is 
just the pre/actor that may be improved. For simplicity and comparison with the fixed flux 
case, we just have a boundary layer at the bottom and let 

TQ 
= / i (^o(«5o -z)- liaaRa - ro)(l - SQ)^ ,       for 0 < z < 5o, 

1 -MO^ORH - ro)(l - z), for bQ<z<\. 
(16) 

Proceeding as for the fixed flux case, solving the Euler-Lagrange equations we obtain the 
extremal bound 

^^«-i'>-i(fe^<—(^-»))-o^-^T^f5f§a^o(«), 

where 

(17) 

a = ^ max {\aaRH + (6 - l)roi <Joco, 6(5iCi(l + 2fc<Ji)), (18) 

/3 = ^ max (\aaRH + (fe - l)ro| ^, ^(1 + 1Ux)\. (19) 

Making the simplifying assumption 6 = 2 (though this is not optimal) yields 

.a(i-.)(»,.....,^.^.«i.(-^^,,o,.„.  .0, 
For moderate To, where we expect (5o < 1 and h < 1, it may be shown that the 

dominant contribution to the bound is given by G where 

For the bound to be as tight as possible, we need to choose <Jo and b^ as large as possible. Sub- 
ject to the spectral constraints, the best choice is aa = 4(5j/7r4 and 5o = 25i/|4Jf il^/7r^+To|, 
meaning that 

G = 
Uy 

^S^RH 

7r4 
+ To + 

2Si 

Assuming that x = 4(5^i?/?/TT" + TO > 0, (which can be checked) we have 

dG dG       1   /    o o      \ 

It may be shown that there is only one positive root z = x* of dG/dSi = 0, which provides 
the minimum of G, giving the bound 

NuH<R]i'nTo), (21) 
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(a) (b) 

Figure 5: Prefactor for the bound on the Nusselt number with fixed temperature To at the 
bottom of the layer and k = 1.25 x 10~^. The bound is proportional to Rj^ in each case, 
(a) shows the prefactor with the horizontal Nusselt number NUH = cosA;a:r2|i/cosA;xTcz|i, 
whilst (6) shows the prefactor with Nusselt number Nu = (|VTp)/(|Vrcp). 

where 

fiTo) = 
X *3 + 4 

27r2 y/{x* - ro)fc coth k' 

as long as |To| <C RH- A graph of / is shown in figure 5(a). 
For To » 0, the leading order contribution comes from the first term in (20) and we 

pick aa = TO/5RH and ^o = V^TT^/G-ZRHJO, giving 

NUH< 
losrn'^H -5/2 „l/2 

H 

25VETr^kcothk' 

For To -C 0, we may set ^o = ^i = 1 and the dominant contribution is from the term 
(1 + 0{5i)){acrRH - To)'^k'^5l/20l6{aa - a). This is of order -ToRnk'^ multiplied by some 
prefactor, but to work out this prefactor we would have to solve (31) in appendix B to all 
orders. So the most we can say without doing the full calculation is that the bound on the 
horizontal Nusselt number is of order —TQRH- 

3.1    Connection to Rayleigh—Benard Scaling 

For very large To we would expect the motion to be dominated by the large vertical temper- 
ature gradient and look like Rayleigh-Benard convection, and thus would expect the vertical 
Nusselt number to be bounded by Ry multiplied by some prefactor, (where Rv = TQRH 

is the vertical Rayleigh number). Similarly in the limit of small To, we would expect the 
Nusselt number to be bounded by something that tends to unity. 

In order to check that the bounds match in the two limits, we define the Nusselt number 
to be 

(|VT|2) 
Nu = (|vre|2)' 
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and proceed to try to bound it. In this case 

(|Vrc|2)=To2 + ijfccothfc. 

This time instead of (20), we obtain the expression 

^ < ^ {aaR„ + ro)2 - ^aaRH{aaR„ + 4To) + -^ + ^ 

For moderate To, we obtain (21) again, but this time /(To) is given by the graph in fig- 
ure 5(6). If To »1 then 

to leading order and thus we recover the scaling of the Doering-Constantin result for 
Rayleigh-Benard convection [12], although the prefactor is not optimal since we only used 
a hoUom boundary layer and not a top one. If we use top and bottom boundary lay- 
ers of equal depth, and optimize over the. choices of constants a, 6, 5o, *i, then we get 
i^UH < SVSRy /47r2 « 0.13i?{/^ at leading order, and the prefactor agrees with the 
Rayleigh-Benard result. 

K To «: -RH then we can choose SQ - 1, and the leading order contribution is from the 
first two terms in the bound (22), which gives C<T§ and hence 

Nu<l, 

to leading order, and so we also recover the result for Rayleigh-Benard convection in the 
limit of small TQ. 

4    Intermediate Bottom Boundary Condition 

We now wish to see more clearly why the R]^^ and R](^ scalings arise - what is the 
connection between them and what happens if we have a boundary condition that is not 
perfectly conducting or perfectly insulating? 

We choose the bottom boundary condition T - XTz = TQ at z = 0, where A > 0 
smoothly moving firom a perfectly insulating condition at A = oo to a perfectly conducting 
condition for A = 0. This physically corresponds to the bottom of the layer being in contact 
with a thin imperfectly conducting sheet that is in contact with an infinite heat bath. For 
this boundary condition, it is not immediately obvious that the velocity and temperature 
fields stay bounded and thus we first prove their boundedness, which enables us to drop the 
averages of their time derivatives. 
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4.1    Bounds on the Temperature and Velocity Fields 

In this section, we prove that the fields are bounded in time, which is not completely obvious 
for the given boundary conditions. Thus for this section only (section 4.1), (•) and ~ denote 
only spatial averages (and not long time average). 

First of all we prove a boundedness principle for the temperature field, using ideas 
from [13]. We consider the solution of CH) starting from some bounded initial temperature 
distribution at t = 0, and solved on the time interval t E [0,to]- We want to look for the 
point where T attains its maximum value. Suppose the maximum occurs at a point where 
z 7^ 0,1. At this point we must have VT = 0, V^r < 0 and so from (n), dT/dt < 0, 
meaning that the maximum of T is attained at t = 0. If the maximum occurs at z = 0, 
then we have Tz < 0 there, which imphes, using the boundary condition, that T < TQ. 

Alternatively it can occur at z = 1, in which case T < 1. A similar principle can be used 
to bound T from below and thus T is everywhere in the range 

[min(-l. To, inf (r|t=o)), max(l, To, sup(T|t=o))]. 

If the system is allowed to relax for sufficiently long then T will eventually be in the range 

[min(-l,ro),max(l,ro)], 

a result that we shall use when applying the background method. 
To bound the velocity field, we first use Poincare's inequality and obtain (|up) < 

2(|Vup)/7r2. Rearranging (u • iN'S)) yields averaging yields 

i|(|u|2)=i2H(^r)-(|Vu|2), 

<RHy/{w^){T^)-{\Vnf), 

<RHy/{\n\^){T^)-{\Vn\^), 

2 

meaning that (|up) is bounded above by its initial value and TT^RHVC^^)/^- 

4.2    The Set Up 

Having proved the boundedness of the fields, we can now begin to apply the Doering- 
Constantin method to bound the horizontal Nusselt number given by (4). With these 
boundary conditions, Tc is given by 

„      ^ /l — z\     sinhkz + Xkcoshkz 
Tc = To    1 H r-; r; r-;— cos kx, 

"       °Vl + A/       sinh fc + Afc cosh fc 

giving 
  fc /cosh fc + Afcsinh fc\ 
cosfcxTcli = - [si^Yik + Xkcoshk) 
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and so we try to find an upper bound on the numerator of NUH 

cos kxT,\i = (|vr|2) + r(r-ro)|o/A. 

Letting T = r + d, where r satisfies the boundary conditions on T and ^ satisfies the 
homogeneous boundary conditions, we have 

C =cosH3;|i - (au • (MS)) - {W ■ {%)), 

=(|VT|2 - ao-|Vu|2 + {b- l)e^^e +{b- 2)ev\ + aaRnwir + 9) 

- Wu ■ Vr) - ^lo - 2^|o + ^T{T-To)\o, 

=(|Vr|2 - a<T|Vup + (6 - l)evH + (6 - 2)ev\ + aaRHw{r + 6) 

- Wn . Vr) + i(r-ro)2|o + ^(T|o - To), (23) 

=(|VTP - aa|Vup + (6 - l)eV^e + (6 - 2)^v2r + Mu;(r + 6) 

- bO^ ■ Vr) + ^F^^TbFlo - Y^. (24) 

To 
where 

fi = aaRn — 
1 + A' 

and we have used the lower boundary conditions to obtain (23). Then to obtain (24), the 
final term in (23) can be absorbed into the global average, using (U) to derive an expression 
forrio: 

(-T) = -T|o-7;|o = |-i±ATio    =.    r|o = ^iZ^. (25) 

Note also that in (24) we have chosen to rewrite any terms proportional to |V^p in terms 
of ev'^e. This is because when the Euler-Lagrange equations are computed to minimize 
such terms, the former term would give some contributions firom the boundary, which make 
the equation more difiicult to solve, whereas the latter will not. 

4.3    Bound on the Horizontal Nusselt Number 

Starting from expression (24), we proceed to try to minimize £ using the boundedness of 
the temperature. From (25) we can bound {nw{r + 9)) = n{wT) < Mfx, where 

M 
1 max(2i^,-To),   if/x<0. 

We choose the background field r to minimize the worst case estimate of {-Wu • Vr), 
choosing Vr = 0 over as much as possible of the layer. In order to satisfy the boundary 
conditions we must again have top and bottom boundary layers. We choose rx to be given 
by (7) and 

for 0 < z < So, 
for ^0 < -z < 1, 

ro={p»' 
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With this choice, 
{-Wu ■ Vr) < a(|Vu|2) + /3{\Vef), 

for all fields u and 6 where, using the estimates in appendix A, 

/  ITol   5gco Sic^ \ 

V<5o + A2co     7r2ci' 7 

Then 

C < (|Vrp - {aa - a)|Vu|2 + (6 - 1 - /?)0V2^ + (6 - 2)evV) 

where the boundary term —P69z\o arising from the integration by parts has been neglected 
since it is negative semi-definite as long as /3, A > 0. 

The Euler-Lagrange equations for minimization of the functional boimd for £ are 

Vp - 2{a(T - a)V^u = 0, 

-2(6 - 1 - p)v^e ={b- 2)VV, 

jdelding the solution 

which minimizes the functional as long as the spectral constraints aa > a and b — 1 > P 
are satisfied. The extremal bound is 

C < (I Vr|2) + ^^f_~^l'^^ ((Vr . V(T - T.)) + ^(T - re)(r-ro)|o) 

+ M/x + -(r-To)2|o- A'       -"/ ■"     1 + ;^' 

and similarly to section 2.1 we can show that 6 = 2 is the value giving the tightest bound. 
We also have 

(5o + A)2 

In the following, we only consider the bounds as RH —> oo with To and A fixed; if 
RH is finite, it may be that a better bound can be obtained with a different scaling. As 
in section 2.1, the choice ^o = 0 does not affect the bound at leading order and subject 
to the spectral constraint, the optimal value of aa is A^II-K^ to leading order, giving C < 
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l/25i+AM5lRHlTt^. The tightest bound is obtained with ^i = (7r/2)4/3(Mi?//)-V3^ giving 
C < 3(Mi2/f)i/3/22/37r4/3 ^^d so the horizontal Nusselt number is bounded by 

NUH< < 
'   3 . 2V3(_roi?^)l/3/,4/3, [^^^) , if ro < -1, 

z.2y^{is^n„fy,.,z,^^^^^Y ifTo>-i. (26) 

K we proceed without utilising the boundedness of the temperature field, then as with 
the fixed flux case, the bound on NUH is proportional to i^^^ and so the RH^ bound is 
always better as RH-^ oo with To and A fixed. 

As A -^ oo with To/A = F fixed, we immediately recover the bound for the fixed flux 
bottom boundary condition (11) in section 2.1. As A -^ 0, we might similarly hope to 
recover the bounds found in section 3. However, things are not so simple as we might 
expect! 

4.4    Bound for Small A and Connection to Fixed Temperature Boundary 
Condition? 

As long as A > 0, then (26) shows that we have a bound of size J?J/^. However, if A = 0, 

then as shown in section 3 we can only get a bound of order /?J/l Why do we have this 
difference? 

In fact, as A -)■ 0, both the bounds in (26) grow arbitrarily large (if TQ < -1 then this 

growth is in one of the omitted terms) and so, although the asymptotic behavior is i?J/^, 
for any finite value of RH, the prefactor is so huge that the bound will be larger than might 
be expected. Thus we may ask ourselves, whether there is some way to make the bounds 
connect in the hniit of small A by using a diflferent background field. 

The bounds on T at 2; = 0 provide poor estimates for small A (unless To = 0), and so 
we shall do better if we proceed without using this. Starting from the expression (24), we 
choose the background field r to make the integrand of the unwanted terms (AXW^-Wu-Vr) 
zero over as much of the layer as possible. Again we set r = TQ{Z) + TI{Z) cos kx where n 
is given by (7) and 

ro=( ^AA(^o(<Jo-^)-f(l-<5o)(^ + A)),       for 0 < z < Jo, 
1 -^(1 - -2), for 5Q<Z<1, 

which tends to the expression for fixed temperature (16) in the Umit A -» 0. Solving the 
Euler-Lagrange equations yields the bound 

(6-2) 
^ <l^^i') + 4(6-1-^)0^^ • ^^^ " ^^^^ + j(r-re)(r-ro)|o) + \W^ Tof 

T? „2 t2r5 

144 



which tends to expression (17) as A -)• 0. Using appendix A, the estimates for a and /3 are 

" = "^"'^ [ ^^TA 2^' -2^^^ + ^^^^V ' 
|,(A + l) + 6To||^^26^ 

SQ + X 2CQ        TT^Cl 

Comparing these with (18) and (19) respectively, we see that as A —>^ 0 we obtain the same 
limit for the second term in each expression, but not the first term. This is due to the 
fact that with the methods we have used, we cannot estimate the temperature on the lower 
boundary very well, and so we are forced to use the bound (30) rather than (29). This 
difference turns out to be crucial in the bounding procedure and thus we cannot obtain a 
continuous bound on the horizontal Nusselt number as A -^ 0. 

5    Conclusions and Discussion 

In summary, we have obtained upper bounds on the horizontal Nusselt number for horizon- 
tal convection using a variety of different boundary conditions on the bottom of the box. 
As long as the lower boundary is not perfectly conducting we found that the horizontal 
Nusselt number is always bounded by a constant prefactor times Rjj , and if it is perfectly 

1/2 
conducting then the bound increases to a prefactor times R^ . 

In a similar way, we might ask if it is possible to use the analogous method to bound the 
dissipation e. However, it turns out that we cannot improve on the bound obtained using 
the method outlined in the introduction. For a fixed heat flux F through the bottom, we 
GTCt 

H 
and for the intermediate boundary conditions, we get 

KoaAT        rTo + l + X 
e < —=— max ' 

H V        A 
,-2o) 

These bounds imply the anti-turbulence theorem in both cases. With the fixed temperature 
boundary condition, however, we can't easily relate the flux through the bottom to the 
temperature there, and in this case, using the Doering-Constantin method, the bound 
turns out to be (|Vup) < g{To)R^/^ for some function g, meaning that e is bounded by a 
non-zero constant as K -> 0 with cr fixed, which does not prove anti-tmrbulence. 

It would be interesting to have some idea of what the actual velocity and temperature 
fields look Uke in the asymptotic hmit as RH -> oo, and see if figure 4 does indeed give the 
correct flow pattern in the limit. However, since we set the velocity to zero, the method 
we have used tells us nothing about the velocity field except perhaps that the velocities in 
the asymptotic solution are not very large in magnitude. It doesn't prove anything about 
the temperature field either, although the fact that we did consistently use the background 
field r = To{z) + Ti{z) cos kx where ri was given by (7), suggests that the real solution may 
have a top boundary layer and that the temperature field has little horizontal dependence 
deeper into the layer. Our choice of TQ varied but we found that the depth of the bottom 
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boundary layer did not matter at leading order, (except with the fixed bottom temperature 
condition), suggesting that the horizontally averaged temperature has no large gradients 
throughout the layer. 

Possibly a more physically realistic set up in the oceanographic context would be to 
use a stress free velocity boundary condition at the top of the layer rather than the non- 
slip one, shown in 1, which was used throughout the report. Proceeding to bound the 
horizontal Nusselt number in a similar fashion, we encounter a problem. We cannot estimate 
Ii-S W^\dz in terms of (| Vu|2} and (| V^p) as we have no control on the size of u at the 
top boundary, and so we cannot easily find a bound on NUH- Note that this problem does 
not occur for Rayleigh-Benard convection, since the offending term only arises due to the 
horizontal dependence of r. 

In summary the bound of R]1^, (which holds asymptotically for all the boundary con- 
ditions investigated except for the fixed temperature condition), suggests that horizontal 
convection with an insulating or nearly insulating bottom boundary is much less efficient 
at transporting heat through a layer than Rayleigh-Benard convection. In particular, since 
the bound less than order R]^^, the scalings of the temperature and velocity fields in the 
boundary layers in horizontal convection cannot be independent of the molecular parameters 
u and K [14, 15]. 

So how relevant are these results to the ocean? We don't know the oceanographic 
bottom boundary conditions, and the bottom is certainly far from being flat! However, we 
have shown that there is only a weak dependence on these conditions, and so the results are 
probably still valid. However, possibly more significantly, there are many other processes 
going on in the ocean such as wind forcing, that can cause large amounts of mixing and these 
are probably much more significant factors in the circulation than horizontal convection. 

I should Uke to thank Richard Kerswell for suggesting this project and for giving up 
a lot of time to discuss the problem, Neil Balmforth who provided many useful insights 
and Charles Doering for making some helpful suggestions. I am grateful to Woods Hole 
Oceanographic Institution for its funding and hospitafity and to everyone on the GFD 
program for making my stay so enjoyable! 

A    Estimates of Boundary Layer Integrals 

In this section we estimate the maximum possible size of some integrals that are needed to 
estimate the sign-indeterminate quadratic terms. The integrals that are needed are 

y _  \we\dz,    j    \ue\dz     and  f \we\dz, 

where u and «; are zero on both the top and bottom boundaries and ^ is zero at the top. 
At the bottom we have three possibilities: ^ = 0, ^^ = 0 or ^ - A^z = 0. 

First we prove the result 

If the functions / and g are both zero on the plane z = ZQ then 
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The proof (thanks to Michael Proctor) is as follows: 

rzo+S /  rzo+S rzo+S \ 
/        \f9\dz<{ Pdz gHz]     , 

Jzo Y^o •'20 / 

(using the Cauchy-Schwaxz inequality), 

1   /     ^0+5  1    rzo+5     \ 

(using Young's inequality, y/ab < {ca + b/c)/2 for any c > 0). 

We can use the calculus of variations to minimize the ratio 
rzo+S I   rzo+S 
/        hldzf  /        h^dz, 

Jzo I      Jzo 

subject to h{zQ) = 0. The minimum value is -K^l^b"^, and hence the result follows. 
Using this we have 

/',«<*.^^L(^^4)''^2?/'.('i^+W"^^  (^'' 
£^Rf<i.<^£^(c54)d.<5£^(c=I+lw)<i.. (28) 

and similarly if 6 = 0 at z = 0 then 

f ^\dz < ^ IVc^ + i]Wp) dz, (29) 

otherwise 

/ \we\dz<lf w'^dz f e'^dz]     , (Cauchy-Schwartz), 

<- I c /   t^dz + -      O^dz I , (Young's inequality), 

<2^ /"*^dz + YJ  ((1 - ^) f el,dz'\dz, (Cauchy-Schwartz), 

<^llf^^dz + U\Ve\^), (30) 
Tf^   Jo 2c 

where c can take any positive value. 
Rather than simply bounding w'^ by j Vup, we improve the bounds by using the following 

inequality, which is taken from [12]. Since Ux + Vy + Wz = 0 then 

{UxWz  + VyWz + W^}  = 0 =^   {UzWx + VzWy + tO^)   = 0, 

{wl) = {{ux + vy)^) =» («;2 -ul-vl- 2uyVx) = 0, 
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where the boundary conditions have been used to integrate by parts. Twice the first equa- 
tion plus the second plus (|Vup) gives 

(t/'f) < ^(|Vup). 

B    Estimate of the Size of {W*T) 

In section 2.2, we obtained a term proportional to {W*T) in the bounding procedure. This 
term must be estimated, which is done in this section. 

In both cases u* satisfies an equation of the form 

Vp - V^u = Prz, 

where r = TO{Z) + TI{Z) coskx and 

Taking the curl gives 

(31) 

for 0<2;<l-5i, 
for 1 - <Ji < 2; < 1, 

Pk 

'[ 
__ I ^ysmkx      for y > 0, 

0 for y < 0, 

where y = z-l-|-<Jiandu= {-rj}^, 0,V'x). The solution is of the form 

' jk^ (y + {A'y + B') sinh ky + {C'y + D') cosh ky) sin kx 

ip = i for 0 < y < 5i, 
I^ ((Ay + B) sinh ky + {Cy + D) cosh ky) sin kx 

for -1 + 5i < y < 0, 

for some constants A, B, C, D, A', B', C and D' to be determined. Note that since ^ 
is proportional to sinfcx, {W*T) = {w^ncoskx), with no contribution from TQ and so the 
solution is only needed in the top boimdary layer. 

Matching ip, rpy, iPyy and ipyyy at y=0 gives 

A' = A,    B' = B-^,    C' = C+\,    D' = D. 

The boundary conditions at the top and bottom of the box imply that 

/           hst St             Sict 
St + k5ict kct        kSiSt + ct kst 
i5i-l)sb Sb         {5i-l)ct,         Cb 

\sb + k{Si - \)cb kcb k{Si - l)sb + Cb ksb j 

ct   \ f A\ 
B 
C 

\Dj 

-1 - \k5ySt + Ct 
0 
0 

(32) 
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where ct = cosh Hi, st = sinhMi, Cb = cosh.k{8\ — 1) and s^ = sinhA;((5i — 1). Note that 
if Ji < 1 then the right hand side of this equation is 0{5i), whilst the determinant of the 
matrix is 0(1), and thus A, B, C and D are 0{5f) at the largest. In fact the first equation 
arising from this matrix equation is 

3 1 
SiStA + stB + SiCtC + ctD = -Si + —st - -^^ct, 

The coefficients of the first three terms are at most 0{Si), and so the terms must be 0{Si). 
The right hand side is also 0{5l) and ct is 0(1). Thus D is 0{Sl). Therefore since y is 
0{Si) in the top boundary layer, 

^ ^ PJ" \^~2k ^^^^^y + 2^^'^^^ky + 0{5l)j sinkx, 

= 0{PSt). 

Therefore w is also 0{P5i) and so 

{W*T) = 0{PSl). (33) 

In fact, by inverting the matrix in (32), we have, to leading order 

"  -^[[u^^-^)''^^ 12((e2fc-l)2-4fc2e2fc)      +<^('^i)j ^mto, 

0, ('^(4 - 5C + C')St + 0{5',)\ cos kx] , 

in the top boundary layer, where C = y/h > 0, giving 

(^V) = ^(l + 0(.5i)). (34) 
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Inertial Wave Convection in Rotating Spherical Fluid Shells 
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Abstract 

The report represents a study of the linear properties of thermal convection in ro- 
tating spheres and shells. An "inertial wave" analytical approximation based on the 
similarities of the convection flows and the solutions of the Poincare equation is devel- 
oped for the region of small Prandtl numbers. Theoretical expression for the Rayleigh 
number of convection with insulating thermal boundary conditions is obtained and 
tested against full numerical solutions. A second part of the report describes the re- 
sults of a numerical study of the convection regimes and transitions found in the region 
of small Prandtl numbers. The transition between retrograde and prograde drifting 
modes is examined in detail. A new multi-columnar solution is found to bound the 
region of wall-attached convection at very high rotation rates. Various predictions of 
the developed analytical theory are also tested and verified numerically. Finally convec- 
tion patterns in the case of insulating thermal boundary conditions are observed and 
compared with the better studied case of perfectly conducting boundaries. 

1.    Introduction 

In this report we study the linear problem of the onset of thermal convection in rotating 
spheres and spherical shells. 

The interest in this problem is motivated mainly by geophysical and astrophysical ap- 
plications and dates back at least half a century, during which period a vast amount of 
literature has been accumulated. The most comprehensive formulation of the problem and 
some early results were presented by Chandrasekhar(1961). The fundamental theoretical 
work was carried out by Roberts(1968) and Busse(1970a). It was predicted that convection 
would be in the form of slowly drifting columnar rolls with small azimuthal scale but the 
precise structure of the flow was not determined by the theories. Experimental studies 
(Carrigan and Busse(1983)) confirmed the qualitative features predicted by the theories 
for the range of Prandtl numbers of their working fluids. Later numerical studies (Zhang 
and Busse(1987), Ardes et ai.(1997)) found that the form of convection pattern is strongly 
dependent on almost all parameters that enter the formulation of the problem and they 
identified various regimes of convection at onset. A number of excellent reviews on the 
subject exist and the reader is referred to Busse(2002) as one of the most recent ones. 

However certain mathematical and numerical difficulties prevent the complete solution 
of the problem. The preferred mode of convection is usually non-axisymmetric and strongly 
time dependent even at the onset. Another analytical difficulty arises from the geometry of 
the system and more precisely from the fact that the role of the Coriolis force varies with 
the angle between gravity and the vector of angular velocity.   On the numerical side the 

■"^e-mail: radostin. simitevQuni-bayreuth. de 
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investigation of the linear problem is hindered by the large number of parameters, including 
the Rayleigh and Prandtl numbers, the rotation rate parameter as well as the radius ratio 
of the spherical shell. In addition to that various choices of the boundary conditions, the 
heating model and the variation of gravity can be made at formulation. Having in mind all 
these difficulties, it is not surprising that many open questions still exist and that there axe 
many possibilities for further investigations of the linear problem. 

An efficient way of overcoming the lack of a complete solution has been to obtain an- 
alytical approximations in special cases. In the case of a thin shell the effects of rotation 
can be treated as a perturbation (Busse(1970b)). An analytical method for the description 
of low Prandtl number convection is based on the idea that the thermal convection can 
be treated as a perturbation of inertial oscillations, which on the other hand emerge as 
solutions of the Poincare equation in rotating spheres (Zhang(1994)). Another method, ap- 
plicable to the same parameter region, is the equatorial approximation described by Ardes 
et a/. (1997). These analytical approximations need to be validated and tested against full 
numerical solutions. The numerics in addition reveal many new properties and phenomena 
not predicted by the theories. 

Such an approach to the problem of convection in rotating spheres and shells has been 
adopted in the papers of Zhang and Busse(1987) and Ardes et o/.(1997). Apart from 
testing various theoretical predictions, these papers report the most detailed numerical 
investigations of the parameter space so far. The preferred types of convection flow at 
relatively low and moderate Prandtl numbers are determined. Wall-attached regime is 
observed at lower values and columnar type flows at higher values of the Prandtl number. 
When the rotation parameter is varied, eigenmode competition is observed and transitions 
between several new modes and patterns are identified, including modes traveling in the 
retrograde or prograde direction. Many properties of these phenomena are investigated 
below in detail. 

These two papers have provided useful ideas and starting points for the studies xm- 
dertaken in the present report. Here we choose to focus our attention on the properties 
of inertial wave convection, which is observed in the region of small Prandtl numbers and 
intermediate to high values of the rotation parameter. This choice is motivated by several 
facts. Firstly, a convenient analytical approach is possible in this parameter region. The 
thermal convection can be considered to be a perturbation of inertial oscillations of the 
Poincare equation. Based on this idea we follow the method described by Zhang(1994) but 
show a different approach to obtain the results published by him. Furthermore we extend 
the analysis and solve the heat equation for a new case of perfectly insulating thermal 
boundary conditions. As a result complete analytical convection solutions are obtained 
and a theoretical expression for the critical Rayleigh number in the limit of small Prandtl 
numbers and high rotation rates is derived. The validity of the results is tested against 
numerical solutions of the full set of linear equations. Secondly, all previous studies agree 
that at low Prandtl numbers convection is much richer in dynamical behavior than at high 
Prandtl numbers of the order one or higher and that there can be regions where the pre- 
ferred mode is still unknown. At the same time neither very high rotation rates nor very 
small Prandtl number cases have been reached so far. Several already known phenomena 
need to be studied in more detail as well. A particular goal is to outline the border between 
regions of retrograde and prograde drifting modes in the P - T - jy space.  Furthermore, 
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several analytical facts based on the inertial wave approximation developed in the first part 
of the report have to be tested. More precisely we wish to verify the prediction that in 
the regime of wall-attached convection the ratio between the frequency and the rotation 
parameter must remain constant for a broad range of rotation rates and at the same time 
have no radial dependence. Another prediction of the theory is the fact that the critical 
Rayleigh number of a particular mode does not depend on the rotation rate for small values 
of the Prandtl number and high rotation rates. Finally, a study of the dependences of the 
critical Rayleigh number and frequency on the radius ratio as well as a test of the validity 
of the analj^ical approximations for various thickness of the spherical shell has not yet been 
reported in previous studies. 

A third part of the report, which deserves a study of its own, addresses the problem of 
the onset of thermal convection in rotating spherical shells, but in contrast with the second 
part in the case of perfectly insulating thermal boundary conditions. Since the case of 
insulating thermal boundary conditions has not been previously reported in the literature, 
we begin its exploration with a number of comparisons between the new case and the much 
better studied case of perfectly conducting thermal boundaries. We try to outline any 
differences or similarities in the Rayleigh number and frequency relationships as well as to 
observe whether regimes of patterns similar to the flows in the conducting case exist. 

The report starts with a short description of the geometrical configuration and the for- 
mulation of the problem in section 2. Section 3 describes the inertial wave approximation 
and extends the results of Zhang(1994) to the case of insulating thermal boundary condi- 
tions. The numerical methods used for solving the governing equations are introduced in 
section 4. Section 5 presents the main results emerging from the numerical study of low 
Prandtl number convection. In section 7 some preliminary results from the numerical study 
of convection with thermally insulating boundaries are reported and concluding remarks 
are given in section 8. 

2.    Mathematical Formulation of the Problem 

We consider the problem of convection in rotating spherical shells in its classical formulation 
with a uniform distribution of heat sources and a gravity force that increases with distance 
from the center of the sphere. Accordingly the distributions of temperature and gravity in 
the spherically symmetric basic state are given by 

r = ro-/3rV2,    9 =-IT (2.1) 

where f is the position vector with respect to the center of the sphere and f is its absolute 
value. The sphere is rotating with angular velocity VL about a fixed axis given by the unit 
vector k. It will be convenient to introduce dimensionless variables. As length scale we 
use the diiference d between inner and outer radius of the spherical fluid shell. As time 
scale we use ^jv where v is the kinematic viscosity of the fluid and as temperature scale 
we take ^SVJK where K denotes the thermal diffusivity of the fluid. The dimensionless 
equations of motion for the velocity vector u and the heat equation for the deviation © of 
the temperature from the static distribution are given by 

—u + u-Vu + Tkxu = - VTT + rR@ + V^u (2.2a) 
at 
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Vn = 0 (2.2b) 

(^e + «-ve)p = r-w + v2e (2.2c) 

where r is the dimensionless position vector and the Rayleigh number R, the Taylor number 
r^, and the Prandtl number P are defined by 

""^-^^    ^ = -^'    ^=K (2-3) 

The thermal expansivity has been denoted by a and the Boussinesq approximation has been 
assumed. 

Stress-free velocity boundary conditions and two different types of temperature bound- 
ary conditions are imposed on the governing equations (2.2) 

i- (^\      -      £. fB.\ - n 
dr\r J dr\r )~ 

Type A: 6 = 0 

Type B: |-e = 0 
or 

^t   r = ri = j^      ^nd      r = ro = j^, (2.4) 

where T) denotes the radius ratio of the spherical shell. 
This is a general formulation which is not restricted to the linear problem. In the present 

report we neglect the nonlinear terms in equations (2.2) and use them as a starting point 
for both the analytical and the numerical studies reported below. 

3.    The Inertial Wave Approximation 

In this section we present an analytical approximation for the description of the linear 
properties of thermal convection in the region of small Parndtl numbers and intermediate 
to high values of the rotation parameter. We follow the perturbation analysis as described 
by Zhang(1994) and consider the thermal convection as a small perturbation of the inertial 
osciUations of the Poincare equation, the solutions of which are known, but utilize a different 
approach in order to improve his results and extend the analysis to a new case of convection 
with insulating thermal boundary conditions. 

The justification for such a perturbation analysis is based on the exceptionally good 
agreement between the numerical values of the frequencies of the preferred modes of con- 
vection and the frequencies of the Poincare inertial modes which wiU be demonstrated in 
the following section 5 of the report. 

The Perturbation Analysis 

We consider the linear problem in rotating fluid spheres and omit all nonlinear terms. Since 
we are interested in the small Prandtl number limit we neglect the time derivative in the 
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heat equation (2.2c).   After substituting the time derivative of the velocity field by its 
eigenvalue ^ —> uo the basic equations (2.2) reduce to, 

i(jU + kxU = - VTT + -r0 + -V^U (3.5) 
T r 

V-U = 0 (3.6) 

V^e = -rU. (3.7) 

In order to benefit from the results presented in Zhang(1994), for technical convenience, and 
because the approximation is vahd for fluid spheres rather than shells, we need to rescale 
our basic equations. The connection with the dimensionless parameters (2.3) defined in the 
preceding section and used in the numerical analysis in the rest of the report is, 

-R = ■Re9.(2.3)(l-^)^   T = -req.(2.3)(l-^)^   <^ =-t^eq.{2.3)/'r (3-8) 

Stress-free velocity boundary conditions and conducting or insulating temperature boundary 
conditions, as given by equation (2.4) are assumed. We expand the dependent variables, 

U = u + ui, TT = TTo-l-7ri,  © = O, a; = a;o + wi, (3.9) 

where ui, TTI, 0 and ui are small perturbations from the solutions of the Poincare equation 
for the limit 1/r —> 0, which are denoted by u, IT and UQ. The above expansion is vahd 
for 

-ml « 1. (3.10) 
T 

Substituting the expansions into (3.5)-(3.7), gives the zeroth order of the perturbation 
problem, 

iujQU + k X u = —VTTO 

V-u = 0. (3.11) 

This system is equivalent the the Poincare equation as shown in Greenspan(1968). The 
complete analytical solution of the Poincare equation has been recently obtained by Zhang 
et a/.(2001), but here we make use only of a particular class of solutions as will be described 
shortly. The next order of the perturbation analysis in the limit 77 = 0 gives rise to, 

R 1 
iu)QUi + kxui = - VTTI H—rQ + -V^(u + Ub) — ioJiu (3-12) 

r T 

V • til = 0 (3.13) 

V^e = -r-u, (3.14) 
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where u = Ui + ui, Uj is the perturbation of the interior flow and uj is the boundary flow 
associated with the Ekman boundary layer, which is non-zero only in the vicinity of the 
outer spherical surface. While Wj is small compared to u, Ub has to be large enough so that 
Ufc -f u satisfies the stress-free boundary condition. It can be shown that the Ekman layer 
plays an essential role because the integral Hb = /„«*• V^{u + Ub)dV appearing later on 
in the expression for the Rayleigh number is non-zero only if Ub is non-zero (Zhang(1994)). 
If we multiply eq. (3.12) by the complex conjugate of u, u*, which also satisfies V • tt* = 0 
and the boundary condition u* = 0 and integrate over the volume of the sphere, we obtain 

/ u* • {iujoui + 2kxui+ Vivi)dV = / wi • {iijQU* - 2fe x u*)dV. (3.15) 

We use, 

J u* • VTTidF = JTriu^dS = 0 (3.16) 

and the fact that u* satisfies, 

UVQU* + kxu* = VTTQ 

and observe that the integral given by (3.15) vanishes. Then the solvability conditions, 
where the real part gives the critical Rayleigh number and the imaginary part gives the 
correction of the firequency are. 

Re [RJ^U*-redv] = -Re [^ /«* • V^u + Ub)dv\ (3.17) 

Im\RJu*redv\ =-Im\- f u* ■V^{u + Ub)dV  +ui fu*udV. 

Hence the critical Rayleigh number of a particular mode is given in the first order by, 

Now in order to evaluate (3.19) we need to obtain a solution e(r) of the heat equation 
(3.14). 

Solutions of the Zeroth Order Problem and the Heat Equation 

A general solution of the Poincare equation is available (Zhang ti al. (2001)), but for 
the purposes of the present report only a particular class of solutions, as suggested by 
the numerical analysis of the problem is relevant. In this subsection we demonstrate a 
convenient way to construct such solutions and using them solve the heat equation for both 
types of thermal boundary conditions. 
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We first consider the zeroth order problem in the perturbation analysis (3.11). In order to 
eliminate the continuity equation we introduce the general representation for the solenoidal 
vector field u, 

u = V X (V X ru) + V X rw (3.19) 

where the scalar variables v and w are uniquely defined if the condition is imposed that 
their averages over surfaces r =const. vanish. By acting with the operators r • V x Vx 
and r • Vx on the first equation of the system we obtain two equations for the poloidal and 
toroidal scalars v and w, 

{-iwL2 + im)V'^v = -Qw (3.20) 

{—iuL2 + im)w = Qv, (3.21) 

where L2 is the negative Laplacian on the unit sphere and Q is defined by 

Q = /k-V-i(L2fe-V + fc-VL2)- (3.22) 

The boundary conditions are also transformed to, 

-^-|(7) = <'—■ "■^') 

The expressions, 

v = ir'^- r'"+2)pm exp(za;f + im<f)) (3.24) 

w = r"^+^2z   ,   ^""t/^^'i TTT^—r^P^+i exp(ia;t + im<l>), a;(m + l)(m + 2)-m(2m + l)   "^^^    *^^ ^" 

provide an exact solution of the zeroth order problem for 

as can be easily verified by substituting (3.24) into (3.21) and using formula (7.41) of 
Appendix A. 

Now the heat equation, 

V^e = -r • u = -L2V = -(r'" - r'^^^)m{m + 1)P^ exp(za;t + im0), (3.26) 

suggests that 6(r) contains a single spherical harmonic of the same order and degree as the 
poloidal scalar, and its radial dependence can be obtained as a solution of the radial part 
of (3.26), 

-m{m + l)(r- - r^^^) = V'f{r) = 09^ - ^^^^^) /(r). 
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Assuming a radial dependence of the type, 

f{r) = Kir'^+K2r''\ 

plugging it into the radial equation and determining the constants Ki, K2, Ci, C2,   we 
obtain the solution, 

e(r)   =   -m(7n + 1)P^ exp{iut + im<p) * 
,."1+2 -m+4 

(3.27) 

+ ar' "]• .(m + 3)(m + 2) - (m + l)m (m + 5)(m + 4) - (m + l)m 

where a harmonic term ar"" has been added to the radial dependence. After using the 
insulating and the conducting thermal boundary conditions (2.4) of Types A and B at 
r = 1 and determine the constant a in both cases we finally obtain, 

e(r)   =   -{m + l)P^exp{iu}t + im<f>)* 
m7-'"+2 _ (m + 2)r"^ 

(3.28) 
7nr"'+^ - (m + 4)r' 

Xm + 3)(m + 2) - (m + l)m     (m + 5)(m + 4) - (m + l)m_ 
for the insulating case and 

e(r)   =   -m{m + 1)P^ exp{iu;t + im(f>) * 
j.m+2 _ j.m -m+i _Tn 

(3.29) 

,(m + 3)(m + 2) - (m + l)m     (m + 5)(m + 4) - (m + l)m_ 
for the conducting one. 

Evaluation of the Integrals 

After having obtained the solutions of the zeroth order problem and the heat equation the 
integrals Hb and He, which appear in the solvability condition (3.18), need to be evaluated. 

Making use of the formula for the components of a solenoidal vector in terms of poloidal 
and toroidal scsJars, 

L2    1   52 fL2     1 
u =    —V, - 

\ r     r 
1   d d^ d 

dear'■'' "^ sin ed(i>'^'rsin e d4>dr'*''   de"" )■ 
we proceed to the evaluation of the first integral. 

""^'d-rV^^'^O-r-f)'' 
f f *due      ,du^\ 

1 52    ,     1  a 
■rv H --r-w 

•dOdr smed<l> 

+27r 
^0   l\sin 

a2    1 d 
■•)( 

d^  1 d        1 
-rt; + 

eedrr^dr 
  d^    1 
e d(j)dr r"^ dr"     d6drr^ 

TV — 

=   2Txm{m + l)[2(4m + 2) / |P^|2d(cos^) + 
JO 

7 Vrsin^S^ar^"* ~ a^^'J J 

sin 9 d(j>dr 

a2 

sin^d^ 

sin^d^ 

(m + 2) 
(m + 1)2-1 

c.;(m + l)(m + 2) - m (2m + 1) 
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The second integral may also be readily calculated. For the insulating thermal boundary 
case we have, 

*edV He   =    f u*-rQdV= ! L2V* 
Jv Jv 

=   2Trm{m + lf f  \P;^fd{cose) 
Jo 

7< Jo 

^m _ ^m+■^\ „m+2\ mr'^+'^ - (m + 4)r" mr"'+^ - (m + 2^' 
{m + 5)(m + 4) - (m + l)m     (m + 3)(m 4- 2) - (m + l)m 

87rm(m + ifjUm^ + 59m + 63)       f^ pm|2 .. ,„ .^ 
~    (2m + 9)(2m + 7)(2m + 5)2(2m + 3)2 J^  l^'"' ''^'''^''^' 

and in an analogous manner for the perfectly conducting case, 

He   =   2-Km{m + lf f |P^|2d(cos^) * 
Jo 

r^dr 

(3.31) 

Jo 
jjn _ j.in+z\ ^m+2\ 

j.m+2 _ j,m _m+4 _Tn 

(m + 3)(m + 2) - (m + l)m     (m + 5)(m + 4) - (m + l)m_ 

27rm2(m + l)2(40m + 108) /"|pm|2..      .x 
1- 9)(2m + 7)(2m + 5)2(2m + 3)2 JQ  I^'" ' ''^''°^''^- (2m+ 

The Complete Analytical Solution 

r^dr 

(3.32) 

After evaluating the integrals Hb and ffg we can readily write the expression for the critical 
Rayleigh nvunber for a given m, 

R   =   m2(m + 2)' ±(m+ 1)A/—;;——:;: h 1 (2m + 3)-^ + (2m + 1) 
2m+ 3 

(2m + 9) (2m + 7) [(2m + 5) (2m + 3)]^ 

where the following property of the associated Legendre polynomials is used, 

> * (3.33) 

[(m + l)(14m2 + 59m + 63)]~^   insulating case 
[(m + l)m(10m + 27)]"-^ conducting case, 

/ol^^+ilMcosg)_._(2m + l)^ 

li\P^Mcos9) 2m + 3  ■ 

As a result of the perturbation analysis we obtained a complete solution for the convec- 
tion in the limit of small Prandtl numbers and high rotation rates, which in the first order 
is represented by 

(i?,m,u,a;o,e). (3.34) 

where all state variables depend only on m. In order to obtain the critical Rayleigh number 
at onset, one has to loop through all values of m and select the smallest possible R. Before 
proceeding to the numerical analysis several properties of the obtained solution must be 
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outlined. Firstly, we notice that the frequency omega of the zeroth order solution has two 
values - a positive value corresponding to a retrograde drifting convection pattern and a 
negative one corresponding to a prograde drifting mode. These two modes are competing at 
onset and will be demonstrated in the numerical analysis in the following sections. Secondly, 
we observe that for a given m the critical Rayleigh number (3.33) does not depend on 
the radial component as well as on the rotation rate in this approximation. These are 
particularly interesting features that we will address in the numerical simulations reported 
below. 

Numerical Test of the Analytical Solution 

Using the numerical method described in the following section we check the obtained analyt- 
ical result (3.33) against numerical values. Since the approximation is derived for r —)■ oo, 
P —>0 and r; = 0 we use values of these parameters as close to the analytical assumptions 
as numerically reasonable. The comparison is represented in Fig. 1 with the numerical 
results for several different values of m = 2,4,8,12 for parameters P = 10~^,T] - 0.1 and 
varying r. Naturally a strict independence of ii on T as predicted by (3.33) can not be 
expected but an approximate independence is fulfilled over a large span of values of r. At 
very low and high values of r the convection enters other regimes of flow as will be discussed 
in the following sections. 
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Figure 1: Comparison of numerical results (solid lines) with the analytical expression (dashed lines) 
for P = IQ-^, 77 = 0.1 and m = 2,4,8,12 in direction of the arrow. 

4.    Numerical Methods 

Following the earlier analyses by Zhang and Busse(1987) and Ardes et aZ.(1997), we use a 
Galerkin method for the numerical solution of equations (2.2). 

In a manner similar to the described in the previous section we transform the full 
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nonlinear vector equation (2.2a) to a couple of scalar equations for v and w, 

[(V^ - ^)L2 + Tkxr- V] V^v + TQW - i?L2© = -r • V x (V x (u • Vw))       (4.35a) 

[(V^ - ^)L2 + Tkxr- V]w - TQV = r • V X (U • VW). (4.35b) 

The boundary conditions are given by (2.4) and modified as in (3.24) at r = n = j^   and 

r = ro = j^. 
In order to solve equations (4.35) and (2.2c) by the Galerkin method, it is convenient to 

expand the dependent variables into complete systems of functions satisfying the boundary 
conditions, 

V = y^ ^vni exp{iz/(m(^ — a;<)}P^''''"^(cos 6) sin n7r(r — rt) (4.36a) 
i/,l,n 

w = y2 ^vnl exp{iz/(m9? - a;i)}Pi'''"^(cos 9) cos(ra - l)ir{r - n) (4.36b) 

v,i,n 

Type A: 

6   =    y^ bini exp{ii/(m<^ — a;t)}P^'''''"(cos 0) sin n-K{r — r,) 
v,l,n 

TypeB: 

©   =    y^ hyni exp{w(my — ojt)}Pj'^{cos9) cos(n — l)7r(r — n).  (4.36c) 

u,i,n 

Note the difference in the sign of u in (4.36) and (3.25). This representation has been 
chosen in such a way that solutions in the form of drifting waves which are m-periodic in the 
azimuthal direction are described by constant coefficients auin etc. More complex solutions 
can be described by time dependent coefficients aj,in etc. In both cases the conditions 

must be satisfied for real expressions (4.36) where the superscript + indicates the complex 
conjugate. Of particular interest are solutions that are symmetric with respect to the 
equatorial plane in which case the subscript I runs through | z/ | m + 2j for j = 0,1,2... 
while the subscript l runs through | z/1 m + 2j + 1 for the same j. The associated Legendre 
polynomials will be assumed in such a form that the average of [Pj^]'^ over the unit sphere 
is unity. 
After the equations for the coefficients a„in etc. have been obtained through a projection 
of the basic equations (4.35) and (2.2c) onto the space of the expansion functions used in 
(4.36) the system of equations for the coefficients must be truncated.   We shall use the 
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truncation condition that all coefficients and corresponding equations are neglected whose 
subscripts satisfy 

2n + Z-|i/|m + 2| i/|>3 + 2Ar7' (4.38) 

The same condition applies for l instead of I. The condition is the same as used by Zhang 
and Busse (1987) and provides a triangular truncation such that as many functions m the 
radial as in the latitudinal direction are used for the representation of the solution. 

For the linear problem of the onset of convection the right hand side of eqs. (4.35) 
and the term u • VG in eq. (2.2c) can be neglected and only terms with u = 1 need to 
be kept in the representation (4.36). The Unear homogeneous system of complex algebraic 
equations for the coefficients an„ represents an eigenvalue problem for jR and a; as the real 
and imaginary parts of the eigenvalue. 

For the most cases presented in this report a truncation parameter of NT = 18, or a 
total of 513 coefficients have been used. In a few cases in the high rotation regime the 
resolution was increased to NT = 30, which already poses significant requirements on the 
computer capacity and computational times. 

5.    Onset of Thermal Convection at Low Prandtl Numbers 
and High Rotation Rates 

In this section we present the basic results gained firom the numerical investigation of the 
onset of convection at low Prandtl numbers in the case of conducting thermal boundary 
conditions of the type A and address the questions posed in the introductory section of the 
report. 

The parameter exploration included a large number of points in the ranges of 10~^ < 
P < 10, 0 < r and 0.1 < 7? < 0.8. The computations with P > 1 do not actually belong 
in the low Prandtl number region and are only included for the sake of finding the border 
between the retrograde and prograde drifting modes, since these modes are found to exist 
even at Prandtl numbers of order unity and higher. Of course, the scenario of the evolution 
of the onset of convection with increasing rotation parameter r, as will be described below, 
is valid for a smaller region, which we believe to be approximately 10"^ < P < 10~^. 

Ideally the proper way to investigate a given parameter region is to keep the values of all 
parameters of the problem fixed and vary in a continuous way only one of them. When the 
dependence on this parameter is well understood the process is repeated for all remaining 
parameters. In practice, of course, this is impossible. In an experimental situation for 
example, the variation of the Prandtl number is limited to the set of available working 
fluids. In a numerical study one has much weaker restrictions, but even then parameters 
such as the Prandtl number P and the radius ratio rj are comparatively difficult to vary 
because of their relatively small domain and big changes of the properties of the flow with 
small changes of the values of these parameters. On the other hand the rotation rate can 
be varied comparatively easily in a wide range and as a result much smoother dependences 
are observed. Furthermore, any non-monotonic behavior guarantees a significant and well- 
defined transition between different states. 
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Figure 2: The Rayleigh number R (upper plot) and the frequency u (lower plot) as a function of 
r in the case P = lO""*, J] = 0.3, m = 8. The analytical predictions for w based on inertial mode 
approximations are shown with dotted Unes. 

Following this approach, numerous cases in the low Prandtl number region were investi- 
gated. Fig. 2 represents a typical example of the results obtained in this region and provides 
an excellent overview and introduction to most of the various regimes of convection flow 
that can be expected here. Although all other parameters, P = 0.0001, r} = 0.3, m = 8, 
are fixed, this case is a typical example and is situated in the middle of the parameter 
region of interest. No substantial quahtative differences have been observed at other para- 
meter values. The ^(r) curve is particularly instructive and several different states of the 
preferred mode can be immediately noticed. 

Figure 3: The streamfunctions r sin Od^v in the equatorial plane illustrating the sequence of tran- 
sitions for the same parameters as Fig. 2 and values of r = 5,  950,  1500, 6-10^,  8-10^, 3.5-10'^. 

At very low rotation parameters of order unity the convection cells form near the outer 
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Figure 4: In the middle part: the Rayleigh numbers R of the competing prograde(dotted line, empty 
circles) and retrograde mode(dashed line, Blled circles) as well as its actual critical value(thick soUd 
line) and the corresponding frequencies as a function of r in the case P = 0.001, rj = 0.2, m = 6. 
On the left and right: Contours of constant radial velocity Ur (down) and toroidal scalar w on the 
spherical surface r = 0.9 at both sides of the transition for r = 58000 and 64000. 

surface in the equatorial region of the spherical shell as can be seen in Fig. 3, which 
illustrates the various states of the flow in an equatorial projection. At this values of the 
rotation parameter r the critical Rayleigh number is still rather small. The preferred mode 
has a negative frequency which indicates a retrograde drift with time. This drift cannot, 
of course, be seen in the snapshots of Fig. 3. The solution has a relatively small toroidal 
component, which vanishes in the limit r —> 0. 

A new mode which does not exist at r = 0 enters the picture and approaches the initial 
mode indicated above. As a result of the switch-over phenomenon described by Zhang and 
Busse(1987), the R{r) and U){T) curves of the two competing modes exhibit smooth bends, 
but for some more time the initial mode is still preferred. During this gradual transition the 
pattern of convection also changes gradually. The convection rolls are no longer straight and 
strictly radially oriented as they were near r = 0, but change shape and become inclined as 
illustrated by the second plot of Fig. 3. The frequency still keeps its negative sign and the 
pattern exhibits a retrograde drift. 

Past a particular value of the rotation parameter r, the value of the critical Rayleigh 
number R of the competing mode becomes so much lower than the value of R of the 
initially preferred mode that an abrupt jump occurs. This is especially obvious from the 
discontinuity of the ^(r) curve in Fig. 2. During this transition the frequency even changes 
sign. The change of sign indicates a change in the direction of the drift of the pattern. In 
the new state the preferred mode drifts in the prograde direction. Because the effects of the 
switch-over competition still act on the U{T) curve of the new mode, it is also bend, which 
as before results in a pattern of spiraling rolls, as can be noticed in the third plot of Fig. 3. 

In a completely analogous way a second transition happens and the preferred mode 
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changes back to retrograde drift. This next transition occurs at about r = 8000 for the 
parameters of the case represented on Fig. 2 and brings the flow in the region described 
well by the inertial wave approximation. 

We would like to draw the attention to the last two transitions seen in Fig. 2. 
After the second transition and between values of about 8000 < r < 3.5 • 10^, in the 

particular case of Fig. 2, the convection is strictly in the, so called, wall-attached regime 
which is well-described by the inertial wave as well as the equatorial approximation of 
Ardes et al.{1997). The theoretical values given by (3.25) have been plotted with dotted 

Figure 5: Same as Fig. 4. In the lower part the streamfunctions rsiaOd^iV in the equatorial plaine, 
as well as -r^dgv in a meridional plane correspond to T = 3.45 • 10^ and T = 3.48 • 10®. 

Sin f   " * 

lines in Fig. 2. As can be seen they agree perfectly with the numerical values. It is 
worth noting that these values do not depend on r. What is more they do not depend 
on the aspect ratio as well and this will be a subject of further discussion in the present 
report. Since the expression (3.25) gives the frequencies of the inertial oscillations, found 
as solutions of the Poincare equation in rotating spheres, this perfect agreement with the 
numerically computed frequency of the preferred mode of the convective flow is the basis for 
the argument that convection is small perturbation of inertial oscillations in this particular 
parameter regime. In the middle of the region the convection undergoes a new transition 
from a retrograde to prograde drifting modes, which is illustrated for somewhat different 
parameters in Fig. 4. These modes represent the generic case of wall-attached type of 
convection and the most notable difference between them is the direction of their drift. The 
two solutions differ mainly by a phase shift in the poloidal part of the velocity field and the 
corresponding amplitudes are quite close to each other. As can be seen in Fig. 4 at lower 
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Figure 6: The streamfunctions r sin Bdgv in the equatorial plane illustrating the transition to multi- 
columnar state in the case P = 10-^ 77 = 0.6, m = 6 and values of r = 10^ for 2 • 10^ . 

Figure 7: The boundary separating the retrograde (below the surface) and prograde modefabove 
the surface) for a fixed value of the wavenumber m = 6. 

value of the rotation parameter r the retrograde mode has a lower critical Rayleigh number 
and therefore is preferred to the prograde mode. As T increases the Rayleigh number R of 
the retrograde mode grows faster than that of the competing prograde mode and at some 
critical value of r eventually becomes larger. At this point the transition from retrograde to 
prograde mode occurs. The frequency exhibits a discontinuity, changes sign and the whole 
pattern starts drifting in the opposite direction. Apari; from this obvious process no other 
physical reason for the transition is identified. Mathematically the two frequencies emerge 
as the two roots of a quadratic dispersion relation and the inertial wave approximation does 
not provide an explanation for the transition, since according to (3.33), the retrograde mode 
has a smaller Rayleigh number and thus is always preferred in contrast to the numerical 
results. Thus one may suggest that an explanation for the transition must be sought in 
higher orders of the perturbation analysis. 

The last transition observed in Figs.  2 and 3 and shown in more detail in Fig.  5 is 
arguably the most interesting one of all.  It was completely unexpected and represents a 
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novel pattern observed for the first time at onset of convection. Examining the plots of 
the Rayleigh numbers and the frequencies of the competing modes, the same mechanism of 
transition as the one just described in connection with the retrograde - prograde switch is 
identified. But in all other aspects this transition is rather different from the previous one. 
Although the frequency again exhibits a finite discontinuity, it does not change sign this time 
and the pattern continues to drift in prograde direction. A major change in the structure 
of the convection solution can be observed. Besides the wall-attached mode which persists, 
several other concentric layers of convection colunms appear. The whole pattern resembles 
a chess play-board in the sense that the streamUnes of any given column are directed in the 
opposite direction with respect to the streamlines of all neighboring columns. This multi- 
column solution seems to emerge as a result of the competition between the wall-attached 
type convection and the effects of the extremely high rotation which asymptotically favors 
columnar structures at a distance of about half the radius of the outer spherical shell 
(Busse(1970)). While in other parameter regions this competition leads to a multi-hump 
solutions and finally to spiraUng columnar convection, here the tendency for wall-attachment 
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Figure 8: The ratio between the frequency w and the rotation parameter T of the retrograde(negative 
values) and prograde modes(positive values) as a function of 77 in the case P = 10~^ for three different 
wavenumbers as indicated in the plot.  

is compatible in strength to the effects of high rotation and leads to a breaking of the 
equatorially wall-attached cell into multiple columns that obey more closely the Taylor 
constraint of rotation. In contrast to the multi-hump and spiraling columnar solutions the 
multi-columns are strictly oriented in radial direction. As might be seen from the plots of ^, 
this transition does not occur in a gradual manner but rather sharply at a well-determined 
value of T. The transition to multi-columnar convection is found to bound from above 
the regime of purely wall-attached convection at high rotation rates. Although the precise 
border between the two regimes is not investigated in the present report, the switch to 
multi-columnar convection has been found in all examined cases, regardless of the radius 
ratio 77 and for all Prandtl numbers P < 10~^. However at large 77 the number of concentric 
layers diminishes because of the smaller size of the shell gap. As an illustration of this Fig. 
6 is presented, for TJ = 0.6, m = 6, P = 0.0001. Here an interesting way of conforming to 
the wall-attachment can be noticed in the first plot. 
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Having examined in some detail the transitions between the various modes preferred at 
onset, we turn our attention to the other questions posed in the introductory section. 

10" 

10'   ■ 

10* 

Tl = 

10* 10* 

Figure 9: The Rayleigh number R as & function of r in the case P = 10"^, m = 8 for different 
values of 7/ as indicated in the plot. A power law fit of the rj = 0.4 curve is plotted with a dashed 
line. 

Fig. 7 represents an attempt of a precise determination of the border between the 
retrograde and prograde mode of the wall-attached convection in P - r - 77 space. The 
construction of this border has been a major computational effort, since many of the points 
fall in the regions of very low Prandtl numbers and at the same time of very high rotation 
rates r, where increased numerical resolution and long computational times were required. 
As can be easily noticed, the surface is much smoother towards lower values of the radius 
ratio 77 < 0.5. This is not surprising since at higher values of T} the inner spherical boundary 
of the shell has a significant effect on the structures of the flow which start to show similar- 
ities to the case of plane layer convection and are much better described by the small-gap 
limit approximation. The availability of the border between the two modes opens a new 
possibiUty for tests of both, the equatorial and the inertial wave, approximations since they 
both pretend to be able to predict the preferred mode of convection through a selection of 
the lowest critical number of the various modes. 

The next step towards numerical verification of the inertial mode approximation is shown 
on Fig. 8, where the computed values of the ^ ratio are plotted against the value predicted 
by the theory, for three diflFerent wavenumbers m. For values of the radius ratio r/ < 0.5 a 
perfect agreement can be observed. For values higher than that neither a good agreement 
nor a well-established dependency on the radius ratio 77 is obvious. This is again no surprise 
since we do not expect the analytical approach to be valid for thin sheUs, since it is based 
on the assumption of a full fluid sphere. 

Having studied the various preferred convection modes and verified some predictions of 
the theory, we would like to explore in more detail the dependence of the numerical values 
of the critical Rayleigh number on the radius ratio rj as well as on the rotation parameter 
r. In Fig. 9 the ratio (j^f is plotted against r for different values of the radius ratio 
r). For all values of 77 < 0.5 the Rayleigh number decreases with increasing 77. As akeady 
discussed, this rule does not hold for 77 > 0.5. More interesting is the dependence on the 
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rotation parameter r. For 77 < 0.5 the R{T) obeys an power low as is obvious from the 
logarithmic plot of Fig. 9. A power law fit to the curve with 7? = 0.4 is plotted with a 
dotted line and we can observe that it describes the R{T) dependence very well. Fitting one 
can easily estimate the relationship, 

R^ri-s=r''-'^. (5.39) 

This relationship suggests that for the investigated parameter region of very low Prandtl 
nmnbers and very high rotation rates and radius ratios less or equal to one half, the critical 
Rayleigh number R is almost independent on the rotation parameter r. This confirms 
once again the predictions of the inertia! mode approximation, since according to (3.33) the 
critical Rayleigh number does not depend on r. Of course, at very low r the assumption 
i —y 0 for the validity of the perturbation expansion is not satisfied, while at very high 
tau the convection leaves the wall-attached regime to enter the multi-columnar solution. 
This provides an explanation of why (5.39) holds only in the intermediate values of r but 
deviates at very low and high rotation rates. 

3 
M 

0.5 

0.0 

0.5 

1.0 

P=0.1 P=10' p=io-' P=10 P=10° 

P=10 

10' 10' 10' 10' 

Figure 10: The frequency w as a function of r in the case 77 = 0.2, m = 4 for difiFerent values of P 
as indicated in the plot. Theoretical values are plotted with dashed lines. 

Finally, we would Hke to show how the wall-attached convection described by the equa- 
torial and the inertial wave approximations is limited with respect to the variations of the 
Prandtl number. This question has, of course, been addressed in the earlier studies, but 
it is instructive to visit it again. Fig. 10 shows the ^ ratio against r for fixed values 
m = 4, 77 = 0.2 and for several Prandtl numbers. The theoretical prediction for ^ has 
also been plotted with dotted lines. At 10~^ < P < 10~^ the theoretical prediction is 
exactly fulfilled, which indicates that these points are well in the regime of equatorially 
wall-attached convection. The higher values of P > 10"-^ are in the marginal region of the 
regime and the analytical prediction is only approached. Nevertheless, it is our belief that 
in the parameter region of the Prandtl numbers lower than 0.01 the qualitative scenario of 
the onset of convection outlined in this section of the report is followed. 
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6. The Onset of Convection with Insulating Thermal Bound- 
ary Conditions 

In this section we present some preliminary results emerging from the numerical investiga- 
tion of the onset of convection in rotating spherical shells with insulating thermal boundary 
conditions of type B. Since we believe that convection in the case of insulating boundary 
conditions is not fundamentally diflFerent from convection with conducting boundary condi- 
tions, for which many results have been accumulated, the main purpose of this part of the 
report is to outline briefly the similarities and the differences between the two cases. 

Figure 11: The Rayleigh number R (upper plot) and the frequency a; (lower plot) as a function of 
r in the case P = 0.1, »; = 0.4 for values of the wavenumber m = 4 (soUd line), m = 6 (long-dashed 
line) and m = 8 (dotted line), in the case of insulating (thick lines) and conducting (thin lines) 
thermal boundary conditions. 

Fig. 11 compares the critical Rayleigh numbers and frequencies of various modes of 
convection with different thermal boundary conditions. Towards low values of the rotation 
parameter, r, all modes of the flow with insulating boundary conditions have a lower value of 
the Rayleigh number than the corresponding modes with conducting temperature boundary 
conditions. At these low values of the rotation parameter the R{T) curves of the two cases 
are well separated and it is easy to observe that they have roughly the same structure and 
form. This is apparent from the w/r ratio plotted against T. At low values of the rotation 
parameter the two cases undergo the same types of transition from retrograde to prograde 
mode. A slight difference in the values of the u/r may be noticed. A more important 
diff'erence is that the transitions occur for much lower values of r in the case of insulating 
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boundary conditions. The value P = 0.1 of the Prandtl number is on the border of the low 
Prandtl number region as it was described in section 4. Thus as the rotation parameter 
increases when we cannot follow so well all the various transitions occurring at very low 
values of the Prandtl number. After a certain value of the rotation rate r has been reached 
the w/r ratio starts to change almost continuously since a large number of modes take part 
in the competition for providing a minimal R and only a very small number of tiny jumps 
can be noticed. During the last big discontinuous transition the critical Rayleigh number of 
the modes with insulating thermal boundary conditions becomes larger than the Rayleigh 
number of the modes in the conducting case.But soon thereafter when the variation of w/r 
becomes almost continuous, the Rayleigh numbers of the modes with the different boundary 
conditions become roughly equal and have also the same structure as can be seen in Fig. 
11. 
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Figure 12: Same as Fig. 10 but in the case of P = 10~^, TJ = 0.3,  m = 8 

For low values of the Prandtl number the sequence of transitions with increasing rotation 
rate r can be observed more clearly and in a more pure form. Fig. 12 shows again a 
comparison between convection obtained under the two different boundary conditions for 
the Prandtl number, P = 0.0001. The same qualitative features as in Fig. 11 can be 
observed as well as the same number and type of transitions as described in section 4 where 
the same case but with the conducting boundary conditions was discussed in much detail. 

This observation poses the question whether this is always the case and whether in 
addition to the similar transitions we may hope to observe the same regimes of convective 
flow at the various Prandtl number and rotation rate regions. The answer to this question 
requires an enormous computational task which we do not attempt to undertake here. Our 
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Figure 13:  The streamfunctions rsmOdgv in the equatorial plane illustrating various regimes of 
convection in the P - T space in the case of insulating thermal boundary conditions.   Rom left 
to right and top to bottom the parameters {P,T) are:  (100,56.3), (100,5623.4), (100,562341 3) 
(1,100), (1,10000), (1,10«), (0.01,316.2), (0.01,31622.8), (0.01,3162278.1) for r, = 0.4 and m = 5 

efforts are restricted to the investigation of a number of distant points in the P - r space 
where we believed the various regimes of convection may manifest themselves. As shown in 
earlier studies (Ardes et a/.(1997)) the border between the waU-attached and the columnar 
type of flow obeys the approximate relation, 

P^/V2 = canst. (6.40) 

Using this expression as a guideline we investigated several different cases with increasing 
Prandtl number, P = 0.001, P = 1, P= 100. Indeed as Fig. 13 indicates, all major 
regimes of convection may be observed for the case of insulating thermal boundary condi- 
tions as well. At low Prandtl number, P = 0.001 the wall-attached regime persist for a 
wide range of values of r. For high P = 1,100 wall-attached pattern may also be found but 
only for a very limited range of low rotation rates. For moderate Prandtl numbers of the 
order of unity at high rotation rates the generic case of columnar convection takes place. 
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It can also be found in a large region in the P - r space and in the case of Fig. 13 we 
may notice how the pattern changes from elongated to shorter and thicker columns when 
the Prandtl number is increased from 1 to 100. On the other end at very high values of 
the rotation parameter we find the newly observed pattern of multi-columnar convection. 
A very remarkable and surprising discovery is that it persists even at very high values of 
the Prandtl number if sufficiently high values of r are reached. 

7.    Concluding Rem£irks 

Rotating thermal convection has been a focus of intensive research for more than five decades 
now, but continues to be a constant source of open questions and possibihties for further 
developments. In the present report the linear properties of convection in rotating spherical 
shells have been studied from both analytical and numerical points of view. The most 
valuable result in this study seem to be the refinement and extension of the perturbation 
approach of Zhang(1994). Future efforts will be devoted to obtaining higher order analytical 
approximations that will enable us to explain some numerical results. On the numerical side 
many interesting features has been found and examined in considerable detail. Convection 
in the case of insulating thermal boundary conditions need to be further investigated. 
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Appendix A. A Formula Involving the Q Operator 

For the solution of the zeroth order equations (3.21) and (3.22) we need to evaluate the expression 
QP^{cos9) f{r), where P^{cos6) is the associated Legendre polynomial of degree n and order m 
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and f{r) is an arbitrary radial dependence. 

QP^(cos0)/(r) = ^fc. V - i(L2fe • V + fe • VL2)) P;p(cos 6)f{r) 

where formula (8.5.3) of Abramowitz and Stegun (1964) has been used. 
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Upper Bounds for Convection in an Internally Heated Fluid Layer 

Lu Lu 
University of Michigan 

1 Introduction 

Finding the bounds of certain global quantities is an important approach in the theoretical 
study of turbulence. Particularly, maximum convective heat transport in Rayleigh-Benard 
convection is a much-studied subject. The idea dates back to Malkus [1]. Following this idea, 
a rigorous upper bound of convective heat transport in Rayleigh-Benard convection without 
continuity constraint was first derived by Howard [2], using a variational approach. In the 
same paper [2], a single-wavenumber boundary layer approximation is used to study the 
asymptotic solutions of the Euler-Lagrange equations. Busse [3] extended this asymptotic 
technique and introduced multi-a-solutions, which has been proved fruitful in studying other 
fluid dynamics problems [4], [5], [6], and this approach is reviewed in [7]. A new approach to 
derive the rigorous bounds on turbulent flow quantities, the background method (Deoring- 
Contantin approach), appeared in 1992 [8], and subsequently apphed to Rayleigh-Benard 
convection [9], [10]. In this project report, these two above-mentioned techniques are apphed 
to bound the minimum average temperature in a fluid layer with internal heating. 

2 Governing Equations 

T2 

Tl 

Figure 1: Geometry of convection with uniform internal heating. 

The geometry is shown in Fig. (1). The setup is very similar to Rayleigh-Benard con- 
vection. A fluid layer is confined between two parallel plates with a distance d. However,a 
uniform volumetric heat fiux if (with unit ^) is pumped into the fluid layer. The upper 
and lower plates are held at fixed temperatures To and Ti respectively, and there is no re- 
striction on the temperature difference AT = To - Ti. With internal heating, the governing 
equations are identical to Rayleigh-Benard convection except for the additional term 7 in 
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the heat equation: 

-::^ + u • Vu = -Vp + i^V^u + kgaT, (la) 
ot 

^ + U-VT = KV^T + J, (lb) 
at 

V • u = 0, (Ic) 

with the boundary conditions 

uU=o,i = o,   TU=o = To,   ru=i = ri, (id) 

where 

7 = -• (le) pc 

By introducing ^ as the unit of time, d of length, ^ of velocity and -^ as the unit of 
temperature, the governing equations axe put into the non-dimensional form 

Pr-^(^ + u-Vv^+Vp = V^u + Tk (2a) 
•'(^—) 

fiT 
^ + u-VT = V^T + R (2b) 
ot 

where 

p,^-,    R^SJ^ (2c) 

R is the heat Rayleigh number, which is proportional to the internal heating rate. The 
boundary conditions in non-dimensional form are 

uU=o,i = o,   ru=o = -ro,   TU=i = o, (2d) 

where To = ^^^|AT|, which shows that the non-dimensional TQ is equivalent to the role 
of the Rayleigh number Ra. A negative non-dimensional temperature at the bottom plate 
means the upper plate is hotter. If T|z=o is 0, then two plates have the same tempera- 
ture. The case when the bottom plate is hotter corresponds to a positive non-dimensional 
temperature at the bottom plate. 

3    Linear and Energy Stability 

A static solution can be found easily: 

T=-'^RZ'^ + {^R + TO)Z-TQ (3) 

where T\Z=Q = —TQ. Fig (2) shows several possibilities of the of the static solutions. When 
two plates have the same temperature, the profile is syiiunetric about z = \. The maximum 

177 



02 
Static Solutions 

-0.1 

f-05 

-0.3 

-0.4 

-0.5 

-0.6 

VR=0 
Tg/Fl=0.3 
TyR=0.6 

0.1 0.2 0.3 0.4 0.5 0.6 
z 

0.7 0.8 0.9 

Figure 2: Static solutions of an internally heated fluid layer. 

temperature occurs at 2: = i. Thus temperature gradient for the lower half of the fluid layer 
is positive, corresponding to a stable stratification. While in the upper half, the fluid layer 
is unstably stratified. This profile provides the possibiUty, when the internal heating rate R 
is big enough, that convection starts in the upper half of the fluid layer. When TQ increases, 
but not exceeding ifl,the unstable stratification persists with the position of maximum 
temperature shifting toward the upper plate. Eventually, when To > ^R, the temperature 
gradient is positive everywhere which suggests that the fluid layer is Unearly stable, a fact 
that will be estabHshed in the analysis of Unear stability bellow. 

Let T = —^Rz^ + {\R + To)z -To + 9, where 0 is the temperature disturbance. We can 
write down the hnearized equations governing the growth of the disturbances ^ and u 

de    /    1      \ 

Vu = 0 

with the boundary conditions 

u|..=o,i = 0,       e|«o,i = 0. 

Taking the z component of the curl curl of the u equation leads to 

Pr~'^Q^V^w = V^w + A2e, 

(4a) 

(4b) 

(4c) 

(4d) 

(5) 
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where A2 is the horizontal Laplacian, defined as 

A2 = ^ + ^- (6) 

Then we make the ansatz 

w = e''fix,y)Wiz),       6 = e''f{x,y)e{z), (7a) 

and 

A2/(x,y) = -a2/(x,y). (7b) 

The exchange of stabiUty holds in this problem ([11]). Hence to determine the critical R, 
we can set s = 0: 

(£>2 - a2) V = a^ije (8a) 

(Z)2-a2)e = -(z-^-ro)T^ (8b) 

with the boundary conditions 

W = DW = e = 0   at   2 = 0,1. (8c) 

In Rayleigh-Benard convection, the equations for linear stabiUty turn out to be identical 
to those of energy stability.- Thus it is of interest to investigate the energy stability of the 
internally heated fluid layer. The equations for the disturbances u and 6 are 

Pr-^ r^ + u . Vu + Vp j = V^u + ^k, (9a) 

^ + VL-Ve=(Rz-^R-To^w + V^e, (9b) 

V • u = 0. (9c) 

Using u- equation (9a), ^x equation (9b), we integrate over the whole layer to get 

—^ = - <|Vul2> + {rve), (10a) 

2dt  R       \\      2     Rj     / R ^     ^ 

Introducing a balance parameter s and adding the above equations yield 

dt2 

Let 

H-^-^}=-f-<'-iv((-M-)->-^}'"' 

2 \*      Pr   ^    R  j 
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then if min A < 0 among the fields with 

V . u = 0,    ul^=o,i = 0,    ^|,=o,i = 0, 

the disturbances decay exponentially in time, which implies energy stabihty. To determine 
the critical value of R, we need the Euler-Lagrange equations: 

(13a) 

V2^+i^z + i-^^t/, + A0 = O (13b) 

V • u = 0 (13c) 

Setting A = 0 and applying the ansatz (7) yields 

5.(Z)2_a2)V-|(.-i-| + .)a2e = 0 

(D'-a')e + \(^z-\-^ + s^RW = 0 

with the boundary conditions 

(14a) 

(14b) 

W = DW = e = 0       at       2 = 0,1 (14c) 

For each s, the critical REi,s) can be found by minimizing the eigenvalue R with respect to 
the horizontal wave-number a. Then s can be chosen such that it gives a maximal 

RsiTo) = max min iZ(a,s) 

The Unear stabihty and energy stability equations are solved numerically, using a Cheby- 
shev spectral method. The results are shown in Fig. (3) and Fig. (4). The first figure (with 
the bottom plate colder) shows the convergence of the linear stability to the straight Ime 
To = 2-R, which corresponds the temperature difference beyond which the entire fluid layer 
is stably stratified. However, the energy stability increases with TQ but does not converge 
to the line To = ^R. In the case of a hotter bottom plate, both the linear stability and 
energy stabihty lines converge to the critical Rayleigh number 1708 for Rayleigh-Benard 
convection. This is expected since the fluid layer is linearly unstable even without any in- 
ternal heating in that case. In both figures, the critical R for energy stability is lower than 
that of linear stabihty. This suggests the possibility of subcritical bifurcations. 

As shown above, even though the bottom plate is colder and the lower half of the fluid 
is stably stratified, the system can still be linearly unstable. Once the convection starts, it 
tries to lower the average temperature of the fluid layer. Thus it is of interest to investigate 
the scahng of the minimum average temperature. In the following two sections, this scaling 
will be studied with the background method and the multi-a-solution approach. 
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Figure 3: Linear and energy stability. 
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Figure 4: Linear and energy stability (Hotter lower plate). 
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4    Background method 

To apply the background method, first we decompose the temperature field T into a back- 
ground profile T{Z) and a fluctuating part 6{x,y,z,t): 

T = T{z) + e{x,y,z,t). (15) 

The boundary conditions of T are contained in T{Z): 

r(0) = T(1) = 0. (16) 

The velocity field u still satisfies divergence-firee and no-slip boundary conditions: 

V • u = 0,        u|^=o,i = 0. (17) 

Then the governing equations (2) become 

Pr~'^(-^ + nVu\+Vp = V^u + Tk + Tk, (I8a) 

89 
— + u-ve = v^e + T" + R- WT'. (18b) 

Define < • >= limt=i_^oo 7 /Q dt'J^ f dxdydz- to be the average over both space and time. 
Then (u ■ (18a)) yields 

<|Vu|2> = (u;e), (19) 

and {6 ■ (186)), (r • (186)) yield, respectively, 

{wer') = -{\ve\-')-{e'r') + R{e), (20) 
-{wer') = -{e'r') + R{r)-{r''). (21) 

The difference of the above two identities is 

^((^> - <T)) = (iVep) + 2 {WOT') - <r'2). (22) 

Since (T) = (r) -I- (0), we have 

R (T) = (|V^|2> + 2 (wer') + 2R (r) - (r'2> . (23) 

The identity (23) can also be written as 

.      0 = a<|Vu|2>-a(«;^), (24) 

where a is a positive number used as an optimization parameter to be adjusted to yield the 
best prefactor. Adding equation (24) to equation (23) enables us to express the average 
temperature as follows: 

R{T) = 2R{T)-{r'^) + H, (25) 

182 



where 

H = {{\Vdf) + ((2r' - a)we) + a <|Vu|2>} . (26) 

We require the functional H to be semi positive definite among the fields u and 6 satisfying 

V-u = 0,    ,u|z = 0,1 = 0,    ^U=o,i = 0. 

A bound can readily be obtained by applying the following background profile 

-(^)=|%a(l_,),        i_   3<z<l ^''^ 

With this background profile, 2r' - a vanishes in the interval 1< z <1-S. Thus we only 
need to estimate | ((2r' - a)w6) \ = f {wO) in the region 1 - S < z < 1, and adjust 5 and a 
to make H semi positive definite. Following ([9]), an estimate is given by 

<(2r'-aM>|<|^ £<|Vu|2> + £(|V^|2) (28) 

Then 

{<|Vep> + <(2r' - a)^^) + a {\Vuf)} >{a- |§) <|VuP) + (l - ^g) <1V^P> . 

(29) 

The choice 
aS"^ a6 , 
-61 = 1'        c=- (30) 

makes the right hand side equal to zero, which ensures H >0. Then 

R{T)>2R{T)-{T'^} 

aR,^     ,^     a2l-,5 (31) 
= ^(1-<J)-X-^- 

Minimizing the right hand side with respect to a gives the optimal choice of the parameter 
a, 

a = 5R. (32) 

And S can be solved from equation (30), 

4 
(33) 

VR' 
Finally, 

(T'2) 
{r)>2(T)-i^ 

= ^R5{1 - 6) (^^^ 

This shows that as i? ^ oo, (T) ~ i?^/^, which will be verified in the next section by using 
the multi-a solution approach. 
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5    Howard-Busse Approach 

5.1    Formulation of the Functioned 

The governing equations are repeated here again 

Pr~^ f-^ + u • Vuj + Vp = V^u + Tk, (35a) 

—+ u-vr = v2r + i?, (35b) 

with 

u|,=o,:=0,    r(0) = -To,    r(l) = 0. (35c) 

Assume the turbulence is statistically stationary and the velocity field v and temperature T 
can be decomposed into a time independent horizontal average and a meanless fluctuating 
part: 

T = T + e,        e = 0   with   u = 0,    ^ = 0.. (36) 

After taldng horizontal average of (35b), we have 

-d7=d57 + i?- (37) 

Integrate once, 

—^     j^ 

we=— + Rz + c. (38) 

The integration constant c is determined by integrating above equation over [0,1]. This 
jaelds 

dz = we-{we)-R(z-'^+To (39) 

With the decomposition (36), equation (35b) can be written as 

de     dnr      „^   „,^   d'^f ,    dHJe 
- + ^- + u.ve = v^e + ^ + R = v^e + ^ (40) 

where equation (37) has been used. Multiply both sides with 6 and integrate over the bulk, 
we have 

Together with equation (39), the above expression yields 

^{y'-l) '^^) = (IV^P> + <M- < ^^ >?) + To {w9) (42) 
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Another power integral is derived by multiplying equation (35a) by u and integrating over 
the bulk: 

<|Vu|2) = {wO) (43) 

We can find an expression of the average temperature by multiplying equation (39) by z 
and integrate over [0,1]: 

(D = -((z-i).9) + iiS-lT„ (44) 

In summary, we have the following expressions: 

<lVu|2> ^ ^^^^ (45) 

RUZ-^ we\ = <|V0|2> + {{^ - {we)f) + To {wO) (46) 

(T) = -((.-i)^^) + ^i2-iTo (47) 

From equation (46), R can be expressed as 

(|V»P) + < (^- {we)f > +To {w») 

Substitute the above expression into equation (47), 

1 (Iv^p) + ((^ - {wd))^) + To {we)   1, /TV      /(    ^\  A . 1 {\vev) + {{we-{w9)Y) + To{w9)   i 

{\ve\^) + {{we-<wd)f>-i2{{z-\)we) , ^ /      {w9) \ 
I2{{z-\)wef '\l2{{z-\)w6)     2^ 

Let 

h{z) = yrn[z-^. 

(49) 

(50) 

Notice that 

(M = 0,    </i'> = l- (51) 

This property of h{z) jdelds the following identity: 

{(^- h {hwd) - {we)f^ = (we"^^ - {wof - {hwof. (52) 

Together with equation (45), the average temperature can be expressed as follows, 

< 

~ <we><hwe>^ <hwe> °V i^wO)       ) 
(53) 
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Thus the vaxiational problem (To = 0 case) can be formulated as 
Given fj, =< hw6 >, find the minimum of the functional 

(jWpXlVup)       {(^-h{hwe)-{we)f) 
{hwe){we)   ^f" ^j;^2  (54) 

among the u, 6 fields with 

V-u = 0,        u|^=o,i = 0,        ^1^=0,1 = 0, (55) 

where 

w = uk,        h{z) = v^ ( z - i J . 

Since the functional ^ is homogeneous in both w and 6, we can impose two normaHzation 
conditions 

{hw0) = 1,        (w^) = (e^). (56) 

5.2    Multi-a Solution 

We are seeking the minimum of the functional Tasfx-^oo. This implies that wO = h+ (we) 
(here and in the following discussion the normalization condtions (55) have been assumed.) 
in most of the interval 0 < z < 1 , which makes the second term in the functional vanish 
in this inten^. Only near the boundary z = 0,1 the boundary conditions prevent a close 
appoach of wB to h + {wO). And the contribution to the functional is thus from possible 
boundary layers at z = 0,1. Since /i(l) + (we) = Vs + (|Vu|2) > 0 (equation (45 and 
definition (50)), there must be a boundary layer at z = 1. At z = 0, h{0) + (wO) = 
-A/3 + (we) is indefinite. Thus the existence of a boundary layer at z = 0 depends on 
whether /i(0) + {w9) is zero. Without loss of generality, we assume there are two boundary 
layers at z = 0,1 respectively, and make the ansatz 

W = Y^Wn4>n + W:,<l>*^, e = J20r.(f>n + 0lK, (57) 
where ^„ and ^* satify 

A2^n = -a^^n, A2^* = "^^^ (58) 

We introduce the following bormdary layer variables: 

[fi-'-vJiCn-i)   forl-z = 0(/x-'-''-i) ^^^^ 

^ ^ U'-HCn)       for 1 - z = 0{„-^n), 

\fj,''-e{Cn-i)   forl-z = O(M-'-'-0 ^    ^ 

^, ^ U-^-w*{Q)       for z = 0(/.-'-n), 

1M-'"«;*(C_I)    forz = 0(M-'-"-i) ^^^^ 

^,^i^P-e*iQ)       forz = 0(M-'-"), 

V'"^*(C-i)   forz = O(/x-'-'.-0 ^^^^ 

(63) 
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where 

Cn = (l-zK",        C = V (64) 

The boudnary layer structure is such that in the interior 

wi^"! + wl0l « /i + {wO), (65) 

and in the boundary layers 

wJn + Wn-ien-l"hi + {we), K^n + K-l^n-l ^ ho + {we) , for     n = 1, . . ., AT - 1, 
(66) 

where 

ho = h{0) = -\/3,        hi = h{l) = Vs. 

With boundary layer approximations, the functional becomes: 

+ J2 Az'"--+2- (bl j[°° eldCn-1 + bf J^ 9fdC_^ + iJ^^ [hi {el) + bf {9f)) I 

+ i^l^-^^ ( r{wN0N - hi- < we >fd(,N + j   {W*NO*N - ho- < we >)2dCivj |    (67) 

Balancing the exponents in the above exrepssion yields 

1 — 4~" 2 — 4~^ 4~" 
^"=3_4-n'    g"=3_4-n'    ^« = 0'    2pn=3_4_„- (68) 

Then we have 

^^ = ^,T^FN (69) 
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where 

E ('■" l°° ^'-iC-i+»? 1°° »;'<-i) + ((■; < el > +6f < ef >) I 

+ |y^   {WNBN - hi-< we >fdCN + J    {w*Ne*j^ - ho-< w9 >fdCN\ ■   (70) 

Now the Enler-Lagrange equatins for the functional FN can be written down: 

J^-^'^n^ - /^'■'""""^n (/ll + (we) - wJn " Wn+lk+l) = 0, (71) 

■J^D^K + /^'■'""'■"ti'n (^1+ < u;^ > -t£;„(9„ - u;n+i^n+i) =0,        n = 1,..., AT 

(72) 

^Ds«;n+i - ff^'-^-en+l (hi+ <we> -wJn - Wn+A+l) = 0, (73) 

^D,„^„+i - ff'-^-Wn+i (hi + {we) - wJn - t«„+i4+i) =0,        n=l,...,N-l 

(74) 

And for wi, §1, 

+ '^(^ i^NeN-hi-{we)f<KN + J°°{w*J*N-ho-{we)fdCN)| = o,  (75) 

+ 'i ^ (^jv^N -hi-<we >)^dCN + / (uyJV^AT - ^0 - {we)fdCN)]=o,   (76) 

The same set of equations are also satisfied by the starred quantities u)*, ^*, w*, ^*. 
Prom equation (75) and (76), we have 

Dewl = DJl (77) 

Dewf = Djf. (78) 
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Adding these two identities yields 

De{wl + wf) = D^(el+r^). 

Hence the normahzation condition < w"^ >=< 0^ > implies 

Dg = D^ = D. 

This identity together with equation (75) and (76) yields 

Equation (73) together with equation (74) gives 

Same identity holds for Wn+i and 6n+i- Therefore 

^n+i = Ol+i, w*rli = e:Xi       forn = 1,..., JV - 1 

Substitute the above identity back into equation (73), we have 

D 

(79) 

(80) 

(81) 

hi+ <we> -wJn - Wn+l9n+l = /"   '"^ft^ 

ho+ <w9> -w*X - <+A+i = M'-'^^ft^+i 

Then equation (71) and equation (72) become 

D 
<we>' 

n = l,...,N-l, 

n = l,...,N-l. 

On + bl+iWn = 0,       n = l,...,JV-l. 

(82) 

(83) 

(84) 

(85) 

(86) 

The above equations hold in the region where WnOn J^hi + {w9). When the equality holds, 
then from equation (71) and equation (72) we can derive: 

w^^   _      9n9n 
,f.'2 

= {hi + {w9))    ^  (87) 

With the following change of variables, 

Q = bZ^'h][l^ (hi + {hw9))-^'^ Wn 

[e = fcy^Cf {hi + {hw9))-^/^ 9n 

equations (85), (86) and (87) become: 

rfi(^) - e = 0 
e" + J7 = 0 
Q(4) _ Ci"a-2fi'^ 

(88) 

(89) 
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Starred quantities satisfy the same equations with hi replaced by ho. This set of diflferential 
equations have been studied in [3], which gives the constant (3: 

roo *oo 

30= /  n"^dc+ / {i-ne)dc. 
Jo Jo 

And the integral 

roo ,„//2 roo r°° w"^ r°° 

•'0 ^71 JO 

When n = N, the differential equations for WN and $N are 

(90) 

n=l,...,N-l.   (91) 

^ :.(4) 
<wd>b'^ ^^ - {hi + {we) - WNeN)ON = 0, 

D 
<we>b'^^^ + (^1 + (we) - WNON)WN = 0, 

With the following change of variables, 

'c = bi^'ihi + iwe))y^{^y^\, 

n = b-'/'ihi + {hwe}r'/'[^y'^'n,^   , 

[e = bl/'ihi + {hwe))-'/'(^y^'er, 
equation (92) and (93) become 

f^(^) - (1 - ne)e = o, 
e" + (1 - ne)n = o. 

In ([2]) the following result is given: 

Thus the following integrals can be expressed in a: 

(tpW)^ . .,„ /   n \-2/3 
L-l/3 

f^A.=.(^.+(»<'»v=(j^)"^-/^ 

•/o    ^ / \(ti;0)y       ^ 

Putting the above integrals together, the functional F^ can be expressed as 

Z)2 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 

FN 

(101) 
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and 

71=1 V. ■- 

-.1/3 

^J    (/ii + {we)) + 

-2/3 

n+1 
1/3 

(/lo + {we)) 

+ a (^^y   {ih^ + {we))'/'b-^'/' + {ho + {we))'/'b],-'^'}+bl{we). (102) 

Minimizing F/v with respect to bn and 6* yields 

fen'/'' (/M + {we)) (I)   + (/lo + {we)) (^) 

dFN 
dbN 

dP 

dby 

fen+1 
4/3 

= 4 
fen-1 

'^n+l' 

L fej; J 

4/3 
= 4 

>;-lJ 
bN+i 

4/3 
= 4 

6jv 

_6jv-i. 
4/3 

= 4 

Tl/3 

5 

1/3 

-11/3 

-11/3 

where 

(aS"^^ f{hi + {we)){we)\^/'' 
6iv+i = [j) 

.*       (^V f{ho + {we)){we)\ 

From the above relations, bn can be solved 

1-4-" 

1/2 

6n+l = 4' 
n-l fbN+i\ (Ah)' 

rTT 

b^+i has a similar form 

b: AU—l 
'n+1 1^4^-1 

l_4-n 

(46i) 
4-n_4 -itf 

Z=77- 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 

(111) 

It is clear from the above expressions that bn 7^ 6* for n T^^ 1 since b^ (equation (108) is 
different from b^ (equation (109). 61 can be solved from equation (103) and the recursion 
relation 

r       p        /o-\ 4(1-4-^) 
\2^/^{we) \p) 

4(1-4-^) 4(1-4-^) 
{hi + {we)) 3-4-^  + (ho + {we)) 3-4-^ 

(112) 
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Putting all these together, the prefactor F^ is a function of {w9) only: 

£>2    3 _ 4-;v 
FN = <we>i-A-^ 

= (3 - 4-^)(l - 4-^)21^^ . U/^(3 X C-]' 
4(1-4-^) 

l(l-4-N)\"^^^^^ 

3-2-4 -N 3-2-4 -N 

(t/;e)<i-'«-^) 

^     3-4-A' 

(113) 

Now the value of (we) can be determined by setting ^ to zero. The resulting equation 
for {w6) is 

3-2e 
(a- l)i2(i-=) -ax-Qxi-= + (a- 1) = 0 

where 

y/3+ <we> 3 - 2c 
a = c = 4 -N 

y/Z-<we> l-3c' 

For general values of N, the above equation has to be solved numerically: 

N = \, {we) = 0.4831 

N = 2, {we) = 0.9259 

iV = 3,        {we) = 1.0120 

(114a) 

(114b) 

When AT -> oo, the above equation can be solved exactly: 

{we)^ = M = 1.039. (H5) 

This shows that there indeed is a boundary layer at 2: = 0 since all (u;0)'s are less than 
ho = \/3. Now we can write down the scaling of {T) as N -^ 00: 

(T) = -^F^n^/^ = 10.285M2/3. (116) 

Recalling the identity (47) with TQ = 0: 

(.) = -((.-!) 

we know that as ^ -> 00 

^0) + -R, 

>/l2 (117) 
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This leads to the scaUng of (T) with respect to R: 

(T) ~ 4.421i?2/3. (118) 

The profiles of wi and Oi can be determined from the fact that in the interior of the interval 
0<2;<1, 

wi6i ra h + {w6),    and   wi = 9i. 

In the case N -^oo,h = lyfZz - ^. And then 

(119) 

W\ = i 2\/32 
2v^ ei = ± 

\ 

2\/Zz 
2v/3 

(120) 

However, whether 6 changes sign in 0 < z < 1 can not be inferred from the variational 
problem since only the product of w and 6 appears in the funcional T. Thus the possibility 
of w changing its sign can not be excluded. 

6    Conclusion 

In this project, the scaling of the min (T) has been studied for an internally heated fluid 
layer with both background method and multi-a solution approach. For the case when 
two plates are held at the same temperature these two methods yield the same scaling: 
(T) ~ J?^/^. The prefactor given by the background method is about a quarter of that from 
the other appoach. By adjusting the background field we expect the prefactor to be closer 
to that predicted by the multi-a approach. However, The scaMng of the minimum average 
temperature when two plates are at different temperatures is not clear yet. It is part of our 
future work to investicate the scaling in this case. 
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Ball Release Experiment in a Centrifuge 

Ulrike Riemenschneider 
University of Southampton, U.K. 

1    Motivation 

The ball release experiments outlined in this work were motivated by laboratory experiments 
with tilted convective plumes on a centrifuge carried out by Sheremet (2002) [1]. These 
plume experiments were done to study the effect of the misalignment of gravity and Coriohs 
on small convective cells, which are argued to play an important role in the process of deep 
convection occurring in polar regions, such as the Labrador, Greenland and Weddell Seas. 
In these regions the stratification of the water column is often observed to be very weak, 
meaning that the underlying deep water is only marginally denser than the overlying surface 
waters. In the winter months, when wind surface coohng is very effective, the surface waters 
may actually become denser and large patches of water of up to htmdreds of kilometers 
across may be vertically mixed to a depth of one to two kilometers in periods of only a 
few weeks. Field observations have suggested that most of the mixing actually happens in 
smaller convective cells, with horizontal scales of less than one kilometer. It is the effect of 
both components of rotation on these cells that was studied by Sheremet. The argument is 
that some of the convective motion maybe aligned along the axis of rotation, rather than 
along the axis parallel to the action of the gravitational acceleration, due to the Taylor- 
Proudman theorem (TP) constraining change in the horizontal velocities along the axis of 
rotation. 

In these experiments the plumes were produced by injecting sUghtly dense coloured 
salty water into a tank of fireshwater mounted on a centrifuge which was rotating at a 
constant angular velocity, and the formation of tilted Taylor columns ('Taylor ink-walls') 
was observed. Shereme* also found that for low Reynolds numbers the incoming jet of 
dyed fluid disintegrates into coherent blobs which descend neither in the direction of the 
buoyancy force ge nor in the direction of rotation fi. Instead they assume a trajectory at 
an angle which compares quite well with hnear theory developed by Loper [2]. 

It is this blob structure of the plume that sparked the idea of studying the behavior of 
small spheres in the same experimental set up. In particular to see whether the behavior of 
plumes could be represented by the behavior of small solid spheres. 

In this report, the experimental set up will be described in the section 2, then the physics 
of flow around spheres will be briefly reviewed in section 3. In section 4 the force balance 
on the particle will be outlined and following in section 5 will be the presentation of the 
experimental results, for the tilted experiments, as well as centre rotating and non-rotating 
experiments which were carried out for comparison. Finally we will mention the difficulties 
encountered in determining the density of the nylon spheres used in the experiment in 
section 6 and conclusions will be drawn in section 7. Appendix A contains tables of the 
experimental results. 
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Figure 1: Sketch of the experimental set up as described in section 2 

2    Experimented Setup 

A sketch of the apparatus is shown in figure 1. The experiment was carried out on a 
centrifuge mounted on a rotating table and consisting of a wooden frame extending 2.5 
meters in both directions away from the centre of the rotating table. A box-shaped Plexiglas 
tank of inner dimensions 29x29x50 cm (width x depth x height) was mounted on one end 
of the centrifuge at a distance of 246 cm from the centre of the table. Weights are attached 
to the opposite end to keep the centrifuge in balance. The tank was attached with two 
pivots so that it could bejilted inward at an angle of 30° degrees and the rotation rate was 
adjusted to 2^ = 3.026s-^ so that when the apparatus was spinning with the full angular 
velocity the surface of the water in the tank was parallel to the bottom of the tank. The 
tank was filled with enough water to ensure that the surface of the water was about 20 cm 
above the bottom when the tank was rotating. A lid was inserted into the tank such that 
the bottom 20 cm form a body of fluid that is bounded by soHd walls on all sides. On top 
of the lid a remotely controlled release mechanism for the balls was attached, which aUowed 
the nylon spheres to drop through a hole at the centre of the Ud. The mechanism consisted 
of a metal tube containing up to 8 balls of 0.653 cm (1/2 inch) diameter, a Plexiglas sHde 
transferring the balls from the tube to the hole in the lid and a solenoid pulling the slide. 
A sketch of the tank is shown in figure 2 

The balls were marked with coloured fines around three geodesies perpendicular to each 
other in order to observe possible spinning motion. 

Below the wooden arm a camera was mounted (digital or video) in order to record the 
experiment. Two mirrors were attached to the tank at an angle, one below it to provide a 
view from the bottom, and one on the right hand side, providing a view from the side onto 
the motion in the tank. A stop watch with 0.01s resolution was also attached to the tank, 
to monitor the spin-up time, record the time of release of the spheres and measure their 
time of decent. The spin up time was 30 minutes and after a ball had reached the bottom 
we waited about 2 to 3 minutes before releasing the next ball in order to allow transient 

196 



camera. 

Figure 2: Schematic of the tank, showing the two mirrors below and on the right hand side 
of the tank to give a three dimensional view of the motion inside the tank. 

motions to subside. 
For experiments with the motion of the sphere co-axial along the axis of rotation, the 

tank is mounted at the centre of the rotating table. 

3    Taylor Clumn Formation and Wall Effects 

Taylor (1917) [3] discovered anal3d;ically that in a geostrophically balanced flow, for suf- 
ficiently low Rossby numbers, the vertical gradient of the horizontal velocity components 
is zero: ^ = ^ = 0, this result is referred to as the Taylor-Proudman Theorem (TP). 
Later these findings were verified in laboratory experiments which showed the formation 
of Taylor columns as a result of the Taylor-Proudman constraint. The mechanism for the 
development of this column is that as the sphere is trying to move down through a water 
column, the fluid ahead of it has to move radially out of the way to allow the sphere to 
descent. The TP theorem states however, that fluid in solid body rotation that does not 
have any radial velocity initially cannot acquire any either. The only way in which the 
sphere can actually sink or rise, is due to a relaxation of the TP constraint in thin Ekman 
layers which develop on the surface of the sphere and at the top and bottom boundaries of 
the tank. If the boundaries of the tank are at a large distance away firom the sphere, or 
at infinity in a theoretical consideration, the Taylor column will be gradually 'eroded' by 
viscous and inertial eff'ects far away from the sphere and what is observed is a Taylor slug. 
Figure 3 shows both, the structure of a Taylor column as well as that of a Taylor slug. 
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Figure 3: Sketch of the structure of a Taylor column interacting with the boundaries on the 
left and on the right a sketch of the appearance of the Taylor slug in the unbounded case. 
Both features may develop for motion of the sphere perpendicular, parallel or at some angle 
to the axis of rotation, however they will always be aligned with rotation. 

There is a lot of uncertainty in determining the conditions under which Taylor columns 
from or do not form, the only sure way of knowing would be to try and visualise the flow 
around the sphere with dye, which we did not attempt in the experiments presented here. 

3.1    Motion Along the Axis of Rotation 

For coaxial motion of the particle Taylor observed that the Rossby number Ro = U/Qa, 
where a is the radius of the sphere, must be less than a critical value I/TT for there to be a 
colunanar structure accompanying the sphere. (Note: usually the Rossby number is defined 
to be Ro = U/2Q.a, but in Bush et al. [4] it is stated without the factor of 1/2). Other 
experiments have suggested critical values as high as 0.7 Pritchard (1969) for substantial 
Taylor column formation. In the tilted experiments the Rossby number was typically about 
between 0.1 and 0.6 for motion parallel to the axis of rotation (we define i?0|| = U\\/Ua). 
These numbers suggest that there may or may not be a column depending on which criterion 
you believe. For motion at negligibly small Rossby numbers, the vertical extent of the Taylor 
column is determined by the fluid viscosity. The theory predicts that a truncated Taylor 
column, or 'Taylor slug' wiU extend a characteristic distance aT up- and downstream of a 
sphere of radius a. Maxworthy (1970) [5] however found experimentaUy, that the column 
is typically an order of magnitude less than that. Based on his findings we may expect a 
Taylor slug extending for about 3 cm ahead and behind of the sphere. 
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3.2    Motion Perpendicular to the Axis of Rotation 

For transverse motion the criteria are even less well understood. Unlike in the coaxial 
motion, where the sphere is actually trying to move up and down in the fluid and therefore 
defy Taylor-Proudman, here it simply translates through the fluid perpendicular to the axis 
of rotation taking a cyUndrical body of fluid, extending above and below, with it. External 
fluid will stream past it as though it were a solid body. The Hide criterion for Taylor column 
formation states that such a column may only form if h/D > Ro, where h is the vertical 
length of the particle (its diameter in the case of a sphere) and D the depth of the fluid 
layer. Ro is defined to be U/2aCl in the case of a sphere. In our setup h/D = 0.0635 where 
as a tjrpical Ro± = 0.071, so again we are on the boarder Une. Experiments by Hide et 
al. (1966) however have shown that the Taylor columns only form for transverse motion 
whenever h/D > 0.5i?o in which case, our numbers would predict no column. 

From the centre rotation experiments we have some evidence of wall efiects on the 
velocity of descent of the sphere. It can be seen in all the plots of time versus horizontal 
position, that the sphere first accelerates slightly after it has been dropped and then slows 
down as it approEiches the bottom. We are suggesting that this is due to a Taylor slug 
interacting with the Ud as the ball is released and gradually losing its eSiciency in slowing 
the ball down as it moves away from the wall, however as it starts interacting with the 
bottom boundary it again slows down the vertical motion of the sphere. 

We are going to work with the assumption that we do have a small Taylor slug, but not 
a Taylor column associated with the spheres in the following experiments. This assumption 
is supported by the fact that Stewartson's theory, which we compare our results to, has 
been developed for the unbounded case and it agrees nicely with our experimental results 
as will be shown. 

4    Forces on a Spherical Particle in a Rotating Fluid 

To describe the forces acting on a particle which moves relative to fluid rotating as a sohd 
body we adapt a local Cartesian coordinate system the origin of which is located where the 
sphere enters the tank through a small hole in the lid. The vertical axis is denoted by h 
and is parallel to the axis of rotation, f points radially away from the centre of rotation 
and A denotes the azimuthal direction pointing in the direction of rotation, (r. A, h) form 
an orthogonal right-handed co-ordinate system. 

4.1    Newton's Law 

In such a setup, a particle would experience two types of buoyancy forces, the first one being 
the vertical buoyancy due to the gravitational acceleration: —{m — m')g and the second one 
due to the centripetal acceleration radially outwards, which is expressed as: (m — m')rU'^. 
Note that m is the mass of the sphere and m' the mass of the fluid replaced by the sphere. 

In addition to those forces, the particle experiences a hydrodynamic force, F/i, due to 
the fluid motion around the particle. The hydrodynamic force can be decomposed into the 
drag and the hft on the particle. 
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Figure 4: Schematic of the force acting on the ball. The horizontal forces are shown in the 
sketch on the left, and the vertical forces on the right. 

The drag force, acts in the direction opposite to the motion of the particle, but it arises 
due to the friction and pressure between the particle and the surrounding fluid. 

The lift on the other-hand acts perpendicular to the particles path of motion and the 
axis of rotation, and opposes the Coriolis force on the particle. Taylor (1922) [6] found that 
if the fluid motion about the particle is two-dimensional and sufficiently slow, then the lift 
force will be equal and opposite to Coriolis acting on a mass of fluid with the same volume 
as the object. This is not true however if the particle has three dimensional flow around it 
or there is an appreciable density difference between it and the surrounding fluid. In such 
a case the CorioUs force will exceed the Uft and the particle will tend to be deflected to the 
right (see Bush [4] and references therein). Figure 4.1 shows an arrow diagram of the forces 
acting on the sphere. 

According to Karanfilian et al. [7], the lift is due to the combined effect of the CorioHs 
acceleration of the fluid parcels surrounding the solid particle, the spin of the particle relative 
to the hquid, and the effect of the velocity gradient of of the hquid in the radial direction 
due to the sohd body rotation. 

The particle will move in accordance with Newton's laws, which may be expressed as 
follows: 

m 
dt 

= Fft - 2mfi X U - -Tra^Apge 

where 

''/I = / PdndS +     n ■TdS 

(1) 

(2) 

is the hydrodynamic force acting on the particle. Here r is the deviatoric stress tensor, and 
Pd is the dynamic pressure. 
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Figure 5: Sketch of the frontal (left sketch) and side (right sketch) view of the apparatus. 
The coordinate system shown with the dashed lines above the side view is the one we use 
consistently during the analysis, with the azimuthal unit vector pointing into the page. The 
dashed line is the vertical within the tank and the solid line shows the approximate trajectory 
of the particle, with ax and Or denoting the angles of displacement in the azimuthal and 
radial direction respectively. 

Newton's law in component form looks as follows: 

4 8 
0 = Fhr- -Tra^ApCpR + -pna^QUr 

o o 

0 = Fhx- ^Tra^pnUx 

4     o 
0 = Fhh + -^T^a^Apg 

(3) 

(4) 

(5) 

if we assume that the motion of the particle is steady and Ap <S p. Figure 4.1 gives an 
idea of the approximate path of the particle within the tank and explains the co-ordinate 
system we use. 

4.2    Stewartson's Drag Law 

Most existing theory for particles moving through a rotating fluid neglects the inertial terms 
and is therefore Unear. 

The most widely know description of flow around a sphere is that according to Stokes, 
which is Hnear and non-rotating. The drag for Stokes flow is GirfxaU, where /x is the viscosity 
of the fluid. In many problems involving centrifugal separation, the Reynolds number and 
Taylor numbers are small, meaning that viscous effects are dominating over inertial and 
rotating effects and under those conditions the motion may be treated as Stokes flow. If 
the motion is very slow however and the fluid has low viscosity, inertial and viscous forces 
are less important over rotational forces, leading to high Reynolds and Taylor numbers and 
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relatively low Rossby numbers. In such a case Stokes law can not satisfactorily explain the 
particle motion. Stewartson (1952,1953) [8, 9] developed a linear theory for the high Taylor 
number and low Rossby number case, which we will adopt here. He found the drag parallel 
to the axis of rotation, for a sphere moving co-axially, to be 

1 fi 
-PX|| = y/ofiC^iia^ (6) 

In the case for a sphere moving normal to the axis of rotation he found the drag force to be 

where ± denotes that the motion is perpendicular to the axis of rotation, and a lateral force 
(lift), acting to the left of the motion. 

STT^ 

^^ = 3(16T^^"^'^ (8) 

Since this is a linear theory, we can superimpose these two different cases for a particle 
that moves through the fluid at an arbitrary angle. The resulting hydrodynamic force, 
maybe written in matrix form: 

(9) 

Note that the above matrix expression for F combines both the hydrodynamic and Coriolis 
forces proportional to U± from equation (1). It can therefore be balanced against the 
buoyancy forces 

F = Fh + Coriolis = --TrApa^gg (10) 

Inverting the matrix (9) and combining it with (10) then gives us the following force- 
velocity relationship for a rigid body: 

^^\       TT Ap /   1/2     2/7r   0\   /9r\ 

The vector for the effective gravity is given by gg = {n^R,0,-g).   Writing (11) in 
component form we get: 
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a radius of the ball 0.635 cm (1/4 in) 
m' mass of the liquid displaced by the ball 1.166 g 
p density of the liquid 1.11456 g/cm^ 
Ap density difference between fluid and sphere ~ 10~^g/cm^ 
Pb density of the particle p + Ap 
g gravitational acceleration 986 cm/s^ 
V kinematic viscosity of the salt solution 0.0128 
2fi rate of rotation 3.027 s_i (or 2.621) 
e tilt of the tank 30^  

Table 1:   Parameters appUcable to all tilted tank experiments, and with some obvious 
exceptions to the centre-rotating and non-rotating experiments. 

^"irf^'^ (12) 

---i^^ (U) 
The trajectory of the particle in the azimuthal direction may be found by noting that 
tanoA = U\/Uh ~ 0.3638 and therefore a\ « 20°. Similarly the deflection of the particle 
in the radial direction is given by tanar = Ur/Uh ~ 0.2875 and so a^ « 16°. Note that the 
trajectory is independent of the density difference between the particle and the fluid, as it 
drops out on dividing one velocity component by another. 

To predict actual velocities from the theory would mean one would need to know Ap, 
an indirect way of determining the absolute density difference is outhned in section 6. 

5    Results 

5.1    Tilted Tank Experiment 

Table 1 lists all the important parameters needed to describe all of the experiments. 

5.1.1    Observed Trajectories 

Figure 6 shows the trajectories of balls 1, 2, 5 and 6 from experiments Nl and N2. The solid 
line in the plots is the path as predicted by the linear theory from Stewartson. Both the 
azimuthal and the radial displacement of the sphere nicely fit the theoretical predictions. 
Another observation worthwhile noting is that the displacement in the radial direction seems 
to show a mild dependence on the individual characteristics of the ball, most probably the 
density difference. Table 5 (in the appendix) hsts the predicted angles from the observed 
velocities. It seems that the faster balls (see table 4 for velocities) are deflected less in the 
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Trajectory of Balls 1,2,5 and 6 Experiments N1 and N2 

-8-6-4-2 0 
Displ. azimuthally (cm) 

2 4 6 8 
Displ. radially (cm) 

Figure 6: The plot on the left shows the azimuthal trajectories and the plot on the right 
the radial trajectories of balls 1, 2, 5 and 6 in experiments Nl and N2. * - Bl, + - B2, o - 
B5 and D - B6. The solid Hne describes the angle predicted by Unear theory and in both 
directions they agree nicely. Note that the axis of rotation is parallel to the vertical axis in 
the plots, the horizontal axis in the left plot is A and in the right plot is f. 
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radial direction, or, if one looks at the trajectory as being a displacement from the vertical 
axis of the tank along which effective gravity is active, they are displaced further. This 
suggest some non-linear dependence of the radial trajectory. 

5.1.2    Resulting Velocities 

Table 4 (in the appendix) gives the velocity results obtained for each sphere in each of the 
three experiments. The main observation to take away is that in general the velocity in 
the azimuthal direction, A, was observed to be less than that in the radial direction r. The 
table also lists the Rossby and Reynolds numbers for each of the spheres in the different 
experiments, which tell us that we are in a rotation dominated set up. 

5.2 Centre Rotation Experiments 

The fall velocity of a ball in a rotating fluid is substantially less than that of the same ball 
descending in the same, but non-rotating fluid. In order to estimate the difference of the 
effects of tilting on the speed of descent, a set of experiments was carried out with the the 
same tanks as that in the tilted case, but placed at the centre of the rotating table. In the 
first set of experiments (Rl, R2, R3 and R4) the rotation rate was kept the same as in the 
tilted experiments (2fi = 3.027) but in a second run of experiments (R5, R6 and R7) the 
rate of rotation was lowered slightly so that it would correspond to the 'vertical' component 
(here we mean the axis z in figure 2 along which effective gravity acts) of the rotation in 
the tilted case, 2^ = 3.027 • cos(30°) = 2.621. Figure 5.2 shows clearly the spread of the 
velocity results from the fast centre-rotating experiments indicated by the circles. The plot 
also shows the very consistent velocity data from the slower centre-rotating experiment. In 
the mean one can see that in all cases the velocity of descent is faster for the slow rotating 
experiment in comparison to the faster rotating experiment. This illustrates very nicely 
that TP becomes more effective with higher rotation. The exact velocity results for each 
ball are listed in table 7. 

5.3 Non-rotating Experiments 

The experiments in the non-rotating tank were also carried out with the tank mounted at the 
centre of the table, but the table remained stationary. They were done in order to calibrate 
the spheres and determine their density difference to the water by measuring their terminal 
velocities (see section 6). The results of the velocity measurements are plotted in figure 8 
(see table 8 for the actual numbers) along with the results from the rotating experiments 
for comparison. A very noticeable difference in descent velocities may be observed, between 
the rotating and the non-rotating experiments again pointing to the effects of TP, which 
are absent if the system is not rotating. 

Table 2 Usts average velocities for each ball for all sets of experiments.   Ratios are 
computed for comparison and where known the theoretically predicted ratio is indicated. 
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Figure 7: Plot of velocity spread for each of the baUs from the fast and slow rotating 
experiments, o - faster rotation, 20 = 3.027 (+ - mean), * - slower rotation, 20 = 2.621 (x 
- mean). 
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Figure 8: Plots of velocity spread for each of the balls from the rotating and non-rotating 
experiments: D - non-rotating (o - mean), o - faster rotation, 29. = 3.027 (4- - mean), * - 
slower rotation, 20. = 2.621 (x - mean). 
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Bl B2 B5 B6 Theory 
Non-rot. 1.1605 1.5322 0.9914 1.7058 
Slow rot. 0.3389 0.5326 0.2361 0.7252 
Fast rot. 0.2891 0.4033 0.2126 0.5402 
Tilted rot.(z) 0.3250 0.4765 0.2139 0.5394 
Si/Fa 1.1723 1.3206 1.1105 1.3425 1/008 30° = 1.1547 
Nr/Sl 3.4243 2.8768 4.1991 2.3522 
Si/Tilted 1.0428 1.1177 1.0874 1.3445 1.0 

Table 2: Average velocities are listed for all sets of experiments. The last row, Tilted 
rot. (z), referes to the component of the velocity along the 2;-axis. Its magnitude should 
be comparable to that of the slow rotating velocity results. Nr - non-rotating, SI - slow 
rotating, Fa - fast rotating. 

6    Estimation of Densities of the Spheres 

In order to achieve a small descent velocity and thus a small Rossby number flow the 
density difference Ap between the ball of diameter 1.27 cm and water should be very small 
O(10~^). We were unable to calculate the density of each ball with such accuracy directly 
by weighting it and measuring its voliune. Instead, we used an indirect method based on 
measuring the terminal descent velocity in non-rotating fluid. When a sphere descends in 
fluid at constant speed V, the Archimedes force (proportional to Ap) acting on it is balanced 
by the hydrodynamic drag 

^vra^Ap^ = ^pV\a?CD{Re) (15) 

which is usually expressed in terms of the drag coefficient CD dependent only on a Reynolds 
nmnber, Re = 2aV/u. By fitting the well known measurements of the drag coefficient 
(Schlichting, BL Theory) in a range 0.1 < Re < 1000 we derived an empirical dependence 

which not only approximates extremely well the data in this range (Fig. 6) but also has 
an exceptionally simple analytic form (stimulating a search for the underlying physical 
meaning). The first term in (16) represents the Stokes law with the drag proportional to V 
in the linear viscous case i?e <^ 1- The second term describes the increase of the drag due 
to inertial reaction of the oncoming flow. 

According to Taneda (1956) for Re > 24 the flow behind a sphere starts to separate, 
and a vortex ring forms in the wake. The length of the recirculation grows Unearly with Re 
until the flow starts to oscillate gently for Re > 130. For Re > 1000 the flow in the wake 
is very turbulent, the drag coefficient approaches a constant value 0.47, and hence the drag 
is proportional to V^ in accordance with the Newton's law. Near Re = 3 • 10^ flow in the 
boundary layer becomes turbulent and the crisis of drag occurs. 
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Figure 9: Plot of the drag coefficient versus the Reynolds number for motion of particles in 
non rotating fluids. Shown are the Oseen approximation (dashed) and Stokes law (dashed- 
dotted). The solid line is a fit to the data by Sheremet. 

In our non-rotating experiment the Reynolds number was 0(100) just in the middle of 
the validity range of (16), and we expect a steady wake with a recirculation of size about 2a. 
From the observed steady terminal velocities in the non-rotating experiments we calculated 
the density excess Ap of each ball according to (15),(16), they are listed in the Table 3. 
The same balls and salty water were used in all our rotating tank experiments. 

For comparison we used Stewartson's drag law to estimate the density difference from 
the centre-rotating experiments at slow rotation rate. Since the agreement of velocities in 
the azimuthal direction is so good, we use the measured azimuthd velocity component Ux 
to estimate the difference in density between the ball and the surrounding salt solution. 
Solving the expression for the azimuthal component, we find the following expression for 
A/?: 

|Ap| = 2^.^ (17) 

In table 3 the estimated Ap from both the non-rotating and slow centre-rotatmg experiments 
are fisted. If one were to use the results from the non-rotating experiments, to estimate the 
velocities in the tilted case, one would get values which are 40 to 60% to high, (remember 
the Unear dependence of the velocity components on Ap). 
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Ball No-rot Slow-rot Ratio 
1 1.0543 0.6430 1.6397 
2 1.4382 1.0113 1.4221 
5 0.7279 0.4481 1.6244 
6 1.7465 1.3761 1.2692 

Table 3: Table of the average estimates for A/o from the non-rotating and the slow centre- 
rotating experiments, and their ratios. 

7    Conclusion 

The experiments both in the tilted and in the centre-rotating case yielded some quite nice 
and consistent results, which in the case of the tilted case agree nicely with Stewartson's 
linear theory for motions of Rossby numbers less than 1 and Reynolds numbers between 10 
to 60. 

Comparing the trajectories of the spheres to those of the blobs in the plume experiments 
it turns out that they have similar displacements in the radial direction, however the blobs 
descend at a much smaller angle in the azimuthal direction. We conclude that the path of 
the blobs in the plumes are in some aspects, but not all, consistent with the paths taken 
by solid spheres. This may be due to the presence of external circulation in the plume, and 
deformation of fluid parcels, which may influence its path. 

In future it maybe interesting to repeat some of the experiment which gave less consistent 
results, such as the centre-rotating experiments and try to reconcile our initial intention of 
cahbrating the balls and thus estimating their density difference to the fluid. In doing so 
more attention will have to be paid to the temperature of the surrounding fluid as this may 
well influence the density of both the saline solution and the nylon spheres through thermal 
expansion. 

There are further observations we made, which have not been mentioned at all here. 
Firstly there were another four balls released in each of the experiments, which descended 
at considerably faster velocities then those we analyse here. They therefore involve flows 
of much larger Rossby numbers and it might be interesting to see whether Stewartson's 
drag law still applies for these spheres. Secondly, while descending in the rotating fluid, all 
spheres were observed to spin. We have had no time to look closer at the rate of spin of the 
spheres, at its origin or importance for determining the motion. 

Finally, in order to have a more realistic comparison of the sphere trajectories to those 
of the blobs we are planning to carry out a few experiments studying the motion of single 
blobs in the same set up without them being surrounded by a plmne. 
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A    Tables 

Ball Exp. Ur Ux UH U| Re Ro 

1 Nl 0.0846 -0.1022 -0.3252 0.3512 34.85 0.3654 
N2 0.0834 -0.1071 -0.3283 0.3553 35.25 0.3696 
N3 0.0374 -0.0388 -0.1301 0.1408 13.97 0.1465 

2 Nl 0.1119 -0.1698 -0.5084 0.5476 54.33 0.5697 
N2 0.1180 -0.1588 -0.4873 0.5259 52.18 0.5472 
N3 0.1129 -0.1480 -0.4571 0.4935 48.97 0.5135 

5 Nl 0.0731 -0.0710 -0.2083 0.2319 23.01 0.2413 
N2 0.0719 -0.0748 -0.2208 0.2440 24.21 0.2538 
N3 0.0623 -0.0579 -0.1922 0.2102 20.85 0.2187 

6 Nl 0.1256 -0.1807 -0.5404 0.5835 57.89 0.6071 
N2 0.1363 -0.1930 -0.5826 0.6287 62.38 0.6542 
N3 0.1345 -0.1704 -0.5165 0.5603 55.59 0.5830 

Table 4: Table of the velocity results form the tilted tank experiments. We have the velocity 
radially outwards, Ur, the azimuthal component, U\, the vertical component, Uh, parallel 
to the axis of rotation, and the absolute velocity, |u| = VC^r + t^A + Uh- The last column 
specifies the Reynolds number of each sphere in the respective experiment. We define the 
Reynold number as i?e = Ud/v, were U - absolute velocity, d - diameter of the ball and v - 
viscosity of the surrounding liquid. The Rossby number, which is defined by Ro = U/2Cta. 
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Ball Exp. Or ax 
1 Nl 14.58 17.45 

N2 14.25 18.07 
N3 16.04 16.61 

2 Nl 12.41 18.47 
N2 13.61 18.05 
N3 13.87 17.94 

5 Nl 19.34 18.82 
N2 18.04 18.71 
N3 17.96 16.76 

6 Nl 12.36 17.50 
N2 13.16 18.33 
N3 14.60 18.26 

Table 5: Angles of deflection derived from the velocity components, ar is the angle at which 
the particle moves away from the ^-axis in the radial direction, ax is the angle at which 
the particle lags behind the rotation of the tank. All angles are in degrees. 

Ball Exp. Uh 
1 Rl -0.2314 

R2 -0.3529 
R3 -0.3053 
R4 -0.2666 

2 Rl -0.2292 
R2 -0.5356 
R3 -0.4490 
R4 -0.3996 

5 Rl -0.1731 
R2 -0.2495 
R3 -0.2312 
R4 -0.1967 

6 Rl -0.4168 
R2 -0.6417 
R3 -0.5838 
R4 -0.5183 

Ball Exp. Uh 
1 R5 -0.3372 

R6 -0.3309 
R7 -0.3485 

2 R5 -0.5199 
R6 -0.5396 
R7 -0.5382 

5 R5 -0.2412 
R6 -0.2313 
R7 -0.2359 

6 R5 -0.7433 
R6 -0.7112 
R7 -0.7210 

Table 6: The velocity of descent is listed for Table 7: The velocity of descent is listed for 
each ball in the experiments Rl, R2, R3a and each ball in the three experiments R5, R6 and 
R3b at a rotation rate of 2Q = 3.027. R7 at a rotation rate of 2fi = 2.621. ' 
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Ball Exp.   Uh 

1 SI -1.2647 

52 -1.2458 

53 -0.9469 

54 -1.1845 

2 SI -1.6173 

52 -1.5237 

53 -1.4638 

54 -1.4939 

5 SI -1.0645 
52 -0.9941 

53 -0.9705 

54 -0.9365 

6 SI    X 
52 -1.7061 

53 -1.6967 

34 -1.7147 

Table 8: The velocity of descent is listed for each ball in the non-rotating experiments SI, 
S2, S3 and S4. 
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Rearrangement of Annular Rings of High Vorticity 

Huiqun Wang 
California Institute of Technology 

1    Introduction 

Flight level measurements suggest that hurricanes have low vorticity eyes surrounded by 
high vorticity eyewalls (Kossin and Schubert 2001). The rearrangement of such high vor- 
ticity annular rings is an important factor in hurricane dynamics. In this study, I use a 
barotropic nondivergent model to investigate the evolution of a set of high vorticity annular 
rings with fixed circulation and scales similar to hurricanes. 

The initial radial profile of vorticity is given by 

C = Co< 

0, 0 < r < ri, 

5((r2-r)/(r2-ri)), ri<r<r2, 

S ((r - r2)/(r3 - r2)), r2<r<rz, 

0, r> rs, 

(1) 

where S{x) = 1 — 3x^ + 2x^, r2 is fixed at 60 km, rs — ri ranges from 4 km to 116 km with 
an increment of 4 km, and the constant Co is chosen so that all the rings have the same 
circulation for r > rz. Sample initial vorticity and aximuthal wind profiles are shown in 
Fig. 1. 

Figure 1: Sample radial profiles of the initial vorticity and tangential wind. 
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After introducing the numerical model, I describe the simulated evolution of represen- 
tative narrow, wide, and very wide annular rings. I then compare the initial wavenumber 
with the published results of hnear stability analysis, and investigate the history of the 
domain-averaged enstrophy for different rings. I apply the minimum enstrophy theory to 
predict the final states, and investigate the advantages and disadvantages of the theory. I 
also compare the results for these rings with two sets of skewed rings. 

2    Numerical Model 

An adaptive multigrid barotropic nondivergent model (Fulton 2001) was used to simulate 
the evolution of the annular rings. This model solves the modified barotropic vorticity 
equation in Mercator coordinates 

where q = C-'r^ipis the potential vorticity anomaly, C is the relative vorticity, / = 2fisin^ 
isjhe Coriolis parameter, p = df/ad(p = 2fia-^cos(^, m = cos ^o/cos 0 is the map factor, 
7~ = VgH/f is the Rossby radius of deforination, ip is the stream function, and u is the 
constant viscosity. 

In this study, I ran the model in the pure barotropic, /-plane mode by setting 7 = 0, 
m = 1, and /? = 0, so that the actual equations solved become 

ay   ay 
ax2 + ay2 - C- (5) 

Associated with this model are the kinetic energy and enstrophy equations 

^ = -2^^, (6) 

dT = -2^^' (7) 

where £ = Jf ^Vxp ■ V^ dxdy is the energy, Z = JJ ^C^ dxdy is the enstrophy, T = Jf iVC • 
VC,dxdy is the paJinstrophy. 

The numerical model uses the 4th order Runge-Kutta scheme to advance in time and has 
the option of 2nd or 4th order Arakawa Jacobian technique to approximate the advection 
terms. It has multiple movable or adaptive nests within the base grid. In this study, most 
of the simulations are run on a base domain of size 4096 km x 4096 km with 128 x 128 
grid points. There are 4 subsequent nests within the base domain, each of which has half 
the domain size and mesh size of its mother domain, so that the finest resolution is 2 km. 
In a few runs, the resolution was increased to 256 x 256 grid points for the base domain 
and all the nests. 
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3 Ring Evolution 

Representative examples of the evolution of thin (12 km), wide (60 km), and very wide 
rings (108 km) are shown in Figs. 2-4. The rotational timescale r — 2-nr-i,lv{r'i) for these 
three rings is about 2 hr. 

Thin rings (rs — ri < 20 km, Fig. 2) initially break up into many vortices (> 6) that 
rapidly merge into several vortices (4-5) as they rotate around. The resultant vortices persist 
for tens of rotational timescales before subsequent merger takes place. Such a configuration 
can be referred to as 'mesovortex' or 'vortex crystal' stage. Thin rings eventually evolve 
into monopoles. 

For wide rings (24 km <rz — r\ < 104 km, Fig. 3), initial instability takes longer to 
grow and shows lower wavenumbers. The few (2-5) resulting vortices gradually relax to a 
monopole. 

Very wide rings {r^ — ri > 108 km. Fig. 4) show wavenumber two structures initially, 
but they never break up into individual vortices. The central low vorticity remains until 
the last timestep, which corresponds to about 80 rotational timescales. 

4 Initial Wavenumber 

Simulation results show that the initial instabiUty wavenumber tends to decrease with in- 
creasing ring thickness (Fig. 5). For thin rings (rs —ri < 20 km), this decrease is very sharp. 
For wide rings, there is usually a thickness range that corresponds to the same wavenumber, 
and the range appears to increase with decreasing wavenumber. 

Schubert et al. (1999) performed a linear stability analysis for annular rings with piece- 
wise constant radial profiles. Their Fig. 2 shows the unstable regions for wavenumbers 3-8 
in J — 7 space, where <5 is the ratio of the inner and outer radii and 7 is the ratio of the inner 
vorticity and average vorticity. For the rings I study, 7 = 0. Converting into this notation, 
the initial wavenumber of my simulations agrees well with Schubert et aVs linear stability 
results (Fig. 6). 

5 Enstrophy History 

The evolution of different rings is studied by plotting the normahzed enstrophy as a function 
of time (Fig. 7). For thin rings (rs — ri < 20 km), the rapid merger of initial vortices results 
in a sharp decrease of enstrophy early in the evolution. The enstrophy levels oflF with 
time during each mesovortex stage. Each subsequent merger leads to a rapid decrease of 
enstrophy and thus a stairstep pattern in the enstrophy history. 

For wide rings (24 km < rs — ri < 104 km), the. early stage enstrophy decreases more 
slowly, consistent with the slower growth of initial instability. Subsequent relaxation to 
a monopole is gradual, without the transitional mesovortex stage. For very wide rings 
(rs — ri > 108 km), consistent with the central low vorticity remaining unmixed during the 
entire simulation, the slope of the enstrophy curve does not change much with time. 
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Figure 2: Evolution of thin ring: rs - ri = 12 km. 
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Figure 3: Evolution of wide ring: 7-3 — ri = 60 km. 
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Figure 4: Evolution of very wide ring: ra - ri = 108 km. 
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ZO 25 X> 

Figure 5: Initial wavenumber as a function of ring number. Ring width = ring number x 
4 km. 

Figure 6: Initial wave number as a function of 5 with 7 = 0 for comparison with the linear 
stability analysis of Schubert et al. (1999). 

6    The Minimum Enstrophy Theory and Final State 

6.1    The Minimum Enstrophy Theory 

Consistent with Eq. (6), simulations show that the enstrophy decays much faster than the 
energy for small diffusivity v. Based on this result, a minimum enstrophy theory has been 
applied to predict the final states for annular rings (Schubert et al. 1999). The idea is to 
maximize the enstrophy deficit, i.e. to minimize the final enstrophy, under the constraint 
of constant energy or angular momentum. 

In the case of minimum enstrophy with constrained energy and circulation, I vary the 
mixing radius h and the wind profile v{r) in the variational problem 

Q = sf[Cl-e-Avl-v'')]rdr 
Jo 

rb 

= 2 /   {-CSC + fM^vSv) rdr + [C^(&) - C\b)] bSb 
Jo 

= 2 f  (^+ fji'^v^ Svrdr - 2bC{b)5v{b) + [Ci{b) - CHb)] bSb 

= 2 I  (^ + y?^ 6vrdr + [Co{b) - Cib)fb5b 

where /x-^ is the Lagrange multiplier, vo{r) and Coif) ^■re the initial wind and vorticity 
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Figure 7: Simulated enstrophy normalized by initial enstrophy as a function of time for the 
set of rings. 

r3--r2 = '2-r1;  r2 = 60Krr 
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Figure 8: Comparison of theoretical and numerical values of the final enstrophy. Solid line 
is the prediction of a minimum enstrophy theory with constrained energy. Dashed Une is the 
prediction of a minimum enstrophy theory with constrained angular momentum. Dotted 
Une is the numerical result for runs with 128 x 128 resolution. Stars are the numerical 
results for runs with 256 x 256 resolution. 
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Figure 9: Theoretical and numerical final radial vorticity profile comparison. Numerical 
results are plotted as scatter plots, Predictions of the minimum enstrophy theory with 
constrained energy are plotted in dashed lines. 
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profiles, v{r) = vo{r)forr > b. Upon solving the Euler-Lagrange equation resulting from 
the first term, I obtain the final wind and vorticity profiles 

^r^s     fMb)Ji{fir)/Ji{,j,b)   if0<r<6, 
\vo{r) if6<r<oo. ^^ 

^fj.) = ho{b)nJQ{nr)/Ji{nb)     if 0 < r < 6, 
\0 iffe<r<oo. ^   ^ 

Requiring C(fc) = Co(fc) = 0 yields 

Mfib) = 0, (11) 

so that nb must be a zero of the Jo Bessel function. The first zero yields the lowest en- 
strophy, so that fib w 2.4048. Substituting Eq. (9) into the energy constraint /Q ug(r)rdr = 
/o v^{''')rdr yields 

STTM   vUr)rdr = C^, (12) 

where C = 27rbvo{b) is the circulation. Given the initial tangential wind vo(r) and the 
associated initial vorticity Co(r), fx, and b can thus be determined from (11) and (12). 

Similarly, the final enstrophy can be minimized under the constraint of conservation of 
angular momentum. This leads to the final wind and vorticity profiles 

^(r)=iMa){r/a)[2-{r/a)%   iiO<r<a, 
\vo{r), ifa<r<oo, ^^^^ 

^(r)=/[4^o(a)/a][l-(r/a)2],     ifO<r<a, 

\0, ifa<r<oo. ^    ^ 

6.2    Final Enstrophy Comparison 

Integrating the square of the predicted final vorticity profile Eq. (10) and the square of 
the initial vorticity profile Eq. (1), I obtained the final and initial enstrophy for each ring. 
Comparing the ratio between the final and initial enstrophy with the enstrophy ratio be- 
tween the last and first time step of the simulation (Fig. 8), I find that the predicted final 
enstrophy agrees well with numerical results for wide rings. The deviation for very wide 
rings is related to the persistence of the central low vorticity in the simulation and the 
relaxation to monopole predicted by theory. The deviation for thin rings can be greatly 
improved by running the model at higher resolution, as shown by the stars in Fig. 8. A 
high-resolution simulation is expected to produce a larger diflferences for thin rings because 
more grid points are needed to resolve the initial vorticity profiles properly. So, the mini- 
mum enstrophy theory is able to predict the final enstrophy of both the thin and the wide 
rings in my study. 
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Figure 10: Final vorticity as a function of stream function for thin ring (rs — ri = 16 
km). Black line is scatter plot from the final time step. Green line is the prediction of the 
minimum enstrophy theory with constrained energy. Blue Hne is a 3rd order polynomial fit 
for the black scatter plot. Red line is a 5th order polynomial fit for the black scatter plot. 

6.3    Final Vorticity Profile Comparison 

For wide rings, the vorticity profile predicted by theory, as expressed in Eq. (10) captures 
most of the features of the simulated final vorticity profile (Fig. 9a). However, for thin 
rings, the simulated final vorticity considerably overshoots the theoretical prediction at 
small radii (Fig. 9b). This deviation for thin rings can be viewed in the stream function- 
vorticity perspective, as shown in Fig. 10. The numerical curve is a scatter plot produced 
from the vorticity and stream function at every grid point in the output domain at the 
last time step. Such scatter plots at early times show many fat bands that collapse onto 
each other with time and eventually become the thin line in Fig. 10. Solving the stream 
function from (5) with the boundary condition that the final stream function matches the 
initial stream function at the mixing radius b, I obtain the green line in Fig. 10. This hnear 
relationship is expected from a slight modification of the argument given in (8). If, when 
proceeding from the second line in (8), we integrate the vSv term by parts instead of the 
i^6C term, we obtain 

0 
rb 

= 2 /   (-C - MV) <^Crdr + 2f?biP{b)Svib) + [C^(6) - C^(6)] bSb, (15) 
Jo 

so that C = —A*^^ for 0 < r < 6. Minimum enstrophy theory approximates the numerical 
curve by a line, though this curve can be better fit by a 5th order polynomial. This suggests 
the possible existence of a better variational principle, but I will not pursue this further 
here. 

7    Comparison with Skewed Rings 

Two sets of experiments with skewed initial vorticity profiles have been performed to com- 
pare with the! symmetric rings investigated before. One set has a sharper inner edge, while 
the other has a sharper outer edge. Sample initial conditions are shown in Fig. 11. All the 
rings have fixed r2 = 60 km and fixed circulation, as before. The evolution of the enstrophy 
for the thin and wide rings of the three sets of rings is similar, and the final enstrophy can 
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Figure 11: Example initial vorticity profiles for three sets of rings. Exp2: symmetric rings; 
Exp4: rings with sharper inner edge; ExpS: rings with sharper outer edge. 

be predicted by the minimum enstrophy theory. Rings with a sharper inner edge usually 
have higher initial wave numbers than the others (Fig. 12), and even the widest such ring 
collapses into a monopole. 

8    Conclusion 

I have investigated the rearrangement of annular rings of high vorticity in this study. Thin 
rings initially break up into many vortices that subsequently merge. They often come into 
a configuration where several vortices rotate around for many rational timescaJes. Such 
"mesovortex states" correspond to the "stairs" in the enstrophy history plot. Wide rings 
have lower initial wavenumbers that take longer to grow, and they gradually evolve into 
monopoles. Very wide rings usually have low central vorticity throughout the simulation. 
However, all the rings with sharper inner edges evolve into monopoles. The minimum 
enstrophy theory is useful for predicting the final enstrophy for both thin and wide rings. 
Although it does an adequate job of predicting the final vorticity profile for wide rings, it 
fails for thin rings. Skewed rings with sharper inner edges usually have higher initial wave 
numbers than other rings with the same width, and this might be predicted by a more 
sophisticated Unear theory than that of Schubert et al. 
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and guiding me through the summer, Ricardo Prieto for providing the numerical code, and 
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Figure 12: Initial wavenumber as a function of ring number for three sets of rings. A Exp2 
symmetric rings, o Exp4 rings with sharper inner edge, * Exp5 rings with sharper outer 
edge. 
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Abstract 

We study the total dissipation for flows described by the magnetohydrodynamic 
(MHD) equations. For some boundary conditions a lower bound can be found that is 
achieved by the equivalent of Stokes flow for MHD. Using the Doering and Ctonstantin 
method [1], also called "the background method," we derive an upper bound for the 
dissipation of some simple flows. In the case of a shear layer with both velocity and 
magnetic shear, the dependency of the upper bound as a function of the control para- 
meters is determined. As a by-product of this calculation, an energy stability domain 
for this flow is calculated and a result that is bigger than that previously calculated by 
Tasso et al. [2] is obtained. We study a simple model of the sheet pinch and show that 
the upper bound tends to zero as the magnetic diffusivity tends to zero. In this sense, 
we obtain an antiturbulence result because there is no residual dissipation in the limit 
of infinite control pairameter. 

Plasma is said to be the state of matter which is the most widespread in the universe. 
Stars and interstellar medium are made of plasma. On Earth, there have been many ex- 
periments which attempt to use plasmas in order to achieve nuclear fusion. One of the 
properties of plasma is its ability to conduct electricity. Thus, the equations of motion 
are coupled to the equations of electromagnetism. Liquid metals share the same property. 
They are present in the interior of the Earth where they are responsible for the generation of 
magnetic fields by the dynamo effect. They are also used industrially for transporting heat, 
in nuclear fission devices for instance. Both liquid metals and plasmas can be described by 
the MHD equations [3]. 

In the framework of MHD, we focus on the total dissipation which is the sum of the 
viscous dissipation and the Joule dissipation integrated over the fluid volume. This quantity 
is important for various reasons. It is a global characteristic of the system and its time 
average is equal to the time average of the power injected into the system. Moreover, 
it is equal to the heat production in the system. For fusion experiments, it is of major 
importance because it produces the temperature increase that is hoped will lead to the 
onset of nuclear reactions. On the contrary, for dynamo experiments in liquid metals, the 
mcrease in temperature must be avoided because it increases the resistivity of the fluid and 
then increases the value of the critical velocity for dynamo action. 

In hydrodynamics, viscous dissipation has been widely studied. One of the first results 
in this field was derived by Stokes, whose results were generalized by Keller et al. [4]. 
They proved that the solution of the Stokes equations minimizes the dissipation over all 
divergence-free fields satisfying boundary conditions of fixed velocity at the boundary. Note 
that the Stokes solution may only be a solution of the Navier-Stokes equations in the limit of 
zero control parameter (generally the Reynolds number). In most cases, for low values of the 
control parameter, a laminar solution exists, but upon increasing the control parameter, this 
solution may become unstable. From the evolution equation for the energy of a perturbation 
to the basic state, one finds that the dissipation gives rise to a decrease of this energy when 
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the control parameter is smaller than a certain value. This value defines the domain of 
absolute stability in which the laminar solution is energy stable [5]. Outside this domain, 
the solution can be unstable and possibly turbulent. It is then impossible to expHcitly 
calculate the solution of the Navier-Stokes equation and the value of the dissipation. Early 
studies by Howard [6] and Busse [7] tried to find upper bounds for the dissipation using a 
variational formulation with added constraints on the manifold of the fields over which the 
maximization is made. A very striking result is that the optimizing field seems to share 
some properties with the time average of the fields measured in experiments. More recently, 
Doering and Constantin [1] developed a different approach called "the background method" 
which allows for an easier evaluation of the upper bound on the dissipation. 

In MHD, some results have been derived by Tasso et al. [2] concerning the energy 
stability for some flows. In some cases the energy domain that occurs is infinite, which 
insures stability of the laminar solution for all values of the control parameter [8]. Using 
the Howard-Busse method, Soward [9] derived an upper bound for the ohmic dissipation in 
a turbulent thermal layer permeated by a horizontal magnetic field maintained by dynamo 
action. With the same method, Wang et al. [10] obtained an upper bound for the dissipation 
in a cyhndrical pinch. 

In the present work, we derive a result on the lower bound for the dissipation in some 
MHD flows. For fixed values of the fields at the boundary, we prove that the Stokes-like 
solution of the MHD equations minimizes the total dissipation over all divergence-free fields 
satisfying the boundary conditions. We then apply the background method to two MHD 
problems. The first one is a shear layer with both magnetic and velocity shear. [13]. As 
a by-product of our calculation, we calculate a domain in which the basic state is energy 
stable. The result is bigger than previous results [2]. Both lower and upper bounds for the 
dissipation are derived, and their dependency on the parameters of the system are presented. 
The last part of this report deals with the study of a model of the plane sheet pinch. Using 
the backgroimd method, we prove that the upper bound for the dissipation tends to zero 
with the magnetic diffusivity, while all other parameters are held fixed. In this sense, this 
is an antiturbulence theorem because there is no residual dissipation in the limit of zero 
magnetic viscosity. A similar result was recently derived for horizontal convection [11] but it 
is the first time that the background method allows one to prove such a result. During this 
simimer J. Siggers also applied the Doering-Constantin method to horizontal convection (see 
her report). In that case, at high value of the control parameter the flow is not stationary 
and develops boundary layers even if the dissipation tends to zero. According to numerical 
simulation [12], this is not the case for the plane sheet pinch in which the static solution 
seems to be always stable. Our result does not prove this stability, but is consistent with it 
because the dissipation of the static solution tends to zero with the magnetic viscosity. 

1    Stokes-like Solutions and Lower Bound 

Assuming that the flow is incompressible and that the electrical properties of the fluid are 
well described by the MHD equations, the velocity field v and the magnetic field B are 
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solutions of 

—+ vVv = f-VP + i/V2v + B-VB and V-v = 0, (1) 

dB 
—+ V-VB = B-VV + 7?V2B and V-B = 0, (2) 

where f is a body force. Here P = P/p + B^/(2p) where P is the hydrodynamic pressure, 
p the density, and B2/2 is the magnetic pressure. From now on, we drop the tilde. The 
magnetic and kinetic viscosity of the fluid are rj = (fiQcr)-'^ and u, where a is its conductivity. 

We have to be precise about the boundary conditions for the fields. If the fluid is m 
contact with a sohd, it is natural to use no-slip boundary conditions for the velocity at the 
boundary, dD, and say v|ao = vj, where Vj, is the velocity of the boundary. The choice is 
not so simple for the magnetic field. We suppose that the solid at the boundary is a perfect 
conductor in which the magnetic field is firozen. Since the normal component of the magnetic 
field at the boundary is continuous, its value is then fixed at the boundary. By imposmg the 
surface current at the boundary, we can fix the value of the discontinuity in the tangential 
component of the magnetic field and since its value is fixed in the solid, the tangential 
component of the magnetic field is also fixed at the boundary. This is a convenient but 
ideahzed boundary condition for the magnetic field. It has previously been used in studies 
of tearing instability and is sometimes called the "line-tied" boundary condition. Another 
boundary condition that is easier to impose experimentally than line tying, is to fix the 
tangential current at the boundary. In this case, some derivatives of the field are fixed 
while the normal component of the magnetic field must still be continuous. In this section, 
we restrict ourselves to line-tied boundary conditions. 

The dissipation per unit mass is defined by 

i) = t.(|Vxv|2> + 7,(|VxB|2) (3) 

where (/) = ^ Jy f{f) rff and F is the volume of the fluid. Following Keller et al. [4], we 
define the excess dissipation rate hyDe = u (|V x V\'^)+T} (|V X Bp) -2 (f • v). This is the 
dissipation minus twice the power input by external body forces. It reduces to the total dis- 
sipation when the force does not input energy into the system. Without taking into account 
the MHD equations, we wonder which stationary velocity and magnetic fields are extremal 
values for the excess dissipation with the assumptions that the fields are divergence-free 
and have fixed values at the boundary. We introduce two Lagrange multipUers -2P(r) and 
-2Q{r) to insure that the fields are divergence-free. Taking the variational derivatives of 
De - 2P V • V - 2Q V • B with respect to v and B gives 

I'V^v-f-f-VP = 0, (4) 

77V2B-V(5 = 0. (5) 

We call these equations, together with the divergence conditions, the Stokes-like equations 
for MHD. The two fields are not coupled in these equations, as one expects since De is 
the sum of two functionals depending separately on the velocity and the magnetic field. 
The equations for the velocity field are the same as for Stokes flow without the magnetic 
field. This equation is the Navier-Stokes equation for a stationary velocity field in the low 
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Reynolds number limit, where the inertia terms are neglected and where the Lorentz force 
is also neglected. The equation for the magnetic field is more surprising. The Lagrange 
multipher used to enforce the divergence-free nature of the field appears as a pressure in 
equation (5). It is possible that the term B • Vv - v • VB of equation (2) reduces to 
the gradient of a scalar function. Then, the Stokes-like equation for the magnetic field is 
equivalent to the induction equation for a stationary magnetic field. Otherwise, choosing 
Q = 0, equation (5) is the limit for low Reynolds number of the induction equation for a 
stationary magnetic field. 

By taking the variational derivative of the functional, we proved that the Stokes-like so- 
lution of the MHD problem is a stationary value of the excess dissipation over all divergence- 
free magnetic and velocity fields with fixed values at the boundary. Indeed, it is possible 
to prove that this is a minimum over all continuous fields possessing piecewise continuous 
derivatives, satisfying the boundary conditions and being divergence-free. Let us write such 
a field as vt = Vs -1- u (resp. Bf = B^ -F b) where the subscript t stands for total field, s 
stands for Stokes-like solution of equations (4) and (5). Note that u and b are zero at the 
boundary. We get 

Dei-vt, Bt) = De{Vs, hs) + I>e(u, b) + 2 1/ {V X v^ • V X v) + 2 T? {V X B^.V X b) , 

= I>e(vs, b,) + D{u, b) - 2 «u . (i/V^v, + f)> + <r/b • V^B,)) . 

Using the Stokes-Uke property of v^ and b^, the term in parenthesis is seen to be zero and 
we are left with 

De{-Vt, Bt) = Dei^s, b.) + D(U, b) > I>e(v., b,) . (6) 

This result is a straightforward generalization to magnetohydrodynamic problems of the 
result of Keller et al. [4] for hydrodynamic fiows. This calculation is valid for the particular 
boundary conditions of fixed velocity and magnetic field at the boundary, but this is not 
true for some boundary conditions, for instance if the tangential currents are fixed instead 
of the magnetic field. 

The result is used in the next section where the stationary solution of the MHD equation 
is of Stokes-like form and is thus a minimum value for the excess dissipation of any realized 
solution, even not stationary. Another possible appHcation is to estimate the lower boimd on 
the excess dissipation rate by using trial functions for v and b rather than solving the MHD 
equations for stationary fields. In their paper, Keller et al. proved also a reciprocal principle: 
the Stokes solution of an hydrodynamic problem can be obtained as the maximizing field 
of another functional, the maximal value of which is the excess dissipation Dg. We think 
that the same result can be derived for MHD problems but the proof remains to be done. 

2    A Layer with Both Velocity and Magnetic Shear 

We now consider a layer of fluid that can support shear in both the velocity and magnetic 
fields. We assume a layer of height d with two periodic boundary conditions in the horizontal 
directions x,z as defined in Figure (1). The coordinates {x,y,z) correspond to the unit 
vectors i, j, k respectively. It will turn out that our results are independent of any uniform 
horizontal magnetic field and thus only depend on the shear part of the applied field. We 
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Figure 1: Sketch of a fluid layer submitted to a horizontal shear magnetic field and shear 
velocity field. 

suppose that the value of the magnetic field is fixed at the boundary. The magnetic shear 
is imposed by setting BuP = B^(cos^i + sin0k) at the upper surface y = d and B = 0 
at the bottom surface y = 0. The velocity shear is induced by moving the upper surface 
at V = f/i, while making the bottom surface immobile. We use no-sUp conditions for the 
velocity field, v = 0 at y = 0 and v = f/i at y = d. 

This is a simple model that can give rise to a variety of shear instabiUties including 
the tearing mode instabifity. It occurs widely in plasma physics, for instance in Tokamak 
experiments [13]. Furth et al. [14] have studied the onset of tearing instability and the hnear 
growth rate. Chen et al. [15] have studied the effect of a shear fiow and took into account the 
kinetic viscosity. This simple model is also a plane-Taylor flow for a liquid metal subjected 
to a sheared magnetic field. Using energy methods Tasso et al. [2] calculated a domain in 
which the basic solution is energy stable. As a by-product of our calculation we improve 
Tasso's result. We focus on the dissipation as defined by equation (3). Note that even if we 
take gravity into account and if the layer is horizontal, the excess dissipation rate reduces 
to the dissipation rate. Moreover, for a quantity g that satisfies boundary conditions of 
fixed value at the boundary, we have <|Vg|2) = (jV x g|2) where |Vg|2 = J] 0(6^93)^. 
Thus D = v <|Vv|2> + rj <|VB|2>. 

For this problem we have 6 dimensional parameters B„, U, d, v, r}, 0 that can be mea- 
sured using 2 dimensions. We can then construct 4 dimensionless numbers which completely 
describe the system. The angle 6 is one of them and three other possible numbers are 

p   _ I'              f/d                     Bud 
r'm^ -,  Re =   and • M = , 

respectively, the magnetic Prandtl number, the Reynolds number and the equivalent of the 
Reynolds number constructed with the magnetic field. We get, by dimensional analysis, 
that the dissipation is 

D = 
d <l>{Pm, Re, M, 9), (7) 
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where (f) is an unknown function of the dimensionless numbers. 
At low value of M and i?e, one expects the velocity and magnetic fields to be indepen- 

dent. Indeed, a stationary laminar solution of the full set of equations is 

v= —yi,and B =-j-yp. (8) 

These are respectively a sheared velocity field and a sheared magnetic field. There is no 
power input by external forces, so the excess dissipation is equal to the dissipation Di 

Note that the fields are solutions of the Stokes-hke equations (4) and (5) with F = Q = 0. 
Since the boundary conditions are that the values of the fields at the boundary are fixed, 
equation (6) proves that the dissipation for the laminar solution is a lower bound for the 
total dissipation of any solution of the MHD equations. 

If we increase the value of M and Re, we expect that the laminar stationary solution will 
become unstable and possibly turbulent. Using the energy equation for the perturbation to a 
basic state, we derive two results. The first one is obtained if we use the laminar stationary 
solution as a basic state. It gives values of M and Re, below which all the fluctuations 
decrease to zero. We do not calculate the maximal values of M and Re. Above these 
maximal values, the energy of some perturbations can increase. These maximal values 
define the energy stability domain in the (M, Re) plane and is equivalent to the energy 
Reynolds number used for usual hydrodynamic instabilities [5]. Because we use crude 
estimates, the values of M and Re that we calculate are inside the true (i.e. optimal) 
energy stability domain. Even if they are not optimal, these are values below which the 
basic state is energy stable. For higher values of M and Re, we use a well defined basic state 
and derive our second result which is an upper bound for the dissipation in the system. 

2.1    Energy Equation for Perturbations to a Basic State 

For generality, we derive the energy equation for perturbations to a basic state given by 

V6 = U{y) i and B^ = Bi{y) i + BaCy)j + Bz{y) k. (10) 

The total velocity and magnetic fields (Bt and vt) are the sum of the basic state and the 
fluctuations (v and b) 

vt = vfc + v  and  Bf = B6 + b. (11) 

The components of v (resp. b) are vi, V2, us (resp. b\, 62, h)- The direction of the 
velocity shear is i and we have assumed that the basic state is independent of the horizontal 
coordinates. Upon taking the dot product of (2) with b, integrating by parts, and applying 
the boundary conditions, we obtain 

/^\=-(u2b.B;>-77<|Vb|2> + (b.(BfV)v) + <[/'Bt2fei>+»?(b-B6"), d_ 
dt 

(12) 
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where /' means the derivative of / with respect to y. Upon taking the dot product of 
equation (1) with v, we obtain 

d /v^V 
a7\T/""^^'''^''2>-i/<|Vv|2> + (v.(Bt.V)B,) + i/(i;iC7"). (13) 

Because the fluctuations in velocity and magnetic field are zero at the boundaries, we have 

<v • (Bt • V)Bt) = - (Bfc . (Bt. V)v) - (b . (Bt • V)v) . (14) 

This result is similar to the energy conservation in an electromechanical process which states 
that the mechanical power of the Lorentz force is opposite to the electrical power of the 
electromotive force. By integration by parts, one gets 

(Bfr.(BfV)v) = -(Bt,2B;.v). (15) 

Taking the sum of equations (12) and (13) and using the two former equations, we derive 

Jli^p) = -{U'viV2)-(v2h.B[)-u{\Vv\^)-v{u'v\) + {U'B,^hr) 

+ <C/'fc26i>-»7(|V6p)-;,(B;.b') + (B,,2B;.v) + (6,B;.v),       (16) 

where ep = ^ "^ . 

Using equation (16) for the case of the shear layer, we obtain two results. K the basic 
state is the stationary solution given by equations (8), we will show that up to some value 
of M, say ME which is function of Re and Pm, the energy of any perturbation to the 
laminar solution tends to zero. Since this is a positive definite quantity, this means that 
asymptotically the perturbation tends to zero, and for values of M and Re such that M is 
smaller than ME, the stationary basic state is the only stable solution of the problem. Using 
another well-defined background field, we also compute an upper bound for the dissipation. 

Note that equation (16) is independent of any horizontal basic magnetic field which 
is independent of y. The results concerning the energy stability and the upper bound on 
dissipation are thus also independent of such fields. In the light of this remark, the simple 
example that we are dealing with appears to be more general. Any horizontal magnetic 
field applied at the boundaries can be decomposed into its value at the bottom surface plus 
a shear field, and only the latter part enters into our calculations of the energy stabihty and 
upper bounds on the dissipation. 

2.2    Energy Stability 

We use as background fields the laminar solution given by equation (8) and obtain the 
evolution equation for the energy of a perturbation 

— (cp) = -Q(v,b), (17) 

where Q is quadratic in the velocity and magnetic field 

-^ (62 (V • p) - Vi V" •,.;/ - - 
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If Q is positive for all v and b then the basic stationary state is energy stable. We rescale 
the variables and use v = Av and b = ^v with A and fi positive. This yields 

Q(v,b)=Q(v,b), 

(19) 

Clearly, Q is positive definite if and only if Q is positive definite. We now consider Q and 
drop the tilde to relieve notation. We have the inequalities 

I (62 (V • p) - V2 (b . p)) I <i ((6i> + <(V • p)2> + <(b • p)2> + (vl))  , 

4«b'> + ^'»' (20) 
^<v2><(|Vvp>. (21) 

The last one is true for a vector field periodic in the horizontal coordinates and zero at the 
top and bottom surface [1]. Thus it holds also for the magnetic field and we obtain that 

^-J?[-^-2d     2d^)^"'^^,,^[cf       2d       2d)^^/' ^^^^ 

where a = ^ > 0. Note that 6 does not enter into the expression of the bound of Q, 
therefore the domain in which the basic state is energy stable will be independent of ^. A 
sufficient condition for Q to be positive definite is that there exists an a > 0 such that 

27r2-(i?e + —)>0 and   2Tr^ - Pm{Re +M a) > 0. (23) 
a 

The maximal value of M below which both inequalities are satisfied is 

M| = (2 7r2 - Re) (2 n^/Pm -Re). (24) 

If M < ME the laminar flow is energy stable. Tasso et al. [2] determined the boundary of a 
domain in which the basic state is energy stable as Re max (1, Pm)+ME max (1, Pm) = 2 TT^, 

while our result can be written as 
{ME max(l,P„))2 = (27r2 max(l,P^)-i?e max(1,Pm)){2TT^ "^j,^^'")-Re max{l,Pm)). 
We plot in Figure (2) the domains for different values of Pm in the 
{Re max(l,PTO), ME max(l,PT„)) plane. Note that with this choice of variables, the do- 
mains are the same for Pm and P~^. We therefore restrict ourselves to Prn > 1- For Pm = 1 
our result is the same as Tasso's. For P^ 7^ 1 the domains are bigger than Tasso's. The 
gain in stability comes jfrom the change of variables in equation (19) which gives a better 
estimate of Q. Note that this procedure is equivalent to a less physical one consisting, in 
equation (20), of bounding any product (ab) by {ab) < |(a (a^) + ^ (b^)) where a and 6 
are two fields and a is strictly positive. 
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Remax(1,Pm) 

Figure 2: Boundary of domains in which the basic state is energy stable for a shear layer with 
both velocity and magnetic shear in the {Re max (1, P^), ME max (1, P^)) plane. Below a 
curve, the laminar stationary solution is energy stable for the particular value of Pm- The 
dashed Une is Tasso's result and our result for P^ = 1. The continuous Une are our results 
for increasing values of Pm- The curves are the same for Pm and P, -1 

For Re = 0, we get ME = 2Tr^y/P^. If we use the dimensionless parameter M' = -^ 
instead of M, the boundary of the domain is independent of the magnetic Prandtl number, 
as the critical Rayleigh number is independent of the thermal Prandtl number in thermal 
convection. For M = 0, we recover the plane-Couette instability for a conducting fluid. The 
value of Re at the boundary of the domain depends on Pm in a surprising way. Introducing 
the magnetic Reynolds number Rm = Re/Pm, the boundary of the domain is given by 
max {Re, Rm) < IT^"^. For v<r\,Re> Rm, the domain is the same as for a nonconducting 
liquid flow. For v > r], Re < Rm, the boundary of the domain corresponds to a lower 
value of Re than for a nonconducting Uquid. It would be very interesting to understand if 
this effect is related to an underestimate of the energy stability domain due to our crude 
estimates of Q, or if, for Pm > 1, not purely hydrodynamic modes are responsible for the 
lose of energy stabihty. Another possible explanation is related to the independence of 
this calculation on any uniform horizontal magnetic field. So the Pm scaling for Re at the 
boundary of the domain may be achieved for flows with a strong horizontal magnetic field. 
The domain that we have calculated is inside the energy stabihty domain which can be 
calculated by finding the maximal value of M and Re such that Q is positive definite. To 
conclude this section, note that using another positive definite quantity than the energy 
could give a bigger domain in which the basic state is energy stable. 
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2.3    Upper Bounds for the Dissipation 

Outside the optimal domain in which the basic solution is energy stable, the flow can be 
unstationary and possibly turbulent. Exact solutions can not be explicitly calculated but we 
are able to derive upper bounds for the dissipation using the energy equation (16). We do 
not use the stationary basic state as background fields. Instead we suppose that they satisfy 
the boundary conditions and depend only on y. We write vj = U{y) i and B^ = jB6(y)p with 
J7(0) = 0, U{d) = U, Bb{0) = 0 and Bb{d) = Bu- The spatial average of the dissipation can 
be written as 

D = r/(|Vvp + 2U'v[+ C/'2) +7? ((|Vb|2 + 2B; -b' + (B;)2)) . (25) 

Add half of the total dissipation to equation (16) and get 

^ (ep) + f = FiBb, U) - Q(v, b, Bb, U), (26) 

where F{Bb, U) is a function of the background field and Q(v, b, Bb, U) is a quadratic 
function in the velocity and magnetic perturbation fields, namely 

F{Bb,U)='^{{U'f) + l{{B'bf) . (27) 

Q(v,b, JB6,f/) = ^ (IVv|2> + I (IVb|2> - {U'{b2h - V2vi)) -(Bi•{^rb2-V2h)). 

(28) 

Note that we have added half of the dissipation D to equation (16) to derive equation (26) 
in order to get rid of the Unear terms in the perturbation fields. Now, if we find background 
fields such that Q is positive definite, then we obtain an upper bound for the time average 
of the dissipation D 

D<F{Bb,U). (29) 

For the magnetic (respectively velocity) background field, we use a piecewise linear 
function equal to Bu/2 (respectively U/2) ior Sb<y <d-Sb (respectively Su<y<d-5y,) 
and of slope Bui{25b) (respectively U/{2 6u)) in the two boundary layers as sketched in 
Figure (3). Note that both heights of the boundary layers 5u and 6b must be smaller than 
d/2. Using integration by parts and Holder's inequality, it is easy to prove that (see for 
instance [1]) 

I <5;((v .^b2-V2{h.p)))\<^ (<a| Vv|2> + i <|Vb|2)) , 

|<t/'(6i62-t;it;2)>|<^<|Vv|2 + |Vb|2), 

and hence show that 

a>C--^- S^) (|VvP> + (| - ^ - :|^) (|VbP> . (30) 
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B^orU 

Figure 3: Piecewise linear background field. The height of the boundary layer is 6 (4 for 
the magnetic field and 5^ for the velocity field). 

Note that 6 does not enter into the bound for Q and the upper bound for the dissipation 
will be independent of it. We first have to choose the height of the boundary layers such 
that Q > 0 and then minimize F = ^(^ + ^) with the constraints that S^, and 4 are 
smaller than d/2. If S^ is fixed, the minimum of F is obtained for the highest possible Sb- 
Introducing y = ^, we calculate the maximum 5b that insures positivity of Q. It leads to 

^ = P(y) = N/(4 - j/)(4/P, m ■y). (31) 

Introducing C = ^, we get £> = g(i + -|^). Minimizing D over y, we find that the 
minimum is ax;hieved for y equal to yo which is the positive solution of 

((4-y)(4/P, m 

r 
- y)?'"^    C 

(32) 

The two constraints on the height of the boundary layers in terms of y are that y < Re/2 
and g{y) < M/2. If yo > Re/2 then the boundary layer for the velocity is d/2 and y = Re/2. 
If 9{y) > M/2, the height of the magnetic boundary layer is d/2 and g{y) = M/2. Such 
values of the heights of the boundary layers are obtained for low values of Re and M. In 
that case, the dissipation is that of the laminar solution. For higher values of Re and M, 
the upper bound is obtained for y = yo and giy) = g{yo), which can only be calculated 
numerically. In Figure (4) we plot Dd/U^ where D is the upper bound for the dissipation 
as a function of Re for C = 2 and Pm = l. 

At low values of Re, Dd/U^ is decreasing. This behavior occurs when the dissipation is 
equal to the laminar dissipation and the heights of the boundary layers are d/2. For high 
Re, Dd/U^ is equal to a constant which depends on C and Pm- We plot its value as a 
function of P^ for different values of C in Figure (5). Simple expansions of equation (32) 
give the asymptotic behaviors 

Pr. Um   I   lim TTT I — T: and     lim   f   lim  —=- I = 
U^ J        8 Pm^oo \Re-*oc t/3 J 8 

(33) 
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Figure 4: Value of the upper bound for the dissipation D d/U^ as a function of Re for 
P^ = 1 and C = 2. 

which are plotted as a continuous line. 
If we fix M and Pm, 4> decreases for low values of Re and tends to a constant at high 

Re. We plot (p as & function of Re for M = 2 and different values of Pm in Figure (6). The 
asymptotic behavior for (p is lim/je-^oo 4> = I max (1, Pm)- If we fix Re and Pm and vary M, 

4> decreases and tends to a constant. The asymptotic behavior of D is then D ~ ^    Ji/z 

for M -^ oo. 
The dependence of <f) with P,n for high Re is similar to that of the boundary of the 

domain in which the basic state is energy stable. Here again a possible explanation of 
this scaling is that the bound does not depend on any uniform horizontal magnetic field. 
Therefore, if such a field is appHed and if r? decreases, the total dissipation can increase 
because there is more resistive dissipation. 

3    Model of the Plane Sheet Pinch 

We study a simple model of the sheet pinch, similar to that studied numerically by Seehafer 
et al. [12]. A conducting fluid is located between two horizontal surfaces separated by a 
distance d. We use the same notations as in Figure (1). The problem is very similar to 
the shear layer. The only differences are in the values of the fields at the boundary. Both 
surfaces are at rest and we impose v = 0 at y = 0, d. The normal component of the 
magnetic field is continuous and we supposed that B2 = 0 at both surfaces. The horizontal 
current is fixed to be Jo k. In terms of the magnetic field it gives ^^ = Jo and -^ = 0. 

A static solution is v = 0, Bx = Joy + Ci, B^ = 0, B^ = C2 where C\ and C2 are 
constants. The dissipation is Di = TJJQ. Note that the result of equation (6) does not apply 
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here because the value of the magnetic field is not fixed at the boundaries, so that there is 
no reason for Di to be a minimum for the dissipation. Here again we use the expression 
D = i^(|Vvp) + ?7(|VBp> which is equivalent to definition (3). Moreover, the evolution 
equation for the energy of a perturbation to a basic state is independent of any horizontal 
uniform magnetic field and we can set Ci = C2 = 0. The background field that we use is 
of the form Bt = B\{y) i and the boundary conditions are B[{Q) = Bi{d) = Jo- The total 
magnetic field is written as Bf = Bj, + b and the energy equation for the perturbation Cp is 

^(ep) + f = ^(5i)-Q(v,b,5i), (34) 

with 

F{B,) = I {{B[f) , 

Q(v,b,B,) = ^ <|Vv|2> + I <|Vb|2> - {B[{v^h- v^h)) - ^ J^hdxdz. 

The surfaces of the layer are S and the last term is a surface integral due to the boundary 
conditions. It is changed into a volume integral using y Jgbidxdz = l-^). To bound 

this term, we write 

(Vb)2 + 2Jo|^ = (l-c)|Vb|2 + c|Vbp + 2Jo|^, 

> (1 - c) I Vb|2 - ^ , (35) 

where 0 < c < 1 and we have used (Vb)^ > (^)^. We use a piecewise linear profile 
for Bi of the form B^iy) = Q ii 5 < y < d - 5, B[{y) = -Jo (y - S)/5 ii y < 5 and 
Bi{y) = Jo{y + S-d)/5i{y>d-d. The value of Bi can be deduced by trivial integrations 
but does not enter into the upper bound result. We get (iB[)^J = ^^. We then use two 

results 

|im((S;)=)=0, 

|imO(v,b.B,)>-,|. 

We take the Hmit of 5 = 0 in equation (26) and get 

^fe) + f<,i. (36) 
such that the upper bound for the time average of the dissipation is D = 77-^ with 0 < c < 1. 
Take the Hmit c -> 1 and get D = -qJ^. Note that if we choose stress-free boundary 
conditions for the velocity fields, we obtain the same results because equation (34) holds 
also in this case. 

The upper bound for the dissipation is equal to the dissipation for the static solution. 
A first consequence is that this bound can not be improved if the manifold over which we 
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maximize D contains the static solution. Another consequence is that the dissipation tends 
to zero with r}. As described by Paparella et al. [11], this is an antiturbulence theorem. 
The physical behaviors of the two systems are different. Whereas their simulations show 
instabiUties of the laminar flow and formation of boundary layers, the numerical sunulations 
of the voltage-driven sheet pinch done by Seehafer et al. [12] show that the static solution 
is always stable, which is consistent with our upper bound result. 

4    Conclusion 

We have reported various results on bounds on the dissipation in MHD flows. We defined the 
Stokes-like solution of the MHD problem and have shown that it minimizes the dissipation 
over any divergence-free velocity and magnetic fields that are fixed at the boundary. Using 
the background method, we calculated upper bounds for the dissipation in two examples of 
MHD flows. In the case of a shear layer with both velocity and magnetic shear, an upper 
bound was derived and its dependency on the parameters was calculated. As a by-product of 
this calculation, the energy stability domain was calculated with a result that is bigger than 
previous results. In the case of the plane sheet pinch, the upper bound for the dissipation 
was achieved by the static solution and tends to zero with the magnetic viscosity. This is 
an antiturbulence theorem in the sense that there is no residual dissipation in the limit of 
zero viscosity. 

Note that the two examples differ only by the boundary conditions but their physical 
behaviors are completely different. Let us insist on the importance of the boundary condi- 
tions for MHD problems. So, a possible continuation of this work would be to modify the 
boundary conditions, mainly for the magnetic field. The effect of a non conducting external 
medium could be investigated. An inductive drive of the magnetic field would also be very 
relevant for Tokamak experiments. 

Only crude estimates of the quadratic forms have been done in the case of the shear 
layer. The domain in which the basic state is energy stable and the upper bound for the 
dissipation can certainly be improved by using more accurate inequalities. They may also 
be improved by taking into ax:count other evolution equations, for instance the one for the 
hehcity or the cross-helicity. 

This work has been done with another fellow, Alexandros Alexakis (see his report for 
other applications of bounds in MHD) and with the help of C. Doering, P. Morrison and 
J. Keller. I thank all of them for their enthusiasm and scientific advice. I also thank all of 
those who made the GFD program so pleasant and interesting. 

References 

[1] C. R. Doering and P. Constantin, "Variational bounds on energy dissipation in incom- 
pressible flows: Shear flow," PRE 49, 4087 (1994). 

[2] H. Tasso and S. J. Camargo, "On the nonlinear stability of dissipative fluids," Nuovo 
Cimento 107 B, 733 (1992). 

242 



[3] H. K. Moffatt, Magnetic field generation in electrically conducting fluids (Cambridge 
University Press, Cambridge, 1978). 

[4] J. B. Keller, A. Rubenfeld, and J. E. Molyneux, "Extremum principles for slow viscous 
flows with applications to suspensions," JFM 97 (1967). 

[5] B. Straughan,   The Energy Method, Stability and Nonlinear Convection (Springer- 
Verlag, New-York, 1992). 

[6] L. N. Howard, "Heat transport by turbulence convection," JFM 17, 405 (1963). 

[7] F. H. Busse, "Bounds for turbulent shear flows," JFM 41, 219 (1970). 

[8] H. Tasso, "Remarks on non-linear stability in dissipative magnetohydrodynamics," 
Nuovo Cimento 108 B, 827 (1993). 

[9] A. Soward, "Bounds for turbulent convective dynamos," Geophys. Astrophys. Fluid 
Dynamics 15, 317 (1980). 

[10] C. Y. Wang and A. Bhattacharjee, "Optimum theory for the energy dissipation in a 
turbulent pinch," Phys. Fluids B 3, 3462 (1991). 

[11] F. Paparella and W. R. Young, to be published in J. Fluid Mech. (unpublished). 

[12] N. Seehafer, E. Zienicke, and F. Feudel, "Absence of magnetohydrodynamic activity 
in the voltage-driven sheet pinch," PRE 54, 2863 (1996). 

[13] G. Bateman, MHD Instabilities (MIT press, Cambridge, 1978). 

[14] H. P. Furth, J. Killeen, and M. N. Rosenbluth, "Finite-resistivity instabilities of a sheet 
pinch," The Physics of Fluids 6, 459 (1963). 

[15] X. L. Chen and P. Morrison, "The effect of viscosity on the resistive tearing mode with 
the presence of shear flow," Phys. Fluids B 11, 2575 (1990). 

243 



Bounds on the Energy Dissipation on the Magnetic Couette and 
Poiseuille (Hartmann) Shear Flow 

Alexandres Alexakis 
University of Chicago 

1    Introduction 

We are going to study the stabiHty and bounds on turbulent dissipation shear flows in a 
conducting fluid when a vertical (with respect to the flow) magnetic field is applied. More 
precisely we are going to investigate Couette flow and Poiseuile (Hartmann) flow in the 
presence of the magnetic field. First using integral inequaUties we are going to estimate 
regions in the parameter spa<;e when the flow is energy stable. Then we are going to derive 
bounds on the dissipation valid even in the presence of turbulent flows. 

2    Couette Flow 

2.1    Preliminaries 

First we consider we plane Couette flow. We consider two plates separated by a distance 
d (from -d/2 to +d/2) that move with respect to each other with velocity iU*. The unit 
vector i is one of the horizontal directions and j is the vertical. Between the plates there 
is a conducting hquid of density p=l, magnetic diffusivity 77 and viscosity v. For the top 
and bottom boundary we use no-slip boundary conditions for the velocity and "line-tied" 
for the magnetic field, e.g. {B = JBQ) where BQ is an externally imposed field. We assume 
periodic boundary conditions for the other directions.The setup is shown in figure(l). 

+d/2 

-d/2 

Figure 1: The setup for magnetic Couette flow 

The equations of motion that govern this system are [1] 

dtu + u-Vu   =   - VP + BVB + uV^u 
dtB + u-VB   =   B-Vu + TjV^B (1) 
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Figure 2: The laminar velocity profile and the magnetic field lines. 

Where B is the magnetic field and u is the fluid velocity. There are three non-dimensional 
numbers that govern this system. Our choice is going to be the Reynolds number Re, the 
Hartmann number Q and the Prandtl number P or alternatively the magnetic Reynolds 
number RM- Their definition is given bellow: 

Re = 
U*d B2d 

Pr = -    (oT RM = RePr.^ 

The Hartmann number Q gives an estimate of how strong the magnetic field is when 
compared with the diflFusive velocities d/^/urj. In the limit Q -> 0 we should obtain the non 
conductive fluid results. The energy dissipation of this system is given by 

I> = i.(|Vti|) + r/(|VBr|) = ^D. (2) 

D is a non-dimensional form of the dissipation and our principal aim is to estimate it as a 
function of the non-dimensional parameters mentioned before. 

2.2    The Leiminar State 

The above set of equations allow for an exact laminar solution. Assuming homogeneity in 
the X and z direction and no time dependence we have u = iU{y), B = iB\{y) -f-JB2 and 

0   =   B2-dyBi + ud^U 

0   =   B2 ■ dyU + rjd^Bi 

B2   =    constant. 

(3) 

(4) 
(5) 

The last equation came from the solenoidal constraint on B. The above equations have the 
solution: 

Bi f."' cosh (j^)-cosh (^) 

sinh (Bid\ 
U = -U' 

sinh 
1 + 

sinh(r^'i ,2^5^; J 

(6) 

In the limit B2d/y/vrj -> 0 we return to plane Couette flow. The laminar solution for the 
velocity profile as well as the magnetic field lines is shown in figure (2). 
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Next we examine the energy dissipation Vis of the laminar solution.  The dissipation 
can be easily calculated from (2) and it gives 

1>is    =   V vise "r T^magn 

V Ad 

Bid 

+ (7) 

-    2V^ 

17B2U*^ 
coth 

( B2d\ 
Bid 

sinh' 

cothf-^) 

(B2d\ 
\2,/UfiJ 

(8) 

or in a non-dimensional form 

D = Re-iQcoth(Q) (9) 

There are a few points we have to make for the above equation. We note first that the 
viscous dissipation is always bigger than the resistive dissipation although the diflFerence is 
exponentially small for large Q. Moreover for fixed magnetic field B2 and velocity U the 
dissipation increases with the Prandtl number. In other words decreasing 77 increases the 
dissipation. In the limit f -> 00,77 -)■ 00 keeping the Prandtl number fixed the dissipation 
goes to the finite Umit ^PrB2U*^/d. Taking the limit Q = B2d/2y/uT} -» 0 we obtain the 
plane Couette dissipation 

'* — '^~J2' ^"^ ^^^ ^^^S® Q ^® obtain Vis — - 
1/ B2U*^ 

77     d 

2.3    Stability 

Next we examine the energy stability of the above flow. Writing the magnetic and the 
velocity field as the laminar solution plus an arbitrary perturbation u = Uu+v and Bi. f 1 = 
Bis + bwe obtain from (1): ^^^^^ 

dtu + vVv + U-Vv + vVU   =   -VP + B-Vb + b-VB + b-Vb + uV^v    (10) 

dtb + vVB + b-VU + vVb   =   B-Vv+ b-'VU+ b-Vv+ T]S7% (11) 

V-v = 0    ,    V-6 = 0. (12) 

where we dropped the index Is for convenience. Multiplying the first one with v and the 
second one with b adding them and taking their space average we obtain 

■^dt{v^ -f- 62) = _((„^„2 _ bib2)U') - ((6it;2 - vib2)B[) - 7,{\Vbf) - i/(|Vt;|2)        (13) 

where the prime indicates a derivative with respect to y and many terms dropped out due 
to the boundary conditions. Using the inequalities: 

{iviV2 - bib2)U') < |((t;2 + vl + bj + bl)) max \U'\ < ^{{v^ + ^2)) ^ax \U'\ 
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{{biV2-vib2)B[) < ^{{TVI + hl + Tvl + ifc?)) jnax|Bi| < \{{TV'^ + h''))mz.-^\B[\ 
T   ~ '        T 

(where r is a free parameter) and the Poincare inequaUty 

r2 
{\^v\') > ^m') 

we end up with 

^dt{v^ + b^)    < 
^^~2 ^^ '^'' ~ 2"^"^^ '■^^' 

iv') 

V-^ - ^^^P'l - 2:^max|Bi| {b') 

(14) 

(15) 

The energy of the perturbation is going to decrease if each term in the square brackets 

is greater than zero. Ehminating r and recaUing that max \U'\ = j^ coth ( 27^) ^^'^ 

max \B[\ = ^^ We obtain that for stabiUty: 

"1^ < 
2Tr^u     U*B2 ( B2d\ 

d2        2,/Ur} \2^J 
coth 

27r2j7     U*B2 

cP 
cothf^ 2y^ \2^J\ (16) 

where each term in the square brackets should be non-negative. 
In dimensionless numbers 

Q^Re^Pr < [27r2 - ReQcoth(Q)] • [27r2pr-^ - ReQcoth(Q)] (17) 

or 

Q2R2J < [27r2 - ReQ coth (Q)] • [2TT^ - RMQ coth (Q)] (18) 

For small Q we obtain that max{Re,RM} < 27r^. For large Q the range of RM.RS de- 
creases inversely proportional to Q (e.g. max{Re,RM} < 27rQ~^). Figure (3) summarizes 
our results. We note that the conditions we derived are sufficient for energy stabihty but 
their violation does necessarily not imply energy instabihty. 
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Pr=1.0 

0=0.0 Pr=a.O 

Pr=5.0 

25 30 

Figure 3: Energy stability reagions for magnetic Couette flow. The solid lines indicate the 
estimated stability boundaries for different values of Q. The dashed lines indicate constant 
Prandtl number 

2.4    Background Method 

Next we want to examine how the energy dissipation is modified when the flow is in a 
"turbulent" regime. We are going to use the Doering-Constantin background method [2] 
[3] to produce an upper bound on the dissipation. As in the energy stability method we are 
going to separate the flow to a background component iU{y), iBi{y) +JB2 that we are going 
to leave undetermined and a fluctuating component v, b. Following the same procedure 
in the energy method we obtain: 

as 

^dt{v^ + 62) = {viB2B[) + {hB2U') - {iviV2 - hhW) - {{biV2 - Vib2)B[) 

-i/(|Vt;p) - ;,(|V6|2) + ^{v,U") + r){biB'{) (19) 

where the linear and constant terms in v and b appeared because the background profile is 
no longer a solution of the MHD equations (1). To eliminate some of them we are going to 
add half of the total dissipation: 

ip = +lr.{\ViU + v)f) + ir?(|V(S + 6)|2) 

= l^l'^vf') + |r7(|V6|2) + uiU'dyVi) + r,{B[dybi) + lu{U'^) + IviB'i") 
^ Jit 

by doing so, we obtain 
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ht{v^ + 62) + ip = {V1B2B[) + {biB2U') - {{VIV2 - hb2)U') - {{Vib2 - hiV2)B[) 

-\^k^A^) - ^^(|V6|') + \v{V''') + \r){B'^^) (20) 

To get rid of the remaining linear terms we will use the transformation u = ly — \V{y) and 
b = P — iH{y) where 

uV" = B2B[     and     T]H" ^ B2U' (21) 

then 

dt£ + ^V   =   -{{wiW2-Pip2)U')-{{wip2-piW2)B[) + ^iy{\Vw\'') + ^ri{NP\'') 

+lu{U'' + V'^) + ^rf{B[^ + H'') (22) 

where £ = ^{v^ + iP'). We can write the above equation (22) in the form 

2dt£ + V = -QuB^+'Dbg (23) 

where QuBi is a quadratic functional on v and b that depends on our choice of the back- 
ground fields U and Bi, and Vbg is the dissipation due to the background field. Our aim now 
is to choose an appropriate background field so that the quadratic term QuB-i. is positive 
definite. If we succeed the we can prove by integrating over time that the the total energy- 
is bounded in time. More by taking the time average of (23) that the total time averaged 
dissipation is I? < V},g. 

From the form of QuBi a natural choice for the background magnetic field is going to 
be Bi = 0. For U we are going to use the piece-wise linear profile 

' {U*/25)y if    -d/2 <y   <-d/2 + 5 
U{y) = I   U*/2 if    -d/2+ 5   <y   <d/2-5 (24) 

\ {U*/25){d/2-y)        if    d/2-S      <y   < d/2. 

From (21) and the boundary conditions for b we also have that 

H{y) = ^ rU{y')-{U)dy'. (25) 
V Jo 

The background fields U and H are shown in figure (4). We can easily now evaluate the 
dissipation of the background field and it is found to be 

1_        uU*^l     BW*^ .     vU*"^ (\ , Blh 

Vtig obtains its minimum value for bmin = y/^wl^l, giving min{I>6p} = -^^^-^ 
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U(y) 

in  in+ i il2-i    d/2 d/2    <l/2+8 (1/2-5     (1/2 

Figure 4: The two background fields U{y) and fr(y). if* is equal to 828/Arj. 

Now we focus on the quadratic term QUB^ and try to determine the values of the free 
parameter 5 that make it definite positive. Formally we would need to solve for the minimum 
of QuBi that would lead to an eigenvalue problem that we would have to solve numerically. 
We are not going to follow this procedure here though but instead we are going to give 
rigorous estimates for the values of 5 that guarantee the positivity of QuBi- Using the 
fundamental theorem of calculus and the Cauchy-Schwartz inequality we can show that 

\Wi\ = f J-d 

dwj 

-d/2 dy 
{y')dy' f J-d d/2     oy -^^^|r./,O'0'^^ 

1/2 

(27) 

This implies 

/:>'<"H ^ i/-r" (/; m^^^ (L i^hT-^ 
^/-i:j^/-')(r(^)^^^) (r(i?)^-')'"- 

Including all the other terms in \Vwf we obtain 

/ U'{y)wiW2dx^ 

and similarly for /? 

^IT5/I^'"1^''-' = ^/I^HW. 

|yp'(y)Aftdt' s^4Jm ̂dx\ 

(28) 

(29) 

(30) 
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This implies for QuBi '■ 

QUBA^^I^}   =   i^<|V«;|'> + ^<|V/?P> + 2<C/Viti;2-/?i/?2)> 

> u{\Vw\'') + ri{\Vpf) -2\{U'wiW2)\-2\{U'/3ip2)\ 

> V (|V«;|2> + r? <|V/?p) - ^ <|Vt.|2> - ^ <|V/3|2> 

> (.-^)<|V.P>+(.-^)<iV^|^) 

(31) 

So Q(7Bi{'"'5/3} > 0 if we choose b < 4u/U* 
our estimates allow us to use. 

Ad/Re. This is the maximum value of 5 that 

^^ 4min{77,t/} 
<^<—t^;— = h (32) 

The smallest value oiVbg (keeping QuB^ positive) is obtained for 8 = imn{6min,8Q,d/2}. 
So we end up with our final result on the Couette flow that if Smin < 8Q we are going to 
use Smin to evaluate the background dissipation, which means that if 

4min{.,,}B2^^     then    VK""*^ 

U*y/ZU^ V^d W 
or in the non-dimensional form 

if        8Q> \/3max{Re,RM}     then     D< 
2Q 

VSRe' 

(33) 

(34) 

If on the other hand Smin > SQ we are forced to use 5Q in the evaluation of the background 
dissipation. So if 

4min{.^B. < l    then    I, < 1_^L_^ + fSH^OvO^ 
U*y/Zvri ~ 8min{i/,77}   d       3       77 d 

or in the non-dimensional form 

1 8 O 
if   8Q < V3max{Re, RM}    then    D < - max{Pr, 1} + 7^ —^. 

8 3Remax{RM5R-e} 

(35) 

(36) 

The first inequality (34) we have shows that for large enough magnetic field the dissipa- 
tion is bounded by a function with the same dependence on Re and Q as the laminar. The 
prefactor has only a 15% difference. This gives an indication that the flow should be close to 
the laminar solution. If the magnetic fleld on the other hand is not strong enough then the 
dissipation becomes independent of the Reynolds number Re and has only a dependence on 
the Praadtl number Pr. The increase of the bound on the dissipation with Prandtl number 
is an interesting result that we cannot yet determine if it is the outcome of a bad estimate 
or it corresponds to a physical mechanism for increase of the dissipation. 

251 



10" 

Pf=10,000 

Pr=lOO 

10' 

Pr=1 

10' 

10- 

Re^10.000 

10" 

Figure 5: The dissipation as a function of Q for different Prandtl numbers.  The dashed 
Une shows the laminar solutions dissipation. 

Figure 6: The dissipation as a function of Re for different Prandtl numbers. The dashed 
hne shows the laminar solutions dissipation. 
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Figure 7: The dissipation as a function of Re for different values of Q. 
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Figure 8: The setup for the Hartmann flow 

3    Magnetic Poiseuille (Hartmann) Flow 

3.1    Preliminaries 

Next we turn to examine the magnetic Poiseuille or Hartmann flow named after Hartmann 
who first examined this kind of flow [4]. We consider the same set up as in §2, only this 
time both the top and bottom plate are held fixed and there is a constant pressure gradient 
or a uniform force field F in the i direction. The same equations govern the current setup 
as in §2 with the addition of the force field in the momentum equation: 

dtu + u-Vu = - VP + B-VB + vV^u + F. (37) 

The non-dimensional numbers that parametrize our system are the Hartmann number de- 
fined as before, and the Grashoff number G and magnetic Grashoff GM number defined 
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Figure 9: The laminar velocity profile and the magnetic field lines. 

as 

G GM = GPr 

The energy dissipation is given by 

V = i.(|V«p) + 77(|VB|2) = F3/2di/2D (3g) 

where D is again the non-dimensional form of the dissipation we are going to use. 

3.2    Laminar Solution 

Assuming time and x - z independence again we end up with the system of equations 

0   =   B2 • dyBi + ud^U + F 

0   =   B2 • dyU + rid^Bi 

B2   =    constant. 

They can be solved easily and the solution is given by: 

U = 
Fd 

2B2 S cosh (^)-cosh (a^^ 
vv^y Bi = 

Fd 

2B2 d 

(39) 

(40) 

(41) 

(42) 

The laminar velocity and the magnetic field Unes are shown in figure (9). Again the limit 
Q -^ 0 brings us back to Poiseuille flow. 

We evaluate the dissipation again and find it to be 

-g\/!h(^)-^i B2d\ 

or in the non-dimensional form 

D = 
GV^ 
2v^Q 

coth (Q) - 
Q. 

(43) 

(44) 

D goes to ^ for Q going to zero, and D goes to ^ for Q going to infinity. Also as in 
Couette flow the dissipation goes to a finite limit as 1/ and 7? go to zero, keeping their ratio 
(Prandtl number) fixed. 
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Figure 10: Energy stability reagions for Hartmann flow. The solid lines indicate the es- 
timated stability boundaries for different values of Q. The dashed lines indicate constant 
Prandtl number 

3.3    Stability 

Next we examine the energy stability of the Hartmann flow. The evolution of the energy is 
given by: 

Idtiv'^ + 62) = -{{viV2 - h^h2)U') - {{vib2 - hv2)B[) - 77(|V6|2) - u{\Vv\^).        (45) 

Using the same inequalities as in the Couette flow we obtain 

B /        2 
Imax < 

(  27r2 \ / 27r2 \ 
(46) 

or 

p2 

Bl _^eothf-^)-l ]2      / 27r2     Fd\f 27r2     Fd\ .,^, 

that gives in the non-dimensional form 

G^ [Qcoth(Q) - l]' < Q2(27r2 - G)(27r2 - GM). (48) 

As before we find that the energy stability is decreased as we increase Q. Unlike the 
Couette flow though in the limit of large Q the stability curve goes to the finite limit given 
by G^ < 3(27r2 — G)(27r2 — GM) Our stability results are summarized in figure (10). 
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Figure 11: The two background fields U{y) and H*{y) 

3.4    Background Method 

Next examine the dissipation in the turbulent regime. Separating the flow to a background 
U,Bi,B2 and a fluctuating component b,v multiplying with b,v and taking the spacial 
average as before we obtain 

-dt{v^ + 62) = {viB2B{) + (biBiU') - {{viV2 - bib2)U') - {{biV2 - Vib2)B[) 

-u{\Vv\^) - 7y(|V6|2) + u{viU") + T,{biB'{) + {F ■ v). (49) 

Adding half the dissipation we get 

dtS + -V= {viB2B[) + {biB2U') + {Fvi) - ((VIT;2 - bib2)U') - {{v^ - biV2)B[) 

-^^(|Vt;p) - i,7(|V6p) + iv(0 + lrf{B[\ (50) 

Using V = {F.u) = (FU) + {Fvi) and v = t« - iV{y) and 6 = ^ - iH{y) where uV" = 
B2JBJ and rjB'-l = B2U' we can write (50) as 

2dtS - P = 2F{U) - Vtg + QuB, (51) 

with Vbg = i/(C7'2} + r]{H'^) and if = -f{U - (U)) and 

Qt/Bi = i'(|Vu;p) + 77(|V/?|2) + 2{{wiW2 - 0i/32)U') + 2{{wi^2 - W2pi)U') 

where we already picked J5i = 0 for a background profile. 
Contrary to the Couette flow case that the positivity of QuBi was leading to an upper 

bound on the dissipation, if QUB, > 0 then we have that V > F{U) - \Vbg which gives a 
lower bound on the dissipation. 

The velocity back ground field we are going to choose is going to be 

[ {U*/5)y if    -d/2 <y   <-d/2 + 5 
U{y) =<   U*) a    -d/2 + 5   <y   <d/2-5 (52) 

. (£/7<J)(d/2-y)        if    d/2-<5      <y   <d/2. 
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with U* and 5 undetermined parameters. U{y) and H{y) are shown in figure (11). Evalu- 
ating the background dissipation and F{U) we get: 

F{U) - 7:^1,3 = FU* - FU' [dj       d?    \5) 
2 /£ 
3 U iS 

c^FU*- 
d? 

/d\ _ Bp*^ 2 /A 
\5)        27?    3 \dj 

(53) 

where we dropped out terms of order [S/df.   
The above expression takes its minimum value when 5 = 5min = ^/Zvr\IBi and f/* = 
lJ*min={'^l^){FdlBi)yfi^ 

Now we turn to the quadratic term QuB-^ and try to determine the constraint on on b 
and U*. The calculation is identical with the Couette flow and gives that for QUBX > 0 we 
have to have f7*(5 < 2 min{i/, 77} = {U*S)Q. All we have to do now is to find the values of 
U* and 6 that give the maximum possible of 2F{U) - V^g with out violating the constraint 
QuBi > 0. If U^i^Smin < {U*5)Q then the obvious choice for U* and 5 is U^ and ^min 
that gives 

" ^min^rnin 
ZFdr} 
ABl 

< 2 min{i/, rj} thenPft^ > 
4B2 s (54) 

or in dimensionless form 

(55) 

If the condition U^in^min < {U*S)Q is violated then we have to evaluate the maximum of 
2F{U) - Vbg over U* and 6 under the constraint that U*5 = (JJ^)Q after some algebra we 
end up with 

3Fr? , ',      _        4\/2d /„     25^ min{i/, 77} \ ^^^   /minli/,77} 
(66) 

or in dimensionless form 

if 3.na.{G,GM} > 16Q' then D > ^ (l- 3^;^^^ J'^n-JntLP-^-'^'} 

(57) 

As in the Couette case for strong enough magnetic field the first inequality (55) indicates 
that the bound is very close (15% difference) to the laminar dissipation. On the other hand 
for small enough magnetic fields the bound on the dissipation becomes independent of Q 
and Re and decreases as the inverse square root of the Prandtl number for Pr > 1. This 
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Figure 12: The dissipation as a function of Q for different Prandtl numbers. The dashed 
line shows the laminar solutions dissipation. 

result is not in contradiction with the related result of the Couette flow that was giving a 
Hnear increase with the Prandtl number. The reason for the difference is the definition for 
the non-dimensional dissipation. If we had chosen D = Vd/{uf as our non dimensional 
dissipation we would have 

D = 
Vd Vd F^d 
(u)3        (P/F)3 X>2   - £)2 

that gives the same scaUng with Couette flow. The figures below (12,13,14) summarize 
results. 

our 

4    Discussion 

We have examined the dissipation for two different kinds of flows in conducting fluids 
with an imposed vertical (to the flow) magnetic field, namely magnetic Couette flow and 
Hartmann flow. We have derived bounds on the dissipation and determined the bounds 
behavior at high Reynolds and magnetic Reynolds number. One of our basic results is that 
the dissipation is tending to the laminar value if the magnetic field is strong enough. If 
the magnetic field is not very strong and the Reynolds number is large the dissipation is 
independent of Re and Q and scales as the first power of the Prandtl number if Pr > 1 
and is independent of it otherwise. The next figure (15) shows a quantitative comparison of 
experimental data [5] with our bound. The data show measurments of the drag coefiicient 
Cf as a function of Q. The coeflScient Cf is defined as: 

^     {W      {Uf ~ D2 
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Figure 13: The dissipation as a function of Re for different Prandtl numbers. The dashed 
line shows the laminar solutions dissipation. 
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Figure 14: The dissipation as a function of Re for different values of Q. 
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510* 

Figure 15: The drag coefficient Cf as a function of Q 

Although there is a two orders of magnitude difference from our bound which is not suprizing 
for the rough estimates we used, the bound seems to capture the behavior of the dissipat 
up to a prefactor. 

ion 
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On Cyclic and Oscillatory Convection in a 
Simplified Box Model with Entrainment 

Tomoki Tozuka 
University of Tokyo, Japan 

Abstract 

Fluctuating ventilation effect in a simplified box model with three tubes is studied 
theoretically. A small basin is cooled firom above and connected to an infinitely large 
isothermal basin with a layer of fresh water at the surface. A necessary condition for a 
new layer to form after a convection event is derived, and the model can reproduce 'cyclic 
convections' observed in past laboratory experiments. A parameterization for interfacial 
entrainment is formulated based on a potential energy budget. This introduces two new 
regimes to the model. One is an equilibrium state with the interface located in between 
the middle tube and the bottom tube with inflows at the top and bottom tube and an 
outflow at the middle tube. The other is an 'oscillatory ventilation' where the upper 
layer thickness does not grow monotonously, but oscillates. This regime is a result 
of balances between entrainment, surface cooling, and flow through the three tubes. 
Comparisons with laboratory experiments are made. 

1    Introduction 

The thermohaline circulation has been studied extensively due to its importance to global 
climate variation. The deep convection branch of the thermohaline circulation occurs in very 
confined regions[1],[2], and the Nordic Sea is one of the iraportant sites. Since the salinity 
is very low in the surface layer of the Nordic Sea, the convection caused by the intense 
surface cooling cannot reach to a great depth without an increase in salinity. Excluding the 
dense overflow, the most probable candidate for a source of salinity incirease seems to be the 
salty water below the surface[3]. In an attempt to understand this process, Whitehead[4] 
analyzed a simple box model both analytically and numerically. The model consisted of 
a smail basin cooled from above and a large isothermal basin with a sinrface fresh water 
layer maintained at constant thickness. The two basins were connected to each other by 
three tubes at top, middle, and bottom. Using a relaxation boundary condition for the 
temperature, multiple equilibria were obtained. As an extension of this study, te Raa[5] 
performed laboratory experiments and showed that two flow regimes exist; one is a self- 
sustained oscillation and the other is a steady-state with deep convection. However, the 
mechanism for this oscillation remains unexplained theoretically. Also, an interfacial mixing 
process was not considered in the box model theory. 

In this study, we expand earlier studies of oscillatory behavior in the simplified box 
model. The paper is organized as follows. In the next section, a description of a three- 
tube model and its behavior is presented. A necessary condition for the formation of a 
new layer after a convection event is derived. Also, a parameterization for the entrainment 
is formulated based on a discussion of potential energy budget. The theoretical model 
can then reproduce oscillations observed in the past laboratory experiments. In section 3, 
theoretical results are compared to laboratory experiment data. Conclusions are given in 
the final section. 
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Figure 1: Schematic sketch of the three-tube model. 

2    Three-tube Model 

2.1    Fornmlation 

Following Whitehead[4], a three-tube model is formulated here so that we can investigate 
the role played by the subsurface salty water. The importance of the middle tube may 
be further appreciated by comparing the result obtained here with two-tube model results 
presented in the Appendix. 

A small basin, which represents a small region which contains a deep convection site, 
is cooled from above. This basin is connected to an infinitely large isothermal basin with 
three tubes, one at the surface, the second one at a depth of dm, and the third one at the 
bottom. This differs from Whitehead[4], where the middle tube was placed at the depth of 
D/2. The depth of both basins is equal at D. A shallow fresh water layer of depth d^ with 
temperature To are maintained on top with temperature To and salinity So in the larger 
basin. The parameters in the large basin d^, To, and So are kept fixed. In response to the 
surface cooling, the small basin contains a well-mixed surface layer of depth h, temperature 
To + Ti, and salinity Si. The parameters in the small basin h, Ti, and Si can vary with 
time. A sketch of the box model is given in Fig.l. 

We assume that a linear flow resistance in the tubes maintains a relation between the 
volume fluxes through the tubes Qi and the pressure difference between two basins of the 
form 

where we specify that 

Qi = Ciipoi - Pi) for z = 1,2,3 

Ci = 7C , C2 = C3 = C 

(1) 

(2) 
are hydraulic resistances of tube i, and 7 is a positive real number. Let 77 denote the fluid 
surface elevation of the small basin relative to the large basin. Then, from the hydrostatic 
relation, the pressure at tube i is given by 

Pol =0 (3) 
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in the large basin and 

Po2 = Po9[du + (1 + PSo){dm - du)] 

Poz = Po9[du + (1 + PSo){D - du)] 

Pi = Pogr} 

(4) 

(5) 

(6) 

P2= < 

' pog[ri + (1 + /?5i - aTi)h + (1 + 0{So + S2) - aT2){dm -h)]ioz Q <h<dm 

. Po9[r] + (1 + ISSi - ocTi)dm] for dm <h<D 

P3 = PoOlv + {l + PS- aT)h + (1 + l3{So + S2) - aT2){D - h)] 

(7) 

(8) 

in the small basin. Here, the density is calculated using a linear equation of state and po is 
the density of fresh water at temperature To- The volume fluxes Qi obey 

Q2=< 

Qi = -'yCpogri 

{ Cpo9[-V - 0Sodu + {-I3S2 + otT2)dm 
+{0{So + S2- Si) + a{Ti - T2))h] for 0 < /i < d„ 

(9) 

(10) 

. Cpo9[-V - PSodu + {0{So - Si) + aTi)dm] ioxdm<h<D 

Qz = Cpo9[-n - PSodu + {-PS2 + aT2)D + (/?(5o + ^2 - Si) + a{Ti - T2))h] .     (11) 

Assuming that changes in the vertical acceleration with time are small, we obtain 

1 
T] = 

2 + 7 

for 0 < /i < dm, and 

[-2/3Sodu + 2{p{So + S2- Si) + a{Ti - T2))h + {-PS2 + aT2){D + dm)]   (12) 

7? = 
2 + 7 

[-2pSodu + {0{So - Si) + aTi)dm + (-^^2 + aT2)D 

+{0{So + S2- Si) + a{Ti - T2))h] 

ioT dm<h< D. Substituting  (12) into  (9),   (10), and  (11), we obtain 

(13) 

(14) 
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for 0 </i < rf^, and substituting (13) into  (9),  (10), and  (11), we obtain 

for d,„ < /i < D. 
The upper layer mass conservation equation is 

for 0 < /i < dm, and 

^ d< = ^' (20) 

^^ = Qi + 02 (21) 

for d„i < /i < D. The heat and salt balance equations are 

^'^^ = ^(^*-^^)-^^^^^(+^^) (22) PoCp 

JO 

^h-^ = -SiQiT{+Qi) (23) 
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A{D - h)^ = -T2Q2n+Q2) - r2Q3r(+Q3) (24) 
at 

A{D-h)^ = -S2Q2T{+Q2)-S2Qzri+Q3) (25) 

for 0 < /i < dm, and 

Ah^ = —(r* - Ti) - riQir(+Qi) - riQ2r(+Q2) (26) 
at      poCp 

Ah^ = -SiQiTi+Qi) + (So - 5i)Q2r(+Q2) (27) 

A{D - h)^ = -T2QzV{+Qz) (28) 

A{D - h)^ = -S2QzV{+Qz) (29) 

iox dm < h < D.  Here, we have taken that heat flux is proportional to T* — Ti.  This 
is called a restoring boundary condition for the temperature, and is also known as Haney 
boundary condition[6]. A zero salt-fl\ix boundary condition is used. 

When the density stratification in the small basin becomes unstable: 

p{To + n, Si) > p{To + T2, So + S2) (30) 

a convective adjustment occurs. 

2.2    Parameterization of Entrzdnment 

It is well known that entrainment plays an important role in upper ocean dynamics. In 
addition, te Raa[5] observed a strong interfacial entrainment in laboratory experiments. 
Thus, we here formulate an one-dimensional mixed layer model, which parameterizes the 
entrainment process at the interface, following Kraus and Turner[7] and Davis et al.[8]. 
We expect that an inclusion of entrainment should lead to more realistic representation 
of situations in the ocean and the laboratory experiment of te Raa[5]. The model results 
without the entrainment are provided in the Appendix. 

The upper-layer potential energy is defined as 

rO 

P = g       (z- Zo)pdz (31) 
J-D 

where z = Zo is & reference level, and z = —D is a level below the mixed layer at which 
turbulent and radiative fluxes of heat is assumed to be negligible. The density conservation 
equation is 

| + |Sy = 0 (32) 
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where v^fl is the vertical turbulent flux of mass. Here, advective terms have been neglected, 
because we cannot incorporate their effect in simple models such as the one considered in 
this study. Multiplying Eq.(32) by g{z - z^) and integrating it from z = -Z> to z = 0, we 
obtain 

dP f^ -r-;,        oca 
'dt^^J_   '^P'd^ + —QoZo (33) 

where 

Qo = ^^(0) = -Cpp;[7T^(0) (34) 

is the net downward heat flux at the surface. Note that the heat fluxes are assumed to 
vanish sX z = —D. 

From Tennekes and Lumley[9], the turbulent kinetic energy budget equation is 

(— + u • V + w—)ek = -gW^ - p^I^. —u - ^«;'(p' + e*) - pe (35) 

where 

efc = |(u ■ u + w'^) . (36) 

Here, the first term is the production of turbulent kinetic energy by the vertical buoyancy 
flux, the second term is the production of turbulent kinetic energy by shear, the third term 
is the vertical divergence of the turbulent flux of turbulent kinetic energy, and the final 
term is the viscous dissipation term. Again, the second term and the third term are beyond 
the framework of box model and are neglected. Also, based on the laboratory experiment, 
Deardorff et a/. [10] showed that a fixed fraction rUc (=0.83) of potential energy gained by 
the surface coohng is dissipated. Thus, the potential energy equation (33) can be rewritten 
as 

dP agD ^      aq „ 

For the bulk mixed layer with thickness /i, the potential energy equation is 

gh     dh     ag,   h^      h     ^ , 

Therefore, the entrainment velocity in the three-tube model is parameterized by 

where Ap is the density difference between the upper and lower layer. Since we are using 
the restoring boundary condition for heat, the entrainment velocity is 
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Including the entrainment process, the upper layer mass conservation equation can be 
rewritten as 

ioT 0 < h< dm, and 

A^ = Qi+Awe (41) 

A^ = Qi+Q2 + Awe (42) 

ioT dm<h< D. The upper layer heat and salt balance equations are rewritten as 

Ah^ = ^{T* - Ti) - TiQiT{+Qi) + A{T2 - T{)w, (43) 
at      poCp 

Ah^ = -SiQiV{+Qi) + A{So + S2- Si)we (44) 
at 

for 0 < /i < dm, and 

Ah^ = -^(T* - Ti) - TiQiFi+Qi) - TiQ2r{+Q2) + A{T2 - T{)we        (45) 
at      poCp 

Ah^ = -5iQir(+gi) + {So - Si)Q2r(+Q2) + A(5„ + S2- Si)we (46) 
at 

ioTdm<h<D. 

2.3    Non-dimensionalized Equations 

Using the transformations 

^'~Q7S'   '~ PSo'^~ D ''^- D  ' 

bo pbo Wss PoCpUis 

where 

(47) 

ft, = 25^ (48) 

the model equations are non-dimensionalized as 

Qi = 2du- 2(1 + S2- Si + fi - f2)h - (-52 + f2)(l + dm) (49) 

Q2 = -du + (-52 + r2)((7~' + l)rfm - 7"') + (1 + 52 - Si + fi - f2)h (50) 
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Q3 = -4 + (-52 + f2)(7-^ + l-7-l(4) + (l + 52-5i+fi      f2)h (51) 

dh        - 
(52) 

h J - Ka{f* - fi) - tiQiT{+Qi) + (f2 - fi)We (53) 

JO 

h-^ = -SiQiTi+Q^) + (1 + S2 - Si)we (54) 

j/rt 

(1 - h)-^ = -f2Q2T{+Q2) - f2QzT{+Qz) (55) 

(1 - h)^ = -52Q2r(+Q2) - 52Q3r(+Q3) (56) 

for 0 < ^ < <4i, and 

Qi = 2(4 - (1 - 5i + f{)d~rr, - {-§2 + fa) - (1 + 52 - 5i + fi - fa)^ (57) 

Q2 = -iu + (1 - 5i + fi)(l + 7-1)^;, - 7-i(-52 + fz) - 7-1(1 + 52 - 5i + fi - -f^yh 
(58) 

Q3 = -4-7 '(l-5i+fi)/^ + (l + 7-i)(-52 + r2) + (l + 7-^)(l + 52-Si+fi-f2)^ 
(59) 

dh     ^      ^ 
-^ = Ql+Q2 + We (60) 

^ di ~ ^"^^^   ^'^ ~ riQir(+Qi) - fiQ2r(+Q2) + m - r^tiJe (61) 

JQ 

^ ^/ -    SiQin+Q{) + (1 - 5i)(?2r(+Q2) + (1 + 52 - ~S{)We (62) 

0--h)^ = -f2QzT{+Qz) (63) 

{^-h)^ = -S2Q3ri+Qs) (64) 

ioT(U<h<l. Here, 

'(i + 52-r2)-(5i-ri) • 
(65) 
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2.4 New Layer Formation 

In laboratory experiments, it was observed that a new layer of low salinity water formed on 
top after a convective overturning (Whitehead, pers. comm.). In order to reproduce this 
phenomenon and resulting oscillations, we derive a necessary condition for this process to 
occur. 

Fresh water flowing in from the top tube tries to form a new layer above the well-mixed 
thick layer of temperature T2 and saUnity 1 + 52 after a convective adjustment, or the 
interface reaching the bottom. Since the upper layer thickness is ^ = 0 then, the volume 
flux Qi is 

Qi = du-f2 + S2. (66) 

A new layer is formed on top with a thickness of 

ho = QiAi (67) 

after one time step At. However, the new layer is quickly cooled by the surface heat loss, 
KaT*, and becomes denser. From the heat balance equation, an increase in the density of 
the new layer after one time step is 

_ KaT* At        KaT* ,    , 
Api = ~  ^.   = ;-— . (68) 

QiAt Qi 

To maintain static stabihty after the cooling, 

Api = -^<l + (52-f2). (69) 

Thus, the necessary condition for Qi to prevent convective overturning is 

Q, > ^°^* _    . (70) 
i + (52-r2) ^  ' 

Note that this condition is independent of the size of the time step. If this is not 
satisfied, the new layer becomes denser than the thick layer below, leading to another 
convective overturning. However, as the volume flux Qi progressively increases due to an 
increase in the density of the whole layer, the cooling of the thicker new layer decelerates. 
At some point, the above condition may be satisfied and the upper layer starts to grow 
again. 

2.5 Steady-state Solutions 

Numerous calculations were performed over varieties of parameter ranges and sensitivity of 
the model to dimensionless parameters were investigated. Calculations were initiated from 
jij = 52 = 5i = Ti = 0 and h = du with no flow at each tube. 

Figure 2 shows the sensitivity of the model to the depth dm- The inclusion of entrain- 
ment results in drastic changes in the equilibrium states.  This can be compared with no 
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Figure 2: Regime diagrams for the three-tube model with entrainment at Ka 
du = 0.03 for (a) 7 = 0.05 and (b) 7 = 1.0. 

= 0.5 and 

entrainment case illustrated in Fig. 11. When the cooling is weak, an equilibrium state 
with the interface above the middle-tube exists independent of 7 (indicated by '2 Layers 
h < dm')- The upper layer temperature becomes f* and all flow stops. 

Since the entrainment leads to a faster upper layer deepening and faster increase in 
upper layer density due to the salinity, the upper layer either reaches the bottom or becomes 
statically unstable at much weaker coohng than without entrainment. The interface reaches 
the bottom with forcing temperature f* as high as -0.52 with entrainment, whereas it 
reaches the bottom only after t* is decreased below -1.06 without entrainment. For a small 
7, an equilibrium state with only one layer emerges as the cooling is enhanced (indicated by 
'1 Layer'). For this regime, the upper layer either becomes statically unstable or reaches the 
bottom, but the volume flux Qi never accelerates enough to satisfy the necessary condition. 
The small basin has inflows through the top and middle tube, and outflow through the 
bottom tube. This corresponds to 'deep convection' state in te Raa[5]. 
_ EquiUbrium states depend upon the depth of the middle tube for a large 7. When 

dm is deep, the interface reaches the bottom once, but the model reaches an equilibrium 
state with the interface above the middle tube (indicated by 'R.B. 2 Layer h < dm')- On 
the other hand, an 'oscillatory ventilation' mode exists for shallower dm- This regime is 
a result of subtle interplay between entrainment, surface cooling, and flow through the 
three tubes. The upper layer thickness does not grow monotonously, but oscillates in the 
'oscillatory ventilation'. This is contrasted with 'cyclic convection', where the convection 
has a cyclic nature, but the upper layer grows monotonously. This regime appears as the 
cooling temperature is further decreased. They are discussed more in detail in the next 
section. 

The model is also very sensitive to the upper layer depth of the large basin (Fig. 3). 
Another interesting equilibrium state exists for relatively deep d^ with forcing temperature 
of -0.58 <f*< -0.46 for large 7 and -0.76 < f* < -0.46 for small 7. The model 
reaches equilibrium with the interface located in between the middle tube and the bottom 
tube. Since the pressure difference at the bottom tube remains even after the model reaches 
the equilibrium, the inflow through the bottom tube persists. Thus, the water flows out 
from the small basin only through the middle tube and no deep water is formed in this 
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Figure 3: Regime diagrams for the three-tube model with entrainment at Ka 
dm = 0.5 for (a) 7 = 0.05 and (b) 7 = 1.0. 

0.5 and 

regime. A similar equilibrium state exists for three-tube model without entrainment, but 
the pressure difference at the bottom vanishes completely and the flow through the bottom 
tube stops (Q3 = 0) when the equihbrium is reached. The time evolution of this regime is 
also discussed in the next section. 

2.6    Time-dependent Solutions 

For certain parameter range, very interesting oscillations are obtained (Fig.4), which do not 
exist in the model without entrainment (upper layer variables and thickness are set to zero 
in figures, when there is only one active layer after reaching the bottom or the convective 
adjustment). At t = 40, the interface reaches the bottom. As the volume flux Qi becomes 
large and satisfies the necessary condition (at f = 41), the upper layer starts to grow again. 
Although pi initially increases, it begins to decrease after Q2 becomes negative, and the 
salinity source at the mid-depth is lost. Then, Q3 {> 0) becomes larger than xve, and the 
upper layer starts to become shallower. This is possible because the upper layer grows 
rapidly without increasing its density much, and the integrated mass above the bottom 
tube; the entrainment leads to faster deepening but only redistributes the mass within the 
small basin. 

The inflow at the bottom tube (Q3 > 0) causes both T2 and 52 to increase, and since the 
temperature increase is faster, p2 decreases. This in turn makes the density difference p2—Pi 
smaller, leading to an acceleration of the entrainment. The increased rate of entrainment 
results in an increase in Si and pi, which leads to further decrease in the density difference 
and acceleration of the entrainment process. When We becomes larger than Q3 (at i = 142), 
the upper layer starts to grow again. Then, it reaches the bottom (at i = 168) and the 
whole cycle repeats itself. 

A self-sustained 'cyclic convection' is also possible (Fig. 5). We start our description 
of this oscillation from i = 4.3, when the upper layer starts to grow. The upper layer 
temperature 3\ decreases rapidly due to the surface coohng, while the saUnity 5i increases 
slowly due to the entrainment. When the interface descends below the middle tube at t = 5, 
the warm and salty water flows into the upper layer of the small basin {Q2 > 0), causing Ti 
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Figure 4: Time evolution of temperature, salinity, density, upper layer thickness, entrain- 
ment velocity, and flow rate at Ka = 0.5, du = 0.03, dm = 0.25, t* = -0.54, and 7 = 1.0. 

to initially increase and Si to increase steadily. At i= 7.8, the interface reaches the bottom 
and we now have one layer state in the small basin. Although the necessary condition for 
the new layer formation is not satisfied in the beginning, the density of the whole layer 
and the flow rate Qi gradually increase. Finally, the necessary condition for stable layer 
initiation is satisfied and the newly formed layer starts to grow fi-om t = 8.1. The 'cycUc 
convection' is also seen in the three-tube model without entrainment and the two-tube 
mode (see Appendeces). However, the salinity plays no role in the 'cycHc convection' of the 
two-tube model. 

Although it shows no oscillatory behavior, the equilibrium state with the interface m 
between the middle tube and the bottom tube shows very interesting features (Fig. 6), 
which cannot beobtained without the entrainment process. Until the interface reaches the 
middle tube (at f = 6), the outflow at the middle tube and the bottom tube have the same 
magnitude. After the mterface descends below the middle tube, the outflow through the 
middle tube accelerates, while the flow at the bottom tube reverses (at f = 8). As the model 
approaches the equilibrium, the inflow through the bottom tube Q3 and the entrainment 
velocity We balance each other. 

3    Comparison with Laboratory Experiments 

The number of laboratory experiments is still hmited, but we believe that it is worthwhile 
to make some comparison with the theoretical results obtained in the present study. The 
experimental set up is identical to the box model used in this study. The middle tube was 
placed a.t dm = 0.5, and the surface fresh water layer of thickness d^ = 0.05 was maintained 
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Figure 7: Time evolution of the temperature and salinity obtained in laboratory experiments with 
(a) T* = -22°C, (b) T' = -30°C, and T* = -18°C (provided by Whitehead). 

in the large basin. 

Figure 7 shows time evolution of the density contributions of temperature and salinity 
at different forcing temperature. All three experiments are similar to the behavior of 'cyclic 
convection'. For each cycle, the temperature at the top initially decreases due to the surface 
cooling. However, the temperature and salinity increase afterward due to the entrainment. 
When the density stratification becomes unstable, a convective overturning occurs and 
another cycle starts. 

The experimental results further suggest that the period becomes shorter as the surface 
forcing is enhanced; the periodis 40000 seconds for f* = -18° C, 7500 seconds for t* = 
-22°C, and 2200 seconds for f* = -30°C. This is qualitatively consistent with our box 
model result (Fig. 8). The period becomes shorter, because the inflow through the top tube 
is larger and the entrainment velocity is faster when the surface forcing is enhanced. 

Although an upside-down version of the three-tube model was used (heating is at the 
bottom and a layer of salty water is maintained at the bottom of the large basin) for practical 
reasons, experiments in te Raa[5] contain the same physics. Hence, more comparison are 
made with the present theory. In her experiments, the middle tube was also placed at 
dm = 0.5, and the bottom salty water layer of thickness du = 0.033 was maintained in the 
large basin. Prom experiments, it was determined that Ka = 1.2 and 7 = 0.004. 

Our box model successfully explains some of the unexplained phenomena in the experi- 
ment. First, the mechanism for the shift in flow regime as the surface forcing is strengthened 
was unknown. In order to clarify this transition, we made a regime diagram of f* and 7 
(Fig. 9). We decided to vary 7 in the regime diagram since 7 seems to be the most uncertain 
value derived from the laboratory experiments. When 7 is about 0.15, the present model 
successfully reproduces this shift at f* = -1.3. The shift itself occurs, because it becomes 
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Figure 8: Period of 'cyclic convection' for Ka = 0.5 and Ka = 1-0, when du = 0.05 and 
drrt = 0.5. 
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more difficultto satisfy the necessary condition (70) as the surface forcing is enhanced. The 
volume flux Qi slowly increases with the strengthening forcing for small 7. 

In addition, a reason for not being able to find the shallow convection state, or '2 Layers 
h< dm' mode, is also clear from Fig. 9 . The shallow convection state exists only when 
T* > -0.50 in the model with entrainment, whereas in the laboratory experiments of te 
Raa[5], \f*\ was set between 0.8 and 1.7. If the entrainment is excluded from the box model, 
the existence of the shallow convection state is predicted in this forcing temperature range. 
Therefore, this gives an additional evidence that the entrainment is a crutial process here. 

However, the period of oscillation in laboratory experiments, especially when the cooling 
is weak, is much longer in the experiments than in the box model theory. Also, the value 
of 7 suggested from this study is much larger than the experimentally determined value 
of te Raa[5]. One possible reason for these inconsistencies is the linear flow relation we 
used in our box model; it may not correctly explain the flow through the three tubes in 
the laboratory experiments. Although the linear equation of state is used in this study, 
nonlinearity certainly becomes important as the temperature and salinity varies over a 
large range. Also, the double diffusive processes may play an important role, since the 
small basin is in the 'diffusive-layering' regime (cold and fresh water over warm and salty 
water). 

4    Conclusions 

We have found two distinct modes for the oscillatory behaviors of the simplified three- 
tube box model. Two new processes are included in the box model in the present study 
comapared with the past studies[4],[5]. 

First, the necessary condition for a new layer formation has been found. It applies 
after the convective adjustment occurs or the interface reaches the bottom. This allows the 
model to have 'cyclic convection'. Then, the entrainment process is parameterized, where 
a fixed percentage of potential energy input by the surface cooling is used to entrain water 
from the lower layer. This introduces two new equiUbrium states to the model. One is the 
equilibrium state with the interface located in between the middle tube and the bottom 
tube. This has inflows at the top and bottom tube and an outflow at the middle tube. The 
other is an 'oscillatory' mode where the upper layer thickness does not grow monotonically, 
but osciUates. This regime is a result of subtle interplay between entrainment, surface 
cooling, and flow through the three tubes. 

The current result may represent some aspects of the thermohaline circulation in the 
real ocean. As suggested by Fig. 3, a thickening in the surface fresh water layer outside 
the deep convection site may shut down the deep water formation without changing the 
heat flux (for small 7 at about -0.7 <f*< -0.5). For thick fresh water layer, a '2 Layers 
h > dm' mode with inflows at the top and bottom tube and an outflow at the middle 
tube exists. On the other hand, we have a '1 Layer' mode with inflows at the top and 
middle tube and an outflow at the bottom tube for thin fresh water layer. This feature is 
also simulated in the past coupled GCM studies [11]. When freshwater was released to the 
North Atlantic Ocean (between 50°AT and 70°N), the thermohaline circulation weakened 
and became shallower, allowing deep inflow of Antarctic bottom water. 

Although the box model presented in this paper is very simple, this study suggests the 
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important roles played by the freshwater layer above the halochne and salty water below 
it. Also, it was shown that it is important to take entrainment process into account even 
in simple box models. Future studies should shed light on the role played by the double 
diflusive process and nonlinearity in equation of state. 
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Appendix A: Two-tube Model without Entrainment 

Formulation 

In this Appendix, a two-tube model is constructed by removing the middle tube.   By- 
comparing resits obtained here with results in section 2, the importance of the middle tube 
will become more clear.  Since we want to concentrate on the role played by the middle 
tube, the entraninment process is omitted from the two-tube model. 

Using same assumptions, the volume fluxes are 

Q, = -Q, = .l£MR[^f3^So + S2- 5x) + a{n - T2)) A _ /3S^^ ■ + {aT2-pS2)] (71) 

the upper layer mass conservation equation is 

(72) 

and the heat and salt balance equations are 

^'^'^'=p!;(^*-^^)-^^^^rM,) (73) 

Ah^ = -5iQir(4-Qi) (74) 

dTo 
A{D-h)-^ = -T2Q2T{+Q2) (75) 

A{D-h)^ = -S2Q2r{+Q2). (76) 

Using the following transformations 

Q,_Qi    f_     ocTi    ^      du    .      Si     -      aT*    -    AD^ ■iP-             ^a 

PoCpQs 
(77) 

where 

^      -rCpog^SoD 
7 + 1 (78) 

the nondimensionalized equations are 

Ql = -Q2 = -[(1 + S2-Si+fi- f2)h -du + {f2- -S2)] (79) 
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§ = Qi (80) 
at 

h^ = Ka{f* - fi) - fiQir(+(5i) (81) 
at 

h^ = -5iQir(+Qi) (82) 
at 

(l-h)^ = -f2Q2T{+Q2) (83) 
at 

il-h)^ = -S2Q2T{+Q2). (84) 
at 

Thus, we have three dunensionless parameters for this simple model. 
The necessary condition for a new layer formation is 

* > -irf^ • '^=' 
However, there is an upper bound for the volume flux Qi, which depends on the value of 
f* and dui 

Qi<du-f* (86) 

or 

Qi<du~f*-1 (87) 

in case the small basin loses all of its salinity. This is possible when the upper layer reaches 
the bottom or after an infinite number of convective adjustments takes place. Hence, the 
new layer cannot form when 

.   du-f*< ^°      - (88) 

or 

du-f*-l<Ka (89) 

for no salinity. 
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Figure 10: Regime diagrams for the the two-tube model with Ka = 0.5. 

Steady-state Solutions 

Equilibrium states of the model is discussed for progressively stronger cooling. When the 
cooling is weak, the modelreaches equilibrium before the interface reaches the bottom. The 
upper layer temperature fi is quickly cooled and becomes f*. The volume flux Qi and Q2 
become zero and the equilibrium depth of the upper layer is 

/leg — 
du 

T* + l (90) 

Since there is no interfacial mixing in this model, we have assumed that Tb = ^2 = 5i = 0. 
In order to reach equilibrium before reaching the bottom (heq < 1), 

f*c+l>du (91) 

For the forcing temperature below f*c, the interface reaches the bottom before reaching 
the equiUbrium state. However, if the cooling is not strong enough to strengthen the flow 
to satisfy necessary condition, it is not possible to form a stable new layer. Now, we obtain 
a new equiUbrium state with one fresh layer of temperature f*, and the volume flux as 
predicted from Eq.(87). Finally, a third 'cycHc convection' regime can exist as the forcing 
temperature is decreased further. The above mentioned three regimes in the two-tube model 
can be summarized by Fig. 10. 

Appendix B: Three-tube Model without Entrainment 

Equilibrium states withdifi'erent cooling temperature are investigated using different values 
of middle-tube depth dm (Fig. 11). Equilibrium states have no 7-dependence at forcing 
temperature T* below -1.06. At weak cooling {f* < -0.72), the model has an equilibrium 
state with the interface above the middle tube, but when the cooling is enhanced, the model 
reaches an equilibrium state with the interface between the middle tube and the bottom 
tube.   For small 7, an equilibrium state with 1 layer emerges, when cooling is further 

280 



(a)-p0.05 (b)-p1.0 

0.5 

0.4 

,5^ 0.3 

0.2 

0.1 

Cyclic 
convection 

2 Liyers      2 Layers 
h > a„ h < d„ 

-1.5 -1 

T* 

-0.5 

Figure 11: Regime diagrams for the three-tube model without entrainment at Ka = 0.5 and 
da = 0.03 for (a) 7 = 0.05 and (b) 7 = 1.0. 

0.2 

0.15 

■o      0.1 

(a) r=0.05 

1 Layer  \ 

2 Layers  / 
h>d„    / 

\    / 

/ 

2 Layers 

0.05 

\/ 

0.2 

0.15 

■0      0.1 

( b)T=1-00 

\ 

Cyclic 
convection 

2 Layerar 

1 

2 Layers 

0.05 

1 
y 

-1.5 -1 

T 

-0.5 -1.5 -1 

T' 

-0.5 

Figure 12: Regime diagrams for the three-tube model without entrainment at Ka = 0.5 and 
dra = 0.5 for (a) 7 = 0.05 and (b) 7 = 1.0. 

enhanced. On the other hand, 'cyclic convection' regime appears for large 7; with larger 
7 values, the volume flux at the top tube becomes larger, so that it is easier to satisfy the 
necessary condition (70). 

Similarly, three-tube model is sensitive to the fresh water layer thickness of the large 
basin (Fig. 12). Compared with shallow du, the interface reaches the middle tube at warmer 
T*, but the equilibrium states of 'cycUc convection' or '1 Layer' emerges at colder T* for 
deeper du- 
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Bound on the Heat Transport through a Layer from the 
Boundary Layer Theory Perspective: Fixed Heat Flux 

Evstati G. Evstatiev 
University of Texas, Austin 

1    Introduction 

Bounds on the heat transport in the Rayleigh-Benard convection problem is a fundamental 
problem. The first mathematical formulation of the problem was given in the pioneer paper 
by Howard[l]. The problem was formulated as an optimization problem. The motivation 
was that nature might "choose" to realize a process that maximizes the heat transport 
when the flow is turbulent. This is only a hypothesis, but in certain cases the features 
of the solution to the so formulated problem has qualitative agreement with real physical 
flows. In any case, the solution of the maximization problem gives a bound on the quantity 
of transport of heat flux. 

The problem of thermal convection can be realized in different experimental settings. In 
some, the boundaries can have infinitely bigger thermal conductivity that the fluid in the 
layer. This is the so caUed "fixed temperature" problem. In other experimental settings we 
might have the opposite case: The fluid's thermal conductivity might be much larger than 
the thermal conductivity of the boundaries; the latter is "fixed heat flux" problem. The 
physical basis for this nomination is that in the former case the fluid on the boundary has 
the temperature of the boundary whereas in the latter, this is not required. Instead, the 
heat flux through the boundary, which is proportional to the gradient of the temperature 
on the boundary, is fixed. In this study we are concerned with the fixed heat flux problem. 

Despite the different boundary conditions arising from different experimental settings, 
the physics behind both phenomena is similar. When the temperature difference between 
the upper and lower plates (or analogously, the temperature gradient) is small, the fluid 
is in a pure conductive state so that the velocity throughout the layer is zero. As we 
start increasing the temperature difference (or the heat flux), the system becomes unstable 
and the fluid starts to move. There is a critical parameter that describes when this first 
happens—a control parameter. This is the Rayleigh number. As we keep increasing the 
Rayleigh number, the fluid sets into turbulent motion. 

In turbulent regime it is believed that quantities reach asymptotic behavior and have 
certain scaling determined by the Rayleigh number. For example, the quantity that de- 
scribes how much bigger the heat flux in a turbulent regime is, compared to that in a 
pure conductive state, is the Nusselt number Nu. In the fixed temperature problem the 
scaling derived in the paper by Howard[l]— maximizing over fields with one horizontal 
wavenumber—is Nu ~ Ral, while the scaling derived by Busse[5]—maximizing over mul- 
tiple horizontal wavenumbers—is Nu ~ Ra^. In a recent paper by Otero et ol. [3], using a 
different method, it is shown that the scaling for the fixed heat flux problem is iVu ~ Rok. 
However, for a single horizontal wave number C. Doering and J. Otero[4], following a method 
by Howard[2], have derived an estimate that leads to a scaling Nu ~ Rari. We will try 
to follow the Howard-Busse approach and derive a scaling for the Nusselt number in the 
fixed heat flux problem, using a single wave number approximation. We will comment on 
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applying the multi-alpha approach developed by Busse[5]. 

2    Formulation of the Problem 

We describe the physical setup in this section and then formulate the problem. Consider 
a fluid between two horizontal infinite plates. The lower plate is heated so the fluid at 
the bottom is hotter than the fluid at the top. There are two opposing forces that act on 
the fluid—the buoyancy force and the gravity. The equations that describe this convection 
problem are the Boussinesq equations 

-^ -I- u • Vu + IpVp - agTk = z/V^u, (1) 

V • u = 0, (2) 

^ + u • vr* = KV^T*. (3) 

The meaning of the quantities in the above equations is the following, u = {u, v, w) is 
the velocity vector, p is the deviation of the pressure from the hydrostatic pressure, cor- 
responding to the horizontal average of the temperature, a is the coefficient of thermal 
expansion, g is the acceleration of gravity, T* is the temperature, K is the thermal con- 
ductivity of the fluid. The fluid occupies the space in the direction of z from 0 to d. The 
boundary conditions are 

dT* 
u(0) = u(d) = 0,    K 

dz 
dT* 

=  K- 
dz 

= —K0 = const. (4) 
d 

We split the temperature in a horizontal averaged part T*, and a deviating part T, so 
that 

T* = T*+ T. (5) 

Our notation is: An over-bar denotes horizontal average, and angle brackets—volume 
average. Then we can write 

(-^^I 
d  

wTdz. (6) 

If we multiply Eq. (1) by u and average over the volume, we get 
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ag{wT) = u{\Vuf). (7) 

This equation expresses the balance between the rate of generation of energy motion in 
the field of the buoyancy force a^rk, and the rate of dissipation of energy by viscosity. If 
we average Eq. (3) horizontally, using the boundary conditions for u and T*, we obtain 

dwT*       (PT* 
= K- 

dz dz^ 

Since w = 0, wT* = v/T. Prom Eq. (8) we see that 

(8) 

and therefore the sum in the braces in Eq. (9) is constant equal to the its average over 
the volume 

—rr^ dT* wT-K—r- 
dz 

,  ^>        1  /"*   dT* 
=     {wT) -K- K—- 

d JQ      dz 
AT 

=   {wT) + K-—, (10) 
d 

where by definition 

-AT = T^(d)-T^(0). (11) 

Finally from (10) we obtain 

dJ^       AT     ,  ^,      

Multiplying Eq. (3) by T, averaging and using (12) we obtain 

K-i [{wT)"" - (WT"")] + — {wT) = K <| Vr|2> . (13) 

Putting (7) and (13) into a dimensionless form with d as a length scale, n/d as velocity 
scale, and /3d as a temperature scale have the two "power integrals" (called so in the paper 
by Howard[l]) 

R{wT) = {\V^\^), (14) 
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Ar {wT) + {wTf - (^ = <|VTp> , (15) 

where R = ag^d^/nv is the Rayleigh number based on the given constant heat flux 
at the boundary. Its relation to the Rayleigh number based on the temperature difference 
between the plates is 

Ra = RAT. (16) 

Define the Nusselt number as the ratio of the total heat flux and the conductive heat 
flux through the layer. The total heat flux is given by —K/3, whereas the conductive heat 
flux by —KAT. In dimensionless form we have 

Nu = ^, (17) 

where now AT is dimensionless temperature difference. The problem we will try to solve 
is to find a bound on the Nusslet number (17) i.e., we will try to find a relation between 
Nu and the Rayleigh number R (or, Ra.) of the form Nu ~ R^ for some p. We do this in 
the following sections. 

3    Bounding as a Minimization Problem 

Multiplying Eq.(8) by z, integrating by parts and using the boundary conditions for T we 
obtain for the left-hand and the right-hand sides 

z-j-2- dz = -Kd/3 + KAT, 

^  dl^ , .,  _ 
z—-— dz = —d {wT) 

dz 

and after putting those in a dimensionless form we have 

AT = 1 - (wT). (18) 

Using (18), we rewrite the power integrals (14) and (15) in the form 

i?(«;r) = <|Vv|2), (19) 

{wT) - (^') = <|Vr|2> . (20) 
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Using (19) in the right-hand side of (21) by (wT) and regrouping we get 

(^) = w-^^(ivvp>(ivm ^^y 

Substituting (21) into (17) and using (18) we can write 

1 _ {wT^)-{wTf + i{\Vn\^){\VT\'') 

^ (^^) ^^^^ 

Maxiniizing the Nusselt number is equivalent to minimizing (22). The maximal Nu Will 
provide a bound on the total heat transport throughout the layer of fluid. Therefore, we 
will look for a minimum of the functional 

^r   Ti     (^')-<«^^)' + ^<|Vup><|VT|2> 
^ 1^' ^J = 7=r: , (23) 

{wT) ' 

where A = l/jR. 
The so derived functional is to be minimized among functions that satisfy the boundary 

conditions 

v(0) = v(l) = dT/d2|,=o = rfT/d2|.=i = 0, (24) 

the continuity equation 

V • V = 0, (25) 

and the power integrals (19) and (20). 
We continue the analysis in the following section by making a certain simplification. We 

will assume a single wave number horizontal dependence of the test functions. 

4    Bound with a Single Wave Number 

We assume the following form of the functions w and T 

w{x,y,z) = u}{z)<f>{x,y) 

Tix,y,z) = e{z)<f>{x,y) 

and the function 0(x, y) having the properties 
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(5 + $) ^(^'^) = -«'^(^'2/).    <^' = 1- (26) 

Now we can write 

<|Vr|2> = (e'2 + a2^2^ (27) 

We note that the continuity equation alone is not enough to determine the relation 
between u and (|Vvp), but if only the minimum of the latter is requested, we can write 

(|Vv|2> = <a-2a;"2 + 2a;'2 + a^u^) . (28) 

With (27) and (28) we can express the functional (23) in terms of only a; and 9 only 

:r [a;, e] = ^ ^^-^ ^ ^^^j^ '-. (29) 

The boundary conditions for the functions u and 6 are 

u} = u' = e' = 0   at   2; = 0,1. (30) 

Since the functional (29) is homogeneous of degree zero in co and 6, we can choose the 
amplitudes of the test functions so that they satisfy two conditions 

{uO) = 1, 

<a;2> = {6') . (31) 

The Euler-Lagrange equations following from the functional (29) are 

Eqlwe"^ {l-J")- (OJO) e + X (e'^ + a'^e^) [a-^iJ'' + 2a;" + a^w] = 0 (32) 

Eq2u^e {1-T)- {uO) u + X [-0" + a^O] {a-^cj"^ + 2u;'^ + a^u'^) = 0 (33) 

Since these equations are difficult to solve analytically, we resort to numerical methods 
to solve them. The results are given in the next section. 

In the rest of this section we apply the boundary layer approximation. It consists of the 
following. The form of the functional (29) suggests that the minimizing functions should 
be nearly constant throughout a large portion of the interval [0,1]. To satisfy the boundary 
conditions, u will need to drop to zero together with its derivative, and so will the derivative 
of 6. Therefore we expect that there will be a narrow interval around the two boundaries 
where the derivatives of the functions will have large values—boundary layers. The values 
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of the functions will change fast within these boundary layers and the thickness of the 
latter will determine the magnitude of their growth. The contributions to the integrals 
are expected to come predominantly from the boundary layers. Therefore, we will derive 
equations that describe the functions w, 9 only in the boundary layer—the boundary layer 
equations—and will approximate the full interval of integration by integration over the thin 
boundary layers (there are two of them.) 

Note that the first two terms in (29) are of order one, see (31). To minimize the functional 
and comply with (31), both of them will approach the value of 1 so that their diflFerence 
approaches zero. The two tendencies—the terms with the derivatives approaching zero and 
the difference between the first two terms approaching zero—must occur simultaneously 
and have the same order of magnitude. In mathematical form, the above reasoning can be 
formulated as follows. Assume the following scaling of the boundary layer thickness (as a 
small parameter we choose A = 1/jR) 

a; = APwi,    e = \-^0i,    z = \^(i,    a^ = X-%\ (34) 

where the functions wi, Oi are of order one inside the boundary layers. From the argument 
above 

rel (co^e^) -^1   as   A ->• 0. (35) 

Because of the relation (cj^e^) = ^(1 + (1 - ^5))^^ we see that as w^ ^ 1 we must have 

(35). Substitution of (34) into (29), and taking into account (35), we obtain 

,,-.,,..-.^-(^y,,,,,.-^^^^ 
(36) 

After expansion of the terms in the square brackets we obtain the following exponents 

r,   l + 9-4r,   1 - 2r,   l-2p-r-q,   l + 2p-3r,   l-g + 2p-r,   l-2q.       (37) 

We need to maximize the minimal possible exponent among (37). Let e be the minimal of 
all exponents. Of all 7 inequaUties, consider 

r   >   e, (38) 

l + q-Ar   >   e, (39) 

l-2g   >   e. (40) 

Multiplying (38) by 8, (39) by 2, and adding to (40) we get 3 > 11 from which we deduce 
that e = 3/11. By adding 4 times (38) to (39), and using (40) we get 4/11 = 5e - 1 < 
q < 1/2(1 - e) = 4/11, so that q = 4/11. Similarly, from (38) and (39) we get 3/11 = e < 
r < 1/4(1 + q-e) = 3/11, and thus q = 3/11. Prom the fourth and fifth of (37) we find 
1/11 = e-l + 3r<2p<l-r-5-e = 1/11 which shows that p = 1/22. For these 
values of p,g,r all exponents in (37) take the same maximal value of 3/11 except the third 
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and sixth, which become 5/11 (we neglect those.) Hence the maximum value is uniquely 
3 

determined. If we set T = \^T\, we obtain within the boundary layer approximation 

^.=./(i-....)^<. ^[{^y.^ ^^-fi^y-^ (41) 

We need to minimize ^i among functions wi and 6i that satisfy the boundary conditions 

a;i(0)=a;'(0) = ^'(0) = 0, 

6i ->■ 0,    wi^i ->    as   C -^ oo. 

Varying Ti with respect to u)i, 6i , and 6^ we find the following equations 

b-^UTeldc + b'' ^-(l-a;i^i)^: = 0, 

K^P^ dC + b'\^ + {l-u;iei)ui = 0, 

I /V^dc + fe2 + [2 ^e'M + 62 -26 
/•OO 

-^ /   a;"2 dC + 1 = 0. 

From (42) and (43) we obtain 

[/•OO 1     roo /"OO 

2/   ^i^^C + t^    /   '^"^'^C   =     /    (l-a;i^i)wiMC = 
^0 J ./o Jo 

[/•OO T     roo 

and therefore 
/•OO /"OO 

/   a;"2dC   =   62 /     ^^2^^ ^ ^2^ 
Jo Jo 

a which defines /i. Substituting these into (44) we find 

2Ai + 62 + (2AI + 62)(-2/i6-2 + 1) = 2(2/z + 62)(1 - fxh'^) = 0 

which shows that n = b'^. Using this in (42) and (43) we find 

3(d^a;i/dC^) - (1 - wi^i) ^1 = 0, 

Zb^{d'^ei/dC) + (1 - wi^i) ux = 0. 

Setting 

a;i = (36^)6Q,    ei = (36^)-6e,    < = (36)3^, 

equations (46) and (47) become 

d^f2/de^ - (1 - Qe)e = 0, 

d2e/dC^ + (1 - f20)fi   =   0. 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 
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These equations have boundary conditions $1(0) = n'{0) = e'(0) = 0, 0 -)■ 0 and fie -?■ 1 
as ^ ^ oo. The functions Q. and 0 can be determined independently of knowing b. Once 
we know the solutions of (49), (50), we can determine b 

rdaticm      b'^^tJi= f   G'^^dC, = (36^)-5(36)-| H (—\  d^ 

from which 

»'=3./(^)dC (51) 

We can see from (49) and (50) that 

Using the renormalization (eq:renorm) and the relation (51) in the functional (23) we find 
for the minimal value of Fi 

^1 = 3361 (53) 

herefore, the minimal value of the functional (??) becomes T = 336'*A n or 

^ = 336^i?~". (54) 

We note that the equations (1) and (2) follow from the following functional 

Relations between different quantities are given below 

Nu   =   (336'')-^/2n = (336^)-Ti?ai, (56) 

R   =   (3364)-Ti?aT, (57) 

,„i     ,Ra.i 
a   =   fcilii =(33)^ (58) 

z   =   {3b)^R-Ti, (59) 

ij{z)   =   (336'»)ii?-s,fl (go) 

e{z)   =   (336^)-5i?^0. (61) 

As seen from (56), from the boundary layer theory we have the scaHng Nu ~ Ras, the same 
as in the fixed temperature problem. To further test this scaling, we do some numerical 
computations. The results are given in the next section. 
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Figure 1: Velocity and temperature deviation: Fixed flux. R = 10^, a = 8.5456. 

5    Numerical Results cind Discussion 

In the previous section we used asymptotic methods to derive a particular scaling of the 
Nusselt number in the limit of large R. In this section we solve the complete equations (46), 
(47) (the single alpha approximation) for finite R. We will try to verify as much as we can 
the asymptotic theory's prediction of the 3/8 scaling. 

First, in Figure 1 we present the plots of the velocity and the temperature profiles for 
R — W. The minimizing wave number has value a = 8.5456. For comparison, we give the 
similar plot for the fixed temperature problem in Fig. 2. We note the following difference. 

In the rising and falling parts of the velocity profile there is a slight bend which is absent 
in the analogous plot for the velocity profile for fixed temperature. Our investigation showed 
that this reflects the different boundary conditions of the fixed heat flux problem (to see 
that, we solved the the Euler-Lagrange equations (46), (47) with zero boundary condition 
for the temperature deviation 6; also, we solved the equations for the fixed temperature 
problem with boundary condition 0' = 0 and we observed the bend appear.) As we increase 
the Rayleigh number R, this bend becomes more and more pronounced: In Fig. 3 we 
present a plot of the velocity for i? = 10^. 

The difference between the fixed heat flux and the fixed temperature problems is also 
shown in Fig. 4which is compared with its fixed temperature analogue shown in Fig. 5. 

In Fig. 6 we show the product of u and 6 and, again, compare that with its fixed 
temperature analogue in Fig. 7. The two curves have very similar behavior. 

Next we show our results for the dependence of the Nusselt number on i? on a log-log 
plot, Fig. 8. 

Our data (pluses) is compared to the data points (dotted Hne) kindly provided by 
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0-0 0.2 04 O.e 0.B 

Figure 2: Velocity and temperature deviation: Fixed temperature. R = lOi^, a = 11.1778. 

Figure 3: Velocity (this run was made with a different normahzation of the velocity and 
temperature deviation.) R = 10^, a = 19.3072. 

oa> oj» 0.40 OK on ixio 

Figure 4: Derivatives of u and 0: Fixed flux. R = 10^, a = 8.5456. 
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Figure 5: Derivatives of a; and 6: Fixed temperature. R = lO*^, a = 11.1778. 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 6: Product of w and 6: Fixed flux. R = W, a = 8.5456. 

' 0.0 02 OA 0.6 o.e 1.0 

Figure 7: Product of a; and 6: Fixed temperature. R = 10^, a = 11.1778. 

293 



so eil 7,0 t.0 9.0 100 

Figure 8: \og{Nu) vs. log(i?). 
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Figure 9: Optimal wave number a. 

Rodney Worthing. Having found the minimizing values for the wave number a numericaUy, 
from relation (58) we can determine the value of b. For J? = 10^ it is 6 = 0.446. With 
this value and with relation (56) we plot the bounding curve suggested by the theory in the 
preceding section (dashed Hne.) 

Finally we give plots for the dependence of the wave number on R. First we compare 
our data points to those of Rodney Worthing in Fig. 9. 

Then in Fig. 10 we compare that with the theoretical prediction of C. Doering and 
J. Otero[4] who derived the scaling Nu ~ Ra^. They predict the dependence a^^ RTf, 

whereas we deduced in the preceding section the dependence a ~ i?n. We have transformed 
the curves so that our theoretical curve be a horizontal line. From this plot we see that the 
Doering-Otero theory agrees somewhat better than what follows from the prediction of the 
preceding section. 

We wanted to see if we really capture the asymptotic behavior—and the scaling—with 
our numerical data that extends up to iZ = 10^. We calculated the slope for the analogous 
dependence \og{Nu) vs. log(i2) for the fixed temperature problem. We ended up with 
similar values for the slope at R = lO^-^: 0.41.  It has been proved that the single wave 
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Figure 10: Optimal wave number a. 

3 

number bound gives a scaling Nu ~ Hs (3/8 = 0.375.) This leads us to the thought that 
we would have to go to much higher values of the Rayleigh number R than 10^. 

Another way of estimating the value of 6 is by solving the boundary layer equations 49) 
and (50). We approached this problem in a couple of different ways. In one way we tried 
to minimize the functional (55) by truncating the upper boundary to some finite value (say 
4), solving (49) and (50) up to this value and evaluating the functional (55). We considered 
the boundary conditions for 0, fi" and fi'" at the upper limit of (55) as parameters and 
so tried to minimize J with respect to those parameters. In the other way we used a 
boundary value problem solver provided by Matlab, again, assuming that we have reached 
asymptotic behavior of the solutions for some finite value of the independent variable ^. 
Then we changed this value and solved the problem again. In both ways we encountered 
some problems. In the first approach we were able to do several iterations (using gradient 
methods) in the course of minimizing J. However our results were very sensitive to the 
initial point we chose and were not very consistent. In the second approach we observed 
extreme sensitivity on the truncation limit. Generally we would expect that increasing the 
the truncation value would lead to convergence of the solution. Unfortunately that was not 
the case: The solution changed dramatically even for small changes of the truncation Hmit 
(e.g. from 4 to 4.5.) In fact, beyond some point we were not able to find a solution at all. 
Our second approach worked very successfully for the fixed temperature case which differs 
only by the boundary condition for the temperature deviation 6. 

The difference in the velocity profile suggests the possibility of different structure of the 
boundary layer in the fixed heat flux problem. It may be the reason for our difficulties 
in solving the boundary layer equations. It also suggests the possibility of two boundary 
layers, or signifies of the importance of an intermediate region (between the boundary layer 
and the interior part where the functions are predominantly constant.) This question could 
be clarified by a successful attempt in solving the boundary layer equations and comparing 
their solution to the solution of the complete Euler-Lagrange equations in the single alpha 
approximation. 

Finally we comment on applying to the problem of bounding the heat transport the 
multi-alpha approach developed by Busse[5]. If we assume that the scaling 3/8 is correct, 
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we find that in this general case the Nusselt number scales as Nu ^ Rs or, equivalently 
Nu ~ Ra2. The latter result has also been found by Otero et al.[Z] by applying the 
background method developed by Doering and Constantin. 
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Infinite Prandtl Number Convection 
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Abstract 
We study the asymptotic scaling with Rayleigh number, Ra, of the vertical heat 

transport through a layer of fluid of infinite Prandtl number confined between two hor- 
izontal plates. The plates are at fixed temperature with heating from below. Previous 
work based on Howard's optimum theory yields an upper bound on the Nusselt number, 
Nu, that scales as Ra^^^. Using the Background method a rigorous upper bound of 
jRa^/^ has been deduced and with additional information derived from the governing 
equations an improved bound of the form Ra}/^ {log Ra)'^/^ can be derived. In this re- 
port we investigate why the Background method falls short of the earlier result obtained 
using Howard's optimum theory. We show that these two methods seek to optimise the 
same functional within a min-max scheme. We compute the optimal piecewise linear 
solution to the Background method and examine the associated eigenfunctions. 

1    Introduction 

The theoretical study of variational bounds on turbulent transport quantities began in 
1963 with Howard's Optimum Theory [1]. In the absence of an incompressibility con- 
straint Howard solved Euler-Lagrange equations analytically to obtain an upper bound on 
the heat transport in turbulent Boussinesq convection which scaled like Ra^/"^. Later the 
constraint of incompressibility was utilised and boundary layer methods were developed to 
solve Howard's Euler-Lagrange equations for the maximum heat transport problem. Two 
theoretical tools emerged. The first was the single-a [2], or single horizontal wave-number, 
test function method. The solutions to the boundary layer equations in this analysis yield 
a lower bound on the true optimal solution. The second method, due to Busse [3], was 
the multi-a solutions, a multiple boundary layer solution of the underlying Euler-Lagrange 
equations, with an arbitrary number of horizontal wave-numbers. Busse's multi-a solution 
was indeed the optimal solution to Howard's variational problem. 

The multi-a solutions of Busse were later used by Chan [4] to calculate an upper bound 
on the heat transport for the closely related problem of infinite Prandtl number convection. 
Chan found an improvement to the asymptotic scaling of the upper bound on the heat 
transport by imposing the momentum equation directly as a point-wise constraint. He 
calculated an upper bound on the heat transport with an asymptotic scaling of Ra^^^. 

In the nineties a complementary variational problem for bounding the heat transport 
in turbulent convection was developed by Doering and Constatin [5]. The so-called Back- 
ground method seeks to estimate the optimal solution to the maximisation problem from 
above, therefore any test function satisfying certain well-defined constraints will yield a 
rigorous upper bound on the heat transport. The duality of the Optimum Theory and the 
Background method was proved for the problem of arbitrary Prandtl number convection by 
Kerswell [6]. The Background method has recently been applied to the problem of infinite 
Prandtl number convection in two distinct ways. First, using piecewise linear test func- 
tions and standard functional inequalities an upper bound of Ra^^^ was calculated which is 
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uniform in rotation rate for rotation perpendicular to the fluid layer [7]. Second, using the 
Background method and the extra information that the temperature at any point may not 
exceed the maximum temperature on the boundary an upper bound of Ra^^^{log Ra)^/^ 
was deduced [8]. Though not uniform with respect to rotation this upper bound captures 
the form of Chan's result with a logarithmic correction. 

In a number of other fluid problems, namely plane Couette flow, pipe flow or Poisuille 
flow, and arbitrary Prandtl number convection, piecewise linear test profiles for the Back- 
ground method have been able to achieve optimal scaling in these variational problems. 
Since Chan's result imphes that the optimal scaling for infinite Prandtl number convection 
is Ra^/^, it is interesting to ask why piecewise linear test profiles do not capture the opti- 
mal scaling in this problem. Otero [9] also found a 2/5 scaling by numerically optimising 
the upper bound over piecewise Unear test profiles and hence showed that the functional 
estimates used to calculate the upper bound in [7] are tight. 

The structure of this report is as follows. We first introduce the basic equations for 
infinite Prandtl number Boussinesq convection and define quantities and derive identities 
which wiU be fi-equently referred to in the rest of our presentation. Secondly we will study 
the seemingly disparate variational methods of Doering-Otero and of Howard-Chan. We 
will show that both of these methods can be derived fi-om a single specified functional. 
We will verify the numerical calculation of the optimal piecewise linear test profiles due to 
Otero and produce trial functions for Chan's dual problem which will be used to construct 
lower bounds on the optimal upper bound. 

2    Basic Equation and Derived Quantities 

We consider convection between two infinitely extended parallel plates with fixed temper- 
ature on the plates. We impose no-slip boundary conditions on the plates and periodic 
boundary conditions for all variables in the a;,y-plane. Gravity is perpendicular to the 
impenetrable plates and the fluid sandwiched between the plates is incompressible. 

2.1    Basic equations 

The basic first order equations of motion for this system are the Rayleigh-Benard equations. 
In non-dimensionalised form these are as follows 

-l^ + uVuj +Vp = R&Tz + Au (1) 
1 /au 

- + u-VT = AT (2) 

where the control parameters are the non-dimensionalised temperature difference across the 
layer Ra, the Rayleigh number, and the ratio of kinematic viscosity to thermal diffusivity 
a, the Prandtl number. In the limit of infinite Prandtl number the inertial terms in the 
momentum equation drop and we are left with a linear dependence of the velocity field on 
temperature 

Au -I- RaTz = Vp. (3) 
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We can dispense of the incompressibility constraint V • u = 0 and the pressure in the 
following manner. Let M := Au + RaTz — Vp = 0 and denote by A/3 the third component 
of Af. The components of Equation (3) are 

Av = py 

Aw + RaT = pz 

where u = {u, v, w). With the help of incompressibility taking V • {AT} yields 

Ap = RaTz 

and taking A{Mz) gives us 

A^iu + RaAT = Apz 

substituting for p we form the only dynamical constraint for this problem 

(4) A^w + RaA^r = 0 

in which the horizontal Laplacian applied to T is defined as A^ = ^ + ^. So we have 
seen that the horizontal velocity components u, v are purely depending on the diagnostic 
pressure variable. In Figure (1) we show how the problem is entirely reduced to this point- 
wise constraint and boundary conditions for w only. 

At 

y       ^ 

U = 0,      T = 0 «; = u;^ = 0,      T = 0 

H, V-u = 0 A^u; + RaAijT = 0 

z = 0 
u = o,   r = i u, = io^ = o,   r = i 

(a) (b) 

Figure 1: Comparison of the point-wise constraints and boundary conditions in (a) finite 
Prandtl number Rayleigh-Benard convection and (b) infinite Prandtl number convection. 

2.2    Notation 

The periodic domain in x,y is defined as [0,I/x] x [0,Lj,].   Horizontal and global space 
averages can be defined: 

{■)■■=-rr     ^^/   ^y(-)'     <(•)>== / ^^(-^ J-'xJL'y  JQ Jo Jo 
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Long-time average: 

((•))oo = ^im^<(-))r 

and the L2-norm: 

ii(-)ii = <(-)V^'. 
For functions depending on z only we use a prime to denote the z-derivative of that function 
so 

I'^-y-l- 
2.3    Definitions 

Equation (2) can be rewritten as 

^ = -V.Ci + J) 

where j is the conductive heat flow, j := - VT, and J is the convective heat flow, J := uT. 
In the purely conductive state the average heat transport between the plates is 

0 = 1 (5) 
(z • (-vr)) = -T 

The total average heat transport between the plates is 

(z.(j + J)) = l + (ioT) (6) 

We define the Nusselt number, Nu, as the ratio of the long-time averaged total heat transport 
to conductive heat transport across the plates. This is simply the ratio of the expressions 
in Equation (6) and Equation (5), therefore we have 

Nu = l-H<«;r)^. 

Using the global entropy flux balance, l^U) = 0, 

||lirf-h||vr||2 = i + (^,T) (7) 

and appealing to the temperature maximum principle, we find the foUowing equivalent 
definitions of Nu as a simple consequence 

Nu = (IIVTf )^ (8) 

We will see below that the point-wise constraint in Equation (4) and the global entropy 
flux balance constraint (7) are at the centre of both of the bounding problems. 
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3    Doering-Otero Approach 

The background decomposition of the temperature field is 

r(x,t) = r(z) + e(x,t) (9) 

where T{Z) takes up the fixed temperature boundary conditions, r(0) = 1 and T(1) = 0, 
and 6 must therefore satisfy homogeneous boundary conditions. Substituting this change 
of variables into the heat equation yields 

^ + u-Ve = Ae + r"-WT'. (10) 
ot 

We have the following identity 

||VT||2 = ||Ve||2 + ||r'||2-2(0r"), (11) 

and multiplying Equation (10) by 6 and taking the global average produces 

^^ll^lP = -||V^ll' + <^-"-«^^-'>- (12) 

Adding 6x (12) to (11) gives 

^|pil + l|Vri|2 = ||r'f-P(r,«;,^,6) (13) 

where ^ = ((6 - l)||V^|p -{b- 2)6T" + bw9r'). By adding a balance parameter, b, we are 
generalising the work of Otero, who takes 6 = 2 to remove the centre term in Q. 

Taking a long-time average we have the following upper boimd on the Nusselt number 

Nvi<\\T'f-mi{g{r,w,e,b))^ (14) 

provided that inf ^ exists. We can drop time averages here because the infimum will be 
achieved by steady fields. 

To minimise G we set up the following Lagrangian 

L = g- (9(x)(A«; + RaA„e)) 

where g(x) is a Lagrange multiplier with natural boundary conditions which imposes the 
point-wise constraint in (4). By taking the horizontal average of the 6 variation of L we 
uncover the mean of the optimal fluctuation in terms of r 

^ = -2(6 - 1)A9 - (6 - 2)T" + bwr' - R&A^q = 0. 
o9 

The q term drops when we take a horizontal average ^x = 0, and we find that 
ou 

2(6 - 1)^" + {b- 2)r" = 0. 
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Two integrations and consideration of the boundary conditions reveal that 

If we subtract off the mean part from the fluctuation field by setting 6 = 6-9 and substitute 
this into Expression (14) we yield the following: 

If r(2) satisfies the spectral constraint Q{r,w,6,b) = Ub- l)\\V6f + h{6wT')\ > 0 

over all fields {w, 6) which satisfy ii.'^w + RaA„^ = 0 and the relavent boundary conditions 
(Figure 1(b)), then the following upper bound on Nu holds 

''"-'^4(fe^M'-l)- (15) 

We must also have 6 > 1 in order that the quadratic functional Q has a minimum value. 

4    Howard-Chan Approach 

We begin by assuming statistical stationarity for all horizontal averages, then {wT)^ = 
{wT) and moreover 

Nu=.l + (u;T). 

We make the mean-fluctuation decomposition of thejtemperature field T = T + 6. Where 
now T is the time independent horizontal mean and ^ = 0. 

A horizontal average of Equation (2) after integration gives 

dT     —r 
— = wd-{w6)-\ (16) 

and multiplying Equation (2) by T and global averaging yields 

then inserting (16) into (17) we deduce the so-called second power integral 

\ve\\''-v\\^e-{w6)f) = {w6). (18) 

We can form unity by taking the ratio of terms in the previous balance 

i^MzJlM! 
\\w6-{we)f 

and subsequently we can define the homogeneous functional which Chan [4] seeks to max- 
imise. Let F := Nu - 1 and multiply the above representation of unity by {w6) to form a 
homogeneous functional 

( 

^ _ {w9)-'^ {w6)\\Vef 
||u;^-(tx;^)||2 
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the supremum of which is an upper bound on Nu - 1. The maximisation of F is performed 
over the competitor fields and the constraint in Equation (18) is imposed post facto by 
normaUsing {w6) = F. 

Chan studied the following Lagrangian form 

G = F- {q{yi){A'^w + RaAj)) (20) 

where g is a Lagrange multiplier satisfying natural boundary conditions which imposes the 
point-wise constraint in Equation (4). This is exactly the functional Eq. (25) in [4] without 
the normalisation {w9) = 1. Taking variations of this functional with respect to w and then 
6 one finds that 

SG _ g(2(wg) - IIygf)     2Fe^ - {wO))     ^2   ^Q 

•^"^      ||^-(u;^)||2       \\we-{we)f 

SG _ 2{we){w + A9)-w\\Ve\\'^ _ 2Fw{we - {we}) _ ^^^     ^ Q 

Se ~ ||^-(u;^)||2 ||^-(u;^)||2 

Multiplying these equations through by ||u;^ - {w9)\\^ and substituting in 

||V^f = (u;^)-||^-(t/;^)|P 

we deduce the following Euler-Lagrange equations for w and 6 

e (^{w9) + IM - i^^) f) -2F9(^- {w9)') - (A2g) ||^ - {w9) f = 0,        (21) 

2A9{w9)   +   w(^{w9) + \\^-{w9)f) (22) 

-   2Fw (w§ - {w9)\ - Ra(A^g)    w9 - {w9) = 0. 

It can be shown that if we normalise w and 9 as Chan does, namely w -^ {w9)~2R~2w 
and 9 ->• {w9)~2R29 so that {w9) -> 1 then equations (22) and (21) become exactly the 
Euler-Lagrange equations (27) in [4] which Chan solves using Busse's multi-a solution. 

Having derived the Doering-Otero and Howard-Chan approaches in the previous two 
sections we now turn to proving the duality between the two methods. 
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5    A Unifying Functional 

Claim: The Doering-Otero principle and the Howaxd-Chan principle both seek to optimise 
the following functional 

N:=\\VTf-b{en)-{q{x){A^w + K^AJ)) (23) 

where 0 is defined as in (9) and V. is the heat equation 

90 
H:= — + U-V0-A0 + WT'-T" = O 

Proof: 
We start by deriving all of the variational derivatives of N. In terms of r and ^ we have 

N{T, W, 0, b, q) = Wr'f - {{b - 1)\V0\'^ - (6 - 2)0T" + bOwr') (24) 

-(g(x)(A2«; + RaA„^)) 

Variations are taken in r, 0, w, q and then variational equation for the mean and fluctuating 
part of 0 are deduced. 

— = -2r" + {b- 2)0" + b(^)' = 0 

5N 
60 = 2(6 - 1)A^ +{b- 2)T" - bwr' - RaA^g = 0 

5N_ 
Sw 

= -b0T' - A^g = 0 

— = A^w + Ra.Ajj0 = 0 

SN 

50 
= 0        { 

( 5N -,, 

SN 

I   S0 
j = 2{b- 1)A^ - bwr' - RaA^g = 0 

Part 1: Doering-Otero Principle 

Solve ^ = 0. 
60 
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Two integrations give 

^=^'^+^-^1 
Plugging this into AT we have 

N{T, W, e,h,q)-l = —^ (llr'f -!)-((&- 1)| V^p + Wwr') - {qi^){A''w + IUAJ)) 

Compare this with the functional Otero studies. Setting fe = 2 we have N = ||r'|p - 

/|V^p + 26WT'\ — (g(x)(A^u; + RaA^^)) and the fluctuation field has no mean part. It is 

clear that we must require 6 > 1 to ensure that a minimum of the right hand side exists. 

Part 2: Howard-Chan Principle 

5N 5N 
Solve —=- = 0 and -jr— = 0 simultaneously to deduce equations for the background field 

se or 
and the mean of the fluctuation field in terms of the mean-less fluctuation field 6. 

b 

Plug these expressions into N, of Equation (24), noticing that tvO = w9, after some algebra 
we have 

Niw,e,b,q) = 1 + {we) + (6-1) {{w9) - M- {we)f - \\vef] (25) 

-{q{-x.){A'^w + R&Aj)) 

Now we see that the Lagrange multipUer b is imposing the global entropy flux balance 
(Elquation 18) and q is imposing the point-wise constraint in Equation (4). The remaining 
variational equations for w and 6 are 

SN 
-^ = w + {b-l)lw-2w(w§- {wO}) + 2A^| - RaA^? = 0 (26) 

5N 
^ = 0 + (b-l){e- 26 (^-{we)^^ - A^g = 0 (27) 
Sw 

-SN 5N 
We can calculate (6 —zr) = 0 and (w -;—) = 0 in order to obtain a value for b.  The 

59 ^    5w' 
equations to be solved are 

(2-6)(u;^)-Ra((A„g)^) = 0 
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and 

(2 - h){we) + 2(6 - 1)11 V^lp - {{d.\)w) = 0. 

Given that {{^\)w) = (^(A^u;)) = (g(-RaA„(9) we can add these two equations and solve 
for b to find that 

^ _ \\vef - 2{we) 
\\ver-{toe) (28) 

With the use of the second power integral we can rearrange this expression to give 

fe-l=   -^ . (29) 
||«;^-(u;^)||2 

for easy insertion back int_oEquations (26) and (27). Inserting and multiplying the resulting 
expressions through by \\we - {wO)]]'^ we arrive at the expressions 

e (^{we) + \\we- (we) f) -2e{w9) (p- {we)'j - {A\) \\^- {w'e)f = o      (30) 

2A^(u;^) + w [{wO) + \\we - {we)\f^ - 2w{we) p - {w0)'\ (31) 

-Ra(A^9)||^-{u;^)||2 = o 

Replax:ing the (wB) which multiply (w§ - {w§)^ in both equations by the functional F 
we have exactly the Euler-Lagrange equations that were derived from Chan's homogeneous 
ratio (Equations 21-22). 

As a final comment we note that for the problems to intersect the Howard-Chan problem 
must also satisfy the spectral constraint so that the top maximum is selected. This means 
that (6 - 1) > 0, which is consistent with Equation (29) since (wO) is positive due to the 
second power integral. 

6    Piecewise Linear Background Profiles 

In the framework of the Background method rigorous upper bounds on Nu are easily cal- 
culated by using piecewise Unear test profiles for r (see Figure 2). These functions are 
odd functions about the channel midplane, they take the value of 1/2 in the interior of the 
channel and change Unearly over two boundary layers of thickness 5, such that they satisfy 
the boundary conditions on r, and the derivative of r is: 

'0    for z € {5,1 - 6) \ 

T   = < 

—r     Otherwise. 
26 
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'" = 5 

Figure 2: Piecewise linear r. 

We take 6 = 2 in keeping with Otero [9], in which case Nu < (r'^). Simple integration 

shows that the upper bound on the heat transport is Nu < ^ if r satisfies the following 

condition 

(32) T is an admissible test function if inf Q > 0 

for all toand 6 with A^w + RaAjjO = 0 and w = Dw = 9 = 0 a.t z = 0,1 . 

The piecewise Hnear profile which produces the lowest upper bound is found by min- 
imising the following functional 

G = Q- (g(x)(A«; + RaA^O)) + 2X{{e^) - 1) 

where 5 is a point-wise Lagrange Multiplier imposing the momentum constraint, and A is 
used to normalise 6. The Euler-Lagrange equations for this functional are 

,     Ra 2 
WT + —k q, xe = {D^ 

0 = 2^T' + (£>2 - k^)\ 

0 = (£>2 - A;2)2«, - Rak'^e, 

(33) 

(34) 

(35) 

where all of the fields have been Fourier expanded as / = f{z)e^^'^, and each variable g, w, 
and 6 now only depend on z and must satisfy the following boundary conditions 

e = w-Dw = q = Dq = 0        at 2; = 0,1. 

Given that only r' is discontinuous aX z = 5 and z = 1 — 5 we must solve for w, 6 and q 
inside three regions [0, S\, [5,1 — 5] and [1 — 5,5], and impose matching conditions between 
the regions. Since equations (33-35) are second order in 6 and fourth order in w and g, the 
natural matching conditions are 

[6] = [DO] = 0 

[D^w] = [D'g] = 0 for i = 0,1,2,3 

where [/] denotes the jump in the value of / at either z = 5 01 z = l — 5, and the superscript 
denotes the nth 2;-derivative. 

307 



6.1 Solution Using Complex Eigenfunctions 

In Otero's thesis he successfully applies the method of finding complex analytic eigenfunc- 
tions to many variational problems in turbulent convection. The assumption is made, and 
later accounted for, that the most critical eigenfunctions are even about the mid-plane. 
Thus the following symmetry conditions are also imposed: 

D0 = Dw = D^w = Dg = D^g = O        at 2 = 1/2. 

The solutions is then required in only two regions: 

Region I: [0,6]     Region 2: [S, 1/2]. 

A is set to zero and equations (33- 35) are solved in complex eigenfunctions on each region. 
The boundary conditions at 2 = 0 are built in to the solution in Region I and the symmetry 
conditions at z = i are built in to the solution in Region II. The 10 matching condition 
are used to specify 10 unknown coefficients in the two solutions. These conditions can be 
collected in to a 10 x 10 Hnear homogeneous system, say Mx = 0, where x represents a 
vector of 10 unknown coefficients. Non-trivial solutions exist if detM = 0. The following 
numerical recipe is used to optimise the upper bound: 
Technique: 

• Fix Ra. 

• For fixed k graph detM versus 6 and find the minimum S such that detM = 0, label 
this ^0- 

• Select the minimum So over all fc, label this ^c- 

Then 5c corresponds to the largest 6 for which condition(32) holds and hence the lowest 

upper bound for piecewise linear profiles is Nu < —. 
26c 

6.2 Calculating the Eigenvalue Spectrum of Constraint (32) 

It is easily shown by multiplying Equation (33) by 6, globally averaging and using constraints 
(34) and (35), that Q = -A. Condition (32) is thus equivalent to requiring that the highest 
eigenvalue, say Ao, of eigenvalue problem (33) subject to (34) and (35), over aU A:-space are 
negative semi-definite. We can therefore repose condition(32) as 

T is an admissible test function if 
XQ := maxjt Ao satisfies AQ < 0. (36) 

We calculate the spectrum Ao(fc) of Equations (33-35) using finite difference methods 
together with the shooting technique to match the solutions on each region at the point 
z = S. X^ is found to be a monotone increasing function of S. We are able to find the critical 
S, say Sc, for which AQ = 0 as illustrated below. 

Technique: 
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Ao 

Figure 3: The spectrum of Equations (33-35) at Ra = 10^ and optimal boundary thickness 
Sc = 1.3457 X 10-3. 

• Fix Ra. 

• For fixed S calculate Ao(fc) and find its maximum XQ 

• Vary S until AQ = 0 

The envelope of the eigenvalue spectrum Ao(A;) is found to have a unique maximum. We 
denote the wavenimiber at which the maximum occurs by kc- This procedure leads us to 
the critical S for which condition (36) is marginally satisfied. It is the same 5 as calculated 
by the numerical scheme used by Otero. Figure 3 shows an example of the spectrum at 
Ra = 10^. 

6.3    Comparison of Numerics 

For comparison of our numerical technique with that of Otero we calculate Sc at six points 
in log(i?a)-space between 4 and 9. The results are shown in Figure 5. The solid upper 
line is plotted using data suppUed by Otero. Our calculation is shown as circles which 
fall reassuringly well on top of Otero's data. Also shown is Chan's optimal upper bound 
with a 1/3 scaling taken directly from his 1971 publication. Also of interest here are the 
crosses which are associated to a lower bound on the optimal upper bound calculated here 
to explore the nature of the duafity which exists between the Howard-Chan method and the 
Doering-Otero method. We took the eigenfunctions for w and 6 associated with the critical 
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Figure 4: The critical wavenumber for the optimising piecewise linear profiles. This shows 
that A;c~ 0(1). 

wavenumber kc when AQ = 0 and evaluated Chan's homogeneous functional (19) at these 
points. This procedure guarantees a lower bound on Chan's optimal upper bound. However, 
this lower bound is very poor and this naive experiment reveals that the eigenfunctions (see 
Figure 7) do not well approximate the structure of Chan's optimal solutions (see Figure 6) 
and are thus poor test functions for the Howard-Chan variational problem. One notices, 
for example, that there is no boundary layer in the product w0 for our eigenfunctions. 

Interestingly the critical wavenumber of the optimal piecewise linear profile remains 
order one for all Ra studied here (see Figure 4). 

7    Discussion 

To summarise we have confirmed Otero's numerical calculation and we have shown that 
the duality shared between the two variational problems discussed here is worth further 
investigation. 

In all other cases, for example plane Couette flow, pipe flow and arbitrary Prandtl num- 
ber convection, where piecewise linear test profiles have been applied within the Background 
method the correct optimal scaling of the upper bound was achieved. In this case Chan's 
result presents 1/3 as the optimal scaling of Nu with Ra however the piecewise linear pro- 
files are capturing 2/5 instead. We note briefly that we have solved this problem without 
setting 6 = 2 and have found that optimising the upper bound over the balance parameter 
b does not alter the 2/5 scaling of this upper bound result. 

To conclude we would like to propose that future work on this problem should be 
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Figure 5: The numerical upper bound for the Backgroiuid method with piecewise linear 
profile. The upper solid line is the upper bound calculated by Oteiro. Circles are the 
points calculated during this study. The dashed line is Chan's multi-o; upper bound. The 
crosses are a lower bound on the optimal bound which was calculated by evaluating Chan's 
functional with the eigenfunctions associated to the critical wavenumbers. 
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Figure 6: The z-structure of Chan's optimal solutions. 

concerned with solving the full optimal Background problem, as done recently in [10] for the 
problem of plane Couette flow, or as an intermediate step, to study how more sophisticated 
test profiles, such as profiles with non-zero internal gradients, can improve the upper bound. 

This work has been completed with the help of C. Doering, L. Howard, G. lerley, R. 
Kerswell and J. Otero. I thank all of them for their insightful advice and their enthusiasm 
for this problem. I would also like to thank all of the students and staff of the Woods 
Hole program who together made the Summer an unforgettable experience. Finally I hope 
that the legendary GFD Dynamos softball team have many more triumphant years to come 
under the auspices of George Veronis. 
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