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PREFACE

The subject of “Bounds on Turbulent Transport” was introduced in a series of
ten lectures. The six lecturers constitute almost all of the contributors to this subject.
The subject was introduced and foundations were laid by five lectures by F. H. Busse. In
the middle of the first week, L Howard reviewed his historical first approach to this
subject and described more recent advances. Additional lectures by P Constantine, R.
Kerswell, C. Caulfield and C. Doering provided modern advances. We trust that the
lecture notes will constitute a timely review of this promising subject.

The following weeks had many highlights with approximately 40 additional
lectures. The mini symposium on rotating convection in early July included presentations
of experimental, ocean, atmospheric, and planetary observations. During the rest of the
program, participants and visitors who have studied turbulence, convection, and
instability in numerous geophysical situations with application to the ocean, the earth’s
atmosphere and planetary circulation made numerous contributions.

I want to thank a number of participants. This year's fellows presented ten
excellent lectures on their research projects. They clearly enjoyed—and contributed to--
a fine and stimulating summer. George Veronis must be thanked for his enthusiastic
coaching and to other contributions to this GFD program. Ed. Speigel worked the porch
in his usual pedagogic fashion. Eric Chassignet and Glenn Flierl spent many selfless
hours with the computers. Jean-Luc Thiffeault, Claudia Pasquero and Jeanne Fleming
made important contributions to creating this year's volume. And above all, Janet Fields
provided her usual fine hospitality to the visitors and staff, and assisted with many
aspects of running a smooth program both during the summer and throughout the year.

Finally, I want to especially thank W.V.R. Malkus, who unselfishly urged
boundless bounding efforts throughout the decades. Though seated during his address, he
prodded us to raise our sights still higher.

Thank you all,

Jack Whitehead, Director ‘02
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Lecture 1

Hydrodynamic Stability
F. H. Busse

Notes by A. Alexakis & E. Evstatiev

1 Introduction

In many cases in nature, like in the Earth’s atmosphere, in the interior of stars and planets,
one sees the appearance of patterns that seem to be stable and persistent. Those patterns
usually correspond to broken symmetries. The purpose of the following lectures is to ex-
plain the formation of these patterns and their persistence even under ’strong’ turbulent
conditions. This first lecture is dealing with onset of turbulence by determining the critical
value of the control parameters that the laminar solution becomes unstable.

2 Linear theory

2.1 States of Minimum Energy

Continuous material systems are subject to conservation laws like mass, energy, momentum
and angular momentum. The laws of thermodynamics also tell us that the mechanical
energy has a tendency to be converted to thermal energy leading a system to a state of
minimum mechanical energy, subject to other conservation laws. Systems that have reached
this state are called equilibrium systems. As an example consider a rotational flow in a
cylinder. To simplify the problem we consider that the flow has only a radial dependence
e.g. w = w(r). We can then ask the following question: Given an initial condition with
angular momentum A, what is the state of minimum mechanical energy our system can have
keeping the angular momentum fixed? The kinetic energy K and the angular momentum
can be expressed as functionals of the angular frequency as:

Kwl=n /0 " (w(r)r)?rdr, Alw] =27 /(; " w(r)rirdr = Ao (fixed) (1)

To minimize the energy keeping the angular momentum fixed we have to minimize the
functional:

Flw, A = Klw] + A (Alw] - Ao) (2)

Where ) is a Lagrange multiplier and Ag the angular momentum of the flow. Evaluating
the variation of F with respect to w and A we obtain

5F = 6K +6(0M) =5 {271' /0 " S (r)rdr + ) (271' /0 " w(r)rddr — Ao) } 0 (@3




5F = 2n { /0 " (@(r)rtdr + Xr®) dwdr + 62 (271' /0 " w(ryridr - .Ao) } 0. (4

In order for the variation to be equal to zero for every dw and every 4\ we must have

70
w(r)r*+M3=0 and / w(r)ridr = Ay. (5)
0
which leads to
w(r) = ~A=constant =wy  with wp= -271—’?.—; (6)
0

which is a rigid body rotation.

A similar example is if we consider a flow in a cylinder with the velocity being given by
u = v(r)k where k is the unit vector parallel to the axis of symmetry. The kinetic energy
and the momentum are given by

]

To
K== / v2(r)rdr, Mv] =2 / v(r)rdr =My  (fixed) (7
0 0
To minimize the energy, keeping the momentum fixed, we define the functional

Flw] = K[v] + A(M[v] - Mo) (8) .
Varying it we get

To To .
0F =6K+86(0M) =6 {w/ v3(r)rdr + A (27r/ v(r)rdr — Mg)} =0 9)
0 0
which leads to
ro
v(r)+ A =0 and 27r/ v(r)rdr = Mg (10)
0 A

Which again leads to the motion of a rigid body with velocity given by u = Mo/‘/rrgk.

The fact that the above states are of minimum energy indicates that they are stable.
Any other state with more energy will not be stationery or stable and will decay to the
solutions of minimum energy.

As a further example we will examine the flow of a fluid between two infinite parallel
plates separated by a distance d. A uniform pressure gradient along one of the parallel
directions is assumed to keep the flow from being non-zero. The only control parameter
of the problem is given by the Reynolds number Re = Ud/v where v is the kinematic
viscosity and U is the averaged velocity. The above system has a steady solution given by
u = (Re(1/4 - 22),0, 0) (Poiseuille flow.). We want to examine for which values of the
control parameter Re the Poiseuille flow is stable. It is typical that in stability problems
like the one described above four regimes of the flow parameter Re can be distinguished,
see Fig. 1.
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Figure 1: The behavior of perturbations on the laminar solution for different Reynolds
numbers.

A) From 0 to Reg all disturbances decay exponentially.

B) From Reg to Reg some infinitesimal or finite disturbances might grow for finite time
but all disturbances decay exponentially for ¢ — oo

C) From Reg to Re. infinitesimal disturbances decay exponentially but finite distur-
bances converge to a new solution.

D) From Re, to oo infinitesimal disturbances grow exponentially.
The following paper is dedicated to estimating the values of Reg, Re..

2.2 The Energy Method

We restrict ourselves to an incompressible fluid on a domain D. The equations of motion
are given by

dv+v-Vv = —Vp+f+uvViv (11)
Vv =0 (12)

with boundary conditions on 0D
v=0 (13)
or
v.n=0andnx(Vx(nxv))=0 (14)

where n is the normal unit vector to 9D.
Denoting the stationary solution of maximum symmetry by vs and writing the general
solution as the stationary solution plus a perturbation u

v=vs+u, ‘ (15)
The Navier Stokes equation for the velocity u becomes

du+vs-Vu+u-Vv, = —Vr+vViu (16)
V-u = 0 (17)




with the same boundary conditions as (13) or (14). Multiplying the above equation by u
and taking the volume average we obtain

1d
2dt

where we have used the boundary conditions to eliminate the surface terms. From the
above equation it is obvious that if Re(u(u - V)vg) > 0 then 14 (u-u) <0 and therefor all
perturbations decrease in amplitude with time. On the other hand, if Re(u-(u-V)v,) <0
we can define the functional

(u-u) = —(|Vul’) - Re(u- (u- V)v,) (18)

_ (VaP) - 2(rv - &)

Re= " @ vwy (19)
and look for its minimum.
Let
I =(VaP), = —(a- (- V)v,) and I = —2(rVd). (20)
Then
Ry = Shtl  (h+ D)0 _ 85 +6k %l 0. (21)

I I22A I I

where M = min{Rg(u)}. Expressing the variations 01,615,815 as we did in the previous
paragraph, we obtain

%M['&jajvsi + 4;0;v5 ] = =9 + 8,01 (22)

and
O;i; = 0. (23)

Now, since M is the minimum of the functional RE we have that for an arbitrary solution
of (17) that

< (|Vu?) — 2(xVu)

M 24
= @ v (24)

using the energy equation (18) we have that
%:—t(u ‘u) < ~(M ~ Re)(u- (u- V)v,) (25)

and since (u - (u- V)vg) < 0 we have that the perturbation can grow only if Re > M.



2.3 Linear Stability of Plane Couette Flow

As a special case illustrating the above general theory we take a flow between two parallel
plates moving in opposite directions with relative velocity Up. The distance d between
the plates can be used to define Reynolds number Re = |[Up|d/v and the solution can be
written in dimensionless form

where we have introduced Cartesian coordinates and the unit vectors in the directions of
(z,v,2) are (i,j, k), respectively. The velocity Up is in the direction of i. For the solution
of Egs. (22), (23) we introduce the general representation

1=V x (Voxk)+Vyxk (27)

for a solenoidal vector field i1, where ¢ and % are some scalar functions. The z-components
of curl and (curl)? of Eq. (22) give

V4A2cp = %M(ZazazAz(p + OyAat). (28)

1
V2Ash = S M8y A20, (29)
where Ay = 82, + agy. The boundary conditions for this problem are

p=0p0p=¢=0. (30)
If we only consider solutions independent of z, the function 4 can be eliminated from
Eqgs. (28), (29) to give

1
(V® - M2 )00 =0 with p=0ip=Vip=0 at z= £ @)

Since this eigenvalue problem is similar to the problem of determining the critical
Reynolds number in a fluid layer heated from below with rigid boundaries, we can use
the latter fact to write

1
ZM; = 1708 corresponding to ¢ = cos(ay) f(z) with a. = 3.116, (32)
where o, is the lowest eigenvalue. It can be prooven that more general solutions ¢ and %
that depend on z and y do not yield values of M lower than M, [1]. Therefore finally we
have Reg = 24/1708 = 82.6 for the plane Couette flow. The values for various non-rotating
systems have been determined experimentally and theoretically, and comparison with the

linear theory is given ! in Table 1.

1The maximum velocity and the channel width d (radius d in the case of pipe flow) have been used in
the definition of Re.




Reg | Reg (from exp.) | Re.
Plane Couette Flow 82.6 =~ 1300 00
Poiseuille Flow (Channel Flow) 99.2 =~ 2000 5772
Hagen-Poiseuille Flow (Pipe Flow) | 81.5 =~ 2100 00

Table 1: Reynolds Numbers for Shear Flows in Non-Rotating Systems.

2.4 Linear Stability of Circular Couette Flow

Consider the flow between coaxial cylinders with radii r; and 7o (> 71) that rotate with

angular velocity {2, and g, respectively. The basic solution of Eq. (12) for the azimuthal
velocity v, is

200 _ 2 2,200, _
v, = 7'292 1}91 . r1r2§92 - ) (33)
2T (rz —ri)r

and is called the circular Couette flow. For simplicity we restrict our analysis to the case
r1—ry <71 and 0 < Q-0 < Q). In this limiting case the solution (33) assumes the form
of a plane Couette flow studied in the previous section, with angular velocity Qp = %(Ql +
{22). The corresponding coordinate system is oriented so that the z-coordinate points in
the azimuthal direction, the y-coordinate points in the axial direction, and the z-coordinate
is pointed radially outward. The Reynolds number is defined by Re = (Q1r1 — Qoro)d/v.

Next we study infinitesimal disturbances therefore neglecting the nonlinear term @ - Vi
that enters Eq. (17), and add a Coriolis term

%ﬁ+v,-Vﬁ+ﬁ-Vvs+2Qxﬁ=—V7r+V2ﬁ, (34)

V-ii=0, (35)

where Q = Qpd?/v. Assuming time dependence of the form exp(ot), boundary conditions
u=0at z= :t% and a representation for 1 in the form

2=V x(Vxk@)+V xki, (36)

we obtain the following eigenvalue problem

VA — 20 VA = v, - VV2 A6 + 0V2A0p — v - VA (37)

VIAx) +20- VArp = v, - VV2Agih + 0lo + k- (VA2 x V). (38)



Again, we are going to focus on disturbances which are x-independent and for which the
imaginary part of o vanishes. In this case the critical disturbances correspond to o = 0 and
Egs. (37), (38) reduce to

V402, — 208,82,9 = 0, (39)

V2829 — (Re — 20)8,8;,% = 0. (40)

In the last formula we have used the expression (26) for vs. Then we observe that the
above equations are identical with the ones without z-dependence, up to a numerical factor
in the second term in Eq. (40). So, we can use the solution (32) to write

1708

=20+ —.
Re, = 2Q + 50 (41)
A calculation of the minimum of the above expression gives

Re. = 2V1708 corresponding to 2 = v/1708. (42)

It can be shown that the energy stability limit coincides with the result just obtained.
Therefore, at this point the stability problem is solved completely because of the relation
Reg < Reg < Re. which in this problem attains strict equalities. We see that for large
values of 2 Eq. (41) that yields

Re < 29 (43)

as a condition for stability.
2)2
This also can be shown to follow from the Rayleigh stability criterion, MEIP >

0, which describes the condition for stability of rotating inviscid fluid to axisymmetric
disturbances. In our case assumes the form

uri| < [Qor3. (44)

Using the notation in Fig. 2 we can write (44) as

(QD+ Ql;Q2> (To- g)-? < (QD _h ;Qz> (7"0+ g)z (45)

After expanding and regrouping we obtain

2 2
() s () e




Figure 2: The asymptotic limit for large values of § leads to the inequality Re < 2Q as a
condition for stability.

Remembering the relation between Qp and Q we finally obtain

vro vro
RGT < 297 (47)

from which our assertion follows.
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Lecture 2

Phase Turbulence in Convection
F. H. Busse

Notes by by L. Lu and F. Pétrélis

1 Description of the Rayleigh Bénard instability

1.1 Mechanism

When a fluid layer is heated from below, a fluid particle at the bottom of the layer is hotter
than the one above her. Consequently it is lighter and has a tendency to go up which is
slowed down by the viscous force. This is the mechanism of the Rayleigh Bénard instability
which can generate convection movements in a fluid heated from below. By comparing the
power of the two forces involved in this mechanism, we can get an idea of a parameter which
controls the instability development.

We first have to specify how the density p of the fluid depends on its temperature. The
simplest hypothesis is to use a first order approximation and to assume a linear dependency
that yields

p=po(1—7(T-To)), (1)
where pg is the density at temperature Ty and <y is the expansion coefficient
10V 10p

7= V 0 T P 14 -a_Tp ) (2)
This is part of the Boussinesq approximation, pertinent for almost all common cases of
Rayleigh Bénard instability.

We can estimate the buoyancy force F, per unit volume between the bottom of the
layer at temperature 75 and the top at temperature T7 (with T1 < T3). Usmg the height d
between the two surfaces of the layer (see fig 1), we get Fy = pov (T2 — Ty) gk g5Z. The last
coefficient ¥4 where V is the velocity of the fluid and & the thermal d1ffus1v1ty takes into
account the effect of the thermal diffusion on the distortion of constant density planes. We
compute the power of this buoyancy force per unit volume L, by multiplying it with the
velocity and we obtain

V2
Lp—C1p07(T2—T1)gd—— (3)

where c; is a numerical coefficient.
The power of the viscous force per unit volume is the product of the force per unit
volume pov V2V =~ pov %’; with the velocity

Ld=C2POV?:3V, (4)




O

1

Figure 1: Sketch of layer heated from below at temperature T greater than the top surface
temperature T3.

¢2 is also a numerical coefficient. When the ratio between these two powers exceeds a critical
value convection occurs. We define the Rayleigh number by

polr2 _1(O-T)gd
Ly VK

, ®)

and its value at onset is the critical Rayleigh number R, = z.

1.2 Interesting aspects

The study of convection phenomena concerns a very wide range of systems. Varying the
Prandtl number (ratio between the kinetic viscosity and the thermal diffusivity) and other
parameters (related to other effects such as magnetic field or rotation...) lots of situations
can arise. Some of them are presented in figure 2.

A particularity of the usual convective instability is that the unstable mode is degenerate
at onset. We will show in the following paragraph that the horizontal isotropy of the forcing
exists and that the manifold of the unstable modes is characterized by wave vectors of fixed
norm but free direction in the zy plane. As we can see in figure 3, this is really different
from an instability generating a unique unstable mode and leads to some new behaviour on
which we will now focus on.

1.3 Onset of Instability

The full set of equations describing the motion of a fluid is as follows:

10



Convection in the presence of (nearly) two—dimensional isotropy
under steady external condition

R
Turbulent convection
Sequences of bifurcations
low P high P
Vertical asymmetry Side walls, cylindrical
hexagons, asymmetric squares rectangular
Vertical magnetic field

/ . -
Bénard Marangoni Convection ?
oscillatory onset

Rayleigh Benar
Binary fluid convection Convection

oscillatory onset, localized convection Vertical axis of rotation

Kupper Lortz chaos
EHC in homeotropic nematics |
Double layer convection spherical convection Centrifugally driven convection
phase change interface (stars, planets) for P>>1

Temperature dependent

dielectric susceptibility

Figure 2: Some effects that occur in Rayleigh-Bénard convection.
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Figure 3: Critical Rayleigh number R at onset of instability for a horizontal wave vector
(kz,ky) in a non-isotropic case and in an isotropic one.

17
7P T 0ipu; =0 (62)

d 0 2
Pt = Pt + puidiui = ~Bip — pgk; + 9[vp(diu;j + Bju; — 3%0kur)]  (6b)

ds dT T (8p\ dp —alva,
pTdt = pep—; + p (8T)p 5 = 0j(A0;T)+ & (6c)
where & is mechanical dissipation and the density p has a temperature dependence given
by

p=m1-A(T-T), T="12
A static solution exists for equation (6):
u=0
T,=Tp - ‘Tz——ﬁz
T, — Ty 22
Ps =Po— po (Z+7—d-3)g

Using d as the length scale, Z as time scale and T — T} temperature scale, we introduce
dimensionless variables

1 d
($’7 y') Z,) = (—‘l(x’ Y, Z), ‘U,: = ;uiy
K T
t=—t = }
d? v’ T -1

12




Assuming the mechanical dissipation ® =~ 0, and taking into account the temperature
dependence of density only in the gravity term (Boussinesq approximation), we obtain from
equations (6)

V-u=0, (7a)
p! (-%+u-V) = V7 + ROk + V?u, (7b)
(Bt+u-V)O=k-u+V32e, (7c)

where primes have been dropped from the dimensionless variables and © = T — Tg, 7 =
P’ — pls. Although there are seven dimensional parameters (po, g, 7, AT, v, k) that can be
measured with four dimensions (namely m, s, kg, K), the mean density po does not appear
in the equations in the Boussinesq approximation so that only two dimensionless parameters
are relevant for this problem. A first one is the Rayleigh number R = 19—@%@5—3-. A second
dimensionless number P = £ is the Prandtl number. For small amplitude steady convection,
we have

V-u=0, (8a)
V?u+ R0k —Vr =0, (8b)
V2O +u-k=0. (8¢c)

Operation with —k - V x Vx on (8b) yields

Viu, + RA20 =0, (9)
where
02 0?
Azf—-(gx—z'-l'gg}-z') f- (10)
Take As on equation 8c, and eliminate © from equation 9, we get a single equation of u.:
(V8 — RA3)u, = 0. (11)
With the separation ansatz
o? o? 2
Nou, = <W + 53—/3) u, = —a‘u,, (12)
equation (11) becomes
(V®+ Ra®)u, =0. (13)

For stress-free boundaries, we have

uzlz:i% = 07
azu;clz___:bl - azu'ylz=:bl = 0,
2 2
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Use the continuity equation d,u, + Oyuy + 0,u, = 0, we have

0:0;uz + 0y0,uy + 02, u, = 82, u, =0

z

at two boundaries. Also, from equation (9)

(V*u: + RA2©) |41 = 8%,.u. = 0

1
2

In summary, the stress-free boundary conditions are:

u; =0, (14)
2u, =0, (15)
82uz =0, (16)

at z = +3. With these boundary conditions, equation (11) has solutions:

1
U, =cosazsinn1r(z+-2-), n=123,..., 17

and

_ (n27r2 +a2)3

R 2

, n=123,.... (18)

a is the wavenumber of the unstable mode. The critical Rayleigh number R, is the minimum
of R, and is given whenn =1and a = :’7'5 Hence R, = %W“. Note that R, is independent
of the Prandt] number.

A single mode describes a roll of convection as sketched in figure 4. Because of the
degeneracy of the unstable modes, complex behaviour can occur even close to the onset of
instability and we will study it through a weakly non-linear analysis.

2 Weakly Non-linear Analysis

2.1 Perturbative Expansion

To illustrate the ideas of weakly nonlinear analysis, consider the following one dimensional
example:

u"(z) + Ru(2) + ¥/(2)u(z) =0 with u=0atz= :h-;— . (19)
We make the ansatz

u=eu1+’62u2+e3u3+ ,
R=Ry+eRi+€Ry+...,

and the normalization condition

eE<u1,u>=e<u1,u1>+€2<u1,u2>+... ,
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which is equivalent to
<u1,.u'n >=61n n=1,2,3,....

Insert these ansatz into the original equations and collect terms according to the powers of
€. To the lowest order O(¢) we have

u'1'+Rou1 =0,
U1|z=i% =0.

The solutions are
1
uy = V2sinnx <z+ 5) , with Rp=n?7%,n=1,23,...
To continue the process, and for simplicity, we choose n = 1 here. Thus
. 1
uy = \/§sm7r <z+ 5) .
To the order O(e?),

ugy + Rous = —ujus — Riug

z < 3, we have on the left

L

Multiply both sides with u; , integrate over the interval —
hand side:

< uy(ufy + Rouz) >=< uz(uy + Rou1) >=10
where integration by parts has been utilized. This condition yields

< (u) >
3

which is the solvability condition. Now the equation of uz becomes

< _ul(uiu’l + R1U1) >=0=R) = =0

1 1
uy + Roug = —2wsinw(z + 5) cosm(z + -2-) with U2|z=i% =0

The solution is

msin2r(z+ 1)  sin2n(z+ 1)
U = =

472 — Ry 3r
To the third order of ¢,

uj + Roug = —ujup — upuy — Rowy  with u3lz=i% =0




Apply the solvability condition, we have

Ry = — < uy(vjug + uhyy) >

1
=-< Euz(uf)' + uh(u?) >
1
=< Eug(u%)’ >

1 <1r2 sin 27(z + %—) sin27(z + %) >

4 372
_1
Y

In this simple example we are able to calculate the amplitude of the mode at saturation as
a function of the departure from onset. At order €2 we get € Ry = R — R, so that

uzeu1=4\/§\/R——Rcsin1r (z-{-%) (20)

In the case of convection close to onset of instability, the degeneracy of the unstable mode
may lead to non trivial behaviour because many modes can interact. We will use a general
formalism based on a weakly non-linear analysis similar to the simple one before. We write
the Navier-Stokes equations and the temperature equations in the form

- 0 -~ . o~
W+ RU)X = —VX +QX,%), (21)
where X = uaz) is a vector, W, U and V are linear operators, R is the control parameter
and Q the non linear term. :
We expand X and R in the form
X= 55{1 +€2X2 + ...,
R=Ro+e¢Ri+€eRy+ ..., (22)
where € is 2 small parameter and the other terms are of order one. We will now describe
two aspects of the instability slightly above onset. We first focus on the steady pattern and

then we study the dynamic interaction between the different modes that can lead to a kind
of turbulence named phase turbulence.

2.2 Pattern selection

We write equation (21) at order € and we recover the linear problem of steady convection.
The solution is a linear combination of modes described by equation (17) with wave vectors
of norm a. Thus, we write

-~ - n=N .3 -
Xi=1£(2) Y cpneiknT (23)
n=—N
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where l_s:‘h.lies in the zy plane and is of modulus a. In order to have real solutions, we impose
the two other relations k_, = —k, and c—, =c;,.
At order €2 we get

(W + RyU)X; = Q(X1,X1) - RoUX;. (24)

Then we apply the solvability condition (X?|right hand side) = 0 where X? is part of
the kernel of the adjoint homogeneous linear operator. If the properties of the layer are
symmetric with respect to the z = 0 plane, we obtain R; = 0 because Q is antisymmetric
in z while f(2) and £*(z) are symmetric. The solution of equation 24 can be written in the
form

Xz = Z F(ic; + Ek, z) C; Ck ei (Ei+E")'F. (25)
i,k

We write the equation (21) at order € and use the solvability condition. In the most
general case, we get an expression of the form

(eR1 + e2R2+...) Uc; =—Pe chcmé(l—c‘i+ kn + I;m)

n,m

N
+€(3 ench A(kikn) + Ao lcif?) ¢f + ... for i=1,2,3.... (26)

n=1

Here (3 is an asymmetry coefficient which appears for instance if we consider non Boussinesq
effects and write the temperature dependence of the density as
p=po(l—a(T—To)+B(T~To)?.

If 8 =0, we get R; = 0 and we recover the symmetric case result.

Looking for regular solutions for which the angle between the N neighbouring q vectors
is given by /N and |c;|?> = 1, we obtain rolls solutions if N = 1, squares if N = 2. f N = 3
many solutions exists depending of the relative phases of the three coefficients ¢;. In figure
4, these patterns of convection are sketched.

If N > 4 there are no regular periodic patterns but quasi patterns of higher order can
be observed. Depending on the value of § and R, rolls or hexagons are stable. Without
asymmetry or at high Rayleigh number, the rolls are stable whereas hexagons are stable if
the asymmetry parameter § is high. Note that in some domain of the space parameters,
both solution are stable, as can be seen in figure 5 {7, ?, ?].

2.3 Phase turbulence

We will now focus on the case where dynamic effects are present and try to describe how
the different modes can interact. Using C;(t) = ec;, we write

X(z,y,2,t) = £(2) Z Cn(t) gikn (27)




i N=1:Flo|ls/
y

P Y /)/
4'\—)./\- -

N=2 : Square Pattern

Figure 4: Sketch of patterns of convections: rolls, squares, 1 and g-hexagons.

I-hexagons g-hexagons

B

Figure 5: Stability diagram of rolls and hexagons patterns in the (8, R) plane.
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Close to onset, one expects that the time dependence of the modes will be slow and of order
€2. As before, we write the solvability condition at order three and this yields to dynamical
equations for the coefficients

d

V=C =(R-Ro)UC; + > Cr Cm 8(ki + Fn + Eim) (28)
n,m
N . o -
+ (3 Cu Gy AEi By + E(Rs K, Xi X Er) + Ao |Gi?) CF + ... with i=1,2,3....
n=1

(29)

If there is no rotation (E = 0), and if there is no mean flow, we can write the evolution
equations at this order as

d 0

VCGi=-3 CZF(CI, » Cn) (30)
where
F(Cy,...,Cp) =— —(R Ro) UZ |Cif? - —ﬁ N CiCnCrmd(ki +knt+Em)  (31)
=1 i,n,m
<Z |Cnl? A(K;.Ern) + Ao |czl2> |C:f? (32)
n=1

Thus these are evolution equations of Lyapunov type and the steady stable solutions
will correspond to the local minima of F. The asymptotic approach is guaranteed and there
can not be chaotic behaviour. This is not the case if either E is not equal to zero, or if we
consider solutions with non-zero mean flow (stress free boundary) or if we consider terms
of higher order. Then, chaotic behaviour can occur.

Indeed, when we consider a horizontal layer heated from below that is rotating about a
vertical axis, E is not zero and the evolution equations are not of Lyapunov type. Above
a critical value of the rotating parameter, all steady solutions become unstable. The local
orientation of the convection rolls changes in time and this phenomenon is called phase
turbulence. Experimental evidence have been seen in a rotating convection layer. A typical
time evolution of the pattern of convection is shown in figure (6)(?, ?].

Another case in which phase turbulence is present is the convection in the presence
of stress-free boundaries. Because no stress is exerted by the boundaries on horizontal
motion of the fluid, large scale flow can be generated by a small Reynolds stress. The
advection of the pattern by the large scale mean flow must be taken into account in the
evolution equations which are no longer of Lyapunov type. Phase turbulence can also occur
as presented in figure 7 where the time evolution of the heat flux in convection is calculated
numerically for different values of the Rayleigh number (?, ?].

Phase turbulence shares some properties with the asymptotic turbulence of Navier-
Stokes equations in the limit of infinite Reynolds number. A brief characterization of
different types of turbulence is given in figure 8.
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Figure 7: Time evolution of the heat flux for different values of the Rayleigh number and
stress-free boundaries. P, = 0.15. At high Rayleigh numbers the evolution is chaotic.
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Properties of Turbulence
: ; Broad wavenumber :
ic time de Chaotic spatial Inertial range
Chaotic time dependence dependence spectrum Fractal structure
Dynamical systems
(few degrees of freedom,
eg convection in a box, R>R J

Phase Turbulence

(many degrees of freedom, isotropy degeneracy; R close to Re
examples: convection in a large aspect ratio layers,
rotating or non—rotating)

Classical turbulence

(shear-flow turbulence in channels, pipes and boundary layers; high Rayleigh number convection in large
aspect ration layers)

Asymptotic Turbulence
(Turbulence in the limit of asymptotically high Reynolds numbers)

Figure 8: Characteristic properties of different kinds of turbulence.
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Lecture 3

The Sequence-of-Bifurcation Approach
for the Transition to Turbulence
F. H. Busse

Notes by U. Riemenschneider and S. Plasting

1 Introduction

In this lecture we will discuss fluid systems in which there is a gradual evolution from the
basic laminar state toward a turbulent state with increasing Reynolds number. Transition
is seen to occur through a sequence of bifurcations. We consider fluid systems with a
high degree of symmetries which in the laboratory are observed to undergo transition to
complex flow states through supercritical bifurcations that are characterized by the breaking
of flow symmetries. We will not consider systems such as pipe flow or plane Couette flow
which exhibit strongly subcritical bifurcations from the basic laminar state to a turbulent
state. Figure 1 shows some fluid systems with maximum symmetry which undergo gradual
transtion from the basic state to ever more complex solutions. For each of these systems
the external conditions are homogeneous in two spatial dimensions and in time and since we
are dealing with systems far from thermodynamic equilibrium we must have inhomogeneity
in the third spatial dimension along which a constant energy flux is applied, thus these
systems exhibit maximum symmetry. Although these systems do not represent all important
processes in fluid mechanics a large number of system can be idealized or reduced to their
physically essential properties such that they conform to this high degree of symmetries.

The sequence-of-bifurcations approach discussed in this lecture has the following advan-
tages

1. In most cases the reduction of inhomogeneity to a single dimension reduces a physical
mechanism to its simplest form.

2. The homogeneity in two spatial dimensions and in time provides a maximum of sym-
metries, the breaking of which identifies the bifurcations in the manifold of solutions
for the fluid flow.

3. The relative simplicity of the physical properties is reflected in the simplifications of
the numerical analysis. Symmetries can be employed to reduce the numerical effort.

4. Although physically realized systems can only approximate homogeneity in two spa-
tial dimensions, the bifurcations of the ideal system become only slightly imperfect
bifurcations in the real system as long as the typical wavelengths introduced by bi-
furcating solutions are small in comparison to the length scales associated with the
deviations from homogeneity.

5. The spatially and time periodic solutions that are obtained in the sequence-of-bifurcation
approach represent only a minute manifold of the realizable solutions of the basic
equations. Even if they are stable their basins of attraction decrease with increasing
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Jaylor-Couette-System Rayleigh-Bénard-System Inclined Convection Layer

Couette Flow Static State Cubic Profile Flow
Taylor-Vortices Convection Rolls Longitudinal Rolls
Wavy . Knot Bimodal
Vortices Twists Convection Convection Wavy Rolls
Doubly Wave Domai Oscillating Knot Oscillating Bimodal Transversely Drifting
Vortices States Convection Convection Wavy Rolls

Figure 1: Examples of fluid systems with maximal symmetries and the typical sequence of
bifurcations observed, starting with the basic roll solution.

control parameter and solutions describing more irregular spatio-temporal flow struc-
tures are typically observed in experimental realizations. Nevertheless, the regular,
spatially periodic solutions usually exhibit most clearly the dynamical properties and
transport mechanisms of the fluid system as a function of the control parameter.

2 Secondary Solutions

We now consider bifurcations which occur far from the critical point at which the laminar
flow state becomes linearly unstable to roll patterns. We have seen in the previous lecture
that the minimizing wave-vector of the most critical disturbance is infinitely degenerate
when there is isotropy in the zy-plane. Here a weakly non-linear analysis is not suitable
to detect bifurcations from secondary roll solutions because the non-linear terms in the
Navier-Stokes equations play an equal role far from the linear stability point. Often isotropy
manifests itself as phase turbulence for near critical parameter values, we therefore disregard
isotropy so that we can analyze bifurcations from a roll solution with only one preferred
direction. The basic equation can be written in the following canonical form
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A translation in time dp/0t =0

B translation along roll axis 9¢/dz =0

C transverse periodicity o(y+2r/a,z) = p(y,2)

D transverse reflection o(—y,2) = ¢(y,2) OF G—mn = Gmn

E inversion about roll axis  ¢(n/a —y,—2z) = —¢(y, 2) OF amn =0 for m +n = odd

Table 1: Symmetry properties of two-dimensional rolls

v
Ly - RByp~ Voo =Nopp (1)

where L, B and V are linear functionals and N represents the non-linear terms of the
governing equations. The control parameter is now called R and homogeneity in two spatial
dimensions and in time is assumed, therefore the functionals above may only depend on z.

The stability of the basic state with respect to infinitesimal disturbances g is governed
by equation (1) with vanishing right hand side. Without loss of generality a disturbance of
the form

o « exp{iq-x + ot} (2)

can be assumed, where x is the position vector and where the wave-vector q lies in the
z,y-plane. The critical point R, is defined to be the point at which the real part o, of -
the growth rate of the most unstable solution vanishes. In the case of no isotropy typically
the minimizing solution is unique and the imaginary part o; of the growth rate vanishes.
Taking the y direction to be parallel to the minimizing wave-vector qc and « =| q. | we can
write the two dimensional solution bifurcating from the basic state as a Galerkin expansion

p= Z Amn €XP {imay}fn(z) (3)

m,n>0

where f,(2) = (—1)" "1 f,(—z) for symmetry about midplane.

In table 1 we list the symmetry properties of rolls. They can be d1v1ded into the first
three which are obeyed by all solutions of the form (3) and the remaining fourth and fifth
which are satisfied in special cases. The fifth symmetry can occur only in problems such as
Boussinesq Rayleigh-Bénard convection which have midplane symmetry.

The stability of secondary solutions can be studied through the superposition of infini-
tesimal disturbances of the form

@ = exp {ibz + idy + ot} Z Gmn €xp {imay} fn(2). (4)
mn>0

When equation (1) is linearized in the disturbance ¢ an homogeneous linear equation for
the unknowns @, is obtained with the growth rate o as eigenvalue. This linear eigenvalue
problem for o is just

Ly - RBg - Vop = Ngp + Npp (5)
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Properties , g #0 b#0 d#0 Gmn # G-mn  Gmn # 0 for
of disturbances m+n = odd
Symmetries translation longitudinal transverse transverse inversion
Broken in time translation periodicity = reflection about axis
Eckhaus X X

Crossroll CR X X
Knot KN X X
Even Blob EB X X

0Odd Blob OB X X X
Oscillatory 0S X X X

Zig-Zag 27 X X

Skewed Varicose SV X X X

Osc. Skewed Var. X X X X

Table 2: Symmetries Broken by Bifurcations from Steady Rolls

Of primary interest here are the growth rates o with largest real part o, as a function of
the horizontal wavenumbers b and d. The growing disturbances correspond to a transition
of the roll solution to tertiary solutions which exhibit more shapes and styles and which
reflect the specific physical conditions to a higher degree. Table 2 characterizes each type
of instability that can occur from steady rolls. The skewed varicose instability leads most
quickly to turbulent convection. Each of these instabilities can be observed for some values
of Pr — a. Figure 2 shows the enclosed domain of Ra — oo — Pr space where roll solutions
are stable. The Eckhaus instability usually causes rolls in an unstable region to be replaced
by rolls in the stable region. Therefore the Eckhaus instability corresponds to a limitation
of the available wavenumber for rolls and does not lead to a new type of solution.

3 Tertiary Solutions

Tertiary solution are twice spatially periodic solutions bifurcating from roll patterns. They
can be described by expressions of the form

o= Z aimn €xp {ilazz + imayy} fu(2) (6)

Imn

where we must have a_j_m, = a;',',m for a real solution, where ( )t denotes complex con-
jugation. We have assumed that the instability of interest has o; = 0. When an instability
with a finite value of 0; = 0 occurs, it typically leads to traveling waves propagating in the z
direction which can be described by the representation above if z is replaced by £ = z — ct.
A partial list of tertiary solutions is given in Table 3.

The stability of these steady three-dimensional solutions can then be studied through
the superposition of infinitesimal disturbances of the form

@ = exp {ibzx + idy + ot} Z Gimn exp {ilazz + imoyy} fu(2), (7)

lmmn
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Figure 2: Region of stable convection rolls in the Ra — o — Pr parameter space. The region
of stable rolls is bounded by surfaces corresponding to the onset of instabilities listed in
Table 2. Note that Pr corresponds to P in the figure and increases toward the right and R

corresponds to Ra.

Tertiary Solution

Reflection Symmetries

Inversion Symmetry

knot- /bimodal convection

A—_imn = Qlmn = Ql—-mn

undulating rolls

C—lmn = Almn,
!
Al—mn = ("‘1) Almn

Symmetric traveling wave
convection or wavy rolls
with Poiseuille flow

Al—mn = (“ l)lalmn

Aimn =0
forl4+m-+n=o0dd
Aimn =0

for m+n = odd
Qimn =0

for m +n = odd

Wavy rolls with Couette
flow or wavy Taylor vortices
in small gap limit

Al-mn = ('— 1)la'lm'n.

1)m+n

Amn = (_ A—lmn

Traveling blob convection

Q_imn = Qlmn

Aimn =0
forl+m+n=odd

Table 3: Examples of tertiary solutions and their symmetries listed in terms of the complex

coefficients




where the coefficients &;» can be found by substituting ¢ into equation (1), projecting onto
the expansion functions, and solving the resulting non-linear equations using a Newton type
method for some suitable spatial truncation size. The transition from tertiary to quarternary
solutions is associated with the solution becoming time dependent. A much richer class of
dynamical mechanisms for heat transport then become possible.

4 Quarternary Solutions

After the onset of three-dimensional tertiary solutions the continuous spatial symmetries
such as the invariance with respect to the translation along the roll axis have been broken
and have been replaced by reflection symmetries and inversion symmetries such as those
shown in Table 3. The stability of the steady or traveling tertiary solutions can be investi-

gated through the superposition of arbitrary infinitesimal disturbances. Using the general
Floquet ansatz

¢ = exp {ibz + idy + ot} Z Gimn €xp {ilozz + imayy} fo(z) (8)

Immn

we arrive at a linear homogeneous system of equations for the unknown coefficients Qmn
with the growth rate o as eigenvalue. When the maximum real part of o as a function of d
and b is less or equal to zero the tertiary solution is stable. Otherwise it is unstable.

The most strongly growing disturbances of tertiary stationary solutions are often those
with non-vanishing imaginary part of ¢;. Since traveling wave type solutions are no longer
possible after the translational invariance along the axis of the rolls has been broken, the
time dependence must be taken into account explicitly. Time dependent three-dimensional
solutions can be obtained through forward integration in time of the differential equations for
the time dependent coefficients ajmn(t) in the representation for the quarternary solutions.

Q= Z aimn(t)exp{ilo.z + imoyy} fa(2) 9)

lmn

The system of differential equations is obtained, just as in the case of the algebraic
equations of tertiary solutions through projections of the equations of motion onto the
space of the expansion functions. Examples of quarternary solutions, that is solutions in
three-dimensions and the fourth dimension time, include oscillatory bimodal convection,
oscillatory knot convection and pulsating traveling blob convection.

5 Bimodal Convection

5.1 Steady Bimodal Convection: An example of a tertiary solution

Steady bimodal convection is an example of a tertiary solution in Rayleigh-Bénard convec-
tion (see Figure 1). It corresponds to the superposition of a secondary roll pattern with
smaller wavelength onto the given roll pattern as shown in the sketch in Figure 3. Through
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Figure 3: Schematic sketch of bimodal convection in a fluid heated from below. Note the
superposition of a secondary roll pattern on the already existing roll pattern.

the onset of bimodal convection the convective heat transport becomes more efficient and
the two roll patterns quickly reach comparable amplitudes as the Rayleigh number is in-
creased beyond onset.

5.2 Transition to Bimodal Convection: An heuristic argument

T

T2

Figure 4: The approximate form of the temperature profile for steady roll patterns

In Rayleigh-Bénard convection the mean temperature field for steady roll solutions has
vanishing gradient in the interior of the flow and strong gradients near to the boundary. We
can think of this thermal boundary layer as a subconvection layer with rescaled Rayleigh
number %63, where § is the non-dimensional thickness of the boundary layer. This situation
is illustrated in Figure 4. The condition for convective instability in this layer is the Rayleigh
condition for instability %53 > R.. If we assume that the gradient of temperature in the
subconvection layer is approximately constant then the heat transport is H =~ 2% and we
can write the condition for instability of the boundary layer as

1/3
H<E(R) .

2 \2R.
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Figure 5: Isotherms at the y, 2-planes z = 0,z = n/a, (from top to bottom) at the times
t = nm/3w for n = 0,1,2. y increases toward the right and z increases upward. The
parameter values Pr = 30, Ra = 10°,a; = 4.5, a = 2.5 have been used.

The most efficient configuration for heat transport to result from this type of instability is
for tight boundary layer convection rolls to align perpendicular to the primary convection
rolls as exemplified in the bimodal solution.

5.3 Oscillatory Bimodal Convection: An example of a quarternary solu-
tion

An example of these types of convection patterns in nature could be the formation of
bimodal convection patterns in clouds, which exhibit a very distinct rectangular pattern
in the sky. They are typically high in Prandtl number and have a scale of the order of
100m across. If the Prandtl number is in the range 10 < Pr < 102 the bifurcation from
rolls to bimodal cells is followed by a further bifurcation to oscillatory bimodal convection.
The thermal boundary layers periodically thicken and blobs of fluid hotter or cooler than
average circulate through the convection cells. These oscillations are characterized to some
extent by a resonance between the circulation time of the bimodal cell and the period of
thickening and thinning of the thermal boundary layers.

There are two types of oscillatory bimodal convection, the symmetric one that does not
change the spatial symmetry of steady bimodal convection and the other, called wavy oscil-
latory bimodal convection, which is characterized by the property that the set of coefficients
Qimn(t) with

—C@—tmn = Qlmn = Ql—mn for |+ m +n = odd and a;,,, = 0 otherwise (10)

are participating in the description of the solution in addition to those listed in Table 3
for bimodal convection. Figure 5 provides an impression of the time dependent structure
of wavy oscillatory bimodal convection taken from numerical computations of {1] and in
Figure 6 an experimental visualization is depicted. In the first we see a blob of cold fluid
descending and impinging on the bottom of the layer while in the second figure we distinctly
see the walls of the bimodal cells flexing back and forward.
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Figure 6: Shadowgraph observation of wavy oscillatory bimodal convection in a layer of
silicon oil heated from below. The dark regions indicate hot rising fluid. The Prandtl and
Rayleigh numbers are Pr = 63, Ra = 1.5 x 105 and the wave numbers in the z-direction
(toward the right) and y-direction are given by a, = 4.08, ay = 2.04. The right photograph
was taken 25 seconds after the left one which corresponds to nearly half a period. Along
the darker vertical lines small arches may be observed, pointing to the right or left, these
are due to the oscillatory behaviour of the system.

It should be kept in mind that the realization of convection flows that are periodic in
space and in time requires controlled initial conditions such that an approximately perfect
roll pattern is realized after the onset of convection. The transition to bimodal attractors
is sufficiently strong such that pattern imperfections can be eliminated in time except close
to the sidewalls. The transition to oscillations usually occurs in a less homogeneous way
and their phases tend to exhibit large scale variations. Without controlled initial conditions
the convection flows at onset occur already in the form of patches of rolls with different
horizontal orientations which tend to evolve in such a way that they ultimately reflect the
geometrical configuration at the sidewalls of the layer, see the right column of shadowgraphs
in Figure 8. As the Rayleigh number increases, the density of dislocations in the pattern
increases rapidly and a chaotic structure of a kind of bimodal convection is realized when
the Prandtl number is sufficiently high (Pr 2 10). The onset of oscillations in the form
of hot and cold blobs emerging from the thermal boundary layer occurs initially at a few
spots where the convection pattern deviates most strongly from the ideal periodic form.
Laboratory experiments thus exhibit in general a more turbulent situation in qualitatively
the same manner as in the case of the spatially and temporarily periodic solutions produced
by the sequence of bifurcation approach. The latter method thus provides a sensible way
toward an understanding of the processes occurring in turbulent convection as well as in
other cases of fluid turbulence.
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Figure 7: Numerical results for simulations of steady knot convection.The views are planar.
The top two graphs show an average of the heat flux over the entire depth, z of the convective
layer, the two graphs in the middle show a section through the centre of the layer, z = 0
and the bottom two graphs show a flux of the heat through the bottom boundary. Left
hand column: R = 2.5 - 10%, right hand column R = 8 - 10%.
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[2]). The distance from the critical point for onset of convection is measured as € = (R —

Figure 8: Digitally enhanced shadowgraph images of the convection patterns (taken from
R.)/R.: (a) and (b) € = 0.920; (c) € = 2.986

= 3.000, () and (f) e = 5.082. The left

(d) e

arbitrary directions. As the Rayleigh number is increased the rolls undergo transition to

?
column shows the effect of increasing the Rayleigh number on a field of rolls with uniform
wavy rolls.

orientation, while the initial state in the right column contains patches of rolls oriented in
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Lecture 4

Simple Approaches to Some Bounding
Louis Howard

1 On Some Properties of Good Chalk and
People Working on Bounding Theory

2 Extremizing Functions and Functionals.
Definitions and Simple Examples.

We all know that if ®(z;) is a differentiable function, then the critical points z; that
extremize the function can be determined from the conditions

a@(xi) —

oz, 0.

But these simple conditions do not determine whether the critical values correspond to
minima, maxima, or even guarantee an extremum. For example, consider the case shown
in figure 1 of a horizontal inflection point and a monotonic function in a closed interval.

f(x) f(x)

Figure 1: A horizontal inflection point and a monotonic function.

However, if the matrix of the second derivatives is positive definite at the critical point
then there is indeed a (local) minimum, and if it is negative definite then we have a local
maximum. But if this matrix is indefinite, it does not necessarily help us decide the character
of the critical point. This is illustrated by the examples f; = z%, fo = —z*, f3 = 23, all of
which have f/(0) = f”(0) = 0, though f; has a minimum, f» a maximum and f3 neither
at £ = 0. (In the case of several variables, if the matrix of second derivatives has at least
one positive and one negative eigenvalue, we can assert that the critical point is neither a
minimum nor a maximum).

Another case where the above equations are not sufficient to determine the extrema of a
function is when there is an imposed constraint. As an example consider the unit circle and
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Figure 2: Points on a circle.

ask which two points A = (z1,41), B = (22,2) lying on it are furthest apart. The distance
between them is given by

D? = (21— 29)? + (g1 — ¥2)?,
and the constraint takes the form
2492 =1, fori=1,2.

The constraint can be automatically satisfied by letting z; = cos8;, y; = sinf; and
substituting into the expression for the distance. In this way there is no need to take into
account the constraint explicitly. Then

D? = (cos6; — cos 92)2 + (sin6; — sin 02)2 =2—2cos(f; — 67),

and maximum distance is obtained for 8; — 6, = 7.

But when the constraint cannot be simply eliminated the method of Lagrange multi-
pliers must be used. To find the extremum of f(z1,...,z,), subject to the constraints
gi(z1,...,zp) =0fori=1,2,...,m, one forms the function

B(x, ) = flz:) - Y Nigs,

i=1
and solves
6<I>(:c,~,,\,-) _ aQ(xi,Aj) R
—_6;31'_ =0, T =g;i=0.

This seems to be a simple method but let us consider why it works. Suppose that the
extremum of f subject to the given constraints is at some point T;. If g;(z;) is to remain
zero then for small changes in the z; one must have,

ng (.71:-,) -dz; = 0,
in addition to
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Figure 3: Shape of the Earth.

We may state this as “V f should be orthogonal to any vector dx which is orthogonal to all
the Vg;”. In the language of linear algebra, V f should be in the orthogonal complement of
the space G+, which is itself the orthogonal complement of the space G generated by the
Vgi. Since taking the orthogonal complement twice gets you back where you started ( i.e.
(G1)L = G), V£ must be in the space generated by the Vg;, or Vf = 37" A\;Vg; for some
constants ;. This is the Lagrange multipliers rule.

More simply, if we maximize a function f(z,y, z) subject to the constraint g(z,y,2) =0,
then the admissible dx’s satisfy dx-Vg = 0. That means dx can be any vector in the tangent
plane to the surface g = 0 at the critical point and V f must be orthogonal to this tangent
plane. Thus V f must be parallel to Vg, i.e. Vf = AVg, yielding the Lagrange multipliers
rule. ‘

As an example let us consider the following problem. We ask to what shape one should
transform the Earth in order to maximize his own weight, given that he cannot change his
mass. Let us assume the Earth is incompressible, with an uniform density and search for
an axisymmetric solution. Since it is incompressible, the Earth must have volume

4ma®
3

We introduce spherical polar coordinates with an origin at the position of the person, as
shown in figure 3. In this coordinate system the volume is given by

4mad®
3 ?

V=

V= 2—”/2f3(e)sinode -
3Jo
and the person’s weight is

) z
W= 211'/2 / (Gm” cosB) r2sin @ dr df = 27erp/2 fsinfcosd d.
0 0 0

r2

Thus the relevant functional is

® = /2(fsin0c030+)\f33in0) dé.
0
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Setting its variation to zero gives

§® = /2(6f0050 +3Xf2%6f)sin0do =0,
0
and so the minimum is obtained with

2= —:—;X cosf,

which is not too different from a sphere (which has f = 2acos 6) and increases the weight
1
of the person by (%)% ~1.02.
If we extend our considerations to functionals we arrive at the Euler-Lagrange equations.
For the simpler case when

F(f) = [ Lir.0)a,
the Euler-Lagrange equations following from §F = 0 are L8 f =0, (where the subscript

denotes differentiation with respect to the corresponding argument), but if the functional
is of the type,

F(H) = [L4,7,6) s,
then one has,
/ (L18f + L28£") df = 0.

After integrating the second term by parts,

/ (Ll - %%2—) of do + [Lz(sf]bs =0,

and assuming that Lyéf vanishes on the bounding surface, one obtains the Euler-Lagrange
equation,

dL,
L-—2=0

In particular, if the functional is of the type

b
FH) = [ 1,56,
we get
b b
5F=/ L16f+L26f’=/ (Ll—go-Lg)éfd0+[L26f]z.

This should be zero for all §f’s that are admissible. In some cases the boundary term
vanishes automatically, for example if f is given at £ = a and z = b. If there are no
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such conditions we may first of all take §f’s that are in fact zero at 6 = a and 6 = b, but
are otherwise arbitrary. Then, assuming that (L; — iL:g) is continuous, we may conclude
that Ly — —L2 = 0 at all interior points of (a,b). Then, by taking df that is zero at,
say b but not zero at a, we conclude that Lo(f(a), f'(a),a) = 0. Similarly we may show
that La(f(b), f'(b),b) = 0. In such cases the variational problem itself provides boundary
conditions, so-called “natural boundary conditions”, to supplement the Euler equanon

As an example, we minimize f; f”?(z) dz subject to the two constraints Js f3(z) de =

1, fo f(z) dz = 0 (with no boundary conditions specified). To do this we consider the

functional ® = [, (f'> — A1 f? — A2f). Then,

L e el r 1
6@=/0 (2f'6f —2/\1f5f—)\25f)d.7:=2[féf]o——2/0 [f +/\1f+§>\2]5fd:z:,

so the necessary conditions for a minimum are :
e Euler-Lagrange equation f” + A1 f + 3X2 =0,
e the natural boundary conditions f/(0) = f'(1) =
e the constraints fol fidz =1, fol fdz =0

One could write down the general solution of the differential equation and use the two
boundary conditions and the two constraints to determine the two A’s and the two arbitrary
constants in the general solution. It is a little neater to note that integrating the Euler-
Lagrange equation from 0 to 1 and using the natural boundary condition and the second
constraint gives 1)\2 = 0, hence A2 = 0. We then see that f = V2 cos(nmz) and A1 = (n )2
for some integer n that cannot be zero because of the second constraint. n = 1 gives the
least-value of the integral — indeed if we integrate f'(f” + A1f) = 0 from 0 to 1, using the
first constraint and the natural boundary conditions, we see that A\; = fo f2dz, i.e. ) itself
is the required minimum value 72. (Note that without the second constraint the minimum
value would be zero, achieved by f = 1.)

As a simple illustration the shortest path between two parabolas such as those shown in
figure 4, is a straight line perpendicular to both curves. In this example the Euler-Lagrange
equation shows that the path must be straight, while the natural boundary conditions show
that it should be orthogonal to each of the two parabolas at its endpoints, which is pretty
obvious geometrically.

3 Minimization of [ f” given [ f?
As an example, we consider the following problem:
Minimize foL f?(z)dz subject to fOL f3(z)dz =1 and f(0) = f(L)=0.

The technique of Lagrange multipliers gives ® = fOL (f? — Af?)dz, which has
L
0® = —2/ (F" + Af)dfdz
0
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Figure 4: Distance between parabolas.

so the minimizing function satisfies f” + Af = 0, meaning that f is proportional to
sin(nwz/L) for some integer n. n = 1 gives the minimal value. This yields the relation

L 2 L
/ fdz > = / f%(z)dz for all functions f with f(0) = f(L) =0.
0 L% Jo

This derivation was not very rigorous, although it does give the correct answer.

The problem can also be tackled using Fourier series. Under rather mild restrictions,
f(z) has a Fourier sine series, f(z) ~ 3.3°b, sin(nmz/L), and with a little more assumed
about f, this series actually converges to f in the interior of (0, L) - for instance if f is
continuous and continuously differentiable there. Of course the sine series converges to 0
at z = 0 and L, which need not be the values of f at those points. For simplicity, however,
we assume that f vanishes at these endpoints, and that f, f’ and f" are all continuous
on [0,L]. Then not only does the sine series of f converge to f on [0, L], but the cosine
series of f’ converges to f’ on this interval, and this cosine series is in fact the same as
the formal term-by-term derivative of the sine series of f. (This would not be true unles
f(0) = f(L) = 0, however smooth f might be on [0, L].) Thus

flz)= ibn sin(nrz/L), f'(z)= f:mrbn cos(nwz/L)/L,
1 1
and
L L& L LN fnm\2
| foa= S0 [ r@e=g >(7) %

Thus fOL f(z)dz > (x/L)? foL f*(z)dz, with equality only when all the b, beyond b; are
zero.
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Another approach to this inequality that also avoids consideration of the Euler-Lagrange
equation is the method of multiplicative variation: we set f(z) = sin(wz/L)g(z). Then we
compute

L L 2
24y = Y T cos £
/0 f d:c—/o (sm Lg(a:)—f-Lcos Lg(z)) dz,

L L L 2
_ . o WL 19 T T . TT p ™ 0 TT o
—/0 sin” —-g dx+/0 2Lcos——L sin — g9(z)g (:c)dac+/0 (L) cos” —g dz,

L , L 2
= ]0 sin® ELEg 2dx — /0 (—Z—) (cos2 ELE — sin? %) g*dz

L 2
m 271'17 2
+/ —) cos® —g“dz,
[ (2) T

with equality only when g’ = 0 everywhere on (0, L) assuming it is continuous there.
. A variation on this theme is the following little calculation:

0 S/(;L (f'(:c) - %cot ILEf(x))de
=/0L f2dz + (%)2/0L cot? %ﬂ(z)dm - /OL 2f(x)f'(x)%cot -7rL—zd:c
=/(;L fdz + (%)2/; cot? Zrfa:f2(:z:)alac - [%f2(m) cot? ELE](:I

L
_T 2(7) % T
L/o f(:c)Lcosec Ld:c

- [ G [ e

In this argument we must assume that f — 0 faster that z!/2 as z — 0 or than (L — z)/2

as £ — L. Some such hypothesis is needed to assume the existence of fOL f! 2(:z)d:z:.
Claim: Assume that f is continuous and differentiable on the interval [-1,1], f(-1) =
f(1) =0, f(z) = [, f/(t)dt and that [1, f”dz exists. Then

) < (1=,

where (g) denotes f_11 g(z)dz/2 for any function g.




Proof:

ﬁ@=([}%w0i
< /_ i 2(t)dt /_ zl 124t,
=(1+z) /z f2(t)dt.
-1

Similarly

ﬁmsu—@/ﬁ%n

and combining the two gives

1 1
70 (s + ) s2),

leading to the required result.

Integrating both sides leads to
2
(£ < 3(f 2).

However, we already know that the stronger relationship

() < i),

holds from the previous calculations, so the above method does not give the optimal esti-
mate. Still, the pointwise estimate given by this result cannot be improved; it is only the
integrated result that is less than optimal.

In two dimensions, if we wish to minimize J4IVf|2dA subject to J41f12dA = 1, where
A is a region in R?, then the Lagrange method yields the relation Vf,lf + Af = 0 for the
minimizing function f. If A is a circle centred on the origin with radius 1 then this has
solutions Ji(jmnr)e™, where Jy, is the mth order Bessel function of the first kind and
Jmn is the nth positive root of J,,. Then 1 = J4IfI2dA = 2x fol 7J2 (jmnr)dr and so
Ja Iz fIPdA = 27jmn fol rJ2 (jmnr)dr = j2,,. So the minimum value of J4 IV f2dA is given
by j& ~5.78.

4 The Dual Lagrange Problem
We have

Lx,X) = P + 3 g

i=1
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Figure 5: An example showing values of L(x, ) for a case where supy infx L = 2 and
infxsupy L = 3.

Suppose that F has minimum value Fy, subject to the constraints g; =0 fori =1,2,...,m,
which is attained when x = x,.
Now let

h(\) = inf L(x,A) < Fi VA.

The dual problem is given by maximizing h(A). Say this has value h.. Then h, < F,
sometimes with equality, though not always. An example of a case where there is not
equality is shown in figure 5.

4.1 Further examples

F(z,y) = 2% + 2%, with g = 1— 2% — ¢2.

Then L(z,y, A) = 22+ 2y% + A(1 — 22 — y2). Thus the Euler-Lagrange equations for seeking
a minimum of F with g; = 0 are 2z — 2zA = 0, 4y — 2yA = 0. Therefore either A = 1,
z==1and y =0 giving F, = 1, or A = 2, z = 0 and y = =1 giving F, = 2. Thus the
minimum is F, = 1, attained at z = +1, y = 0.
Now consider
—o0 ifA>1
h()\)=infL(a:,/\)={ 1 ifx=1(aty=0)
‘ 1 ifA<l(atz=y=0)

Thus max)y h(A) = 1 so that h, = 1 = F,. So for this example, max h = miny g, (z4)=0 F-
On the other hand consider again

F=224+27 butwithg=1-2z*—-y%

For this case, L(z,y,\) = 22 + 2y® + A(1 — z* — y*). Thus using the Lagrange multiplier
rule to seek a minimum of F' given g = 0 we get

22—z =0, y—4ax2=0, 1-zt—y*=0.
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Therefore either

® #0. Then A =1/222 and y = 0 or y = ++/2z. Ify=0thenz=+4land F, =1
Otherwise, z = £5~1/4, y = +5-1/4\/2 and F, = 5~1/2 4 4.5-1/2 _ V5, or

® £ = 0. Then the constraint requires y = %1, (and hence A = 1) and then F = 2,
which is greater than 1.

Thus the least value of F is 1, obtained at z + 571/4, y = +5-1/4,/3,

However, Lagrange multipliers are not really needed for this problem: considering only
z and y > 0 we could eliminate the constraint by setting z = v/cos @, y = v/sinf and then
F =cosf+2sinf, F' = 2cosf—sinf. At the minimum, tan @ = 2 and hence F = /5. But
at0=0,F =1and at § = n/2, F = 2. Thus the minimum F is 1, attained at z = +1,
y=0.

But what is A()) = infz (22 + 2y% + A(1 — 2 — y4))?

—00 ifA>0
h(A)=¢ 0 ifA=0
A ifA<0

Therefore maxy h()) = 0, so

maxh(A\) < min F.
A z,y, 24 +yt=1

There is a “duality gap”.
Remark: If our original problem had been to mazrimize F(x) subject to the constraints
91 =g2="---= gm = 0 we would still have

L(x,A) = F(x) + Y Aege(x),
k=1

and the same Lagrange multiplier rule: look for z, where

OF . Ok
6_ﬂ7i+,‘§=:1/\ka_$z‘_0’ andgi=g2=:--=gn=0.

If we have an z, that maximises F subject to the constraint and consider

H(X) = sup (F (%) + > Migi (X)) :

k=1-

then we have miny H(A) > F(x,), since whatever A might be, there is an x (namely x,)
that makes L(x,A) = F(x,), so sup, L(x,A) > F(x,), and so miny H(A) > F(x,).

These maximum minimum dual problems are reminiscent of “Courant’s maximum prin-
ciple”, a rather striking result about eigenvalues of symmetric or Hermitian matrices,
Sturm-Liouville problems, etc. It will be recalled that the lowest eigenvalue A; of a real
symmetric matrix A may be characterized as the minimum of zT Az /xTz for all non-zero
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vectors z, this minimum being achieved for = = e, the first eigenvector. Similarly the sec-
ond eigenvalue )q is the minimum of zT Az /2T z for all vectors z that are orthogonal to e,
and the kth eigenvalue is the same minimum over all vectors orthogonal to ey, e2,.. ., €x-1.
Courant pointed out that the kth eigenvalue can be described directly without explicit ref-
erence to the previous ones as follows: take an arbitrary set of k — 1 vectors vy, ..., vx-1,
and form H(vy,...,vk_1) = min(z? Az/zTz) for all non-zero vectors z that are orthogonal
to v1,v2,...,Vk—1. Then Ay = maxy, .. o, _, H. (See for instance Courant and Hilbert [1]).
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Lecture 5

Upper Bounds for Turbulent Transport
F. H. Busse

Notes by Tomoki Tozuka and Huiquin Wang

1 Introduction

Malkus (1] observed kinks in Nu (Nusselt number) - Ra (Rayleigh number) relationship of
turbulent Rayleigh-Benard convection and formulated a mean field theory for superposition
of convective modes using hypothesis of maximum transport in 1954. In 1963, Howard [2]
derived rigorous upper bound for Nusselt number, Nu<c Ra3. Then, Busse [3, 4] improved
bounds through incorporation of the continuity equation constraint, introduced multi-alpha
solutions of variational problem, and derived upper bound M <cRe? (Re: Reynolds number)
for an momentum transports in shear layers in 1969. On the other hand, Doering and
Constantin [5] extended the method of Hopf to derive bounds on dissipation by turbulent
flows in 1994 (see Lecture 6 for the detail). Nicodemus et al. [6] optimized Doering-
Constantin approach in 1997 and Kerswell [7] proved the equivalence of Doering-Constantin
and Howard-Busse methods in 1998 (see Lecture 10 for the proof) . This lecture is focused
on the Howard-Busse method.

The theory of upper bounds for functionals of turbulent flows provides rigorous bounds
for transport properties. It also indicates characteristic properties of extremalizing vector
fields, which are reflected in observations of turbulent flows and thus can provide some
insights into properties of turbulence.

2 Upper Bounds on Momentum Transport Between Two
Moving Parallel Plates
In this section, we consider a flow between two moving parallel plates as shown in Fig. 1.

Using the distance d between two plates as length scale, and d?/u as time scale, we write
the Navier-Stokes equation for the incompressible fluid in the form

-a%-v+v-Vv+2va= -Vp + Vv (1)

V.v=0. (2)

We separate the velocity field v into a mean and a fluctuating part:

v=U+4Vwith¥=0,v=U(zt) (3)

where
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= hm / / )

We also separate the fluctuating part of the velocity field ¥ into components perpendic-
ular and parallel to the plates as

V=t-+ko withii-k=0. (5)

[width=|figl.eps
Figure 1: Schematic sketch of a flow between two moving parallel plates.

For -k = 0 (e.g. Taylor-Couette case), since U does not have a z-component because
of the continuity equation, the average over planes z=constant of (1) yields

0 — 0%
¥ VS = —2p— 20xU )
=78 )

Subtracting (6) and (7) from the corresponding components of (1), we obtain the
following equation for the fluctuating velocity field v:

%\“r+'?r-V\”f—w“/_~V'\“r+U-V\”r+\"r-VU+2Q><\“r=—Vﬁ + V. (8)

After multiplying the above equation with ¥, taking the average over the entire fluid
layer, and using the boundary conditions that Vv vanishes at z = :i:-21-, we have the energy
relationship

(i .0
22 (9P + (IV9) + (- (050)0) = 0 ©)

where

1

<...)=[—117dz_ (10)

The above energy relationship (9) can be further simplified if we restrict our attention to
the fluid flow under stationary conditions:

Sp=02

SU = 0; (V) = (1)
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The equation (6) under above condition yields

ad;U = Wi — (jwl) — Re -i. (12)
Hence, using the above equation, we obtain the final form of the energy balance
(IVV[?) + (i - (B ~ (Wb))) — Re(uz) = 0. (13)
Here, the identity
@) - (59)? = (8 — () ) (14)

has been used.

The momentum transport between two moving plates is obtained from its value at the
boundary

660; ~|,=1 = (Wiiz) + Re. (15)

Since (W) > 0, the momentum transport is bounded from below by the value of the
laminar solution and increases by (i, ) for turbulent flow. Thus, the goal here is to derive
an upper bound for (i,w) at a given value of Re and this leads us to the formulation of the
following variational problem. For a given p, find the minimum R() of the functional

(Vv]?) (0% = (uw)?)

R(v,pu) = 16
( ”) (‘U@‘UJ) <’U,;;;'w>2 ( )
among all vector fields with v =0 at z = +1 where
v=u+kw,u-k=0. 17
Thus, the Euler-Lagrange equations for a stationary value of R(v, u) are
d d
2., — a0 TT* i 4 i
Vv - Vn wdzU + ku dzU (18)
where
dore (1vvl?),.

Since the functional is homogeneous, the normalization (tizW) = p can be assumed.

The proof for d};;(zﬂ) = ﬂf"—‘(‘;é:‘;‘;)l'z) is as follows:

T — (wru”)?)
(w*uz)?

(0" —u) { = R(v*,u*) = R(v*, 1)

< R(u*) - R()

< R(v,,u*) = R(v', 1)
wa’ — (w'u')|?

S (P" ‘ﬂ’) <’ <w,zf, )2 )I )

where v* and v’ are the extremalizing vector fields for p* and g, respectively. For pu* — p/,
the above result follows.
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[width=]fig2.eps

Figure 2: Schematic schetch of a thermal convection in a porous medium.

3 Upper Bounds on the Heat Transport in a Porous Layer

In this section, we consider a thermal convection in a porous medium as shown in Fig.
2. Using the distance d between two plates as length scale, d?/x as time scale, x/d as
velocity scale, and (T>-T1)/R as temperature scale, we write dimensionless equations based
on Darcy-Law as

—u+kT—Vp=B(gZu+u~Vu)z0 (20)
V-u=0 (21)
2 % |
VT=(=+u-V)T (22)
ot
where
kK
B= o (23)

vgKd(Ty —T)

R= ” (24)

and K is the Darcy permeability coefficient.
We separate the temperature field T into a mean and a fluctuating part

T=T+6,with§=0 (25)
By subtracting the horizontal average of (22) from (22), we obtain

0= 0?

—T =T

5% +u- -V = 722 (26)

T 0 —; 9
( + u- VO) + ’wa - a—w0 ve (27)

Assuming the statistically stationary turbulence, we integrate (26) and obtain
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0 — —

-a-;T =wf — (wd) — R (28)
By multiplying (20) by u and (27) by 6, taking the average over the whole porous layer,
and using (28), we obtain two dissipation integral relationships:

(ful?) = (w6) (29)

(IV6I*) + ([wh ~ (w6)|*) = R(wf). (30)

The dimensionless heat transport across the porous layer can be obtained from its value
at the boudary:

H= —%f—l,,:i% =R+ (wb) > R. (31)
Since (w#) is always positive from (29), the heat transport for the turbulent flow is always
greater than that for the laminar flow, and it is bounded from below by the value of the
laminar solution.
The goal here is to find an upper bound on the heat transport or (w#) at a given value
of R. We are thus led to the formulation of the following variational problem. For given
# >0, find the minimum P(u) of the functional

IVOI®) + p([w — (w8)[?)
(wd)?

for all fields u and 6, which satisfy the constraint V-u = 0 and the boundary condition
w=60=0atz= :i:%. First, from the general form of the dissipation integral

u 2
P(u,6,u) = 4! (32)

(luf?) = (V2vAgv) + [k x Vy|?) (33)
and the property
02 8?2
w= _(3_265 + -a?)v = ~Aj (34)

it is clear that the minimum of the functional is obtained for V x ky = 0. Hence, the
variational problem now depends only on the scalar variables v and 6.
The Euler-Lagrange equations for a stationary value can be thus written as

(IV6*) V2w — [P(w8) + p((wb) — w8)]Az0 = 0 (35)
(VZuAg0) V20 + [P(wb) + p({wl) — wh)jw =0 (36)
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Now, the nonlinearity is only through z-dependence and the equations are linear with
respect to the z, y dependence. This property allows us to write solutions in the form of
superposition of waves. Because of the homogenity with respect to x and y in w and 6, we

can impose the following normalization conditions:

(Ive]*) =1

(V2uAgv) = (k x VV|?) = 1

Then, we introduce the following general solutions for w and 6

N 1
w=uw® = Eazwn(Z)@n(fv, )
k=1

N
6=06W = Za;%f)n(z)q’n(-’b‘, )

k=1
where @, satisfies the equation:
Do®, = —a23,
and the orthonormalization condition
Qan = Omn -

Then, the Euler-Lagrangian equations can be reduced to

5% 9

(—6? — a)Wn + an¥0, =0
62

(ﬁ - a?l)en + anwwn - 0

where
N N
U= PZ(wnOn) + pZ((wnﬁn) — Wpbp) .
n=1 n=1

The above equations have the following properties [8]:
(1) By considering the equations for wy + 6, and wn, — 65, we can obtain

wy, = 6.
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(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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Thus, the problem can be reduced to

2
(% — al)0n + 0n 06, = 0 (47)

(2) The functions 6,(z) are either symmetric or antisymmetric in z.

(3) Since 6, = 6y, follows from a,, = Qm, it can be assumed that all a,, are different.

(4) For m # n, by subtracting the n-th equation of (47) multiplied by o;;16,, from the m-th
equation multiplied by o;;16,, and averaging it using the partial integration, we obtain an
important property -

(9,m0:z> — aman{fmby) =0 (48)

where 8], denotes the z-derivative of 6,,.
(5) Minimization of P(6y, an, 1) with respect to ay, yields

0
el =0 (49)
=y 2
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Lecture 6

Bounds on Turbulent Transport
C. Doering

Notes by A. Alexakis & E. Evstatiev

1 Introduction to the Background Method

The background method is a mathematical technique for deriving rigorous bounds on the
energy dissipation rate in Navier-Stokes and similar problems.

2 Momentum Transport Across a Shear Flow

To introduce the general idea of the background method we are going to consider the
example of momentum transport across a shear layer. Consider a flow between two two
finite plates. The bottom plate is at rest while the top plate is moving with speed U,, see
Fig. 1. We introduce Cartesian coordinates with unit vectors i,j and k so that the upper
plate is moving in the z direction, the lower plate is in the y = 0 plane, the upper plate
is in the y = h plane. The boundary conditions for this problem are periodic in z and z.
The area of the plates is A; eventually we will take A — 0o to describe the problem in an

infinite domain.
/ A 74" =iUs
y
iy
h /
/ e /

Figure 1: The Plane Couette flow.

The incompressible Navier-Stokes equations are

6tu+u-Vu+;1;Vp=VAu
V.u=0. (1)

We start by asking the question: What is the vertical flux of horizontal momentum
across the layer? .
Dimensional analysis shows
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horizontal momentum

Momentum flux

time X area
_ horizontal force  F @)
- area A
= wall shear stress = 7.
The dimensions of the quantities are
F ML 1 11
M=z =Fr=rpr ®

The system parameters’ dimensions are [U,] = L/T, [h] = L, [A] = L?, [v] = L?/T, and
[)] = M/L®, where M denotes the dimension of mass. With these we can express the
space-time averaged momentum flux as

2
7= phA (%) (%) < ﬂ(%ﬁ, %) — pU2 x (Re,a), (4)

where Re = l—];7’5 and a = fg. We are interested in the function 8(Re,a), the dimesionless
function of two dimensionless variables that fully describe the system.

An alternative version of the question could be posed in the following way. Define the
time averaged dissipation rate per unit mass €, which is also equal to the time averaged
power input required to maintain the flow. Quantitatively

_ FU, 71U,

Remembering the expression for 7 in (4), we can write
3
€= gh_ « B(Re,a) . (6)

Therefore a bound on the energy dissipation rate gives also a bound on the momentum
transport.

In what follows we derive bounds on €. First let us guess what we might find. For
laminar flow we can expect the following dependence

U. 1
T~pv—};-:ﬂ~—§;. (7)

For turbulent flow we do not expect dependence on the viscosity as we take v — 0 (due to
the cascade picture of energy transport across length scales), so we can write
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€~ Ufl—,’;i = 8 ~ Re’. (8)

Further we consider the exact stationary solution of the Navier-Stokes equations for
plane Couette flow, see Fig. 1:

- U* U * 1
Us =i-=y, Pst=const, 7= pv- Bst = T 9
Now we set up a minimization problem. Let us multiply the Navier-Stokes equations (1)

by pu and integrate over the volume. We have

d

E/-;-pm]? &z = —‘/pz/|Vu|2 déz + U, V% dzdz. (10)

top platep Oy

The only surface integral that survives after we integrate by parts is over the top plate
of the volume. The term on the left-hand side of (10) is the kinetic energy of the fluid.
The first term on the right-hand side is the instantaneous bulk dissipation rate, and the
second term on the right-hand side is the input power (equal to U.F(t), where F(t) is the
instantaneous force applied to sustain the motion of the upper plate.) Suppose the kinetic
energy behaves as o(t) for large times, then its long time average vanishes, and we arrive at
the following definition of the space-time averaged dissipation energy

€= (v|Vul?). ' (11)
Therefore it is obvious that
€2 min  (¥|Vul?). (12)
V-u=0
uly=0 =0
u|y=h = U.

To put this in a variational frame, we consider the functional

Flu] = / (v|Vul? - 2¢(z)V - u) dz, (13)

where g(z) is a Lagrange multiplier, enforcing the divergence-free constraint, which plays
the role of a pressure. Variation of the above functional with respect to u and ¢ and equating
the results to zero yields v

10F
0 = EE——VAII-}-VQ,

10F .
0 = —EE—V~u. (14)
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Thus we obtain the stationary Stokes equations as the Euler-Lagrange equations. The
solution is given by (9) where ps; is substituted by gs;. We would like to know next if this
solution really gives a minimum. The answer is affirmative and the proof follows from the

sequence of realtions below.
Define

where v is the fluctuating deviation of u from plane Couette flow, satisfying

V-v=0, V|y=0=V]|y=r=0. (16)
The gradient of u is given by
.. Us
Vu= ij— + Vv, (17)
from which follows
U? U, Ov
2 _Zx 4 o2x71 2
|V et 2 R Dy + |Vvl|“. (18)

If we find € from formula (11), we obtain, after space-time averaging (noting that the cross
term vanishes),

U2
€= uh—; + (V|VV) > eq, (19)

which shows that indeed the solution (9) gives a minimum of €. Note that plane Couette
flow is a solution for all Re and a so this lower bound is sharp. And sometimes this lower
bound is also an upper bound.

We ask the question of when this solution is absolutely stable. Let us consider the
equations for v. They follow from the Navier-Stokes equations after the substitution of (15)

1
Ov+v-Vug+ug - Vv+ ;Vp =vAv,
V-v=0. (20)

We will prove the following statement: Plane Couette flow is absolutely stable-and
hence the unique time asymptotic flow—for sufficiently low Re. To see that, multiply the
first of Egs. (20) by v and integrate over the volume

dl1
-d_t§ / Iv|2 d3$ = —/ (l/lvvl2 +v- (Vust)sym . V) dSIL' (21)
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and (° ~’st)sym =1/2 ((Vust) + (Vust)"). On the left-hand side of this equation is time
derivative of the perturbation energy £(t) = [ [v|2d®z. On the right-hand side we have a
quadratic in the perturbation v form.

We note the inequality (sometimes referred to as Poincaré’s inequality)

/IVVI2 > Z—i/lvl"’. (22)

Then we calculate

<

U,
/v~ (Vust)Sym -vdiz| = ‘/ 7 v d’z
U [1 5, 2 5 _U 2
= [ < 2* )
. /2(v1+v2)dx_ 2h/|v| &z (23)

So for the perturbation energy we have

) . _, (u"2 U“)S(t)=

dt R 2n
v
= 33 (27% — Re) £(1), (24)
and finally using Gronwall’s lemma we have
E(t) S £0)e ™R 0 it Re<or?~0, (25)

which proves the assertion.
A more precise calculation shows that the critical value of the Reynolds number for this
kind of energy stability is Reg ~ 82.6. To see how we can get a more precise value consider

v|Vv[2+v . (Vu, s * V) @
15&9__2 [f( il flv(lzds;)ym V) z} E(t) < —2x0E(2), (26)

where

V.-v=0
JIvPd&#Bz=1

VIy:O = Vly:h =0

Ao = min / (v|Vv? + v+ (Vug)-v) d3z. (27)
Define the functional

Flvl= / [ulel2 +v-(Vug) - v—-2p(z)V.-v—-2A (Ivl2 - Xlﬁ)] dz. (28)
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Upon variation with respect to v we obtain the eigenvalue problem

Av = —vAv + Vp+ (Vug) - v. (29)

The region in the Re-a phase plane where the lowes eigenvalue is positive defines the
parameter region of energy stability of plane Couette flow. In applications to bound other
solutions we need to generalize the method described in this section and this is done next.

3 “Background” Method

In the previous section we saw that the stationary solution (9) only exists as an absolutely
stable solution for sufficiently low Reynolds numbers. For high Reynolds numbers we can
not use it to put an upper bound on the energy dissipation rate. However, we are going to
present a more general technique that mimics to some extent what we did in the previous
section.

Decompose a general solution of the Navier-Stokes equation as

u=iU(y) + v(z,t). (30)

We call the vector field iU(y) a “background” field. The other part of the decomposition
is a “Auctuating” field. The purpose of the background ! field is to “absorb” the boundary
conditions, whereas the fluctuating part satisfies homogeneous boundary conditions:

U0)=0, U(h)=Us Vly=0=vVly=r=0. (31)

Next, from (1) and (30) we derive

OV + v -Vv+U(y)o,v +ivU'(y) + Vp = vAv +ivU"(y) (32)

and for the fluctuation energy evolution

23 [edz=—v [Ivida- [ty [VnGEae @)

As before, note that Vu = Vv + jiU'(y) and derive

h
1, / Vul2 d3z = =v / Vv dz + v / o (y)2 dy+v / Uiz (39)
2 2 2 0 0y

Adding (33) and (34) we get

1From now on we drop the quotes on the words background and fluctuating but we should keep in mind
that the background field is not (necessarily) a mean flow.
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h
%/Mz ¢13;2:-i-1//|Vu]2 diz = —/(V|Vv|2+2U'(y)v1v2) d3x+Au/ U'(y)%dy. (35)
0

The terms in the formula above can be identified as follows. The second term on the left-
hand side is the total instantaneous dissipation rate, the second term on the right-hand side
is the dissipation rate in the background flow, and the first term on the right-hand side is
a quadratic form which we denote by Q,{v}.

The key point is: If we can find a background profile U(y) so that Qu{v} >0, ie,so
that Qu{v} > ¢ [ |v|?d®z with ¢ > 0, then

a) We are convinced that the kinetic energy is uniformly bounded in time (even as
t — 00) because then

h
2 / WP d% < —c / VP dz + Av / U'(y)% dy, (36)
0

from where after integrating, we deduce

h
/|v|2 dBr<e / Iv(z,0)|? d®z + % (1-e) Au/o U'(y)? dy; (37)

b) The background flow produces an upper bound on €, for then the time averaged
equation (35) gives

h
e=(ivap) <3 [vwray (38)

3.1 Trial background Method

Lets take the background profile to be the piecewise-linear velocity profile given by the one
shown in the Fig. 2. We can make the following estimate: using the fundamental theorem
of calculus and the Cauchy-Schwarz inequality:

1/2
Y Ov; v Oy Y [ Ov; 2

l=| [ Gewar| = | L] <vi| [ (Bw) @ (39)

This implies
h s h/2 2 h/2 2 1/2
U, ov ov
’ 3 hdid ot 3 ’ vva !
[romms] <t o [5([" @ ) (0" ) "o

1/2

d )

/2

U, h h 6111 2 1 h
43 d:z:dz/ h— / (—)d’ /
25./ h.—6( y)(h/2 oy ) h/2
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Figure 2: Trial function for the background profile.

Including all the other terms in |Vv|? we obtain

U, 621 0. s Usb 0 3
<L —_— = —— .
<% 2/IVv| dz 3 /IVv| dz (41)

/ U’ (y)vivade®

This implies for Q :

Qui{v}= / (1/]Vvl2 + 2U'v102) dz® > /VIVV|2d1I3 -2 I/U'vlvzdx3

.,
> / V| Vv[2de® — %6 / Vvi2ds® > (1/—-— Uf) / Vvda® > T (1/—— Uf) / Iv|2dz®.

(42)

So Qu{v} > 0 if we choose § < 4v/U, = 4h/Re. This is the maximum value of § that our
estimates allow us to use, and gives a bound on the maximum possible energy dissipation
rate for the set of background functions U that we have chosen. Using this value of § we
obtain

3

h
652/ U’(y)2dy=l—Ui = <
h J 8

. (43)

Q| =

4 Variational Problem for Optimal Background

We can pose the following question: What is the optimal background velocity profile that
gives the smallest possible bound

e< ngn {%/OhuU’(y)zdy}. (44)
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under the constraints Qu{v} >0, U(0) = 0 and U(h) = U,, where
Qui{v} = / [v|Vv|? + 20100’ (y)] dz®. (45)

The constrain Qu{v} > 0 is equivalent to the spectral constraint Ay > 0 where

. f[u|Vv|2+2v1'v2U'(y)]dm3
Ay = n:n TPz (46)

under the constraints V-v=0andv=0at y = 0,h. X is equal to the lowest eigenvalue of

AV = —vAvV+ Vp+ iU’ (y)vs + jU' (y)v; 47
Vv = 0. (48)

We can then substitute the Qu(v) > 0 in (44) constraint with Av >0

4.1 The Geometry of the Spectral Constraint
Let U'(y) = U./h + ¢(y) so that foh #(y)dy = 0. Then equation (38) can be written as
' 2 R
€ < min [u-lé-+z / ¢(y)2dy] (49)
é hy  h Jo
with the constraints foh ¢dy = 0 and Ay > 0 where we replace the label U with ¢ in the

spectral constraint. There is one remark we want to make for the above minimization
problem:

The set of functions ¢(y) with A4 > 0 is convex
Proof:

Concider two mean-zero functions ¢;(y) and ¢2(y). Then

Ay, >0« For every a, / (§|Vﬁ|2 + (yh— +¢1 (y)) ﬁ1a2) dz®* >0 (50)
and
~ v ~12 U‘ P 3
A¢, 2 0 & For every 1, EIVul 5+ $2(y) ) @112 ) dz° > 0. (51)

Now let 0 < a < 1. Using linearity in ¢ and the hypothesis that Ay, > 0 and A4, > 0 we
see that

/ (glvt"xl? + (‘(;]‘; +agy(y) + (1 - a)¢2) ’&1'&2) 4582 06 Aasrsromre 2 0. (52)

This proves that the set ® = {¢|\s > 0} is convex. A sketch of the set ® is shown in figure
3, where the curve indicates the functions #(y) that have Ay = 0.
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4.2 Euler-Lagrange Equations for Optimal ¢

It is clear from Fig. 3 that the condition for the unique minimizing ¢ (the ¢ closest in norm
to ¢ =0) is

¢(y) =P {%‘2} (53)

where P stands for projection onto mean zero function space. (The vector ¢ that is the
minimum must be parallel to the gradient of A4 at Ay = 0.) The proportionality factor 7 is
a Lagrange multiplier. To evaluate §\/d¢ we begin from (48):

A = —vAv + Vp + i(Us + ¢)va + j(Us + ¢)vs. (54)

A change in ¢ to ¢+ qu implies a change in X to A+4X and a change in the eigenfunction
v to v + dv. To first order

OAV + A6V = —VvASV + Vép + (U, + ¢)dvz + j(Us + ¢)dv3 + d¢(ive + jus). (55)

Take the dot product with the original eigenfunction v and note that (using [ Iv[?dz® =

1,
h
= /6¢2v1v2da:3 = A/ dpvrvady (56)
0
so that
A
3;,;(3/) = 2AT175(y) (57)

-where we introduced the overbar for the horizontal average over z and 2. The projection

then in (53) then gives

¢(y) = v(T1vz(y) — (v1v2)) (58)

where the 24 factor has been absorbed into the Lagrange multiplier.
The nonlinear equations we are therefore called to solve for the optimal bound are

0 = —uAv+Vp+i(UT*+¢)vz+j(—{2—* +é)m (59)
0 = Vv (60)
¢ = y(Tvz - (v1v2)) (61)

where + is determined by the normalization condition [ |v|?dz® = 1.
We also have to note that «y is a scalar only if the isospectral surface Ay = 0 is
smooth.
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Figure 3: The space ®. The curve denotes where Ay =0.

4.3 Structure of the Optimal Bound

Here we describe a general formulation of the Euler-Lagrange equations (61). The transla-
tion invariance in the (z ~ z) plane allows us to write v as

v=) ¥ (y)eilasmtass) (62)

where a = ia; + jas and the incompressibility condition now gives Oyt +ia- Vv =0. We
can write Q4 as

Qs{v} =Y QP {+(y)} (63)
where
h ~ 12
oy =a [ [v %]+l (54 00) (ﬁ1a5+a;a2>] ay (o)

Since we want Qg4 to be positive we must demand
Q20 va (65)
Note that if we drop the incompressibility condition o] < |az| would imply Q(e1) < Qfe2)

which does not generally hold for the incompressible case. The set of zero mean functions
with positive A can now be written as

@ = {4]2s 2 0} = na{g]2 > 0}. (66)

4.3.1 Single Wavenumber Case (Smooth)

First we examine the simplest possible case where the minimum bound comes from a single
mode with wave number a. (See Fig. 4) The optimal ¢ is given by

(@) 1 [ (@) pa
6(y) = R {v&“’@)v&”(y) s /0 @) ) dy'} (67)
and the equations that ¥ must satisfy are:
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Figure 4: The space ® in the case that the minimum ¢ is given by a single mode.

0 = -yAv(")+Vp+1(——+¢)v(“) (I; +¢)ol® (68)
0 = v.4@ (69)
1 = / POy (70)

4.3.2 Two Wavenumber Case

The next case we examine is when the minimum is obtained at the intersection of the curves

/\fbal) =0 and A(az) = 0. (See figure 5.)

The optlmal  in this case is given as a linear combination of P(6)\!/5¢) and P(6A%/5¢)

#(y) = 71%{ a1)(y)v(al)(y) * _7]7:./0 ﬁ§a1)(y’)6§a1)(y')*dy'}

A ~ Lo 1 A (o3 *
s [« -1 [0 0y | (m)

where 7; and v, are to be determined from the normalization conditions and each V()
must obey (70).

4.3.3 General Situation

For the more general case the solution will be given by

h
8(y) = an{ o @) =3 [ W ) | (72)

n=1
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Figure 5: The space & in the case that the minimum ¢ is given by two modes.

where each 9(@n) satisfies

. . U* . . U* .
0 = —vAven) 4 Vp+ 1(7 + ¢)v§°’") +J(Hh- + ¢)U§an) (73)
0 = Velen ~ (74)
] = / (@) 2437 (75)

and all the v, are given by the normalization condition.

4.4 Results and Reality

Fig. (6) summarizes the results that have been obtained by solving the Euler Lagrange
equations. The straight line ~ Re™! gives the results of the laminar flow which is an absolute
minimum. For higher Re the energy dissipation rate in the flow is bounded from above by
the curve shown in the figure. The crosses represent experimental measurements on a
turbulant shear layer. The experimental results still show a weak (logarithmic) dependence
on the Reynolds number which is not captured by the bounding method. Perhaps further

physical information given to the analysis would improve the bound. (We note that the
graph is just a sketch.)
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Figure 6: A sketch of the bound and the experimental data.
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Lecture 7

Multi-o-Solutions
F. H. Busse

Notes by L. Lu and F. Petrelis

1 Introduction

In the previous lecture, the Rayleigh-Bénard convection in a porous media is discussed
and the problem of finding the upper bound of convective heat transport is formulated
as a variational problem. In this lecture, we will try to solve this variational problem
using the multi-a-solution technique. An explicit bound of the Nusselt number will be
obtained by the multi-boundary-layer approximation method. Then the extremalizing fields
of the variational problem will be compared to those observed in turbulent flows. Finally,
the convection in a rotating layer is studied in a similar way. The extremalizing fields of
the corresponding variational problem are found by solving the Euler-Lagrange equations
numerically.

2 Multi-a~-Solutions

From previous lecture, the variational problem is:
Given pu > 0 find the minimum of the functional

2 2 —_ 2
P(u’e,#)=<|u| S|V > 4p < jwh— <wh > |2 >

< wh >? ’ (1)
among the u, 6 fields with
V ‘u= 0, ‘Ule=i% = 0|z=i% - 0, (2)
where )
w=u-k

With the general representation for a solenoidal vector field,

u=Vx(V xk¢)+V x ky, (3)
and the ansatz
N 1
w=u®™ =3 6fwn(2)pn(z,v) (4a)
n=1
N 1 '
6=06MN = Ea?@n(z)%(z, y) (4b)
n=1

where the functions ¢, (z,y) satisfy the equation

Doy = —a2 ¢y, (4c)
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the functional to be minimized becomes

I2+u<(z,,03—2,,<03>)2>
>, <62>2

PN (5 an, 1) = n=1,23,...,N (5

where

N
1 .
IEZZ;\<0,,'2>+a,,<0?,> (6)

v=1

See previous lecture notes for more details of the derivation of the functional and its physical
meaning.

2.1 Asymptotic Analysis of Minimum of PN (,; an, 1)

It is difficult to find an analytic solution of the Euler-Lagrange equations correponding to
the variational problem (1) in closed form. Thus we attempt to seek its asymptotic solution
as p — oo. To start, it is convenient now to change the normalization condition to

N
do<oi>=1 (M
v=1

And also we assume that the wave numbers oy, are ordered: ay > ay—1 > --- > 1. In
the asymptotic case of large u it is obvious that in order to minimize the functional P,
the minimizing solution ), 62 must approach unity as closely as possible throughout the
interval —1 < z < %— Only near the boundaries z = +3 the boundary conditions (2)
prevent a close approach. However a rapid increase from 0 to 1 near the boundary makes
@, large, and consequently I 2 increases. But this growth can be moderated by assigning
the sharpest growth rate to @y, which is divided by the largest wave number ay. In the
expression of I?, y is multiplied by an. Thus 6y has to decrease rapidly to 0. Otherwise
the large wavenumber would make I? grow even though the 67 term is small. To satisfy the
condition 6% + 6% _, ~ 1, the increasing part of §)y_; must match the decreasing region of
6x. In summary, Oy increases in a layer of thickness of order O(u~""), and decreases to 0 in
the region of order O(u~"N-1), which is the increasing part of §n_1. This hierarchy (shown
shematically in Fig (1)) continues until §; = 1 fills the region outside all the boundary layers
of the rest 6,.

Thus we introduce two variables 8 and 6 corresponding to the rising and falling regions
respectively,

0(¢n)  for [z 3| = O(u™),
On(2) =< - .
) {Q(Cn—l) for |z -é—[ ~ O(u~m™1), (8)
where
C = I :t 1 Tn
n=leE gl ©)
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Figure 1: Qualitative sketch of the boundary layer structure of the extremalizing N-a-
solution, in the case of convection in a porous layer, w = 6.

near z = :l:% and where

62 + 2.1 forzm Ou™™),andn=12,...,N—1, (10)
2~1 for z~O(1) = O(u~"™). (11)

The matching condition is:
bn(Gn)lg g = Bn(Gn)lasmo = 1, (12)

where the supcript (m) means matching point. The boundary conditions for 6,, and @, are:

6,(0)=0,  B,(c0) =0. (13)
The relations
< 6,0, >= aman < 6,0, > (14)
yield
(m) -
2 L3 ’2
2 _ =< 0" > Tn+rn_1 fO 0" dGn = yrntre-1p2 f
=Tl 2 = TatTee1p2 orn=23,...,N, (15a
ST JU— g eV (152
o™
o = p"‘Z/ 0’de1 = "2 : (15b)
0 .

Thus the boundary-layer approximation of the functional PN )(6; 12) becomes

o0
P9, ) = 12 4 241w / (1~ 0%,)2dcw, (162)
0
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where
(m)

N
. TR=Tn— 1 (n N o0 a
I=pZbi+)Y pE (b_ / 0,%dCn + bn / (1- 0};_1)*dg,,_1) , (16b)
n=1 0

n JO

and where the term labelled with (*) vanishes when n = 1. The minimum of the functional
PN a5 a function of r1,72,...,rN is reached when the partial derivatives with respect to
each r vanish. This yields:

TI=Tg—T]=:""=Tp—Tp1=-=TN—TN-1=1-7TN.
Then
o= — forn=1,2,...,N (17)
n-N-l"l orn=1.4,4,...,4iV.
Accordingly,
1 ~ 0 A
PIN(G; ) = ¥+ {12 +2 / (1- 92)2dgN} (18)
0
where
. N1 [ )
I= bl + 22 {5;‘ /en’ an + bn /(1 - 01?1.—1)*‘1(71—1} . (19)
n=1

The Euler-Lagrange equations corresponding to a stationary value of the functional above
can be written as

éfz + bnbn—lén =0 forn=1,2,...,N -1, (208.)
1+ bv(1 = B3)6 = 0. (20

The solutions of these equations satisfying the boundary conditions (13) and matching
condition (12) are

6, = £sin(bpbns1)iC  for1<(n < g(bnb,,ﬂ)%, (21a)
N b
fn = + tanh(—)Z (. (21b)
2I
where the matching point has been chosen to be C,(,m) = -’25(bnbn+1)%. Now the constants b,

can be computed by using their definitions (15):
™ .
|7 626 = 5/,
0
™ .
A 1
/0 (1 - 012;)an = Z(bnbn+1)_5'

1S
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And we obtain:

b2 = bo(bnsabn1)?  forn=2,3,... N—1

2_T
b2 - _§_ bN—l
N3V of
Thus
T
bn'—’E(m) for n = 1,2,...,N, (223.)
I =2Nb,. (22b)
And finally

9m4N

A comparison of the numerical computation of the extremalizing functions of the exact
Euler-Lagrange equations and the asymptotic results is shown in Fig (2). They agree very
well. The upper bound of Nu in Rayleigh-Benard convection by multi-a-solution approach

1
PM () = min PN (6; ) = uFFN(N + 1)4b? = N(N + 1) ( 64 ) (@)

Figure 2: The two-a-solution at R = 5072, Numerical computations(solid lines) are com-
pared with the results (21) and for 6;, 6, from the boundary layer theory.

is shown in Fig (1) in [1] and compared with experimental results. The result (23) shows
that the minimum of P(u) among the class of functions {P{¥) ()} is assumed sequentially
by N =1,2,... as p increases. The results of Busse and Joseph (1972) [2] indicate that
the transition occurs in the form of a bifurcation in which the (N + 1)th component of the
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solution first appears as a small perturbation in the N th boundary layer of the N-a-solution.
As a result the bound P(u) appears as a smooth curve without kinks. This structure of
the upper bounds is shown in Fig (3) where the upper bound of heat transfer is computed
numerically for Rayleigh-Benard convection with stress-free boundary conditions [3]. Also
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-
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Figure 3: The upper bound p as a function of R in the case of 1-o- (filled circles), 2-o-
(open squares) and 3-a-solutions (crosses). For comparison the upper bound obtained by
Howard (1963) [4] without the constraint of continuity equation (dotted line) and numerical
values obtained by Moore and Weiss (1973) [5] for 2-dimensional convection rolls with the
Prandt] number P = 6.8 (dashed line) are shown. The inset enlarges the part 2 x 108 <
R <26x10°,1.5x10% < u < 2.2x 10® of the graph in order to indicate the small difference
between results for N = 2 and N = 3. (From [3])

noticed is the boundary layer structure in this free-stress boundaries system as shown in
Fig (4). The function w8/ < wé > for the 2 — a solution is close to unity over most of the
interval, and only decreases sharply toward the z = :i:% boundaries. The narrower boundary
layer corresponds to larger wavenumber as can be seen from the curves for w2/ < wé >
For this same system, Fig (5) shows the extremalizing w;, ws, w3 functions corresponding
to the 3-a-solution.

2.2 Similarities Between Extremalizing Vector Fields and Observed Tur-
bulence

The extremalizing vector fields of the upper bound problems have in common with the
observed turbulence that the wavenumber spectrum broadens as the N-a-solution is replaced
by (N + 1)-o-solution. But the spectrum of the extremalizing field is discrete while that
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Figure 4: The functions w6/ < w > (solid lines),w;0;/ < w8 > (dotted lines) and wabs/ <
wf > (dashed lines) in the case of the 2 — a-solution for R = 5 x 10% (labelled by 1) and
5 x 10° (labelled by 2). The slight wiggles exhibited by the function w@ near the boundary
for R =5 x 10° are caused by the limited numerical resolution. (From [3])
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Figure 5: The function w;(z) (solid line), wy(2) (dashed line) and w3(z) (dotted line) of
the 3 — a—solutions for the Rayleigh numbers R = 10°,1.25 x 105, 1.5 x 105, 2 x 106 (from

bottom to top). (From [3])
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of the actual turbulence field is continuous. Since the N-a solution for the extremalizing
vector field provides the upper bound only in a finite interval of the control parameters, the
assumption of an infinite ratio between thicknesses of successesive boundary layers is not
well satisfied. It turns out that this value assums e? in the case of solutions (23) for large
n, N and the value 4 for other cases of upper bound problems that have been studied. The
profile of the extremalizing fields of turbulent shear flows thus have the form sketched in
Fig (6).

Figure 6: Qualitative sketch of the nested boundary layers which characterize the vector

field of maximum transport. The profile of the mean shear flow is shown on the right side.

Generally, with increasing control parameter (e.g. Ra in Rayleigh-Bénard convection)
the number of wavenumbers needed for the extremalizing multi-o-solutions increases cor-
respondingly. The transition of N-a-solutions to (N + 1)-a-solutions exhibits a structure
similar to bifurcation. In Rayleigh-Benard convection at high Prandtl number, the tran-
sition from convection rolls to bimodal convection occurs at the Rayleigh number of the
order 2 x 10%, the same as from the 1-a-solution to the 2-o-solution. This bifurcation struc-
ture is also illustrated in Fig (7), which shows the transitions from the l-a-solution to the
2-a-solution, and from 2 to 3 in a fluid layer heated from bellow with stress-free boundary
conditions. This bifurcation structure of the extremalizing vector fields is a consequence
of the property that eddies with an increasing number of length scales are needed to ac-
complish an optimal transport as the control parameter (Rayleigh number in convection)
increases.

The profiles of averaged temperature and velocity fields are relatively easier to be mea-
sured experimentally in a turbulent flow. Thus it is of interest to compare the measuered
profiles with the profiles corresponding to the extremalizing vector fields. The mean velocity
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Figure 7: The wavenumbers ag-i), J=1,...,4,i=1,2,3 of the extremalizing solutions as a
function of R. (From [3])

profile in plane Couette flow is compared with the extremalizing field in Fig (8). The as- -
ymptotic profile of the extremalizing solution matches the velocity profile at high Reynolds
number (R = 68000) very well in the middle of the interval except near the boundary. In
fact the boundary layer thickness tends to zero only when R — oo. -A finite R — 68000
exhibits a finite boundary layer thickness as shown in the figure. Because of the turbulent
mixing one tends to expect that the mean shear or mean temperature gradient is zero ex-
cept around the boundaries where the velocity or temperature gradient is large. Indeed,
experiments on turbulent convection in fluid layers heated from bellow as well as in the case
of the vector field extremalizing the heat transport an isothermal interiar is found when the
averages over plane z =constant are taken. Surprisingly this property does not hold true
in the case of a shear layer as shown in Fig (8). The extremalizing field does not need the
drop of half of the velocity difference between the plates across the boundary layers in order
to accomplish an optimal transport. Only 3/8 are required. Another example, the angular
momentum transport by turbulent flow between differentially rotating coaxial cylinders, is
shown in Fig (9). The extremalizing solution fits the experimental data even better than
the logarithmic layer modet [7].

The set of discrete wavenumbers characterizing the extremalizing vector field appears to
be the most artificial feature when compared to the broad continuous wavenumber spectrum
observed in turbulent flows. However, patterns of coherent structures in fully developed tur-
bulences are very difficult to measure in laboratories. The fluctuations measured at a single
point as a function of time which are interpreted as fluctuations in space via the Taylor hy-
pothesis will usually generate a continuous spectrum even if, for instance, a perfect pattern
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Figure 8: The mean velocity profile in plane Couette flow measured by Reichardt (1959)
at Re = 2400(0), Re = 5800(x), Re = 11800(+), andRe = 68000(A). The straight line de-
scribes the asymptotic profile corresponding to the extremalizing solution of the variational
problem [From [6]].

77




08— .o L,
; ° ey

Figure 9: Measurements(+) by Smith and Townsend (1982) (8] of the angular momentum
density, rU(r), normalized by the angular momentum of the inner cylinder, Q,-r?, in com-
parison with the profile of a logarithmic layer model (solid line) (Lathrop et al, 1992 [7])
and with the profile of the extremalizing vector field in the limit of high Reynolds numbers

(dashed line). A stationary outer cylinder with a radius ratio n = 0.667 has been used
(After Busse, 1996 [9]).
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of hexagons is advected by a mean flow. Few experiments can provide an instantaneous
view of the two-dimensional structure of turbulence. Through the shadowgraph visualiza-
tion technique [10], such a view can be obtained in the case of turbulent convection in a
fluid layer heated from bellow. It is thus not surprising that a nearly stationary network of
convection cells can be discerned in turbulent convection at a Rayleigh number of several
108, Measurements of spectral peaks that can be compared with the discrete scales of the
extremalizing fields have been obtained as shown in Fig (10). More detailed comparisons
appear to be possible when numerical simulations of convection with sufficiently large hori-
zontal periodicity intervals are carried out. Another property shared by extremalizing fields
for different turbulent flows is shown in Fig 11, where the structures of shear flow boundary
layers and of thermal boundary layers in convection are identical when scaled properly.

Finally, additional constraints will restrict the manifold of admissible vector fields in the
variational problems and will lead to improved bounds.

3 Convection in a Rotating System

The geometry of this problem is shown in Fig (12). The length scale is d, time scale g:_ and
temperature 22211, The dimensionless governing equations are:

R
1[0 i 2
P é—)z-i—u-V u=-Vr+kO+Vu-20xu (24)
V.-u=0 (25)
%6+u~V@=Ru-E+V2@ (26)
where
- 3
R= ¥(T2 — T1)gd , 27)
YK
14
P=-— ‘
— (28)
. . 2
Q=k0= kQ‘I’Id . (29)

Assume the turbulence is stationary, and thus
©=6+6, with&=0. (30)

As usual, the over bar denotes a horizontal average over the plane z = constant. By taking
the horizontal average of the temperature equation (26), we have

d - —= <
E;@ =u,0—- <u;,0> (31)

Using the general representation of a solenoidal field,

u=Vx(V®xk)+ VI xk=06+e¥, (32)
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Figure 10: Three graphs of the normalized cospectra of w and 6, observed by Deardorff
and Willis (1967) [11] at Rayleigh numbers 6 x 105,2.5 x 105,1.0 x 107 respectively, are
plotted on top of a figure showing 1§N) = 27r/a§N) as a function of the Rayleigh number for
N = 2,3,4. The three graphs have been arranged in such a way that the Rayleigh numbers

of both plots coincide approximately at the level where the secondary maxima appear in
the cospectra.
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Figure 11: Root mean squre (r.m.s) values of the fluctuating components of the velocities
in the streamwise direction, 4./U,, and normal to the wall, w/U;, measured by Laufer
(1954) [12] at Re = 2.5 x 10°(z) are compared with the r.m.s. values of the temperature
flucuations @ and of the vertical velocity @ measuered in turbulent thermal convection by
Deardorff and Willis(1967) [11]. The latter values have been obtained for Ra = 2.5 x
108(0) and Ra = 2.5 x 107(00) are plotted in units resulting from the correspondence of the
variational problems (after Busse, 1970)
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Figure 12: Geometry of convection in a rotating fluid laiyer.
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we obtain:
VA3 + 20VALT — A8 = P! (gt-vaz@ +6-(u- Vu)) , (33)
ViAW - 200-VA® = P! (%Ag\ll +e€-(u- Vu)) , (34)
V26 — RAL® + Achdiié ~u-VO-u Ve + %é. (35)

Then we are able to derive the following power integrals for stationary turbulent convection:

< |k x VV2®|% > +20 < Azqiw >+ <0028 > =P <§d-[(6+eT)- V]el >,

0z
(36)
< |k x VV2EP > —20 < Azq»g—tw > = P71 < eV[(6® + €¥) - V5D >,
(37)
< VO > 4 < |A280- <A@ > 2> =R < —Ay30 > . (38)

With these power integrals, the variational problem is formulated as follows:

For given values of the parameters P, T and p > 0 find the minimum R(u, P,7) of the
variational functional

R(@*’ o*, e*;u, P, 7') =Ri1+ A (R2 + _‘\;DER:;) (39)
among all fields ®*, U*, ©* satisfying the conditions
. 0% ou* . 1
Q—W—‘—a;*—e —0, at Z—:t‘i. (40)

In the above expression

R = & lk x VVU*[2 > 4 < [k x VV28*[2 >) < [VEO*|2 > +p < (67 A0 — < 0*Ax3* >)2 >
1 =

< O* AP+ >2 ’
(41a)
<|kx VYV 2> -1 < Ap8* 2L >
2 = = = , (41b)
<lkx VV&*2> + < [k x VV28*|2 >

_ < eW* . [(e¥* +68*) - V]§D* > (41¢)

TRk VYV > 1 < [k x VI S
The functional is homogeneoﬁs in © and in (®,¥). Hence the normalization
p=—<083%>=< lkx VVI]® > + < [k x VV232 > (42) -
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can be imposed. To solve this variational problem, the following ansatz is introduced:

N

& =3 ¢p(z,y)4(2), (43a)
=1
pN

¥ = Z ¢P(x7 y)BP(z)a (43b)
=1
pN

0 =" ¢p(z,y)Tp(2), (43¢)
p=1

where the boundary conditions for ®, ¥ and © can be satisfied by the choice

M
. 1
Ap= gapq sin g7 (z + -2—) , (44a)
X 1 < 1
B,= prq cosgm (z + 5) , Tp= thq singm (z + 5) , (44b)
g=1 g=1

for the z-dependence.

Then the time independent Euler-Lagrange equations are solved numerically to find
the stationary state of the functional R(u,P,7). Two types of solutions are tried. One
of them is two-dimensional rolls, in which case a single wavenumber (N = 1 in (43)) is
assumed [13]. Since the P dependence disappears in the Euler-Lagrange equations in the
two dimensional case, to investigate the role of P in determining the upper bounds, three-
dimensional hexagonal solutions are considered (N < 5) [13]. The Euler-Lagrange equations
used here are time independent, which provide the upper bound of the heat transport by
turbulent convection. Thus we don’t observe the onset of convection in the form of coherent
oscillation bellow the critical Rayleigh number when the Prandtl number P is low enough.

The extremalizing fields of the two-dimensional roll and three-dimensional hexagon are
shown in Fig (14) and Fig (13). The boundary layer can be seen to form in the roll
solution (Fig (14) with increasing Rayleigh number with fixed 72. In order to maximize the
convective heat transport the function IT = 6A34/ < §A2¢$ > must approach a constant
value in the interior of the layer while keeping its rise from zero at the boundaries sufficiently
smooth such that the dissipation of the flucuating variables does not contribute too much
in the functional (3). This tendency is clearly seen in Fig (15) as the boundary layer forms.
The three-dimensional hexagon solution has asymmetric components as is clearly evident in
the z-dependences of A;(z) and T1(z) in Fig (13). The asymmetry increases with decreasing
Prandtl number P and with increasing R.

Finally, the upper bound on the heat transport is shown in Fig (16). The figure shows
that the upper bound of convective heat transport by hexagon solutions extends to bellow
the critical Rayleigh number Ra., which is indicated by the vanishing of the maximum
convective heat transport by the roll solutions. This point is particularly evident in for
the 72 = 10* and P = 0.0247 case. But at Ra not far beyond the critical value, the heat
transport by roll solution already exceeds the hexagon solution. This subcritical extent of
the hexagon upper bound is not quite so dramatic for lower 72 values.
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Figure 13: The z-dependences Ti(z) (solid line, left ordinate) and A;(z) (dashed lines,
right ordinate) for the etremalizing hexagon solution in the case R = 3000, P = 1 for
72 = 500, 750, 1000, 1250, 1500, 2000 (from top to bottom)
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Lecture 8

Bounds for Rotating Fluids
P. Constantin
Notes by U. Riemenschneider and S. Plasting

1 Introduction

Bounding problems in fluid turbulence have classically been concerned with finding bounds
on one point quantities such as the time and space averaged dissipation rate F(Re) =
v{||Vul|?). Another class of problem is to find bounds on two point quantities which
depend both on the system control parameter and on a space- or time-like parameter. An
example of such a quantity is the energy spectrum E(k; Re) = } fot |a(k)|?dt, where k is the
magnitude of the wave number, which is the density of the contributions to the kinetic energy
on the wave-number magnitude axis. The total kinetic energy is % [5 [lu[|?dt = f;° E(k)dk

This lecture deals with deriving rigorous upper bounds on transport quantities and
energy spectra for rotating fluid systems. We present results for bounds on one and two point
quantities which are derived by following the Constantin-Doering-Hopf bounding approach.

2 Bounds for Rayleigh-Bénard Convection

The effect of rotation on convective heat transport is an important issue in astrophysical and
geophysical applications. Here we shall consider the heat transport through a fluid layer
confined between two parallel plates heated from below with fixed temperature on both
top and bottom plates, which is rotating with a constant rate around an axis of rotation
perpendicular to the plates. No-slip boundary conditions will be assumed throughout. The

non-dimensional equations for Boussinesq convection with rotation are

1 ou —17 i
ﬂ-<5{+u-Vu)+E kx u+Vp=Au+ RakT (1)
V-u
%—#u-VT:AT

where the Prandtl number is defined as Pr = v/k, the Ekman number is inversely propor-
tional to the rotation rate, and the Rayleigh number is the standard non-dimensionalised
temperature difference across the fluid layer.

In the limit of infinite Prandtl number one can neglect the inertial terms of the left
hand side of Equation (1). In the remaining system of equations T is the active scalar
and the velocity vector u is linearly dependent on T. In the bounding analysis of this
problem the full momentum equation can be utilised as a pointwise constraint due to its
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linearity. Following the derivation in [1] we are able to show that the following equations
in the vertical component of velocity w = k - u and the vertical component of vorticity
€ = k- (V x u) fully determine the dynamics of the convective state

_10¢
Aw-E 152- = —RaA,T (2)
ow
—Af — g-19Y% _
Ag- B )
subject to the boundary conditions
ow
w—a—O—E at z=0, 1.

Multiplying Equation (2) by w, Equation (3) by £, adding and integrating we deuce that
the following E-independent bound holds pointwise in time

|Aw||? + 2||A¢]|? < Ra® (4)

where we use a normalised L? norm

1 1 oL oL
I97=2 [ [ [ 15w )Pazdya
0 Jo Jo

Equation (3) can be rearranged to

ow :
5, = ~EA¢ (5)

The previous two expressions together imply that for strong rotation rates (E — 0) horizon-
tal variations in w are restricted and a stratification is set up such that a purely conductive
state is realised.

The total non-dimensional heat transport is quantified by the Nusselt number which is
defined as the long-time average of the vertical heat flux

N=1+ </:b(z,t)dz>

L L
bz, 1) = 7 /o /O w(z,, 2,) T(z, y, z,t)de dy.

where

and () is used to denote the long-time average

. 1t
<f>—1;msup— /0 f(s)ds.

=—300 t
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Figure 1: A plethora of upper bounds on the heat transport, NV, in Rayleigh-Bénard con-
vection for infinite Prandt]l number.

Figure (1) shows the results of several upper bounding studies for the infinite Prandtl
number problem. Upper bounds on NV — 1 are plotted against the Ekman number. The top
most upper bound is a uniform bound in F [2]. Intersecting this bound are two other upper
bounds. The bound to the left has the proper qualitative dependence on rotation in that
convection is suppressed in the limit of strong rotation (E — 0) which is suggested by the
relations in (4) and (5) [3]. In the absence of rotation (E = 00) a logarithmic bound has
been obtained [4], which is illustrated by the dotted line in the figure. Allowing for finite
E they find in [1] that there is a region in which the optimal bound is lowered from R?/5
and connects to the logarithmic bound at some higher Ekman number.

3 Bounds on the Energy Spectrum

We now turn our attention to a problem for which an upper bound on the scaling of the
energy spectrum in rotating turbulence has been caculated.

3.1 Motivating Experiment of H. L. Swinney

The motivation is a recent experiment by Baroud, Plapp, She and Swinney [5] for which
Kolmogorov’s theory for two-dimensional turbulence does not justify the scaling of the
energy spectrum in the inverse cascade region. In the Experiment quasi-two-dimensional
flow is studied in a rapidly rotating cylindrical annulus. The resulting velocity measurements
yield a self-similar probability distribution function for longitudinal velocity differences,
which are strongly non-Gaussian. The resulting energy spectrum is described by E(k) ~ k~2
rather than the expected E(k) ~ k~%/3 from Kolmogorov’s theory. We shall outline a brief
background to Kolmogorov’s statistical study of turbulence, followed by a description of
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Figure 2: Typical correlation curves. R is the correlation coefficient and I the separation of
sample points. For large separation R tends to zero and for no separation R = 1.

the experiment which. A rigorous upper bound for the energy spectrum is then presented
under the assumption of quasi-geostophy.

3.2 Background on Turbulence (See also [6])

The most successful statistical theory of turbulence is that of Kolmogorov, which involves
scaling laws for the structure function Sp(l) = (§v(l)?) ~ IS of velocity increments dv(l) =
v(z + 1) — v(z), where I denotes the separation between two points. An often studied and
very important question regarding turbulence is whether the statistics are self-similar across
a wide range of spatial scales, or equivalently whether the probability distribution functions
(PDFs) of the velocity increments have a functional form independent of the separation 1.

Correlation curves such as in Figure 2 provide a method to study the scale and structure
of turbulent motion. Supposing u; and u, are deviations from the mean flow at different
positions but at the same instance, Wu; is known as a space correlation. Usually most
attention is given to longitudinal or lateral correlations, i.e. to points separated parallel
or perpendicular to the velocity components respectively. Correlations depend on both the
direction and magnitude of ! and different behaviors in different directions may provide
information about the structure of turbulence. When I = 0, u3 = uy (provided they
are in the same direction) and the correlation coefficient R is by definition equal to 1,
where R = U1t/ (u2u3)!/2. Asl increases the velocity fluctuations become more and more
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independent of one another and R asymptotes to 0. A negative region in the correlation
curve (figure 2 B) implies that u; and uy are on average in opposite directions.

A correlation curve therefore gives an idea of the distances over which motions at differ-
ent points significantly affect one another. This statistical analysis gives rise to the structure
functions describing the spatial structure of the turbulent motion.

Using Fourier transforms an equation in terms of spectral functions may be obtained
alternatively to the correlation functions. In the inertial range these depend only on the
wave number k and the energy dissipation €, E = E(k, €).

B(k) =1 /0 ja(k) 2t (6)

and dimensional analysis then gives
E(k) = A*/3E5/3 (7

where A is a numerical constant. This is the famous 'Kolmogorov -5/3 law’ which applies
for flows of a high Reynold number under two hypothesis: 1) local isotropy and homogene-
ity, and 2) the existence of a wave number range independent of viscosity and large-scale
properties at sufficiently large Reynolds numbers.

3.3 The Experiment

Kolmogorov’s theory was developed without considering rotation, for planetary flows how-
ever, such as the Earth’s atmosphere and ocean, this assumption may not apply since the
Rossby number which measures the relative importance of the inertial and Coriolis forces
in the Navier-Stokes equation is small,

_ju-vVu L

R_2|qu| T 2UQ

<1 (8)

The experiment carried out by Swinney using a rotating annular tank was the first
to determine the statistical properties of turbulence in a low Rossby number flow. The
experimental setup was as follows. An annular tank was filled with water and covered by a
solid lid; the inner radius of the tank was 10.8 cm and the outer radius 43.2 cm. The depth
of the tank increased from 17.1 cm at the inner radius to 20.3 cm at the outer radius to
simulate the B-effect of the earths’ surface, for more details see [7]. A counter rotating jet
was induced in the flow, by continuous pumping of water in to and out of the tank through
two concentric rings at the bottom of the tank. A sketch of the setup is shown in Figure 3
and a more detailed description of it may be found in [5].

The purpose of the pumping at the bottom of the cylinder is to create a shear between
the Ekman layer and the fluid in the tank and thus induce turbulence. The rapid rotation
of the tank (11.0 rad/s) produces essentially 2D flow, except in the thin Ekman boundary
layer at the top and bottom surfaces.

Time series measurements of the azimuthal velocity midway between the inner and
outer wall of the tank were taken using hot film probes. In order to find a correlation of
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Figure 3: Experimental apparatus. The dimensions of the tank are shown. Note that the
tank is covered by a rigid lid. The dotted lines show the approximate positions of the
two concentric rings pumping fluid in to and out of the tank, via the inner and outer ring
respectively.

the velocity increments an autocorrelation is used, that is, the same velocity components
at a single point (the hot film probes) at different instances are correlated. This depends
on the time separation s only, however, when the turbulent motion is occurring in a flow
with a large mean velocity, as is the case in this experiment (Umaz = 22¢m/s), it is possible
for the turbulence to be advected past the point of observation more rapidly than the
pattern of fluctuations is changing. An autocorrelation will then be directly related to
the corresponding space correlation with separation in the mean flow direction, by just
transforming the variables, s = r/U. This is referred to as Taylor’s frozen in turbulence
hypothesis.

The energy power spectrum is computed from the time series data obtained in the
experiment and they find that E(k) ~ k=2 for the inverse energy cascade.

3.4 Inverse Energy Cascade

In two-dimensional turbulence there are two conserved quantities, energy and enstrophy,
which are candidates for cascades of the Kolmogorov type (see Figure 4(a)). However, to
satisfy both conservation laws there must also be a reverse flow of kinetic energy, from
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Figure 4: The energy cascade picture of fluid turbulence in (a) 3-dimensions and in (b)
2-dimensions. The input scale is the characteristic wave-number at which the fluid system
is forced. In 3-dimensional turbulence energy is transfered inviscidly from the large scales
(small k), associated with the energy input scale, to smaller scales where it is dissipated by
viscous means at the Kolmogorov lengthscale. In 2-dimensional turbulence kinetic energy
can transfer from the input scale up to larger scales. This phenomenon is known as the
inverse energy cascade. For a review article on 2D turbulence see [8].

small scales to large scales, called the inverse energy cascade (Figure 4(b)). For strictly
two-dimensional Navier-Stokes equations under homogeneous and isotropic conditions the
Kolmogorov-Kraichnan theorem predicts a k~5/3 inverse energy cascade spectrum at wave-
numbers smaller than the forcing scale (for a review of two-dimensional turbulence [8]). In
the Experiment which we assume is quasi-2D an inverse cascade is observed as small vortices,
an array of vortex filaments are constantly injected at the boundaries of the outlets and
inlets, merge to form larger vortices with maximum size limited only by the size of the
experimental apparatus.

3.5 Rotating Navier-Stokes Equations

The equations of motion governing a body of fluid rotating at a constant rate about the
z-axis are

%‘tl_;_u.Vu+V7r+2Qf<xu=z/Au (9)

V.u=0
w=%—%p&xﬂr
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where u is the relative velocity. The Coriolis force =20k x u is always perpendicular to
the velocity and hence does no work but tends to deflect moving fluid elements to the right
(see [9] for a derivation of these equations). In the Experiment the pumping at the tank

bottom produces a counter-rotating jet in the Ekman layer which generates the turbulence
observed there.

3.6 Is the Energy Dissipation Bounded in the Experiment?

The Constantin-Doering variational approach can be used to prove the boundedness of the
energy dissipation rate for the fluid system studied in the Experiment. The one technical
issue is to develop a background field which is continuous, solenoidal and satisfies the
necessary boundary conditions.

Natural boundary conditions for the Experiment are no-slip everywhere except at the
bottom of the cylinder where fluid is injected through a ring of holes at a rate W and sucked
out at the same rate from a concentric ring of holes. The distance between the forcing rings,
l, is defined as the integral length scale. We can thus define the boundary conditions as
follows

quﬂ%%ﬁ atz=0

u=0 otherwise.

where ¢ takes the values 1 at the input holes, —1 at the output holes and 0 everywhere else
on the bottom boundary.

One can generate a smooth continuation of these boundary conditions in to an incom-
pressible background field Up as follows: define x(z) a smooth function satisfying x(0) =1,
xX'(0) = 0 and x(H) = 0, x'(H) = 0, where H is the height of the cylinder, which de-
creases rapidly over a small distance & from z = 0 (Figure 5). Now define 9(z,y) as the
two-dimensional solution of

A+ =0 (10)

where Ay = ;’?2- + —‘?-2; is the horizontal Laplacian. Then it is easy to check that the
following velocity progfe is both incompressible and satisfies the boundary conditions of the
experiment

X' (2)(0:9)(%, %)
UB(ma Y, Z) =W IX,(Z)(6y¢)(%’ %) . (11)
x(2)e(F, %)

Theorem 1: If % < c for some ¢ > 0 then V initial conditions up
t 3
limsup%/(; (IVu]?) <ep where ep<c —‘;{L (12)

t—=o00

Proof idea: This bound on the energy dissipation rate can be calculated using the
Constantin-Doering background flow method [10] with background field Ug.
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Lecture 9

Bounds on Mixing in Stratified Shear Flows
Colm-cille P. Caulfield

Notes by Jennifer Siggers

1 Introduction and Motivation

Mixing is a very common feature in the environmentally prevalent flows with both vertical
velocity and density variation. Examples include the thermocline, the lutocline, planetary
boundary layers, river mouths, etc. Such flows exhibit a characteristic life-cycle, where some
external forcing intensifies the velocity shear, triggering a sequence of instabilities. These
instabilities typically lead to a period of small-scale disordered turbulent motion, that is
characterized by substantially enhanced mixing of fluid elements, and also dissipation. This
dissipation inevitably extracts energy from the mean shear, which decreases in magnitude,
leading ultimately to relaminarization of the underlying flow. Subsequent external forcing
starts the cycle once again.

The problem is that crucial aspects of the life cycle are associated with motions that are
inherently small scale, (of the order of millimetres) over time scales that are also short (of
the order of seconds), but we wish to know what happens on much larger length and time
scales, for example synoptic (i.e. of the order of hundreds to thousands of kilometres) and
seasonal scales. For example we may want to know about the total global or atmospheric
heat budget or pollutant transport within the entire system. Thus we might want to ask
the deceptively simple question:

For a given kinetic energy input from the shear forcing, how much energy is lost
to viscous dissipation and how much energy leads to mixing?

The objective of a significant amount of recent research has been to answer this question by
identifying the mixing mechanisms. This has been done by finding the dependence of mixing
events on bulk flow characteristics, their spatial localizations and their time dependence.
Then it is possible to quantify the mixing appropriately, for example by distinguishing
between reversible and irreversible processes and, more recently, by developing rigorous
bounds. The ultimate aim that should always be remembered is the desire to generate
robust parameterizations, useful to models of larger scale geophysical flows, that capture
the essential characteristics of mixing within stratified sheared fiow.

2 Energetics of Stratified Shear Flows

To identify some of the important aspects of the energetics of stratified shear flows, consider
a simple flow that is infinite or periodic in the horizontal directions and has finite extent
in the vertical direction. We use stress free boundary conditions with no normal flow
through the boundary and assume an insulating temperature boundary condition. The
velocity is assumed to vary from —Up to +Up over the length scale dp, and the density
varies from p, — pp to p, + po over the length scale dp, where py < p,. Alternatively,
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N2(z) = —g/p.0p/0z where the variation in p is “small” over the scale dg. We therefore
assume that the Boussinesq approximation is valid.

Richardson numbers are a useful tool for parameterizing mixing processes. There is a
broad class of such numbers. Here, we define two of these; the bulk Richardson number:

gpodo
J = —, 1
and the gradient Richardson number:
= 2
Ri(z) = 99042 _ N 2)

" pe(difdz)?®  (du/dz)?’

where the bar denotes averaging over the horizontal layer. Both the global (J) and local
(Ri) Richardson numbers are a measure of the relative importance of buoyancy force to
inertia or alternatively the potential energy variations to kinetic energy variations.

In the Boussinesq approximation, the kinetic energy density of the flow is given by

u 2
ce =0, 3)

where the angle brackets denote the average over the whole layer. We non-dimensionalize
the equations with the scales dy, Up and pg. Dotting the Navier-Stokes equation with u
and averaging over the domain yields the evolution equation for X

dK

& = —Jou) - 2 (V9P @

= H-E=-B-§, (5)

where H is the heat flux, B = —H is the buoyancy flux and £ is the rate of dissipation.
The potential energy density is defined to be

P = J(pz) = J(p2)s, (6)

where the subscript z indicates averaging over the z-component only. The evolution equation
for P is

dp

& =B+Dp, )
where
2J
Dp = oReL.’ (8)

and Dp is the inevtiable diffusion of the mean profile, which would occur in the absence of
macroscopic fluid motion.

If the flow is statically stable Dp > 0, denoting a continual conversion of internal energy
into potential energy within the Boussinesq approximation. Energy is exchanged between
K and P via B, see figure 2. Clearly, the buoyancy flux is intimately related to the process
of mixing, but it is necessary to have a very clear view of what exactly we mean by mixing
before quantitative advances can be made.
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3 Concepts of Stirring and Mixing

We consider mixing to be an irreversible change of the fluid properties that is inherently
small scale. We wish to distinguish mixing from stirring, which we consider to be a large
scale reversible motion of the fluid. Mixing, in our view, corresponds to an irreversible
change of P caused by the motion of the fluid. However, the buoyancy flux B includes
both mixing and stirring, so in order to quantify the amount of mixing taking place, we
split the potential energy into two parts, the background potential energy, that is increased
irreversibly by the mixing process and the available potential energy that may be reconverted
back to kinetic energy, following the original conception of Lorenz. A particular algorithmic
formulation, well-suited to numerical simulation was invented in [1], where the background
potential energy is defined as

P = J{pB(2)z)s, (9)

where pp is the background density profile. The background density profile is the sorted
statically stable profile of the fluid that has no horizontal variation, and is generated by
adiabatic (within our Boussinesq incompressible framework this corresponds to volume-
preserving) rearrangement or sorting of the fluid parcels into a state corresponding to the
minimum possible potential energy that can be achieved by the flow. An example of the
way this sorting is done is shown in figure 1. The remainder of P is the available potential
energy P4 (i.e. available for reconversion into other forms of energy). We have,

Ps = P-"Ppg, (10)
d
ZPa = B-M=5, . (11)
d
EPB = M+ Dp, . (12)
%K(t) = —S—-M+D, (13)

where § and M are energy transfer rates defined by the above equations. A schematic
view of the processes of energy transfer represented by these equations is shown in figure 2.
Figure 3 shows a schematic graph of possible values of B, M and dP,/dt for a typical
fluid. The left hand half shows a situation where the fluid is moving upwards on average
(B > 0). The mixing rate M can actually be small during this stage, for example during
the initial preturbulence roll-up of a Kelvin-Helmholtz billow. In the right hand half, the
fluid is moving downwards on average (B < 0), and this can correspond to a higher mixing
rate. However, the averages of B and M for sufficiently long times are always equal, so that
t
lim [ Bdt= lim
t~»00

t—00 0

t t

Mdt, i.e. lim/SdtzO. (14)
0 t—00 0

4 Mixing Efficiency

Essentially the fundamental question posed in the introduction considers the efficiency
of the mixing, i.e. the proportion of the kinetic energy lsot by the flow (or the driving
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Figure 1: Diagrams showing an example of the actual state of the fluid (top left). The
horizontally averaged density p is shown underneath, which is uniform in z in this case.
The sorted stable profile of the fluid for calculating the background density is shown (top
right), with the heaviest fluid at the bottom, and the graph of background density is shown
underneath.
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Figure 2: Diagram showing the mechanisms by which energy may be transferred in the
fluid. K is the kinetic energy, P is the potential energy and T is the internal energy of the
fluid (e.g. due to its temperature).

mechanism) that leads to mixing, or, equivalently, irreversible increases in potential energy.
More formally, the mixing efficiency is usually (e.g. for grid-stirred experiments) defined as

APE

WORK (15)

(see [2, 3] etc.). This is the natural measure of the proportion of the kinetic energy input to
the fluid that has led to irreversible mixing. Experimentally this is typically only determined
at the very end of an experiment, once all reversible processes can be assumed to have died
out. However, provided the background density profile can be determined explicitly, (as can
be done straightforwardly in a numerical simulation) it is possible to define an instantaneous
mixing efficiency:

M
MH+E

Naturally, it is also possible to define a long-time cumulative version

&

(16)

fot M(u) du
Jo M(u) du + Jy E(u)du’

& (17)

that more closely approximates the experimental quantity.
The beautiful work of Winters [4] has shown that the diapycnal flux ®, is

J dz,
$;=M+Dp= ~ b < " IVp[2>, (18)

104




1 I ) I 1 1 1 T
- -t
F 4
0.8} ’ i
’
’
L 4 ]
08 A
/4
A K—-P,—Pg
041 B>S>0 -
M>0 (small)
0.2 7
0 o=’ 9"
b\ /4
02 \ P K /]
1 PA—') PB f ]
3 S<B<0D f
0.4 \ M>0 (larger!) ’ 7
A} 7

\ 7

-0.6} A ’ .
\ /
\ ’
’
—o8} h ’ .
~ ”
-,

-1 I R 1 1] L 1 ] 1 i

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 3: Diagram showing possible values of B (solid), M (dotted) and dP,/dt (dashed)
for a typical fluid as over a period of time.

105




where z, is the coordinate associated with the rearanged fluid parcels that make up the
background density profile pg. A large ®; means that there is an enhanced irreversible
transport of density, and hence an irreversible increase in potential energy. From the for-
mula, it is apparent that this may occur if there is an enhanced density gradient and/or
enhanced surface area of contact between fluids of different densities. @4 can also be related
to the Cox number, or equivalently to the flux Richardson number.

The flux Richardson number is defined in sheared stratified turbulent flow as

B

Br = vonraeras

(19)
where ' = u — @. The long time average of Ry always tends to the mixing efficiency

c. However, the denominator (essentially the shear production of turbulent kinetic energy,
which corresponds to the kinetic energy lost by the mean, forcing flow) of the expression for
Ry is always positive in a steady state and so if B < 0, which often happens in the periods
of most intense mixing then R 7 is negative! Hence it does not necessarily provide a good
instantaneous estimate of the mixing efficiency.

5 Previous Parameterizations

Previous parametrizations of mixing within shear driven turbulence have focussed on ap-

propriate descriptions of the flux Richardson number, since it is apparent that in a shear
flow

Ry ky
where
_ B = (')
kh = m and km = m—, (21)

are the eddy diffusivities of density and momentum respectively. Larger scale models of-
ten rely on sub-grid scale parameterizations based on eddy diffusivities. Although such
models have many problems, they are commonly used, and so the determination of the
flux Richardson number in terms of bulk properties of the flow has been the focus of much
research.

For example, the Osborn-Cox Model [5] is a common oceanographic model that assumes
that the flow is stationary and homogeneous. Also, both boundary effects and the effects
of advection into and out of the domain are assumed to be unimportant. With these
assumptions,

ky = Ry €& £

R T et @)

where I' is known as the flux coefficient. Historically, often Ry = 0.15 has been assumed,
corresponding to I' & 0.2 (based on oceanographic observations), although 0.05 < Rr<0.3
have been observed [6, 7]. Rod-stirring experiments suggest Ry < 0.8 [3] and collated
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Figure 4: Four graphs showing values of the flux Richardson number R; as a function
of gradient Richardson number Ri obtained by different sources. (a) Some experimentally
measured values. The squares represent thermally stratified wind-tunnel data from (11], and
the circles and triangles represent decaying and growing (shear-driven) stratified turbulence
data in salinity-stratified fluids, as compiled in [12]. (b) Observed mixing efficiencies. The
dashed curve is from [13], the thin solid curve is from [14], the bold solid curve is from [15],
the triangles are from an experiment based in Salt Lake City and the crosses are from
an experiment based at Los Alamos [16], the diamonds are from [17] and the circles are
from a modified version of [13]. The graph is taken from [16]. (c) Experimental values
from [17]. (d) Values obtained by direct numerical simulation compared with experimental
values (solid symbols).

108




experiments suggest Ry < 0.2 [8]. The dependence of the mixing efficiency on Ri and J
was found in [9, 10] where is was also found that there is a tendency for the flows to form
layers. A graph showing the relationship between Ri and Ry is shown in figure 4(a).

However, some numerical calculations suggest the possibility of larger £, and hence Ry,
for example in pre-turbulent billows [18, 19, 20]. Also recent direct numerical simulations
of homogeneous decaying turbulence suggest Ry ~ 0.4, which is consistent with rapid
distortion theory calculations at high J [21]. Stratified shear experiments have Ry =~ 0.45
and obesrvations have found values of Ry between 0.4 and 0.45 [22, 17, 16]. The graphs in
figure 4(b), (c) and (d) show some results that have obtained higher values of Ry.

Some models have also produced high mixing efficiencies. For example, Pearson, Put-
tock & Hunt [23] found that the mixing was related to local density perturbations and its
efficiency was constant (and independent of stratification). There was also an apparent
equipartition of P and K. Weinstock [24] assumed that the dominant mixing processes
occur at scales within the inertial subrange (i.e. those scales where there is homogeneous
isotropic turbulence, that are much smaller than any characteristic forcing lengthscales and
yet longer than the viscous Kolmogorov dissipation lengthscale). He showed, by manipu-
lation of the Lagrangian velocity correlation function that kj is predicted to take a value
consistent with Ry = 4/9.

6 Townsend’s Model

Townsend [25] developed an empirical model for the heat and momentum transport in
turbulent stratified flow. His fundamental assumption was that the turbulence is little
affected by the stratification of the fluid. This is obviously not the case in flows where
the turbulence is driven on sufficiently large vertical length scales, for which the turbulent
motions in the vertical direction are likely to be hindered by the stratification. However, if
the dominant turbulent scales have sufficiently small scales, the turbulence can be assumed
to be relatively independent of the stratification.

Townsend’s empirical assumption is that all flow quantities can be described by char-
acteristic scales of u and the density fluctuations p. We define the r.m.s. turbulent kinetic

energy intensity ¢
g=1y/|lu—1up (23)

and the r.m.s. density fluctuations r,
r=1/lp—7* (29)

The equations for the flow v and the density fluctuations p in the Boussinesq approxi-
mation are

—a—t+u-Vu+Vp-——p%+uV u, (25)
0

-a—[t) +u-Vp=kxV?, (26)
V-u=0. (27)
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Assuming that the dominant flow is horizontal, the flow field can be written as
u = U(z)x + v(r) where U(z)x =W and ¥ = 0. (28)

Let v = (u,v,w); assuming a steady state and taking the dot product of v with equation
(25) and integrating over the horizontal plane yields

—dU g-—k _
—(vw) =~ ;a(Pw) -€=0. (29)
Similarly, multiplying (26) by p and using the same procedure we get

—dp _
(mv)(—if +& =0, (30)

where € is the horizontally averaged momentum dissipation rate and €, is the horizontally
averaged thermal dissipation rate.

The following parameterizations were proposed by Townsend and follow from a simple
dimensional analysis:

[w0] = a1¢’, |pw| = aprg, T= = (31)
where a3, a2 are positive nondimensional constants and L., L, are the (constant) integral
length scales of velocity and density fluctuations. Substituting equation (30) into (26) to
eliminate r yields a quadratic form for g only.

Townsend [25] then proceeded to use these equations to derive a relation between the
local fluxes and the local Richardson number, defined in equation (2). However, we shall
assume that the vertical variation of the flow and fluid structure is small, so that through a
vertical integration of equations (29) and (25) we can obtain a relation between the global
Richardson number J and the flux Richardson number Ry. The integration yields

2 _ a; L. AU gAprLeag_
@2 - (2527 (@ + L2eledh

(32)

where (g). results from the vertical integration of g, AU and Ap are positive definite, and
d is the half-thickness of the layer. This quadratic form can be solved for (@)z, and thereby
provide also an expression for (r),. These can then be substituted into the expression for
the flux Richardson number, defined in (19) to give

—e =112, /1 - Aewl):(e)
Rf—é‘c—z(l \/1 (|uw]2>,<e,,>z‘7)' (33)

It appears that if J exceeds the critical value

(]uw]2)z (fp)z
4low|?)z(e) ’

(34)
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then there is no solution with physical meaning. As J tends to this critical value from
below, £, — 1/2. Townsend interprets the critical value as the point above which “the
energy supply is no longer sufficient and the motion collapses to almost laminar flow”.

Heuristically, this theory appears to suggest an upper bound on mixing efficiency of 1/2,
consistently with the recent experimental and observational data.

We shall now try to apply the methods developed by Doering & Constantin [26] to a
model flow in order to derive rigorous upper bounds for the irreversible mixing rate M
or equivalently the long-time average of the buoyancy flux, motivated by these suggestions
that Ry can be higher than is commonly assumed.

7 Bounding Techniques for Stratified Shear Flows

More specifically, for the problem of a stratified shear flow, the questions that we will ask
are the following:

e Is it possible to generate a bound on mixing of heat?
e For a given forcing, how much energy is transferred into P the potential energy?

e Can we bound the long-time averaged buoyancy flux, i.e. can we bound the mixing rate
M? Does it depend on flow parameters? What is the associated mixing efficiency?

7.1 Model Problem by C. P. Caulfield and R. R. Kerswell [27]: Stratified
Couette Flow

A simple model set-up that can be used for to investigate these issues is that of the stratified
Couette Flow: two infinite bounding plates, placed at 24 = £1/2, and moving with veloci-
ties —AU/2 and AU/2 respectively within our non-dimensional scheme. The temperature
imposed on these plates is constant and fixed in such a way as to ensure p = pg F Ap/2 on
the upper and lower plates respectively. The set-up is illustrated in figure 5. It is impor-
tant to stress that this flow is statically stable, as distinct from more commonly considered
convectively unstable flows.
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Using the following scales
o length: d,

e time: d?/k,

e density: Ap,

as well as the Boussinesq approximation, the governing equations (25)-(27) become

% +Vp-— oV?u + 02Re?Js = 0, WNVS) (35)
% +u-Vp-V%h = 0, (R) (36)
Vou = 0, (37)

where the relevant parameters are

_ AUd v _ gApd
Re = o U_R, J—m, (38)
and the boundary conditions are
u(z+) = FoRex, (39)
p(z+) = F1/2. (40)

7.2 Problem of Interest

We will be particularly interested in long-time averages of the flow in order to define bounds
on the states reached by the system under forcing.

We perform the standard manipulation of dotting NS with u; the long time average of
the result yields the energy balance equation

.1t 2 2 oRe | 04 o0u
tl—lync;lo-t_./o (IVul*) + oRe*J (uzp) + 5 [E " + e z_J dt’ =0, (41)

where here a bar denotes the horizontal average of a quantity and angle brackets denote
the average over all three space dimensions. Similar manipulations of the mass continuity
equation give an entropy equation

1/t 1|85 ap
lim - VoY) + = | ==
m 7 [ (196P) +5 [az

T 32

t—oo t 2

] dt' =0, (42)

z4

in the Boussinesq approximation, and finally multiplying the mass equation R by z and
averaging yields the potential energy equation

op

1t 1 p
lim — 1+(u3p)+§ [—- %

0z

t—oo ¢ 0 0z

] dt' = 0. (43)
24—

z4+
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Eliminating the boundary terms between these two equations provides a relation between
the long-term averaged buoyancy flux B and diffusion terms, and shows that maximizing

s 1t 2 ! 7
B= tli)rg A oRe*J(ugp)dt’, (44)
is equivalent to maximizing
1 ¢ 2 2 '
Jim < /O (GR2I([Vp|?) — 1)dt. (45)

Note that the quadratic form in Vp is more convenient to maximize, which is why it was
chosen. To consider this problem, we use the Constantin-Doering-Hopf Method [26], also
called the “background method”.

7.3 Constantin—Doering—Hopf Method

We decompose u and p in the following manner:

u(x,t) = ¢(2)x+v(x,1), (46)
p(x,t) = 7(2)+0(x,1). (47)

Note that the background fields ¢(z) and 6(z) are not the horizontal averages of the flow;
this decomposition is certainly not unique, and allows us to chose the “background” fields
&(z) and 6(z) arbitrarily under the sole conditions that they satisfy the inhomogeneous
boundary conditions with the fluctuations v and 6 satisifying the homogeneous boundary
- conditions, i.e. ¢ = FoRe, 7= F1/2, v=10, and 6 =0 at 2.
The corresponding variational problem consists in maximizing the functional

dr.
a;Z‘f’VG

1 [t 2
L(¢,1,a,b,v,0) = tllf& " [0R62J< > —a{v-(NS)) —bB(R))| dt’, (48)
‘ 0
and where, formally av is the Lagrange multiplier used to impose the condition that the
flow should satisfy the Navier Stokes equation, and b6 is the Lagrange Multiplier used to
impose (R). This is actually equivalent to the statement that —a¢ is the multiplier used
to impose the mean momentum balance, a is the multiplier used to impose the total power

balance, b the entropy flux balance and finally —br the mean heat balance, which can be
shown from (48).

7.4 Spectral Constraint

Substituting the ansatz (47) into the expressions for (MS) and (R) of the functional £
yields

— 2 2y n _]; ’ ’
L =coRe*J(T"") tliglot/; G(r,9,v,0)dt, (49)
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where the prime denotes derivative with respect to 2. Provided the infimum of G exists,
then

L < oRe*J(r'?) - inf G, (50)
V!
where

G = (ao|Vv® + (b— o Re*J)|VO|? + avivsd’
+(b7' + ao®Re2J)v30 — (b — 20Re2J)07" — aod"v;). (51)

Convexity arguments show that the infimum exists only if:
(ao|Vv* + (b— oRJ)VO?  + avivsd! + (7' + ao?Re2J)u36) > 0, {8¢} (52)

which represents the so-called spectral constraint. This implies straightforwardly that a
and b must necessarily satisfy ac > 0 and b > g Re2J.

The Euler-Lagrange equations which must be satisfied to minimize G are given by

g—g- = —2aV3v +a¢’ + (br' + ac?Re?J)0z + Vp — aod"sc = 0,
‘;_g = —2(b— oRe’J)V?6 + (br' + ao®Re’J)v3 — (b— 20Re®J)r" = 0. (53)

From these, the horizontally averaged part of these equations can be solved straightfor-
wardly to provide the extremal mean parts:

T = —%(cﬁ + o Rez)x, (54)
~ _ (20Re’J —b)
0 _—“2(b—aReQJ) (T+ 2), (55)

where the background fields ¢ and 7 are subject to the spectral constraint SC. For these
extremalising fields, the functional F has a conservative upper bound of

b? ' 2 2 9 2
)((T +1)%) + oRe I+ 7{(¢' + oRe)?). (56)

< =
LS Lmax 4(b— oRe2J

7.5 Distilled Variational Problem

The remainder of the problem now consists in chosing the background fields 7 and ¢ that
satisfy the boundary conditions as well as the spectral constraints in order to make Lnax
as small as possible. However, instead of optimizing the problem by spanning through all
7 and ¢ possible, we will limit the study to a specific family of functions (with a boundary
layer structure suggested by physical intuition) and minimize £, within that family. This
restricted class of functions will undoubtedly lead us to an upper bound, but at this stage
there is no way of knowing how conservative this bound will prove to be.
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Figure 6: Form of the extremalizing solutions: (a) shows ¢ (solid) and 7 (dashed) and (b)
shows the u and p for the same case with the Richardson number also shown.

The functions ¢’ and 7’ are chosen to have a piece-wise linear structure with:

—%Rf upper 9y,
¢ (2) = 0 interior,
oRe

—S5 lower &,

b—ao?Re?J(1-26
— ( 2b6,,( p)) upper 4,
2 po2 . .
7'(2) = —egfie] interior,
b—ao?Re? J(1-25,)
- ( w, lower 4.

The graphs of the extremalizing solution are shown in figure 6.

Substituting the extremalising fields into equation (47), and combining these with
the ansatz for 7 and ¢ into the energy, entropy and potential energy conservation equa-
tions (41,42,43) yields a unique relation between the Lagrange multipliers a and b as well
as conditions on the thicknesses of the boundary layers é, and 4,:

b = (2-ao)oReJ, (57)
1-26, _ 4J[1-26,
20 o [ 25, } ’ (58)

with 0 < ao < 1. Therefore

__0Re®’J _ o’Re? [1-124, N ﬂ]

Lmax 26, 4 [25,, o (59)

still subject to the spectral constraints SC.

7.6 Simplified Spectral Constraint

We shall again simplify the spectral constraints by using a conservative estimate, effectively
separating the effects of velocity and density variation and requiring each to be satisfied
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independently. Using functional analysis together with the Cauchy-Schwartz inequality, it
can be proven that the spectral constraints are satisfied provided that

2135201 _

_aoRed, oRe’J°55(1 — ao) > 0. (60)
82 (0 —28,[0 —4J))?

In order to find a rigorous upper bound we must therefore minimize £ppax subject to the

conditions (60) and 0 < a0 < 1. Additional manipulations show that Ly, is minimized
when §, is maximized and for Re > 16v/2 = 22.6 it attains the minimal value when

8v2
It follows that
5 = 32v/2J ’ (62)
o(Re — 16v/2) + 64v/2J
a’'c = 1, (63)
b* = oRe%J, (64)
U2Re3 16\/5 2
o2Re? 162
< = — .
B < Boax 64v/2 (1 Re ) (66)

8 Implications

Certain characteristics of the bounding flow are worthy of note. The total dissipation rate
is given by :

2p,2
0“Re Re
Vu*|? =——(—+3), 67
s e (67)
which is, perhaps surprisingly, independent of the bulk Richardson number J. However,
we shall see that this result is consistent with the initia] assumptions on the flow. The
dimensional dissipation rate e is given by

U3
= — 68
64v/2d (68)

which has exactly the same scaling as that in the homogeneous Couette case. Again this
result suggests that the flow stratification seems to have little influence on the global features
of mixing in this problem, consistently with the underlying assumptions of Weinstock and
Townsend. Similarly, it is found that both the long-time averaged buoyancy flux Bp.x &
and the long-time averaged flux Richardson number (or equivalently the cumulative mixing
efficiency &) are independent of J, where

£ = B _1- 0'2R62/(|Vu|2)
T B+ {(|Vu2) " 2- 02Re?/(|Vul?)”

€

(69)
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When the Reynolds number Re tends to infinity, & tends to the limit 1/2 which suggests an
equipartition of the total energy intput into the fluid between the viscous dissipation and the
buoyancy flux (i.e. the irreversible changes to the potential energy) consistently with both
recent observatons of Fernando and co-workers and the heuristic theoretical considerations
of Weinstock and Townsend. The velocity boundary layer thickness is independant of the
stratification and scales like 1/Re as Re increases.

However, the overall stratification still has an important role in the determination of the
thickness of the density boundary, for example, or in the local gradient Richardson number
Ri; near the walls, it is indeed defined as

16v2 [0 (Re — 16v2) + 4J]
(Re + 161/2)2

- 1620
~—p—

Rit(£1/2) = , : (70)

(71)

However, we see here again that Ri — 16v/20/Re as Re — oo, suggesting that as the
forcing is increased, the stratification is irrelevant to the flow in the boundary layers near
the wall.

The interpretation of the results is that in the long-term averaged bounding flow, the
middle layer is well-mixed and the mixing occurs principally in the boundary layers. In
these thin layers the stratification does not dominate and the turbulence is driven through
the shear on the walls; its characteristics depend principally on Re and not on Ri. We also
note that the optimal shear in the bulk of the flow doesn’t vanish completely, and is reduced
by 50% from the laminar solution. This result is compatible with numerical experiments
and observations, althoung not with the observed behaviour of usntratified Couette flows.

9 Conclusions and Future Directions

We have seen that mixing in stratified shear flows is an important problem. However, there
is a ‘wide variability in the estimates of mixing found so far, although the evidence suggests
that the efficiency of mixing is a good way to describe the process.

Initial work with Bounding methods suggest that they can contribute greatly to our
understanding of the problem, but there are still many open problems. For example, we
would like to achieve a bound on mixing and to compare the conservative estimates of the
flow with the actual flows obtained. Also we need to relate £ to instantaneous values of Ry
and in particular develop rigorous bounds of both & and Ry. We also at the moment have
no way of knowing how widely the results of bounding studies on highly simplified model
problems can be applied to typical geophysical flows or indeed, whether our results can be
embedded in an improved parameterization. There is clearly much more work to be done
on this important problem.
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Lecture 10

Unification of Variational Principles for Turbulent
Shear Flows: the Mean-fluctuation Formulation of

Howard-Busse and the Background Method of
Doering-Constantin

Richard R. Kerswell
Notes by Huiqun Wang

1 Introduction

An upper bound on the energy dissipation rate in turbulent shear flows can be found either us-
ing Howard-Busse’s mean-fluctuation method [1] or Doering-Constantin’s background method[2].
Howard-Busse’s method grew out of ideas put forward by Malkus [3], whereas the Doering-Constantin
approach is based upon a mathematical device invented by Hopf [4]. Although the methods have
very different origins and look unrelated, we show in this lecture that they are in fact intimately
connected. They both seek to make stationary the same functional. However, the Howard-Busse
method seeks to estimate this stationary (saddle) point from below as a maximization problem,
whereas the Doering-Constantin method estimates this part from above as part of a minimization
problem. We show this explicitly for the canonical problem of plane Couette flow.

2 Couette Shear Flow

We consider a homogeneous incompressible fluid with viscosity x between two parallel, infinite plates
at z= :L-%d, which are sliding across each other with relative velocity Vp in the z direction. 1 is the
unit vector. The non-dimensionalized governing equations are:

2=

+V-YV +Vp=V¥ (1)

v.

<

=0

with the boundary condition V = :F-;-Re_i'_ at z = :L-%, where Reynolds number Re = l’gi. We will

seek upper bounds on the momentum transport which equals the viscous dissipation rate <|V]_/_l2>.
Where L L 3 )
(|vz|2> = limp oo gz [2; do [2, dy [3, dz |V,

2.1 Howard-Busse Method

The Howard-Busse variational formulation is based on a mean-fluctuation decomposition of the
velocity field V (z,t) = U (2) i + v (z, t), and consists of solving the variational problem:

(v} | u (@ - wwa)?)

min(Re) = ('U1’U3> <’Ul'U3>2
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under the constraints V-v = 0,v(z,y, £1) = 0, (v1vs) = 1. where (o) := limz ;0 I f_f’L dx ffL dy (e).
This problem can be egivalently formulated as the following. Substitute V(z,t) into equation (1)
and subtract the horizontal average, we obtain the power balance:

D - Re? = (|Vul*) +( (o775 = (wvs)”) = Re (vrus) 2)

where D is the statistically averaged viscous dissipation. We maximize Re (viv3) under the con-
straints of (2), the continuity equation, and the boundary conditions by considering the Lagrangian

L = Re{vivs) + A {([Vyl2> + <(v_1v?;'—- (v1v3))2> —Re (vlvg)} - {2p(x) V- v)

where A and p(z) are Lagrange multipliers. The Euler-Lagrange equation for the velocity field is

v

[(m— rvs)) + Re (1557 )| [ o ] +Vp=V 3)

Eliminating A by using (v - (3)) and the constraint of equation (2), gives the optimization problem:

(v1v3)

'U3
[(ﬁrvz ~ (v1s)) — $Re - l‘———“m e [ ] +Vp= V2
V-u=0,v(ry+i)=0
from which the upper bound D = Re (vv3) + Re? follows.

2.2 Doering-Constantin Method

The Doering-Constantin method decomposes the velocity into “background” and “fluctuation”
fields V. (z,t) = ¢(2)i + v(z,t). The background flow ¢(z) satisfies the boundary condition
¢ (£31) = F4Re so that the fluctuation field satisfies homogeneous boundary conditions.

Putting V. (z,£) = ¢ (2) i+ v (z, ?) into 8Y. /8¢ + V - YV + ¥p = V2V, we obtain

+¢u3z+¢—— V21/+¢z

@
Iv

where ¢ = d¢,/dz and ¢ := d?¢/dz?. Performing (v - (4)), we obtain

5i(32) = (6) = (19e) - () @

We also have the identity
(IVZP) = (¢2) —2(¢"n) + (jvuP) (5)
Performing a - (5) + (6) where a is some scalar gives

121




<|VY_I2> + agt— <%zz> = <¢'2> -G (¢,%0)

where G (¢,v;a) = <(a -1) |Vz|2 +ad s — (a- 2)¢"V1>.
Taking long time averages leads to

D= g [ (v)at= (%) - pm 1 [ G0vera

If ¢ and a are such that inf, G (¢,v;a) > —oo then there exists the bound

D<(¢?)- infG (¢,230).

The Doering-Constantin problem is to minimize the background dissipation <¢'2> subject to the

spectral constraint inf G > ~oo over all possible fluctuation fields (z). Solving the Euler-Lagrange
equation gives the stationary value of

G(¢,v*;0) = —‘(11(07_2—1; [<¢'2> - Rez] :

This will be an infimum if and only if the dominant quadratic terms are positive definite, i.e.

H($2,0):= (-1 (1V¢") +a(¢wws) 20

for all allowable y. This is called the spectral constraint.
The optimization problem is then to minimize the bound

TIL%O%/OT <|Vy,|2> gt <D <¢'2> _ ing = 4—(:271) <(¢' + Re)2> + Re?

subject to the spectral constraint.

3 Unification

The Howard-Busse and Doering-Constantin methods can be unified by defining the following func-
tional

D(V,v,a) := lim -1-/T<|VV|2>—<au~(-a—K+V-VV+V —v2v)>dt
B = BT Jy \VE =\ T TPV

where V. = ¢ (2)i+ v (z,t) = [6(2) + 77 (2)]1 + v(z,t). Substitute V = #(2)i+v(z,t) into D, we
obtain
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:

D(V.,0) =1immw;f5<wi2> (a(V-0(@)7)- (¥ +¥ YL +Yp-V2L))dt
=limg oo & Jy (IVVP) = a (V- (¥ +¥- YV + Yp-V2¥))
+a<¢(z)z (-a=+_V_'-V_V+SZp—V2y_ >dt

This makes it clear that a is acting as a Lagrange multiplier which imposes the total power balance
and that a¢ (2) is the Lagrange multiplier which imposes the mean momentum balance. Also

D(g,¢,a)=<¢f2>-7;i_{x;%/oT <(a—1) IVul? + anvsd —(a—2)¢”v1>dt

and finally

— 12 . 1 T 2 ’ _12 "”_
D(v,73,9,a) = <¢ > —Th—rgof/o <(a - 1) |V + aviv3¢ + (a— 1)y — (a—2)¢ u1>dt.
The full variational problem is to solve the Euler-Lagrange equations 3z w =0; %’3 =0; gfl =0; 42 o
0. The Howard-Busse and Doering-Constantin methods consider complementary subsets of these
equations.

3.1 Howard-Busse Problem

The Howard-Busse method solves $2 6 s =0, ;571 =0 and %—’Z = 0 leaving a maximization problem in
v.

8s
I
o

= -2¢" +ati03 +(@-2)7;, =0
=¢ +Re= 1a (o703 — (v1vs) + 3 (a — 2) 7

6D (a—2)

6— =0=2(a~— )u1+(a 2)¢ =0=71= m(¢+Rez)

Substituting these results into D (v, 71, ¢, @), we obtain

D (v,a) = Re® + Re (vyv3) + (a — 1) {Re (v1v3) — <|V_‘Ql2> - ((m— (v1v3))2>}

This is equivalent to the problem of finding the maximum of (Re? + Re (v;v3))subject to the power
constraint Re {vw) = <|V > <(v1v3 — (vyvs)) > with (a — 1) being the Lagrange multiplier and
V-v=

3.2 Doering-Constantin problem

The Doering-Constantin method solves %% = 0 and 3‘%); = 0 leaving a minimization problem for

¢,
=0=7; = 2(‘::_2) (¢ + Rez) as before. Now
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6D S| U3
—=0=2a-1)V%-ap | 0 | +VYp=0
v v

Taking (v - ()) of this expression gwes
6L =0 = 2 ¢
<y- 62> =0= <(a— 1)|Vyl® + a¢ v1v3>

! 2 !
So, D (v, ¢,a) = 4(:—11) <(¢ + Re) > + Re? — ((a -1) IVQI2 +a¢ vlv3> is equivalent to

a? , 2 2
D(¢,a) = —__4(a- ) <(¢ +Re) > + Re
provided ¢ and a satisfy the spectral constraint which ensures overestimation of the highest saddle
point of D. This highest saddle point bounds the energy dissipation (see [5] for details).

4 Discussion

In this lecture, we have made a direct link between the Howard-Busse and Doering-Constantin
variational methods for upper bounding turbulent transport in plane Couette shear flow. Similar
arguments can be applied to turbulent heat transport for convection as well [6]. Both methods
revolve around the same underlying functional. The Howard-Busse method seeks to find the highest
saddle point of this functional by maximizing from below, while the Doering-Constantin method
seeks to minimize from above. The consequence is that the ideal upper bounds derived from each
method should coincide at the highest saddle point. Historically, this is seen in the results obtained

in each approach. The original bound produced by Doering and Constantin [6] in 1992 was 8—\175'»:1—113

as opposed to Busse’s estimate [1] of ~ 53--. Nicodemus et al. [8] improved the Doering-Constantin
result down to ~ 51+ in 1998. Recently Plasting & Kerswell [9] have solved the full problem to find

the asymptotic result that D < 0.008553 in units of !3:1 as Re — oo.
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Horizontal Convection

Jennifer H. Siggers
University of Cambridge, U.K.

1 Introduction

The surface temperature of the ocean is different at different points. Can this differential
heating drive a large scale flow? If so how large can that flow be? In this report we analyze
a simple model of the ocean and construct rigorous upper bounds on the heat transport that
can be induced by a horizontal temperature gradient that is imposed on the top surface. We
consider the model shown in figure 1, where the top surface has an imposed temperature
distribution with a cosine profile AT cos kz + Ty, and make a linear transformation of the
true temperature to give the new non-dimensional temperature variable T, which is equal
to coskz on the top boundary. This set up is known as horizontal convection [1]. Notice

=cos(kx), u=0

- Z=1
VA

L.,

z=0
x=0 u=0 ~ x=L

Figure 1: Set up of the horizontal convection problem

P

that the problem is in contrast to the usual Rayleigh-Bénard problem, where the motion
is driven by vertical temperature gradients. In horizontal convection, it is the horizontal
temperature gradient that drives the flow.

We use non-slip boundary conditions top and bottom and periodic side wall conditions,
and we also need to specify a bottom boundary condition on the temperature. The box
has dimensional width W and depth H and we non-dimensionalize these to give the new
width L = W/H and height 1. For horizontal periodicity, we also require that k = 27n/L
for some n € N. g

We aim to construct rigorous bounds on the total heat transfer rate through the layer,
which we measure using a horizontal Nusselt number. We do this for variety of different
temperature boundary conditions on the bottom of the layer to investigate the dependence
of the scaling of the horizontal Nusselt number on the conditions there. This is because
since horizontal convection is driven by temperatures at the top surface only, we want to
find a bound that is independent of what is happening at the lower boundary. Also we
don’t have a good idea of what is the true oceanographic boundary condition there.

We use the Boussinesq approximation to reduce the equations to the standard non-
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Quantity | Approximate value
v 1.52 x 10~%m?s~*

K 1.4 x 107"m?2s™1
gaAT 10~2ms—2

W 2.0 x 10"m

H 4 x 103m

k 1.25 x 10~3

Ry 3 x 10%

o 10.9

L 5.0 x 104

Figure 2: Approximate oceanographic values of some parameters, from [2]

dimensional form:

i1+ u-Vu+ Vp=oRyTz +0V?u, (NS)
T+u-VT = V2T, (H)
V.u=0, . )

where u is the non-dimensional velocity field, T is the non-dimensional temperature and p
is the non-dimensional pressure. ¢ = v/ is the Prandtl number and Ry = H3garAT/kv
is the horizontal Rayleigh number. v is the kinematic viscosity, « is the thermal diffusivity
and g is the acceleration due to gravity. The table in figure 2 shows the approximate
oceanographic values of some of these quantities. Note also that the governing equations
do not possess a static solution, unlike the Rayleigh-Bénard problem, since from (N'S), we
would need to satisfy Vp = cRgT%. Since T must have some z-dependence in order to
satisfy the boundary conditions, T2 cannot be gradient.

Thermal energy transport was considered by Sandstrém in the early 20th Century. He
proposed the following theorem, (quoted from {3]):

Sandstrom’s theorem: “A closed steady circulation can only be maintained in
the ocean if the heat source is situated at a lower level than the cold source.”

This implies that horizontal convection cannot induce a large-scale flow and is therefore
unimportant in the oceanic context. However, the theorem as it stands is not strictly true.
For example, Jeffreys [4] constructed a counter example to Sandstrém’s theorem, the “hula
hoop” model, shown in figure 3. The fluid is contained in an annulus and heat is applied
on the right hand side and the fluid is cooled on the left. Jeffreys argued that this heating
and cooling will set the fluid in motion, no matter at what height the heating and cooling
are applied, and thus we can heat near the top and cool near the bottom, as shown, and
still induce a flow in the fluid. In some ways, this counter example is a bit contrived, but it
is certainly a rigorous case where Sandstrém’s theorem breaks down.

A second counter example is provided by Rossby [5], who performed some experiments
on horizontal convection, using a set up similar to that in figure 1 except that he imposed
the differential heating on the bottom surface and had insulating temperature boundary
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Heat here

Cool here

Figure 3: Schematic diagram of Jeffreys’ hula hoop model
Hot Cold Hot

Figure 4: Schematic diagram showing the fluid motion. Note the strong downward motion
in the central plume and large horizontal flows in the top boundary layer. There is also a
slow recirculation in the rest of the layer.

conditions on the side and top walls. He found that there was a plume of hot rising water,
over the hottest point on the bottom boundary. This rising motion induces a flow along the
bottom of the box from the cold part to the hot part, and there is also a slow recirculation
returning the fluid from the top of the box back down to the bottom.

However, even though Sandstrom’s theorem is not completely true, in fact the main
idea is correct: that thermal forcing at a single level as in the Rossby experiment is a
relatively inefficient way to drive a flow when compared with Rayleigh-Bénard convection,
for example, as we shall show in this report.

In the oceanic context the differential heating is at the top of the layer, which is why
we consider this scenario rather than Rossby’s though the two scenarios are linked via a
reflection in the horizontal mid-plane, coupled with reversing the sign of the temperature
field T. A schematic picture of the flow observed in numerical experiments (such as those
in [6, 7, 8, 9]) is shown in figure 4, which is also the reverse of the flow that Rossby observed
in his experiments. However, numerical simulations have only been performed for horizontal
Rayleigh numbers Ry up to about 108, and it is not clear whether or not the flow structure
in figure 4 persists into the oceanographic regime, in which Ry ~ 102,

Rossby [5] provided a consistent scaling argument for the width of the boundary layer
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in the flow. He assumed that there is 2 top boundary layer of width ¢ in which the vertical
derivatives are of order §~! whilst the horizontal ones are of order unity. Then from (#),
balancing the advection term with the diffusion term, assuming temperature variations are
of order 1 gives 9 ~ 6~ and balancing the buoyancy term with the dissipation term in (NV'S)
yields § ~ R7/°.

Sandstrém [10] also proposed the following:

Sandstrom’s conjecture: “If a viscous and diffusive fluid is non-uniformly heated
from above then in the limit k — 0 with ¢ = v/ fixed, the motion in the fluid
disappears.”

To make this rigorous quantitatively, we need a measure of the “motion in the fluid”. Such
a measure is the maximum value of the streamfunction. However, the conjecture as stated
has not been proven. Instead we can prove a weaker result for horizontal convection in
the form of an anti-turbulence theorem. We need to define a notion of turbulence, used by
Frisch [11]:

The law of finite energy dissipation: “If in an experiment on turbulent flow, all

the control parameters are kept the same, except for the the viscosity, v, which

is lowered as much as possible, the energy dissipation per unit mass behaves in

a way consistent with a finite positive limit.”

This law is also known as the zeroth law of turbulence. In fact, this definition does not
exclude non-laminar flows in a boundary layer, but it does give a precise definition to work
with. Then we may propose

The anti-turbulence theorem: If the only forcing is non-uniform heating applied
at the surface of a Boussinesq fluid and if the viscosity, v, and thermal diffusivity,
x are lowered to zero, with 0 = v/ fixed, then in the limit the energy dissipation
€ also vanishes.

This is finally a result that can be proved rigorously, which was done by Paparella and
Young [9], who assumed a zero flux condition (T, = 0) on the bottom boundary (where
the subscript denotes differentiation with respect to z). It relies crucially on the following
principle:

Boundedness principle for the temperature: For the set up shown in figure 1,

with an imposed temperature distribution on the top surface and a no flux

bottom temperature boundary condition, then at any time the temperature field

is bounded by the maximum and minimum values imposed on the top surface

or the maximum and minimum values of the initial temperature distribution.

This can be proved from (#). The derivation for a similar (but slightly more complicated)
case is given in section 4.1. If the system is allowed to relax for a sufficiently long time,
then we expect that the temperature is everywhere bounded by the maximum and minimum
values at the top surface, that is, it lies in the range [-1,+1].

We shall use an overbar to denote the horizontal and time average and angle brackets
to denote the space and time average:

1 /t°/y° /L dedydt, () /l_d
. m , . — . .
2toyo Jo J-yo Jo v 0 *
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Now the energy dissipation per unit mass € is given by v{|Vquq|?) where V4 and uy
are the dimensional versions of V and u. In non-dimensional units, this becomes ¢ =
vk?(|Vul?)/H*, and rearranging (u - (N'S)) we have
_ vk?Ry
=5
Teking ((1 — 2) - (H)) gives (wT) = ~To and so

(wT).

vk’Ry ; = vk2Ry kgaAT
€= —zr= (-Th) < = =0 k0,

where the inequality makes use of the lower bound on the temperature field, thus proving
anti-turbulence.

In this report, we try to construct bounds on the strength of the convection for horizontal
convection. Often the Nusselt number is used as a measure of the strength, but this measures
the heat flux in the vertical direction, whereas for horizontal convection it is the horizontal
heat flux that is of interest. Thus we need to define a horizontal Nusselt number Nug.

Ideally this would measure the total heat flux into (or equivalently out of) the top boundary,
ie.

X(x7 y7 t)Tz(x’ y: 17 t)a

where x(z,y,t) equals 1 if T;(z,y,1,£) > 0 (corresponding to places where there is flux in)
and 0 otherwise (corresponding to flux out). With a zero flux bottom boundary condition
this equals |T;||; /2. However, we don’t know which parts of the top boundary have heat
fluxes into the layer and which have fluxes out and thus we don’t know X- We might assume
a symmetric arrangement, in which if T’ > 0 at the top of the layer then there is a heat flux
out of the layer (i.e. T < 0), and if T < 0 then the heat flux is into the layer (i.e. T > 0).
However, the solutions found in the numerics (see figure 4) are far from symmetric due to the
cold plume, and so we might expect the area of the top surface where x is 1 to be confined
to a small areas around the points where T takes its maximum value. Thus, this definition
of the horizontal Nusselt number would be extremely hard to estimate mathematically, and
instead we propose an alternative formulation.
In [9], which considered a zero flux bottom boundary condition, the form
_ {vTP)

N = vy g
was used, where, since there is no static solution of the equations, we define the “conduction”
solution T, to be the steady solution of the horizontal convection problem where the fluid is
replaced by a solid (and thus we can neglect (A'S) and just solve (H) with u=0), so T is
the solution of V2T, = 0 together with the boundary conditions on T'. The justification for
the formula (1) can be seen if we take the time average of (#), integrate over the vertical
coordinate and take the average over the y-coordinate: '

im = [ [ [ (D). — T dedudt
to—>oo,rgr/:>—)oo 2t0y0 0 ['yo ./(; ((u )a: B :z:z) “ay
1

to ryo
= toqolggloéoo 2toyo ‘/0‘ .[—yo (Tzh — Txlo) dyat.
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Integrating with respect to = gives

to
Ju(@)=, lm %yo /Wy : / (uT — Ty) dzdydt

to
!
= to-rongoso0 2oy ,/ / / (Tz|r = Txlo) d='dydt.

Jy is the average heat flux through a plane of constant z, which, in general, is not constant
as z varies, so to obtain a formula for the horizontal Nusselt number, we must take a
weighted average over z of the form f(z)Jg(z). Looking at the form of the flow in figure 4,
we want f to be positive in the left half (where the heat transport is expected to be in the
+z direction) and negative in the right half. A simple weighting function f satisfying these
requirements is —d7'(z,y, 1,t)/dz = ksinkz. Taking the average and integrating by parts
gives

ksinkzJy = coskzTy|; — coskzT|o, (2)

which equals cos kzT;|; with the zero flux bottom boundary condition. The horizontal
Nusselt number is this quantity normalized by the corresponding value for the “conduction”
state. Rearranging (T - (H)) gives

(|VT|?) = coskzTz|1 — TTz|o, (3)

and for a zero flux bottom temperature boundary condition, T7;|o vanishes, meaning that
we obtain the form (1).

If instead we have a different bottom boundary condition for which the second equality
in (2) does not hold identically (such as fixed temperature there) then the term cos kzT%[o
is too difficult to estimate mathematically and so since we expect the fluxes through the
top boundary to be much larger than those through the bottom, we neglect this term and
in general we define the horizontal Nusselt number to be

coskzTzly _ (IVT?) +TTzo
coskzTe, |1 ~ Cos kzTe. |1

Nug = (4)
where the second equality is derived from (3).

In this report, rigorous bounds on the horizontal Nusselt number, as defined by (4), will
be sought for the problem of horizontal convection with the set up shown in figure 1, using a
variety of different bottom boundary conditions for the temperature. In section 2 we impose
a fixed flux condition, and in section 3 a fixed temperature boundary condition. We obtain
different scalings for the two cases and since the ocean floor is neither a perfect conductor
nor a perfect insulator, in section 4 we use a boundary condition that can smoothly move
between fixed flux and fixed temperature, and investigate how the scalings change as we
move away from these two limits.

2 Fixed Flux Bottom Boundary Condition

We consider the horizontal convection set up shown in figure 1 with fixed positive heat flux
T, = —F at the bottom of the layer. With this set up, the “conduction” solution T, is given
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_ coshkz

€7 coshk
Then the denominator of the horizontal Nusselt number (4) is

coskz + F(1 - z).

coskzT,. |1 = g tanh k.

If F > 0, corresponding to a heat flux into the layer, then the temperature field is bounded
from below for all time by the minimum of —1 and inf(T'|t=0). Assuming that we have left
the system to relax for long enough, then T > —1 everywhere. However, with this particular
boundary condition, there is no analogous upper bound on the temperature field.

2.1 Bound on the Horizontal Nusselt Number Using the Lower Bound
on the Temperature

We try to find the maximum value of the horizontal Nusselt number by using the Doering-
Constantin background method [12]. We let T(x, t) = 7(z, z)+6(x,t), where the background
field 7 satisfies the boundary conditions on T and therefore  satisfies the homogeneous
boundary conditions (§ =0at z=1and 6, =0at z = 0). Note that in contrast to [12], in
which 7 is a function of z only, here 7 must depend on the horizontal coordinate in order
to satisfy the boundary conditions. We consider the variational formulation to bound the
numerator of (4):
L = coskzT;|1 — a{u- (NS)) - b8 - (1)),

where a and b are constant Lagrange multipliers. The first term in this expression is
the term we are trying to bound and from this we subtract the constraints we wish to
satisfy, multiplied by the Lagrange multipliers a and b. Ideally we would require the full
equations (NS, ,C) to be satisfied at every point in the domain for all times, but this is
too complicated to do analytically. Rearranging gives

£ =(V7]* - ao|Vul = (- 1)|V6]2 + (b — 2)0V27r — bhu - vr)
+aoRy(wT) — FTIO + 2F5{0, (5)

and by taking ((1 - z) - (#)), we get (wT) = F —To. Using the fact that, as long as F > 0,
the temperature field is bounded from below by —1, and assuming that acRy — F > 0 (to
be checked a posteriori), we can bound the final three terms:

aoRy(wT)—FT)o+2F6|o = aoRyF—(aoRy~F)T|o—2F7|o < acRy(F+ 1)~ F—-2F7,.

All the terms in this expression are either independent of § and u, or depend linearly on these
quantities or are quadratic negative semi-definite terms, except for the term (—bfu - V7).
If this term is removed the whole expression is bounded above, and straightforward to
maximize. Thus we first bound this this term by quadratic semi-definite quantities and
then find and solve the Euler-Lagrange equations for the resulting functional to obtain a
bound.

Our choice of background field 7 is designed to minimize the worst case estimate of
(—bbu - V7). We should ideally like to set V7 = 0 everywhere, but then we cannot satisfy
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the boundary conditions. Instead we choose V7 = 0 everywhere except for a boundary
layer top and bottom. We set 7 = 7¢(2) + 71(2) cos kz where

_J F(do—2), for0<z<do,

TO_{ 0, fordp<z<1, (6)
o, for 0<z<1-4y, .

n= -z—'ﬁT""s’-, forl-4<z<1, (7)

Now we can estimate (—bfu - V7). This only has contributions from the top and bottom
boundary layers, and using the estimates (27), (28) and (30) in appendix A, we obtain

(=bu - V1) < of|Vul®) + B(IVE]?),

where
F&gCo 5161
a = bmax (W, —2?(1 + 2’6(51) )
_ Féq 261
B=b(gm+ (14 2K8) ).
So

L < {(|VT) = (ao—)|Vul>— (b—1—B)|V]2+ (b—2)6V?T) +ac Ru(1+ F) — F(1+2F&).
The Euler-Lagrange equations for an extremal value of the functional are

Vp - 2(ac — a)V2u =0, (8)
—2(b—1-B)V?0 = (b—2)V?7, (9)

where the term Vp has been added to ensure incompressibility, yielding the solution

—(6-2)

O =5-1-p

(r-T.), u*=0,

which maximizes the functional as long as the spectral constraints ac > aand b—12> g
are satisfied. Substituting in the expressions for the extremalizing fields u* and 6%, we get
a bound on £. Dotting (9) by 6* and averaging, we obtain an equation that allows us to
simplify the bound, giving

(b-2)°
4b-1-5)

For our choice of 7,

L< (V) + (V7 V(7 = T.)) = F(7 = Te)lo) + a0 Rz(1+F) — F(1+2Fd).

by g s Ly B
(IVT|*) =F4%4p + 5%, + 5
(VT - VT,) =F2§y + gtanh k,
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meaning that

1 k%, (b—2)? 1 k%, k 0
< —_ 22 -
5_261+ 5 +4(b—1-—,8) 261+ 5 21:anhk+F(1 o)
+aoRy(1+ F) - F - §F2. (10)
To obtain the tightest bound we need to minimize (10) subject to the spectral con-
straints. These are of the form

ac > bmax(Pcy,Qc1), b—1>b (E + ﬁ) ,
G
where P, Q, R and S are independent of a, b, ¢y and ¢;. Thus they are satisfied if and only

if
ao(b—1)
b2

A suitable value of ¢o/c; can be chosen if and only if

A>PR+pPs2, 220=1) 5 or% L 0s
C1 b2 Cco

ao(b—1) fac(b-1)

20 (2021 pp_gg) 2
and since ac(b—1)/b% > 0, the spectral constraints are equivalent to ac > (PR+QS)b%/(b—
1).

Since both b%/(b— 1) and (b—2)?/4(b— 1~ f) are minimized at b = 2 (and the quantity
in the bracket multiplying (b — 2)2/4(b—~ 1~ 8) in (10) is positive) this means that b = 2
is optimal in that it minimizes the right hand side of (10). We should also minimize ac, so

we set 03 .
F253 45

For sufficiently large Rayleigh numbers, the value of &, is insignificant at leading order but
we want &; to be as large as possible and so we set 8y = 0 and a0 = 46%(1 + 2k8;)? /4,
leaving us with

c<—1-+52ﬂ+4£(1+2k5 ¥Ry(1+ F)-F

=25 6 VA '

For sufficiently large Ry, the leading order terms will be 1 /261 + 402Rp(1+ F)/n*. These
are minimized with the choice 8, = (x/2)%3(Ry(1 4 F))~1/3, yielding the leading order
bound £ < 3(Ry(1 + F))/3/22/334/3 and so

<3 2BA+FYB i

Nubr S — i tanh e R ()

to leading order.
Note that we assumed acRp — F > 0, which is always true for the given scalings as
Ry — oo with F fixed. However, if F is very large (i.e. if F3(14+ F)2? > (1+2ké;)8 Ry /4n*)
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we cannot use the lower bound on T'. We could choose ac Ry — F = 0 yielding the leading

order bound
1 /Ry 2 1
< | =y /= -
Nug S (Wﬂ/ i +F )/2ktanhk, (12)

2F?
L _
Nuw S ianb &’ (13)

if RY/® < F < Ry and

if F > Ry. However, this is probably not optimal since we have been forced to choose
acRpg — F > 0 in order to use the fact that T > —1 everywhere. For F >> 0, we might
expect that T is well above —1 at the bottom boundary. Instead in the next section we
bound the horizontal Nusselt number without using the bound on the temperature to see
if we can get a better bound for Nug when F is large.

2.2 Bound on the Horizontal Nusselt Number Without Using the Lower
Bound on the Temperature

As F becomes larger, since there are steep negative temperature gradients at the bottom
boundary, we expect that the lower bound on the temperature there gives a poor estimate
of the actual temperature. To attempt to find a better scaling, we do not use this lower
bound and instead we must find an alternative way to bound the final three terms in (5).
We have

aoRy(wT) — FT|o + 2F8|o = (a0Ry — F){w(T + 8)) + F? — 2F7|,,
and now the sign-indeterminate quadratic terms contributing to £ are
((acRpr — F)wl — bbu - V1),

which we bound by a{|Vu|?) + B(|V6|?) for suitable & and 3. We choose the background
field T so that the integrand is zero over as much of the layer as possible. To do this we use
7 = 10(2) + 71(2) cos kz where 7y is again given by (7) and

F(do — z) = L8Bu=F)(1 _ 55),  for 0 < z < &,
0= Ry —F b
—Ka—”—bff—z(l - 2), fordg<z<1,

which means that the integrand is zero everywhere except in the boundary layers, and
estimate o and B using the bounds in appendix A.

Proceeding in the same way as for the small F' case, we obtain the Euler-Lagrange
equations

Vp — 2(a0 — a)V?u = (ac Ry — F)73,
—2(b—1—-pB)V?20 = (b—2)V?7,
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which have the same solution for 6, but now the solution for u is non-zero. Substituting in
the extremal values u* and 6* gives

—9)2 R,
L< (V) + 4—(2%12—3[7) ((Vr -V -1) - Fr—To)lo) + %(aoRH — F){w*r)

+F2_9F (F60 - @i;:—Fu - 50)) :

(w*T) is estimated in equation (34) in appendix B, and we proceed in the same way as
for small F. The best choice at leading order for Ry — oo is 6 = 0, ao = 46%/74,

8 =n%/5/21/5. 32/5R%/® and b= 8/3 and we get

2/5
211/5RH/

Nug < )
UH 33/548/5k tanh k

(14)

and so this bound is not as good as (11). However, when F > R},/S we can show that
Nug < (3b® — 8% + b+ 8)F2/2b(b — 1)k tanh k at leading order. This bound is minimized
when b ~ 1.87, giving

< 046F?
HS o0

~ ktanhk
thus improving the prefactor of the corresponding results (12) and (13) in the previous
section, but not the order of magnitude of the bound.

Nu

2.3 Application to the Real Ocean!

The total heat flux from the Earth’s interior is Fg = 3 x 1013W. For a large ocean, such as
the Pacific or Atlantic, this means that the non-dimensional flux on the ocean floor is

F= cpAKAT ~

where H ~ 4000m, ¢ = 4184Jkg~* K~ is the specific heat of the water, p = 1000kgm—3
is the density, A = 47(6.4 x 10%)2m2 is the area of the surface of the Earth. Thus the
R}{s scaling is appropriate here and with k ~ 1.25 x 10~3 we obtain N ug < 10'3. The

dimensionalized heat flux in an ocean covering the whole Earth would be approximately

60,

AT — AKAT

—-CPA}'; sinkzJg = L2250 k"H
and thus for a large ocean, such as the Pacific or Atlantic, the heat flux due to horizontal
convection is bounded by 1024W where 7 is the proportion of the Earth’s surface covered
by the ocean.

cos kzT;|; ~ 1022W,

2.4 How does this Differ from the Rossby Scaling?

Recall that Rossby [5] proposed a scaling for the boundary layer, in which 8/9z ~ 71,
0/0z ~ 1 and u ~ (§7%,0,§7!). With this scaling Nug ~ (|VT|?) ~ RYS, whereas our
rigorous bound only gives Nug < C’OR%3 for a constant Cp.
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It turns out that the difference in the scalings comes in the bound for (—bfu - V1),
specifically when we come to estimate fll__ 5, lwBldz. Our estimate (28) bounds this quantity

by )
1 1
—2%1- (c / wldz + E / 0§dz> .
G 1-6; € J1-&

The problem comes in the next step when we estimate

/l 24z < ' Vul’d
w z<—/ uf“dz.
1-6 z — 4 1—51| l

In fact Rossby’s scalings would have

1 1

/ widz ~ 6%/ |Vu|?dz,
1-6; 1-63

since the term on the right hand side is dominated by f11_61 u2dz. If we could show that

Jis, w2 < K6? 5, |Vul?dz (for some order 1 constant K), then we too would obtain a
R%s scaling of the horizontal Nusselt number. However, there is no obvious way to improve

the estimate, and so the bound of order R%s stands.

3 Fixed Temperature on the Bottom Boundary

We now consider the problem as shown in figure 1 with a fixed temperature T' = Ty at the .
bottom boundary. We try to bound the horizontal Nusselt number (4). The “conduction”
solution T is

sinh kz cos kz
T.=To(1 — -
e=Tol =2+ —gpp
meaning that
coskzTe.|1 = k coth k. - (15)

2

We proceed in the same way as for the fixed flux case, letting T' = *f(a:, z) + 8(x,t) and
constructing the functional

L = coskzT;|; — {(au- (NS)) — (b8 - (H)).

We have (wT) = —To—1 |0, but in this case, unlike the fixed flux, we cannot use a bounding
principle on T to bound this term, as in section 2.1, because we need to know T.lo- So we
must proceed in a similar way to section 2.2 and choose the background field to minimize
the worst case estimate of

((acRg — Tp)wh — bbu - V),

which we bound by a(|Vu|?) + B(|V0|?). Again, we let T = 7 + 6 and choose 7 = 7p(z) +
71(2) cos kz that make the integrand zero over the bulk of the layer, and again 7, is given
by (7). However, in this case it is not clear whether or not it is best to have just a single
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boundary layer at the bottom for 7y or to have boundary layers top and bottom, since
with both options we can force the integrand to be zero over the bulk of the layer whilst
satisfying the boundary conditions. However, we obtain the same scaling in each case, it is
just the prefactor that may be improved. For simplicity and comparison with the fixed flux
case, we just have a boundary layer at the bottom and let
o= { %I(To(ao = 2) =~ (a0 Ry ~ To)(1-do)z),  for 0 < z< &, 16)
—3(aocRy — To)(1 - 2), fordp < z < 1.

Proceeding as for the fixed flux case, solving the Euler-Lagrange equations we obtain the
extremal bound

2 (b—2)? . _ 2 (aocRy — Tp)? k253
L < <IVT| ) + 4(b —1— ;B) (VT V(T TC)) TO + 4((10’ _ Ol) 504 (1 + 0(61))’
(17)
where
a= %5 max (|ao Ry + (b — 1)To| doco, bbrer(1 -+ 2K8,)) | (18)
2 | 5o b
f= Spmax (IaoRH + - DRI 2,2+ 2k61)) . (19)

Making the simplifying assumption b = 2 (though this is not optimal) yields

1/1 2, 1 k%6  (aoRy —Tp)? k26}
<-({=_ —_—
£=3 (50 1) (@oRe +T0)" + o5 + =6+ dlao = a) 504

(1+0(4)). (20)

For moderate Ty, where we expect §p < 1 and §; < 1, it may be shown that the
dominant contribution to the bound is given by G where

1 s 1
=— T -
G 10 (aocRy + Tp)* + 5%,
For the bound to be as tight as possible, we need to choose d and 01 as large as possible. Sub-
ject to the spectral constraints, the best choice is ac = 463/7% and 6, = 26, /|462 Ry /44Ty,

meaning that

3

c- L 462Ry 1

T8 | "%
Assuming that z = 462Ry /7% + Ty > 0, (which can be checked) we have

@G _ 1
ds; — 8%

+To

(5.1:3 — 6Tpz? — 4) .

It may be shown that there is only one positive root z = z* of dG/dé, = 0, which provides
the minimum of G, giving the bound

Nug S RY*f(Tv), (21)
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Figure 5: Prefactor for the bound on the Nusselt number with fixed temperature Ty at the
bottom of the layer and k = 1.25 x 10~3. The bound is proportional to R B{ in each case.
(a) shows the prefactor with the horizontal Nusselt number Nug = cos kxT;[1/cos kzTe:|1,
whilst (b) shows the prefactor with Nusselt number Nu = (| VT|2)/(|VT[?).

where
%+ 4

2m2,/(z* — To)k coth k’
as long as |To| < Ry. A graph of f is shown in figure 5(a).

For Ty > 0, the leading order contribution comes from the first term in (20) and we
pick ac = Tp/5Ry and §o = V572/6+/RuTo, giving :

10872/ R3?
25572k cothk

f(To) =

Nug S

For Ty < 0, we may set o = §; = 1 and the dominant contribution is from the term
(1+ O(81))(ac Ry — Tp)?k?63/2016(ac — c). This is of order —TyRyk? multiplied by some
prefactor, but to work out this prefactor we would have to solve (31) in appendix B to all
orders. So the most we can say without doing the full calculation is that the bound on the
horizontal Nusselt number is of order —To Ry .

3.1 Connection to Rayleigh—Bénard Scaling

For very large Ty we would expect the motion to be dominated by the large vertical temper-
ature gradient and look like Rayleigh-Bénard convection, and thus would expect the vertical
Nusselt number to be bounded by R%,/ 2 multiplied by some prefactor, (where Ry = ToRg
is the vertical Rayleigh number). Similarly in the limit of small Ty, we would expect the
Nusselt number to be bounded by something that tends to unity.

In order to check that the bounds match in the two limits, we define the Nusselt number
e (vTP)
M=o Tpy
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and proceed to try to bound it. In this case
1
(IVT?) =T} + sk coth k.

This time instead of (20), we obtain the expression

1 s 1 1 k26,
< - _ =
LL % (acRy + To) 4aaRH(aaRH +4Tp) + —251 + e
aocRy — Th)? k265

For moderate Tj, we obtain (21) again, but this time f(To) is given by the graph in fig-
ure 5(b). If Tp > 1 then

216 |2 216 [2
S 5\/:1"012,, =5 3\/§7z 0.55R}/2.
to leading order and thus we recover the scaling of the Doering-Constantin result for
Rayleigh-Bénard convection [12], although the prefactor is not optimal since we only used
a bottom boundary layer and not a top one. If we use top and bottom boundary lay-
ers of equal depth, and optimize over the choices of constants a, b, dp, 81, then we get
Nug < 3\/§R{,/2/47r2 = 0.13R%,/2 at leading order, and the prefactor agrees with the
Rayleigh-Bénard result.

If To < —Rpy then we can choose 8 = 1, and the leading order contribution is from the
first two terms in the bound (22), which gives £ < T# and hence

Nu<l,

to leading order, and so we also recover the result for Rayleigh-Bénard convection in the
limit of small Tp.

4 Intermediate Bottom Boundary Condition

We now wish to see more clearly why the R}{/:; and R},ﬁ scalings arise — what is the
connection between them and what happens if we have a boundary condition that is not
perfectly conducting or perfectly insulating?

We choose the bottom boundary condition T — AT, = To at z = 0, where XA > 0,
smoothly moving from a perfectly insulating condition at A = oo to a perfectly conducting
condition for A = 0. This physically corresponds to the bottom of the layer being in contact
with a thin imperfectly conducting sheet that is in contact with an infinite heat bath. For
this boundary condition, it is not immediately obvious that the velocity and temperature
fields stay bounded and thus we first prove their boundedness, which enables us to drop the
averages of their time derivatives.
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4.1 Bounds on the Temperature and Velocity Fields

In this section, we prove that the fields are bounded in time, which is not completely obvious
for the given boundary conditions. Thus for this section only (section 4.1), (-) and = denote
only spatial averages (and not long time average).

First of all we prove a boundedness principle for the temperature field, using ideas
from [13]. We consider the solution of (#) starting from some bounded initial temperature
distribution at ¢t = 0, and solved on the time interval ¢ € [0,0]. We want to look for the
point where T attains its maximum value. Suppose the maximum occurs at a point where
z # 0,1. At this point we must have VT = 0, V2T < 0 and so from (#), 8T/0t < 0,
meaning that the maximum of T is attained at ¢ = 0. If the maximum occurs at z = 0,
then we have T, < 0 there, which implies, using the boundary condition, that T < Tp.
Alternatively it can occur at z = 1, in which case T < 1. A similar principle can be used
to bound T from below and thus T is everywhere in the range

[min(—1, To, inf (T|¢=0)), max(1, To, sup(T|¢=0)))-
If the system is allowed to relax for sufficiently long then T' will eventually be in the range
[min(-1, Tp), max(1,Tp)],

a result that we shall use when applying the background method.
To bound the velocity field, we first use Poincaré’s inequality and obtain (Jul?) <
2(|Vu|?)/72. Rearranging (u- (N'S)) yields averaging yields

L2 (1u) = Ru(wT) - (VuP),
< Ry [W?) %) - (WP,
< R [(uPNT?) ~ (1P,
2
= 2/ < R/ - T2,

< Ray/(T?) - ﬁ\/ |u|2 :

meaning that (|u|?) is bounded above by its initial value and n2Rp+/(T?)/2.

4.2 The Set Up

Having proved the boundedness of the fields, we can now begin to apply the Doering-
Constantin method to bound the horizontal Nusselt number given by (4). With these
boundary conditions, T¢ is given by

z) sinh kz + Ak cosh kz

14+ sinhk + Ak coshk cos k=,

Tc TO (

giving

m]l _ k (coshk—!— Aksmhk)

2 \sinhk + Akcosh k
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and so we try to find an upper bound on the numerator of Nug
coskzTz|y = (|VT[?) + T(T = To)|o/.

Letting T = 7 + 6, where 7 satisfies the boundary conditions on T and @ satisfies the
homogeneous boundary conditions, we have

L =coskzT,|; — (au- (NS)) — (b9 - (H)),
=(|V7[* - ao|Vul? + (b— 1)6V?0 + (b — 2)0V2r + aocRyw(r + )
— bbu - V) — 08,0 — 267, |0 + %T(T —To)lo,
=(|V7|® — ao|Vul® + (b - 1)0V20 + (b— 2)6V2r + aoRyw(r + 6)
lm———o Ty,
= bu- V1) + 57— To)?lo + -:\Q(Tlo - T), (23)
=(IV7[> - ao|Vul® + (b 1)8V20 + (b — 2)0V27 + pw(r + )
8
1+X°

—wu-VT>+§(T—T0)2|0— (24)

h
where T,
1+X
and we have used the lower boundary conditions to obtain (23). Then to obtain (24), the

final term in (23) can be absorbed into the global average, using (#) to derive an expression
for Tlot

p=acRy -

e Ty 14An o To= MuT
@D =~Tlo-To= R - Tl = To=22220T) (25)

Note also that in (24) we have chosen to rewrite any terms proportional to |V6)? in terms
of 6V20. This is because when the Euler-Lagrange equations are computed to minimize
such terms, the former term would give some contributions from the boundary, which make
the equation more difficult to solve, whereas the latter will not.

4.3 Bound on the Horizontal Nusselt Number

Starting from expression (24), we proceed to try to minimize £ using the boundedness of
the temperature. From (25) we can bound (uw(r + 8)) = u(wT) < My, where

v max (LtlE2 70} - if 4 > 0,
| max(Bsl=2 1), ifp<o.

We choose the background field 7 to minimize the worst case estimate of (—bbu - V7),
choosing V7 = 0 over as much as possible of the layer. In order to satisfy the boundary
conditions we must again have top and bottom boundary layers. We choose 71 to be given

by (7) and
o= RTy,  for 0<z < &,
0, fordp<z<1,
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With this choice,
(=bbu - V1) < o|Vul?) + B(VEP),

for all fields u and @ where, using the estimates in appendix A,

2
a = bmax < ITol_doco dres 1+ 2k51)) ,

do+ X 272’ 272

Tol o0 26
p=b(FRL 0 1 Bt aksy)).

Then
L< <|V7‘|2 ~ (a0 — a@)|Vu2 + (b—1-3)8V20 + (b- 2)6V2'r>

T3
1+

P
+Mp+ -)"(T-—- To)2|o —

where the boundary term —(388;|o arising from the integration by parts has been neglected
since it is negative semi-definite as long as 5, > 0.
The Euler-Lagrange equations for minimization of the functional bound for £ are

Vp - 2(ac — a)V?u =0,
—2(b—1-pB)V?% = (b—-2)V?r,
yielding the solution )
—(b-2
| G-1-p)0
which minimizes the functional as long as the spectral constraints ac > o and b—1 >
are satisfied. The extremal bound is

uw'=0 6=

(b-2)°
4(b—1-p)

L<{Vr]? + ( (VT-V(r—-T.)) + -;—('r —T)(7 - To)|o)
T2
1+X

+Mp+ (T (= To0)%o —

and similarly to section 2.1 we can show that b = 2 is the value giving the tightest bound.

We also have
60T0 1 k261
T ~ 2
)\2T2

‘ (r = Tv)?o =m-

In the following, we only consider the bounds as Ry — oo with Tp and X fixed; if
Ry is finite, it may be that a better bound can be obtained with a different scaling. As
in section 2.1, the choice dp = 0 does not affect the bound at leading order and subject
to the spectral constraint, the optimal value of ao is 467 /7% to leading order, giving £ <
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1/26,+4M&3 Ry /n*. The tightest bound is obtained with &; = (n/2)*3(MRy)~1/3, giving
L < 3(MRy)'/3/2%/374/3 and so the horizontal Nusselt number is bounded by

hk4)ksinh k :
N < 3. 21/3(~TyRy)V/3 /17;:/% (sehpidksinbe) ey < 1, )
T o2 (BR) " ek (i), w1

If we proceed without utilising the boundedness of the temperature field, then as with
the fixed flux case, the bound on Nuy is proportional to Ril/s, and so the R}L{‘g bound is
always better as Ry — oo with Ty and ) fixed.

As XA — oo with To/A = F fixed, we immediately recover the bound for the fixed flux
bottom boundary condition (11) in section 2.1. As A — 0, we might similarly hope to
recover the bounds found in section 3. However, things are not so simple as we might
expect!

4.4 Bound for Small A and Connection to Fixed Temperature Boundary
Condition?

As long as A > 0, then (26) shows that we have a bound of size R}{/s. However, if A = 0,

then as shown in section 3 we can only get a bound of order R}qﬂ. Why do we have this

difference?

In fact, as A — 0, both the bounds in (26) grow arbitrarily large (if Ty < —1 then this
growth is in one of the omitted terms) and so, although the asymptotic behavior is R}f’,
for any finite value of Ry, the prefactor is so huge that the bound will be larger than might
be expected. Thus we may ask ourselves, whether there is some way to make the bounds
connect in the limit of small A by using a different background field.

The bounds on T at z = 0 provide poor estimates for small A (unless Tp = 0), and so
we shall do better if we proceed without using this. Starting from the expression (24), we
choose the background field 7 to make the integrand of the unwanted terms (pwh—bbu-Vr)
zero over as much of the layer as possible. Again we set 7 = 70(2) + 71(2) cos kx where 7
is given by (7) and

o= 5 (To(o—2) — §(1 = &) (z+1)), for0<z< b,
—-E(1-2), fordp<z<1,

which tends to the expression for fixed temperature (16) in the limit A — 0. Solving the
Euler-Lagrange equations yields the bound

—92)2 : —
£< 1V + gy 2y (V7 9 = T) + S T0F —Tal) + L= To

_ TZ u? k283
1+X  4(ac —a) 504

(1+0(8)),
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which tends to expression (17) as A — 0. Using appendix A, the estimates for o and 3 are

2
o — max (m(,\ +1) + bTo| 83co bdict

do+ A 22’ 272

lu(A +1) +bTo| 8o 2b61
do+ A 2co 7r2c1

1+ 2/«51)) :

B= (1 + 2k6;).

Comparing these with (18) and (19) respectively, we see that as A — 0 we obtain the same
limit for the second term in each expression, but not the first term. This is due to the
fact that with the methods we have used, we cannot estimate the temperature on the lower
boundary very well, and so we are forced to use the bound (30) rather than (29). This
difference turns out to be crucial in the bounding procedure and thus we cannot obtain a
continuous bound on the horizontal Nusselt number as A — 0.

5 Conclusions and Discussion

In summary, we have obtained upper bounds on the horizontal Nusselt number for horizon-
tal convection using a variety of different boundary conditions on the bottom of the box.

As long as the lower boundary is not perfectly conducting we found that the horizontal

Nusselt number is always bounded by a constant prefactor times R I{ , and if it is perfectly

conducting then the bound increases to a prefactor times Rl/ 2,

In a similar way, we might ask if it is possible to use the analogous method to bound the
dissipation €. However, it turns out that we cannot improve on the bound obtained using
the method outlined in the introduction. For a fixed heat flux F' through the bottom, we

get
K,gaAT

1+ F),
and for the intermediate boundary condmons, we get

T
< KgaH,A max (—————To +; ha /\, —T()) .

These bounds imply the anti-turbulence theorem in both cases. With the fixed temperature
boundary condition, however, we can’t easily relate the flux through the bottom to the
temperature there, and in this case, using the Doering-Constantin method, the bound
turns out to be {|Vu|2) < g(To)R3? for some function g, meaning that € is bounded by a
non-zero constant as kK — 0 with o fixed, which does not prove anti-turbulence.

It would be interesting to have some idea of what the actual velocity and temperature
fields look like in the asymptotic limit as Ry — oo, and see if figure 4 does indeed give the
correct flow pattern in the limit. However, since we set the velocity to zero, the method
we have used tells us nothing about the velocity field except perhaps that the velocities in
the asymptotic solution are not very large in magnitude. It doesn’t prove anything about
the temperature field either, although the fact that we did consistently use the background
field T = 79(2) + 71(2) cos kz where 11 was given by (7), suggests that the real solution may
have a top boundary layer and that the temperature field has little horizontal dependence
deeper into the layer. Our choice of 7o varied but we found that the depth of the bottom

145




boundary layer did not matter at leading order, (except with the fixed bottom temperature
condition), suggesting that the horizontally averaged temperature has no large gradients
throughout the layer.

Possibly a more physically realistic set up in the oceanographic context would be to
use a stress free velocity boundary condition at the top of the layer rather than the non-
slip one, shown in 1, which was used throughout the report. Proceeding to bound the
horizontal Nusselt number in a similar fashion, we encounter a problem. We cannot estimate
fll_a [ubldz in terms of (IVul?) and (|V8|?) as we have no control on the size of u at the
top boundary, and so we cannot easily find a bound on Nug. Note that this problem does
not occur for Rayleigh-Bénard convection, since the offending term only arises due to the
horizontal dependence of 7.

In summary the bound of R}{s, (which holds asymptotically for all the boundary con-
ditions investigated except for the fixed temperature condition), suggests that horizontal
convection with an insulating or nearly insulating bottom boundary is much less efficient
at transporting heat through a layer than Rayleigh-Bénard convection. In particular, since
the bound less than order R},ﬂ, the scalings of the temperature and velocity fields in the
boundary layers in horizontal convection cannot be independent of the molecular parameters
v and & (14, 15].

So how relevant are these results to the ocean? We don’t know the oceanographic
bottom boundary conditions, and the bottom is certainly far from being flat! However, we
have shown that there is only a weak dependence on these conditions, and so the results are
probably still valid. However, possibly more significantly, there are many other processes
going on in the ocean such as wind forcing, that can cause large amounts of mixing and these
are probably much more significant factors in the circulation than horizontal convection.

I should like to thank Richard Kerswell for suggesting this project and for giving up
a lot of time to discuss the problem, Neil Balmforth who provided many useful insights
and Charles Doering for making some helpful suggestions. I am grateful to Woods Hole
Oceanographic Institution for its funding and hospitality and to everyone on the GFD
program for making my stay so enjoyable!

A Estimates of Boundary Layer Integrals

In this section we estimate the maximum possible size of some integrals that are needed to
estimate the sign-indeterminate quadratic terms. The integrals that are needed are

1 ) S 6
/ Twlldz, / [fldz and / fwbldz,
1-6 1-4 0

where u and w are zero on both the top and bottom boundaries and 6 is zero at the top.
At the bottom we have three possibilities: § =0, 8, = 0 or § — A8, = 0.
First we prove the result

If the functions f and g are both zero on the plane z = 2z then

20+ 252 20+6 1 [zo+é __
/ |fgldz < — c/ fidz + —/ g2dz ).
2 w z 20

0 0 c
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The proof (thanks to Michael Proctor) is as follows:

20+6 __ z0+8 20+5 1/2
/ |fgldz < / f2dz / g%dz| ,
20 20 z0

(using the Cauchy-Schwarz inequality),
1 20+6 1 froté__
55 c/ fidz+ - g%dz |,
2

0 CJz

(using Young’s inequality, Vab < (ca +b/c)/2 for any ¢ > 0).

We can use the calculus of variations to minimize the ratio

zo-+0 zg+6
/ h2dz / h2dz,
zp z0

subject to h(zp) = 0. The minimum value is 72/462, and hence the result follows.
Using this we have

1 2 (1 2 2
/ |u]dz<£”(u2+o>d <.2_‘§_1 (1\7 |2+-|ve|2)dz (27)

1-8 - w2

1 242 — 62 262 — 1l
/ Jwlldz < = (c 2+ b )d <= (cw§+—|V0|2) dz, (28)
1-4 e J1-4 c w2 J1-s c

and similarly if § = 0 at z = 0 then

L 202 () — Lo
/0 fwbldz < = /0 (cw§+-E|V0|2> dz, (29)

otherwise

5 & & 1/2
/ [wf]dz g( / w?dz / 02dz> , (Cauchy-Schwartz),
0 0 0
<l
=3

( / wldz + - / 02dz) (Young’s inequality),

<3 (35-2—/ widz+ = / (/ z/dz> dz)

52
2 / widz + — / ((l—z) / 62 dz’)dz, (Cauchy-Schwartz),
25 c

wdz +5 (|vo|2>, (30)

where c¢ can take any positive value.
Rather than simply bounding w2 by |Vu|?, we improve the bounds by using the following
inequality, which is taken from [12]. Since u; + vy + w, = 0 then

(ugw, + vyw, + wg) =0= (u,wy +v,wy + wf) =0,

2

(wg) = ((uz + ”y)2> = (w§ —uz — ”33 — 2uyvg) =0,
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where the boundary conditions have been used to integrate by parts. Twice the first equa-
tion plus the second plus {|[Vu|?) gives

(4w3 + (uy — 'U:c)2 + (u + 'w:)2 + (v + Wy)2> = (|Vu]2) = (wf) < %(IVuIz).

B Estimate of the Size of (w*r)

In section 2.2, we obtained a term proportional to {(w*7) in the bounding procedure. This
term must be estimated, which is done in this section.
In both cases u* satisfies an equation of the form

Vp - Viu = Pr3, (31)
where 7 = 79(2) + 71(z) cos kz and

. 0, for 0 < 2 <14y,
! -z-:};"—&l, forl1-6 <z<1,

Taking the curl gives

V4% = —Pr,,
_ %y sinkz  fory >0,
“lo0 for y <0,

where y = z — 1 4 6; and u = (—4,0,%.). The solution is of the form

Ff:s_l (y+ (A'y+ B')sinhky + (C'y+ D’ ) cosh ky) sin kz
for0 <y < éy,

FI;—I ((Ay + B)sinhky + (Cy + D) cosh ky) sin kx
for-1+6 <y<0,

¢=

for some constants A, B, C, D, A', B', C’ and D’ to be determined. Note that since
is proportional to sinkz, (w*r) = (w*r coskz), with no contribution from 70 and so the
solution is only needed in the top boundary layer.

Matching %, 9, ¥y and Yyyy at y=0 gives

r . ! _E_ ! l
A'—A’ B—B 2k, C—C+2,

The boundary conditions at the top and bottom of the box imply that

D' =D.

915 St d1ce ct A \

st + kéict ket kbisi+ ¢ ks; B
(51 - l)sb Sp (51 - l)c;, Cy C

so+ k(61— 1)y kep k(6; — )sp+cp ksp D }

( —61 + '%;St - %516:
-1~ gkdlst +c

\ 0
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where ¢; = coshkdy, s; = sinh kéy, ¢, = coshk(d; — 1) and sp = sinh k(6; — 1). Note that
if 8; < 1 then the right hand side of this equation is O(8%), whilst the determinant of the
matrix is O(1), and thus A, B, C and D are O(8}) at the largest. In fact the first equation
arising from this matrix equation is

1
815tA + 8B + 016:C + D = -6, + %st - 551Ct,

The coefficients of the first three terms are at most O(6;), and so the terms must be O(63).
The right hand side is also O(6}) and ¢; is O(1). Thus D is O(63). Therefore since y is

O(4;) in the top boundary layer,

Y= ks%l— (y - 531'4:- sinhky + -;—y cosh ky + O(5§)) sinkz,

= O(Ps?).

Therefore w is also O(P4%) and so

(w*r) = O(P&). (33)

In fact, by inverting the matrix in (32), we have, to leading order

e p (L g &=tk -1 -OF  s)
u —P(<24(1 ¢F)ké 12((e2F — 1)2 — 4k2e2F) +O(8Y) | sinkz,

0, (-’i(4 —5¢+¢%)é1 + 0(5;”)) cos kz) ,

120
in the top boundary layer, where { = y/8; > 0, giving

k2Ps?
504

(w*r) =

(1+ 0(61)). (34)
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Inertial Wave Convection in Rotating Spherical Fluid Shells
Radostin D. Simitev !
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Abstract

The report represents a study of the linear properties of thermal convection in ro-
tating spheres and shells. An “inertial wave” analytical approximation based on the
similarities of the convection flows and the solutions of the Poincaré equation is devel-
oped for the region of small Prandtl numbers. Theoretical expression for the Rayleigh
number of convection with insulating thermal boundary conditions is obtained and
tested against full numerical solutions. A second part of the report describes the re-
sults of a numerical study of the convection regimes and transitions found in the region
of small Prandtl numbers. The transition between retrograde and prograde drifting
modes is examined in detail. A new multi-columnar solution is found to bound the
region of wall-attached convection at very high rotation rates. Various predictions of
the developed analytical theory are also tested and verified numerically. Finally convec-
tion patterns in the case of insulating thermal boundary conditions are observed and
compared with the better studied case of perfectly conducting boundaries.

1. Introduction

In this report we study the linear problem of the onset of thermal convection in rotating
spheres and spherical shells.

The interest in this problem is motivated mainly by geophysical and astrophysical ap-
plications and dates back at least half a century, during which period a vast amount of
literature has been accumulated. The most comprehensive formulation of the problem and
some early results were presented by Chandrasekhar(1961). The fundamental theoretical
work was carried out by Roberts(1968) and Busse(1970a). It was predicted that convection
would be in the form of slowly drifting columnar rolls with small azimuthal scale but the
precise structure of the flow was not determined by the theories.. Experimental studies
(Carrigan and Busse(1983)) confirmed the qualitative features predicted by the theories
for the range of Prandtl numbers of their working fluids. Later numerical studies (Zhang
and Busse(1987), Ardes et al.(1997)) found that the form of convection pattern is strongly
dependent on almost all parameters that enter the formulation of the problem and they
identified various regimes of convection at onset. A number of excellent reviews on the
subject exist and the reader is referred to Busse(2002) as one of the most recent ones.

However certain mathematical and numerical difficulties prevent the complete solution
of the problem. The preferred mode of convection is usually non-axisymmetric and strongly
time dependent even at the onset. Another analytical difficulty arises from the geometry of
the system and more precisely from the fact that the role of the Coriolis force varies with
the angle between gravity and the vector of angular velocity. On the numerical side the

le-mail: radostin.simitev@uni-bayreuth.de

151




investigation of the linear problem is hindered by the large number of parameters, including
the Rayleigh and Prandtl numbers, the rotation rate parameter as well as the radius ratio
of the spherical shell. In addition to that various choices of the boundary conditions, the
heating model and the variation of gravity can be made at formulation. Having in mind all
these difficulties, it is not surprising that many open questions still exist and that there are
many possibilities for further investigations of the linear problem. '

An efficient way of overcoming the lack of a complete solution has been to obtain an-
alytical approximations in special cases. In the case of a thin shell the effects of rotation
can be treated as a perturbation (Busse(1970b)). An analytical method for the description
of low Prandtl number convection is based on the idea that the thermal convection can
be treated as a perturbation of inertial oscillations, which on the other hand emerge as
solutions of the Poincaré equation in rotating spheres (Zhang(1994)). Another method, ap-
plicable to the same parameter region, is the equatorial approximation described by Ardes
et al.(1997). These analytical approximations need to be validated and tested against full
numerical solutions. The numerics in addition reveal many new properties and phenomena
not predicted by the theories.

Such an approach to the problem of convection in rotating spheres and shells has been
adopted in the papers of Zhang and Busse(1987) and Ardes et al.(1997). Apart from
testing various theoretical predictions, these papers report the most detailed numerical
investigations of the parameter space so far. The preferred types of convection flow at
relatively low and moderate Prandtl numbers are determined. Wall-attached regime is
observed at lower values and columnar type flows at higher values of the Prandtl number.
When the rotation parameter is varied, eigenmode competition is observed and transitions
between several new modes and patterns are identified, including modes traveling in the
retrograde or prograde direction. Many properties of these phenomena are investigated
below in detail. A

These two papers have provided useful ideas and starting points for the studies un-
dertaken in the present report. Here we choose to focus our attention on the properties
of inertial wave convection, which is observed in the region of small Prandtl numbers and
intermediate to high values of the rotation parameter. This choice is motivated by several
facts. Firstly, a convenient analytical approach is possible in this parameter region. The
thermal convection can be considered to be a perturbation of inertial oscillations of the
Poincaré equation. Based on this idea we follow the method described by Zhang(1994) but
show a different approach to obtain the results published by him. Furthermore we extend
the analysis and solve the heat equation for a new case of perfectly insulating thermal
boundary conditions. As a result complete analytical convection solutions are obtained
and a theoretical expression for the critical Rayleigh number in the limit of small Prandtl
numbers and high rotation rates is derived. The validity of the results is tested against
numerical solutions of the full set of linear equations. Secondly, all previous studies agree
that at low Prandt] numbers convection is much richer in dynamical behavior than at high
Prandtl numbers of the order one or higher and that there can be regions where the pre-
ferred mode is still unknown. At the same time neither very high rotation rates nor very
small Prandtl number cases have been reached so far. Several already known phenomena
need to be studied in more detail as well. A particular goal is to outline the border between
regions of retrograde and prograde drifting modes in the P — 7 — 71 space. Furthermore,
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several analytical facts based on the inertial wave approximation developed in the first part
of the report have to be tested. More precisely we wish to verify the prediction that in
the regime of wall-attached convection the ratio between the frequency and the rotation
parameter must remain constant for a broad range of rotation rates and at the same time
have no radial dependence. Another prediction of the theory is the fact that the critical
Rayleigh number of a particular mode does not depend on the rotation rate for small values
of the Prandtl number and high rotation rates. Finally, a study of the dependences of the
critical Rayleigh number and frequency on the radius ratio as well as a test of the validity
of the analytical approximations for various thickness of the spherical shell has not yet been
reported in previous studies.

A third part of the report, which deserves a study of its own, addresses the problem of
the onset of thermal convection in rotating spherical shells, but in contrast with the second
part in the case of perfectly insulating thermal boundary conditions. Since the case of
insulating thermal boundary conditions has not been previously reported in the literature,
we begin its exploration with a number of comparisons between the new case and the much
better studied case of perfectly conducting thermal boundaries. We try to outline any
differences or similarities in the Rayleigh number and frequency relationships as well as to
observe whether regimes of patterns similar to the flows in the conducting case exist.

The report starts with a short description of the geometrical configuration and the for-
mulation of the problem in section 2. Section 3 describes the inertial wave approximation
and extends the results of Zhang(1994) to the case of insulating thermal boundary condi-
tions. The numerical methods used for solving the governing equations are introduced in
section 4. Section 5 presents the main results emerging from the numerical study of low
Prandtl number convection. In section 7 some preliminary results from the numerical study
of convection with thermally insulating boundaries are reported and concluding remarks
are given in section 8.

2. Mathematical Formulation of the Problem

We consider the problem of convection in rotating spherical shells in its classical formulation
with a uniform distribution of heat sources and a gravity force that increases with distance
from the center of the sphere. Accordingly the distributions of temperature and gravity in
the spherically symmetric basic state are given by

T=To-B//2, g=-7F (2.1)

where 7 is the position vector with respect to the center of the sphere and  is its absolute
value. The sphere is rotating with angular velocity {2 about a fixed axis given by the unit
vector k. It will be convenient to introduce dimensionless variables. As length scale we
use the difference d between inner and outer radius of the spherical fluid shell. As time
scale we use d2/v where v is the kinematic viscosity of the fluid and as temperature scale
we take Bd%v/k where k denotes the thermal diffusivity of the fluid. The dimensionless
equations of motion for the velocity vector u and the heat equation for the deviation © of
the temperature from the static distribution are given by

gt—u+u-Vu+Tkxu=—V7r+rR®+V2u (2.2a)
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Viu=0 (2.2b)

(%6 +u-VO)P=r.u+V2e (2.2¢)

where 7 is the dimensionless position vector and the Rayleigh number R, the Taylor number
72, and the Prandt] number P are defined by

R=212 22 plY (23)

VK 14 K

The thermal expansivity has been denoted by « and the Boussinesq approximation has been
assumed.

Stress-free velocity boundary conditions and two different types of temperature bound-
ary conditions are imposed on the governing equations (2.2)

0 Uy _ 0 Ug _
5 (7)) = H()=o
Type A: 0=0
Type B: 56;9=0
at 7'—7'1_1__17 and r—'ro_l_n, (2.4)

where 7 denotes the radius ratio of the spherical shell.

This is a general formulation which is not restricted to the linear problem. In the present
report we neglect the nonlinear terms in equations (2.2) and use them as a starting point
for both the analytical and the numerical studies reported below.

3. The Inertial Wave Approximation

In this section we present an analytical approximation for the description of the linear
properties of thermal convection in the region of small Parndtl numbers and intermediate
to high values of the rotation parameter. We follow the perturbation analysis as described
by Zhang(1994) and consider the thermal convection as a small perturbation of the inertial
oscillations of the Poincaré equation, the solutions of which are known, but utilize a different
approach in order to improve his results and extend the analysis to a new case of convection
with insulating thermal boundary conditions.

The justification for such a perturbation analysis is based on the exceptionally good
agreement between the numerical values of the frequencies of the preferred modes of con-
vection and the frequencies of the Poincaré inertial modes which will be demonstrated in
the following section 5 of the report.

The Perturbation Analysis

We consider the linear problem in rotating fluid spheres and omit all nonlinear terms. Since
we are interested in the small Prandt]! number limit we neglect the time derivative in the
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heat equation (2.2c). After substituting the time derivative of the velocity field by its
eigenvalue -% —+ iw the basic equations (2.2) reduce to,

wU+kxU=-Vr+ f}re + %VzU (3.5)
V.-U=0 (3.6)
Ve =-r-U. (3.7)

In order to benefit from the results presented in Zhang(1994), for technical convenience, and
because the approximation is valid for fluid spheres rather than shells, we need to rescale
our basic equations. The connection with the dimensionless parameters (2.3) defined in the
preceding section and used in the numerical analysis in the rest of the report is,

R=Rey03(1 =18, T="Teq23)(1—1)% w=—weq(23)/7 (3-8)

Stress-free velocity boundary conditions and conducting or insulating temperature boundary
conditions, as given by equation (2.4) are assumed. We expand the dependent variables,

U=u+u, 1=7+7, ©=6, w=wo+w, (3.9)

where u1, 71, © and w; are small perturbations from the solutions of the Poincaré equation
for the limit 1/7 —» 0, which are denoted by u, = and wp. The above expansion is valid
for

1 .

;—m% << 1 (3.10)
Substituting the expansions into (3.5)—(3.7), gives the zeroth order of the perturbation
problem,

wou +k X u=—Vmng

V-u=0. (3.11)

This system is equivalent the the Poincaré equation as shown in Greenspan(1968). The
complete analytical solution of the Poincaré equation has been recently obtained by Zhang
et al.(2001), but here we make use only of a particular class of solutions as will be described
shortly. The next order of the perturbation analysis in the limit 7 = 0 gives rise to,

iwouy + k X uy = -V + gre + -j—_Vz(u +up) — iwiw (3.12)
Veou =0 (3.13)
V0 = —r - u, (3.14)




where u = u; + up, u; is the perturbation of the interior flow and up is the boundary flow
associated with the Ekman boundary layer, which is non-zero only in the vicinity of the
outer spherical surface. While u; is small compared to u, u; has to be large enough so that
up, + u satisfies the stress-free boundary condition. It can be shown that the Ekman layer
plays an essential role because the integral H, = J, u* - V2(u + up)dV appearing later on
in the expression for the Rayleigh number is non-zero only if u, is non-zero (Zhang(1994)).
If we multiply eq. (3.12) by the complex conjugate of u, u*, which also satisfies V - u* = 0
and the boundary condition u} = 0 and integrate over the volume of the sphere, we obtain

/u* . (i@uoul +2k xuy +Vm)dV = /ul + (lwou® — 2k x u*)dV. (3.15)
v

v

We use,

/u* -VmdV = /wlu:dS =0 (3.16)
v S
and the fact that u* satisfies,

iwou® + k x u* = Vr}

and observe that the integral given by (3.15) vanishes. Then the solvability conditions,
where the real part gives the critical Rayleigh number and the imaginary part gives the
correction of the frequency are,

v

Re [R / u*- erV] = —Re [-i- /1, u* Vi(u+ ub)dV] (3.17)

Im [R/u*-redV] =-Im [%/u* -V2(u+ub)dV] +w1/u*-udV.
v v

v
Hence the critical Rayleigh number of a particular mode is given in the first order by,

_fv u*- V2(u + up)dV _ H,

R= J,u*-r&dV  ~  Hy

(3.18)

Now in order to evaluate (3.19) we need to obtain a solution O(r) of the heat equation
(3.14).

Solutions of the Zeroth Order Problem and the Heat Equation

A general solution of the Poincaré equation is available (Zhang et al. (2001)), but for
the purposes of the present report only a particular class of solutions, as suggested by
the numerical analysis of the problem is relevant. In this subsection we demonstrate a
convenient way to construct such solutions and using them solve the heat equation for both
types of thermal boundary conditions.
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We first consider the zeroth order problem in the perturbation analysis (3.11). In order to
eliminate the continuity equation we introduce the general representation for the solenoidal
vector field u,

u=Vx(Vxrv)+Vxrw (3.19)

where the scalar variables v and w are uniquely defined if the condition is imposed that
their averages over surfaces r =const. vanish. By acting with the operators r -V x Vx
and r- V x on the first equation of the system we obtain two equations for the poloidal and
toroidal scalars v and w,

(—iwLy 4+ im)V? = —Qu (3.20)

(—twLg + im)w = Qu, (3.21)

where L5 is the negative Laplacian on the unit sphere and Q is defined by

QEk-V—-;-(Lgk-V+k-VL2). (3.22)

The boundary conditions are also transformed to,
0? 0 (w

v—éﬁv—g;(;—)—O, at r=1. (3.23)
The expressions,

v = (r™ — r™+2) P7 exp(iwt + img) (3.24)

2
-1
w=r"t12 (m+1) L P, exp(iwt + im),

wim+1)(m+2)-mCm+1)" ™

provide an exact solution of the zeroth order problem for

\
‘ 1 m2
+4m+3
} | “eSmi2 (1 =y —z‘n?:?,—‘) (3.25)
|
1

as can be easily verified by substituting (3.24) into (3.21) and using formula (7.41) of
Appendix A.
Now the heat equation,

V20 = —r . u= —Lyv = —(r™ — r™ 2)m(m + 1) P77 exp(iwt + img), (3.26)

suggests that ©(r) contains a single spherical harmonic of the same order and degree as the
poloidal scalar, and its radial dependence can be obtained as a solution of the radial part
of (3.26),

—m(m + 1)(r™ — r™2) = V2f(r) = (%631" - T-(m,,TJF% f(r)-
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Assuming a radial dependence of the type,
£r) = Kyr®t 4 Kopr2,

plugging it into the radial equation and determining the constants K, Ko, ¢1, cp, we
obtain the solution,

O(r) = —m(m+ 1)PJ exp(iwt + ime) * (3.27)
rm+2 pmtd m
* [(m+3)(m+2)— (m+L)m  (m+5)(m+4)— (m+Dm o ]

where a harmonic term ar™ has been added to the radial dependence. After using the
insulating and the conducting thermal boundary conditions (2.4) of Types A and B at
7 =1 and determine the constant a in both cases we finally obtain,

O(r) = —(m+1)PFexp(iwt + ime) * (3.28)
. [ mr™*t? — (m 4 2)r™ __ mr™— (m 4 )™ ]
(m+3)(m+2)—(m+1)m (m+5)(m+4)—(m+1)m
for the insulating case and '
O(r) = —m(m+1)PJ exp(iwt + ime) * (3.29)
rm+2 —pm rm+4 —pm
i [(m+3)(m+2)—(m+1)m T mt ) (m+4)— (m+1)m]

for the conducting one.

Evaluation of the Integrals

After having obtained the solutions of the zeroth order problem and the heat equation the
integrals Hy, and Hp, which appear in the solvability condition (3.18), need to be evaluated.
Making use of the formula for the components of a solenoidal vector in terms of poloidal
and toroidal scalars,
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we proceed to the evaluation of the first integral.

H, —/u'-V2(u+ub)dV=—/u‘-V2ude=/u*-(r-VEﬁ)dS
v v po r

_ .0 u « 0 uy

- /o (anr r +u¢6r r )dS

= 2,,r/7r 19 ro* + L_a_w* o210 .|__1_____.‘92 “Ysinodo
= s \\rodor sin 6 9 800rr2or " smédgarr ) [

+27T/7r La—z-—l__a_rv —_ __a_z_lw .__]'_._irv* —_ .6_ * Sinedo
o \\sin6d¢drr2ar = d6orr2" ) \7sm0ogor 50"

1
= 2mm(m +1)[2(4m +2) / P 2d(cos 6) +

0

(m+1)2-1 2
+1)(m +2) ~m (2m + 1)

2 m
(m+2) lw(m /o P, 1 [2d(cos 8)]. (3.30)

158




The second integral may also be readily calculated. For the insulating thermal boundary
case we have,

Hy = /u*-r@dV=/L2v*@dV

1
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0
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/ |P72d(cos 6), (3.31)
and in an analogous manner for the perfectly conducting case,

1
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The Complete Analytical Solution

After evaluating the integrals H, and Hy we can readily write the expression for the critical
Rayleigh number for a given m,

-2
R = m2(m +2)3 { l::i:(m + 1)\/322257—;1%3—"’—:i + 1] (2m+3)"1 + (2m + 1)} * (3.33)

[((m + 1)(14m? + 59m + 63)]~! insulating case

(2m +9)(2m + 7)[(2m + 5)(2m + 3))? [(m + 1)m(10m + 27)]~* conducting case,

where the following property of the associated Legendre polynomials is used,

Jo 1P ad(cos6) _ (2m +1)2
Jy |Pm|2d(cos 8) 2m+3

As a result of the perturbation analysis we obtained a complete solution for the convec-
tion in the limit of small Prandt]l numbers and high rotation rates, which in the first order
is represented by

(R7 m,u,wo, e)’ (334)

where all state variables depend only on m. In order to obtain the critical Rayleigh number
at onset, one has to loop through all values of m and select the smallest possible R. Before
proceeding to the numerical analysis several properties of the obtained solution must be
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outlined. Firstly, we notice that the frequency omega of the zeroth order solution has two
values - a positive value corresponding to a retrograde drifting convection pattern and a
negative one corresponding to a prograde drifting mode. These two modes are competing at
onset and will be demonstrated in the numerical analysis in the following sections. Secondly,
we observe that for a given m the critical Rayleigh number (3.33) does not depend on
the radial component as well as on the rotation rate in this approximation. These are

particularly interesting features that we will address in the numerical simulations reported
below.

Numerical Test of the Analytical Solution

Using the numerical method described in the following section we check the obtained analyt-
ical result (3.33) against numerical values. Since the approximation is derived for + —» 00,
P — 0 and 1 = 0 we use values of these parameters as close to the analytical assumptions
as numerically reasonable. The comparison is represented in Fig. 1 with the numerical
results for several different values of m = 2,4,8,12 for parameters P = 107%,7 = 0.1 and
varying 7. Naturally a strict independence of R on 7 as predicted by (3.33) can not be
expected but an approximate independence is fulfilled over a large span of values of 7. At
very low and high values of 7 the convection enters other regimes of flow as will be discussed
in the following sections.
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Figure 1: Comparison of numerical results (solid lines) with the analytical expression (dashed lines)
for P=10"%,7= 0.1 and m = 2,4, 8,12 in direction of the arrow.

4. Numerical Methods

Following the earlier analyses by Zhang and Busse(1987) and Ardes et al.(1997), we use a
Galerkin method for the numerical solution of equations (2.2).

In a manner similar to the described in the previous section we transform the full
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nonlinear vector equation (2.2a) to a couple of scalar equations for v and w,

(V2 - gt-)Lz +7kx7:-V]V204+7Qw — RLy©® = —r-V x (V x (u-Vu))  (4.352)

[(V2 - %)LQ +7kxr -Viw—1Qu=1r-V X (u-Vau). (4.35b)

The boundary conditions are given by (2.4) and modified as in (3.24) at r =7; = —1-27 and
T=70= -1—3—-

In order to solve equations (4.35) and (2.2c) by the Galerkin method, it is convenient to
expand the dependent variables into complete systems of functions satisfying the boundary

conditions,

v= Z Ayt exp{iv(myp — wt)}Pllylm(cos 6) sinnw(r —r;) (4.36a)
yln
w= Z cynt exp{iv(me — wt)}P}”lm(cos 6) cos(n — L)w(r —r;) (4.36b)
vin
Type A:
e = Z byn1 exp{iv(myp — wt)}ﬂlulm(cos ) sinna(r —r;)
vln
Type B:
o = z by exp{iv(mep — wt)}Pl.lylm(cos 6) cos(n — 1)m(r — r;). (4.36¢c)
vin

Note the difference in the sign of w in (4.36) and (3.25). This representation has been
chosen in such a way that solutions in the form of drifting waves which are m-periodic in the
azimuthal direction are described by constant coefficients a,;, etc. More complex solutions
can be described by time dependent coefficients a,;,, etc. In both cases the conditions

buin = bt,,ln » Cin = ct (4.37)

+
a, =a s
vin _vin

—vin ?
must be satisfied for real expressions (4.36) where the superscript + indicates the complex
conjugate. Of particular interest are solutions that are symmetric with respect to the
equatorial plane in which case the subscript ! runs through | v | m 4 2j for j =0,1,2...
while the subscript [ runs through | v | m+2j+1 for the same j. The associated Legendre
polynomials will be assumed in such a form that the average of [P/]? over the unit sphere
is unity. '

After the equations for the coefficients a,;, etc. have been obtained through a projection
of the basic equations (4.35) and (2.2c) onto the space of the expansion functions used in
(4.36) the system of equations for the coefficients must be truncated. We shall use the
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truncation condition that all coefficients and corresponding equations are neglected whose
subscripts satisfy

2n+l-|v|im+2|v|>3+2Ny (4.38)

The same condition applies for [ instead of I. The condition is the same as used by Zhang
and Busse (1987) and provides a triangular truncation such that as many functions in the
radial as in the latitudinal direction are used for the representation of the solution.

For the linear problem of the onset of convection the right hand side of egs. (4.35)
and the term u - VO in eq. (2.2c) can be neglected and only terms with ¥ = 1 need to
be kept in the representation (4.36). The linear homogeneous system of complex algebraic
equations for the coefficients ay;, represents an eigenvalue problem for R and w as the real
and imaginary parts of the eigenvalue.

For the most cases presented in this report a truncation parameter of Nr = 18, or a
total of 513 coefficients have been used. In a few cases in the high rotation regime the
resolution was increased to Ny = 30, which already poses significant requirements on the
computer capacity and computational times.

5. Onset of Thermal Convection at Low Prandtl] Numbers
and High Rotation Rates

In this section we present the basic results gained from the numerical investigation of the
onset of convection at low Prandtl numbers in the case of conducting thermal boundary
conditions of the type A and address the questions posed in the introductory section of the
report.

The parameter exploration included a large number of points in the ranges of 10~5 <
P <£10,0 < 7 and 0.1 < 5 < 0.8. The computations with P 2 1 do not actually belong
in the low Prandtl number region and are only included for the sake of finding the border
between the retrograde and prograde drifting modes, since these modes are found to exist
even at Prandtl numbers of order unity and higher. Of course, the scenario of the evolution
of the onset of convection with increasing rotation parameter 7, as will be described below,
is valid for a smaller region, which we believe to be approximately 107% < P < 102,

Ideally the proper way to investigate a given parameter region is to keep the values of all
parameters of the problem fixed and vary in a continuous way only one of them. When the
dependence on this parameter is well understood the process is repeated for all remaining
parameters. In practice, of course, this is impossible. In an experimental situation for
example, the variation of the Prandtl number is limited to the set of available working
fluids. In a numerical study one has much weaker restrictions, but even then parameters
such as the Prandtl number P and the radius ratio 7 are comparatively difficult to vary
because of their relatively small domain and big changes of the properties of the flow with
small changes of the values of these parameters. On the other hand the rotation rate can
be varied comparatively easily in a wide range and as a result much smoother dependences
are observed. Furthermore, any non-monotonic behavior guarantees a significant and well-
defined transition between different states.
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Figure 2: The Rayleigh number R (upper plot) and the frequency w (lower plot) as a function of
7 in the case P = 10~%, 7 = 0.3, m = 8. The analytical predictions for w based on inertial mode

approximations are shown with dotted lines.

Following this approach, numerous cases in the low Prandt] number region were investi-
gated. Fig. 2 represents a typical example of the results obtained in this region and provides
an excellent overview and introduction to most of the various regimes of convection flow
that can be expected here. Although all other parameters, P = 0.0001, n = 0.3, m = 8,
are fixed, this case is a typical example and is situated in the middle of the parameter
region of interest. No substantial qualitative differences have been observed at other para-
meter values. The £(7) curve is particularly instructive and several different states of the

preferred mode can be immediately noticed.

Figure 3: The streamfunctions rsin39,v in the equatorial plane illustrating the sequence of tran-
sitions for the same parameters as Fig. 2 and values of 7 = 5, 950, 1500, 6-10°, 8-10°, 3.5-107.

At very low rotation parameters of order unity the convection cells form near the outer
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Figure 4: In the middle part: the Rayleigh numbers R of the competing prograde(dotted line, empty
circles) and retrograde mode(dashed line, filled circles) as well as its actual critical value(thick solid
line) and the corresponding frequencies as a function of 7 in the case P = 0.001, n=0.2, m =6.
On the left and right: Contours of constant radial velocity u, (down) and toroidal scalar w on the
spherical surface r = 0.9 at both sides of the transition for r = 58000 and 64000.

surface in the equatorial region of the spherical shell as can be seen in Fig. 3, which
illustrates the various states of the flow in an equatorial projection. At this values of the °
rotation parameter 7 the critical Rayleigh number is still rather small. The preferred mode
has a negative frequency which indicates a retrograde drift with time. This drift cannot,
of course, be seen in the snapshots of Fig. 3. The solution has a relatively small toroidal
component, which vanishes in the limit 7 — 0.

A new mode which does not exist at 7 = 0 enters the picture and approaches the initial
mode indicated above. As a result of the switch-over phenomenon described by Zhang and
Busse(1987), the R(7) and w(7) curves of the two competing modes exhibit smooth bends,
but for some more time the initial mode is still preferred. During this gradual transition the
pattern of convection also changes gradually. The convection rolls are no longer straight and
strictly radially oriented as they were near 7 = 0, but change shape and become inclined as
illustrated by the second plot of Fig. 3. The frequency still keeps its negative sign and the
pattern exhibits a retrograde drift.

Past a particular value of the rotation parameter 7, the value of the critical Rayleigh
number R of the competing mode becomes so much lower than the value of R of the
initially preferred mode that an abrupt jump occurs. This is especially obvious from the
discontinuity of the £(7) curve in Fig. 2. During this transition the frequency even changes
sign. The change of sign indicates a change in the direction of the drift of the pattern. In
the new state the preferred mode drifts in the prograde direction. Because the effects of the
switch-over competition still act on the w(7) curve of the new mode, it is also bend, which
as before results in a pattern of spiraling rolls, as can be noticed in the third plot of Fig. 3.

In a completely analogous way a second transition happens and the preferred mode
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changes back to retrograde drift. This next transition occurs at about 7 = 8000 for the
parameters of the case represented on Fig. 2 and brings the flow in the region described
well by the inertial wave approximation.

We would like to draw the attention to the last two transitions seen in Fig. 2.

After the second transition and between values of about 8000 < 7 < 3.5 - 105, in the
particular case of Fig. 2, the convection is strictly in the, so called, wall-attached regime
which is well-described by the inertial wave as well as the equatorial approximation of
Ardes et al.(1997). The theoretical values given by (3.25) have been plotted with dotted
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Figure 5: Same as Fig. 4. In the lower part the streamfunctions rsin #9,v in the equatorial plane,

as well as zZ;pv in a meridional plane correspond to 7 = 3.45 - 10° and 7 =3.48 - 108.

lines in Fig. 2. As can be seen they agree perfectly with the numerical values. It is
worth noting that these values do not depend on 7. What is more they do not depend
on the aspect ratio as well and this will be a subject of further discussion in the present
report. Since the expression (3.25) gives the frequencies of the inertial oscillations, found
as solutions of the Poincaré equation in rotating spheres, this perfect agreement with the
numerically computed frequency of the preferred mode of the convective flow is the basis for
the argument that convection is small perturbation of inertial oscillations in this particular
parameter regime. In the middle of the region the convection undergoes a new transition
from a retrograde to prograde drifting modes, which is illustrated for somewhat different
parameters in Fig. 4. These modes represent the generic case of wall-attached type of
convection and the most notable difference between them is the direction of their drift. The
two solutions differ mainly by a phase shift in the poloidal part of the velocity field and the
corresponding amplitudes are quite close to each other. As can be seen in Fig. 4 at lower
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Figure 6: The streamfunctions  sin 885 in the equatorial plane illustrating the transition to multi-
columnar state in the case P =107, 7 =0.6, m = 6 and values of 7 = 107 for 2- 107 .

Figure 7: The boundary separating the retrograde (below the surface) and prograde mode(above
the surface) for a fixed value of the wavenumber m = 6.

value of the rotation parameter 7 the retrograde mode has a lower critical Rayleigh number
and therefore is preferred to the prograde mode. As 7 increases the Rayleigh number R of
the retrograde mode grows faster than that of the competing prograde mode and at some
critical value of 7 eventually becomes larger. At this point the transition from retrograde to
prograde mode occurs. The frequency exhibits a discontinuity, changes sign and the whole
pattern starts drifting in the opposite direction. Apart from this obvious process no other
physical reason for the transition is identified. Mathematically the two frequencies emerge
as the two roots of a quadratic dispersion relation and the inertjal wave approximation does
not provide an explanation for the transition, since according to (3.33), the retrograde mode
has a smaller Rayleigh number and thus is always preferred in contrast to the numerical
results. Thus one may suggest that an explanation for the transition must be sought in
higher orders of the perturbation analysis.

The last transition observed in Figs. 2 and 3 and shown in more detail in Fig. 5 is
arguably the most interesting one of all. It was completely unexpected and represents a
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novel pattern observed for the first time at onset of convection. Examining the plots of
the Rayleigh numbers and the frequencies of the competing modes, the same mechanism of
transition as the one just described in connection with the retrograde - prograde switch is
identified. But in all other aspects this transition is rather different from the previous one.
Although the frequency again exhibits a finite discontinuity, it does not change sign this time
and the pattern continues to drift in prograde direction. A major change in the structure
of the convection solution can be observed. Besides the wall-attached mode which persists,
several other concentric layers of convection columns appear. The whole pattern resembles
a chess play-board in the sense that the streamlines of any given column are directed in the
opposite direction with respect to the streamlines of all neighboring columns. This multi-
column solution seems to emerge as a result of the competition between the wall-attached
type convection and the effects of the extremely high rotation which asymptotically favors
columnar structures at a distance of about half the radius of the outer spherical shell
(Busse(1970)). While in other parameter regions this competition leads to a multi-hump
solutions and finally to spiraling columnar convection, here the tendency for wall-attachment

2

20/t
o

m=8

1

0.0 0z o4 o8 08
n
Figure 8: The ratio between the frequency w and the rotation parameter 7 of the retrograde(negative

values) and prograde modes(positive values) as a function of 77 in the case P = 1075 for three different
wavenumbers as indicated in the plot.

is compatible in strength to the effects of high rotation and leads to a breaking of the
equatorially wall-attached cell into multiple columns that obey more closely the Taylor
constraint of rotation. In contrast to the multi-hump and spiraling columnar solutions the
multi-columns are strictly oriented in radial direction. As might be seen from the plots of £,
this transition does not occur in a gradual manner but rather sharply at a well-determined
value of 7. The transition to multi-columnar convection is found to bound from above
the regime of purely wall-attached convection at high rotation rates. Although the precise
border between the two regimes is not investigated in the present report, the switch to
multi-columnar convection has been found in all examined cases, regardless of the radius
ratio n and for all Prandt]l numbers P < 10~2. However at large 1 the number of concentric
layers diminishes because of the smaller size of the shell gap. As an illustration of this Fig.
6 is presented, for n = 0.6, m = 6, P = 0.0001. Here an interesting way of conforming to
the wall-attachment can be noticed in the first plot.
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Having examined in some detail the transitions between the various modes preferred at
onset, we turn our attention to the other questions posed in the introductory section.

10’

10}

2 /(1-n* Rre

Figure 9: The Rayleigh number R as a function of 7 in the case P = 1074, m = 8 for different

values of 7 as indicated in the plot. A power law fit of the n = 0.4 curve is plotted with a dashed
line.

Fig. 7 represents an attempt of a precise determination of the border between the
retrograde and prograde mode of the wall-attached convection in P — 7 — 1 space. The
construction of this border has been a major computational effort, since many of the points
fall in the regions of very low Prandtl numbers and at the same time of very high rotation
rates 7, where increased numerical resolution and long computational times were required.
As can be easily noticed, the surface is much smoother towards lower values of the radius
ratio n < 0.5. This is not surprising since at higher values of 7 the inner spherical boundary
of the shell has a significant effect on the structures of the flow which start to show similar-
ities to the case of plane layer convection and are much better described by the small-gap
limit approximation. The availability of the border between the two modes opens a new
possibility for tests of both, the equatorial and the inertial wave, approximations since they
both pretend to be able to predict the preferred mode of convection through a selection of
the lowest critical number of the various modes.

The next step towards numerical verification of the inertial mode approximation is shown
on Fig. 8, where the computed values of the £ ratio are plotted against the value predicted
by the theory, for three different wavenumbers m. For values of the radius ratio n<05a
perfect agreement can be observed. For values higher than that neither a good agreement
nor a well-established dependency on the radius ratio 7 is obvious. This is again no surprise
since we do not expect the analytical approach to be valid for thin shells, since it is based
on the assumption of a full fluid sphere. ‘

Having studied the various preferred convection modes and verified some predictions of
the theory, we would like to explore in more detail the dependence of the numerical values
of the critical Rayleigh number on the radius ratio 5 as well as on the rotation parameter
7. In Fig. 9 the ratio ﬁ’f% is plotted against 7 for different values of the radius ratio
n. For all values of n < 0.5 the Rayleigh number decreases with increasing 7. As already
discussed, this rule does not hold for n > 0.5. More interesting is the dependence on the
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rotation parameter 7. For < 0.5 the R(7) obeys an power low as is obvious from the
logarithmic plot of Fig. 9. A power law fit to the curve with n = 0.4 is plotted with a
dotted line and we can observe that it describes the R(7) dependence very well. Fitting one
can easily estimate the relationship,

R~ 7% = 7004, (5.39)

This relationship suggests that for the investigated parameter region of very low Prandtl
numbers and very high rotation rates and radius ratios less or equal to one half, the critical
Rayleigh number R is almost independent on the rotation parameter 7. This confirms
once again the predictions of the inertial mode approximation, since according to (3.33) the
critical Rayleigh number does not depend on 7. Of course, at very low 7 the assumption
-} — 0 for the validity of the perturbation expansion is not satisfied, while at very high
tau the convection leaves the wall-attached regime to enter the multi-columnar solution.
This provides an explanation of why (5.39) holds only in the intermediate values of 7 but
deviates at very low and high rotation rates.
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Figure 10: The frequency w as a function of 7 in the case 7 = 0.2, m = 4 for different values of P
as indicated in the plot. Theoretical values are plotted with dashed lines.

Finally, we would like to show how the wall-attached convection described by the equa-
torial and the inertial wave approximations is limited with respect to the variations of the
Prandtl number. This question has, of course, been addressed in the earlier studies, but
it is instructive to visit it again. Fig. 10 shows the ¥ ratio against v for fixed values
m = 4, n = 0.2 and for several Prandtl numbers. The theoretical prediction for £ has
also been plotted with dotted lines. At 10~° < P < 1072 the theoretical prediction is
exactly fulfilled, which indicates that these points are well in the regime of equatorially
wall-attached convection. The higher values of P > 107! are in the marginal region of the
regime and the analytical prediction is only approached. Nevertheless, it is our belief that
in the parameter region of the Prandtl numbers lower than 0.01 the qualitative scenario of
the onset of convection outlined in this section of the report is followed.
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6. The Onset of Convection with Insulating Thermal Bound-
ary Conditions

In this section we present some preliminary results emerging from the numerical investiga-
tion of the onset of convection in rotating spherical shells with insulating thermal boundary
conditions of type B. Since we believe that convection in the case of insulating boundary
conditions is not fundamentally different from convection with conducting boundary condi-
tions, for which many results have been accumulated, the main purpose of this part of the
report is to outline briefly the similarities and the differences between the two cases.

Figure 11: The Rayleigh number R (upper plot) and the frequency w (lower plot) as a function of
7 in the case P = 0.1, 1 = 0.4 for values of the wavenumber m = 4 (solid line), m = 6 (long-dashed
line) and m = 8 (dotted line), in the case of insulating (thick lines) and conducting (thin lines)
thermal boundary conditions.

Fig. 11 compares the critical Rayleigh numbers and frequencies of various modes of
convection with different thermal boundary conditions. Towards low values of the rotation
parameter, 7, all modes of the flow with insulating boundary conditions have a lower value of
the Rayleigh number than the corresponding modes with conducting temperature boundary
conditions. At these low values of the rotation parameter the R(7) curves of the two cases
are well separated and it is easy to observe that they have roughly the same structure and
form. This is apparent from the w/7 ratio plotted against 7. At low values of the rotation
parameter the two cases undergo the same types of transition from retrograde to prograde
mode. A slight difference in the values of the w/7 may be noticed. A more important
difference is that the transitions occur for much lower values of 7 in the case of insulating
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boundary conditions. The value P = 0.1 of the Prandt]l number is on the border of the low
Prandtl number region as it was described in section 4. Thus as the rotation parameter
increases when we cannot follow so well all the various transitions occurring at very low
values of the Prandtl number. After a certain value of the rotation rate 7 has been reached
the w/7 ratio starts to change almost continuously since a large number of modes take part
in the competition for providing a minimal R and only a very small number of tiny jumps
can be noticed. During the last big discontinuous transition the critical Rayleigh number of
the modes with insulating thermal boundary conditions becomes larger than the Rayleigh
number of the modes in the conducting case.But soon thereafter when the variation of w/7
becomes almost continuous, the Rayleigh numbers of the modes with the different boundary
conditions become roughly equal and have also the same structure as can be seen in Fig.
11.

Rt
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Figure 12: Same as Fig. 10 but in the case of P =10"%, =03, m =38

For low values of the Prandt] number the sequence of transitions with increasing rotation
rate 7 can be observed more clearly and in a more pure form. Fig. 12 shows again a
comparison between convection obtained under the two different boundary conditions for
the Prandtl number, P = 0.0001. The same qualitative features as in Fig. 11 can be
observed as well as the same number and type of transitions as described in section 4 where
the same case but with the conducting boundary conditions was discussed in much detail.

This observation poses the question whether this is always the case and whether in
addition to the similar transitions we may hope to observe the same regimes of convective
flow at the various Prandt]l number and rotation rate regions. The answer to this question
requires an enormous computational task which we do not attempt to undertake here. Our
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Figure 13: The streamfunctions rsin88,v in the equatorial plane illustrating various regimes of
convection in the P — 7 space in the case of insulating thermal boundary conditions. From left
to right and top to bottom the parameters (P, 7) are: (100,56.3), (100,5623.4), (100,562341.3),
(1,100, (1,10000), (1,10°), (0.01,316.2), (0.01,31622.8), (0.01,3162278.1) for = 0.4 and m = 5.

efforts are restricted to the investigation of a number of distant points in the P — 7 space
where we believed the various regimes of convection may manifest themselves. As shown in
earlier studies (Ardes et al.(1997)) the border between the wall-attached and the columnar
type of flow obeys the approximate relation,

PY472 = const. (6.40)

Using this expression as a guideline we investigated several different cases with increasing
Prandtl number, P = 0.001, P = 1, P = 100. Indeed as Fig. 13 indicates, all major
regimes of convection may be observed for the case of insulating thermal boundary condi-
tions as well. At low Prandtl number, P = 0.001 the wall-attached regime persist for a
wide range of values of 7. For high P = 1,100 wall-attached pattern may also be found but
only for a very limited range of low rotation rates. For moderate Prandtl numbers of the
order of unity at high rotation rates the generic case of columnar convection takes place.
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It can also be found in a large region in the P — 7 space and in the case of Fig. 13 we
may notice how the pattern changes from elongated to shorter and thicker columns when
the Prandtl number is increased from 1 to 100. On the other end at very high values of
the rotation parameter we find the newly observed pattern of multi-columnar convection.
A very remarkable and surprising discovery is that it persists even at very high values of
the Prandt]l number if sufficiently high values of 7 are reached.

7. Concluding Remarks

Rotating thermal convection has been a focus of intensive research for more than five decades
now, but continues to be a constant source of open questions and possibilities for further
developments. In the present report the linear properties of convection in rotating spherical
shells have been studied from both analytical and numerical points of view. The most
valuable result in this study seem to be the refinement and extension of the perturbation
approach of Zhang(1994). Future efforts will be devoted to obtaining higher order analytical
approximations that will enable us to explain some numerical results. On the numerical side
many interesting features has been found and examined in considerable detail. Convection
in the case of insulating thermal boundary conditions need to be further investigated.

Acknowledgements

I wish to express my deep gratitude and respect to our principal lecturer Friedrich Busse. I
thank to him for his help, knowledge, ideas and a world of possibilities he has shared with .
me in the last two years being the adviser of my doctoral thesis project. He also supervised
my GFD project this summer and many ideas presented here belong to him. His help with
the analytical part of the report was invaluable. '

I would like to thank the organizing committee of the GFD program for the opportunity
to work in a challenging atmosphere, the members of the staff for sharing their knowledge
and the rest of fellows for the nice time spent together.

It was a truly rewarding summer!

Appendix A. A Formula Involving the Q Operator

For the solution of the zeroth order equations (3.21) and (3.22) we need to evaluate the expression
QP™(cos8)f(r), where P™(cosf) is the associated Legendre polynomial of degree n and order m




and f(r) is an arbitrary radial dependence.

QP (cosd) f(r) = (k V- %(sz V+k- VLQ)) P (cos 6) £(r)

= [(1 - -;—Lg) (cos 0;967 - 51_:.16_565) - % (cosO% - SITnoaie) Lz] P (cos8) f(r)

= [(1 - %Lz) (cosG% - ﬂrf—e-%?re)) - -;— (cosﬂg - -SI—HZEWZT)) Lg] P (cos8) f(r)
(-3 {r (e 2t ) o (5 e _secman )
nen{r (B mmtl ) (Bt sty ]
(e ey (ot S Pt

where formula (8.5.3) of Abramowitz and Stegun (1964) has been used.
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Upper Bounds for Convection in an Internally Heated Fluid Layer

Lu Lu
University of Michigan

1 Introduction

Finding the bounds of certain global quantities is an important approach in the theoretical
study of turbulence. Particularly, maximum convective heat transport in Rayleigh-Bénard
convection is a much-studied subject. The idea dates back to Malkus (1]. Following this idea,
a rigorous upper bound of convective heat transport in Rayleigh-Bénard convection without
continuity constraint was first derived by Howard [2], using a variational approach. In the
same paper (2], a single-wavenumber boundary layer approximation is used to study the
asymptotic solutions of the Euler-Lagrange equations. Busse [3] extended this asymptotic
technique and introduced multi-a-solutions, which has been proved fruitful in studying other
fluid dynamics problems [4], [5], [6], and this approach is reviewed in [7]. A new approach to
derive the rigorous bounds on turbulent flow quantities, the background method (Deoring-
Contantin approach), appeared in 1992 [8], and subsequently applied to Rayleigh-Bénard
convection [9], [10]. In this project report, these two above-mentioned techniques are applied
to bound the minimum average temperature in a fluid layer with internal heating.

2 Governing Equations

Tl

Figure 1: Geometry of convection with uniform internal heating.

The geometry is shown in Fig. (1). The setup is very similar to Rayleigh-Bénard con-
vection. A fluid layer is confined between two parallel plates with a distance d. However,a
uniform volumetric heat flux H(with unit ‘;{l—g) is pumped into the fluid layer. The upper
and lower plates are held at fixed temperatures Ty and T} respectively, and there is no re-
striction on the temperature difference AT = Ty — T;. With internal heating, the governing
equations are identical to Rayleigh-Bénard convection except for the additional term + in
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the heat equation:

ou

Frub Vu = —Vp + vV2u + kgoT, - (12)
-aa—f+roT=nV2T+’y, (1b)
V-u=0, (1c)
with the boundary conditions
ul,=01=0, Tls=0=To, Tl|o=1="T1, (1d)
where |
1= (1¢)

By introducing %2 as the unit of time, d of length, £ of velocity and =27 as the unit of

d
temperature, the governing equations are put into the non-dimensional f?)rm

prt (%‘; +u- Vu) +Vp=V2u+Tk (2a)
%Tt—+u.VT=v2T+R (2b)
where
_v p_gedy
Pr= e R= 2 (2c)

R is the heat Rayleigh number, which is proportional to the internal heating rate. The
boundary conditions in non-dimensional form are

u|z=0,1 = 07 TIZ=0 = _T01 T|z=1 = 07 (2d)

where Ty = ﬂ::—zlATL which shows that the non-dimensional T is equivalent to the role
of the Rayleigh number Ra. A negative non-dimensional temperature at the bottom plate
means the upper plate is hotter. If T|,—o is 0, then two plates have the same tempera-
ture. The case when the bottom plate is hotter corresponds to a positive non-dimensional
temperature at the bottom plate.

3 Linear and Energy Stability

A static solution can be found easily:

1
T=-5R+ (-;-R +To)z—To (3)

where T'|,—o = —Tp. Fig (2) shows several possibilities of the of the static solutions. When
two plates have the same temperature, the profile is symmetric about z = % The maximum
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Static Solutions
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Figure 2: Static solutions of an internally heated fluid layer.

temperature occurs at z = % Thus temperature gradient for the lower half of the fluid layer
is positive, corresponding to a stable stratification. While in the upper half, the fluid layer
is unstably stratified. This profile provides the possibility, when the internal heating rate R
is big enough, that convection starts in the upper half of the fluid layer. When T increases,
but not exceeding %R,the unstable stratification persists with the position of maximum
temperature shifting toward the upper plate. Eventually, when Tp > %R, the temperature
gradient is positive everywhere which suggests that the fluid layer is linearly stable, a fact
that will be established in the analysis of linear stability bellow.

Let T = —-%Rz2 + (%R +To)z —Tp + 6, where 0 is the temperature disturbance. We can
write down the linearized equations governing the growth of the disturbances 6 and u

Pr! (%“) + Vp = V2u + 0k (4a)
06 1
E:(Z_EmTo)w+v2o (4b)
Vou=0 (4c)
with the boundary conditions
ul:=01=0, 6l:=01=0. (4d)
Taking the z component of the curl curl of the u equation leads to
Pr_I%VZw = Viw + A9, (5)
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where A, is the horizontal Laplacian, defined as

o o

Ay = 22 + EvR (6)
Then we make the ansatz
w=etf(z,y)W(z), 0=e"f(z,9)0(2), (7a)
and
D2 f(z,y) = ~a*f(z,y). (7b)

The exchange of stability holds in this problem ([11]). Hence to determine the critical R,
we can set s = 0:

(D? - a?)*W = a’RO (8a)
(D2—a2)6=—(z—%—To>W (8b)

with the boundary conditions
W=DW=606=0 at z=0,1. (8¢c)

In Rayleigh-Bénard convection, the equations for linear stability turn out to be identical
to those of energy stability.. Thus it is of interest to investigate the energy stability of the
internally heated fluid layer. The equations for the disturbances u and 6 are

pr-1 (gt tu Vuwp) — V2u + 6k, (92)
%:ﬂ +u-Vo= (Rz - -;-R - To) w+ V24, (9b)
V-u=0. (9c)

Using u- equation (9a), x equation (9b), we integrate over the whole layer to get

1d {w) _

53 pr = — (IVul’) + (w), (102)
1d (62) 1 T (Ivé?)
s =((=-3- ng) w) - L7 o)

Introducing a balance parameter s and adding the above equations yield

dtz{ <I‘;j> (92>} {s.(|Vu|2>_<(z_-%_%+s)w0>+<—l%gﬁ>-} (11)

Let

NG (T 2. s) we) + L2 12
o 2+ 2}




then if min A < 0 among the fields with
V-u= O, u]z=0,1 = 07 0I2=0,1 = 0’

the disturbances decay exponentially in time, which implies energy stability. To determine
the critical value of R, we need the Euler-Lagrange equations:

1 1 T - u
Viu4+=(z—=-20 - =
s Vu+2(z 5 R+s)0k+Vp+/\R 0 (13a)
1 1 Tp
2 - - =
V9+2(z+2 R)w-}-)\o 0 (13b)
V-u=0 (13c)

Setting A = 0 and applying the ansatz (7) yields

1 1 T
(D?—a?2W—-=(g—2_120 29 =
s-(D* - a*)*'W 2(2 3 R+s)a6 0 (142)
1 1 T
2_ 2 I, 1 Do -
(D a)9+2<z 5 R+S)RW 0 (14b)
with the boundary conditions
W=DW=6=0 at 2=0,1 (14c)

For each s, the critical Rg(s) can be found by minimizing the eigenvalue R with respect to
the horizontal wave-number a. Then s can be chosen such that it gives a maximal

Rg(To) = max min R(a, s)

The linear stability and energy stability equations are solved numerically, using a Cheby-
shev spectral method. The results are shown in Fig. (3) and Fig. (4). The first figure (with
the bottom plate colder) shows the convergence of the linear stability to the straight line
To = %R, which corresponds the temperature difference beyond which the entire fluid layer
is stably stratified. However, the energy stability increases with T but does not converge
to the line Tp = %R. In the case of a hotter bottom plate, both the linear stability and
energy stability lines converge to the critical Rayleigh number 1708 for Rayleigh-Bénard
convection. This is expected since the fluid layer is linearly unstable even without any in-
ternal heating in that case. In both figures, the critical R for energy stability is lower than
that of linear stability. This suggests the possibility of subcritical bifurcations.

As shown above, even though the bottom plate is colder and the lower half of the fluid
is stably stratified, the system can still be linearly unstable. Once the convection starts, it
tries to lower the average temperature of the fluid layer. Thus it is of interest to investigate
the scaling of the minimum average temperature. In the following two sections, this scaling
will be studied with the background method and the multi-a-solution approach.
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Figure 3: Linear and energy stability.
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Figure 4: Linear and energy stability (Hotter lower plate).
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4 Background method

To apply the background method, first we decompose the temperature field T into a back-
ground profile 7(z) and a fluctuating part 8(z, y, z,t):

T =17(2) +6(z,y,2,t). (15)
The boundary conditions of T are contained in 7(z):
7(0) = 7(1) = 0. (16)
The velocity field u still satisfies divergence-free and no-slip boundary conditions:
V.ou=0, ul;=01 = 0. (17)

Then the governing equations (2) become

g (%1:_ tu Vu) +Vp = V2u + k + Tk, (18a)
%g+u-ve=v2e+¢"+R—wr’. (18b)

Define < - >= lims=1 00 + fot dt’ KILZ J dzdydz- to be the average over both space and time.
Then (u - (18a)) yields

(IVuf?) = (w8), (19)

and (6 - (18b)), (7 - (18b)) yield, respectively,
(wdr') = = (|VO*) — (6'7') + R(6), (20)
—(wbr’) = — (6'7") + R{(7) — ('%). (21)

The difference of the above two identities is
R((6) — (7)) = (IVOI*) + 2 (wbr'y — (+'2). (22)

Since (T) = (1) + (#), we have

R(T) = (IVO*) + 2 (wbr') + 2R (r) — (+"2). (23)

The identity (23) can also be written as
0=a(|Vul2) - a (wh), (24)

where a is a positive number used as an optimization parameter to be adjusted to yield the
best prefactor. Adding equation (24) to equation (23) enables us to express the average
temperature as follows:

R(T)=2R(r) - (r"?) + H, (25)
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where
H = {(|V6]®) + {27 — a)wb) + a(|Vu|?)}. (26)
We require the functional H to be semi positive definite among the fields u and 6 satisfying
V.-u=0, ,ulz=0,1=0, 6|.=,;=0.
A bound can readily be obtained by applying the following background profile
_ 5z, 0<2<1-$§
T(2) = {eﬁgﬁlu_z), 1- §d<z<1

With this background profile, 27’ — a vanishes in the interval 1 < z <1 — 6. Thus we only
need to estimate | (27’ — a)w6) | = § (wh) in the region 1 — § < z < 1, and adjust § and @
to make H semi positive definite. Following ([9]), an estimate is given by

(27)

§2
(@ - au)| < 22 [ (IVal?) + 3 (190P)| (28)
Then
{(190) + (2 —awt) + a(vu)) = (- 225) (v + (1- $5) (79P).
(29)
The choice
aé? ad
-6-4— = 1, c= Z (30)

makes the right hand side equal to zero, which ensures H > 0. Then
R(T)>2R <¢) — (%)
a’1-¢ (31)
=—(1-9) - T 5
Ra-5-55
Minimizing the right hand side with respect to a gives the optimal choice of the parameter
a’

a=0R. (32)
And § can be solved from equation (30),
4
§= —. 33
3/ .R ( )

Finally,

12
@220 -2
= Zm(l - ) (34)
= R*® - 4R'3.
This shows that as R — oo, (T} ~ R?/3, which will be verified in the next section by using
the multi-a solution approach.
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5 Howard-Busse Approach

5.1 Formulation of the Functional

The governing equations are repeated here again

Pr1 (‘2‘ +u-Vu> + Vp = VZu + Tk,

(35a)
%%+u-VT=V2T+R, (35b)
with
u|z=o,1 = 0, T(O) = —To, T(l) =0. (35C)
Assume the turbulence is statistically stationary and the velocity field v and temperature T
can be decomposed into a time independent horizontal average and a meanless fluctuating
part:
T=T+60, 6=0 with u=0, 6=0. (36)
After taking horizontal average of (35b), we have
dwd d°T
= + R. (37)
Integrate once,

E@=-d—T—+Rz+c.
dz

(38)
The integration constant c¢ is determined by integrating above equation over [0,1]. This
yields

T — 1
E—wO—(wG)—R(z—§)+To (39)
With the decomposition (36), equation (35b) can be written as
96  dT

d2T dwé
— 4+ w—+4+u-V —V2 V2

% (40)
where equation (37) has been used. Multiply both sides with 8 and integrate over the bulk,
we have

<w0§> = —(IveP*).

(41)
Together with equation (39), the above expression yields

R<(z - %) w0> = (IV8I?) + ((wh- < wh >)?) + Ty (wh)

(42)
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Another power integral is derived by multiplying equation (35a) by u and integrating over
the bulk:

(IVul?) = (wh) (43)
We can find an expression of the average temperature by multlplymg equation (39) by z
and integrate over [0, 1]:
1 1
(T)= - <(z - —) w9> R - —2-To (44)
In summary, we have the following expressions:
(IVuf?) = (w) (45)
R<(z — -;-) w0> = {|V8|%) + (w8 — (wh))?) + To (wh) (46)
1 1 1
<T> = - <(z - -2-) ’UJO> 1—2R - §T0 (47)

From equation (46), R can be expressed as
(IVO2).+ < (wh — (wh))? > +Tp (we)
(G- ub)

Substitute the above expression into equation (47),
1 1 {|VO?) + ((wh — (wh))?) + To (wd) 1
T)=- - = | wl — - =
T <(z 2) >+ 12 ((z— %) wh) 2T0

<§V0|2> + {(wh— < wo))? > 12<(z - 1) wo) Ty ( - (w) , 1) | (49)
12

R= (48)

12<(z—§)w0> z—%)w0>_§
Let
h(z) = V12 (z - %) . (50)
Notice that
(hy=0, (A =1 (51)

This property of h(z) yields the following identity:

<(" h (hwb) — (wh)) > <w0 > (w8)? — (hwb)?. (52)
Together with equation (45), the average temperature can be expressed as follows,
(IVO?) + < (wh— < wh >)? > — (hw8)? < wh >
1 = = _
< V12T > o) +To Tt V3
(VR {IVul®) | < (wh—h < hwd>—-<wd>)> < wh >
= L wi><hwd> | < hwf > +To((hw&) _\/5)

(53)
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Thus the variational problem (Tp = 0 case) can be formulated as
Given p =< hw8 >, find the minimum of the functional
(Iv6)?) (IVul?) ((w8 — h (hwb) — (w8))?)

P = ity ) TP (ht)?

(54)
among the u,8 fields with
V-u= 0, u|z=o,1 = 0, 0Iz=0,1 = 0, (55)

where
w=u-k, h(z)=\/ﬁ(z—~;->.

Since the functional F is homogeneous in both w and 6, we can impose two normalization
conditions

(hwb) =1, (w?) = (6). (56)

5.2 Multi-o Solution

We are seeking the minimum of the functional F as g — 0o. This implies that w8 = h+ (w6)
(here and in the following discussion the normalization condtions (55) have been assumed.)
in most of the interval 0 < z < 1, which makes the second term in the functional vanish
in this interval. Only near the boundary z = 0,1 the boundary conditions prevent a close
appoach of wh to h + (wh). And the contribution to the functional is thus from possible
boundary layers at z = 0,1. Since h(1) + (w6) = V3 + (IVul?) > 0 (equation (45 and
definition (50)), there must be a boundary layer at z = 1. At z = 0, h(0) + (w8) =
—v/3 + (wh) is indefinite. Thus the existence of a boundary layer at z = 0 depends on
whether h(0) + (w) is zero. Without loss of generality, we assume there are two boundary
layers at z = 0,1 respectively, and make the ansatz

W=D wnbntwidh, 0= Ondn+0i4h, (57)
where ¢,, and ¢}, satify
Dopn = —0ln,  Dog}, = -3¢}, (58)
We introduce the following boundary layer variables:

ol PR
o P s @
S N (1)
"= {szg)) 1= 0 2

(63)
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where
=(1=-2™, (G=zu" (64)
The boudnary layer structure is such that in the interior
D10, + 010 =~ b+ (wh), (65)

and in the boundary layers

Wb + tn—10n-1 = hy + (wh) , WO + W65y = ho + (wh), for n=1,...,N—-

(66)
where
ho = h(0) = —v3,  hi=h(1) = V3.
With boundary layer approximations, the functional becomes:
Fy = {i#%)n-i-rn (/w B 2d¢, + /°° é*’2dc*)
(wb) | 4 o o

N

3ot (8 [ e+ [~ G2ac; ) +um (8 (02) + 52 (61%))
2 0 0
. Z]V: 3rn—2pn—gn l/oo ~Il2dg +i * A,,(llzd *
1” b%ownnb;2AWn Cn
o0 (o]
+ Zu%—rn—1—2sn (bi/o zﬁgdcn_l + b;'_?/o @;2(1@_1) pd (b% < w% > +b={2 <1I)I2>)}

2
. ©o ~ e )
0 0

Balancing the exponents in the above exrepssion yields

1—4-n 24" 4
=3 BT3sgw =0 =g/ (%
Then we have
. 2
Fn = Ha—rw Fy (69)
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N 1 0 ”2 1 ©0 *112
A2 (g [ s g [ o)
N 00 o0
> <b§ /0 WidCn-1 + b22 /0 a;;‘;?dc;;_l) + (0 < @f > +b3% < @}? >)
2

0o o0 “
+ { / (WNBN — hi— < wh >)%d¢n + / (W8N — ho— < wh >)2dc,*v} . (70)
0 0

Now the Euler-Lagrange equatins for the functional Fy can be written down:

1 D A . A . =
oy b,j D — TG, (h1 + (wh) — b, — wn+10n+1) =0, (71)
(?léwaéﬁ + [LrN_r"’lzIn (h1+ < wh > —-ﬁznén - ‘fl}n.;.lén.;.l) =0, n=1...,N
(72)
b2., ~ R -

TZ};TDown.*.l - u"N—Tn n+1 (h1+ < we > _wnOn - i]n+]0n+1) = 0, (73) ’
Yis1p g L= g 1(h1+(w0)—u“) O — 416, 1) =0, n=1,..,N—1
(wo) wYn+ n+ nVn n+1Vn4 ) (Ayeey

(74)

And for w,, 6;,

D, - DyD,,
w ;> b3, — 6, { (0 )2(h (W) + 1) + pu"™ (h + (wh) — 0,8, — w36})

K ( [ (b =~ (wB)Pacr + /0 (30 ~ o — (we))quv)} =0, (75)

Dy ,o: DD

+h ( /0 oo(u“:NON —hi— < w8 >)%d¢n + /0 oo(zzwé,*\, —ho — (w0))2d(}"v)} =0, (76)

(h{w) + 1) + pu™ (h + (wh) — 5,6, — B}6})

The same set of equations are also satisfied by the starred quantities w2, 6%, W, 0.
From equation (75) and (76), we have

Dgw? = D6, (77)
Dgw}? = D, 622, (78)
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Adding these two identities yields
Dy (% + 512) = D, <9 + 0 > (79)
Hence the normalization condition < w? >=< 62 > implies
Dy =Dy = D. (80)
This identity together with equation (75) and (76) yields
W =602, b =b] (81)
Equation (73) together with equation (74) gives
Dyl 4y = Dubl .
Same identity holds for @y, and 6 +1- Therefore
W2y =02, 05 =0 fon=1,... ,N-1 (82)

Substitute the above identity back into equation (73), we have

- ~ D
_ah 7 — Tn—TN 2 — . _
h1+ < w0 > w-nen wn+10n+1 u bn+1 < wo > ; n 1, ey N 1, (83)
~% 7 ~ % nx ' — D
hot <wh > 030, — Bpafipy = ER ———, m=1.. N-1 (80
Then equation (71) and equation (72) become
. ) _
n
0!+ b2 0, =0, n=1,...,N-1 (86)

The above equations hold gn the region where W, # h1 + (wf). When the equality holds,
then from equation (71) and equation (72) we can derive:

~(4) j An alf a ar2
W, 0.0, Wy, — 24,
w2z = ZJ = (h1 + (w))? ——--E—s—-— (87)
n n Wy
With the following change of variables,
pL/3p2/3
¢ = bt
0 = b7 2013, (hy + (hw8)) ™2 b, (88)
& = b/% /% (b1 + (hwb)) /26,
equations (85), (86) and (87) become:
QW -6=0
& +Q=0 (89)
2 2
a@ = o 99529
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Starred quantities satisfy the same equations with h; replaced by hg. This set of differential
equations have been studied in (3}, which gives the constant 3:

o] " (o o] ~n
38 = / Q"2d¢ + / (1-06)d. (90)
0 0
And the integral

wll 2

/ den+ / b2 1021 dGn = 38 (hy + (WO)) 6364, m=1,..,N—1. (o1)
0

When n = N, the differential equations for #y and by are

D ) L

oSN — (ot (w8) ~ dwdr)ly =, (92)

TR 0% + (hy + (wb) — Bnbn )iy = 0, (93)
N

With the following change of variables,

1/3
bl/3 (h1+ (w0>)1/3 ((wa))
1/6

Q=027 (b + (hol)) 2 (Bs) o (94)
N 1/6 ,
8 = b}/ (hy + (hw8))~2/ (sz) dn

equation (92) and (93) become

0 — (1-06)e =0, (95)
o+ (1-08)0=0. (96)
In ([2]) the following result is given:
o0 s o0 2 1 00 9
a=/o Q0 d(:/o 9d(=2/0 (1-96)%d(. (97)
Thus the following integrals can be expressed in o:
(4) -2/3
/ (i) T+ wo)® () b, (98)
o by (wb)
s;3f D —-2/3 -1/3
ot =+ oy (B, (99)
o0 D 1/3 _
/0 (hl + (hw8) — wNON) din = 40 (hy + (wh))>/3 ( ( 0)) b3, (100)

Putting the above integrals together, the functional Fy can be expressed as

1/3 1/3
D ) b,:,1/3+4o(ho+(w49))"’/3 (—-—D ) b}‘v.'l/g’,

Fv= Twh) wh)
(101)

(WD% + 40 (hy + (w8))3/3 (
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and

1 1/3 x4 11/3
LE 23&{[*‘“] (s + (w0 + | 52 (h0+(w9))}

1

+a( o )—2/3{(h1+(w0))5/3b_1/3+(h0+ (w8))* b} + 82 (wh)

Minimizing Fy with respect to b, and b}, yields

4/3 X\ 4/3
oD _ 0 = 2b; (wl) = [(hl + (wh)) (Z—i) + (ho + (wh)) <%) ] ,

Bb
k| bn] i o
oD ] [0 ]
3_175-_0$ by, ] =4[b:z—1] ’
OFN 0= [bN-+1 4/3_4 by 13
obn | bn B 2R
8D PN [b7v+1]4/3_4|: b;v :|1/3
oby by byl
where
bt = (_)4/3 ((h 1+ (wh)) (w0))1/2
B
" _( )4/3 ((ho+ we)) w9))1/2
N+1 — ‘5‘

From the above relations, b,, can be solved
1

b 1-47% -n -N 1-47

b}, .1 has a similar form

1-4-7 T~
* - 1-4—
= [ (B) ™ o]

(102)

(103)

(104)
(105)
(106)

(107)

(108)

(109)

(110)

111)

It is clear from the above expressions that b, # b}, for n # 1 since by (equation (108) is
different from b}, (equation (109) b; can be solved from equation (103) and the recursion

relation

1-4—N

9573 (wh)

b1={ g (%)4(“‘ [(h1+(w0))ﬂ31%”'2+(ho+(w0))%z]}3_4_
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Putting all these together, the prefactor Fy is a function of (w8} only:

_ D? 3-47N
T <whd>1-—4-N

Fy

B

_4=N
3-2.4—N 3—24—N ﬁsl_—%ﬂl
(h1 + (w0))2C0=4"") 4 (ho + (w@))2(-4=F)

1-3.4~N
(w9> 4(1—4-7°)

-N
—ana—N —3 ﬁ:&%"l

— (3 _ 4—N)(1 _ 4—N)2'%v‘ . (25/3ﬁ x (9‘_) 4(1-4 ))
(113)

Now the value of (wf) can be determined by setting ZIZ‘% to zero. The resulting equation
for (wh) is

(a0 - 1)2%9 — oz — azTe 4 (a=1) =0 (114a)
where
V3+ < wh > 3—2c N
I = m, o= m, c=4 . (114b)

For general values of N, the above equation has to be solved numerically:

N=1, (wh) =0.4831
N=2  (wh)=09259
N=3  (wh)=1.0120

When N — oo, the above equation can be solved exactly:
(wb) . = 3—5-‘/§ = 1.039. (115)
This shows that there indeed is a boundary layer at z = 0 since all {(wh)’s are less than
ho = v/3. Now we can write down the scaling of (T') as N — oo:
1
T) = —=Foop®/® = 10.285u%/3, 116
(T) = —==Fo u (116)

Recalling the identity (47) with Ty = 0:
1 1
(T) =~ <(Z— -2-) w0> + 1—2'R,

1
i (117)

we know that as u — oo
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This leads to the scaling of (T') with respect to R:

(T) ~ 4.421R?/3. (118)

The profiles of w; and 6, can be determined from the fact that in the interior of the interval
0<z<i,

D161 ~ h+ (wh), and @ =6;. (119)

In the case N — o0, h = 2v/3z — 2355 And then

However, whether 6 changes sign in 0 < z < 1 can not be inferred from the variational
problem since only the product of w and 6 appears in the funcional F. Thus the possibility
of w changing its sign can not be excluded.

2\/§z—-2—5\/§, 6=+ 2x/§z—33‘/§ (120)

6 Conclusion

In this project, the scaling of the min (T') has been studied for an internally heated fluid
layer with both background method and multi-o solution approach. For the case when
two plates are held at the same temperature these two methods yield the same scaling:
(T) ~ R2/3_ The prefactor given by the background method is about a quarter of that from
the other appoach. By adjusting the background field we expect the prefactor to be closer
to that predicted by the multi-a approach. However, The scaling of the minimum average
temperature when two plates are at different temperatures is not clear yet. It is part of our
future work to investicate the scaling in this case.

References

[1] W. Malkus, “The heat transport and spectrum of thermal turbulence,” Proc. Roy. Soc.
London 225, 196 (1954).

[2] L. Howard, “Heat transport by turbulent convecton,” J. Fluid Mech. 17, 405 (1963).

[3] F. Busse, “On Howard’s upper bound for heat transport by turbulent convection,” J.
Fluid Mech. 37, 457 (1969).

[4] F. Busse, “Bounds for turbulent shear flow,” J. Fluid Mech. 41, 219 (1970).

[5] F. Busse and D. Joseph, “Bounds for heat transport in a porous layer,” J. Fluid Mech.
54, 521 (1972).

[6] S.-K. Chan, “Infinite prandtl number turbulent convectoin,” Stud. Appl. Maths 50, 13
(1971).

193




[7] F. Busse, “The optimum theory of turbulence,” Adv. Appl. Mech. 18, 77 (1978).

[8] C. Doering and P. Constantin, “Energy dissipation in shear driven turbulence,” Phys.
Rev. Lett. 69, 1648 (1992).

[9] C. Doering and P. Constantin, “Variatoinal bounds on energy dissipation in incom-
pressible flows: Iii. convection,” Phys. Rev. E 53, 5957 (1996).

[10] P. Constantin and C. Doering, “Infinite Prandt] number convection,” J. Statist. Phys.
94, 159 (1999).

(11] A. Pellew and R. Southwell, “On maintained convective motion in a fluid heated from
bellow,” Proc. Roy. Soc. A 176, 312 (1940).

194




Ball Release Experiment in a Centrifuge

Ulrike Riemenschneider
University of Southampton, U.K.

1 Motivation

The ball release experiments outlined in this work were motivated by laboratory experiments
with tilted convective plumes on a centrifuge carried out by Sheremet (2002) [1]. These
plume experiments were done to study the effect of the misalignment of gravity and Coriolis
on small convective cells, which are argued to play an important role in the process of deep
convection occurring in polar regions, such as the Labrador, Greenland and Weddell Seas.
In these regions the stratification of the water column is often observed to be very weak,
meaning that the underlying deep water is only marginally denser than the overlying surface
waters. In the winter months, when wind surface cooling is very effective, the surface waters
may actually become denser and large patches of water of up to hundreds of kilometers
across may be vertically mixed to a depth of one to two kilometers in periods of only a
few weeks. Field observations have suggested that most of the mixing actually happens in
smaller convective cells, with horizontal scales of less than one kilometer. It is the effect of
both components of rotation on these cells that was studied by Sheremet. The argument is
that some of the convective motion maybe aligned along the axis of rotation, rather than
along the axis parallel to the action of the gravitational acceleration, due to the Taylor-
Proudman theorem (TP) constraining change in the horizontal velocities along the axis of
rotation.

In these experiments the plumes were produced by injecting slightly dense coloured
salty water into a tank of freshwater mounted on a centrifuge which was rotating at a
constant angular velocity, and the formation of tilted Taylor columns ('Taylor ink-walls’)
was observed. Sheremet al.so found that for low Reynolds numbers the incoming jet of
dyed fluid disintegrates into coherent blobs which descend neither in the direction of the
buoyancy force ge nor in the direction of rotation 2. Instead they assume a trajectory at
an angle which compares quite well with linear theory developed by Loper [2].

It is this blob structure of the plume that sparked the idea of studying the behavior of
small spheres in the same experimental set up. In particular to see whether the behavior of
plumes could be represented by the behavior of small solid spheres.

In this report, the experimental set up will be described in the section 2, then the physics
of flow around spheres will be briefly reviewed in section 3. In section 4 the force balance
on the particle will be outlined and following in section 5 will be the presentation of the
experimental results, for the tilted experiments, as well as centre rotating and non-rotating
experiments which were carried out for comparison. Finally we will mention the difficulties
encountered in determining the density of the nylon spheres used in the experiment in
section 6 and conclusions will be drawn in section 7. Appendix A contains tables of the
experimental results.
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Figure 1: Sketch of the experimental set up as described in section 2

2 Experimental Setup

A sketch of the apparatus is shown in figure 1. The experiment was carried out on a
centrifuge mounted on a rotating table and consisting of a wooden frame extending 2.5
meters in both directions away from the centre of the rotating table. A box-shaped Plexiglas
tank of inner dimensions 29x29x50 cm (width x depth x height) was mounted on one end
of the centrifuge at a distance of 246 cm from the centre of the table. Weights are attached
to the opposite end to keep the centrifuge in balance. The tank was attached with two
pivots so that it could be tilted inward at an angle of 30° degrees and the rotation rate was
adjusted to 2Q = 3.0265~! so that when the apparatus was spinning with the full angular
velocity the surface of the water in the tank was parallel to the bottom of the tank. The
tank was filled with enough water to ensure that the surface of the water was about 20 ¢cm
above the bottom when the tank was rotating. A lid was inserted into the tank such that
the bottom 20 ¢cm form a body of fluid that is bounded by solid walls on all sides. On top
of the lid a remotely controlled release mechanism for the balls was attached, which allowed
the nylon spheres to drop through a hole at the centre of the lid. The mechanism consisted
of a metal tube containing up to 8 balls of 0.653 cm (1/2 inch) diameter, a Plexiglas slide
transferring the balls from the tube to the hole in the lid and a solenoid pulling the slide.
A sketch of the tank is shown in figure 2

The balls were marked with coloured lines around three geodesics perpendicular to each
other in order to observe possible spinning motion.

Below the wooden arm a camera was mounted (digital or video) in order to record the
experiment. Two mirrors were attached to the tank at an angle, one below it to provide a
view from the bottom, and one on the right hand side, providing a view from the side onto
the motion in the tank. A stop watch with 0.01s resolution was also attached to the tank,
to monitor the spin-up time, record the time of release of the spheres and measure their
time of decent. The spin up time was 30 minutes and after a ball had reached the bottom
we waited about 2 to 3 minutes before releasing the next ball in order to allow transient
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camera

Figure 2: Schematic of the tank, showing the two mirrors below and on the right hand side
of the tank to give a three dimensional view of the motion inside the tank.

motions to subside.
For experiments with the motion of the sphere co-axial along the axis of rotation, the
tank is mounted at the centre of the rotating table.

3 Taylor Clumn Formation and Wall Effects

Taylor (1917) [3] discovered analytically that in a geostrophically balanced flow, for suf-
ficiently low Rossby numbers, the vertical gradient of the horizontal velocity components
is zero: %‘;‘ = %zz = 0, this result is referred to as the Taylor-Proudman Theorem (TP).
Later these findings were verified in laboratory experiments which showed the formation
of Taylor columns as a result of the Taylor-Proudman constraint. The mechanism for the
development of this column is that as the sphere is trying to move down through a water
column, the fluid ahead of it has to move radially out of the way to allow the sphere to
descent. The TP theorem states however, that fluid in solid body rotation that does not
have any radial velocity initially cannot acquire any either. The only way in which the
sphere can actually sink or rise, is due to a relaxation of the TP constraint in thin Ekman
layers which develop on the surface of the sphere and at the top and bottom boundaries of
the tank. If the boundaries of the tank are at a large distance away from the sphere, or
at infinity in a theoretical consideration, the Taylor column will be gradually ’eroded’ by
viscous and inertial effects far away from the sphere and what is observed is a Taylor slug.
Figure 3 shows both, the structure of a Taylor column as well as that of a Taylor slug.
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Figure 3: Sketch of the structure of a Taylor column interacting with the boundaries on the
left and on the right a sketch of the appearance of the Taylor slug in the unbounded case.
Both features may develop for motion of the sphere perpendicular, parallel or at some angle
to the axis of rotation, however they will always be aligned with rotation.

There is a lot of uncertainty in determining the conditions under which Taylor columns
" from or do not form, the only sure way of knowing would be to try and visualise the flow
around the sphere with dye, which we did not attempt in the experiments presented here.

3.1 Motion Along the Axis of Rotation

For coaxial motion of the particle Taylor observed that the Rossby number Ro = U/Qa,
where a is the radius of the sphere, must be less than a critical value 1 /= for there to be a
columnar structure accompanying the sphere. (Note: usually the Rossby number is defined
to be Ro = U/20a, but in Bush et al. [4] it is stated without the factor of 1 /2). Other
experiments have suggested critical values as high as 0.7 Pritchard (1969) for substantial
Taylor column formation. In the tilted experiments the Rossby number was typically about
between 0.1 and 0.6 for motion parallel to the axis of rotation (we define Roj = Uj;/Qa).
These numbers suggest that there may or may not be a column depending on which criterion
you believe. For motion at negligibly small Rossby numbers, the vertical extent of the Taylor
column is determined by the fluid viscosity. The theory predicts that a truncated Taylor
column, or 'Taylor slug’ will extend a characteristic distance aT' up- and downstream of a
sphere of radius a. Maxworthy (1970) [5] however found experimentally, that the column
is typically an order of magnitude less than that. Based on his findings we may expect a
Taylor slug extending for about 3 cm ahead and behind of the sphere.
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3.2 Motion Perpendicular to the Axis of Rotation

For transverse motion the criteria are even less well understood. Unlike in the coaxial
motion, where the sphere is actually trying to move up and down in the fluid and therefore
defy Taylor-Proudman, here it simply translates through the fluid perpendicular to the axis
of rotation taking a cylindrical body of fluid, extending above and below, with it. External
fluid will stream past it as though it were a solid body. The Hide criterion for Taylor column
formation states that such a column may only form if A/D > Ro, where h is the vertical
length of the particle (its diameter in the case of a sphere) and D the depth of the fluid
layer. Ro is defined to be U/2af} in the case of a sphere. In our setup h/D = 0.0635 where
as a typical Ro; = 0.071, so again we are on the boarder line. Experiments by Hide et
al. (1966) however have shown that the Taylor columns only form for transverse motion
whenever h/D > 0.5Ro in which case, our numbers would predict no column.

From the centre rotation experiments we have some evidence of wall effects on the
velocity of descent of the sphere. It can be seen in all the plots of time versus horizontal
position, that the sphere first accelerates slightly after it has been dropped and then slows
down as it approaches the bottom. We are suggesting that this is due to a Taylor slug
interacting with the lid as the ball is released and gradually losing its efficiency in slowing
the ball down as it moves away from the wall, however as it starts interacting with the
bottom boundary it again slows down the vertical motion of the sphere.

We are going to work with the assumption that we do have a small Taylor slug, but not
a Taylor column associated with the spheres in the following experiments. This assumption
is supported by the fact that Stewartson’s theory, which we compare our results to, has
been developed for the unbounded case and it agrees nicely with our experimental results
as will be shown.

4 Forces on a Spherical Particle in a Rotating Fluid

To describe the forces acting on a particle which moves relative to fluid rotating as a solid
body we adapt a local Cartesian coordinate system the origin of which is located where the
sphere enters the tank through a small hole in the lid. The vertical axis is denoted by h
and is parallel to the axis of rotation, # points radially away from the centre of rotation
and )\ denotes the azimuthal direction pointing in the direction of rotation. (7, A, iz) form
an orthogonal right-handed co-ordinate system.

4.1 Newton’s Law

In such a setup, a particle would experience two types of buoyancy forces, the first one being
the vertical buoyancy due to the gravitational acceleration: —(m —m')g and the second one
due to the centripetal acceleration radially outwards, which is expressed as: (m — m’)r2.
Note that m is the mass of the sphere and m' the mass of the fluid replaced by the sphere.

In addition to those forces, the particle experiences a hydrodynamic force, Fj, due to
the fluid motion around the particle. The hydrodynamic force can be decomposed into the
drag and the lift on the particle.
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Figure 4: Schematic of the force acting on the ball. The horizontal forces are shown in the
sketch on the left, and the vertical forces on the right.

The drag force, acts in the direction opposite to the motion of the particle, but it arises
due to the friction and pressure between the particle and the surrounding fluid.

The lift on the other-hand acts perpendicular to the particles path of motion and the
axis of rotation, and opposes the Coriolis force on the particle. Taylor (1922) [6] found that
if the fluid motion about the particle is two-dimensional and sufficiently slow, then the lift
force will be equal and opposite to Coriolis acting on a mass of fluid with the same volume
as the object. This is not true however if the particle has three dimensional flow around it
or there is an appreciable density difference between it and the surrounding fluid. In such
a case the Coriolis force will exceed the lift and the particle will tend to be deflected to the
right (see Bush [4] and references therein). Figure 4.1 shows an arrow diagram of the forces
acting on the sphere.

According to Karanfilian et al. 7], the lift is due to the combined effect of the Coriolis
acceleration of the fluid parcels surrounding the solid particle, the spin of the particle relative
to the liquid, and the effect of the velocity gradient of of the liquid in the radial direction
due to the solid body rotation.

The particle will move in accordance with Newton’s laws, which may be expressed as
follows:

mﬂ =Fp-2mO x U - é7ra3Apge (1)
dt 3
where
Fh = / pandS + / n.rdS @)
S S

is the hydrodynamic force acting on the particle. Here 7 is the deviatoric stress tensor, and
Pd is the dynamic pressure.
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Figure 5: Sketch of the frontal (left sketch) and side (right sketch) view of the apparatus.
The coordinate system shown with the dashed lines above the side view is the one we use
consistently during the analysis, with the azimuthal unit vector pointing into the page. The
dashed line is the vertical within the tank and the solid line shows the approximate trajectory
of the particle, with @) and o, denoting the angles of displacement in the azimuthal and
radial direction respectively.

Newton'’s law in component form looks as follows:

0= Fj, — g'fra3ApQ2R + gma3QUr (3)
‘ 0= Fpy)— -§7TG3PQU)‘ (4)

4
0= Fpp + gwaaApg (5)

if we assume that the motion of the particle is steady and Ap < p. Figure 4.1 gives an
idea of the approximate path of the particle within the tank and explains the co-ordinate
system we use.

4.2 Stewartson’s Drag Law

Most existing theory for particles moving through a rotating fluid neglects the inertial terms
and is therefore linear.

The most widely know description of flow around a sphere is that according to Stokes,
which is linear and non-rotating. The drag for Stokes flow is 67ual, where p is the viscosity
of the fluid. In many problems involving centrifugal separation, the Reynolds number and
Taylor numbers are small, meaning that viscous effects are dominating over inertial and
rotating effects and under those conditions the motion may be treated as Stokes flow. If
the motion is very slow however and the fluid has low viscosity, inertial and viscous forces
are less important over rotational forces, leading to high Reynolds and Taylor numbers and
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relatively low Rossby numbers. In such a case Stokes law can not satisfactorily explain the
particle motion. Stewartson (1952, 1953) [8, 9] developed a linear theory for the high Taylor
number and low Rossby number case, which we will adopt here. He found the drag parallel
to the axis of rotation, for a sphere moving co-axially, to be

16
3

In the case for a sphere moving normal to the axis of rotation he found the drag force to be

F = 5 pQU)0° (6)

3272

Foo=—3057 2)

pQU, a® (7

where L denotes that the motion is perpendicular to the axis of rotation, and a lateral force
(lift), acting to the left of the motion,

873

Fr= 36+

pPWad (8)

Since this is a linear theory, we can superimpose these two different cases for a particle
that moves through the fluid at an arbitrary angle. The resulting hydrodynamic force,
maybe written in matrix form:

2n? 8 .
Fy 16 5[ 1s77 _}Zetvr 0 Ur
B ) =—geet| B | |0 ©
F, 0 0 1 Un

Note that the above matrix expression for F combines both the hydrodynamic and Coriolis

forces proportional to U, from equation (1). It can therefore be balanced against the
buoyancy forces

F = Fy + Coriolis = —gﬂ'Apa?’ge (10)

Inverting the matrix (9) and combining it with (10) then gives us the following force-
velocity relationship for a rigid body:

U, r Ap 1/2 2/7 0 gr
U | === —2/7 172 0 11
()-ax(F58)(E) o

The vector for the effective gravity is given by g, = (2R, 0, —g). Writing (11) in
component form we get:
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a  radius of the ball 0.635 cm (1/4 in)
m’ mass of the liquid displaced by the ball 1.166 g

p  density of the liquid 1.11456 g/cm?®

Ap density difference between fluid and sphere ~ 1073g/cm3

pp  density of the particle p+Ap

g  gravitational acceleration 986 cm/s?

v  kinematic viscosity of the salt solution 0.0128

2Q0 rate of rotation 3.027 s_1 (or 2.621)
6  tilt of the tank 30°

Table 1: Parameters applicable to all tilted tank experiments, and with some obvious
exceptions to the centre-rotating and non-rotating experiments.

_TAplpn
Ur=1g5 . SR (12)
U=-15 - ~Q’R (13)

T Ap
Un=-19" (14)

The trajectory of the particle in the azimuthal direction may be found by noting that
tanay = Ux/Up = 0.3638 and therefore o) ~ 20°. Similarly the deflection of the particle
in the radial direction is given by tana, = U, /Uy = 0.2875 and so o, = 16°. Note that the
trajectory is independent of the density difference between the particle and the fluid, as it
drops out on dividing one velocity component by another.

To predict actual velocities from the theory would mean one would need to know Ap,
an indirect way of determining the absolute density difference is outlined in section 6.

5 Results
5.1 Tilted Tank Experiment

Table 1 lists all the important parameters needed to describe all of the experiments.

5.1.1 Observed Trajectories

Figure 6 shows the trajectories of balls 1, 2, 5 and 6 from experiments N1 and N2. The solid
line in the plots is the path as predicted by the linear theory from Stewartson. Both the
azimuthal and the radial displacement of the sphere nicely fit the theoretical predictions.
Another observation worthwhile noting is that the displacement in the radial direction seems
to show a mild dependence on the individual characteristics of the ball, most probably the
density difference. Table 5 (in the appendix) lists the predicted angles from the observed
velocities. It seems that the faster balls (see table 4 for velocities) are deflected less in the
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Trajectory of Balls 1,2,5and 6 Experiments N1 and N2
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Figure 6: The plot on the left shows the azimuthal trajectories and the plot on the right
the radial trajectories of balls 1, 2, 5 and 6 in experiments N1 and N2. * - B1l,+-B2,0-
B5 and O - B6. The solid line describes the angle predicted by linear theory and in both
directions they agree nicely. Note that the axis of rotation is parallel to the vertical axis in
the plots, the horizontal axis in the left plot is A and in the right plot is 7.
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radial direction, or, if one looks at the trajectory as being a displacement from the vertical
axis of the tank along which effective gravity is active, they are displaced further. This
suggest some non-linear dependence of the radial trajectory.

5.1.2 Resulting Velocities

Table 4 (in the appendix) gives the velocity results obtained for each sphere in each of the
three experiments. The main observation to take away is that in general the velocity in
the azimuthal direction, :\, was observed to be less than that in the radial direction #. The
table also lists the Rossby and Reynolds numbers for each of the spheres in the different
experiments, which tell us that we are in a rotation dominated set up.

5.2 Centre Rotation Experiments

The fall velocity of a ball in a rotating fluid is substantially less than that of the same ball
descending in the same, but non-rotating fluid. In order to estimate the difference of the
effects of tilting on the speed of descent, a set of experiments was carried out with the the
same tanks as that in the tilted case, but placed at the centre of the rotating table. In the
first set of experiments (R1, R2, R3 and R4) the rotation rate was kept the same as in the
tilted experiments (202 = 3.027) but in a second run of experiments (R5, R6 and R7) the
rate of rotation was lowered slightly so that it would correspond to the ‘vertical’ component
(here we mean the axis z in figure 2 along which effective gravity acts) of the rotation in
the tilted case, 2Q = 3.027 - cos(30°) = 2.621. Figure 5.2 shows clearly the spread of the
velocity results from the fast centre-rotating experiments indicated by the circles. The plot
also shows the very consistent velocity data from the slower centre-rotating experiment. In
the mean one can see that in all cases the velocity of descent is faster for the slow rotating
experiment in comparison to the faster rotating experiment. This illustrates very nicely
that TP becomes more effective with higher rotation. The exact velocity results for each
ball are listed in table 7.

5.3 Non-rotating Experiments

The experiments in the non-rotating tank were also carried out with the tank mounted at the
centre of the table, but the table remained stationary. They were done in order to calibrate
the spheres and determine their density difference to the water by measuring their terminal
velocities (see section 6). The results of the velocity measurements are plotted in figure 8
(see table 8 for the actual numbers) along with the results from the rotating experiments
for comparison. A very noticeable difference in descent velocities may be observed, between
the rotating and the non-rotating experiments again pointing to the effects of TP, which
are absent if the system is not rotating.

Table 2 lists average velocities for each ball for all sets of experiments. Ratios are
computed for comparison and where known the theoretically predicted ratio is indicated.
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Figure 7: Plot of velocity spread for each of the balls from the fast and slow rotating
experiments. o - faster rotation, 2 = 3.027 (+ - mean), * - slower rotation, 20 = 2.621 (x
- mean).
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Figure 8: Plots of velocity spread for each of the balls from the rotating and non-rotating

experiments: [J - non-rotating (o - mean), o - faster rotation, 20 = 3.027 (+ - mean), * -
slower rotation, 20 = 2.621 (x - mean).
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B1 B2 B5 B6 Theory

Non-rot. 1.1605 1.5322 0.9914 1.7058

Slow rot. 0.3389 0.5326 0.2361 0.7252

Fast rot. 0.2891 0.4033 0.2126 0.5402

Tilted rot.(z) 0.3250 0.4765 0.2139 0.5394

S1/Fa 1.1723 1.3206 1.1105 1.3425 | 1/cos30° = 1.1547
Nr/Sl1 3.4243 2.8768 4.1991 2.3522

S1/Tilted 1.0428 1.1177 1.0874 1.3445 1.0

Table 2: Average velocities are listed for all sets of experiments. The last row, Tilted
rot. (z), referes to the component of the velocity along the z-axis. Its magnitude should
be comparable to that of the slow rotating velocity results. Nr - non-rotating, Sl - slow
rotating, Fa - fast rotating.

6 Estimation of Densities of the Spheres

In order to achieve a small descent velocity and thus a small Rossby number flow the
density difference Ap between the ball of diameter 1.27 cm and water should be very small
0(10~3). We were unable to calculate the density of each ball with such accuracy directly
by weighting it and measuring its volume. Instead, we used an indirect method based on
measuring the terminal descent velocity in non-rotating fluid. When a sphere descends in
fluid at constant speed V', the Archimedes force (proportional to Ap) acting on it is balanced
by the hydrodynamic drag

j4-7ra3Apg = l,oV27m2CD(I~Ze) (15)

3 2
which is usually expressed in terms of the drag coefficient Cp dependent only on a Reynolds
number, R, = 2aV/v. By fitting the well known measurements of the drag coefficient
(Schlichting, BL Theory) in a range 0.1 < R, < 1000 we derived an empirical dependence

24 24\1/3
Cp=%+ (3-R—e) (16)
which not only approximates extremely well the data in this range (Fig. 6) but also has
an exceptionally simple analytic form (stimulating a search for the underlying physical
meaning). The first term in (16) represents the Stokes law with the drag proportional to V
in the linear viscous case R < 1. The second term describes the increase of the drag due
to inertial reaction of the oncoming flow.

According to Taneda (1956) for R. > 24 the flow behind a sphere starts to separate,
and a vortex ring forms in the wake. The length of the recirculation grows linearly with R,
until the flow starts to oscillate gently for R, > 130. For R. > 1000 the flow in the wake
is very turbulent, the drag coefficient approaches a constant value 0.47, and hence the drag
is proportional to V2 in accordance with the Newton’s law. Near R, = 3 - 10° flow in the
boundary layer becomes turbulent and the crisis of drag occurs.
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Figure 9: Plot of the drag coefficient versus the Reynolds number for motion of particles in
non rotating fluids. Shown are the Oseen approximation (dashed) and Stokes law (dashed-
dotted). The solid line is a fit to the data by Sheremet.

In our non-rotating experiment the Reynolds number was O(100) just in the middle of
the validity range of (16), and we expect a steady wake with a recirculation of size about 2a.
From the observed steady terminal velocities in the non-rotating experiments we calculated
the density excess Ap of each ball according to (15),(16), they are listed in the Table 3.
The same balls and salty water were used in all our rotating tank experiments.

For comparison we used Stewartson’s drag law to estimate the density difference from
the centre-rotating experiments at slow rotation rate. Since the agreement of velocities in
the azimuthal direction is so good, we use the measured azimuthal velocity component Uy
to estimate the difference in density between the ball and the surrounding salt solution.

Solving the expression for the azimuthal component, we find the following expression for
Ap:

P
Ap| = . 7
186l = 205 £ (17)
In table 3 the estimated Ap from both the non-rotating and slow centre-rotating experiments
are listed. If one were to use the results from the non-rotating experiments, to estimate the
velocities in the tilted case, one would get values which are 40 to 60% to high, (remember
the linear dependence of the velocity components on Ap).

208




Ball No-rot Slow-rot Ratio
1 1.0543 0.6430 1.6397
2 1.4382 1.0113 1.4221
5 0.7279 0.4481 1.6244
6 1.7465 1.3761 1.2692

Table 3: Table of the average estimates for Ap from the non-rotating and the slow centre-
rotating experiments, and their ratios.

7 Conclusion

The experiments both in the tilted and in the centre-rotating case yielded some quite nice
and consistent results, which in the case of the tilted case agree nicely with Stewartson’s
linear theory for motions of Rossby numbers less than 1 and Reynolds numbers between 10
to 60.

Comparing the trajectories of the spheres to those of the blobs in the plume experiments
it turns out that they have similar displacements in the radial direction, however the blobs
descend at a much smaller angle in the azimuthal direction. We conclude that the path of
the blobs in the plumes are in some aspects, but not all, consistent with the paths taken
by solid spheres. This may be due to the presence of external circulation in the plume, and
deformation of fluid parcels, which may influence its path.

In future it maybe interesting to repeat some of the experiment which gave less consistent
results, such as the centre-rotating experiments and try to reconcile our initial intention of
calibrating the balls and thus estimating their density difference to the fluid. In doing so
" more attention will have to be paid to the temperature of the surrounding fluid as this may
well influence the density of both the saline solution and the nylon spheres through thermal
expansion.

There are further observations we made, which have not been mentioned at all here.
Firstly there were another four balls released in each of the experiments, which descended
at considerably faster velocities then those we analyse here. They therefore involve flows
of much larger Rossby numbers and it might be interesting to see whether Stewartson’s
drag law still applies for these spheres. Secondly, while descending in the rotating fluid, all
spheres were observed to spin. We have had no time to look closer at the rate of spin of the
spheres, at its origin or importance for determining the motion.

Finally, in order to have a more realistic comparison of the sphere trajectories to those
of the blobs we are planning to carry out a few experiments studying the motion of single
blobs in the same set up without them being surrounded by a plume.
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A Tables

Ball Exp. U, U Un [U] R. Ro
1 N1 00846 -0.1022 -0.3252 0.3512 34.85 0.3654
N2 00834 -0.1071 -0.3283 0.3553 35.25 0.3696
N3  0.0374 -0.0388 -0.1301 0.1408 13.97 0.1465
3 N1 01119 -0.1698 -0.5084 05476 54.33 0.5697
N2 01180 -0.1588 -0.4873 0.5259 52.18 0.5472
N3 01129 -0.1480 -0.4571 0.4935 48.97 0.5135
5 N1 0.0731 -0.0710 -0.2083 0.2319 23.01 0.2413
N2 00719 -0.0748 -0.2208 0.2440 24.21 0.2538
N3  0.0623 -0.0579 -0.1922 0.2102 20.85 0.2187
6 N1 01256 -0.1807 -0.5404 0.5835 57.89 0.6071
N2 0.1363 -0.1930 -0.5826 0.6287 62.38 0.6542
N3 0.1345 -0.1704 -0.5165 0.5603 55.59 0.5830

Table 4: Table of the velocity results form the tilted tank experiments. We have the velocity
radially outwards, U, the azimuthal component, Uy, the vertical component, Uy, parallel
to the axis of rotation, and the absolute velocity, |u| = v/U, + Uy + Up. The last column
specifies the Reynolds number of each sphere in the respective experiment. We define the
Reynold number as R, = Ud/v, were U - absolute velocity, d - diameter of the ball and v -
viscosity of the surrounding liquid. The Rossby number, which is defined by R, = U/2Qa.
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Ball Exp. a, o)
1 N1 14.58 17.45
N2 1425 18.07
N3 16.04 16.61
2 N1 12.41 18.47
N2 13.61 18.05
N3 13.87 17.94
5 N1 19.34 18.82
N2 18.04 18.71
N3 17.96 16.76
6 N1 12.36 17.50
N2 13.16 18.33
N3 14.60 18.26

Table 5: Angles of deflection derived from the velocity components. o is the angle at which
the particle moves away from the h-axis in the radial direction. a) is the angle at which
the particle lags behind the rotation of the tank. All angles are in degrees.

Ball Exp. Un
1 R1 -0.2314

R2  -0.3529
R3  -0.3053
R4  -0.2666 Ball Exp. Uy
2 Rl -0.2292 1 R5 -0.3372
R2  -0.5356 R6  -0.3309
R3  -0.4490 R7  -0.3485
R4  -0.3996 2 R5 -0.5199
5 RI_ -0.1731 R6  -0.5396
R2  -0.2495 R7  -0.5382
R3  -0.2312 5 R5 -0.2412
R4 -0.1967 R6  -0.2313
6 RI -0.4168 R7  -0.2359
R2  -0.6417 6 R5  -0.7433
R3  -0.5838 R6  -0.7112
R4  -0.5183 R7  -0.7210

Table 6: The velocity of descent is listed for  Table 7: The velocity of descent is listed for
each ball in the experiments R1, R2, R3a and  each ball in the three experiments R5, R6 and
R3b at a rotation rate of 20} = 3.027. R7 at a rotation rate of 20 = 2.621.
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Ball Exp. U
1 S1 -1.2647

S2 -1.2458
S3 -0.9469
S4 -1.1845
2 S1 -1.6173
S2 -1.5237
S3 -1.4638
S4 -1.4939
5 S1 -1.0645
S2 -0.9941
S3 -0.9705
S4 -0.9365
6 S1 X
S2 -1.7061
S3 -1.6967
S4 -1.7147

Table 8: The velocity of descent is listed for each ball in the non-rotating experiments S1,
S2, S3 and S4.
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Rearrangement of Annular Rings of High Vorticity

Huiqun Wang
California Institute of Technology

1 Introduction

Flight level measurements suggest that hurricanes have low vorticity eyes surrounded by
high vorticity eyewalls (Kossin and Schubert 2001). The rearrangement of such high vor-
ticity annular rings is an important factor in hurricane dynamics. In this study, I use a
barotropic nondivergent model to investigate the evolution of a set of high vorticity annular
rings with fixed circulation and scales similar to hurricanes.

The initial radial profile of vorticity is given by

0, 0<r<m,
S({(rg—1)/(ra—=11)), M1 <T <71,
S((r—-mre)/(r3—r2)), m2<r <3,
0, T 273,

(1)

where S(z) = 1 — 3z% + 223, r; is fixed at 60 km, r3 — r; ranges from 4 km to 116 km with
an increment of 4 km, and the constant (o is chosen so that all the rings have the same
circulation for r > r3. Sample initial vorticity and aximuthal wind profiles are shown in
Fig. 1.
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Figure 1: Sample radial profiles of the initial vorticity and tangential wind.
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After introducing the numerical model, I describe the simulated evolution of represen-
tative narrow, wide, and very wide annular rings. I then compare the initial wavenumber
with the published results of linear stability analysis, and investigate the history of the
domain-averaged enstrophy for different rings. I apply the minimum enstrophy theory to
predict the final states, and investigate the advantages and disadvantages of the theory. I
also compare the results for these rings with two sets of skewed rings.

2 Numerical Model

An adaptive multigrid barotropic nondivergent model (Fulton 2001) was used to simulate
the evolution of the annular rings. This model solves the modified barotropic vorticity
equation in Mercator coordinates

09 20(¢,q) o o(0%
ot ™ oy TP e T 5 t o) 2)
o o2
m? (a—;g+a—;f-)—”r2¢=q, 3)

where g = ¢ — 24 is the potential vorticity anomaly, ( is the relative vorticity, f = 2Qsin ¢
is the Coriolis parameter, 8 = df /ad¢ = 2Qa~! cos ¢, m = cos $o0/ cos ¢ is the map factor,
7! = gH/f is the Rossby radius of deformation, 9 is the stream function, and v is the
constant viscosity.

In this study, I ran the model in the pure barotropic, f-plane mode by setting v = 0,
m =1, and B = 0, so that the actual equations solved become

¢ 0,0 _ (9% 8%
3 Bzy)  “\oz Taz) )
Py oy
o) + 5;2- =(. (5)
Associated with this model are the kinetic energy and enstrophy equations
d€é
5 = —21/2, (6)
daz
'—dT = —2I/P, (7)

where £ = [[ V4 - Vi dzdy is the energy, Z = JJ 3¢% dzdy is the enstrophy, P = Ifive.
V{ dzdy is the palinstrophy.

The numerical model uses the 4th order Runge-Kutta scheme to advance in time and has
the option of 2nd or 4th order Arakawa Jacobian technique to approximate the advection
terms. It has multiple movable or adaptive nests within the base grid. In this study, most
of the simulations are run on a base domain of size 4096 km x 4096 km with 128 x 128
grid points. There are 4 subsequent nests within the base domain, each of which has half
the domain size and mesh size of its mother domain, so that the finest resolution is 2 km.
In a few runs, the resolution was increased to 256 x 256 grid points for the base domain
and all the nests.
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3 Ring Evolution

Representative examples of the evolution of thin (12 km), wide (60 km), and very wide
rings (108 km) are shown in Figs. 2-4. The rotational timescale 7 = 277y/v(r2) for these
three rings is about 2 hr.

Thin rings (r3 — 71 < 20 km, Fig. 2) initially break up into many vortices (> 6) that
rapidly merge into several vortices (4-5) as they rotate around. The resultant vortices persist
for tens of rotational timescales before subsequent merger takes place. Such a configuration
can be referred to as ‘mesovortex’ or ‘vortex crystal’ stage. Thin rings eventually evolve
into monopoles.

For wide rings (24 km < r3 — r; < 104 km, Fig. 3), initial instability takes longer to
grow and shows lower wavenumbers. The few (2-5) resulting vortices gradually relax to a
monopole.

Very wide rings (rg — r1 > 108 km, Fig. 4) show wavenumber two structures initially,
but they never break up into individual vortices. The central low vorticity remains until
the last timestep, which corresponds to about 80 rotational timescales.

4 Initial Wavenumber

Simulation results show that the initial instability wavenumber tends to decrease with in-
creasing ring thickness (Fig. 5). For thin rings (r3—r; < 20 km), this decrease is very sharp.
For wide rings, there is usually a thickness range that corresponds to the same wavenumber,
and the range appears to increase with decreasing wavenumber.

Schubert et al. (1999) performed a linear stability analysis for annular rings with piece-
wise constant radial profiles. Their Fig. 2 shows the unstable regions for wavenumbers 3-8
in § —y space, where 4 is the ratio of the inner and outer radii and v is the ratio of the inner
vorticity and average vorticity. For the rings I study, v = 0. Converting into this notation,
the initial wavenumber of my simulations agrees well with Schubert et al.’s linear stability
results (Fig. 6).

5 Enstrophy History

The evolution of different rings is studied by plotting the normalized enstrophy as a function
of time (Fig. 7). For thin rings (r3 —r1 < 20 km), the rapid merger of initial vortices results
in a sharp decrease of enstrophy early in the evolution. The enstrophy levels off with
time during each mesovortex stage. Each subsequent merger leads to a rapid decrease of
enstrophy and thus a stairstep pattern in the enstrophy history.

For wide rings (24 km < r3 — r; < 104 km), the early stage enstrophy decreases more
slowly, consistent with the slower growth of initial instability. Subsequent relaxation to
a monopole is gradual, without the transitional mesovortex stage. For very wide rings
(rg —r1 > 108 km), consistent with the central low vorticity remaining unmixed during the
entire simulation, the slope of the enstrophy curve does not change much with time.
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Figure 2: Evolution of thin ring: r3 — r; = 12 km.
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Figure 4: Evolution of very wide ring: 3 — r; = 108 km.
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Figure 5: Initial wavenumber as a function of ring number. Ring width = ring number X
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Figure 6: Initial wave number as a function of § with v = 0 for comparison with the linear
stability analysis of Schubert et al. (1999).

6 The Minimum Enstrophy Theory and Final State

6.1 The Minimum Enstrophy Theory

Consistent with Eq. (6), simulations show that the enstrophy decays much faster than the
energy for small diffusivity v. Based on this result, a minimum enstrophy theory has been
applied to predict the final states for annular rings (Schubert et al. 1999). The idea is to
maximize the enstrophy deficit, i.e. to minimize the final enstrophy, under the constraint
of constant energy or angular momentum.

In the case of minimum enstrophy with constrained energy and circulation, I vary the
mixing radius b and the wind profile v(r) in the variational problem

b
0= [ (G - ¢~ w2(uf — o®)] rdr
0

b
= 2/0 (—¢o¢ + p*vév) rdr + [Cg(b) - C2(b)] bab

b d¢
= 2/0 (E; + u%) durdr — 2b¢(b)dv(b) + [¢3(b) — ¢(b)] bbb

b dc
=2 /0 (217 + ,ﬁu) Surdr + [Co(b) — ¢(b))*bdb

(8)

where p? is the Lagrange multiplier, vo(r) and {o(r) are the initial wind and vorticity
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Figure 8: Comparison of theoretical and numerical values of the final enstrophy. Solid line
is the prediction of a minimum enstrophy theory with constrained energy. Dashed line is the
prediction of a minimum enstrophy theory with constrained angular momentum. Dotted
line is the numerical result for runs with 128 x 128 resolution. Stars are the numerical
results for runs with 256 x 256 resolution.
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Figure 9: Theoretical and numerical final radial vorticity profile comparison. Numerical
results are plotted as scatter plots, Predictions of the minimum enstrophy theory with

constrained energy are plotted in dashed lines.
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profiles, v(r) = vo(r) forr > b. Upon solving the Euler-Lagrange equation resulting from
the first term, I obtain the final wind and vorticity profiles

_ [ro®nGn)/nwh) o<r<s,
vir) = {vo(r) ifb<r<oo. ©)
_ Juo(®d)udo(ur)/Ji(ub) if0<r<b,
¢r) = {0 ifb<r<oo. (10)
Requiring ¢(b) = {o(b) = 0 yields
Jo(ub) = 0, (11)

so that pb must be a zero of the Jy Bessel function. The first zero yields the lowest en-
strophy, so that ub ~ 2.4048. Substituting Eq. (9) into the energy constraint fé’ v3(r)rdr =
f: v2(r)rdr yields

b
872 | v3(r)rdr = C2, (12)
) 0

where C' = 2mbug(b) is the circulation. Given the initial tangential wind vo(r) and the
associated initial vorticity {o(r), g, and b can thus be determined from (11) and (12).

Similarly, the final enstrophy can be minimized under the constraint of conservation of
angular momentum. This leads to the final wind and vorticity profiles

_ Jw(a)(r/a)2~(r/a)?], f0<r<a,

v(r) = {vo(r), ifa<r<oo, (13)
_ J4vwo(a)/a]ll - (r/a)?], O0<r<a,

¢ = {0, ifa<r<oo. (14)

6.2 Final Enstrophy Comparison

Integrating the square of the predicted final vorticity profile Eq. (10) and the square of
the initial vorticity profile Eq. (1), I obtained the final and initial enstrophy for each ring.
Comparing the ratio between the final and initial enstrophy with the enstrophy ratio be-
tween the last and first time step of the simulation (Fig. 8), I find that the predicted final
enstrophy agrees well with numerical results for wide rings. The deviation for very wide
rings is related to the persistence of the central low vorticity in the simulation and the
relaxation to monopole predicted by theory. The deviation for thin rings can be greatly
improved by running the model at higher resolution, as shown by the stars in Fig. 8. A
high-resolution simulation is expected to produce a larger differences for thin rings because
more grid points are needed to resolve the initial vorticity profiles properly. So, the mini-
mum enstrophy theory is able to predict the final enstrophy of both the thin and the wide
rings in my study.

224




0.010
. ]
oooe -
1
0.006 |

0.00¢

vorticity

0.002

0.000 N -

-0.002 L . L L ) .
~18x107 ~16x107 -t4x10’ -1.2x107 -1.0x107 -8.0x10% -60x10% -4.0x10°
stream function

Figure 10: Final vorticity as a function of stream function for thin ring (r3 —m = 16
km). Black line is scatter plot from the final time step. Green line is the prediction of the
minimum enstrophy theory with constrained energy. Blue line is a 3rd order polynomial fit
for the black scatter plot. Red line is a 5th order polynomial fit for the black scatter plot.

6.3 Final Vorticity Profile Comparison

For wide rings, the vorticity profile predicted by theory, as expressed in Eq. (10) captures
most of the features of the simulated final vorticity profile (Fig. 9a). However, for thin
rings, the simulated final vorticity considerably overshoots the theoretical prediction at
small radii (Fig. 9b). This deviation for thin rings can be viewed in the stream function-
vorticity perspective, as shown in Fig. 10. The numerical curve is a scatter plot produced
from the vorticity and stream function at every grid point in the output domain at the
last time step. Such scatter plots at early times show many fat bands that collapse onto
each other with time and eventually become the thin line in Fig. 10. Solving the stream
function from (5) with the boundary condition that the final stream function matches the
initial stream function at the mixing radius b, I obtain the green line in Fig. 10. This linear
relationship is expected from a slight modification of the argument given in (8). If, when
proceeding from the second line in (8), we integrate the vdv term by parts instead of the
¢4¢ term, we obtain

b
0=2 [ (= - 1) 6 rar + 2 B)600) + [GR0) ~ ()] 0%, (15)

so that ¢ = —u?yp for 0 < r < b. Minimum enstrophy theory approximates the numerical
curve by a line, though this curve can be better fit by a 5th order polynomial. This suggests
the possible existence of a better variational principle, but I will not pursue this further
here.

7 Comparison with Skewed Rings

Two sets of experiments with skewed initial vorticity profiles have been performed to com-
pare with the symmetric rings investigated before. One set has a sharper inner edge, while
the other has a sharper outer edge. Sample initial conditions are shown in Fig. 11. All the
rings have fixed r» = 60 km and fixed circulation, as before. The evolution of the enstrophy
for the thin and wide rings of the three sets of rings is similar, and the final enstrophy can
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Figure 11: Example initial vorticity profiles for three sets of rings. Exp2: symmetric rings;
Exp4: rings with sharper inner edge; Exp5: rings with sharper outer edge.

be predicted by the minimum enstrophy theory. Rings with a sharper inner edge usually -
have higher initial wave numbers than the others (Fig. 12), and even the widest such ring
collapses into a monopole.

8 Conclusion

I have investigated the rearrangement of annular rings of high vorticity in this study. Thin
rings initially break up into many vortices that subsequently merge. They often come into
a configuration where several vortices rotate around for many rational timescales. Such
“mesovortex states” correspond to the “stairs” in the enstrophy history plot. Wide rings
have lower initial wavenumbers that take longer to grow, and they gradually evolve into
monopoles. Very wide rings usually have low central vorticity throughout the simulation.
However, all the rings with sharper inner edges evolve into monopoles. The minimum
enstrophy theory is useful for predicting the final enstrophy for both thin and wide rings.
Although it does an adequate job of predicting the final vorticity profile for wide rings, it
fails for thin rings. Skewed rings with sharper inner edges usually have higher initial wave
numbers than other rings with the same width, and this might be predicted by a more
sophisticated linear theory than that of Schubert et al.
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edge.
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Magnetic and Velocity Shear
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Abstract

We study the total dissipation for flows described by the magnetohydrodynamic
(MHD) equations. For some boundary conditions a lower bound can be found that is
achieved by the equivalent of Stokes flow for MHD. Using the Doering and Constantin
method [1], also called “the background method,” we derive an upper bound for the
dissipation of some simple flows. In the case of a shear layer with both velocity and
magnetic shear, the dependency of the upper bound as a function of the control para-
meters is determined. As a by-product of this calculation, an energy stability domain
for this flow is calculated and a result that is bigger than that previously calculated by
Tasso et al. [2] is obtained. We study a simple model of the sheet pinch and show that
the upper bound tends to zero as the magnetic diffusivity tends to zero. In this sense,
we obtain an antiturbulence result because there is no residual dissipation in the limit
of infinite control parameter.

Plasma is said to be the state of matter which is the most widespread in the universe.
Stars and interstellar medium are made of plasma. On Earth, there have been many ex-
periments which attempt to use plasmas in order to achieve nuclear fusion. One of the
properties of plasma is its ability to conduct electricity. Thus, the equations of motion
are coupled to the equations of electromagnetism. Liquid metals share the same property.
They are present in the interior of the Earth where they are responsible for the generation of
magnetic fields by the dynamo effect. They are also used industrially for transporting heat,
in nuclear fission devices for instance. Both liquid metals and plasmas can be described by
the MHD equations 3]. A

In the framework of MHD, we focus on the total dissipation which is the sum of the
viscous dissipation and the Joule dissipation integrated over the fluid volume. This quantity
is important for various reasons. It is a global characteristic of the system and its time
average is equal to the time average of the power injected into the system. Moreover,
it is equal to the heat production in the system. For fusion experiments, it is of major
importance because it produces the temperature increase that is hoped will lead to the
onset of nuclear reactions. On the contrary, for dynamo experiments in liquid metals, the
increase in temperature must be avoided because it increases the resistivity of the fluid and
then increases the value of the critical velocity for dynamo action.

In hydrodynamics, viscous dissipation has been widely studied. One of the first results
in this field was derived by Stokes, whose results were generalized by Keller et al. [4].
They proved that the solution of the Stokes equations minimizes the dissipation over all
divergence-free fields satisfying boundary conditions of fixed velocity at the boundary. Note
that the Stokes solution may only be a solution of the Navier-Stokes equations in the limit of
zero control parameter (generally the Reynolds number). In most cases, for low values of the
control parameter, a laminar solution exists, but upon increasing the control parameter, this
solution may become unstable. From the evolution equation for the energy of a perturbation
to the basic state, one finds that the dissipation gives rise to a decrease of this energy when
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the control parameter is smaller than a certain value. This value defines the domain of
absolute stability in which the laminar solution is energy stable [5]. Outside this domain,
the solution can be unstable and possibly turbulent. It is then impossible to explicitly
calculate the solution of the Navier-Stokes equation and the value of the dissipation. Early
studies by Howard [6] and Busse [7] tried to find upper bounds for the dissipation using a
variational formulation with added constraints on the manifold of the fields over which the
maximization is made. A very striking result is that the optimizing field seems to share
some properties with the time average of the fields measured in experiments. More recently,
Doering and Constantin [1] developed a different approach called “the background method”
which allows for an easier evaluation of the upper bound on the dissipation.

In MHD, some results have been derived by Tasso et al. [2] concerning the energy
stability for some flows. In some cases the energy domain that occurs is infinite, which
insures stability of the laminar solution for all values of the control parameter [8]. Using
the Howard-Busse method, Soward [9] derived an upper bound for the ohmic dissipation in
a turbulent thermal layer permeated by a horizontal magnetic field maintained by dynamo
action. With the same method, Wang et al. [10] obtained an upper bound for the dissipation
in a cylindrical pinch.

In the present work, we derive a result on the lower bound for the dissipation in some
MHD flows. For fixed values of the fields at the boundary, we prove that the Stokes-like
solution of the MHD equations minimizes the total dissipation over all divergence-free fields
satisfying the boundary conditions. We then apply the background method to two MHD
problems. The first one is a shear layer with both magnetic and velocity shear. [13]. As
a by-product of our calculation, we calculate a domain in which the basic state is energy
stable. The result is bigger than previous results [2]. Both lower and upper bounds for the
dissipation are derived, and their dependency on the parameters of the system are presented.
The last part of this report deals with the study of a model of the plane sheet pinch. Using
the background method, we prove that the upper bound for the dissipation tends to zero
with the magnetic diffusivity, while all other parameters are held fixed. In this sense, this
is an antiturbulence theorem because there is no residual dissipation in the limit of zero
magnetic viscosity. A similar result was recently derived for horizontal convection [11] but it
is the first time that the background method allows one to prove such a result. During this
summer J. Siggers also applied the Doering-Constantin method to horizontal convection (see
her report). In that case, at high value of the control parameter the flow is not stationary
and develops boundary layers even if the dissipation tends to zero. According to numerical
simulation [12], this is not the case for the plane sheet pinch in which the static solution
seems to be always stable. Qur result does not prove this stability, but is consistent with it
because the dissipation of the static solution tends to zero with the magnetic viscosity.

1 Stokes-like Solutions and Lower.Bound

Assuming that the flow is incompressible and that the electrical properties of the fluid are
well described by the MHD equations, the velocity field v and the magnetic field B are
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solutions of
ov

—a—t-+v-Vv=f—V13+uV2v+B—VB and V.-v=0, (1)
{iWB+v-VB=B~Vv+nV2B and V-B=0, (2)

where f is a body force. Here P = P/p + B2 /(2 p) where P is the hydrodynamic pressure,
p the density, and B2/2 is the magnetic pressure. From now on, we drop the tilde. The
magnetic and kinetic viscosity of the fluid are n = (uo0)~! and v, where o is its conductivity.

We have to be precise about the boundary conditions for the fields. If the fluid is in
contact with a solid, it is natural to use no-slip boundary conditions for the velocity at the
boundary, 8D, and say v]sp = v, where vj, is the velocity of the boundary. The choice is
not so simple for the magnetic field. We suppose that the solid at the boundary is a perfect
conductor in which the magnetic field is frozen. Since the normal component of the magnetic
field at the boundary is continuous, its value is then fixed at the boundary. By imposing the
surface current at the boundary, we can fix the value of the discontinuity in the tangential
component of the magnetic field and since its value is fixed in the solid, the tangential
component of the magnetic field is also fixed at the boundary. This is a convenient but
idealized boundary condition for the magnetic field. It has previously been used in studies
of tearing instability and is sometimes called the “line-tied” boundary condition. Another
boundary condition that is easier to impose experimentally than line tying, is to fix the
tangential current at the boundary. In this case, some derivatives of the field are fixed
while the normal component of the magnetic field must still be continuous. In this section,
we restrict ourselves to line-tied boundary conditions.

The dissipation per unit mass is defined by

D =v{|Vxv[*)+9{V xBP?) 3)

where (f) = & [, f(7)d and V is the volume of the fluid. Following Keller et al. [4], we
define the excess dissipation rate by D, = v (|V x v|?) +7(|V x B|2)—2(f - v). This is the
dissipation minus twice the power input by external body forces. It reduces to the total dis-
sipation when the force does not input energy into the system. Without taking into account
the MHD equations, we wonder which stationary velocity and magnetic fields are extremal
values for the excess dissipation with the assumptions that the fields are divergence-free
and have fixed values at the boundary. We introduce two Lagrange multipliers —2 P(7) and
~2Q(7) to insure that the fields are divergence-free. Taking the variational derivatives of
D.—-2PV -v-2QV -B with respect to v and B gives

vViv+f-VP=0, (4)

nV:B-VQ=0. (5)

We call these equations, together with the divergence conditions, the Stokes-like equations
for MHD. The two fields are not coupled in these equations, as one expects since D, is
the sum of two functionals depending separately on the velocity and the magnetic field.

The equations for the velocity field are the same as for Stokes flow without the magnetic
field. This equation is the Navier-Stokes equation for a stationary velocity field in the low
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Reynolds number limit, where the inertia terms are neglected and where the Lorentz force
is also neglected. The equation for the magnetic field is more surprising. The Lagrange
multiplier used to enforce the divergence-free nature of the field appears as a pressure in
equation (5). It is possible that the term B - Vv — v - VB of equation (2) reduces to
the gradient of a scalar function. Then, the Stokes-like equation for the magnetic field is
equivalent to the induction equation for a stationary magnetic field. Otherwise, choosing
Q = 0, equation (5) is the limit for low Reynolds number of the induction equation for a
stationary magnetic field.

By taking the variational derivative of the functional, we proved that the Stokes-like so-
lution of the MHD problem is a stationary value of the excess dissipation over all divergence-
free magnetic and velocity fields with fixed values at the boundary. Indeed, it is possible
to prove that this is a minimum over all continuous fields possessing piecewise continuous
derivatives, satisfying the boundary conditions and being divergence-free. Let us write such
a field as v; = vs + u (resp. B; = B; + b) where the subscript ¢ stands for total field, s
stands for Stokes-like solution of equations (4) and (5). Note that u and b are zero at the
boundary. We get

De(ve, By) = De(vs,bs) + De(u,b) +2v(V x vs - V X v)+297(VxBs.Vxb),
= De(Vs, bs) + D(u,b) — 2 ({u- WV +£)) + (nb- V2B,)) .

Using the Stokes-like property of v, and bs, the term in parenthesis is seen to be zero and
we are left with

De(vi,Bt) = De(Vs, bs) + D(u,b) > De(vs,bs). (6)

This result is a straightforward generalization to magnetohydrodynamic problems of the
result of Keller et al. [4] for hydrodynamic flows. This calculation is valid for the particular
boundary conditions of fixed velocity and magnetic field at the boundary, but this is not
true for some boundary conditions, for instance if the tangential currents are fixed instead
of the magnetic field.

The result is used in the next section where the stationary solution of the MHD equation
is of Stokes-like form and is thus a minimum value for the excess dissipation of any realized
solution, even not stationary. Another possible application is to estimate the lower bound on
the excess dissipation rate by using trial functions for v and b rather than solving the MHD
equations for stationary fields. In their paper, Keller et al. proved also a reciprocal principle:
the Stokes solution of an hydrodynamic problem can be obtained as the maximizing field
of another functional, the maximal value of which is the excess dissipation D.. We think
that the same result can be derived for MHD problems but the proof remains to be done.

2 A Layer with Both Velocity and Magnetic Shear

We now consider a layer of fluid that can support shear in both the velocity and magnetic
fields. We assume a layer of height d with two periodic boundary conditions in the horizontal
directions z, z as defined in Figure (1). The coordinates (z,y,z2) correspond to the unit
vectors i, j, k respectively. It will turn out that our results are independent of any uniform
horizontal magnetic field and thus only depend on the shear part of the applied field. We
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Figure 1: Sketch of a fluid layer submitted to a horizontal shear magnetic field and shear
velocity field.

suppose that the value of the magnetic field is fixed at the boundary. The magnetic shear
is imposed by setting B,p = B, (cos#i+sinfk) at the upper surface y=dand B=0
at the bottom surface y = 0. The velocity shear is induced by moving the upper surface
at v = Ui, while making the bottom surface immobile. We use no-slip conditions for the
velocity field, v=0at y=0and v=Uiat y =d.

This is a simple model that can give rise to a variety of shear instabilities including
the tearing mode instability. It occurs widely in plasma physics, for instance in Tokamak
experiments [13]. Furth et al. [14] have studied the onset of tearing instability and the linear
growth rate. Chen et al. [15] have studied the effect of a shear flow and took into account the
kinetic viscosity. This simple model is also a plane-Taylor flow for a liquid metal subjected
to a sheared magnetic field. Using energy methods Tasso et al. [2] calculated a domain in
which the basic solution is energy stable. As a by-product of our calculation we improve
Tasso’s result. We focus on the dissipation as defined by equation (3). Note that even if we
take gravity into account and if the layer is horizontal, the excess dissipation rate reduces
to the dissipation rate. Moreover, for a quantity g that satisfies boundary conditions of
fixed value at the boundary, we have (|Vg|2) = (|V x gl%) where |Vg|? = > 3(0agp)?.
Thus D = v {|Vv|?) + 7 (|VB[?).

For this problem we have 6 dimensional parameters B,, U, d, v, 1, 6 that can be mea-
sured using 2 dimensions. We can then construct 4 dimensionless numbers which completely
describe the system. The angle 8 is one of them and three other possible numbers are
B,d

v ?

Pm=z, Re=ﬂ and ‘M =
. v

respectively, the magnetic Prandt! number, the Reynolds number and the equivalent of the
Reynolds number constructed with the magnetic field. We get, by dimensional analysis,
that the dissipation is :

U3
D = = §(Pn, Re, M, 6), (7)
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where ¢ is an unknown function of the dimensionless numbers.
At low value of M and Re, one expects the velocity and magnetic fields to be indepen-
dent. Indeed, a stationary laminar solution of the full set of equations is

U _ Bu
v=—yi,and B=—ryp. (8)

These are respectively a sheared velocity field and a sheared magnetic field. There is no
power input by external forces, so the excess dissipation is equal to the dissipation D,

2 2 2
Dz=l/<%) +n(%"-> ) W¢=é(1+'1>1:(%4;>)‘ )
Note that the fields are solutions of the Stokes-like equations (4) and (5) with P = Q = 0.
Since the boundary conditions are that the values of the fields at the boundary are fixed,
equation (6) proves that the dissipation for the laminar solution is a lower bound for the
total dissipation of any solution of the MHD equations.

If we increase the value of M and Re, we expect that the laminar stationary solution will
become unstable and possibly turbulent. Using the energy equation for the perturbation to a
basic state, we derive two results. The first one is obtained if we use the laminar stationary
solution as a basic state. It gives values of M and Re, below which all the fluctuations
decrease to zero. We do not calculate the maximal values of M and Re. Above these
maximal values, the energy of some perturbations can increase. These maximal values
define the energy stability domain in the (M, Re) plane and is equivalent to the energy
Reynolds number used for usual hydrodynamic instabilities [5]. Because we use crude
estimates, the values of M and Re that we calculate are inside the true (i.e. optimal)
energy stability domain. Even if they are not optimal, these are values below which the
basic state is energy stable. For higher values of M and Re, we use a well defined basic state
and derive our second result which is an upper bound for the dissipation in the system.

2.1 Energy Equation for Perturbations to a Basic State
For generality, we derive the energy equation for perturbations to a basic state given by
vy =U(y)i and By = Bi(y)i+ Ba2(y)j+ Bs(y) k. (10)

The total velocity and magnetic fields (B; and v;) are the sum of the basic state and the
fluctuations (v and b)

vi=Vvy+v and B;=B,+b. (11)

The components of v (resp. b) are vy, v, vz (resp. by, by, b3). The direction of the
velocity shear is i and we have assumed that the basic state is independent of the horizontal
coordinates. Upon taking the dot product of (2) with b, integrating by parts, and applying
the boundary conditions, we obtain

(% <'°72> = — (2B}~ {|Vb) + (b- (B.- V)V) + (U Beabr) +1(b-Bs") ,
(12)
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where f’ means the derivative of f with respect to y. Upon taking the dot product of
equation (1) with v, we obtain

6 V2 ’ 2 7
3785 ) == (U'vio) v (9P + (v- (B, - V)By) +V<'01U > . (13)
Because the fluctuations in velocity and magnetic field are zero at the boundaries, we have
(v-(B:-V)By) = — (By - (B - V)v) — (b- (B, - V)v) . (14)

This result is similar to the energy conservation in an electromechanical process which states
that the mechanical power of the Lorentz force is opposite to the electrical power of the
electromotive force. By integration by parts, one gets

By (By-V)v) = - (B2 By -v) (15)

Taking the sum of equations (12) and (13) and using the two former equations, we derive

-(% (ep) = — (U v v) — <v2b : B§,> — v (Vi) - v (U'u’1> + (U’ By by)

+(U'byb) — 1 <|v5|2> -1 (By- b’> + (BB} v> +{bB; V), (16)
where €, = "—2:23’—2-.

Using equation (16) for the case of the shear layer, we obtain two results. If the basic
state is the stationary solution given by equations (8), we will show that up to some value
of M, say Mg which is function of Re and P, the energy of any perturbation to the
laminar solution tends to zero. Since this is a positive definite quantity, this means that
asymptotically the perturbation tends to zero, and for values of M and Re such that M is
smaller than Mg, the stationary basic state is the only stable solution of the problem. Using
another well-defined background field, we also compute an upper bound for the dissipation.

Note that equation (16) is independent of any horizontal basic magnetic field which
is independent of y. The results concerning the energy stability and the upper bound on
dissipation are thus also independent of such fields. In the light of this remark, the simple
example that we are dealing with appears to be more general. Any horizontal magnetic
field applied at the boundaries can be decomposed into its value at the bottom surface plus

a shear field, and only the latter part enters into our calculations of the energy stability and
upper bounds on the dissipation.

2.2 Energy Stability

We use as background fields the laminar solution given by equation (8) and obtain the
evolution equation for the energy of a perturbation

55 {6) = ~Q(v,b), a7)

where Q is quadratic in the velocity and magnetic field

Qv,b) = v (YY) + 1 (V) = 22 (o (v ) =2 (b- 7)) — 2 (mawm —tu ) . (18)
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If Q is positive for all v and b then the basic stationary state is energy stable. We rescale
the variables and use ¥ = Av and b = v with A and p positive. This yields

Q(v,b) =9(¥,b),
=5 (V) + ;”5 (IvbP?)
_d—B;l)‘-<52(\7-f)\)—'t~)2(B-’p\)> Z</\12v1v2— 25152> . (19)

Clearly, Q is positive definite if and only if 0 is positive definite. We now consider Q and
drop the tilde to relieve notation. We have the inequalities

| (b2 (v- ) —v2 (b P, (<b Y+ B+ ((o-§)%) + (43)) ,

=2
§(<b2>+<v2>> (0)
ﬂ@VSOW¥M (21)

The last one is true for a vector field periodic in the horizontal coordinates and zero at the
top and bottom surface [1]. Thus it holds also for the magnetic field and we obtain that

o h(F -5 B (E L), @

where a = ‘)‘j > 0. Note that @ does not enter into the expression of the bound of Q,
therefore the domain in which the basic state is energy stable will be independent of §. A
sufficient condition for Q to be positive definite is that there exists an'a >.0 such that

M
212—(Re+?)>0a.nd 27% — Pn(Re+ Ma) > 0. (23)
The maximal value of M below which both inequalities are satisfied is
M3 = (27 — Re)(27%/Py, — Re). (29)

If M < Mg the laminar flow is energy stable. Tasso et al. [2] determined the boundary of a
domain in which the basic state is energy stable as Re max (1, P,)+Mg max (1, Pp,) = 272,
while our result can be written as

(Mg max (1, Pp))? = (272 max (1, Pm)—Re max (1, P)) (272 22{1Pn) _ Re max (1, Pr)).
We plot in Figure (2) the domains for different values of P, in the

(Re max (1, P,,), Mg max (1, Py)) plane. Note that with this choice of variables, the do-
mains are the same for P, and P,;l. We therefore restrict ourselves to P, > 1. For P, =1
our result is the same as Tasso’s. For P, # 1 the domains are bigger than Tasso’s. The
gain in stability comes from the change of variables in equation (19) which gives a better
estimate of Q. Note that this procedure is equivalent to a less physical one consisting, in
equation (20), of bounding any product {ab) by (ab) < (e (a®) + 1 (b?)) where a and b
are two fields and « is strictly positive.
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Figure 2: Boundary of domains in which the basic state is energy stable for a shear layer with
both velocity and magnetic shear in the (R, max (1, Pn), Mg max (1, P,)) plane. Below a
curve, the laminar stationary solution is energy stable for the particular value of P,,. The
dashed line is Tasso’s result and our result for P,, = 1. The continuous line are our results
for increasing values of P,,. The curves are the same for P, and P;1.

For Re = 0, we get Mg = 272,/P,,. If we use the dimensionless parameter M’ = -BTf,
instead of M, the boundary of the domain is independent of the magnetic Prandtl number,
as the critical Rayleigh number is independent of the thermal Prandt] number in thermal
convection. For M = 0, we recover the plane-Couette instability for a conducting fluid. The
value of Re at the boundary of the domain depends on P,, in a surprising way. Introducing
the magnetic Reynolds number R,, = Re/P,,, the boundary of the domain is given by
max (Re, R,,) < 272, For v < 1, Re > R,,, the domain is the same as for a nonconducting
liquid flow. For v > 7, Re < R, the boundary of the domain corresponds to a lower
value of Re than for a nonconducting liquid. It would be very interesting to understand if
this effect is related to an underestimate of the energy stability domain due to our crude
estimates of Q, or if, for Py, > 1, not purely hydrodynamic modes are responsible for the
lose of energy stability. Another possible explanation is related to the independence of
this calculation on any uniform horizontal magnetic field. So the P,, scaling for Re at the
boundary of the domain may be achieved for flows with a strong horizontal magnetic field.
The domain that we have calculated is inside the energy stability domain which can be
calculated by finding the maximal value of M and Re such that Q is positive definite. To
conclude this section, note that using another positive definite quantity than the energy
could give a bigger domain in which the basic state is energy stable.
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2.3 Upper Bounds for the Dissipation

Outside the optimal domain in which the basic solution is energy stable, the flow can be
unstationary and possibly turbulent. Exact solutions can not be explicitly calculated but we
are able to derive upper bounds for the dissipation using the energy equation (16). We do
not use the stationary basic state as background fields. Instead we suppose that they satisfy
the boundary conditions and depend only on y. We write v, = U(y) i and By = By(y)p with
U(0) =0, U(d) = U, By(0) = 0 and By(d) = By. The spatial average of the dissipation can
be written as

D=v <|Vv|2 +2U" v + U%) 41 (<]Vb|2 +2B,.b + (B;,)2>) . (25)

Add half of the total dissipation to equation (16) and get

2 (e + 2 = F(B,,U) - Q(v,b, By, V), (26)

where F(Bs,U) is a function of the background field and Q(v,b, By,U) is a quadratic
function in the velocity and magnetic perturbation fields, namely

F(By,U) = 5 (U +3((®B)’) (27)

Q(v,b, By, U) = -g (IVv]) + -g (IVb[2) — (U (by by — v2v1)) — <B,; (vba— s b)> .
(28)

Note that we have added half of the dissipation D to equation (16) to derive equation (26)
in order to get rid of the linear terms in the perturbation fields. Now, if we find background
fields such that Q is positive deﬁmte, then we obtain an upper bound for the time average
of the dissipation D

D < F(By,U). (29)

For the magnetic (respectively velocity) background field, we use a piecewise linear
function equal to B, /2 (respectively U/2) for &, <y < d— & (respectively &, <y < d—4y)
and of slope B,/(20;) (respectively U/(24,)) in the two boundary layers as sketched in
Figure (3). Note that both heights of the boundary layers 4, and d, must be smaller than
d/2. Using integration by parts and Holder’s inequality, it is easy to prove that (see for
instance [1])

[(By((v-P) b2 —va(b-P)))| < Eg_& ((aIVv|2> + % (|Vb|2)) ,
|<U' (b2 —viwm))| < USJ" (le|2 + IVb|2> ,

and hence show that

0> (¢~ Lo By oupy @D Beyqone). (0)
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Figure 3: Piecewise linear background field. The height of the boundary layer is & (8, for
the magnetic field and 4, for the velocity field).

Note that 6 does not enter into the bound for Q and the upper bound for the dissipation
will be independent of it. We first have to choose the height of the boundary layers such
that @ > 0 and then minimize F = 2—1(;(‘—’3{{—2 + -'1%2‘) with the constraints that §, and 4, are
smaller than d/2. If §, is fixed, the minimum of F is obtained for the highest possible §;.
Introducing y = g-;&l, we calculate the maximum 6§ that insures positivity of Q. It leads to

v

Introducing C = nu%“;, we get D = g—;(% + a%;) Minimizing D over y, we find that the
minimum is achieved for y equal to yo which is the positive solution of

((4- y)(4/yfm —y)¥? _ %(4 +4/Pp —2y). (32)

The two constraints on the height of the boundary layers in terms of y are that y < Re/2
and g(y) < M/2. If yo > Re/2 then the boundary layer for the velocity is d/2 and y = Re/2.
If g(y) > M/2, the height of the magnetic boundary layer is d/2 and g(y) = M/2. Such
values of the heights of the boundary layers are obtained for low values of Re and M. In
that case, the dissipation is that of the laminar solution. For higher values of Re and M,
the upper bound is obtained for y = yo and g(y) = 9(yo), which can only be calculated
numerically. In Figure (4) we plot D d/U® where D is the upper bound for the dissipation
as a function of Re for C =2 and P,, = 1.

At low values of Re, D d/U? is decreasing. This behavior occurs when the dissipation is
equal to the laminar dissipation and the heights of the boundary layers are d/2. For high
Re, Dd/U? is equal to a constant which depends on C and P,,. We plot its value as a
function of Py, for different values of C in Figure (5). Simple expansions of equation (32)
give the asymptotic behaviors

. . Dd 1 ) . Dd P,
A, (RL‘ELO m) =g end phm (REE; ﬁ?) =% (33)

= 90) = VA= 9) @/ B =y). (61)

238




10— ! ! ! ; ! !

D d®
o

Figure 4: Value of the upper bound for the dissipation D d/ U3 as a function of Re for
P,=1land C=2.

which are plotted as a continuous line.

If we fix M and P, ¢ decreases for low values of Re and tends to a constant at high
Re. We plot ¢ as a function of Re for M = 2 and different values of Py, in Figure (6). The
asymptotic behavior for ¢ is limge_s00 ¢ = %max (1, Pp,). If we fix Re and P,, and vary M,

¢ decreases and tends to a constant. The asymptotic behavior of D is then D =~ %3-8—}31;75

for M — oo.

The dependence of ¢ with P, for high Re is similar to that of the boundary of the
domain in which the basic state is energy stable. Here again a possible explanation of
this scaling is that the bound does not depend on any uniform horizontal magnetic field.
Therefore, if such a field is applied and if 7 decreases, the total dissipation can increase
because there is more resistive dissipation.

3 Model of the Plane Sheet Pinch

We study a simple model of the sheet pinch, similar to that studied numerically by Seehafer
et al. [12]. A conducting fluid is located between two horizontal surfaces separated by a
distance d. We use the same notations as in Figure (1). The problem is very similar to
the shear layer. The only differences are in the values of the fields at the boundary. Both
surfaces are at rest and we impose v = 0 at y = 0, d. The normal component of the
magnetic field is continuous and we supposed that B = 0 at both surfaces. The horizontal
current is fixed to be Jok. In terms of the magnetic field it gives %%E = Jp and %%i =0.
A static solution is v = 0, By = Joy + C1, By = 0, B, = Cz where C; and C; are
constants. The dissipation is D = nJoz. Note that the result of equation (6) does not apply
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Figure 5: Value of the upper bound for the dissipation Dd/ U3 for infinite Re as a function
of Pr, for some values of C. The continuous line is the asymptotic behavior (33).
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Figure 6: Value of the upper bound for the dissipation ¢ as a function of Re for M = 2 and
different values of P,,.
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here because the value of the magnetic field is not fixed at the boundaries, so that there is
no reason for D; to be a minimum for the dissipation. Here again we use the expression
D = v(|Vv|?) + n{|VBJ?) which is equivalent to definition (3). Moreover, the evolution
equation for the energy of a perturbation to a basic state is independent of any horizontal
uniform magnetic field and we can set C; = Cy = 0. The background field that we use is
of the form B, = B;(y) i and the boundary conditions are B, (0) = B;(d) = Jo. The total
magnetic field is written as B; = B + b and the energy equation for the perturbation ¢p is

= (o) + 5 = F(B) - Q(v,b, B), (39

with
_ /B2
F(B) = 2{(B)?), |
v n ' nJo
Q(v,b,By) = 3 (IVv[?) + 3 (IVb|2> — <B1(v1 by — v b1)> -5 /;bl dzdz.
The surfaces of the layer are S and the last term is a surface integral due to the boundary

conditions. It is changed into a volume integral using -‘17 fs bidzdz = <%%>. To bound
this term, we write

by _
oy
> (1-c)|VbJ? -

(1-1¢)|Vb[?> +c|Vb|*+2Jp %b—yl,

(Vb)2 +2Jo
Jg

0, (35)
where 0 < ¢ < 1 and we have used (Vb)? > (%ﬁyl)z. We use a piecewise linear profile
for B, of the form Bj(y) = 0if§ <y < d—4§, Bj(y) = —Jo(y— )/ if y < & and
B;(y) = Jo (y+6—d)/é if y > d—4§. The value of B; can be deduced by trivial integrations
but does not enter into the upper bound result. We get <(Bll )2> = %J%—‘s-. We then use two

results

. o\

m (B0%) =0,
lim Q(v, b, By) > —n 20
-0 T - 2¢”’

We take the limit of § = 0 in equation (26) and get

0 D J?
= (e + 5 <75, (36)

such that the upper bound for the time average of the dissipation is D= n—Jg?- with0 <c < 1.
Take the limit ¢ — 1 and get D = nJ#. Note that if we choose stress-free boundary
conditions for the velocity fields, we obtain the same results because equation (34) holds
also in this case.

The upper bound for the dissipation is equal to the dissipation for the static solution.
A first consequence is that this bound can not be improved if the manifold over which we
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maximize D contains the static solution. Another consequence is that the dissipation tends
to zero with 7. As described by Paparella et al. [11], this is an antiturbulence theorem.
The physical behaviors of the two systems are different. Whereas their simulations show
instabilities of the laminar flow and formation of boundary layers, the numerical simulations
of the voltage-driven sheet pinch done by Seehafer et al. [12] show that the static solution
is always stable, which is consistent with our upper bound result.

4 Conclusion

We have reported various results on bounds on the dissipation in MHD flows. We defined the
Stokes-like solution of the MHD problem and have shown that it minimizes the dissipation
over any divergence-free velocity and magnetic fields that are fixed at the boundary. Using
the background method, we calculated upper bounds for the dissipation in two examples of
MHD flows. In the case of a shear layer with both velocity and magnetic shear, an upper
bound was derived and its dependency on the parameters was calculated. As a by-product of
this calculation, the energy stability domain was calculated with a result that is bigger than
previous results. In the case of the plane sheet pinch, the upper bound for the dissipation
was achieved by the static solution and tends to zero with the magnetic viscosity. This is
an antiturbulence theorem in the sense that there is no residual dissipation in the limit of
zero viscosity.

Note that the two examples differ only by the boundary conditions but their physical
behaviors are completely different. Let us insist on the importance of the boundary condi-
tions for MHD problems. So, a possible continuation of this work would be to modify the
boundary conditions, mainly for the magnetic field. The effect of 2 non conducting external
medium could be investigated. An inductive drive of the magnetic field would also be very
relevant for Tokamak experiments.

Only crude estimates of the quadratic forms have been done in the case of the shear
layer. The domain in which the basic state is energy stable and the upper bound for the
dissipation can certainly be improved by using more accurate inequalities. They may also
be improved by taking into account other evolution equations, for instance the one for the
helicity or the cross-helicity.

This work has been done with another fellow, Alexandros Alexakis (see his report for
other applications of bounds in MHD) and with the help of C. Doering, P. Morrison and
J. Keller. I thank all of them for their enthusiasm and scientific advice. I also thank all of
those who made the GFD program so pleasant and interesting.
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Bounds on the Energy Dissipation on the Magnetic Couette and
Poiseuille (Hartmann) Shear Flow

Alexandros Alexakis
University of Chicago

1 Introduction

We are going to study the stability and bounds on turbulent dissipation shear flows in a
conducting fluid when a vertical (with respect to the flow) magnetic field is applied. More
precisely we are going to investigate Couette flow and Poiseuile (Hartmann) flow in the
presence of the magnetic field. First using integral inequalities we are going to estimate
regions in the parameter space when the flow is energy stable. Then we are going to derive
bounds on the dissipation valid even in the presence of turbulent flows.

2 Couette Flow

2.1 Preliminaries

First we consider we plane Couette flow. We consider two plates separated by a distance
d (from —d/2 to +d/2) that move with respect to each other with velocity iU'*. The unit
vector i is one of the horizontal directions and j is the vertical. Between the plates there
is a conducting liquid of density p = 1, magnetic diffusivity n and viscosity v. For the top
and bottom boundary we use no-slip boundary conditions for the velocity and “line-tied”
for the magnetic field, e.g. (B = jBy) where By is an externally imposed field. We assume
periodic boundary conditions for the other directions.The setup is shown in figure(1).

+/A /E:jB “}/»
o
i / TB:jB -

]

—d/2

Figure 1: The setup for magnetic Couette flow
The equations of motion that govern this system are [1]

Ou+u-Vu = —-VP+B.VB+uVZy
&B+u-VB = B.-Vu+nV?B (1)
Vu=0 , V.B=0.
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Figure 2: The laminar velocity profile and the magnetic field lines.

Where B is the magnetic field and u is the fluid velocity. There are three non-dimensional
numbers that govern this system. Our choice is going to be the Reynolds number Re, the
Hartmann number Q and the Prandtl number P or alternatlvely the magnetic Reynolds
number Rps. Their definition is given bellow:

U*d _ Bod v _
Re = o Q-—2M, Pr--’l7 (orRM—RePr.)

The Hartmann number Q gives an estimate of how strong the magnetic field is when
compared with the diffusive velocities d/,/7n. In the limit Q — 0 we should obtain the non
conductive fluid results. The energy dissipation of this system is given by

*3
d

= v(|Vul) + 7{|VBr|) = —D. (2)

D is a non-dimensional form of the dissipation and our principal aim is to estimate it as a
function of the non-dimensional parameters mentioned before.

2.2 The Laminar State

The above set of equations allow for an exact laminar solution. Assuming homogeneity in
the z and z direction and no time dependence we have u = iU(y), B = iB1(y) + jB2 and

By -8yB; +vd2U (3)
= By-9,U +n82B; (4)
B; = constant. (5)

The last equation came from the solenoidal constraint on B. The above equations have the
solution:

B, 1\/ZU* cosh (%) — cosh (5—,2,_%) , - lU* - _s_iixh—(B—-\/i;n_Ql ©)
2 smh( F) 2 s1nh( \/—)

In the limit B2d/,/vn — 0 we return to plane Couette flow. The laminar solution for the
velocity profile as well as the magnetic field lines is shown in figure (2).
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Next we examine the energy dissipation Djs of the laminar solution. The dissipation
can be easily calculated from (2) and it gives

D, = Dyise +Dmagn

7 BU*2 Byd =
;7. 4d coth 2,/vm += 2 ( Byd + (7)
sinh (2_2\/1':77) |
\/E BU coth ( Byd ) - gij%
4d 2./v : 12 ( Byd

Ui i Nz sinh (-2—-2\/V=U)J
1 l/BQU"‘2 Bzd
o2 2ot (2%) )

or in a non-dimensional form
D = Re 'Qcoth (Q) (9)

There are a few points we have to make for the above equation. We note first that the
viscous dissipation is always bigger than the resistive dissipation although the difference is
exponentially small for large Q. Moreover for fixed magnetic field B, and velocity U the
dissipation increases with the Prandtl number. In other words decreasing 7 increases the
dissipation. In the limit v — o0,  — c© keeping the Prandtl number fixed the dissipation
goes to the finite limit —%PngU*z/d. Taking the limit Q = Byd/2,/vf — 0 we obtain the
plane Couette dissipation

U*? . 1 [vBU*?
Dy ~v 7 and for large Q we obtain D;, ~ 5\/% P

2.3 Stability

Next we examine the energy stability of the above flow. Writing the magnetic and the
velocity field as the laminar solution plus an arbitrary perturbation u = Uis+vand By, =
Bis + b we obtain from (1):

Outv-Vo+U-Vo+v-VU = -VP+B-Vb+b-VB+b-Vb+uvVi (10)
Ob+v-VB+b-VU+v-Vb = B-Vu+b-VU+b-Vu+7V2% (11)
V-v=0 , V-b=0. (12)

where we dropped the index Is for convenience. Multiplying the first one with v and the
second one with b adding them and taking their space average we obtain

-,i;at(v? +b%) = ~((v1v2 = bib2)U") — ((brv2 — vib2) B}) — (V) — (Vo)  (13)

where the prime indicates a derivative with respect to y and many terms dropped out due
to the boundary conditions. Using the inequalities:

((ores = bib)U') < (02 + 08 + 8 + B3 max U] < 2((0% + B max U
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1 1 1 1 1
((byva — v1b2)BY) < 5((71;% + ;bg + 102 + ;zﬁ)) max |B]| < -2-((7«;2 + ;b2)) max | B}

(where 7 is a free parameter) and the Poincare inequality

[

s
(IVo?) > ﬁ[(lvlz)
we end up with
1 2 1 1
Eat(zﬁ +8) < - [V-g—?- - §max|U'| - -2—Tmax|B£ [] (v2) (19)
772 1 ’ 1 7 2 \
1% - x| — 5 1] @ (15)

The energy of the perturbation is going to decrease if each term in the square brackets
. o . . . _ U*B Bod
is greater than zero. Eliminating 7 and recalling that max |U’| = 5—\7—,_,_% coth (TLM) and

max |B}| = —Eg%'- We obtain that for stability:
BU*? [2n?v U'B, Bod on2n  U*Bs Bod
o < [ 7 W coth s )| | & " 20 coth (2\/,175 (16)

where each term in the square brackets should be non-negative.
In dimensionless numbers

Q?Re*Pr < [27% — ReQcoth (Q)] - [27°Pr~! — ReQcoth (Q)] (17)
or
Q?R}; < [2n® — ReQcoth (Q)] - [27% — RmQcoth (Q)] (18)

For small Q we obtain that max{Re, Ry} < 272, For large Q the range of Ry, Re de-
creases inversely proportional to Q (e.g. max{Re, Ry} < 27rQ~!). Figure (3) summarizes
our results. We note that the conditions we derived are sufficient for energy stability but
their violation does necessarily not imply energy instability.
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Figure 3: Energy stability reagions for magnetic Couette flow. The solid lines indicate the
estimated stability boundaries for different values of Q. The dashed lines indicate constant
Prandtl number

2.4 Background Method

Next we want to examine how the energy dissipation is modified when the flow is in a
“turbulent” regime. We are going to use the Doering-Constantin background method [2]
3] to produce an upper bound on the dissipation. As in the energy stability method we are
going to separate the flow to a background component iU (y),iB; (y)+jB: that we are going
to leave undetermined and a fluctuating component v,b. Following the same procedure as
in the energy method we obtain:

%at«ﬂ + 1) = (1 B2B}) + (1 BoU") — (0122 — byba)U") — (b1 — v1b) BY)

~{|Vol?) — n(|VBI?) + v(w,U") + n(by BY) (19)

where the linear and constant terms in v and b appeared because the background profile is
no longer a solution of the MHD equations (1). To eliminate some of them we are going to
add half of the total dissipation:

%D = +%V(|V(U +v)%) + %n(IV(B +b)%)

1 1 1 1
= §V<|Vvl2) + 577<|Vb|2> + v(U'8,v1) + n(B1dyb;) + §V(U'2) + 577(312)

by doing so, we obtain
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1 1
-2-6t<’02 + b2) + §D = (’UlBgBD + (bleUl) - (('Ul‘UQ - blbg)U’) - (('Ulbz - b11)2)B£)

Lo(Vof?) ~ V) + U + (B (20)

To get rid of the remaining linear terms we will use the transformation v = w — iV (y) and
b= 3 —iH(y) where

vV" = BeB] and nH" = BU’ (21)
then
1 y) ! 1 2 1 2
HE+5D = —((wiwn - B1B2)U") — ((w1f2 — Prwz) By) + (V) + 5n(|VE[%)
1 1
+5v(U2 + V) + on(Bi* + H”) (22)

where £ = 2(v? + b?). We can write the above equation (22) in the form
20t€ +D = ~QuB, + Dug (23)

where Qpp, is a quadratic functional on v and b that depends on our choice of the back-
ground fields U and Bj, and Dy, is the dissipation due to the background field. Our aim now
is to choose an appropriate background field so that the quadratic term Qup, is positive
definite. If we succeed the we can prove by integrating over time that the the total energy
is bounded in time. More by taking the time average of (23) that the total time averaged
dissipation is D < Dy,.

From the form of Qup, a natural choice for the background magnetic field is going to
be B; = 0. For U we are going to use the piece-wise linear profile

(U*/28)y if —d/2 <y <-d/2+¢
U(y)={ U*/2 if —d/2+8 <y <d/2-6 (24)
U*/26)(d/2~y) i d/2-8 <y <d/2.

From (21) and the boundary conditions for b we also have that
By [¥
1w =2 ["vt/) - )y (25)

The background fields U and H are shown in figure (4). We can easily now evaluate the
dissipation of the background field and it is found to be

*2 277%2 *2 2
1 _ w1 BU? . WU <<15+§ZS) 25)

ZDp, = = =
5= g 5 2pd 0~ 4d
Dyg obtains its minimum value for dmin = Vanv/ Bg, giving min{Dy} = —\}—ngBZ
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Figure 4: The two background fields U(y) and H(y). H* is equal to Byd/4n.

Now we focus on the quadratic term Qup, and try to determine the values of the free
parameter § that make it definite positive. Formally we would need to solve for the minimum
of Qup, that would lead to an eigenvalue problem that we would have to solve numerically.
We are not going to follow this procedure here though but instead we are going to give
rigorous estimates for the values of § that guarantee the positivity of Qup,. Using the
fundamental theorem of calculus and the Cauchy-Schwartz inequality we can show that

ow; v buw, v ow N\ |
il =\[,, Fowa|=| [ 1-Z2w|< vyvap| (—’(y')) a
-d/2 0y —d;2 Oy -ds2 \ 0y
(27)
This implies
d/2 U é 0 Ow:\ 2 172 0 Swo\ 2 1/2
U’ wwd:z:35—*/d:z;dz/ / (——l)d' / (—2-)d' dy+
n (Y)wiwy 25 Y a2\ By Y e oy y y

%/ dxdz/aj::(dﬂ—y) ( /: " (%";i)zdy') . ( /Od/z (

Including all the other terms in |Vw|? we obtain

and similarly for 8

/U’(y)wlwgdx3

5’31;) dy’) dy.  (28)

2
< %%% / [Vwl?ds® = -U?‘s / [Vw?da®. (29)
! 3 U*6 273
U'(y)B1B2dz| < = |VB|“dz®. (30)
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This implies for Qup, :

Qua, {w, 8} v {|Vwl?) + n{|VBI*) + 2({U’' (wrwa — B152))

v ([Vwl?) +n(IVAP) - 2|(Uwiws)| — 2 KU'B12))|
v (Vul) +n (VaR) - 22 (vu) - Z2 (vap)

(v~ 52) wul) + (1= 57) AvsP)
UZS) (w? + 2. (31)

So Qup, {w, B} > 0 if we choose § < 4v/U, = 4d/Re. This is the maximum value of § that
our estimates allow us to use.

v

I\

v

7l'2 .
2 (mintun -

Ami
5 < dminlnv} _ 5 (32)
U
The smallest value of Dy, (keeping Qup, positive) is obtained for § = min{dmin,dq,d/2}
So we end up with our final result on the Couette flow that if dmin < dg we are going to
use dmin to evaluate the background dissipation, which means that if

4 min{v,n}B> U*2B, \/;
—_—— o= >1 then DL -, 33
U*\/3l/7] - \/gd n ( )
or in the non-dimensional form
if 8Q > v3max{Re,Ry} then D< \/2§?{e' (34)

If on the other hand dmin > dg we are forced to use dg in the evaluation of the background
dissipation. So if

4 min{v,n}B> 1 v U® 2min{y,n}BU*
okl S P S <= £
U*/3vn <1 then Ds< 8 min{v,n} d *3 n d (35)
or in the non-dimensional form
if 8Q < v3max{Re,Rym} then D < 1 max{Pr,1} + 8 Q° .1 (36)
-8 ’ 3 Remax{Rwm, Re}

The first inequality (34) we have shows that for large enough magnetic field the dissipa-
tion is bounded by a function with the same dependence on Re and Q as the laminar. The
prefactor has only a 15% difference. This gives an indication that the flow should be close to
the laminar solution. If the magnetic field on the other hand is not strong enough then the
dissipation becomes independent of the Reynolds number Re and has only a dependence on
the Prandtl number Pr. The increase of the bound on the dissipation with Prandtl number
is an interesting result that we cannot yet determine if it is the outcome of a bad estimate
or it corresponds to a physical mechanism for increase of the dissipation.

251




Pr=10,000

Pr=100

Re=10,000

Figure 5: The dissipation as a function of Q for different Prandt] numbers. The dashed

line shows the laminar solutions dissipation.
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Figure 6: The dissipation as a function of Re for different Prandt] numbers. The dashed

10

line shows the laminar solutions dissipation.
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Figure 7: The dissipation as a function of Re for different values of Q.
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Figure 8: The setup for the Hartmann flow
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3 Magnetic Poiseuille (Hartmann) Flow

3.1 Preliminaries

(AR RA

Next we turn to examine the magnetic Poiseuille or Hartmann flow named after Hartmann
who first examined this kind of flow [4]. We consider the same set up as in §2, only this
time both the top and bottom plate are held fixed and there is a constant pressure gradient
or a uniform force field F in the i direction. The same equations govern the current setup

as in §2 with the addition of the force field in the momentum equation:

Su+u-Vu=~-VP+B-VB+uvV3u+F.

(37)

The non-dimensional numbers that parametrize our system are the Hartmann number de-
fined as before, and the Grashoff number G and magnetic Grashoff Gy number defined
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Figure 9: The laminar velocity profile and the magnetic field lines.

as
Fd3
G= 5 GMm = GPr
The energy dissipation is given by
D = v(|Vu|?) + n(|VB|?) = F3/24}/2p (38)

where D is again the non-dimensional form of the dissipation we are going to use.

3.2 Laminar Solution

Assuming time and z — z independence again we end up with the system of equations

0 = By-8,B1+vdU+F (39)
0 = B;-8,U+nd2B, 4 (40)
Bs = constant. (41)

They can be solved easily and the solution is given by:

U=-2F?d\/§ cosh (f—\/z—f_ﬁ)-—cosh (3—,2,—_%) ’ B, - Fd sinh(g%n_ﬂ.) 2y w2
2V sinh (—529—) 2B | sinh (23_\/2_.:1_;1.) d

PN

The laminar velocity and the magnetic field lines are shown in figure (9). Again the limit
Q — 0 brings us back to Poiseuille flow.
We evaluate the dissipation again and find it to be

_ F2q n Baod 2\/vn
D—-2—.B—2 ;[COth<2\/l7ﬁ)— Bzd] (43)
or in the non-dimensional form
1/2 11
D= coth ——1. 44
2v/2Q [ @ Q] (44)

D goes to %71/23 for Q going to zero, and D goes to 5\71-2% for Q going to infinity. Also as in
Couette flow the dissipation goes to a finite limit as v and 7) g0 to zero, keeping their ratio
(Prandtl number) fixed.
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Figure 10: Energy stability reagions for Hartmann flow. The solid lines indicate the es-
timated stability boundaries for different values of Q. The dashed lines indicate constant
Prandtl number

3.3 Stability

Next we examine the energy stability of the Hartmann flow. The evolution of the energy is
given by: '

%at(v2 +b%) = —((v1v2 — biba)U") — ((v1b2 = b1v2) By) = n{|V[*) — (V). (45)

Using the same inequalities as in the Couette flow we obtain

o2 o2
frmaa” < (vfg— ~ U,’m) (n;’,;— - U,'m) (46)
or
F2 [ Bod Bod 2 2?2 Fd 22 Fd
—_ —<"_} - < - -
B} [2\/1/17 coth (2\/1/71) 1] - (V d? 21/) (n d? 21/) )

that gives in the non-dimensional form
2
G [Qeoth(Q) - 1] < Q*(2n? - G)(2n” - G)- (48)
As before we find that the energy stability is decreased as we increase Q. Unlike the

Couette flow though in the limit of large @ the stability curve goes to the finite limit given
by G2, < 3(2n% — G)(2n? — Gp) Our stability results are summarized in figure (10).
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Figure 11: The two background fields U(y) and H *(y)

3.4 Background Method

Next examine the dissipation in the turbulent regime. Separating the flow to a background

U,B1, B2 and a fluctuating component b,v multiplying with b,v and taking the spacial
average as before we obtain

%6t(v2 +5°) = (v1B2B}) + (b1 BoU") — (w1 — bybp)U”) — {(brvg — v1b) B))

=v(IVu[?) = n(IVB%) + v(vsU") + (b1 BY) + (F - v). (49)
Adding half the dissipation we get

OE + %D = (B2By) + (11BoU') + (Fu1) — ((v1vz — bibo)U") — ((vab — byv2) B)

=590 = 3009 + 2oy + L. (50)

Using D = (F -u) = (FU) + (Fv;) and v = w — iV(y) and b = 8 — iH(y) where vV” =
ByB; and 9B = ByU’ we can write (50) as

20,€ — D = 2F(U) — Dy, + Qus, (51)
with Dyy = v(U’2) + n(H"?) and H = —2(U - (U)) and

Qus, = v(|Vwl?®) + 9(|VB|?) + 2{(wyw, — B1B2)U") + 2((w1B2 — w2 3)U")

where we already picked B; = 0 for a background profile.

Contrary to the Couette flow case that the positivity of QuB; was leading to an upper
bound on the dissipation, if Qup, > 0 then we have that D > F({U) - %Dbg which gives a
lower bound on the dissipation.

The velocity back ground field we are going to choose is going to be

U*/8)y if —d/2 <y <-d/2+§
U(y)={ U*) if -d/2+§ <y <d/2-6 (52)
(U*/8)(d/2 - y) if d/2-6 <y <d/2.
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with U* and § undetermined parameters. U(y) and H(y) are shown in figure (11). Evalu-
ating the background dissipation and F(U) we get:

2(8)_(3Y’

3\d d

*2 d 277*2
F(U)—-;-’Dbg=FU*-—FU* (g)—fU—-(E)—BzU
., vU*2 (d\ B3U*?2/($

~FU ‘—dz‘(s)“ o 5(2) (53)

d? 2n
where we dropped out terms of order (§/d)2.
The above expression takes its minimum value when § = Opmin = V3vn/By and U* =
mzn (\/—/4)(Fd/B2) \% TI/V

Now we turn to the quadratic term Qup, and try to determine the constraint on on §
and U*. The calculation is identical with the Couette flow and gives that for Qup, > 0 we
have to have U*8 < 2min{v,n} = (U*8)g- All we have to do now is to find the values of
U* and § that give the maximum possible of 2F (U) — Dy, with out violating the constraint
Qup, > 0. If Uz, 0min < (U*8)q then the obvious choice for U* and § is Uy, and min
that gives

" 3Fdn V3F2d [q
If Uminémin - 32 < 2 mm{v "7} thenDbg 4 B2 \/:,; (54)

or in dimensionless form

If 3max{G,Gm} < 16Q? thenD > —‘/—§ (2(3'/1_/;) (55)

If the condition U}, 0min < (U*8)q is violated then we have to evaluate the maximum of

2F(U) — Dpg over U* and 4 under the constraint that U*§ = (Uy)q after some algebra we
end up with

3Fn 4v2d 2B? min{v,n} 32 [min{v,n}
——— > > —_— —_—— ol S RSP 4
if 18 2 2mm{u n} then Dpy > 373 ( 3 ) \/ ” (56)

or in dimensionless form

' 2 3/2
if 3max{G, Gp} > 16Q? then D > ;ﬁ: (1 - 3maxig Gm}) min{1, Pr~1/2}

(57)

As in the Couette case for strong enough magnetic field the first inequality (55) indicates
that the bound is very close (15% difference) to the laminar dissipation. On the other hand
for small enough magnetic fields the bound on the dissipation becomes independent of Q
and Re and decreases as the inverse square root of the Prandtl number for Pr > 1. This
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Figure 12: The dissipation as a function of Q for different Prandt] numbers. The dashed
line shows the laminar solutions dissipation.

result is not in contradiction with the related result of the Couette flow that was giving a
linear increase with the Prandtl number. The reason for the difference is the definition for
the non-dimensional dissipation. If we had chosen D = Dd/(u)® as our non dimensional
dissipation we would have

pDPd_ _Dd _F4d_ 1
" (uw? (D/F)® D D?

that gives the same scaling with Couette flow. The figures below (12,13,14) summarize our
results.

4 Discussion

We have examined the dissipation for two different kinds of flows in conducting fluids
with an imposed vertical (to the flow) magnetic field, namely magnetic Couette flow and
Hartmann flow. We have derived bounds on the dissipation and determined the bounds
behavior at high Reynolds and magnetic Reynolds number. One of our basic results is that
the dissipation is tending to the laminar value if the magnetic field is strong enough. If
the magnetic field is not very strong and the Reynolds number is large the dissipation is
independent of Re and Q and scales as the first power of the Prandtl number if Pr > 1
and is independent of it otherwise. The next figure (15) shows a quantitative comparison of
experimental data [5] with our bound. The data show measurments of the drag coefficient
Ct as a function of Q. The coefficient Cr is defined as:

Fd (d_’Dzl-)z_l_

“TwrE TP
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Figure 13: The dissipation as a function of Re for different Prandtl numbers. The dashed
line shows the laminar solutions dissipation.

10 |

Q10

10

10 1c

G

Figure 14: The dissipation as a function of Re for different values of Q.
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Figure 15: The drag coefficient C¢ as a function of Q

Although there is a two orders of magnitude difference from our bound which is not suprizing
for the rough estimates we used, the bound seems to capture the behavior of the dissipation
up to a prefactor.
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On Cyclic and Oscillatory Convection in a
Simplified Box Model with Entrainment

Tomoki Tozuka
University of Tokyo, Japan

Abstract

Fluctuating ventilation effect in a simplified box model with three tubes is studied
theoretically. A small basin is cooled from above and connected to an infinitely large
isothermal basin with a layer of fresh water at the surface. A necessary condition for a
new layer to form after a convection event is derived, and the model can reproduce ’cyclic
convections’ observed in past laboratory experiments. A parameterization for interfacial
entrainment is formulated based on a potential energy budget. This introduces two new
regimes to the model. One is an equilibrium state with the interface located in between
the middle tube and the bottom tube with inflows at the top and bottom tube and an
outflow at the middle tube. The other is an ’oscillatory ventilation’ where the upper
layer thickness does not grow monotonously, but oscillates. This regime is a result
of balances between entrainment, surface cooling, and flow through the three tubes.
Comparisons with laboratory experiments are made.

1 Introduction

The thermohaline circulation has been studied extensively due to its importance to global
climate variation. The deep convection branch of the thermohaline circulation occurs in very
confined regions|1],[2], and the Nordic Sea is one of the important sites. Since the salinity
is very low in the surface layer of the Nordic Sea, the convection caused by the intense
surface cooling cannot reach to a great depth without an increase in salinity. Excluding the
dense overflow, the most probable candidate for a source of salinity increase seems to be the
salty water below the surface[3]. In an attempt to understand this process, Whitehead[4]
analyzed a simple box model both analytically and numerically. The model consisted of
a small basin cooled from above and a large isothermal basin with a surface fresh water
layer maintained at constant thickness. The two basins were connected to each other by
three tubes at top, middle, and bottom. Using a relaxation boundary condition for the
temperature, multiple equilibria were obtained. As an extension of this study, te Raa[5]
performed laboratory experiments and showed that two flow regimes exist; one is a self-
sustained oscillation and the other is a steady-state with deep convection. However, the
mechanism for this oscillation remains unexplained theoretically. Also, an interfacial mixing
process was not considered in the box model theory.

In this study, we expand earlier studies of oscillatory behavior in the simplified box
model. The paper is organized as follows. In the next section, a description of a three-
tube model and its behavior is presented. A necessary condition for the formation of a
new layer after a convection event is derived. Also, a parameterization for the entrainment
is formulated based on a discussion of potential energy budget. The theoretical model
can then reproduce oscillations observed in the past laboratory experiments. In section 3,
theoretical results are compared to laboratory experiment data. Conclusions are given in
the final section.
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Figure 1: Schematic sketch of the three-tube model.

2 Three-tube Model

2.1 Formulation

Following Whitehead[4], a three-tube model is formulated here so that we can investigate
the role played by the subsurface salty water. The importance of the middle tube may
be further appreciated by comparing the result obtained here with two-tube model results
presented in the Appendix.

A small basin, which represents a small region which contains a deep convection site,
is cooled from above. This basin is connected to an infinitely large isothermal basin with
three tubes, one at the surface, the second one at a depth of d,,, and the third one at the
bottom. This differs from Whitehead[4], where the middle tube was placed at the depth of
D/2. The depth of both basins is equal at D. A shallow fresh water layer of depth d,, with
temperature T, are maintained on top with temperature T, and salinity S, in the larger
basin. The parameters in the large basin d,, T,, and S, are kept fixed. In response to the
surface cooling, the small basin contains a well-mixed surface layer of depth h, temperature
T, + T3, and salinity S;. The parameters in the small basin h, T1, and S; can vary with
time. A sketch of the box model is given in Fig.1.

We assume that a linear flow resistance in the tubes maintains a relation between the
volume fluxes through the tubes Q; and the pressure difference between two basins of the
form

Qi =Ci(poi — p;) for i = 1,2,3 (1)
where we specify that
Ci=79C,Co=C3=C (2)

are hydraulic resistances of tube 4, and 7 is a positive real number. Let 71 denote the fluid
surface elevation of the small basin relative to the large basin. Then, from the hydrostatic
relation, the pressure at tube i is given by

Po1=0 (3)
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Po2 = pogldu + (1 + 850)(dm — du)] (4)

Do3 = pog[du + (1 + IBSO)(D - du)] v (5)
in the large basin and

D1 = Pog (6)

{ pog[n + (L + BS1 — aT1)h + (1 + B(So + S2) — aT2)(dm — h))] for 0 < h < dm, }
po=

pog[n + (1 + BS1 — aT1)dp) for dm, <h < D
(")

p3 = pog[n + (1 + BS — aT)h + (1 + B(5o + S2) — oT2)(D — h)] (8)

in the small basin. Here, the density is calculated using a linear equation of state and p, is
the density of fresh water at temperature T,. The volume fluxes J; obey

Q1 = —-7Cpogn 9)

Cpog|—n — BSody + (—BS2 + aT2)dm

+(B(S'o + S5 — Sl) -+ OL(T;( -_— Tg))h] for0< h<dp

Q2= (10)

Cpogl—n — BSody + (B(So — S1) + aTh)dm) for dy < h < D

Q3 = Cpog[—n — BSody + (—BS2 + aT2)D + (B(So + S2 — S1) + a(T1 — T2))h] . (11)

Assuming that changes in the vertical acceleration with time are small, we obtain
n= ———-—[ 2BSodu + 2(B(So + S2 — S1) + a(Ty — T))h + (—=BS2 + oT2)(D + dm)] (12)

for 0 < h < dp, and

n= 2_%[—2,35061,, + (B(S0 — 81) + aT1)dm + (—BS2 + oT3)D 13)

+(B(So + S2 — 81) + a(T1 — Tz))A]

for dy, < h < D. Substituting (12) into (9), (10), and (11), we obtain

_ _YCPogBSoD . 2dy S S, o . . h

= ———2+ [ D +2(1+So +,6'S (T1 Tz))D
ol dp (14)

+(——+ )(1+ D)]
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_ CpogBS,D id_u_ _ & aTy _
Q= LDy %, (5 S>«1+> 1 ”
S, S
+y(14+ = S, - S—l + — S —(T1 - T))—= ]
_QMQQ_E _52  obh _Gm
S5 51 h (16)

+v(1+ "‘S—; - "-S,'; + E:-S':(Tl - Tg))—D—]

for 0 < h < dp, and substituting (13) into (9), (10), and (11), we obtain

YCpo9BS,D 2du oy dm S oy
= [y 1— + =)=+ (~=+
52 5'1 h
i+ -5+ &m—B»§
C SoD S1 T T:
Q= BIRDB (1= 2 Dy g5, o
2449 65 (18)
5'2 S
"(1+S—o——+ﬁ5 ( 1—T2))'5]
Cpog983S,D dy S aTy . d,, aTz
= — ey — — (1 -~ + —-_— + 14+ 4)(-
52 Sl Oz
ford, <h < D.
The upper layer mass conservation equation is
A——@ | (20)
for 0 < h < dp,, and
dh
A"—lZ = Ql + Q2 (21)
for d;, < h < D. The heat and salt balance equations are
dlh K,
Ah— = —(T* - Ty) - QT 22
7 pocp( 1) — i1 T(+Q1) (22)
ds '
Ah-d—tl = -S11T'(+Q1) (23)
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A(D - h)—= = ~T2QI'(+Q2) — T2QsT'(+Qs) (24)
AD - 12 = _$,0,0(+2) - HQT(+Qs) (25)

for 0 < h < dpm, and

Ah-‘%l— _ ;j; (T* = Ty) — TiQ:T(+Q1) — T1QaT(+Qy) (26)
ds

AR = —S1QiT(+Q1) + (S0 — $)QL(+Q2) 27)

A(D - h)%% = -T>QsT'(+Qs) (28)

A(D - h)—dé% = —$2QsT'(+Qs) (29)

for dy, < h < D. Here, we have taken that heat flux is proportional to T* — T7. This
is called a restoring boundary condition for the temperature, and is also known as Haney
boundary condition[6]. A zero salt-flux boundary condition is used.

When the density stratification in the small basin becomes unstable:

p(To +T1,51) > p(To + T2, S0 + S2) (30)

a convective adjustment occurs.

2.2 Parameterization of Entrainment

It is well known that entrainment plays an important role in upper ocean dynamics. In
addition, te Raa[5] observed a strong interfacial entrainment in laboratory experiments.
Thus, we here formulate an one-dimensional mixed layer model, which parameterizes the
entrainment process at the interface, following Kraus and Turner[7] and Davis et al[8].
We expect that an inclusion of entrainment should lead to more realistic representation
of situations in the ocean and the laboratory experiment of te Raa[5]. The model results
without the entrainment are provided in the Appendix.
The upper-layer potential energy is defined as

0
P= g/_D(z — 2o)pdz | (31)

where z = z, is a reference level, and z = —D is a level below the mixed layer at which
turbulent and radiative fluxes of heat is assumed to be negligible. The density conservation
equation is

+—wp =0 (32)




where w'’ is the vertical turbulent flux of mass. Here, advective terms have been neglected,
because we cannot incorporate their effect in simple models such as the one considered in
this study. Multiplying Eq.(32) by g(z — 2,) and integrating it from z = —D to z = 0, we
obtain

oP /O —— ag
—_— d + —= 0Z0 33
e _Dw pdz . Qoz (33)
where
Qo = —‘;" WP (0) = —copT(0) (34)

is the net downward heat flux at the surface. Note that the heat fAuxes are assumed to
vanish at 2 = —D.

From Tennekes and Lumley(9], the turbulent kinetic energy budget equation is

0 0 _ —— — 98 0 ——
(b—t+u-V+w$)ek— gw'p’ — puw e 5;u/(p’+ek)—pe (35)
where
er = -g(u ‘u+w'?) . (36)

Here, the first term is the production of turbulent kinetic energy by the vertical buoyancy
flux, the second term is the production of turbulent kinetic energy by shear, the third term
is the vertical divergence of the turbulent flux of turbulent kinetic energy, and the final
term is the viscous dissipation term. Again, the second term and the third term are beyond
the framework of box model and are neglected. Also, based on the laboratory experiment,
Deardorff et al.[10] showed that a fixed fraction m. (=0.83) of potential energy gained by
the surface cooling is dissipated. Thus, the potential energy equation (33) can be rewritten
as

oP agD ag
B T Mg Yot Qo (37

For the bulk mixed layer with thickness h, the potential energy equation is

ghp,Oh o9 ho L h
2 Pat— c[ 2Qo+2cho]- (38)

Therefore, the entrainment velocity in the three-tube model is parameterized by
a
We = -—m(l - mc)Qo (39)

where Ap is the density difference between the upper and lower layer. Since we are using
the restoring boundary condition for heat, the entrainment velocity is

_a(l—m)K,(T* - Ty)

We = cpAAp

(40)
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Including the entrainment process, the upper layer mass conservation equation can be

rewritten as

dh

for 0 < h < dp,, and

dh ’
A_d7 = Q1+ Q2 + Awe

for d, < h < D. The upper layer heat and salt balance eqﬁations are rewritten as

dTy  Ka . _
Ah— = e (T* —T1) - W1 T (+Q1) + A(T> — Th)we
ds,
Ah—= = —S$1Q1T(+Q1) + A(So + Sz — S1)we

for 0 < h <d,,, and

dn Ko
AR = (T = T) = TiQT(+Q1) — TiQ2I(+Q2) + A(T2 — T )we
ds;
Ah—2% = —S1Q1T(+Q1) + (So — 51)QaT(+Q2) + A(So + 52 — S1)we
for d, <h < D.

2.3 Non-dimensionalized Equations

Using the transformations

“__Qz “'_aTi "_du "_dm
Q’L—stv ‘L‘—ﬁso,d’u—"ﬁydm"ﬁa
~ S = oT* . AD 5 K
Si=—,T*= ,t=—=—1t,K,= 2
o BSo Qss ¢ Ponst
where
Qss = YCpogBSoD
ss ""‘—_2+7

the model equations are non-dimensionalized as
Q1=2dy —2(1+ S2 = S1 +T1 — To)h — (=2 + To)(1 + dm)
Qr=—-dy+ (S + D) (v + Ddm -7+ 1+ S — $1 + Ty — To)h
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)




Q=—du+ (-S+ D) +1-7 ) + 1+ S-S+ -T)h (51

-?f = Q1+ % (52)
"dj:vl 5 [Pk = = A = ~ =\ .

h—d? = Ko(T* — T1) — TiQ1T(+ Q1) + (T2 — Th )dse (53)

-dS; s~ « A s
h_dt? ==85101T(+Q1) + (1 + 52 — 51)ede (54)

- dTy - A = = .
(1- h)ﬁ = =T5Q2TI'(+Q2) — T2Q3I'(+Qs) (55)

= dS; - = A s .
(1- h)_&t? = —52Q2I'(+Q2) — $2Q3T(+Q3) (56)

f0r0<7z§d;n,and

Q=2 ~ (1= +F)dm— (S + To) - 1+ 5 - § + T, - Ty)h (57)

Qr=—du+(1-S1 + )1+ v Vdp — v (~5 + T) =1+ 8- 8§ + Ty —Th)h

(58)
Q~3 = —(iu - ’)'_1(1 — g] + Tl)d:n + (1 +’)’—1)(—'.§2 + Tz) + (1 -+ 7_1)(1 + 5;2 - §1 + T] - T"z)il
(59)
dh <
z—Q1+Q2+’we (60)
. dTy 5 = - - N . . .
hf = Ko(T* — T1) = TiQ\T(+Q1) — T1QoI'(+Q5) + (T2 — Ty, (61)
~dS, < ~ - x ~ .
h-gtr ==5101T(+Q1) + (1 - 51)Q2T'(+Q2) + (1 + 5 — 81)wd. (62)
- dT N -
(1= R)—F = ~HQsT(+Qs) (63)
(1-E2 = ~5,G5r(+Gy) (69)
for d,, < h < 1. Here,
e = —(1 — me) E,(T* - T) (65)

1+ 8&-T)~(5-Th)
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2.4 New Layer Formation

In laboratory experiments, it was observed that a new layer of low salinity water formed on
top after a convective overturning (Whitehead, pers. comm.). In order to reproduce this
phenomenon and resulting oscillations, we derive a necessary condition for this process to
occur.

Fresh water flowing in from the top tube tries to form a new layer above the well-mixed
thick layer of temperature Ty and salinity 1 + S after a convective adjustment, or the
interface reaching the bottom. Since the upper layer thickness is h = 0 then, the volume

flux Q1 is
Qi=d,~-To+85. (66)
A new layer is formed on top with a thickness of
= Q:At (67)

after one time step At. However, the new layer is quickly cooled by the surface heat loss,
K,T*, and becomes denser. From the heat balance equation, an increase in the density of
the new layer after one time step is

K, T*Af K,T*

Aﬁl =————— == (68)
1At Q1
- To maintain static stability after the cooling,
. K,T* 5 =
Apy = — - <1+(S2-—T2). (69)
Q1
Thus, the necessary condition for (21 to prevent convective overturning is

_ . K‘aj’u
QL>———. 70
YT (5 -Th) (70)

Note that this condition is independent of the size of the time step. If this is not
satisfied, the new layer becomes denser than the thick layer below, leading to another
convective overturning. However, as the volume flux o)) progressively increases due to an
increase in the density of the whole layer, the cooling of the thicker new layer decelerates.
At some point, the above condition may be satisfied and the upper layer starts to grow
again.

2.5 Steady-state Solutions

Numerous calculations were performed over varieties of parameter ranges and sensitivity of
the model to dimensionless parameters were investigated. Calculations were initiated from
Tg =$,=5=T,=0and h = d,, with no flow at each tube.

Figure 2 shows the sensitivity of the model to the depth dm. The inclusion of entrain-
ment results in drastic changes in the equilibrium states. This can be compared with no
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Figure 2: Regime diagrams for the three-tube model with entrainment at K, = 0.5 and
dy = 0.03 for (a) v = 0.05 and (b) v = 1.0.

entrainment case illustrated in Fig. 11. When the cooling is weak, an equilibrium state
with the interface above the middle-tube exists independent of v (indicated by 2 Layers
h < dp.’). The upper layer temperature becomes 7* and all Aow stops.

Since the entrainment leads to a faster upper layer deepening and faster increase in
upper layer density due to the salinity, the upper layer either reaches the bottom or becomes
statically unstable at much weaker cooling than without entrainment. The interface reaches
the bottom with forcing temperature T* as high as -0.52 with entrainment, whereas it
reaches the bottom only after T* is decreased below -1.06 without entrainment. For a small
7, an equilibrium state with only one layer emerges as the cooling is enhanced (indicated by
'1 Layer’). For this regime, the upper layer either becomes statically unstable or reaches the
bottom, but the volume flux Q; never accelerates enough to satisfy the necessary condition.
The small basin has inflows through the top and middle tube, and outflow through the
bottom tube. This corresponds to 'deep convection’ state in te Raa(5)].

Equilibrium states depend upon the depth of the middle tube for a large 4. When
dn is deep, the interface reaches the bottom once, but the model reaches an equilibrium
state with the interface above the middle tube (indicated by 'R.B. 2 Layer h < d,’). On
the other hand, an ’oscillatory ventilation’ mode exists for shallower dm. This regime is
a result of subtle interplay between entrainment, surface cooling, and flow through the
three tubes. The upper layer thickness does not grow monotonously, but oscillates in the
‘oscillatory ventilation’. This is contrasted with ’cyclic convection’, where the convection
has a cyclic nature, but the upper layer grows monotonously. This regime appears as the
cooling temperature is further decreased. They are discussed more in detail in the next
section.

The model is also very sensitive to the upper layer depth of the large basin (Fig. 3).
Another interesting equilibrium state exists for relatively deep d,, with forcing temperature
of —0.58 < T* < —0.46 for large v and —0.76 < T* < —0.46 for small 4. The model
reaches equilibrium with the interface located in between the middle tube and the bottom
tube. Since the pressure difference at the bottom tube remains even after the model reaches
the equilibrium, the inflow through the bottom tube persists. Thus, the water flows out
from the small basin only through the middle tube and no deep water is formed in this
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Figure 3: Regime diagrams for the three-tube model with entrainment at K, = 0.5 and
dyn, = 0.5 for (a) v = 0.05 and (b) v = 1.0.

regime. A similar equilibrium state exists for three-tube model without entrainment, but
the pressure difference at the bottom vanishes completely and the flow through the bottom
tube stops (Q3 = 0) when the equilibrium is reached. The time evolution of this regime is
also discussed in the next section.

2.6 Time-dependent Solutions

For certain parameter range, very interesting oscillations are obtained (Fig.4), which do not
exist in the model without entrainment (upper layer variables and thickness are set to zero
in figures, when there is only one active layer after reaching the bottom or the convective
adjustment). At t = 40, the interface reaches the bottom. As the volume flux Q1 becomes
large and satisfies the necessary condition (at t = 41), the upper layer starts to grow again.
Although 5; initially increases, it begins to decrease after Q2 becomes negative, and the
salinity source at the mid-depth is lost. Then, Q3 (> 0) becomes larger than 1, and the
upper layer starts to become shallower. This is possible because the upper layer grows
rapidly without increasing its density much, and the integrated mass above the bottom
tube; the entrainment leads to faster deepening but only redistributes the mass within the
small basin.

The inflow at the bottom tube (Qg > 0) causes both Ty and S, to increase, and since the
temperature increase is faster, go decreases. This in turn makes the density difference p2—p1
smaller, leading to an acceleration of the entrainment. The increased rate of entrainment
results in an increase in S; and p1, which leads to further decrease in the density difference
and acceleration of the entrainment process. When . becomes larger than Q3 (at T = 142),
the upper layer starts to grow again. Then, it reaches the bottom (at t = 168) and the
whole cycle repeats itself.

A self-sustained cyclic convection’ is also possible (Fig. 5). We start our description
of this oscillation from f = 4.3, when the upper layer starts to grow. The upper layer
temperature T, decreases rapidly due to the surface cooling, while the salinity S, increases
slowly due to the entrainment. When the interface descends below the middle tube at t=5,
the warm and salty water flows into the upper layer of the small basin (Qz > 0), causing Ty
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Figure 4: Time evolution of temperature, salinity, density, upper layer thickness, entrain-
ment velocity, and flow rate at K, = 0.5, d,, = 0.03, d,, = 0.25, T* = —0.54, and v = 1.0.

to initially increase and S, to increase steadily. At f = 7.8, the interface reaches the bottom
and we now have one layer state in the small basin. Although the necessary condition for
the new layer formation is not satisfied in the beginning, the density of the whole layer
and the flow rate Q; gradually increase. Finally, the necessary condition for stable layer
initiation is satisfied and the newly formed layer starts to grow from ¢ = 8.1. The ’cyclic
convection’ is also seen in the three-tube model without entrainment and the two-tube
mode (see Appendeces). However, the salinity plays no role in the "cyclic convection’ of the
two-tube model.

Although it shows no oscillatory behavior, the equilibrium state with the interface in
between the middle tube and the bottom tube shows very interesting features (Fig. 6),
which cannot be obtained without the entrainment process. Until the interface reaches the
middle tube (at £ = 6), the outflow at the middle tube and the bottom tube have the same
magnitude. After the interface descends below the middle tube, the outflow through the
middle tube accelerates, while the flow at the bottom tube reverses (at £ = 8). As the model
approaches the equilibrium, the inflow through the bottom tube Q3 and the entrainment
velocity . balance each other.

3 Comparison with Laboratory Experiments

The number of laboratory experiments is still limited, but we believe that it is worthwhile
to make some comparison with the theoretical results obtained in the present study. The
experimental set up is identical to the box model used in this study. The middle tube was
placed at d,,, = 0.5, and the surface fresh water layer of thickness d, = 0.05 was maintained
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Figure 7: Time evolution of the temperature and salinity obtained in laboratory experiments with
() T* = —22°C, (b) T* = —-30°C, and T* = —18°C (provided by Whitehead).

in the large basin.

Figure 7 shows time evolution of the density contributions of temperature and salinity
at different forcing temperature. All three experiments are similar to the behavior of "cyclic
convection’. For each cycle, the temperature at the top initially decreases due to the surface
cooling. However, the temperature and salinity increase afterward due to the entrainment.
When the density stratification becomes unstable, a convective overturning occurs and
another cycle starts.

The experimental results further suggest that the period becomes shorter as the surface
forcing is enhanced; the period is 40000 seconds for T* = —18°C, 7500 seconds for T* =
—22°C, and 2200 seconds for T* = —~30°C. This is qualitatively consistent with our box
model result (Fig. 8). The period becomes shorter, because the inflow through the top tube
is larger and the entrainment velocity is faster when the surface forcing is enhanced.

Although an upside-down version of the three-tube model was used (heating is at the
bottom and a layer of salty water is maintained at the bottom of the large basin) for practical
reasons, experiments in te Raa[5] contain the same physics. Hence, more comparison are
made with the present theory. In her experiments, the middle tube was also placed at
dm = 0.5, and the bottom salty water layer of thickness d,, = 0.033 was maintained in the
large basin. From experiments, it was determined that K, = 1.2 and v = 0.004.

Our box model successfully explains some of the unexplained phenomena in the experi-
ment. First, the mechanism for the shift in flow regime as the surface forcing is strengthened
was unknown. In order to clarify this transition, we made a regime diagram of 7* and v
(Fig. 9). We decided to vary v in the regime diagram since 7 seems to be the most uncertain
value derived from the laboratory experiments. When 7 is about 0.15, the present model
successfully reproduces this shift at 7* = —1.3. The shift itself occurs, because it becomes
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more difficult to satisfy the necessary condition (70) as the surface forcing is enhanced. The
volume flux Q; slowly increases with the strengthening forcing for small .

In addition, a reason for not being able to find the shallow convection state, or ’2 Layers
h < dm’ mode, is also clear from Fig. 9 . The shallow convection state exists only when
T* > —0.50 in the model with entrainment, whereas in the laboratory experiments of te
Raal5)], |T*| was set between 0.8 and 1.7. If the entrainment is excluded from the box model,
the existence of the shallow convection state is predicted in this forcing temperature range.
Therefore, this gives an additional evidence that the entrainment is a crutial process here.

However, the period of oscillation in laboratory experiments, especially when the cooling
is weak, is much longer in the experiments than in the box model theory. Also, the value
of y suggested from this study is much larger than the experimentally determined value
of te Raa[5]. One possible reason for these inconsistencies is the linear flow relation we
used in our box model; it may not correctly explain the flow through the three tubes in
the laboratory experiments. Although the linear equation of state is used in this study,
nonlinearity certainly becomes important as the temperature and salinity varies over a
large range. Also, the double diffusive processes may play an important role, since the

small basin is in the ’diffusive-layering’ regime (cold and fresh water over warm and salty
water).

4 Conclusions

We have found two distinct modes for the oscillatory behaviors of the simplified three-
tube box model. Two new processes are included in the box model in the present study -
comapared with the past studies[4],[5]. '

First, the necessary condition for a new layer formation has been found. It applies
after the convective adjustment occurs or the interface reaches the bottom. This allows the
model to have ’cyclic convection’. Then, the entrainment process is parameterized, where
a fixed percentage of potential energy input by the surface cooling is used to entrain water
from the lower layer. This introduces two new equilibrium states to the model. One is the
equilibrium state with the interface located in between the middle tube and the bottom
tube. This has inflows at the top and bottom tube and an outflow at the middle tube. The
other is an “oscillatory’ mode where the upper layer thickness does not grow monotonically,
but oscillates. This regime is a result of subtle interplay between entrainment, surface
cooling, and flow through the three tubes.

The current result may represent some aspects of the thermohaline circulation in the
real ocean. As suggested by Fig. 3, a thickening in the surface fresh water layer outside
the deep convection site may shut down the deep water formation without changing the
heat flux (for small v at about —0.7 < T* < —0.5). For thick fresh water layer, a ’2 Layers
h > d,,’ mode with inflows at the top and bottom tube and an outflow at the middle
tube exists. On the other hand, we have a ’1 Layer’ mode with inflows at the top and
middle tube and an outflow at the bottom tube for thin fresh water layer. This feature is
also simulated in the past coupled GCM studies[11]. When freshwater was released to the
North Atlantic Ocean (between 50°N and 70°N), the thermohaline circulation weakened
and became shallower, allowing deep inflow of Antarctic bottom water.

Although the box model presented in this paper is very simple, this study suggests the
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important roles played by the freshwater layer above the halocline and salty water below
it. Also, it was shown that it is important to take entrainment process into account even
in simple box models. Future studies should shed light on the role played by the double
diffusive process and nonlinearity in equation of state.
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Appendix A: Two-tube Model without Entrainment

Formulation

In this Appendix, a two-tube model is constructed by removing the middle tube. By
comparing reslts obtained here with results in section 2, the importance of the middle tube
will become more clear. Since we want to concentrate on the role played by the middle

tube, the entraninment process is omitted from the two-tube model.
Using same assumptions, the volume fluxes are

@i =~z = -T2 ((p(S,+ 52~ 50) + alTs ~ T) s - 5, % + (oTy - 6] (1)

the upper layer mass conservation equation is

dh

A}E =@
and the heat and salt balance equations are
iy K,
h—21 = 2 (T* —T) - TyQ:T(+
7 pocp( 1) — TihT'(+Q1)
ds
Ahd—tl = -1 QiT'(+Q1)
dT:
A(D ~ h)—% = ~ThQsT(+Qy)
dsS
A(D - h)jﬁg = —852Q2I'(+Qy2) .

Using the following transformations

~ Q: = al; - dy, = S 5 oT* . AD ~ K,
i=— ,T;= ’ = ) Si = I*= yt= t,Ky=
< Qs BS, D So BSo Qs ¢ PoCpQs
where
Q, = YCpo9BS,D
s __—"—7 1

the nondimensionalized equations are

Ql=—Qz=—[(1+§2—§1+f1—Tz)il—tiu+(7~'2—§2)]
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(76)

(77)
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(79)




dh -
o _ 80
p Q1 (80)
- dT 5 = - - -
hgt"l = Ko (T" — T1) — i1 T(+Q1) (81)
-d§ - - -
h-zil- = -5 T (+Q1) (82)
- dT — -
(1- h)_dtTZ = —T2Q:I'(+Q2) (83)
- dS. - = ~
(1- h)—cﬁ.3 = —52QoT(+Qs) . (84)
Thus, we have three dimensionless parameters for this simple model.
The necessary condition for a new layer formation is
= K‘:aj:'*
> —— . 85
@ 14+ (S2—T17) (85)

However, there is an upper bound for the volume flux Q;, which depends on the value of
T* and dy:

O.<d,—T* (86)
or
Q1<d,-T*-1 (87)

in case the small basin loses all of its salinity. This is possible when the upper layer reaches
the bottom or after an infinite number of convective adjustments takes place. Hence, the
new layer cannot form when

- K, T*
Gu 1-T*+ 85, (88)
or
d,-T*-1< K, (89)

for no salinity.
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Steady-state Solutions

Equilibrium states of the model is discussed for progressively stronger cooling. When the
cooling is weak, the model reaches equilibrium before the interface reaches the bottom. The
upper layer temperature 7} is quickly cooled and becomes 7*. The volume flux Q1 and Q-
become zero and the equilibrium depth of the upper layer is

dy
T +1°

heg = (90)
Since there is no interfacial mixing in this model, we have assﬁ~med that T = Sy = S =0.
In order to reach equilibrium before reaching the bottom (heg < 1),

Tre+1>d, (91)

For the forcing temperature below f*c, the interface reaches the bottom before reaching
the equilibrium state. However, if the cooling is not strong enough to strengthen the flow
to satisfy necessary condition, it is not possible to form a stable new layer. Now, we obtain
a new equilibrium state with one fresh layer of temperature 7*, and the volume flux as
predicted from Eq.(87). Finally, a third ’cyclic convection’ regime can exist as the forcing
temperature is decreased further. The above mentioned three regimes in the two-tube model
can be summarized by Fig. 10.

Appendix B: Three-tube Model without Entrainment

Equilibrium states with different cooling temperature are investigated using different values
of middle-tube depth dn, (Fig.11). Equilibrium states have no v-dependence at forcing
temperature T* below -1.06. At weak cooling (T* < —0.72), the model has an equilibrium
state with the interface above the middle tube, but when the cooling is enhanced, the model
reaches an equilibrium state with the interface between the middle tube and the bottom
tube. For small v, an equilibrium state with 1 layer emerges, when cooling is further
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Figure 11: Regime diagrams for the three-tube model without entrainment at K, = 0.5 and
d, = 0.03 for (a) v = 0.05 and (b) v = 1.0.

(a) y=0.05 (b) y=1.00
0.2 0.2
0.15 | 2Layers 0.15 - 2Laye
h>dp, h>dp,
>
< ot 1 Layer 2 Layers T 01f Cyclic 2 Layers
h<dy, convection h<dp
0.05 |- 0.05 |
(] 1 1 1
-2 -1.5 -1 -0.5 0 -2 -1.6 -1 0.5 0
T T

Figure 12: Regime diagrams for the three-tube niodel without entrainment at K, = 0.5 and
dm = 0.5 for (a) v = 0.05 and (b) v =1.0.

enhanced. On the other hand, ’cyclic convection’ regime appears for large «y; with larger
~ values, the volume flux at the top tube becomes larger, so that it is easier to satisfy the
necessary condition (70).

Similarly, three-tube model is sensitive to the fresh water layer thickness of the large
basin (Fig. 12). Compared with shallow d,, the interface reaches the middle tube at warmer
T*, but the equilibrium states of ’cyclic convection’ or '1 Layer’ emerges at colder T* for
deeper dy.
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Bound on the Heat Transport through a Layer from the
Boundary Layer Theory Perspective: Fixed Heat Flux

Evstati G. Evstatiev
University of Texas, Austin

1 Introduction

Bounds on the heat transport in the Rayleigh-Bénard convection problem is a fundamental
problem. The first mathematical formulation of the problem was given in the pioneer paper
by Howard[1]. The problem was formulated as an optimization problem. The motivation
was that nature might “choose” to realize a process that maximizes the heat transport
when the flow is turbulent. This is only a hypothesis, but in certain cases the features
of the solution to the so formulated problem has qualitative agreement with real physical
flows. In any case, the solution of the maximization problem gives a bound on the quantity
of transport of heat flux.

The problem of thermal convection can be realized in different experimental settings. In
some, the boundaries can have infinitely bigger thermal conductivity that the fluid in the
layer. This is the so called “fixed temperature” problem. In other experimental settings we
might have the opposite case: The fluid’s thermal conductivity might be much larger than
the thermal conductivity of the boundaries; the latter is “fixed heat flux” problem. The
physical basis for this nomination is that in the former case the fluid on the boundary has
the temperature of the boundary, whereas in the latter, this is not required. Instead, the
heat flux through the boundary, which is proportional to the gradient of the temperature
on the boundary, is fixed. In this study we are concerned with the fixed heat flux problem.

Despite the different boundary conditions arising from different experimental settings,
the physics behind both phenomena is similar. When the temperature difference between
the upper and lower plates (or analogously, the temperature gradient) is small, the fluid
is in a pure conductive state so that the velocity throughout the layer is zero. As we
start increasing the temperature difference (or the heat flux), the system becomes unstable
and the fluid starts to move. There is a critical parameter that describes when this first
happens—a control parameter. This is the Rayleigh number. As we keep increasing the
Rayleigh number, the fluid sets into turbulent motion.

In turbulent regime it is believed that quantities reach asymptotic behavior and have
certain scaling determined by the Rayleigh number. For example, the quantity that de-
scribes how much bigger the heat flux in a turbulent regime is, compared to that in a
pure conductive state, is the Nusselt number Nu. In the fixed temperature problem the
scaling derived in the paper by Howard[1]— maximizing over fields with one horizontal
wavenumber—is Nu ~ Ra%, while the scaling derived by Busse[5]—maximizing over mul-

tiple horizontal wavenumbers—is Nu ~ RaZ. In a recent paper by Otero et al. [3], using a
different method, it is shown that the scaling for the fixed heat flux problem is Nu ~ RaZ.
However, for a single horizontal wave number C. Doering and J. Otero[4], following a method
by Howard|[2], have derived an estimate that leads to a scaling Nu ~ RaTs. We will try
to follow the Howard-Busse approach and derive a scaling for the Nusselt number in the

fixed heat flux problem, using a single wave number approximation. We will comment on
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applying the multi-alpha approach developed by Busse[5].

2 Formulation of the Problem

We describe the physical setup in this section and then formulate the problem. Consider
a fluid between two horizontal infinite plates. The lower plate is heated so the fluid at
the bottom is hotter than the fluid at the top. There are two opposing forces that act on
the fluid—the buoyancy force and the gravity. The equations that describe this convection
problem are the Boussinesq equations

%lti +u-Vu+1pVp — agTk = vV7u, ®)
v = 0’ (2)
681; +u-VT* = V2T, (3)

The meaning of the quantities in the above equations is the following. u = (u,v,w) is
the velocity vector, p is the deviation of the pressure from the hydrostatic pressure, cor-
responding to the horizontal average of the temperature, a is the coefficient of thermal
expansion, g is the acceleration of gravity, T™ is the temperature, & is the thermal con-
ductivity of the fluid. The fluid occupies the space in the direction of z from 0 to d. The
boundary conditions are

T

_ T
0z |n

u(0)=u(d) =0, & . P

= —kf3 = const. 4)
d

We split the temperature in a horizontal averaged part T*, and a deviating part T, so
that

T*=T*+T. (5)

Our notation is: An over-bar denotes horizontal average, and angle brackets—volume
average. Then we can write

(wT) = zli-/o‘d-fu—T_dz. (6)

If we multiply Eq. (1) by u and average over the volume, we get
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ag (wT) = v {|Vul?). (7)

This equation expresses the balance between the rate of generation of energy motion in
the field of the buoyancy force agTk, and the rate of dissipation of energy by viscosity. If
we average Eq. (3) horizontally, using the boundary conditions for u and T*, we obtain

dwT* d’T*
dz " dz? -’ (8)

Since W = 0, wT* = wT. From Eq. (8) we see that

4 (E‘T— ndﬁ) =0 9)

dz dz

and therefore the sum in the braces in Eq. (9) is constant equal to the its average over
the volume

—  dT* 1 [¢ dT~
wl — K 9 = (wT)—n-&/O K
= (wT)+ n-Ad—T, (10)
where by definition
—AT =T*(d) - T7(0). (11)
Finally from (10) we obtain
dT* AT —
K =kt (wT) —wT. (12)

Multiplying Eq. (3) by T, averaging and using (12) we obtain

k71 [(wT)2 - <1—u71’-2>] + % (wT) = s (|VT?). (13)

Putting (7) and (13) into a dimensionless form with d as a length scale, k/d as velocity

scale, and fd as a temperature scale have the two “power integrals” (called so in the paper
by Howard[1])

R(uT) = (|9v[), (14)
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AT (wT) + (wT)? — (WT) = {|VT|?), (15)

where R = agfBd*/kv is the Rayleigh number based on the given constant heat flux
at the boundary. Its relation to the Rayleigh number based on the temperature difference
between the plates is

Ra = RAT. (16)

Define the Nusselt number as the ratio of the total heat flux and the conductive heat
flux through the layer. The total heat flux is given by —xf3, whereas the conductive heat
flux by —kAT. In dimensionless form we have

1
Nu=—
U= Ao (17)
where now AT is dimensionless temperature difference. The problem we will try to solve
is to find a bound on the Nusslet number (17) i.e., we will try to find a relation between
Nu and the Rayleigh number R (or, Ra.) of the form Nu ~ RP? for some p. We do this in

the following sections.

3 Bounding as a Minimization Problem

Multiplying Eq.(8) by z, integrating by parts and using the boundary conditions for T we
obtain for the left-hand and the right-hand sides

d 2%
n/ z(—i—%— dz = —kdf + kAT,
0 dz

d
dwT*
/oz P dz = —d (wT)

and after putting those in a dimensionless form we have

AT =1 — (uwT). (18)

Using (18), we rewrite the power integrals (14) and (15) in the form

R (uwT) = (|Vv[?), (19)

(T — <w_T2> = (IVTP). (20)
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Using (19) in the right-hand side of (21) by (wT) and regrouping we get

2_ 1 (juvyI2 2
_ ) ﬁ(('_; é ) (vTP2) (1)
w

Substituting (21) into (17) and using (18) we can write

(wT)

1 (W) = I+ & (IVul) (IVTR)
" ) ‘”)

Maximizing the Nusselt number is equivalent to minimizing (22). The maximal Nu Will

provide a bound on the total heat transport throughout the layer of fluid. Therefore, we
will look for a minimum of the functional

(WT°) - I + 2 ((vul) vTP)

Flv,T] = <W2 > , (23)

where A = 1/R.
The so derived functional is to be minimized among functions that satisfy the boundary

conditions
v(0) =v(1) = dT/dz|,—0 = dT/dz|,=1 = 0, (249)

the continuity equation

V.v=0, (25)

and the power integrals (19) and (20).
We continue the analysis in the following section by making a certain simplification. We
will assume a single wave number horizontal dependence of the test functions.

4 Bound with a Single Wave Number

We assume the following form of the functions w and T

w(z,y, 2) = w(2)¢(z,y)
T(z,y,2) = 6(2)¢(z,y)

and the function ¢(z,y) having the properties
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62 62 —_—
(53:‘2 * 6_y2> b(c,y) = ~a*(z,y), F=1 (26)

Now we can write

(IVTP) = (07 + %) (21)

We note that the continuity equation alone is not enough to determine the relation
between w and {|Vv|?), but if only the minimum of the latter is requested, we can write

(IVv]?) = (a72" + 202 + a®w?) . (28)

With (27) and (28) we can express the functional (23) in terms of only w and 6 only

Flo.6] <w202> - (w0)2 +A (9’2 + a292> <a'2w”2 + 2w'2 + a2w2)
w, 0] = .

20 (29)
The boundary conditions for the functions w and 6 are
w=w'=6=0 at z=0,1 (30)

Since the functional (29) is homogeneous of degree zero in w and 6, we can choose the
amplitudes of the test functions so that they satisfy two conditions

(w) =1,
(w?) = (6%). (31)
The Euler-Lagrange equations following from the functional (29) are

Eqlwd® (1 — F) — (wh) 8+ A <9’2 + a262> [a_zwi” + 2" + a2w] =0 (32)

Eq2w?0 (1 - F) — (wh) w + A [—0" +a20] (a7 2"% + 20" + a®w/?) = 0 (33)

Since these equations are difficult to solve analytically, we resort to numerical methods
to solve them. The results are given in the next section.

In the rest of this section we apply the boundary layer approximation. It consists of the
following. The form of the functional (29) suggests that the minimizing functions should
be nearly constant throughout a large portion of the interval [0, 1]. To satisfy the boundary
conditions, w will need to drop to zero together with its derivative, and so will the derivative
of 6. Therefore we expect that there will be a narrow interval around the two boundaries
where the derivatives of the functions will have large values—boundary layers. The values
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of the functions will change fast within these boundary layers and the thickness of the
latter will determine the magnitude of their growth. The contributions to the integrals
are expected to come predominantly from the boundary layers. Therefore, we will derive
equations that describe the functions w, 6 only in the boundary layer—the boundary layer
equations—and will approximate the full interval of integration by integration over the thin
boundary layers (there are two of them.)

Note that the first two terms in (29) are of order one, see (31). To minimize the functional
and comply with (31), both of them will approach the value of 1 so that their difference
approaches zero. The two tendencies—the terms with the derivatives approaching zero and
the difference between the first two terms approaching zero—must occur simultaneously
and have the same order of magnitude. In mathematical form, the above reasoning can be
formulated as follows. Assume the following scaling of the boundary layer thickness (as a
small parameter we choose A = 1/R)

w=Xw, =270, z=I¢, o=\, (34)

where the functions ws, 6; are of order one inside the boundary layers. From the argument
above

rel (w?6%) 51 as A—0. (35)

Because of the relation (w?6%) = ((1+ (1 — w8))?) we see that as wh — 1 we must have
(35). Substitution of (34) into (29), and taking into account (35), we obtain

o o) fo'e) y 2
FFF =2X"[ (1 - w16,)%d¢ + A [2,\-21’—’ / (‘Z—‘?) d¢ + b2)\“‘q]
0 0

oo / 42 2 o) 2
x [2b-2,\q+2p-3f/ (%) d¢ + 4)\2?—’/ (%) ¢ + b2/\‘9} . (36)
0 0

After expansion of the terms in the square brackets we obtain the following exponents
T, 1+q—4r, 1-2r, 1-2p~r—q, 1+2p—3r, 1—q+2p=r, 1-29. (37)

We need to maximize the minimal possible exponent among (37). Let e be the minimal of
all exponents. Of all 7 inequalities, consider

r > e, (38)
1+g—4r > e, (39)
1-2¢ > e (40)

Multiplying (38) by 8, (39) by 2, and adding to (40) we get 3 > 11 from which we deduce
that e = 3/11. By adding 4 times (38) to (39), and using (40) we get 4/11 = 5e—1 <
g <1/2(1 —e) = 4/11, so that ¢ = 4/11. Similarly, from (38) and (39) we get 3/11=e <
T < 1/4(1 + g — €) = 3/11, and thus g = 3/11. From the fourth and fifth of (37) we find
1/11 =e~1+3r <2p <1—7r—qg—e = 1/11 which shows that P = 1/22. For these
values of p, g, all exponents in (37) take the same maximal value of 3/11 except the third
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and sixth, which become 5/11 (we neglect those.) Hence the maximum value is uniquely
3
determined. If we set F = A11.F;, we obtain within the boundary layer approximation

Fi=2 /0 - wi1)%dC + [ / (‘Zgg) ¢ + 62} 2b‘2/0 (‘52021) ¢ + b2] (41)

We need to minimize F; among functions w; and 6; that satisfy the boundary conditions

w1(0) = '(0) = #'(0) =0,
61 50, wb—> as ¢— oo

Varying F; with respect to wy, 61 , and b% we find the following equations

2 ® 2 o] d*wi
b~ [2/(; 07d¢ +b ] dct - (1 — w191)01 =0, (42)
o0 ' d? 91
[2b—2 /0 w”2dc+b2] ra + (1 — w161)w; =0, (43)

o0 {e o]
:—2 / W"dC + b + [2 / 9’12d<+b2] [—21)-4 / w”2d<+1] 0. (4)
0 0 0

From (42) and (43) we obtain
o o] o0 o0
b2 [2 / 6,2d¢ + b2] / Ww"d¢ = f (1 — wi61)wnb1d¢ =
0 0 0

o0 lo o]
= [2b‘2 / w”2d<+b2] / ¢,2d¢
0 : 0
o0 o
/0 W"d¢ = b /O 6,2d¢ = b2u

a which defines u. Substituting these into (44) we find

and therefore

2+ b2+ 2p+b3)(—2ub24+1) =2 2u+ b*)(1—ub%) =0 (45)
which shows that u = b?. Using this in (42) and (43) we find
 3(d%wn/dCt) — (1 — wi61) 61 = 0, (46)
36%(d%0,/d¢?) + (1 — wi61) wy = 0. (47)
Setting
wi=(36)5Q, 61 =(3")"F0, (= <3b> 3 (48)
equations(46) and (47) become
d*Q/det - (1-Q0)0 = 0, (49)
d?0/de2 +(1-00)2 = 0. (50)
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These equations have boundary conditions ©(0) = ©'(0) = €/(0) = 0, © — 0 and 26 — 1
as £ = oo. The functions Q and © can be determined independently of knowing b. Once
we know the solutions of (49), (50), we can determine b

. 2___°°2_4—§ —%oo@z
relation b—-u—/o 6,°d¢ = (3b*)73(3b) /0 (d{)dg

© (do\?
| (&)« 1
We can see from (49) and (50) that

/O ” Q"2d¢ = /0 ” e'2d¢. (52)

Using the renormalization (eq:renorm) and the relation (51) in the functional (23) we find
for the minimal value of Fj

from which

win

b3 = 3"

F = 33b. (53)

herefore, the minimal value of the functional (7?) becomes F = 336\ or

F =33 R, (54)

We note that the equations (1) and (2) follow from the following functional

o0
j:% / (O2+0" + (1-00)?) de. (55)

0

Relations between different quantities are given below

Nu = (336%)71R7Y = (336%)~% Raf, (56)
R = (33b%)~%Ra¥, (57)
a = bR%:(%)%, (58)
z = (3b)3R, (59)
w(z) = (33b%)ER"%,Q (60)
6(z) = (33b%)"5R%:0. (61)

As seen from (56), from the boundary layer theory we have the scaling Nu ~ Ra%, the same
as in the fixed temperature problem. To further test this scaling, we do some numerical
computations. The results are given in the next section.
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Figure 1: Velocity and temperature deviation: Fixed flux. R = 107, a = 8.5456.

5 Numerical Results and Discussion

In the previous section we used asymptotic methods to derive a particular scaling of the
Nusselt number in the limit of large R. In this section we solve the complete equations (46),
(47)(the single alpha approximation) for finite R. We will try to verify as much as we can
the asymptotic theory’s prediction of the 3/8 scaling.

First, in Figure 1 we present the plots of the velocity and the temperature profiles for
R = 107. The minimizing wave number has value a = 8.5456. For comparison, we give the
similar plot for the fixed temperature problem in Fig. 2. We note the following difference.

In the rising and falling parts of the velocity profile there is a slight bend which is absent
in the analogous plot for the velocity profile for fixed temperature. Our investigation showed
that this reflects the different boundary conditions of the fixed heat flux problem (to see
that, we solved the the Euler-Lagrange equations (46), (47) with zero boundary condition
for the temperature deviation 8; also, we solved the equations for the fixed temperature
problem with boundary condition ¢’ = 0 and we observed the bend appear.) As we increase
the Rayleigh number R, this bend becomes more and more pronounced: In Fig. 3 we
present a plot of the velocity for R = 10°.

The difference between the fixed heat flux and the fixed temperature problems is also
shown in Fig. 4which is compared with its fixed temperature analogue shown in Fig. 5.

In Fig. 6 we show the product of w and 6 and, again, compare that with its fixed
temperature analogue in Fig. 7. The two curves have very similar behavior.

Next we show our results for the dependence of the Nusselt number on R on a log-log
plot, Fig. 8.

Our data (pluses) is compared to the data points (dotted line) kindly provided by
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Figure 2: Velocity and temperature deviation: Fixed temperature. R = 107, a = 11.1778.
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Figure 3: Velocity (this run was made with a different normalization of the velocity and
temperature deviation.) R = 10%, a = 19.3072.
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Figure 4: Derivatives of w and 8: Fixed flux. R = 107, a = 8.5456.
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Figure 5: Derivatives of w and 6: Fixed temperature. R = 107, a = 11.1778.
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Figure 6: Product of w and 6: Fixed flux. R = 107, a = 8.5456.
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Figure 7: Product of w and 6: Fixed temperature. R = 107, a = 11.1778.
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Figure 9: Optimal wave number a.

Rodney Worthing. Having found the minimizing values for the wave number a numerically,
from relation (58) we can determine the value of . For R = 10° it is b = 0.446, With
this value and with relation (56) we plot the bounding curve suggested by the theory in the
preceding section (dashed line.)

Finally we give plots for the dependence of the wave number on R. First we compare
our data points to those of Rodney Worthing in Fig. 9.

Then in Fig. 10 we compare that with the theoretical prediction of C. Doering and
J. Otero[4] who derived the scaling Nu ~ Raiz. They predict the dependence a ~ R%,
whereas we deduced in the preceding section the dependence @ ~ R. We have transformed
the curves so that our theoretical curve be a horizontal line. From this plot we see that the
Doering-Otero theory agrees somewhat better than what follows from the prediction of the
preceding section.

We wanted to see if we really capture the asymptotic behavior—and the scaling—with
our numerical data that extends up to R = 10%. We calculated the slope for the analogous
dependence log(Nu) vs. log(R) for the fixed temperature problem. We ended up with
similar values for the slope at R = 107%: 0.41. It has been proved that the single wave
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Figure 10: Optimal wave number a.

number bound gives a scaling Nu ~ RS (3/8 = 0.375.) This leads us to the thought that
we would have to go to much higher values of the Rayleigh number R than 10°.

Another way of estimating the value of b is by solving the boundary layer equations 49)
and (50). We approached this problem in a couple of different ways. In one way we tried
to minimize the functional (55) by truncating the upper boundary to some finite value (say
4), solving (49) and (50) up to this value and evaluating the functional (55). We considered
the boundary conditions for ©, " and Q" at the upper limit of (55) as parameters and
so tried to minimize J with respect to those parameters. In the other way we used a
boundary value problem solver provided by Matlab, again, assuming that we have reached
asymptotic behavior of the solutions for some finite value of the independent variable §.
Then we changed this value and solved the problem again. In both ways we encountered
some problems. In the first approach we were able to do several iterations (using gradient
methods) in the course of minimizing J. However our results were very sensitive to the
initial point we chose and were not very consistent. In the second approach we observed
extreme sensitivity on the truncation limit. Generally we would expect that increasing the
the truncation value would lead to convergence of the solution. Unfortunately that was not
the case: The solution changed dramatically even for small changes of the truncation limit
(e.g. from 4 to 4.5.) In fact, beyond some point we were not able to find a solution at all.
Our second approach worked very successfully for the fixed temperature case which differs
only by the boundary condition for the temperature deviation ©.

The difference in the velocity profile suggests the possibility of different structure of the
boundary layer in the fixed heat flux problem. It may be the reason for our difficulties
in solving the boundary layer equations. It also suggests the possibility of two boundary
layers, or signifies of the importance of an intermediate region (between the boundary layer
and the interior part where the functions are predominantly constant.) This question could
be clarified by a successful attempt in solving the boundary layer equations and comparing
their solution to the solution of the complete Euler-Lagrange equations in the single alpha
approximation.

Finally we comment on applying to the problem of bounding the heat transport the
multi-alpha approach developed by Busse[5]. If we assume that the scaling 3/8 is correct,
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we find thz}t in this general case the Nusselt number scales as Nu ~ R3 or, equivalently
Nu ~ Raz. The latter result has also been found by Otero et al.[3] by applying the
background method developed by Doering and Constantin.
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Upper Bounds on the Heat Transport in
Infinite Prandtl Number Convection

S. C. Plasting
University of Bristol, U.K.

Abstract

We study the asymptotic scaling with Rayleigh number, Ra, of the vertical heat
transport through a layer of fluid of infinite Prandt]l number confined between two hor-
izontal plates. The plates are at fixed temperature with heating from below. Previous
work based on Howard’s optimum theory yields an upper bound on the Nusselt number,
Nu, that scales as Ra'/3. Using the Background method a rigorous upper bound of
Ra2/5 has been deduced and with additional information derived from the governing
equations an improved bound of the form Ra'/3(log Ra)*/® can be derived. In this re-
port we investigate why the Background method falls short of the earlier result obtained
using Howard’s optimum theory. We show that these two methods seek to optimise the
same functional within a min-max scheme. We compute the optimal piecewise linear
solution to the Background method and examine the associated eigenfunctions.

1 Introduction

The theoretical study of variational bounds on turbulent transport quantities began in
1963 with Howard’s Optimum Theory [1]. In the absence of an incompressibility con-
straint Howard solved Euler-Lagrange equations analytically to obtain an upper bound on
the heat transport in turbulent Boussinesq convection which scaled like Ral/2. Later the
constraint of incompressibility was utilised and boundary layer methods were developed to
solve Howard’s Euler-Lagrange equations for the maximum heat transport problem. Two
theoretical tools emerged. The first was the single-a [2], or single horizontal wave-number,
test function method. The solutions to the boundary layer equations in this analysis yield
a lower bound on the true optimal solution. The second method, due to Busse [3], was
the multi-a solutions, a multiple boundary layer solution of the underlying Euler-Lagrange
equations, with an arbitrary number of horizontal wave-numbers. Busse’s multi-a solution
was indeed the optimal solution to Howard’s variational problem.

The multi-a solutions of Busse were later used by Chan [4] to calculate an upper bound
on the heat transport for the closely related problem of infinite Prandtl number convection.
Chan found an improvement to the asymptotic scaling of the upper bound on the heat
transport by imposing the momentum equation directly as a point-wise constraint. He
calculated an upper bound on the heat transport with an asymptotic scaling of Ral/3.

In the nineties a complementary variational problem for bounding the heat transport
in turbulent convection was developed by Doering and Constatin [5]. The so-called Back-
ground method seeks to estimate the optimal solution to the maximisation problem from
above, therefore any test function satisfying certain well-defined constraints will yield a
rigorous upper bound on the heat transport. The duality of the Optimum Theory and the
Background method was proved for the problem of arbitrary Prandtl number convection by
Kerswell [6]. The Background method has recently been applied to the problem of infinite
Prandtl number convection in two distinct ways. First, using piecewise linear test func-
tions and standard functional inequalities an upper bound of Ra?/® was calculated which is
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uniform in rotation rate for rotation perpendicular to the fluid layer [7]. Second, using the
Background method and the extra information that the temperature at any point may not
exceed the maximum temperature on the boundary an upper bound of Ral/ 3(log Ra)?/3
was deduced [8]. Though not uniform with respect to rotation this upper bound captures
the form of Chan’s result with a logarithmic correction.

In a number of other fluid problems, namely plane Couette flow, pipe flow or Poisuille
flow, and arbitrary Prandtl number convection, piecewise linear test profiles for the Back-
ground method have been able to achieve optimal scaling in these variational problems.
Since Chan’s result implies that the optimal scaling for infinite Prandtl number convection
is Ra'/3, it is interesting to ask why piecewise linear test profiles do not capture the opti-
mal scaling in this problem. Otero [9] also found a 2/5 scaling by numerically optimising
the upper bound over piecewise linear test profiles and hence showed that the functional
estimates used to calculate the upper bound in [7] are tight.

The structure of this report is as follows. We first introduce the basic equations for
infinite Prandt] number Boussinesq convection and define quantities and derive identities
which will be frequently referred to in the rest of our presentation. Secondly we will study
the seemingly disparate variational methods of Doering-Otero and of Howard-Chan. We
will show that both of these methods can be derived from a single specified functional.
We will verify the numerical calculation of the optimal piecewise linear test profiles due to
Otero and produce trial functions for Chan’s dual problem which will be used to construct
lower bounds on the optimal upper bound.

2 Basic Equation and Derived Quantities

We consider convection between two infinitely extended parallel plates with fixed temper-
ature on the plates. We impose no-slip boundary conditions on the plates and periodic
boundary conditions for all variables in the z,y—plane. Gravity is perpendicular to the
impenetrable plates and the fluid sandwiched between the plates is incompressible.

2.1 Basic equations

The basic first order equations of motion for this system are the Rayleigh-Bénard equations.
In non-dimensionalised form these are as follows

1 /éu .
;(gt_+u.vu)+Vp—RaTz+Au 1)
%§+u-v:r=AT (2

where the control parameters are the non-dimensionalised temperature difference across the
layer Ra, the Rayleigh number, and the ratio of kinematic viscosity to thermal diffusivity
0, the Prandtl number. In the limit of infinite Prandtl number the inertial terms in the
momentum equation drop and we are left with a linear dependence of the velocity field on
temperature

Au + RaTz = Vp. 3)
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We can dispense of the incompressibility constraint V - u = 0 and the pressure in the
following manner. Let A := Au+ RaT% — Vp = 0 and denote by N3 the third component
of N. The components of Equation (3) are

Au=p;
Av = py
Aw + RaT = p,

where u = (u, v, w). With the help of incompressibility taking V - (N) yields
Ap = RaT,
and taking A(N3) gives us
A?w + RaAT = Ap,

substituting for p we form the only dynamical constraint for this problem

A%w+RaA,T=0 (4)

in which the horizontal Laplacian applied to T is defined as A, = (%25 + 59?2. So we have
seen that the horizontal velocity components u,v are purely depending on the diagnostic
pressure variable. In Figure (1) we show how the problem is entirely reduced to this point-
wise constraint and boundary conditions for w only.

u=0, T=0 w=w,=0, T=0
z z=1
. <]9 . N, V.u=0 A%2w+RaAgT =0
Yy
z2=0
u=0, T=1 w=w,=0, T=1

(@) - (b)

Figure 1: Comparison of the point-wise constraints and boundary conditions in (a) finite
Prandt! number Rayleigh-Bénard convection and (b) infinite Prandtl number convection.

2.2 Notation

The periodic domain in z,y is defined as [0,L;] x [0,L,]. Horizontal and global space
averages can be defined:

O [ e [Ta0, = [ B
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Long-time average:
(Moo = Jim ()7
and the Lo-norm:
IO = (Y.

For functions depending on z only we use a prime to denote the z-derivative of that function,
S0

df
! = &
f(z):= o
2.3 Definitions
Equation (2) can be rewritten as
oT
— — —V . 3 J
- G+3)
where j is the conductive heat flow, j := —VT, and J is the convective heat flow, J := uT.

In the purely conductive state the average heat transport between the plates is
1

(2 (-VT) = -T| =1 (5 .

The total average heat transport between the plates is

(2-(+3)) =1+ (uT) ‘ (6)

We define the Nusselt number, Nu, as the ratio of the long-time averaged total heat transport
to conductive heat transport across the plates. This is simply the ratio of the expressions
in Equation (6) and Equation (5), therefore we have

Nu=1+ (wT),,.
Using the global entropy flux balance, (T #) = 0,

d1
at2

and appealing to the temperature maximum principle, we find the following equivalent
definitions of Nu as a simple consequence

Nu = (|VT|?)_, (8)

We will see below that the point-wise constraint in Equation (4) and the global entropy
flux balance constraint (7) are at the centre of both of the bounding problems.

ITI? + IV T|* = 1+ (wT) (7)
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3 Doering-Otero Approach

The background decomposition of the temperature field is
T(x,t) = 7(z) + 6(x,1) . (9)

where 7(2) takes up the fixed temperature boundary conditions, 7(0) = 1 and 7(1) = 0,
and 6 must therefore satisfy homogeneous boundary conditions. Substituting this change
of variables into the heat equation yields

%%+u-V0=A0+T"-—wT'. (10)

We have the following identity
IVT|? = [[wel® + |7'II” — 2(67"), (11)

and multiplying Equation (10) by 6 and taking the global average produces

1d
s leI° = =lIVoI + (" — wor'). (12)
Adding bx(12) to (11) gives
bd
s lell + IVTIE = 71" = §(r, w,6,b) (13)

where G = ((b—1)[|V6||2 — (b — 2)67" + bw7’). By adding a balance parameter, b, we are
generalising the work of Otero, who takes b = 2 to remove the centre term in G.

Taking a long-time average we have the following upper bound on the Nusselt number

Nu < ||7')}? — inf (G(7, w,6,b))os (14)

provided that inf G exists. We can drop time averages here because the infimum will be
achieved by steady fields.
To minimise G we set up the following Lagrangian

L =G — (g(x)(Aw + RaA,¥0))

where g(x) is a Lagrange multiplier with natural boundary conditions which imposes the
point-wise constraint in (4). By taking the horizontgl average of the @ variation of L we
uncover the mean of the optimal fluctuation in terms of 7

5L

5= —2(b—1)A8 — (b —2)7" + bwr’ —RalA,g=0.

oL
The g term drops when we take a horizontal average (;—9- =0, and we find that

206-1)8 +(b-2)7"=0.
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Two integrations and consideration of the boundary conditions reveal that
(b-2)

0= ——[r+2z-1].

2(b-1)
If we subtract off the mean part from the fluctuation field by setting & = §—8 and substitute
this into Expression (14) we yield the following:
If 7(2) satisfies the spectral constraint Q(r,w,8,b) = { (b-1)|vé|? + b(éwf')} >0

over all fields (w, #) which satisfy A%2w + RaA Hé = 0 and the relavent boundary conditions
(Figure 1(b)), then the following upper bound on Nu holds

b2
-1<
Nu 1_4(b—1)

We must also have b > 1 in order that the quadratic functional Q has a minimum value.

I'11% ~ 1). (15)

4 Howard-Chan Approach

We begin by assuming statistical stationarity for all horizontal averages, then (wT)o, =
(wT) and moreover

Nu =1+ (wT).

We make the mean-fluctuation decomposition of the _temperature field T = T + 6. Where
now T is the time independent horizontal mean and 8 = 0.
A horizontal average of Equation (2) after integration gives

dT — X
'-&;—we—(wG)-—l (16)
and multiplying Equation (2) by T and global averaging yields
- &T -
(T57) =-Ival (17)

then inserting (16) into (17) we deduce the so-called second power integral
012 + 1w - (b)) = (wb. (18)
We can form unity by taking the ratio of terms in the previous balance
L (wb) — o2
llwé — (wh)||?

and subsequently we can define the homogeneous functional which Chan [4] seeks to max-
imise. Let F':= Nu — 1 and multiply the above representation of unity by (wf) to form a
homogeneous functional

o (00 — wh)| Vo2
Jw — (w2

(19)
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the supremum of which is an upper bound on Nu — 1. The maximisation of F is performed
over the competitor fields and the constraint in Equation (18) is imposed post facto by
normalising (wf) = F.

Chan studied the following Lagrangian form

G = F — (q(x)(A%w + RaA ,6)) (20)

where g is a Lagrange multiplier satisfying natural boundary conditions which imposes the
point-wise constraint in Equation (4). This is exactly the functional Eq. (25) in [4] without
the normalisation (wf) = 1. Taking variations of this functional with respect to w and then
6 one finds that

3G _ b2(wh) — |VEI%) _ 2F6(wd — (wh))

= P = - - A2q =0
oW wd — (wh)|2 llwh — (wd) |2

3G _ 20wb)(w + A§) —w|VO|> _ 2Pw(wd — (wh))
i 00 llwé — (wh)||? llwb — (wh)]?

—RalA,q=0

Multiplying these equations through by ||Z;76 — (wh)||? and substituting in
IV8]1? = (wb) — |wh — (wh)||?
we deduce the following Euler-Lagrange equations for w and 6

6 ((wh) + wh — (wh)|?) — 20 (wh — (wh) ) - (A%) [lwd — wd)* =0, (21)

200(wd) + w (<wé> + |jwb — <wé>u2) (22)
— 2Fw (;v—é - (wé)) —Ra(A,q) “;0:-— (wh) H2 =0.

It can be shown that if we normalise w and 6 as Chan does, namely w — (wé)'%R“%w
and § — (wd ~3R20 so that (wf) — 1 then equations (22) and (21) become exactly the
Euler-Lagrange equations (27) in [4] which Chan solves using Busse’s multi-a solution.

Having derived the Doering-Otero and Howard-Chan approaches in the previous two
sections we now turn to proving the duality between the two methods.
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5 A Unifying Functional

Claim: The Doering-Otero principle and the Howard-Chan principle both seek to optimise
the following functional

N := || VT|? - b(6 H) - (g(x)(A%w + RaA ,0)) (23)

where 0 is defined as in (9) and # is the heat equation

H = %+u-V9—A9+wT'—T”=O
Proof:
We start by deriving all of the variational derivatives of N. In terms of 7 and 8 we have
N(r,w,8,b,9) = ||| = {(b— 1)|V6]* - (b 2)87" + bowr’) (24)
—(g(x)(A%w + RaA  6))

Variations are taken in 7, §, w, ¢ and then variational equation for the mean and fluctuating
part of 6 are deduced.

N 20"+ (b— 208"+ b(aB) =0

%’;1 =2(b—-1)A0+ (b—2)7" — bwr’ ~ RaA,,q=0

%z—b@’r'—Azq=0

%%V=A2w+RaAH0=0

5N —f/

—_=2b'—10 b—2 ”=
v _ o7 =26- 18"+ (-2)" =0
56 5

E]g: = 2(b—1)Af - bwr’' —RaAq=0

Part 1: Doering-Otero Principle

6N
olve 50
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Two integrations give

- b—2
0= 56=1) [r+2z-1]
Plugging this into N we have
~ b? . . -
N(rw,0,5,9) = 1= g — (117 - 1) —{(6= 1)V + bur’) - (g(x)(A’w + Rad,0))
Compare this with the functional Otero studies. Setting b = 2 we have N = ||7/||> —

<|V9|2 + 20wr’ > — (g(x)(A%w + RaA,§)) and the fluctuation field has no mean part. It is
clear that we must require b > 1 to ensure that a minimum of the right hand side exists.

Part 2: Howard-Chan Principle

Solve 66—%7 = 0 and -‘;—J-X— = 0 simultaneously to deduce equations for the background field

and the mean of the fluctuation field in terms of the mean-less fluctuation field 6.

= _-—2(”;1) (08— (w6)} - 1

7 =272 (- (wh)}

Plug these expressions into N, of Equation (24), noticing that wf = ;Té,- after some algebra
we have
N(w,0,b,9) = 1+ (wh) + (6 — 1) { (wh) — [wh - (wh)I? - V][] (25)
—(g(x)(A%w + RaA ,6))

Now we see that the Lagrange multiplier b is imposing the global entropy flux balance
(Equation 18) and q is imposing the point-wise constraint in Equation (4). The remaining
variational equations for w and 6 are

%=w+(b-—1) [~ 20 (06 - (wh)) + 280} ~Rat .0 =0 (26)
W b o-1) {020 (wh- )} - A% =0 (27)

We can calculate (8 é]i) = 0 and (w fS—Ju\)r) = 0 in order to obtain a value for b. The

equations to be solved are

(2 - b){wh) — Ra((A,q)d) =0
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and
(2 = b)(wh) +2(b— 1)|| V|| - (A2g)w) = 0.

Given that ((A%g)w) = (g(A2%w)) = (g(~RaA ,6) we can add these two equations and solve
for b to find that

A ~
b= 1VOI - 2{wb) (28)
V6|2 — (wb)
With the use of the second power integral we can rearrange this expression to give
b—1= — 9 (29)

1w — (wh)|[2
for easy insertion back into Equations (26) and (27). Inserting and multiplying the resulting
expressions through by |wé — (wf)||2 we arrive at the expressions

6 (wh) + 1wl ~ (W) - 20wd) (w6~ (w)) - (A%) wh— whIE=0 (30

206(wh) + w (<wé> + [lwd - (wé>||2) — 2uw(w) (wh - (wé)) (31)
~Ra(A,q) [wb — (wh)]|? = 0

Replacing the (wf) which multiply @ - (wé)) in both equations by the functional F
we have exactly the Euler-Lagrange equations that were derived from Chan’s homogeneous
ratio (Equations 21-22).

As a final comment we note that for the problems to intersect the Howard-Chan problem
must also satisfy the spectral constraint so that the top maximum is selected. This means
that (b — 1) > 0, which is consistent with Equation (29) since (wh) is positive due to the
second power integral.

6 Piecewise Linear Background Profiles

In the framework of the Background method rigorous upper bounds on Nu are easily cal-
culated by using piecewise linear test profiles for = (see Figure 2). These functions are
odd functions about the channel midplane, they take the value of 1 /2 in the interior of the
channel and change linearly over two boundary layers of thickness d, such that they satisfy
the boundary conditions on 7, and the derivative of T is:

0 forze(s1-9)

ﬂ
|

—  otherwise.
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Figure 2: Piecewise linear 7.

We take b = 2 in keeping with Otero [9], in which case Nu < (7'2). Simple integration

shows that the upper bound on the heat transport is Nu < % if 7 satisfies the following

condition

[’r is an admissible test function if inf Q > OI (32)

for all wand 6 with A?w+ RaA,#=0and w=Dw=0=0atz2=0,1.

The piecewise linear profile which produces the lowest upper bound is found by min-
imising the following functional

G = Q — (g(x)(Aw + RalA ,0)) + 2X((6%) - 1)

where g is a point-wise Lagrange Multiplier imposing the momentum constraint, and A is
used to normalise §. The Euler-Lagrange equations for this functional are

M = (D? — k%0 —wr' + 52-‘1%, (33)
0 = 267" + (D? — k?)?q, (34)
0 = (D? — k?)*w — Rak?é, (35)

where all of the fields have been Fourier expanded as f = f(z)e***, and each variable g, w,
and @ now only depend on z and must satisfy the following boundary conditions

=w=Dw=q=Dqg=0 at z=0,1.

Given that only 7’ is discontinuous at z = ¢ and z = 1 — § we must solve for w, § and ¢
inside three regions [0, d], [§,1 — 8] and [1 — 4, 8], and impose matching conditions between
the regions. Since equations (33-35) are second order in 6 and fourth order in w and g, the
natural matching conditions are

6] =D} =0

[Diw] = [D'g] =0  for i=0,1,2,3

where [f] denotes the jump in the value of f at either 2 = § or z = 14, and the superscript
denotes the nth z-derivative.
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6.1 Solution Using Complex Eigenfunctions

In Otero’s thesis he successfully applies the method of finding complex analytic eigenfunc-
tions to many variational problems in turbulent convection. The assumption is made, and
later accounted for, that the most critical eigenfunctions are even about the mid-plane.
Thus the following symmetry conditions are also imposed:

D0 =Dw=D*w=Dg=D%=0 at z=1/2.
The solutions is then required in only two regions:
Region I: [0,8] Region 2: [4,1/2].

A is set to zero and equations (33- 35) are solved in complex eigenfunctions on each region.
The boundary conditions at z = 0 are built in to the solution in Region I and the symmetry
conditions at z = % are built in to the solution in Region II. The 10 matching condition
are used to specify 10 unknown coefficients in the two solutions. These conditions can be
collected in to a 10 x 10 linear homogeneous system, say Mz = 0, where = represents a
vector of 10 unknown coefficients. Non-trivial solutions exist if det M = 0. The following
numerical recipe is used to optimise the upper bound:

Technique:
e Fix Ra.

e For fixed k graph det M versus § and find the minimum & such that det M = 0, label
this dg.

e Select the minimum &y over all k, label this Oc.

Then 6. corresponds to the largest § for which condition(32) holds and hence the lowest

upper bound for piecewise linear profiles is Nu < ETR
C

6.2 Calculating the Eigenvalue Spectrum of Constraint (32)

It is easily shown by multiplying Equation (33) by 6, globally averaging and using constraints
(34) and (35), that Q = —A. Condition (32) is thus equivalent to requiring that the highest
eigenvalue, say Mo, of eigenvalue problem (33) subject to (34) and (35), over all k-space are
negative semi-definite. We can therefore repose condition(32) as

T is an admissible test function if

AD = maxy Ao satisfies A 0. (36)

We calculate the spectrum Ao(k) of Equations (33-35) using finite difference methods
together with the shooting technique to match the solutions on each region at the point
z = 4. A} is found to be a monotone increasing function of §. We are able to find the critical
d, say 4, for which A§ = 0 as illustrated below.

Technique:
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Ao

Figure 3: The spectrum of Equations (33-35) at Ra = 10° and optimal boundary thickness
6c = 1.3457 x 1073.

e Fix Ra.
e For fixed § calculate A\g(k) and find its maximum A
e Vary § until Aj =0

The envelope of the eigenvalue spectrum Ag(k) is found to have a unique maximum. We
denote the wavenumber at which the maximum occurs by k.. This procedure leads us to
the critical  for which condition (36) is marginally satisfied. It is the same § as calculated
by the numerical scheme used by Otero. Figure 3 shows an example of the spectrum at
Ra = 10°.

6.3 Comparison of Numerics

For comparison of our numerical technique with that of Otero we calculate . at six points
in log(Ra)-space between 4 and 9. The results are shown in Figure 5. The solid upper
line is plotted using data supplied by Otero. Our calculation is shown as circles which
fall reassuringly well on top of Otero’s data. Also shown is Chan’s optimal upper bound
with a 1/3 scaling taken directly from his 1971 publication. Also of interest here are the
crosses which are associated to a lower bound on the optimal upper bound calculated here
to explore the nature of the duality which exists between the Howard-Chan method and the
Doering-Otero method. We took the eigenfunctions for w and 8 associated with the critical
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Figure 4: The critical wavenumber for the optimising piecewise linear profiles. This shows
that k. ~ O(1).

wavenumber k. when A\j = 0 and evaluated Chan’s homogeneous functional (19) at these
points. This procedure guarantees a lower bound on Chan’s optimal upper bound. However,
this lower bound is very poor and this naive experiment reveals that the eigenfunctions (see
Figure 7) do not well approximate the structure of Chan’s optimal solutions (see Figure 6)
and are thus poor test functions for the Howard-Chan variational problem. One notices,
for example, that there is no boundary layer in the product w8 for our eigenfunctions.

Interestingly the critical wavenumber of the optimal piecewise linear profile remains
order one for all Ra studied here (see Figure 4).

7 Discussion

To summarise we have confirmed Otero’s numerical calculation and we have shown that
the duality shared between the two variational problems discussed here is worth further
investigation.

In all other cases, for example plane Couette flow, pipe flow and arbitrary Prandt] num-
ber convection, where piecewise linear test profiles have been applied within the Background
method the correct optimal scaling of the upper bound was achieved. In this case Chan’s
result presents 1/3 as the optimal scaling of Nu with Ra however the piecewise linear pro-
files are capturing 2/5 instead. We note briefly that we have solved this problem without
setting b = 2 and have found that optimising the upper bound over the balance parameter
b does not alter the 2/5 scaling of this upper bound result.

To conclude we would like to propose that future work on this problem should be
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Figure 5: The numerical upper bound for the Background method with piecewise linear
profile. The upper solid line is the upper bound calculated by Otero. Circles are the
points calculated during this study. The dashed line is Chan’s multi-a upper bound. The
crosses are a lower bound on the optimal bound which was calculated by evaluating Chan’s
functional with the eigenfunctions associated to the critical wavenumbers.
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Figure 6: The z-structure of Chan’s optimal solutions.

concerned with solving the full optimal Background problem, as done recently in [10] for the
problem of plane Couette flow, or as an intermediate step, to study how more sophisticated
test profiles, such as profiles with non-zero internal gradients, can improve the upper bound.

This work has been completed with the help of C. Doering, L. Howard, G. Ierley, R.
Kerswell and J. Otero. I thank all of them for their insightful advice and their enthusiasm
for this problem. I would also like to thank all of the students and staff of the Woods
Hole program who together made the Summer an unforgettable experience. Finally I hope
that the legendary GFD Dynamos softball team have many more triumphant years to come
under the auspices of George Veronis.
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